CARDIFF

UNIVERSITY

PRIFYSGOL

(AFRDYH

BINDING SERVICES

Tel +44 (0)29 2087 4949
Fax.+44 (0)29 2037 1921
E-Mail Bindery@Cardiff ac.uk

mailto:Bindery@Cardiff.ac

APPLICATION OF SPIKING NEURAL
NETWORKS AND THE BEES ALGORITHM TO
CONTROL CHART PATTERN RECOGNITION

A thesis submitted to
Cardiff University,

for the degree of

Doctor of Philosophy

by

Shahnorbanun Sahran, B.Science (Hons), MSc

Manufacturing Engineering Centre
Cardiff University
United Kingdom

2007

UMI Number: U584934

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U584934
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Statistical process control (SPC) is a method for improving the quality of products.
Control charting plays a most important role in SPC. SPC control charts arc used for
monitoring and dctecting unnatural process behaviour. Unnatural patterns in control
charts indicatc unnatural causes for variations. Control chart pattern recognition is
therefore important in SPC. Past research shows that although certain types of charts,
such as the CUSUM chart, might have powerful detection ability, they lack robustness

and do not function automatically.

In recent years, ncural network techniques have been applied to automatic pattern
rccognition. Spiking Ncural Networks (SNNs) belong to the third gencration of
artificial neural nctworks, with spiking ncurons as processing clements. In SNNs, time
is an important fcaturc for information represcentation and processing. This thesis
proposcs the application of SNN techniques to control chart pattern recognition. It is
designed to present an analysis of the existing learning algorithms of SNN for pattern
recognition and to cxplain how and why spiking ncurons have more computational

power in comparison to the previous generation of ncural networks.

This thesis focuscs on the architecture and the learning procedure of the network.
Four new learning algorithms arce presented with their specific architecture: Spiking
Learning Vector Quantisation (S-LVQ), Enhanced-Spiking Learning Vector
Quantisation (NS-LVQ), S-LVQ with Bees and NS-LVQ with Bees. The latter two

algorithms cmploy a new intelligent swarm-based optimisation called the Bees

i

Algorithm to optimisc thc LVQ pattern recognition networks. Overall, the aim of the
rescarch is to develop a simple architecture for the proposed network as well as to
develop a network that is cfficient for application to control chart pattern recognition.

Expcriments show that the proposed architecture and the learning procedure give high

pattcrn recognition accuracics.

111

DEDICATION

THIS WORK IS ENTIRELY DEDICATED TO MY BELOVED FAMILY

TO MY HUSBAND: AZHAR MOHD KHALEL

who has greatly encouraged and supported me during my studics

TO MY CHILDREN: MUHAMMAD FIRHAN AZHAR
: LUKHMAN HAKIM AZHAR
: NUR KHAISUMAH AZHAR
: HILAL AZHAR
: UWAIS AZHAR

who always brings joy to my life

TO MY PARENTS: FATIMAH KHALIL KHAN & SAHRAN UTOH

who always pray for successfulness for my life

TO MY PARENTS-IN-LAW: HABIBAH ISMAIL & MOHD KHALEL MOHD
DAHAN

who always wondcrfully supported me throughout my cducation

v

ACKNOWLEDGEMENT

First, I thank ALLAH (My Lord) the all high, the all great and merciful who made it

possiblc for me to complete this work.

I am privileged to have Professor D.T.Pham as my supervisor. The high standard of
his rescarch has always been an inspiration and a goal to me. I am deeply grateful to
him for his consistent encouragement, invaluable guidance and strong support during
the course of this study. His thoughtful advice and constant support extended to me

will always bc remembered. May ALLAH bless him and his family.

I wish to cxprcss my sincere thanks to the Cardiff University, especially the
Manufacturing Engincering Centre (MEC) for the use of the facilitics to pursue this

rescarch.

I am also very grateful to all the members of the MEC for their friendship and helps.
Spccial thanks go to my fellow Ph.D. students Mr. Charles and the Bay Bees colony
Mr. Afshin, Mr. Samch, Mr. Ebubckir, Mr. Marco, Mr. Zaidi and Miss Jaynce for
their uscful discussion and sincere help whenever I needed them. My deeply thanks to
my dcar fricnd Dr. Zarina, Mrs. Siti Aishah, Dr. Zakaria, Mrs. Yuhanis, Mr. Massudi

and Mr. Yahya for their sincere help regarding programming C++.

I would also like to thank all the members of the Malaysian community in Cardiff for
their support and friendship. I am very grateful and acknowledge the substantial

financial support from Universiti Kebangsaan Malaysia (UKM) and Public Service

Decpartment of Malaysia. Sincere thanks are also to all the members of staff of the
Faculty of Information Science and Technology especially the Department of
Industrial Computing, Universiti Kebangsaan Malaysia, who taught me and gave me

the scientific base to continue my postgraduate studics.

I wish to cxpress my hcartfelt gratitude to my parents, Fatimah Khalil Khan and
Sahran Utoh for all the love and consistent support they have given me. I also want to
cxpress my warmest thanks to my parents-in-law, Habibah Ismail and Mohd Khalel
Mohd Dahan for their love and support in my studics. I also want to thank my
grandmother and cousins. Finally yct importantly, I wish to sincerely thank my
husband, Azhar Mohd Khalel and my children, Muhammad Firhan, Lukhman Hakim,

Nur Khaisumah, Hilal and Uwais for their love, paticnce, support and understanding.

