
C a r d i f f
U N I V E R S I T Y

PRI FYSGOL
C a e R D y § >

THE ROLES OF MAGMATISM, CONTAMINATION AND 

HYDROTHERMAL PROCESSES IN THE DEVELOPMENT 

OF PLATREEF MINERALIZATION, 

BUSHVELD COMPLEX, SOUTH AFRICA

David Holwell

Submitted in partial fulfilment of the requirements for the

degree of Ph.D.

November 2006



UMI Number: U 584920

All rights reserved

INFORMATION TO ALL USERS  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript 
and there are missing pages, th ese  will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U 584920
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Acknowledgements

Firstly, many thanks to Iain, for his dedicated supervision of this project, for all his support, 
advice, technical expertise and especially his encouragement to continually publish the 
findings of this project. Thanks to all those in South Africa who were involved in the project 
and provided intellectual or logistical support, or entertainment, during the field seasons; in 
particular Anzie Jordaan, Richard Montjoie, Barry Jones, Alfred Sarila, Alan Bye, Robert 
Schouwstra, Jock Harmer and everyone at Wits Geosciences.

At Cardiff, thanks to Pete Fisher for his assistance in the SEM work, Tony Harris and Wes 
Gibbons for their assistance in unravelling metamorphic mineral assemblages, and to my 
office mates Alan and Rich for honing my indoor cricket skills, and to all the rest, for making 
the past three years such an enjoyable time.

Many thanks also to Adrian Boyce, another Glaswegian scholar and gentleman, for all his 
support, advice and logistical help in making trips to East Kilbride bearable.

Funding from the NERC and Anglo Platinum is greatly acknowledged through Industrial 
CASE project (NER/S/C/2003/11952), throughout the duration of the studentship, and for 
allowing me to return to South Africa to present the final thesis in person. Additional funding 
from the SEG and IOM3 are also acknowledged.

And finally, thanks to Jay, for all her support over the years, patient listening to my geological 
ramblings, and invaluable proof reading skills to make sure all the commas were put in the 
right place.



Abstract

The Platreef is a highly complex, pyroxenite-hosted Ni-Cu-PGE deposit. It is located at the 
base of the northern limb of the Bushveld Complex, South Africa, in direct contact with a 
variety of country rock sediments and Archaean basement. The interaction of the Platreef 
magma with these diverse country rock lithologies during emplacement had a profound effect 
on the style and distribution of the mineralization on both regional and local scales.

Geometrically, the Platreef was emplaced as a thin, sill-like intrusion, with pre-formed PGE- 
rich sulfide droplets entrained within the magma. Sulfur saturation is likely to have occurred 
in a deep staging chamber or conduit prior to emplacement, and where immiscible sulfide 
droplets became enriched in PGE, base metals and semi metals. After emplacement, the PGE 
and semi-metal rich sulfide liquid cooled to form ‘primary’ assemblages of IPGE-rich 
pyrrhotite, IPGE-, Rh- and Pd-rich pentlandite, chalcopyrite, Pt and Pd tellurides and 
bismuthides and electrum within the feldspathic pyroxenites of the Platreef.

Assimilation and metamorphism of some sedimentary footwall rocks, particularly the 
dolomites of the Malmani Subgroup, released large volumes of volatiles into the Platreef 
magma. This hydrothermal activity redistributed PGE and base metal sulfides (BMS) into the 
footwall rocks, and in places overprinted the ‘primary’ assemblages, and occasionally 
decoupled PGE from BMS, with the petrology of the reef and footwall, and the mineralogy of 
the platinum-group minerals, significantly affected. Each locality along the strike of the 
Platreef with a different footwall lithology has its own unique hydrothermal history directly 
related to the nature of the local floor rocks. For example, where the floor is composed of 
anhydrous basement gneiss, volatile activity was relatively insignificant, and partial melting 
of the floor allowed the percolation of PGE-rich sulfide liquid to penetrate the footwall.

The nature of the floor rocks also controls the type and amount of contamination in the 
Platreef. Sulfides in country rock shales, for example, are assimilated into the Platreef magma 
and locally upgrade the S content at such localities, although this did not trigger S saturation. 
Footwall sulfates, such as anhydrite, cannot be assimilated, but can interact with the Platreef 
sulfides through hydrothermal leaching when sufficient fluids had been released during 
assimilation.

After emplacement of the Platreef, a significant period of cooling occurred, such that the 
Platreef was almost completely crystallized, during which time some ductile deformation 
occurred. The gabbronoritic hangingwall magma was then emplaced, forming a magmatic 
unconformity over the Platreef, occasionally exploiting shear zones to intrude finger-like 
bodies down into the Platreef. Where the hangingwall magma assimilated mineralized 
Platreef thin zones of PGE mineralization developed at its base.

The magmatic intrusion of the Platreef can be considered to be distinct from that of other 
magmatic units in the northern limb of the Complex. Its Ni-Cu-PGE sulfide mineralization is 
orthomagmatic in origin; however, complex interaction with a variety of country rock 
lithologies has locally altered the style and distribution of the mineralization, to form unique 
mineralogical associations and assemblages along strike. The understanding of local country 
rock control on features such as the mineralogy of the ores and the extent of remobilization 
into the footwall is critical in optimizing exploration, mining and mineral processing 
techniques.
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Chapter 1. Introduction

1.1 The platinum-group elements

The transition elements ruthenium (atomic number 44), rhodium (45), palladium (46), 

osmium (76), iridium (77) and platinum (78) occupy the second and third rows of Group VIII 

of the periodic table and are referred to as the platinum-group elements (PGE) and are often 

grouped together with gold and silver and termed ‘precious’ or ‘noble’ metals. They can be 

divided into a light triad (Ru, Rh and Pd) and a heavy triad (Os, Ir and Pt). The light triad 

have densities roughly half that of the heavy triad. Platinum and Pd are relatively soft and 

ductile. In contrast, Ru and Os are hard and brittle and are thus of limited industrial use. Table

1.1 shows some physical properties of the PGE.

Table 1.1 Physical properties of the platinum-group elements (after Westland, 1981).

Property Ru Rh Pd Os Ir Pt

Atomic number 44 45 46 76 77 78

Atomic weight 101.07 102.94 108.42 190.23 192.22 195.08

Density at 20°C (kgm'^IO*3) 12.2 12.4 12.0 22.5 22.4 21.5

Melting point (°C) 2334 1967 1555 3050 2454 1768

Boiling point (°C) 3900 3727 3140 5027 4130 3827

Resistivity at 0°C (pQcm) 6.80 4.33 9.93 8.12 4.71 9.85

Hardness (annealed, VHN) 200-350 100-102 40-42 300-670 200-240 40-42

Atomic radius (cm a) 1.336 1.342 1.373 1.350 1.355 1.385

Oxidation state (common) +3 +3 +2 +4 +3 +2

(highest) +8 +6 +4 +8 +6 +6

Chemically, the PGE show highly siderophile tendencies in the presence of Fe metal, and are 

also mutually soluble in one another. The PGE are relatively unreactive in dilute acids and 

alkalis, but can be dissolved slowly in concentrated acid, in particular Pt and Pd are more 

reactive in this sense than the other PGE and are readily dissolved in aqua regia. At elevated 

temperatures, the PGE all react with oxygen to yield volatile oxides and with the halogens to 

produce PGE halide compounds such as hexafluorides and chlorides. In addition, and perhaps 

most importantly in the formation of natural platinum-group minerals (PGM), the PGE will 

dissolve in molten bases of the P block of the periodic table and form a wide range of 

sulfides, tellurides, arsenides, bismuthides, antimonides, and selenides.
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Chapter 1. Introduction

1.2 Uses of PGE

The current principal uses for the most industrially important PGE: Pt, Pd and Rh, as stated by 

Kendall (2006), are shown in Fig. 1.1. Platinum is used principally as an autocatalyst and in 

jewellery, with industrial uses including the production of computer hard disks and liquid 

crystal displays (LCDs), and in petroleum refining. Other uses include dental alloys, spark 

plugs, turbine blades and in biomedical components and drugs, including the anti-cancer drug 

cisplatin. Around half of the demand for palladium is for autocatalysts, with jewellery, 

electronics and dental uses also important. Rhodium is also principally used as an 

autocatalyst, and also has minor demand in the glass industry for the manufacture of LCDs. 

Ruthenium is used in electronic applications such as computer hard disks, and the major use 

of iridium is in the manufacture of crucibles for the production of high quality single crystals, 

and together with ruthenium as a catalyst in the production of acetic acid.
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petroleum
Pt

chemical 4% 

glass 5%/  

electronics 5%
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electronics 13%
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Figure 1.1. Demand by application of the Pt, Pd and Rh for 2005 (data from Kendall, 2006).
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1.3 Economic occurrences of PGE

The PGE commonly occur together in nature and are among the scarcest of the metallic 

elements, usually present in concentrations of a few parts per billion, or less, in most rocks. 

This, together with their range of industrial and social applications outlined above make the 

PGE highly expensive commodities. Over the past five years the price of platinum has more 

than doubled, and throughout 2006, Pt was consistently trading at around the $US1000 per 

troy ounce mark, double that of gold, with Pd around US$300/oz and Rh approaching 

US$5000/oz. There are very few major occurrences of PGE in the Earth’s crust, and the most 

economic are in mafic layered igneous intrusions where they may attain concentrations 

around a few parts per million. By far the greatest of these deposits in terms of PGE content is 

the Bushveld Complex in South Africa, with the Great Dyke in Zimbabwe and the Stillwater 

Complex in Montana, USA, minor contributors. The PGE, and in particular Pd, are also 

significant by-products in large magmatic Ni-Cu sulfide deposits, the most significant of 

which are the Noril’sk deposits in Siberia, Russia, and the Sudbury igneous complex in 

Ontario, Canada.

The Bushveld Complex in northern South Africa is the world’s largest layered igneous 

intrusion as is also the largest repository of magmatic ore deposits on the planet. It hosts 

around 75% of the world’s resources of platinum-group elements (Kendall, 2006) in three 

major deposits. The Merensky Reef and UG2 chromitite units are stratiform layers located in 

mafic rocks which can be traced over hundreds of kilometres in the eastern and western limbs 

of the Complex. The Platreef is a stratabound, but not stratiform, unit at the base of the 

igneous sequence in the northern limb of the complex and has an estimated Pt+Pd reserve of

16.3 million ounces, making it the third largest PGE deposit in the world after the UG2 and 

Merensky Reef (Cawthom, 1999).

The Platreef is a 10-400m thick pyroxenitic unit containing Ni-Cu-PGE mineralization that 

has intruded a wide variety of country rock lithologies along its ~40km strike length. In what 

has been termed an ‘igneous transgression’ (Wagner, 1929), the Platreef overlies sediments of 

the late Archaean-early Proterozoic Transvaal Supergroup, which include quartzites, shales, 

dolomites and banded ironstones, and the Archaean granite/gneiss basement complex. The 

interaction of the Platreef magma with the different floor rock types appears to have had
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profound effects on the style and distribution of the mineralization on both a local and 

regional scale.

1.4 Aims of the project

This project aims to assess the roles that magmatism, contamination and hydrothermal 

activity have played during the development of Platreef mineralization. The research focuses 

on four main areas:

• Detailed geological mapping in open pit mines to provide the sound geological context 

to be able to apply any further petrological or geochemical interpretation to overall 

models. In particular the mapping provides a solid basis for determining the relative 

timings of events.

• Combined petrological and geochemical studies to assess the magmatic and 

hydrothermal processes involved in both the origin and nature of the Platreef magma, 

and the ore-forming sulfide liquid.

• Sulfur isotope work on the Platreef sulfides in order to determine the origin of the 

sulfur, the timing of S saturation and the extent of any contamination in the 

development sulfide mineralization.

• Detailed mineralogical studies and laser-ablation ICP-MS techniques on the 

mineralogy of the ore minerals to determine the mechanisms of precious metal 

enrichment in the Platreef, the partitioning behaviour of the PGE within the sulfides 

and to identify and assess to the effects of hydrothermal redistribution.

The nature of contamination and hydrothermal activity is directly dependant on the 

interaction of the variety of floor rock lithologies with the Platreef magma. The field area 

for this study encompasses a section of the Platreef where the floor rocks differ 

substantially and so all of the above factors can be assessed on a metre and kilometre 

scale, to determine the control that footwall lithology has on each aspect of the 

mineralization in this enigmatic deposit.
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Chapter 2. The Platreef

2.1 The Bushveld Complex

The Bushveld Complex is located in the northeastern part of South Africa to the north of the 

city of Johannesburg. It is the world’s largest layered igneous intrusion and is made up of a 

succession of mafic and ultramafic cumulates 7-8km thick and covers an area of 

approximately 65,000km . It is the largest repository of magmatic ore deposits on Earth, and 

currently produces around 75% of the world’s platinum-group elements (PGE) (Kendall,

2006). It was intruded into the Kaapvaal Craton around 2.06Ga (Walraven et al., 1990), and 

the country rocks in most parts of the complex are sediments of the 2.1-2.3Ga Pretoria Group, 

which is part of the lower Proterozoic Transvaal Supergroup. In the South African 

stratigraphic literature, the Bushveld Complex comprises of (Fig. 2.1):

• a suite of mafic sills intruded into the Transvaal Supergroup;

• the felsic and minor basic volcanics of the Rooiberg Formation;

• the layered mafic and ultramafic rocks of the Rustenburg Layered Suite;

• intrusive acid rocks of the Rashoop Granophyre Suite, and;

• the Lebowa Granite Suite.

However, in much of the scientific literature and subsequently in this study also, the term 

Bushveld Complex refers to just the layered ultramafic/mafic sequence of the Rustenburg 

Layered Suite (RLS).

The RLS crops out in three distinct limbs: the western limb, around Rustenburg; the eastern 

limb, around Burgersfort; and the northern limb, from Mokopane (formerly Potgietersrus) to 

Villa Nora (Fig. 2.1). An extension of the western limb north of Zeerust, referred to as the far 

western limb, and an extension of the eastern limb beneath cover rocks, identified by gravity 

data in the south east, referred to as the southern, or Bethal limb, are also recognized (Eales 

and Cawthom, 1996). The giant deposits of PGE, chromium and vanadium are all hosted in 

the RLS. The world class PGE deposits of the Merensky Reef and UG2 chromitite are located 

in the eastern and western limbs and the Platreef in the northern limb. The RLS in the western 

and eastern limbs is traditionally divided into five zones, originally defined by Hall (1932), 

comprising a Marginal Zone of norites, Lower Zone pyroxenites and harzburgites, Critical 

Zone chromitite-pyroxenite-norite cyclic units, Main Zone gabbronorites and Upper Zone 

anorthosites, gabbronorites and magnetites (Fig. 2.2). The similarity between the two limbs 

which includes the correlation of marker horizons such as the Merensky Reef chromitites led 

Hall (1932) to conclude they were originally connected. Meyer and de Beer (1987) used the
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absence of a positive gravity anomaly between the two limbs as evidence for two discrete, 

inwardly-dipping sheets. Cawthom and Webb (2001), however, showed that a mass of 

magma such as that in the BIC would have caused isostatic subsidence, thus cancelling out 

the expected gravity anomaly. This led the authors to favour the original interpretation of Hall 

(1932), stating that considering the remarkable similarities between limbs separated by over 

100km, a much more petrologically plausible explanation is that the eastern and western 

limbs of the complex formed as a single lopolithic intrusion, that has been subsequently 

downwarped and is presently connected at depth.

lokopane
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■Johannes but

Alkaline intrusions 
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Figure 2.1. Geological map o f the Bushveld Complex (after Kinnaird et al., 2005).

2.1.1 Structural setting

The Bushveld Complex is located within the Kaapvaal Craton, which is comprized of a 

mosaic of crustal blocks that amalgamated between 3.7 and 2.6Ga, and can be subdivided into 

two periods (de Wit et al., 1992). Between 3.7 and 3.1Ga, the initial separation of continental 

lithosphere from the mantle occurred through intraoceanic obduction and amalgamation
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processes followed by within-shield melting, granite formation and chemical differentiation 

of the upper lithosphere to create the Kaapvaal shield. The second stage of Precambrian 

history of southern Africa was synthesized by Silver et al. (2004) using mantle fabrics 

revealed by seismic anisotropy and is summarized in Fig 2.2. Firstly, an unknown orogen 

imparts a mantle fabric on the Zimbabwe craton pre 2.9Ga (Fig. 2.2a). Around 2.9Ga, the 

Pietersburg and Kimberley blocks collide with the Kaapvaal Shield, which imparts an arc-like 

mantle fabric, and forms the Thabazimbi-Murchison Lineament (TML, Fig. 2.2b). During the 

Limpopo orogen at 2.6-2.7Ga, the Limpopo Belt is formed between the Kaapvaal and 

Zimbabwe cratons. During this time, the Great Dyke and Ventersdoorp Supergroup are 

intruded (Fig. 2.2c). At around 2.0Ga, during the Magondi orogen, shear zones in the 

Limpopo Belt are reactivated and the Bushveld Complex is emplaced along the TML (Fig.

2.2d). Finally, the 1.8-1.9Ga Kheis orogen produces the Soutpansberg trough (Fig. 2.2e).

/  \ Zimbabwe
/  shield

Limpopo 
central zone

(pietersburg block)

Kaapvaal
shield

Witwatersrand
basin
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Great
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Complex
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Figure 2.2. Tectomagmatic evolution of the Kaapvaal Craton. After Silver et al. (2004). See text for 
explanation. TML -  Thabazimbi-Murchison Lineament, CL -  Colesberg Lineament, PSZ -  Palala 
Shear Zone, TSZ -  Tiangle Shear Zone, LB -  Limpopo Belt.
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2.1.2 Emplacement and magma source

The mechanism of emplacement for the Bushveld Complex remains unresolved. One of the 

earliest theories was described by Mills Davis (1925), who postulated “an active molten rock 

magma of common or normal composition deep down in the Central Transvaal area and its 

gradual advance upwards through thousands of feet of strata until it emerged through devious 

ways through the quartzites and shales of the Pretoria Group and.. .spread out like a colossal 

cake.” Wagner (1929) referred to its lopolithic nature and the likelihood of it being intruded 

into horizontal strata, but did not suggest a mechanism for the intrusion. Hatton (1995) 

considered the Bushveld Complex to be the intrusive equivalent of a continental flood basalt 

province, with the magma sourced from a mantle plume that impinged through the base of the 

crust. Using MgO and SiC>2 contents, he calculated that melting took place between 18 and 

40km, and inferred that the only way to achieve melting at such depths in an intracratonic 

setting would be for a sufficiently buoyant mantle plume to penetrate the bottom of the crust. 

Cawthom et al. (2002), however, stated that this was unlikely, and that using MgO and Si02 

contents could not be used to infer the depth of melting due to the possible effects of 

contamination and fractionation. In addition, Cawthom et al. (2002) note that the presence of 

mantle xenoliths in kimberlites that penetrate the Bushveld Complex, are 3Ga (i.e. older than 

the complex) and suggest that it would have been impossible for these to have been preserved 

if a mantle plume had penetrated it. They therefore concluded that melting took place at a 

much greater depth in the asthenosphere and it was magma rather than a plume that invaded 

the lithospheric upper mantle. Re/Os ages for xenoliths within the Premier kimberlite in the 

eastern Kaapvaal shield are around 2Ga from xenoliths sourced from the upper lithosphere, 

whilst the deeper ones have a more characteristic Kaapvaal age of 3Ga (Carlson et al., 1999). 

The change to apparently younger ages can be explained by ‘resetting’ of the Re/Os system 

by a magmatic event. At around 2.0Ga, this corresponds to the intrusion of the Bushveld 

Complex. If this event was plume related, one would expect even the lower lithospheric 

mantle to also be affected.

No feeder systems have been positively identified; however, several have been inferred on the 

basis of positive gravity anomalies (Kinloch, 1982). In the eastern and western Bushveld, 

these coincide with the upper contact of the Upper Zone, and du Plessis and Kleywegt (1987) 

point out that this is where the thickness of the mafic rocks is greatest, and therefore a positive 

anomaly would be expected, thus these anomalies are unlikely to represent feeders. By far the
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strongest gravity anomaly in the complex is located in the northern limb, just to the west of 

Mokopane, and does not in this case correspond to an area of the thickest mafic sequence.

Van der Merwe (1976) interpreted this as a feeder vent, and also found no evidence of any 

physical link between the northern and eastern limbs of the complex on the basis of gravity 

data. The enormity of the Mokopane anomaly and the lack of connectivity with the eastern 

limb are shown in the gravity map in Fig. 2.3. The mafic rocks of the Bushveld Complex have 

a -60-70mGal Bouguer anomaly compared to the country rocks, which have an anomaly of - 

140mGal. The areas in the eastern and western Bushveld where feeders have been inferred 

have anomalies of around -45mGal, whereas the Mokopane anomaly is close to -lOmGal.

This obvious and much more convincing anomaly is surprisingly ignored by Cawthom and 

Webb (2001), from where the map is reproduced. Kruger (2005a) used initial x7Sr/86Sr ratios 

to suggest that Main Zone magma for the whole complex was intruded north of the TML, 

from the Mokopane feeder, and flooded into the rest of the complex forming the Merensky 

Reef at the base. This model consequently implies that the Platreef and Merensky Reef are 

coeval and directly related, a view which is becoming increasing questioned, (e.g. McDonald 

etal., 2005)

NORTHERN
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Figure 2.3. Gravity map of the Bushveld Complex, showing the outline of surface outcrop, and the 
large gravity anomaly close to Mokopane (after Cawthom and Webb, 2001).
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Linear feeders have been proposed by Cawthom et al. (2002) and Friese (2004). The former 

auothors considered the Steelpoort Fault (Fig. 2.1) to be a likely feeder zone. There are well 

known differences in stratigraphic thicknesses of individual units of the Lower and Critical 

Zones on either side of this lineament (e.g. Hatton and von Gruenewaldt, 1987). Cawthom et 

al. (2002) explain these by proposing that magma flowing to the north and south of the linear 

feeder to greater or lesser degrees depending on the amount of subsistence on either side. This 

would therefore produce different depths of magma leading to the observed stratigraphic 

thicknesses. The authors also state that the Steelpoort Fault was unlikely to be the only feeder 

and many of the large faults that separate compartments of the Complex may have acted as 

feeders. Friese (2004), took an alternative view and considered the TML to be a likely feeder 

zone, with magmas ascending along the deep-seated shear zones until at a critical point in the 

crust where the magmatic pressure equalled lithostatic pressure and triggered the sill-like 

intrusion of the Complex. The TML is a 500km long, 25km wide ENE-WSW trending 

deformation belt, reactivated as a fault (McCourt and Veamcombe, 1987). It delineates a 

major cratonic subterranean boundary, and as such, represents a fundamental crustal and 

•probably deep lithospheric-mantle break within the Kaapvaal Craton (Good and de Wit, 1997; 

Silver et al., 2004). Figure 2.2 shows that the crust south of the TML belongs to the Kaapvaal 

shield, whereas the crust to the north is part of the Pietersburg block. Therefore the crust, and 

most importantly for magma genesis, the sub lithospheric continental mantle, on either side of 

the TML are fundamentally different, and as the Bushveld Complex straddles the TML, the 

magmas in the northern limb may have been generated from compositionally distinct mantle 

from that of the rest of the Complex. In doing so, this may explain the compositional 

differences in Bushveld rocks across the TML highlighted by McDonald et al. (2005).

The TML is also thought to be fundamentally important in the emplacement of not just the 

Bushveld Complex, but other large magmatic events in the Kaapvaal and Zimbabwe cratons. 

Silver et al. (2004) interpreted the Ventersdoorp, Great Dyke, Bushveld and Soutpansberg 

events to be collisional rifts. These develop during or after orogens parallel to the trend of the 

collisional belt in zones of far-field extensional stresses that reactivate pre-existing mantle 

fabrics (Tommasi and Vauchez, 2001). In the model of Silver et al. (2004), the Bushveld 

Complex is therefore considered to be a collisional rift, with magmatism entirely controlled 

by variations in lithospheric stress, rather than by the ascent of a plume from the deep mantle.
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2.2 The Northern limb

The northern limb of the Bushveld Complex is separated from the rest of the complex by the 

Zebediela Fault, part of the TML (Fig. 2.1, 2.4). The northern limb is inferred to be triangular 

in shape, based on gravity surveys (van der Merwe, 1976). It crops out as a sinuous N-S 

trending, WSW-dipping body around 100km in length and up to 15km wide, which makes up 

the eastern edge of this triangle. In the Villa Nora area, around 100km NW of Mokopane (Fig. 

2.1), it crops out again as the NW comer of the triangle, where the dips are to the S and SE 

(Grobler and Whitfield, 1970). The eastern edge of the limb is obscured by Waterberg 

sediments, though is inferred to run from Mookgophong (formerly Naboomspruit, Fig. 2.1) in 

the south to the Mogol River in the northwest, and is likely to have an easterly dip (Van der 

Merwe, 1976).

2.2.7 Stratigraphy o f the northen limb

The stratigraphy of the northern limb differs from the RLS in the complex south of the TML. 

The traditional view of its relationship to the rest of the complex is summarized in Fig. 2.5, 

■and a detailed map of the northern limb is shown in Fig. 2.4. There are also substantial 

differences in the stratigraphy on either side of the Ysterberg-Planknet fault, which trends 

NE-SW through Mokopane (Fig. 2.4). Lower Zone cumulates are developed most extensively 

south of Mokopane, and to the north only occur as isolated satellite bodies intruded into the 

floor rocks (Fig. 2.4). The sequence of Lower Zone cumulates comprises at least 1600m of 37 

cyclic units of pyroxenites and harzburgites with chromitites (Hulbert, 1983; Hulbert and von 

Gruenewaldt, 1982). This sequence differs from the Lower Zone elsewhere in that it contains 

orthopyroxene with higher enstatite content and olivine with higher forsterite content (van der 

Merwe, 1976), chromitite layers with the highest Cr2C>3 content and Cr# in the whole 

Bushveld Complex (Hulbert, 1983), and a PGE-rich sulfide horizon, which are not found in 

any of the Lower Zone cumulates in the rest of the complex (Hulbert and von Gruenewaldt, 

1982). The area to the north of Mokopane contains several bodies of Lower Zone rocks, 

known as ‘satellite bodies,’ intruded into the floor rocks beneath the main Bushveld intrusion 

(Fig. 2.4), that are generally made up of orthopyroxene and orthopyroxene-olivine cumulates 

with occasional chromitite layers (van der Merwe, 1978).
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Figure 2.4. Geological map of the northern limb of the Bushveld Complex (after Ashwal et al., 2005).

14



Chapter 2. The Platreef

Eastern and western Northern
limbs limb

Merensky Reef 
UG2 chromitrte

LG6 chromitite
------

T T
3=1

&

Upper Zone

Main Zone

Critical Z on e^  '

Lower Zone

Transvaal Supergroup

Platreef

A

Figure 2.5. Traditional correlation of stratigraphy of the eastern and western limbs of the Bushveld 
Comnplex, and the northern limb, with an inferred correlation between the Platreef with the Merensky 
Reef (after White, 1994). Note that variable rock types constitute the Transvaal floor in the northern 
limb.

The Critical Zone as it is seen in the rest of the complex is not developed in the northern limb. 

South of Mokopane, a 350m sequence of layered, pyroxenites norites, anorthosites and a 

chromitite, referred to by Hulbert (1983) as the Grasvalley Norite-Pyroxenite-Anorthosite 

(GNPA) member (Fig. 2.4), has been uncritically referred to as the Critical Zone in the 

literature on the northern limb until 2005. This correlation is based on the presence of 

cumulus chromite, marked layering, and a chromitite layer with apparent similarities to the 

UG-2 chromitite of the Critical Zone in the eastern and western limbs (Hulbert, 1983; van der 

Merwe, 1978). Although Mills Davies (1925), in one of the very first accounts of the platinum 

deposits of the Bushveld, stated that “the Potgietersrust occurrences may prove to be a 

separate type of deposit,” Wagner (1929) considered that the feldspathic pyroxenite 

“platiniferous horizon,” or Platreef as it would be later known, north of Mokopane was 

analogous to the Merensky Reef. This assumption has also until very recently stood almost 

unquestioned and has been used to support the correlation of the GNPA member with the 

Upper Critical Zone.
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McDonald et al. (2005), however, challenged this assumption and drew on the many 

differences in stratigraphy, mineralogy and geochemistry to suggest that the GNPA member 

was the product of mixing between Lower Zone and Main Zone magmas, and even that the 

northern limb may be a separate intrusion, distinct from the rest of the Complex. This paper is 

included as Appendix 5.

Above the Platreef, which is discussed further in section 2.3, the Main Zone in the northern 

limb consists of 2200m of fairly homogenous gabbros and gabbronorites (van der Merwe, 

1976). The correlation between the sequence in the northern limb and the rest of the complex 

has not been rigorously tested, and major differences have yet to be explained using a 

common genesis model. Four pyroxenite layers in the lower part of the succession and a 

1 lOm-thick troctolite layer 1100m above the Platreef are the only reliable marker horizons, all 

of which are unique to the northern limb (Fig. 2.4). Van der Merwe (1976) correlated a 

pyroxenite layer near the top of the Main Zone in the northern limb with the Pyroxenite 

Marker in the eastern and western limbs, however Ashwal et al. (2005) argue that the two 

horizons cannot be correlated on the basis of mineralogy and referred to the unit as the 

Pyroxenite Horizon to avoid confusion.

The Upper Zone of the northern limb more closely matches that of the eastern and western 

limbs, comprising alternating layers of gabbro, magnetite gabbro, anorthosite, magnetite and 

olivine diorite. However, only one of the magnetite layers can be reliably correlated with the 

Main Magnetite layer of the rest of the complex on terms of thickness and V2O5 content (Van 

der Merwe, 1976). The Upper Zone also crops out in the Villa Nora area (Fig. 2.1), where the 

main rock types are leuconorites, leucogabbros and anorthosites (Hattingh and Pauls, 1994). 

The lower zones in the Villa Nora compartment are faulted out by the Abbotspoort Fault.

2.2.2. Age o f the northern limb

It has been almost unquestionably considered that all three limbs of the Bushveld Complex 

were formed at the same time, and the age of 2.06Ga (Walraven et al., 1990), is taken to be 

age of the Complex by most workers. This date was confirmed by Buick et al. (2002) who 

used U-Pb dating of titanites within calc-silicate xenoliths in the RLS to provide a tight 

constraint on the minimum age for Bushveld intrusion at 2058.9±0.8Ma. However, in the 

light of the suggestion of McDonald et al. (2005), that the northern limb may possibly
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represent a separate intrusion, it is necessary to reassess and test this assumption. Very few 

attempts have actually been made at determining the age of the northern limb, partly due to 

the assumption that it formed at the same time as the rest of the Complex, where most of the 

dating work has been done. However, there are two studies which may indicate a somewhat 

younger age for the intrusion of the northern limb. Palaeomagnetic data presented by Hattingh

(1995) indicates that in the main part of the Complex, the Critical Zone’s remnant 

magnetization was fixed before that of the Main and subsequent Upper Zones. Following this, 

magnetization of the Main Zones in the northern limb occurred and the youngest 

magnetization recorded is that of the Upper Zone in the northern limb. In addition to this 

intriguing data is a Re-Os isotope date by Ruiz et al. (2004), which provided a age of 

201 l±50Ma, which only just incorporates the assumed age of 2060Ma into its error margin. A 

much more accurate date which would appear to give a minimum age to the Platreef at least 

is, provided by Hutchinson et al. (2004), who dated zircon in a granitic vein which cross-cut 

the Platreef at 2053.7±3.2Ma. If this is accurate it may imply a slightly younger age, however, 

it is in no way as great as that that could be inferred from the palaeomagnetic and Re-Os data.

2.3. The Platreef

The Platreef is one of the world’s largest deposits of PGE, and also contains significant 

reserves of Ni and Cu. It is estimated to contain reserves of 16.3million oz of Pt+Pd 

(Cawthom, 1999), and with its thickness of up to 400m and high grade, is amenable to open 

pit mining (Bye, 2001). Potgietersrus Platinums Ltd., a subsidiary of Anglo Platinum, 

currently operates two open-pit mines at Sandsloot and Zwartfontein South (Fig. 2.6), with 

others planned on the adjacent farms Overysel and Tweefontein. The activity of several other 

companies, including Anooraq Resources, Platreef Resources, Pan Palladium, Platinum 

Group Metals Ltd, Caledonia Mining and AfriOre has made the northern limb of the 

Bushveld Complex currently one of the most intensely explored areas for PGE in the world.

2.3.1 Current state o f research

Platinum in the northern limb was originally found by a team of prospectors led by Hans 

Merensky in March 1925 (Mills Davies, 1925). By November of the same year, Potgietersrust 

Platinums Ltd (PPL) was formed, at which point Merensky himself (1925) stated, “I feel 

convinced that the Potgietersrust Platinums Ltd. will develop into a highly payable concern.”
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Fig. 2.6. Geological map of the Platreef showing the different footwall units along strike and the farms 
referred to in the text. The map on the right hand side shows in detail the field area for this study, 
including the Sandsloot and Zwartfontein South pits.

The company was in production by 1926 (Cawthom et al., 2002) and much of the early work 

on the deposits was summarized by Wagner (1929) in his seminal volume: ‘The platinum 

deposits of South Africa.’ Despite early optimism, early mining results were poorer than 

expected and following the onset of the Great Depression in 1930, mining ceased. For the 

next six decades, Bushveld Complex mining and research was concentrated in the western 

and eastern limbs, with only a handful of investigations on the Platreef being published prior 

to 2000. In 1992, PPL, now fully owned by Anglo Platinum, opened the Sandsloot mine, 

which paved the way for a new wave of research on the deposit. Most of these, such as White 

(1994) and Viljoen and Schurmann (1998) have been undertaken on Anglo Platinum’s 

property between the farms Tweefontein and Overysel (Fig 2.6). The subsequent studies of 

Harris and Chaumba, (2001), Armitage et al. (2002), Friese (2004), McDonald et al. (2005), 

Holwell et al. (2005, see Chapter 3) and Holwell et al. (2006, see Chapter 5) have all utilized 

data from the Sandsloot mine in their respective studies of Platreef contamination, 

mineralization, structure, geochemistry, emplacement and mineralogy. Merensky’s prediction 

of 1925 had become realized and in 2005, Anglo Platinum’s PPL produced some 443,000oz
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of refined PGE, together with 4600 tons of Ni and 2700 tons of Cu (Anglo Platinum Annual 

Report, 2005). The success of the operation at Sandsloot led to a boom in exploration along 

the entire length of the northern limb by both Anglo Platinum and several junior companies. 

The shear volume of core drilled during these recent exploration programmes has facilitated 

an expanding number of academic studies to be perfomed to such an extent that the total 

number of publications on the Platreef has more than doubled in the past few years. It has also 

enabled studies to be undertaken on other areas along the strike of the Platreef. Kinnaird et al. 

(2005), Kinnaird (2005), Hutchinson and Kinnaird (2005) and Sharman-Harris et al. (2005) 

have recently presented studies on the Platreef geology, geochemistry, mineralogy and 

isotopic characteristics, respectively, from the area currently licenced by Ivanhoe Nickel and 

Platinum (Platreef Resources) on the farms Turfspruit and Macalacaskop. In addition, 

Manyeruke et al. (2005) presented a paper detailing the characteristics of the Platreef from the 

farm Piet Potgietersrust Town and Townlands (Townlands, Fig. 2.6). This study, and the 

papers produced from it, has been part of this boom in research, and as such have been an 

intrinsic part of the ongoing revolution in Platreef research.

2.3.2 Geology

The first comprehensive account of the Platreef was by Wagner (1929). He stated that the 

Platreef can be generalized as a basal package of pyroxenites, norites, serpentinites and 

xenoliths of footwall rocks with PGE-Ni-Cu mineralization which transgresses a variety of 

floor rock lithologies and is overlain by gabbronorites equated with the Main Zone. In detail 

however, the Platreef is a very complex zone of igneous and hybrid lithologies that vary along 

strike and whose differences are at least in part, directly related to the interaction of the 

Platreef magma with the local footwall type. Thickness varies from as little as 10m at 

Sandsloot (Armitage et al., 2002) to 400m at Turfspruit (Kinnaird, 2005) and is thought to be 

controlled at least in part by structures in the floor rocks (Friese, 2004; Nex, 2005). The 

general geology, including footwall lithology, Platreef lithologies, xenolith types, together 

with a summary of the base metal sulfide (BMS) and platinum-group mineral (PGM) 

mineralogy of the Platreef with a comprehensive reference list for each farm along strike is 

shown in Fig. 2.7. The information in sections 2.3.2 and 2.3.3 are summarized in this figure.
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Figure 2.7. Summary figure showing the geology and mineralization types along the strike of the Platreef.
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2.3.2.1 Footwall lithologies

The Platreef rests upon a series of Paleaeoproterozoic sediments of the Transvaal Supergroup, 

and Archaean basement in an onlapping relationship described by Wagner (1929) as an 

‘igneous transgression.’ From Mokopane northwards, the floor rocks to the Platreef are a 

succession of progressively older sedimentary units: quartzites and shales of the Timeball Hill 

Formation; shales of the Duitschland Formation; the Penge banded iron formation, and 

dolomite of the Malmani Subgroup (Fig. 2.6). North of the farm Zwartfontein, the Platreef 

overlies granites and gneisses of the Archaean basement (Fig. 2.6). The interaction of the 

Platreef magma with the variety of floor rocks aften results in the formation of hybrid 

lithologies, such as the serpentinized websterites identified at Sandsloot by McDonald et al. 

(2005). These rocks were interpreted to be a footwall-Platreef hybrid on the basis of their 

whole-rock Cr and CaO contents being intermediate between Platreef pyroxenites and 

footwall clinopyroxenintes. Thermal metamorphism and hydrothermal activity towards the 

contact with the overlying Platreef has often given rise to unique lithologies such as the 

‘parapyroxenites’ at Sandsloot and Zwartfontein South, which are clinopyroxenites of 

metamorphic origin which form the uppermost footwall unit, separating the Platreef 

pyroxenites from the underlying calc-silicates. Harris and Chaumba (2001) defined these as 

being metamorphic in origin in terms of their low whole-rock Cr and high CaO contents.

2.3.2.2 Platreef lithologies

The Platreef is largely a pyroxenitic body, and the most common rock types are feldspathic 

pyroxenites comprized of cumulus orthopyroxene and intercumulus clinopyroxene and 

plagioclase, with accessory sulfides. White (1994) subdivided the Platreef into three main 

units that he named ‘A, B and C’ reef. This classification states that the lowest part of the 

Platreef, the ‘A-reef,’ is a variably textured, often pegmatitic feldspathic pyroxenite with PGE 

and base-metal sulfide mineralization. Above this is the main ore zone termed the ‘B-reef 

which was defined as a coarse-grained feldspathic pyroxenite with 50-90% orthopyroxene, 

intercumulus plagioclase and common base-metal sulfides. The top of Platreef is made up of a 

PGE-poor, fine-grained poikilitic feldspathic pyroxenite containing up to 70% clinopyroxene 

and was termed ‘C-reef.’ This is, however, a very simplified (as originally stated by White,

1994) and purely mineralogical characterization, and the recognition of all three zones along 

the strike of the Platreef is difficult, and in many places impossible. According to Viljoen and 

Schurmann (1998), all three reef types are present on the northern farms of Overysel and
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Drenthe, and White (1994) notes that recognition of all three reef types is possible on 

Tweefontein Hill, due to the chemically less reactive nature of the banded ironstone footwall. 

Despite the very simplified nature of the classification, the terms have become entrenched in 

both the literature (e.g. Lee, 1996; Viljoen and Schurmann, 1998; Maier, 2002) and mining 

terminology. In 2004 and 2005, two Platreef workshops involving mining companies and 

academics have attempted to highlight the untenable nature of this classification in the light of 

the much wider knowledge that recent studies have produced and it is only now that this 

classification is staring to be dropped.

The most southerly farm on which the Platreef crops out is Townlands, where it overlies 

quartzites and shales of the Timeball Hill Formation. Manyeruke et al. (2005) described one 

core from the farm which appeared to be made up of a 150m package of three distinct 

intrusive phases based on geochemical constraints, separated by shales. The Platreef rocks are 

gabbronorites and feldspathic pyroxenites. However, a recent re-evaluation by Snowdon 

Mining Consultants for AIM Resources of drilling data generated during the 1990s by Thabex 

Exploration on Townlands revealed the Platreef to be a pegmatoidal pyroxenite, interfingered 

with pyroxenites, norites and melanorites, and containing xenoliths of footwall sediments, 

with no indication of intercalated sediments (AIM Resources, 2004).

There have been several recent studies on the Platreef in the Macalacaskop and Turfspruit 

areas, where the floor is comprized of homfelses and dolomites of the Duitschland Formation, 

that have revealed a particularly thick Platreef sequence and a greater variety of rock types 

than were known from the Tweefontein-Overysel area (Kinnaird et al., 2005; Kinnaird, 2005; 

Hutchinson and Kinnaird, 2005; Sharman-Harris et al., 2005). Again, the Platreef is 

predominantly feldspathic pyroxenite, but also contains norites, melanorites, serpentinites and 

gabbronorites and micronorites classified as Marginal Zone. Xenoliths of quartzite are 

common at Macalacaskop. Buchanan and Rouse (1984) describe cores from one core from 

Turfspruit which has around 70m of perditotites towards the base of the succession. Kinnaird 

et al. (2005) and Mothetha and Kinnaird (2005) also note the presence of serpentinized 

peridotites, which Kinnaird et al. (2005) classify as Lower Zone rocks. There are no further 

reports of such rocks north of Mokopane other than the satellite bodies.
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North of Turfspruit, on Tweefontein Hill (Fig. 2.6) aluminous argillaceous shales of the 

Duitschland Formation form the immediate footwall to Platreef feldspathic pyroxenites which 

contain xenoliths of ironstone and shale on the southern side (Wagner, 1929). On the hill 

itself, the footwall is banded ironstone of the Penge Formation, which has been partially 

metamorphosed to magnetite-bearing homfels (White, 1994). The Platreef sequence is 

relatively thick and appears to have developed in a structural downwarp, where the relatively 

inert nature of the footwall is thought to have allowed gravitational settling of a sulfide liquid, 

producing net-textured and massive sulfides (White, 1994; Viljoen and Schurmann, 1998; 

Nex, 2005). Nyama et al. (2005) describe the Platreef on Tweefontein as being a 220m thick 

package composed mainly of pyroxenites and some norites, with a basal micronorite. 

Buchanan et al. (1981) describe a core from Tweefontein North that is made up of a basal 

pegmatoidal pyroxenite, and note a 6m thick massive sulfide in one borehole. The pegmatoid 

is overlain by pre-Bushveld sills and metamorphosed shales, in turn, overlain by 200m of 

Platreef gabbros. As this data come from cores, it is uncertain as to what the relationship of 

the massive-sulfide-bearing pegmatite to the overlying gabbros is. White (1994) documents 

the presence of a chromitite layer in 80% of boreholes drilled on Tweefontein North, and thus 

draws a parallel with the Merensky Reef. Chromitite layers are unusual in the Platreef, but 

discontinuous bands have been recorded at Sandsloot, Zwartfontein, and in particular, 

Overysel, and are described and discussed by Holwell and McDonald (2006, see chapter 6).

The Platreef in the Sandsloot area is probably the most well known due to the number of 

studies undertaken in the Sandsloot pit since it opened in 1992 (Harris and Chaumba, 2001; 

Bye and Bell, 2001; Armitage et al., 2002; Friese, 2004; McDonald et al., 2005; Holwell et 

al., 2005, see Chapter 3; Holwell et al., 2006, see Chapter 5). Medium- to coarse-grained 

feldspathic pyroxenites are the most common lithologies in a relatively thin reef package that 

also includes gabbros, peridotites, clinopyroxenites, serpentinites and calc-silicate xenoliths. 

The overlying gabbronorites often have a mottled anorthosite at the base and the nature of this 

contact is described in detail by Holwell et al. (2005, see Chapter 3). The Platreef rests on 

metamorphic clinopyroxenites and calc-silicate homfels, which are often serpentinized and 

variably mineralized. At Zwartfontein South (Fig. 2.6), the footwall rocks are similar to those 

at Sandsloot, however the reef package is much thicker and contains a greater amount of 

serpentinized lithologies, which are thought to be related to the alteration of rafts of calc- 

silicates within the Platreef (Holwell and Jordaan, 2006, see Chapter 4).
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On the northern part of the farm Zwartfontein, the footwall changes from Malmani dolomite 

to Archaean granite/gneiss basement. Downdip to the west of the surface outcrop of the 

Platreef on Zwartfontein, deep drilling by AfriOre has intersected Platreef with a gneissic 

footwall that is made up of coarse grained feldspathic pyroxenites, occasionally 

chromitiferous, with calc-silicate xenoliths (Spies, 2005). On the adjacent farm to the north, 

Overysel (Fig. 2.6), Cawthom et al. (1985) describe the Platreef as often having a thin 

medium-grained norite at the base which grades into a coarse pyroxenite. Holwell and 

McDonald (2006, see chapter 6) describe two cores drilled on the farm which contain 

feldspathic pyroxenites, serpentinized calc-silicate xenoliths, intrusive norites, some 

chromitite xenoliths and a basal hybrid zone of quartzo-feldspathic pyroxenite formed as a 

result of the invasion of a felsic melt derived from partial melting of the footwall. Trial 

mining on the farm also encountered some thick, but discontinuous bands of chromitite 

(White, 1994; Holwell and McDonald, 2006, see Chapter 6 ). A series of banded tonalitic 

gneisses underlie the Platreef on Overysel and are commonly referred to as granofels, 

particularly when brecciated by granitic veins, and beneath the gneisses, the domal body of 

the Utrecht granite is encountered (Fig. 2.6). Viljoen and Schurmann (1998) note the presence 

of large rafts of dolomite-derived calc-silicates within the Platreef pyroxenite, tens of metres 

across, although no xenoliths of granite or gneiss, despite these rocks being the immediate 

country rock. Cawthom et al. (1985) suggest this may be due to granite fragments being 

totally assimilated, whereas dolomite, altered to olivine and pyroxene, remains refractory.

The most northerly section of Platreef with published accounts of the geology is on the farm 

Drenthe (Fig. 2.6). Mostert (1982) and Gain and Mostert (1982) describe the Platreef as being 

250m and being made up of a basal 40-80m feldspathic pyroxenite that is chilled at the base 

against footwall granites. Chilling is not observed on Overysel by either Cawthom et al. 

(1985) or Holwell and McDonald (2006). 170m of norites and melanorites with abundant 

calc-silicate xenoliths overly the pyroxenites, which are capped by a 10-30m feldspathic 

pyroxenite. Recent work by Naldrett (2005) identified intrusions of hangingwall 

gabbronorites into the Platreef, particularly along horizons where altered calc-silicates were 

present at Drenthe. The norites in the centre of the Platreef succession that were described by 

Gain and Mostert (1982) are unlikely to correspond to such an intrusive body, as they contain 

cumulus orthopyroxenes with composition comparable to the Platreef, rather than the 

hangingwall.
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Around 10km north of Drenthe, the Platreef disappears and Upper Zone cumulates cut down 

to rest upon the basement gneisses. Some 35km north of Drenthe, where the Main Zone 

reappears again (Fig. 2.4), a zone of significant PGE and BMS mineralization is developed 

between Main Zone gabbro and gabbronorite cumulates and the basal contact of the Bushveld 

rocks (Harmer et al., 2004). The host rocks are gabbronorites and olivine gabbros, and 

orthopyroxene is very rare, and it is clear that the lithologies cannot be correlated with those 

of the Platreef.

2.3.3 Mineralization

Platreef PGE mineralization is generally associated with base-metal sulfides (BMS; 

pyrrhotite, pentlandite, chalcopyrite and minor pyrite) and is hosted by both the basal 

pyroxenitic igneous package and also the immediate footwall of metamorphosed sediments 

and Archaean basement (e.g. Wagner, 1929), although footwall mineralization is highly 

inconsistent in both width and grade (White, 1984). Some thin zones of mineralization at the 

base of the hangingwall have also been identified (Holwell et al., 2005; see Chapter 3). In the 

feldspathic pyroxenites, the sulfides occur as interstitial blebs. The position of the 

mineralization is variable and may appear top-, middle- or bottom-loaded within the Platreef 

package (Viljoen and Schurmann, 1998; Kinnaird et al., 2005), although the mechanisms 

controlling the stratigraphic position of the mineralization are as yet poorly understood.

Sulfide abundance is variable along strike and can locally reach up to 30 modal% in some 

cores (Kinnaird, 2004). The area around Turfspruit and Tweefontein Hill is known to 

commonly contain abundant sulfides, with net-textured and massive sulfides being common 

(White, 1994; Nex, 2005; Hutchinson and Kinnaird, 2005). At Tweefontein this is attributed 

to settling of a sulfide liquid in a structural downwarp (Viljoen and Schurmann, 1998; Nex, 

2005) and at Turfspruit is likely to be a result of upgrading of the original S content of the 

magma by assimilation of sulfide from the footwall (Sharman-Harris et al., 2005). 

Serpentinized calc-silicate xenoliths and serpentinized zones in the footwall locally carry high 

grades of mineralization (Gain and Mostert, 1982; Armitage et al., 2002). PGE grades 

(3PGE+Au) range from up to 15g/t (Lee, 1996), and can be as high as 26g/t (Hutchinson and 

Kinnaird, 2005) but are more commonly 2-4g/t. Nickel and copper abundances commonly 

range between 0.15-0.35% and 0.1-0.25% respectively (Lee, 1996), and although PGE are 

usually associated with BMS, there are many cases where decoupling of PGE from BMS
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occur (e.g. Gain and Mostert, 1982; Hutchinson and Kinnaird, 2005; Kinnaird, 2005; Holwell 

et al., 2006). This decoupling is likely to be a result of late-stage hydrothermal redistribution 

of PGE and/or BMS, and in particular serpentinites may contain variably high PGE and low 

BMS contents or vice versa (Armitage et al., 2002; Holwell et al., 2006). The average Pt/Pd 

ratio throughout the Platreef is generally around unity or slightly below (e.g. Kinnaird and 

Nex, 2003), however at Townlands, the Platreef appears to be relatively Pd-rich with the data 

of Manyeruke et al. (2005) indicating a Pt/Pd ratio of around 0.5.

As the footwall rock type changes along strike (Fig. 2.6), the interaction of the Platreef 

magma with the underlying rocks differs, which is reflected in the mineralization styles, and 

in particular, the platinum-group mineralogy. Until this study began in 2003, work on the 

platinum-group mineral (PGM) assemblages in the Platreef had been scarce, with only two 

papers covering Platreef PGM in any detail (Kinloch, 1982; Armitage et al., 2002), and a 

brief overview by Viljoen and Schurmann (1998). In the past couple of years however, there 

have been three major PGM studies performed on the Platreef at Turfspruit (Hutchinson and 

Kinnaird, 2005), at Sandsloot (Holwell et al., 2006, see Chapter 5) and at Overysel (see 

Chapter 7). The detailed assemblages and discussion of the changes along strike, together 

with a review of the current literature are described in these latter two papers and are therefore 

not discussed further here. Briefly, the most common types of PGM in the Platreef are 

tellurides, such as moncheite (PtTe2) and kotulskite (PdTe), and sperrylite (PtAs2) with 

antimonides, sulfides and bismuthides locally common, however, the abundances and 

presence of these PGM types appears to be directly controlled by footwall lithology (Viljoen 

and Schurmann, 1998; Holwell and McDonald, 2005a; Holwell et al., 2006), and this is 

shown in summary Fig. 2.7.

2.3.4 Mineralization models and the role o f contamination

Due to their highly chalcophile nature, the PGE, along with Cu and Ni, will be effectively 

collected by an immiscible sulfide liquid separating from a silicate magma. For this to occur, 

the magma must reach a state of S saturation, which it may attain in several different ways.

For stratiform or reef PGE-sulfide deposits, which are generally S-poor, such as the Merensky 

Reef, or the J-M Reef in the Stillwater Complex, USA, S saturation is though to have 

occurred through magma mixing (e.g. Campbell et al., 1983), via extensive fractional 

crystallization of a tholeiitic parent magma (Hoatson and Keays, 1989), by chromatographic
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separation as a magmatic fluid percolates upwards through a cumulate pile (Boudeau and 

Meurer, 1999) or by pressure fluctuations in the magma chamber (Cawthom, 2005). The 

Platreef can be categorized as a ‘contact-type’ or ‘marginal’ PGE sulfide deposit, which are 

generally more S-rich than the stratiform deposits. Such deposits are common at the bases or 

margins of layered mafic intrusions, and are often ‘stratabound’ but not ‘stratiform.’

Examples include various deposits of the Penikat and Portimo Complexes of Finland and 

Federovo-Pansky intrusion in the Kola Peninsula, Russia (Alapieti and Lahtinen, 2002); the 

Muskox Intrusion in Canada (Irvine, 1988); the Dovirensky Layered Complex, Siberia 

(Papunen et al., 1992); the East Bull Lake intrusion, Canada (Peck et al., 2001) and the 

Duluth Complex, USA (Miller and Ripley, 1996). Similar deposits also occur in conduit 

systems such as the Uitkomst Complex, to the east of the Bushveld Complex (Gauert et al.,

1995) and the Voizey’s Bay intrusion, Canada (Ripley et al., 2002). For these deposits, sulfur 

saturation is often attributed to one or more contamination-related processes. The most 

obvious is an increase \n fS 2 due to the assimilation of S-bearing country rock by the magma. 

Such a process is believed to have been significant in producing the mineralization in the 

Uitkomst Complex, with crustal S from the Malmani dolomites and Timeball Hill shales 

being assimilated by the magma (Li et al., 2002), which has implications for Platreef 

mineralization due to the common country rock units. Silicic contamination, e.g. from the 

assimilation of granites, can also cause S saturation (Irvine, 1975), as can an increase in 

oxygen fugacity, for example as the result of devolatilization of assimilated country rocks 

within the magma. This can lower the FeO content and thus the S-carrying capacity of the 

magma and can therefore also induce economic sulfide mineralization (Buchanan and Nolan, 

1979).

The Platreef has intruded a wide range of country rock lithologies and the interaction of the 

Platreef magma with these rocks has been considered by many workers to have been 

important in the generation and abundance of mineralization, by means of triggering sulfur 

saturation by silicic or sulfurous contamination. Cawthom et al. (1985) showed the Platreef in 

the Overysel area to be contaminated with a partial melt from the gneissic footwall. Harris 

and Chaumba (2001) calculated that up to 18% dolomite had been assimilated by the Platreef 

magma in the Sandsloot area based on oxygen isotope studies. In particular, the addition of 

country rock sulfur to the magma through assimilation of S-bearing footwall rocks has been 

considered by some to have been an important trigger in initiating sulfur saturation in the
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of S from anhydrite in country rocks such as the Malmani Subgroup, and silicic 

contamination from dolomite and granite triggered the precipitation of immiscible sulfides. 

Sharman-Harris et al. (2005) also attributed S saturation in the Turfspruit area to be the result 

of the assimilation of sulfide in the footwall Duitschland shales. Barton et al. (1986), 

however, considered the contamination at Overysel to post-date S saturation and Lee (1996) 

developed this by suggesting that the sulfide mineralization was of primary magmatic origin, 

with pre-formed PGE-enriched sulfides introduced from a staging chamber and settling out 

along the base of the intrusion to form the proto-Platreef, with contamination occurring as a 

post-emplacement event.

Sulfur isotope studies provide evidence for the source of sulfur and the potential role of any 

country rock S in upgrading the S budget. In the primary magmatic model advocated by Lee

(1996), the S isotope signature of the early-formed sulfides should be magmatic (have a <534S 

value 0±2%c). In the contamination-driven hypothesis, the isotope signature will involve a 

component of crustal S, derived from the country rocks. Until very recently, the only sulfur 

isotope work that had been performed on the Platreef was by Buchanan et al. (1981) and 

Buchanan and Rouse (1984), who presented sulfur-isotope data for various metallic sulfides 

from the farms Tweefontein and Turfspruit that indicated a significant contribution from an 

isotopically heavy source of S in the footwall, that they thought was most likely to be 

anhydrite associated with the Malmani dolomites. It is from these early studies that anhydrite 

in the Malmani Subgroup came to be considered as the most likely source of country rock S 

added to the Platreef. More recent studies would suggest, however, that the Malmani was not 

the only source of additional S. For example, Manyeruke et al. (2005) presented data from the 

Platreef on Townlands, where Timeball Hill shales and quartzites make up the footwall, 

which also indicated a significant country rock contribution to the sulfur budget. A more 

detailed study by Sharman Harris et al. (2005) presented data from Rietfontein, Turfspruit and 

Macalacaskop, which identified pyrite in Duitschland shales to be a significant source of 

external sulfur in the area.

However, the work of Holwell et al. (Chapter 8) has shown that contamination by footwall S 

would appear to be strictly a localized process that upgrades the S content of the Platreef, but 

is not directly responsible for triggering S saturation. In addition, sulfate in the floor, for 

example in the Malmani Subgroup is unlikely to have had a major contribution to early
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sulfide mineralization, and is more likely to have been incorporated into later-stage 

hydrothermal fluids. The details of these findings are presented in Chapter 8 .

2.3.5 Hydrothermal activity

Platinum-group elements, and in particular Pt and Pd, are known to be mobile in aqueous 

fluids, and can be transported in a range of ways, including as chloride complexes, in 

bisulfide solutions, as hydroxides and in organic-ligand complexes (Wood, 2002). Aqueous 

fluids have the ability not just to modify economic PGE deposits by removing or upgrading 

PGE, but they can also be a primary concentration mechanism to some deposits. For example, 

the Pt deposits of the Waterberg, South Africa, are known to be hydrothermal in origin 

(McDonald et al., 1995).

The interaction of the Platreef magma with the country rocks into which it intruded is also 

likely to have fundamentally influenced the nature and volume of hydrothermal fluids present 

at the time of mineralization, which in turn, are likely to have had significant effects on the 

style and distribution of the mineralization. Whilst the origin of the PGE is clearly magmatic, 

hydrothermal fluids have the potential to modify or redistribute PGE within the Platreef, and 

in particular, have the ability to transport PGE into the footwall. The changes in PGM 

mineralogy along strike as described by Kinloch (1982), Viljoen and Schurmann (1998), 

Armitage et al. (2002), Hutchinson and Kinnaird (2005), Holwell et al. (2006) and Holwell 

and McDonald (Chapter 7) show characteristic types of PGM species in areas of the same 

footwall lithology. In addition, Holwell et al. (2006, see Chapter 5) show that individual 

lithologies within the Platreef also host characteristic assemblages dominated by certain types 

and associations of PGM. These changes are directly related to the nature of fluids released by 

assimilation and metamorphism of the individual floor rocks on both a kilometre and metre 

scale, and the PGM mineralogy within individual rock types is a result of this. An effect of 

some of this hydrothermal activity is to cause decoupling of PGE from BMS, a feature which 

is particularly evident in the highly fluid-affected or serpentinized rocks such as calc-silicate 

floor rocks and xenoliths.

Hydrothermal activity is the most likely mechanism to have distributed mineralization into the 

footwall, and this certainly appears to be the case where the floor rocks are reactive sediments 

such as the dolomites at Sandsloot and Zwartfontein, where footwall mineralization is
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such as the dolomites at Sandsloot and Zwartfontein, where footwall mineralization is 

common (e.g. Armitage et al., 2002; Holwell et al., 2006; Holwell and Jordaan, 2006). In 

other areas, however, such as where the floor rocks are homfelses, distribution of PGE into 

the footwall is limited and grade falls off sharply into the footwall (Hutchinson and Kinnaird, 

2005). Hydrothermal activity is, however, not the sole mechanism of distributing 

mineralization into the footwall. Where the floor rocks are Archaean basement gneisses, 

Holwell and McDonald (2006), note that the anhydrous nature of the floor rocks make the 

volumes of fluids released relatively small, and using textural evidence, suggest that 

mineralization penetrated the gneisses through an interconnected melt network in the partially 

melted footwall rocks.

2.3.6 Magmatic Emplacement

The timing of the emplacement of the Platreef and its position within Bushveld stratigraphy is 

currently contentious. Many workers such as Wagner (1929) and White (1994) have 

correlated the Platreef with the upper Critical Zone of the RLS primarily on the presence of 

the “Platinum Horizon” within pyroxenitic rocks, overlain by Main Zone rocks. Cawthom et 

al. (2002) suggest that the magma which formed the UG2 chromitite layer in the eastern limb 

(where the Pt:Pd is closer to unity as in the Platreef) may have flown north, but without 

forming chromitite layers. Hulbert (1983) and van der Merwe (1978) regarded the GNPA 

member south of Mokopane as Critical Zone, but placed the Platreef at the base of the Main 

Zone. This is a view favoured by Kruger (2005a), who suggests that the Platreef and 

Merensky Reef are time equivalent and that the main pulse of Main Zone magma entered the 

chamber from north of the TML, spread out over the northern limb, picking up sulfur from the 

country rocks, before overtopping the TML, to flood into the rest of the complex, thus 

forming the Platreef as a basal unit in the north, and the Merensky Reef as the base to the 

Main Zone, overlying Upper Critical Zone rocks in the rest of the complex. On mineralogical, 

geochemical and textural grounds, McDonald et al. (2005) suggest that the GNPA member is 

not Critical Zone, but more likely a mixture of Lower Zone and Main Zone magmas, and that 

the Platreef and the GNPA member were formed in one or more of these mixing events. Field 

evidence form van der Merwe (1978) would suggest, though, that the Lower Zone was fully 

consolidated and tilted before emplacement of later magmas, however the transgressive 

relationships described are of the satellite bodies, and not the sequence south of Mokopane. It 

has been argued by Nell (1985) on the basis geothermobarometry data that the metamorphic
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the emplacement of Lower Zone magma under estimated conditions of 750°C and 1.5kbar, 

and the second to the emplacement of Critical, Main and Upper Zone magmas at 900°C and 

4-5kbar pressure. In a similar two-stage emplacement model, Kruger (2005b) used Cr/MgO 

ratios to suggest that the Platreef was intermediate between Main Zone and Lower Zone, but 

rather than a mixture of two magmas as suggested by McDonald et al. (2005), he suggests 

that the initial Main Zone magmas assimilated Lower Zone rocks, using the presence of 

chromitite schlieren in the Platreef as evidence for this.

One other possible explanation is that the Platreef was intruded post-lower Main Zone. Friese 

(2004) and Friese and Chunnet (2004) suggest that the Platreef was intruded as a syntectonic 

sheet-like intrusion along a thrust zone that formed along the contact between the Main Zone 

and the country rocks. The timing is suggested to correlate with that of the Pyroxenite Marker 

in the rest of the complex, though this seems unlikely due to the paucity of PGE within the 

Pyroxenite Marker (the highest 3PGE+Au concentration in any of the samples from the 

Pyroxenite marker in Maier et al., 2001, is 109ppb; mean: 21ppb). There is a lack of evidence 

for a thmsted contact at the base of the Main Zone or at the top of the footwall in all other 

studies (e.g. Armitage et al., 2002). In addition, the nature of the contact between the Platreef 

and the overlying hangingwall rocks also do not support the post-lower Main Zone 

emplacement. This is discussed by Holwell et al. (2005) in Chapter 3.
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2.4 Introduction to and context of the papers in Chapters 3*8

Chapters 3 and 4 present the results of geological mapping of the Platreef at Sandsloot and 

Zwartfontein and provide important constraints on the timing of magmatic and structural 

events related to the intrusion of the Platreef and the hangingwall magmas. Chapter 5 is a 

petrological and mineralogical study of the Platreef at Sandsloot that investigates the role of 

magmatic and hydrothermal processes on the distribution and style of mineralization. Chapter 

6 follows this work up with a similar study at Overysel, where the floor rocks are dramatically 

different to those at Sandsloot, to investigate any footwall control on the mechanisms 

controlling the mineralization at that location. Chapter 7 is a detailed mineralogical 

investigation into the PGM mineralogy at Overysel coupled with laser ablation-inductively 

coupled plasma-mass spectrometry (LA-ICP-MS) analyses of the sulfide minerals and 

provides important evidence of the role of a sulfide liquid in the initial mineralising event. 

Finally, Chapter 8 uses S isotope data to assess the role of floor rock contamination in the 

generation of sulfide mineralization. This is used to constrain the source of mineralization in 

the Platreef and develop a more comprehensive model for its formation.
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3.1 Abstract

Observations on the nature of the contact between the Platreef and its hangingwall have 

revealed that not only were the hangingwall gabbronorites intruded after the Platreef, but that 

there appears to have been a significant time-break separating the two intrusive events. The 

hangingwall gabbronorites truncate several features present within the Platreef pyroxenites 

but not in the hangingwall, such as shear zones and reef which have undergone alteration by 

Fe-rich fluids, implying that these features were formed prior to intrusion of the 

gabbronorites. A fine-grained leuconorite at the base of the hangingwall exhibits textures 

showing erosion of Platreef orthopyroxene by fine-grained cumulus plagioclase, suggesting 

intrusion of a hot magma over cooled Platreef. Xenoliths of reef pyroxenite are also found in 

the hangingwall. PGE mineralization is present within basal zones of the hangingwall where 

the hangingwall overlies mineralized Platreef pyroxenite. We interpret the contact as a 

magmatic unconformity and, as the gabbronorites do not appear to be PGE-depleted, suggest 

that PGE and S were scavenged or assimilated from the reef by the intruding magma, 

producing zones of orthomagmatic PGE mineralization in topographic depressions at the base 

of the crystallizing hangingwall. The presence of calc-silicate xenoliths in the hangingwall 

gabbronorites can be explained by footwall anticlines or diapirism which the relatively thin 

Platreef had not overtopped, allowing footwall dolomite to be exposed to the main influx of 

hangingwall magma. The identification of a time-break between Platreef and hangingwall 

intrusion, and the most likely source of basal hangingwall PGE mineralization being the 

underlying Platreef, shows that the magma that formed the gabbronorites could not have been 

the source of PGE for the Platreef as previously thought.

3.2 Introduction

The Platreef of the northern limb of the Bushveld Complex, South Africa, is currently one of 

the most extensively explored deposits of platinum-group elements (PGE) in the world. It is a 

pyroxenitic unit located between gabbronorites attributed to the Main Zone of the complex, 

and floor rocks comprising Palaeoproterozoic metasediments and Archaean basement granite. 

PGE mineralization is heterogeneously distributed through the pyroxenite unit, and is usually 

present in the immediate footwall and occasionally in the immediate hangingwall (Armitage 

et al., 2002; Holwell et al., 2004; Lee, 1996; Viljoen and Schurmann, 1998). The northern 

limb of the Bushveld Complex comprises a succession of ultramafic-mafic lithologies, that 

have been broadly correlated by some authors with the Rustenburg Layered Suite (RLS)
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present in the eastern and western limbs (Wagner, 1929; van der Merwe, 1976; von 

Gruenewaldt et al., 1989; White, 1994). The well-defined igneous stratigraphy of the RLS 

comprises the Lower Zone of harzburgites and pyroxenites, the Critical Zone of cyclic 

chromitites, pyroxenites and norites, the Main Zone norites and gabbronorites, and the Upper 

Zone of magnetitites, gabbronorites and anorthosites. In the northern limb the stratigraphy 

differs in several important respects. The ultramafic Lower Zone is only developed south of 

the town of Mokopane, and as satellite bodies within the floor rocks north of the town(Fig. 

3.1). Recent work has also shown that the Lower Zone extends for a limited distance north of 

Mokopane, with a series of serpentinized peridotites and pyroxenites present on 

Macalacaskop being attributed to the Lower Zone (Kinnaird et al., 2005). The Critical Zone is 

not fully developed, and there is debate as to whether it is present at all (McDonald et al., 

2005). The Main Zone of the northern limb lacks correlatory horizons with the Main Zone in 

the rest of the complex, and includes a sequence of troctolites unique to the northern limb 

(van der Merwe, 1976). The Upper Zone has not been linked extensively with the rest of the 

complex, though one magnetite layer has been correlated with the Main Magnetite Layer on 

the basis 0LV2O5 content (van der Merwe, 1976, 1978). The footwall lithologies rest upon a 

succession of progressively older sedimentary units of the late Archaean - early Proterozoic 

Transvaal Supergroup, and Archaean granite basement, in what has been termed an ‘igneous 

transgression’ (Wagner, 1929). The footwall units are, north from Mokopane: quartzites and 

shales of the Timeball Hill Formation; sediments of the Duitschland Formation; the Penge 

banded iron formation; the Malmani dolomite and, north of Zwartfontein, the Archaean 

basement granites and gneisses (Fig. 3.1).

The timing of intrusion of the Platreef with respect to the units above it, and the general 

stratigraphy of the northern limb of the Bushveld Complex remain contentious issues. 

Traditionally, the Platreef pyroxenites north of Mokopane have been correlated with the 

Merensky Reef (Wagner, 1929; White, 1994), and a series of norite-pyroxenite-anorthosites 

with a chromitite layer (the GNPA member) south of Mokopane (Fig. 3.1), with the Critical 

Zone (Hulbert, 1983; van der Merwe, 1976; von Gruenewaldt et al., 1989; White, 1994). 

Overlying gabbronorites have traditionally been correlated with the Main Zone. Kruger 

(2005a) suggests that the Platreef is the equivalent to the Merensky Reef and formed as a 

result of the first influx of Main Zone magma, therefore placing both reefs in the lower Main 

Zone. McDonald et al. (2005) suggest another alternative; that the Platreef and the GNPA

35



Chapter 3. Observations on the relationship between the Platreef and its hangingwall

j 100 km

Northern *
-V . . .

Enlarged area

• Drenthe I •

A -fS ie .-n

Waleiberg & Karoo cover Transvaal Supergroup

Bushveld actd phases Archaean & pre-Transvaal
casement

Rustenburg Layered Suite 
Marginal Zone

S a n d slo o t

Vaalkop

Upper Zone V  ' ^
Dolomite tongueMain Zone 

Platreef 

GNPA member

-i-r-M  V - *
♦  ♦  +•

+ 4

 T ++ + +
+  +

+ •+
Tweefontein H / O f  / /  +

f  ♦ + i +

Bushveld
Complex

Lower Zone

u ; I Rietfontein ,
Pretoria Group 

Duitschland Fm. 

Penge Fm. 

Malmani Subgroup

*!.' T u rfsp ru it.

Chuniespoort 
Group i Uitloop-.

Macalacaskop

Archaean granite/gneiss basement

Fault

^ 7 ^  Open pit mine 

Farm boundary

^MOKOPANE

V  >' J -tv

• War Springs

Figure 3.1. Geological map of the Platreef showing localities referred to in the text. After Kinnaird and 
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member are the products of one or more mixing events between Lower Zone and Main Zone 

magma, and these represent a transitional zone before the intrusion of the major influx of 

Main Zone magma. All these models imply that the Platreef was intruded before the Main 

Zone gabbronorites. Conversely, Friese (2004), and Friese and Chunnett (2004) suggest that a 

thrust zone developed along the intrusive margin between the Main Zone gabbronorites and 

the footwall country rocks, and hypothesize that the Platreef represents a syn-tectonic, sheet

like intrusion intruded along this shear zone in post-lower Main Zone times. This paper aims 

to review these models using first-order field and petrological observations to constrain the 

relative timing of the Platreef and hangingwall gabbronorites.

3.3 Methods

Samples and observations presented in this paper are part of an ongoing study into the 

Platreef between Sandsloot and Overysel. Field relationships have been mapped and samples 

collected from Anglo Platinum’s open pit mines at Sandsloot and Zwartfontein South and 

from borehole cores drilled at Overysel (Fig. 3.1). The down-stepping benches in the two pits 

have sub vertical faces 10-15m high, and several faces from both pits were mapped in detail at 

1:100 scale and sampled at regular intervals. Examples from the Sandsloot pit are given Fig. 

3.2, and in Armitage et a l,  (2002) and McDonald et al. (2005). Two cores from Overysel 

(boreholes OY335 and OY387) were also logged and sampled, and many others were logged 

and described. Detailed mineralogical analysis was performed at Cardiff University using a 

Cambridge Instruments LEO S360 scanning electron microscope, coupled to an Oxford 

Instruments INCA energy dispersive X-ray analysis system.

3.4 Lithological units

The hangingwall is made up of medium-grained norites and gabbronorites containing 

cumulus plagioclase, cumulus and intercumulus orthopyroxene (En64-7o) and generally 

oikocrystic clinopyroxene. The base of the hangingwall is often characterized by a thin fine

grained poikilitic leuconorite up to 30cm thick, containing up to 90% cumulus plagioclase and 

oikocrystic pyroxenes. Occasional xenoliths of calc-silicate derived from metamorphosed 

dolomite similar to that observed in the footwall are present in the hangingwall (Gain and 

Mostert, 1982; Kinnaird and Nex, 2003), and pyroxenites with petrographic and geochemical
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characteristics similar to the Platreef are present within the hangingwall (McDonald et al., 

2005).

The Platreef is made up primarily of heterogeneously textured feldspathic pyroxenite, 

containing cumulus orthopyroxene (En74.7g), and intercumulus clinopyroxene and plagioclase. 

Base metal sulfide (BMS) and PGE mineralization is present within the interstitial 

assemblage. There is occasionally a fine-grained feldspathic pyroxenite, barren of BMS and 

PGE mineralization at the top of the Platreef succession. The maximum thickness observed 

for this unit in any of the faces mapped is 7m. In parts of the Sandsloot pit and at 

Zwartfontein, portions of the pyroxenites appear to have been affected by a late-stage Fe-rich 

fluid (McDonald et al., 2005) which has removed plagioclase, and overprinted pyroxene with 

Fe-rich olivine (F060-70) forming ultramafic lithologies that we have termed olivine-replaced 

reef (ORR). This has altered the normally telluride-dominant platinum-group mineral (PGM) 

assemblage to one dominated by alloys (Holwell et al., 2004). Calc-silicate xenoliths are 

common within the reef and often extensively serpentinized (Armitage et al., 2002).

The nature of the footwall varies along strike (Fig. 3.1). At Sandsloot and Zwartfontein South, 

the Platreef rests on dolomite of the Malmani Formation, which is metamorphosed to calc- 

silicates, which are variably serpentinized. At the transition from Platreef pyroxenite into 

calc-silicate, a unit termed ‘parapyroxenite’ is usually present which contains granoblastic 

clinopyroxene and is considered metamorphic in origin on the basis of whole-rock Cr and 

CaO content (Harris and Chaumba, 2001). Below this transitional zone, parapyroxenite also 

occurs as smaller lensoid bodies with gradational contact to the surrounding calc-silicate. At 

Overysel, where Archaen basement granite forms the floor rock, a hybrid unit of banded 

tonalitic gneisses of variable thickness termed ‘granofels’ is present, which separates the 

pyroxenites from the underlying granite.

3.5 Observations

3.5.1 Macroscopic relationships

In most of the faces studied, a planar magmatic contact is observed where poikilitic 

leuconorite or gabbronorite directly overlie the reef pyroxenites. Only a few faces show 

evidence for a sheared contact, and in these sections the uppermost pyroxenites are sheared
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and subsequently altered by serpentine, sericite or carbonate; however, the overlying 

hangingwall rocks show no evidence of shearing or alteration.

In areas of the Sandsloot pit where the Platreef has undergone Fe-replacement, the rocks are 

visibly darker and the replaced zones display a greater degree of fragmentation in response to 

blasting than the rest of the reef and the hangingwall (Fig. 3 .2). In all cases where these 

feldspar-poor ultramafic zones have been recognized, they are truncated by hangingwall 

lithologies that contain fresh plagioclase. The replacement event appears to be restricted to the 

Platreef and is not present in the hangingwall.

NorthFace 135/014 (SW1)

Conlact gradational over 
several cm a s  oAvtne 
content increases -------

Sharp mag mate contact with no 
extension of olivine replacement 
Into hangingwall

50 m

South

Hangingwall Footwall
i Gabbronorite | I Serpentinized dinopyroxenite

Platreef 1 1 Cak>silicate

■ 1  Olivine-replaced reef (peridotite) I I Serpentinized calc-silicate

|  Feldspathic pyroxenite

|  Footwall-reef hybrid (wehriite) | | Quartz-feldspar-(calcrte)-(chrysotile) vein

Blast debris

Lithological boundary

Uncertain lithological 
boundary

Figure 3.2. Photograph and map showing a face in the south-western part of the Sandsloot pit showing 
an exposed section of olivine replaced reef, displaying a distinct darkening and different fracture 
pattern to the surrounding lithologies. The replaced reef is truncated at a magmatic contact with the 
hangingwall gabbronorite. FW: footwall; FRH: footwall-reef hybrid; FPX: feldspathic pyroxenite; 
ORR: olivine-replaced reef; HW: hangingwall.
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3.5.2 Petrography o f  the contact

Perhaps the most striking evidence for the nature o f  the contact is shown in Fig. 3.3, which 

shows the contact between hangingwall poikilitic leuconorite and coarse-grained, mineralized 

Platreef pyroxenite in thin section o f  a sample taken from the northern part o f  the Sandsloot 

pit. The cumulus orthopyroxene crystals at the top o f  the Platreef are visibly eroded and 

resorbed by cumulus plagioclase o f  the fine-grained poikilitic leuconorite. The leuconorite 

does not permeate the pyroxenite in any sense, and the embayments made by the small 

plagioclase crystals into the pyroxenes strongly suggest that the Platreef was completely or 

nearly completely solidified before intrusion o f  the overlying unit.

Figure 3 .3. Composite photograph of a thin section showing the contact between fine-grained, 
hangingwall poikilitic leuconorite (upper half of photograph) and coarse-grained, mineralized Platreef 
feldspathic pyroxenite (lower half) Note the embayments made by hangingwall plagioclase in the 
cumulus Platreef orthopyroxenes (arrowed). Dark patches within the plagioclase are alteration.

3.5.3 PG E  m ineralization

In all o f  the sections mapped, in cases where the hangingwall overlies the fine-grained barren 

pyroxenite, there is no PGE mineralization in the immediate hangingwall. However, where 

the hangingwall is in contact with coarse-grained mineralized reef, the base o f  the 

hangingwall consistently contains PGE mineralization, with grades sometimes comparable to 

that in the main reef. This relationship also holds true for virtually all borehole cores that we  

have logged and described from the Sandsloot-Overysel section. Typically this zone o f  

mineralization is in the lowermost metre o f  the hangingwall, and is rarely more than 3m thick. 

One such occurrence o f  hangingwall mineralization is described by Holwell et al. (2004) 

where an assemblage o f  Pd-bearing pentlandite, Pt-Fe alloy-BM S intergrowths and laurite is 

observed, which is characteristic o f  an orthomagmatic PGM association (Kinloch and Peyerl,

4 0



Chapter 3. Observations on the relationship between the Platreef and its hangingwall

1990). Such assemblages have not been observed in the Platreef pyroxenites (Armitage et al., 

2002; Holwell et al., 2004; Hutchinson et al., 2004). The presence of mineralization appears 

to be very localized, and highly constrained by the nature of the reef on which the 

hangingwall rests.

3.5.4 Xenoliths

Xenoliths of calc-silicate are common throughout the Platreef and are also present in the 

hangingwall, up to 100m above the Platreef contact, and are also present further north several 

kilometres north of the last footwall outcrop of dolomite, e.g. at Drenthe (Gain and Mostert, 

1982). At Sandsloot we have mapped rare occurrences of pyroxenite xenoliths in 

gabbronorites at the base of the hangingwall. These pyroxenites have whole-rock and 

cumulus orthopyroxene (En7g) compositions consistent with the Platreef. Intercumulus 

clinopyroxene showed evidence of partial recrystallization.

3.6 Discussion

In almost all current models for the formation of the Platreef and northern limb of the 

Bushveld Complex, the Platreef is taken to be the lowermost unit of the complex north of 

Mokopane, and the gabbronorites attributed to the Main Zone conformably overlie the 

Platreef. Prior to this study, most authors, with the exception of Friese (2004) have believed 

that the Platreef and the gabbronorites formed together, without any significant break in time 

and that the magma above the Platreef contributed some (or all) of the PGE to the reef 

(Buchanan and Rouse, 1984; Kruger, 2005a). The field relationships and mineralogical 

evidence presented in this paper identify features of the Platreef-hangingwall contact that 

have not been previously recognized and require a fundamental reassessment of these 

assumptions. Each line of additional evidence is considered in turn below.

3.6.1 Cross-cutting relationships

Some of the earliest work undertaken on the Platreef by Wagner (1929) describes veins of 

hangingwall norite intruding down into the Platreef, which would clearly imply a post- 

Platreef intrusion of the hangingwall. Evidence of a time-break between the emplacement of 

the Platreef and the gabbronorites lies in the truncation of certain features of the Platreef. For 

example, where the reef has been partially replaced by Fe-rich olivine, the olivine 

replacement is present directly below the hangingwall contact, but does not extend into the
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hangingwall at all. The replacement is thought to be formed from the percolation of a late- 

stage, Fe-rich fluid through the reef (McDonald et al., 2005) that post-dates formation of 

interstitial plagioclase and telluride-dominant PGM. Late Fe-rich ultramafic replacement 

bodies preferentially replace plagioclase-rich units in the RLS in the eastern and western 

Bush veld (Viljoen and Schoon, 1985), producing a Christmas-tree pattern of replacement and 

there seems no obvious reason why they should stop and not continue into the plagioclase- 

rich hangingwall at Sandsloot -  unless it was not there. The obvious and consistent truncation 

of the Fe-rich olivine-replaced reef, and serpentinization in some of the pyroxenites, by the 

gabbronorites shows that the Platreef pyroxenites had both crystallized, and undergone 

alteration before the intrusion of the hangingwall gabbronorites.

Shear zones that are common in the Platreef pyroxenites, with associated alteration appear 

truncated by the hangingwall gabbronorites, with the hangingwall occasionally resting on 

sheared pyroxenite, but with no evidence of deformation or extension of alteration into the 

gabbronorites. This would imply that either the shearing took place before intrusion of the 

gabbronorites, or that competency contrasts between the pyroxenites and gabbronorites led to 

pyroxenites being sheared preferentially under conditions of deformation. In the first case, the 

gabbronorites must have been intruded after the Platreef and the shearing events. In the 

second case, it is not possible to constrain any relative timing, but preferential shearing of the 

reef is considered unlikely for shear zones which exhibit a high angle to the hangingwall 

contact.

We have mapped occurrences of pyroxenite xenoliths at the base of the hangingwall that have 

orthopyroxene compositions consistent with the Platreef. This relationship also provides 

evidence of a post-Platreef intrusion of the hangingwall magma.

3.6.2 Chilling and erosion at the base o f the hangingwall

Perhaps the most compelling piece of evidence for this is shown in Fig. 3.3. The erosion of 

the Platreef orthopyroxene by fine-grained hangingwall plagioclase can only be explained by 

the intrusion of a hot magma onto cool, crystallized Platreef pyroxenite. The texture clearly 

demonstrates erosion of a solid pyroxenite with rigid properties, not a crystal mush. This 

inherently requires a significant time-break after the Platreef emplacement so as to cool the 

rock sufficiently for it to behave in this manner.
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3.6.3 PGE mineralization in the hangingwall

The observation of hangingwall mineralization occurring exclusively in places where the 

gabbronorites directly overlie mineralized reef is intriguing, and one that has not been 

previously recognized. The question is: where does the PGE in the mineralized zones of 

hangingwall come from? The Main Zone itself is a possible source of PGE. In the Merensky 

Reef, the overlying Main Zone is depleted of PGE (<10ppb Pt and Pd, Maier and Barnes, 

1999); however, in the Platreef hangingwall, we have consistently found Pt and Pd 

concentrations to be around 10-15ppb, which indicates that the Main Zone in the northern 

limb is PGE fertile, and by implication did not have any of its PGE extracted to form the 

Platreef. The localization of hangingwall mineralization in anorthosite and gabbronorite 

directly overlying mineralized Platreef pyroxenite and its corresponding absence above non

mineralized feldspathic pyroxenite strongly suggests incorporation of reef PGE into the basal 

zone of Main Zone magma by localized processes operating on a metre-scale. The barren, 

fine-grained feldspathic pyroxenite is stratigraphically higher than the coarser-grained, 

mineralized feldspathic pyroxenite, and is quite thin (maximum 7m in the sections mapped).

It is possible that'this barren, fine-grained unit was present continuously after the Platreef was 

intruded, and that the Platreef-hangingwall contact represents a magmatic unconformity 

surface, which has cut down through the uppermost barren pyroxenite and in places cut into 

mineralized reef, assimilating some PGE and enough sulfur and PGE to attain sulfur 

saturation, and producing very localized, basal zones of orthomagmatic PGE mineralization.

The 3-dimensional structure of the contact on a larger scale is uncertain due to the limited 

lateral distance exposed by the bench faces, but it is likely to be either an irregular, undulatory 

surface (Fig. 3.4A); or contain abrupt pothole-like structures (Fig. 3.4B); or it may be a planar 

surface, with the contact between fine-grained and coarse-grained pyroxenite undulatory (Fig. 

3.4C). In either of the first two cases, PGE are scavenged from the reef and recrystallized 

virtually in-situ in depressions. The localization of mineralization within these depressions 

suggests that the overlying Main Zone magma was static, or had very low turbulence at the 

time of formation. Such a situation would support the pothole-like model, where the potholes 

may have formed after the hot Main Zone magma had been sitting on the cold Platreef for 

some time before melting the footwall, and creating a pothole-like structure. In such a model, 

one would expect to ccasionally see the edges of such structures exposed in the bench faces, 

with the mottled anorthosite cutting down and truncating the fine-grained reef, although as 

yet, none of the faces we have mapped have shown such a relationship, and further mapping
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is planned to attempt to confirm the true nature of the contact. It is important however to 

emphasize that there is an important genetic distinction between this contact and the 

unconformable contacts associated with the potholes of the Merensky Reef and UG2, which 

formed at magmatic or close to magmatic temperatures. There is no evidence of prior cooling 

of the footwall before their formation, such as chilling at the base. Here we use the term 

pothole as a morphological, rather than genetic analogue.

A
Hangingwall
gabbronorite

Barren 
pyroxenite

Platreef pyroxenite

Footwall

Hangingwall
gabbronorite

Barren
pyroxenite

Platreef pyroxenite

Footwall

Hangingwall
gabbronorite

Barren
pyroxenite

Platreef pyroxenite

Footwall

Figure 3.4. Schematic representation of the possible nature of the Platreef-hangingwall contact and the 
localization o f hangingwall PGE mineralization in gabbronorite that directly overlies mineralized 
Platreef pyroxenite. A: the contact is an irregular, magmatic unconformity; B: the contact exhibits 
occasional pothole-like structures which cut down into the Platreef abruptly; C: the contact between 
mineralized and non-mineralized Platreef pyroxenite is undulatory, and the gabbronorite forms a 
planar contact, occasionally cutting mineralized Platreef.

3.6.4 Source o f calc-silicate xenoliths

A prerequisite for any model which involves the Platreef being intruded before the 

hangingwall gabbronorites are emplaced is to explain the occurrences of calc-silicate 

xenoliths within the gabbronorites, which occur to heights up to 100m above the Platreef 

contact at Sandsloot (A. Bye, personal communication) and at Drenthe (Gain and Mostert, 

1982). Friese (2004) used this as evidence of the Main Zone being intruded prior to intrusion 

of the Platreef, assuming that if the Platreef was formed first, it would have provided an 

impenetrable barrier between the footwall sediments and the Main Zone magma. This is not 

necessarily the case, and the occurrences of calc-silicate in the Main Zone can be explained in 

a number of ways, which still involve the Platreef being intruded first. An irregular floor
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topography is one explanation: if structures such as the domal dolomite tongue, immediately 

to the south of the Sandsloot pit (Fig. 3.1) are pre-Bushveld, then the relatively thin Platreef 

may have intruded around such structures, thus leaving areas of exposed dolomite 

topographically higher than the Platreef. Such areas would therefore have been exposed to the 

Main Zone magma as it was intruded, and the incorporation of xenoliths of calc-silicate 

within the Main Zone is entirely possible. Pre-existing fold structures do appear to be 

influential in controlling the thickness of the reef. The Sandsloot pit shows some large 

antifomal and synformal footwall structures (Friese, 2004), and our mapping indicates that the 

Platreef is thicker (>30m) in synformal basins and thinner (<10m) close to the crests of the 

antiforms. This supports the possibility that the Platreef may not have completely covered 

larger antiforms.

Another possible explanation that produces an analogous situation is that of footwall 

diapirism initiated by the intrusion of the Platreef. Domal structures in the floor of the eastern 

Bush veld Complex have been interpreted to represent diapirism in the floor rock sediments of 

the Transvaal Supergroup during the early stages of magma emplacement (Uken and 

Watkeys, 1997). The process produces basins with finger-shaped intrusions separated by 

domes and ridges. If this were also the case in the northern limb, then structures such as the 

dolomite tongue (and presumably many unexposed structures) would represent syn-Bushveld 

structures, but would facilitate the exposure of footwall lithologies above the topographic 

level of the Platreef, as in the previous model.

A third possible explanation of calc-silicate xenoliths within the Main Zone is the possibility 

that they are xenoliths derived from country rocks that formed the roof of the Platreef. In the 

main part of the Bushveld Complex, the floor rocks are quartzites of the Magaliesburg 

Formation. These were unconformably capped by volcanic rocks of the 206 IMa Rooiberg 

Group, and the intrusion of the mafic suite of the Complex is thought to have immediately 

followed the eruption of the Rooiberg Group, and was intruded along the unconfomable 

contact, with the Magaliesburg quartzites forming the floor rocks and the Rooiberg acting as a 

low-density carapace. Thus, the roof rocks in the main part of the complex are thought to have 

been the Rooiberg Group. This is not necessarily the case in the northern limb. It is clear from 

the transgressive nature of the Platreef-footwall contact that the Platreef was intruded 

obliquely to the country rock stratigraphy, as shown in the face maps in Fig. 3.2 and in
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Armitage et al., (2002) and it is entirely possible that the country rocks which formed the 

floor of the relatively thin Platreef also formed its roof.