vi

CONTENTS

ABSTRACT
DEDICATION
ACKNOWLEDGEMENT
DECLARATION
CONTENTS

LIST OF FIGURES

LIST OF TABLES

ABBREVIATIONS

Chapter 1. Introduction
1.1 Motivation
1.2 Rescarch objectives

1.3 Thesis organisation

Chapter 2. Approaches to Control Chart Pattern Recognition

2.1 Pattern Recognition

2.2 Pattern Recognition Learning Algorithm

2.2.1 Unsupervised Learning

2.2.2 Supervised Learning

2.3 Control Chart Pattern Recognition

2.3.1 Control chart patterns simulator

2.3.2 Data pre-processing
2.3.2.1 Scaling

2.3.2.2 Coding in Spiking Nctworks

viii

iv

vii

viii

xiv

xvii

xviii

10

10
11

13

13

15

22

23

23

24

24 Current Trends in Control Chart Pattern Recognition Research

2.4.1 Suatistical or Traditional Based CCPR

2.4.2 Artificial Intelligence (Al) Based CCPR
2.4.2.1 Fuzzy sets
2.4.2.2 Expert Systems
2.4.2.3 Artificial Neural Networks

2.5 Spiking Ncural Networks

2.5.1 Biological Background

2.5.2 Neuronal Coding Scheme

2.5.3 Rate Codes
2.5.3.1 Rate as an Average over Time
2.5.3.2 Ratc as a Spike Density (Average over

Scveral Repetitions of the Experiment)
2.5.3.3 Ratc as a Population Activity
(Average over Scveral Neurons)

2.5.4 Temporal Coding
2.5.4.1 Time-to-first-spike Coding
2.5.4.2 Phasc Coding
2.5.4.3 Correlations and Synchrony

2.5.5 Spiking Neuron Modcl

2.6 Optimisation Algorithm

2.7 Summary

Chapter 3. Spiking Learning Vector Quantisation (S-LVQ)
3.1 Prcliminarics

3.2 LVQ Network Structure

1X

26
27
27
28
32
33
33
38
38
39

41

43
43
45
48
50
50
52

53

54
54

55

3.3 The LVQ Algorithm
34 Learning Procedure in Standard LVQ Networks
3.5 Variants of LVQ Lcarning Procedures

3.5.1 LvQ2

3.5.2 LVQ with a Conscicnce

3.53 LVQ-X

36 Discussion

3.7 Current Trends in Spiking Neural Networks Rescarch
3.7.1 Typical Spiking Ncural Networks Architecture

3.7.2 A Review of Existing SNNs Learning Procedure

3.7.2.1 SNNs for Supervised Learning Procedure

3.7.2.1.1 Error Gradient Bascd Learning
Procedures

3.7.2.1.2 Hcbbian-based Supervised
Learning procedures

3.7.2.2 SNNs for Unsupervised Learning Procedure
3.7.2.2.1 Weight-based Learning
3.7.2.2.2 Delay-based Learning

38 Discussion of SNNs

39 Motivation for Research

3.10 Proposcd S-LVQ Algorithm
3.10.1 Network Structurc
3.10.2 S-LVQ Lcarning Procedure
3.10.2.1 Boosting

3.10.2.1 Motivating

57

58

59

59

63

64

67

69

69

73

73

74

75

76

76

78

81

83

86

86

91

93

94

3.11 Sctting the Weights, Delays and Threshold

3.12 Data Set

3.13 Empirical Evaluation of S-LVQ

3.14 Comparison with LVQ and its Variants

3.15 The Effcct of Number of Hidden Neurons on S-LVQ
3.16 Summary

Chapter 4. Enhanced S-LVQ Network (NS-LVQ)
4.1 Previous Work

42 Motivation for Rescarch

4.3 NS-LVQ Networks Architecture

4.4 Sctting the Weights, Delays and Threshold

4.5 Pre-Process Weights

4.6 NS-LVQ Lcarning Procedure

4.7 Data Set

4.8 Empirical Evaluation of NS-LVQ

4.9

4.10

4.11

Comparison with S-LVQ and Traditional NNs

Learning Parameter (77)

4.10.1 Static Learning Rate

4.10.2 Adaptive Learning Rate

4.10.3 Static Vs Adaptive Learning Rate

Summary

x1

100

100

101

103

103

106

107

107

109

110

114

117

118

124

125

127

128

128

128

132

132

Chapter 5. Optimisation of Spiking Neural Networks

5.1

5.2

53

54

5.5

5.6

5.7

5.8

59

Using the Bees Algorithm

Preliminarics

Intclligent Swarm-based Optimisation Algorithms (SOAs)

The Basic Bees Algorithm

5.3.1 Honcy Bees in Nature

5.3.2 Bees Algorithm

5.3.3 Characteristics of Bees Algorithm

Bees in Artificial Neural Network

Evolution Strategy (ES) in SNNs

Motivation for Research

Spiking Necural Networks with Proposed Bees Algorithm
5.7.1 Networks Structure

5.7.2 Optimising the Networks

5.7.3 Proposed Bees Algorithm

5.7.4 Spiking Networks Training Procedure

5.7.5 The Proposcd Bees Algorithm Parameters

Data Sct

Empirical Evaluation of Spiking Networks with Proposed
Bees Algorithm

5.9.1 Comparison with Spiking Network without

Bees Algorithm

5.10 Summary

X1i

134

134

135

137

137

139

139

143

147

148

149

149

150

153

157

158

158

160

162

162

Chapter 6 Conclusions and Future Work
6.1 Contributions

6.2 Conclusions

6.3 Futurc Work

Appendix A

Appendix B

Appendix C

References

Xxiil

164

165

169

172

174

205

208

210

Chapter 2

Figure 2.1
Figure 2.2

Figure 2.3

Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7

Figure 2.8

Figure 2.9 (a) :

Figure 2.9 (b):

Figure 2.10

LIST OF FIGURES

: A framework for pattern recognition
: A typical control chart indicating the process is in statistical control

: A typical control chart indicating the process is out of statistical

control.

: Six main classes of control charts.

: Main componcents of an expert system

: Action potential in the visual cortex of a monkey
: Biological ncuron

: Structure of a nerve

Definition of the mean firing rate via a temporal average

Gain function, schematic. The output rate 17is given as a function of
the total input

: Definition of the spike density in the Per-Stimulus-Time Histogram

(PSTH) as an average over several runs of the experiment

Figure 2.11 (a): A postsynaptic neuron reccives spike input from the population m

with activity Ap,.

Figure 2.11(b): The population activity is defined as the fraction of neurons that are

Figure 2.12
Figure 2.13

Figure 2.14

Chapter 3

Figure 3.1

active in a short interval [¢, t + N ¢] divided by Az

: Time to first spike
: Phasc coding

: Correlation / synchrony coding

: Standard learning vector quantisation network structure

X1V

Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9

Figure 3.10

Chapter 4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Figure 4.7

Chapter S
Figure 5.1

Figure.5.2

Figure 5.3

: Flowchart for LVQ procedure

: Geometric represcentation of LVQ2 procedure

: Feed forward spiking ncural network

: The proposed S-LVQ network structure

: Multi-synapsc terminals for the S-LVQ spiking ncural network

: A pscudo-codc description for S-LVQ Algorithm

: A graph showing the result of the different pattern recognisers

: The classification accuracy for different number of hidden neurons

: The implementation of the proposed S-LVQ algorithm for control
chart pattern recognition

: A structurc proposcd for the NS-LVQ network

: Multi-synapsc terminals for the NS-LVQ network
: A pscudo-code description for pre-process weight
: A pscudo-code description for NS-LVQ Algorithm
: Exponential decay function

: Linear decay function

: Adaptive vs. static lcarning for classification accuracy

: Flowchart of the Bees Algorithm

: Graphical illustration of the Bees Algorithm

: Single synapsc conncction between two neurons for the proposed

spiking necural network with the Bees Algorithm

XV

Figure 5.4 : Pscudo-code of the proposed Bees Algorithm

Figure 5.5 : Graph illustrating the shrinking method for points that are near to the
peak

Figure 5.6 : Classification accuracy of different pattern recogniscrs

Xvi

Chapter 3
Table 3.1
Table 3.2
Table 3.3
Table 3.4

Table 3.5

Table 3.6

Chapter 4
Table 4.1
Table 4.2

Table 4.3

Table 4.4

Table 4.5

Chapter 5

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

LIST OF TABLES

: Performance of various LVQ pattern recognisers

: Results of handwritten digit recognition

: Details of the proposed S-LVQ nctwork used for control charts
: Representation of the output categories

: Results of different pattern recogniscrs applied to
control chart data sct.

: The effect of the number of hidden neuron

: Details of the proposed NS-LVQ network used for control charts
: Representation of the output categorics

: Results of different pattern recognisers applied to control
chart data sct.

: Testing accuracy for different values of static learning rate

: Comparison of training accuracy based on two
different types of adaptive learning rate.

: The parameters of the Bees Algorithm for LVQ, RBF and MLP for
control chart pattern recognition

: Performance of different pattern recognisers with Bees

: Details of the proposed S-LVQ network uscd for control charts with
the Bees Algorithm

: Details of the proposed NS-LVQ network used for control charts with
the Bees Algorithm

: The parameters of the proposed Bees Algorithm

: Results of different pattern recognisers

xvil

SPC
DOE

AS

Al

NN
ANNs
LVQ
S-LVQ
NS-LVQ
MLP
RBF
ART

SOM

CCPR
ARL

CL

UCL
LCL

X chart
MR-chart
X -chart

R-chart

ABBREVIATIONS

: Statistical Process Control

: Design of Experiment

: Acceptance Sampling

: Artificial Intelligent

: Neural Network

: Artificial Neural Networks

: Learning Vector Quantisation

: Spiking Learning Vector Quantisation
: Enhanced- Spiking Learning Vector Quantisation
: Multi-Layer Perceptron

: Radial Basis Function

: Adaptive Resonance Theory

: Self-Organising Maps

: k-Nearest Neighbour

: Control Chart Pattern Recognition
: Average Run Length

: Centre Linc

: Upper Control Linc

: Lower Control Line

: Control Chart for Individual

: Moving Range Chart

: Average Chart

: Range Chart

Xviil

o -chart : Standard Deviation Chart

CUSUM : Cumulative Sum Chart

EWMA : Exponentially Weighted Moving Average ().
SNNs : Spiking Ncural Networks

SRM : Spike Response Model

LIFN : Leakey Integrate and Fire Modecl
PSTH : Per-Stimulus-Time Histogram

PSP : Post-Synaptic Potential

WTA : Winner-Takes-All

SOAs : Swarm-Based Optimisation Algorithms
SI : Swarm Intelligence

ACO : Ant Colony Optimisation

GA : Genetic Algorithm

PSO : Particle Swarm Optimisation

BA : Bees Algorithm

ES : Evolutionary Strategies

X1X

CHAPTER 1

INTRODUCTION

1.1 Motivation

Quality and productivity arc two esscntial factors for survival in a global economy
cxperiencing tremendous developments in information technology. The quality of a
product can be cvaluated in several ways. It is often very important to differentiate
these different dimensions of quality. Garvin (1987) provides an exccllent discussion
of cight components or dimensions of quality. These are as follows:

1) Performance- will the product do the intended job?

2) Reliability- how ofien docs the product fail?

3) Durability- how long does the product last?

4) Scrviceability- how casy is it to repair the product?

5) Aesthetics- what does the product look like?

6) Featurcs- what does the product do?