Our observations outlined above are mutually supporting and strongly suggest that the 

Platreef was intruded first, and that there was a sufficient break in time to allow almost total 

crystallization, cooling and local alteration of the Platreef before intrusion of the hangingwall 

gabbronorites. If the fine-grained pyroxenite at the top of the Platreef represents the remnants 

of an upper chill zone, it implies that the Platreef may have originally been a very thin, 

possibly sill-like, package of pyroxenites without any significant column of magma above it. 

Intrusion of the magma that formed the hangingwall took place as a separate, later event, and 

the cold Platreef formed the floor of this larger intrusion.

With such evidence, the model of Platreef intrusion in post lower Main Zone times (Friese, 

2004; Friese and Chunnet, 2005) seems untenable. This model is based on several lines of 

evidence that can be interpreted in more than one way, or is directly contradicted by the new 

evidence that we present. Friese (2004) considers a thrust zone at the contact between the 

footwall and the Main Zone, along which the Platreef has later intruded, and states that the 

Platreef is bounded by major thrust zones at the contacts with the footwall and hangingwall. 

Whilst there is occasionally sheared pyroxenite below the hangingwall contact, this is by no 

means widespread, and no evidence of shearing in the hangingwall is seen. We have also 

found no evidence of the footwall contact being sheared, and Friese (2004) misinterprets the 

observation by Armitage et al. (2002) of lenses of serpentinite following the layering as 

representing thrust duplexes. These bands are elongate bodies and layers of serpentinite, 

usually with transitional boundaries, which represent compositional variations in the original 

bedded sediments, where forsterite has preferentially formed during contact metamorphism 

and been subsequently serpentinized. Figure 3.2 shows that the bands/lenses of compositional 

variations in the footwall have a relatively high angle to the footwall contact, and are 

truncated at the contact, strongly suggesting that they are not tectonic lenses formed by 

shearing along the contact zone.
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3.6.5 Source o f PGE in the Platreef

The discovery that there is a magmatic break associated with the base of the hangingwall has 

profound implications for the genesis of PGE mineralization in the Platreef. Until now, most 

studies have assumed that there was an extensive column of magma above the Platreef 

(represented by the hangingwall units) that could have supplied PGE via settling of 

immiscible sulfides to the reef. If the Platreef was intruded and crystallized before intrusion of 

the hangingwall magma, this cannot be the source of PGE for the Platreef. The mass balance 

question of how to account for the enormous mass of PGE in the Platreef is unresolved 

(Cawthom et al., 2002). If the hangingwall magma is not responsible, another source of and 

mechanism for concentration of PGE in the Platreef must be considered.

3.7 Conclusions

The evidence we present from mapping observations on a metre scale to mineralogical 

textures on a millimetre scale support the hypothesis that the Platreef formed prior to intrusion 

of the hangingwall gabbronorites. Furthermore, the presence of: (i) PGE mineralization 

located at the base of the hangingwall where it is in direct contact with mineralized reef; (ii) 

mineralogical textures at the contact that indicate chilling and erosion; (iii) the truncation of 

replaced reef and sheared pyroxenite by the hangingwall; and (iv) partially recrystallized reef 

xenoliths within the hangingwall suggest that the Platreef pyroxenites were cooled and almost 

completely crystallized before the Main Zone was intruded. The intrusion of the Main Zone 

magma imparted an unconformable contact on the Platreef, and where the Main Zone magma 

cut down into mineralized portions of Platreef, PGE and S from the reef were incorporated 

into the new magma, and localized zones of basal PGE and BMS mineralization were formed 

in topographic hollows. The incorporation of xenoliths of calc-silicate into the Main Zone 

magma show that if the Platreef was intruded first, it could not have formed a complete 

barrier between the footwall and the Mam Zone magma. This can be explained by there being 

an irregular floor topography at the time of Platreef intrusion, possibly caused by syn- 

emplacement diapirism of the footwall; or by interpreting the xenoliths as derived from the 

roof of the cold, thin Platreef, rather than from the floor beneath.
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4.1 Abstract

The Platreef is a pyroxenitic unit with Ni-Cu-PGE mineralization that forms the base of the 

layered igneous succession in the northern limb of the Bushveld Complex. It rests upon 

sediments of the Transvaal Supergroup and Archaean granite/gneiss basement, and is overlain 

by norites and gabbronorites assigned to the Main Zone of the Complex. Detailed lithological 

mapping of a series of bench faces on bench 222 of the Zwartfontein South pit was 

undertaken to define a rectangular block. This information, coupled with drill chip data 

obtained during the drilling of the blast grids in the enclosing area has allowed us to constrain, 

with a high degree of confidence, the three-dimensional nature of the lithological 

relationships on a local scale, not achieved by any previous study. The inter-connectivity of 

the mapped faces has allowed the first well constrained, three-dimensional representation of 

the Platreef-hangingwall contact to be generated. It has revealed finger-like intrusions of 

hangingwall gabbronorite which cut down into the Platreef along zones of low competency 

such as NE-SW and N-S trending shear zones. This relationship demonstrates that the 

emplacement of Main Zone-type hangingwall magma occurred after a significant period of 

time that had allowed both crystallization and deformation of the Platreef to take place.

4.2 Introduction

The Platreef of the northern limb of the Bushveld Complex is one of the world’s largest 

deposits of platinum-group elements (PGE) with associated Ni and Cu, and is currently 

undergoing an period of intense exploration activity. The advent of mining of the Platreef in 

1992 by the opening of Anglo Platinum’s Sandsloot mine (Fig. 4.1) paved the way for a new 

wave of research on the deposit (Bye and Bell, 2001; Armitage et al., 2002; Friese, 2004; 

Friese and Chunnet, 2004; McDonald et al., 2005; Holwell et al., 2005; Holwell et al., 2006). 

The success of the operation at Sandsloot led to the opening of Anglo Platinum’s 

Zwartfontein South mine (Fig. 4.1) in 2002 and to a boom in exploration along the entire 

length of the northern limb by both Anglo Platinum and a host of junior companies. The shear 

volume of core drilled during these recent exploration programmes by junior companies has 

facilitated an expanding number of academic studies to be performed outside of Anglo 

Platinum’s lease area (Hutchinson and Kinnaird, 2005; Kinnaird, 2005; Kinnaird et al., 2005; 

Naldrett, 2005). The majority of these studies have utilized borehole core samples which have 

obvious limitations in trying to interpret three- or even two-dimensional geological 

relationships and structures. Some of the studies undertaken in the open pit mine at Sandsloot
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have used the mapping of individual bench faces to illustrate the two dimensional nature of 

the Platreef (Armitage et al., 2002; McDonald et al. 2005; Holwell et al., 2005). We have 

developed this approach and for the first time, have utilized a series of interconnected face 

maps and drill chip information to produce a three dimensional representation of a section of 

the Platreef in the Zwartfontein South mine. The results of this have revealed geological 

relationships that have important and unambiguous implications for the timing of magmatic 

and structural events in the northern limb of the complex.
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Figure 4 1. Geological map of the central portion of the Platreef showing the location of the 
Zwartfontein South pit.

4.3 Geological setting of the Platreef

The 2.06 Ga Bushveld Complex is the world’s largest layered igneous complex and is located 

in the north-eastern part of South Africa, north of Johannesburg (Fig. 4 .1). The Complex is 

made up of layered ultramafic and mafic cumulates intruded into Paleaeoproterozoic
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sediments of the Transvaal Supergroup and Archaean basement in the northern part of the 

Kaapvaal Craton. The ultramafic-mafic sequence is divided into five zones (Hall, 1932) 

comprising a Marginal Zone of norites, Lower Zone pyroxenites and harzburgites, Critical 

Zone chromitite-pyroxenite-norite cyclic units, Main Zone gabbronorites and Upper Zone 

anorthosites, gabbronorites and magnetites. The Complex is divided into five limbs: roughly 

symmetrical eastern and western limbs, a southern (Bethal) limb covered by younger 

sediments to the south of the eastern limb, a far western limb and a northern limb, which is 

sinuous in outcrop (Fig. 4.1). The Lower Zone is only partially developed in the northern limb 

and there is debate as to whether the Critical Zone is present at all (McDonald et al., 2005). 

The Platreef is located in the northern limb of the Complex and is a 10-400 m thick package 

of pyroxenitic lithologies with PGE and base-metal sulfide (BMS) mineralization. It is located 

at the base of the layered mafic igneous sequence and overlies progressively older 

sedimentary units of the late Archaean - early Proterozoic Transvaal Supergroup, and 

Archaean basement, north from the town of Mokopane (Fig. 4.1).

The Platreef is a complex orebody and is made up of many distinct lithologies. The early, 

broad classification of the Platreef stratigraphy into a basal pegmatitic A-reef, a coarse

grained, mineralized B-reef and a fine-grained barren C-reef (White, 1994) is now considered 

to be over simplified and, in many cases, inapplicable on a local scale. Several recent 

studies1,7,9' 11’13 have shown the Platreef to be made up of pyroxenites, gabbronorites, norites, 

harzburgites, peridotites, serpentinites and a variety of hybrid lithologies (Armitage et al., 

2002; Hutchinson and Kinnaird, 2005; Kinnaird, 2005; Kinnaird et al., 2005, McDonald et 

al., 2005; Holwell et al., 2006). Xenoliths of footwall sediments are also common along 

strike, with calc-silicate blocks and rafts up to tens or even hundreds of metres across, derived 

from the Malmani dolomite, being particularly common north from Sandsloot, even where the 

floor rocks are no longer dolomites. PGE mineralization within the pyroxenitic units is 

generally associated with BMS, although the distribution is heterogeneous. PGE distribution 

into the footwall is also sporadic and can attain depths of over 100 m. Hydrothermal 

redistribution, both within the reef and into the footwall, is common in areas where the floor 

rocks are particularly reactive, such as at Sandsloot, and this can result in the decoupling of 

PGE from sulfides (Holwell et al., 2006). In contrast, where the floor rocks are particularly 

anhydrous, such as the gneisses on the farm Overysel, hydrothermal activity is minimal and 

PGE and BMS are more intimately associated (Holwell and McDonald, 2005a). The 

hangingwall rocks are gabbronorites and norites attributed to the Main Zone of the Bushveld
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Complex. Until recently, it was assumed that the Platreef was either of Critical Zone affinity 

(von Gruenewaldt et al., 1989; White, 1994), or that it marked the base of the Main Zone in 

the northern limb (van der Merwe, 1976; Kruger, 2005a). In both cases it was not assumed 

that there was a significant time-gap between the intrusions of the magma that formed the 

Platreef and the magma that formed the hangingwall gabbronorites. Friese (2004) and Friese 

and Chunnett (2004) suggested that the Platreef was a post lower Main Zone intrusion. 

However, the work of Holwell et al. (2005) at Sandsloot and Naldrett (2005) at Drenthe both 

concluded that the hangingwall magma was intruded post-Platreef, and after a significant time 

period to allow almost total crystallization of the Platreef magma.

4.4 The Platreef at Zwartfontein South

4.4.1 Footwall lithologies

The footwall rocks on the southern part of the farm Zwartfontein are metasediments derived 

from the Malmani dolomite (Fig. 4.1). Typically, they are crudely banded calc-silicates with 

lenses and bands of serpentinite which follow the relict bedding. In places, and especially 

close to the contact with the Platreef, metamorphic clinopyroxenites, locally known as 

‘parapyroxenites’ are developed which can occur as almost pure green diopsidites. Xenoliths 

of calc-silicate within the Platreef pyroxenites commonly contain such diopside-rich bands 

and pods, and are also often highly serpentinized. Mineralization is sporadic in the footwall, 

but can occur tens of metres into the clinopyroxenites and calc-silicates, and is particularly 

common in serpentinites. Xenoliths within the Platreef pyroxenites are also sporadically 

mineralized.

4.4.2 Platreef lithologies

The Platreef itself is made up of feldspathic pyroxenites, which vary in grain size, but are 

commonly medium-grained with cumulus orthopyroxene, intercumulus plagioclase, 

oikocrystic clinopyroxene and sporadic BMS. At the top of the reef, a fine-grained feldspathic 

pyroxenite that is characteristically barren of mineralization (analogous to the ‘C’-reef of 

White, 1994) is occasionally present. Parts of the pyroxenites appear serpentinized, exhibiting 

a much darker colour and amorphous texture, and in thin section can be seen to contain 

abundant secondary olivine and can be classed petrologically as peridotites or feldspathic 

peridotites and are variably serpentinized. These rocks correspond to the ‘olivine-replaced 

reef’ at Sandsloot (Holwell et al., 2006), however, due to the extent of the serpentinization, it
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is unclear whether any of these are true igneous peridotites occur such as those that at 

Turfspruit (Kinnaird et al., 2005). The peridotites are usually associated with serpentinized 

xenoliths and McDonald et al. (2005) suggested that the olivine-replaced reef at Sandsloot 

was formed by the percolation of a late-stage Fe-rich fluid through the Platreef, which may be 

related to the serpentinization of such xenoliths. Mineralization is common within the olivine 

bearing rocks. The presence of these xenoliths, rafts and associated peridotites and 

serpentinites is a common feature at Zwartfontein South and serpentinization is much more 

extensive than is observed at Sandsloot.

4.4.3 Hangingwall lithologies

The hangingwall is made up of medium-grained gabbronorites with cumulus plagioclase, 

cumulus and intercumulus orthopyroxene and oikocrystic clinopyroxene. A thin (<2 m) 

mottled anorthosite is occasionally present at the base of the hangingwall, comprized of >80% 

cumulus plagioclase with occasional large oikocrysts of orthopyroxene and clinopyroxene, 

which give the ‘mottled’ appearance. Irregularly shaped, intrusive, fine-grained 

melagabbronorites are a common feature towards the base of the hangingwall, and very 

occasionally are also seen to penetrate the Platreef. The intrusions occasionally contain minor 

PGE and BMS mineralization.

4.5 Mapping

This paper describes the lithological and structural nature of a portion of the Platreef by 

utilising face mapping together with drill chip information from an area of bench 222 in the 

northern part of the Zwartfontein South pit (Fig. 4.2) which constitutes a three dimensional, 

roughly rectangular block. The obvious advantage of working with bench faces in an open pit 

mine is that three-dimensional field relationships and structures can be identified and 

visualized to a much greater degree of confidence than is possible with borehole cores or field 

outcrops. The mapping we have performed has managed to constrain with great confidence, 

the nature of the lithological relationships on a local scale (100s of metres), and in a three- 

dimensional manner, not achieved by any previous study. A set of 10 m high bench faces on 

bench 222 were mapped at 1:100 scale which define a roughly rectangular block, and are 

shown in Fig. 4.2, with a plan map inferred between the face maps utilising additional 

information from drill chips generated during development of the blast grid for the bench. The 

mapping took place in November and December of 2005.
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Figure 4.2: Geological face maps and plan map from bench 222 at the Zwartfontein South pit. The 
plan map is the surface corresponding to the tops o f the bench faces mapped.
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The most interesting feature identified by this mapping is the NE-SW trending finger-shaped 

intrusion of hangingwall gabbronorite (Gabbronorite Finger 1 -  Fig. 4.2) which intrudes down 

through the Platreef lithologies and may even penetrate the footwall rocks in the southern part 

of the mapped block, although this contact was not exposed at the time of mapping. On face 

map ZSS2 (Fig. 4.2), it can be seen that the eastern (lower) contact of the gabbronorite finger 

with the Platreef is along a shear zone, which is present on both sides of the intrusion. 

However, it is only the Platreef pyroxenites which have been sheared, and only the 

pyroxenites on the eastern side have been serpentinized to such an extent as to classify them 

as serpentinite. The gabbronorite has undergone no deformation or alteration. Grade 

distribution on either side of the Gabbronorite Finger 1 differs considerably, with the 

pyroxenites immediately to the north of the intrusion being low in PGE grade, whereas the 

pyroxenites on the southern side are well mineralized. The gabbronorite body is undoubtedly 

intrusive into the Platreef and this emplacement appears to have been focussed along a 

fault/shear zone, with the differences in PGE grade on either side suggesting significant 

displacement along this structure. The feldspathic pyroxenite body within the gabbronorite 

exposed in face ZSE1 may be a xenolith of Platreef within the finger, or be a result of the 

gabbronorite finger branching. There are two much smaller finger-like gabbronorite bodies 

intruding the Platreef identified as Gabbronorite Fingers 2 and 3 in Fig. 4.2 which are inferred 

from drilling results. Gabbronorite Finger 2 may follow the line of another NE-SW trending 

shear zone, exposed in the ZSN4 face (Fig. 4.2). Grade distribution again contrasts across the 

line of this shear zone, with lower grade material to the south and high grade material to the 

north. The intrusive, magmatic contact between the Platreef and the hangingwall in the 

northern face (ZSN3) also displays shearing of the Platreef pyroxenites, but no shearing of the 

hangingwall lithologies, and although of a different orientation, it may still represent a zone of 

pre-existing low competence that the hangingwall magma exploited.

Shear zones within the Platreef pyroxenites are common in the Zwartfontein and Sandsloot 

pits and the mapping of bench 222 has identified two major NE-SW trending shear zones 

within the Platreef pyroxenites. The shear zone marking the contact between the Platreef and
2 3the hangingwall in the northern ZSN3 face, a relationship that is common in both pits ’ 

follows a more strike-parallel, N-S trend and may therefore be distinct from the NE-SW 

trending shear zones. The shear zone exposed in the ZSN4 face dips steeply to the southwest 

and is likely to continue across the pit, as serpentinite was encountered along the same strike 

direction during drilling. The shear zones are up to a few metres wide, are marked by
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extensive serpentinization of the pyroxenites, with closely spaced fractures on a centimetre 

scale displaying serpentine slickenfibres on their surfaces. The presence of serpentine and the 

alteration of the pyroxenite indicates significant hydrothermal fluid flow along these 

discontinuities. Some pyrite has been precipitated along the fracture surfaces although the 

presence of PGE is variable from one shear zone to the next. The shear zones do not penetrate 

the hangingwall, and are intruded by hangingwall rocks and are therefore pre-gabbronorite 

intrusion. The intersection of the shear zones with the footwall calc-silicates was not observed 

in any of the available faces, and therefore it is unclear to what extent the footwall rocks 

underwent shearing/faulting as a response to the same deformation.

The large calc-silicate body present in the south-eastern comer of the mapped area is true 

footwall, which can be seen on adjacent benches in the pit. Calc-silicate xenoliths are present 

within the Platreef pyroxenites in the ZSE1 and ZSE2 faces. Serpentinites may be derived 

from either igneous or metasedimentary precursors. The serpentinite body in the northern part 

of the ZSE2 face is likely to be a serpentinized metasedimentary xenolith as it exhibits bands 

of diopsidite. Peridotitic lithologies may also be ambiguous as to whether the olivine is 

igneous or secondary, but the apparent halo of peridotite around the aforementioned 

serpentinized xenolith suggests that here the alteration of pyroxenite to olivine-bearing rocks 

may be related to the alteration of the xenolith. The large zone of peridotite in the centre of 

the mapped area is likely to be an altered raft of calc-silicate.

The mottled anorthosite, which commonly occurs at the base of the hangingwall is present in 

the ZSN3 face in the northern part of the pit, but is not present in the ZSW1 face and it is 

uncertain where it is present or absent in the intervening area as inferred from the drill chip 

results. There is also a thin band of mottled anorthosite which follows the same orientation as 

the Platreef-hangingwall contact exposed around 25 m into the hangingwall in the ZSN3 face. 

Around 40 m into the hangingwall in the ZSN3 face, a calc-silicate xenolith 15 m wide is 

exposed within the gabbronorites. The irregular, apparently intrusive fine-grained 

melagabbronorite bodies are present near the base of the hangingwall in the ZSN3 and ZSW1 

faces, and are a common feature of the lower parts of the hangingwall in the pit.
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4.6 Discussion

The mapping of bench faces in the open pit mine at Zwartfontein South has allowed us to 

reveal the form and structure of a section of the Platreef with a greater degree of certainty than 

has been previously possible. The real advancement of this study is the inter-connectivity of 

the mapped faces, which has allowed the first well constrained three-dimensional model of 

the hangingwall contact to be generated.

4.6.1 Timing o f magmatic events:

The geological relationships we have identified support the theory that the hangingwall 

magma intruded after a significant time break following Platreef intrusion (Holwell et al., 

2005). The intrusive finger of gabbronorite clearly post-dates Platreef emplacement. In 

addition, it appears to have exploited a shear zone, as seen by the sheared and serpentinized 

pyroxenite at the contact. The frequently observed relationship of the uppermost portion of 

the Platreef being sheared below the hangingwall gabbronorite, as is seen for example in the 

ZSN3 face, may be an illustration of the same tendancy for the gabbronorite magma to exploit 

less competent zones. It is unclear as to whether the shear zones penetrate the footwall rocks 

in the area we have mapped. Armitage et al. (2002) mapped several faces in the Sandsloot pit, 

and recognized a series of pegmatoidal gabbronorite dykes that penetrated the footwall, but 

were not able to establish whether these cut the Platreef. It is possible that these are 

hangingwall fingers, analogous to the one we have mapped at Zwartfontein South, that have 

penetrated the footwall. The lack of shearing in the hangingwall, and the fact that the 

hangingwall rocks intrude along these shear zones is clear evidence that NE-SW strike-slip 

shearing of the Platreef pyroxenites occurred before the emplacement of the hangingwall 

gabbronorites. The contrasts in grade distribution across the shear zones suggests that there 

may have been a significant displacement up to tens of metres before intrusion of the 

hangingwall. Alternatively, these contrasts may be caused by the shear zones and/or 

gabbronorite bodies providing barriers to post-emplacement hydrothermal redistribution of 

PGE.

The earliest work on the Platreef also identified veins of hangingwall norite intruding down 

into the Platreef (Wagner, 1929). However, the significance of this was not recognized until 

the work at Sandsloot (Holwell et al., 2005) and this work at Zwartfontein. In addition, the 

recent work by Naldrett (2005) has also identified hangingwall intrusions in the Platreef, 

north of Zwartfontein on the farm Drenthe (Fig. 1), similar to the one we have identified in
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the Zwartfontein South pit, that also appear to have exploited a less competent layer. In this 

case however, it is a horizon where altered dolomite is common rather than a shear zone that 

the gabbronorite has invaded.

The presence of fine-grained melagabbronorite intrusions near the base of the hangingwall is 

common at Zwartfontein. The intrusions are post-Platreef as they do occasionally cut down 

into the Platreef but these occurrences are much rarer than in the hangingwall. The irregular 

nature of the intrusions, such as the one exposed in the ZSN3 face, and the fact that they 

rarely penetrate the Platreef, may suggest they formed when the main body of gabbronorite 

was not fully crystallized, whereas the Platreef was. This would explain the preference for the 

irregular shape of the intrusions in the softer hangingwall. The origin of these intrusions is 

uncertain, but they may represent a late stage residual melt or a hybrid melt of assimilated 

Platreef, particularly as they occasionally contain PGE mineralization.

Figure 4.3 shows the schematic magmatic history at Zwartfontein South. Initially, the Platreef 

magma intruded (Fig. 4.3a) over Malmani dolomite and beneath roof rocks of uncertain 

affinity either Rooiberg felsites (Kruger, 2005a) or more likely Malmani dolomite. The 

presence of the xenolith of calc-silicate in the hangingwall in the ZSN3 face suggests this is a 

distinct possibility. The presence of calc-silicate xenoliths within the hangingwall was 

discussed by Holwell et al. (2005), who concluded that the Platreef either must not have 

formed a complete barrier between the hangingwall magma and the floor rocks, or that the 

roof rocks to the Platreef in the area north of Sandsloot were also calc-silicates. For 

simplicity, Fig. 4.3a shows the Platreef intrusion as a single magma body, but it is possible 

that emplacement occurred as a series of magma pulses (Kinnaird, 2005). Intrusion of the 

Platreef magma was subsequently followed by a period of crystallization and shearing (Fig. 

4.3b), with associated hydrothermal fluid activity and serpentinization. The hangingwall 

magma then intruded over the virtually solidified Platreef forming a magmatic unconformity 

and exploited zones of weakness such as the shear zones to intrude down into the Platreef 

(Figs 4.3c,d). Tilting then occurred (Fig 4.3e) to attain the presently observed dips; finally 

erosion and mining exposed the surface shown in Fig. 4.3f, which corresponds with the lower 

half of the plan map in Fig. 4.2.
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Figure 4.3. Three dimensional schematic representation of the stages involved in the intrusion of the 
Platreef and hangingwall gabbronorite in the area mapped at Zwartfontein South. All views are facing 
north-northwest, a: intrusion of Platreef magma over dolomite floor rocks and beneath unknown roof 
rocks, b : cooling, crystallization and deformation of the Platreef occurs, c: intrusion of hangingwall 
magma exploits zones of weakness such as shear zones, and intrudes down into the Platreef. d: 
crystallization of hangingwall magma followed by e: tilting./shows the planar surface which 
corresponds to the southern portion of the plan map of the area mapped in Fig. 2.
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4.6.2 Timing o f  deformation events

Our mapping of the intrusive nature o f the gabbronorites along shear zones in the 

Zwartfontein pit, and the discontinuation of the deformation'zones into the adjacent 

hangingwall rocks, together with previous petrological studies (H olwell et al., 2005) clearly 

indicate that shearing o f the Platreef took place before the intrusion o f the gabbronoritic 

magma. Two orientations o f such deformation zones which the gabbronoritic magma appears 

to have exploited have been identified in this study: one set striking roughly NE-SW  and 

dipping steeply, and another, strike parallel, N-S trending set. Extensive structural work by 

Friese (2004) in the Sandsloot and Zwartfontein South pits also identified similar features and 

classified the former as strike-slip shear zones, and the latter as Group 1 layer subparallel 

thrust zones. Friese (2004) describes three orders o f NE-SW  trending, steep to subvertically 

dipping strike-slip shear zones. First order shear zones include major structural boundaries 

such as the M ohlosane fault (Fig. 1), and all others as either second or third order, which 

interlink between the major first order shear zones. Friese (2004) describes these smaller 

shear zones as being 10-20m thick and comprising a 50cm  thick basal shear o f intense
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deformation with slickensided fault surfaces and serpentinization, and it is these basal shears 

which most closely correspond to the NE-SW trending shear zones we have mapped. The 

suggestion from the mapping in Friese’s (2004) work is that the shear zones he describes cut 

into the hangingwall gabbronorite and this is an important point. The available geological 

maps for the area indicate that the first-order shear zones cut the gabbronorites however their 

extent is uncertain due to the poor exposure. Our mapping indicates that the shear zones were 

formed before the hangingwall was intruded, however, reactivation along these faults after 

hangingwall intrusion is entirely possible. In fact, Friese (2004) describes three stages of 

movement along these zones and notes that they exhibit clear cross cutting relationships with 

all other fault zones. Although this indicates that the last movement along these zones may 

have been relatively recent, if they are reactivated, the initial movement could still have been 

produced prior to the hangingwall intrusion.

Friese (2004) also describes the shear zones that commonly occur immediately below the 

hangingwall contact (Bye and Bell, 2001; Armitage et al., 2002;), that he interprets to be 

oblique frontal ramp structures. A particularly contentious conclusion of the study of Friese 

(2004) is the suggestion that the Platreef was intruded in post-lower Main Zone times, i.e. 

after the intrusion of the hangingwall magma, however the petrological and lithological 

relationships described here and in Holwell et al. (2005) are entirely conflicting with this 

theory. Friese (2004) partially based this theory on a limited exposure where a sliver of 

sheared Platreef pyroxenite is present between two bodies of hangingwall gabbronorite, and 

attributed this to Platreef being thrust up into the hangingwall. In the light of our identification 

of finger like bodies of gabbronorite that dissect the underlying Platreef, it is possible that this 

exposure represents a similar intrusive feature. Friese (2004) attributes the timing of the 

formation of both the NE-SW trending strike-slip shear zones and the N-S trending Group 1 

thrusts in the Bushveld rocks to the reactivation of Neoarchaean (2.78-2.64Ga) crustal 

sinistral strike-slip shear zone systems during the Ubendian Orogeny (2.058-1.86 Ga). The 

fact we have shown evidence of shearing within the Platreef that the the hangingwall magma 

exploited during its intrusion, the evident break in time between intrusion of the Platreef and 

hangingwall emplacement must have fundamentally seen the initiation of such deformation, 

with both the NE-SW and N-S trending shear zones produced before the emplacement of the 

hangingwall magma. Thus, the time-break in between Platreef and hangingwall gabbronorite 

intrusion may be a considerable one. It is this early stage of deformation which is not 

recognized by Friese (2004). Further reactivation, however, along these deformation zones,

61



Chapter 4. Three-dimensional mapping of the Platreef at the Zwartfontein South mine

particularly the NE-SW trending structures, after emplacement of the hangingwall is likely to 

have taken place, and produced the offsets observed on the first-order shear zones, such as the 

Mohlosane fault.

4.7 Conclusions

Detailed mapping on a scale not previously performed has allowed us to generate the first 

three-dimensional representation of the contact between the Platreef and its hangingwall with 

a high degree of certainty. This has revealed important and unambiguous lithological 

relationships in the Platreef at the Zwartfontein South pit that unequivocally show that the 

hangingwall gabbronorites cut down into the Platreef along zones of low competency such as 

NE-SW and N-S trending shear zones. This clearly demonstrates that emplacement of the 

hangingwall gabbronorites occurred after crystallization of the Platreef pyroxenites and at 

least two phases of deformation, and that there must have been a significant time break 

between the intrusion of the Platreef and gabbronorite magmas. Further reactivation of these 

deformation zones took place after the emplacement of the gabbronorites.
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5.1 Abstract

Platinum-group mineral (PGM) assemblages in the Platreef at Sandsloot, northern Bushveld 

Complex, in a variety of lithologies reveal a complex multi-stage mineralization history. 

During crystallization of the Platreef pyroxenites, platinum-group elements (PGE) were 

distributed thoughout the interstitial liquid forming a telluride-dominant assemblage, devoid 

of PGE sulfides. Redistribution of PGE into the metamorphic footwall by hydrothermal fluids 

has formed arsenide-, alloy- and antimonide-dominant assemblages, indicating a significant 

volatile influence during crystallization. Serpentinization of the footwall has produced an 

antimonide-dominant PGM assemblage. Parts of the igneous reef were subjected to alteration 

by a late-stage, Fe-rich fluid, producing ultramafic zones where the telluride-dominant 

assemblage has been recrystallized to an alloy-dominant one, particularly rich in Pt-Fe and 

Pd-Pb alloys. A thin, small-volume zone of PGE-BMS mineralization along the base of the 

hangingwall contains a primary PGM assemblage that is locally altered to one dominated by 

Pt/Pd germanides. This is thought to have formed when the new pulse of Main Zone magma 

entered the chamber, and scavenged PGE by assimilation of the underlying mineralized 

Platreef pyroxenites. That each major rock type at Sandsloot contains a distinctive PGM 

assemblage reflects the importance of syn- and post-emplacement fluid and magmatic 

processes on the development of Platreef mineralization.

5.2 Introduction

The Bushveld Complex of South Africa is the largest layered igneous intrusion in the world 

and is the largest single host of platinum-group elements (PGE) yet discovered. The major 

PGE deposits of the Bushveld Complex are the stratiform Merensky Reef and UG2 chromitite 

layer, and the stratabound, but not stratiform, Platreef. The complex can be divided into an 

eastern and western limb of similar size; a southern limb, identified beneath cover rocks by 

gravity studies; and a smaller northern limb (Cawthom et al., 2002). The Platreef, located in 

the northern limb, has an estimated Pt+Pd reserve of 16.3 million ounces (Cawthom, 1999), 

and is currently being mined by open-pit methods by Potgietersrus Platinums Ltd., a 

subsidiary of Anglo Platinum, at the Sandsloot and Zwartfontein South pits ~30km northwest 

of the town of Mokopane (formerly Potgietersrus; Fig. 5.1).
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Nex (2003), von Gruenewaldt et al. (1989), Hammerbeck and Schiirmann (1998).

65



Chapter 5. Platinum-group mineral assemblages in the Platreef at Sandsloot Mine

The northern limb of the Bushveld Complex strikes approximately north-south and is slightly 

sinuous in shape (Fig. 5.1). Mafic igneous lithologies of the Rustenburg Layered Suite (RLS) 

of the complex dip west-southwest with the pyroxenitic Platreef located at the base of the 

igneous package north of Mokopane, in direct contact with metamorphosed sedimentary and 

igneous country rocks. A thick sequence of fairly homogenous gabbronorites and norites 

attributed to the Main Zone of the RLS overly the Platreef pyroxenites.

Other than brief references to the most common platinum-group minerals (PGM) by 

Schneiderhohn (1929) and Gain and Mostert (1982), very little data on the PGM assemblages 

within the Platreef has been published. Kinloch (1982) summarized data from exploration 

boreholes on Zwartfontein and Overysel, north of the current Sandsloot mine and suggested 

regional variations could be related to the amount of assimilation and contamination from the 

differing floor rock lithologies. This was discussed further by Viljoen and Schurmann (1998), 

who summarized the overall abundances of PGM types in the Platreef as 30% Pt/Pd 

tellurides, 26% alloys, 21% PGE arsenides, and 19% sulfides, and highlighted the variations 

observed on different farms along strike. According to Viljoen and Schurmann (1998), from 

north to south, the most important PGM groups are: tellurides on the farm Drenthe; sulfides 

and tellurides on Overysel; alloys and tellurides on Zwartfontein and Sandsloot; sulfides on 

Tweefontein north; and tellurides at Tweefontein Hill. Recent work by Hutchinson et al.

(2004) has shown the Platreef on Macalacaskop and Turfspruit to be rich in Pd bismuthides, 

tellurides and antimonides. Armitage et a l (2002) presented the results from a preliminary 

study of the PGE mineralization at Sandsloot, which found the PGM assemblage to be rich in 

alloys and tellurides and devoid of sulfides. This study builds on these findings and aims to 

provide further evidence of the processes governing the distribution of PGE in the Platreef.

5.3 Geology

From south to north, the northern limb of the Bushveld Complex rests upon a succession of 

progressively older sedimentary units of the late Archaean - early Proterozoic Transvaal 

Supergroup and Archaean granite/gneiss basement, in what has been termed an ‘igneous 

transgression’ (Wagner, 1929). The footwall units are, north from Mokopane: quartzites and 

shales of the Timeball Hill Formation; shales of the Duitschland Formation; the Penge 

Banded Iron Formation; dolomite of the Malmani Formation and, north of Zwartfontein, 

Archaean granite/gneiss basement (Fig. 5.1). Samples used in this study were taken from the
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Sandsloot mine, where the footwall is Malmani Dolomite. The hangingwall along the entire 

strike o f the reef is composed o f gabbronorites and norites ascribed to the Main Zone o f the 

RLS.

The geology o f the Platreef at Sandsloot Mine has been described by Harris and Chaumba 

(2001), Armitage et al. (2002), M cDonald et al. (2005), and Holwell et al. (2005) and is 

summarized below, together with the authors’ own observations on previously undescribed 

lithologies. The majority o f the Platreef ‘package’ can be divided into hangingwall 

lithologies, igneous Platreef lithologies, and a variety o f metamorphic footwall lithologies. 

There are variations in lithology on a metre scale along the length o f the Platreef in the 

Sandsloot pit, and the variations are summarized in Fig 5.2.
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Figure. 5.2. Simplified stratigraphic representation showing all major rock units in the southwestern, 
central and northern parts of the Sandsloot pit.

5.3.1 Footwall lithologies

The lowermost footwall lithology exposed in the Sandsloot pit are a series o f highly altered 

and variably serpentinized, metamorphosed calc-silicate rocks, derived from the Malmani 

Dolomite. These generally retain some semblance o f the original bedding and are often
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interbanded with more massive clinopyroxenites and thin serpentinites. In many places, the 

immediate footwall to the Platreef pyroxenites, separating the igneous reef and the calc- 

silicates, and are a series of clinopyroxenites, which are either green, granoblastic diopsidites, 

often recrystallized with 120° grain boundary triple junctions, or more amorphous purple-grey 

clinopyroxenites. Olivine is present in variable amounts, and is usually serpentinized, 

occasionally to a stage where no relict olivine remains. The rocks are of metamorphic origin, 

as shown by a higher Ca content in the clinopyroxenes compared to those in the igneous 

pyroxenites, and a whole-rock Cr content much lower than the igneous reef (Harris and 

Chaumba, 2001). These rocks were termed ‘parapyroxenites’ by Wagner (1929). Xenoliths of 

clinopyroxenite and calc-silicate where all original features have been overprinted occur 

regularly throughout the igneous reef at Sandsloot and are usually serpentinized.

5.3.2 Igneous Platreef lithologies

The igneous reef pyroxenites are typically coarse-grained, occasionally pegmatitic, and made 

up of cumulus orthopyroxene, with intercumulus plagioclase and clinopyroxene. In many 

cases plagioclase totals over 10% of the modal mineralogy, and therefore the rock should be 

classified as gabbronorite under IUGS classification. However, in keeping with general 

Bushveld nomenclature in which names generally reflect the cumulus mineralogy, we refer to 

these rocks as feldspathic pyroxenites, and gabbronorites are rocks with both pyroxenes, and 

cumulus plagioclase. A fine-grained feldspathic pyroxenite barren of mineralization, located 

below the hangingwall contact, is present in the central part of the Sandsloot pit. Plagioclase 

is commonly altered to fine grained white mica and epidote minerals. Base metal sulfides 

(BMS) occur within the interstitial assemblage and are discussed below. Chromitites were not 

encountered, though chromite, ilmenite and rare armalcolite are present as minor phases, with 

ilmenite particularly common in the pegmatitic lithologies and most commonly found as 

inclusions along cleavage planes in interstitial clinopyroxene. Some areas of the igneous reef 

in the southwestern and northern parts of the pit contain a considerable amount of 

replacement olivine, which is Fe-rich (F062-67) and overprints orthopyroxene, producing 

peridotitic zones with up to 60% olivine (Fig. 5.3A). This is thought to have formed from the 

reaction of a late stage, Fe-rich, SiC>2-poor fluid with the primary Platreef pyroxenites 

(McDonald et al., 2005), causing desilication of orthopyroxene to form olivine. Parts of the 

igneous reef are also overprinted with a secondary, low-grade metamorphic assemblage that 

includes chlorite, sericite, actinolite and sphene highly suggestive of abundant fluid alteration. 

The basal part of the igneous reef in some sections in the southwest part of the pit is marked
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by a wehrlitic rock with igneous, though not cumulus, textures which is often partially 

serpentinized. This has been interpreted as a footwall-reef hybrid lithology by McDonald et 

al. (2005), on the basis that geochemically, the rocks are intermediate between reef pyroxenite 

and footwall clinopyroxenite in terms of Ca and Cr content. In the northern part of the pit, the 

lower part of the igneous Platreef is comprized of clinopyroxenite, with cumulus 

clinopyroxene, and -5% highly altered interstitial plagioclase. These rocks contain 1000- 

2000ppm Cr and the clinopyroxenes have a composition of W045 which are consistent with 

the Platreef pyroxenites. In contrast footwall clinopyroxenites contain <100ppm Cr and have 

clinopyroxene compositions of W050.

5.3.3 Hangingwall lithologies

The hangingwall to the Platreef pyroxenites is made up of norites and gabbronorites, 

resembling those of the Main Zone elsewhere in the Bushveld Complex. Plagioclase is the 

cumulus phase and makes up around 50-70% of the modal assemblage, with oikocrystic 

orthopyroxene and clinopyroxene making up the remainder in a crystallization sequence 

plagioclase-orthopyroxene-clinopyroxene. Base metal sulfides (pentlandite, pyrrhotite and 

chalcopyrite) and oxides (almost exclusively ilmenite) are rare. A thin (<lm) mottled 

anorthosite layer is often present at the base of the hangingwall. The contact with the 

underlying pyroxenites is sharp and undulatory and is described in detail by Holwell et al.

(2005).

5.4 Mineralization

Base metal sulfides (primary pyrrhotite, pentlandite, chalcopyrite and minor secondary pyrite 

and bomite) are common throughout the reef pyroxenites, though heterogeneously distributed, 

and occur within the interstitial assemblage. However, the sulfides do not occur as well 

defined euhedral crystal aggregates with sharp linear contacts with surrounding silicates as, 

for example, they do in the Merensky Reef. They are invariably ‘ragged’ in morphology due 

to the common intergrowth with plagioclase and secondary amphiboles, particularly 

actinolite, epidote and micas (Fig. 5.3B,C,D). In samples where plagioclase has been replaced 

by white mica, small blebs of sulfide commonly rim the outer edge of the interstitial region 

(Fig. 5.3B,C), and rarely encroach into orthopyroxene, however, interstitial clinopyroxene 

often contains blebs of sulfide along cleavage planes. In the footwall, the assemblage is more
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diverse and contains the above assemblage along with minor amounts of sphalerite (ZnS), 

millerite (NiS), galena (PbS), chalcocite (CU2S) and alabandite (MnS).

Figure. 5.3. A. Thin section of olivine replaced reef showing olivine overprinting orthopyroxene 
(opx); in cross-polarized transmitted light (sample SW43). B-D: Backscattered electron 
photomicrographs of: B and C, typical association of base-metal sulfides (BMS) intergrown with 
altered plagioclase (alt plag) at the edge of the interstitial region enclosing cumulus, sulfide-free 
orthopyroxene in Platreef pyroxenites at Sandsloot (SNS1-29). D: typical association of discreet BMS 
grains with unaltered plagioclase (plag) from the Merensky Reef in the eastern Bushveld for 
comparison.

PGE mineralization occurs throughout the igneous reef, it’s xenoliths, into the footwall and 

occasionally at the base of the hangingwall. Grades are variable within the igneous reef, and 

are more erratic through the footwall, though it is generally lower than in the igneous reef, 

however some serpentinized units carry very high grades. Table 5.1 shows Pt/Pd ratios for a 

range of reef, footwall and hangingwall samples together with an indication of grade. Pt/Pd 

ratios in the igneous reef and hangingwall are around unity, which decrease slightly into the 

footwall, as would be expected if PGE were transported into the footwall via fluid activity, 

due to the greater relative mobility of Pd compared to Pt and the other PGE (e.g. Wood,
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2002). Conversely, Pt/Pd ratios >1 in some reef samples may indicate removal of greater 

amounts of Pd during remobilization of PGE into the footwall and therefore it is likely that 

the original Pt/Pd ratio of the igneous Platreef was probably unity or lower.

Table 5.1. Pt/Pd ratios and relative grade for selected hangingwall (HW), reef and footwall (FW) 
samples. PGE grade based on Rh+Pt+Pd+Au determined by Ni-S fire assay techniques, described in 
Chapter 6.3: low = <2.0ppm; intermediate = 2.0-6.0ppm; high = >6.0ppm.

Sample Lithology PGE grade Pt/Pd

PA-N1-31 HW norite low 1.36
PA-N3X4A HW gabbronorite intermediate 0.91
PA-N3X4B HW mottled anorthosite low 0.87
PA-SW1-47B HW gabbronorite chill low 0.95
PA-SW1-32 Reef feldspathic pyroxenite intermediate 0.81
PA-SW1-28 Reef feldspathic pyroxenite high 1.28
PA-SW1-20 Reef feldspathic pyroxenite intermediate 0.88
PA-N1-30 Reef feldspathic pyroxenite high 0.93
PA-N1-22 Reef feldspathic pyroxenite intermediate 1.04
PA-N1-24 Reef feldspathic pyroxenite intermediate 0.98
PA-N1-26 Reef feldspathic pyroxenite high 1.94
PA-SW2-49 Reef feldspathic pyroxenite high 1.48
DH-G Reef feldspathic pyroxenite high 1.03
DH-P Reef pegmatoidal pyroxenite intermediate 0.79
PA-SW1-40 Olivine-replaced reef intermediate 0.55
PA-SW1-43 Olivine-replaced reef high 0.70
SNN1-68 Reef clinopyroxenite low 0.81
PA-SW1-8 Serpentinized calc-silicate xenolith high 0.99
PA-SW1-1 FW clinopyroxenite high 0.86
PA-E55 FW clinopyroxenite intermediate 0.98
PA-EX6 FW calc-silicate intermediate 0.84
PA-SW1-4 FW serpentinized calc-silicate low 0.65
PA-S2-12 FW serpentinized calc-silicate low 0.55
PA-S0 FW serpentinite low 0.54

5.5 Platinum-Group Minerals

Fifty-eight polished thin sections and blocks from the hangingwall, igneous reef and 

metamorphic footwall from the Sandsloot pit were analyzed at Cardiff University using a 

Cambridge Instruments LEO S360 scanning electron microscope, coupled to an Oxford 

Instruments INC A energy dispersive X-ray analysis system. Over 1000 individual PGM 

grains were identified and are listed in Table 5.2. Each individual grain was classified by type 

and association. The vast majority of PGM were Pt and Pd minerals, while the only major 

carriers of Ir, Ru and Rh identified were members of the hollingworthite/platarsite/irarsite 

series. No carriers of Os were found, which may suggest Os may not be present in discreet 

minerals, but as a trace component in BMS, for example. The PGM identified were grouped
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as: (1) Pt/Pd tellurides; (2); Pt/Pd bismuthides (3) Pt/Pd arsenides; (4) Pt/Pd antimonides; (5); 

Pt/Pd germanides (6); PGE sulfides (7) PGE sulfarsenides; (8) PGE alloys with Fe, Cu, Sn, 

Pb, Tl; and (9) Au and Ag bearing phases. Each occurrence was also classified by its 

association: enclosed in sulfide, at sulfide-silicate boundary, or enclosed by silicates, in 

keeping with other studies of the PGE deposits of the Bushveld Complex.

Table 5.2. Name and ideal formulae of all occurrences of PGM and Au-Ag minerals in the variety of 
host-rock types. Key to lithology abbreviations: HW: hangingwall gabbronorite; PXT: reef pyroxenite; 
PEG: reef pegmatoid; ORR: olivine-replaced reef; CPX: reef clinopyroxenite; FRH: footwall-reef 
hybrid; FWC: footwall clinopyroxenite; CS: calc-silicate; PSP: partially serpentinized footwall; TSP: 
totally serpentinized footwall. Unconstrained phases were too small to determine formula

Name Formula HW PXT PEG ORR CPX FRH FWC CS PSP TSP Total

Kotulskite PdTe 7 53 24 45 1 2 7 8 44 1 192
Sperrylite PtAs2 30 6 6 2 52 18 13 4 131
Moncheite PtTe2 1 50 36 18 6 1 5 1 9 1 128
unnamed (Pd,Pt)2Ge 65 3 68
Electrum Au.Ag 1 15 4 9 1 5 1 20 2 58
Hessite Ag2Te 36 5 1 2 44
Sudburyite PdSb 5 5 29 39
Zvyagintsevite Pd3Pb 4 2 21 1 28
Palladoarsenide Pd2As 2 1 1 18 4 1 27
Paolovite Pd2Sn 1 20 3 24
Geversite RSbz 4 5 14 23
unnamed Pd5Bi3(Te,Sb)2 23 23
Pt-Fe alloy Pt2Fe 10 8 4 22
Froodite PdBi2 1 2 1 16 20
Michenerite PdBiTe 1 6 3 6 16
Sobolevskite PdBi 2 3 3 3 5 16
unnamed Pd2(Sn,Sb) 15 15
Stibiopalladinite PdgSbz 2 3 1 4 1 3 14
Mertieite II Pd8(Sb,As)3 7 6 13
Atokite Pd3Sn 5 1 1 1 8
Native silver Ag 5 1 2 8
Hollingworthite RhAsS 1 2 4 7
unnamed Pd3TI 7 7
Irarsite IrAsS 2 1 2 5
Isoferroplatinum PtaFe 2 1 1 4
Merenskyite PdTe2 2 2 4
Tulameenite R 2FeCu 4 4
Platarsite PtAsS 3 3
Rustenburgite PtaSn 3 3
Tetraferroplatinum RFe 1 2 3
Stillwaterite PdsAs3 1 1 2
unnamed PdgSba 2 2
Auricupride Au,Cu 1 1
Insizawite RBi2 1 1
La u rite RuS2 1 1
Majakite PdNiAs 1 1
Menshikovite Pd3Ni2As3 1 1
Niggliite RSn 1 1
Palarstenide Pd5SnAs 1 1
Palladian gold Au.Ag, Pd 1 1
Palladobismutharsenide Pd2(Bi,As) 1 1
Plumbopalladinite Pd3Pb2 1 1
Stannopalladinite Pd5Sn2Cu 1 1
unnamed PtAg2 1 1
unnamed R 2SbSb 1 1
unnamed PdTe3Pb3 1 1
unnamed Pd2Bi 1 1
unnamed Pd3Bi2 1 1
unnamed Pd2(Sb,Bi,Te) 1 1
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T able 5.2. (contd.)

Name Formula HW PXT PEG ORR CPX FRH FWC CS PSP TSP Total

Unconstrained phases:
Pd-As-Sb 2 2
Pd-Te-Bi 2 2
Pt-Cu-Fe-Ag 2 2
Pt-Pd-Sb-As 1 1 2
Pt-Pb-Ag 1 1
Pt-Fe-Te 1 1
Pt-Au-Cu-Fe 1 1
Pt-Pd-Pb-Te 1 1
Pd-Pb-Te 1 1
Pd-Pb-Pt 1 1
Pd-Bi-Pb-Pt 1 1
Pt-Pd-Te-Sb 1 1
Pt-As-Sn-Sb 1 1
Pt-Fe-Te-Pb 1 1

Composite polyphase grains, unconstrained compositions:
Pd-Sn-As-Te-Pb 1 1
Au-Cu-Pt-Pd-Ag 1 1
Pd-Pt-Fe-Cu-Sn-Te 1 1
Pd-Pb-Te-Pt-lr 1 1
Pd-Pt-Te-Bi-Cu-Fe 1 1
Pd-Bi-Sb-Sn-Te 1 1
Ni-Bi-Pd-Ag-Au 1 1
Pt-Sb-Te-Bi-Pb-As 1 1
Pt-Sb-As-Au-Pb 1 1
Pd-Sn-Sb-Pt-As 1 1
Pt-Sb-Te-Bi-As 1 1

Total PGM grains: 102 222 79 156 23 23 163 44 132 64 1008

5.5.1 Grain size and morphology

Each PGM grain’s long and short axes were measured in micrometres. Grains smaller than 

1 jim were ignored due to their relative volumetric insignificance, and the difficulties in 

accurately determining their composition. Relative proportions of the various minerals phases 

and PGM species type are based on an estimation of area (and by inference, volume) of each 

grain. Using the long and short axes dimensions, the area of each grain was approximated to 

the area of an ellipse around the two axes. This therefore produces data which accurately 

reflect the relative proportions of each PGM type within an assemblage. This method of data 

presentation is preferable to proportions of PGM type by number of grains, which can be 

biased by a relatively large amount of very small grains, for example. This approach is 

particularly pertinent when comparing PGM data with Pt/Pd ratios. If, say, the Pt/Pd ratio of 

the whole-rock sample is around unity, when using the proportion by number of grains 

method, there may appear to be a deficit of one particular PGE represented by discreet PGM 

phases, which may be wrongly attributed to its presence in BMS phases or silicates. Therefore 

we present all the assemblage data in percentage of total area of all PGM.
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Grain size data for all PGM grains greater than lpm in their longest dimension are shown in 

Fig. 5.4. From Fig. 5.4, it can be seen that in most rock types, around 80% of grains are less 

than 10pm in length, with the exception of pegmatitic reef rocks, which have a higher average 

grain size with 50% of grains lager than 5pm. The units with the lowest average PGM grain 

sizes (>70% of grains under 5pm) are the footwall calc-silicates, the reef clinopyroxenites and 

the hangingwall gabbronorite. No grains of over 100pm were found.

PGM morphology varies with individual phases and also with association. Where surrounded 

by sulfides, PGM, and particularly electrum, are commonly present as rounded blebs. Where 

surrounded by silicates, grains vary from anhedral to euhedral. Moncheite (PtTe2> is 

commonly found as laths, Pt2Fe as cubic crystals, and sperrylite as tetrahedra. Most PGM 

identified occur as single phase grains, though they may occasionally occur as 

compositionally zoned (Fig. 5.5a) or polyphase grains (Fig. 5.5b).

Size range: 
(micrometres)

100%

HW PXT PEG ORR CPX FRH FWC CS PSP TSP

Lithology

Figure. 5.4. Range of PGM grain size (longest axis) in the various host rock lithologies at Sandsloot. 
See Table 5.2 for lithology abbreviations.

5.5.2 Assemblages

The PGM mineralogy in the variety of host rock lithologies studied are summarized in Table 

5.3. The most notable characteristic of the Sandsloot PGM assemblages identified here is the
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complete lack of PGE sulfides (also noted by Armitage et al., 2002), with the exception of a 

single grain of laurite (R.US2) in the hangingwall gabbronorite. This is unusual in that 

throughout the Merensky Reef, the UG2 chromitite and elsewhere in the Platreef, namely 

Zwartfontein north, Overysel (Kinloch, 1982) and Drenthe (Gain and Mostert, 1982), PGE- 

sulfides are ubiquitous in the form of cooperite (PtS), braggite [(Pt,Pd)S], laurite and other 

rarer minerals. The only other PGM found at Sandsloot containing any sulfur are a few 

occurrences of the sulfarsenide hollingworthite/platarsite/irarsite series. As a whole, the 

Platreef at Sandsloot can be said to be dominated by Pt/Pd tellurides, alloys, and to a lesser 

extent, PGE arsenides and antimonides. In detail though, there is a great variation from one 

host rock type to another, particularly in terms of igneous reef versus metamorphic footwall, 

and several major trends in the PGM assemblage can be identified.

Table 5.3. Proportions of PGM type within each lithology in percentage of the total area of PGM. See 
Table 5.2 for key to lithology abbreviations.

PGM type: Lithology:
HW PXT PEG ORR CPX FRH FWP CS PSP TSP

Pt-tellu rides 0.6 40.1 38.8 4.9 11.6 0.3 10.3 0.2 6.8 0.2
Pd-tellurides 6.0 19.2 18.2 31.1 26.6 3.6 1.6 6.1 26.4
Pt-bismuthides 0.1
Pd-bismuthides 0.4 0.8 3.5 4.0 22.3 0.1 21.8
Pt-arsenides 10.8 23.4 20.1 8.5 1.1 18.6 79.5 21.6 9.1
Pd-arsenides 0.5 0.5 0.5 89.2 0.2 0.1
Pt-antimonides 2.6 46.3
Pd-antimonides 0.9 2.7 39.4 4.9 2.8 0.6 35.0
Pd-germanides 55.3 0.5
PGE sulfides 0.4
PGE sulfarsenides 0.8 14.5 0.1 0.3 4.4
Pt-dominant alloys 28.2 0.1 25.3 0.3 0.2 3.0
Pd-dominant alloys 8.6 3.8 0.3 9.1 5.8 40.1 11.3 0.6 0.2
Au/Ag bearing phases 23.0 3.8 3.1 9.9 1.4 19.3 1.6

Total no. of grains 102 222 79 156 23 23 163 44 132 64

5.5.2.1 Reef pyroxenites and pegmatites

The igneous reef pyroxenites and pegmatites are dominated by Pt and Pd tellurides, 

particularly moncheite and kotulskite (PdTe). Hessite (Ag2Te) and electrum (Au,Ag) are 

common in the pyroxenites. Arsenides, particularly sperrylite, as throughout the deposit as a 

whole, are common, particularly in the pegmatites. The immediate associations of the PGM 

are shown in Table 5.4. Most PGM in the pyroxenites and pegmatites are surrounded by 

silicates or located at the BMS-silicate boundary. However, even where surrounded by 

silicates, the PGM retain a strong spatial relationship with the BMS and many are in
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association with secondary amphiboles which replace BMS, and very few are found 

completely isolated from any BMS. The secondary assemblages of tremolite and actinolite 

around BMS grains in the primary Platreef pyroxenites are similar to those found in the 

Merensky Reef and UG2 chromitite, described by Li et al. (2004). The appearance of PGM as 

satellite grains around BMS grains may be due to the regression of the BMS boundary, with 

the PGM (originally at the edge of the sulfide blebs) remaining in their original positions.

This association has also been noted in the Platreef at Macalacaskop and Turf spruit 

(Hutchinson and Kinnaird, 2005). The replacement by amphiboles and epidote appears to be 

paragenetically late as there is evidence of secondary minerals cross cutting the PGM, such as 

in Fig 5.5a. Most electrum is found as rounded blebs within BMS grains. PGE antimonides 

were found to be extremely rare in the Platreef pyroxenites.

Table 5.4. Textural associations of PGM (excluding Au/Ag alloy) in the variety of host-rock types in 
percentage number of grains. See Table 5.2 for key to lithology abbreviations.

All PGM, Au, Ag phases
Association: HW PXT PEG ORR CPX FRH FWP CS PSP TSP

Enclosed in BMS (%) 10.3 12.6 9.1 8.2 77.8 10.4 6.4 21.2

BMS-silicate contact (%) 29.9 38.1 16.9 49.0 30.4 11.1 27.6 14.9 60.6 11.5

Enclosed in silicate (%) 59.8 49.3 74.0 42.8 69.6 11.1 62.0 78.7 18.2 88.5

Pt-dominant phases
Association: HW PXT PEG ORR CPX FRH FWP CS PSP TSP

Enclosed in BMS (%) 23.1 8.4 11.9 6.5 9.8 4.3

BMS-silicate contact (%) 53.8 37.3 26.2 41.3 14.8 8.7 67.6 7.4

Enclosed in silicate (%) 23.1 54.2 61.9 52.2 100.0 100.0 75.4 87.0 32.4 92.6

Pd-dominant phases
Association: HW PXT PEG ORR CPX FRH FWP CS PSP TSP

Enclosed in BMS (%) 8.0 8.5 3.1 6.1 72.2 10.5 8.7 29.2

BMS-silicate contact (%) 22.7 34.1 3.1 51.0 40.0 16.7 34.7 21.7 55.6 16.1

Enclosed in silicate (%) 69.3 57.3 98.8 42.9 60.0 11.1 54.8 69.6 15.3 83.9
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Figure. 5.5. Backscatterred electron photomicrographs of PGM found in Sandsloot Platreef samples, a: 
zoned grain of irarsite (ir) and platarsite (pi) with moncheite (mn) from pegmatoidal pyroxenite reef 
sample DH-P. Note how the grain is cut by a secondary amphibole. b : polyphase PGM from 
pyroxenite reef comprized of menshikovite (mk), irarsite (ir), platarsite (pi), palladoarsenide (pa), 
sperrylite (sp) and moncheite (mn). c: typically cubic crystal of Pt2Fe from olivine-replaced reef (PA- 
SW1-43). d: association of atokite (at) and kotulskite (kt) with pentlandite (pn), oxidized to magnetite 
(mag) in a partially serpentinized sample of footwall. e\ typical association of Pt-Fe alloy intergrown 
with palladian pentlandite (Pd-pn) and Pd3Tl from hangingwall gabbronorite./; cluster of Pd 
germanides surrounded by secondary amphiboles replacing non-Pd-bearing pentlandite with 
zvagintsevite (zv) in the same hangingwall gabbronorite as e.
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5.5.2.2 Olivine-replaced reef

Samples of reef pyroxenite which have undergone replacement by Fe-rich olivine have their 

own distinctive Pd-rich and alloy-dominant PGM assemblage, with abundant Pd tellurides, 

and Pt-Fe alloys. Table 5.3 indicates that Pt arsenides are also very abundant, however, Table

5.2 shows that only six sperrylites, in a total of 156 grains, were identified, though all were 

large relative to the other grains, which has caused the high percentage by area in Table 5.3. 

Table 5.1 shows that the Pt/Pd ratio in these rocks is around 0.6, therefore in this case, the 

proportion by area data in Table 5.3 appears to have been skewed by a small number of 

particularly large grains. We therefore consider that the true dominant species in this 

assemblage are Pd tellurides and alloys. The most common telluride, kotulskite, commonly 

contains much higher concentrations of Pb (up to 12wt%) than kotulskite in the unaltered 

pyroxenites, with a representative composition in these rocks of Pd1Teo.74Bio.14Pbo.12- The 

most common Pd-alloy is zvyagintsevite (PdsPb), which is particularly characteristic of this 

lithology. The Pt-Fe alloys have a typical composition of Pt2Fe, which is intermediate 

between isoferroplatinum (Pt3Fe) and tetraferroplatinum (PtFe), and is therefore referred to 

under the nomenclature of Cabri and Feather (1975) as Pt-Fe alloy. In these rocks, Pt-Fe 

alloys occur as discreet cubic crystals (Fig. 5.5c) rather than as intergrowths with BMS or 

magnetite, which is the more common mode of occurrence in the Merensky Reef (Kinloch, 

1982; Kinloch and Peyerl, 1990). The other common Pt-dominant alloy in the olivine- 

replaced rocks is tulameenite (Pt2FeCu), which was not found in any of the other lithologies.

A few examples of PGE bismuthides and antimonides were also found in the replaced reef, 

which are absent or extremely rare in the unaltered pyroxenite reef. Arsenides and electrum 

are also present. Only 8% of PGM are included in BMS (Table 5.4) and many of the 43% 

which are surrounded by silicates do not show the close spatial relationship to BMS that those 

in the unaltered reef show, with some often isolated along veins.

5.5.2.3 Reef clinopyroxenites

The reef clinopyroxenites at the base of the Platreef in the northern part of the pit were found 

to be low grade (Table 5.1). The grade is also known to decrease with depth away from the 

contact with overlying feldspathic pyroxenites, such that the calc-silicate footwall is not 

exposed in the northern part of the pit. From Table 5.3 it appears that the 23 PGM grains 

found differed from the reef pyroxenites in that they contained a high proportion of 

antimonides. Table 5.2, however, reveals that this figure comes from a single, relatively large 

grain of stibiopalladinite, and other than this, the assemblage is similar to the reef pyroxenites,
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containing mainly tellurides. The small number of grains located requires any trends 

identified to be taken with caution, however it appears that the assemblage is similar to the 

reef pyroxenites, with a slight increase in the number of PGM containing Bi and Sb. None of 

the PGM are included in BMS, and all of the Pt phases and 60% of the Pd phases are located 

in silicates, which is much higher than in the reef pyroxenites (Table 5.4). Overall grain size 

was very low (Fig. 5.4), with most grains under 5pm in length, and the largest being only 

15pm in its longest dimension.

5.5.2.4 Footwall clinopyroxenites

The footwall clinopyroxenites are dominated by Pd-dominant alloys, particularly paolovite 

(Pd2Sn) and the similar, but unnamed phase Pd2(Sn,Sb), which contain Sn and Sb in equal 

proportions. Bismuthides, in particular an unnamed phase with composition close to 

PdsBi3(Te,Sb)2 are also common. Almost a third of all grains were sperrylite, making it the 

most abundant phase by occurrence, although sperrylite only made up 19% of the assemblage 

by area (Tables 5.2, 5.3). Other than sperrylite, very few of the PGM grains were Pt phases. A 

few tellurides and antimonides make up the remainder of the assemblage. Almost two-thirds 

of PGM in the footwall clinopyroxenites are surrounded by silicates (Table 5.4). This figure 

rises to three-quarters when only the Pt dominant phases are considered, which reflects the 

preference of sperrylite to be isolated in silicate grains away from BMS grains.

5.5.2.5 Footwall calc-silicates

The calc-silicates, like the clinopyroxenites, are telluride-poor, and are rich in arsenides, 

particularly sperrylite, which makes up nearly 80% of the assemblage (Table 5.3). There are 

fewer alloys than in the clinopyroxenites, although Pd-dominant alloys are still the second 

most common PGM type, however, in contrast to the clinopyroxenites, bismuthides are very 

rare. Table 5.4 shows 79% of all PGM grains being enclosed within silicate minerals, a figure 

probably enlarged partially by the relative paucity of BMS in the the calc-silicates compared 

to the igneous reef. As in the clinopyroxenites, the Pt phases (largely sperrylite) show a strong 

preference to be associated with silicates.

5.5.2.6 Footwall-reef hybrid

A sample of footwall-reef hybrid rock contained a high number of palladoarsenide (Pd2As) 

grains, concentrated in and along fractures in BMS grains. Comparatively few PGM were 

found elsewhere in the sample, which include a few tellurides. The small number of PGM
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grains in the sample means any trends must be viewed cautiously, though it does show a 

marked increase in arsenides and Pd minerals compared to the primary reef pyroxenites, 

possibly indicating a more volatile influenced environment more akin to the footwall 

assemblages than the igneous pyroxenites.

5.5.2.7 Footwall serpentinites

Two types of serpentinite were studied: partially and completely serpentinized footwall. In the 

partially serpentinized samples, where up to 60% fresh metamorphic olivine (Foss) is still 

present, the assemblage is dominated by Pd tellurides and lesser amounts of Pd bismuthides 

and Pt arsenides. As in the olivine-replaced reef, kotulskite contains relatively high 

concentrations of Pb (often higher than Bi) which substitutes for Te in the ideal formula PdTe. 

Significantly, the PGM in this rock type are very much associated with BMS (Table 5.4), 

which are variably oxidized to Fe-oxide phases (Fig. 5.5d), an association also noted in 

serpentinized parts of the Platreef on Drenthe by Gain and Mostert (1982). Li et al. (2004) 

describe BMS being replaced by magnetite in areas of serpentinization in the Merensky Reef 

and UG2 in the western Bushveld. Nearly all of the kotulskite and electrum is found in 

association with these partially oxidized blebs of BMS. PGM in the completely serpentinized 

rocks, however, are almost completely silicate associated (Table 5.4), with completely 

serpentinized footwall containing very few BMS, with most altered to magnetite. This PGM 

assemblage has the most predominant enrichment in antimony in any of the assemblages and 

is characterized by the presence of geversite (PtSb2) and sudburyite (PdSb). A few arsenides, 

tellurides and sulfarsenides make up most of the remainder of the assemblage.

5.5.2.8 Hangingwall gabbronorite

Samples from the base of the hangingwall were surprisingly found to contain appreciable 

occurrences of PGM. Sporadic BMS occur in both the mottled anorthosite and the basal part 

of the overlying gabbronorite in places where the hangingwall sits on coarse-grained 

mineralized reef (Holwell et al., 2005). One sample of gabbronorite, taken from just above the 

basal contact with the thin mottled anorthosite that forms the base of the hangingwall in 

places, was considerably rich in PGM. Patches of Pt2Fe intergrown with chalcopyrite and 

pentlandite are common (Fig. 5.5e), an association which differs from the discreet cubic 

crystals of Pt2Fe found in the replaced reef. The only grain of PGE sulfide (laurite) found in 

the entire suite of samples studied was located in the centre of one of these Pt2Fe alloy-BMS 

intergrowths. Also associated with the intergrowths were several grains of the unknown Pd-Tl
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alloy, PdiTl (Fig. 5.5e). The only other published occurrences of any Pd-Tl minerals is a very 

rare, unconstrained Pd-Tl phase from the Platreef on Zwartfontein and the Merensky Reef in 

the eastern Bushveld (Kinloch, 1982) and a mineral close to the formula Pd3Tl, with some 

substitution of T1 by Re, in the Wetlegs deposit of the Duluth Complex, Minnesota (Severson 

and Hauck, 2003). Significantly, the pentlandite which is intergrown with Pt-Fe and Pd-Tl 

alloys in Fig. 5.5e also contains up to 6wt% Pd, which is the highest recorded natural 

concentration of Pd in pentlandite (L. J. Cabri, pers. comm.). Overall, however, the sample 

was particularly rich in the unnamed Pd germanide phase with composition close to Pd2Ge. 

Sixty four individual grains, plus many <lpm, were found, of which 11 contained some Pt in 

place of Pd, and most contained some As in place of Ge. Typical analyses of this phase are 

shown in Table 5.5, together with the ideal compositions for Pd2Ge and Pdi iGes, the latter of 

which the analyses more closely match. Armitage et al. (2002) noted a single grain of 

(Pd,Pt)2Ge in the Platreef, and the only other recorded occurrences of PGE-germanides 

anywhere in the world are an unconstrained Pd-Ge phase from the UG-2 chromitite (McLaren 

and de Villiers, 1982), Pd2Ge recorded from the Noril’sk Ni-Cu-PGE orebody (Komarova et 

al, 2002) and (Pd,Pb)2Ge (Grokhovskaya et al., 2005). The Pd2Ge grains, and some rarer 

kotulskite and Pd arsenides are found as satellite grains around larger BMS minerals which 

are intergrown with secondary amphiboles (Fig. 5.5f). The association of Pd-bearing 

pentlandite, PGE alloy intergrowths and PGE sulfides with unaltered BMS does not hold any 

PGE germanides, whereas germanides are present in association with non-PGE-bearing, 

partially replaced BMS. The remainder of the hangingwall assemblage is made up of 

zvyagintsevite, kotulskite and a few arsenides.

Table 5.5. Compositions of unnamed Pd-germanide phase from the base of the hangingwall 
gabbronorite, together with the ideal compositions of PdiGe and PdnGe5.

Grain no: 1 2 3 4 Pd2Ge PdnGe5

wt% Pd 75.84 76.52 60.00 59.51 74.56 76.32

Pt 18.33 17.23

Ge 21.80 20.42 21.96 21.44 25.43 23.67

As 2.54 3.53 0.77

Total 100.18 100.47 100.28 98.95 100.00 100.00
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5.6 Discussion

The results from this study show the Platreef to be a very complex PGE orebody both 

lithologically and mineralogically. The PGM mineralogy at Sandsloot is distinctive within the 

Platreef compared to other areas. In detail, we have shown that the variety of host rock types 

in the Platreef contain their own, characteristic PGM assemblages which reflect the processes 

involved in redistributing the PGE through the reef and into the footwall during the evolution 

of the Platreef, though the mechanism which led to the initial introduction of PGE into the 

Platreef has yet to be resolved.

The most characteristic feature of the Sandsloot PGM assemblage, in comparison to most 

other tabular Bushveld PGE orebodies, is the complete lack of PGE sulfides. Throughout the 

Merensky Reef, PGE sulfides make up a substantial proportion of the overall PGM 

assemblage (e.g. Kinloch, 1982; Mostert et a l, 1982; Mossom, 1986; Prichard et al., 2004a). 

In the Platreef, on the farms Drenthe and Overysel, to the north of Sandsloot, these minerals 

make up greater than or nearly half the volume percentage of the assemblage (Gain and 

Mostert, 1982; Kinloch, 1982). Kinloch (1982, Table 6) lists PGM from eight borehole cores 

on Zwartfontein, the first five of which are sulfide-poor, alloy and telluride dominant, the 

remaining three are sulfide dominant and similar to the Overysel data in the same table. The 

footwall changes from dolomite in the southern and central part of Zwartfontein (Fig. 5.1) to 

Archaean basement in the northern part of the farm. The cores listed in Table 6 of Kinloch 

(1982) are shown in south to north order (P. Hey, pers. comm.) with the change from a 

dolomite footwall to one composed of granite and gneiss directly corresponding to the change 

in the PGM assemblage with repect to the presence of PGE sulfides. South of Sandsloot, on 

Tweefontein where BIF and shales of the Duitchland Formation sediments form the footwall, 

sulfides are again reported (Viljoen and Schurmann, 1998). Immediately to the south though, 

on Turfspruit and Macalacaskop where the footwall is Duitchland Formation and Pretoria 

Group shales and sandstones, Hutchinson et al. (2004) describe a number of PGM 

assemblages with very few PGE sulfides. The lack of sulfides is most likely to be due to low 

fS 2 which would have prevented any free S being available to combine with PGE. This 

appears to be directly related to footwall lithology, with low/S2 conditions characteristic of 

areas where the Platreef magma has interacted with dolomitic footwall. Elsewhere in the 

Bushveld Complex, potholed Merensky Reef (Kinloch, 1982) and the platiniferous dunite 

pipes (Tarkian and Stumpfl, 1975) contain relatively few PGE sulfides and are dominated by 

alloys, tellurides and sperrylite. Volatile activity is thought to be important in both these
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mineralizing environments, which therefore suggests a link between volatile activity and 

sulfide-poor, alloy-dominated PGM assemblages. The Platreef at Sandsloot is certainly more 

alloy-rich and sulfide-poor than at Overysel and Drenthe (Gain and Mostert, 1982; Viljoen 

and Schurmann, 1998) where the footwall is Archaean granite/gneiss basement. This would 

suggest that greater volatile activity affected the Platreef where it intruded the dolomites than 

where it intruded the granites and gneisses, which is manifested in distinctively different 

PGM assemblages.

The pyroxenites and pegmatites of the igneous reef contain a typical PGM assemblage 

dominated by Pt and Pd tellurides, electrum and some arsenides. Their presence in the 

interstitial regions, in a proximal association with BMS indicates a spatial relationship with 

the sulfides. Typically, magmatic PGE associations are of Os, Ir and Ru with chromite (Lee, 

1996), and Pt, Pd and Rh concentrated with sulfides (Naldrett and Duke, 1980). In a typical 

immiscible sulfide separating from a silicate magma and collecting base metals and PGE (e.g. 

Naldrett et al., 1986), the sulfide liquid collects the PGE, and PGM are commonly found 

included in, or more commonly, at the margins of BMS grains. In our samples, most PGM are 

found either at the sulfide-silicate boundary, or are silicate hosted as satellite grains around 

altered BMS. The intergrowth of BMS with plagioclase and the frequent distribution of small 

blebs of sulfide and PGM around the edge of interstitial areas, suggests that if PGE were 

originally held in the sulfide liquid, redistribution of the PGE occurred during fluid fluxing 

after orthopyroxene crystallization, but before the interstitial silicate melt crystallized. The 

fact that the pegmatitic rocks show a considerably larger average PGM grain size also suggest 

that the PGM crystallized at a similar, early stage, though their relative enrichment in Pd 

tellurides and sperrylite would suggest greater degrees of hydrothermal fluid activity, which 

would be expected if the pegmatoidal nature of the lithology is due to hydrothermal fluid 

interaction. The reef clinopyroxenites have a similar PGM assemblage, although do contain a 

few antimonides and bismuthides, more commonly found in the footwall. Texturally, the 

PGM in these rocks have less of an association with BMS, which is more characteristic of the 

footwall lithologies. This evidence, together with the fact that the PGE grade decreases away 

from the contact with the reef pyroxenites, may suggest the PGE have been transported from 

the feldspathic pyroxenites by hydrothermal activity.

Base metal sulfides in the igneous reef have been variably altered around their margins and 

replaced by actinolite, tremolite and epidote. The appearance of PGM as satellite grains

83



Chapter 5. Platinum-group mineral assemblages in the Platreef at Sandsloot Mine

around BMS may be the result of PGM, originally at the edge of the sulfide grains, remaining 

in situ, as the BMS boundary regressed. A similar association is found in the Merensky Reef 

and UG2 chromitite (Li et al. 2004), who suggest possible reactions for the replacement of 

BMS by amphiboles and epidote. All of the reactions proposed by Li et a l (2004) involve the 

addition of aqueous Ca, Mg and Si, all of which are readily available from the assimilation of 

the siliceous Malmani dolomite. However, rather than the BMS being replaced directly by 

silicates, it is more likely that the fluids reacted with the BMS to form sulfuric acid, 

dissolving the BMS around its margins and hydrous silicates were able to grow into the voids 

around the regressed margins. The PGM appear to be paragenetically earlier than the episode 

of alteration that formed the hydrous silicates, as seen by the cross-cutting of PGM by the 

secondary minerals (Fig. 5.5a). This observation for the Platreef would appear to contrast with 

the conclusions of Li et a l (2004) who suggested that secondary hydrothermal alteration may 

have been important in redistributing PGE in the Merensky Reef. In the case of the Platreef at 

Sandsloot, it seems that fluid fluxing at or close to the time of crystallization, and not later 

hydrothermal alteration, was the most important factor in redistributing PGE through the 

primary reef.

The presence of Pt-Fe alloy in crystal form (rather than as intergrowths), Pd alloys and Pd 

tellurides in olivine-replaced portions of reef is analogous to the volatile-influenced 

ultramafic platiniferous pipes of the eastern Bushveld and pegmatoid-replaced Merensky Reef 

potholes (Kinloch and Peyerl, 1990). McDonald et a l (2005) suggested that the olivine- 

replaced lithologies formed in a similar way, from a late-stage Fe-rich, Si-poor fluid that 

percolated through parts of the pyroxenite, replacing orthopyroxene with olivine (Fig. 5.3A). 

At present, the origin of this fluid remains unclear, although it may have been derived from 

serpentinization of the olivine-bearing footwall lithologies. The fluid also appears to have 

been Pb-rich as seen by the formation of abundant zvyagintsevite (PdsPb), and the 

replacement of some Te by Pb in kotulskite. If PGM were present in the protolith (most likely 

reef pyroxenite), the Fe-rich fluid seems likely to have recrystallized Pt into Pt-Fe alloys, and 

the assemblage therefore post-dates the main episode of mineralization.

The difference in the nature of the PGM between the igneous reef and metamorphic footwall 

units that contain PGE mineralization is striking. The dominance of tellurides, alloys and 

electrum with a complete lack of antimony observed in the igneous reef, is reversed in the 

footwall, with arsenides, bismuthides and antimonides dominating. The dominance of PGM
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containing elements such as As and Sb in the footwall lithologies suggests a significant 

amount of volatile activity invovled in the redistribution of PGE into the footwall. However, 

the role of elements such as As, Sb, Se and Te is believed to be to immobilize the PGE, rather 

than be transported with them, as reduced forms of these elements cannot be transported with 

Pt and Pd (Wood, 2002). The almost total absence of antimonides in the igneous reef is 

analogous to normal Merensky Reef, where PGE antimonides are very rare (Kinloch, 1982), 

whereas in areas where fluid activity has been prevalent, antimonides are common. For 

example, the type localities for the PGE antimonides genkinite, geversite, stibiopalladinite, 

stumpflite, sudburyite and naldrettite and ungavaite are, respectively: the Onvervacht pipe 

(Bushveld Complex, RSA); the Driekop pipe (Bushveld Complex, RSA); Tweefontein Hill 

(Bushveld Complex, RSA); the Driekop pipe; Copper Cliff (Sudbury, Canada), and the 

Mesamax Northwest deposit (Quebec, Canada) (Cabri, 2002; Cabri et al., 2005; A. McDonald 

et al., 2005), all of which have been fluid affected. This would imply that PGE antimonides 

are indicative of fluid transport of PGE, and are present in secondary assemblages. The fluid 

activity that redistributed the PGE would be expected to have preferentially transported the 

more mobile Pd into the footwall over Pt, therefore producing low Pt/Pd ratios in the footwall, 

and raising the Pt/Pd slightly in the igneous reef. Table 5.1 shows Pt/Pd ratios for reef sample 

in the range 0.79-1.94, whereas in footwall samples the ratio is 0.54-0.98, and in the replaced 

reef it is around 0.6, showing a relative enrichment in Pd over Pt in the areas where the 

greatest fluid activity appears to have taken place, indicating the PGE were introduced by 

fluid activity.

Partial serpentinization of footwall olivine desulfurizes BMS to form magnetite, a feature also 

seen in the Merensky Reef and UG2 (Li et al., 2004) and in its early stages appears to form a 

telluride dominant PGM assemblage (often Pb-bearing) which is not dissimilar to that found 

in the olivine-replaced reef. If there is a link between the two assembages, it may be that the 

Fe-rich fluids that altered the reef originated from serpentinization of the footwall. Further 

degrees of serpentinization are associated with a generally fine-grained, disseminated, low- 

temperature PGM assemblage rich in volatile elements such as Sb and As. The antimonide 

dominant assemblage formed is likely to represent recrystallization of the telluride dominant- 

assemblage.

The PGM assemblage at the base of the hangingwall is of particular interest, as until very 

recently (Hoiwell et al., 2005), the hangingwall was not thought to contain any PGE
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mineralization, except around calc-silicate rafts (Kinnaird et al., 2005). Holwell et al. (2005), 

conclude that the Platreef was almost completely crystallized when the hangingwall 

gabbronorites were intruded. Localized assimilation of mineralized reef into the new magma 

incorporated PGE-rich sulfide into the hangingwall magma. The observed high Pd content in 

pentlandite requires rapid cooling (Makovicky, 2002), which would be likely if the 

hangingwall magma chilled against a crystallized and relatively cooled Platreef. The PGE- 

rich sulfide liquid cooled rapidly to form, first monosulfide solid solution (mss), then the 

‘primary’ assemblage of Pd-pentlandite, Pt-Fe alloy-BMS intergrowths and laurite. In 

particular, the presence of Pt-Fe alloy-BMS intergrowths is a characteristic texture associated 

with primary BMS, present in Merensky Reef that has not undergone significant volatile 

interaction (Kinloch, 1982) and in other layered intrusions (Cabri, 2002). Here we refer to 

‘primary’ magmatic sulfides as pyrrhotite and pentlandite derived from the recrystallization of 

mss on cooling from magmatic temperatures. The PGE mineralization seems to exhibit a two 

stage crystallization history. The primary assemblage appears to have been locally altered on 

a centimetre-scale, with Pd apparently exsolved from pentlandite, BMS surrounded by 

secondary amphiboles, and the PGM assemblage altered to one rich in germanides.

Holwell et al. (2005) suggest that the PGE in the basal portion of the hangingwall originated 

in the Platreef, and was assimilated into the magma that formed the hangingwall 

gabbronorites, forming an unusual, ‘primary’ assemblage of PGM, which formed as a result 

of the in situ cooling and fractional crystallization of a PGE-rich sulfide liquid, at the base of 

the hangingwall which is distinct from, and post-dates, the main episode of mineralization in 

the Platreef.

5.7 Conclusions

The variety of characteristic PGM assemblages in the host of rock types of the Platreef at 

Sandsloot reflects the fluid and magmatic processes which affected the Platreef during and 

after emplacement. The method of initial introduction of PGE is still to be resolved; however, 

from the data presented here, it is possible to describe a sequence of events which 

redistributed PGE and/or recrystallized PGM through the reef and its footwall and 

hangingwall, each of which producing a characteristic assemblage in distinct lithologies.

1. During crystallization of the igneous reef, PGM crystallized around the margins of 

BMS within the interstitial liquid forming a telluride-dominant assemblage, in close
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spatial association with BMS. Fluids, originating from assimilation and 

metamorphism of the dolomitic floor, are likely to have circulated within the 

interstitial liquid during crystallization. The lack of PGE-sulfides suggests conditions 

during this time were characterized by I0W/S2.

2. During emplacement of the reef, fluid activity was very significant in redistributing 

PGE into the footwall. The footwall contains characteristic arsenide.- alloy- and 

antimonide-dominant PGM assemblages, showing a significant volatile influence 

during crystallization of this secondary assemblage.

3. Serpentinization of footwall olivine also appears to convert earlier BMS to oxides, 

with PGE-tellurides remaining in association with the remnant sulfides. Further 

degrees of serpentinization, where all olivine is replaced, produces a more volatile- 

enriched antimonide-dominant PGM assemblage, without the association with BMS.

4. Late-stage, Fe-rich fluids percolating through certain parts of the igneous reef 

desilicated orthopyroxene to form olivine, producing peridotitic zones. PGM were also 

recrystallized by this fluid, to form an alloy-dominant PGM assemblage of Pt-Fe and 

Pd-Pb alloys, together with possibly pre-formed tellurides.

5. After a period of cooling and almost total crystallization of the pyroxenitic reef, the 

hangingwall magma was intruded, locally assimilating PGE-rich pyroxenite reef and 

cooling quickly to form a separate, primary PGM-BMS assemblage of Pd-bearing 

pentlandite, Pt-Fe alloy-BMS intergrowths and laurite. Later, localized alteration has 

recrystallized PGM, producing a germanide-dominant PGM assemblage of satellite 

grains around altered BMS.

This paper summarizes the assemblages present in various rock types at Sandsloot. Elsewhere 

along the Platreef the rock types and PGM assemblages are known to be different (e.g. 

Kinloch, 1982; Viljoen and Schurmann, 1998; Hutchinson and Kinnaird, 2005) and the 

Platreef is obviously a highly complex orebody with a varied and complex magmatic and 

fluid history determined by several factors, most importantly, the interaction of the Platreef 

magma with the varying floor rocks. The results of this study reveal the importance of syn- 

and post-emplacement fluid activity on the mineralogy and distribution of PGE in the Platreef 

on a metre scale at this locality, with the presence of dolomite as the footwall rock producing 

a distinctivly PGE sulfide-poor PGM assemblage. Further work is planned to attempt to 

constrain this footwall control by investigation into the PGM mineralogy in other sections 

along strike where the footwall is different.
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6.1 Abstract

Platinum-group element (PGE) mineralization within the Platreef at Overysel is controlled by 

the presence of base-metal sulfides (BMS). The floor rocks at Overysel are Archaean 

basement gneisses and unlike other localities along the strike of the Platreef, where the floor 

is comprized of Transvaal Supergroup sediments, the intimate PGE-BMS relationship holds 

strong into the footwall rocks. Decoupling of PGE from BMS is rare and the BMS and 

platinum-group mineral assemblages in the Platreef and the footwall are almost identical. 

There is minimal overprinting by hydrothermal fluids and therefore the mineralization style 

present at Overysel may represent the most ‘primary’ style of Platreef mineralization 

preserved anywhere along strike.

Chondrite-normalized PGE profiles reveal a progressive fractionation of the PGE with depth 

into the footwall, with Ir, Ru and Rh dramatically depleted with depth compared to Pt, Pd and 

Au. This feature is not observed at Sandsloot and Zwartfontein, to the south of Overysel, 

where the footwall rocks are carbonates. There is evidence from rare earth element (REE) 

abundances and the amount of interstitial quartz towards the base of the Platreef pyroxenites 

that contamination by a felsic melt derived from partial melting of the gneissic footwall has 

taken place. Textural evidence in the gneisses suggests that a sulfide liquid percolated down 

into the footwall through a permeable, inter-granular network that was produced by partial 

melting around grain boundaries in the gneisses that was induced by the intrusion of the 

Platreef magma. PGE were originally concentrated within a sulfide liquid in the Platreef 

magma, and the crystallization of monosulfide solid solution (mss) from the sulfide liquid 

removed the majority of the IPGE and Rh from it whilst still within the mafic Platreef. 

Transport of PGE into the gneisses, via downward migration of the residual sulfide liquid, 

fractionated out the remaining IPGE and Rh in the upper parts of the gneisses leaving a ‘slick’ 

of disseminated sulfides in the gneiss, with the residual liquid becoming progressively more 

depleted in these elements relative to Pt, Pd and Au. Highly sulfide-rich zones with massive 

sulfides formed where ponding of the sulfide liquid occurred due to permeability contrasts in 

the footwall.

This study highlights the fact that there is a fundamental floor rock control on the mechanism 

of distribution of PGE from the Platreef into the footwall rocks. Where the floor rocks are 

sediments, fluid activity related to metamorphism, assimilation and later serpentinization has 

in places decoupled PGE from BMS, and transport of PGE into the footwall is via
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hydrothermal fluids. In contrast, where the floor is comprized of anhydrous gneiss, such as at 

Overysel, there is limited fluid activity and PGE behaviour is controlled by the behaviour of 

sulfide liquids, producing an intimate PGE-BMS association.

Xenoliths and irregular bands of chromitite within the Platreef are described in detail for the 

first time. These are rich in the IPGE and Rh, and evidence from laurite inclusions indicate 

they must have crystallized from a PGE-saturated magma. The disturbed and xenolithic 

nature of the chromitites would suggest they are rip-up clasts, either disturbed by later pulses 

of Platreef magma in a multi-phase emplacement, or transported into the Platreef from a pre

existing source in a deeper staging chamber or conduit.

6.2 Introduction

The Platreef is located in the northern limb of the Bushveld Complex, South Africa. It is one 

of the world’s largest deposits of platinum-group elements (PGE) and currently the most 

extensively explored PGE deposit in the world. The Platreef is comprized of a 10-400m thick 

package of pyroxenitic lithologies with PGE and base-metal sulfide (BMS) mineralization, 

and is located at the base of the igneous sequence, overlain by norites and gabbronorites 

generally assigned to the Main Zone of the Complex (e.g. van der Merwe, 1976). From south 

to north, the northern limb of the Bushveld Complex rests upon a succession of progressively 

older sedimentary units of the late Archaean - early Proterozoic Transvaal Supergroup, and 

Archaean basement, in what has been termed an ‘igneous transgression’ (Wagner, 1929). The 

footwall units are, north from Mokopane: quartzites and shales of the Timeball Hill 

Formation; shales of the Duitschland Formation; the Penge banded iron formation; the 

Malmani dolomite and, north from the farm Zwartfontein, Archaean basement granites and 

gneisses, which form the footwall on the farm Overysel (Fig. 6.1).

The only mining of the Platreef currently being undertaken is by Anglo Platinum at the 

Sandsloot open pit mine, opened in 1992, and at Zwartfontein South pit, opened in 2002. The 

studies of Harris and Chaumba (2001), Armitage et al. (2002), Friese (2004), McDonald et al. 

(2005) and Holwell et al. (2006) have all utilized data from the Sandsloot mine in their 

respective studies of Platreef contamination, mineralization, structure, geochemistry and 

mineralogy. The success of the operations at Sandsloot and Zwartfontein have led to a boom 

in exploration activity since the turn of the millennium and the quantity and availability of
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exploration drill core has facilitated an expanding number of studies to be undertaken on other 

sections of the Platreef (Kinnaird and McDonald, 2005). Kinnaird et al. (2005), Kinnaird 

(2005) and Hutchinson and Kinnaird (2005) have recently presented Platreef studies from the 

area currently licenced by Ivanhoe Nickel and Platinum on the farms Turfspruit and 

Macalacaskop, and Manyeruke et al. (2005) from the farm Piet Potgietersrust Town and 

Townlands (Townlands, Fig. 6.1).
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Figure 6.1. Geological map of the Platreef, showing farms referred to in the text, together with a 
detailed map of the Sandsloot-Overysel area showing the locality of boreholes OY335 and OY387 and 
the 1980 shaft, based on field mapping and published maps of the Geological Survey of South Africa.