7) Perceived quality- what is the reputation of the company or its product?

8) Conformance to Standards- is the product made exactly as the designer intended?

In this rescarch, only the performance dimension will be addressed. Efficient process
control is a key clement in the maintcnance and improvement of quality and

productivity.

There arc threc major arcas in statistical methods for quality control and
improvement:

1) Statistical Process Control (SPC);

2) Design of Experiment (DOE);

3) Acceptance Sampling (AS).

This rescarch specifically focuses on SPC. Statistical Process Control is a traditional
technique to improve the quality of products, reduce rework, and scrap so that the
quality and productivity cxpectations can be met. SPC primarily involves the
implementation of control charts, which arc used to detect any change in a process
that may affect the quality of the output. Among the eight dimensions of quality, the
performance dimension for control charts has been chosen as the focus. Control charts
have been the most popular and widely used charts in industry for providing the
capability for pattern rccognition or pattern classification. Their applications have
now moved far bcyond manufacturing into enginecering, environmental science,
biology, genetics, cpidemiology, medicine, finance, and even law enforcement and

athletics [Lai, 1995; Montgomery, 1997; Ryan 2000].

The first control charts were developed by Shewhart in the 1920s [Shewhart 1931].
These simple Shewhart charts have dominated applications to date. Recently, control
chart pattern rccognition has received considerable attention in the literature,
including applications to syntactic approaches, fuzzy-expert systems and artificial
ncural nctwork modcls. Today’s manufacturing entcrpriscs nced to adopt modern

tools of quality cngincering to maintain and improve their competitiveness in the

marketplace. Onc way to improve control chart procedures is to replace the SPC
specialist with computers, which are able to mimic human-like intelligent behaviour.

Although other improved control chart varictics give more powerful detection ability,
such as thec combined Shewhart-CUSUM scheme, they still have limitations. First,
they still lack a pattern recognition capability [Guo and Dooley, 1993; Cheng 1995].
A review suggests that pattern recognition rescarch has increased in importance as
driven by the need for rapid interpretation and quick response to process deterioration
within advanced manufacturing cnvironments [Hwang and Hubele, 1993; Guh et al.,
1999a]. Piplani and Hubele [Piplani and Hubele, 2001] noted that research into this
arca 1s relatively young. Sccond, the needs for robustness of control chart
performance to violations of assumptions in control charting is increasing as in
realistic situations data arc auto-correlated. Third, as manufacturing complexity and
uncertainty increasc, SPC procedures become more demanding. There is a shortage of
good SPC spccialists as the skills requircd to implement proper control chart
procedures develop over time, making use of the accumulated knowledge of the
processes involved. In addition, a specialist’s skills may vary from one machine, or
plant, to another and involve human factors regarding learning ability, attitude and

decision making aptitude. Fourth, the systems do not take cffect automatically.

Recently, attention has focused on artificial intelligence (Al), a branch of computer
science, which has shown great promisc in dealing with difficult manufacturing
problems. What makes Al techniques popular is their ability to Icarn from expericnce
and to handlc uncertain, imprecise (fuzzy) and complex information in a competitive
cnvironment that demands high quality. Among the available Al tools, neural

networks is one of those which has attracted the most attention from researchers and

practitioners for the solving of many control chart issues such as pattern recognition.
A clear definition of artificial neural networks (ANNs) is given by Hecht-Nielsen,

[Hecht-Nielsen ,1990] in Pandya & Macy [Pandya & Macy ,1995].

“A neural network is a parallel, distributed information processing structure
consisting of processing elements (which can possess a local memory and can
carrv out localized information processing operations) interconnected via
unidirectional signal channels called connections. Each processing element

has a single output”.

ANNs cnhance this work by capturing automatically more meaning from the limited
number of measurements that originally were collected for traditional control charts.
The desired characteristics of a real-time SPC system in a highly automated and
integrated manufacturing cnvironment are accurate representation of the process
without oversimplification and adaptability to new changes [Jacobs and Luke, 1993].
Previous researchers [Hwang, 1992; Pham and Oztemel, 1994; Cheng, 1997; Spoerre
and Velasco, 2001] proposed ANNSs as a potential solution to SPC pattern recognition

problems.

A number of rescarchers have demonstrated the utility of neural networks in
identifying process non-randomness, such as shifts, cycles or trends, in quality control
charts. Ncural nctwork techniques have greatly extended and enhanced traditional
approaches. One promising aspect of ncural network pattern recognition is that the
system simultancously can be trained to identify a variety of unnatural patterns (Guh
and Tannock 1999). The application of ANN to SPC can also be bencficial when prior

knowledge about the probability distribution of the process data is unknown. ANN

has the ability to extract regularitics in datasets without any a priori assumptions if the

availablc data is cnough for cfficient training.

The new generation of artificial ncural nctworks has attracted research efforts from
thc domains of artificial intclligence and pattern recognition because they offer the
prospect of describing much better the actual output of a biological ncuron. Networks
of spiking ncurons (SNNs) arc the third generation of ncural network models. The
diffcrent generations of ANNs basced on neural network computational units can be

defined as follows.

The first generation employs McCulloch-Pitts neurons as computational units. These
arc also referred to as perceptrons or threshold-gates. They give rise to a variety of
ncural network models such as multi-layer perceptrons, Hopficld nets, and Boltzmann
machincs. A characteristic featurc of these models is that they can only give digital
output. In fact, they are universal for computations with digital input and output, and
cvery Boolean function can be computed by some multi-layer perceptron with a single

hidden layer.