As more information becomes available from different localities along strike, it is becoming 

clear that the Platreef is a highly complex orebody, whose lateral variations are at least in part 

directly related to the assimilation of, and contamination by, differing floor rocks. The 

interaction of the Platreef magma with the immediate floor rocks, and in particular the amount 

of associated fluid activity, appears to have had a profound effect on the platinum-group 

mineralogy and PGE distribution (Hutchinson and Kinnaird, 2005; Holwell et al., 2006). In 

addition, where the floor rocks are sediments of the Transvaal Supergroup, hydrothermal

92



Chapter 6. Petrology, geochemistry and mineralization mechanisms at Overysel

overprinting may have significantly altered the original mineralization style, which leads to 

limitations in attempting to understand the underlying mineralization mechanisms.

This study presents the first new data on the Platreef at Overysel since the brief accounts in 

White (1994) and is also the first detailed investigation since the petrographic and isotopic 

studies of Cawthom et al. (1985) and Barton et al. (1986). However, the latter papers 

addressed the issue of floor rock contamination, rather than mineralization. For the first time, 

we present together: PGE geochemistry; PGE, sulfur and base metal distributions; petrology 

and whole-rock geochemistry on the Platreef at Overysel to investigate the mechanisms 

controlling PGE mineralization and distribution. In this paper we demonstrate that the 

footwall lithology fundamentally determines the mechanism of introducing PGE into footwall 

rocks. In addition, as the floor rocks at Overysel are anhydrous gneisses, the effects of 

hydrothermal activity as a result of footwall assimilation are much less significant than 

anywhere further south and thus a more primary mineralization style can be preserved, 

information that is vitally important to any ore genesis modelling.

6.3 Materials and methods

Two very different cores drilled on the farm Overysel have been sampled for this study: 

borehole OY335 intersects a relatively thick package of pyroxenites with several xenoliths, 

intrusive norite and a thin gneiss package, whereas borehole OY387 intersects a thin but 

continuous package of pyroxenites with a much greater thickness of gneiss and zones of 

mineralization that extend well into the footwall. The locations of the boreholes are shown in 

Fig. 6.1. Samples were taken at regular intervals down the hole and particularly where a 

change in lithology or zone of mineralization was encountered. Samples comprized between 

15 and 25cm of quarter-core, depending on thickness of lithology. It should be pointed out 

that as the samples were collected primarily to study the mineralization, the proportion of 

mineralized samples is not representative of the core as a whole, as more samples were taken 

in mineralized sections. Stratigraphic logs of the two cores are shown in Fig. 6.2, together 

with the position of the samples and zones of mineralization based on visible BMS. Sample 

numbers refer to depth in metres, but do not reflect true thickness, with normal dips around 

45°. A thin section was cut from each sample, with the remainder crushed and powdered for 

geochemical analysis. Additional samples (OY08, OY16) were obtained from the dumps at 

the disused exploration shaft, sunk in 1980, near the village of Ga-Melebana (Fig. 6.1).
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Figure 6.2. Statigraphic logs of borehole cores OY335 and OY387 showing the positions of the 
samples and zones of visible BMS-PGE mineralization.
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Bulk analysis for major and trace element concentrations was carried out at Cardiff University 

using a JY Horiba Ultima 2 inductively coupled plasma optical emission spectrometer (ICP- 

OES) and Thermo X7 series inductively coupled plasma mass spectrometer (ICP-MS). 

Samples were first ignited at 900°C to determine loss on ignition and then fused with Li 

metaborate on a Claisse Fluxy automated fusion system to produce a melt that could be 

dissolved in 2% HNO3 for analysis.

Concentrations of PGE and Au were determined by Ni sulfide fire assay with Te 

coprecipitation followed by ICP-MS procedure, following the methodology described by 

Huber et al. (2001). Typically, 6g of NaCC>3, 12g of borax, 0.9g of sulfur, 1.08g of carbonyl- 

purified Ni, and 2.5g of silica were required for fusion of a 7.5g sample aliquot. Masses of 

NaCC>3, borax, sulfur and Ni were fixed, but the mass of silica was proportionally increased to 

accommodate smaller or very sulfur-rich samples, with sample+silica always equalling lOg. 

The reagents were thoroughly mixed and transferred into a fire-clay crucible before being 

fired for 90 minutes at 1050°C. The resultant sulfide buttons were dissolved in concentrated 

HC1, and noble metals that had entered the solution were co-precipitated with Te, using SnCl2 

as a reductant. Finally, soluble PGE chloro-complex solutions were spiked with T1 as an 

internal standard to monitor for instrumental drift, and noble metal concentrations were 

determined by external calibration on the aforementioned ICP-MS. Precision was determined 

by repeat analyses of a sub-set of high and low grade samples.

Whole rock sulfur was determined by combustion iodometric procedure using a Laboratory 

Equipment Company (LECO) titrator at the Camborne School of Mines. Depending on 

sulfide content, between O.lg and l.Og of sample were combusted for each titration. 

Consistent results were obtained rerunning blanks, standards and some samples in triplicate. 

The standard deviations of wt%S in the samples run in triplicate ranged from 0.0015 to 

0.0572, with a mean of 0.0146, indicating a high level of precision.

6.4 Petrology

6.4.1 Footwall lithologies

The footwall in both cores studied is made up of basement gneisses and granite. Published 

mapping by the Geological Survey of South Africa identifies the granite in the Overysel area 

as Utrecht Granite, and the gneisses as Hout River Gneiss. The true thickness of the gneiss
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varies, being 20m thick in OY335 and 117m in OY387. The outcrop of Utrecht granite forms 

a prominent, roughly circular group of hills, and it is likely that the granite is a domal body 

intruded into the gneisses. This would explain why borehole OY387 intersects a greater 

thickness of gneiss before intersecting granite, as it was drilled further away from the surface 

outcrop of the dome of granite (Fig. 6.1). Both cores intersect pink granite at the base and 

conventionally this is the point at which drilling was terminated during the drilling campaign. 

The gneisses, which have traditionally been termed ‘granofels’ by exploration and mining 

geologists on the Platreef, are a set of banded gneisses comprising pale, quartzo-feldspathic 

bands and darker, more mafic orthopyroxene-rich bands. Cawthom et al. (1985) referred to 

the rocks as banded tonalitic gneisses and stated that on mineralogical and textural grounds, 

they could be termed enderbites. The rocks contain a very restricted, anhydrous mineralogy of 

quartz, Na-rich plagioclase, orthopyroxene (En7o-7s) and occasionally garnet and microcline 

indicative of granulite facies metamorphic conditions. Biotite is occasionally present as a 

retrograde phase. Texturally, orthopyroxene occurs in bands which can be medium-grained 

(Fig. 6.3a) or made up of fine-grained aggregates (Fig. 6.3b) that appear to be the product of 

deformation-induced grain-size reduction before or during high-grade metamorphism prior to 

Bushveld intrusion.

Base metal sulfides are present sporadically in the gneisses. They typically occur as small 

blebs along grain boundaries with concave edges against the silicates and have no preferred 

association with either the pyroxenitic or felsic bands. In places, the sulfide content of the 

rock can become very high, with both net-textured and massive sulfides present in the OY387 

core at around 380m depth. Massive sulfides are also known to be common at the Platreef- 

footwall contact in the Overysel area (R. Montjoie, pers. comm. 2004). Sulfide blebs are 

typically made up of pyrrhotite, with pentlandite around the margins and chalcopyrite either at 

the margins or as laths within pyrrhotite. Platinum-group minerals (PGM), mostly Pt and Pd 

tellurides with some Pt sulfides, sperrylite (PtAs2) and Pd bismuthides, are located at the 

margins of the sulfide blebs (Holwell and McDonald, 2005b). The BMS grains are not altered 

as is commonly the case in the Platreef pyroxenites. The massive sulfide contains bands of 

chalcopyrite and pyrrhotite separated by thin bands of pentlandite. The margin of the massive 

sulfide is gradational, and does not appear to be a fracture fill. The net textured sulfide shows 

a very unusual texture, where the blebs occur not just at grain boundaries, but also within 

grains. In both cases, the BMS exhibit concave boundaries against the silicates (Fig. 6.4).
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Figure 6.3. Thin section photographs of some o f the lithologies present at Overysel. a is taken in plane 
polarized light; all others are in cross-polarized light, a: banded footwall gneiss (OY387-321) showing 
wispy bands o f quartz and plagioclase (qtz + plag) and bands o f both medium- and fine-grained 
orthopyroxene (opx). b. footwall gneiss (OY335-323) showing fine-grained recrystallized 
orthopyroxene in optical continuity set within medium-grained quartz and plagioclase. c: Lower Zone
like pyroxenite (OY387-384) showing lath-shaped orthopyroxene crystals being invaded (arrowed) by 
graphically intergrown quartz and feldspar and sulfides (opaque), mostly chalcopyrite (cpy). d. 
chromitiferous quartzo-feldspathic pyroxenite (OY335-303), with cumulus chromite (chr). A vein of 
quartz and some plagioclase cuts across the centre o f the section.

intra-grain sulphides!

Ilnter-grain sulphides!

Figure. 6.4. Net-textured sulfides within the gneisses (sample OY387-378) showing concave 
boundaries o f interconnected BMS blebs both at quartz and plagioclase grain boundaries (lower part of 
image), and within silicates (upper part of image).
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The gneisses are intruded by granitic dykes up to around 30cm in thickness. They are 

composed of coarse-grained quartz and K-feldspar, which commonly display a myrmekitic 

intergrowth. They may also contain needles of biotite several cm long, and some accessory 

minerals such as zircon and xenotime. Some of the dykes are characteristically pink, whilst 

others are white. No cross-cutting relationships between the two dyke types were observed to 

constrain relative age relationships. Where the dykes have intruded, the adjacent gneisses are 

pervasively altered by hydrous minerals such as amphiboles and chlorite which produces a 

dark green colouration.

Borehole OY387 intersects a 3m thick zone of pyroxenite deep into the gneisses (sample 

OY387-384). This rock contains abundant, lath-shaped cumulus orthopyroxene (Engs). The 

interstitial assemblage comprizes graphically intergrown quartz and plagioclase, together with 

abundant BMS (mostly chalcopyrite) and some chromite (Cr2C>3 content: 55wt%). The quartz 

and plagioclase appear to corrode the orthopyroxene as if a quartzo-feldspathic melt has 

invaded the rock (Fig. 6.3c). The pyroxenite resembles samples of Lower Zone-type 

pyroxenite taken from the satellite body exposed along the Mohlosane stream bed on the farm 

Zwartfontein (Fig. 6.1). These rocks contain lath-shaped orthopyroxene with a composition of 

Eng6 and have whole-rock contents (0.5wt%) identical to the footwall pyroxenite in 

OY387-384. The lath-like nature of the orthopyroxenes, together with their high Mg content, 

which is considerably higher than both the Platreef and gneiss orthopyroxenes, makes it likely 

that this pyroxenite represents a small body of Lower Zone material similar to that developed 

on Zwartfontein.

The Utrecht granite is a pink, fine- to medium-grained granite consisting of mesoperthitic 

alkali feldspar, quartz, minor muscovite and accessory monazite and kobeite. The presence of 

K-feldspar and absence of plagioclase distinguish the granite from the quartzo-feldspathic 

regions of the gneisses. Where mineralized, the rock has a bleached appearance and contains 

some secondary amphiboles and micas. Chalcopyrite and millerite are the most common 

sulfides, with no pentlandite present.

6.4.2 Igneous Platreef lithologies

The igneous reef pyroxenites have thicknesses of 95m in OY335 and 25m in OY387. The 

relatively thin reef in OY387 may be due to an irregular floor topography, or as a result of 

faulting, which may be indicated by an infilled fracture zone in the core at 260m (Fig. 6.2).
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The pyroxenites are typically coarse-grained and made up of cumulus orthopyroxene (En75_ 

go), with 5-20% intercumulus plagioclase (variably altered to sericite), up to 5% 

clinopyroxene and a little quartz, with some accessory phlogopite, chromite and ilmenite. In 

many cases plagioclase totals over 10% of the modal mineralogy, and therefore the rock 

should be classified as norite under IUGS classification. However, in keeping with general 

Bushveld nomenclature in which names reflect the cumulus mineralogy, we refer to these 

rocks as feldspathic pyroxenites to avoid confusion with hangingwall norites and 

gabbronorites, which contain cumulus plagioclase. A fine-grained feldspathic pyroxenite 

barren of mineralization, located below the hangingwall contact, is present in borehole 

OY387 and this probably correlates to the ‘C’-reef of White (1994), although the observed 

clinopyroxene content of generally around 10% is much less than that suggested by White. 

Alteration by micas and carbonates occurs sporadically, where the interstitial minerals can 

almost be completely altered, and the cumulus orthopyroxenes may be shot through with 

veinlets of the alteration minerals. Such alteration gives the rocks a dark green colouration.

At Sandsloot and Zwartfontein, quartz is very rare in the feldspathic pyroxenites. In contrast, 

towards the base of the reef at Overysel, quartz becomes common in the interstitial 

assemblage as the footwall contact is approached. One such quartzo-feldspathic pyroxenite 

sample (OY335-303) from just above the footwall contact contains abundant, disseminated 

chromite and veinlets of quartzo-feldspathic material and is shown in Fig. 6.3d.

Base metal sulfides occur within the interstitial assemblage as blebs that can range up to a few 

centimetres in diameter, but are more commonly clOmm. Typically, they comprize a 

pyrrhotite core, with pentlandite and chalcopyrite margins. Minor pyrite is also present. The 

most common PGM are Pt and Pd tellurides, with some Pt sulfides and sperrylite (Holwell 

and McDonald, 2005b). The PGM are commonly located towards the margins of the BMS 

blebs, which are commonly altered so that the BMS margin appears to have regressed, leaving 

satellite PGM grains within secondary silicates as described by Hutchinson and Kinnaird 

(2005) and Holwell et al. (2006).

Chromitites were observed in the cores as small, angular xenoliths within the feldspathic 

pyroxenites in the central portion of the Platreef pyroxenites in both cores, but not as layers or 

stringers. Chromitite bodies at Overysel are common in places, and the exploration mining at 

Overysel (described by White, 1994) encountered some large bodies of chromitite. Samples

99



Chapter 6. Petrology, geochemistry and mineralization mechanisms at Overysel

taken from the dumps at the disused shaft show some massive chromitites up to 30cm in 

thickness, and bifurcating chromitites interbanded with lenses of feldspathic pyroxenite (Fig. 

6.5a) and some thin layers of chromitite are also present within feldspathic pyroxenites (Fig. 

6.5b). The underground workings showed these bodies to be lensoidal and not to be laterally 

persistent (J. White, pers. comm., 2005). The chromitite layers are made up of up to 

50modal% cumulus chromite grains within oikocrystic plagioclase and rarer orthopyroxene, 

variably altered to sericite and with some phlogopite present (Fig. 6.5c). The density of 

chromite grains is less where orthopyroxene is the oikocrystic phase (Fig. 6.5c). The 

interbanded feldspathic pyroxenites show evidence of a high degree of hydrothermal 

alteration, with the development of large amphiboles and fine-grained masses of sericite (Fig. 

6.5d). Chromite grains are occasionally euhedral (Fig. 6.5e) or more commonly subhedral 

with irregular margins, which appear to be corroded and infilled by silicates (Fig. 6.5f). Some 

BMS are present within the chromitites and are mostly pentlandite (Figs. 6.5e, f), with rarer 

chalcopyrite.

Table 6.1 shows the compositions of chromite grains from chromitite layers and xenoliths and 

disseminated grains within Platreef feldspathic pyroxenite and in the Lower Zone-type 

pyroxenite in the footwall of OY387. Compositions of grains within individual samples were 

very consistent, and two representative analyses from each sample are shown in Table 6.1. 

Although within each sample there is relatively little compositional variability, between 

samples there appears to be less consistency, with both FeO and AI2O3 contents varying 

considerably. However, the Cr203 contents of chromites in all the chromitite layers and 

xenoliths fall within the range 41-46wt%, with the disseminated chromite within pyroxenites 

having a greater compositional range of 42-49wt% Cr20 3, which may be due to exchange 

reactions with the surrounding silicates. A common feature of all the Platreef chromites is a 

relatively high TiC>2 content that is generally >lwt% and may exceed 2wt% in some 

disseminated chromites, plus detectable levels of V2O5 (0.3-1.2wt%). The chromites from the 

Lower Zone-type pyroxenite are very different, with systemmatically higher Cr203 contents 

(around 55wt%) coupled with very low TiC>2 (<0.5wt%) and no detectable V2O5 content. The 

compositions are consistent with chromites in the Lower Zone of the northern Bushveld 

Complex at Grasvally in terms of Cr2C>3 and TiC>2 contents (van der Merwe, 1976; Hulbert 

and von Gruenewaldt, 1982; Hulbert and von Gruenewaldt, 1986).
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Figure 6.5. Chromitites obtained from the underground workings on Overysel: a: sample OY08, of 
feldspathic pyroxenite with irregular bands o f chromitite; b : highly feldspathic pyroxenite with a 3cm 
thick chromitite layer. Way up uncertain; c: thin section o f one o f the chromitite bands shown in a , 
showing cumulus chromite (chr) with oikocrystic plagioclase (plag) and orthopyroxene (opx) and 
accessory phlogopite (phlog) in cross-polarized light (xpl); d. thin section showing the margin of a 
chromitite band from sample OY08 with secondary amphiboles (amph) and sericite (ser) after 
pyroxene and plagioclase, shown in xpl; e: euhedral chromite grains in sample OY08 with pentlandite 
(pn) in plagioclase and sericite, at the margin o f a chromitite band in contact with secondary 
amphiboles, shown in reflected light; f. subhedral chromitite grains within a chromitite band from 
sample OY08 in reflected light.
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Table 6.1. Representative analyses of chromite grains within Platreef rocks from Overysel, as 
determined by SEM-EDA analysis as described in Chapter 5.5. Total Fe expressed as FeO.

Sample Lithology MgO AI2O3 CM

Oi
- V2O5 Cr20 3 MnO FeO Total

Chromitite layers

OY08 (euhedral grain) 3.43 10.48 1.33 0.31 41.81 0.69 42.81 100.86

OY08 (euhedral grain) 1.37 9.25 1.00 41.74 0.56 46.88 100.81

OY08 (anhedral grain) 4.84 11.22 0.90 0.31 44.75 0.54 38.27 100.38

OY08 (anhedral grain) 4.20 10.64 1.31 44.05 0.87 38.95 100.01

OY16 (feldspathic chromitite) 5.98 14.07 1.39 0.27 42.40 0.49 36.29 100.89

OY16 (feldspathic chromitite) 6.04 13.70 1.79 0.35 42.25 37.02 101.14

Chromitite pods/xenoliths

OY335-241 (xenolith) 6.62 14.85 1.05 0.41 42.10 34.89 99.92

OY335-241 (xenolith) 6.70 14.80 1.04 0.55 42.06 34.68 99.83

OY335-262 (xenolith) 7.88 16.08 1.20 0.38 42.37 32.38 100.28

OY335-262 (xenolith) 7.68 15.99 1.26 42.20 0.53 32.40 100.06

OY387-245 (pod) 7.53 16.69 0.58 0.61 46.39 28.92 100.72

OY387-245 (pod) 7.18 15.50 0.89 0.69 46.49 30.00 100.74

Disseminated chromite within feldspathic pyroxenite

OY387-246 4.93 11.06 1.74 0.71 47.88 0.57 33.46 100.35

OY387-246 4.79 9.64 1.51 0.77 49.40 0.61 33.87 100.59

OY387-258 3.98 9.83 1.27 0.58 45.86 0.76 38.55 100.81

OY387-258 3.72 9.83 1.08 0.45 46.54 38.58 100.21

OY387-268 1.05 3.53 1.74 1.18 42.66 0.65 48.53 99.34

OY387-268 1.02 5.93 0.73 46.02 0.76 45.28 99.73

OY335-303 4.30 8.62 1.69 42.51 42.05 99.18

OY335-303 3.17 6.31 2.18 0.68 42.97 44.10 99.42

Lower Zone pyroxenite

OY387-384 4.01 8.29 0.48 55.29 32.60 100.67

OY387-384 4.90 8.56 55.59 0.65 30.23 99.93
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The reef in the OY335 core is intersected by an intrusive norite, locally referred to as ‘hybrid 

norite.’ It is a fine-grained rock containing around 55% plagioclase, 30% orthopyroxene, 

often altered by radiating amphiboles, 10% clinopyroxene and 5% quartz. There are coarse

grained regions with a similar mineralogy, although these areas contain more quartz and also 

abundant blebs of BMS, whereas the fine-grained areas are barren of mineralization.

Serpentinization, which is very common in the Platreef further south (Armitage et al., 2002; 

Kinnaird, 2004; Holwell et al., 2006; Holwell and Jordaan, 2006), is present only as thin 

bands, a few centimetres thick in the cores studied. These bands contain olivine, which is 

almost completely converted to serpentine, magnetite, and BMS, mostly pyrrhotite. Xenoliths 

of calc-silicate up to 10m thick are also present in the OY335 core, three of which are 

serpentinized (Fig. 6.2) and contain abundant olivine and clinopyroxene, with some 

orthopyroxene and amphibole. This is distinguished as an olivine-bearing metasedimentary 

rock, rather than an olivine-bearing igneous lithology of Platreef affinity, by its Cr content 

(c.f. McDonald et al., 2005; Kinnaird, 2005). The rock contains 50ppm Cr, whereas Platreef 

pyroxenites contain around 2000ppm Cr (Table 6.2). The margins of the serpentinized 

xenolith are gradational with the surrounding feldspathic pyroxenite. Another xenolith, at 

269m, is not serpentinized and contains a typical calc-silicate assemblage of diopside, 

wollastonite, calcite and andradite garnet.

6.4.3 Hangingwall lithologies

The hangingwall is made up of gabbronorites comprising 40-80% cumulus plagioclase, with 

cumulus and intercumulus orthopyroxene and oikocrystic clinopyroxene. The orthopyroxenes 

contain inclusions of small plagioclase crystals at their margins only, suggesting that 

plagioclase and orthopyroxene crystallized coevally. Some samples show textures of inverted 

pigeonite within the pyroxenes. Ilmenite and BMS are small, accessory phases. The 

hangingwall in OY387 is intruded by a fine-grained melanorite such as those described from 

Zwartfontein South pit by Holwell and Jordaan (2006) that are made up of around 50% 

plagioclase, 35% orthopyroxene and 15% clinopyroxene.

6.5 Rare earth element geochemistry

Whole-rock REE and Eu/Eu* values are shown in Table 6.2 and chondrite-normalized REE 

patterns for Platreef, hangingwall and footwall rocks from the two borehole cores are shown
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in Figs. 6.6a-d. The chondrite-normalized fields for the Platreef pyroxenites in both cores are 

relatively fractionated, with enrichment in the light rare earth elements (LREE). In most 

cases, the profiles are trough-shaped and show a gently positive gradient in the heavy rare 

earth elements (HREE) from Ho to Lu. The field for pyroxenites in the OY335 core, in which 

a much thicker sequence of pyroxenites is intersected, is more extensive than that of the 

OY387 pyroxenites, and exhibits a higher upper limit of absolute REE concentrations. Of 

particular note is that the individual profiles of the samples from the OY335 core become 

progressively more enriched with depth and proximity to the footwall. A moderately positive 

Eu anomaly (average Eu/Eu* = 1.35) is exhibited by most of the pyroxenites in the OY387 

core, although it is not as well developed in the samples from OY335 (average Eu/Eu* =

1.03). One sample of reef pyroxenite from OY387 (sample OY387-268) shows a very 

enriched pattern with a positive Eu anomaly. This sample is highly altered by sericite but 

contains around 10% quartz in its modal mineralogy, which is reflected by its whole rock 

Si02 content, which is around 57wt%, whereas all other pyroxenites from both cores typically 

contain 51-54wt% Si02 (Table 6.2). The intrusive norite (OY335-253) shows a similar profile 

to the pyroxenites, with the exception that it has a large positive Eu anomaly that is likely to 

reflect its high plagioclase content.

The chondrite-normalized REE fields for the gneisses in both sample suites exhibit highly 

fractionated patterns that are much more enriched than those of the Platreef pyroxenites. The 

granite in the OY335 core shows a very strongly fractionated pattern and the greatest 

depletion in the HREE of any of the samples. The altered granite in the OY387 core differs 

from the relatively fresh granite in the OY335 core by having a large positive Eu anomaly.

The Lower Zone-like pyroxenite has a profile not dissimilar to the Platreef pyroxenites, 

except that it exhibits a slight negative Eu anomaly (Eu/Eu* = 0.73) and is more noticeably 

trough-shaped. The profiles of hangingwall rocks are similar from both cores and show a 

more fractionated pattern than the pyroxenites, with a greater enrichment in the LREE.

For comparison, Figs. 6.6e-f show the chondrite-normalized REE fields for the Platreef rocks 

at Sandsloot from McDonald et al. (2005) and the data of Manyeruke et al. (2005) for Platreef 

rocks at Townlands. The pyroxenites at Sandsloot show very similar REE patterns to those at 

Overysel, with the exception that they have a negative Eu anomaly, which is also seen in the 

footwall sediments. The patterns from Townlands are interesting, in that they show three 

distinct profiles in three portions of the Platreef, which Manyeruke et al. (2005) suggest
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formed from three separate intrusive events, with the REE becoming less enriched from the 

Lower to the Upper Platreef. When compared to the data for Overysel and Sandsloot, it is the 

Upper Platreef at Townlands which shows the closest appearance in terms o f REE patterns. 

The Lower Platreef at Townlands is much more REE enriched than any of the Platreef rocks 

from Overysel or Sandsloot.
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Figure 6.6. Chondrite-normalized REE plots for a: Platreef and hangingwall rocks from the OY335 
core; b: footwall rocks from the OY335 core; c: Platreef and hangingwall rocks from the OY387 core; 
d : footwall rocks from the OY387 core; e\ Platreef pyroxenites and footwall calc-silicates from 
Sandsloot (from McDonald et al. 2005); f. Upper, Middle and Lower Platreef rocks from Townlands 
(from Manyeruke et al. 2005). Normalising factors are from Taylor and McLennan (1985).
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Table 6.2. Geochemical data for all samples from the OY335 and OY387 cores and chromitite 
samples from the underground workings on Overysel. Lithological units: HWG -  hangingwall 
gabbronorite; HWI -  hangingwall intrusive gabbronorite; FPX -  feldspathic pyroxenite; SX -  
serpentinized xenolith; IN -  intrusive norite; SPT -  serpentinite; QFPX -  quartzo-feldspathic 
pyroxenite; GN -  gneiss; LZP -  Lower Zone-like pyroxenite; GT -  granite.

Borehole 0Y335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335

Sample 166 169 175 176 182 193 201 213 218 230 241 253

Lithology HWG HWG HWG FPX FPX FPX FPX SX SX FPX FPX IN

SiOj (wt%) 52.72 51.08 52.49 51.74 52.05 51.66 54.47 42.21 41.23 51.94 53.47 54.67

Ti02 0.32 0.23 0.26 0.14 0.14 0.18 0.26 0.26 0.36 0.15 0.18 0.10

a i2o 3 14.22 16.68 14.20 5.78 6.03 5.94 8.67 6.80 5.60 6.74 8.49 18.18

Fe20 3 10.00 8.29 9.08 12.53 13.50 12.25 11.17 8.32 8.92 11.75 10.59 5.94

MnO 0.18 0.15 0.16 0.20 0.23 0.19 0.22 0.20 0.22 0.21 0.20 0.12

MgO 11.53 8.87 12.10 23.42 22.85 21.12 18.58 24.67 26.82 20.57 18.61 7.13

CaO 10.21 10.54 9.01 4.27 4.42 4.70 6.57 12.22 9.17 7.21 7.56 8.34

Na20 1.63 1.80 1.70 0.58 0.49 0.58 0.82 0.10 0.23 0.72 0.98 3.05

k2o 0.22 0.30 0.21 0.08 0.05 0.06 0.05 0.00 0.03 0.19 0.25 0.74

oCL 0.04 0.03 0.03 0.02 0.02 0.02 0.03 0.01 0.02 0.02 0.01 0.01

LOI 0.47 0.62 0.50 0.90 0.76 3.26 0.51 3.79 7.09 0.77 0.72 1.22

Total 101.53 98.58 99.75 99.65 100.53 99.97 101.34 98.60 99.70 100.28 101.07 99.51

Sc (ppm) 30.2 24.9 25.7 26.7 28.4 30.6 29.5 27.2 17.0 30.3 28.6 11.6

V 155.9 128.9 127.3 113.7 116.5 124.4 137.5 89.6 65.9 117.1 122.0 62.0

Cr 725.1 460.2 777.3 2161.4 2334.6 1981.1 1612.7 50.9 47.0 2043.4 1959.7 379.0

Co 50.3 41.0 48.3 128.4 126.9 87.0 69.9 46.1 40.2 84.5 75.6 45.6

Ga 12.4 14.2 12.2 5.9 6.3 7.4 9.4 8.0 7.5 7.2 8.8 18.3

Rb 3.2 5.3 3.3 1.4 2.2 1.0 1.5 0.0 0.9 3.3 4.9 15.6

Sr 186.8 225.8 188.6 64.7 66.2 66.2 102.0 56.7 37.1 167.8 193.4 414.6

Y 10.5 9.3 8.0 4.1 3.8 6.1 8.0 7.6 11.1 5.3 6.3 4.7

Zr 30.1 19.4 17.1 11.5 7.6 13.7 36.4 25.7 51.0 7.8 11.9 6.6

Nb 1.86 1.16 1.31 0.44 0.47 0.71 1.74 0.57 1.82 0.73 1.34 2.51

Ba 104.4 146.0 112.0 55.5 54.5 48.6 60.5 35.6 40.8 149.5 105.9 229.8

La 7.31 6.30 6.85 1.93 1.46 2.15 7.55 2.88 4.05 1.88 1.94 3.32

Ce 14.33 12.42 12.08 4.47 3.96 6.16 10.46 6.40 10.65 3.44 4.66 5.11

Pr 1.80 1.54 1.47 0.57 0.52 0.79 1.30 0.96 1.54 0.56 0.63 0.60

Nd 6.95 6.09 5.67 2.18 1.93 3.05 4.93 4.27 6.41 2.29 2.73 2.27

Sm 1.64 1.41 1.26 0.52 0.43 0.75 1.14 1.23 1.69 0.58 0.76 0.54

Eu 0.52 0.61 0.52 0.16 0.14 0.19 0.33 0.33 0.42 0.21 0.31 0.49

Gd 1.37 1.23 1.06 0.45 0.37 0.64 0.97 1.09 1.50 0.55 1.22 0.50

Tb 0.24 0.21 0.19 0.08 0.07 0.12 0.17 0.19 0.26 0.11 0.14 0.09

Dy 1.59 1.42 1.22 0.56 0.53 0.88 1.17 1.24 1.70 0.79 0.95 0.68

Ho 0.31 0.28 0.24 0.11 0.11 0.17 0.23 0.23 0.34 0.16 0.20 0.13

Er 0.95 0.85 0.73 0.35 0.35 0.54 0.73 0.67 0.97 0.48 0.58 0.41

Tm 0.15 0.13 0.12 0.06 0.06 0.09 0.12 0.10 0.15 0.08 0.09 0.08

Yb 0.99 0.93 0.79 0.44 0.44 0.67 0.80 0.64 1.05 0.60 0.66 0.54

Lu 0.16 0.14 0.13 0.08 0.08 0.11 0.14 0.11 0.17 0.10 0.11 0.10

Hf 0.74 0.52 0.46 0.27 0.20 0.35 0.84 0.98 1.55 0.22 0.31 0.23

Ta 0.11 0.06 0.08 0.03 0.05 0.06 0.09 0.03 0.10 0.06 0.08 0.24
Th 1.38 0.82 0.97 0.44 0.52 0.59 1.22 0.35 0.67 0.22 0.30 0.47

U 0.43 0.31 0.34 0.23 0.28 0.35 0.47 0.25 0.53 0.31 0.29 0.75

Eu/Eu* 1.03 1.39 1.33 0.98 1.03 0.80 0.94 0.85 0.79 1.12 0.98 2.87
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Table 6.2 (cont.)

Borehole OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY387

Sample 262 269 275 285 292 303 310 316 323 345 233

Lithology FPX CSX FPX SPT QFPX QFPX GN GN GN GT HWI

S i0 2 (wt%) 51.43 43.85 48.06 36.53 56.01 51.11 61.45 67.23 59.07 76.72 50.36

Ti02 0.23 0.08 0.18 0.24 0.08 0.18 0.26 0.22 0.31 0.02 0.62

ai2o 3 6.53 1.09 3.92 4.45 10.09 10.59 16.97 16.40 19.65 14.50 11.52

Fej0 3 10.60 2.28 12.97 14.00 7.77 9.89 6.07 4.49 5.48 0.36 14.72

MnO 0.23 0.35 0.23 0.09 0.18 0.18 0.18 0.07 0.18 0.02 0.25

MgO 17.62 16.42 22.41 33.20 15.84 17.36 4.92 2.09 4.09 0.17 10.90

CaO 12.99 29.70 10.33 1.37 7.15 6.43 5.55 4.33 6.33 1.08 9.23

Na20 0.72 0.01 0.35 0.08 1.70 1.13 4.48 4.60 4.52 4.70 1.34

k2o 0.08 -0.01 0.06 0.03 0.18 0.50 0.47 0.49 0.24 1.67 0.01

p2o 5 0.02 0.00 0.03 0.02 0.01 0.02 0.24 0.12 0.29 0.04 0.01

LOI 0.55 7.60 0.84 8.68 1.71 0.76 0.39 0.66 0.13 0.29 0.39

Total 101.00 101.39 99.37 98.68 100.73 98.14 100.98 100.70 100.30 99.55 99.36

Sc (ppm) 36.7 1.5 29.6 12.5 21.5 25.1 15.0 5.9 13.2 0.9 40.5

V 159.5 13.9 206.4 63.8 73.8 185.6 69.2 39.6 63.9 4.5 327.6

Cr 1428.4 18.6 2134.3 776.0 1072.5 17578.2 186.7 107.8 193.7 69.7 1213.0

Co 62.7 4.4 100.9 115.3 61.4 70.8 29.8 42.0 21.2 2.5 72.6

Ga 8.2 1.7 5.9 6.9 10.9 12.3 25.4 18.5 29.4 19.4 13.4

Rb 0.9 0.0 1.2 0.8 2.1 11.8 5.6 3.7 1.7 20.3 0.7

Sr 120.0 32.6 89.8 20.3 191.2 249.3 534.4 690.3 610.7 287.4 157.1

Y 11.6 3.0 7.6 2.9 4.1 4.2 9.4 5.7 10.7 2.9 17.6

Zr 11.4 16.9 11.7 10.1 8.6 12.5 47.9 41.8 28.9 19.6 20.8

Nb 1.13 0.59 0.36 0.25 3.63 1.74 7.74 2.21 5.56 1.06 1.05

Ba 48.5 0.6 110.8 19.8 165.6 219.6 342.8 667.6 485.9 631.0 80.0

La 2.30 3.32 2.73 0.94 2.19 2.21 10.82 14.10 16.18 6.98 5.68

Ce 6.33 8.10 6.92 2.89 4.94 4.77 21.20 22.66 29.71 12.31 12.19

Pr 1.00 0.98 0.97 0.36 0.66 0.59 2.74 2.66 3.87 1.41 1.62

Nd 4.65 3.63 4.15 1.38 2.62 2.23 10.77 9.80 15.14 4.65 7.68

Sm 1.49 0.70 1.15 0.31 0.66 0.52 2.50 1.83 3.23 1.07 2.07

Eu 0.40 0.16 0.33 0.07 0.25 0.24 0.89 0.92 1.13 0.35 0.63

Gd 1.45 0.53 1.06 0.27 0.57 0.46 1.83 1.22 2.25 0.69 2.32

Tb 0.27 0.08 0.20 0.05 0.10 0.09 0.27 0.16 0.31 0.10 0.41

Dy 1.86 0.51 1.26 0.37 0.64 0.61 1.48 0.87 1.75 0.51 2.75

Ho 0.36 0.09 0.23 0.08 0.12 0.12 0.25 0.15 0.29 0.08 0.54

Er 1.08 0.26 0.66 0.31 0.36 0.39 0.72 0.41 0.83 0.20 1.76

Tm 0.17 0.04 0.09 0.06 0.06 0.06 0.11 0.06 0.12 0.03 0.27

Yb 1.15 0.22 0.62 0.54 0.39 0.44 0.80 0.43 0.88 0.21 1.76

Lu 0.19 0.03 0.10 0.11 0.07 0.07 0.12 0.07 0.14 0.03 0.29

Hf 0.36 0.31 0.29 0.28 0.24 0.33 1.22 0.83 0.62 0.62 0.64

Ta 0.11 0.05 0.14 0.03 0.54 0.21 0.86 0.14 0.44 0.13 0.08

Th 0.31 0.94 0.42 0.30 0.34 0.45 0.43 0.37 0.22 0.31 0.19

U 0.47 0.43 0.37 0.18 0.92 0.35 1.02 0.33 0.40 0.72 0.09

Eu/Eu* 0.83 0.76 0.90 0.77 1.22 1.47 1.22 1.77 1.22 1.17 0.87
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Table 6.2 (cont.)

Borehole OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387

Sample 236 239 242 246 252 258 268 272 278 296 311 321

Lithology HWG FPX FPX FPX FPX FPX QFPX QFPX GN GN GN GN

SiOj (wt%) 51.13 54.11 54.10 51.80 53.74 52.40 56.98 52.60 56.55 60.79 59.66 57.30

Ti02 0.21 0.23 0.14 0.15 0.12 0.12 0.16 0.11 0.11 0.16 0.18 0.37

Al20 3 18.94 8.39 9.16 5.92 6.92 10.08 6.17 13.70 21.34 21.84 18.78 4.92

F62O3 7.17 12.49 10.28 12.56 12.57 9.74 10.20 10.10 3.90 1.94 3.53 12.91

MnO 0.13 0.23 0.21 0.24 0.21 0.20 0.18 0.14 0.08 0.05 0.09 0.26

MgO 7.77 19.69 20.37 22.81 19.88 18.67 16.21 12.05 5.57 2.87 6.35 19.54

CaO 10.40 5.01 5.06 3.25 4.08 6.43 4.46 6.81 8.12 6.32 5.00 2.50

Na20 2.13 0.75 0.74 0.25 0.69 0.63 0.56 1.69 3.66 5.04 4.03 0.86

K20 0.02 0.03 0.00 0.04 0.03 0.05 0.04 0.05 0.04 0.02 0.06 0.19

p2o 5 0.05 0.02 0.00 0.00 0.01 0.00 0.01 0.02 0.02 0.04 0.06 0.12

LOI 0.70 0.24 1.19 1.77 0.99 1.59 3.62 2.11 0.49 1.04 0.96 0.46

Total 98.65 101.19 101.25 98.78 99.23 99.91 98.58 99.38 99.87 100.10 98.69 99.44

Sc (ppm) 19.0 28.2 25.3 29.0 25.5 25.3 26.7 18.1 9.4 5.7 13.4 30.1

V 100.0 145.8 112.7 149.7 114.2 93.2 102.9 77.8 26.0 17.5 48.4 107.0

Cr 588.6 1965.5 2160.4 8185.2 2566.9 2644.3 2118.6 1193.4 435.9 156.5 585.4 1565.3

Co 36.8 77.9 77.4 106.2 142.6 87.1 106.0 123.0 31.4 9.5 20.5 75.1

Ga 17.1 8.9 8.1 6.7 7.6 8.6 10.5 13.1 22.9 23.2 24.1 10.1

Rb 4.0 1.2 1.7 1.1 1.3 3.5 7.7 7.4 1.2 2.2 2.1 2.7

Sr 274.1 102.6 110.2 55.6 83.7 128.8 51.5 161.1 806.1 909.8 837.8 80.6

Y 10.0 5.8 5.1 3.8 4.6 4.0 15.4 4.6 3.3 5.1 4.8 11.2

Zr 19.5 7.9 12.4 9.2 9.5 9.1 125.0 16.8 13.6 31.3 36.5 62.4

Nb 1.07 1.17 1.33 0.87 2.67 1.23 8.52 2.97 0.75 2.18 2.01 4.97

Ba 154.0 56.1 60.1 24.2 41.4 83.5 67.9 88.3 296.3 655.4 1295.8 256.1

La 10.03 3.14 3.42 1.72 2.06 2.26 5.34 2.38 5.94 9.92 7.25 4.43

Ce 16.42 5.72 6.57 4.22 4.69 4.42 11.77 5.00 9.08 16.86 12.77 12.08

Pr 1.83 0.58 0.67 0.39 0.47 0.41 1.24 0.49 0.92 1.81 1.27 1.59
Nd 7.32 2.34 2.60 1.57 1.76 1.60 4.82 1.91 3.44 6.69 4.61 7.24

Sm 1.46 0.53 0.53 0.36 0.39 0.36 1.15 0.45 0.63 1.15 0.84 1.75

Eu 0.85 0.23 0.23 0.14 0.18 0.24 0.47 0.24 0.72 1.23 1.19 0.52

Gd 1.50 0.59 0.56 0.37 0.45 0.41 1.31 0.49 0.58 0.97 0.78 1.77

Tb 0.23 0.11 0.10 0.07 0.08 0.07 0.27 0.08 0.08 0.14 0.10 0.27

Dy 1.53 0.78 0.70 0.51 0.60 0.56 2.06 0.62 0.51 0.79 0.67 1.70

Ho 0.30 0.17 0.14 0.10 0.13 0.12 0.42 0.13 0.09 0.14 0.13 0.32

Er 0.95 0.59 0.49 0.37 0.44 0.40 1.47 0.41 0.28 0.45 0.44 1.03

Tm 0.15 0.10 0.09 0.06 0.08 0.07 0.28 0.07 0.05 0.07 0.07 0.17

Yb 0.96 0.75 0.58 0.44 0.56 0.47 1.98 0.49 0.32 0.47 0.49 1.11

Lu 0.16 0.13 0.10 0.08 0.10 0.09 0.34 0.08 0.05 0.07 0.09 0.19

Hf 0.53 0.24 0.31 0.22 0.26 0.26 3.38 0.44 0.33 0.75 0.93 1.43

Ta 0.08 0.10 0.10 0.11 0.28 0.12 0.88 0.37 0.11 0.39 0.35 0.97
Th 0.88 0.31 0.59 0.35 0.57 0.58 3.97 1.06 0.30 0.18 0.38 0.76

U 0.31 0.30 0.33 0.38 1.03 1.52 9.16 2.84 0.26 0.26 0.39 2.24

Eu/Eu* 1.73 1.28 1.29 1.17 1.31 1.87 1.17 1.59 3.60 3.47 4.42 0.89
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Table 6.2 (cont.)

Borehole OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387

Sample 338 353 364 378 381 384 395 415 423 438 OY08 OY16

Lithology GN GN GN GN GN LZP GN GN GN GT CHR CHR

SiO,

(wt%) 59.64 47.99 49.83 50.62 56.48 60.05 64.20 57.69 67.56 73.28 41.04 39.69

Ti02 0.30 1.53 1.18 0.17 1.39 0.08 0.16 0.45 0.04 0.03 0.44 0.55

ai2o 3 22.25 14.05 12.75 13.97 14.36 3.80 18.57 21.79 19.33 16.06 10.94 11.80

Fe20 3 2.74 16.29 15.92 18.68 13.87 9.53 3.09 3.81 1.86 0.38 16.09 15.75

MnO 0.05 0.25 0.24 0.15 0.20 0.11 0.09 0.13 0.02 0.01 0.26 0.22

MgO 2.28 8.00 8.43 5.74 6.91 25.30 3.24 4.64 1.10 0.07 15.09 13.77

CaO 7.29 11.80 11.20 3.81 4.39 0.85 3.22 4.85 0.63 1.11 6.07 6.25

Na20 4.51 1.05 1.32 3.78 3.20 0.64 4.85 4.42 5.21 5.54 0.88 1.10

K20 0.25 0.11 0.17 0.33 0.32 0.16 0.39 0.80 2.42 1.50 0.51 0.20

P2O5 0.14 0.08 0.05 0.03 0.31 0.01 0.03 0.26 0.03 0.02 0.05 0.03

LOI 0.18 -0.16 -0.16 2.65 0.16 0.19 1.84 1.59 1.32 0.47 1.44 0.60

Total 99.62 100.98 100.92 99.93 101.58 100.72 99.68 100.43 99.52 98.45 92.82 89.96

Sc (ppm) 7.4 42.5 43.0 12.6 24.6 12.7 7.4 11.0 4.2 0.2 23.5 22.6

V 55.8 340.1 353.9 67.6 214.6 19.6 27.3 31.4 0.6 0.8 390.6 512.0

Cr 179.1 208.9 256.3 743.6 1704.2 4995.2 74.9 174.0 49.3 59.5 52764.3 71800.4

Co 10.6 72.1 81.7 310.1 89.4 135.5 19.0 18.0 29.1 2.5 134.9 118.5

Ga 21.7 18.9 17.6 18.4 21.9 8.7 27.5 32.5 22.8 17.0 20.1 22.8

Rb 0.7 0.3 1.7 2.0 1.9 2.3 5.1 13.0 14.9 8.9 12.7 5.2

Sr 898.5 254.3 215.6 506.2 294.1 19.4 422.0 596.5 252.7 414.3 139.3 216.0

Y 8.4 17.3 15.2 5.5 20.0 6.2 14.3 18.2 6.2 3.3 10.1 6.4

Zr 53.6 20.5 18.2 19.5 86.8 10.7 28.0 98.4 16.2 14.5 55.0 11.8

Nb 1.92 1.42 2.50 1.49 6.24 3.93 17.92 22.94 5.10 1.59 3.416 0.913

Ba 417.7 45.0 103.1 479.9 395.0 84.6 1201.1 2049.0 1415.8 2082.3 113.0 199.4

La 14.22 2.20 3.13 6.36 9.83 2.05 7.94 7.75 7.24 5.09 5.503 3.011

Ce 26.35 8.38 7.54 11.45 18.19 4.81 13.74 17.59 11.25 9.46 11.752 6.307

Pr 3.07 1.33 1.11 1.14 2.42 0.47 1.43 2.45 1.07 0.90 1.557 0.832

Nd 12.13 7.30 5.77 4.16 11.33 1.79 5.29 10.79 3.75 3.06 6.159 3.468

Sm 2.12 2.31 1.89 0.69 2.88 0.42 1.18 2.72 0.81 0.56 1.409 0.837

Eu 1.68 1.16 0.85 0.78 1.13 0.11 1.13 1.51 1.24 0.93 0.403 0.315

Gd 1.93 2.82 2.36 0.66 3.22 0.49 1.37 2.65 0.72 0.48 1.320 0.847

Tb 0.25 0.47 0.40 0.11 0.49 0.10 0.25 0.42 0.12 0.07 0.231 0.154

Dy 1.40 3.02 2.59 0.73 3.17 0.76 1.78 2.80 0.80 0.46 1.519 0.984

Ho 0.26 0.57 0.48 0.14 0.60 0.15 0.35 0.52 0.15 0.09 0.289 0.195

Er 0.76 1.67 1.44 0.51 1.81 0.54 1.24 1.60 0.52 0.28 0.889 0.584

Tm 0.10 0.24 0.21 0.10 0.29 0.10 0.23 0.27 0.10 0.05 0.150 0.101

Yb 0.66 1.45 1.27 0.70 1.82 0.60 1.60 1.73 0.83 0.28 1.022 0.662

Lu 0.11 0.23 0.21 0.12 0.30 0.10 0.28 0.26 0.16 0.05 0.164 0.107

Hf 1.15 0.67 0.58 0.50 1.86 0.30 0.89 2.49 0.63 0.45 0.994 0.050

Ta 0.12 0.10 0.32 0.22 0.74 0.85 2.31 3.31 0.97 0.62 0.310 0.195

Th 0.11 0.02 0.16 0.10 0.53 0.83 3.44 0.78 0.78 0.28 1.811 0.506

U 0.10 0.03 0.41 0.33 1.33 2.58 5.55 2.21 4.52 0.48 0.889 0.598

Eu/Eu* 2.50 1.39 1.23 3.46 1.13 0.73 2.71 1.70 4.86 5.32 0.89 1.13
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6.6 PGE and BMS mineralization

At Overysel, there appears to be a well-constrained PGE-BMS relationship both in the 

Platreef and into the footwall. Table 6.3 shows S contents, together with an indication of PGE 

grade and selected Ni, Cu and S ratios of samples from the two Overysel cores. Figures 6.7a 

and c show the abundances of Pt, Pd, Rh and S with depth for the two cores. There is an 

excellent correlation between S and the PGE, with the exception of a noteable few samples in 

the OY335 core. Sample OY335-230, an altered feldspathic pyroxenite, contains very high 

PGE and only moderate S. This may be due to the hydrothermal processes that altered the 

rock upgrading the PGE content and/or removing sulfide. OY335-285 is a sample of 

serpentinite that contains abundant pyrrhotite, but a very low PGE grade, which is consistent 

with the observations from Sandsloot and Zwartfontein where BMS and PGE appear to be 

decoupled in serpentinites (Holwell et al., 2006). Sample OY335-303 has moderate grades of 

PGE but low sulfur. This is a sample of chromitiferous quartzo-feldspathic pyroxenite, and 

may indicate that PGE in this sample are controlled by chromite rather than sulfides. Samples 

in the OY387 core are very consistent with PGE being controlled by the presence of sulfides. 

In particular, the section of feldspathic pyroxenites, which are largely unaltered, show 

distinctly parallel PGE and S patterns. With depth into the footwall, the S/PGE ratios are 

more variable, as seen by the less parallel nature of the trends in Fig. 6.7, though there is still 

an undoubted correlation between S and PGE.

Figures 6.7b and d show the correlation between Cu, Ni and S in the two cores. There is a 

consistent correlation in the distribution of the three elements with S>Ni>Cu, with the 

exception of some very low sulfide samples, the significance of which should be taken with 

caution as small analytical errors may become significant at such low concentrations. 

Furthermore, as some Ni will be present in orthopyroxene, in very sulfide-poor samples, the 

contribution by orthopyroxene to the whole-rock Ni content will become more significant. 

This is not true for Cu, which will only be present in sulfide. The feldspathic pyroxenites 

exhibit near-parallel distribution trends, indicating a consistent BMS assemblage. The sample 

of serpentinite (OY335-285) shows high S but relatively moderate Cu and Ni contents, which 

reflects its pyrrhotite-dominant BMS content. As with the S/PGE ratios, the Ni/Cu, Ni/S and 

Cu/S ratios appear to be slightly less consistent with depth. For example in Table 6.3, it can 

be seen that the Ni/Cu ratio in the section of mineralized pyroxenites in the OY387 core is 

consistently around 4-6, with the exception of OY387-239 which has a very low sulfide 

content and thus the high Ni/Cu ratio is dominated by Ni in orthopyroxene with very little
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accompanying Cu. With depth into the footwall, Ni/Cu varies between 0.2 and 11.8 (in 

samples with BMS) with no apparent systematic increase or decrease with depth.
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Figure 6.7. Distribution profiles with depth for a: S, Pd, Pt and Rh for the OY335 core; b: S, Cu and 
Ni for the OY335 core; c: S, Pd, Pt and Rh for the OY387 core; and d\ S, Ni and Cu for the OY387 
core. Key to stratigraphic column: HW: hangingwall gabbronorite; PX: Platreef pyroxenite; SX: 
serpentinized calc-silicate xenolith; IN: intrusive norite; GN: gneiss; GT: granite.
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Table 6.3. Indications of PGE grade, PGE sloping profiles (Pt+Pd)/(Ir+Ru) and S contents of samples 
from the Overysel cores and chromitite grab samples, together with Ni/Cu, Ni/S and Cu/S ratios, n.d. -  
not determined

Sample Uthology PGE grade Sloping profile S (ppm) Ni/Cu Ni/S Cu/S

OY335-166 HW gabbronorite n.d. n.d. n.d. 5.71 n.d. n.d.

OY335-169 HW gabbronorite n.d. n.d. n.d. 6.23 n.d. n.d.

0Y335-175 HW gabbronorite n.d. n.d. n.d. 8.05 n.d. n.d.

0Y335-176 Feldspathic pyroxenite Intermediate 21 1021.8 3.34 0.42 0.12

0Y335-182 Feldspathic pyroxenite Intermediate 24 980.9 4.29 0.36 0.08

0Y335-193 Altered feldspathic pyroxenite Low 18 242.2 9.79 0.41 0.04

OY335-201 Feldspathic pyroxenite Very low 10 71.0 14.68 0.63 0.04

0Y335-213 Serpentinized xenolith Low 79 42.9 7.53 0.46 0.06

0Y335-218 Serpentinized xenolith Low 12 53.8 9.81 0.86 0.08

OY335-230 Altered feldspathic pyroxenite High 57 500.2 2.55 0.30 0.12

OY335-241 Feldspathic pyroxenite Low 51 207.3 5.96 0.50 0.08

OY335-253 Intrusive norite Low 31 356.4 4.47 0.30 0.06

OY335-262 Feldspathic pyroxenite Low 32 60.9 2.70 0.76 0.28

OY335-269 Calc-silicate Very low 84 17.8 1.73 0.43 0.24

OY335-275 Feldspathic pyroxenite Low 15 623.0 2.41 0.22 0.09

0Y335-285 Serpentinite Very low 48 5256.0 6.68 0.01 0.00

OY335-292 Quartzo-feldspathic pyroxenite Low 37 114.0 3.73 0.61 0.16

OY335-303 Quartzo-feldspathic pyroxenite Low 11 51.4 4.63 1.08 0.23

OY335-310 Gneiss Low 291 106.8 1.18 0.35 0.29

OY335-316 Gneiss High 2838 966.0 4.41 0.33 0.07

OY335-323 Gneiss Very low 78 48.4 2.29 0.43 0.18

0Y335-245 Granite Very low 12 5.5 10.47 0.19 0.01

0Y387-233 HW intrusive gabbronrite n.d. n.d. n.d. 2.86 n.d. n.d.

OY387-236 HW gabbronorite n.d. n.d. n.d. 3.63 n.d. n.d.

OY387-239 Feldspathic pyroxenite Very low 8 58.9 11.42 0.90 0.07

OY387-242 Feldspathic pyroxenite Low 17 111.8 3.94 0.74 0.18

OY387-245 Feldspathic pyroxenite Low 19 n.d. n.d. n.d. n.d.

0Y387-246 Feldspathic pyroxenite Intermediate 26 867.9 3.89 0.22 0.05

OY387-252 Feldspathic pyroxenite High 26 422.7 5.60 1.09 0.19

OY387-258 Feldspathic pyroxenite Low 25 1265.3 5.00 0.14 0.02

OY387-268 Quartzo-feldspathic pyroxenite Intermediate 28 518.7 5.34 0.49 0.09

OY387-272 Quartzo-feldspathic pyroxenite High 27 673.2 6.00 0.63 0.10

0Y387-278 Gneiss Low 88 1591.1 2.77 0.02 0.01

OY387-303 Gneiss n.d. n.d. 159.2 0.90 0.03 0.04

OY387-311 Gneiss Very low 5 16.3 1.63 0.98 0.60

0Y387-321 Gneiss n.d. n.d. 300 6.06 1.60 0.20

OY387-338 Gneiss Low 297 18.4 0.17 0.07 0.45

OY387-353 Gneiss n.d. n.d. n.d. 0.51 n.d. n.d.

0Y387-364 Gneiss Intermediate 1864 478.7 2.96 0.31 0.10

OY387-378 Gneiss with net-textured BMS High 78 7726.3 11.79 0.21 0.01

OY387-381 Gneiss Low 365 1250.1 4.27 0.18 0.04

OY387-381 Massive sulfide Very high 545 387500.0 2.73 0.28 0.10

OY387-384 Lower-Zone pyroxenite Very high 1797 1787.5 2.95 0.37 0.12

OY387-395 Gneiss High 7000 481.2 4.85 0.40 0.08

0Y387-415 Gneiss Intermediate 1790 247.0 1.98 0.23 0.12

OY387-423 Gneiss High 4893 1002.7 6.44 0.31 0.04

OY387-438 Granite Low 1942 125.8 2.37 0.28 0.11

OY08C Chromitite layer Intermediate 4 2000 n.d. n.d. n.d.

OY08A Feldpathic pyroxenite + chromitite Intermediate 8 5200 7.60 0.48 0.06

OY16 Feldspathic chromitite Low 9 2400 3.14 0.52 0.16
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6.7 PGE geochemistry

Figure 6.8 shows a selection of PGE ratios with depth from mineralized portions through the 

OY387 core, in which mineralization penetrates particularly deeply into the footwall gneisses 

and granite. We also consider the feldspathic pyroxenite in this core to be a fresh, unaltered 

section, devoid of xenoliths or any significant alteration or secondary overprints. Pt/Pd and 

Pt/Au ratios are consistently around 0.7-0.8 and 5-8, respectively, through the whole section, 

with no suggestion of any systematic variation with depth. The only sample that strays 

significantly from these values is the massive sulfide sample at 381m, which has relatively 

high Pd and low Au values in relation to Pt.
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Figure 6.8. Selected PGE ratios with depth through core OY387. Note the different logarithmic 
horizontal scales. Key to stratigraphic column: HW: hangingwall gabbronorite; PX: Platreef 
pyroxenite; GN: gneiss; MS: massive sulfide; GT: granite.

As Pt/Pd and Pt/Au are relatively constant throughout the section, Pt/IPGE Pd/IPGE and 

Au/IPGE show almost identical trends. Therefore, here we only use Pt to compare the 

abundance of these elements with that of Ru and Ir. The Pt/Ru and Pt/lr ratios show very 

different patterns to the Pt/Pd and Pt/Au ratios, with a pronounced increase in both Pt/Ru and 

Pt/lr with depth (note the log scales in Fig. 6.8). There is little divergence of Rh abundance 

away from Pt and Pd in the reef and the upper section of the gneisses in OY387, but this 

becomes pronounced below 340m depth (Fig. 6.7c). Although Rh is fractionated with depth 

relative to Pt, Pd and Au, it is not as fractionated as Ir, as seen by the increasing Rh/lr values 

with depth in Fig. 6.8). This apparent fractionation of PGE with depth into the footwall seems
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to increase almost exponentially. It is only in the footwall that these trends are seen however, 

with no systematic variation with depth within the pyroxenite reef. So, relative amounts of Pt, 

Pd and Au stay reasonably constant with depth into the footwall, whereas the ratios of these 

elements over Rh, Ru and Ir increase dramatically with depth.

These relationships can be readily identified in chondrite-normalized plots of whole-rock 

PGE and Au (Fig. 6.9a). All reef pyroxenite samples show a moderately positive slope, which 

peaks at Pd and is typical of the Platreef (Barnes and Maier, 2002a; Armitage et al., 2002). 

Figure 6.9b shows data we have collected from Sandsloot and Zwartfontein South for 

comparison. The upper gneiss samples fall into a similar envelope as the pyroxenites, with a 

little steepening in some profiles that reveal a relative depletion of Ir and Ru. The lower 

gneiss and granite show a considerably steeper profile with pronounced depletion in the 

IPGEs, though an almost identical range in Pt, Pd and Au values. The depletion of Rh, Ru and 

Ir relative to Pt, Pd and Au increases from Rh, through Ru to Ir. The decrease in the relative 

depletion from Ir through Ru to Rh can also be seen in the increase in sloping profile (Table 

6.3). The sloping profile, defined as (Pt+Pd)/(Ir+Ru), for average pyroxenite reef is around 

23, for upper gneiss -104, and -2252 for lower gneiss and granite. Though much thinner, the 

gneisses in borehole OY335 show a similar pattern, which can be seen in the increase in 

sloping profile of samples OY335-310 and 316 in Table 6.3. The two samples below are not 

mineralized. The apparently fresh, unaltered nature of the mineralization in the pyroxenites in 

the OY387 core is shown by the consistent sloping profile of around 25, showing little 

decoupling between PGE with depth, or due to any alteration.

The profiles for the small number of chromitiferous rocks analyzed show a very different 

pattern in Fig. 6.9, with an apparent negative Pt anomaly and a lower overall gradient of the 

profile as seen by the sloping profiles of <12 in samples OY335-303, OY08A, OY08C and 

OY16, which all contain appreciable chromite and are low in sulfide. The chromitites and the 

chromitiferous quartzo-feldspathic pyroxenite (sample OY335-303) all show this pattern, 

however, the apparent depletion in Pt is misleading, and the anomaly is caused by a relative 

enrichment in Rh, Ru and Ir, rather than a depletion in Pt. The relative proportions of Pt and 

Pd (Pt/Pd=0.76) in the chromitite are comparable to the reef pyroxenites, however, the 

concentrations of Rh, Ru and Ir are highly enriched in these samples (Fig. 6.9a) and are 

almost an order of magnitude higher than most reef samples with similar Pt and Pd contents.

A curious feature is the low Au abundance in both the samples OY08 and OY335-303.
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Figure 6.9. Chondrite-normalized PGE profile ranges of a: Overysel reef pyroxenite, upper gneisses, 
and lower gneisses and granite with individual profiles for the chromitiferous samples OY08C 
(chromitite band), OY16 (feldspathic chromitite) and OY335-303 (chromitiferous quartzo-feldspathic 
pyroxenite); and b : all reef, footwall and hangingwall at Sandsloot and Zwartfontein South.

6.8 Discussion

Firstly, it is important to note that the Platreef at Overysel and elsewhere is a highly complex 

orebody and is extremely variable along strike on both a kilometre and metre scale. As this 

study is based on two cores, it is important to acknowledge that what those cores show may 

not be totally representative of the orebody as a whole. Nevertheless, the results of this study 

have revealed a number of distinctive features present at Overysel which contrast with 

mineralization styles observed further south. The major features identified are: 1, the strong 

correlation between PGE and sulfides through both the reef and its footwall; 2, fractionation 

of the PGE with depth into the footwall; 3, development of layered and disseminated 

chromitites, along with chomitite xenoliths. These features have genetic implications for, and 

provide an insight into, the mechanisms involved in Platreef mineralization.

6.8.1 The PGE-S correlation

In the samples we have studied from Overysel, it is clear that PGE mineralization is 

controlled by the presence and abundance of base metal sulfides. Wherever BMS occur in the 

cores we have studied, PGE mineralization is also present, and in largely proportional 

amounts, with high BMS content corresponding to high PGE grades with only a few rare 

exceptions. Such a consistent BMS-PGE correlation is unusual in the Platreef. Kinnaird et al. 

(2005) note a correlation between PGE and S at low but not necessarily at high PGE
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concentrations for a set of samples from the farm Macalacaskop, with no sytemmatic increase 

of PGE in samples with S values >1.5wt%. Further north on the farm Turfspruit, Kinnaird 

(2005) shows evidence of decoupling of PGE and BMS behaviour, with the presence of both 

high Cu+Ni, low PGE zones and vice versa. Manyeruke et al. (2005) suggest that PGE 

correlate with S at Townlands but the observed correlation is based on a small dataset and is 

strongly influenced by one sample. Further work on a larger suite of samples is needed to 

confirm a strong sulfide control at Townlands. At Sandsloot, Holwell et al. (2006) note a 

decoupling of PGE from BMS in fluid-affected Ethologies and calc-silicate footwall. Further 

north, on the farm Drenthe where the floor is Archaean basement, high PGE abundances 

correlate well with Ni and Cu abundances, although not all zones rich in Ni and Cu have 

corresponding high PGE grades (Gain and Mostert, 1982). Nevertheless, where PGE are 

present, there is always a corresponding BMS presence. It appears therefore, that where 

sediments form the floor, decoupling of PGE from sulfide is common, whereas in localities 

where the floor is Archaean basement, PGE are more commonly associated with sulfides.

This is also reflected in an important first order control on PGE mineralogy. Platinum and Pd 

sulfide minerals are restricted to the area where Archaean basement forms the floor to the 

Platreef (Kinloch, 1982; Gain and Mostert, 1982; Holwell et al., 2006). Where the floor rocks 

are dolomite, ironstones or shales, PGE sulfides are generally absent from the assemblage.

The observed mineralization style in the Platreef at Overysel is most consistent with an 

orthomagmatic PGE-BMS association, with PGE originally present within an immiscible 

sulfide liquid within the Platreef magma. Whether the PGE were scavenged from the Platreef 

magma by the sulfide liquid, or whether an already PGE-rich sulfide liquid was entrained 

within the Platreef magma before it was intruded, however, is thus far unclear. The common 

association of PGM around the margins of BMS blebs is common in many sulfide-associated 

PGE deposits and it is thought that during lattice reorganization during exsolution of 

pyrrhotite and pentlandite from mss, PGE diffuse to grain boundaries to form discreet PGM 

phases (e.g. Tredoux et al., 1995; Barnes et al., 2005). As this association is present well into 

the footwall gneisses, it is likely that the PGE-rich sulfide liquid that was present within the 

Platreef magma also percolated into the floor rocks.

6.8.2 Distribution and fractionation o f PGE into footwall

At Sandsloot, the transport of PGE mineralization into the footwall is thought to have been 

facilitated by hydrothermal fluid fluxing, which, as outlined above, frequently decouples PGE
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and BMS. In contrast, the intimate association of PGE and BMS mineralization well into the 

footwall at Overysel is more consistent with transport within a sulfide liquid. The similarity of 

the PGM assemblages and associations in the Platreef and the footwall gneisses also indicates 

a common mineralization mechanism. This requires a mechanism by which such a sulfide 

liquid could penetrate the footwall rocks.

The gneisses display evidence of shearing to produce grain-size reduction of orthopyroxene 

which is likely to have been a result of pre-Bushveld deformation of the basement. However, 

none of the grains of any phase appears strained, although they appear to have been subjected 

to very high strain rates. The eradication of such intra-grain deformation is probably a result 

of thermal overprinting, most likely from the intrusion of the Platreef and the other mafic 

units of the Bush veld Complex. The intrusion of a magma at 1100-1200°C into crustal rocks 

at ~5km depth is likely to have heated the surrounding rocks to over 800°C, i.e. to at least 

pyroxene-homfels facies, and is likely to have induced partial melting.

Evidence of partial melting of the gneisses is shown by the increased degree of contamination 

by quartz, a phase which is rare at Sandsloot, in the interstitial assemblage in the basal parts 

of the Platreef pyroxenite, which gives rise to higher than usual whole-rock SiC>2 contents.

The presence of veinlets of quartzo-feldspathic material (e.g. Fig. 6.3d) also indicates that a 

partial melt from the footwall gneisses has contaminated the lower parts of the Platreef. The 

REE data also provides further evidence of the role of footwall contamination at Overysel.

The gneisses in both sample suites exhibit highly fractionated patterns that are much more 

enriched than those of the Platreef pyroxenites. The progressive enrichment in the REE with 

depth in the OY335 pyroxenites may be a result of increasing contamination derived from 

partial melting of the floor rocks, and in the OY387 core, one particularly quartz-rich sample 

of pyroxenite contained very high REE concentrations which is likely to be due to a high 

degree of contamination from the footwall gneisses.

Partial melting at grain boundaries within the granulitic gneisses could have produced an 

interconnected network of felsic melt surrounding unmelted solid material. A schematic 

representation of this model is illustrated in Fig. 6.10, where initial intrusion of Platreef 

magma heats the footwall gneisses (Fig. 6.10a) and induces partial melting along grain 

boundaries. The interconnectivity of the liquid derived from this melting may have formed a 

sufficiently permeable network to allow the downward percolation of a much denser sulfide

117



Chapter 6. Petrology, geochemistry and mineralization mechanisms at Overysel

liquid through the footwall, with some felsic melt correspondingly displaced upwards, to 

account for the felsic contamination at the base of the Platreef (Fig. 6.10b).
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Figure 6.10. Schematic model for the distribution of PGE-rich sulfides into the footwall at Overysel. a: 
Intrusion of the Platreef magma heats the basement gneisses and induces partial melting around grain 
boundaries, b . Partial melting produces an interconnected network o f felsic melt, down through which 
sulfide liquid can migrate, with subsequent upward displacement of felsic melt into the base of the 
crystallising Platreef magma. Ponding of sulfide occurs over areas of low permeability, c : late stage 
fluids are expelled from the sulfide liquid producing a low-temperature assemblage in the granite. A 
‘slick’ o f sulfides is left behind in the footwall by the migrating sulfide liquid, with high sulfide zones 
present above areas which have not melted. The Platreef pyroxenites crystallize with increasing 
amounts of quartz towards the base. Approximate vertical scale is 150m.

The nature of the interconnected network is illustrated in one sample ffom 378m down core 

OY387, shown in Fig. 6.4 where sulfide has completely penetrated the former melt network 

to form a remarkable net-textured sulfide, with sulfide surrounding rounded grains that have 

been melted around their grain boundaries, and in the case of this sample, also within the 

grains themselves. The amount of sulfide mineralization present within the rock is likely to be 

a function of permeability, i.e. the amount of partial melt, with ponding of sulfide possible 

above areas of low permeability (Fig 6.10c), which is likely to be related to heterogeneity in 

the gneisses. This can explain the presence of massive sulfides at any level within the 

footwall. In the case of the massive sulfide at 381m depth in the OY387 core, the Lower Zone

quartz
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pyroxenite developed immediately below it may be responsible for such a permeability 

contrast. This process can also explain why mineralization penetrates the footwall erratically, 

such as in the OY335 core, where mineralization in the footwall is developed over a much 

shorter distance from the reef contact. It does still show similar PGE fractionation patterns 

though, and this may be due to a smaller volume of sulfide liquid migrating at a much slower 

rate through a relatively less permeable footwall, thus not achieving such depth penetration, 

but still fractionating PGE over time. In places where massive sulfides are developed at the 

contact between the Platreef and the footwall, melting of the footwall may not have reached a 

sufficient degree as to allow downward migration of the sulfide liquid. The footwall sulfide 

mineralization in the gneisses is thus a result of a downwardly migrating sulfide liquid that 

has left behind a ‘slick’ in parts of the rocks through which it was able to penetrate (Fig. 

6.10c). Our model of sulfide penetrating partially molten rock, illustrated in Figs. 6.4 and 

6.10, is inconsistent with the findings of Mungall and Su (2005), who concluded that sulfide 

droplets cannot penetrate partially molten rocks due to the interfacial tension of sulfide- 

silicate liquid interfaces, whereas they can penetrate solid rocks. However, this work was 

done on very small sulfide liquid droplets and there is likely to be a critical size of sulfide 

droplet below which migration is not possible (as in the experiments of Mungall and Su, 

2005), and above which, droplets will be able to migrate freely due to density contrasts. The 

latter is likely to be the case for the volumes of sulfide that have been transported into the 

footwall of the Platreef (J. Mungall pers. comm., 2006).

The increasing steepness of the chondrite-normalized PGE profiles with depth is consistent 

with fractionation of PGE within a crystallising sulfide liquid that is migrating downwards, 

which, by definition, would also imply that the PGE were present in a sulfide liquid. 

Experimental studies on the partitioning of PGE within the Fe-Ni-Cu-S system (Fleet et al., 

1993; Barnes et al., 1997) have shown that Os, Ir, Ru and Rh partition into early crystallizing 

monosulfide solid solution (mss), while Pt, Pd and Au are concentrated in the residual Cu-rich 

sulfide liquid. The sulfide liquid present within the Platreef magma is proposed to have 

started to crystallize out mss, and with it, the IPGE and Rh, as it sank through the magma 

leaving a ‘slick’ of blebs of mss. The residual liquid continued to migrate downwards and into 

the footwall when the melt network became permeable. Ponding may have occurred at the 

contact if the footwall never became permeable and massive sulfides are sometimes found at 

this boundary. Where the footwall became permeable due to the formation of the melt 

network, the migration of the (possibly ponded) sulfide liquid down through the footwall also
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left a ‘slick’ of sulfide blebs through the gneisses, which fractionated out any remaining IPGE 

and Rh in the upper parts of the gneiss. Although the steepening PGE patterns are consistent 

with this process, one would also expect an increase in the relative Cu content of the sulfide 

liquid. Therefore a decrease in Ni/Cu ratio together with increased PGE fractionation patterns 

with depth would be expected, as has been identified, for example, into the footwall ores at 

the Strathcona mine, at Sudbury (Naldrett et al., 1982). This, however, is not observed in the 

Overysel footwall ores and there appears to be no convincing systematic decrease in Ni/Cu 

ratio in samples with a high sloping profile (Table 6.3, Fig. 6.7).

This does not necessarily invalidate the fractionating sulfide liquid theory however, and the 

reasons for this lie in the variability in the behaviour of Ni within sulfide liquids. Whilst the 

experimental data suggests that Os, Ir, Ru and Rh are all highly compatible with mss and that 

Cu, Pt and Pd are all highly incompatible, the behaviour of Ni is much less predictable.

Barnes et al. (1997) demonstrated that the partition coefficient of Ni between mss and sulfide 

liquid (DNi) varies both with S content and temperature. In S-poor systems and at high 

temperatures, Ni is incompatible and behaves in a manner similar to the IPGE and Rh, but in 

very S-rich systems at lower temperatures (900°C) Ni becomes compatible. Until recently 

however, virtually all of the experimental work was performed in O-free systems, which is 

not directly analogous to natural sulfide systems, where O is a major element. However, 

recent work by Mungall et al. (2005) defined partition coefficients for the PGE, Au, Cu and 

Ni at a variety off02,f$2 and temperature conditions spanning the range of T and/02 for 

natural sulfide magmas, and demonstrated that under all conditions Ni was found to be 

incompatible, and at I0W/O2 and/S2 was even as incompatible as Cu. Therefore under certain 

conditions, it is entirely possible for Ni to behave in the same way as Cu, and therefore no 

systematic variation in Ni/Cu would be observed with fractionation. The unpredictability of 

Ni due to its dependence on so many factors means that it is not as reliable an indicator of the 

extent of sulfide liquid fractionation, as for example Ir, Ru, Pt and Cu are, and thus our data 

are still consistent with the fractionation of a sulfide liquid.

6.8.3 Hydrothermal redistribution

An alternative explanation for the distribution of mineralization and the fractionation of PGE 

into the footwall is via a volatile phase, such as that proposed by Iljina et al. (1992) for the 

Konttijarvi intrusion in Finland. This deposit includes a marginal series of pyroxenitic rocks 

which host disseminated PGE-bearing sulfide mineralization that is intruded into Archaean
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granitoids, and thus is analogous to the Platreef in the Overysel area. Disseminated PGE 

mineralization in the basement rocks is attributed to a volatile phase that carried the 

components of sulfides and PGM rather than the percolation a migrating sulfide liquid, on the 

basis that the ores contain abundant galena. In contrast, at Overysel, the footwall gneisses 

contain a sulfide assemblage of pyrrhotite, pentlandite and chalcopyrite, almost identical to 

that in the Platreef itself. This, together with the lack of any accompanying hydrous mineral 

phases associated with the footwall mineralization, would imply that it is unlikely that the 

PGE and sulfides were transported in a hydrothermal fluid. Although a hydrothermal fluid 

may be responsible for fractionating the PGE to produce the observed trends, there is no 

lowering of Pt/Pd ratio with depth, which would be expected if this were the case, due to the 

increased mobility of Pd over Pt in hydrothermal fluids (e.g. Wood, 2002). This is in contrast 

to observations at Sandsloot where Pt/Pd ratios are lower, and there are changes in PGM, in 

the most fluid affected footwall units compared with the Platreef and hydrothermal processes 

are believed to be involved (Holwell et al., 2006).

To initiate partial melting of the gneissic footwall, the intrusion of the Platreef magma must 

have heated the surrounding country rocks to temperatures of over 800°C. The downward 

percolation of the sulfide liquid would presumably have undergone cooling with time. 

However, temperatures must have remained above ~800°C throughout a sufficient volume of 

rock away from the igneous contact for the observed melt network to be present. The low 

temperature Ni sulfide, millerite, is present towards the very bottom of the sections, 

particularly in the granite at the bottom of the OY387 core. As millerite is stable at 

temperatures below 300°C it is unlikely that this phase formed during percolation through a 

melt network, as the partial melt would have already crystallized by this temperature. It is 

therefore more likely that the millerite is either a hydrothermal alteration product of 

pentlandite or the sulfides at the base of the core may be akin to similar assemblages found in 

alteration zones around the Cu-rich veins at the deepest extremities of the mineralized zones 

at Sudbury (Li and Naldrett, 1993). They suggest that the hydrothermal assemblages are a 

result of a hydrothermal liquid separating from the final stages of the crystallization of the 

sulfide liquid. Given the bleached nature of the granite in the core from borehole OY387 and 

the presence of hydrous minerals, it is possible that the assemblage of chalcopyrite and 

millerite formed from the expulsion of a hydrothermal fluid from the final stages in the 

evolution of the migrating sulfide liquid (Fig. 6.10c).

121



Chapter 6. Petrology, geochemistry and mineralization mechanisms at Overysel

6.8.4 Chromitites

As a general rule, chromitites are unusual within the Platreef and very little work has thusfar 

been undertaken on them. Their presence is erratic, but they have been recorded on 

Tweefontein North, where a thin chromitite resembling one of the two developed in the 

Merensky Reef can be consistently correlated between boreholes close to the top contact of 

the Platreef (White 1994). Erratic and relatively thick chromitites were also apparently 

encountered in the south pit at Sandsloot, however mining operations moved too quickly to 

allow detailed study of them (R. Hieber pers. comm., 2006). The presence of these bodies, 

including those at Overysel is potentially an important insight into the mineralising events 

that formed the Platreef. The morphology of the chromitites at Overysel is discontinuous and 

although some thin layers reminiscent of the chomitite stringers in the Merensky Reef are 

present (e.g. Fig. 6.6b), they were not found to be laterally continuous in the underground 

workings. Several small xenoliths of chromitite are found within the pyroxenites, whose 

compositions are comparable to those in the more defined layers (see Table 6.1). We have 

also observed angular clasts of chromitite up to 30cm across within Platreef pyroxenite in the 

Zwartfontein South pit. The presence of xenoliths (possibly rip-up clasts), together with the 

discontinuity of layers, suggests a highly turbulent and most likely a multi-phase 

emplacement environment. This also leads to a potential complication in interpreting 

geochemical trends within the Platreef. Although it is easy to identify chromitite xenoliths 

within a pyroxenite, presumably any magma injection that ripped up earlier generation(s) of 

chromitites would have also ripped up early-formed pyroxenite cumulates, which visually 

would be almost impossible to identify within later pyroxenite. Therefore there is a possibility 

that xenoliths composed of early generations of pyroxenite may also be present, along with 

the chromite xenoliths, in later pyroxenites.

It has been proposed by Kruger (2005b) that the Platreef is the product of Main Zone magma 

which has ripped up and assimilated previously solidified Lower Zone rocks and as such, the 

chromitites within the Platreef are Lower Zone chromitite xenoliths. The difference between 

the compositions of the chromites within the layers and xenoliths in the Platreef and those in 

the Lower Zone type pyroxenite in the footwall in the OY387 core (Table 6.1) and in the 

Lower Zone rocks of the northern limb reported by van der Merwe (1976), Hulbert and von 

Gruenewaldt (1982) and Hulbert and von Gruenewaldt (1986) does not, however, support the 

notion that the xenoliths are rip-up clasts of Lower Zone material.
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The chromitites contain the highest levels of Ir, Ru and Rh in Platreef rocks, as seen in Fig.

6.9. The association of the IPGE and Rh with chromitites is well known and the discovery 

that laurite is stable at chromite-based liquidus temperatures, together with its common 

inclusion within chromite grains, indicates this can be treated as a primary magmatic texture 

(Brenan and Andrews, 2001). Preliminary PGM studies we have performed on these rocks 

have revealed very few occurrences of laurite, and no occurrences of Os-Ir alloy included 

within chromite grains in the chomitites from Overysel. The presence of laurite and Os-Ir 

alloy as inclusions is taken to indicate conditions of base metal sulfide undersaturation 

(Brenan and Andrews, 2001). As they are not present, it would suggest that at the time of 

chromite precipitation, base metal sulfide saturation is likely to have already occurred. The 

fact that Pt/Pd ratios within the chromitites are comparable to the pyroxenites would also 

imply that during chromitite formation, the PGE-rich magma was also sulfur-saturated. This 

is because if chromite precipitated significantly before sulfur-saturation it would be expected 

to fractionate Pt over Pd, leading to higher Pt/Pd ratios within the chromitites (e.g. Barnes and 

Maier 2002b), which is not observed in the Platreef chromitites. It is likely that chromite 

precipitation occurred at a similar time, or slightly after sulfur saturation, with some IPGE and 

Rh fractionating with the chromite, although due to their relatively small volume, there were 

sufficient amounts of these elements available to also be concentrated within the sulfide 

liquid.

If the chromitite lenses and blocks represent rip-up clasts, they must have formed (together 

with sulfur saturation and PGE scavenging) prior to emplacement of the Platreef, possibly in 

an external staging chamber or conduit and this would support the theory of Barton et al. 

(1986) and Lee (1996) that the PGE-rich sulfides in the Platreef formed before emplacement. 

Conversely, if the chromitites formed virtually in situ in the Platreef magma, they must have 

been affected by further turbulent pulses of magma that disturbed them and entrained 

xenoliths of them.

6.8.5 Comparison with other Platreef localities

The mineralization style at Overysel contrasts with that found in the existing mines at 

Zwartfontein South and Sandsloot, as well as further south at Turfspruit. Work by Armitage et 

al. (2002) and Holwell et al. (2006) have shown that fluid activity has exercized a 

considerable influence on the distribution and mineralogy of PGE at Sandsloot, a feature that 

is minimal at Overysel, except within xenolithic material. This is likely to be related to a
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fundamental footwall control, with the dolomites at Sandsloot and Zwartfontein releasing 

large volumes of fluids during assimilation and metamorphism and subsequent 

serpentinization, whereas the gneissic footwall at Overysel produced a felsic partial melt and 

very few volatiles. The mechanism of distribution of PGE into the footwall differs with 

footwall lithology. At Overysel, the distribution into the footwall appears to be via a 

downwardly migrating sulfide liquid, with little fluid influence, whereas at Sandsloot, fluid 

activity is largely responsible for the transportation of PGE into the calc-silicate footwall and 

has resulted in some decoupling of PGE from BMS (Holwell et al. 2006). Further south, on 

the farms Tweefontein and Turfspruit, where the footwall is comprized of Penge Formation 

ironstones and homfelsed shales of the Duitschland Formation, PGE have not been 

significantly transported into the footwall (Hutchinson and Kinnaird, 2005; Nex, 2005), The 

large crystals of sperrylite that are developed in the footwall on Tweefontein Hill (e.g.

Wagner, 1929) represent PGE that have been remobilized during post-Platreef faulting (Nex, 

2005). Instead, at Tweefontein and Turfspruit, significant amounts of PGE are associated with 

sulfide-rich zones perched above competent, refractory footwall or above rafts of cordierite- 

spinel homfels (Kinnaird, 2005; Sharman-Harris et al., 2005). While it is clear that many of 

these high-grade contact metamorphic rocks have not developed a partial melt network 

comparable to that found at Overysel, melting and devolatilization of sedimentary rafts have 

released volatiles (notably S, Sb and As) into the Platreef magma that have had an influence 

on mineralogy (Hutchinson and Kinnaird, 2005).

The lack of hydrothermal interaction and overprinting in the area of the Platreef that overlies 

Archaean basement as opposed to Transvaal sediments raises the possibility that the 

mineralization style present at localities such as Overysel may represent the closest 

manifestation of what may be described as the ‘primary’ style of mineralization in the Platreef 

which we suggest is an orthomagmatic BMS-PGM assemblage such as that preserved in the 

pyroxenites at Overysel.

In terms of REE geochemistry, the pyroxenites at Sandsloot show very similar REE patterns 

to those at Overysel, with the exception that they have a negative Eu anomaly, which is 

thought to be a consequence of contamination from footwall sediments of the Malmani 

Formation, which show a pronounced negative Eu anomaly (McDonald et al., 2005). The 

patterns from Townlands are interesting, in that they show three distinct profiles in three 

portions of the Platreef, with the REE becoming less enriched from the Lower to the Upper
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Platreef (Fig. 6.6). Given the overlap of the field of Middle Platreef samples, this may 

represent a mixing of the two magmas, however the difference between the Upper and Lower 

packages is striking. There appear to be similarities between the Platreef pyroxenites at 

Overysel and Sandsloot with the ‘Upper’ and possibly ‘Middle Platreef at Townlands. 

However, the highly enriched REE profiles for the ‘Lower Platreef’ at Townlands seem to 

represent a magma pulse that has not occurred further north. Manyeruke et al. (2005) suggest 

that the three geochemically distinct pyroxenites at Townlands represent separate sill-like 

intrusions.

The notion of the Platreef being the result of a number of magmatic pulses of different 

compositions has also been advocated recently by Kinnaird (2005), whose geochemical data 

indicate breaks and trends that appear to be inconsistent with a single magma. Whilst our 

sampling may not be of a fine enough scale to distinguish any distinct magmatic pulses, it 

does reveal the absence of magmatic events and magma compositions which are evident 

elsewhere in the Platreef, such as the highly REE-enriched ‘Lower Platreef developed on 

Townlands. Also, the thick zones of high-Cr serpentinites found within the reef at Turfspruit 

interpreted as serpentinized harzburgites by Kinnaird et al. (2005) are not present in our suite 

of samples at Overysel. There is a huge variation in thickness of the Platreef, for example at 

Sandsloot the reef can be as little as 10m thick, whereas it can be up to 400m thick further 

south at Turfspruit (Kinnaird et al., 2005). The variation in thickness of the reef is likely to 

be, at least in part, due to topographic irregularities or diapirism in the footwall as discussed 

by Holwell et al. (2005) and Nex (2005). The most obvious of these features is the antiformal 

“tongue” of Malmani dolomite developed immediately south of the Sandsloot mine. If these 

structures acted as temporary barriers to the passage of magma, it is possible that some 

magmatic pulses or sill emplacement events may be missing from the flanks or basins 

between such footwall topographic highs. This may explain the absence at the base of the 

Overysel section of a REE-enriched pyroxenite unit corresponding to that observed at 

Townlands.

6.9 Conclusions

Platreef mineralization at Overysel, both in the reef pyroxenites and in the gneissic footwall, 

is controlled by the presence of base metal sulfides. Platinum-group elements were 

concentrated within a sulfide liquid in the Platreef magma. Crystallization of mss from the
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sulfide liquid within the Platreef removed the majority of the IPGE and Rh from the residual 

sulfide liquid. Intrusion of the Platreef magma induced partial melting of the footwall 

gneisses, which formed an interconnected network of inter-granular melt. Transport of PGE 

into the gneisses was via the downward migration of the sulfide liquid, depleted of much of 

its original IPGE and Rh, but still rich in Pt, Pd and Au, through this permeable network. As 

the sulfide liquid migrated, it fractionated out the remaining IPGE and Rh in the upper parts 

of the gneisses leaving behind a ‘slick’ of disseminated sulfides, with the residual liquid 

becoming progressively more depleted in these elements relative to Pt, Pd and Au. 

Permeability contrasts in the partially melted gneiss may have induced ponding of the sulfide 

liquid, locally producing massive sulfides. Hydrothermal activity, unlike at Sandsloot and 

Zwartfontein, is minimal due to the anhydrous nature of the footwall and is only significantly 

present in and around serpentinized xenoliths, and at the very base of the cores where low- 

temperature sulfide assemblages may have been formed from the expulsion of a late stage 

fluid from the sulfide liquid.

The question of whether the PGE in the Platreef were scavenged from the magma itself by the 

sulfide liquid, or whether the magma brought in an already PGE-rich sulfide remains to be 

fully resolved. However, the presence of xenoliths of chromitite with PGM inclusions within 

the chromites and associated sulfides suggest that the chromitites formed from a PGE- 

enriched magma. Their occurrence as xenoliths suggests a turbulent environment during 

emplacement of the Platreef and it is possible that they were transported into the Platreef as 

xenoliths in the Platreef magma. These findings increases the likelihood that the magma also 

contained a pre-formed PGE-enriched sulfide liquid as suggested by Barton et al. (1986).

The results of this study, together with previous work from the Sandsloot (Armitage et al., 

2002; Holwell et al., 2006) and Turfspruit (Hutchinson and Kinnaird, 2005) area indicate that 

there is a fundamental footwall control on the amount of distribution and the mechanism of 

distribution of PGE within the Platreef, and in particular its footwall. A separate study is 

underway to expand these contrasts by investigating the PGM mineralogy at Overysel. Where 

the floor rocks are carbonates, fluid activity related to metamorphism, assimilation and later 

serpentinization have in places decoupled PGE from BMS. In contrast, where the floor is 

anhydrous gneiss, there is limited fluid activity and PGE behaviour is controlled by the 

behaviour of sulfide liquids.

126



Chapter 6. Petrology, geochemistry and mineralization mechanisms at Overysel

6.10 Acknowledgements

The authors would like to thank the management of Anglo Platinum for giving permission to 

publish this work and for allowing access to the Sandsloot and Zwartfontein South mines and 

core from Overysel. David Holwell’s PhD research is funded by the Natural Environment 

Research Council and supported by Anglo Platinum through Industrial CASE project 

(NER/S/C/2003/11952). Whole-rock sulfur analysis was performed at the Camborne School 

of Mines, UK, and funded by the Society of Economic Geologists’ Hugh Exton McKinstry 

Fund. Professor Tony Harris is acknowledged for his insightful discussions on the 

metamorphic petrology of the footwall and Jeff White, Jim Mungall, and Tony Naldrett are 

also thanked for their comments. Constructive reviews by Steve Prevec and an anonymous 

referee helped improve the quality of the manuscript. Thanks also to Cheryl Tippins for her 

assistance drafting some of the figures and to Jay Cockayne for her support and for proof 

reading the manuscript.

127



Chapter 7. Distribution of PGE in the Platreef at Overysel -  a PGM and LA-ICP-MS study

Chapter 7

Distribution of platinum-group elements in the Platreef at 

Overysel, northern Bushveld Complex: a combined PGM and LA

ICP-MS study

Submitted as:

D. A. Holwell and I. McDonald. 2007. Distribution of platinum-group elements in the Platreef 

at Overysel, northern Bushveld Complex: a combined PGM and LA ICP-MS study. 

Contributions to Mineralogy and Petrology, (in review)

Co-author roles:

I. McDonald was involved in discussion during the preparation of the manuscript, and 

processed the LA-ICP-MS data.

128



Chapter 7. Distribution of PGE in the Platreef at Overysel -  a PGM and LA-ICP-MS study

7.1 Abstract

Detailed mineralogical and laser ablation-inductively coupled plasma-mass spectrometry 

(LA-ICP-MS) studies have revealed the physical manifestation of the platinum-group 

elements (PGE) within the Platreef at Overysel, in the northern limb of the Bushveld 

Complex, South Africa. In addition, these natural samples corroborate experimental studies 

on the partitioning behaviour of PGE within a fractionating sulfide liquid. The PGE in the 

Platreef were originally concentrated in an immiscible sulfide liquid along with certain semi

metals such as Bi and Te. As the sulfide liquid began to crystallize, virtually all the Os, Ir, Ru 

and Rh partitioned into monosulfide solid solution (mss), which on further cooling, exsolved 

to form pyrrhotite and pentlandite with Os, Ir and Ru remaining in solid solution in both 

phases. Rhodium prefentially partitioned into pentlandite during the exsolution process. 

Platinum, some Pd and Au were concentrated in the residual sulfide liquid after mss 

crystallization, and were then concentrated in a late stage melt along with Te and Bi, which 

was expelled to the grain boundaries during crystallization of intermediate solid solution (iss) 

to form Pt and Pd tellurides and electrum around the margins of the sulfide grains. Tiny 

droplets of this melt trapped in the crystallizing mss and iss cooled to form Pt-Bi-Te 

microinclusions in all sulfide phases, whilst the excess Pd was accommodated in solid 

solution in pentlandite. The sulfide liquid also penetrated the gneissic floor rocks and 

produced similar PGM assemblages in the footwall. Minor redistribution and recrystallization 

by hydrothermal fluids occurred around xenoliths and at the very base of the mineralized zone 

within the footwall. The role of a sulfide liquid in the collection of PGE to form the Platreef is 

unquestionable. The overall lack of secondary alteration coupled with the volatile-poor nature 

of the footwall have allowed the preservation of what may be the most ‘primary’ style of 

Platreef mineralization, with IPGE, Rh and some Pd, being present in solid solution within 

sulfide minerals and Pt, Au and some Pd present as PGM around the margins of the blebs.

The lack of PGM inclusions within early liquidus phases suggests very early sulfur saturation 

in the Platreef, which lends support to theories involving S saturation occurring prior to 

intrusion of the Platreef, possibly within a staging chamber.
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7.2 Introduction

The Bushveld Complex in South Africa is the world’s largest layered igneous intrusion, made 

up of a 7-8km thick sequence of mafic and ultramafic lithologies covering an area of 

65,000km2 (Eales and Cawthom, 1996). It is the largest repository of magmatic ore deposits 

on Earth and contains around 75% of the world’s resources of platinum-group elements in 

three main deposits: the UG2 chromitite, the Merensky Reef and the Platreef (Kendall, 2006). 

The Platreef is a 10-400m thick unit of pyroxenitic lithologies with platinum-group element 

(PGE) and base-metal sulfide (BMS) mineralization located in the northern limb of the 

Complex (Kinnaird and McDonald, 2005). North from the town of Mokopane, the Platreef 

forms the base of the Bushveld layered igneous sequence and rests unconformably upon a 

succession of progressively older sedimentary units of the late Archaean - early Proterozoic 

Transvaal Supergroup, and Archaean basement (Fig. 7.1). Northwards from Mokopane, these 

footwall units are comprized of: quartzites and shales of the Timeball Hill Formation; shales 

of the Duitschland Formation; the Penge banded iron formation; the Malmani Subgroup 

dolomites and, north from the farm Zwartfontein, Archaean basement granites and gneisses, 

which form the footwall on the farm Overysel. The Platreef is overlain by norites and 

gabbronorites generally assigned to the Main Zone of the Complex (Fig. 7.1).
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Figure 7.1. Geological map of the Platreef, showing the locality of boreholes OY335 and OY387, the 
1980 shaft and farms referred to in the text. Based on field mapping and published maps of the 
Geological Survey of South Africa.
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The increase in exploration and mining activity in recent years has facilitated an expanding 

number of studies to be undertaken on the Platreef, including detailed mineralogical studies of 

the platinum-group minerals (PGM) by Armitage et al. (2002) and Holwell et a l (2006) at 

Sandsloot, where the footwall is Malmani Subgroup, and by Hutchinson and Kinnaird (2005) 

at Macalacaskop and Turfspruit, where the floor rocks are Duitschland Formation. These 

studies have highlighted the differences in PGM mineralogy at localities along strike where 

the interaction of the Platreef magma with different floor rock lithologies appears to have had 

an important influence on the resulting PGM mineralogy. This study provides the first 

detailed investigation into the PGM at a locality where Archaean granites and gneisses form 

the floor and follows up the petrological and geochemical investigation into the Platreef at 

Overysel by Holwell and McDonald (2006).

This study is also the first laser ablation-inductively coupled plasma-mass spectrometry (LA- 

ICP-MS) study into the PGE contents of the BMS within the Platreef to be combined with 

PGM studies in order to investigate the physical manifestation of the PGE. The purpose of 

this is to constrain where each of the PGE reside in relation to sufide minerals, data which is 

important both scientifically, as it reveals important information regarding the processes 

involved in noble metal enrichment and sulfide liquid fractionation in Ni-Cu-PGE deposits, 

and economically in terms of grade distribution and mineral processing.

7.3 Samples and methods

We use the same samples as Holwell and McDonald (2006), where the sampling procedure is 

described. Two borehole cores drilled on the farm Overysel were sampled: borehole OY335 

which intersects a 95m thick package of pyroxenites with several xenoliths and a 20m thick 

package of footwall gneisses; and borehole OY387, which comprizes a 25m thick, continuous 

package of pyroxenites and 117m of gneiss with zones of mineralization extending well into 

the footwall. Both holes intersect granite at depth. The locality of the boreholes are shown in 

Fig. 7.1. Sample numbers refer to depth, but do not reflect true thickness, with dips around 

45°. Stratigraphic logs of the two cores are shown in Fig. 7.2, together with the position of the 

samples. Additional grab samples of chromitite were obtained from the dumps at the disused 

exploration shaft, sunk in 1980 on the farm, near the village of Ga-Melebana (Fig. 7.1).
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Figure 7.2. Statigraphic logs of borehole cores OY335 and OY387 showing the positions of the 
samples and zones of visible BMS-PGE mineralization.
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Laser-ablation-ICP-MS on sulfides was carried out using a New Wave Research UP213 UV 

laser system coupled to a Thermo X Series ICP-MS at Cardiff University. The isotopes 33S, 

59Co, 61Ni, 65Cu and 66Zn were detected to monitor the composition of the sulfides together 

with the precious metal isotopes "Ru, 101R u , 103Rh, 105Pd, 106Pd, 1890s, l93Ir, 195Pt and 197Au.
  " I f  O ' )  I ) C   l o t  ) A A

The isotopes of the semi metals As, Se, Te, Sb, and Bi were also analyzed as these 

elements commonly form PGM, and are used to distinguish if a particular PGE in a sulfide is 

present within solid solution, or as a PGM phase. Full details of the analytical conditions and 

standards are described in McDonald (2005). Platinum-group minerals were analyzed at 

Cardiff University using a Cambridge Instruments LEO S360 scanning electron microscope, 

coupled to an Oxford Instruments INCA energy dispersive X-ray analysis system.

7.4 Petrology and mineralogy

The petrology of cores OY387 and OY335 have been described in detail in Holwell and 

McDonald (2006), and only a brief overview of the most salient features is given here.

7.4.1 Footwall lithologies

The footwall at Overysel is made up of Hout River Gneiss and Utrecht Granite. Both cores 

intersect gneiss as the immediate footwall to the Platreef and the granite at depth (Fig. 7.2). 

The gneisses are banded granulites comprizing pale, quartzo-feldspathic bands and darker, 

orthopyroxene-rich bands. They contain a very restricted, anhydrous mineralogy of quartz, 

oligoclase and orthopyroxene (En7o-7s). Base metal sulfides occur sporadically in the gneisses 

and typically occur as small blebs at grain boundaries between host silicates. In places, the 

sulfide content of the rock can become very high, with both net-textured and massive sulfides 

present in the OY387 core at around 380m depth (Fig. 7.2). Sulfide blebs are typically made 

up of pyrrhotite, with pentlandite around the margins and chalcopyrite either at the margins or 

as laths within pyrrhotite. The gneisses are intruded by granitic dykes. The gneisses adjacent 

to these are pervasively altered by hydrous minerals such as amphiboles and chlorite.

Borehole OY387 also intersects a 3m thick zone of pyroxenite deep into the gneisses (sample 

OY387-384) which is of Lower Zone affinity (Holwell and McDonald, 2006). The Utrecht 

granite is a pink, fine- to medium-grained granite consisting of mesoperthitic alkali feldspar, 

quartz and minor muscovite. Where mineralized, the rock has a bleached appearance and 

contains some secondary amphiboles and micas, with chalcopyrite and millerite the most 

common sulfides.
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7.4.2 Igneous Platreef lithologies

The pyroxenites are typically medium- to coarse-grained and made up of cumulus 

orthopyroxene (En75-so), 5-20% intercumulus plagioclase, up to 5% clinopyroxene and a little 

quartz, with some accessory phlogopite, chromite and ilmenite. Quartz becomes more 

common with depth, and is indicative of an increasing amount of contamination from a felsic 

melt derived from partial melting of the footwall gneisses. Alteration by micas and carbonates 

occurs sporadically. Sulfides occur within the interstitial assemblage as blebs, made up of a 

pyrrhotite core, with pentlandite and chalcopyrite margins, and are commonly <10mm and 

make up <3% of the total modal assemblage. Chromitites are present in both cores as small, 

angular xenoliths within the feldspathic pyroxenites. Chromitite bodies also occur, and the 

exploration mining (described by White 1994), encountered some large but discontinous 

chromitite bodies. Samples of chromitite taken from the dumps at the disused shaft are 

irregular and discontinuous, up to 30cm thick and contain some pentlandite, with rarer 

chalcopyrite. Xenoliths of calc-silicate up to 10m thick are also present in the OY335 core, 

some of which are serpentinized (Fig. 7.2), and containing abundant metamorphic olivine and 

clinopyroxene, with some orthopyroxene, amphibole and BMS. The overlying hangingwall 

rocks are made up of gabbronorites comprizing 40-80% cumulus plagioclase, with cumulus 

and intercumulus orthopyroxene and oikocrystic clinopyroxene.

7.5 PGE mineralization

Holwell and McDonald (2006) identified a number of features of the PGE mineralization at 

Overysel, many of which were unique to the locality and can be summarized as follows:

1. PGE mineralization within the two cores mirrors the presence and abundance of BMS.

2. Pt/Pd ratios are consistently around 0.7-0.8 and Pt/Au ratios are around 7-8 throughout 

both the Platreef and the footwall.

3. With depth into the footwall, progressive fractionation of the PGE is observed. This is 

seen in the sloping profile (Pt+Pd)/(Ir+Ru), which increases by several orders of 

magnitude with depth into the footwall, with strong depletions in Ir, Ru and Rh 

observed on normalized plots.

4. PGE were transported into the footwall gneisses within a fractionating sulfide liquid 

that percolated down through an interconnected, inter-granular melt network. This is 

in contrast to the calc-silicate floor at Sandsloot, where the main mechanism for 

transport of PGE the footwall is believed to be within a hydrothermal fluid.
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5. The millerite and chalcopyrite-rich assemblage in the bleached granite at the base of 

the gneisses in core OY387 is a hydrothermal assemblage, possibly formed by the 

expulsion of a fluid from the final stages of the evolving sulfide liquid.

In light of these discoveries, particularly the strong PGE-BMS relationships, this study builds 

upon them by investigating the way in which the PGE mineralization has manifested itself in 

terms of the platinum-group mineralogy and the role of BMS as hosts for PGE.

7.6 Platinum Group Mineralogy

Forty three polished thin sections and blocks from the Platreef, xenoliths therein and the 

footwall from the two borehole cores, along with underground chromitite samples obtained 

from the dumps were examined for PGM on the SEM. More than 750 individual PGM grains 

were identified and are listed in Table 7.1. The PGM identified were grouped as: (1) Pt/Pd 

sulfides; (2) other PGE sulfides; (3) Pt/Pd tellurides; (4) Pt/Pd arsenides; (5) Pt/Pd 

antimonides; (6) Pt/Pd bismuthides; (7) PGE sulfarsenides; (8) Pt/Pd alloys with Fe, Cu, Sn, 

Pb; and (9) Au- and Ag-bearing minerals. Each occurrence was also classified by its textural 

association and by its size.

7.6.1 Grain size and relative grain area

Each PGM grain’s long and short axes were measured in micrometres. Relative proportions of 

the various mineral phases and PGM species type are based on an estimation of area (and by 

inference, volume) of each grain. Using the long and short axis dimensions, the area of each 

grain was approximated to the area of an ellipse around the two axes, in the manner described 

in Holwell et al. (2006) for PGM at Sandsloot. This produces data that accurately reflect the 

relative proportions of each PGM type within an assemblage, and is directly comparable to 

the Sandsloot database in Holwell et al. (2006). This method of data presentation is preferable 

to proportions of PGM type by number of grains, which can give erroneous significance to 

large numbers of very small grains.
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7.6.2 Assemblages

The PGM assemblage in each lithology is shown in Table 7.2, together with an overall total in 

percentage of the total area in 100% PGM. The textural associations of the PGM within each 

lithology are shown in Table 7.3. The vast majority are Pt and Pd phases and the most 

common types of PGM are Pt and Pd tellurides, which make up 46% of all PGM identified. 

Platinum arsenides, exclusively in the form of sperrylite (PtAs2), and Pt sulfides (mostly 

cooperite, PtS) are common and Pt and Pd bismuthides are also important. Alloys, 

antimonides and sulfarsenides are minor phases. In detail, PGM assemblages vary with host 

rock lithology.

Table 7.1. List of all PGM identified, together with ideal formulae, and number of occurrences within 
the lithologies in the Overysel cores. RFP = reef feldspathic pyroxenite; ARP = altered reef feldspathic 
pyroxenite; CHR = chromitite; CSX = calc-silicate xenoliths; CQP = chromitiferous quartzo- 
feldspathic pyroxenite; GS = gneiss; AGS = amphibolitic gneiss; NTS = net-textured sulfides; MS = 
massive sulfides; LZP = gneiss-hosted Lower Zone pyroxenite; BGT = basement granite.

Name Ideal formula RFP ARP CHR CQP CSX GS AGS NTS MS LZP BGT Total

Moncheite PtTe2 50 21 47 9 38 101 2 4 272
Kotulskite PdTe 10 16 7 1 39 5 3 81
Sobolevskite PdBi 1 11 14 1 5 14 1 14 61
Elect rum Au-Ag 15 9 1 16 2 2 4 49
Sperrylite PtAs2 5 11 7 9 4 3 2 1 4 46
Cooperite PtS 4 16 8 4 8 4 1 45
Michenerite PdTeBi 2 7 8 10 1 3 1 2 34
Froodite PdBi2 2 1 13 2 5 5 28
Merenskyite PdTe2 5 3 5 7 1 4 25
Hollingworthite RhAsS 10 6 16
unnamed Pd(Bi,Sb) 13 13
Laurite RuS 2 11 11
Maslovite PtTeBi 2 6 1 9
Platarsite PtAsS 7 1 8
Insizawaite PtBi2 1 1 2 1 2 1 8
Hessite Ag2Te 2 1 1 3 7
Stibiopalladinite Pd5Sb2 1 3 1 5
unnamed PtCuBiSa 1 4 5
Paolovite Pd2Sn 4 1 5
Atokite Pd3Sn 1 1 2 4
Crerarite (Pt.Pb)Bi3S4 4 4
unconstrained Pt-Pd-Te-Bi 2 1 3
Palarstenide Pd5(Sn,As)2 3 3
Rustenburgite PLiSn 2 1 3
unconstrained Pd-Pt-Te 2 2
unconstrained Bi-Pb-Pt-Cu-Bi-S 1 1 2
Pd-melonite (Ni,Pd)Te2 1 1
unconstrained Pt-As-Te-Bi 1 1
unconstrained Pd-R-Te-Bi-As 1 1
Native silver Ag 1 1
unconstrained Pt-Cu-Bi-Te 1 1
Palladian gold Au-Pd 1 1
Braggite (Pt,Pd)S 1 1
Argentite Ag2S 1 1
unconstrained Pt-Pd-Cu-Bi-S 1 1
unnamed (Pt,Cu,Rh,lr)2S 3 1 1
unnamed PdRBi 1 1
unnamed Ag4S 1 1
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Table 7.2. Proportions of PGM type within each lithology in the Overysel cores, in percentage of the 
total area of 100% PGM. For lithology abbreviations, see Table 7.1 ALL = all PGM in all lithologies.

PGM type RFP ARP CHR CQP CSX GS AGS NTS MS LZP BGT ALL

Pt sulfides 4.3 64.9 8.4 92.2 18.7 17.9 2.5 5.4 13.4
Other PGE sulfides 30.8 0 .6
Pt tellurides 51.3 8.1 17.5 29.2 97.3 88.5 1.3 12.9 2 5 .5
Pd tellurides 13.2 18.5 19.1 10.4 49.2 4.0 2.7 3.3 1.0 0.5 2 0 .8
Pt arsenides 1.1 2.5 7.9 86.2 5.7 3.8 5.0 0.1 1.6 16.7
Pd antimonides 0.5 0.4 0.4 0.2
Pt bismuthides 0.2 0.5 0.1 0.1 82.7 2.9 5 .9
Pd bismuthides 0.4 1.7 9.1 3.9 2.1 4.7 0.7 14.9 30.9 5 .9
PGE sulfarsenides 24.2 0.7 0.6
Pt dominant alloys 0.3 3.9 <0.1
Pd dominant alloys 7.5 1.8 0.8 0 .9
Au/Ag minerals 21.9 2.3 0.1 2.9 43.9 0.7 45.8 9 .5

Table 7.3. Associations of all PGM and Au, Ag phases, Pt dominant phases only, and Pd dominant 
phases only within each lithology in the Overysel cores in percentage of the number of grains. For 
lithology abbreviations, see Table 7.1.

All PGM, Au, Ag phases
A ssociation RFP ARP CHR CQP CSX GS AGS NTS MS LZP BGT
Sulfide 2.6 8.6 4.0 6.2 15.6 9.5 83.1 21.4 4.8
Sulfide/silicate 28.1 37.1 20.0 66.6 59.5 48.0 50.0 81.0 11.0 42.9 21.4
Primary silicate 45.6 28.6 36.0 16.7 16.7 32.8 21.9 9.5 5.9 14.3 73.8
Secondary silicate 23.7 25.7 21.3 23.8 13.0 12.5 21.4
oxide 18.7 16.7

Pt-dominant:
A ssociation RFP ARP CHR CQP CSX GS AGS NTS MS LZP BGT
Sulfide 4.0 11.9 4.2 6.8 23.8 10.5 87.3 14.3
Sulfide/silicate 29.0 35.7 20.8 60.0 60.3 38.1 81.6 10.9 28.6 14.3
Primary silicate 46.0 38.1 41.7 20.0 55.6 27.4 28.6 7.9 1.8 14.3 85.7
Secondary silicate 21.0 14.3 16.6 44.4 5.5 9.5 42.8
oxide 16.6 20.0

Pd-dominant:
A ssociation RFP ARP CHR CQP CSX GS AGS NTS MS LZP BGT
Sulfide 8.7 5.4 3.5 3.6 28.6
Sulfide/silicate 39.1 38.2 27.6 100.0 61.3 39.5 80.0 75.0 16.7 57.1 20.0
Primary silicate 34.8 21.8 24.1 3.2 39.5 10.0 25.0 83.3 14.3 80.0
Secondary silicate 17.4 34.6 31.0 35.5 17.4 10.0
oxide 13.8

The PGM assemblage within the reef feldspathic pyroxenites is overwhelmingly dominated 

by Pt tellurides, most of which also contain some Bi in place of Te, for example, most 

moncheites have the formula Pt(Te,Bi)2. Ni tellurides are absent from the assemblage and no 

Ni is present in solid solution within the Pt/Pd telluride phases. Sulfides and alloys are 

present, but rare. Although 7.46% of the assemblage by area is comprised of Pd alloys (Table

7.2), it can be seen from Table 7.1 that this contribution is skewed by a single, though large,
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grain of atokite (PdsSn). Electrum (Au,Ag) is common and makes up 22% of the whole 

assemblage. Most PGM grains are associated with BMS, although very few are actually 

included within BMS grains, and most occur either as grains at the contact between BMS and 

silicate phases or within silicate phases as satellite grains around BMS (Figs. 7.3a, b, Table

7.3). Where alteration of the reef pyroxenite by sericite and carbonates has taken place, there 

is a decrease in the proportion of telluride PGM phases, and a corresponding relative increase 

in sulfides. Sobolevskite (PdBi) is very common, although the grains are very small and the 

proportion by area is minimal. Some Pd-Sn alloys such as paolovite (Pd2Sn) are present and 

sperrylite is more common than in unaltered reef. The spatial associations are highly 

comparable to those in the unaltered reef.

The chromitites contain a very distinctive PGM assemblage, dominated by laurite and the 

sulfarsenides hollingworthite (RhAsS) and platarsite (PtAsS). The major carrier of Pd is 

sobolevskite-kotulskite solid solution, Pd(Bi,Te), which contains almost equal atomic 

proportions of Bi and Te. This is the only lithology which contains any significant discreet Rh 

phases and is the sole lithology to contain any Ru- or Ir-bearing PGM. Laurite is occasionally 

Ir-bearing, hollingworthite and platarsite are usually Ir- and Ru-bearing and Rh-bearing 

sperrylite is also common. Most of the PGM, particularly the Pd-bearing phases, are silicate- 

hosted, with 20% of all grains being located at the boundary between silicates and small 

sulfide (almost exclusively pentlandite) grains within the silicate matrix. In Table 7.3, the 

‘oxide’ associations refer to PGM in contact with chromite grains, which was the most 

common occurrence for laurite. Two PGM grains, one laurite and one cooperite, were found 

as inclusions within chromites. In the chromitiferous quartzo-feldspathic pyroxenite, only six 

PGM were found, which were dominated the sulfide cooperite rather than laurite. No PGM 

were found as inclusions in the chromites in this lithology.

The PGM assemblage in the serpentinized calc-silicate xenoliths is the most arsenide 

dominant in the whole sample suite, with 82% sperrylite by area. Palladium tellurides are the 

next most common PGM type. There are also several smaller grains of the Pd bismuthides 

sobolevskite and an unnamed phase Pd(Bi,Sb). This is the only rock type, other than the 

chromitites, in which sulfarsenides are present, mainly hollingworthite (RhAsS). The 

associations of the PGM within this assemblage differ from all the others in that it is the Pd 

phases which show a distinct association with BMS over Pt phases, with all the Pt minerals 

enclosed within silicates.
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PtCuBiS

mon

Figure 7.3. Backscattered scanning electron micrographs of:
(a): typical association of PGM at the contact between BMS and silicates, and as satellite grains in 
close proximity to the BMS grain, enclosed within secondary amphiboles (amp) between the BMS and 
primary silicates such as orthopyroxene (opx) from sample OY335-176. (b): Enlarged area from A, 
showing grains of moncheite (mon) and kotulskite (kot) and remnant chalcopyrite (ccp) enclosed in 
secondary amphibole. (c): typical association of PGM (moncheite) located at the edge of BMS grains 
made up of pyrrhotite (po), pentlandite (pn) and chalcopyrite (ccp) within footwall gneiss (OY335- 
316) composed of quartz (qtz), plagioclase (plag) and orthopyroxene (opx). (d): polyphase PGM 
enclosed within quartz in a sample of mineralized basement granite (OY387-438), containing 
sobolevskite (sob), the unnamed phase PtCuBiS3, merenskyite (mer), insizawite (ins), moncheite 
(mon), froodite (fro), and two intergrown, unconstrained Pb-Bi-Se-S phases, one of which is Pt- 
bearing. (e): exsolution lamellae of pentlandite within pyrrhotite in a sample of massive sulfide 
OY387-381. (f): enlarged view of massive sulfide showing the association of moncheite with exsolved 
pentlandite within pyrrhotite.
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The gneisses have a similar assemblage to that of the reef pyroxenites. Tellurides dominate, 

although unlike in the pyroxenites, Pd phases are more common than moncheite. Sulfides 

(cooperite, crerarite: (Pt,Pb)Bi3S4, and a single grain of braggite (Pt,Pd)S) make up 18.7% of 

the assemblage. All PGM were spatially associated with BMS and most grains were found at 

the sulfide-silicate contact (Fig. 7.3c, Table 7.3). Altered, or amphibolitic, gneisses are 

dominated by a few large grains of electrum. Aside from the Au and Ag minerals, the overall 

assemblage has a more Pt-dominated assemblage than the rest of the gneiss. The associations 

were similar to the unaltered gneiss, though only Pt phases were observed as inclusions within 

BMS, and the majority of Pd phases were located at the sulfide-silicate contact.

The net-textured and massive sulfides within the gneisses are overwhelmingly dominated by 

tellurides, most of which also contain some Bi. Indeed, the net-textured sulfide sample 

contained no other type of PGM, with 97% of the grains being moncheite, and the remainder 

merenskyite. Virtually all grains were located around the sulfide margins in the net-textured 

sulfide, and only Pt minerals were found as inclusions in the sulfides. The massive sulfide 

contained a few sulfides, arsenides and electrum, although was still made up of 88% Pt 

tellurides (Table 7.2). The majority of the Pt phases were included within BMS, with the 

remainder being located at the contact between BMS and silicate phases. The Pd phases were 

almost all concentrated along the edge of the massive sulfide zone and included within 

silicates. Many of the moncheite grains appear to be exsolved, along with pentlandite, out of 

pyrrhotite. Figures 7.3e and f show the preferred orientation of pentlandite and moncheite 

exsolved from pyrrhotite, with moncheite typically rimmed by pentlandite in such textural 

relationships.

The mafic Lower Zone-like pyroxenite intersected within the lower gneiss in borehole OY387 

has an assemblage dominated by bismuthides, particularly insizawite (PtBi2) and froodite 

(PdBi2). No Au minerals were found. The BMS in this lithology were dominated by 

chalcopyrite.

Some BMS and PGE mineralization was identified in the sample of altered basement granite. 

The assemblage in the altered and mineralized basement granite contained 46% Au and Ag 

minerals by area, with the true PGM assemblage being dominated by the Pd bismuthides 

sobolevskite and froodite. This is the most bismuthide-dominant assemblage observed in any 

of the lithologies. Moncheite and the unnamed bismutho-sulfide PtCuBiS3 were also
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common. A complex polyphase grain of bismuthides, tellurides and PtCuBiS3 from a sample 

of granite is shown in Fig. 7.3d. The majority of PGM found were included in primary 

silicates, with only electrum occurring as inclusions in BMS. The BMS phases in this 

lithology are dominated by chalcopyrite and millerite (NiS).

7.7 LA-ICP-MS analysis

A prominent finding of this and other recent investigations into the PGE mineralogy within 

the Platreef (e.g. Armitage et al., 2002; Hutchinson and Kinnaird, 2005; Holwell et al., 2006) 

is that the vast majority of PGM, excluding those in the chromitites, are Pt and Pd phases. The 

failure to locate enough PGM to account for the observed whole rock contents of Rh, Ru, Ir 

and Os, particularly in the Platreef pyroxenites, indicates that these elements are likely to be 

present in trace concentrations in other minerals; most likely in solid solution within BMS, 

which typically make up around 2-3% of the modal assemblage in the pyroxenites. Ore 

microscopy studies and SEM-based analyses are not sufficient for detecting trace levels of 

PGE within sulfide minerals. Laser-ablation ICP-MS (LA-ICP-MS) techniques are the most 

precise way of achieving detection to such low levels as tens of parts per billion, which is one 

to three orders of magnitude greater than can be achieved by other in situ techniques such as 

micro-Proton Induced X-ray Emission (micro-PIXE) and Secondary Ion Mass Spectrometry 

(SIMS) (Cabri et al., 2003). We performed a series of LA-ICP-MS analyses on a number of 

sulfide phases from the Platreef feldspathic pyroxenites, chromitites and the basement 

gneisses at Overysel, together with a few samples of Platreef feldspathic pyroxenite from 

Sandsloot for an along-strike comparison. Full analyses are given in Appendix 3, and a 

summary of the results of the analyses are shown in Table 7.4. The results from the Platreef 

pyroxenites are plotted in Fig. 7.4 and a selection of time resolved analysis (TRA) spectra are 

shown in Fig. 7.5 to illustrate the most important features.
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Table 7.4. Compositions of base metal sulfides from the Platreef at Overysel and Sandsloot as 
determined by LA-ICP-MS analysis.

Overysel Reef pyroxenites:

Pyrrhotite S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi
n= 8 wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
Mean 38.7 22.8 0.51 0.00 0.93 1.80 7.81 0.45 0.61 0.06 0.00 1.64 0.92
a 1.7 12.1 0 .13 0 .0 0 0.11 0 .34 2 .31 0 .5 5 0 .5 9 0 .04 0 .00 0 .8 7 0 .64
Max 40.1 41.7 0.71 0.01 1.05 2.32 11.6 1.59 1.74 0.11 0.01 2.60 1.52
Min 34.6 9.0 0.34 bdl 0.76 1.29 4.17 0.01 0.01 bdl bdl bdl bdl

Pentlandite S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi
n= 8 wt% ppm wt% wt% ppm ppm Ppm Ppm ppm ppm ppm ppm ppm
Mean 33.7 2969 34.4 0.02 0.59 1.20 5.16 15.0 0.45 119 0.00 1.49 0.85
a 0 .4 1653 5 .6 0 .05 0 .2 2 0 .5 7 1.80 17.3 0 .2 9 4 3 .4 0.00 1.41 0 .88
Max 34.1 5514 48.1 0.15 0.88 2.26 7.07 58.1 0.88 183 0.01 3.61 2.56
Min 33.0 714 29.9 0.00 0.15 0.61 1.43 0.04 0.02 68.6 bdl bdl bdl

Chalcopyrite S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi
n= 6 wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
Mean 35.1 3.1 0.06 28.2 0.00 0.00 1.31 0.54 0.01 1.54 1.67
a 0 .6 6 .4 0.11 4 .3 0 .0 0 0 .0 0 2 .0 6 0 .5 9 0.01 1.51 1.14
Max 35.6 16.1 0.26 34.1 0.01 0.01 bdl bdl 2.29 1.73 0.02 3.03 3.03
Min 33.9 0.1 0.00 23.8 bdl bdl bdl bdl 0.01 0.21 bdl bdl bdl

Sandsloot Reef pyroxenites

Pyrrhotite S Co Ni
n= 5 wt% ppm wt%
Mean 38.4 6.47 0.15
o 0 .6 7 2 .5 7 0 .02
Max 38.8 10.4 0.18
Min 37.3 3.57 0.12

Pentlandite S Co Ni
n=7 wt% ppm wt%
Mean 35.6 4398 31.0
a 0 .22 1171 2 .4 4
Max 35.2 5586 32.8
Min 35.8 3068 26.7

Chalcopyrite S Co Ni
n=3 wt% ppm wt%
Mean 34.7 78.6 0.53
a 0 .24 135 0 .90
Max 34.8 235 1.57
Min 34.4 0.07 0.01

Cu Os Ir Ru Rh
wt% ppm ppm ppm ppm

1.83 2.87 13.9 0.18
0 .7 2 0 .6 8 4 .4 3 0 .1 0

bdl 2.86 3.85 17.3 0.29
bdl 1.06 2.22 8.06 0.06

Cu Os Ir Ru Rh
wt% ppm ppm ppm ppm
0.02 2.02 3.60 15.1 25.1
0 .0 2 1.28 1.99 8 .9 4 16.1
0.04 4.21 5.02 29.3 45.5
bdl 0.64 1.36 4.64 8.20

Cu Os Ir Ru Rh
wt% ppm ppm ppm ppm
30.4 0.03 0.09 0.61
1.42 0 .04 0 .1 6 0 .6 2
32.0 0.06 0.27 bdl 1.05
29.4 bdl bdl bdl bdl

Pt Pd Au Te Bi
ppm ppm ppm ppm ppm
1.32 0.07 1.34 0.48
1 .05 0 .0 7 1.24 0 .3 7
2.70 0.16 bdl 3.29 0.92
0.09 bdl bdl 0.15 bdl

Pt Pd Au Te Bi
ppm ppm ppm ppm ppm
0.96 102 1.99 0.87
0 .81 31.1 2 .0 7 0 .88
2.07 143 bdl 6.14 2.52
0.07 67.7 bdl bdl bdl

Pt Pd Au Te Bi
ppm ppm ppm ppm ppm
0.12 1.73 0.01 0.22 0.10
0 .1 4 2 .6 2 0.01 0.31 0 .16
0.28 4.76 0.01 0.44 0.28
0.02 0.11 bdl bdl bdl
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Table 7.4 (cont.)

Overysel chromitites

Pyrrhotite S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi
n=1 wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm

38.8 62.7 0.03 bdl bdl bdl bdl bdl bdl 0.03 0.07 0.01 19.7

Pentlandite S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi
n=1 wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm

35.8 5079 33.7 bdl 0.49 bdl 6.87 Bdl bdl 72.4 bdl 0.81 0.59

Pyrite S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi
n= 2 wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
Mean 54.0 127 0.23 0.02 0.19 0.08 1.16 64.9
a 0 .0 0 122 0.21 0 .01 0 .0 8 0 .02 1.20 60 .8
M ax 5 4 .0 2 1 3 0 .3 7 bdl bdl bdl bdl 0 .0 2 bdl 0 .2 5 0 .0 9 2 .0 0 1 0 8

Min 5 4 .0 4 0 .3 0 .0 8 bdl bdl bdl bdl 0 .01 bdl 0 .1 3 0 .0 6 0.31 2 1 .9

Overvsel Footwall rocks:

Pyrrhotite S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi
n= 6 wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
Mean 39.0 57.1 0.70 0.06 0.11 0.35 0.85 3.34 0.02 1.75 3.97
a 1.11 2 3 .7 0.21 0 .0 5 0 .0 7 0 .3 3 1.50 4 .1 0 0 .0 3 1.62 4 .84
M ax 4 0 .0 8 6 .4 1 .0 9 bdl 0 .1 3 0 .2 3 0 .8 2 3 .1 0 9 .7 7 0 .0 8 bdl 2 .9 7 11.1

Min 3 7 .2 3 9 .5 0 .4 7 bdl 0 .0 2 0 .0 4 0 .5 0 bdl 0 .01 bdl bdl bdl bdl

Pentlandite S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi
n = 1 0 wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
Mean 33.5 3144 31.6 0.06 0.03 0.03 0.59 0.45 78.0 0.05 2.81 8.08
CT 1.06 1239 6 .6 2 0.11 0 .0 3 0 .0 3 0 .7 8 0 .6 3 4 4 .5 0 .0 9 6 .20 22.1
M ax 36.1 5 1 8 4 4 3 .6 0 .2 9 0 .0 7 0 .0 8 bdl 2 .0 4 1 .7 3 1 7 0 0 .2 8 18.1 7 1 .0

Min 3 2 .2 7 8 8 1 7 .7 bdl bdl bdl bdl bdl bdl 2 8 .6 bdl bdl 0 .2 0

Chalcopyrite S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi
n = 1 0 wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
Mean 34.6 22.7 0.33 27.4 0.00 0.28 0.06 1.71 0.04 0.17 1.13
CT 0.94 5 2 .2 0 .6 7 5 .0 9 0.01 0 .2 2 0 .1 2 1.83 0 .05 0 .0 6 1.15
M ax 3 5 .4 1 5 9 1 .8 4 3 4 .8 0 .0 2 bdl bdl 0 .4 8 0 .3 2 5 .7 5 0 .1 8 0 .2 5 2 .8 5
Min 32.1 0 .1 0 bdl 1 9 .3 bdl bdl bdl bdl bdl 0 .1 8 bdl bdl bdl

Pyrite S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi
n= 3 wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
Mean 53.5 20.9 0.01 0.02 0.03 0.04 0.01 0.43 12.5
CT 0 .20 4.31 0.01 0 .03 0 .0 5 0 .0 2 0 .02 0 .2 7 15.6
M ax 5 3 .7 2 5 .0 0 .0 2 0 .0 5 bdl bdl bdl bdl 0 .0 9 0 .0 6 0 .0 3 0 .6 2 23.5
Min 5 3 .3 1 6 .4 bdl bdl bdl bdl bdl bdl bdl 0 .0 3 bdl bdl bdl

Limits of 
detection S Co Ni Cu Os Ir Ru Rh Pt Pd Au Te Bi

wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
0.31 0.74 <0.01 <0.01 0.015 0.005 0.067 0.011 0.017 0.034 0.006 0.35 0.84
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Figure 7.4. PGE contents of pyrrhotite and pentlandite grains plotted as: (a) Ir vs Os, (b) Ir vs Ru, (c) 
Ir vs Rh, (d) Ir vs Pd; (e) Ir vs Ni for pyrrhotite and (0  Pd vs Rh for pentlandite.

7.8 PGE contents of BMS and other phases

7.8.1 P latreef feldspathic pyroxenites

Pyrrhotite, pentlandite and chalcopyrite were analyzed in the Platreef pyroxenites. From 

Table 7.4 it can be seen that pyrrhotite is the major carrier o f Os, Ir and Ru, holding on 

average lppm Os, 2ppm Ir and 8ppm Ru, and the standard deviations show that the values are 

highly consistent both within and between samples. Figures 7.4a and b show a high degree of  

correlation between these elements in pyrrhotites. Some grains held minor amounts o f Rh, but 

no appreciable Pd was present in any of the pyrrhotites (Fig. 7.4d). There is a positive 

correlation between the IPGE and Ni contents in pyrrhotite which is illustrated in Fig. 7.4e. 

However, different slopes are evident at different locations, with the Sandsloot samples 

showing greater PGE and lower Ni contents than those found at Overysel. Fig. 7.5a shows a 

TRA spectrum for a pyrrhotite grain from the Platreef pyroxenites. This shows the smooth, 

parallel patterns o f Ru, Ir and Os with S, indicating that the IPGE are present in solid solution 

in the pyrrhotite.
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Pentlandite was also found to contain concentrations of the IPGE with similarly high degrees 

of correlation between these elements (Figs. 7.4a, b). Their concentrations, however, are 

consistently lower than those in pyrrhotite (Table 7.4, Figs. 7.4a, b), with pyrrhotite, on 

average, hosting 1.5 times as much Os, Ir and Ru than pentlandite in the Overysel samples. 

This is not a consistent relationship however, with the two samples from Sandsloot showing 

opposite trends (Table 7.4). Pentlandite is the major carrier of Rh and Pd, containing on
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average 15ppm Rh and 119ppm Pd in the Overysel pyroxenites. Concentrations of Rh and Pd 

within individual pentlandite crystals are quite variable and high Rh contents do not 

necessarily correlate with high Pd contents (Fig. 7.4f). Both Rh and Pd show poor correlations 

with the IPGE (Figs. 7.4c, d). Some minor Pt (<0.2ppm) is apparently present in solid solution 

in a few pentlandite analyses, one example of which is shown in Fig. 7.5b, which 

demonstrates smooth profiles for all PGE, with particularly high abundances of Rh and Pd 

which mirror Ni and S, thus confirming their presence in solid solution.

No PGE were present in solid solution within chalcopyrite, however, some Pt (with 

correspondingly high Bi and occasionally Te concentrations) was detected and that did not 

mirror base metal concentrations. The TRA spectrum for one of these examples is shown in 

Fig. 7.5c where Pt and some trace Pd, rather than mirroring the S and base metal contents, 

show distinct peaks along with Bi. In these relationships, Pt appears to be present as discreet, 

micrometer to sub-micrometer PGM inclusions, rather than in solid solution in the sulfide. 

Further examples are also present in the TRA spectra shown in Figs. 7.5d and f and they are 

present in all of the major sulfide phases. It is worth noting that we analyzed for the semi

metals As, Sb, Te, Bi and Se, all of which form PGM, but only Pt(+/-Pd)-Bi(+/-Te) phases 

were detected as microinclusions.

The feldspathic pyroxenites from the Platreef at Sandsloot were found to contain consistently 

higher concentrations of PGE, but almost identical PGE distribution relationships to those at 

Overysel (Figs. 7.4a-d, Table 7.4). Platinum was again present as Bi- and Te-bearing 

microinclusions in all sulfide phases. Minor Pt was also present (apparently in solid solution) 

in pyrrhotite and pentlandite in one sample from Sandsloot at concentrations of around 2ppm 

(Table 7.4).

7.8.2 Chromitites

The majority of the IPGE and Rh in the pyroxenitic rocks appear to be present in solid 

solution within pyrrhotite and pentlandite rather than as PGM. The chromitites, in contrast, 

contain abundant Rh-, Ru- and Ir-bearing PGM (Table 7.2), and have elevated concentrations 

of these elements relative to Pt and Pd (Hoiwell and McDonald, 2006). A few sulfide grains 

were sufficiently large to analyze effectively by laser ablation. One grain of pentlandite, was 

found to contain no Ir or Rh (Table 7.4). It did, however, contain some Os and Ru in 

comparable concentrations to the pyroxenite-hosted sulfides, implying that all the Ir and Rh
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within the chromitites may be present as PGM. A grain of pyrrhotite was also analyzed and 

found to contain no PGE in solid solution, and was also very low in Ni content.

7.8.3 Footwall gneisses

Holwell and McDonald (2006) showed that there is fractionation of PGE with depth into the 

gneissic footwall at Overysel. Whole-rock values of Ir, Ru and Rh drop off dramatically 

relative to Pt, Pd and Au with increasing depth into the footwall, and this is also reflected in 

the PGE content of the sulfides. From Table 7.4 it can be seen that the IPGE content of 

footwall pyrrhotite and pentlandite is very low, compared to their reef equivalents. Rhodium 

is present within the pentlandite in variable, but always low (<2ppm), concentrations. Whole- 

rock concentrations of Pt and Pd remain comparable to the reef in mineralized footwall 

samples. Pentlandite still hosts appreciable amounts of Pd, although to a lesser degree than in 

the reef, and this is reflected in the greater proportions of Pd-bearing PGM within the footwall 

rocks compared with the reef pyroxenites (Table 7.3).

The Pt/Pd ratio for the massive sulfide sample is 0.35, however, virtually all of the PGM 

found in this sample were Pt phases (Table 7.2) and there is therefore a case of apparently 

‘missing’ Pd, not represented by any discreet PGM phases. Figure 7.5d shows a particularly 

smooth TRA spectrum for a pentlandite from the massive sulfide sample in the footwall 

(OY387-381), and demonstrates clearly that Pd is present in solid solution, with the Pd signal 

mirroring perfectly the profiles of Ni and S. It appears that some Pt is also present in solid 

solution in low concentrations, but occasional peaks with corresponding Bi peaks indicate the 

presence of very small Pt-Bi PGM microinclusions as well. The spectrum also shows low 

concentrations of Rh within the pentlandite, and that a sharp decrease in the Rh signal occurs 

as the Pt-rich PGM is sampled, indicating a lack of Rh in the PGM phase. Figure 7.5e 

illustrates a case where the laser path has passed over pyrrhotite and into pentlandite. The 

transition can easily be seen by the increase in Ni, as pentlandite is sampled by the laser. This 

also illustrates the presence of Pd in homogeneous solid solution in pentlandite, and also 

shows no variation towards the margin of the pentlandite grain. Another polyphase TRA 

spectrum is shown in Fig. 7.5f where the laser has sampled firstly pyrrhotite before passing 

into pentlandite, as seen by the increase in Ni and Pd, and finally chalcopyrite which is shown 

by the drop in Ni and Pd and the increase in Cu. Two Pt-Bi PGM were sampled, which are 

labelled on Fig. 7.5f, the first, at around 50 seconds, is close to the pyrrhotite-pentlandite 

contact, and the second, at around 63 seconds, appears to be at the boundary between the
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pentlandite and the chalcopyrite. Laser analysis of the exsolution flames of pentlandite in 

pyrrhotite such as those in Figs. 7.3e and f shows that the pentlandite flames also contain Pd 

in solid solution. Chalcopyrite in the footwall rocks did not contain any appreciable PGE. 

Three examples of pyrite within the footwall were analyzed and were not found to contain 

any PGE in solid solution or as microinclusions.

An important relationship in determining the timing of PGE and S saturation in the magma 

are inclusion relationships in high-temperature cumulus phases. The earliest crystallizing 

phases in the Platreef at Overysel are chromite, then orthopyroxene. We performed a number 

of LA-ICP-MS analyses on chromite grains from the chromitite layers, xenoliths and 

feldspathic pyroxenites, together with several analyses of cumulus orthopyroxenes from the 

feldspathic pyroxenites. None of the analyses revealed the presence of any PGE, either in 

solid solution, or as microinclusions, within chromite or orthopyroxene.

7.9 Mass balance

For a semi-quantitative indication of the proportions of the PGE present within sulfide 

minerals and as discreet PGM phases, we adopted a similar approach to the technique used by 

Ballhaus and Sylvester (2000), in which we recalculate the whole-rock PGE contents to the 

equivalent in 100% sulfide, and plot the values on a chondrite normalized diagram along with 

the PGE concentrations of the BMS. As chalcopyrite contains virtually no PGE in solid 

solution, we recalculate the whole rock PGE contents to 100% pyrrhotite and pentlandite, as 

these are the two phases which contain PGE. Including chalcopyrite in the calculations would 

effectively ‘dilute’ the PGE content of the calculated sulfide fraction. To improve the 

technique of Ballhaus and Sylvester (2000), we take into account the different proportions of 

the sulfide phases present. To calculate this, we adapted the technique described in Huminicki 

et al. (2005), where all the whole-rock Cu and a corresponding amount of S are used to 

calculate the proportion of chalcopyrite. To improve this further, we used Cu and Ni 

concentrations obtained by acid leach, which extracts base metals only from the sulfide phase 

and thus no correction is needed to allow for Ni within silicates, which is necessary if using 

conventional whole-rock data. The amount of S used in these calculations is based on SEM- 

EDA analyses of sulfide phases. All whole-rock Ni and a corresponding amount of S are 

allocated to pentlandite, with the remaining S used to calculate the amount to pyrrhotite. A 

small correction is made to allow for trace amounts of Ni in pyrrhotite as determined by
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SEM-EDA analysis. This method does not take into account minor pyrite, however this phase 

is relatively insignificant volumetrically.

For the pyroxenite samples we analyzed by LA-ICP-MS, we calculated the mean pyrrhotite, 

pentlandite and chalcopyrite fractions, and then re-calculated the whole-rock concentrations 

of the PGE and Au to those in 100% sulfide, containing pyrrhotite and pentlandite only. The 

chondrite normalized values for average PGE contents of pyrrhotite and pentlandite as 

determined by LA-ICP-MS are plotted with the average whole-rock concentrations for the 

same samples in Figs. 7.6a and b together with those calculated for sulfides of the Merensky 

Reef by Ballhaus and Sylvester (2000), and these are shown in Fig. 7.6c and d for 

comparison. The rationale for this method is that an element whose concentration within a 

sulfide is as high or higher than the bulk value indicates its presence in solid solution, whereas 

if it falls below, some of that element must be present as discreet phases. It can be seen that 

the IPGE are comfortably held in solid solution within both pyrrhotite and pentlandite, and Rh 

and Pd in pentlandite. The slightly higher abundances of Rh and Pd in pentlandite compared 

to the bulk composition is due to their presence primarily in pentlandite, and thus the bulk 

rock value is ‘diluted’ by pyrrhotite that is relatively barren of Rh and Pd (a similar effect on 

all elements would occur if chalcopyrite were included in the calculations). For this reason we 

have also plotted the whole-rock values recalculated to 100% pentlandite on Fig. 7.6b (c.f Fig. 

7.6d, where Ballhaus and Sylvester (2000) did not make this correction). Our results show 

that whole-rock Rh is almost exactly the same as Rh in pentlandite, whereas Pd in pentlandite 

falls below the whole-rock if recalculated to 100% pentlandite, indicating some Pd-bearing 

PGM. The large negative anomalies in both Pt and Au show that these are not significantly 

present in solid solution and must reside in discreet Pt- and Au-bearing phases. These results 

are entirely consistent with the LA-ICP-MS data which show the all the IPGE in solid 

solution in pyrrhotite and pentlandite, all Rh and some Pd in pentlandite, and corroborate the 

PGM studies, which identified 57% of all PGM in the pyroxenites to be Pt phases, 22% 

electrum and 21% Pd phases (Table 7.2). From Fig. 7.6 it can be seen that our data from the 

Platreef show remarkable similarities to that for the Merensky Reef sulfides, which would 

suggest that the sulfides in both deposits were enriched in PGE at an early stage and 

underwent a similar cooling history.
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Figure 7.6. Chondrite normalized diagrams of average PGE in (a) pyrrhotite and bulk sulfide 
recalculated to 100% sulfide (po+pn) for Overysel Platreef pyroxenites, and (b) pentlandite and bulk 
sulfide recalculated to 100% sulfide (po+pn and pn only) for Overysel Platreef pyroxenites, (c) 
pyrrhotite and bulk sulfide recalculated to 100% sulfide (po+pn) for the Merensky Reef (d) pentlandite 
and bulk sulfide recalculated to 100% sulfide (po+pn) for the Merensky Reef. Merensky Reef data 
from Ballhaus and Sylvester (2000).

7.10 Discussion

This study into the PGM mineralogy of the Platreef at Overysel has revealed characteristic 

PGM assemblages and associations in different lithologies which are dominated by Pt and Pd 

phases. The LA-ICP-MS study has not only identified the major carriers of the IPGE and Rh 

in the Platreef to be pyrrhotite and pentlandite, but also provides an insight into the 

partitioning behaviour of the individual PGE during crystallization of a sulfide liquid and also 

reveals the processes involved in the enrichment in noble metals in the Platreef.

7.10.1 The role o f a sulfide liquid in Platreef PGE mineralization

The chalcophile nature of the PGE is well known and, in the presence of a sulfide liquid, the 

high distribution coefficients (D) of the PGE between sulfide and silicate melts imply that 

they will be effectively collected by any sulfide liquid separating from a silicate magma. 

There have been several studies into the Fe-Ni-Cu-S system which have been used to assess

150



Chapter 7. Distribution of PGE in the Platreef at Overysel -  a PGM and LA-ICP-MS study

the partitioning of PGE during the crystallization of monosulfide solid solution (mss) from a 

sulfide liquid (e.g. Fleet et al., 1993; Li et al., 1996; Barnes et al., 1991', Ballhaus et al., 2001; 

Mungall et al., 2005). Their data are summarized in Table 7.5 and show that Dpt, Am and £>au 

are all <1 and these elements are therefore concentrated in the residual liquid during mss 

crystallization. Dqs, D\t D r u and A*h are all much >1 in S-rich systems and partition into mss. 

However, the partitioning is particularly affected by varying/S2 conditions and the 

compatibility in mss of these elements decreases as the S-content of the liquid decreases, so 

that in very S-poor, alloy-dominant systems, only Ru remains compatible in mss. As the 

Platreef is relatively S-rich, the PGE in a sulfide liquid within the Platreef should behave in 

the manner expected from the experimental results during the crystallization of mss. The work 

of Holwell and McDonald (2006) demonstrated that, originally, PGE were present in a sulfide 

liquid within the Platreef magma, which cooled to form the observed pyrrhotite-pentlandite- 

chalcopyrite-PGM assemblage. Therefore, our LA-ICP-MS analyses of the sulfide phases and 

the complementary PGM studies can be used to compare the natural partitioning behaviour in 

the Platreef with that expected from the experimental results.

Table 7.5. Experimentally derived partition coefficients for the noble metals between monosulfide 
solid solution and sulfide liquid (900-1200°C).

Os Ir Ru Rh Pt Pd Au Reference
4.3 3.6 4.2 3.0 0.2 0.2 0.09 Fleet etal. (1993)

1.1-13 0.047-8.3 0.05-0.16 0.08-0.27 Li etal. (1996)

0.43-17 0.045-7.43 0.013-0.46 0.005-0.44 Barnes etal. (1997)

5 3.1-11.8 3-19 1.5-3.5 0.017-0.13 0.058-0.19 Ballhaus etal. (2001)

4.55-7.68 8.71-13.5 3.45-5.66 0.035-0.052 0.072-0.12 0.006-0.013 Mungall et al. (2005)

Using the partitioning data obtained during the experimental studies, one would expect the 

IPGE and Rh to be enriched in mss, and to be present in solid solution within its cooling 

products: pyrrhotite and pentlandite, which is precisely what is observed in our LA-ICP-MS 

analyses. The IPGE should concentrate in early crystallizing mss, which on cooling exsolves 

to Fe-mss and Ni-mss then to pyrrhotite and pentlandite with the IPGE remaining in solid 

solution (Barnes et al., 2006). The enrichment of the IPGE in pyrrhotite compared to 

pentlandite (1.5 times) may indicate a slight preference for these elements to partition into 

pyrrhotite during the exsolution process. A similar relationship was also found to be present 

in the sulfides of the Merensky Reef, where Ballhaus and Sylvester (2000) noted the IPGE to
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be about 1.2 times more enriched in pyrrhotite than pentlandite, although this is not 

necessarily a consistent relationship, as seen by the contrasting concentrations in the 

Sandsloot samples and Barnes et al. (2006) found broadly similar IPGE concentrations in 

pyrrhotite and pentlandite in their LA-ICP-MS study on samples from Noril’sk. Rhodium is 

also compatible in mss, however it is present only in pentlandite in our samples, and therefore 

during the exsolution process it appears that Rh preferentially partitions into the Ni-rich mss 

which forms pentlandite on cooling.

According to the experimental studies, after crystallization of mss, Pt, Pd and Au should be 

concentrated in the residual sulfide liquid which will crystallise intermediate solid solution 

(iss), which on cooling exsolves to chalcopyrite plus pentlandite. Peregoedova (1998) showed 

experimentally that Pt and Pd (and by implication, Au) are also incompatible in iss. However, 

some Pd is present in solid solution in pentlandite in significant amounts (up to 180ppm, 

Table 7.4) and the presence of Pd within the pentlandite exsolution flames in pyrrhotite such 

as those shown in Figs. 7.3e and f implies that some Pd is likely to have been present in mss.

Fleet et al. (1993) included minor amounts of As, Bi and Te, which are also highly 

chalcophile at magmatic temperatures and are among the most common elements to form 

PGM with Pt and Pd. They found that during quenching, Bi, Te and As segregate as a late 

residual liquid which scavenges Pt preferentially over Pd. Helmy et al. (2006) performed 

experiments in sulfide-telluride systems and found that telluride (and bismuthide and 

antimonide) melt is immiscible in sulfide melt below temperatures of 1000°C. Furthermore, 

telluride melt remains liquid after the sulfide solidus and that Pt and Pd strongly partition into 

this melt. They also noted that Pt and Pd are more strongly complexed with Te and Bi than S, 

and Pd will only enter mss when the Pd/semi metal ratio is sufficiently high to have an excess 

of Pd that cannot be accommodated by the telluride/bismuthide melt. Therefore a high 

Pd/semi metal ratio can explain the presence of Pd in pentlandite in our samples. These 

observations by Helmy et al. (2006) seem to substantiate the theories of Cabri and Laflamme 

(1976), Prichard et al. (2004b) and Barnes et al. (2006) who all suggested that Pt, Pd and Au 

along with semi metals such as Bi, Te, As and Sb are concentrated in a late-stage residual 

melt after the crystallization of iss. Subsequent crystallization of this liquid then forms PGM 

around the margins of the sulfide blebs and in small veinlets injected into the surrounding 

silicates, which explains the tendency for PGM to be present around the margins of sulfide 

blebs. Over half of the PGM in the reef pyroxenites are hosted by primary silicates around the
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margins of the BMS grains and this may support the theory of late-stage injection of this 

PGE-semi metal rich liquid into surrounding silicates. Later alteration of the sulfide blebs, 

with replacement by secondary amphiboles around the margins of BMS blebs, appears not to 

affect the early formed PGM, which are then isolated as satellite grains within secondary 

silicates around the BMS blebs as is shown in Fig. 7.3a.

The case of the Pt-Bi-Te microinclusions within all sulfides is interesting as it infers that Pt 

and Bi were present in both mss and iss. It is unlikely that they exsolved from the sulfide 

liquid as exsolution tellurides/bismuthides have characteristically high Ni contents, which our 

tellurides/bismuthides do not. Platinum is also incompatible in both mss and iss, however it is 

highly compatible in telluride and bismuthide melt, which is immiscible in sulfide melt below 

1000°C (Helmy et al., 2006). The microinclusions are suggested to represent minute droplets 

of this immiscible melt that remained trapped within crystallising mss and iss, and failed to be 

expelled to the grain boundaries to form the satellite PGM grains as described above. This 

also implies Bi and Te were present within the initial sulfide liquid. The footwall gneisses 

also display a similar BMS-Pt/Pd telluride assemblage and it is assumed that these 

assemblages formed directly from the crystallization of a sulfide melt in a similar manner to 

that described for the pyroxenites, a process which is summarized in Fig. 7.7.

Hutchinson and McDonald (2005) presented some initial results for Pt and Pd in sulfides from 

a LA-ICP-MS study on the Platreef at Turfspruit (Fig. 7.1). They also found that Pt was not 

present in solid solution in any of the sulfide phases, but was present as Pt-Pd-Bi 

microinclusions within all phases. Palladium was found to be present erratically in 

pentlandite, but more commonly as PGM inclusions, and the overall abundances of the IPGE 

within the sulfides was much lower than at Overysel (Hutchinson and McDonald, 2006). 

Hutchinson and McDonald (2005) attributed the absence of PGE within sulfides to the degree 

of contamination from assimilated footwall rocks (e.g. Sharman-Harris et al., 2005), which 

also introduced elements such as As, Sb, Bi and Te. As a consequence, the PGE (particularly 

Pt and Pd) effectively formed PGM with these elements which were either not collected by 

the sulfide liquid, or were expelled from them during crystallization. The partial melting of 

the floor on Overysel is thought to post-date the mineralization (Barton et al. 1986) and is 

unlikely to have released similar concentrations of volatile elements as the sedimentary floor 

at Turfspruit. Our data implies that that Bi and Te were present within the mineralizing sulfide 

liquid, and that local contamination at Turfspruit served to the increase the amounts of semi
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metals, particularly Sb and As, in that area which resulted in a higher volume of immiscible

semi metal rich melt, restricting the amount of PGE that partitioned into the sulfides.

Figure 7.7. Schematic representation of the partitioning behaviour of the PGE within cooling droplets 
of sulfide within the Platreef magma, a. PGE and semi metals are concentrated within droplets of 
sulfide liquid at magmatic temperature. b\ at around 1000°C, mss crystallizes, into which the IPGE 
and Rh are strongly partitioned. Some small amounts of Pt, Pd and semi metals are trapped in mss. c: 
on further cooling to 900°C, iss crystallizes, at which point the semi metals and most of the Pt, Pd and 
Au form an immiscible liquid which is expelled to grain boundaries. Any Pt and semi metals present 
within mss and iss form very small droplets of this liquid and are trapped within the sulfide. Ni-rich 
and Fe-rich mss separate, with Rh and some Pd partitioning into the Ni-rich portion, d. Below 650°C, 
IPGE-rich pyrrhotite exsolves from Fe-mss, IPGE, Rh and Pd rich pentlandite exsolves from Ni-mss 
and iss recrystallises to chalcopyrite. The Pt, Pd, Au and semi metal rich liquid crystallises PGM 
around the margins of the sulfide blebs, and as tiny microinclusions where trapped within sulfide.

7.10.2 Hydrothermal effects on PGM mineralogy

The most unaltered PGM assemblages in the Platreef appear to be the sulfide-associated 

telluride and chromite-associated laurite dominant assemblages. All others are likely to be 

secondary: either modified from the original telluride-dominant one, or ones related to 

transport by a hydrothermal fluid. The serpentinized calc-silicate xenoliths show a distinctive 

assemblage, dominated by sperrylite, with some bismuthides, hollingworthite and Pd
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tellurides. The presence of sperrylite in calc-silicate footwall rocks at Sandsloot is common, 

as is the presence of Pd tellurides in serpentinized footwall rocks, and these associations are 

thought to be characteristic of hydrothermal transport of PGE (Hoiwell et al., 2006). The 

presence of Rh-bearing PGM is also suggestive of a secondary assemblage as all Rh appears 

to be sufficiently held in solid solution within pentlandite in the unaltered assemblages. The 

associations are also dominantly silicate associated, which is indicative of volatile activity 

(e.g. Holwell et al., 2006). It is unlikely that PGE were present in the original protolith, so 

introduction of PGE into the xenolith is likely to have been related to fluid activity associated 

with either metamorphism, syn- to post-intrusion or serpentinization after intrusion and 

xenolithization. The amphibolitized gneisses associated with the intrusion of late-stage 

granitic dykes have a more Pt-dominant assemblage which may be due to the more mobile Pd 

being transported away by the fluids associated with the alteration.

The bleached appearance and presence of hydrous minerals in the mineralized basement 

granite would suggest that the assemblage is the product of either a hydrothermal 

modification of an assemblage similar to that in the gneisses, or a hydrothermal halo at the 

base of the mineralized zone. Farrow and Watkinson (1997) describe almost identical sulfide 

assemblages containing chalcopyrite and millerite associated with Bi-bearing PGM such as 

sobolevskite, froodite and michenerite in the alteration zones around the Cu-rich veins at the 

deepest extremities of the mineralized zones at Sudbury which they estimate to have formed 

at around 200-300°C. Holwell and McDonald (2006) suggested that the strikingly similar 

assemblage in the granite in borehole OY387 was formed by the expulsion of a hydrothermal 

fluid from the final stages in the evolution of the migrating sulfide liquid, analogous to that 

postulated for Sudbury by Li and Naldrett (1993). The assemblage in the thin Lower Zone

like pyroxenite may be of similar origin as it contains abundant bismuthides, associated with a 

chalcopyrite-dominant BMS assemblage. This contrasts with the Ni-rich magmatic sulfides 

that might be expected in such rocks if the sulfide were of a magmatic origin (c.f. the Lower 

Zone-hosted Volspruit deposit, Hulbert and von Gruenewaldt, 1982; Harmer, 2004).

7.10.3 Chromitites and the timing o f S saturation

Inclusion relationships, and in particular the presence of PGM microinclusions, have been 

used as an important indicator of the processes involved in noble metal enrichment in 

magmatic PGE deposits. Ballhaus and Sylvester (2000) identified PGM microinclusions 

within chromite and olivine in the Merensky Reef and suggested that they formed from the
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development of PGE clusters (as proposed by Tredoux et al., 1995) in the magma, prior to 

collection by early crystallizing phases in the magma. The lack of such PGM microinclusions 

in high-temperature cumulus phases in the Platreef may imply that sulfur saturation and 

collection of PGE and semi metals by the resultant sulfide droplets occurred prior to the 

crystallization of any cumulus phases. If so, it is possible that when the Platreef magma was 

intruded it already contained pre-formed sulfide droplets, such as in the model of Lee (1996), 

who suggested the PGE-rich sulfides were pre-concentrated in a deep staging chamber. In 

such a case, the mass balance problem of the large volume of magma needed to be processed 

to extract the volumes of PGE present in the Platreef (e.g. Cawthom et al., 1985; Cawthom et 

al., 2002), which is imposed by the late intrusion of Main Zone rocks (Holwell et al., 2005; 

Holwell and Jordaan, 2006) can be resolved.

In our chromitite samples, the PGM assemblage is dominated by minerals containing the 

IPGE and Rh, such as laurite and hollingworthite, which are typical of chromite-associated 

PGE deposits. The presence of laurite with chromite, especially as inclusions, is considered to 

be of magmatic origin in chromite ores (Bockrath et al., 2004) and the behaviour of Ru is an 

important indicator of/S2 conditions within a silicate magma. Laurite and Ru-Os-Ir alloy form 

under conditions of sulfur-undersaturation (Brenan and Andrews, 2001), and therefore the 

presence of inclusions of these phases within primary liquidus phases such as chromite would 

suggest that early crystallization took place in sulfide-undersaturated conditions. Additionally, 

Bockrath et al. (2004) showed experimentally that, although thermodynamically, laurite can 

be a liquidus phase that crystallizes directly from a sulfide-undersaturated magma, many 

grains of laurite may be ‘secondary’, although still magmatic. Their experiments showed that 

Ru metal nucleates on the surfaces of chromite grains, and that later reaction between Ru and 

S following an increase in/S2 forms laurite. In either of the above cases, the presence of 

laurite is indicative of sulfur-undersaturated conditions at the time of chromite precipitation. 

This common association in the Overysel chromitites of laurite on the surfaces of chromite 

grains may imply that the chromitites crystallized under conditions of S undersaturation, 

however very few were found as inclusions and no Ru-Os-Ir alloy was found.

If sulfur-saturation occurs concurrently with, or prior to, the earliest crystallizing phases, 

laurite and Ru-Ir-Os alloy will not form and the IPGE will partition into mss (Brenan and 

Andrews, 2001). There are no records of Ru-Ir-Os alloy in the Platreef and, with the 

exception of the chromitites described here laurite is also very rare (Kinloch, 1982; Armitage

156



Chapter 7. Distribution of PGE in the Platreef at Overysel -  a PGM and LA-ICP-MS study

et al., 2002; Hutchinson and Kinnaird, 2005; Holwell et al., 2006). The fact that the 

chromitites contain appreciable amounts of Rh- and Ir-bearing PGM, particularly 

hollingworthite which is a relatively high temperature phase stable to at least 850°C 

(Makovicky, 2002), would suggest that the PGM formed at a similar, or earlier, time to the 

sulfides, with Rh and Ir forming discreet sulfarsenide PGM associated with chromite grains. 

These factors, together with the high concentrations of the IPGE within the cooling products 

of mss would strongly support a theory of sulfur saturation, and concentration of PGE within 

the sulfide liquid, occurring concurrently with or prior to chromite precipitation. Given the 

relatively small volumetric proportions of chromite in the Platreef, it is likely that chromite 

precipitation occurred at a similar time to S saturation with laurite and hollingworthite 

forming with chromite, but still allowing for appreciable amounts of the IPGE and Rh to be 

scavenged by the sulfide liquid.

7.10.4 Comparison with other Platreef localities and economic implications 

The dominance of Pt and Pd tellurides and bismuthotellurides in the Platreef pyroxenites is 

common throughout the Platreef (Viljoen and Schurmann, 1998; Hutchinson and Kinnaird, 

2005; Holwell et al., 2006). Hutchinson and Kinnaird (2005) attributed the mineralogy of the 

PGM at Turfspruit, which is dominated by tellurides, antimonides and bismuthides, to be a 

result of the incorporation of S, As, Te, Bi and Sb into the Platreef magma from 

devolatilization of Duitchland Formation floor rocks. However, whilst this may be the case 

with Sb and As (antimonides and arsenides are very rare at Overysel), the ubiquity of Te and 

Bi along strike may suggest its presence in the Platreef magma was derived before 

emplacement, rather than as a local addition from floor rocks.

Away from the ubiquitous tellurides, the PGM mineralogy at Overysel contrasts sharply with 

that found further south where sediments form the floor. The major contrasts between 

Overysel and Sandsloot are the presence of PGE sulfides and paucity of antimonides and 

alloys at Overysel. Work by Armitage et al. (2002) and Holwell et al. (2006) have shown that 

fluid activity has exercised a considerable influence on the resulting mineralogy, distribution 

and BMS association of the PGE, particularly into the footwall at Sandsloot, with all of the 

antimonide and alloy dominated assemblages at Sandsloot occurring within rocks that have 

been subjected to significant fluid activity related. Such volatile activity is more uncommon at 

Overysel, except within and around calc-silicate xenoliths, and the extent of hydrothermal 

activity is governed by a fundamental footwall control. The dolomite floor at Sandsloot
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released large volumes of fluids during assimilation and metamorphism, and subsequent 

serpentinization, whereas the largely anhydrous gneissic footwall at Overysel produced few 

volatiles. As a result of the lack of hydrothermal redistribution at Overysel, the PGE telluride- 

BMS association observed in the pyroxenites at this locality appear to be the most ‘primary’ 

mineralization style preserved, in terms of it being unaltered by fluids, and being a direct 

result of the fractional crystallization of a sulfide liquid. The ubiquity of this assemblage to 

varying degrees all along strike indicates a common initial mineralization style, but also that 

hydrothermal redistribution is highly variable along strike.

This study has revealed that the Platreef at Overysel preserves a mineralization style that is 

the product of the fractional crystallization of a sulfide liquid within the Platreef magma. 

Pyrrhotite and pentlandite host virtually all of the bulk Os, Ir and Ru. Virtually all the bulk Rh 

and some Pd is hosted by pentlandite, whereas virtually all Pt and Au, and some Pd form 

discreet PGM that are in close spatial association with BMS. This knowledge has obvious 

implications for exploration and mineral processing. More important, is the identification that 

extensive hydrothermal activity disrupts this assemblage by redistributing the PGE, changing 

the mineralogy, and often decoupling the PGE-BMS association. The amount of hydrothermal 

activity is fundamentally controlled by footwall lithology and for this reason, in different 

areas of the Platreef (and by implication other basal PGE-BMS deposits, where the 

assimilation of reactive footwall rocks has been extensive) the ‘classic’ primary associations 

are less likely to hold true throughout the reef. As a result, exploration for, and recovery of, 

the ore in such areas may suffer without detailed mineralogical investigations.

7.11 Conclusions

This combined PGM and LA-ICP-MS study has revealed the complex behaviour of the PGE 

during Platreef mineralization. A sulfide liquid originally concentrated PGE and semi metals 

such as Bi and Te in the Platreef magma at an early stage, before the crystallization of 

cumulus orthopyroxene, but concurrently with chromite. This possibly occurred in a deep 

staging chamber or conduit prior to intrusion. During post-intrusion crystallization of the 

sulfide, IPGE and Rh partition into early crystallizing mss, which on further cooling exsolved 

to pyrrhotite and pentlandite, with the IPGE remaining in solid solution within both phases 

and Rh partitioning preferentially into pentlandite. Virtually all Pt, Au and some Pd was 

concentrated with semi metals such as Bi and Te in a late stage melt with some excess Pd
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partitioning into Ni-rich mss. This immiscible semi metal rich melt cooled to form PGM 

around the margins of the sulfide blebs. Tiny droplets trapped in the crystallized mss and iss 

formed PGM microinclusions. Some secondary redistribution by minor hydrothermal activity 

has occurred in and around xenoliths, and in the deepest zones of footwall mineralization, 

which typically form more bismuthide-dominated PGM assemblages and have led to the 

decoupling of PGM from sulfide minerals. Overall, however, the lack of hydrothermal 

interaction and overprinting compared to that observed in areas where sediments form the 

immediate footwall, raises the possibility that the Platreef at Overysel represents the most 

‘primary’ style of Platreef mineralization. As such, the Platreef can be considered to be 

primarily an orthomagmatic PGE-Cu-Ni sulfide deposit.
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8.1 Abstract

The Platreef, the world’s third largest platinum-group element (PGE) deposit, is a 10-400m 

pyroxenitic unit at the base of the northern limb of the mafic Bushveld Complex, hosting PGE 

mineralization in association with base metal sulfides. The sulfide mineralization is thought to 

have been either (i) largely magmatic in origin, with contamination by assimilation of local 

floor rocks considered an ore-modifying process, or (ii) that assimilation of country rock S 

and silicic contamination caused S saturation in the magma with contamination being 

fundamental to the ore-forming process. We have performed an extensive and detailed sulfur 

isotope study of the Platreef which indicates that magmatic signatures (<534S = 0 to +2%o) are 

preserved in early formed sulfide droplets within the Platreef pyroxenites in the area from 

Sandsloot to Witrivier. These values are comparable to sulfide inclusions in diamonds in the 

nearby Klipspringer kimberlite and are considered to have a primary mantle origin. There is 

no indication of any significant external S in any of the primary sulfides in the Sandsloot- 

Witrivier area, however, later sulfides found in calc-silicate floor rocks at Sandsloot and 

Zwartfontein and in xenoliths of calc-silicate throughout the section indicate an input of 

country rock S. Anhydrite bearing horizons in the Malmani dolomites may have exchanged S 

with sulfide magmatic Platreef sulfide during extensive hydrothermal activity following 

Platreef intrusion, giving sulfides in the fluid affected rocks a heavier S isotope signature than 

the early formed sulfides. The Archaean basement, although it does contain minor amounts of 

sulfide, is not a significant contributor to the S budget of the Platreef. Previous studies have 

indicated that in areas where the sedimentary floor rocks contain appreciable sulfides, rather 

than sulfates, such as at Turfspruit, the Platreef sulfides are extensively contaminated with 

country rock S. Assimilation of pyrite-bearing shales in the Turfspruit area has locally 

upgraded the S content of the Platreef and given the basal Platreef sulfides a heavier isotopic 

signature.

Sulfur saturation in the Platreef magma took place before contamination, probably in a 

staging chamber prior to intrusion. A major pulse of magma entrained the pre-formed PGE- 

rich sulfides and was injected to form the Platreef, where assimilation of country rock sulfides 

upgraded the S content on a strictly local scale, and hydrothermal leaching introduced S from 

country rock sulfates into later stage sulfides, again on a local scale. South of Zwartfontein, it 

is proposed that the Platreef was intruded into sediments of the Transvaal Supergroup, which 

formed the floor and the roof of the Platreef. North of Zwartfontein, the Platreef intruded the 

boundary between the Malmani Supergroup sediments and the Archaean basement. This
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could have potentially mineralized the roof calc-silicates north of Zwartfontein in a similar 

manner to the floor in the Sandsloot area. The later intrusion of the Main Zone magma formed 

a magmatic unconformity on top of the cold Platreef, and entrained large rafts of mineralized 

calc-silicate for tens of kilometres north of the last footwall outcrop of calc-silicate.

Figure 8.1. Geological map of the Bushveld Complex showing the location of the northern limb and 
the Klipspringer kimberlite (after Kinnaird et al.y 2005).

8.2 Introduction

The 2.06Ga Bushveld Complex is the world’s largest layered igneous complex and is located 

in the north-eastern part of South Africa (Fig. 8.1). The Complex holds around 75% of the 

world’s known resources of platinum-group elements (PGE), including the three largest 

deposits on earth: the UG2 chromitite, the Merensky Reef and the Platreef (Cawthom, 1999). 

The Complex is made up of layered ultramafic and mafic cumulates intruded into 

Palaeoproterozoic sediments of the Transvaal Supergroup and Archaean granite/gneiss 

basement. The ultramafic-mafic sequence, known as the Rustenburg Layered Suite (Fig. 8.1),
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is divided into five zones (Hall, 1932) comprising a Marginal Zone of norites, Lower Zone 

pyroxenites and harzburgites, Critical Zone chromitite-pyroxenite-norite cyclic units, Main 

Zone gabbronorites and Upper Zone anorthosites, ferrogabbros and magnetites. The Complex 

is divided into five limbs: roughly symmetrical Eastern and Western limbs, a smaller 

Northern limb, plus a Southern limb covered by younger rocks and an extension of the 

Western limb to the west known as the Far Western limb (Fig. 8.1). The Platreef is located in 

the northern limb of the Complex, north of the town of Mokopane, where the Lower and 

Critical Zones are not fully developed. The Platreef is a 10-400m thick package of pyroxenitic 

lithologies with PGE and Ni-Cu base-metal sulfide (BMS) mineralization, and is located at 

the base of the igneous sequence, overlain by norites and gabbronorites assigned to the Main 

Zone of the Complex (Fig. 8.2). From Mokopane northwards, the Platreef directly lies upon a 

succession of progressively older sedimentary units: quartzites and shales of the Timeball Hill 

Formation, shales of the Duitschland Formation, the Penge banded iron formation and 

dolomites of the Malmani Subgroup. North of the farm Zwartfontein, Archaean basement 

granites and gneisses form the floor rocks (Fig. 8.2).

The Platreef is relatively enriched in sulfur compared to the Merensky Reef and other 

stratabound PGE-sulfide deposits within layered igneous complexes, with some borehole 

cores showing up to 30% sulfides over several metres (Kinnaird, 2004). This means that in 

addition to being one of the world’s largest PGE deposits, the association of the PGE with 

significant amounts of BMS make the mines on the Platreef significant producers of Ni and 

Cu as well as PGE. For example, in 2005 Anglo Platinum’s PPRust operation (comprising the 

Sandsloot and Zwartfontein South mines) produced over 400,000 ounces of refined PGE 

along with 4600 tons of Ni and 2700 tons of Cu (Anglo Platinum Annual Report, 2005). 

Despite its major economic significance, the processes governing the formation of the 

mineralization are contentious, with the origin of sulfur key to the debate. Buchanan et al. 

(1981) concluded that the Platreef mineralization was the result of an initially sulfur-rich 

magma incorporating additional sulfur from the assimilation of sulfur bearing footwall rocks. 

Buchanan and Rouse (1984) agreed with this and added that silicic contamination from 

dolomite and granite triggered the precipitation of immiscible sulfides. Kruger (2005a) also 

advocated the assimilation of S from country rocks in the formation of the Platreef and 

Merensky Reef. In contrast, Barton et al. (1986) and Lee (1996) concluded that the sulfide 

mineralization was of primary magmatic origin, with pre-formed PGE-enriched sulfides 

introduced from a staging chamber and settling out along the base of the intrusion to form the
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proto-Platreef. In these models, immiscible sulfide liquid precipitation and PGE enrichment 

predated interaction with the country rocks, and was not a consequence thereof. This study 

uses conventional and in situ laser sulfur isotope analyses of carefully paragenetically defined 

sulfides within the Platreef to test these competing theories and assess the role of 

contamination in triggering sulfur saturation in the Platreef.
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Figure 8.2. Geological map of the northern limb of the Bushveld Complex showing the localitites 
referred to in the text (after van der Merwe, 1978).
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8.3 Sulfur Saturation and the use of Sulfur Isotopes

The role of externally derived S is considered by many workers to be a critical factor in the 

development of magmatic Ni-Cu-PGE deposits. Assimilation of country rock S is considered 

essential in producing S saturation in high-degree mantle melts such as komatiites (e.g.

Keays, 1995; Lambert et al., 1998). In basaltic melts, such as those that formed the Bushveld 

Complex, although S saturation can be attained during low pressure fractionation, 

assimilation of country rock S is considered by many as the most reasonable mechanism for 

producing the large amounts of sulfide required for giant magmatic ore deposits (e.g. Li et al., 

2002; Ripley et al., 2003). However, S saturation and the generation of economic sulfide 

mineralization can be achieved by other mechanisms. Contamination by silica due to the 

assimilation of felsic country rocks can decrease the solubility of S in a mafic magma (Irvine, 

1975; Li and Naldrett, 1993), and an increase in magma oxygen fugacity, for example in 

response to the assimilation of oxygen-bearing country rocks, can lower the FeO content and 

thus the S-carrying capacity of the magma (Buchanan and Nolan, 1979). As a variety of 

contamination-related processes are capable of inducing S saturation, basal and marginal 

sulfide mineralization is a common feature of many layered intrusions. Examples include the 

Basal Series of the Stillwater Complex; the Penikat-Portimo Complex, Finland; the Muskox 

intrusion, Canada; the Federov-Pansky intrusion, Russia (see compilation by Lee, 1996, and 

references therein); and in conduit systems such as Noril’sk (Ripley et al., 2003) and the 

Uitkomst Complex, South Africa (Li et al., 2002). The Platreef shares many characteristics 

with these basal or marginal-type deposits, which raises the possibility that contamination was 

a factor in the development of the Platreef too.

Sulfur isotopes can uniquely assess the role that externally derived S plays in mafic magmatic 

systems, providing a quantitative indicator of S assimilation, provided that the isotopic 

composition of S in the country rocks is distinct from that of mantle-derived S (<534S 0±2%6). 

Relatively sulfide-poor stratiform Ni-Cu-PGE reef deposits in layered mafic-ultramafic 

complexes such as the Merensky Reef of the Bushveld Complex and the J-M reef of the 

Stillwater Complex are thought to have formed through one of the following ways: magma 

mixing (e.g. Campbell et al., 1983), by magmatic fluids percolating upwards through a crystal 

pile to be deposited at a chemical reaction front (Boudreau and Meurer, 1999), or due to 

pressure fluctuations within the magma chamber (Cawthom, 2005). They are not considered 

to be the result of assimilation of external S, and S isotope studies of these S-poor deposits 

indicate little or no contribution from country rocks to the S budget, and all have isotopic
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ratios indicative of mantle-derived S only (see compilation by Ripley and Li (2003), and 

references therein). In contrast, S-rich deposits such as Noril’sk, the Duluth Complex, 

Voisey’s Bay (Ripley and Li, 2003) and the Uitkomst Complex (Li et al., 2002) commonly 

display a wide range of <S34S values indicating addition of crustally-derived S with variable 

(S34S compositions.

In the primary magmatic scenario for the Platreef sulfide mineralization proposed by Barton 

et al. (1986) and Lee (1996), the S isotope signature of early-formed sulfides should be 

consistent with mantle values, although secondary sulfides and sulfides near the basal contact 

may show evidence of the addition of country-rock S. In the contamination-driven hypothesis 

advocated by Buchanan et al. (1981) and Buchanan and Rouse (1984), significant addition of 

S from contamination to produce S saturation in the Platreef would be reflected by a 

component of crustal S derived from the country rocks, and this should be present in sulfides 

throughout the Platreef succession. If silicic contamination occurred from S-poor country 

rocks, such as basement granites as suggested by Barton et al. (1986), then the S isotope ratio 

should retain a dominant mantle signature. If changes in/O 2 caused by assimilating country 

rock sediments triggered S saturation, the S isotope signature would be expected to show 

evidence of floor rock S input.

8.4 Previous Platreef S Isotope Work

A compilation of the Platreef S isotope data available in the literature is shown in Fig. 8.3. 

Until very recently, the only S isotope work that had been performed on the Platreef was by 

Buchanan et al. (1981) and Buchanan and Rouse (1984), who presented limited data for 

various sulfides from the farms Tweefontein and Turfspruit, including a <534S value of +7.1%c 

in a sample of sulfate from the evaporite-bearing Malmani Subgroup. Their pyroxenite values 

between +2.7 and +6.3%c for Tweefontein were considered to be magmatic signatures, with 

the elevated values attributed to contamination by anhydrite from the Malmani Subgroup. 

Additional data from the farm Turfspruit (Fig. 8.2) was presented by Buchanan and Rouse 

(1984), including anhydrite associated with the Duitschland Formation with a d34S value of 

+17%o. The data of these two studies are, however, very limited and an effort to assess the 

least contaminated, most magmatic sulfides was not made, and therefore the interpretations 

should be viewed with caution.
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Figure 8.3. Summary of previous S isotope data on the Platreef and sulfide inclusions in diamonds 
from the nearby Klipspringer kimberlite. Tweefontein data from Buchanan et al. (1981) and Buchanan 
and Rouse (1984), Rietfontein data from Sharman-Harris et al. (2005), Turfspruit data from Buchanan 
and Rouse (1984) and Sharman-Harris et al. (2005), Macalacaskop data from Sharman-Harris et al. 
(2005), Townlands data from Manyeruke et al. (2005) and Klipspringer kimberlite data from 
Westerlund et al. (2004).

It was over twenty years before any further work on Platreef S isotopes was produced. 

Manyeruke et al. (2005) published data for sulfides in the Platreef on the farm Townlands 

(Fig. 8.2) that displayed <$34S values ranging from +2.6 to +10.1 %o (Fig. 8.3), indicating an 

element of isotopically heavy external S contamination, with footwall rocks of the Timeball 

Hill Formation displaying <534S values in the range +14 to +17%o. A more detailed study by 

Sharman-Harris et al. (2005) presented data for the Platreef on the farms Rietfontein,
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Turfspruit and Macalacaskop (Figs. 8.2, 8.3), together with footwall lithologies from the 

Duitschland and Timeball Hill Formations and the Malmani Subgroup. They reported <534S 

values of sulfides from the upper part of the Platreef in the range +1.1 to +1.8%o, which the 

authors consider to be of a magmatic origin, however, sulfides within the lower 180m of the 

Platreef package showed <534S values of +3 to +6%o. Pyrite within black shales of the 

Duitchland Formation produced a value of +8.2%c and the elevated values in the lower 

Platreef were attributed to contamination from this source of footwall sulfide.

Prior to this study, the Archaean granite/gneiss basement, which forms the floor to the 

Platreef northwards from the farm Zwartfontein and the basement to the Main Zone-hosted 

PGE deposits on the Aurora project (around the farm La Pucella in the far north of the 

Northern limb -  Fig. 8.2), has not been considered to be a significant source of S, and no 

work has been carried out to determine the S content and isotope signatures of these rocks. 

However, it is clear from the existing studies that many of the Transvaal Supergroup 

sediments that form the footwall to the Platreef carry S that is isotopically heavier than 

magmatic S. An indication of the local S isotope signature of the lithospheric mantle of the 

Kaapvaal Craton immediately beneath the Bushveld Complex can be estimated from a suite 

of sulfide inclusions within kimberlite-hosted diamonds. Westerlund et al. (2004) analyzed 

such a suite from the Klipspringer kimberlite, just 25km east of Mokopane (Fig. 8.1), which 

gave S34S values in the range -1.8 to +2.4%c (mean +1.0%o, n=44), and these are plotted on 

Fig. 8.3 along with the existing Platreef data. Given the clear difference in S isotope signature 

of the Transvaal Supergroup to the local mantle signature, the use of S isotopes to assess the 

role of contamination in the Platreef is clearly vindicated.

This study aims to use S isotopes to examine the origin(s) of S in the Platreef, and 

quantitatively assess the role of contamination in the development of the mineralization, with 

consequent genetic implications for the origin of the deposit. In addition, we investigate the S 

isotope signature of the Archaean basement rocks in the vicinity of the northern limb of the 

Bushveld Complex.

168



Chapter 8. Sulfur isotope variations within the Platreef

8.5 Samples and Methods

Samples for this study were collected from Anglo Platinum’s open pit mines at Sandsloot and 

Zwartfontein South, and from two borehole cores drilled on the farm Overysel (Fig. 8.2). One 

borehole core drilled through the Platreef and additional samples of Archaean basement on 

the farm Witrivier were sampled from drillcore archived by Anooraq Resources. Samples of 

Archaean basement were also collected from several boreholes on Pan Palladium’s Aurora 

Project, on the farm La Pucella (Fig. 8 .2). The sample suite covers a full range of Platreef 

lithologies, as well as mineralization at the base of the hangingwall and mineralized rocks 

from a variety of footwall lithologies and xenoliths. This is by far the largest, most 

geographically extensive and texturally diverse suite of Platreef samples that has ever been 

analyzed for S isotopes. A schematic representation of the lithologies present along the strike 

section we have sampled is shown in Fig. 8 .4. Detailed maps of the rock relationships at 

Sandsloot are given in Armitage et al. (2002) and McDonald et al. (2005), and at 

Zwartfontein South by Holwell and Jordaan (2006). Detailed lithological logs of the borehole 

cores from Overysel are given in Holwell and McDonald (2006).

Sandsloot Zwartfontein Overysel Drenthe Witrivier

Hangingwall lithologies: 

gabbronorite 

mottled anorthosite

Platreef lithologies: 

v X v  barren f-g feldspathic pyroxenite 

I  feldspathic pyroxenite 

I  peridotite (olivine-replaced reef) 

chilled feldspathic pyroxenite 

quartzo-feldspathic pyroxenite

Figure 8 .4. Schematic cross section showing the major lithologies encountered along strike o f the 
Platreef and the corresponding positions of the sample localities.

Lower Zone intrusions:

|  pyroxenite

Footwall lithologies:

serpentinised calc-silicate xenoliths 

clinopyroxenite 

| serpentinite 

calc-silicate 

gneiss

granite
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Sulfide samples for conventional analysis were selected on the basis of textural and 

compositional homogeneity by reflected-light microscopy. Sulfides were micro-drilled from 

polished slabs and subsequently converted to SO2 for mass spectrometric analysis by 

combustion with cuprous oxide, following the procedure of Robinson and Kusakabe (1975). 

Samples were combusted under vacuum at 1070°C for 25 minutes, and the SO2 gas produced 

was cryogenically purified using a CCVacetone slush trap to remove water and a standard n- 

pentane trap to separate SO2 and trace CO2, prior to analysis on a VG SIRA II gas mass 

spectrometer. Raw machine (566S02 data were converted to <534S values by calibration with 

international standards NBS-123 (+17.1%c) and IAEA-S-3 (-31%o), as well as SUERC’s 

internal lab standard CP-1 (-4.6%c). Reproducibility of the analytical results was controlled 

through replicate measurements of these standards. All sulfur isotope compositions were 

calculated relative to Vienna Canon Diablo Troilite (V-CDT), and are reported in standard 

notation.

A series of in situ laser combustion analyses were performed on polished slabs of 48 samples. 