The second generation is based on computational units that apply to a weighted sum
(or polynomial) of the inputs an ‘“activation function” with a continuous set of
possible output values, such as the sigmoid function or the lincar saturated function.
Typical examples for networks from this sccond gencration arc fcedforward and
recurrent sigmoidal ncural ncts, as well as networks of radial basis function units. The
characteristic features of these models are that they can compute arbitrary Boolcan
functions; furthermore, thcy can compute certain Boolean functions with fewer gates
than ncural networks from the first gencration. In addition, neural networks from this

second generation arc able to compute functions with analogue input and output. In

fact, they are universal for analogue computations in the sense that any continuous
function with a compact domain and range can be well approximated by a network of
this type with a single hidden layer. The second generation also support learning

algorithms, which arc based on gradient descent, such as back propagation.

The third generation incorporates spiking neurons (or “integrate and fire ncurons”) as
computational units. There exist a number of variations of this model, which are
described and compared in a recent survey [Gerstner, 1995]. Spiking ncuron models
arc high level models in which biological neurons arc considered as homogencous
processing units. Models for spiking neurons based on temporal coding are the Spike
Response Model (SRM), and the Leakey Integrate and Firc Model (LIFN) [Maass,
1997a]. This research adapts the Spike Responsec Model (SRM) as the model [Bialek,
Ricke, de Ruyter and Warland, 1991]. SNNs have a similar architecture to traditional
ncural networks. SNNs usc spikes as the basis for information processing and arc
based on temporal coding. The characteristic features of SNNs are firstly that they are
substantially more realistic as compared with the previous two models. In particular,
they describe much better the actual output of a biological ncuron, and hence they
allow us to investigatec on a theorctical level the possibilities for using time as a
resource for computation and communication. Secondly, the timing of individual or
single spikes plays the key-role in both computation and communication in SNNs.
Thirdly, the output of all the spiking ncurons is spikes of the same dimension. In other
words, the output of a spiking ncuron consists of the set of points at the time when a
ncuron fires. Fourthly, thc timing of a single spikc is considered, but not the
dimension. Lastly, a spiking ncuron can be viewed as a digital or analoguc
computational clement, depending on the type of temporal coding that is used [Maass

& Bishop, 2001].

1.2 Research Objectives

The overall aim of this rescarch was to design and develop spiking ncural network
systems as a powerful pattern recognition tool for control chart data. These systems
should bc able to rccognise patterns in control chart data in an efficient and cffective
way. Morcover, the systems should be reliable and with a simple architecture.
Accordingly, they should bc able to achieve superior performance in terms of
classification accuracy. To achicve the overall aim of the research, the following

objectives were sct:

* To perform a detailed analysis of cxisting spiking neural network techniques
for classification learning, with particular emphasis on supervised learning,
and to asscss their appropriatencss for control chart pattern recognition

application.

* To develop a simulator to create and to perform a detailed analysis of spiking

neuron networks on control chart pattern recognition.

* To improve the overall performance of spiking ncuron networks including:

» To improve the implementation of existing learning algorithms that has

been considered as significantly suitable for identified problems.

» To dcvelop new learning algorithms that are computationally efficient

for control chart pattern rccognition accuracy.

» To adopt a simple architecture such as learning vector quantization

(LVQ) for spiking ncuron nctworks.

» To develop an effective method of training spiking neural networks

using an optimisation algorithm.

1.3 Thesis Organisation

The remainder of the thesis is organised as follows.

Chapter 2 defines the classification learning problem, presents a framework for
viewing approaches to it, discussing in somc dctail spiking ncuron networks
algorithms and reviews other artificial ncural networks approaches. Current trends

and recent developments in spiking neural nctworks research are also presented.

Chapter 3 gives a dectailed description of previous work on learning vector
quantisation and its application to control chart pattern recognition. This chapter also
discusses the potential of spiking neural networks as a pattern recogniser for control
charts. A simple network structure similar to that of an LVQ network [Pham and Liu,
1995] is utilised. Accordingly, a new learning algorithm, called spiking learning
vector quantisation (S-LVQ), is proposed for control chart pattern recognition. An

cmpirical evaluation of the proposed algorithm is also reported and discussed.

Chapter 4 is an cnhancement of the network presented in chapter 3. Based on the S-
LVQ nctwork, a simpler network structure is proposed. This chapter describes a new
mcthod for cstablishing pre-process weight and its advantages are discussed. A study
of static and adaptive lcarning parameters is also presented. Finally, the chapter gives
the results of experiments carried out to demonstrate the performance of the proposed

structure.

Chapter 5 proposcs the use of the Bees Algorithm, a new optimisation tool, for
training spiking ncural nctworks. The chapter presents a detailed description of the

algorithm and its application to the control chart pattern recognition problem.

Chapter 6 summarises the contributions and conclusions of the thesis and proposes

directions for further rescarch.

CHAPTER 2

APPROACHES TO CONTROL CHART PATTERN RECOGNITION

2.1 Pattern Recognition

An informal dcfinition for pattern recognition is telling things apart. Otherwise, pattern
reccognition is the automatic transformation of data X; (observation, features) into a set of
symbols C; (classes). Pattern recognition (also known as pattern classification) is a field
within the area of computer science and can be defined as “the act of taking in raw data
and taking an action basced on the catcgory of the data” [Duda R.O ct al, 2001]. In other
words, pattern rccognition is a process of extracting information from an unknown data
stream or signal and assigning it to onc of the prescribed classes or categories [Haykin,
1999]. It uses methods from statistics, machine leaming and other arcas. Typical
applications arc automatic specch recognition, classification of text into scveral
categorics (c.g. spam or non-spam email messages), the automatic recognition of
handwritten postal codes on postal envelopes, or the automatic recognition of images of
human faces. The last threc cxamples form the subtopic image analysis of pattern
recognition that deals with digital images as input to pattern recognition systcms. Pattern
recognition techniques include Neural Networks, Hidden Markov Modcls, and Bayesian
Networks. The fundamentals of various aspects of pattern recognition can be found in

Theodoridis and Koutroumbas [Theodoridis and Koutroumbas, 2006].