The laser ablation technique allows analysis of samples that would be too small to analyze 

conventionally. In addition, textural inhomogeneities can be identified much more efficiently 

and be avoided when sampling. The polished blocks were placed into a sample chamber, 

which was evacuated and subsequently filled with an excess of oxygen gas. Previously 

selected sample areas were combusted using a SPECTRON LASERS 902Q CW Nd-YAG 

laser (1-W power), operating in TEMoo mode. Details of the system design, laser 

characteristics and experimental conditions are described in Kelley and Fallick (1990) and 

Wagner et al. (2002). To minimize the potential effects of small-scale sample heterogeneity 

undetectable by conventional preanalysis, each laser extraction was carried out by moving the 

laser beam steadily across the sample, thereby excavating a single trench of <3mm in length 

and approximately 50pm in width. Depth penetration varies with the reactivity of each 

mineral and can be effectively controlled by the spot velocity. The SO2 gas produced by each 

laser combustion was purified in a miniaturized glass extraction line analogous to the one 

used for conventional analysis and is described in Kelley and Fallick (1990). Determination of 

the sulfur isotope composition of the purified SO2 gas (<566S02) was carried out on-line by the 

VG SIRA II gas mass spectrometer as used for conventional analysis.

During the laser ablation technique, there is a systematic fractionation of <S34S values of the 

resulting SO2 gas compared to the mineral <$34S, and small correction factors are required to
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allow for this (Wagner et al., 2002). We calculated the fractionation factors based on repeated 

laser and conventional analyses of individual sulfide phases during this study. Table 8.1 lists 

the corrected laser data and the fractionation factors.

Whole rock sulfur concentrations were determined by standard combustion iodometric 

procedures using a Laboratory Equipment Company (LECO) titrator at the Camborne School 

of Mines, UK. Depending on sulfide content, between O.lg and l.Og of sample were 

combusted for each titration. Consistent results were obtained re-running blanks, standards 

and selected samples in triplicate. The standard deviations of the weight percentage of S in the 

samples run in triplicate ranged from 0.0015 to 0.0572, with a mean of 0.0146.

8.6 Petrology and Mineralization

The petrology of the reef and its footwall at Sandsloot are described in detail by Armitage et 

al. (2002), McDonald et al. (2005) and Holwell et al. (2006), at Zwartfontein by Holwell and 

Jordaan (2006) and at Overysel by Holwell and McDonald (2006) and are summarized here. 

Fig. 8.4 shows a generalized section through the lithologies present along the strike of the 

Platreef, which were sampled for this study. The footwall at Sandsloot and Zwartfontein is 

made up of variably serpentinized calc-silicates derived from metamorphism of the Malmani 

Subgroup, and a unit of metamorphic clinopyroxenite at the contact with the overlying 

feldspathic pyroxenites of the Platreef. The feldspathic pyroxenites contain >70% cumulus 

orthopyroxene with intercumulus plagioclase and clinopyroxene. At the top of the Platreef 

succession, a fine-grained feldspathic pyroxenite barren of mineralization is often present.

The pyroxenites are occasionally altered to olivine-bearing lithologies and contain abundant 

xenoliths of variably serpentinized calc-silicate. Veins of quartz-feldspar-calcite cross-cut all 

lithologies and are most common at Sandsloot and Zwartfontein. The footwall north of 

Zwartfontein, including Overysel, Drenthe, Witrivier and La Pucella, comprises Archaean 

basement made up of banded gneisses containing quartz, Na-rich plagioclase and 

orthopyroxene, and granites. The gneisses at Overysel have undergone partial melting during 

the intrusion of the Platreef (Cawthom et al., 1985; Holwell and McDonald, 2006). As a 

result, the lowermost Platreef pyroxenites contain abundant quartz. At Drenthe and Witrivier, 

the uppermost part of the Platreef pyroxenites is intruded by a body of gabbronorites thought 

to be of hangingwall affinity (Naldrett, 2005). The base of the pyroxenites at Witrivier is very 

fine-grained and appears chilled against the footwall gneisses and granites. The hangingwall
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along the entire strike length is made up of gabbronorites and norites, with a thin (<lm) 

mottled anorthosite often present at the very base of the hangingwall that is particularly 

common at Sandsloot, Zwartfontein and Turfspruit.

8.6.1 Sulfide mineralization

Stratigraphically, PGE and BMS mineralization is heterogeneously distributed throughout the 

pyroxenitic Platreef lithologies. The richest mineralization is usually hosted by medium- or 

coarse-grained feldspathic pyroxenites and typically makes up around 2-3% of the modal 

mineralogy, although the stratigraphic position of the most mineralized portions can vary on a 

scale of tens of metres. There are sporadic, thin zones of mineralization at the very base of the 

hangingwall that are almost always in contact with underlying mineralized Platreef pyroxenite 

(Holwell et al., 2005). The mineralization can also extend to some considerable depths into 

both the metasedimentary and gneissic footwall, the extent and volume of which also varies 

considerably on a local scale.

Texturally, PGE mineralization is usually associated with BMS in unaltered reef sections. The 

most primary sulfide texture is illustrated in Figs. 8.5a and b, and is of fractionated blebs of 

sulfide comprising a core of pyrrhotite, with pentlandite and chalcopyrite around the margins 

residing as interstitial phases between cumulus orthopyroxene grains within the feldspathic 

pyroxenites. Pentlandite also occurs as exsolution flames within pyrrhotite (Figs. 8.5a, c). 

Pyrrhotite and pentlandite are the cooling products of monosulfide solid solution which is the 

first phase to crystallize from a sulfide liquid, with the residual sulfide liquid forming 

intermediate solid solution, which on cooling forms chalcopyrite and some pentlandite (e.g. 

Bames et al., 2006). Whilst all these sulfides are actually low temperature phases, we refer to 

this textural association in the feldspathic pyroxenites as the most ‘primary’ in that they are 

unaltered, and are the direct cooling product of a fractionating sulfide liquid within the 

Platreef magma.

In the footwall gneisses at Overysel, the sulfide assemblage is similar to the reef pyroxenites 

and texturally, the sulfides occur around rounded silicate grains (Fig. 8.5d) that Holwell and 

McDonald (2006) have interpreted to be the product of the percolation of a sulfide liquid 

through a network of inter-granular pore-space, formed during partial melting of the footwall 

gneisses. Massive sulfides (Fig. 8.5c) occur close to the Platreef contact and at depth within 

the gneissic footwall, and Holwell and McDonald (2006) have suggested that these were
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likely to occur above zones of low permeability where the downward migration of the sulfide 

liquid was restricted or not possible. The assemblages deeper into the footwall can become 

more chalcopyrite dominated (Fig. 8.5d). In all the above assemblages, platinum-group 

minerals (PGM) are commonly located around the margins of the sulfide blebs.

In parts of the reef that have undergone significant fluid interaction, such as in serpentinites 

and calc-silicates, PGE and BMS are often decoupled, and the sulfide textures are less 

consistent. Although pyrrhotite, pentlandite and chalcopyrite remain the major phases, they 

are joined by pyrite, bomite, galena, chalcocite and a host of minor sulfide phases. Fig. 8.5e 

illustrates the more disseminated nature of sulfide mineralization within a sample of calc- 

silicate, and the lack of the well defined phase zonation that is seen in the ‘primary’ blebs. In 

serpentinized footwall rocks, chalcopyrite is rare, and granular pyrrhotite and pentlandite are 

often altered to magnetite (Fig. 8.5f). All of these assemblages within metasedimentary rocks, 

or hydrothermally altered rocks, that lack the zoned, fractionated textures of the blebs within 

the reef, we have termed ‘secondary’, in that they are not the direct in situ cooling product of 

a sulfide within the Platreef magma, having undergone significant hydrothermal 

redistribution. However, they are directly related to the Platreef sulfides in that they have 

associated PGE mineralization.

The Archaean basement rocks north of Zwartfontein contain some sulfide mineralization.

This relatively low-volume mineralization consists of disseminated pyrite, millerite and 

chalcopyrite within basement gneisses, granites and amphibolites (Fig. 8.5g). This is 

unrelated to the main Platreef mineralizing event due to the lack of associated PGE 

mineralization and distinct sulfide assemblages. We have termed these ‘basement’ sulfides to 

distinguish that they are not Platreef related.

Late-stage veins containing calcite, quartz and feldspar, locally referred to as quartzo- 

feldspathic, or QF, veins contain sporadic sulfide mineralization. The sulfide assemblage is 

very different to that in the Platreef, and is made up of large blebs and veins of most 

commonly chalcopyrite (Fig. 8.5h), with some galena, sphalerite, bomite, pyrrhotite and 

pentlandite. Due to the cross-cutting nature of these veins and their clearly post-Platreef and 

lower Main Zone age, we have distinguished these as ‘late stage’ sulfides.
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Tmrfl

Figure 8.5. Backscattered electron photomicrographs of sulfides from the Platreef. (A -  SNN1-8) and 
(B -  DH-P): interstitial fractionated sulfide blebs made up of pyrrhotite (po) with pentlandite (pn) and 
chalcopyrite (cpy) rims surrounded by cumulus orthopyroxene (opx) and intercumulus plagioclase 
(plag); (C): massive sulfide from the footwall at Overysel (sample OY387-381); (D): chalcopyrite 
dominated assemblage with electrum (Au,Ag) in gneiss (OY335-316) from the base of the OY387 
core; (E): disseminated sulfide within clinozoisite (czo) from within calc-silicate footwall rock at 
Sandsloot (SNS1-40); (F): altered sulfide assemblage of pyrrhotite and pentlandite from within a 
serpentinized footwall calc-silicate from Sandsloot (SNS1-39). Magnetite (mt) replaces the sulfides 
that are surrounded by serpentine (spt). (G): disseminated assemblage of pyrite (py), milllerite (mill) 
and chalcopyrite within amphibolite xenolith in Archaean basement granite at Witrivier (PR369-44). 
(H): vein of chalcopyrite and pyrrhotite with galena (gn) in a late stage cross cutting vein from 
Sandsloot (SNN1-65) containing plagioclase and calcite (cc).
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8.7 Analytical Results

The results of over 120 analyses of sulfides from the Platreef and associated country rocks on 

the farms Sandsloot, Zwartfontein, Overysel, Witrivier and La Pucella are listed in Table 8.1. 

Where available, corresponding whole-rock S concentrations are also given.

8.7.1 Sandsloot

The histogram in Fig. 8.6a shows the range of <534S values for sulfides in a variety of rock 

types from the Sandsloot pit. The range in <534S for primary sulfides in the Platreef feldspathic 

pyroxenites is 0 to +2.6%o, with a mean of +1.8%c. Footwall calc silicates and xenoliths of 

serpentinized calc-silicate contain sulfides with slightly heavier <534S values in the range +2.5 

to +6%o, although not all footwall rocks display heavy signatures. A large bleb of sulfide in a 

footwall serpentinite (SNS1-39) had some of the lightest <534S values of all the Sandsloot 

samples at +0.3%c. The analysis from a sample of hangingwall mottled anorthosite (SNNl-7a 

-  Table 8.1) gave a <S34S value of +2.2%c, which is almost identical to the feldspathic 

pyroxenites that it rests upon (+1.8 to +2.6%c; SNN1-8, 18a, 37 - Table 8.1). The analyses 

from olivine-replaced reef gave variable S34S values of +1.4 and +3.1%c. Chalcopyrite, 

pyrrhotite and sphalerite in late-stage quartz-feldspar-calcite veins gave consistently heavy 

signatures of around +8% c .

8.7.2 Zwartfontein

Data from the Zwartfontein South pit are shown in Fig. 8.6b. Primary sulfide in the Platreef 

pyroxenites gave <534S values between -0.6 and +1.9%c (mean +0.7%c). Olivine-replaced reef 

samples produced similar values, as did some chalcopyrite within a calc-silicate xenolith. 

Veins of pyrite within a sample of sheared serpentinite, which formed the upper contact of the 

Platreef against hangingwall mottled anorthosite, gave a slightly heavier <534S value of +3.2%o.

8.7.3 Overysel

The histogram in Fig. 8.6c displays the range in <534S of sulfides in a variety of rock types 

from the two cores drilled on the farm Overysel. In addition, the data from cores OY335 and 

OY387 are plotted with depth in Figs. 8.7a and b. Virtually all the analyses from the Platreef 

pyroxenites have <534S values of around +2% o  (mean +1.8%o), comparable to that at Sandsloot. 

No analyses gave results heavier than +2.1%c. One sample of quartzo-feldspathic pyroxenite, 

which is at the base of the pyroxenite package in core OY387, produced a slightly heavier 

<534S signature of +2.4%o.
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Table 8.1. Results of all conventional (c) and laser (1) S isotope analyses for Platreef sulfides together 
with whole rock S concentrations where available from Sandsloot, Zwartfontein, Overysel and 
Witrivier, and Archaean basement rocks from Witrivier and La Pucella. Abbreviations of sulfide 
phases: po -  pyrrhotite; pn -  pentlandite; cpy -  chalcopyrite; sph -  sphalerite; py -  pyrite; mill -  
millerite. Fractionation factors used to correct laser data: po -1.0, pn -1.6, cpy -1.5, py -1.3.

Sample Lithology Sulfide texture 534S(%oVCDT) wt%S c/l
Sandsloot central
DH-P2 Pegmatitic feldspathic pyroxenite po primary +1.9 c
SNS1-29 Feldspathic pyroxenite cpy primary +0.3 0.696 I
SNS1-31a Pegmatitic feldspathic pyroxenite po primary +1.3 0.506 I
SNS1-35 Footwall clinopyroxenite po secondary +4.1 1.384 c
SNS1-35 Footwall clinopyroxenite po secondary +5.0 1.384 I
SNS1-39 Serpentinized footwall pn secondary +1.4 10.391 I
SNS1-39 Serpentinized footwall pn secondary +0.3 10.391 I
SNS1-40 Calc-silicate po(+pn) secondary +2.7 0.486 c

Sandsloot north
SNN1-7a Mottled anorthosite po primary +2.2 0.039 I
SNN1-8 Feldspathic pyroxenite po(+pn) primary +1.8 0.785 c
SNN1-8 Feldspathic pyroxenite pn primary +2.2 0.785 I
SNN1-18a Feldspathic pyroxenite po(+pn) primary +2.3 0.494 c
SNN1-18a Feldspathic pyroxenite Po(+pn) primary +2.6 0.494 c
SNN1-37 Pegmatitic feldspathic pyroxenite Po(+pn) primary +2.1 0.320 c
SNN1-40 Serpentinized calc-silicate xenolith po secondary +4.2 2.628 c
SNN1-40 Serpentinized calc-silicate xenolith po secondary +4.8 2.628 c
SNN1-40 Serpentinized calc-silicate xenolith po secondary +5.8 2.628 I
SNN1-43 Peridotite (olivine replaced reef) po(+pn) secondary +3.1 2.298 c
SNN1-43 Peridotite (olivine-replaced reef) cpy secondary +1.4 2.298 I
SNN1-65 Quartzo-feldspathic vein cpy secondary +8.6 0.683 c
SNN1-65 Quartzo-feldspathic vein cpy secondary +8.5 0.683 c
SNN1-65 Quartzo-feldspathic vein cpy secondary +8.1 0.683 c
SNN1-65 Quartzo-feldspathic vein cpy secondary +8.1 0.683 c
SNN1-65 Quartzo-feldspathic vein cpy secondary +8.2 0.683 I
SNN1-65 Quartzo-feldspathic vein po secondary +8.0 0.683 I
SS-05 Quartzo-feldspathic vein cpy secondary +11.1 c
SS-07 Quartzo-feldspathic vein sph secondary +7.6 c

Zwartfontein South
ZSS1-98 Feldspathic pyroxenite po primary +0.9 0.201 I
ZSS1-98 Feldspathic pyroxenite cpy primary +1.9 0.201 I
ZSE1-20 Feldspathic pyroxenite pn primary -0.6 I
ZSE2-70 Feldspathic pyroxenite po primary +0.8 I
ZSE2-70 Feldspathic pyroxenite cpy primary +0.7 I
ZSN3-52 Serpentinized pyroxenite pn secondary +1.8 c
ZSN3-52 Serpentinized pyroxenite cpy secondary +0.9 c
ZSN3-14 Serpentinized pyroxenite po secondary +1.9 c
ZSN3-47 Serpentinite py secondary +3.2 I
ZSE2-20 Calc-silicate cpy secondary +1.9 I

Overysel OY335
OY335-176 Feldspathic pyroxenite po primary +1.5 1.022 c
OY335-182 Feldspathic pyroxenite po+pn primary +1.7 0.981 c
OY335-193 Altered feldspathic pyroxenite Po(+pn) primary +2.0 0.242 c
OY335-193 Altered feldspathic pyroxenite pn primary +2.1 0.242 I
OY335-218 Serpentinized xenolith po secondary +2.5 0.054 I
OY335-230 Altered feldspathic pyroxenite pn late stage +1.8 0.500 c
OY335-230 Altered feldspathic pyroxenite pn late stage +2.0 0.500 I
OY335-230 Altered feldspathic pyroxenite pn late stage +1.9 0.500 I
OY335-253 Intrusive norite pn primary +2.5 0.356 I
OY335-275 Altered feldspathic pyroxenite pn primary +2.0 0.621 I
OY335-275 Altered feldspathic pyroxenite cpy primary +1.4 0.621 I
OY335-310 Gneiss po(+pn) secondary +3.1 0.107 c
OY335-310 Gneiss pn secondary +3.1 0.107 c
OY335-310 Gneiss po secondary +2.1 0.107 I
OY335-323 Gneiss pn secondary +1.6 0.048 I

Overysel OY387
OY387-246 Feldspathic pyroxenite py primary +2.0 0.423 I
OY387-252 Feldspathic pyroxenite cpy primary +2.0 1.265 I
OY387-252 Feldspathic pyroxenite pn primary +0.4 1.265 I
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Table 8.1 (cont.).

Sample Lithology Sulfide texture Q^Sl’fcoVCDT) wt%S c/l
OY387-252 Feldspathic pyroxenite pn primary +2.0 1.265 I
OY387-258 Feldspathic pyroxenite po(+pn) primary +2.0 0.519 c
OY387-258 Feldspathic pyroxenite po primary +1.7 0.519 I
OY387-260 Quartz vein py secondary +4.0 c
OY387-260 Quartz vein py secondary +3.6 c
OY387-260 Quartz vein py secondary +3.8 I
OY387-260 Quartz vein py secondary +3.7 I
OY387-272 Quartzo-feldspathic pyroxenite po primary +2.3 1.591 I
OY387-272 Quartzo-feldspathic pyroxenite pn primary +2.4 1.591 I
OY387-364 Amphibolitic gneiss po secondary +3.5 0.479 I
OY387-378 Net-textured sulfide in gneiss po secondary +4.9 7.726 c
OY387-378 Net textured sulfide in gneiss po secondary +4.6 7.726 I
OY387-380 Gneiss cpy secondary +4.7 1.253 c
OY387-381 Massive sulfide cpy secondary +3.2 38.750 c
OY387-381 Massive sulfide po secondary +4.3 38.750 c
OY387-381 Massive sulfide po secondary +5.1 38.750 c
OY387-381 Massive sulfide cpy2 secondary +4.8 38.750 c
OY387-381 Massive sulfide cpyi secondary +5.0 38.750 c
OY387-381 Massive sulfide cpy secondary +3.8 38.750 I
OY387-381 Massive sulfide cpy secondary +4.5 38.750 I
OY387-381 Massive sulfide po secondary +5.3 38.750 I
OY387-381 Massive sulfide cpyi secondary +2.1 38.750 I
OY387-381 Massive sulfide pn secondary +4.5 38.750 I
OY387-384 Lower Zone pyroxenite cpy secondary +4.8 1.788 c
OY387-384 Lower Zone pyroxenite cpy secondary +5.1 1.788 I
OY387-395 Gneiss cpy secondary +3.4 0.481 I
OY387-415 Gneiss cpy secondary +2.1 0.247 I
OY387-423 Gneiss pn(+cp) secondary +4.6 1.003 c
OY387-438 Granite cpy secondary +4.9 0.126 I

Witrivier
PR351-44 Gabbronorite pn(+po) secondary +4.1 c
PR351-44 Gabbronorite po secondary +3.0 I
PR351-44 Gabbronorite pn secondary +2.0 I
PR351-44 Gabbronorite cpy secondary +2.9 I
PR351-51 Feldspathic pyroxenite po primary +0.9 I
PR351-51 Feldspathic pyroxenite pn primary +0.2 I
PR351-59 Massive sulfide bleb in serpentinite po2 secondary +3.7 c
PR351-59 Massive sulfide bleb in serpentinite po1 secondary +4.2 c
PR351-59 Massive sulfide bleb in serpentinite cpy secondary +1.4 c
PR351-59 Massive sulfide bleb in serpentinite po2 secondary +0.8 c
PR351-59 Massive sulfide bleb in serpentinite po1 secondary +1.6 I
PR351-59 Massive sulfide bleb in serpentinite po2 secondary +3.7 I
PR351-59 Massive sulfide bleb in serpentinite po2 secondary +2.5 I
PR351-59 Massive sulfide bleb in serpentinite cpy secondary +1.2 I
PR351-65 Feldspathic pyroxenite po pr mary +1.8 I
PR351-75 Feldspathic pyroxenite po pr mary +2.0 c
PR351-75 Feldspathic pyroxenite po Pr mary +2.0 I
PR351-88 Feldspathic pyroxenite py pr mary +0.9 c
PR351-88 Feldspathic pyroxenite py Pr mary -0.4 I
PR351-88 Feldspathic pyroxenite cpy Pr mary -0.7 I
PR351-94 Feldspathic pyroxenite pn pr mary +1.7 c
PR351-94 Feldspathic pyroxenite pn Pr mary +1.1 I
PR351-107 Chilled feldspathic pyroxenite po Pr mary +2.2 c
PR351-107 Chilled feldspathic pyroxenite po Pr mary +0.5 I
PR351-107 Chilled feldspathic pyroxenite py Pr mary +0.3 I
PR351-112 Granite cpy secondary +2.1 c
PR351-112 Granite cpy secondary +2.1 c
PR351-115 Granite cpy basement -1.7 I
PR351-115 Granite mill basement -1.9 I
PR369-44 Amphibolite xenolith in granite py basement -1.2 I

La Pucella
DH20 (LAP29) Granite py basement -1.5 I
DH21 (LAP26) Granite py basement +0.1 I
DH22 (LAP31) Granite cpy basement +0.5 I
DH23 (LAP47) 
DH23 (LAP47)

Granite
Granite

py
cpy

basement
basement

+1.3
-0.9 I

DH24 (LAP47) Granite py basement +0.2 I
DH25 (LAP52) Granite py basement +0.8 I
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Figure 8.6. Range in values for sulfides within each rock type and an indication on their 
paragenesis based on textural evidence and host rock lithology from (A): the Sandsloot pit; (B): the 
Zwartfontein South pit; (C): borehole cores OY335 and OY387 from Overysel; and (D): borehole core 
PR351 from Witrivier.
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The sulfides within the Platreef package that have <534S values > + 2 % o  (most easily identified 

in Figs. 8.7a and b) are not hosted by feldspathic pyroxenites. In the OY335 core, a 

serpentinized calc-silicate xenolith and a sample of intrusive norite both gave <534S of +2.5%o, 

and a fracture-fill quartz vein in the OY387 core contained pyrite with S34S of +3.8%o.

The <534S values of the footwall rocks fall within the range +1.5 to +5%o. There also appears to 

be a crude increase in <534S with depth in the OY387 core (Fig. 8.7b). However, this trend is 

poorly constrained due to the gap in data caused by the unmineralized zone between 270 and 

360m. Despite this, there is a clear distinction between reef and footwall, with virtually no 

Platreef pyroxenites exhibiting <534S values heavier than +2%o, whereas the majority of 

footwall samples are heavier than +2% c. Sulfides in the Lower Zone-like pyroxenite deep 

within the footwall in the OY387 core exhibited some of the heaviest S34S values of around 

+5%o. Chalcopyrite in the massive sulfide (OY387-381), which lies 3m above the Lower 

Zone-like pyroxenite, proved to be heterogeneous in isotopic composition both within and 

between individual sulfide bands (Fig. 8.7b, Table 8.1) and gave S34S values in the range +2.1 

to +5%c. However, pyrrhotite and pentlandite analyses were fairly consistent at around 

+4.5%c.

8.7.4 Witrivier

Fig. 8.6d shows the range in S34S for Platreef rocks from borehole core PR351, and the 

variation with depth is shown in Fig. 8.7c. The range in <534S for Platreef feldspathic 

pyroxenites is between -0.7 and +2.2%o, which is a slightly lighter range (mean +0.2% c)  than 

found at Overysel or Sandsloot. A 4x2cm bleb of massive sulfide from a thin serpentinite 

gave a wide range of <534S values from +0.8 to +4.2%c, with a mean of +2.4%c, and variation 

was observed both between and within bands of individual sulfide phases. In the upper part of 

the core, a body of hangingwall-like gabbronorite is present within the Platreef pyroxenite. 

This contained BMS with <S34S values in the range +2 to +4% o, which are significantly heavier 

than those in the pyroxenites and are closer to the signatures found in the calc-silicate 

xenoliths from Sandsloot.

The increase in <534S into the footwall at Overysel suggests there is possibly a source of 

isotopically heavy S in the Archaean basement. To investigate this, samples of Archaean 

basement that contain sulfides that are not related to the Platreef mineralization were required. 

Samples that contain BMS with no associated PGE may possibly be of non-Platreef origin. 

Unfortunately, all the samples of footwall sulfides in the Overysel samples had PGE
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associated with them and were therefore all probably Platreef affected. The footwall in the 

PR351 core is made up of gneisses, granites and granite mylonites. Sulfides were present in 

two associations: (1) chalcopyrite-rich veins with PGM, assumed to be related to the Platreef 

mineralization on the basis of the presence of PGE; and (2) disseminated pyrite, chalcopyrite 

and millerite with no associated PGM. The latter are interpreted to be basement 

mineralization, not associated with the Platreef mineralizing event, and possibly pre- 

Bushveld. The sulfides with associated PGE have <534S values comparable to the Platreef 

pyroxenites, confirming their likely Platreef association. However, the basement 

mineralization produced the lightest <S34S signature seen in all the rock types of around -1.5%o 

(Table 8.1, Fig. 8.6d). A sample of amphibolite within granite in another core from Witrivier 

(PR369) that contained disseminated pyrite and millerite was also analyzed, and that too was 

found to have a similarly light <S34S signature of -1.2%c.
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Figure 8.7. Variations in <534S for sulfides with depth in metres in the boreholes cores (A): OY335 
from Overysel; (B): OY387 from Overysel; and (C): PR351 from Witrivier. Simplified stratigraphic 
logs each core are shown on the left hand side of each plot. Key to lithologies: gb: gabbronorite; px: 
Platreef feldspathic pyroxenite; sx: serpentinized calc-silicate xenolith; in: intrusive norite; gn: gneiss; 
qtz: quartz vein; qpx: quartzo-feldspathic pyroxenite; ms: massive sulfide; lz: Lower Zone-like 
pyroxenite; gt: granite; spt: serpentinite.
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8.7.5 La Pucella

To supplement the ‘basement’ sulfide analyses at Witrivier, a suite of samples of Archaean 

basement obtained from cores drilled on La Pucella was also analyzed to identify whether 

there was any indication of isotopically heavy S in the Archaean basement further north. All 

these samples contained fine-grained, disseminated pyrite, chalcopyrite and/or millerite with 

no associated PGE mineralization. The results are shown in Table 8.1 and fall in the range - 

0.9 to +1.3%c, which are lighter than any expected heavy component at Overysel, are well 

within the range for magmatic sulfides and are similar to the ‘basement’ sulfides at Witrivier.

8.8 Discussion

The results of this investigation provide the most comprehensive S isotope study of the 

Platreef thus far undertaken, and for the first time cover areas with dramatically different 

footwall lithologies. These data, along with the data from previous studies, now allow a 

thorough assessment of the contribution of magmatic and country rock S to the S budget of 

the Platreef, and provide an insight into the mechanisms controlling S saturation, and thus 

present major constraints on any genetic model for the origin of Platreef mineralization.

8.8.1 Magmatic S isotope signatures

The range in (534S values indicative of primary, normal mantle derived S associated with mafic 

and ultramafic rocks is around 0±2% c  (Omhoto and Rye, 1979). More specifically, using the 

sulfide inclusions within diamonds of the Klipspringer kimberlite (Westerlund et al. 2004) as 

a sample of the local mantle, the S isotope signature of the lithospheric mantle beneath the 

Kaapvaal Craton appears to be in the range -1.8 to +2.4%c (mean +1.0%o). The most ‘primary’ 

sulfide assemblage in the Platreef is the unaltered, fractionated polyphase blebs of pyrrhotite, 

pentlandite, chalcopyrite within the main Platreef feldspathic pyroxenites (Figs. 8.5a, b). No 

samples of this type in our study area from Sandsloot to Witrivier produced <S34S values 

heavier than +2.6%c, with a mean <534S value of +1.4%c, which is identical to the mean value 

reported by Sharman-Harris et al. (2005) further south at Turfspruit for what they considered 

to be ‘magmatic’ sulfides in the Platreef. All these values are within error of the magmatic 

range indicated from the Klipspringer kimberlites, and thus strongly imply that magmatic S 

dominates in the earliest, uncontaminated ‘primary’ sulfides in the Platreef.
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The sample of mineralized hangingwall mottled anorthosite from Sandsloot has an almost 

identical <534S signature to the pyroxenites that it rests upon. This is consistent with the theory 

described by Holwell et al. (2005), suggesting that the PGE and sulfide in zones at the base of 

the hangingwall were scavenged from the cool, crystallized Platreef by the magma that 

formed the hangingwall, rather than being introduced within the new magma.

Samples of altered, olivine-bearing reef from Sandsloot and Zwartfontein, with the exception 

of one sample at Sandsloot, all have magmatic signatures (mean +1.8%o, n=5). The process 

that altered these rocks is thought to have been percolation of a late-stage Fe-rich melt or fluid 

through the pyroxenites (McDonald et al., 2005). If so, the sulfide in these rocks was either 

present in the pyroxenite protolith (and the alteration process did not upgrade the sulfide 

content significantly) or, if the alteration process added sulfide, it was similarly dominated by 

primary mantle S. What is clear is that if redistribution of the sulfide occurred during the 

alteration process, it took place with minimal interaction with footwall-derived S (which 

would lead to more positive <534S, see below).

About 20% of the footwall calc-silicate samples and xenoliths have <534S signatures consistent 

with magmatic values. These analyses came from a sample that was very S rich (SNS1-39, 

Table 8.1) and was in very close proximity to the Platreef pyroxenites. It is therefore possible 

that these sulfides were swamped by S from the magmatic sulfide of the Platreef, which 

invaded the rocks, with only a relatively small volume of country rock S restricting the 

amount of country rock S available for it to react with.

8.8.2 Non-magmatic S isotope signatures

Although the ‘primary’ sulfides show magmatic S isotope values, around 70% of sulfide 

analyses in the other lithologies show consistently heavier signatures. The previously 

published data for the Malmani Subgroup in this area indicate that S in this formation has a 

heavy <534S signature of around +7%o (Buchanan et al., 1981). Sulfides in the footwall calc- 

silicates and xenoliths at Sandsloot exhibit <534S values consistently a few per mil heavier than 

the magmatic range, with a mean of +4.4% o .  It is likely that hydrothermal distribution of 

sulfide and PGE into the footwall, as a result of assimilation and metamorphism of the 

footwall rocks, led to interaction between magmatically derived S and S released from the 

floor to produce the intermediate <534S ratios observed in the immediate floor rocks and 

xenoliths.
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The sample of serpentinite from the reef at Zwartfontein contains a similar S isotope signature 

to the calc-silicates at Sandsloot. The fact that the sulfides in this sample were present as 

small veins would suggest they are ‘secondary’, and that these sulfides probably formed 

during hydrothermal activity either during serpentinization or along the serpentinized zones 

which acted as fluid conduits. Their elevated S isotope signatures, coupled with the 

association of serpentinites with altered calc-silicate xenolith material at Zwartfontein 

(Holwell and Jordaan, 2006), would imply that serpentinite hosted sulfides are of a similar 

nature to those in the calc-silicate footwall and have undergone hydrothermal exchange of S.

If the assimilation of footwall sediments by melting is invoked as the mechanism for S 

addition, then a magma at up to 1200°C should melt any sedimentary sulfides present and 

incorporate them into any entrained sulfide liquid. Pyrite, for example in the footwall 

sediments at Turfspruit, should break down at around 810°C, releasing sulfur into such a 

magma. However, the source of S in the Malmani Subgroup is generally assumed to be an 

evaporitic sulfate, such as anhydrite or gypsum, which have melting points of 1450-1460°C. 

Ripley et al. (2003) discussed this problem and suggested that the most likely transfer 

mechanism of S from evaporites to a magma is through the leaching of sulfate by 

hydrothermal fluids, with diffusive transfer of S via the fluid phase. The fluid fluxing 

involved during and after emplacement of the Platreef in the Sandsloot-Zwartfontein area, 

particularly in the footwall and in the xenoliths, is likely to have involved such processes.

The extent of assimilation of crustal S by mafic magmas can be modelled using a simple two- 

component mixing model (Ripley and Li, 2003):

<S34S(sulfide mixture) = <534S /cCsc + <534S„/mCsm

/cC W m C m  (1)

where/c and/m are the fractional abundances of the contaminant and the magma, respectively, 

and Cs is the S concentration. Such calculations are of necessity generalized as a result of 

extrapolating from single specimens to bulk rock packages in terms of isotope ratio and S 

concentration. In the case of heterogeneously bedded sediments such as the Malmani 

Subgroup, these are particularly difficult to estimate. In addition, if a S-bearing fluid phase 

has been involved as is likely in the Sandsloot area, significantly less volumes of contaminant
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would be needed to cause the same shift in isotope composition (Li et al., 2002).

Nevertheless, a semi-quantitative estimate on the amount of contamination can be calculated.

If we assume an isotope composition in a mantle-derived Platreef magma of <S34S = +1.0%o 

(the mean of the Klipspringer Kimberlite sulfide inclusions) and a S concentration of 

lOOOppm, and take the Malmani sulfate value of +7.1%c from Buchanan et al. (1981), and 

assume a concentration of 2wt% S in the Malmani (as Li et al., 2002, estimated for the 

Malmani in contact with the Uitkomst Complex), it requires around 6% assimilation of the 

Malmani to produce sulfides with the mean calc-silicate and xenolith <534S value of +4.4%o. 

This is somewhat less than the 18% contamination suggested by Harris and Chaumba (2001) 

on the basis of oxygen isotope studies of silicate minerals, however the discrepancy could 

easily be understood through the inherent uncertainties of the calculation. For example, if the 

Malmani contained just 0.58wt% S, the observed <S34S values of +4.4%o would be produced 

with 18% contamination. CaO/ALC^ ratios can also be used to assess the degree of 

contamination. A rock containing orthopyroxene and plagioclase should have a ‘magmatic’ 

Ca0 /Al203 ratio of around 0.6. Using the data of McDonald et al. (2005) for Sandsloot, 

footwall calc-silicate rocks have a CaO/ALOs ratio in the region of 2.8, and the Platreef 

feldspathic pyroxenites have a ratio of around 0.9, indicating contamination from a Ca-rich 

end member (most likely the Malmani dolomites). To shift the ratio in the pyroxenite from

0.6 to 0.9, it would require approximately 15% contamination by a rock with a CaO/Al2C>3 

ratio of 2.8, which is similar to the value calculated by Harris and Chaumba (2001). So if 

around 15% contamination is assumed, it is likely that the S content of the Malmani was less 

than 0.6wt%, and given the likelihood of a fluid being involved, probably even lower.

Unfortunately, no whole-rock S data for the Malmani is available to test this, however, some 

work has been done on the lateral correlative of the Malmani - the Campbellrand Subgroup in 

the Griqualand West area, near Kimberley - by the Agouron-Griqualand Palaeoproterozoic 

Drilling Project. No anhydrite or gypsum was found in these sediments and the carbonates 

hold 0.15-0.18wt% S (S. Schroeder, pers. commun., 2006). There is, however, evidence of the 

former presence of evaporites in these rocks (Gandin et al., 2005). If the Malmani contained 

such a low S concentration, it would require over 40-45% assimilation to produce <534S values 

of +4.4%c. Such an amount of contamination seems unlikely as it would be manifested in the 

petrology of the reef, for example with increased clinopyroxene contents, but this is not 

observed, and it is likely that preservation of sulfates in the Malmani was greater than in the
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Campbellrand Subgroup. The inherent uncertainties in the calculations are compounded at 

Sandsloot by the fact that S from sulfate in the floor is more likely transferred by 

hydrothermal mechanisms rather than assimilation, and therefore a much smaller amount of 

the contaminant could produce the observed values. As such, calculations such as these for 

areas where the contaminant is sulfate rather than sulfide may not be valid.

As mentioned above, it is much more likely that country rock sulfides can be assimilated by 

melting compared to country rock sulfates. For this reason, the two-component mixing model 

may be more reliable for assessing sulfide contamination in the Turfspruit area. Using the 

same magmatic composition as before, but using the <534S value of +8% o  for pyrite in 

Duitschland Formation shales from Sharman-Harris et al. (2005), and a 2wt% S concentration 

in the shales, it would take around 8% assimilation to produce the sulfides with a <534S value 

of the sort reported by Sharman-Harris et al. (2005) for ‘contaminated’ Platreef of around 

+5%c. Alternatively, if the shales contained just lwt% S, it would take around 12% 

assimilation of shales to produce the observed ratios. For the Townlands area, if we take the 

homfels values from Manyeruke et al. (2005) of around +15%o to represent the <534S signature 

of the local Timeball Hill sediments, and again assume a concentration of 2wt% S, only 5% 

assimilation would be required to produce the observed Platreef ratios of around +8%c.

Despite the limitations of this method, it does show that contamination of the Platreef by 

country rock sediments was most likely less than 20% assimilation, and in many cases, maybe 

less than 10%, and this seems to be corroborated by the calculations of Harris and Chaumba 

(2001) based on O isotopes, the CaO/AbCb ratios, and the lack of petrological evidence of 

major contamination in the Platreef pyroxenites.

The late stage veins that cross-cut all lithologies in the Sandsloot and Zwartfontein pits 

contain sulfides with the heaviest isotopic signature in our dataset of around +8% c ,  similar to 

that published for sulfate in the Malmani Subgroup (Buchanan et al., 1981). The veins carry a 

distinct sulfide assemblage that includes chalcopyrite, sphalerite, galena and pyrrhotite (Fig. 

8.5h). Observations to date indicate that the veins are not common elsewhere along strike, 

being rare or absent in the Platreef on Townlands (Manyeruke et al., 2005), Turfspruit 

(Hutchinson and Kinnaird, 2005) and Overysel (Holwell and McDonald, 2006). Many veins 

contain a very high calcite content and it is likely that the fluids that formed them originated 

in the carbonate country rocks. Sulfate in the Malmani Subgroup may have been the sole 

contributor to the S in the resultant sulfides, given that they exhibit almost identical S isotope
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signatures to the published data from sulfate in the Malmani. This is assuming that the 

Malmani itself does not contain significant sulfides in addition to sulfates. Diagenetic sulfides 

in the Malmani have never been referred to in Platreef literature. However, there is at least 

one known occurrence of Pb-Zn mineralization in the Malmani on the farm Uitloop (Fig. 8.2), 

and numerous other Pb-Zn MVT deposits occur in the Malmani from elsewhere in the 

Transvaal basin that encircles the Bushveld Complex (Martini et al., 1995), the source of S in 

which is thought to be sourced from the leaching of Malmani sulfates (Clay, 1986). 

Unfortunately, no S isotope information is available on these MVT sulfides in the vicinity of 

the northern limb of the Bushveld, however, remobilization of such mineralization could 

provide a source of the Pb and Zn for the galena and sphalerite in the late stage veins.

A curious feature is the apparent increase in S34S values with depth into the footwall at 

Overysel (Fig. 8.7b). The lowermost samples from the OY387 core exhibit <534S values of 

around +5%o. At Sandsloot, mineralization is distributed into the footwall by hydrothermal 

processes related to skam formation. At Overysel, mineralization appears to have penetrated 

the footwall gneisses through an interconnected melt network produced by partial melting of 

the gneiss around grain boundaries (Holwell and McDonald, 2006). The increase in <534S 

values would suggest that the downwardly migrating liquid may have incorporated a pre

existing, isotopically heavy sulfide within the footwall. The Archaean basement has not been 

previously implicated as a source of S to the Platreef, in part presumably due to the lack of 

studies conducted in the area. In the samples from Witrivier, ‘basement’ sulfides had slightly 

negative <534S. Similarly, the ‘basement’ sulfides from La Pucella showed a very limited, 

mantle range of around 0%o. The existing data suggest, therefore, that pre-existing sulfides in 

the Archaean basement have a mantle isotopic signature within error of, but around 1 per mil 

lighter on average than the Platreef magmatic <S34S signature, and therefore could not have 

caused the increase in <S34S with depth into the footwall at Overysel.

Whilst Archaean basement-hosted sulfides typically have a limited signature, around 0% c  or 

lower (e.g. Grassineau et al., 2005, and our Witrivier and La Pucella data), our Overysel data 

suggest that local gneisses may have heterogeneous S isotope compositions, and there may be 

a distinct source of isotopically heavy sulfides in the Hout River Gneisses in the Overysel 

area. An important point to consider if this is the case, is that there has been little contribution 

from such a source of isotopically heavy footwall S to the Platreef itself, which is consistent 

with the theory that the sulfide liquid percolated down into the footwall, with no significant
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upward movement of S out of the footwall rocks. It is also implies that any assimilation of 

rafts of Archaean basement into the Platreef magma was not a major factor in upgrading the 

Platreef S content.

Another potential source of the elevated <534S values in the Overysel footwall may be the 

Lower Zone-like pyroxenite located at around 385m depth in the OY387 core. Lower Zone 

rocks in the northern limb of the Bushveld Complex south of Mokopane are known to contain 

occasional concentrations of sulfides, such as the PGE-BMS reefs of the Volspruit subzone 

(Hulbert and von Gruenewaldt, 1982), which intriguingly have a similar S isotope signature 

of around +4%o (Hulbert, 1983). Such mineralized layers have not been identified in any of 

the satellite bodies of Lower Zone rocks north of Mokopane, which the pyroxenite in the 

OY387 footwall is thought to be similar to. This is not to say that it did not originally contain 

some sulfide, however, sulfide mineralization within the Lower Zone pyroxenite in the 

OY387 core is thought to be related to the downward percolation of sulfide liquid from the 

Platreef (Holwell and McDonald, 2006). It is difficult to explain how interaction of the 

Platreef magmatic sulfide liquid with sulfide in the Lower Zone body can have caused 

elevated <534S values in the gneisses above it, given its proposed downward migration.

An interesting feature of the two massive sulfide samples studied: one in the gneissic footwall 

at Overysel and the other in a serpentinite (most likely an altered calc-silicate xenolith) in the 

Witrivier Platreef pyroxenites, is that they display considerable variation in S34S values, both 

between and within sulfide phases. The massive sulfide in the serpentinite at Witrivier shows 

a range of 3%o in the analyses, which indicates that these textures are disequilibrium textures 

and are not magmatic. The variation is likely to be related to hydrothermal activity, possibly 

related to the serpentinization.

Another rock type which proved to have a non-magmatic S isotope signature was the 

gabbronorite in the upper part of the core from Witrivier. This is considered to be a body of 

hangingwall gabbronorite intruded down into the Platreef, a feature also identified at Drenthe 

(Naldrett, 2005) and Zwartfontein (Holwell and Jordaan, 2006). At Drenthe (Fig. 8.2), 

Naldrett notes that the gabbronorite contains sulfides, and suggests they have been 

cannibalized from the Platreef pyroxenites in a manner analogous to that proposed by Holwell 

et al. (2005) to explain the occasional presence of PGE-BMS mineralization at the base of the 

hangingwall. The contrasting isotopic signatures between the gabbronorite and the enclosing
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pyroxenites at Witrivier, however, does not support the simple incorporation of pre-existing 

sulfide, unless, of course, the gabbronoritic magma assimilated a significant amount of 

mineralized calc-silicate xenoliths during intrusion with <534S signatures around +4%o. This is 

possible, as Naldrett (2005) notes that at Drenthe gabbronorite bodies may have preferentially 

intruded along horizons where altered calc-silicate is particularly common.

An alternative explanation could be that the roof rocks to the Platreef were calc-silicates. The 

fact that calc-silicate xenoliths are present within the Platreef several kilometres further north 

of the last footwall outcrop of the Malmani Subgroup, together with the presence of large rafts 

(up to 2km in length) of calc-silicate at the base of the Main Zone in the Drenthe-Dorstland 

area (Fig. 8.2) (van der Merwe, 1978), makes this a distinct possibility. The presence of 

Transvaal sediments as the roof rocks would explain this relationship, and further south on 

Turfspruit Kinnaird (2005) also notes xenoliths of homfels at the base of the hangingwall.

The calc-silicate rafts within the Main Zone have associated PGE and BMS mineralization 

(Kinnaird et al., 2005). The fluids released during assimilation and metamorphism appear to 

have been responsible for the distribution of PGE mineralization into the calc-silicate footwall 

at Sandsloot (Holwell et al., 2006). If the roof rocks were also calc-silicates (i.e. the Platreef 

intruded as a sill-like body), then by the same process they could also have become 

mineralized and picked up similar <534S signatures to the footwall calc-silicates, which at 

Sandsloot are around +4% c .  There are no significant concentrations of sulfides in the Main 

Zone in the vicinity of the Platreef, and as such, it can be assumed that the Main Zone magma 

was relatively S poor, and therefore the amount of magmatic S in the Main Zone magma was 

very low. Thus, any assimilation of mineralized calc-silicates could have induced the 

precipitation of sulfides with an almost identical isotopic signature to that of the assimilated 

material. The Witrivier gabbronorite data are tantalizingly close to this. In either of the above 

cases, the elevated <534S signature of the gabbronorite intrusions is attributed to the 

assimilation of mineralized calc-silicates, as either xenoliths or roof rocks to the Platreef.

8.8.3 S isotope variations along strike

This study, together with that of Sharman-Harris et al. (2005) and Manyeruke et al. (2005), 

demonstrates the variation in S isotope composition along the strike of the Platreef. It is now 

becoming clear that the interaction of the Platreef magma with the variety of differing floor 

rock lithologies is a critical factor determining the mineralogy, distribution and style of the 

mineralization on a local (km) scale (Nex, 2005; Kinnaird et al., 2005; Hutchinson and
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Kinnaird, 2005; Holwell et al., 2006), and we can now add the S34S signature to that list. The 

work of Sharman-Harris et al. (2005) on Rietfontein, Turfspruit and Macalacaskop showed 

that in the lower 180m of a 400m thick Platreef succession, the sulfides contain a significant S 

contribution from the assimilation of pyrite in shales of the Duitschland Formation. At 

Townlands, all the pyroxenitic Platreef samples that Manyeruke et al. (2005) analyzed 

showed a significant external contribution to the <534S signature (+2.6 to +10.1 %o), and they 

attributed this to assimilation of footwall sediments, which have (S34S values of around +15%c. 

At Sandsloot and Zwartfontein, we have shown that although the footwall rocks do appear to 

have elevated S34S signatures, ‘primary’ sulfides in the Platreef have a magmatic signature 

and do not show a significant external contribution to their S budget. Similarly at Overysel 

and Witrivier, the Platreef pyroxenites have magmatic isotope signatures, and the contribution 

of S from the Archaean footwall is mimimal.

8.8.4 The sources o f S in the Platreef

This investigation has proven that the ‘primary’ sulfides in the pyroxenites that constitute the 

Platreef in the strike section from Sandsloot to Witrivier (including Zwartfontein and 

Overysel; Fig. 8.2) have a homogeneous magmatic signature, and show little evidence of 

contamination from footwall S, even in localities where there is evidence of a source of 

footwall S, such as Sandsloot. This is in contrast to the findings of Sharman-Harris et al. 

(2005) in localities further to the south, where assimilation of footwall S has apparently 

contaminated the lower portions of the Platreef. Upgrading of the S budget is also likely to 

have occurred and the abundance of sulfides in the Platreef around Tweefontein, Turfspruit 

and Macalacaskop (Fig. 8.2) is higher than in the Sandsloot-Overysel area, and often includes 

net textured and massive sulfides (Nex, 2005; Hutchinson and Kinnard, 2005). However, our 

data indicate that this process was strictly localized and insignificant in the area where the 

Malmani Subgroup forms the footwall. The reason for this may be related to the chemical 

manifestation of the S in the footwall sediments with sulfides assimilated and sulfates 

transferring S through leaching by hydrothermal fluids (Ripley et al., 2003). By this 

mechanism, transfer of S from the Malmani could not have taken place until sufficient fluids 

had been liberated by intrusion and assimilation. This process produced the mixed isotopic 

signatures in the ‘secondary’ sulfides present in and around calc-silicate xenoliths and 

footwall, but left the early-crystallized primary sulfides unaffected. This also shows a 

fundamental difference in the contamination mechanism between Turfspruit and Sandsloot. 

Footwall sulfides at Turfspruit contaminate the Platreef by being assimilated, whereas
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footwall sulfates at Sandsloot only contaminate Platreef-sourced sulfides within and around 

calc-silicate xenoliths and footwall through hydrothermal leaching.

8.8.5 Mechanisms o f S saturation in the Platreef

The issue of how the Platreef magma attained S saturation has not yet been resolved. Theories 

include the addition of sedimentary S (Buchanan et al., 1981; Buchanan and Rouse, 1986; 

Sharman-Harris et al., 2005), silicic contamination from the assimilation of country rocks 

(Buchanan and Rouse, 1986) and an increase in oxygen fugacity in the magma as a response 

to devolatolization of assimilated dolomite (Buchanan et al., 1981). Barton et al. (1986) 

concluded that S saturation was attained prior to any contamination, and Lee (1996) 

developed this by proposing that S saturation occurred pre-emplacement in a staging 

chamber, and that base metals and PGE were concentrated in this sulfide before emplacement. 

For the first time, detailed S isotope information from localities along the Platreef that cover 

virtually the entire range of footwall Ethologies is available so that these theories can be 

tested.

A fundamentally important observation is that significant sulfide mineralization is present 

along the entire strike length of the Platreef from Townlands in the south to Dorstland in the 

north, regardless of footwall Ethology. Some areas have footwall rocks that are known to 

contain S either predominantly as sulfide (e.g. Townlands, Macalacaskop and Turfspruit) or 

predominantly as sulfate (e.g. Tweefontein, Sandsloot, Zwartfontein). In the areas with 

sulfides in the floor rocks, the isotopic evidence is that some of this has been incorporated 

into the Platreef magma by assimilation (Manyeruke et al., 2005; Sharman-Harris et al.,

2005). However, the isotopic evidence from the upper Platreef in the study of Sharman-Harris 

et al. (2005) shows a clear magmatic signature, thus S saturation was achieved by the magma 

at least in this later/upper package of magma without any apparent addition of country rock S. 

This relationship demonstrates that although in such localities significant upgrading of the 

Platreef S budget may have occurred through the addition of country rock S, this did not 

exclusively trigger S saturation.

It has long been thought that contamination from sulfate in the Malmani Subgroup 

contributed S to the Platreef S budget, triggering S saturation (Buchanan et al., 1981), and 

although there is evidence of interaction with sedimentary S in the ‘secondary’ sulfides of the 

footwall rocks and xenoliths, primary sulfide mineralization at Sandsloot and Zwartfontein
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shows no significant addition of external S. Sulfur saturation, however, may have been 

initiated by an increase in /O 2. The devolatilization of somewhere in the region of 18% 

dolomite (Harris and Chaumba, 2001) would have produced a considerable amount of CO2, 

which could have increased the /O 2, lowering the FeO content of the magma and thus the S- 

carrying capacity, inducing S saturation as suggested by Buchanan et al. (1981). Although 

such degassing may be partly responsible for initiating S saturation, it is not believed to be 

capable of significantly altering the S isotope ratios (Ripley et al., 2003). Silicic 

contamination (as described by Irvine, 1975) may also be a factor, due to the siliceous nature 

of the dolomites of the Malmani Subgroup (Armitage et al., 2002).

Where the floor rocks are Archaean basement, addition of S from the floor has never been 

considered a factor. Although we have shown there are sulfides in the basement, the isotope 

data does not provide sufficient evidence, nor are they present in sufficiently voluminous 

amounts, to indicate that they had a major role in the main Platreef mineralization event. A 

change in/0 2  in the manner described above for the Malmani is highly unlikely due to the 

lack of volatiles that would be released by assimilating an essentially anhydrous gneiss.

Silicic contamination by partial melting of the gneisses may, however, have been responsible 

for triggering the precipitation of a sulfide liquid in the area.

The timing of the mineralization in relation to any contamination is critical in constraining the 

role contamination may or may not have had in the mineralization. As mentioned above, the 

silicic contamination from the Archaean basement is thought to post-date the mineralization. 

This implies that the sulfide was present within the magma during emplacement, and was not 

precipitated as a result of contamination. At Sandsloot, Harris and Chaumba (2001) noted that 

pyroxenes within the Platreef showed evidence of contamination in their oxygen isotope 

ratios that could be explained by the assimilation of up to 18% dolomite. Therefore the 

dolomite contamination must have occurred at a very early stage in the emplacement history 

to affect the earliest crystallizing silicate: orthopyroxene. The fact we have shown that 

primary sulfides in the reef at Sandsloot are relatively unaffected by contamination from the 

dolomite would strongly imply that the sulfides were entrained within a Platreef magma that 

had already reached S saturation before intrusion, but that orthopyroxene crystallization took 

place in situ.
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Two important over-arching observations emerge from this study. Firstly, economic sulfide 

mineralization is present along the entire strike length of the Platreef regardless of footwall 

lithology. Secondly, for each locality, it is possible to attribute at least one contamination- 

related process directly related to the footwall lithology in that area as a possible cause of S 

saturation in the Platreef magma. Until now, all of the previous studies have considered the 

problem by focussing on one area, and thus the mechanisms suggested, whilst they may be 

applicable to the area in question, cannot necessarily be applied to the Platreef as a whole. 

Whilst it may be possible that, at Turfspruit, addition of S from pyrite in the shales triggered S 

saturation, at Tweefontein and Sandsloot devolatilization of dolomite was responsible, and at 

Overysel silicic contamination caused the precipitation of an immiscible sulfide liquid, the 

likelihood of all these processes occurring contemporaneously and to sufficiently effective 

degrees is doubtful.

What seems more likely, and is supported by the isotope data, is a situation similar to that 

invoked by Lee (1996) who suggested that sulfides were formed in a staging chamber prior to 

emplacement, and that the formation of this Ni-Cu-PGE-rich immiscible sulfide predated 

local contamination, and was not a consequence of it. Given the total dominance of magmatic 

S in the Platreef feldspathic pyroxenites unaffected by contamination, the Platreef can be 

considered to be primarily an orthomagmatic sulfide deposit, and the magma from which it 

formed had most likely attained S saturation before its emplacement. Contamination by floor 

rocks, particularly the Duitschland shales, locally upgraded the S content and subsequent 

hydrothermal activity derived from the assimilation and metamorphism of footwall rocks, 

particularly dolomites, locally mobilized PGE and S. The mobilized Platreef PGE and S then 

interacted with hydrothermally leached footwall S, and precipitated secondary sulfides in the 

footwall, in xenoliths and in other fluid-affected parts of the reef.

8.8.6 A genetic model fo r  Platreef mineralization

Using the isotope data from this study and the investigations of other workers discussed 

above, it is now possible to define several fundamental features that any genetic model for 

Platreef mineralization must be able to account for:

1. The most primary sulfide mineralization in the Platreef is magmatic in origin and 

magmatic S dominates the ‘primary’ sulfides within the Platreef pyroxenites.

2. Sulfur saturation occurred before intrusion.
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3. Contamination is a localized process and is directly related to the immediate footwall 

rocks.

4. Mechanisms of S contamination are different according to whether the external source 

of S is present as sulfide or sulfate.

5. Contaminant signatures from footwall rocks are only present where those particular 

rocks are in contact with the Platreef, with the exception of Malmani-derived calc- 

silicates.

In order to account for the above, we follow the suggestion first made by Lee (1996) and 

propose that the source magma of the Platreef attained S saturation before emplacement, most 

likely in a deep, intermediate chamber that fed the northern limb, such as that proposed to 

have fed the Uitkomst Complex to the east of the eastern Bushveld by de Waal and Gauert 

(1997). This is represented in Fig. 8.8a, where sulfide droplets collect at the base of the 

intermediate chamber. Flow of an earlier generation of magma (possibly that which 

developed the Lower Zone) over these sulfides may have contributed to the high metal tenors 

of these sulfides. This can explain the mass balance problem of how such a small volume 

package of magma such as the Platreef could have attained such a high concentration of PGE 

in the absence of an overlying magma column from which to draw PGE (c.f. Cawthom et al., 

1985; Cawthom et al., 2002; Holwell et al., 2005). The body of Main Zone magma has been 

suggested as the source of PGE to the Merensky Reef (e.g. Maier and Barnes, 1999), 

however, the intrusion of the Main Zone significantly after the Platreef in the northern limb 

(Holwell et al., 2005; Holwell and Jordaan, 2006) rules out the possibility that this 

mechanism enriched the Platreef with PGE.

Evidence that it may have been the northern limb Lower Zone magma that provided the PGE 

for the Platreef sulfides lies in the composition of olivines within the Lower Zone cumulates 

in the Grasvally area to the southwest of Mokopane. Fig. 8.9 shows a Ni vs Fo plot for olivine 

compositions within the Lower Zone succession described by Hulbert (1983), together with 

data for the eastern limb. It is clear that the majority of the northern limb compositions below 

the chromitite layers (i.e. within the lower > 1000m of strata), have compositions which fall 

significantly outside the field for layered intrusions, showing considerable depletions in Ni. If 

the magma that formed these olivines came into contact with immiscible sulfide before 

emplacement, such as in a staging chamber as suggested, it would become depleted in 

chalcophile elements such as Ni and the PGE, and subsequent olivines would contain 

abnormally low Ni contents.
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Figure 8.8. Genetic model for the intrusion and mineralization in the Platreef, with the presence of a 
deep, intermediate magma chamber, a: S saturation is attained in the intermediate chamber and 
sulfides accumulate at the base of the chamber. The passage of Lower Zone magma over these sulfides 
may have contributed significantly to their metal tenors, b : A major pulse of magma entrains the 
magmatic sulfides and is emplaced by spreading out from a central feeder pipe/dyke to form the 
Platreef. North of Zwartfontein, Malmani rocks form the roof. Footwall sulfides are locally 
assimilated, whereas footwall sulfate reacts with magmatic sulfides via hydrothermal leaching (inset). 
c: Injection of Main Zone magma spreads out over the Platreef forming a magmatic unconformity and 
incorporating xenoliths of Malmani rocks north of Zwartfontein (inset).
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Figure 8.9. Ni vs Fo content for Lower Zone olivines from the northern limb, from Hulbert (1983). 
Eastern Bushveld data from Cameron (1978). Field for layerd intrusion from Simpkin and Smith 
(1970).

The pre-formed sulfides in the intermediate chamber were then entrained in a major pulse of 

magma, which was injected to form the Platreef (Fig. 8.8b). For this magma to have 

incorporated the sulfides, the pulse must have been of sufficient force to entrain sulfides 

which had previously remained unmoved by the passing of the earlier magma. Experimental 

work by de Bremond d’Ars et al. (1999) have shown that sulfide droplets can be carried in 

suspension by magmas flowing at velocities of around 0.1ms'1, and therefore the pulse of 

magma that formed the Platreef must have equalled or exceeded a critical velocity in the same 

manner to incorporate the sulfides. The actual position of the feeder is unknown, but is likely 

to have been to the west or south west, down dip of the current outcrop of the northern limb, 

and may correspond with the massive gravity anomaly that can be seen in Fig. 3 of Cawthom 

and Webb (2001), which was suggested as a feeder by van der Merwe (1976). This anomaly 

is by far the greatest in the whole complex, and does not correspond to a zone of thickest 

mafic lithology, to which other, lesser anomalies in the rest of the complex have been 

attributed (du Plessis and Kleywegt, 1987).

The Platreef magma intruded into a variety of country rock lithologies, the composition and 

reactivity of which had varying effects on the distribution and mineralogy of the 

mineralization (Fig. 8.8b, inset). Where pyrite-bearing Duitschland Formation shales were 

assimilated, local upgrading of the S budget took place (Figs. 8.8b, c, insets). Where Malmani
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Subgroup sediments were assimilated in the Sandsloot area, a great deal of fluid fluxing took 

place that led to formation of skams and a more extensive redistribution of PGE into the 

footwall rocks than occurred elsewhere. Addition of external S from sulfate in the Malmani to 

the Platreef magma in the early stages of crystallization was not significant, however, this 

probably contributed to the sulfide contents of the calc-silicate footwall rocks and xenoliths 

during hydrothermal activity (Fig. 8.8b, inset). Silicic contamination from the partial melting 

of Archaean basement rocks did not significantly affect the mineralization, although partial 

melting did allow local percolation of PGE-bearing sulfide liquid to penetrate the footwall 

(Holwell and McDonald, 2006).

Country rock xenoliths within the Platreef are usually composed of rocks that are present as 

footwall rocks in the immediate vicinity, with the exception of Malmani-derived calc- 

silicates. The presence of calc-silicate xenoliths in the Platreef for many kilometres further 

north of their last occurrence as footwall rocks has been used as evidence that the Platreef was 

intruded in a northwardly direction (Cawthom et al., 1985; Friese, 2004). However, the lack 

of any other type of xenolith north of their footwall outcrop and the discontinuation of the 

apparent S contamination of the Platreef north of Turfspruit do not support this, and an 

easterly or northeasterly emplacement direction appears more likely, particularly if fed by the 

proposed feeder to the west of Mokopane. The presence of mineralized calc-silicates in the 

Main Zone in the Drenthe-Witrivier area can be explained if the roof rocks to the Platreef 

were Malmani dolomites (Fig. 8.8b, inset). This implies that north of Zwartfontein, rather 

than the Platreef continuing to cut down through the country rock stratigraphy, it exploited the 

boundary between the Malmani and the Archaean basement. This also explains the relative 

dearth of granite and gneiss xenoliths in the Platreef (Cawthom et al., 1985). When the Main 

Zone magma was intruded (Fig. 8.8c), it formed a magmatic unconformity over the Platreef 

and incorporated calc-silicate xenoliths north of Zwartfontein (Fig. 8.8c, inset).

8.9 Conclusions

Sulfur isotope data indicate that the sulfide mineralization in the Platreef is dominantly 

magmatic in origin, and magmatic signatures are preserved in early formed sulfide droplets 

within the Platreef pyroxenites in the area of the Platreef from Sandsloot to Witrivier. Sulfur 

saturation is likely to have taken place prior to intrusion, and was not caused by 

contamination-related effects such as the addition of country rock S, silicic contamination, or
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devolatilization of the magma following assimilation of country rocks. Therefore we favour 

models for Platreef mineralization that involve early S saturation, most likely in a deep 

staging chamber or conduit followed by a pulse or pulses of magma that transported these 

sulfides into the Platreef. In areas where the floor rocks contain appreciable sulfides, such as 

at Turfspruit, the Platreef sulfides are contaminated with assimilated country rock S. 

Assimilation of around 5-12% country rocks in the Turfspruit area has locally upgraded the S 

content of the Platreef and given the Platreef sulfides a heavier isotopic signature. Where the 

floor rocks contain sulfate such as at Sandsloot, contamination by country rock S is by 

hydrothermal leaching and is restricted to ‘secondary’ sulfide assemblages in footwall rocks 

and xenoliths. The Archaean basement is not a significant contributor to the S budget of the 

Platreef. Whilst contamination has clearly affected the distribution and style of sulfide 

mineralization in the Platreef, this is strictly on a local scale and is post-magmatic. Significant 

PGE-rich sulfide mineralization occurs throughout the entire strike length of the Platreef, 

regardless of footwall lithology, with localized contamination acting purely as an ore- 

modifying, rather than ore-forming, process.
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9.1 Introduction

The aim of this chapter is to synthesize the findings of the preceding chapters and relate them 

to the initial aims of the project. It is clear that magmatism, contamination and hydrothermal 

activity have all had important roles in the development of the Platreef and its mineralization, 

and there is a complex interplay between some or all of these on both a metre and kilometre 

scale along strike. This interaction between the Platreef magma and the variety of country 

rock lithologies fundamentally controls many aspects of the style and distribution of the 

mineralization, and has led to the development of a highly complex and laterally variable 

orebody.

9.2 Magmatic emplacement

As yet, there is no concensus on the positive identification of feeders to the Bushveld 

Complex, although Friese (2004) considered the Thabazimbi-Murchison Lineament to be a 

likely linear feeder, and point feeders have also been suggested by a number of workers (e.g. 

van der Merwe, 1976; Kinloch and Peyerl, 1990; Kruger, 2005a). The most convincing of 

these is possibly the site of an enormous gravity anomaly a few kilometres to the west of 

Mokopane, located close to the Ysterberg-Planknet fault (see Fig. 2.3) that van der Merwe 

(1976) interpreted as the feeder to the northern limb. This theory has received little attention 

since (c.f. Cawthom and Webb, 2001), which is surprising given the fact that it represents the 

second largest gravity anomaly in South Africa after the Trompsburg anomaly in Orange Free 

State. Nevertheless, given the anomaly’s magnitude, it remains the most likely location for a 

feeder, certainly for the northern limb, if not necessarily the entire complex.

Numerous apparent differences in the stratigraphy between the northern limb and the rest of 

the Complex were outlined by McDonald et al. (2005, Appendix 5). These differences, 

coupled with the fact that the northern limb resides in a fundamentally different block of crust 

to the rest of the Complex (the Pietersburg Block as opposed to the Kaapvaal Shield), and that 

it is separated from the rest of the Complex by the deep crustal Thabazimbi-Murchison 

Lineament, means that direct comparisons with the rest of the Complex are difficult, and may 

even be invalid if the northern limb constitutes a separate intrusion. For this reason, it is 

important to consider the northern limb in an unbiased way, and not attempt to fit its 

lithologies and mineralized zones strictly into the stratigraphic zones and reefs defined for the 

rest of the Complex on the basis of very few sympathetic characteristics.
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Stratigraphically, the Platreef lies directly beneath the gabbronorites assigned to the Main 

Zone of the northern limb, however, the Platreef should not be considered as the base of this 

Main Zone unit as it has been previously by van der Merwe (1976) and Kruger (2005a). One 

of the major findings of this study has been the identification of a significant time-break 

between the intrusion of the Platreef and the Main Zone magma that formed the hangingwall 

gabbronorites. This demonstrates that the Platreef is not part of the gabbronoritic Main Zone, 

but rather a separate and older phase of intrusion.

This relationship also has significant implications for the source of PGE to the Platreef in 

relation to the mass balance problem posed by a relatively thin volume of magma carrying 

such a large volume of PGE. It would require a volume of mafic magma much, much greater 

than that represented by the Platreef to be processed in order to extract the observed 

concentrations of PGE (Cawthom et al., 2002). In the eastern and western Bushveld 

Complex, the magma that formed the Main Zone magma has been considered as the source of 

PGE to the Merensky Reef (Page et al., 1982; Maier et al., 1996; Maier and Bames, 1999), 

and the Main Zone in the eastern and western limbs appears to be PGE-depleted (e.g. Maier 

and Bames, 1999). This, however, cannot be the case in the northern limb. The findings 

presented in Chapters 3 and 4 clearly show that the Platreef was almost completely (if not 

totally) crystallized, and even deformed, prior to the intmsion of the hangingwall magma, and 

thus this magma could not have provided an in situ source of PGE to the Platreef. In addition, 

this work has also, for the first time, identified zones of PGE mineralization at the base of the 

hangingwall unit, a lithology previously regarded as barren, which have formed by the 

cannibalization of mineralized reef into localized zones at the base of the hangingwall.

The roof rocks to the Rustenburg Layered Suite are often thought to be felsites of the 

Rooiberg Formation (e.g. Cheney and Twist 1991; Kruger 2005a). This may not necessarily 

be true for the northern limb. Metasedimentary rocks that conventionally form the footwall 

for the Platreef are present as xenoliths within the base of the Main Zone, particularly to the 

north of Zwartfontein (van der Merwe, 1978). This can be explained if Transvaal sediments 

formed not just the floor to the Platreef during its intrusion, but also its roof. The presence of 

PGE-mineralized Malmani-derived calc-silicate xenoliths within the Main Zone rocks many 

kilometres north of the last footwall outcrop can be explained if the Platreef magma, during 

intmsion, exploited the Malmani-Archaean basement boundary. Therefore, north of
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Zwartfontein, the floor rocks to the Platreef were gneisses and the roof rocks calc-silicates. 

These roof rocks would have had the potential to be mineralized by hydrothermal activity in a 

similar manner to the floor rocks at Sandsloot. The later intrusion of the Main Zone could 

then have entrained some of these mineralized rocks, and preserved some as xenoliths such as 

those observed at Drenthe described by Kinnaird et al., 2005.

9.3 Source of sulfide

The fundamental observation that the rocks representing the Main Zone in the northern limb 

cannot be a possible in situ source of PGE to the Platreef lends considerable support to the 

theories that suggest that the PGE were pre-concentrated before intrusion of the Platreef in, 

for example, a staging chamber or conduit system (Lee, 1996). If this were the case, then the 

mass balance problem can be overcome, as there is the potential for a large volume of magma 

to come into contact with, and lose PGE to, an immiscible sulfide present in such an 

intermediate chamber. For example, if sulfide saturation occurred at an early stage, then the 

passage of a magma, such as that which formed the Lower Zone in the northern limb, over 

immiscible sulfide droplets at the base of the staging chamber/walls of the conduit could have 

potentially contributed a large volume of PGE to the sulfide. The Lower Zone cumulates 

above the Volspruit Subzone in the Grasvally area to the south of Mokopane are notably poor 

in PGE and sulfide (even in chromitite layers, which typically contain <1000ppb total PGE; 

Hulbert, 1983) and olivine in this part of the sequence contains lower concentrations of Ni 

than might be expected given the high Fo content of the olivine. These features could be 

explained by the extraction of the PGE from the source magma prior to its emplacement in the 

Grasvally chamber. A later pulse of mafic magma then entrained the sulfides in the 

intermediate chamber and emplaced them as the Platreef.

Evidence of such a deep magmatic source to the mineralization is found in the isotope 

signature and geochemistry of the sulfides. The isotope signature of the earliest formed, and 

least altered or mobilized sulfides, in areas of the Platreef that are relatively uncontaminated, 

consistently have S34S values of around 0 to +2%o, which are entirely consistent with a mantle 

source and are identical to the signatures of sulfide inclusions in diamonds within the nearby 

Klipspringer kimberlite (Westerlund et al., 2004), which can be assumed to have sampled the 

local mantle sulfur source and to be representative of the local mantle signature. The presence 

of a mantle signature in the widespread early sulfides in the Platreef pyroxenites strongly
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indicates an initial magmatic source for the sulfide mineralization. In addition, in the same 

areas, the fractionated nature of sulfide blebs, the solid solution behaviour of PGE in some 

sulfide minerals, and the presence of Pt and Pd tellurides and bismuthotellurides around the 

margins of the sulfide blebs are all entirely consistent with the PGE initially being 

concentrated within a sulfide liquid. The presence of Pt-Bi(-Te) microinclusions within these 

very early sulfide phases also indicates that the semi metals Bi and Te were also present 

within the sulfide liquid and were pre-concentrated along with the PGE.

9.4 ‘Primary’ Platreef mineralization

The most ‘primary’ style of mineralization in the Platreef is preserved in the feldspathic 

pyroxenites that have experienced minimal input from contamination by reactive footwall 

rocks, such as at calc-silicate xenolith-free sections at Overysel. The presence of a virtually 

anhydrous footwall north of the farm Zwartfontein has severely limited contamination and 

particularly hydrothermal activity, and consequently it is here that the most primary 

assemblages are preserved. Although the sulfides pyrrhotite, pentlandite and chalcopyrite are 

all low temperature phases, we term them ‘primary’, as texturally and mineralogically, they 

are the direct cooling products of the in situ fractional crystallization of sulfide liquid 

droplets. The ‘primary’ Platreef mineralization style has the following characteristics:

• Sulfides are present as fractionated blebs within the interstitial regions in feldspathic 

pyroxenites between cumulus orthopyroxene grains,

• Sulfide blebs are made up of pyrrhotite, pentlandite and chalcopyrite, which show an 

Fe-Ni-Cu zonation towards the margin,

• The IPGE are concentrated in solid solution in pyrrhotite and pentlandite,

• Rh and some Pd are present in solid solution in pentlandite,

• Some Pd and all the Pt and Au are present as discreet PGM located around the 

margins of the sulfide blebs. The PGM occur as Pt and Pd tellurides and 

bismuthotellurides, Pt sulfides, Pt arsenides and Au is present as electrum.

As such, the Platreef can be considered to be, in genetic terms, an orthomagmatic sulfide 

deposit, with the PGE and some semi metals such as Te and Bi collected by immiscible 

sulfide droplets.
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The association of tellurides and bismuthotellurides around the margins of sulfide grains is a 

common texture in many disseminated PGE-sulfide deposits, including the Merensky Reef 

(e.g. Prichard et al., 2004a), the Great Dyke of Zimbabwe (e.g. Oberthiir et a l, 2003), the 

Federov Pansky Intrusion, Kola Peninsula (e.g. Schissel et al., 2002) and the Suhanko- 

Konttijarvi intrusion, Finland (e.g. Iljina et al., 1992). The association of the PGM with, and 

particularly as inclusions within, magmatic sulfide droplets in these examples implies a 

magmatic origin. However, Pt and Pd tellurides are often considered to be characteristic of 

low-temperature, hydrothermal environments (e.g. Auge et al., 2002). Whilst they are 

undoubtedly formed at relatively low-temperature, their presence in these types of deposit is 

almost certainly as a result of cooling and fractionation from a magmatic sulfide liquid.

9.5 Contamination

The extensive sulfur isotope work in this study has revealed the role of contamination on 

Platreef mineralization on a scale that has never previously been possible. Where previous 

studies have concentrated on individual localities along the Platreef, this study has been able 

to bring existing data together with an extensive set of new data from more localities along 

strike than ever before. In doing so, it has produced the first truly regional assessment of the 

role of contamination along the strike of the Platreef. The S isotope signature of the early 

formed sulfides in parts of the Platreef that have been subjected to relatively small amounts of 

contamination has shown that there is very little input of country rock S to the original 

Platreef sulfides. However, in places where the footwall contains sulfides, such as at 

Turfspruit where pyrite is present in the Duitschland Formation (Sharman-Harris et al., 2005), 

there is evidence that the country rock S has been incorporated into the early Platreef sulfides, 

particularly towards the basal contact. Where the floor rocks contain sulfates, rather than 

sulfides, such as at Sandsloot where the Malmani rocks contain anhydrite, the early formed 

sulfides appear to be unaffected by contamination. Previous oxygen isotope studies at 

Sandsloot have shown that a considerable amount of contamination has taken place, with the 

assimilation of up to 18% dolomite (Harris and Chaumba, 2001). This contamination has not 

affected the early formed magmatic sulfides, however, later sulfides in fluid affected 

lithologies such as serpentinites and footwall calc-silicates show evidence of some input of 

country rock S in their isotope signatures. The absence of a contaminant signature in the early 

sulfides at Sandsloot compared to Turfspruit is likely to be a function of the manifestation of 

the S in the footwall: at Sandsloot it is present as sulfate, and at Turfspruit, sulfide. Sulfide
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will be assimilated by the magma at magmatic temperatures, however sulfate will not and is 

much more likely to interact with any magmatic sulfide by hydrothermal leaching. Thus, S 

exchange where the country rocks contain S as sulfide is by assimilation at an early stage and 

where it is present as sulfate, S exchange takes place at a later stage, and is controlled by fluid 

activity.

The nature and extent of contamination by country rock S is therefore a very localized process 

and serves primarily to upgrade the S content in places. It is not, however, a significant trigger 

to sulfide saturation and collection of PGE as suggested by Buchanan et al. (1981), Buchanan 

and Rouse (1984) and Sharman-Harris et al. (2005). Contamination by localized processes 

such as silicic contamination, an increase in fO i conditions, or the addition of country rock S 

may appear to be plausible as triggers for S saturation when considering individual areas, as 

all previous studies prior to this one have done. However, as significant sulfide mineralization 

is present along the entire strike length of the Platreef regardless of footwall lithology, these 

individual explanations cannot be applied to the Platreef as a whole, without the unlikely 

scenario of a variety of individual, localized processes occurring concurrently. What is more 

likely is that sulfide saturation took place prior to intrusion, and contamination acted as an 

ore-modifying rather than an ore-forming process.

Whilst contamination may not have triggered sulfide saturation, it undoubtedly did affect the 

petrology of parts of the Platreef, although this, like upgrading of the S budget, was also on a 

local scale. Lithologies such the olivine-replaced reef at Sandsloot and the extensive 

serpentinized pyroxenites and peridotites at Zwartfontein South appear to be related to fluids 

released from the metamorphism, assimilation or serpentinization of footwall calc-silicates.

At Overysel, the basal section of the Platreef contains abundant quartz, which is related to the 

incorporation of a felsic melt derived from the partial melting of the footwall gneisses in the 

area. All these variations along strike are directly related to the nature of the local floor rock 

lithology.

9.6 Hydrothermal activity and redistribution of PGE into footwall rocks

The assimilation of the variety of footwall sediments in the area to the south of Overysel 

released significant volumes of fluids into the Platreef magma, and the area around Sandsloot 

and Zwartfontein South appears to have been particularly affected by such volatile activity,
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with significant redistribution of PGE and sulfide mineralization into both the calc-silicate 

footwall rocks and xenoliths. The study of the PGM mineralogy at Sandsloot (Chapter 5) has 

revealed that hydrothermal activity plays a significant role in the distribution and mineralogy 

of the PGE, and that, impotantly, PGE mineralogy is a particularly useful tool in identifying 

hydrothermal processes. The presence of distinct PGM assemblages in individual rock types 

is directly related to the fluids (or lack thereof) that have passed through the rock which, in 

turn, affect the nature of the lithology. For example, in the feldspathic pyroxenites at 

Overysel, where fluid activity has been relatively limited, a ‘primary’ assemblage of Pt and 

Pd tellurides associated with the sulfide blebs is preserved. At Sandsloot, in the olivine- 

replaced reef at Sandsloot, a lithology that is thought to have undergone significant 

hydrothermal overprinting by an Fe-rich fluid to produce the observed silicate mineralogy 

(McDonald et al., 2005), the PGE mineralogy has been altered, with Pt present as Pt-Fe alloys 

rather than tellurides, and a much poorer association of the PGM with BMS has been 

produced. The decoupling of PGE from BMS appears to be a prevalent feature of fluid- 

affected lithologies, with calc-silicates and footwall serpentinites often containing high PGE 

and low BMS concentrations, or vice versa. In such cases, the use of the visual identification 

of sulfide minerals as an exploration tool to indicate the presence of PGE becomes much less 

robust.

This decoupling of PGE from BMS, particularly in the footwall, is much rarer at Overysel, 

where the gneissic footwall contains a BMS and PGM assemblage very similar to that in the 

feldspathic pyroxenites. This is due to a similar mineralization mechanism and is directly 

related to the nature of the floor rocks. The Archaean gneisses are relatively anhydrous and 

therefore would have released very few fluids during metamorphism and assimilation.

Instead, partial melting around grain boundaries produced an interconnected melt network 

down through which, the PGE-rich sulfide liquid from the Platreef was able to percolate, 

producing similar sulfide and PGM assemblages and associations as it cooled to those in the 

reef, but also caused fractionation of PGE with depth. The mechanism of distribution of PGE 

into the footwall, like many other aspects of the Platreef mineralization, is therefore 

fundamentally determined by the nature of the floor rocks.

The PGM mineralogy is also apparently controlled by the nature of the floor rocks. Whilst the 

assemblages in individual rock types at a given locality reflect the nature of individual fluid 

events on a local scale, on a kilometre scale, the footwall control is evident in the presence
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and absence of certain PGM types. Some PGM such as Pt and Pd tellurides and sperrylite are 

common throughout the Platreef and occur at most localities along strike, and are the 

preserved remnants of the ‘primary’ mineralization style. PGE sulfides such as cooperite, 

however, appear to only be present where the floor is Archaean basement, and a high 

proportion of alloys and antimonides are characteristic of the area where dolomites form the 

floor. The localized study at Sandsloot found that the lithologies containing the majority of 

these locality-characteristic phases are metasedimentary footwall rocks or rocks that have 

experienced hydrothermal activity related to the alteration of the local floor rocks.

9.7 Conclusions

The many findings of this study can be used to generate an outline model for the formation of 

the Platreef and the northern limb of the Bushveld Complex as a whole. The proposed model 

is illustrated in Fig. 9.1 and can be summarized in the following stages:

1. Lower Zone magma is intruded. This may have been from a feeder to the west of 

Mokopane, possibly on the Ysterberg-Planknet fault, as suggested by van der Merwe 

(1976). This intrusive event formed a magma chamber and cumulates in the area south 

of the fault, represented by the Grasvally-Volspruit body, and finger-like satellite 

intrusions into the country rocks to the north (Fig. 9.1a).

2. Sulfide saturation was achieved by the magma in a deep staging chamber and the 

sulfide droplets scavenged PGE and base metals, together with semi-metals such as Bi 

and Te from the magma that passed over them (Fig. 9.1a). This may have occurred 

during the passage of the magma that formed the Lower Zone.

3. A large pulse of magma entrained the now PGE-rich sulfides and was intruded into the 

Transvaal Supergroup country rocks to form the Platreef. The magma intruded across 

dipping strata, entraining xenoliths of local floor rocks. Where it met the Transvaal- 

Archaean basement boundary, it exploited this boundary, and incorporated xenoliths 

of Malmani dolomites from the roof for several kilometres north of the last footwall 

outcrop (Fig. 9.1b).

4. Assimilation of footwall sulfides in some areas, e.g. Turfspruit, locally upgraded the S 

content of the Platreef sulfide fraction (Fig. 9.1b, inset).

5. The PGE-rich sulfide liquid in the Platreef fractionated as it cooled, with the IPGE and 

Rh being concentrated into early crystallising mss, with Pt, Pd, Au and some semi 

metals being concentrated into a late-stage residual liquid. During exsolution of
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pyrrhotite and pentlandite from mss, and chalcopyrite from iss, the IPGE remained in 

solid solution in pyrrhotite and pentlandite. All the Rh and some Pd remained in solid 

solution in pentlandite. The remainder of the Pd, plus virtually all the Pt and Au and 

semi metals are present as discreet PGM around the margins of the BMS blebs.

6. Assimilation of footwall sediments, particularly carbonates, released large volumes of 

volatiles into the Platreef magma. The interaction of a variety of fluids released from 

the various footwall lithologies were responsible for redistributing and recry stall i sing 

PGE in the Platreef, and in particular for redistributing PGE and sulfides into the 

footwall rocks, xenoliths and Malmani roof (Fig 9. lb, inset). In places where the 

footwall contained sulfate, S exchange of country rock S with the magmatic sulfide 

occurred during hydrothermal leaching, and affected late-stage sulfides.
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Figure 9.1. Model for the formation of the northern limb of the Bushveld Complex.
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7. Where the floor rocks were anhydrous gneisses, partial melting of the footwall 

occurred around grain boundaries; with some of the felsic melt produced 

contaminating the basal part of the Platreef pyroxenites. Development of an 

interconnected melt network allowed the downward percolation of sulfide from the 

Platreef into the gneisses. This process fractionated the PGE, with the assemblages 

becoming more IPGE-poor with depth.

8. A significant period of crystallization and cooling occurred, during which some 

shearing of the Platreef pyroxenites occurred, producing steeply dipping NE-SW and 

strike parallel, westerly dipping N-S shear zones in the Platreef.

9. The gabbronoritic Main Zone magma was then intruded and exploited some of these 

shear zones to occasionally produce finger-like intrusions down into the Platreef (Fig. 

9.1c). The Platreef-hangingwall contact is therefore a magmatic unconformity, and 

where the hangingwall magma cut down into mineralized Platreef, it cannibalized the 

mineralization and localized zones of PGE-BMS mineralization developed at the base 

of the hangingwall above such mineralized Platreef sections.

10. Xenoliths of mineralized calc-silicate in the Main Zone were derived from the 

Malmani Subgroup that formed the roof to the Platreef and were mineralized during 

stage 6 (Fig. 9c).

11. Finally, the Upper Zone was intruded to complete the stratigraphy of the northern limb 

of the Bushveld Complex (Fig. 9. Id).

In conclusion, the Platreef is genetically an orthomagmatic, PGE-rich sulfide deposit that has 

undergone a variety of localized processes related to contamination and hydrothermal activity 

directly related to the local footwall type, which have altered the original nature of the deposit 

to varying extents and produced a highly complex orebody. In his seminal volume on the 

platinum deposits of South Africa, Percy Wagner (1929) stated that the platiniferous deposits 

of the Bushveld Complex constituted a “subject so vast and complex, and yet withal so 

alluring and provocative of discussion, that it may safely be prophesized that the last word on 

it will never be spoken.” This prediction has proved to have been particularly pertinent with 

regard to the particular platiniferous deposit that became known as the Platreef. However, 

over the past few years the boom in Platreef research, of which this study has been an integral 

part, has significantly progressed our knowledge and understanding of this particularly 

enigmatic deposit.
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Appendix 1. Face maps

Appendix 1

Geological face maps 

from the Sandsloot and Zwartfontein South pits.

Contents:

This appendix contains the geological face maps generated from field mapping in the pits 

during the field seasons.
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Appendix 2. Geochemical data

Appendix 2

Whole-rock geochemical data

Contents:

This appendix contains all whole-rock geochem ical data. Major and trace elements were 

determined by inductively coupled plasma-optical em ission spectrometry (ICP-OES) and by 

inductively coupled plasma-mass spectrometry (ICP-M S). Sulphur was determined by 

combustion iodometric procedure using a Laboratory Equipment Company (LECO) titrator. 

PGE and Au values were determined Ni sulphide fire assay with Te coprecipitation followed  

by ICP-MS procedure. Methods are described in Chapter 6, section 6.3. Data for the samples 

collected by Paul Armitage for the Sandsloot pit can be found in M cDonald et al. (Appendix 

5).

Key to lithology abbreviations in the follow ing tables:

AFPX Altered Platreef feldspathic pyroxenite IN Intrusive norite
CPX Platreef clinopyroxenite LZP Lower Zone pyroxenite
CSX Calc-silicate xenolith MS M assive sulphide
FCPX Footwall clinopyroxenite PEGP Pegmatitic Platreef feldspathic pyroxenite
IPX Platreef feldspathic pyroxenite PDT Peridotite (olivine-replaced reef)
GN Gneiss QF Quartzo-feldspathic vein
GT Granite QFPX Quartzo-feldspathic pyroxenite
HWA Hangingwall mottled anorthosite SCSX Serpentinised calc-silicate xenolith
HWGN Hangingwall gabbronorite SPT Serpentinite
HWMN Hangingwall fine-grained melanorite 
intrusive
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Sandsloot, SNS1 face samples:

Sam SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

ple 2 6 1 0 11 1 2 17 2 2 25 29 31a 32 33 35 39 40

Lith: HWGN HWGN HWGN HWA FPX FPX AFPX FPX FPX PEGP FCPX SPT FCPX MS FCPX

S i0 2

(wt%) 52.15 50.99 51.28 51.19 50.89 52.52 49.88 51.58 47.60 49.91 43.55 39.60 42.79 34.86 45.10

Ti02 0.15 0 . 2 0 0.17 0.05 0.19 0.15 0.18 0 . 2 1 0 . 2 0 0 . 2 0 0.38 0 . 2 2 0.37 0.30 0.35

AJ2O3 17 61 10.51 17.66 27.95 5.92 6.56 6.13 6 6 6 6.62 8.98 6.94 4.09 7.10 5.75 5.41

Fe20 3 7.31 11.34 7.57 1.77 1 2 . 1 0 11.92 12.16 11.53 13.19 10.69 9.89 8.30 10.39 2 2 . 0 0 5.92

MnO 0.13 0 . 2 0 0.13 0.04 0 .2 1 0 . 2 2 0 . 2 0 0 . 2 1 0 . 2 1 0.19 0.24 0.35 0.30 0.36 0.29

Mg 0 10.67 18.25 10.95 1.64 23.90 23.40 21.99 22 42 21.72 17.57 13.73 32.27 15.25 14.48 15.39

CaO 10.35 7.08 9.29 12.90 4.72 4.76 5.02 5.31 8.74 1 1 . 0 2 24.82 10.13 21.76 17.31 25.55

Na20 1 55 0.92 1.69 2.25 0.52 0.57 0.80 0.71 0.18 0.77 0.04 0.06 0.06 0.05 0 . 0 2

k2o 0.28 0.17 0.24 0.75 0 .1 1 0 . 2 1 0.17 0.25 0 . 0 2 0.13 0.04 0.03 0.05 0.04 0.03

P 2 O 5 0 . 0 2 0 .0 1 0.05 0 .0 1 0.04 0 . 0 2 0 . 0 1 0.03 0 . 0 2 0 . 0 2 0 . 0 1 0 . 0 0 0 .0 1 0 .0 1 0 . 0 0

LOI 0.39 0.15 0.71 1 52 0.91 0.51 2.82 0.59 1.64 0.82 1.30 5.24 1.47 4.19 1.19

Total 100.61 9981 99.72 100.06 99.51 100.83 99.37 9 9 4 9 1 0 0 . 1 2 100.28 100.93 100.28 99.55 99.35 99.24

Sc
(ppm) 2 1 . 0 0 28.23 19.22 4.74 29.75 29.89 32.33 29 59 28.32 32.22 17.10 7.74 12.15 9 39 12.64

V 103.97 145.10 101.95 27.17 153.02 149.56 153.46 153.23 147.57 173.68 77.12 32.10 57.57 37.50 51.87

Cr 782.7 1288.3 879.5 98.0 2071 2 2061 8 1875.9 1841.5 1693.6 1251.0 71.9 30.7 48.3 41.1 83.04

Co 40.71 62.95 42.68 7.51 76.85 76.23 79.53 71.10 108.23 85.94 69.53 46.57 70.06 508.87 31.11

Ni 2 0 2 . 0 333.0 228.1 44.2 526.7 532.7 870.7 525.4 3073.0 2322.5 3955.8 1904.5 3906.6 48276.6 1942.7

Cu 167.2 41.9 33.0 9.9 116.6 39.7 337.3 64.4 724.2 277.3 679.7 299.3 791.1 5079.4 617.1

Zn 48.95 202.35 43.12 8.31 129.14 78.97 79.76 82.65 104.91 67.33 121.38 51.50 94.80 480.57 31.62

Sr 217.73 128.92 244.14 367.34 59.97 109.27 59.97 134.91 42.60 129.13 4.37 8.35 13.01 10.57 5.45

Ba 91.81 53.15 102.92 268.65 40.66 90.53 67.24 116.71 41.25 132.56 2.63 2.39 166.16 5.11 2.05

Ga 13.59 9.78 14.78 18.20 6.79 7.01 5.54 7.15 6.31 8.56 7.47 4.97 8.13 5.70 5.92

Rb 3.27 2.71 3.40 9 64 2.62 2.91 2 . 1 1 4.26 1.19 1.73 0 . 2 0 0.48 4.32 0.69 0.16

Y 5.93 7.65 6.30 2 . 0 2 6.71 5.35 6.59 7.52 6.80 9.02 1 0 . 0 2 6 . 1 0 10.58 7.33 8.60

Zr 9.84 11.71 7.08 1.57 8.44 10.41 11.15 14.07 16.46 14.14 20.31 26.42 35.47 35.22 29.95

Nb 0.39 0.49 0.25 0.03 0.28 0.40 0 . 1 2 0.39 0.50 0.43 0.19 0.08 0.59 0.30 0.07

Cs 0.08 0.15 0.25 0.43 0.25 0.13 0.35 0.18 0.31 0.34 0 . 0 2 0.16 0.03 0.09 0.03

La 4.04 3.63 5.12 3.27 2 52 2.37 1.85 3.67 3 28 3.45 5.48 1.39 7.10 2 . 1 2 2.34

Ce 7.80 6.47 9.44 6.34 5.60 4 35 4.45 6.89 6.80 7.68 10.42 3.47 14.33 5.45 5.99

Pr 0.93 0.80 1.14 0.69 0.72 0 54 0.59 0.85 0.84 1 . 1 0 1.40 0.56 1.83 0.80 0.98

Nd 3.60 3.11 4.07 2.42 2 89 2.14 2.45 3.30 3.29 4.72 5.91 2.85 7 28 3.47 4.64

Sm 0.77 0.76 0.84 0.45 0.77 0.53 0 . 6 8 0.85 0.83 1.23 1.60 0.82 1.73 1 .0 1 1.32

Eu 0.47 0.33 0.52 0.59 0.23 0 . 2 2 0 . 2 0 0.30 0.23 0.39 0.51 0 . 2 2 0.49 0.27 0.33

Gd 0.83 0.87 0 . 8 6 0.40 0.84 0.63 0.78 0.89 0 . 8 6 1.35 1 . 6 6 0.93 1.81 1.08 1.40

Tb 0,14 0.16 0.15 0.06 0.15 0 . 1 1 0.14 0.16 0.15 0.23 0.27 0.16 0.30 0.19 0.24

Dy 0.90 1 . 1 0 0.94 0.33 0.99 0 78 0.96 1 . 1 2 1 . 0 2 1.50 1.70 1 .0 1 1.82 1.19 1.43

Ho 0.18 0.23 0 . 2 0 0.06 0 . 2 0 0.17 0 . 2 0 0.23 0 .2 1 0.29 0.32 0.19 0.34 0 . 2 2 0.27

Er 0.58 0.77 0.61 0.18 0 . 6 6 0.57 0.69 0.75 0.70 0.90 0.96 0.57 1.03 0.67 0.78

Tm 0.09 0.13 0 . 1 0 0.03 0 .1 1 0.09 0 . 1 1 0 . 1 2 0 . 1 1 0.14 0.14 0.09 0.15 0 . 1 0 0 . 1 2

Yb 06 3 0.89 0.67 0.16 0.76 0 . 6 8 0.77 0.84 0.81 0.92 0.92 0.58 1.03 0.62 0.77

Lu 0 . 1 0 0.16 0 .1 1 0.03 0.13 0 . 1 1 0.13 0.13 0.13 0.14 0.14 0.09 0.16 0 . 1 0 0.13

Hf 0.26 0.34 0.18 0.06 0.29 0.31 0.31 0.38 0.45 0.51 0.99 1.24 1.61 1.45 1.30

Ta 0.03 0.03 0.03 0 . 0 0 0 . 0 2 0.03 0 .0 1 0.03 0.05 0.03 0.05 0 . 0 2 0.05 0 . 0 2 0.03

Th 0.29 0.45 0.32 0.03 0.25 0.40 0 . 2 0 0.48 0.82 0.46 0.75 0.15 0.40 0.19 0.26

U 0.08 0 . 1 2 0.08 0 .0 1 0.05 0.13 0.05 0.17 0.27 0 . 1 2 0.47 0.03 0.26 0.06 0.13

S
(wt%) 0 . 0 2 1 0.027 0.015 0.006 0.054 0.008 0.086 0 . 0 2 0 0.696 0.505 1.603 0.416 1.384 10.391 0.485

Os
(PPb) 2.7 1.4 0 . 8 0.5 0.3 0 . 2 2 . 2 8.7 18.6 12.7 26.5 9.1 2 0 . 2 406.5 23.7

lr 0.7 0.4 0.4 0 . 8 0 .1 0 . 2 1 .1 1 . 0 45.6 22.9 48.3 2 0 . 1 40.5 485.2 37.8

Ru 1.9 0 . 6 0 . 8 3.0 0.4 0.7 4.5 1 .1 202.3 8 8 . 2 181.3 78.7 153.3 1843.5 133 3

Rh 0 7 1 .2 0 . 6 0.7 0 . 6 0.5 6 . 6 1.4 184.90 97.4 218.6 81.0 175.1 2168.0 173.1

Pt 4.8 4 9 3.9 8 . 2 8 . 2 6 . 8 510.8 8 . 2 2564.0 1552.0 3742.5 1310.0 2466.5 33285.0 3782.5

Pd 3.3 6 .1 4.0 11.4 6.4 6 . 0 392.0 10.4 1623.0 1579.0 3154.0 1058.0 2603.0 62930.0 3236.0

Au 4.5 3.3 3.0 3 2 5.1 2 . 8 90.7 6 . 0 533.7 259.8 702.8 132.4 199.9 1897.0 1611.0
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Appendix 2. Geochemical data

Sandsloot, SNN1 face samples:

Sample

Lithology

SNN1

0

HWGN

SNN1

7a
HWA

SNN1

7b
FPX

SNN1

8

AFPX

SNN1

18a
FPX

SNN1

2 0

AFPX

SNN1
25

AFPX

SNN1
37

PEGP

SNN1

40
SPT

SNN1

43
PDT

SNN1
47

PEGP

SNN1

53
PDT

SNN1
57

SPT

SNN1
60

AFPX

Si0 2 (wt%) 50.32 49.81 52.14 51.41 51.88 47.83 52.26 51.45 36.35 46.73 50.10 45.27 35.66 47.17
Ti02 0 . 2 0 0.51 0 .2 1 0 .2 1 0.14 0.16 0.24 0.24 0 . 2 0 0.16 0.16 0 .2 1 0.07 0.13
AI2O3 20.74 24.37 5.25 4.83 8.52 5.93 6 . 1 0 11.60 6.36 4.19 8.65 4.05 7.48 3.17
Fe20 3 5.38 3.00 14.91 13.72 10.62 12 89 10.93 9.09 15.92 12.27 11.05 10.94 8.98 12.59
MnO 0 . 1 0 0.08 0.23 0.23 0 . 2 0 0 . 2 1 0 . 2 0 0.17 0.29 0.17 0.17 0.31 0 .1 1 0.15
MgO 5.76 2.62 20.35 2 1 . 0 2 21.33 24.15 21.17 15.95 23.99 23.24 18.05 20.83 33.50 17.93
CaO 11.54 1 2 . 6 8 5.24 5.11 4.81 3.70 4.82 7.45 10.40 9.45 8 . 1 2 14.19 0.49 13.71
Na20 2.19 2.90 0.67 0.64 0.74 0.67 1.15 1.48 0.08 0.16 0.82 0.31 0.03 0 . 2 2

K20 0.57 1.13 0.17 0 .1 1 0.27 0 .1 1 0.15 0.34 0 . 0 2 0 . 0 2 0.08 0.07 0 .0 1 0.04
p 2o 5 0 . 0 2 0.04 0.03 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0.04 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 .0 1

LOI 2.13 2 .2 1 1.14 0.93 1 . 2 0 4.49 3.22 1.50 5.82 3.91 1.59 2.85 12.19 3.20
Total 98.95 99.36 100.33 98.23 99.74 100.16 100.26 99.30 99.44 100.33 98.80 99.05 98.55 98.33

Sc (ppm) 17.98 13.97 31.19 31.88 23.27 23 26 28.98 21.69 0.59 27.57 23.35 2 2 . 1 1 5.00 26.79
V 98.68 101.47 153.62 154.85 117.35 116.23 152.56 118.28 68.80 104.27 106.84 82.72 25.20 99.27
Cr 399.4 203.8 1929.0 1790.0 2135.9 1846.1 2035.1 1387.7 58.1 1248.9 1651.2 1695.1 132.4 1156.4
Co 32.4 18.1 158.3 122.7 1 0 2 . 2 104.9 80.8 78.7 140.5 156.8 126.3 99.7 75.1 173.4
Ni 190.2 223.9 7988.2 4678.1 3160.7 2693.3 585.4 1803.2 2209.7 5351.8 3918.7 2459.0 645.5 3891.7
Cu 15.4 19.5 2151.1 1099.4 494.1 809.3 14.9 491.2 1422.1 1571.1 977.7 1163.6 564.9 2056.1
Zn 42.50 17.62 139.55 115.46 99.82 156.99 125.37 77.77 185.83 95.47 92.21 65.13 90.57 90.94
Sr 320.53 423.11 65.64 59.40 177.59 35.86 60.24 267.35 30.80 29.36 169.83 31.11 7.19 14.84
Ba 206.49 347.33 49.30 48.85 197.87 38.71 63.04 160.05 14.94 30.81 50.63 33.50 7.10 18.42
Ga 15.79 17.84 5.98 5.70 7.29 5.98 6.92 10.39 8.89 4.56 7.87 5.13 9.62 5.34
Y 7.31 7.63 7.41 7.39 4.09 5.84 8.19 7.07 9.84 5.89 5.23 7.29 1.94 5.88
Zr 15.22 16.26 28.01 18.87 11.27 17.00 20.57 62.48 30.85 1 0 . 2 0 15.45 21.31 9.52 8.45
Nb 0.63 2.47 1.19 0.79 0.50 0.71 0.81 1.57 1.64 0.40 0.64 0.75 0.76 0.38

Cs 203.30 321.80 47.78 47.02 187.56 39.18 64.41 155.68 15.41 32.48 51.07 36.99 8.82 2 2 . 0 2

La 5.53 7.34 2.93 2.71 3.02 4.69 3 6 6 6.87 7.05 3.05 3.13 2.82 2.82 2.52
Ce 10.98 13.96 6.28 5.87 5.17 8.43 7.76 13.35 15.60 5.79 6.15 6.70 6.14 5.37
Pr 1.34 1.69 0.81 0.77 0.59 0.93 1 . 0 0 1.58 1.95 0.75 0.75 0.95 0.74 0.72

Nd 5.13 6.50 3.25 3.17 2.07 3.25 3.88 5.65 7.14 2 98 2.81 4.16 2.57 2.93
Sm 1.16 1.40 0.81 0.81 0.44 0 . 6 6 0.90 1 .1 1 1.44 0.75 0.61 1 . 1 0 0.39 0.72
Eu 0.58 0.74 0 . 2 0 0.19 0.28 0.15 0.25 0.47 0.37 0 . 2 0 0.26 0.31 0 . 1 0 0.33
Gd 1.13 1.42 0 9 0 0.91 0.49 0.72 1 . 0 0 1.09 1.40 0.83 0 . 6 6 1.15 0.34 0.84

Tb 0.19 0.23 0.16 0.16 0.09 0.13 0.18 0.18 0.23 0.14 0 . 1 2 0.19 0.05 0.15
Dy 1.23 1.33 1.09 1 . 1 2 0.58 0.87 1.24 1.13 1.45 0.97 0.80 1.24 0.29 0.97

Ho 0.24 0.26 0.23 0.24 0 . 1 2 0.19 0.26 0.23 0.30 0.19 0.17 0.24 0.06 0 . 2 0

Er 0.70 0.70 0.73 0.75 0.40 0.58 0.81 0 . 6 8 0.92 0.59 0.52 0.67 0 . 2 2 0.57

Tm 0 .1 1 0 . 1 0 0 . 1 2 0 . 1 2 0.07 0.09 0.13 0 . 1 1 0.15 0.09 0.08 0 . 1 0 0.04 0.09

Yb 0.69 0.60 0.85 0 . 8 6 0.48 0.67 0.93 0.71 1 . 0 2 0.59 0.62 0.65 0.38 0.56

Lu 0 . 1 0 0.08 0.14 0.14 0.07 0.09 0.16 0 . 1 0 0.17 0.09 0.09 0.09 0.07 0.09
Hi 0.40 0.49 0.81 0 53 0 2 9 0.46 0.54 1.37 0.76 0.28 0.39 0.71 0.25 0.27

Ta 0.05 0.16 0.06 0.05 0.04 0.07 0.07 0 . 1 1 0.15 0.05 0.05 0.05 0.08 0.03

Th 0.52 0.23 0.71 0.72 0.55 1 .0 1 0.92 1.60 1.84 0 . 6 8 0.51 0.59 1.39 0.42

U 0 . 1 2 0.07 0 . 2 0 0.18 0.18 0.52 0.26 0.78 0.31 0 . 2 0 0.19 0 . 2 0 0.51 0.15

S (wt%) 0 .0 1 1 0.039 1.447 0.785 0.494 0.438 0 . 0 2 1 0.321 2.628 2.298 1.123 0.976 0.779 2.171

Os (ppb) 1 . 0 1 . 0 39.5 23.6 17.0 9.1 0 . 2 1 . 6 0.7 18.5 11.9 4.2 1.3 7.6

1 r 0.7 2 . 0 91.8 54.1 38.9 17.9 0 . 2 3.0 1.5 40.5 26.7 9.9 2.9 15.8

Ru 5.7 5.6 378.7 214.3 156.9 76.5 1 . 6 1 1 . 2 4.2 144.6 98.7 32.9 10.5 50.8
Rh 0 . 6 4.5 346.9 205.8 159.3 69.0 0.4 14.7 7.0 154.5 111.5 41.2 1 1 . 8 65.7

Pt 1 1 . 6 106.1 4085.3 2266 3 2596.3 612.6 1.9 465.0 97.7 2244.0 1725.0 912.7 82.8 979.5
Pd 1 0 .1 128.1 4322.8 2620.8 2277.8 727.9 3.9 461.1 167.4 2251.2 1735.0 961.3 206.3 1296.8

Au 2 . 8 25.6 758.6 1581.2 174.5 118.2 2.3 197.1 28.1 402.4 433.1 188.2 17.5 155.8
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Appendix 2. Geochemical data

Sandsloot, SNN1 face samples (cont.).*

Sample

Lithology

SNN1

65
QF

SNN1

6 8

CPX

SNN1

72
SPT

SNN1

78
CPX

Si0 2 (wt%) 74.59 50.87 36.72 49.39
Ti02 0.08 0.23 0.23 0 2 0

AI2O3 10.63 4.13 8.28 4.31
Fe20 3 1.89 8.94 9.45 7.62
MnO 0.03 0 . 2 0 0.09 0.19
MgO 0.19 16.89 33.04 16.51
CaO 4.08 18.23 1.32 19.28
NazO 6.08 0.41 0.05 0.25
K20 0.03 0.04 0 . 0 0 0.03
p 2o 5 0 . 0 0 0 .0 1 0 . 0 1 0 . 0 1

LOI 0.99 1.32 11.98 1.65
To«al 98.60 101.26 101.18 99.45

Sc (ppm) 0.89 44.20 8.17 43.68
V 7.82 161.83 51.47 154.14

Cr 89.5 2074.0 83.7 1185.8
Co 25.7 96.1 66.5 7 5 0
Ni 243.3 2361.2 444.9 1338.7
Cu 2645 5 980.1 321.9 676.9
Zn 66.03 58.71 97.99 86.46
Sr 22.05 41.93 5.40 14.10
Ba 10.19 25.38 4.77 8.45
Ga 16.55 5.42 11.34 5.13
Y 27.11 10.47 10.79 9.14
Zr 24.87 17.40 53.87 11.74

Nb 12.31 0.76 1.03 0.47

Cs 16.45 27.80 5.90 1 0 . 1 2

La 13.67 3.57 4 5 2 2.44

Ce 27.87 8.31 2 0 . 0 1 5.83
Pr 3.37 1.17 3.62 0.89
Nd 11.92 5.08 15.54 4.07
Sm 3.12 1.38 3.38 1.18
Eu 0.25 0.37 0.24 0.33
Gd 3.29 1.54 2.50 1.35
Tb 0.63 0.27 0.37 0.23
Dy 4 23 1.75 2.06 1.54
Ho 0.84 0.35 0.37 0.31
Er 2.48 1 . 0 0 1.04 0 . 8 6

Tm 0.40 0.15 0.16 0.13
Yb 2 70 0.96 1.08 0 8 3
Lu 0.42 0.14 0.16 0.14
Hf 1.04 0.51 1.76 0.35
Ta 1 . 8 6 0.06 0 .2 1 0.03
Th 10.94 0.73 2 . 0 2 0.41
U 6.28 0.24 0.31 0.16

S (wt%) 0 683 0.673 0.733 0 361

O s(ppb) 0 . 0 5.1 0 . 2 2 2

Ir 0 .1 10.7 0.3 5.0
Ru 0 . 2 37.8 1 .1 18.8
Rh 0 . 6 42.8 1 . 0 19.9
R 5.4 547.6 16.3 275.9
Pd 8 . 2 679.6 23.5 324.6
Au 4.1 84.6 4.2 38.9
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Appendix 2. Geochemical data

Zwartfontein, ZSS1 face samples:

Sample

Llthology

ZSS1

2

HWGN

ZSS1

15

HWMN

ZSS1

26

HWGN

ZSS1

29

HWA

ZSS1

33a

HWN

ZSS1

33b

AFPX

ZSS1

41

FPX

ZSS1

54

SPT

ZSS1

6 8

SPT

ZSS1

84

IN

ZSS1

87

FPX

ZSS1

98

FPX

ZSS1

140

FCPX

Si02 (wt%) 51.26 52.22 51.35 51.79 50.78 50.11 53.98 39.74 38.00 51.20 52.24 49.43 49.21

TiOz 0.17 0.24 0.15 0 . 1 0 0 . 1 2 0.23 0 . 2 0 0.14 0.14 0.26 0.35 0.24 0.13

AJ2O3 22.80 16.40 22.18 27.09 22.13 6.51 6.53 2.61 2.45 16.45 8 .0 1 13.16 1 .0 1

FejOj 4.54 8.34 4.92 2.24 4.59 12.52 11.45 9.26 12.24 8.44 15.14 10.03 1.81

MnO 0.09 0.16 0 . 1 0 0.06 0 . 1 1 0.24 0.23 0.49 0.40 0.18 0.30 0.32 0 .2 1

MgO 5.25 8.72 6.33 2.48 7.31 16.33 20.40 36.40 34.31 8.67 14.43 12.81 15.97

CaO 12.18 13.40 11.26 13.13 10.03 9.16 5.91 0.25 2.29 1 2 . 0 0 7.81 10.51 28.52

NazO 1.94 1 . 6 6 1.77 2.14 1.79 0.84 0.59 0 . 1 1 0 . 1 1 2.27 1.46 1.29 0 . 0 0

K20 0.18 0 . 2 0 0.26 0.32 0.43 0.07 0.04 0 . 0 2 0 . 0 2 0.19 0.25 0.13 0 . 0 0

P j0 5 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 .0 1 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 0 0 . 0 2 0 .0 1 0 . 0 0

LOI 1.19 0.34 1.54 1 . 1 2 1.50 5.12 0 . 8 6 12.07 10.65 1.56 0.33 2 .2 1 3.35

Total 99.60 101.69 99.86 100.47 98.79 101.14 100.19 1 0 1 . 1 1 100.62 1 0 1 . 2 1 100.32 100.16 100.13

Sc (ppm) 16.0 39.9 17.3 8 . 6 1 0 . 6 35.9 32.4 18.3 12.5 33.5 37.0 35.7 2.9

V 93.7 183 3 89.8 65.2 70.4 174.4 151.3 58.3 46.4 151.7 168.2 167.3 64.6

Cr 271 5 320.4 491.9 206.9 751.4 1773.3 2217.6 334.0 751.5 522.4 579.3 483.8 32.3

Co 25 4 53.5 29.8 11.7 30.4 86.4 82.9 157.8 104.2 51.6 92.3 68.7 9.7

Ni 115.2 206.5 157.8 75.0 172.9 505.0 546.2 2273.8 771.3 303.8 823.3 835.4 33.6

Cu 23.6 80.0 19.1 50.1 16.0 65.9 6 8 . 6 1 2 2 . 0 65.4 56.9 140.1 170.8 27.5

Zn 35.9 44.6 36.9 2 2 .1 29.4 56.6 47.9 32.7 32.4 52.0 73.9 44.6 8.3

Sr 315.1 195.0 307.2 367.3 346.1 18.5 95.6 2.3 3.5 395.2 235.4 347.2 33.6

Ba 116.9 63.7 208.9 166.5 278.7 4.5 33.4 2.7 3.7 389.6 189.9 232.8 17.4

Ga 17.6 16.2 16.4 19.4 16.0 7.1 6 . 8 4.5 4.7 15.5 10.4 12.7 1.7

Rb 1.4 0.4 2 . 8 2 .1 5.4 0 . 2 0.4 0.3 0 .1 2.3 2.5 1 . 2 0 . 0

Y 321.0 198.2 310.6 368.8 348.9 18.1 95.5 1.9 3.2 406.9 232.7 358.4 34.0

Zr 5.5 1 2 . 0 4.1 2 . 2 2.3 6.5 5.1 4.9 3.3 1 0 . 8 13.1 10.3 2 . 6

Nb 10.5 10.7 12.7 3.8 4.8 14.5 9.6 18.6 12.3 10.5 24.6 9.8 13.5

Cs 0.47 0.17 0 . 1 2 0 .1 1 0 . 1 0 0.43 0.23 0.33 0 . 1 1 0.26 2.07 0.26 0.06

La 4.61 3.71 2.62 2.79 2.79 2.43 2.34 2.53 1.90 4.05 6 . 6 8 2.52 2.14

Ce 8.59 7.39 6 . 2 0 4.94 4.92 5.22 4.39 6.28 3.31 8.36 12.58 6.92 4.88

Pr 0 93 0.96 0.64 0.46 0.44 0.58 0.44 0.72 0.36 1 . 1 2 1.49 0.94 0.57

Nd 3.73 4.68 2.56 1.77 1 . 6 8 2.57 1.87 2 . 8 6 1.59 5.13 6.04 4.31 2.25

Sm 0.81 1.36 0.53 0.34 0.30 0.65 0.47 0.59 0.41 1.29 1.43 1.19 0.47

Eu 06 2 0.63 0.51 0.62 0.59 0.17 0 . 2 1 0 . 1 0 0 .1 1 0.64 0.40 0.52 0 . 1 2

Gd 0 79 1.54 0.57 0.34 0.29 0.78 0.54 0.65 0.44 1.44 1.52 1.33 0.44

Tb 0.13 0.27 0.09 0 0 5 0.05 0.13 0 . 1 0 0 . 1 1 0.08 0.24 0.27 0.23 0.07

Dy 0.85 1.87 0.61 0.34 0.32 0.95 0 72 0.73 0.52 1.73 1.89 1.57 0.41

Ho 0.16 0.37 0 . 1 2 0.07 0.06 0.19 0.15 0.15 0 . 1 0 0.33 0.38 0.31 0.08

Er 0.51 1.16 0.38 0 . 2 0 0 . 2 2 0.63 0.52 0.49 0.31 1.07 1.28 1 . 0 2 0.24

Tm 0.08 0.19 0.06 0.03 0.04 0 . 1 0 0.09 0.08 0.05 0.16 0 . 2 1 0.15 0.04

Yb 0.53 1.17 0.39 0 . 2 0 0.27 0.64 0.61 0.50 0.32 1.07 1.45 1.04 0.28

Lu 0 . 1 2 0.23 0.07 0.04 0.04 0.14 0.09 0.09 0.06 0 . 2 1 0.23 0 . 2 0 0.04

Hf 0.28 0.38 0.31 0.09 0 . 1 1 0.38 0.24 0.47 0.40 0.34 0.73 0.29 0.25

Ta 0.03 0 . 0 2 0 .0 1 0 .0 1 0 . 0 1 0.04 0 . 0 2 0.05 0 . 0 2 0 . 0 2 0 . 2 2 0 . 0 2 0 .0 1

Th 0.33 0.16 0 .1 1 0.05 0 . 1 1 0.39 0.28 0.79 0.15 0.16 2.77 0.33 0 . 1 2

U 0.15 0.13 0.08 0.06 0.08 0.17 0 . 1 2 0.15 0 . 1 0 0.13 1.93 0 . 2 0 0.13

S (wt%) 0.015 0.044 nd nd 0 . 0 0 1 0.083 0.009 0.292 0.057 0.016 0.323 0 . 2 0 1 0 .0 0 1

It (ppb) 0.5 0 . 0 nd nd 0.7 0 0 0 . 0 2 . 8 40.2 0 . 0 5.4 8.7 0 . 0

Ru 5.2 0 .1 nd nd 5.3 0.4 0.7 1 1 .1 146.6 0 . 2 2 0 . 6 33.6 0.5

Rh 0 . 2 0 . 0 nd nd 1.3 0 .1 0 2 1 1 . 8 173.6 0.3 23.2 35.7 0 . 2

R 13.5 14.7 nd nd 3.8 7.1 7.7 148.2 2065.8 4.9 259.2 363.5 1 .2

Pd 3.2 6 5 nd nd 5.0 3.8 6.4 180 5 2652.3 10.3 353.0 579.8 2.4

Au 0 9 1.4 nd nd 0 0 3.4 3.1 10.5 163.6 1.4 54.4 67.3 0 .1
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Appendix 2. Geochemical data

Overysel, OY335 core samples:

Sample

Lithology

OY335

166
HWGN

OY335
169

HWGN

OY335
175

HWMN

OY335
176
FPX

OY335
182

FPX

OY335
193

AFPX

OY335

2 0 1

FPX

OY335
213

SCSX

OY335
218

SCSX

OY335
230

AFPX

OY335
241

FPX

OY335
253
IN

Si02 (wt%) 52.72 51.08 52.49 51.74 52.05 51.66 54.47 42.21 41.23 51.94 53.47 54.67

TI02 03 2 0.23 0.26 0.14 0.14 0.18 0.26 0.26 0.36 0.15 0.18 0 . 1 0

AI203 14.22 16.68 14.20 5.78 6.03 5.94 8.67 6.80 5.60 6.74 8.49 18.18
Fe203 1 0 . 0 0 8.29 9.08 12.53 13.50 12.25 11.17 8.32 8.92 11.75 10.59 5.94

MnO 0.18 0.15 0.16 0 . 2 0 0.23 0.19 0 . 2 2 0 . 2 0 0 . 2 2 0 .2 1 0 . 2 0 0 . 1 2

MgO 11.53 8.87 1 2 . 1 0 23.42 22.85 2 1 . 1 2 18.58 24.67 26.82 20.57 18.61 7.13

CaO 1 0 .2 1 10.54 9.01 4.27 4.42 4.70 6.57 1 2 . 2 2 9.17 7.21 7.56 8.34

Na20 1.63 1.80 1.70 0.58 0.49 0.58 0.82 0 . 1 0 0.23 0.72 0.98 3.05
K20 0 . 2 2 0.30 0 .2 1 0.08 0.05 0.06 0.05 0 . 0 0 0.03 0.19 0.25 0.74
P205 0.04 0.03 0.03 0 . 0 2 0 . 0 2 0 0 2 0.03 0 .0 1 0 . 0 2 0 . 0 2 0 .0 1 0 .0 1

LOI 0.47 0.62 0.50 0.90 0.76 3.26 0.51 3.79 7.09 0.77 0.72 1 . 2 2

Total 101.53 98.58 99.75 99.65 100.53 99.97 101.34 98.60 99.70 100.28 101.07 99.51

Sc (ppm) 30.2 24.9 25.7 26.7 28.4 30.6 29.5 27.2 17.0 30.3 28.6 1 1 . 6

V 155.9 128.9 127.3 113.7 116.5 124.4 137.5 89.6 65.9 117.1 1 2 2 . 0 62.0
Cr 725.1 460.2 777.3 2161.4 2334.6 1981.1 1612.7 50.9 47.0 2043.4 1959.7 379.0
Co 50.3 41.0 48.3 128.4 126.9 87.0 69.9 46.1 40.2 84.5 75.6 45.6
Ni 248.1 186.3 457.3 4342.8 3597.0 996.6 447.4 197.2 464.0 1540.6 1050.5 1094.3

Cu 43.5 29.9 56.7 1301.2 839.4 1 0 1 . 8 30.5 26.2 47.3 605.0 176.3 245.0

Zn 116.0 76.3 75.5 127.1 92.0 79.1 68.3 58.9 86.7 125.0 158.0 60.1
Sr 186.8 225.8 188.6 64.7 6 6 . 2 6 6 . 2 1 0 2 . 0 56.7 37.1 167.8 193.4 414.6
Ba 104.4 146.0 1 1 2 . 0 55.5 54.5 48.6 60.5 35.6 40.8 149.5 105.9 229.8

Ga 12.4 14.2 1 2 . 2 5.9 6.3 7.4 9.4 8 . 0 7.5 7.2 8 . 8 18.3
Rb 3 2 5.3 3.3 1.4 2 . 2 1 . 0 1.5 0 . 0 0.9 3.3 4.9 15.6
V 10.5 9.3 8 . 0 4.1 3.8 6 .1 8 . 0 7.6 1 1 .1 5.3 6.3 4.7
Zr 30.1 19.4 17.1 11.5 7.6 13.7 36.4 25.7 51.0 7.8 11.9 6 . 6

Nb 1 . 8 6 1.16 1.31 0.44 0.47 0.71 1.74 0.57 1.82 0.73 1.34 2.51
La 7.31 6.30 6.85 1.93 1.46 2.15 7.55 2 . 8 8 4.05 1 . 8 8 1.94 3.32
Ce 14.33 12.42 12.08 4.47 3.96 6.16 10.46 6.40 10.65 3.44 4.66 5.11
Pr 1.80 1.54 1.47 0.57 0.52 0.79 1.30 0.96 1.54 0.56 0.63 0.60

Nd 6.95 6.09 5.67 2.18 1.93 3.05 4.93 4.27 6.41 2.29 2.73 2.27
Sm 1.64 1.41 1.26 0.52 0.43 0.75 1.14 1.23 1.69 0.58 0.76 0.54

Eu 0.52 0.61 0.52 0.16 0.14 0.19 0.33 0.33 0.42 0 .2 1 0.31 0.49

Gd 1.37 1.23 1.06 0.45 0.37 0.64 0.97 1.09 1.50 0.55 1 . 2 2 0.50

Tb 0.24 0 .2 1 0.19 0.08 0.07 0 . 1 2 0.17 0.19 0.26 0 .1 1 0.14 0.09
Dy 1.59 1.42 1 . 2 2 0.56 0 53 0 . 8 8 1.17 1.24 1.70 0.79 0.95 0 . 6 8

Ho 0.31 0.28 0.24 0 .1 1 0 . 1 1 0.17 0.23 0.23 0.34 0.16 0 . 2 0 0.13
Er 0.95 0 8 5 0.73 0.35 0.35 0.54 0.73 0.67 0.97 0.48 0.58 0.41

Tm 0.15 0.13 0 . 1 2 0.06 0.06 0.09 0 . 1 2 0 . 1 0 0.15 0.08 0.09 0.08
Yb 0.99 0.93 0.79 0.44 0.44 0.67 0.80 0.64 1.05 0.60 0 . 6 6 0.54

Lu 0.16 0.14 0.13 0.08 0.08 0 . 1 1 0.14 0 . 1 1 0.17 0 . 1 0 0 . 1 1 0 . 1 0

HI 0.74 0.52 0.46 0.27 0 . 2 0 0.35 0.84 0.98 1.55 0 . 2 2 0.31 0.23

Ta 0 .1 1 0.06 0.08 0.03 0.05 0.06 0.09 0.03 0 . 1 0 0.06 0.08 0.24
Th 1.38 0.82 0.97 0.44 0.52 0.59 1 . 2 2 0.35 0.67 0 . 2 2 0.30 0.47

U 0.43 0.31 0.34 0.23 0.28 0.35 0.47 0.25 0.53 0.31 0.29 0.75

S (wt%) nd nd nd
1 . 0 2 2 0.981 0.242 0.071 0.043 0.054 0.500 0.207 0.356

Ir (ppb) nd nd nd 46.5 37.3 8 . 0 1.9 0 .1 1 .1 48.0 3.4 10.4

Ru nd nd nd 149.3 132.6 2 2 . 2 5.7 1.3 6.3 91.5 9.2 39.2
Rh nd nd nd 149.3 136.0 2 1 . 8 3.9 0.7 4.4 1 1 1 . 2 12.5 39.5
Pt nd nd nd 2106.5 1727.5 256.6 46.4 32.6 51.7 4880.5 232.8 670.5
Pd nd nd nd 2004.5 2433.5 301.6 33.4 82.8 35.7 3069.5 422.4 847.6
Au nd nd nd 390.6 207.2 2 45 7 7.2 17.1 6 . 0 220.5 58.0 123.8
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Appendix 2. Geochemical data

Overysel, OY335 core samples (cont.):

Sample
Llthology

OY335
262
FPX

OY335
269
CSX

OY335

275
FPX

OY335
285

SPT

OY335
292

QFPX

OY335
303

QFPX

OY335
310
GN

OY335
316
GN

OY335
323
GN

OY335
345
GT

Si02 (wt%) 51.43 43.85 48.06 36.53 56.01 51.11 61.45 67.23 59.07 76.72
TI02 0.23 0.08 0.18 0.24 0.08 0.18 0.26 0 . 2 2 0.31 0 . 0 2

AI203 6.53 1.09 3.92 4.45 10.09 10.59 16.97 16.40 19.65 14.50
Fe203 10.60 2.28 12.97 14.00 7.77 9.89 6.07 4.49 5.48 0.36
MnO 0.23 0.35 0.23 0.09 0.18 0.18 0.18 0.07 0.18 0 . 0 2

MgO 17.62 16.42 22.41 33.20 15.84 17.36 4.92 2.09 4.09 0.17

CaO 12.99 29.70 10.33 1.37 7.15 6.43 5.55 4.33 6.33 1.08
Na20 0.72 0 .0 1 0.35 0.08 1.70 1.13 4.48 4.60 4.52 4.70
K2 0 0.08 0 . 0 0 0.06 0.03 0.18 0.50 0.47 0.49 0.24 1.67
P205 0 . 0 2 0 . 0 0 0.03 0 . 0 2 0 . 0 1 0 . 0 2 0.24 0 . 1 2 0.29 0.04
LOI 0.55 7.60 0.84 8 . 6 8 1.71 0.76 0.39 0 . 6 6 0.13 0.29
Total 1 0 1 . 0 0 101.40 99.37 98.68 100.73 98.14 100.98 100.70 100.30 99.55

Sc (ppm) 36.7 1.5 29.6 12.5 21.5 25.1 15.0 5.9 13.2 0.9
V 159.5 13.9 206.4 63.8 73.8 185.6 69.2 39.6 63.9 4.5
Cr 1428.4 18.6 2134.3 776.0 1072.5 17578.2 186.7 107.8 193.7 69.7
Co 62.7 4.4 100.9 115.3 61.4 70.8 29.8 42.0 2 1 . 2 2.5
Ni 463.0 77.3 1392.3 918.6 703.7 559.6 375.8 3185.0 209.8 10.5

Cu 171.2 44.5 577.7 137.5 188.6 120.9 317.3 722.7 91.7 1 . 0

Zn 85.8 45.6 95.0 695.2 54.7 114.8 91.6 83.1 96.8 19.3
Sr 1 2 0 . 0 32.6 89.8 20.3 191.2 249.3 534.4 690.3 610.7 287.4

Ba 48.5 0 . 6 1 1 0 . 8 19.8 165.6 219.6 342.8 667.6 485.9 631.0

Ga 8 . 2 1.7 5.9 6.9 10.9 12.3 25.4 18.5 29.4 19.4

Rb 0.9 0 . 0 1 .2 0 . 8 2 .1 1 1 . 8 5.6 3.7 1.7 20.3
Y 1 1 . 6 3.0 7.6 2.9 4.1 4.2 9.4 5.7 10.7 2.9
Zr 11.4 16.9 11.7 1 0 .1 8 . 6 12.5 47.9 41.8 28.9 19.6

Nb 1.13 0.59 0.36 0.25 3.63 1.74 7.74 2 . 2 1 5.56 1.06
La 2.30 3.32 2.73 0.94 2.19 2 . 2 1 10.82 14.10 16.18 6.98

Ce 6.33 8 . 1 0 6.92 2.89 4.94 4.77 2 1 . 2 0 2 2 . 6 6 29.71 12.31
Pr 1 . 0 0 0.98 0.97 0.36 0 . 6 6 0.59 2.74 2 . 6 6 3.87 1.41

Nd 4.65 3.63 4.15 1.38 2.62 2.23 10.77 9.80 15.14 4.65
Sm 1.49 0.70 1.15 0.31 0 . 6 6 0.52 2.50 1.83 3.23 1.07

Eu 0.40 0.16 0.33 0.07 0.25 0.24 0.89 0.92 1.13 0.35
Gd 1.45 0.53 1.06 0.27 0.57 0.46 1.83 1 . 2 2 2.25 0.69

Tb 02 7 0.08 0 . 2 0 0.05 0 . 1 0 0.09 0.27 0.16 0.31 0 . 1 0

Dy 1 . 8 6 0.51 1.26 0.37 0.64 061 1.48 0.87 1.75 0.51
Ho 0.36 0.09 0.23 0.08 0 . 1 2 0 . 1 2 0.25 0.15 0.29 0.08
Er 1.08 0.26 0 . 6 6 0.31 0.36 0.39 0.72 0.41 0.83 0 . 2 0

Tm 0.17 0.04 0.09 0.06 0.06 0.06 0 . 1 1 0.06 0 . 1 2 0.03
Yb 1.15 0 . 2 2 0.62 0.54 0.39 0.44 0.80 0.43 0 . 8 8 0 . 2 1

Lu 0.19 0.03 0 . 1 0 0 .1 1 0.07 0.07 0 . 1 2 0.07 0.14 0.03

Hf 0.36 0.31 0.29 0.28 0.24 0.33 1 . 2 2 0.83 0.62 0.62

Ta 0 .1 1 0.05 0.14 0.03 0.54 0 . 2 1 0 . 8 6 0.14 0.44 0.13

Th 0.31 0.94 0.42 0.30 0.34 0.45 0.43 0.37 0 . 2 2 0.31

U 0.47 0.43 0.37 0.18 0.92 0.35 1 . 0 2 0.33 0.40 0.72

S (wt%) 0.061 0.018 0.623 5.256 0.114 0.051 0.107 0.966 0.048 0.005

Ir (ppb) 1 .1 0 .1 9.7 0 .1 2 . 0 15.1 0.4 0.7 0 . 2 0 . 0

Ru 3.4 0.3 35.5 0 . 8 7.0 49.9 0.5 1.7 0 . 6 0.3

Rh 2.9 0.4 30.4 0.5 10.9 62.1 1 . 8 13.3 1.7 0.3
Pt 81.0 7.5 322.1 4.9 140.8 424.1 106.9 2837.1 22.7 2 . 2

Pd 62.7 30.0 371.9 39.1 193.7 299.7 155.0 3978.2 37.6 2 . 2

Au 10.4 5.5 45.6 15.3 31.2 9.7 18.9 618.1 16.4 1.4
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Appendix 2. Geochemical data

Overysel, OY387 core samples:

Sam ple

Lithology

OY387

233
HWMN

OY387

236
HWGN

OY387

239
FPX

OY387

242
FPX

OY387

246
FPX

OY387

252
FPX

OY387

258
FPX

OY387

268
QFPX

OY387
272

QFPX

OY387

278
GN

OY387

296
GN

OY387

311
GN

OY387

321
GN

Si02 (wt%) 50.36 51.13 54.11 54.10 51.80 53.74 52.40 56.98 52.60 56.55 60.79 59.66 57.30
Ti02 0.62 0 .2 1 0.23 0.14 0.15 0 . 1 2 0 . 1 2 0.16 0 . 1 1 0 .1 1 0.16 0.18 0.37

AI203 11.52 18.94 8.39 9.16 5.92 6.92 10.08 6.17 13.70 21.34 21.84 18.78 4.92

Fe203 14.72 7.17 12.49 10.28 12.56 12.57 9.74 1 0 . 2 0 1 0 . 1 0 3.90 1.94 3.53 12.91
MnO 0.25 0.13 0.23 0 .2 1 0.24 0 . 2 1 0 . 2 0 0.18 0.14 0.08 0.05 0.09 0.26
MgO 10.90 7.77 19.69 20.37 22.81 19.88 18.67 16.21 12.05 5.57 2.87 6.35 19.54

CaO 9.23 10.40 5.01 5.06 3.25 4.08 6.43 4.46 6.81 8 . 1 2 6.32 5.00 2.50
N a20 1.34 2.13 0.75 0.74 0.25 0.69 0.63 0.56 1.69 3.66 5.04 4.03 0 . 8 6

K20 0 .0 1 0 . 0 2 0.03 0 . 0 0 0.04 0.03 0.05 0.04 0.05 0.04 0 . 0 2 0.06 0.19
P205 0 .0 1 0.05 0 . 0 2 0 . 0 0 0 . 0 0 0 . 0 1 0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 2 0.04 0.06 0 . 1 2

LOI 0.39 0.70 0.24 1.19 1.77 0.99 1.59 3.62 2 . 1 1 0.49 1.04 0.96 0.46
Total 99.36 98.65 101.19 101.25 98.78 99.23 99.91 98.58 99.38 99.87 1 0 0 . 1 0 98.69 99.44

Sc (ppm) 40.5 19.0 28.2 25.3 29.0 25.5 25.3 26.7 18.1 9.4 5.7 13.4 30.1
V 327.6 1 0 0 . 0 145.8 112.7 149.7 114.2 93.2 102.9 77.8 26.0 17.5 48.4 107.0
Cr 1213.0 588.6 1965.5 2160.4 8185.2 2566.9 2644.3 2118.6 1193.4 435.9 156.5 585.4 1565.3
Co 72.6 36.8 77.9 77.4 106.2 142.6 87.1 106.0 123.0 31.4 9.5 20.5 75.1
Ni 248.06 124.72 531.19 827.75 1926.64 4636.93 1801.42 2568.68 4303.20 398.67 58.64 160.87 482.27

Cu 8 6 . 6 8 34.40 46.49 209.94 495.23 828.21 361.03 480.62 718.31 143.96 65.29 98.54 79.54
Zn 70.7 61.9 51.7 51.0 58.0 58.7 49.4 62.3 44.3 40.1 36.7 45.4 70.8
Sr 157.1 274.1 1 0 2 . 6 1 1 0 . 2 55.6 83.7 128.8 51.5 161.1 806.1 909.8 837.8 80.6
Ba 80.0 154.0 56.1 60.1 24.2 41.4 83.5 67.9 88.3 296.3 655.4 1295.8 256.1
Ga 13.4 17.1 8.9 8 .1 6.7 7.6 8 . 6 10.5 13.1 22.9 23.2 24.1 1 0 .1

Rb 0.7 4.0 1 .2 1.7 1 .1 1.3 3.5 7.7 7.4 1 . 2 2 . 2 2 .1 2.7
Y 17.6 1 0 . 0 5.8 5.1 3.8 4.6 4.0 15.4 4.6 3.3 5.1 4.8 1 1 . 2

Zr 2 0 . 8 19.5 7.9 12.4 9.2 9.5 9.1 125.0 16.8 13.6 31.3 36.5 62.4

Nb 1.05 1.07 1.17 1.33 0.87 2.67 1.23 8.52 2.97 0.75 2.18 2 . 0 1 4.97
Cs 82.3 159.5 58.3 63.5 27.3 44.3 87.7 74.2 95.8 299.8 670.5 1321.3 260.6
La 5.68 10.03 3.14 3.42 1.72 2.06 2.26 5.34 2.38 5.94 9.92 7.25 4.43
Ce 12.19 16.42 5.72 6.57 4.22 4.69 4.42 11.77 5.00 9.08 16.86 12.77 12.08
Pr 1.62 1.83 0.58 0.67 0.39 0.47 0.41 1.24 0.49 0.92 1.81 1.27 1.59
Nd 7.68 7.32 2.34 2.60 1.57 1.76 1.60 4.82 1.91 3.44 6.69 4.61 7.24

Sm 2.07 1.46 0.53 0.53 0.36 0.39 0.36 1.15 0.45 0.63 1.15 0.84 1.75

Eu 0.63 0.85 0.23 0.23 0.14 0.18 0.24 0.47 0.24 0.72 1.23 1.19 0.52

Gd 2.32 1.50 0.59 0.56 0.37 0.45 0.41 1.31 0.49 0.58 0.97 0.78 1.77

Tb 0.41 0 2 3 0 . 1 1 0 . 1 0 0.07 0.08 0.07 0.27 0.08 0.08 0.14 0 . 1 0 0.27

Dy 2.75 1.53 0.78 0.70 0.51 0.60 0.56 2.06 0.62 0.51 0.79 0.67 1.70
Ho 0.54 0.30 0.17 0.14 0 . 1 0 0.13 0 . 1 2 0.42 0.13 0.09 0.14 0.13 0.32

Er 1.76 0.95 0.59 0.49 0.37 0.44 0.40 1.47 0.41 0.28 0.45 0.44 1.03
Tm 0.27 0.15 0 . 1 0 0.09 0.06 0.08 0.07 0.28 0.07 0.05 0.07 0.07 0.17

Yb 1.76 0.96 0.75 0.58 0.44 0.56 0.47 1.98 0.49 0.32 0.47 0.49 1 .1 1

Lu 0.29 0.16 0.13 0 . 1 0 0.08 0 . 1 0 0.09 0.34 0.08 0.05 0.07 0.09 0.19

Hf 0.64 0.53 0.24 0.31 0 . 2 2 0.26 0.26 3.38 0.44 0.33 0.75 0.93 1.43

Ta 0.08 0.08 0 . 1 0 0 . 1 0 0 . 1 1 0.28 0 . 1 2 0 . 8 8 0.37 0 . 1 1 0.39 0.35 0.97

Th 0.19 0 . 8 8 0.31 0.59 0.35 0.57 0.58 3.97 1.06 0.30 0.18 0.38 0.76

U 0.09 0.31 0.30 0.33 0.38 1.03 1.52 9.16 2.84 0.26 0.26 0.39 2.24

S (wt%) nd nd 0.059 0 . 1 1 2 0 . 8 6 8 0.423 1.265 0.519 0.673 1.591 0.159 0.016 nd

Ir (ppb) nd nd
0 . 2 0.7 8 .1 18.7 61.5 13.1 2 2 . 6 44.3 2 . 8 0 . 2

nd

Ru nd nd 2.7 5.6 42.1 75.6 228.5 51.4 8 6 . 0 162.6 11.3 2.3 nd

Rh nd nd
0 . 8 1 . 6 21.9 94.6 246.7 57.2 91.6 194.4 10.4 0.7 nd

R nd nd 5.6 25.0 335.5 972.3 3215.0 562.9 1336.5 2212.5 520.4 4.1 nd

Pd nd nd 19.4 80.7 632.2 1434.5 4186.8 1044.4 1722.9 3366.5 725.0 8.4 nd

Au nd nd 3.0 26.2 446.4 213.0 567.5 161.4 260.7 321.6 75.5 3.1 nd
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Appendix 2. Geochemical data

Overysel, OY387 core samples (cont.):

Sample
Llthology

OY387
338

GN

OY387

353
GN

OY387
364
GN

OY387

378
GN

OY387

381
GN

OY387

381
MS

OY387
384
LZP

OY387
395
GN

OY387

415
GN

OY387

423
GN

OY387

438
GT

Si02 (wt%) 59.64 47.99 49.83 50.62 56.48 nd 60.05 64.20 57.69 67.56 73.28

Ti02 0.30 1.53 1.18 0.17 1.39 nd 0.08 0.16 0.45 0.04 0.03

AI203 22.25 14.05 12.75 13.97 14.36 nd 3.80 18.57 21.79 19.33 16.06

Fe203 2.74 16.29 15.92 18.68 13.87 nd 9.53 3.09 3.81 1 . 8 6 0.38
MnO 0.05 0.25 0.24 0.15 0 . 2 0

nd
0 . 1 1 0.09 0.13 0 . 0 2 0 .0 1

MgO 2.28 8 . 0 0 8.43 5.74 6.91 nd 25.30 3.24 4.64 1 . 1 0 0.07

CaO 7.29 11.80 1 1 . 2 0 3.81 4.39 nd 0.85 3.22 4.85 0.63 1 .1 1

Na20 4.51 1.05 1.32 3.78 3.20 nd 0.64 4.85 4.42 5.21 5.54

K20 0.25 0 .1 1 0.17 0.33 0.32 nd 0.16 0.39 0.80 2.42 1.50
P205 0.14 0.08 0.05 0.03 0.31 nd

0 .0 1 0.03 0.26 0.03 0 . 0 2

LOI 0.18 -0.16 -0.16 2.65 0.16 nd 0.19 1.84 1.59 1.32 0.47
Total 99.62 100.98 100.92 99.93 101.58 nd 100.72 99.68 100.43 99.52 98.45

Sc (ppm) 7.4 42.5 43.0 1 2 . 6 24.6 nd 12.7 7.4 1 1 . 0 4.2 0 . 2

V 55.8 340.1 353.9 67.6 214.6 nd 19.6 27.3 31.4 0 . 6 0 . 8

Cr 179.1 208.9 256.3 743.6 1704.2 nd 4995.2 74.9 174.0 49.3 59.5
Co 1 0 . 6 72.1 81.7 310.1 89.4 nd 135.5 19.0 18.0 29.1 2.5
Ni 14.23 125.91 1520.97 16348.85 2317.91 109220 09 6767.66 1947.12 586.22 3124.35 356.30

Cu 83.37 245.68 513.62 1387.08 542.65 39930.73 2291.26 401.86 295.47 484.66 150.15
Zn 43.5 58.3 55.6 62.3 68.3 nd 62.0 41.2 50.1 31.0 30.6
Sr 898.5 254.3 215.6 506.2 294.1 nd 19.4 422.0 596.5 252.7 414.3
Ba 417.7 45.0 103.1 479.9 395.0 nd 84.6 1 2 0 1 . 1 2049.0 1415.8 2082.3
Ga 21.7 18.9 17.6 18.4 21.9 nd 8.7 27.5 32.5 2 2 . 8 17.0

Rb 0.7 0.3 1.7 2 . 0 1.9 nd 2.3 5.1 13.0 14.9 8.9
Y 8.4 17.3 15.2 5.5 2 0 . 0

nd
6 . 2 14.3 18.2 6 . 2 3.3

Zr 53.6 20.5 18.2 19.5 8 6 . 8
nd 10.7 28.0 98.4 16.2 14.5

Nb 1.92 1.42 2.50 1.49 6.24 nd 3.93 17.92 22.94 5.10 1.59

Cs 414.6 46.7 108.5 482.9 400.3 nd 86.4 1203.2 2055.4 1428.4 2068.6

La 14.22 2 . 2 0 3.13 6.36 9.83 nd 2.05 7.94 7.75 7.24 5.09

Ce 26.35 8.38 7.54 11.45 18.19 nd 4.81 13.74 17.59 11.25 9.46
Pr 3.07 1.33 1 .1 1 1.14 2.42 nd 0.47 1.43 2.45 1.07 0.90

Nd 12.13 7.30 5.77 4.16 11.33 nd 1.79 5.29 10.79 3.75 3.06
Sm 2 . 1 2 2.31 1.89 0.69 2 . 8 8

nd 0.42 1.18 2.72 0.81 0.56
Eu 1 . 6 8 1.16 0.85 0.78 1.13 nd

0 . 1 1 1.13 1.51 1.24 0.93

Gd 1.93 2.82 2.36 0 . 6 6 3.22 nd 0.49 1.37 2.65 0.72 0.48
Tb 0.25 0.47 0.40 0 . 1 1 0.49 nd

0 . 1 0 0.25 0.42 0 . 1 2 0.07
Dy 1.40 3.02 2.59 0.73 3.17 nd 0.76 1.78 2.80 0.80 0.46
Ho 0.26 0.57 0.48 0.14 0.60 nd 0.15 0.35 0.52 0.15 0.09
Er 0.76 1.67 1.44 0.51 1.81 nd 0.54 1.24 1.60 0.52 0.28
Tm 0 . 1 0 0.24 0 2 1 0 . 1 0 0.29 nd

0 . 1 0 0.23 0.27 0 . 1 0 0.05

Yb 0 . 6 6 1.45 1.27 0.70 1.82 nd 0.60 1.60 1.73 0.83 0.28
Lu 0 .1 1 0.23 0 .2 1 0 . 1 2 0.30 nd

0 . 1 0 0.28 0.26 0.16 0.05
Hf 1.15 0.67 0.58 0.50 1 . 8 6

nd 0.30 0.89 2.49 0.63 0.45
Ta 0 . 1 2 0 . 1 0 0.32 0 . 2 2 0.74 nd 0.85 2.31 3.31 0.97 0.62

Th 0 .1 1 0 . 0 2 0.16 0 . 1 0 0.53 nd 0.83 3.44 0.78 0.78 0.28

U 0 . 1 0 0.03 0.41 0.33 1.33 nd 2.58 5.55 2 . 2 1 4.52 0.48

S (wt%) 0.018 nd 0.479 7.726 1.250 38.750 1.787 0.481 0.247 1.003 0.126

Ir (ppb) 0 . 0
nd 0.3 24.7 1.3 31.4 1 .1 0 .1 0 .1 0.3 0 . 0

Ru 0 . 8
nd 1.3 73.5 3.4 58.8 4.8 1 .1 0.9 1.3 0.7

Rh 2.3 nd 0.9 173.5 12.5 488.2 6.4 0.7 1.5 6 . 8 2 . 8

Pi 1 69 nd 1313.8 3396.7 708.4 12820.3 4606.8 3364.2 834.7 3363.2 613.4

Pd 224.2 nd 1737.7 4293.5 1030.3 36283.2 5948.5 4746.3 1032.7 4599.5 779.4
Au 1 . 0

nd 268.0 228.9 85.2 113.7 913.6 593.7 127.9 521.9 1 0 2 . 6
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Appendix 3

LA-ICP-MS analyses of sulphides

Contents:

This appendix contains the LA-ICP-MS data performed on sulphide minerals, which are 

summarized in Table 7.4 in Chapter 7.
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Overvsel Reef ovroxenites

S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi
Pyrrhotite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
OY387-252-P01 39.43 21.1 0.62 bdl 1.02 1.97 4.46 0.22 bdl 0.01 bdl bdl bdl
OY387-252-P02 34.64 10.7 0.41 bdl 0.85 1.29 2.03 0.05 0.03 0.18 bdl bdl bdl
OY387-252-Po-Pn1 38.81 22.8 0.48 bdl 1.05 1.68 3.55 0.01 bdl 0.15 bdl bdl bdl
OY335-193 Pol 38.60 41.7 0.46 0.01 0.84 1.70 4.20 1.59 0.09 1.03 0.01 1.90 1.34
OY335-193 Po2 39.82 31.3 0.44 bdl 0.89 1.73 3.83 0.91 0.08 1.74 bdl 2.60 1.52
OY335-193 Po-Pn-Cp 40.07 33.9 0.34 0.01 0.76 1.54 3.85 0.47 0.11 0.83 bdl 1.55 bdl
OY387-258 Po1 39.50 11.6 0.71 bdl 1.02 2.32 5.91 0.27 0.06 0.69 bdl 0.52 bdl
OY387-258 Pfi-Pn 39.01 9.0 0.62 bdl 1.03 2.18 5.25 0.04 bdl 0.23 bdl bdl bdl

S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi
Pentlandite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
OY387-252-Pn1 33.44 2676.3 33.44 bdl 0.88 1.75 9.59 11.99 150.42 0.19 bdl bdl 2.56
OY387-252-Pn2 32.97 1682.1 38.16 bdl 0.72 0.61 6.28 7.87 182.58 0.73 bdl bdl bdl
OY387-176 Pn1 33.69 5514.3 48.12 bdl 0.77 1.43 13.27 20.58 178.98 0.79 0.01 2.49 1.39
OY387-176 Pn2 33.81 3517.7 31.26 bdl 0.69 0.92 8.78 12.28 123.38 0.49 bdl 3.61 bdl
OY387-176 Cp-Pnl 33.63 3413.3 33.07 0.15 0.15 0.87 7.91 14.44 119.28 0.88 0.01 bdl bdl
OY335-193 Pn1 34.06 4074.3 32.34 0.01 0.61 1.49 5.28 4.72 76.86 0.33 bdl 0.93 0.92
OY335-193 Po-Pn-Cp 34.12 4370.1 29.86 bdl 0.47 2.26 32.56 58.14 68.64 0.25 bdl 2.61 1.29
OY387-258 Pn1 33.65 760.3 32.36 bdl 0.45 0.90 1.94 0.04 84.76 0.38 bdl 0.68 bdl
OY387-258 Po-Pn 33.89 713.9 31.24 bdl 0.53 0.57 5.07 5.10 87.95 0.02 bdl bdl bdl

S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi
Chalcopyrite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
OY387-176 Cp1 35.41 bdl bdl 24.41 bdl bdl bdl bdl 0.40 2.29 bdl 2.63 3.03
OY387-176 Cp2 35.64 16.1 0.26 30.35 bdl bdl bdl bdl 1.73 5.10 bdl 3.03 2.16
OY387-176 £E-Pn1 35.35 bdl 0.01 25.43 bdl bdl bdl bdl 0.29 0.44 bdl 0.48 0.97
OY387-193 Cp1 33.89 1.7 bdl 23.80 bdl 0.01 bdl bdl 0.23 0.01 bdl bdl bdl
OY387-252 Cp1 35.29 bdl 0.01 34.05 0.01 bdl 0.07 bdl 0.21 0.02 bdl bdl bdl
OY387-258 Cp1 35.15 bdl bdl 31.39 bdl bdl bdl bdl 0.38 0.01 0.02 bdl bdl

Sandsloot Reef pvroxenites
S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi

Pyrrhotite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
SNN1-8 Pol 38.82 5.33 0.12 bdl 1.06 2.22 5.35 0.18 0.02 1.79 bdl 0.88 0.64
SNN1-8 PO-PM (Po) 38.18 3.57 0.15 bdl 1.24 2.29 4.27 0.12 0.08 1.58 bdl 1.76 0.92
SNN1-29 Po1 38.83 10.44 0.18 bdl 2.07 3.85 8.59 0.29 bdl 0.46 bdl 0.63 bdl
SNN1-29 P2 -Pn-Cp 38.71 5.86 0.14 bdl 2.86 3.23 8.83 0.26 0.16 2.70 bdl 3.29 bdl
SNN1-29 Po-Pn1 (Po) 37.25 7.17 0.17 bdl 1.93 2.75 8.42 0.06 0.02 0.09 bdl bdl bdl

S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi
Pentlandite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
SNN1-8 Pn1 (Pt-Bi) 35.42 3068.9 30.18 bdl 0.64 1.36 7.01 9.44 143.42 2.07 bdl 1.64 2.52
SNN1-8 Pn2 35.23 3262.7 31.84 bdl 0.90 1.98 7.73 8.63 129.94 1.52 bdl 1.00 bdl
SNN1-8 Po-Pn 1 35.61 3284.1 29.21 bdl 0.90 1.64 8.06 8.20 130.32 1.75 bdl 1.54 1.01
SNN1-29 Pn1 (Pt-Bi) 35.80 5574.6 32.82 0.04 2.45 5.02 23.91 29.65 84.80 0.59 bdl 0.99 bdl
SNN1-29 Pn1 35.81 5586.8 32.65 0.04 2.51 4.96 25.34 32.90 84.26 0.07 bdl 0.60 bdl
SNN1-29 Po-Pn-Cp-X 35.70 5456.3 33.53 0.03 4.21 6.50 35.44 41.27 75.52 0.58 bdl bdl bdl
SNN1-29 Po-Pn1 35.79 4559.0 26.69 bdl 2.53 3.73 33.00 45.48 67.71 0.11 bdl 6.14 bdl

S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi
Chalcopyrite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
SNN1-8 Cp1b 34.37 bdl 0.01 29.42 bdl 0.00 0.14 0.17 0.33 0.05 0.00 0.44 bdl
SNN1-29 Cp-Po 34.79 bdl 0.02 32.02 0.00 0.00 0.01 bdl 0.11 0.02 0.01 bdl bdl
SNN1-29 Po-Pn-Ce 34.78 235.57 1.57 29.71 0.06 0.27 0.68 1.05 4.76 0.28 0.01 bdl bdl

Overvsel chromitltes
S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi

Pyrrhotite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
OY16 Po1 38.82 62.67 0.03 bdl bdl bdl bdl bdl 0.03 bdl 0.07 bdl 19.74
Pentlandite
OY-08B Pn1 35.80 5079.3 33.72 bdl 0.49 bdl 3.16 bdl 72.40 bdl 0.00 0.81 bdl
Pyrite
OY-08B Py1 (As rich) 53.95 213.80 0.08 bdl bdl bdl 0.03 0.02 0.25 bdl 0.09 2.00 107.9
OY-08B Py1 (As poor) 53.95 40.25 0.37 bdl bdl bdl 0.02 0.01 0.13 bdl 0.06 bdl 21.87
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Overvsel Footwall rocks
S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi

Pyrrhotite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
OY387-378 Po1 39.84 57.9 1.09 bdl 0.13 0.23 0.40 bdl bdl 0.02 bdl bdl bdl
OY387-378 Po2 39.79 42.8 0.71 bdl 0.08 0.15 0.26 bdl bdl 0.01 bdl bdl bdl
OY387-378 Po-Pn-Cp 39.95 31.2 0.57 bdl 0.08 0.12 0.36 0.02 bdl 0.02 bdl bdl bdl

OY387-381 Po2 38.72 39.5 0.47 bdl 0.02 0.10 0.07 3.10 9.77 0.01 bdl 2.97 3.60
OY387-381 Po-Pn2 37.15 84.6 0.68 bdl 0.02 0.04 0.07 0.12 3.84 0.01 bdl 3.60 2.00

S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi
Pentlandite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
OY335-316 Py-Pn 33.26 788.9 30.32 0.01 bdl bdl 0.07 bdl 110.90 0.03 0.02 bdl 2.20
OY335-316 Pn1 (+Po) 36.07 3104.8 17.72 0.29 0.01 0.03 0.18 0.39 55.35 0.15 0.28 18.08 70.95
OY387-378 Pn1 33.81 4312.0 31.10 0.01 0.01 0.04 bdl 0.03 40.54 1.11 0.12 bdl 2.48
OY387-378 Po-Pn-Cp 33.89 2768.1 25.72 bdl 0.04 0.08 0.95 1.84 29.63 0.15 bdl bdl bdl
OY387-381 Pn2 32.94 5184.9 34.32 bdl 0.04 0.06 bdl 2.04 1.73 78.21 bdl bdl bdl
OY387-381 Po-Pn 1 32.79 4451.0 34.61 bdl bdl 0.02 bdl 0.39 0.85 61.37 bdl bdl bdl
OY387-384 Pn1 33.19 2887.6 33.84 bdl 0.07 0.04 0.21 0.26 103.54 0.02 bdl 1.54 bdl
OY387-384 Pn2 33.95 2775.1 32.84 bdl 0.01 0.01 0.10 0.08 28.60 bdl 0.05 1.05 0.86
OY387-384 Cp-Pn 32.16 2786.7 31.83 0.05 0.06 0.04 0.07 0.31 101.59 bdl bdl 1.37 bdl
OY387-395 Cp-Pn 32.96 2388.6 43.55 0.26 0.01 bdl 0.03 0.01 170.66 bdl 0.02 bdl 3.50

S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi
Chalcopyrite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
OY335-316 Cp1 34.69 bdl 0.01 19.30 bdl bdl 0.32 0.19 0.29 bdl 0.03 bdl bdl
OY335-316 Cp2 35.43 bdl 0.01 27.06 bdl bdl bdl bdl 0.36 bdl 0.05 bdl bdl
OY387-378 Cp1 32.12 bdl bdl 28.95 bdl bdl bdl bdl 0.18 bdl bdl bdl bdl
OY387-378 Po-Pn-Cp 35.29 159.6 1.84 31.82 bdl bdl bdl bdl 5.75 0.03 0.01 bdl bdl
OY387-384 Cp1 34.46 bdl bdl 26.46 bdl bdl 0.40 0.42 0.73 bdl 0.04 bdl 0.08
OY387-384 Cp2 34.63 bdl bdl 23.07 bdl bdl bdl bdl 3.29 0.01 0.04 bdl 0.09
OY387-384 Cp-Pn 35.24 65.4 0.80 22.47 bdl bdl 0.38 0.48 2.79 0.06 0.18 bdl 1.57
OY387-395 Cp1 34.55 bdl bdl 34.11 bdl bdl bdl bdl 0.84 bdl 0.02 bdl 0.96
OY387-395 Cp-Pn 35.05 bdl 0.01 34.80 0.02 bdl bdl bdl 2.44 0.01 0.06 bdl 2.31

S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi
Pyrite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
OY335-316 Py1 53.67 16.4 bdl bdl bdl bdl 0.03 bdl 0.04 0.01 0.00 bdl bdl
OY335-316 Py 53.27 21.3 0.02 bdl bdl bdl bdl bdl 0.06 0.09 0.03 bdl 23.50
OY335-316 Py-Pn 53.42 25.0 0.01 0.05 bdl bdl bdl bdl 0.03 0.00 0.01 0.62 1.44

S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi
Millerite wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm
OY387-395 Mill! 35.08 2053.6 66.90 0.01 bdl bdl 0.11 0.03 44.11 bdl 0.01 0.78 54.37

S Co Ni Cu Os Ir Ru Rh Pd Pt Au Te Bi
wt% ppm wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm

Limit of detection 0.31 0.74 <0.01 <0.01 0.015 0.005 0.067 0.011 0.026 0.017 0.006 0.35 0.84

241



Appendix 4. Mineral chemistry

Appendix 4

Mineral chemistry

Contents: 

This appendix contains the SEM EDA data from the analysis of silicate and oxide phases in 

the Platreef.

Key to lithology abbreviations in the following tables:
A FPX Altered Platreef feldspathic pyroxenite HW GN Hangingwall gabbronorite
AGN Amphibolitised gneiss HW M N Hangingwall fine-grained melanorite
CHR Chromitite intrusive
CHRX Chromitite xenolith HW SA Hangingwall spotted anorthosite
CPX Platreef clinopyroxenite IN Intrusive norite
CSX Calc-silicate xenolith LZP Lower Zone pyroxenite
FCHR Feldspathic chromitite PEGP Pegmatitic Platreef feldspathic pyroxenite
FCPX Footwall clinopyroxenite PDT Peridotite (olivine-replaced reef)
FPX Platreef feldspathic pyroxenite QFPX Quartzo-feldspathic pyroxenite
GN Gneiss SCSX Serpentinised calc-silicate xenolith
HWA Hangingwall mottled anorthosite SPT Serpentinite
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Sandsloot, SNN1 sample suite, orthopyroxene

SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1

Sample 0 0 0 0 0 7a 7a 7a 7a 7b 7b 7b 7b 7b 7b
Lithology HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWA FPX FPX FPX FPX FPX

MgO 23.17 23.93 23.87 23.49 23.62 23.02 22.95 23.18 23.45 22.97 27.12 27.31 26.85 26.34 27.38

ai2o 3 0 . 6 6 0.85 0.62 1.18 0.72 0.99 0.69 0.81 0.46 0.85 1.18 0.73 0.76 0.67 0.81
S i0 2 53.30 52.83 52.98 52.58 53.26 53.49 53.72 53.13 53.13 53.28 54.41 54.68 54.68 54.50 54.43
CaO 2.44 1 . 2 2 0.92 0.99 1.45 2.81 2.63 2.72 0.89 4.52 0.75 0.62 1 . 0 2 1 .1 1 1.03
t i o 2 0.28 0.26 0.28 0.31 0.27 0.27 0.26

Cr20 3 0.26 0.40 0.31 0.28 0.29 0.38 0.37 0.27
MnO 0.32 0.35 0.56 0.42 0.43 0.32 0.42 0.43 0.51 0.34 0.37 0.33 0.31 0.32
FeO 20.06 20.96 21.47 20.71 20.75 19.82 19.43 19.71 2 1 . 8 8 18.18 17.08 16.94 17.79 17.76 16.97

100.9
Total 1 0 0 . 2 0 100.54 100.41 99.67 100.53 100.99 1 0 0 . 1 1 100.57 100.59 100.79 101.27 1 0 0 . 8 8 101.41 100.64 3

En 64.04 65.44 65.25 65.57 65.06 63.66 64.21 64.04 64.48 63.07 72.82 73.29 71.47 70.99 72.73
Wo 4.85 2.40 1.81 1.99 2.87 5.59 5.29 5.40 1.76 8.92 1.45 1 . 2 0 1.95 2.15 1.97
Fs 31.11 32.16 32.94 32.44 32.07 30.76 30.50 30.56 33.76 28.01 25.74 25.51 26.57 26.86 25.30

Mg# 67.30 67.05 66.46 66.90 66.98 67.42 67.79 67.70 65.63 69.25 73.89 74.18 72.90 72.55 74.19

SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1
Sample 8 8 8 8 8 18a 18a 18a 18a 18a 25 25 25 25 25

Lithology FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX AFPX AFPX AFPX AFPX AFPX
MgO 26.76 27.09 26.60 27.65 26.55 29.44 29.62 28.83 29.19 28.39 29.15 28.19 28.33 28.80 28.78
Al20 3 1.06 1.04 1.36 1.40 1.04 0 . 8 6 0.93 1.26 1.49 1.30 0.96 0.72 0.91 0 . 6 6 0.80
Si0 2 54.43 54.63 54.56 54.56 54.62 54.69 54.74 54.63 54.80 53.52 54.70 54.26 54.73 54.49 54.29
CaO 1.57 1.87 1.79 1.36 2.18 1.46 0 . 8 6 1.17 0.84 1.97 1.14 1.64 1.42 0.91 1.27
Ti02 0.28 0.24 0.26 0.31 0.29 0.32

Cr20 3 0.37 0.50 0.48 0.57 0.51 0.51 0.50 0.43 0.54 0.42 0.27 0.37 0.46 0.38
MnO 0.37 0.29 0.32 0.31 0.31 0.44 0.29 0.28 0.36 0.48 0.33 0.30 0.41
FeO 16.07 15.80 15.96 15.16 16.00 13.92 13.99 13.19 14.05 12.87 13.95 14.38 14.53 14.93 14.67
TotaJ 100.91 101.23 101.08 101.27 100.69 101.15 101.09 99.58 101.09 98.85 1 0 0 . 6 8 100.25 100.62 100.84 100.91

En 72.51 72.63 72.20 74.46 71.57 76.86 77.77 77.77 77.47 76.67 77.12 75.30 75.54 76.12 75.89
Wo 3.06 3.60 3.49 2.63 4.23 2.74 1.62 2.27 1.60 3.83 2.17 3.15 2.72 1.73 2.41
Fs 24.43 23.77 24.31 22.91 24.20 20.39 20.61 19.97 20.93 19.50 20.71 21.55 21.74 22.15 21.71

Mg# 74.79 75.34 74.81 76.47 74.73 79.03 79.05 79.57 78.73 79.72 78.83 77.74 77.65 77.46 77.76

SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1 SNN1

Sample 37 37 37 37 37 43 43 43 43 43 48 48 48 48 48
Lithology FPX FPX FPX FPX FPX PDT PDT PDT PDT PDT PEGP PEGP PEGP PEGP PEGP

MgO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Al20 3 27.77 29.19 26.88 29.04 28.89 29.81 30.25 31.20 29.74 29.31 27.84 25.71 29.49 26.58 28.02

Si0 2 1.14 1.35 0.47 1.23 1.24 1.40 1.06 0.51 1 . 1 0 1.45 1.41 1.18 1.30 1.40 1.14
CaO 54.03 54.46 53.97 54.85 54.46 54.11 54.48 54.93 54.63 54.20 53.91 52.94 54.43 53.47 54.10
Ti02 0 . 6 6 1.39 0.83 2.24 0.94 2.30 1.58 0.43 1.83 3.54 3.44 4.92 1.23 2 .2 1 1.25

Cr20 3 0.25
MnO 0.34 0.44 0.40 0.42 0.28 0.28 0.61 0.52 0.42 0.50 0.45
FeO 0.26 0.31 0.27 0.36 0.27 0.31 0.30 0.29 0.31
Total 16.10 13.65 17.35 13.13 14.42 11.58 11.89 1 2 .2 1 12.28 10.53 12.41 13.05 12.34 15.37 14.74

Sample 100.29 100.73 99.80 1 0 0 . 8 8 100.39 99.76 99.55 99.66 99.85 99.04 99.93 98.62 99.51 99.52 1 0 0 . 0 0

En 74.49 77.12 72.23 76.38 76.72 78.53 79.48 81.33 78.37 77.61 74.68 70.30 79.06 72.24 75.34

Wo 1.27 2.64 1.60 4.24 1.79 4.36 2.98 0.81 3.47 6.74 6.63 9.67 2.37 4.32 2.42
Fs 24.24 20.24 26.16 19.38 21.49 17.12 17.53 17.86 18.16 15.65 18.68 2 0 . 0 2 18.57 23.44 22.24

Mg# 75.45 79.21 73.41 79.76 78.12 82.10 81.93 81.99 81.19 83.22 79.99 77.83 80.98 75.50 77.21
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Sandsloot, SNN1 sample suite, clinopyroxene

SNN1 SNN1 SNN1 SNN1

Sample 0 0 0 0

Lithology HWGN HWGN HWGN HWGN

MgO 14.64 14.60 14.65 14.42

AI2O3 1.09 1.38 1.61 1.58

Si02 52.30 52.03 51.86 51.95

CaO 21.91 2 1 . 8 6 22.53 21.65

Ti02 0.38 0.43 0.35 0.56

Cr20 3 0.28

MnO 0.31

FeO 9.11 8.93 8.35 9.27

Total 99.74 99.23 99.36 99.71

En 41.23 41.32 41.22 40.98

Wo 44.36 44.48 45.58 44.23
Fs 14.39 14.18 13.18 14.78

Mg# 74.12 74.45 75.77 73.49

SNN1 SNN1 SNN1 SNN1

Sample 37 40 40 40

Lithology FPX SCSX SCSX SCSX

MgO 16.28 1 2 . 6 8 13.15 12.37
aj2o 3 0.42 8 . 2 2 7.58 8.39
Si02 53.14 45.82 46.33 45.56

CaO 22.91 25.28 25.42 24.78
Ti02 0.40 0.30 0.45

MnO
FeO 6.18 7.60 6.91 7.85
Total 98.92 1 0 0 . 0 0 99.69 99.40

En 44.94 36.10 37.24 35.76
Wo 45.47 51.75 51.76 51.50
Fs 9.57 12.14 10.98 12.73

Mg# 82.44 74.83 77.23 73.74

SNN1 SNN1 SNN1 SNN1

Sample 60 60 60 60

Lithology CPX CPX CPX CPX

MgO 16.56 16.42 16.91 16.69
ai2o 3 2.08 2 .2 1 2 . 2 2 1.93
Si0 2 52.40 52.04 52.68 52.42

CaO 23.11 22.78 23.35 23.13
Ti02 0.37 0.34 0.30 0.36
Cr20 3 0.38 0.46 0.60 0.45
MnO

FeO 4.76 5.43 5.42 5.23
Total 99.65 99.68 101.48 1 0 0 .2 1

En 46.19 45.80 46.02 46.03

Wo 46.35 45.69 45.69 45.86
Fs 7.45 8.50 8.27 8.09

Mg# 8 6 .1 1 84.35 84.76 85.04

SNN1 SNN1 SNN1 SNN1 SNN1
0 7a 7a 7a 7a

HWGN HWGN HWGN HWGN HWGN
14.77 15.17 15.27 14.02 14.65

1.38 1.24 1.40 2.34 1 . 1 0

52.25 52.32 52.37 48.94 52.74
22.55 20.91 19.60 20.40 22.29

0.49 0.59 0.48 6 . 2 0

0.29 0.25
8.45 10.24 11.04 9.09 9.21

99.89 100.75 100.40 100.98 99.99

41.34 42.19 42.94 41.49 40.87
45.38 41.81 39.63 43.40 44.71
13.27 15.98 17.42 15.09 14.41

75.70 72.53 71.14 73.32 73.92

SNN1 SNN1 SNN1 SNN1 SNN1
43 43 43 43 53

PDT PDT PDT PDT PDT
16.64 15.84 16.42 15.98 16.33

1.98 1.99 1.24 1.93 2.43
52.27 51.81 52.75 52.01 51.67
22.76 22.08 22.63 2 2 . 1 0 21.29

0.37 0.33 0.57 0.48
0.61 0.50

0.28
0.43 0.79 0.36

5.14 5.97 6.19 6.24 5.99
99.79 98.81 100.23 99.05 98.55

46.36 45.17 45.40 45.17 46.65

45.59 45.27 44.99 44.92 43.73
8.03 9.55 9.60 9.90 9.60

85.23 82.54 82.54 82.03 82.93

SNN1 SNN1 SNN1 SNN1 SNN1

6 8 6 8 6 8 6 8 6 8

CPX CPX CPX CPX CPX
16.49 17.63 16.94 18.22 17.13

1.95 2.25 1.97 1.84 2.04

52.83 52.59 52.26 53.03 52.77

22.57 19.78 22.15 19.22 22.18
0.46 0.31 0.37 0.30 0.29
0.50 0.55 0.51 0.48 0.41

0.27

6.19 7.11 6.04 7.37 5.63

100.99 1 0 0 . 2 2 100.23 100.46 100.70

45.56 49.18 46.72 50.36 47.27

44.83 39.67 43.92 38.20 44.00

9.59 11.13 9.34 11.43 8.71

82.60 81.55 83.33 81.50 84.43

SNN1 SNN1 SNN1 SNN1 SNN1

7b 7b 7b 8 18a

HWA HWA HWA FPX FPX

14.21 14.58 15.18 15.73 16.12
1.78 1.56 1.58 1.80 1.74

51.75 52.72 52.62 52.98 51.25

22.65 22.40 21.19 22.63 22.45
0.79 0.62 0.47 0.34 0.82

0.30 0.70
0.32

9.11 9.31 10.32 6.74 5.44
100.61 101.19 101.36 100.52 98.54

39.90 40.60 41.92 43.96 45.64

45.73 44.84 42.07 45.47 45.70
14.35 14.54 15.99 10.57 8.64

73.54 73.62 72.38 80.62 84.08

SNN1 SNN1 SNN1 SNN1 SNN1

53 53 53 53 60
PDT PDT PDT PDT CPX
16.29 16.20 17.92 17.34 16.61
2.04 1.81 1.87 2.13 2.14

51.83 52.02 52.09 51.95 52.36

22.48 22.64 18.59 20.50 2 2 . 6 6

0.67 0.36 0.42 0.41

0.55 0.41 0.37 0.41 0.48
0.26 0.26

5.58 5.46 7.33 6.36 5.44

99.43 98.91 98.85 99.35 99.68

45.77 45.58 50.62 48.64 46.19

45.42 45.79 37.75 41.34 45.31
8.80 8.62 11.62 1 0 .0 1 8.49

83.88 84.09 81.33 82.93 84.47

SNN1 SNN1 SNN1 SNN1 SNN1

78 78 78 78 78

CPX CPX CPX CPX CPX

16.78 16.84 16.90 16.46 16.78
2.08 1.23 2.36 1.71 1.18

53.33 53.02 52.36 52.88 53.06

22.94 22.80 22.71 22.63 22.90

0.28 0.32

0.43 0.36 0.35 0.38
0.30

5.60 5.24 5.39 5.83 5.72

101.45 99.49 100.36 99.84 1 0 0 . 0 2

46.07 46.55 46.61 45.72 46.03
45.29 45.31 45.03 45.19 45.16

8.63 8 . 1 2 8.34 9.08 8.80

84.23 85.13 84.82 83.42 83.94
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Sandsloot, SNN1 sample suite, plagioclase

SNN1 SNN1

Sample 0 0

Lithology HWGN HWGN

Na20 3.28 3.87

ai2o 3 31.62 31.06

Si0 2 49.78 50.93

k2o 0 . 0 0

CaO 14.99 14.04

Total 99.66 99.91

An# 83.47 80.04

SNN1 SNN1

Sample 7b 7b
Lithology HWA HWA

Na20 4.17 4.34
ai2o 3 30.71 30.03

Si0 2 52.23 52.12

K20 0.30 0.18
CaO 13.71 13.32

Total 1 0 1 . 1 2 99.99

An# 78.42 77.23

SNN1 SNN1

Sample 18a 18a
Lithology FPX FPX

Na20 4.57 4.41

AJ20 3 29.91 30.75
Si0 2 52.59 52.54

K20 0.31 0 .2 1

CaO 12.61 13.60

Total 1 0 0 . 0 0 101.51

An# 75.31 77.32

SNN1 SNN1 SNN1

0 0 0

HWGN HWGN HWGN
3.97 2.73 4.08

30.89 32.47 30.18
50.90 48.44 51.53

0.19
13.90 15.88 13.68
99.65 99.52 99.65

79.46 86.54 78.75

SNN1 SNN1 SNN1

7b 7b 7b
FPX FPX FPX
4.89 4.38 4.90

30.02 30.54 29.28

53.59 52.49 53.79

0 . 2 1 0.31 0.24

12.78 13.48 12.23
101.49 1 0 1 . 2 1 100.44

74.28 77.28 73.39

SNN1 SNN1 SNN1

37 37 37
FPX FPX FPX

5.48 5.44 3.84

28.69 28.22 31.28
53.94 54.31 50.01
0.17 0.28

11.45 11.05 14.32
99.74 99.29 99.46

69.78 69.18 80.47

SNN1 SNN1 SNN1
7a 7a 7a

HWGN HWGN HWGN
3.38 4.82 3.71

31.40 28.87 31.29
50.40 52.47 50.92

0.27
15.05 1 2 . 0 0 14.07

1 0 0 . 2 2 98.43 1 0 0 . 0 0

83.11 73.34 80.74

SNN1 SNN1 SNN1

7b 8 8

FPX FPX FPX
4.31 5.12 4.06

30.34 29.43 30.44
52.15 54.12 52.00

0.26 0.41 0.24
13.25 1 1 . 8 8 13.39

100.31 100.97 100.14

77.26 71.94 78.47

SNN1

53
PDT

5.43
28.41

53.74
0.41

11.00
98.97

69.13

SNN1 SNN1 SNN1

7a 7a 7a
HWGN HWA HWA

4.33 3.89 4.29

29.88 30.68 30.02
51.96 50.73 52.63

0.23
13.32 14.17 13.23
99.72 99.48 100.17

77.27 80.10 77.32

SNN1 SNN1 SNN1

8 8 8

FPX FPX FPX
3.91 3.43 4.21

30.73 31.46 30.09
51.31 50.51 52.33

0.28 0 . 2 2 0.28
13.64 14.92 13.24
99.87 100.54 100.15

79.40 82.78 77.66

SNN1 SNN1 SNN1

7a 7a 7b
HWA HWA HWA

3.43 4.53 4.50
31.22 29.91 30.17

50.31 53.75 52.79

0.32

14.82 1 2 . 8 8 13.31
99.77 101.39 100.77

82.68 75.86 76.58

SNN1 SNN1 SNN1

18a 18a 18a
FPX FPX FPX
3.84 4.97 4.07

30.30 28.60 30.47

50.88 52.45 51.91
0.25 0.29

13.73 11.59 13.59
99.00 97.61 100.34

79.80 72.05 78.68

Sandsloot, SNN1 sample suite, olivine

SNN1 SNN1
Sample 40 40

Lithologu SCSX SCSX
MgO 47.62 48.76
S i0 2 39.90 40.21
CaO 0 . 2 0

MnO 0.89 1.16
FeO 1 1 . 0 2 10.57

Total 99.43 100.91

Mg# 88.51 89.15

SNN1 SNN1 SNN1

40 40 53
SCSX SCSX PDT

48.53 48.41 40.42

40.26 39.77 37.92
0.25
1 . 1 0 1.03 0.41

11.08 11.16 21.80
1 0 1 .2 1 100.37 100.55

88.64 88.55 76.77

SNN1 SNN1 SNN1

53 53 53
PDT PDT PDT

39.94 40.14 39.53

38.25 38.05 38.05

0.46 0.55 0.47

21.61 22.03 21.54

100.27 100.77 99.60

76.71 76.45 76.58
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Sandsloot, SNS1 sample suite, orthopyroxene

SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS 1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

Sample 2 2 2 2 6 6  6 6 1 0 1 0 1 0 1 0 1 1 11

Lithology HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN

MgO 26.32 26.31 26.28 26.36 27.44 25.51 26.62 27.04 26.78 26.29 26.63 26.08 27.40 27.57

AI2O3 1.37 0.94 0.83 0.83 0.81 1.31 0.75 0 . 8 6 0.83 0.60 0.75 0.77 0 . 8 8 0.64

S i0 2 54.23 54.07 53.66 54.30 54.30 53.72 54.19 53.96 53.28 53.45 53.26 53.03 54.19 54.45

CaO 1.55 2.62 2.17 2.32 0.89 4.14 2.23 0.99 0.94 1.89 1.05 1.99 1.35 0.89

Ti02 0.30 0.31 0.28

Cr20 3 0.48 0.26 0.46 0.43 0.44 0.37 0.29 0.40 0.29 0.34 0.33

MnO 0.34 0.36 0.36 0.37 0.35 0.37 0.34 0.32 0.34 0.30 0.41 0.31

FeO 17.23 16.56 16.73 16.69 17.01 15.38 16.65 17.13 17.70 16.81 17.50 16.94 16.87 16.95

Total 101.18 101.09 100.03 101.33 1 0 1 . 1 1 100.84 100.88 100.36 100.24 99.65 100.25 99.40 101.45 101.42

En 70.94 70.18 70.59 70.49 72.93 68.73 70.86 72.37 71.63 70.90 71.58 70.45 72.41 73.09

Wo 3.00 5.03 4.19 4.46 1.70 8.02 4.27 1.90 1.81 3.66 2.03 3.87 2.57 1.70

Fs 26.06 24.79 25.22 25.05 25.37 23.25 24.87 25.73 26.57 25.44 26.40 25.68 25.02 25.22

Mg# 73.13 73.90 73.68 73.78 74.19 74.72 74.02 73.77 72.94 73.59 73.06 73.29 74.32 74.35

SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SN S 1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

Sample 11 1 1 1 1 1 2 1 2 1 2 1 2 17 17 17 17 17 2 2 2 2

Lithology HWGN HWGN HWA FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX

MgO 26.76 27.19 25.57 26.95 29.05 28.39 27.78 28.79 28.02 27.87 28.04 28.60 27.79 26.43

ai2o 3 1.03 0.89 0.97 0.95 0.39 0.91 1 .0 1 1 . 1 0 0.93 1.04 0.90 0.75 0.75 0.78

S i0 2 54.01 54.11 54.09 54.20 54.87 54.14 54.30 54.06 53.82 54.01 54.25 54.05 53.79 53.32

CaO 1.81 1.42 3.02 3.95 0.82 1.41 2.14 0.80 1.98 1.62 2.03 1 . 1 0 1.14 3.24

Ti02 0.26 0.30 0.28

Cr20 3 0.38 0.50 0.52 0.50 0.52 0.40 0.55 0.40 0.48 0.31 0.26 0.44

MnO 0.33 0.31 0.32 0.31 0.41 0.43 0.38 0.36 0.33

FeO 16.59 16.90 15.96 13.65 15.33 15.13 14.59 15.02 14.56 14.37 14.12 14.97 15.69 14.59

Total 1 0 0 . 2 0 101.23 100.41 100.79 101.08 100.48 100.34 100.58 100.29 99.30 100.19 100.14 99.42 99.41

En 71.61 72.13 69.68 71.96 75.96 74.92 74.07 76.18 74.49 75.12 74.93 75.68 74.28 71.54

Wo 3.48 2.71 5.92 7.58 1.54 2 . 6 8 4.10 1.52 3.78 3.14 3.90 2.09 2.19 6.30

Fs 24.91 25.16 24.41 20.45 22.50 22.41 21.83 22.30 21.72 21.74 21.17 22.23 23.53 22.16