10

This chapter gives an overview of pattern recognition approaches in general and of
control chart pattern recognition (CCPR) specifically. The chapter is organised as
follows: section 2 formally defines the pattern recognition leamning problem and presents
a framework for viewing approaches to it. The framework is presented in Figure 2.1;
scction 3 descnbes in more dctail control chart pattern recognition as this thesis is
concentrated on control chart applications; scction 4 reviews current trends and recent
developments in control chart pattern recognition research; a review of the spiking neural
nctworks approach in which this thesis 1s most interested is presented in section S; section

6 concludes the chapter with a summary of some of the key research issues in CCPR.

2.2 Pattern Recognition Learning Algorithm

Specifically, pattern recognition has three types of lcarning algorithms. These are
unsupervised, supervised and reinforcement lcaming algorithms. However, reinforcement
learning can be regarded as a special form of supervised leamming. The detailed
descriptions of these lcaming algorithms will be given in the next subsection. Usually,
any given type of network architecture can be employed in any of these three major
lcarning algorithms. The next two subsections describe these three learning algorithms

and identify the most suitable application for cach algorithm.

11

Raw Data

Data Pre-processing

l l

Test Data Training Data
y
Observation or Observation or
Feature Extraction Feature Extraction
Classificr Model Training Algorithm
Class 1 Class2 Classn Supervised Unsupervised

Figure 2.1: A framework for pattern recognition

12

2.2.1 Unsupervised Learning

In classification lecaming, a lcaming algorithm is given a samplc of pre-classified
cxamples from the problem domain called the training set. Each example is described by
a vector of attributes. An attribute is cither nominal or continuous. The algorithm lecams a

model that is used to predict the class of future examples.

Leamning mcthods can be divided into supervised and unsupervised schemes based on
whether or not a dedicated target function for prediction has been defined. In
unsupervised methods, such a function is not available and the goal is grouping or
clustering instances based on some similarity or distance measure. The unsupervised

scheme is more suitable for application where there are insufficient examples.

2.2.2 Supervised Learning

In supervised lecaming, there is cither a nominal or continuous-valued target function to
be predicted. The former case is referred to as classification and the latter as regression or
continuous prediction. In this thesis, only methods for supervised classification leaming

will be addressed.

If the examples in the training sct are presented and used all at once, leamning is said to be
batch or off-linc. If the examples are presented one at a time, and the concept definition
cvolves over time as successive examples arc incorporated, leaming is said to be

incremental or on-linc. This thesis concentrates on on-line leaming. The main goal of a

13

classification lcarning system is to produce a classificr that will assign previously-unseen
cxamples (1.c., cxamples not in the training set) to the corresponding classes with high

r,yhreX,yetY

accuracy. In other words, given a sct of example pairs (, the aim
is to find a function fin the allowed class of functions that matches the examples and to

infer the mapping implicd by the data.

The accuracy of a classifier is defined as the probability that it will correctly classify a
ncw, unlabelled example (i.c., examples in a test sct). Ideally, given a complete
description of an example (i.c., the values of all its attributes), its class should be
determined unambiguously. However, in some instances, process data is available every
seccond or cvery few minutes on hundreds of process variables and product
charactenistics. Conscquently, examples may appear with an erroneous class value, or
with erroncous attribute values, or with both. These errors may stem from a diversity of
sources, including the limitations of measuring instruments, and human error while
typing examples into a computer. All of thesc phcnomena, referred to collectively as
noise, limit the achievable accuracy in a pattern recognition or a pattern classification
problem. The degree of robustness of a leaming system with respect to noise is one of its
most important characteristics. It also occurs often in practice that the values of certain
attributes for certain example arc simply not available. These are called missing values
and again a practical control chart pattem recognition system must be able to handle

them.

14

Generally, the applications that usc the algorithm of supervised leaming are pattern
rccognition (also known as classification) and regression (also known as function
approximation). The supervised lecaming paradigm is also applicable to sequential data
(c.g., for speech and control chart recognition). This thesis concentrates on supervised

lcarning algorithms.

23 Control Chart Pattern Recognition

Many quality characteristics can be cexpressed in terms of a numcrical measurcment.
Examples include dimensions such as length or width, temperature, and volume. Such a
quality characteristic that is mcasured on a numerical scale is called a variable. Control
charts for variables arc used extensively. The control charts for variable data are: control
chart for individual (X); moving range chart (MR-chart); average chart (X -chart); range
chart (R-chart); median chart; standard deviation chart (o -chart); cumulative sum chart
(CUSUM); exponentially weighted moving average (EWMA). Two of the most
commonly used control charts in industry for variable data are the X-bar charts and the
rangc charts (R-charts). Thesc two control charts were adopted in this study. The success
of quality improvement depends on two major factors:
1) The quality of data available;

2) The cffectiveness of the techniques used for analyzing the data.

15

UCL

CL JD\\:};RQPW‘?/G\»/E/ \{F

LCL

Time

Figure 2.2: A typical control chart; control chart indicates the process is in statistical
control.

-
UCL A S

CL o \J

LCL

Time

Figure 2.3: A typical control chart; control chart indicates the process is out of statistical
control.

16

Generally, control charts arc a graphical display of a quality characteristic that has been
mcasured from a sample versus the sample number or time. The chart contains a centre
line (CL) that represents the average value and the upper (UCL) and lower (LCL) lines
allow variation hmits (natural vanation limits) of the quality charactenistic under
consideration.