Mg# 74.19 74.14 74.06 77.87 77.15 76.98 77.24 77.35 77.42 77.56 77.97 77.30 75.94 76.35

SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

Sample 2 2 2 2 2 2 25 25 25 25 29 29 29 31a 31a 31a 31a

Lithology FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX

MgO 27.89 27.54 27.79 28.51 28.27 28.20 28.77 28.22 27.12 28.24 27.18 27.25 26.80 25.95

ai2o 3 0.83 1 . 1 2 0.95 0.90 1.30 0.99 0.77 1.23 1.07 0.94 1.19 1.35 1.07 0.82

S i0 2 53.85 53.52 53.56 54.53 54.45 54.11 54.20 54.15 54.12 54.14 53.96 53.67 53.64 53.13

CaO 1.18 2.15 1 . 0 2 0.95 1.27 1.62 1.14 2.58 1.74 1 . 2 0 2.44 1.71 2.81 1.92

Ti02 0.30 0.29 0.33 0.26

Cr20 3 0.36 0.50 0.44 0.27 0.34 0.38 0.38 0.43 0.39 0.33 0.28 0.37 0.37 0.27

MnO 0.33 0.28 0.35 0.30 0.36 0.40 0.27 0.37 0.33 0.35 0.30

FeO 15.41 14.91 15.54 15.25 14.95 14.73 15.22 13.56 15.57 15.35 15.08 15.52 15.36 16.83

Total 99.85 99.74 99.89 101.05 1 0 0 . 8 8 100.39 1 0 1 . 2 2 100.17 100.29 100.85 100.47 1 0 0 . 2 2 100.05 99.22

En 74.60 73.53 74.62 75.52 75.24 74.94 75.45 74.89 73.08 74.87 72.68 73.27 71.58 70.56

Wo 2.27 4.13 1.97 1.81 2.43 3.10 2.15 4.92 3.37 2.29 4.69 3.31 5.40 3.75

Fs 23.13 22.34 23.41 22.67 22.33 21.97 22.40 20.19 23.55 22.84 22.63 23.42 23.02 25.68

Mg# 76.33 76.70 76.11 76.91 77.12 77.33 77.11 78.76 75.63 76.63 76.26 75.78 75.66 73.32
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Sandsloot, SNS1 sample suite, clinopyroxene

SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

Sample 2 2 2 2 6 6 6 6 1 0 1 0 1 0 1 1 1 1 1 1

Lithology HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWA HWA HWA

MgO 15.68 15.65 15.51 15.96 15.73 15.70 15.71 15.83 15.69 15.38 15.47 14.88 14.84 14.61

AI2O3 1.39 1.40 1.42 1.40 1.48 1.89 1 . 8 6 1.61 1.24 1.24 1.72 1.41 1.63 1.56

S i0 2 51.87 52.21 52.42 52.43 52.27 51.72 52.58 51.96 52.01 51.53 51.75 51.84 51.53 51.11

CaO 22.33 22.55 22.78 22.29 22.94 22.64 22.82 22.40 22.44 22.71 23.17 22.23 22.31 23.01

TI02 0.58 0.54 0.56 0.65 0.57 0.38 0.42 0 . 6 6 0.52 0.52 0.79 0.69 0.70 0.71
C^Oa 0.48 0.41 0.47 0.43 0.53 0.75 0.57 0.65 0.64 0.56 0.60 0.32

MnO 0.28

FeO 7.46 7.18 7.22 7.42 7.16 6 . 6 6 6.97 7.25 6.80 6.60 7.25 8.91 9.07 8.45

Total 99.80 99.94 1 0 0 . 6 6 100.59 100.67 99.74 100.92 100.36 99.35 98.53 100.75 99.96 100.41 99.44

En 43.65 43.60 43.15 44.15 43.40 43.95 43.60 43.96 44.02 43.43 42.73 41.49 41.25 40.70

Wo 44.69 45.17 45.57 44.33 45.51 45.57 45.53 44.73 45.26 46.10 46.02 44.56 44.59 46.08

Fs 11.65 1 1 . 2 2 11.27 11.51 11.08 10.46 10.85 11.30 10.70 10.45 11.24 13.94 14.15 13.21

Mg# 78.93 79.53 79.29 79.31 79.65 80.77 80.07 79.55 80.44 80.59 79.18 74.85 74.46 75.50

SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

Sample 1 2 1 2 17 17 17 2 2 2 2 25 25 29 31a 31a 31a 31a

Lithology FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX

MgO 16.27 16.55 15.85 16.86 15.77 16.01 16.05 17.71 16.43 16.03 16.03 16.10 16.44 16.70

AI2O3 1.27 1.48 1 . 6 8 1 . 8 6 1 . 8 8 1.04 1.37 1.97 2.03 1.63 2.09 2.04 1.73 2.09

S i0 2 53.39 52.48 52.02 51.67 51.49 52.29 51.82 53.03 52.42 52.14 52.00 51.92 52.30 52.89

CaO 23.80 23.04 22.76 20.80 23.24 22.80 22.69 20.39 22.40 21.97 2 1 . 6 8 21.92 21.81 20.62

TIOj 0.35 0.61 0.61 0.37 0.45 0.40 0.57 0.27 0.69 0.33 0.34 0.51 0.32

Cr20 3

MnO

0.57 0.61 0.78 0.70 0.70 0.55 0.64 0.73 0.77 0.56 0.61 0.50 0.55 0.54

0.31

FeO 5.63 5.67 5.83 6.67 5.96 5.91 5.82 7.62 6.35 6.89 7.04 6.75 6.65 7.91

Total 101.28 100.43 99.53 98.93 99.47 98.99 98.96 101.71 100.40 99.91 99.78 99.57 99.99 101.38

En 44.52 45.59 44.66 47.41 44.02 44.82 45.04 48.32 45.51 44.91 45.06 45.16 45.85 46.43

Wo 46.82 45.63 46.11 42.05 46.64 45.89 45.78 40.00 44.61 44.25 43.82 44.21 43.73 41.22

Fs 8.64 8.76 9.22 10.52 9.33 9.28 9.16 1 1 . 6 6 9.87 10.83 1 1 . 1 0 10.62 10.40 12.34

Mg# 83.74 83.87 82.89 81.83 82.50 82.84 83.09 80.55 82.18 80.57 80.23 80.95 81.50 79.00

SNS1 SNS1 SNS1 SNS 1 SNS 1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

Sample 31b 31b 31b 32 32 32 32 33 33 33 33 35 35 35

Lithology FCPX FCPX FCPX FCPX FCPX FCPX FCPX SPT SPT SPT SPT FCPX FCPX FCPX

MgO 15.99 15.66 15.36 15.80 16.00 15.21 15.90 13.86 14.04 14.07 14.27 13.89 11.45 13.88

AJ2O3 1.80 2 . 1 2 1.35 1.08 0.76 9.18 8.96 9.31 9.19 7.30 7.52

Si0 2 51.66 51.39 52.33 53.05 53.58 53.45 54.32 48.26 48.16 47.86 48.47 47.61 52.48 47.67

CaO 22.46 21.87 22.47 25.77 25.91 25.63 26.07 25.11 25.15 25.13 24.92 25.73 25.48 24.99

Ti02 0.34 0.31 0.62 0.63 0 . 6 6 0 . 6 6 0.58 0.36

Cr20 3 0.46 0.57 0.42

MnO 0.28 0.29 0.49 0.26 0.28 0.72 0.31

FeO 6 . 2 2 7.03 6.43 4.80 4.85 5.46 4.56 3.67 3.64 3.59 3.54 4.68 11.09 4.22

Total 98.87 98.97 98.67 100.49 101.09 100.04 101.35 100.70 100.58 1 0 0 . 8 8 101.33 99.80 1 0 1 . 2 1 98.95

En 44.88 44.32 43.73 42.67 42.83 41.44 42.73 40.79 41.09 41.19 41.75 39.66 31.81 40.56

Wo 45.32 44.50 45.99 50.04 49.87 50.20 50.38 53.14 52.92 52.90 52.42 52.83 50.89 52.51

Fs 9.79 11.16 10.27 7.27 7.28 8.34 6.87 6.06 5.97 5.89 5.81 7.50 17.29 6.92

Mg# 82.08 79.88 80.98 85.43 85.46 83.23 86.14 87.06 87.30 87.47 87.78 84.10 64.79 85.43
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SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

Sample 35 39 39 40 40 40 40

Lithology FCPX SPT SPT FCPX FCPX FCPX FCPX

MgO 16.46 13.72 15.70 15.42 15.62 16.17 16.90

ai2o 3 1.99 8 . 8 8 2.60 2.93 1.24 0.42

Si02 52.50 47.48 51.64 51.79 53.06 53.79 53.93

CaO 26.26 25.10 25.90 25.73 25.66 26.21 25.93

Ti02 0.47 0.48 0.38 0.41

0 r2O3

MnO 0.27 0.35

FeO 3.58 3.58 4.20 3.90 5.02 4.00 3.59

Total 101.26 99.23 100.43 100.17 100.60 100.44 1 0 1 . 1 2

En 44.07 40.62 42.80 42.70 42.34 43.39 44.99

Wo 50.55 53.43 50.77 51.23 50.01 50.57 49.63

Fs 5.37 5.94 6.42 6.06 7.63 6 . 0 2 5.36

Mg# 89.12 87.23 86.95 87.57 84.72 87.81 89.35

Sandsloot, SNS1 sample suite, plagioclase

SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

Sample 2 2 2 2 2 6 6 6 6 6 1 0 1 0 1 0 1 0 1 0

Lithology HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN

Na20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

ai2o 3 4.12 3.50 3.83 2.95 3.88 3.54 3.94 3.23 2.97 4.45 3.68 4.13 3.96 3.87 3.29

SiOj 30.40 31.56 30.76 32.06 30.89 31.12 30.58 31.47 31.67 30.26 31.43 30.28 30.46 30.50 31.72

k2o 51.48 50.18 51.25 48.82 50.68 49.94 51.03 49.42 48.75 51.80 50.94 51.44 51.78 51.48 49.60

CaO 0.16 0.17 0 . 2 2 0.18 0 . 2 0 0 . 2 1 0 . 2 0 0.14 0.30 0.30 0.24 0 . 2 0

Total 13.91 14.71 13.94 15.48 14.26 14.48 14.04 14.88 15.44 13.37 14.51 13.53 13.92 13.90 15.13

100.07 1 0 0 . 1 2 1 0 0 . 0 0 99.30 99.89 99.28 99.79 99.00 98.83 100.09 100.69 99.67 100.41 1 0 0 . 0 0 99.94

An#

78.86 82.29 80.09 85.29 80.24 81.89 79.75 83.58 85.18 76.86 81.34 78.36 79.53 79.88 83.56

SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

Sample 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 17

Lithology HWGN HWGN HWGN HWGN HWA HWA HWA HWA FPX FPX FPX FPX FPX FPX

Na20 3 3 3 3 3 3 3 3 3 3 3 3 3 3

A120 3 4.61 4.78 4.45 3.93 3.49 3.45 3.47 3.28 3.20 3.66 5.09 3.31 3.64 4.34

Si0 2 29.80 29.32 29.81 30.25 31.26 31.18 31.09 31.08 31.68 31.26 29.49 31.80 31.51 30.15

k2o 52.41 52.62 52.65 51.43 50.60 50.00 50.73 50.27 49.56 50.39 53.28 49.15 50.24 51.97

CaO 0.33 0.27 0.27 0 . 2 0 0.19 0.23 0 . 2 0 0.16

Total 12.41 12.63 13.05 13.53 14.38 14.88 14.22 14.84 15.18 14.27 12.14 15.23 14.70 12.96

99.56 99.61 100.23 99.34 99.92 99.75 99.72 99.47 99.62 99.58 99.99 99.49 1 0 0 . 1 0 99.58

An#

74.84 74.49 76.42 79.19 81.99 82.66 81.91 83.33 83.98 81.16 72.50 83.57 81.70 76.75

SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1 SNS1

Sample 17 17 17 17 2 2 2 2 2 2 2 2 2 2 25 25 25 25 25

Lithology FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX

Na20 3 3 3 3 3 3 3 3 3 3 3 3 3 3

ai2o 3 3.73 4.82 3.42 4.04 4.31 4.82 4.25 4.51 4.40 4.80 4.87 4.87 4.85 4.98

Si0 2 30.86 29.26 31.68 30.28 30.20 29.73 30.45 30.66 30.46 29.52 29.67 29.27 29.12 29.09

K20 50.28 52.33 49.40 50.87 50.64 52.68 52.29 52.79 52.22 53.01 53.28 53.60 53.32 53.35

CaO 0.18 0.19 0.19 0.31 0 . 2 2 0.24 0.18 0.27 0.30 0.35 0.28 0.39

Total 13.81 12.48 14.97 13.61 13.61 12.71 13.42 1 2 . 8 8 13.22 12.48 12.51 1 2 .0 1 12.31 12.06

98.85 99.08 99.65 99.12 98.76 100.17 100.65 1 0 1 . 0 2 100.31 100.07 100.64 100.09 99.88 99.87

An#

80.36 74.10 82.87 78.83 77.73 74.45 77.73 75.94 76.86 74.18 73.95 73.16 73.72 72.80
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SNS1 SNS1 SNS1 SNS1 SNS 1 SNS1 SNS1 SNS1 SNS1

Sample 29 29 29 29 31a 31a 31a 31a 31a

Lithology FPX FPX FPX FPX FPX FPX FPX FPX FPX

Na20 3 3 3 3 3 3 3 3 3

ai2o 3 5.04 5.28 4.70 4.26 2.89 5.72 4.52 4.28 4.51

Si02 29.45 28.76 29.23 30.20 32.44 27.87 29.39 29.94 29.71

k2o 53.17 54.39 53.18 51.26 48.57 55.50 52.22 51.91 51.84

CaO 0.37 0.31 0.29 0.25 0.58 0.38 0.18 0.29

Total 12.19 11.35 12.55 13.36 15.90 1 0 . 6 6 12.82 13.04 12.98

An#

1 0 0 . 2 2 100.08 99.95 99.33 99.81 100.33 99.32 99.35 99.34

72.78 70.38 74.69 77.61 85.88 67.32 75.81 77.10 76.08

Sandsloot, SNS1 sample suite, olivine

SNS1 SNS1 SNS1 SNS1 SNS1

Sample 33 33 33 33 33

Lithology SPT SPT SPT SPT SPT

MgO 48.14 48.08 48.05 48.04 48.05

Si02 39.82 40.11 40.04 40.03 40.21

CaO 0.18 0.23

MnO 1.06 1.15 1.06 1.05 1.03

FeO 11.58 11.71 11.52 11.74 1 1 . 8

Total 100.78 101.05 1 0 0 . 6 6 1 0 0 . 8 6 101.32

Mg# 8 8 .1 1 87.98 88.14 87.94 87.89

Zwartfontein, ZSS1 sample suite, orthopyroxene

ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1

Sample 2 2 2 2 2 18n 18n 18n 18n 18n 18m 18m 18m

Lithology HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWMN HWMN HWMN

MgO 24.12 24.36 24.83 24.04 24.31 23.24 25.64 23.04 23.32 22.52 23.07 22.90 22.76

A120 3 1 .0 1 0.80 1 . 0 0 0.93 1.17 0.83 1.40 0.83 0.74 0.46 0.57 0.55 0 . 6 6

Si02 52.57 52.53 53.04 52.41 52.56 52.23 53.35 52.40 53.13 52.06 52.59 52.50 52.89

CaO 2 . 2 0 1.14 1.52 0.98 1.44 1.87 0.97 3.40 0.89 1.64 1.06 1.09 0.99

Ti02 0.34 0.31 0.35

Cr20 3 0.27 0.32 0.26 0.29 0.37 0.25

MnO 0.39 0.37 0.35 0.32 0.47 0.37 0.41 0.43 0.49 0.43 0.43 0.44

FeO 18.77 2 0 . 6 6 2 0 . 0 2 2 1 . 0 1 19.41 21.55 19.36 20.60 2 2 . 0 2 22.27 23.05 22.78 22.99

Total 99.06 1 0 0 . 1 0 1 0 1 . 1 1 99.72 99.47 100.47 101.47 100.93 100.54 99.74 1 0 1 . 1 1 100.25 100.73

En 66.57 66.24 66.82 65.80 67.08 63.36 68.92 62.20 64.21 62.22 62.75 62.80 62.57

Wo 4.37 2.23 2.94 1.93 2 . 8 6 3.67 1.87 6.60 1.76 3.26 2.07 2.15 1.96

Fs 29.07 31.53 30.24 32.27 30.06 32.97 29.20 31.21 34.03 34.53 35.18 35.05 35.47

Mg# 69.60 67.75 68.85 67.09 69.06 65.77 70.24 66.59 65.36 64.31 64.07 64.18 63.82
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ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1
Sample 18m 18m 29 29 29 29 33a 33a 33a 33a 33a 41 41

Lithology HWMN HWMN HWA HWA HWA HWA HWSA HWSA HWSA HWSA HWSA FPX FPX
MgO 1 1 1 1 1 1 1 1 1 1 1 1 1

ai2o 3 23.24 2 2 . 6 6 27.16 25.56 26.53 26.00 26.77 26.63 26.49 26.76 26.63 27.47 28.21
S i02 0 . 6 8 1.19 1 . 0 0 0.70 0.97 0.58 0.81 0.81 1.24 0.81 0.60 0.95 0.90
CaO 52.39 52.36 53.54 53.28 53.70 53.49 53.22 52.89 52.87 53.19 53.71 54.42 54.22
Ti02 1 . 2 0 1 .2 1 1.05 1.76 2.04 0.77 0.95 1.46 1.50 0.96 1.28 2.04 0.76

Cr20 3 0.27 0.26 0.28 0.30 0.26
MnO 0.28 0.35 0.36 0.54 0.35 0.35 0.25 0.35 0.41
FeO 0.36 0.43 0.40 0.51 0.39 0.39 0.40 0.37 0.30 0.26 0.31 0.35 0.43
Total 22.41 2 2 . 2 2 16.98 17.98 17.28 19.21 17.18 15.94 16.14 16.61 17.45 15.43 15.96

100.56 100.60 100.42 99.79 101.26 100.75 99.96 98.63 98.90 98.95 100.23 1 0 1 .0 1 100.90
En
Wo 63.36 62.95 72.54 69.24 70.38 69.64 72.17 72.71 72.33 72.77 71.31 73.07 74.80
Fs 2.35 2.42 2 . 0 2 3.43 3.89 1.48 1.84 2.87 2.94 1 . 8 8 2.46 3.90 1.45

Mg#
34.29 34.64 25.45 27.33 25.73 28.87 25.99 24.42 24.73 25.35 26.22 23.03 23.75

64.89 64.50 74.03 71.70 73.23 70.69 73.52 74.86 74.52 74.17 73.11 76.03 75,90

ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZS S 1 ZSS1 ZSS1 ZSS 1 ZSS1 ZSS1 ZSS1 ZSS1

Sample 41 41 79 79 79 79 79 79 79 84 84 84 84
Lithology FPX FPX FPX FPX FPX IN IN IN IN IN IN IN IN

MgO 1 1 1 1 1 1 1 1 1 1 1 1 1

AJ20 3 27.92 27.73 23.22 23.29 23.17 22.43 23.37 2 2 . 6 8 22.91 22.50 21.92 22.63 22.23
S i0 2 0.92 1 . 1 0 0.32 0.41 0.55 0.49 0.47 0.45 0.83 0.55 0.79 0.78
CaO 53.95 54.24 52.60 52.94 52.18 52.00 52.62 52.76 52.40 52.35 51.67 51.79 51.72
Ti02 1.03 1.40 0.90 0.76 0.77 1.32 0.81 1.31 0.98 1.26 1.05 0.87 1.17

Cr20 3 0.31 0.38 0.36 0.24 0.26 0 .2 1

MnO 0.55 0.35
FeO 0.39 0.51 0.38 0.59 0.52 0.64 0.50 0.52 0.49 0.45 0.52 0.45
Total 15.81 15.64 22.23 22.43 22.91 2 2 . 6 6 22.62 22.52 22.92 23.44 22.89 22.93 22.92

100.19 100.84 99.78 1 0 0 .2 1 100.17 99.74 100.06 100.61 100.19 101.23 98.78 99.79 99.48
En

Wo 74.39 73.92 63.89 63.94 63.34 62.14 63.77 62.55 62.81 61.54 61.71 62.65 61.86

Fs 1.97 2 . 6 8 1.78 1.50 1.51 2.63 1.59 2.60 1.93 2.48 2.13 1.73 2.34
23.64 23.40 34.33 34.56 35.15 35.23 34.64 34.85 35.26 35.98 36.16 35.62 35.79

Mg#
75.89 75.96 65.05 64.92 64.31 63.82 64.80 64.22 64.04 63.11 63.05 63.75 63.35

ZSS1 ZSS 1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1

Sample 87 87 87 87 98 98 98 98 98

Lithology FPX FPX FPX FPX FPX FPX FPX FPX FPX

MgO 1 1 1 1 1 1 1 1 1

A!20 3 22.84 22.89 23.39 22.98 24.20 23.16 23.44 23.27 23.35

S i0 2 0.81 0 . 8 8 0.70 0.39 0.73 1 0.74 0.84 0.77

CaO 51.75 52.25 52.23 52.75 52.98 51.85 51.95 52.13 52.09

Ti02 0.89 0.96 0 . 6 6 1 .0 1 1.24 1.08 1.03 1.09 1.17

Cr20 3 0.32 0.3 0.35

MnO

FeO 0.49 0.48 0.39 0.62 0.54 0.47 0.45 0.33 0.4

Total 22.98 22.42 22.06 22.78 21.18 2 1 . 0 1 21.41 21.32 21.51

99.75 99.89 99.43 100.52 101.19 98.87 99 99.33 99.29

En

Wo 62.79 63.30 64.53 62.98 65.45 64.83 64.76 64.61 64.39

Fs 1.76 1.91 1.31 1.99 2.41 2.17 2.05 2.18 2.32

35.45 34.79 34.16 35.03 32.14 33.00 33.19 33.22 33.29

Mg#

63.91 64.53 65.39 64.26 67.06 66.27 6 6 . 1 1 66.04 65.92

ZSS1
41

FPX

1
27.94

0.78
53.74

1.26

0.38
0.28

15.43

99.81

74.50
2.42

23.09

76.34

ZSS1
87

FPX

1
22.78

0.66
52.69

1.12

0.49

22.30
100.04

63.10

2.23
34.67

64.54
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Zwartfontein, ZSS1 sample suite, clinopyroxene

ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1

Sample 2 2 2 18n 18n 18n 18n 18n 18m 18m 18m 18m 18m 29

Lithology HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWMN HWMN HWMN HWMN HWMN HWA

MgO 14.50 14.75 14.24 14.39 14.48 14.16 14.99 14.27 14.20 14.18 14.56 14.15 14.38 15.16

AI2O3 1.71 1.55 1.84 1.51 1.50 1.53 1.26 1.29 1.87 1.76 1.36 1.73 1.62 1.28

Si02 51.11 51.14 51.05 51.97 51.96 51.44 52.29 51.45 51.34 51.64 51.56 51.38 51.84 51.91

CaO 22.05 21.96 22.53 22.84 22.47 2 2 . 8 6 22.58 22.23 2 2 . 0 1 2 2 . 6 6 22.90 22.55 22.08 22.82

Ti02 0.63 0.54 0.71 0.69 0.60 0.58 0.52 0.58 0.59 0.49 0.50 0.56 0.71 0.50

Cr20 3 0.39 0.36 0.29 0.35
MnO 0.39 0.30

FeO 9.06 9.24 8.85 9.56 9.53 9.86 8.57 9.88 9.87 9.43 9.04 9.10 9.94 8.44

Total 99.06 99.18 99.21 101.36 100.54 100.81 1 0 0 . 2 2 99.70 99.87 100.52 1 0 0 . 2 1 99.83 100.56 100.41

En 40.91 41.28 40.22 39.77 40.24 39.19 41.60 39.86 39.92 39.64 40.33 39.89 40.13 41.75

Wo 44.73 44.19 45.75 45.39 44.89 45.49 45.05 44.64 44.49 45.55 45.61 45.70 44.30 45.19
Fs 14.34 14.51 14.02 14.83 14.86 15.31 13.34 15.48 15.57 14.79 14.05 14.39 15.56 13.04

Mg# 74.04 73.99 74.14 72.84 73.03 71.90 75.71 72.02 71.94 72.82 74.16 73.48 72.05 76.20

ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1
Sample 29 29 29 33a 33a 33a 41 41 41 41 6 8 6 8 6 8 6 8

Lithology HWA HWA HWA HWSA HWSA HWSA FPX FPX FPX FPX SPT SPT SPT SPT
MgO 15.12 15.61 15.49 15.27 15.36 15.66 15.69 15.82 15.99 16.92 15.02 15.16 14.89 15.72
AI2O3 1.09 1 . 6 8 1.28 1.91 1.72 1.17 1.63 1.87 1.45 1.42 4.85 4.77 4.93 3.81

Si02 52.65 52.11 52.32 51.68 51.61 52.11 52.47 52.58 52.44 52.41 49.57 49.49 49.39 50.47

CaO 21.99 22.77 21.91 23.36 23.10 23.39 23.29 23.01 23.47 20.71 24.27 24.48 24.63 24.54

Ti02 0.59 0.47 0.29 0.38 0.40 0.48 0.34 0.48 0.80 0.93 0.90 0.82

Cr20 3 0.53 0.53 0.46 0.69 0.75 0.55 0.69 0.62 0.59 0.76 0.81 0.67

MnO 0.31

FeO 9.00 7.57 9.07 7.02 6.48 5.86 6 . 0 0 6.52 5.78 7.19 4.58 3.98 4.37 4.12

Total 100.43 100.26 100.54 100.06 98.72 99.26 100.23 100.82 100.16 99.75 99.68 99.56 100.23 100.15

En 42.02 43.08 42.63 42.41 43.14 43.78 43.82 43.91 44.28 47.20 42.86 43.32 42.48 44.06

Wo 43.94 45.18 43.35 46.64 46.64 47.02 46.77 45.92 46.73 41.54 49.79 50.29 50.52 49.45

Fs 14.03 11.72 14.00 10.94 1 0 .2 1 9.19 9.40 10.15 8.98 11.25 7.33 6.38 6.99 6.48

Mg# 74.96 78.61 75.27 79.49 80.86 82.65 82.33 81.22 83.14 80.75 85.39 87.16 85.86 87.18

ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1
Sample 6 8 76 76 76 84 84 84 84 87 87 98 98 98 98

Lithology SPT PDT PDT PDT IN IN IN IN FPX FPX FPX FPX FPX FPX

MgO 15.28 21.36 16.46 17.65 13.98 14.01 14.13 14.34 13.92 14.57 15.11 14.74 14.14 14.64
ai2o 3 4.51 2.99 2.47 1 . 6 8 1.54 1.56 1.50 1.67 1.35 1.59 1.73 1 . 6 8 1.19

Si02 49.81 55.10 52.38 54.60 50.78 50.70 50.79 51.36 51.39 52.12 51.93 52.46 50.90 51.90

CaO 24.55 13.46 25.44 26.05 21.60 2 0 . 8 8 22.23 22.54 21.65 2 2 . 0 2 22.14 22.25 21.94 22.33

Ti02 0.67 0.29 0.61 0.67 0 . 6 6 0.56 0.67 0.47 0.63 0.55 0.54 0.31

Cr20 3 0.77 0.28 0.25
MnO 0.37 0.28 0.24 0.32 0.29

FeO 4.32 5.52 4.01 2.39 1 0 . 0 2 10.17 9.81 9.46 1 0 . 0 2 8.87 9.57 9.57 9.36 9.06
Total 99.92 99.09 101.36 100.69 99.28 98.45 99.40 99.87 99.12 99.21 100.98 101.30 98.55 99.43

En 43.21 62.57 44.48 46.79 39.79 40.34 39.67 39.99 39.64 41.18 41.51 40.82 40.20 40.91
Wo 49.92 28.35 49.43 49.65 44.20 43.22 44.87 45.19 44.33 44.74 43.73 44.30 44.85 44.87

Fs 6.85 9.07 6.08 3.55 16.00 16.43 15.45 14.80 16.01 14.06 14.75 14.87 14.93 14.21

Mg# 86.31 87.33 87.97 92.94 71.32 71.06 71.96 72.98 71.23 74.54 73.78 73.30 72.91 74.22
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Zwartfontein, ZSS1 sample suite, clinopyroxene

ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 Z S S 1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1
Sample 2 2 2 2 18n 18n 18n 18n 18m 18m 18m 18m 29 29

Lithology HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWMN HWMN HWMN HWMN HWA HWA
Na20 4.15 3.93 3.89 3.48 4.11 3.92 4.27 3.97 4.36 4.33 4.68 4.91 3.36 3.54
AI2O3 29.95 30.20 30.38 30.68 30.00 30.29 29.88 30.70 29.89 29.99 29.73 29.26 31.20 30.78
Si02 51.25 50.39 51.19 49.82 51.07 51.46 52.42 51.15 52.13 52.11 52.16 53.25 50.05 50.17
k2o 0 .2 1 0.27 0 . 2 1 0 . 2 1 0 . 2 1 0 . 2 2 0.28 0.25 0.18 0.23
CaO 13.75 14.05 14.21 14.71 13.42 13.93 13.40 14.15 13.25 13.21 13.02 12.52 15.02 14.58
Total 99.31 98.84 99.88 98.69 98.81 99.82 100.19 99.97 99.91 99.64 99.84 99.94 99.81 99.30

An# 78.55 79.80 80.15 82.37 78.30 79.71 77.62 79.75 77.06 77.13 75.46 73.81 83.17 81.99

ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1
Sample 29 29 33a 33a 33a 33a 41 41 41 79 79 79 79 79

Lithology HWA HWA HWSA HWSA HWSA HWSA FPX FPX FPX FPX FPX FPX IN IN
Na20 3.53 3.32 3.59 3.42 2.83 3.99 4.22 4.26 4.29 7.37 7.46 6.82 5.49 6.89

ai2o 3 31.21 31.35 30.67 31.20 31.94 29.82 30.15 30.26 30.57 25.85 26.03 27.13 28.00 26.13
S i02 50.10 49.70 50.09 49.61 47.89 51.12 51.46 51.84 51.90 58.14 57.95 56.96 53.77 56.74
k2o 0 .2 1 0.16 0.16 0.23 0.19 0.19 0.19 0.18 0.30 0 . 2 0 0.37
CaO 14.77 14.84 14.50 15.05 16.03 13.75 13.61 13.48 13.89 8.30 8 . 2 0 9.49 11.23 8.82
Total 99.61 99.42 99.00 99.28 98.85 98.91 99.44 100.03 100.84 99.86 99.82 100.70 98.68 98.96

An# 82.22 83.17 81.70 82.95 86.23 79.20 78.09 77.76 78.16 55.45 54.85 60.60 69.33 58.59

ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1
Sample 79 79 84 84 84 98 98 98 98

Lithology IN IN IN IN IN FPX FPX FPX FPX

Na20 5.92 5.81 4.39 4.60 4.64 4.70 4.64 4.49 4.25
ai2o 3 27.94 27.66 29.05 29.03 29.00 30.23 30.04 30.30 30.15

S i0 2 54.94 54.98 52.07 52.06 51.86 52.97 52.64 52.46 51.85

k2o 0.26 0.56 0.28 0.26 0.27 0.35 0.30 0.36 0.23
CaO 10.91 10.34 1 2 . 8 8 12.55 12.48 13.11 13.34 13.43 13.53

Total 99.97 99.35 98.67 98.49 98.25 101.37 100.96 101.04 1 0 0 . 0 1

An# 67.07 66.30 76.43 75.10 74.83 75.51 76.06 76.78 77.87

Zwartfontein, ZSS1 sample suite, olivine

ZSS1 ZSS1 ZSS1 ZSS1 ZSS1 ZSS1
Sample 76 76 76 76 76 76

Lithology PDT PDT PDT PDT PDT PDT

MgO 45.14 44.69 44.26 44.30 44.49 44.49

S i0 2 39.38 38.83 38.80 38.55 38.46 38.59
MnO 0.77 0.82 0.74 0.70 0.84 0.59
FeO 16.73 16.77 16.48 16.39 16.34 16.37

Total 1 0 2 . 0 2 1 0 1 . 1 1 100.28 99.94 100.15 100.04

Mg# 82.78 82.61 82.72 82.81 82.91 82.89
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Overysel, OY335 sample suite, orthopyroxene

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335
Sample 166 166 166 166 166 169 169 169 169 175 175 175 175 175

Lithology HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN

MgO 23.19 23.51 23.72 23.72 23.80 24.03 24.45 24.65 24.44 24.53 24.38 25.16 24.89 24.69
AI2O3 0 . 6 6 0.97 0.63 0.83 0.75 0.91 0.84 0.94 0.80 0.65 1.39 1.30 0.77 0.97

S i02 51.90 52.13 52.55 52.33 52.57 52.84 53.10 52.92 52.71 53.14 53.08 53.12 53.14 52.90

CaO 0.75 1.57 0.69 0.73 1.61 2.03 1.78 1.57 0.74 2.46 2.97 2.04 1.44 2.19
Ti02 0.34 0.26
Cr20 3 0.40 0.28 0.37 0.29 0.44 0.45 0.30
MnO 0.55 0.32 0.50 0.49 0.49 0.47 0.40 0.50 0.47 0.39 0.35 0.33 0.38

FeO 2 1 . 6 8 20.25 21.81 21.41 20.19 19.70 2 0 . 0 2 20.42 21.98 18.04 18.01 18.43 19.38 18.90
Total 98.72 99.16 99.90 99.51 99.40 100.25 100.59 101.35 101.14 99.50 100.61 101.17 99.88 100.33

En 64.60 65.30 65.07 65.42 65.59 65.76 66.14 6 6 . 2 0 65.51 67.35 66.57 68.06 67.63 66.96

Wo 1.50 3.14 1.36 1.45 3.19 3.99 3.46 3.03 1.43 4.86 5.83 3.97 2.81 4.27

Fs 33.89 31.56 33.57 33.14 31.22 30.25 30.39 30.77 33.06 27.79 27.60 27.98 29.55 28.77

Mg# 65.59 67.41 65.96 66.38 67.75 68.49 68.52 68.27 66.46 70.79 70.69 70.87 69.59 69.95

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335

Sample 176 176 176 176 176 182 182 182 182 182 193 193 193
Lithology FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX AFPX AFPX AFPX

MgO 26.01 29.10 26.60 30.22 29.07 28.22 28.57 27.76 26.56 28.59 27.58 27.93 26.94
a i2o 3 1.26 1.34 1.46 1.29 1.40 1.63 1 .2 1 1.28 1.08 1.36 1.33 1.23 1.87
Si0 2 52.94 53.69 53.25 54.41 53.92 54.01 54.36 53.96 53.66 53.93 54.01 54.07 53.17

CaO 2.95 2.52 2 . 2 0 1 . 8 8 2 . 0 2 3.76 0.89 2.39 3.25 3.28 2.03 1.43 1.32
Ti02 0.28

Cr20 3 0.42 0.43 0.47 0.45 0.56 0.35 0.36 0.41 0.49 0.30 0.28 0.59
MnO 0.36 0.32 0.28 0.32 0.34 0.33 0.29 0.32 0.35

FeO 14.99 11.59 15.85 1 1 . 0 0 1 2 . 2 2 11.92 15.01 13.70 14.67 1 2 . 2 1 14.15 14.79 16.26
Total 98.95 98.99 1 0 0 . 1 0 99.57 99.19 100.50 100.36 99.45 99.92 99.87 99.40 100.04 100.51

En 71.18 77.77 71.74 80.06 77.77 75.03 75.92 74.69 71.53 75.63 74.58 74.96 72.78

Wo 5.80 4.84 4.27 3.58 3.89 7.19 1.70 4.62 6.29 6.24 3.95 2.76 2.56

Fs 23.02 17.38 23.99 16.35 18.35 17.78 22.38 20.69 22.17 18.13 21.47 22.28 24.65

Mg# 75.56 81.73 74.94 83.04 80.91 80.84 77.23 78.31 76.34 80.67 77.65 77.09 74.70

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335

Sample 193 193 2 0 1 2 0 1 2 0 1 2 0 1 213 213 213 213 230 230 230 230

Lithology AFPX AFPX FPX FPX FPX FPX SCSX SCSX SCSX SCSX AFPX AFPX AFPX AFPX

MgO 29.30 28.20 29.54 29.09 28.46 26.91 30.88 29.84 30.22 30.29 28.12 27.17 28.46 26.85
AJ20 3 1.48 0.84 1.71 1.46 1.48 1.05 0.95 1 .0 1 1.07 0.98 0.82 1.27 1.35 0 . 8 6

Si02 54.02 54.40 54.51 54.16 54.13 53.64 54.90 54.97 55.01 54.83 53.50 53.05 53.63 53.41

CaO 1.46 0.96 1.98 1.30 1.75 1.82 0.61 2.09 2 . 0 0 2.17 1.80 2.94 2 .1 1 1.29
Ti02 0.34 0.33 0.38 0.33

Cr20 3 0.43 0.31 0.72 0.59 0.47 0.32 0.32 0.33 0.65 0.32

MnO 0.28 0.42 0.40 0.36 0.44 0.33

FeO 13.32 15.00 11.73 13.23 13.33 15.73 1 2 . 0 2 12.14 11.69 11.71 14.06 14.28 13.60 16.45
Total 1 0 0 .0 1 99.98 100.18 99.84 99.62 99.88 99.70 100.39 100.77 1 0 0 . 6 6 98.62 99.47 99.81 99.52

En 77.46 75.59 78.68 77.68 76.51 72.64 81.13 78.21 79.07 78.84 75.38 72.85 75.67 72.55

Wo 2.78 1.85 3.79 2.50 3.38 3.53 1.15 3.94 3.76 4.06 3.47 5.67 4.03 2.51
Fs 19.76 22.56 17.53 19.83 2 0 . 1 1 23.83 17.72 17.85 17.16 17.10 21.15 21.49 20.29 24.94

Mg# 79.67 77.01 81.78 79.67 79.19 75.30 82.07 81.41 82.16 82.17 78.09 77.22 78.85 74.42
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Appendix 4. Mineral chemistry

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335
Sample 241 241 241 241 241 253 253 253 253 262 262 262 262 292

Lithology FPX FPX CHR CHR CHR IN IN IN IN FPX FPX FPX FPX FPX
MgO 28.19 27.77 30.79 31.11 31.47 26.21 26.36 25.82 25.88 27.25 27.92 27.36 29.24 29.91
ai2o 3 1 . 6 6 1.06 1.24 1 . 2 1 . 0 2 0.93 0.62 1 .0 1 0.49 0.97 1.28 1.24
Si02 54.18 53.74 55.24 54.5 55.18 53.34 53.59 53.56 53.65 54.15 54.55 53.31 54.11 54.81
CaO 2.26 2.06 1 .2 0 . 6 6 0.57 0.96 1.62 2.73 2.41 1.61 1.48 0.90 1.47 0.58
Ti02 0.31 0.31
Cr20 3 0.47 0.3 0.57 0.54 0.53 0.26 0.25 0.29 0.29 0.39
MnO 0.5 0.52 0.63 0.51 0.43 0.35 0.32 0.30 0.40 0.44
FeO 13.54 14.82 11.48 10.83 11.83 17.95 17.81 16.36 16.29 16.69 16.38 16.17 13.36 13.34
Total 100.3 1 0 0 . 2 100.5 98.84 1 0 0 . 6 99.90 1 0 0 . 0 0 100.17 99.67 1 0 1 . 1 0 100.94 99.31 100.25 100.33

En 75.35 73.92 80.82 82.60 81.70 70.89 70.26 69.85 70.41 72.141 73.135 73.784 77.367 79.100
Wo 4.34 3.94 2.26 1.26 1.06 1.87 3.10 5.31 4.71 3.064 2.787 1.745 2.796 1.103
Fs 20.31 22.14 16.91 16.14 17.23 27.24 26.64 24.84 24.87 24.795 24.078 24.471 19.837 19.797

Mg# 78.77 76.95 82.70 83.66 82.58 72.24 72.51 73.77 73.90 74.42 75.23 75.09 79.59 79.98

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335
Sample 292 292 292 292 292 303 303 303 303 316 316 316 316

Lithology FPX FPX FPX FPX FPX QFPX QFPX QFPX QFPX GN GN GN GN
MgO 30.31 30.35 30.06 30.34 29.59 29.51 30.20 28.99 30.05 24.42 25.06 24.34 24.19

ai2o 3 0.91 1.09 1.79 1.79 1.57 1.50 0.57 0.55 0.46 0.63
s io 2 55.53 55.00 54.88 55.36 55.32 53.68 54.21 53.80 54.61 53.01 53.87 53.18 53.48
CaO 0.95 0.79 0.58 0.42 2.62 1 . 6 6 0.64 2 . 0 1 1.97 0.61 0.43 0.55 0.55
Ti02 0.35

0 r2O3 0.33 0.58 0.79 0.61 0 . 6 6 0.56

MnO 0.43 0.36 0.32 0.37 0.27 0.29 0.35 0.76 0 . 6 6 0.82 0 . 8 6

FeO 13.33 12.83 13.32 13.51 1 2 . 0 0 12.44 12.53 12.24 11.89 21.38 20.71 21.26 20.91
Total 100.54 99.32 100.40 1 0 0 . 0 0 1 0 1 . 2 0 99.87 100.24 99.54 100.93 100.75 101.29 100.62 100.98

En 78.782 79.622 79.206 79.376 77.445 78.308 80.124 77.713 78.791 66.257 67.746 66.383 66.603

Wo 1.775 1.490 1.099 0.790 4.930 3.167 1 . 2 2 1 3.874 3.714 1.190 0.836 1.078 1.089

Fs 19.443 18.888 19.695 19.834 17.625 18.525 18.655 18.413 17.495 32.553 31.418 32.538 32.308

Mg# 80.21 80.83 80.09 80.01 81.46 80.87 81.11 80.85 81.83 67.06 68.32 67.11 67.34

Overysel, OY335 sample suite, clinopyroxene

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335

Sample 166 166 166 166 166 166 169 169 169 169 175 175 175 175

Lithology HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN HWGN

MgO 14.71 15.01 14.76 14.94 14.61 14.78 14.92 15.77 14.58 14.64 15.60 15.42 16.24 15.47

aj2o 3 1.49 1 . 1 2 1.73 1.23 1.83 1.09 1.54 0.87 1.49 1 . 2 0 1.15 1.13 1.83

SI02 51.46 51.92 51.20 51.86 51.15 51.94 51.91 53.44 52.57 52.45 51.77 52.78 53.22 52.24

CaO 22.44 22.72 22.50 22.39 23.01 21.95 22.71 23.69 22.72 23.04 23.33 23.64 23.21 22.72

oI- 0.56 0.39 0.62 0.45 0.60 0.33 0.58 0.42 0.41 0.45 0.43 0.31 0.41

Cr20 3 0.32 0.33 0.32 0.38 0.38 0.60 0.28 0.36 0.57

MnO 0.27 0.26

FeO 8.49 8.41 8.29 8.78 7.65 8.60 8.77 7.21 9.14 8.50 6.78 6.72 6.91 6.94

Total 99.75 99.57 99.11 99.97 99.17 98.69 100.80 101.35 101.53 100.77 1 0 0 . 0 2 100.82 99.88 100.18

En 41.31 41.62 41.47 41.54 41.22 41.77 41.25 42.80 40.45 40.69 43.12 42.61 44.12 43.33

Wo 45.31 45.29 45.45 44.76 46.67 44.60 45.14 46.22 45.32 46.05 46.36 46.97 45.34 45.76

Fs 13.38 13.09 13.07 13.70 1 2 . 1 1 13.64 13.61 10.98 14.23 13.26 10.52 10.42 10.54 10.91

Mg# 75.54 76.08 76.04 75.20 77.29 75.38 75.20 79.58 73.98 75.43 80.39 80.35 80.73 79.89
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Appendix 4. Mineral chemistry

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY333 OY334 OY335 OY335
Sample 175 175 176 176 182 193 193 193 193 193 2 0 1 2 0 1 213 213

Lithology HWGN HWGN FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX SCSX SCSX

MgO 16.12 15.30 15.83 16.12 19.61 15.66 15.59 17.13 16.26 15.77 19.55 16.91 17.19 16.72

AI2O3 1.89 1.95 1.75 1.34 2.03 1.51 0.96 1.89 1.58 1.81 0.45 2 .2 1

Si0 2 52.91 51.99 52 53.27 52.4 51.92 51.79 51.89 53.01 51.68 53.73 52.68 54.16 51.82
CaO 2 2 .8 a 22.98 23.28 24.02 15.7 22.99 22.71 19.97 23.44 22.97 14.77 20.17 25.46 22.91
Ti02 0.46 0.43 0.28 0.33 0.39 0.38 0.32 0.32 0.73

Cr20 3 0.39 0.62 0.29 0.73 0.56 0 . 6 8 0.62 0 . 6 6 0.73 0.53 0.82
MnO 0.28 0.28
FeO 7.16 7.05 5.99 6.48 9.61 5.7 6.32 7.47 5.78 5.63 9.97 6.76 3.08 5.04
Total 99.06 100.65 1 0 0 .1 1 0 0 . 2 1 0 0 .1 99.27 99.79 99.25 100.4 98.67 100.14 99.48 1 0 1 1 0 0 .1

En 44.06 42.76 44.06 43.54 54.04 44.25 43.96 48.01 44.72 44.49 54.66 48.03 46.18 46.42
Wo 44.96 46.18 46.59 46.64 31.10 46.71 46.04 40.24 46.35 46.59 29.69 41.19 49.18 45.73
Fs 10.98 11.06 9.36 9.82 14.86 9.04 1 0 . 0 0 11.75 8.92 8.91 15.64 10.78 4.64 7.85

Mg# 80.05 79.45 82.48 81.59 78.43 83.04 81.47 80.34 83.37 83.31 77.75 81.68 90.86 85.53

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335
Sample 213 213 218 218 218 218 218 230 230 241 241 241 241 241

Lithology SCSX SCSX SCSX SCSX SCSX SCSX SCSX AFPX AFPX FPX FPX FPX FPX FPX
MgO 16.97 16.93 16.09 15.82 13.45 14.66 16.38 16.10 15.87 15.40 17.37 16.21 15.81 15.98

ai2o 3 2.19 1.73 6.03 6.14 1 0 . 2 9.21 3.62 0.41 2.29 1.91 2 . 1 0 1 . 2 0 1.59 2.37
Si0 2 52.24 53.02 49.21 49.12 46.37 46.64 49.91 53.50 51.98 51.59 52.82 53.25 52.09 51.56
CaO 2 2 . 2 23.25 25.69 25.39 25.44 24.84 25.9 24.16 21.91 23.08 19.18 23.83 22.61 20.49

Ti02 0.5 0.45 0 . 8 0.94 0 . 8 8 1 .1 1.27 0.45 0.75 0.39 0.64 0.37

Cr20 3 0.47 0.50 0.62 0.59 0.44 0.57 1 . 2 0

MnO 0.28
FeO 5.4 4.59 2 . 2 1 2.62 2.49 2.55 2.57 5.83 7.11 6.52 8.05 5.04 6.60 7.01
Total 99.5 100.7 100.9 1 0 0 . 6 99.43 98.99 100.3 100.77 1 0 0 . 1 1 100.57 100.49 100.61 99.91 99.77

En 47.19 46.74 44.94 44.51 40.59 43.18 44.95 43.82 44.56 43.19 48.69 44.81 44.20 46.12
Wo 44.38 46.15 51.59 51.36 55.20 52.60 51.10 47.28 44.23 46.54 38.65 47.37 45.45 42.52
Fs 8.43 7.11 3.46 4.14 4.22 4.21 3.96 8.90 1 1 . 2 0 10.26 1 2 . 6 6 7.82 10.35 11.35

Mg# 84.85 86.79 92.84 91.50 90.59 91.11 91.91 83.11 79.91 80.80 79.36 85.14 81.02 80.25

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335

Sample 241 253 253 253 262 262 262 262 262 269 269 269 275 292 292 292

Lithology FPX IN IN IN FPX FPX FPX FPX FPX CSX CSX CSX FPX FPX FPX FPX

MgO 15.79 15.13 15.35 15.58 17.14 16.02 16.32 15.91 16.01 18.66 18.53 18.32 15.72 17.00 16.89 21.15

Al20 3 2 . 1 0 0.99 1.43 1 .0 1 1.87 0.92 0.63 0.71 0.79 0.37 0.80 0.77 1.38

S i0 2 51.59 52.06 51.94 52.49 51.68 53.03 52.85 52.72 52,42 54.42 54.78 54.45 52.53 54.09 54.07 53.92

CaO 21.24 22.76 2 1 . 6 8 22.49 19.51 22.45 23.50 23.12 22.27 26.38 26.62 26.58 24.20 23.77 23.84 14.81

Ti02 0.59 0.45 0.55 0.47 0.61 0.28 0.34 0.31 0.30

Cr20 3 0.74 0.40 0.28 0.45 0.43 0.49 0.34 0.49 0.33 0.60 0.70 0.82

MnO 0.29 0.32

FeO 7.14 7.19 7.79 7.36 7.64 6.85 5.81 5.89 6.18 0.39 0.46 0.53 5.54 4.59 4.32 8.49

Total 99.18 99.67 99.66 100.47 98.88 100.69 99.79 98.84 98.61 99.84 100.38 99.88 98.68 101.16 100.58 100.57

En 45.03 42.59 43.47 43.42 48.34 44.49 44.74 44.39 45.11 49.31 48.86 48.56 43.39 46.36 46.33 57.85

Wo 43.55 46.06 44.15 45.07 39.56 44.83 46.32 46.38 45.12 50.12 50.46 50.65 48.03 46.61 47.02 29.12

Fs 11.43 11.36 12.38 11.51 12.09 1 0 . 6 8 8.94 9.22 9.77 0.58 0 . 6 8 0.79 8.58 7.02 6.65 13.03

Mg# 79.76 78.95 77.83 79.05 79.99 80.65 83.35 82.80 82.20 98.84 98.63 98.40 83.49 86.84 87.45 81.62
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Appendix 4. Mineral chemistry

Overysel, OY335 sample suite, olivine

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335

Sample 292 303 303 303 303 Sample 213 213 213 213 213

Lithology FPX QFPX QFPX QFPX QFPX Lithology PDT PDT PDT PDT PDT

MgO 16.94 15.66 15.83 15.95 15.69 MgO 42.57 42.82 42.46 42.09 42.05

AI2O3
0.56 2.50 2.84 2.96 3.00 S i0 2 38.15 38.11 38.17 38.37 37.93

S i0 2
53.40 51.41 52.33 52.13 52.09 MnO 0.28 0.35 0.26 0.33

CaO 23.44 22.73 23.11 23.31 23.61 FeO 18.98 18.79 18.91 19.07 19.34

t i o 2
0.37 0.30 Total 99.99 1 0 0 . 1 99.81 99.53 99.66

Cr20 3
0.65 1.08 1.25 1 .1 1 1.30

MnO Mg# 79.99 80.24 80.00 79.73 79.49

FeO 4.71 5.04 4.94 4.85 4.80

Total 99.70 98.99 101.36 100.99 100.79

En 46.49 44.96 44.95 45.02 44.37

Wo 46.25 46.92 47.18 47.30 48.01

Fs 7.25 8 . 1 2 7.87 7.68 7.62

Mg# 86.50 84.70 85.10 85.42 85.35

Overysel, OY387 sample suite, plagioclase

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335
Sample 166 166 166 169 169 169 169 176 176 176 176 182 182 182

Lithology HWGN HWGN HWGN HWGN HWGN HWGN HWGN FPX FPX FPX FPX FPX FPX FPX

Na20 4.59 5.37 4.79 3.97 3.81 3.54 4.34 3.15 3.67 3.68 4.08 3.53 3.11 3.4

ai2o 3 29.54 28.45 29.1 31.01 30.96 31.30 30.15 31.52 30.72 30.41 30.29 31.58 31.66 31.76
S i0 2 51.42 53.61 52.5 50.70 50.85 50.34 51.82 48.61 50.55 50.26 50.84 50.28 49.48 49.54

k2o 0.16 0.18 0.24 0.19 0 . 2 0 0 . 2 0 0.25 0.32 0.36 0.15
CoO 12.63 11.58 12.28 14.39 14.63 14.73 13.62 15.47 14.29 14.19 13.72 14.85 15.68 15.66

Total 98.75 99.19 99.25 100.26 100.46 99.92 100.13 98.75 99.48 99.15 99.57 100.4 99.94 100.4

An# 75.25 70.44 73.91 80.02 80.93 82.14 77.62 84.44 81.14 80.99 78.80 82.30 84.78 83.58

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335

Sample 193 193 193 2 0 1 2 0 1 2 0 1 230 230 241 241 241 253 253 253

Lithology AFPX AFPX AFPX FPX FPX FPX FPX FPX FPX FPX FPX IN IN IN

Na20 4.15 4.14 4.84 4.78 4.21 4.57 4.67 4.75 5.13 4.50 3.64 5.96 4.67 4.83

aj2o 3 29.87 29.68 28.61 29.60 30.44 29.69 29 29.67 29.03 29.87 31.52 27.75 29.34 28.69

Si0 2 51.22 51.31 52.78 52.19 51.24 52.08 52.51 51.91 53.77 52.83 50.41 54.89 52.24 53

k2o 0 . 2 0.25 0.41 0.78 0.35 0.19 0.27 0.18 0.35 0.17 0 . 2 2

CoO 13.36 13.46 11.95 11.70 13.69 12.82 12.18 12.63 11.84 13.11 14.75 10.48 12.63 11.96

Total 98.81 99.18 98.59 99.04 99.59 99.16 98.72 99.15 100.05 100.49 100.32 99.43 99.06 98.7

An# 78.06 78.23 73.18 73.01 78.23 75.61 74.24 74.61 71.84 76.30 81.75 66.03 74.93 73.24

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335

Sample 253 262 262 262 262 292 292 292 303 303 303 316 316 316

Lithology IN FPX FPX FPX FPX FPX FPX FPX QFPX QFPX QFPX GN GN GN

Na20 7.78 4.83 5.78 4.62 4.85 7.83 7.22 6.82 3.40 3.53 2.90 8.29 8.43 8.34

ai2o 3 25.23 30.14 28.12 29.73 29.36 25.00 25.24 26.15 32.17 31.73 32.56 24.20 24.07 23.97

Si0 2 58.28 52.85 54.31 51.85 52.71 59.71 58.43 56.85 49.32 50.04 48.55 61.46 60.79 60.88

k2o 0.32 0.24 0.17 0.55 0 . 6 8 0.48 0.62 0.47 0.59

CoO 7.29 12.67 1 1 . 0 0 12.95 12.24 7.31 7.59 8.61 15.23 15.02 15.63 5.96 5.85 6 . 0 0

Total 98.91 100.50 99.20 99.39 99.33 100.72 99.16 98.91 1 0 0 . 1 2 100.31 99.91 100.53 99.61 99.77

An# 50.87 74.35 67.78 75.60 73.61 50.78 53.74 58.25 83.20 82.46 85.63 44.28 43.41 44.29
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Appendix 4. Mineral chemistry

Overysel, OY387 sample suite, orthopyroxene

OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387
Sample 233 233 233 233 233 233 233 233 239 239 239 239 245 245

Lithology HWGN HWGN HWGN HWGN HWMN HWMN HWMN HWMN FPX FPX FPX FPX FPX FPX
MgO 23.03 23.54 21.89 21.89 20.73 20.61 2 0 . 2 2 20.60 29.15 28.72 29.84 29.31 29.28 29.37
AI2O3 1.36 0.89 0.44 0.50 0.49 0.63 0.60 0.67 0.89 0.91 0.61 1.15 1 . 2 2 1.49
S i0 2 51.49 52.30 51.68 51.66 51.24 51.03 50.71 50.67 55.50 54.85 54.92 54.52 54.58 54.44
CaO 0.85 0.83 1.05 1 .1 1 1.53 1 . 1 0 0.91 1.16 2.53 2.25 0.67 0.83 1 . 8 8 1.90
TiOj 0.34 0.28 0.29 0.28 0.36

Cr20 3 0.39 0.43 0.40 0.38 0.37 0.62 0.60
MnO 0.44 0.33 0.44 0.48 0.56 0.33 0.50 0.45 0.40 0.37 0.29
FeO 21.55 2 1 . 8 8 23.63 23.31 24.80 25.42 25.34 25.02 13.01 13.36 13.96 14.18 12.61 1 2 . 2 2

Total 99.13 100.41 99.72 98.95 99.64 99.12 98.57 98.93 101.51 100.49 100.78 100.72 100.47 1 0 0 . 0 2

En 64.45 64.64 60.97 61.20 57.99 57.79 57.62 58.07 76.17 75.91 78.21 77.41 77.65 78.13
Wo 1.71 1.64 2 . 1 0 2.23 3.08 2 . 2 2 1 . 8 6 2.35 4.75 4.28 1.26 1.58 3.58 3.63
Fs 33.84 33.72 36.93 36.57 38.93 40.00 40.52 39.58 19.08 19.82 20.53 2 1 . 0 2 18.77 18.24

Mg# 65.57 65.72 62.28 62.59 59.83 59.10 58.71 59.47 79.97 79.30 79.21 78.65 80.54 81.07

OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387
Sample 245 246 246 246 246 252 252 252 252 252 258 258 258 258

Lithology FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX FPX
MgO 29.79 27.77 29.52 28.28 28.10 28.83 27.88 28.82 28.64 28.39 28.97 29.56 29.14 29.43
AJ20 3 1.64 1.37 1.75 1.65 1.50 0.75 0.87 0.94 0.83 0.77 1.52 0.96 1.43 1.32

Si0 2 54.68 53.54 53.72 53.32 53.52 53.77 53.65 53.85 54.15 53.97 53.65 53.99 53.39 54.29
CaO 2.09 3.11 0.57 1.95 2.64 0.7 2 . 1 1 0.95 0.73 0 . 8 6 0.57 0.73 1.55 1 .1 1

t i o 2 0.25

Cr20 3 0 . 6 6 0.56 0.52 0.56 0.61 0.43 0.39 0.5 0.47 0.39 0.58 0.34 0.55 0.56

MnO 0.30 0.31 0.38 0.35 0.32 0.39 0.26 0.32 0.32 0.3 0.39
FeO 11.87 12.28 13.20 12.82 12.05 14.2 13.6 13.95 14.74 14.41 13.61 13.21 12.72 13.4

Total 100.73 98.62 99.83 98.59 98.73 99.05 98.86 99.33 99.95 99.05 99.23 99.11 99.07 100.5

En 78.49 75.26 79.06 76.69 76.44 77.29 75.29 77.20 76.50 76.53 78.26 78.83 77.93 77.96

Wo 3.96 6.06 1 . 1 0 3.80 5.16 1.35 4.10 1.83 1.40 1.67 1 .1 1 1.40 2.98 2 . 1 1

Fs 17.55 18.68 19.84 19.51 18.40 21.36 20.61 20.97 2 2 . 1 0 21.80 20.63 19.77 19.09 19.92

Mg# 81.73 80.12 79.94 79.72 80.60 78.35 78.51 78.64 77.59 77.83 79.14 79.95 80.32 79.65

OY387 OY389 OY390 OY391 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387
Sample 272 272 272 272 278 278 278 278 278 278 311 311 311 311

Lithology QFPX QFPX QFPX QFPX GN GN GN GN GN GN GN GN GN GN
MgO 26.94 27.00 27.60 25.31 28.71 28.28 28.11 27.91 27.54 27.54 27.16 27.07 24.76 25.74
ai2o 3 0.67 0.94 0.99 0 . 8 6 0.48 0 . 6 6 0.65 0.69 0.50 0.63 1.09 1.23 0.97 0.87
Si02 54.46 53.95 54.21 53.60 54.82 55.04 54.62 54.25 54.66 54.64 53.68 53.68 53.09 53.58
CaO 2.31 2.17 1.16 4.82 0.60 0.72 0 . 6 6 0.73 0.80 0.77 0.35 0.39 0.33 0.42
Ti02 0.32

Cr20 3 0.42 0.40 0.50 0.45 0.30 0.28
MnO 0.34 0.33 0.37 0.41 0.39 0.39 0.30 0.35 0.49 0.34 0.58 0.48 0 . 8 6 0 . 6 8

FeO 15.28 15.34 16.14 14.54 15.88 16.20 16.30 16.76 17.25 17.11 17.55 17.81 20.16 19.04
Total 100.42 100.13 100.98 99.99 101.18 101.28 100.92 100.70 101.24 101.03 100.41 100.98 100.17 100.32

En 72.47 72.64 73.62 68.53 75.45 74.64 74.50 73.76 72.87 73.06 72.89 72.49 68.19 70.09
Wo 4.47 4.20 2 . 2 2 9.38 1.13 1.37 1.26 1.39 1.52 1.47 0 . 6 8 0.75 0.65 0.82
Fs 23.07 23.16 24.16 22.09 23.42 23.99 24.24 24.86 25.61 25.47 26.43 26.76 31.16 29.09

Mg# 75.86 75.82 75.29 75.62 76.31 75.67 75.45 74.80 73.99 74.15 73.39 73.03 68.64 70.67
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OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387
Sample 364 364 364 364 378 378 378 384 384 384 384 415 415 415
Lithology AGN AGN AGN AGN GN GN GN LZP LZP LZP LZP GN GN GN

MgO 16.91 17.61 17.64 17.97 22.39 22.28 21.48 34.65 35.11 34.59 34.85 27.91 27.64 28.82
AI2O3 0.46 0.42 0.53 0.77 0.87 0.76 0.75 0.77 0 . 6 8 0.55 1.14 1.15 1.34
Si0 2 50.27 50.82 50.33 50.24 52.19 51.63 51.61 56.84 56.92 56.96 56.82 54.11 53.95 54.32
CaO

1 .2 2 0.90 1 . 2 2 1.08 0.36 0.40 0.39 0.50 0.28 0.35 0.40 0 . 0 0 0 .2 1 0.18
Ti0 2 0.28 0.28

Cr20 3 0.28 0.54 0.42 0.27
MnO 0.57 0.75 0.65 0.48 0.60 0.80 0.76 0.26 0.65 0 . 6 6 0.70
FeO 30.00 30.14 29.25 29.17 22.80 23.91 24.67 8.07 7.81 8 . 0 2 7.83 16.15 16.90 15.36

Total 99.71 1 0 0 . 2 2 99.52 99.75 99.11 99.90 99.66 1 0 1 . 1 0 101.41 1 0 1 . 0 2 100.98 99.96 100.52 100.73

En 48.84 50.07 50.50 51.17 63.17 61.91 60.33 87.64 88.45 87.92 88.16 75.49 74.15 76.71
Wo 2.53 1.84 2.51 2 .2 1 0.73 0.80 0.79 0.91 0.51 0.64 0.73 0 . 0 0 0.41 0.34
Fs 48.63 48.09 46.99 46.62 36.10 37.29 38.88 11.45 11.04 11.44 1 1 . 1 2 24.51 25.44 22.94

Mg# 50.11 51.01 51.80 52.33 63.64 62.41 60.81 88.44 88.90 88.49 88.80 75.49 74.45 76.98

Overysel, OY387 sample suite, clinopyroxene

OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387
Sample 233 233 233 233 233 233 239 239 239 239 246 246 258 258
Lithology HWGN HWGN HWGN HWMN HWMN HWMN FPX FPX FPX FPX FPX FPX FPX FPX

MgO 13.79 14.37 14.34 13.36 13.30 14.07 17.60 17.43 17.99 16.62 16.00 16.62 20.85 19.35
ai2o 3 1.35 1.46 1.72 1.45 1.34 0.93 1.58 1.18 1.27 1.78 2.03 1.34 2.39 2.54
Si02 51.18 51.34 50.88 50.88 51.30 51.87 53.63 53.86 53.61 53.03 51.54 52.12 52.54 51.84
CaO

2 2 .2 1 22.36 21.36 22.08 22.03 21.94 21.79 21.82 20.35 22.91 23.01 22.36 15.14 17.81
Ti02 0.53 0.58 0.39 0.41 0.30 0.29 0.40 0.43 0.32 0.37
Cr20 3 0.37 0.35 0.29 0.60 0.83 0.67 0.80 1.32 0.83 0.90 1.04
MnO 0.27 0.36
FeO 9.85 9.33 10.43 10.71 9.92 10.55 5.39 5.49 6 . 6 8 5.37 4.64 5.29 8.52 7.42

Total 99.17 98.86 99.31 99.24 98.65 99.96 100.89 1 0 1 . 0 2 100.99 100.83 98.92 98.57 100.71 1 0 0 . 0 0

En 39.08 40.27 40.33 37.90 38.32 39.34 48.49 48.15 49.46 46.03 45.52 46.60 57.09 53.27
Wo 45.25 45.05 43.19 45.04 45.63 44.10 43.16 43.33 40.22 45.62 47.06 45.07 29.80 35.25
Fs 6.47 6.09 6.85 7.07 6.58 6 . 8 8 3.36 3.43 4.19 3.36 2.95 3.37 5.41 4.71

Mg# 71.39 73.29 71.01 68.97 70.49 70.38 85.33 84.98 82.76 84.65 8 6 . 0 0 84.85 81.35 82.29

OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387
Sample 258 258 272 272 364 364 364 364
Lithology FPX FPX GN GN AGN AGN AGN AGN

MgO 15.36 16.15 16.00 15.86 12.32 12.36 12.45 11.81
AJ20 3 2.54 2.61 1.38 1.26 1.34 1.06 1.14 1.34
Si02 51.15 51.41 52.85 52.78 50.79 51.88 50.76 50.61
CaO 22.94 21.43 23.04 2 2 . 8 6 2 1 . 2 2 2 2 . 2 0 21.53 22.39
Ti02 0.34 0.19 0.32 0.38 0.28 0.42 0.37
Cr20 3 1.07 0.96 0.72 0.48
MnO 0.37 0.30 0.34
FeO 5.20 5.50 6.27 6.26 13.99 12.24 13.14 13.17

Total 99.60 98.50 100.61 100.15 100.41 100.32 99.78 99.68

En 44.17 46.61 44.34 44.29 34.77 35.12 35.26 33.45
Wo 47.43 44.47 45.90 45.89 43.06 45.35 43.84 45.60
Fs 3.32 3.55 3.95 3.97 9.35 8 .1 1 8.78 8.81

Mg# 84.04 83.96 81.97 81.87 61.08 64.28 62.80 61.51
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Overysel, OY387 sample suite, plagioclase

OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387

Sample 233 233 233 233 233 233 233 239 239 246 252 258 258 258

Lithology HWGN HWGN HWMN HWMN HWMN HWMN HWMN FPX FPX FPX FPX FPX FPX FPX

Na20 4.60 3.73 2.90 4.81 4.99 4.42 4.54 6.14 6 .2 1 3.49 3.54 3.39 3.12 2.34

ai2o 3 28.85 30.56 31.47 28.55 29.04 29.56 28.94 28.22 28.4 30.72 30.85 31.17 31.97 32.73

Si02 52.17 49.52 48.50 52.62 53.00 51.99 52.22 56.11 55.82 49.64 49.56 49.67 48.91 46.89

k2o 0.23 0.31 0 . 2 0 0.25 0 . 2 2 0.31 0.27 0.15

CaO 12.32 14.50 15.96 1 2 . 1 0 12.31 12.71 12.47 1 0 . 6 8 10.52 14.62 14.8 14.77 15.66 16.96
Total 98.44 98.61 99.27 98.73 99.82 99.21 98.77 101.5 1 0 1 . 2 98.63 98.76 99 99.97 98.92

An# 74.75 81.12 85.88 73.55 73.16 76.07 75.22 65.78 65.18 82.24 82.21 82.80 84.73 88.90

OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387

Sample 272 272 272 272 278 278 278 278 278 278 278 278 311 311

Lithology GN GN GN GN GN GN GN GN GN GN GN GN GN GN

Na20 5.16 4.25 4.78 4.10 5.91 6 .0 1 5.85 5.87 6.41 5.87 6.48 6 . 6 8 7.91 7.53
Al20 3 28.58 29.83 29.37 30.57 28.07 28.17 28.23 28.51 27.29 28.01 27.21 26.96 24.67 25.51

Si02 54.07 51.75 52.77 51.68 55.20 56.04 55.77 55.49 56.55 55.61 56.93 56.94 60.12 58.76
k2o 0.27 0.27 0.26 0.30 0.25 0.23 0.29 0.26 0.36 0.25 0.29 0.18 0.39 0.40
CaO 11.51 13.38 12.35 13.72 10.63 10.27 10.59 10.70 9.83 10.56 9.84 9.32 6.44 7.64
Total 99.59 99.49 99.53 100.37 100.06 100.72 101.03 101.13 100.43 100.67 100.75 100.36 99.53 99.83

An# 71.14 77.68 74.06 78.72 66.53 65.38 66.67 66.83 62.89 66.54 62.66 60.66 47.36 52.86

OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387
Sample 311 311 364 364 364 378 378 378 378 384 384 384 384 395

Lithology GN GN AGN AGN AGN GN GN GN GN LZP LZP LZP LZP GN

Na20 7.58 7.84 6.27 6.69 6.59 7.94 8.19 6.53 7.33 9.50 9.69 9.40 9.17 9.88

ai2o 3 25.20 24.70 27.61 26.42 27.05 24.75 23.85 26.86 25.20 23.09 22.72 23.12 22.98 23.42
Si02 59.19 60.54 55.50 56.39 55.86 59.66 60.64 56.07 58.75 62.85 63.72 63.09 63.49 62.95
k2o 0.31 0.45 0 . 2 2 0.33 0.61 0.71 0.28 0.45 0.49 0.50 0.58 0.37
CaO 7.07 6.72 9.95 9.25 9.32 6.52 5.88 9.19 7.60 4.52 4.37 4.60 4.42 4.61
Total 99.35 100.25 99.33 99.31 99.15 99.48 99.27 98.95 99.60 100.45 1 0 1 .0 1 100.79 100.44 1 0 0 . 8 6

An# 50.76 48.65 63.69 60.45 60.98 47.58 44.24 60.87 53.40 34.46 33.26 35.10 34.76 34.02

OY387 OY387 OY387 OY387 OY387 OY387 OY387
Sample 395 395 395 415 415 415 415

Lithology GN GN GN GN GN GN GN
Na20 9.46 10.34 9.12 8.79 9.10 9.06 8.91
ai2o 3 23.35 23.00 24.07 23.44 23.48 23.67 23.45
S i0 2 63.17 64.05 62.54 61.91 61.79 61.73 62.03
k2o 0.60 0.41 0.25 0.50
CaO 4.79 3.80 5.59 4.96 5.09 5.47 5.13
Total 100.77 101.19 101.33 99.71 99.86 100.18 1 0 0 . 0 2

An# 35.88 28.88 40.38 38.41 38.20 40.02 38.89
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All Overysel samples, chromite

OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335 OY335

Sample 241 241 241 241 241 241 262 262 262 262 262 262 303 303

Lithology CHRX CHRX CHRX CHRX CHRX CHRX CHRX CHRX CHRX CHRX CHRX CHRX QFPX QFPX

MgO 6.16 6.62 6.63 6.67 6.70 6.52 7.68 7.55 7.88 7.68 7.49 7.59 4.30 4.53

ai2o 3 14.97 14.85 15.09 14.42 14.80 15.31 15.52 16.09 16.08 15.99 16.10 15.47 8.62 8.77

Ti02 1 . 0 0 1.05 1.16 1.29 1.04 1 . 1 2 1.09 1 . 0 2 1 . 2 0 1.26 1.23 1.34 1.69 1.62

v2o5 0.41 0.55 0.37 0.40 0.38 0.40

Cr20 3 42.48 42.10 43.14 42.82 42.06 42.32 42.02 41.70 42.37 42.20 42.71 43.11 42.51 41.62

MnO 0.59 0.53 0.53

FeO 34.81 34.89 34.72 34.57 34.68 34.54 31.85 31.75 32.38 32.40 32.52 33.20 42.05 42.03

Total 99.41 99.92 100.74 99.76 99.83 100.41 98.54 98.50 100.28 100.06 100.59 100.71 99.18 98.97

OY335 OY335 OY335 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387

Sample 303 303 303 245 245 245 245 245 246 246 246 246 246 258

Lithology QFPX QFPX QFPX CHRX CHRX CHRX CHRX CHRX FPX FPX FPX FPX FPX FPX
MgO 2.82 4.85 3.17 7.53 7.18 7.17 7.32 7.33 4.93 5.07 2.93 4.79 5.16 3.98

ai2o 3 6.70 9.49 6.31 16.69 15.50 15.37 15.89 16.66 11.06 10.26 9.16 9.64 10.17 9.83

Ti02 0.89 1 . 2 2 2.18 0.58 0.89 0.90 0.85 0.95 1.74 1.69 1.13 1.51 1.50 1.27
V20 5 0.50 0 . 6 8 0.61 0.69 0.71 0.56 0 . 6 6 0.71 0.78 0.98 0.77 0.59 0.58
Cr20 3 46.26 43.31 42.97 46.39 46.49 46.19 45.83 45.76 47.88 48.68 48.90 49.40 50.09 45.86
MnO 0.60 0.57 0.56 0.57 0.55 0.61 0.53 0.74

FeO 41.66 39.64 44.10 28.92 30.00 30.33 30.21 29.44 33.46 34.77 36.99 33.87 33.01 38.55
Total 98.84 99.10 99.42 100.72 100.74 101.25 101.23 100.79 100.35 101.25 1 0 0 . 6 6 100.59 101.06 100.81

OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387 OY387

Sample 258 258 258 268 268 268 268 268 268 384 384 384 384 384

Lithology FPX FPX FPX AFPX AFPX AFPX AFPX AFPX AFPX LZP LZP LZP LZP LZP
MgO 2.85 4.86 3.72 0.98 1.05 1.69 1.28 1 . 0 2 1.54 7.46 4.47 4.01 8 . 0 0 4.90

ai2o 3 9.96 16.12 9.83 3.68 3.53 6 .1 1 4.13 5.93 5.49 1 0 . 0 2 8.96 8.29 10.05 8.56
Ti02 0.95 0.59 1.08 1.80 1.74 1.31 0.85 0.61 0.48 0 . 6 6

v2o5 0.65 0.45 1.41 1.18 0.98 0.73 1.03
Cr20 3 46.38 41.38 46.54 42.73 42.66 45.69 44.27 46.02 45.95 56.53 55.20 55.29 56.83 55.59
MnO 0.53 0.75 0.65 0.75 0.79 0.76 0.78 0.65
FeO 39.64 36.52 38.58 47.76 48.53 44.48 45.85 45.28 43.95 26.42 32.03 32.60 25.99 30.23
Total 100.97 99.47 1 0 0 . 2 1 99.11 99.34 98.73 98.61 99.73 98.75 101.28 101.27 100.67 101.54 99.93

Sample OY08 OY08 OY08 OY08 OY08 OY08 OY08 OY08 OY08 OY08 OY08
Lithology CHR CHR CHR CHR CHR CHR CHR CHR CHR CHR CHR
MgO 3.43 2.85 1.37 1 .2 1 2.4 3.83 4.84 4.81 4.2 1 .1 0.7
ai2o 3 10.48 10.08 9.25 8.58 7.15 8.43 1 1 . 2 2 1 1 . 6 10.64 7.45 7.45
Ti02 1.33 1.16 1 0.96 1.56 1.64 0.9 1.25 1.31 1.49 1 .1

v20 5 0.31 0.35 0.31 0.28 0.33 0.32
Cr20 3 41.81 43.39 41.74 44 42.79 45.15 44.75 44.01 44.05 42.51 42.47
MnO 0.69 0.75 0.56 0.75 1.06 0.58 0.54 0.67 0.87 0.77 0.94
FeO 42.81 42.98 46.88 45.98 46.26 40.52 38.27 38.66 38.95 46.92 46.74
Total 1 0 0 . 8 6 1 0 1 . 2 2 100.81 101.47 1 0 1 . 2 2 100.49 100.83 101.27 1 0 0 .0 1 100.57 99.71

Sample OY16 OY17 OY18 OY19 OY20
Lithology FCHR FCHR FCHR FCHR FCHR
MgO 5.6 4.46 5.98 6.04 5.78
AJ20 3 1 2 . 8 6 10.98 14.07 13.7 12.26
Ti02 2 . 0 2 1.49 1.39 1.79 1.94

v2o5 0.38 0.27 0.35 0.29
Cr20 3 41.65 44.35 42.4 42.25 41.43
MnO 0.54 0.49 0.55
FeO 38.87 39.39 36.29 37.02 37.83
Total 101.38 1 0 1 .2 1 100.89 101.14 100.24
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Abstract T he northern lobe o f  the Bushveld C om plex is 
currently a highly active area for platinum -group ele
m ent (PG E ) exploration . This lobe hosts the Platreef. a 
10 300-m  thick package o f  PG E-rich pyroxenites and 
gabbros, that crops out a long  the base o f  the lobe to the 
north o f  M okopane (form erly Potgietersrus) and is 
am enable to large-scale open pit m ining along som e  
portions o f  its strike. An early account o f  the geology o f  
the deposit was produced by Percy W agner where he 
suggested that the P latreef w as an equivalent PGE-rich  
layer to the M erensky R eef that had already been traced 
throughout the eastern and western lobes o f  the Bush
veld Com plex. W agner's op in ion  rem ains widely held 
and is central to current orthodoxy  on the stratigraphy 
o f  the northern lobe. T his correlates the P latreef and an 
associated cum ulate sequence that includes a chrom itite  
layer known as the G rasvally norite-pyroxenite-anor- 
thosite (G N P A ) m em ber directly with the sequence 
between the U G 2 chrom itite and the M erensky R eef as 
it is developed in the Upper Critical Z one o f  the eastern  
and western Bushveld. Im plicit in this view o f  the 
m agm atic stratigraphy is that sim ilar Critical Z one  
m agm a was present in all three lobes prior to the 
developm ent o f  the M erensky R eef and the Platreef. 
H owever, when this assum ed correlation is exam ined in 
detail, it is obvious that there are significant differences

E d ito r ia l  h an d lin g : A . B oyce

I. M c D o n a ld  ( X )  D . A . H o lw ell
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in lithologies, m ineral textures and chem istries (M g #  o f  
orthopyroxene and o liv ine) and the geochem istry  o f  
both rare earth elem ents (R E E ) and P G E  betw een  the 
tw o sequences. This suggests that the prevailing inter
pretation o f  the stratigraphy o f  the northern lobe is not 
correct. The "Critical Z one"  o f  the northern lobe cannot 
be correlated with the C ritical Z o n e  in the rest o f  the 
com plex and the sim plest exp lanation  is that the G N P A -  
Platreef sequence form ed from  a separate m agm a, or 
m ixture o f  m agm as. C hilled m argins o f  the G N P A  
m em ber m atch the estim ated  in itial co m p o sitio n  o f  
tholeiitic (M ain  Z one-type) m agm a rather than a Criti
cal Z one m agm a co m p osition . W here the G N P A  m em 
ber is developed over the ultram afic L ow er Z one, hybrid  
rocks preserve evidence for m ixing betw een new tho le i
itic m agm a and existing ultram afic liquid. T his style o f  
interaction and the resulting rock sequences are unique 
to the northern lobe. T he G N P A  m em ber conta ins at 
least seven su lphide-rich  h orizon s w ith  elevated  PG E  
concentrations. Som e o f  these are h osted  by pyroxenites 
with sim ilar m ineralogy, crysta llisation  sequences and  
Pd-rich PG E  signatures to  the P latreef. Chill zo n es are 
preserved in the low est M ain  Z on e rocks ab o v e  the 
G N P A  m em ber and the P latreef and this suggests that 
both units were term inated by a new  influx o f  M ain  
Z one m agm a. T his op en s the possib ility  that the P latreef 
and G N P A  m em ber m erge laterally  in to  one another  
and that both form ed in a series o f  m ix in g /q uench ing  
events involving tholeiitic  and ultram afic m agm as, prior 
to the m ain influx o f  tholeiitic  m agm a that form ed the 
M ain Zone.

Keywords Bushveld C om p lex  ■ P latreef • M erensky  
R eef - Stratigraphy • P latinum -group elem ents

Introduction

T he Bushveld C om p lex  o f  South Africa is the largest 
repository o f  p latinum -group elem ents (P G E ) in the
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world (Lee 1996; Cawthorn 1999a). A ll PG E m ining  
activities in the eastern and western lobes o f  the B ush
veld Complex currently take place from  tabular horizons  
within the layered sequence associated with sulphides or  
chrom itite where the PG E are concentrated. The m ost 
im portant o f  these are the M erensky R eef and the U G 2  
chrom itite layer. The stratigraphy and the positions o f  
the PG E horizons in the eastern and western lobes o f  the 
com plex are broadly the same (Lee 1996; Cawthorn and 
Lee 1998; Barnes and M aier 2002a). This, as well as 
other geophysical evidence, led Caw thorn and W ebb  
(2 0 0 1 ) to infer that the eastern and western lobes were 
connected throughout m uch o f  the evolution o f  the 
Bushveld Com plex, that similar magm as were present in 
both lobes and that m ineralisation processes operated  
concurrently in both lobes to produce stratiform  PGE  
deposits such as the M erensky R eef and the U G 2  
chrom itite.

W hile PGE m ining and exploration in the eastern and 
western lobes o f  the Bushveld Com plex to date have  
produced sullicient data to  bring genetic understanding 
o f  the M erensky R eef and U G 2 chrom itite m ineralisa
tion to a m ature stage, the same cannot be said o f  the 
PG E m ineralisation in the northern (Potgietersrus) lobe  
o f  the com plex. In this sector, PGE are associated with a 
basal unit called the P latreef that rests directly on the 
early Proterozoic sedim ents and Archaean granite that 
form the tloor o f  the com plex (Fig. 1). The Platreef is a 
contam inated, frequently xenolith-rich. unit that is 
geologically  more com plex than any o f  the PG E reefs in 
the eastern and western lobes, but which is also thicker 
and carries sufliciently consistent grade to allow large- 
scale open pit m ining along som e areas o f  its strike 
(Viljoen and Schurm ann 1998; Bye 2001; Kinnaird and 
N ex 2003). A nglo Platinum , currently operates one open  
pit m ine on the farm Sandsloot 236K.R, is develop ing a 
second on the farm Zwartfontein 81 SLR, and has plans 
for others at staged intervals over the next 30 years (Bye  
2001). The potential for more high-tonnage and low -cost 
open pits in this sector have led other com panies to 
explore on the Platreef adjacent to A nglo  Platinum 's 
licence area and the northern lobe is currently the m ost 
active exploration centre on the Bushveld Com plex.

The P latreef w as discovered not long after the d is
covery o f  the M erensky R eef in the eastern Bushveld in 
1924 and was system atically explored and m ined until 
1930. when the platinum  price collapsed during the 
Great Depression (Buchanan et al. 1981). The m ost 
com prehensive early account o f  the geology o f  the de
posit is given by W agner (1929) w ho recognised and 
docum ented key features o f  the Platreef, m ost notably: 
(a) the great thickness o f  the m ineralised layer(s); (b) the 
position o f  the mineralised pyroxenile ("bronzitile” ) at 
the base o f  the igneous sequence in contact with the 
m etam orphosed sedim ents and granite; (c) the ratio o f  
Pl:Pd at unity or lower; and (d) the presence o f  P G E  
m ineralisation in m etam orphosed and m etasom atised  
footw all. often at considerable distance from  the igneous  
rocks.

W agner (1929) observed a " feldspathic b ron zitile” 
and a "pseudoporphyritic  p o ik ilitic  d ia llage norite'' at 
m any sites a long  the P latreef and termed these as 
“’M erensky R eef” because o f  a sim ilar appearance to  the 
rocks o f  M erensky R e e f that were already know n in the  
eastern and western lobes o f  the Bushveld C om plex. 
W agner (1929) took th is further and evidently  believed  
that not on ly  were the P latreef and the M erensky R eef  
sim ilar, but that they represented the sam e layer:

"The M ain Potgietersrust or M erensky Platinum  
H orizon ...is the m ain platinum  horizon o f  the P otgi- 
elcrsrust fields. T his is taken to be the equivalent o f  
the M erensky H orizon  o f  the Lydenburg and Rust- 
enburg d istr icts.” (p. 167).

In d iscussing the w ider genetic aspects o f  the m iner
alisation . W agner (1929)

" ...m aintains that in en deavouring  to  arrive al the 
correct so lu tion  o f  the problem , the platinum  deposits  
o f  the Potgietersrust district m ust be viewed in their 
entirely. In other w ords, the Z w artfontein  deposits  
m ust be viewed in their relation to  the M erensky  
H orizon as developed  to  the north and sou th  o f  them  
and in the R ustenburg and  L ydenbure d istr icts .”
(p. 182).

W agner’s suggestion  that there w as a direct correla
tion betw een the P latreef o f  the northern lobe and the 
M erensky R eef elsew here in the B ushveld C om plex is o f  
great im portance because it has been accepted uncriti
cally in m ost subsequent work o n  the P latreef (e.g. B u
chanan et al. 1981; K in loch 1982; B uchanan and  R ou se  
1984; W hile 1994; V erm aak 1995; V iljoen and Schur
m ann 1998). M ore fundam entally , the assum ed link 
between the tw o units is on e  o f  the fou n d ation s o f  the 
prevailing view o f  the stratigraphy o f  the northern lobe  
and its relationsh ip w ith the rest o f  the com plex.

The northern lobe

The stratigraphy o f  the northern lobe and the w idely ac 
cepted view o f  its relationsh ip  w ith the rest o f  the B ush
veld C om plex are sum m arised in Figs. 2, 3. The northern  
lobe is divided into four principal zones but detailed ele
m ents o f  the stratigraphy are dill’erenl from  the eastern  
and western lobes. Lower Z one (LZ) rocks com prise  
> 1,600 m o f  pyroxenites and harzburgiles w ith chrom i
tite layers, consisting  o f  at least 37 different cyclic units 
(H ulbert 1983; H ulberl and Von G ruenew aldt 1985). The  
LZ is best developed to  the south  o f  M ok o p a n e  on the 
farms G rasvally 293K R  and Z oetveld  294K R  (H ulbert 
and V on G ruenew aldt 1986) but also  occurs as sm all sa 
tellite bodies north o f  the tow n (F ig. 1). T he m afic rocks
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l i g .  I G eo lo g ica l m a p  o f  th e  
low er p o rtio n  o f  th e  n o r th e rn  
lim b o f  th e  B ushveld  C o m p lex  
show ing  th e  localities d e sc rib ed  
in  th e  tex t

o f  the LZ here have higher M g# ((M g /(M g +  Fe)) values 
in olivine and orthopyroxene and contain chrom itites  
with higher Cr^C^ than sim ilar LZ-lype rocks in the rest 
o f  the Bushveld Com plex. In addition, a sulphide horizon  
with PGE occurs in the Volspruit Subzone (Fig. 2), 
whereas the LZ in the rest o f  the com plex contains no

stratiform  PG E m ineralisation (H ulbert and V on G ru
enew aldt 1982; H ulbert 1983). Van der M erwe (1976, 
1998) considers these as unique features o f  the northern  
lobe, distinctive from the rest o f  the com plex.

A thin sequence o f  rocks know n as the G rasvally  
norite-pyroxenite-anorthosite (G N P A ) m em ber is
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Fig. 2 S tra t ig ra p h y  o f  the  
n o r th e rn  lo b e  sh o w in g  th e  m a jo r  
c h ro m itite . m a g n e tite  a n d  N i- 
C u -P G E  d ep o sits  (a f te r  V on 
G ru en ew a ld t et a l . 1989)
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developed over LZ rocks and sedim ents o f  the Pretoria 
G roup south o f  M okopane (Hulbert 1983; H ulbert and 
Von Gruenewaldt 1985, 1986; Fig. 1). T his sequence  
contains layered norites, gabbronorites and anorthosites  
along with a chrom itite layer and is termed as the 
“Critical Z one” in all the current literature on the 
northern lobe. Hulbert (1983) termed the chrom itite  
layer in the G N P A  m em ber the ‘*UG 2-like” chrom itite  
and it has been correlated directly with the U G 2

chrom itite by som e authors (e.g. Van der M erwe 1998). 
T he top o f  the G N P A  m em ber is xenolith-rich and hosts 
PG E m ineralisation. T he occurrence o f  both xenoliths 
and PG E has led to  suggestions that the upper part o f  
the G N P A  m em ber m ay correlate with the Platreef 
north o f  M okopane (V on G ruenew aldt et al. 1989).

Van der M erwe (1976) placed the P latreef (“ Platinum  
H orizon ” o f  W agner 1929 and W illem se 1969) at the 
base o f  the M ain Z one (M Z ). This correlation is not
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universally accepted and other authors (e.g. Von G ru
enewaldt el al. 1989; W hite 1994) believe the Platreef to 
be a part o f the Upper Critical Zone (UCZ). The Pla
treef can be traced for over 30 km along strike north o f  
M okopane and is generally developed between norites 
and gabbronorites ascribed to the MZ and the floor o f  
the complex. As the Platreef strikes north, it transgresses 
sedimentary rocks o f  the Transvaal Sequence, and 
eventually rests on Archaean granite (Fig. 1). The rest o f  
the M Z comprises 2,200 m o f  gabbros and gabbronor
ites. The only reliable markers in this part o f  the se
quence are four prominent pyroxenites developed 300 m 
above the Platreef and a 100 200-m thick troctolite that 
is found 1.100 m above the Platreef. These layers have 
no equivalents in the rest o f  the Bushveld Com plex. Van 
der Merwe (1976) suggested that a pyroxenite corre
sponding to the Pyroxenite Marker is developed 2,000 m  
above the Platreef, but Harris et al. (2004) have d is
counted this correlation. The pyroxenite unit also ap
pears to be absent in the south o f  M okopane and is 
missing from the stratigraphic com pilations by Hulbert 
(1983) and Von Gruenewaldt et al. (1989).

The Upper Zone is approxim ately 1,400 m  thick and 
comprises a sequence o f m agnetite gabbros, anorthosites 
and olivine diorites, along with a number o f  magnetite 
layers. A s indicated in Fig. 3, one o f  these may be cor
related on the basis o f  thickness and vanadium content 
with the Main M agnetite layer developed elsewhere in 
the Bushveld Complex (Van der M erwe 1976; Von 
Gruenewaldt et al. 1989).

The question o f  how the Platreef and other cum ulates 
that have been ascribed to the “Critical Z one” in the 
northern lobe actually relate to the stratigraphy o f  the 
rest o f  the Bushveld Com plex has important im plica
tions for the liming and genesis o f  the Platreef miner
alisation. If it is not equivalent to the Merensky R eef 
and formed in a separate event, then genetic m odels 
constructed for the Platreef on  the basis o f  what is 
known about the M erensky Reef or which link the two 
horizons in time may be inappropriate. The purpose o f  
this paper is to critically review the geology o f  the Pla
treef and Merensky Reef, using existing knowledge and 
new geochem ical and mineralogical data, with the aim o f  
establishing the validity o f  the assumed link between the 
two units.
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C o m p lex  (a f te r  W hite  1994; a n d  C a w th o rn  a n d  L ee  1998)

suffered variable serpentinisation (Arm itage et al. 2002). 
Additional samples o f  footw all were collected from faces 
that connect to the three reef sections along the south  
and east walls o f  the pit. These sam ples are labelled as 
the S series and the E series, respectively. Sam ple D H -G  
is a grab sample collected from the sam e area as Face  
132/038 and is included with the N1 series for com par
ison.

Samples

Samples o f  Platreef used in this study were collected  
from faces 135/014 and 138/014 in the southwest com er  
(SW1 and SW2 series) and faces 132/038 and 141 Oil 
along the north wall ( N 1 and N3 series) o f  the southern 
central pit at A nglo Platinum's Sandsloot open pit mine 
(Fig. 4). The footwall is com posed primarily o f  siliceous 
dolom ite and calc-silicate. C lose to the contact, these 
rocks are transformed into  a mixture o f  massive diopside  
clinopyroxenites, locally rich in metamorphic olivine  
(comm only referred to as “parapyroxenites” ). that have

Analytical methods

The initial preparation o f  samples was as described by 
Armitage et al. (2002). Detailed mineralogical exam in
ations and the analysis o f  silicates were carried ou t at 
Cardiff University using a Cambridge Instrum ents LEO  
S360 scanning electron m icroscope coupled to  an O x
ford Instruments IN C A  energy dispersive X-ray analysis 
system. Additional analyses were also carried ou t al the 
Natural History M useum  using a JEOL 5900LV (SE M ) 
with attached Oxford instrum ents E D X  IN C A  system . 
Typical analytical conditions and procedures are de
scribed in H utchinson (2001). Bulk analysis for m ajor
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element and trace elem ents was carried out using a JY  
Horiba Ultim a 2 inductively coupled plasma optical 
emission spectrometer (ICP-O ES) and Therm o X7 series 
inductively coupled plasm a m ass spectrometer (ICP- 
MS). Samples were first ignited at 900°C  to determine 
loss on ignition and then fused with Li m etaborale on a 
Claisse Fluxy autom ated fusion system  to produce a 
melt that could be dissolved in 2%  H N O 3 for analysis. 
Full details o f  the ICP analysis procedures and the 
instrumental parameters are given in M cD onald et a I. 
(2005). G eochem ical data for Platreef, hanging wall and 
footwall samples are given in Tables 1, 2, 3. A com plete  
set o f  silicate mineral data, com prising over 200  analy
ses, is available from the first author on request.

Petrography of the Platreef at Sandsloot

W hite (1994) recognised three principal rock types 
within the Platreef that he termed as A reef, B reef and C 
reef. The A  reef is a pegm atoidal feldspathic pyroxenite 
at the base o f  the sequence that carries sporadic base 
metal sulphide m ineralisation. A b ove this is the B reef, 
the principal PGE carrier, which is a coarse grained 
pyroxenite with 50-90%  orthopyroxene, com m on base 
metal sulphides and very sporadic chrom itite. A t the top  
o f  the sequence is the C reef, which is a fine-grained 
feldspathic pyroxenite that may contain up to  70%  
clinopyroxene. Despite the fact that they are essentially 
mining terms designed to categorise Platreef facies on  a 
broad scale, these have becom e entrenched in the recent 
literature (Lee 1996; Viljoen and Schflrmann 1998; 
C aw thom  and Lee 1998; Barnes and M aier 2002a; 
Cawthorn et al. 2002a) leading to the dangerous m is
conception that the A B C sequence represents "typi
cal” Platreef.

Sections o f  the Platreef have been described in several 
papers prior to the A -B -C  term inology being intro
duced. and reveal how , w ithout any preconceived sub
divisions, the term inology is simply not applicable in 
many parts o f  the Platreef. On the farm Drenthe 788LR, 
Gain and M ostert (1982) describe a basal feldspathic 
pyroxenite overlain by norites and m elanorites. capped 
by a feldspathic pyroxenite. This sequence o f  pyroxenite- 
norite-pyroxenite is inconsistent with the A , B and C- 
reefs, as the inferred *B-reef is noritic and contains 
cum ulus plagioclasc. In the adjacent farm to the south. 
Overysel 815LR. Caw thorn el al. (1985) describe the 
Platreef as often having a thin medium-grained norite at 
the base which grades upwards into a coarse pyroxenite 
with inhom ogenous m ineralogy, overlain by gabbro and 
norite.

M ore recent work has also revealed limitations with 
the "A B -C " term inology (Arm itage et al. 2002; Kin- 
naird et al 2005). The definitions o f  the reef types do not 
conform  to the recognised IU G S classifications, are not 
sufiicienl to allow  unam biguous distinctions between 
different units, and encourage pigeonholing rather than 
proper description o f  potentially new' rock types. For

exam ple, in the faces m apped by Arm itage et al. (2002) 
at Sandsloot, rocks corresponding to the A  and C reef 
types were consp icuously  absent. That study and new  
data presented here reveal other lithologies that form  
com ponents o f  the P latreef at Sandsloot and do not fit 
into the previous term inology at all. For these reasons 
we avoid it and classify  our sam ples according to  the 
established IU G S guidelines.

M aps o f  face 132/038 ( N l) ,  and faces 138/014 (SW 1) 
and 141/021 (SW 2) are show n in Figs. 4. 5, 6 . Sam ple  
points and num bers for all o f  the sam ples collected  for  
petrography and /or geochem ical analysis are indicated 
on each map. The upper portion o f  Platreef in face 132/ 
038 has been described previously (as face 132/035) in 
Arm itage et al. (2002); it has a true thickness o f  12-15 m  
and is dom inated by coarse grained pyroxene-rich  
gabbro-gabbronorite that grades locally into pyroxenite  
and websterite. Cum ulus orthopyroxene is ubiquitous 
and is accom panied by cum ulus or intercum ulus

North

500 meters

Face 132/038 (N1)

Face 144/011 (N3)

Face 135/014 (SW1) 

Face 138/014 (SW2)

t ig. 4 W ire fra m e  p la n  view  o f  th e  S a n d s lo o t o p e n  p it in Ju ly  2000 
s h o w in g  th e  lo c a tio n s  o f  th e  faces  m a p p e d  a n d  s a m p le d  in  th is  
s tu d y . So I iii lines re p re s e n t th e  b e n c h  to p s  a n d  th e  d e e p e s t a r e a  o f  
th e  p it ( s o u th  c e n tra l  a r e a )  is a p p ro x im a te ly  190 m  b e lo w  th e  level 
o f  th e  o u te r  w all
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clinopyroxene, and intcrcum ulus p lagioclase that may 
occur as large oikocrysts. Sulphides and PG M  are gen
erally restricted to interstitial sites between the cum ulate  
pyroxenes. Chrom ite, ilm enite, rutile, arm alcolite, 
perovskite, ph logopile and zircon are present as acces
sories. A  pegm aloidal zone o f  aplilic gabbro and frag
mented pyroxenite occurs a long the footw all contact 
where the reef thickens but is absent from thinner reef 
lower dow n the face. T he contact w ith the hanging wall 
in this face is tectonised, and com prises a serpentinised  
brittle-ductile shear zone up to 20 cm  thick (F ig . 3). T he  
hanging wall is a m edium -coarse grained norite with  
cum ulus plagioclase and intercum ulus pyroxene (sam ple  
N l-3 1 ). The Platreef in face 144 011 (N 3) appears sim 
ilar to face N1 and the top  contact o f  the reef was 
photographed and sam pled. Here, instead o f  a tectonite, 
there is a planar m agm alic contact betw een the top  o f

the P latreef and the hanging wall gabbros. T he contact is 
m arked by a 10 15 cm thick leuconorite w ith cum ulus 
plagioclase and orthopyroxene oikocrysts, overlain by a 
5 cm thick layer o f  fine-grained gabbronorite (F ig. 6 ). 
The leuconorite and gabbronorite are sam ples N 3X 4B  
and N 3X 4A  in Table 1.

P latreef in the southwest corner o f  the pit show s 
im portant m ineralogical and textural differences from  
the reef exposed to  the north. Tow ards the top contact, 
Fe-rich o livine is widespread and occurs as a late-stage  
mineral. It replaces orthopyroxene through m any metres 
o f  the reef. P lagioclase m ay also be replaced by Fe-rich 
clinopyroxene leading to the developm ent o f  Fe-rich 
wehrlites, olivine lherzolites and harzburgites and an  
overall darkening o f  the rock. These rock types have  
been noted to the south where the P latreef rests on  
banded ironstone (Buchanan et al. 1981; Buchanan and
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t i g .  6  L e u c o n o rite  a n d  fine
g ra in ed  g a b b ro n o r i te  a t  th e  
h an g in g  w all c o n ta c t in  face 
141 O il (N 3 ). T he  p en  o n  th e  
r ig h t is  12-cm  lo n g

Rouse 1984), but have not been described elsew here. T he  
Fe enrichment and reaction textures observed here are 
similar to those found in Fe-rich pipes and pegm atoids  
elsewhere in the com plex (Schiflries 1982; V iljoen and 
Scoon 1985) and may result from reaction between  
Platreef pyroxenites and gabbros and a late-stage Fe- 
rich melt or fluid. For the ease o f  discussion, this type o f  
Fe-rich (ultramafic) Platreef is hereafter referred to  as 
"replaced reef'.

Face 135/014 (SW 1) show s Platreef cutting the foot-  
vvall lithologies at a high angle. A  serpenlin ised m ixed  
rock com prising relict m etam orphic clinopyroxenite  
(with or without olivine) and pyroxenites and w ebsteriles 
with igneous textures, (termed as " foo lw all-reef hybrid") 
forms the base o f  the Platreef. The primary P latreef is 
heavily replaced and m ixtures o f  orthopyroxenites, 
websteriles, gabbronorites and wehrlites are com m on . 
The rocks become more pem atoidal and olivine-rich  
upwards, grading into Fe-rich olivine lherzolite c lose  to 
the hanging wall contact (Fig. 7). T he hanging wall for a 
few metres above the contact is fine-grained gabbronorite  
with cum ulus plagioclase (sam ple SW 1-47).

Face 138 014 (SW 2) also show s P latreef cu tting  the 
footwall calc-silicates at a high angle to the rem nant 
layering and is sim ilar in som e respects to F ace 135/014. 
Olivine in the footwall is heavily serpentinised and these 
rocks contain an extensive fracture network filled with  
m agnetite and ilmenite. A  thick zone o f  serpentinised  
hybrid rocks is present at the base o f  the reef and 
wehrlite occurs close to the hybrid rocks. T his m erges 
upwards into gabbronorite and pyroxenite that becom e  
very Fe-rich, but without m uch developm ent o f  olivine, 
close to the hanging wall. A 15-cm wide dark xenolith  o f  
websterite (sam ple SW 2-83) that carries high levels o f  Cr

and som e PG E grade is present a few metres above the 
contact in  the hanging wall gabbronorite (Fig. 8 ; 
T able  3).

Geochemical trends associated with the Platreef 
at Sandsloot

Harris and Chaum ba (2001) noted that the igneous 
Platreef w as richer in Cr, Co and F e than the footw all or 
the hanging wall lithologies, which is replicated here 
(T ables 1, 2 , 3). T he footwall clinopyroxenites and 
serpentinites contain  less Si and Fe than the reef but 
m ore C a and M n. Similarly, the hanging wall noritcs 
and gabbronorites typically contain m ore Si, A l. N a , K. 
R b, Sr and Ba than the reef or the footwall. Harris and 
C haum ba (2001) noted an upward trend o f  Fe enrich
m ent in their reef sam ples and in the N 1 face, where 
there is the least evidence o f  replacement; we find a 
sim ilar gradual increase in Fe towards the top o f  the 
reef. In replaced reef (e.g. face SW 1), the F e enrichment 
is dram atic and these areas are a lso  enriched in Ti. M n. 
H f  and N b  (and som etim es U  and T h) relative to pri
m ary reef. The plagioclase-rich hanging wall rocks and 
the cross-cutting pegm atoidal gabbronorite dyke in the 
N 1 face arc also characterised by a consistently positive  
Eu anom aly (Eu/Eu* > 1 .0 ), while the opposite is gen
erally true o f  the reef and the footwall. A s m ight be 
expected, foolw al 1-reef hybrid rocks show concentra
tions o f  Si, M g, Ca. Fc, Co and Cr that are intermediate 
between reef and footw all (Tables 2 and 3) but never
theless the Cr concentration is a useful indicator for 
primary' reef, hybrid zones and footwall where the lith- 
o logical relations are am biguous.

Fine-medium
grained

gabbronorite

Platreef

Leuconorite
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Appendix 5. Geochemistry and mineralogy o f the “Critical Zone” in the northern Bushveld

SW1-43SW1<24SW1-1 SW1M SW 1 - 8 SW1-32
SW1-36 SW1-40 SW1-47SW1-20

South Face 135/014 (SW1) North

I if>- 7 S ligh tly  o b liq u e  sec tio n  th ro u g h  th e  P la t re e f  o n  face  135 014  (S W 1 ). T h is  sh o w s th e  m a jo r  li th o lo g ie s  w ith  c o n ta c ts  e x t ra p o la te d  
in fe rre d  a t he ig h t a n d  th e  p o s itio n s  o f  sam p le s  ta k e n  fo r  p e t ro g ra p h ic  g eo c h em ic a l an a ly s is . T h e  k ey  is  a s  in  F ig . 5

Links between the Platreef and the Merensky Reef

Stratigraphic context

The m odern consensus stem s from W illem se (1969) and 
van der M erwe (1976) w ho follow ed W agner (1929) and 
correlated the P latreef with the M erensky Reef. T his 
interpretation is primarily based on the nature o f  the 
rocks im m ediately above the Platreef. The hanging wall 
norites and gabbros are visually similar and have sim ilar  
orthopyroxene com positions to  M Z rocks elsewhere in 
the Bushveld Com plex. V on G ruenewaldt et al. (1989)  
suggested that the Platreef m ight be correlated w ith the 
upper part o f  the G N P A  m em ber (show n in detail in 
Fig. 9). Evidence cited in support o f  this includes: the 
layering o f  som e units and the presence o f  cum ulus  
chrom ite and developm ent o f  a chrom itite layer. T hese  
are the characteristic features o f  the U C Z  in the eastern  
and western Bushveld and the M Z is notab le for the 
absence o f  both. The terms “Critical Zone" and "M ain  
Zone" when applied to the northern lobe effectively refer

to  whether the rocks are located above or below  the 
Platreef. The veracity o f  this assum p tion  will be tested 
below.

Petrographic sim ilarities between the Platreef 
and the M erensky R eef

Both units are dom inated by cum ulus orthopyroxene. 
with subordinate am ounts o f  p lagioclase and clinopy- 
roxene, and carry an assem blage o f  interstitial sulphides 
and elevated concentrations o f  PGE. Buchanan et al. 
(1981) suggested that pyroxene com positions in the 
Platreef were the sam e as in the M erensky R eef (see 
below  for d iscussion). In places, both units develop  
pegm atoidal facies. C hrom ite in the form o f  o n e  or two  
chrom itite layers is a ubiquitous feature o f  the M erensky  
R eef and the highest PG E grades are generally associ
ated w ith one or both  chrom ilites (Lee 1996; Kinnaird 
et al. 2002). C hrom ite occurs as isolated crystals, or 
as rare pod s schlicren. in the P latreef (V iljoen and

SW2 66SWS-U

South/SSE Face 138/014 NorlU/NNW

I ig. 8 O b liq u e  sec tio n  th ro u g h  th e  P la t re e f  o n  face 1 38 /014  (S W 2 ). T h is  sh o w s  th c m u io r  l i th o lo g ie s  w ith  c o n ta c ts  e x t ra p o la te d  in fe rre d  a t 
he ig h t a n d  th e  p o s itio n s  o f  sa m p le s  ta k e n  fo r  p e t ro g ra p h ic  g e o c h e m ic a l an a ly s ts . T h e  key  is as  in  F ig . 5

271



Appendix 5. Geochemistry and mineralogy of the “Critical Zone” in the northern Bushveld

I ab le  2 G e o ch em ica l d a ta  fo r lace  SW 1

S W I-1 S W 1-4 S W I-8 S W I-2 0 S W 1 -2 4 S W 1-28 S W 1 -32 S W 1 -3 6 S W  1 -40 S W  1 -43 S W  1 -47 B S W 1 -4 7 A

U n it L\V F W F W 1TYB H Y B P R R R P R R R R R H W H W
R o ck  T vpe PPX C S C S n a n, a W B S T L H R Z P X H Z B G L H R Z G B N R T G B N R T
Si 0 2  (w*t0 n ) 43.51 40 .24 40 .94 44 .38 4 2 .66 4 5 .1 6 4 4 .84 46 .55 48.11 44.21 51.44 4 9 .4 4
1 i0 2 0.42 0.29 0 .09 0 .62 0 .15 0 .1 4 0 .18 0 .14 0.21 0.23 0 .1 9 0 .1 6
A 1203 6.08 3.32 2.48 5.47 6 .27 3.61 3 .44 3.70 2 .56 3.29 16.48 16.30
1 e2()3 8.03 3.89 7.38 13.49 12.86 13.28 19.36 13.43 17.85 22 .08 8 .83 9 .0 4
MnO 0.35 0.68 0.73 0.31 0 .29 0 .2 4 0 .33 0.22 0 .32 0.38 0 .1 9 0 .15
MgO 14.79 29.81 27 .00 10.62 18.43 2 0 .63 22.58 23.27 2 3 .46 21 .76 6 .93 8 .55
CaO 23.83 9.61 11.52 2 4 .30 16.05 12.36 6.31 8.99 4 .75 6.48 12.06 11.75
N;i 2 0 0.19 0.03 0.01 0 .19 0 .29 0 .67 0 .37 0.33 0 .1 0 0.33 2 .43 2 .52
K 2 0 0.02 0.00 0.01 0.02 0 .4 6 0 .13 0 .15 0.13 0 .1 9 0.23 0.41 0 .43
1*205 0.03 0.00 0.01 0 .03 0 .02 0 .03 0 .05 0.02 0 .03 0 .04 0.01 0 .0 2
LOI 0.83 10.85 8.28 0 .27 4 .0 0 3.09 1.06 1.57 0 .52 0.57 1.34 2 .27
T o ta l 98.09 98.73 9 8 .45 9 9 .6 9 101.48 9 9 .3 3 9 8 .66 98 .35 98 .12 99 .59 100.32 100.65
Sc (p p m ) 28.0 5.57 4 .90 4 6 .1 2 26 .9 34.8 24 .3 30.0 25 .8 31.0 37 .8 28.1
V 159.2 46.1 47 .4 3 33 .4 117.7 129.2 126.5 126.3 145.4 187.9 200 .0 152.2
Cr 41.5 27.7 48.3 8 3 5 .0 601 .8 3065 3042 3061 3104 2304 292 .0 551.5
Co 37.8 11.3 56.4 7 1 .0 9 2 .9 123.3 116.4 134.9 131.3 136.9 48 .3 59.1
Ni 1683 189.7 3732 9 2 8 .3 2286 215 6 2769 3921 2804 3390 406 .9 376.1
C u 1448 87.1 2097 6 7 5 .5 8 39 .0 8 2 8 .7 764.5 1477 1156 1329 170.5 186.6
G a 7.6 6 .3 4 .3 10.2 6 .5 4 .88 5 .50 4.5 5.2 5.6 18.1 15.7
R b 1.9 -0 .1 0.1 3.7 26 .3 6 .32 5.72 7.3 15.4 11.9 7.3 1 1.9
Sr 25.5 7.6 7.2 2 5 .6 31.3 47.1 85 .5 60.9 34 .4 66.1 282 .2 233 .9
5 18.2 29.6 14.9 12.3 6 .6 6 .7 7.9 5.3 6.5 10.3 1 1.7 8.2
Z r 67.5 7.8 3.0 58.2 12.6 15.7 19.5 10.3 14.0 15.5 5.1 7 .0
N b 1.36 2.08 0 .52 1.51 0.61 0 .5 4 0 .98 0.49 0 .78 0.62 0 .03 0 .15
Ha 2.1 n .d . n .d . 1.8 37.7 54 .0 8 5 .6 44.2 37.3 52.1 76 .6 71 .6
l.a 5.53 6.27 1.93 3.91 1.82 1.90 3 .24 1.69 1.82 2.52 1.80 2 .04
Cc 15.56 17.57 5.40 9 .4 0 4.61 4 .4 7 6 .9 4 3.46 4 .5 4 6.35 4 .0 3 4 .53
Pr 2.26 2.26 0 .75 1.43 0 .6 7 0 .59 0 .87 0 .50 0 .6 4 0.97 0 .6 0 0 .6 4
N d 9.29 8.51 3.10 6 .1 6 2.91 3 .0 6 4 .0 7 2 .67 4.23 2 .68 2 .75
Sm ~)~j 2.11 0.81 1.69 0 .7 4 0.81 0 .9 8 0 .56 0 .6 2 1.11 0 .7 5 0 .73
Hu 0.61 0.46 0.21 0 .42 0 .2 3 0.21 0 .2 8 0.18 0 .1 7 0.29 0 .3 9 0 .45
G d 2.49 2.64 1.19 1.80 0 .8 8 0 .9 6 1.04 0 .70 0 .7 2 1.27 0 .9 5 0 .8 6
Tb 0.42 0.54 0.24 0 .3 0 0 .1 6 0 .1 6 0 .1 9 0.11 0 .13 0.21 0 .1 8 0 .1 6
D \ 2.64 3.68 1.74 1.86 1.02 1.09 1.23 0.81 0 .9 4 1.48 1.23 1.07
l l o 0.48 0.73 0.37 0 .3 4 0 .1 9 0 .22 0 .25 0 .15 0 .1 9 0.28 0 .2 4 0.21
llr 1.60 2.68 1.44 1.11 0 .65 0 .6 4 0 .73 0 .54 0 .68 0.99 0 .8 6 0 .72
Till 0 .24 0.43 0.25 0 .1 7 0 .0 9 0 .0 9 0 .13 0 .08 0.11 0.15 0 .1 4 0 .1 1
Yh 1.45 2.80 1.70 1.11 0 .5 9 0 .65 0 .8 0 0.51 0 .7 4 0.99 0.91 0 .73
Lu 0.22 0.44 0.27 0 .19 0 .0 9 0 .08 0 .13 0.08 0 .13 0 .16 0 .15 0.11
Hf 1.93 0.27 0.09 1.70 0 .32 0 .35 0 .38 0 .26 0 .35 0 .37 0.21 0 .20
la 0.12 0.64 0 .06 0 .0 9 0 .0 4 0 .0 4 0 .09 0 .04 0 .07 0.05 0.01 0.01
Ih 1.63 11.93 1.32 1.45 0 .5 2 0 .58 0 .8 6 0.51 0 .7 6 0.71 0 .29 0 .29
U 0.86 0.95 0.11 0.41 0 .1 0 0.11 0 .2 6 0 .04 0 .15 0.12 0 .0 0 0.01
Lu Lu* 0.78 0 .60 0.65 0 .73 0 .85 0 .72 0 .8 4 0 .86 0 .7 6 0.75 1.40 1.74
La LuN 2.57 1.48 0 .74 2.11 2 .08 2 .4 0 2 .57 2.13 1.44 1.66 1.28 1.87
P G E  g ra d e v. h igh low v. h ig h in te r in te r h ig h in te r h igh in te r v. h ig h low low
Pi P d ‘ 0.86 0.65 0.99 0 .88 0 .6 7 1.28 0.81 0 .74 0 .5 5 0 .70 0 .95 0 .97

R are  e a r th  e lem en t v a lu e s  in  c h o n d r i te  u s e d  lo r  n o r m a lis a t io n  c o m e  f ro m  T a y lo r  a n d  M c L e n n a n  (1 9 8 5 )
P G L  g ra d e  h a n d s  b ase d  o n  to ta l  R h  t-P t +  P d + A u :  < 0 .1  p p m  -  v e ry  lo w ; 0.1 2 .0  p p m  =  low ; 2 .0  6 .0  =  in te rm e d ia te ; 6 .0  10.0 =  
h igh ; > 10.0 =  very  h igh
M a jo r  units: /  IT' fo o tw a ll; DYKJ: c ro s s -c u tt in g  p e g m a to id a l d y k e s ; IIYB  fo o tw a ll  h y b rid ; PR p r im a ry  reef; RR rep laced  reef; HW  
h an g in g  w all
R ock  types: PPX  p a ra (c l in o )p y ro \e n i te ;  CS  ca lc -s ilic a le : GB.XR'I g a b b o r n o r i tc ;  PX  o r th o p y ro x e n ite ;  LH RZ  Ihe rzo lite ; HZBG  h a rz - 
h u rg ite

Schiirmatm 1998; A rm itage et al. 2002), but is m ost 
com m only an accessory com ponent. A m ore w idespread  
chrom itite (inferred from the presence o f  chrom ite at the 
sam e level in m any drillcores) is apparently developed  in 
the Platreef to the south o f  S an dsloot o n  the farm  
Tweefontein 23XKR. PG E grades are highest in the 
pyroxenite immediately beneath the chrom itite and V il
joen and Schurmann (1998) suggest that at this locality

the P latreef bears the greatest sim ilarity to normal 
M erensky Reef.

Strontium  and osm ium  isotopes

C aw thorn el al. (1985) found a wide range o f  s7Sr/K6Sr 
initial ratios in P latreef w hole rock sam ples that they
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la b ic  3 G eo ch em ica l d a ta  fo r  face  S W 2

S2-6 S2-12 S 2 - I8 S W 2-14 S W 2-28 S W 2-35 S W 2 -4 9 S W 2-77 SW 2-83

U nit FW LAV F W LAV H Y B R R P R R R X N
R ock  T y p e S P P X S P P X C S S P P X n /a W H R L G B N R T PX W B S T
S i0 2  (w t% > 40.71 31.57 26 .7 3 34.12 4 6 .6 0 46 .40 4 8 .49 50.03 52.78
IiC)2 0.12 0.11 0 .3 4 0.29 0.19 0.21 0.21 0.37 0.17
A 120 .' 3 .69 11.32 8 .27 17.65 5.37 5.26 5.44 4 .35 3.42
L e 2 0 3 11.02 8 .70 11.85 7.66 8.83 15.53 16.48 16.95 10.23
M nO 0 .54 0 .2 6 0.31 0.26 0 .40 0.33 0 .29 0.34 0.23
M g O 27.08 20 .30 2 1 .9 5 13.22 23 .53 20.27 18.63 16.33 22.59
C'aO 7.50 15.98 18.17 20.09 13.09 11.07 8.73 9.65 8 .64
N a 2 0 0 .06 0 .02 0 .1 0 0.14 0.13 0 .44 0 .84 0.69 0.37
K .20 0 .06 0 .0 0 0 .0 2 0.08 0 .03 0.17 0 .25 0.05 0 .23
1*205 0.03 0 .0 4 0 .0 3 0.02 0.02 0 .03 0 .06 0.02 0.02
L O l 8.05 10.12 11.68 5.41 2.98 1.02 0 .86 0.57 0.93
T o ta l 98 .85 98.52 9 9 .4 5 98.93 101.17 100.73 100.28 99 .34 99.61
S c (p p m ) 11.5 3.1 4 .8 16.0 2 0 .6 32.3 28.8 48.3 37.4
V 55.7 8.1 28 .8 76.6 76 .0 137.1 132.9 261 .0 157.2
C r 64.5 20 .5 35 .9 215.3 777.1 2467 2406 1568 3435
C o 47.2 34 .9 8 .4 35.0 52.8 122.3 112.9 84.6 80 .6
Ni 860 .0 764.5 113.2 4 0 8 .4 1451 3231 2779 559.1 1034
C u 130.4 201 .4 33 0 .3 18.8 372 .5 867.8 1395 139.1 198.2
Cia 4 .46 21 .09 8 .77 20.67 6 .36 6.75 7.16 7 .16 5.2
R b 2 .24 0 .0 6 2.21 1.86 2.01 3.08 13.74 1.34 9.7
S r 10.8 5.0 3 .3 28.7 74 .4 101.4 106.9 44 .9 38.1
Y 4.8 12.8 10.4 8 .0 7 .6 9.3 7.7 18.2 6 .6
Z r 18.3 15.3 13.2 49 .0 31.7 28 .0 23.1 46.2 9.9
N h 0.31 0 .23 0.(X) 3.18 2.75 2.87 1.01 3.61 0.39
Ba 33.3 15.1 15.1 39.7 75 .4 84.1 105.2 23.4 33.7
La 2.71 3 .64 0 .1 8 3.29 2 17 2 .69 3.84 4.27 1.43
C e 5.76 9 .0 0 0 .2 9 8.17 5 .12 6 .33 7.82 10.92 3.71
Pr 0 .76 1.32 0 .0 4 1.18 0 .7 6 0 .94 0.87 1.67 0 .55
N d 3.82 6 .80 0 .5 2 4.98 3.41 4 .15 4.03 7 .66 2.33
Sm 1.00 1.63 0 .3 0 1.15 0 .9 0 1.10 0.93 2.06 0.55
Lu 0.23 0 .37 0 .0 8 0.31 0 .29 0.35 0 .26 0.60 0 .18
G d 1.07 1.69 0.71 1.21 1.02 1.29 1.05 2 .36 0 .68
lb 0 .17 0 .29 0 .1 6 0.21 0 .19 0 .24 0.18 0 .44 0.12
D v 1.17 1.78 1.24 1.30 1.18 1.47 1.25 2.79 0 .86
H o 0 .23 0 .3 6 0 .28 0.27 0 .2 6 0.31 0.25 0 .60 0.17
Li 0 .68 1.02 0 .92 0.68 0 .65 0.82 0.78 1.62 0.62
I'm 0 .10 0 .1 6 0 .17 0 .10 0 .0 9 0.12 0.12 0.24 0.09
' i b 0 .68 1.03 1.13 0.72 0.71 0.91 0.87 1.83 0.61
Lu 0 .09 0 .1 6 0 .1 9 0.15 0 .1 4 0 .17 0.13 0.33 0 .10
I l f 0 .36 0 .23 0.31 1.60 0 .9 5 0.75 0.55 1.22 0.27
fa 0 .05 0 .02 0.01 0.22 0 .1 9 0 .20 0.08 0.26 0.03
Ih 0 .53 0 .37 0 .1 9 0.83 0 .58 0.75 1.27 1.39 0.49
U 0.19 0 .0 4 0 .02 0.22 0 .1 7 0.21 0.39 0 .50 0.05
liu  Lu* 0 .66 0 .67 0.51 0.79 0.91 0 .89 0.80 0.83 0.91
L a; LuN 3.00 2 .43 0 .1 0 2.32 1.58 1.63 3.10 1.33 1.52
P G L  g rad e v. low low V. low n a IV a n /a high n,i a low
Pt Pd 2 .76 0 .55 2.81 n a n /a n ' a 1.48 n /a 1.65

R a re  e a r th  e lem en t v a lu es  in  c h o n d r i te  u s e d  fo r  n o rm a lis a t io n  c o m e  f ro m  T a y lo r  a n d  M c L e n n a n  (1985 )
P G L  g ra d e  h an d s  b ased  o n  to ta l  R h  I P t+  P d -t A u : < 0 .1  p p m  =  very  low : 0.1 2 .0  p p m  =  low ; 2 .0 -6 .0  =  in te rm e d ia te ;  6 .0 -1 0 .0  = 
high ; > 10.0 -  v ery  h ig h .
M a jo r  units; FW fo o tw a ll: D YKF  c ro s s -c u t t in g  p e g m a to id a !  d y k e s ; II Yli fo o tw a ll h y b rid ; PR  p r im a ry  reef; RR re p la c e d  reef; HIV 
h a n g in g  w all
R o ck  t>pes: SPPX  s e rp e n tin is e d  p a ra (c l in o )p y ro x c n ite :  C 3  ca lc -s ilic a te : 0 # .V R 7 g a h b o m o r i te :  / ’.V p y ro x e n ite ; t f ‘ZLS'7 W e b s te r ite : WHRL 
w eh rlite

ascribed to the effects o f  contam ination  by local granite  
footwall. In a fo llow -up  study. Barton et al. (1986) 
determined s7Sr, ^ S r  initial ratios in orthopyroxene and 
plagioclase mineral separates and found that m ost o f  the 
radiogenic Sr was hosted  by plagioclase and other  
intercumulus m inerals. T he low est s S r .s<'Sr initial ratio 
found in orthopyroxene separated from the P latreef was

0.7079. outside the norm al U C Z  range o f  0.7055 0.7065, 
but within the range o f  initial ratios determ ined for the 
M erensky R eef (e.g. Kruger 1994).

C haum ba et al. (1998) reported initial 1K7O s/li<sOs 
ratios for the P latreef that ranged from 0.10974 to 
0.20292. The P latreef range encom passes the range o f  
initial ratios found in the M erensky R eef (Os minerals
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with l!i7Os, m Osi ~ 0 .9 4 , and laurite w ith ,87O s /1X8Os, 
0.142 0.151; Hart and K in loch 1989; M cC andless and 
Ruiz 1991). Chaum ba et al. (1998) interpret this as 
indicating that O s in the M erensky R eef and the 
Platreef came form the sam e source. O n close inspec
tion though, the com parison is less robust than it first 
appears. Chaum ba et al. (1998) on ly  presented the 
range o f  initial ratios they foun d. N o  inform ation was 
given on what sam ples were analysed, their positions  
within or outside the igneous reef, or which initial 
ratios cam e from sam ples w ith the m ost O s. U ntil 
more inform ation is availab le, these Os data are open  
to m ultiple interpretations and cannot be used to  ar
gue strongly for a link betw een the M crcnsky R eef  
and Platreef.

Differences between the Platreef and the Merensky Reef

There are other lines o f  evidence that w ould seem  to 
contradict the stratigraphic link im plied in Fig. 3. T hese  
are outlined below:

M ineralogy o f  the “Critical Z on e” o f  the northern lobe

Hulbert (1983) divided the G N P A  m em ber in to  two  
sub-zones (Fig. 9). The low er su b-zone con ta in s  
orlhopyroxene-clinopyroxene. orthopyroxene-clin opy-  
roxene-chrom ite and orthopyroxene cum ulates w ith  
subordinate plagioclase-rich units. T he upper su b-zone  
is dom inated by plagioclase cum ulates with m inor nor
ites. C linopyroxene is ub iquitous at betw een 5 and 25 
m odal%, even where chrom ite is present, and c lin o p y 
roxene is som etim es a cum ulus m ineral with chrom ite  
(H ulbert and Von G ruenew aldt 1985). C linopyroxene is 
less abundant in the U C Z  elsew here in the com plex  
(typically < 10 m o d a l%; C am eron 1982; M aier and 
Barnes 1998) and is never present in a cum ulus a sso c i
ation with chrom ite. U nusual orthopyroxene-clin opy- 
roxene-chrom ile cum ulates (at - 8 5  and ♦ 10 m; Fig. 9) 
are only developed where the G N P A  m em ber rests on  
LZ cum ulates and are unknow n from  elsew here in the 
com plex (H ulbert and Von G ruenew aldt 1985). C h ro
m ite in the G N P A  m em ber has TiCU con ten ts (1.77
3.08 wt%: Hulbert 1983) that are generally  higher than 
UC Z stratiform chrom ites outside o f  Fe-rich replace
ment pegtnaloids (e.g. S tum pll and R ucklidge 1982) and 
the Ti enrichm ent increases with stratigraphic height in 
the G N P A  sequence.

Rocks o f  the upper sub-zone o f  the G N P A  m em ber  
are also unusual because the basal layers o f  all o f  the 
cyclic units recognised by H ulbert (1983) are p lagioclase- 
only cum ulates. T he crystallisation order for this part o f  
the sequence appears to be governed by the liquidus  
order p lagagioclase-oorthopyroxene-cli nopyroxene  
(Hulbert 1983). A few cyclic units w ith basal p lagioclase- 
rich units are known from the U C Z  in the eastern and 
western Bushveld but even in these, p lagioclase is

invariably joined by orthopyroxene or chrom ite as the 
cum ulus phase (C am eron 1982).

C onsidering only  those cum ulates containing > 50%  
orthopyroxene (in order to  m inim ise the elTects o f  
reaction with trapped liquid; c f  C aw thorn 1996, 2002), 
the com positions o f  cum ulus orthopyroxene in the 
G N P A  m em ber range betw een M g #75 7x(Hulbert 1983; 
Fig. 9). T hese pyroxenes are system atically  m ore Fe-rich 
than those in sim ilar U C Z  cum ulates elsewhere in the 
Bushveld C om plex (M g # 7S.x4; C am eron 1982; Naldrett 
et al. 1986; Eales et al. 1993; M aier and Eales 1994; 
C aw thorn 2002). The availab le data show  that the 
cum ulus p lagioclase com positions in the G N P A  member 
are A n 6x-7x(Hulbert 1983). T his range overlaps w ith the 
lower part o f  the range o f  U C Z  plagioclase com positions  
observed in the rest o f  the com plex (A n6.x-.s5; Cam eron  
1982; Naldrett et al. 1986; Kruger and M arsh 1985: 
M aier and Eales 1994), but not with the upper part o f  
the range.

M ineralogy o f  the P latreef and the M erensky R eef

T he primary Platreef records differences in mineral tex
tures from those com m on ly  found in the M erensky Reef. 
In the M ernesky Reef, the liquidus order is orthopy- 
roxene-p lagioclase-clinopyroxene (e.g. Caw thorn 2002). 
In the m afic units o f  the Platreef, c linopyroxene either 
fo llow s orthopyroxene or crystallises concurrently with 
it, and generally precedes p lagioclase, which is usually 
intercum ulus. C ontam ination  o f  the P latreef with d o lo 
m ite at Sandsloot m ay prom ote clinopyroxene crystal
lisation (e.g. Harris and Chaum ba 2001) but it is 
im portant to note that the sam e crystallisation order 
a lso  occurs where the footw all com prises rocks other 
than dolom ite. For exam ple, orthopyroxene-clinopy- 
roxene-chrom ite cum ulates occur in the P latreef 011 
O verysel 815L R , where the footw all is granite (Hulbert 
1983; D  H oi well unpublished data). In this sense, the 
Platreef show s greater sim ilarity with the orlh opyrox
ene-clinopyroxene cum ulates o f  the G N P A  member 
(which are doored by harzburgites or quartzites) than  
the M erensky Reef. C hrom ite a lso  sh ow s im portant 
petrographic differences. C hrom ite is consistently  the 
earliest phase in the M erensky R eef, form ing layers and 
inclusions in pyroxenes, but it is m ost com m on ly  post
cum ulus in the Platreef.

O livine is an im portant com ponent o f  the M erensky  
R eef in som e sectors o f  the Bushveld C om plex. In the 
western lobe around the U n ion  and R ustenburg sec
tions, olivine (F 079.X0) is com m on and the reef m ay be 
developed as a pegm atoidal harzburgile (Verm aak and 
H endriks 1976; K ruger and M arsh 1985; M aier and 
Eales 1994) but in other areas o f  the com plex, olivine is 
absent from the M erensky Reef. Primary oliv ine in the 
Platreef is m ore problem atic. Van der M erwe (1976; 
Fig. 3 and p .1341) a lludes to  o liv ine (Fox-j) in a harz- 
burgite or lherzolite at the base o f  the P latreef but the 
locality  is not described. H igh-M g m elam orphic olivine
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a n d  sp in e l (H u lb e r t  1983)

<Fok:-85) occurs in the footw all at Sandsloot (H arris and 
Chaum ba 2001; this w ork) but Kinnuird et al. (2005) 
also report the presence o f  igneous harzburgiies with 
m agnesian olivine at the base o f  the Platreef on the farm  
M acalacaskop 243K R. These rocks may belong to  sa
tellite intrusions o f  the LZ (see D iscussion below). Bu
chanan and Rouse (1984) found Fe-rich olivine (F 071) in 
a basal " peridot it ic" Platreef facies on the farm Turf- 
spruil 241K R which they ascribed to the assim ilation o f  
banded ironstones into the reef. Similarly Fe-rich olivine  
( F om_7 )̂ occurs in replaced reef at Sandsloot. Buchanan 
et al. (1981) analysed apparently igneous olivine (F o 7*_ 
76> and this is currently the best (and only) estim ate o f  
the com position o f  primary P latreef olivine.

The m ost com m on mineral in the Platreef is ortho
pyroxene and this allow s the m ost system atic com pari
son between different localities. Buchanan et al. (1981) 
studied orthopyroxenes 011 the farm Tweefontein 238K R  
where the reef is contam inated by banded ironstone and 
dolom ite. They found pyroxenes with M g#74_7* in pri
mary reef but more Fe-rich pyroxenes (M g#36_42) in 
contaminated units. Orthopy roxenes in the Platreef on  
Drenlhe 788LR and Overysel 815LR. where the reef is

contam inated by granite, gneiss and dolom ite (F ig . 1), 
show a range o f  com positions with a similar upper limit 
(M g#6< 7 7 ; G ain and M ostert 1982; Caw thorn et al. 
1985).

Pyroxene com positions in the Platreef a l Sandsloot 
are com plicated by the presence o f  a reactive footw all 
that is rich in both Ca and Mg. Our data sh ow  a range o f  
orthopyroxene com positions with a m ain population  
between M g# 7fr„0 (Fig. 10) in sam ples o f  primary' reef. 
The main population  is similar to results obtained  by 
Harris and C haum ba (2001), but sm aller su b-popula
tions with M g#xi_,o and M g# 64_74 exist. T he high M g#  
population com e from  a gabbro (N l-2 6 )  associated with  
ragged serpentinite xenoliths (Fig. 4) and from  a gabbro  
(SW 2-49) in the southw est com er that has been partially  
altered to a m ixture o f  trem olite. actinolile. chlorite and  
sericite. Analyses from N l-2 6  and SW 2-49 are show n as 
“contam inated r e e f '  and “altered reef” , respectively in  
Fig. 10. In both cases, the Ca contents o f  chnopyroxenes  
are higher than expected for igneous pyroxenes (W 045.

Fig. 10) and the pyroxene com positions in these  
sam ples appear to be affected by local enrichm ent in Ca 
and Mg.
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Ki». 10 a C o m p o s it io n s  o f  
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The low M g# population  in our dataset com es from  
sam ples o f  replaced reef, located close to the top o f  the 
reef in southwest corner o f  the pit. Fe-rich o liv ine is 
com m on as a replacement for orthopyroxene in m any o f  
these rocks and this strongly suggests that the Fe-rich  
pyroxene com position  is not primary. O rthopyroxene in 
a coarse-grained pyroxenite (SW 2-77) at the top o f  the 
reef is as Fe-rich as the hanging wall gabbronorite  
(M g#*4-6^  Fig. 10), but the rock has cum ulus orth op y
roxene and lacks obvious textural evidence for replace
ment. It may represent differentiated Platreef that 
crystallised from a residual melt or which underwent 
som e kind o f  reaction w ith the hangingw ail liquid.

Based on all the data sum m arised above, i f  o n e  ac
cepts M g#80 and M g # 76 as the upper com positional 
limits o f  orthopyroxene and oliv ine in primary Platreef, 
then the pyroxene com position  is consistent with the 
G N P A  m ember (F ig. 10). H ow ever, the P latreef sili
cates appear system atically m ore Fe-rich than their

equivalen ts in the M erensky R eef (M g # 78_84 for ortho
pyroxene and M g # 79.80 for olivine; Buchanan et al. 
1981; Kruger and M arsh 1985; N aldrett et al. 1986; 
H olw ell 2002; Scoon  and M itchell 2002).

Rare earth elem ent geochem istry

Rare earth elem ent data  for reef, hanging wall and  
footw all lithologies a l Sandsloot are given in Tables 1 ,2 , 
3. The footw all rocks have a characteristic and som e
tim es quite pronounced  negative Eu anom aly when 
norm alised to chondrite  (Eu Eu* 0.48 0.80) and show a 
range o f  L R F.E iH R E E  fractionation. La L u v in the 
footw all varies between 0.09 and 5.89, but m ost sam ples 
fall w ithin the range 1 .2-4 .0 , which overlaps with the 
narrow range (1 .3 -3 .3 ) observed in the reef rocks. Small 
negative Eu anom alies (E u/E u* 0 .72 0.93) arc observed  
in m ost o f  the reef sam ples, with the exception o f  som e

100% En 90 80
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m ore plagioclase-rich reef gabbronorites from the north  
wall (e.g. N l-1 4  and N l-2 4 ). where there are very sm all 
positive anom alies (Eu/Eu* 1.02 1.05).

These observations are in m arked contrast to the 
m elanorites in the M erensky R eef at U nion Section  
studied by Barnes and M aier (2002b). These rocks show  
a much broader range o f  L a/L u* ratios (2 .8  5.7) and a 
m ore pronounced negative Eu anom aly (E u/E u* =  
0.42 0.80) when com pared with the Platreef. Other py- 
roxenites in the U C Z  between the M G 4 chrom itite and 
the Bastard R eef show L a/L u lV ratios (1 .8 -5 .8 ), co m 
m only above P latreef values. T hese pyroxenites also  
show m ore pronounced positive and negative Eu 
anom alies (Eu/Eu* 0 ,6  1.4; M aier and Barnes 1998). 
The Platreef w ould appear to have formed from  a less 
LREE-enriched magma that had experienced less pla
gioclase fractionation than the m agm a that formed the 
M erensky Reef.

PGE mineralogy

The PGE in the Platreef and the M erensky R eef are 
carried by com m on groups o f  PG M . K inloch (1982) 
recognised eight major categories o f  PG M  and found all 
o f  these in the P latreef and in the dillerent regional facies 
o f  M erensky Reef. R egional PGM  variation in the 
M erensky R eef w as ascribed to proxim ity to m agm atic  
feeders and other local factors such as potholes and 
occurence o f  replacement pegm atoids (K inloch 1982; 
K inloch and Peyerl 1990). The P latreef also shows local 
variation in PGM  assem blages (Viljoen and Schiirm ann  
1998) but these changes seem to correlate with changes 
in the footw all lithology that interacted with the P latreef 
m agm a. For exam ple, K inloch (1982) found a high  
proportion o f  Pt sulphides in boreholes that intersected  
the Platreef on the northern portion o f  the farm  
Zwartfontein 818LR and the farm Overysel 815L R , 
where the footw all is m ostly granite. Boreholes on the 
southern portion o f  Z w artfontein and sam ples from  the 
Sandsloot open pit, where the footw all is primarily 
dolom ite, show' alm ost no Pt or  Pd sulphides and the 
assem blage is dom inated by Pt and Pd tellurides and 
alloys (K in loch 1982; Arm itage et al. 2002).

PG E G eochem  ist ry

One o f  the m ost striking differences between the PG E  
deposits o f  the northern lobe and the rest o f  the Bush
veld C om plex is to  be found in their noble m etal bud
gets; a feature first noted by W agner (1929). D avies and 
Tredoux (1985) were the first to observe that the chon- 
drite norm alised PGE pattern o f  the M erensky R eef was 
alm ost parallel to the pattern o f  high-M g basaltic sills 
thought to represent the parental (B l)  m agm a o f  the 
Lower Z one and possibly the Critical Z one (Sharpe  
1981; Harmer and Sharpe 1985). This sim ilarity has led 
various authors to  infer that the form ation o f  the

M erensky R eef transposed the P G E  signature o f  the 
m agm a largely unchanged into the su lphide-bearing reef 
(D avies and T redoux 1985; T redoux et al. 1995; C aw 
thorn 1999b; Ballhaus and Sylvester 2000). Sim ilar  
norm alised patterns are found from  other sulphide- 
bearing reefs (P seudoreef, B oulder Bed, T arentaal and  
Bastard) in the U C Z  o f  the eastern and western B ush
veld (M aier and Barnes 1999) and . like the M erensky  
Reef, these layers provide a sn apshot o f  the PG E  
chem istry o f  the m agm a that form ed the reef. O ne m ight 
therefore expect that the PG E  signatures o f  sulphide- 
bearing reefs in the U C Z  o f  the eastern and western  
Bushveld and the G N P A  m em ber and the P latreef o f  the 
northern lobe should  be broadly sim ilar, i f  these layers 
formed from a com m on m agm a as the currently ac
cepted stratigraphy im plies.

The M erensky R eef P G E  data  com piled  by K innaird  
et al. (2002) and C aw thorn et al. (2002b) show variation  
in the Pt/Pd ratio betw een different m ining areas, from
1.8 to  2.9. T his highlights the fact that U C Z  cum ulates  
in general through the eastern and w estern Bushveld are 
system atically  richer in Pt than in Pd, i.e. Pt Pd is > 2 .0  
(w ith isolated values up to  24), for m ost o f  the sequence  
regardless o f  whether the rocks con ta in  su lp hide or not. 
T he reasons for this strik ing Pt enrichm ent are not well 
understood and cannot be exp lained  by silicate-sulphide  
or su lphide-sulphide liquid fractionation  (M aier and  
Barnes 1999) and there are no m atch ing Pd-rich cum u
lates in the M Z  or U Z  to  satisfy  the m ass balance 
(Barnes and M aier 2002c). T he excess p latinum  seem s to
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be a fundam ental com positional feature o f  the m agm a(s) 
that led the UC Z.

Platinum group elem ent ratios for the P latreef and  
the sulphide-rich reef o f  the G N P A  m em ber are c o m 
pared with those in sulphide reefs o f  the U C Z  in T a 
ble 4. These com parisons indicate that all the su lp h ide- 
bearing reefs in the northern lobe are different from  
those found in the U C Z . T he P latreef and all o f  the 
sulphide reefs in the G N P A  m em ber sh ow  greater frac
tionation o f  low -tem perature PG E  (Pt and  P d) from  
high-lem perature PG E (Ir and Ru) and all o f  them  are 
Pd-rich com pared with reefs between the U G 2  and the 
M erensky R eef in the eastern and western lobes. It is 
im portant to note that this com parison d oes n ot take  
account o f  PGE in the footw all. H igh-grade zo n es in the 
footw all at Sandsloot o ften  show  even low er Pt/Pd  
ratios than the m ain reef (T ables 1, 2, 2), suggestin g  that 
there may have been preferential m ob ilisation  o f  Pd over  
Pt into the footw all from  the proto-reef. T he o u tcom e o f  
this would be to raise the apparent Pt Pd ratio  o f  the  
Platreef. i.e. the original Pt/Pd ratio o f  the P latreef  
before it preferentially lost Pd to  the footw all cou ld  have  
been even lower and further rem oved from  U C Z  values  
than it appears currently.

An im portant primary observation from the northern  
lobe is that the G N P A  m ember and the P la tree f (and  
silicate rocks with total PG E contents as low  as lOppb; 
Tables 1, 2, 3) show  lower and m ore restricted P t/Pd  
ratios than the UC Z, where Pt Pd ratios m ay exceed  
those in the northern lobe until well above the level o f  
the Bastard R eef (F ig. 11). W hatever the reason for the 
striking Pt enrichm ent in the eastern and w'estem lobes  
during form ation o f  the UC Z, it is not repeated in any  o f

the su lphide-bearing reefs o f  the G N P A  m em ber, or in 
the Platreef!

Discussion

Im plicit in current m odels for the evo lu tion  o f  the 
northern lobe is the idea that U C Z  m agm a entered the 
northern lobe and form ed a sequence o f  layered cum u
lates represented by the G N P A  m em ber prior to the 
develop m en t o f  the P latreef (e.g. Van der M erwe 1976, 
1998; V on G ruenew aldt el al. 1989). The G N P A  m em 
ber w as subsequently covered by m ixed U C Z -M Z  
m agm a that spread out to  the north , interacted with the 
footw all rocks, and form ed the Platreef. If the P latreef is 
correlated  w ith the M erensky Reef, then introduction o f  
th is m agm a in to  the northern lobe m ay be assum ed to be 
co in cid en t with the m assive injection o f  M Z m agm a that 
led to  the form ation  o f  the M erensky R eef and the M Z  
sequence elsew here in the com plex (e.g . Kruger 2003).

In m ost tholeiitic  m agm as, chrom ite crystallisation  
term inates before c linop yroxene attains cum ulus status 
d u e to  a reaction  relationsh ip  between spinel and  
pyroxene but this reaction is sensitive to oxygen fugac- 
ity. T h e  lack o f  reaction betw een chrom ite and clino
pyroxene in the orthopyroxene-clinopyroxene-chrom ite  
cum ulates o f  the G N P A  m em ber led Hulbert (1983) to 
con clu d e that the G N P A  m em ber m agm a had an  
unusually  high /O s that provided enough ferric iron to 
stab ilise chrom ite. I f this is correct, it fo llow s that the 
Fe-rich nature o f  the pyroxenes in the G N P A  m ember 
can n ot be ascribed to /O s  as, if  the G N P A  m ember 
started w ith the sam e co m p osition  as the U C Z , a higher

T a b le  4  P la t in iu m  g ro u p  e le m e n ts  ra t io s  o f  U p p e r  C r i t ic a l  Z o n e  s u lp h id e - r ic h  ree fs  a n d  p a r e n ta l  m a g m a s  (see  tex t fo r  f u r th e r  d e ta ils )

P i  P d P t Ir Pd, I r P d R h S o u rc e

I /a s te rn  a n d  w es te rn  lo b es
B a s ta rd  R ee f 3 .03 4 1 .8 13.8 3 .45 1
M e re n s k y  R e e f  (e a s te rn  lo b e ) 1.57 41.1 26 .2 12.9 1
M e re n sk y  R e e f  (w e s te rn  lo b e ) 1.94 4 1 .9 2 1 .6 8 .4 6 1
B o u ld e r  Bed 3 .0 4 3 2 .6 10.7 4 .9 7 ->

I a r e n ta a l 4 .4 3 105.6 23 .8 5.41 2
P se u d o  ree f 2 .3 5 37 .2 15.9 3 .52 I
N o r th e rn  lo b e
L o w er P la tre e f  (D re n th e ) 0 .81 76 93 IS 3, 8
U p p e r  P la tre e f  (D re n th e ) 0 .6 5 89 139 58 3, 8
P la t re e f  (S a n d s lo o t) 0 .9 5 96 63 15 4
S7 N o r ite  ( lo p  o f  G N P A  m e m b e r) 0 .2 9 65 230 31 3
S6 P eg m a tit ic  g a b b ro n o r i te 0 .9 9 41 41 19 3
S4 N i-r ic h  le u c o n o rite 0.41 30 73 20 3
S2 F o o tw a ll  (U G 2 - l ik c  c h ro m it i te ) 0 .4 3 63 130 19 3
SI B asal g a b b ro n o r i te 0 .3 9 54 140 21 3
P y ro x e n ite  (U n it 36 L o w e r  Z o n e ) 0 .3 4 n /a n /a n /a 5, 6
U p p e rV o ls p ru it  (U n it  11 L o w er Z o n e ) 0 .7 2 34 47 6.8 3, 7

P a re n ta l m a g m as
B1 (L o w e r C rit ic a l Z o n e ) 1.64 56.2 34 .3 10 1
B3 (M a in  Z o n e ) 1.55 77 .8 50 15 1

D a ta  so u rces: ( I) B a rn e s  a n d  M a ie r  2 0 0 2 a : (2 ) N a ld r e t t  e t  a l. 1986; (3 ) re c a lc u la te d  fro m  V o n  G re u n e w a ld t  e t  a l. 1989; (4 )  th is  w o rk : (5) 
H u lb e r t 1983: (6 ) v an  d e r  M erw e  1998; (7 ) R .M . l l a r m e r  ( p e r s o n a l  c o m m u n ic a t io n ) ;  (8 ) A .J . N a ld r e t t  ( p e r s o n a l  c o m m u n ic a t io n ) .  S I to  S7 
re fe r to  s u lp h id e  reefs in l ig. 8
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/(>> w ould be expected to  generate m ore M g-rich sili
cates. The lower M g/F e ratios observed in the G N P A  
member are therefore m ost probably a consequence o f  a 
starting m agm a com position  that w as m ore Fe-rich than 
the UCZ magma.

W e have shown above that, apart from  the visually  
similar appearance and the presence o f  high PG E  c o n 
centrations, evidence linking the P latreef with the 
M erensky R eef is not strong. Significant m ineralogical 
and geochem ical differences exist between the Platreef 
and the G N P A  m em ber o f  the northern lobe and the 
M erensky R eef and the U C Z  in the rest o f  the Bushveld  
Com plex. In contrast, the greater sim ilarities in terms o f  
pyroxene com positions (Fig. 10), crystallisation se
quences and PGE signatures between the Platreef and 
the G N P A  member are m ore consistent with a m odel 
whereby these units form ed from  the sim ilar or related 
m agm as.

The sim plest explanation for this apparent paradox is 
that the M erensky R eef and the P latreef (along with any  
related pre-reef cum ulates) formed from  separate m ag
m as with different M g /F e  ratios and PG E  budgets. On 
the basis o f  a higher m odal c linopyroxene content, the 
lower M g# o f  orthopyroxene and the PG E  ratios, the 
northern lobe rocks formed from  a m agm a that was 
poorer in M g, richer in Ca and Fe, was more highly  
PGE fractionated (greater Pt/Ir and Pd Ir ratios) and 
was Pd rather than Pt-dom inant relative to the m ag- 
ma(s) that formed the U C Z  and M erensky R eef in the 
eastern and western lobes.

The obvious question is what was this northern lobe  
magma? The B1 m agm a o f  Sharpe (1981), believed to  be 
parental to the Lower and Critical Z ones in the eastern  
and western lobes, is a high M g basaltic andesite that 
produces a crystallisation sequence olivine; olivine- 
orthopyroxenc, orthopyroxene, orthopyroxene-p lagio- 
clase that is observed in the Lower and Critical Z ones  
(Barnes and M aier 2002a). In contrast, the B3 (tholeiitic) 
m agm a believed to be parental to the M Z crystallises 
plagioclase-orlhopyroxene. and then plagioclase plus 
both pyroxenes (H arm er and Sharpe 1985; Barnes and 
Maier 2002a). N either o f  these m agm as on their own can 
generate the observed crystallisation sequences for the 
G N P A  m ember or the Platreef.

In order to  account for the different PG E  ratios, 
Caw thorn el al. (2002a) proposed that U C Z -tvpe m ag
ma sim ilar to that formed the U G 2 chrom itite in the 
eastern lobe (which has a Pt/Pd ratio close to  unity) 
could have either flowed northwards or  been present in 
the northern lobe prior to the form ation o f  the Platreef. 
Cawthorn et al. (2002a) suggest that this m agm a did not 
form any chrom itite layers and retained its PG E  signa
ture until the event that formed the Platreef. T his is not 
supported by the availab le evidence as the G N P A  
member contains a chrom itite layer as well as thick 
pyroxenite cum ulates with dissem inated chrom ite. The  
m odel also fails to explain the Fe-rich nature o f  the 
orlhopyroxenes. the abundance o f  c linopyroxene in the 
G N P A  member and why and all the reefs actually have

Pt/Pd ratios low er than unity. In any case, the m agm a in 
the eastern lobe becam e Pt-dom inant again at the level 
o f  the M erensky R eef. N o  evidence for this is found in  
the northern lobe.

D evelop m en t o f  the G N P A  m em ber

T he answ er to  the q u estion  m ay lie w ith a marginal 
m em ber defined by H ulbert (1983) that is developed at 
the base o f  the G N P A  m em ber where it rests on LZ 
ultram afic cum ulates and  Pretoria G roup sedim ents. H e  
suggested that these unusual pigeonite gabbronorites 
were chilled "C ritical Z o n e” m agm a or hybrids o f  chil
led m agm a with LZ or sedim entary footw all melts. 
H ulbert (1983) suggested  that a sam ple (M 78-53) found  
in the m arginal zone  ab o v e  the Pretoria G roup m ight 
represent the c losest m atch to the in itial “ Critical Z o n e” 
m agm a com p osition . A n o th er  fine-grained pigeonite  
gabbronorite (G R 4 -4 -5 ) developed  above LZ cum ulates 
has sim ilar characteristics. T he bulk chem istries o f  these 
tw o rocks are com pared w ith estim ated com positions o f  
the parental m agm as for the Critical and M ain Z ones in 
T able 5 and their pyroxene com p o sitio n s are com pared  
with G N P A  m em ber and M Z  co m p osition s in Fig. 10. It 
is clear that both  M 78-53 and G R 4-4-5  lie closer to the 
m odel M Z m agm a than  C Z  m agm a.

If this is correct and these rocks represent chilled  
tholeiitic (M Z ) m agm a, then it offers a possib le expla
nation  for the un ique orlhopyroxen e-clin opyroxen e- 
chroinite cum ulates and the lack o f  m ineralogical or 
geochem ical sim ilarity betw een the G N P A  m em ber and  
the U C Z  in the rest o f  the com plex . W here the m arginal 
m em ber rests on  the LZ, H ulbert (1983) cited the fine 
grain size, the abu nd ance o f  p igeonite  and rapid reversal 
in orthopyroxene co m p o sitio n s from  M g # ^  in the last 
LZ harzburgile to  M g # 67„7| just above the contact 
(F ig. 9 ) as evidence for undercooling and crystallisa
tion o f  new liquid to form  the m arginal gabbronorites.

Hulbert (1983) observed at least five cyclic sub-units  
within the m arginal m em ber, each with a fine-grained  
basal gabbronorite. Skeletal p lagioclase crystals with  
trapped m elt and orthopyroxenes w ith M g # ’s close to  
the bulk M g# o f  the rock (e.g. M 78 53) suggest rapid 
supercooling, which becom es less effective upwards. 
Each sub-unit sh ow s upward increases in the M g# o f  
orthopyroxene and in the absolute concentrations o f  N i, 
Cu and PGE, which are m ost enriched in coarser  
(som etim es pegm atitic) zones above the fine-grained  
base o f  each sub-unit. H ulbert (1983) suggested that the 
marginal m em ber w as em placed as a series o f  thin pulses 
o f  colder, denser liquid al the base o f  the m agm a  
cham ber. M odel crystallisation o f  liquids with M 78-53  
or G R 4-4-5  com p osition s at 1,500 bars in the PELE  
program m e (B oudreau 1999) produces liquidus tem 
peratures o f  1210 1230°C and crystallisation sequences  
o f  p lagioclase, p lagioclase-orthopyroxene. then p lag io 
clase as well as both  pyroxenes, which mirror the o b 
served textures. The idealised section given by Hulbert

279



Appendix 5. Geochemistry and mineralogy of the “Critical Zone” in the northern Bushveld

T a b ic  5 C o m p a r is o n  o f  fin e -g ra in ed  g a b b r o n o r i i e  c h ills  w ith  e s t im a te d  C r it ic a l  a n d  M a in  Z o n e  m a g m a  c o m p o s i t io n s .

S am p le  P o s itio n G R 4 -4 -5
L Z -G N P A

78-53
P re t-G N P A

B l (L Z  C Z ) B3 (M Z ) C r i t  Z o n e M a in  Z o n e 7 8 -9 2
G N P A  M Z

N 3 X 4 A  
P la t  M Z

S W 1 -4 7 B
P la t - M Z

S W I-4 7 A
P la t - M Z

Si 0 2  (\vt°c.) 52.11 49 .97 53 .17 5 0 .7 0 55 .87 5 0 .4 8 53.61 51.81 51 .44 4 9 .4 4
T iQ 2 0 .10 0 .62 0 .3 6 0.41 0 .37 0.71 0 .3 4 0 .2 0 0 .19 0 .1 6
A 1203 17.31 15.67 11.36 16.03 12.55 15 .79 17 .36 17.48 16.48 16 .30
I c O 5.34 8 .82 10.72* 9 .14* 9 .1 5 * 11.61* 5 .1 3 n ,a n /a n /a
I e2D 3 1.60 2 .12 n a n a n /a n a 1.84 9 .7 5 * 8.83* 9 .0 4 *
M n O 0.15 0 .19 0 .2 0 0 .1 7 0.21 0 .1 8 0 .1 3 0 .1 4 0.19 0 .1 5
M eO 8.86 7 .77 14.93 9.21 12.65 7 .26 7 .4 2 6 .4 8 6.93 8 .5 5
C a O 11.66 10.91 7.47 11.14 7.29 10 .86 11.58 1 1.17 12.06 11.75
N a 2 0 2.15 2 .15 1.57 2 .52 1.53 2 .2 0 2 .3 8 1.79 2.43 ->

K .2 0 0.67 0 .58 0 .17 0 .2 3 0 .77 0 .1 6 0 .5 8 1.30 0.41 0 .4 3
P 2 0 5 0.02 0 .1 0 0 .07 0 .0 8 0 .1 0 0 .1 6 0 .0 4 0.01 0.01 0 .0 2
Sc (p p m ) n a li a n a n ,a 41 35 n /a 31 38 28
V 90 232 n a n /a 179 182 119 191 2(H) 152
C r 390 396 1240 205 939 335 31 7 42 4 292 551
C o 80 88 n a n, a 73 53 66 41 48 59
Ni 184 184 337 162 329 128 128 346 407 3 7 6
C u 75 120 n a n /a 58 62 23 121 170 187
K b 30 20 4 7 27 3 13 50 7 12
Sr 385 353 183 324 170 340 2 7 5 333 282 23 4
Y 7 19 15 n /a n /a n  a 13 7 12 8
Z r 6 30 47 20 80 6 0 39 12 5 7
S o u rc e 1 1 A ■> 3 3 1 4 4 4

P o s i tio n  key: L Z  L o w er Z o n e ; M Z  M a in  Z o n e ;  Plat P la tre e f ; Fret P re to r ia  G r o u p ;  G SP A  G N P A  m e m b e r  
S o u rces: (1 ) H u lb e r t  1983; (2 ) S h a rp e  1981; (3 ) B a rn e s  a n d  M a ie r  2 002b ; (4 ) th i s  w o rk  
* in d ic a te s  to ta l  F e  as F eO  o r  F e2Q 3  as  a p p r o p r i a te

and Von G ruenew aldt (1986) sh ow s the m arginal 
m ember developed across the LZ cum ulates and over the 
adjacent Pretoria G roup quartzites. In this situation , 
heat loss w ould have taken place prim arily against the 
quartzites and a thermal gradient extended laterally  
from this zone into  the liquid overlying the LZ cum u
lates. G eneral coarsening o f  units upwards from  the 
contact suggests m ore effective therm al insu lation  as the 
member thickened (H ulbert 1983).

Hulbert (1983) noted that pyroxenes in the m arginal 
member overlying the LZ cum ulates were m om  M g-rich  
than those developed in the gabbronorites against the 
Pretoria G roup and that abundant sulphides, high PG E  
and Cr concentrations were a lso  restricted to the m ar
ginal m ember above the LZ. H e argued that these fea
tures could only be accounted for by adding som e  
residual LZ m elt to the new liquid as the m arginal 
member developed. This m ay also provide a m echanism  
to generate the unusual orthopyroxene-clinopyroxene- 
chrom ite cum ulates associated  with the ''U G 2-lik e” 
chrom itite (Fig. 9). In add ition  to the unusual cry stalli
sation order, these units are very rich in Cr (2 .500  
28,500 ppm) and it is hard to see how  to  generate them  
from liquids sim ilar to M 78-53 (w ith < 4 0 0  ppm  Cr) 
alone. W e suggest that m ixing the new tholeiitic  liquid  
with an existing volum e o f  overlying resident LZ-type  
magm a crystallising olivine, orthopyroxene (M gy/^.xx) 
and chrom ite could  produce a hybrid m agm a that 
crystallises orthopyroxene and chrom ite, fo llow ed  by 
orthopyroxene, chrom ite and clinop yroxene, which  
mirrors the observed sequence in the lower part o f  the 
G N P A  m ember (F ig. 9). D ensities calculated in PELE  
for melts o f  M 78-53 and G R 4-4-5  a l 1,500 bars are 2.71

and 2.65 g .cm - 3 . respectively , and m ay b e  su fficien tly  
high to  d isp lace a hotter  (> 1 ,2 7 0 ° C )  L Z -ty p c  liquid  
upw ards in the m anner suggested  by T eg n er  et al. 
(1993). U n d erco o lin g  o f  the resident L Z -typ e  liquid  by  
repeated in jections o f  co ld er  liquid at the base, coupled  
with gradual h ea tin g  o f  the new liquid a s th erm al in su 
lation  o f  the th icken ing  m arginal m em ber b e c o m es m ore  
efficient w ould  low er  the tem perature gradient and  the 
density contrast to  the point w here the m afic an d  th o 
leiitic liquids m ig h t m ix.

A  second cycle  w ith basal orth o p y ro x en ite  and orth- 
op y roxen e-clin op yroxen e-ch rom ile  cu m u lates occu rs  
higher in the seq u en ce  at the zero reference, and a third 
o n e  at  ̂ 75 m etres is overlain  by a n o r th o s ite  (F ig . 9). 
T hese or thopyroxene-r ich  cum ulates are a d d itio n a lly  
im portant because they carry sulphides and associa ted  
Pd-rich P G E  m ineralisation . D ecreasing  v o lu m es o f  
orth op yroxen e-c lin op yroxen e-ch rom ile  cu m u la te s and  
the trend o f  Ti enrichm ent in chrom ite d ev e lo p ed  with  
height probab ly  reflect d im in ish ing v o lu m es o f  m afic  
m agm a availab le  for m ixing as the cham ber b ecom es  
sw am ped with th o le iitic  m agm a. Peck and K ea y s  (1990) 
have in d ep en dently  proposed  a sim ilar process, in v o lv in g  
injection  o f  sm all vo lum es o f  gabbroic liquid in to  a larger  
volum e o f  u ltram afic m agm a, to exp lain  the d ev e lo p m en t  
o f  thin layers o f  chrom ite  gabbronorite in h arzburgites o f  
the H ea z lew o o d  R iver C om plex.

W e suggest that the explanation  for w h y  the ortho-  
p yroxen e-clin opyroxen e-chrom ite  cum u lates are unique  
to  the northern lo b e  is because these tw o m a g m a  types d o  
not m ix togeth er in this m anner elsew here in the B ush
veld C om p lex . T h e  process outlined here is sim ilar in 
so m e respects to  the m ixing o f  ultram afic (U -ty p e )  and
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tholeiitic (T-type) m agm as proposed by Irvine and 
Sharpe (1986) lor the origin o f  stratiform  chrom itite and 
PGE reefs, including the M erensky Reef. T he principal 
difference lies in the nature o f  the U -type m agm a and the 
degree o f  interaction. The Critical Z one in the eastern  
and western lobes preserves chem ical and isotop ic  sig 
natures inherited from the LZ and the new, distinctively  
Pi-rich, m agm a(s) which hybridised with it during the 
form ation o f  the U C Z . The base o f  the U C Z  marks the 
change from olivine-orlhopyroxene cum ulates to  a 
chrom ite-orthopyroxene-plagioclase liquidus order, 
which persists throughout the U C Z , until the introduc
tion o f  M Z m agm a coincident with the form ation o f  the 
M erensky R eef (Kruger 1994), where the last cum ulus 
chrom ite appears. M ass balance m odelling by Barnes 
and M aier (2002b) suggests that the M erensky event in
volved ~ 4 0 %  tholeiitic m agm a mixed with ~ 6 0 %  U C Z - 
tvpe magma crystallising orthopyroxene and plagioclase.

In the northern lobe, we suggest that there w as no  
distinctive Pt-rich m agm a and no interm ediate stage  
where the liquidus order shifted from olivine-orthopy- 
roxene to chrom ite-orthopyroxene-p lagioclase. The  
G N P A  m ember formed by a series o f  rapid and dra
m atic interactions between progressively larger volum es 
o f  new tholeiitic liquid and a resident LZ-type liquid. In 
addition , we suggest that the tholeiitic and m alic liquids 
are derived from  different sources with dilferent isotopic  
signatures (see below) and within a few mixing, 
quenching interactions follow ing the first introduction  
o f  the tholeiitic liquid, the reservoir o f  m alic liquid was 
exhausted or it ceased to be supplied to the cham ber. 
M agm atic evolution  beyond that point is controlled by 
the chem istry o f  the dom inant tholeiitic liquid which  
later formed the M Z o f  the northern lobe.

Further support for the involvem ent o f  tholeiitic  
m agm a com es from the rocks at the top contact o f  the 
G N P A  m ember. A b ove a prom inent m ottled anortho- 
site w hich caps the m em ber, H ulbert (1983) found a 1 2 -  
m thick layer o f  m edium -grained gabbronorite (sam ple  
78 92) with distinctive radiating clusters o f  acicular  
plagioclase and inverted pigeonite. He interpreted this as 
an influx o f  new M Z m agm a which supercooled and 
chilled against the G N P A  cum ulates. The com position  
o f  78 92 is close to the chilled rocks at the base o f  the 
G N P A  m em ber (Table 5). This can only be explained if  
M Z-type m agm a was involved prior to, during, and 
after the form ation o f  the G N P A  member.

This interpretation apparently contradicts the view  
that there was m ajor hiatus between the em placem ent 
o f  the m agm as o f  the LZ and the M Z (Van der M erw e  
1978). Field evidence cited to support this is based on  
apparently transgrcssive relationships established be
tween LZ inlrusives and the P latreef north o f  M o k o 
pane that are not in dispute, plus the assignm ent o f  the 
G N P A  m em ber to a pre-Platreef U C Z , which is d is
puted. Fundam entally, van der M erwe's m odel rests on  
two assum ptions; first, that the LZ w as fully crystal
lised (not just the satellite intrusions where the trans- 
gressive relationships occur) and second, that the

Platreef and the G N P A  m em ber are unrelated to  the 
LZ. The evidence presented above suggests that m alic  
liquid rem ained in the G rasvally  m agm a cham ber up  
to the developm ent o f  the G N P A  m em ber and it is 
possible that supply o f  m agm a into the northern sa
tellite cham bers ceased w hile m afic m agm a continued  
to enter the G rasvally  cham ber. The role o f  L Z  m agm a  
in the form ation o f  the P latreef is discussed in the next 
section .

Links betw een the G N P A  m em ber and the P latreef

T he exact relationsh ip  betw een the P la tree f and  the LZ 
and the G N P A  m em ber to  the north o f  the G rasvally  
area is poorly  know  n and w ill on ly  be revealed a s further  
exploration  takes p lace o n  farm s betw een G rasvally  and  
M okopan e. H am tnerbeck and Schurm ann (1998) indi
cate that the “ Critical Z o n e ” w edges ou t to  the south  o f  
M okopan e but V on G ruenew ald t et al. (1989) equated  
xenolilh-rich  p o rtion s o f  the G N P A  m em ber w ith the 
P latreef and im plied that one m ight m erge laterally  into  
the other; a proposal supported by the data  presented  
here. K innaird et al. (2005) report that north  o f  M o 
kopane, LZ rocks m ay occur below' the P latreef but the 
LZ appears to w edge o u t on the farm  M a ca lacask op  
243K R  and the P latreef rests d irectly  on m etased im etary  
footw all from  M aca lacask op  northw ards to Z w artfon
tein. Indeed it seem s m ore than a co in cidence  that the 
m odal m ineralogy o f  the G N P A  m em ber orthopyroxene  
and orth op yroxene-clin opyroxen e cum ulates (55  60%  
opx, 15 25%  plag, 20  25%  cpx), the crysta llisation  or
der, orthopyroxene co m p o sitio n s (M g # 70_78; Fig. 10) 
and Pd-dom inant P G E  m ineralisation  are sim ilar to  the 
Platreef at San dsloot at m any o f  the lo ca lities described  
above. O rthopyroxene-clinopyro.xene-chrom ite cum u
lates, apparently sim ilar to those that occur in the 
G N P A  m em ber, occur in the P la treef on  the farm  
O veryscl 815L R  (H ulbert 1983).

It is also possib le that the con ta cts  betw een the 
G N P A  m em ber and the P la treef w ith the base o f  the M Z  
m ay correlate a long  strike. At S a n d slo o t, the unsheared  
contact with the hanging wall M Z  gabb ros is m arked by 
leuconorite ("m ottled  an o rth o site” ) and a fine to m ed
ium -grained gabbronorite (F ig . 6 ). T his unit conta ins  
traces o f  inverted pigeonite, P G E  grade up to  2 .0  g/t. 
and a P G M  assem blage conta in ing  laurite (RuS?) and  
Pd-bearing pentlandite that is very dilferent from  that in 
the P latreef (H olw ell et al. 2004). O n Turfspruil 24 1 K R , 
K innaird et al. (2005) observed that the upper contact o f  
the P latreef w ith the M Z  is m arked by a prom inent 
m ottled anorthosite  and o n  D renthe 788L R , inverted  
pigeonite is a lso  found in the M Z  im m ediately above the 
Platreef (G ain  and M ostert 1982). T hese associa tion s are 
rem arkably sim ilar to the rocks at the contact betw een  
the M Z  and G N P A  m em ber at G rasvally  (H ulbert 
1983). The chem istry o f  fine-grained gabb ron orites from  

just above the P latreef are com pared w ith a M Z  chill 
against the G N P A  cum ulates (78 92) in T able  5. T hese
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rocks are separated by ~ 4 0  km (F ig . 1) but the m atch  
between their m ajor and trace elem ent signatures is 
striking and suggests that chilled M Z  m agm a m ay ter
m inate both the G N P A  m em ber and the Platreef. T he  
presence o f  PG E  in the M Z basal chill z o n e  further  
suggests that the quenching o f  M Z m agm a m ay be an 
im portant trigger for the developm ent o f  PG E-rich  
zones around rafts o f  d isaggregated country rock in the 
M Z (e.g. on Drenthe 788L R  and other (arms).

In the light o f  the above, the finding by Barton et al. 
(1986) that orthopyroxene separated from  the P latreef 
has an 87Sr/86Sr initial ratio o f  0.7079 m ay be highly  
significant. Barton el al. (1986) suggested that even this 
should be considered an upper limit because o f  the 
possibility that the pyroxene separates contained traces 
o f  plagioclase with elevated 87Sr,86Sr initial ratios  
influenced by late-stage m elts or fluids derived from  the 
footw all. The M Z m agm a in the northern lobe sh ow s  
87Sr, 8ASr initial ratios in the range 0.708 0 .710  (Barton  
et al. 1986). D ata for the Lower LZ in the northern lobe  
is lacking but if  one assum es that this m agm a had a 
sim ilar initial ratio to LZ rocks in the western Bushveld  
(0 .705 0.707; Kruger 1994), then the lowest initial ratio  
o f  0.7079 found by Barton et al. (1986) in the P la treef is 
consistent with a m ixture o f  M Z-type and LZ-type  
m agm as. In the absence o f  further geochem ical data, 
particularly R E E  and isotopes from the G N P A  m em ber  
and elsewhere on the Platreef, the proposed link between  
the two m ust be considered possible, but unproven , at 
this stage. N evertheless, the sim ilarity is intriguing and  
underlines the need for further research into  these rocks.

Im plications for connectivity between the northern lobe  
and the rest o f  the Bushveld C om plex

Cawthorn and W ebb (2001) concluded that the eastern  
and western lobes wen: linked throughout the d evelop 
ment o f  the Critical, M ain and Upper Z ones but that 
links with other lobes, including the northern lobe, were  
less certain and had to  remain speculative. K ruger (1999, 
2003), follow ing the conventional stratigraphy, co n sid 
ered the northern lobe to have been linked with the 
eastern and western lobes during U C Z  and M Z  lim es. In 
his m odel, a mixed M Z and U C Z  m agm a Hows north  
across the chamber, overtop s the T haba/.im bi-M urchi- 
son Lineament (locally  m anifested as the Zebcdicla and 
Y sterberg-Planknek Faults; Fig. 1) and Hows into the 
northern lobe, generating the P latreef a long  the base. 
LZ-type magm a plays no role in form ing the Platreef.

This work has show n that the co n ven tion a l strali- 
graphic interpretation show n in Fig. 3 is untenable. The  
"Critical Z on e” o f  the northern lobe, incorporating the 
"U G 2-like” chrom itite and P latreef cannot be correlated  
w ith the U G 2-M erensky R eef package in the rest o f  the 
com plex. The U C Z -lyp e m agm a with its high M g /F e  
ratios, chrom ite-orthopyroxene-p lagioclase-clinopyrox- 
cne crystallisation sequence and d istinctive Pt enrich
ment did not play a role in the develop m en t o f  the

G N P A  m em ber or the Platreef. T he orthopyroxene- 
c linop yroxene-ch rom ite  cum ulates o f  the G N P A  m em 
ber and the P d -d om in an l P G E  m ineralisation contained  
in it and the P la tree f are unique to the northern lobe o f  
the com plex. T heir orig in  requires dilferent m agm atic  
com ponents.

W e interpret the availab le  evidence to  suggest that the 
G N P A  m em ber and the P la treef m ay represent a tran
sitional period where the earliest tholeiitic  M Z -type  
m agm as interacted w ith pre-existing m afic LZ-type  
m agm as. It sh ou ld  perhaps be renam ed the T ransitional 
Z on e o f  the northern lobe. T h e qu estion s o f  w hen these  
tw o m ajor m agm a types were introduced into the 
northern lobe, h o w  their in troduction  relates to 
em placem ent o f  m agm as in the eastern and western  
lobes, and how  their interaction  m ight have generated  
the m ass o f  P G E  present in the G N P A  m em ber and the 
P latreef all rem ain unclear at th is lim e and need further 
research.

In our view', the M erensky R eef and the P latreef 
form ed from  co m p o sitio n a lly  different m agm as with  
dilferent lineages and there is no genetic link betw een  
them . The possib ility  rem ains that in troduction  o f  tho
leiitic m agm a in to  the northern lobe lo o k  place at the 
sam e tim e as into  the eastern and w estern lob es but this 
can n ot be proved u n eq u ivocally  and a reliable tim e line 
can n ot be draw n betw een  the M erensky R eef and the 
Platreef. T he "C ritical Z o n e” o f  the northern lobe is not 
the Critical Z one as kn ow n from  the rest o f  the Bushveld  
C om plex. T he form er term  is confusin g  and should  be 
discontin ued . There m ay be a reliable link betw een lobes 
in the U pper Z o n e  at the level o f  the M ain  M agnetite  
(F ig . 3), but it rem ains to  be established how c losely  the 
stratigraphy o f  the M Z  o f  the northern lobe m atches  
that seen in the rest o f  the com plex . T he northern lobe  
m ay have been com pletely  separated from  the rest o f  the 
com plex  until intrusion o f  the U p p er  Z one. T he stra
tigraphy o f  the northern lobe m ust be eva lu ated  on its 
ow n m erits, w ith ou t prem ature a ttem p ts to  fit it into  
that established elsew here.

Conclusions

This work has show n that the P latreef and the G N P A  
m em ber, long thought to  correlate with the M erensky  
R eef and the U C Z  elsew here in the com plex , formed  
from  a different m agm a than that w hich generated the 
U C Z  in the eastern and w estern lobes o f  the com plex. 
T he P latreef and the G N P A  m em ber sh ow  pyroxene  
com p osition s that are system atically  m ore Fe-rich and  
P G E  signatures that are m ore fractionated and m ore Pd- 
rieh than the M erensky R eef and other reefs o f  the U C Z . 
T his work dem onstrates that U C Z  m agm a, w ith its 
characteristic and econ om ica lly  significant Pt enrich
m ent, w as not involved in the generation o f  the P latreef 
and that there is no com p ellin g  evidence linking the 
form ation o f  the P latreef either genetica lly  or tem porally  
with the M erensky Reef.
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Chilled M Z -lype m agm a is preserved at the base and 
the lop  o f  the G N P A  m em ber and th is unit is suggested  
to  have formed from the m ixing o f  existing L Z -type  
m agm a and new tholeiitic M Z -lyp e m agm a that first 
intruded along the floor o f  the G rasvally  cham ber. 
M ixing/quenching events produced a series o f  orthopy- 
roxenites that grade upwards into orthopyroxene-clino- 
pyroxcne-chrom ite cum ulates that are unique to  this 
area o f  the com plex. The basal orthopyroxenites are 
invariably associated with the presence o f  su lph ide and 
elevated base metal and PG E values. T he G N P A  
m ember rocks show sim ilarities in term s o f  m ineral 
chem istries, m odal m ineralogy, crystallisation  se
quences. and PG E ratios with P latreef rocks and a 
com positionally  sim ilar M Z liquid is chilled against the 
top o f  both the G N P A  m em ber and the P latreef. T hese  
sim ilarities open up the possibility  that the P latreef and 
G N P A  m ember merge laterally into on e  anoth er and 
that both result from  interactions between M Z  and LZ- 
type magmas.

On a final note, although we have dem onstrated  
that W agner's original link between the P latreef and 
the M erensky R eef m ay be incorrect, it w ou ld  be 
unjust to be overly critical o f  him. T he visual sim i
larity between the tw o reefs is striking and this, c o u 
pled with the apparently unlikely possib ility  that there 
could be another fantastically rich platinum  horizon in 
addition to the M erensky Reef, m ust have played a 
part in form ing his opin ion . The fact that the assum ed  
link has remained unchallenged for so  long is surely a 
m easure o f  the im m ense respect that W agner's 
pioneering work still com m ands 75 years after his 
death.

Ac know lodgem ents t h e  a u th o r s  w o u ld  lik e  to  th a n k  th e  s ta l l ’ a t  
A n g lo  P la t in u m 's  S a n d s lo o t M in e , p a r t ic u la r ly  A la n  B ye a n d  
A lfred  S a rila . fo r lo g is tica l s u p p o r t  d u r in g  th e  m a p p in g  a n d  
s a m p lin g . E ve line  de  V os a n d  P e te r F is h e r  a re  th a n k e d  fo r  th e ir  
a s s is ta n c e  w ith  th e  IC 'P  a n d  S E M  a n a ly s e s  a t  C a r d i f f  a n d  T e r ry  
W illiam s. J o h n  S p ra t t  a n d  A n to n  K e a rs le v  a re  th a n k e d  fo r  th e ir  
a s s is ta n c e  w ith  a n a ly tic a l w o rk  b y  P au l A rm ita g e  a t  th e  N a tu r a l  
H is to ry  M u se u m . W es G ib b o n s  a n d  Jo c k  H a rm e r  a r e  th a n k e d  fo r  
th e ir  ad v ice  a n d  in p u t . T h e  p a p e r  b e n e fite d  f ro m  c o n s tr u c t iv e  
rev iew s by  C h r is  L ee a n d  T o n y  N a ld r e t t .  T o n y  N a ld r e t t  a ls o  
k in d ly  m a d e  a v a ila b le  h is  u n p u b lis h e d  P G E  a s s a y s  fro m  D re n th e  
fo r  use  in T a b le  4  a n d  th is  Ls g re a t ly  a p p re c ia te d .  T h is  re se a rc h  
m a k es  new use  o f  L a r ry  H u lb e r t s  r e m a rk a b le  1983 D S c  th e s is  
a n d  rc - in te rp re ts  h is  w o rk  in to  th e  G N P A  m e m b e r  in  th e  lig h t o f  
new  d a ta . T h e  a u th o r s  w o u ld  lik e  to  th a n k  W o lf  M a ie r  fo r 
h e lp in g  u s to  o b ta in  a  c o p y  o f  th is  th esis. K e y  e le m e n ts  o f  th is  
p a p e r  c o u ld  n o t h av e  b e e n  a sse m b le d  w ith o u t  D r  H u lb e r t  s o r i 
g in a l w o rk  a n d  w e a re  e x tre m e ly  g ra te fu l  to  h av e  h a d  ac cess  to  it. 
W e a c cep t full re s p o n s ib ility  fo r  o u r  c o n c lu s io n s  ( a n d  a n y  e r r o r s  
in  in te rp re ta tio n ) , p a r t ic u la r ly  w h e re  th e y  d iffe r fro m  th e  o r ig in a l. 
P au l A rm ita g e 's  P h D  re s e a rc h  w as  fu n d e d  b y  th e  U n iv e rs ity  o f  
G re e n w ic h . D a v id  H o lw e ll 's  P h D  re se a rc h  is fu n d e d  b y  th e  
N E R C  a n d  s u p p o r te d  b y  A n g lo  P la t in u m  th ro u g h  In d u s tr ia l  
C A S E  p ro je c t ( N E R  S C  2003 1 1952). P G E  a n a ly t ic a l  w o rk  a t 
C a rd if f  is s u p p o r te d  by  th e  L e v e rh u lm e  T ru s t ( g r a n t  F  0 0 4 0 7 /K 
to  IM c D ) a n d  th e  IC'P l a b o r a to r y  is s u p p o r te d  by  th e  N E R C . 
th ro u g h  J o in t I n f r a s tr u c tu r e  l u n d  a w a rd  N E R  II  S  20(X),00X62. 
F in a lly , th e  first a u t h o r  w o u ld  lik e  to  th a n k  S te p h  a n d  R o b b ie  fo r 
th e ir  p a t ie n c e  a n d  s u p p o r t  th ro u g h o u t  th e  c o m p le t io n  o f  th is  
w o rk .
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