Figure 2.2 and Figure 2.3 show a typical control chart for a process in statistical control

and a process out of statistical control respectively.

These limits, usually taken as the mean value plus and minus three standard deviations,

represent the boundaries of the range for unavoidable (inherent) variations as follows:

3o
UCL=u+— 1
7n (1
LCL=pu-32)

Vn

Three standard deviations are used because there is a high probability (99.73%) that a
sample measurement will fall within this range if the process is in control (the quality
characteristic is assumed to be normally distributed based on the central limit theorem).
Proper construction and interpretation of thesc charts is very important. Careful
construction of the charts and a capability analysis will determine the inherent variation
of a process which is in control and capable of producing the products to mect customer
specifications. After the charts have been constructed, they arc employed for on-line

process monitoring,

17

Control rules arc used to detect out-of-control situations considering the very recent
history of a process. A bare X-bar chart only indicates when to look for disturbances. It
does not indicate where to look for them, or what types of disturbances are present. In
order to avoid the occurrence of such situations, instcad of waiting for them to happen
and finding out aftcrwards, it is nccessary to monitor the long term bchaviour of the
process. This can be done by observing the patterns contained in the control charts for the
process. It is important to detect the out-of-control situation as well as to recognise the
shape of an unnatural pattern. The naturc of control chart pattemns can reveal any

impending out-of-control situations.

Thus the problem of monitoring a process to predict possible abnormalities reduces to
that of recognizing control chart patterns, which is the subject of this research.
Assumptions made for control chart performance are that the data is normally distributed

and that the data is independent.

A control chart may indicate an out-of-control condition either when one or more points
fall beyond the control limits or when the plotted points exhibit some non-random pattern
of behaviour. Certain types of pattern may also indicate an out-of-control condition. For
cxample, consider the control charts in Figure 2.3. Although all points fall within the
control limits, the points do not indicate statistical control becausc their pattern is very

non-random in appcarance.

18

Such patterns may indicatec a problem with the process, such as operator fatigue, raw
matcrial deliveries, and so forth. Although the process is not really out of control, the
yicld may be improved by climination or by reduction of the sources of variability

causing thosec patterns.

The problem is onc of patten recognition. That is, of recognizing systematic or non
random pattcms on the control chart and identifying the reason for this behaviour. In
many cascs, the pattemn of the plotted points will provide useful diagnostic information on
the process, and this information can be used to make process modifications that reduce
vanability (the goal of SPC). There are six main classes of patterns in control charts,
normal, cycle, upward trend, downward trend, upward shift, and downward shift, as

illustrated in Figure 2.4.

Specifically, control chart pattem recognition is a process of recognising an unknown
CCP and assigning it to onc of the prescribed classes. CCP includes previous data, and
docs not rely merely on the last data. Normally, pattems of the same category share

common properties.

19

Normal Cyclic

Decreasing trend Increasing trend

Downward shift Upward shift

Figure 2.4: Six main classes of control charts.

20

Cyclic pattcms occasionally appear on the control chart. Cyclic patterns may result from
systematic environmental changes such as temperature, operator fatigue, regular rotation
of opcrators and/or machines, or fluctuation in voltage or pressure or some other variable
in the production equipment. Shift patterns may result from the introduction of new
workers, methods, raw matcrials, or machines; a change in the inspection mecthod or
standards; or a change in the skill, attentivencss, or motivation of the operators.
Sometimes an improvement in process performance is noted following the introduction
of a control chart program, simply because of motivational factors influencing the
workers. Trend patterns or continuous movement in one direction are usually duc to a
gradual wearing out or detcrioration of a tool or some other critical process component.
In a chemical process they often occur because of settling or separation of the
components of a mixture. They can also result from human causes, such as operator
fatigue or the presence of supervision. Finally, trends can result from seasonal influences,

such as temperature.

Control chart patterns can be categorised cither as stationary or non-stationary. The
overall mean for stationary patterns does not change but it docs change for non-stationary
patterns. An cxample of mcan stationary pattems is cyclic, while examples of non-
stationary mean patterns arc trend and shift. The ability to interpret a particular pattem in
terms of assignable causcs requires experience and knowledge of the process. That is, onc
must not only know the statistical principles of control charts, but also have a good

understanding of the process.

21

2.3.1 Control chart patterns simylatyy
The following expressions Wer€ uged 1y generate the different patterns for a control chart.
This data sct is used in this thesig. The total number of gencrated patterns is 1500. The
training sct cmployed 1002, and the tegpng sct 498.
1. Normal pattems:

yit) = pu+r()o (3)

2. Cyclic patterns:

y(t) = p+rt)o + asin(2 ”/T) (4)
3. Increasing or decreasing trends:
vty = wu+r(t)o+ 8t (5)
4. Upward or downward shifts:

y(t) = p+r@t)yc ks (6)

where

= mean value of the process Variablg being monitored

o = standard deviation of the progess

a = amplitude of cyclic varigtions (tdken as 15 or less)

g = magnitude of the gradient 0f the trepd (taken as being in the range 0.2 to 0.5)

k = paramcter determining the shift poh‘ition (k=0 before the shift position; k=1 at the
shift position and thereafter),

r = normally distributed random nynbygr (between -3 and 3)

s = magnitude of the shift (takeN ag DCing In the range of 7.5 to 20)

22

t = discrete time at which the pattern is sampled (taken as being within the range 0 to 59).
T = penod of a cycle (taken as being in the range 4 to 12 sampling intervals).
¥(t) = sample value at time t.

This pattem simulator is taken from Pham and Oztemel [Pham and Oztemel, 1994].

2.3.2 Data pre-processing

In data pre-processing, the most important transformation techniques are 1)
standardization; 2) zoning; 3) scaling and 4) using continuous (as opposed to binary)
representation. In this thesis, before the data were presented to the networks, two steps of

data pre-processing were implemented: 1) scaling and 2) coding in spiking nctworks.

2.3.2.1 Scaling

Although the input data to any node can theoretically take any value, restricting it to fall
within a fixed range produces more cfficient training. Scaling is a transformation that is
devised according to cach individual application to modify the input data into a fixed
range. The most important issue in scaling is the range of output values dictated by the
scaling transformation. Diffcrent types of scaling transformation may operatc over
different ranges of values [Zormriassatine and Tannock, 1998]. There are two advantages
of scaling described by Swingler [Swingler, 1996]. Firstly, it takes care of the distribution
of the training data and the cffect of outliers, and secondly, it cnsures that errors or
variations of different variables contribute the same proportion to the change in network

weights. In this thesis, by applying a scaling method mentioned below, the original inputs

23

were scaled to fall as continuous values between 0 and 1. The actual data sets were scaled
values of y(?). Scaling was performed using the following expression:

V) =

Y1) = Viin

(7)

VYmax ~ Ymin

where

» = scaled pattern valuce (in the range 0 to 1)
Ymin= minimum allowed value (taken as 35)

Ymax= maximum allowed value (taken as 125)
This scaling method is taken from Pham and Oztemel [Pham and Oztemel, 1994] with

some modification on the minimum and maximum allowed value.

2.3.2.2 Coding in Spiking Networks

In traditional ncural nctworks, the cssential information is encoded in the firing rates,
which are averaged over time. Unlike the traditional neural networks, spiking neural
networks usc the timing of single spikes generated by a neuron to encode information.
The scheme of coding used here is called temporal coding. It utilizes the timing of
individual spikes. More details concerning temporal coding are given in section S. The
scaled input data will then be mapped over a number of time steps, referred to as the
input time¢ window. The coding resolution affects the performance of the nctwork.
Increasing the number of steps in the input time window will increase the precision.
However, this will decrease the computational cfficiency of the model. The precision of

the temporal code should thercfore be sclected in such a way as to attain adequate

24

accuracy with optimal computational efficiency. In this thesis, experiments for control
chart data sct revealed that an input time window with 100 units is adequate. A simple

lincar mapping scheme is as follows:

Input time window = (100 - (100 * (scaled data))) unit.

2.4 Current Trends in Control Chart Pattern Recognition Research

Control chart pattern recognition rescarch has been making significant progress in many
directions. A review by Hwang and Hubele and also Guh [Hwang and Hubele, 1993; Guh
ct al., 1999a] noted that this area of research has increased in importance, driven by the
need for rapid interpretation and quick response to process deterioration within advanced
manufacturing environments. Piplani and Hubele [Piplani and Hubele, 2001] claimed that
rescarch into this area is relatively young. This section examines two of the most popular
directions that have major impact on CCPR and discusses some current problems. The
two directions arc statistical or traditional based CCPR and automated and intelligent

CCPR.

2.4.1 Statistical or Traditional Based CCPR

Generally, statistical based CCPR can be divided into four types: 1) syntactic or structural
matching, ii) templatc matching, iii) statistical testing, and iv) heuristic algorithm. Pham
and Wani [Pham and Wani, 1997] applied heuristic techniques in their work on feature-

based control chart pattern recognition. They reported here that the manual process of

25

obtaining a good sct of heuristics is extremely laborious. Cheng [Cheng, 1989] proposed
syntactic pattern recognition. Cheng and Hubele [Cheng and Hubele, 1996] proposed a
mathematical pattern recognition algorithm drawn from syntactic (structural) and
statistical (discnminate) approach. The problem is that the application of such an
algonithm would require trial and ecrror cxperiments to define the parameters for the
algorithm and their sensitivitics to the patterns. Generally, traditional techniques for

control chart pattern recognition rely on assumptions requiring prior process knowledge.

2.4.2 Artificial Intelligence (Al) Based CCPR

Recently, research issues have been closely related to advances in pattern recognition
technology. Al in pattern recognition has attracted a lot of rescarch interest in time series
data sequencing, especially in control chart problems. Artificial intelligence is a science
that has defined its goal as concemed with designing intelligent computer systems, that
is, making machines do things that would require intelligence if done by humans -
understanding language, leaming, reasoning, solving problems, and so on. Various Al
techniques have been implemented for application in control chart pattem recognition

including fuzzy sets, expert systems, and neural networks.

2.4.2.1 Fuzzy sets

The fuzzy sct theory approach is a powerful means of representing and handling
uncertainty (imprecise information) and is particularly useful when an inexpensive

solution is sought [Schalkoff, 1997]. It was pionecred by Lotfi Zadch in 1965. The use of

26

fuzzy rules provides a way of cxploiting the tolerance for imprecision to achieve
tractability, robustness, and a low solution cost. Kahraman [Kahraman et al., 1995]
reported the usc of triangular fuzzy numbers in the tests for unnatural SPC patterns. No
results on the proposed method were given. Chang and Aw [Chang and Aw, 1996]
developed a neural fuzzy control chart for detecting and classifying process mean shifts.
Rccently, Wang and Rowlands [Wang and Rowlands, 1999; 2000] cxplored the use of
fuzzy logic to represent zones in the control chart for detecting runs. Their results

confirmed the feasibility of the technique for control chart interpretation.

2.4.2.2 Expert Systems

An cxpert system is a system that employs human knowledge captured by a computer to
solve problems that ordinarily require human expertise [Turban, 1995]. The heart of
expert systems is the domain knowledge (knowledge about a particular problem or
situation). Therefore, cxpert systems are also referred to as knowledge-based systems. In
an e¢xpert system, thc domain knowledge is usually represented in two forms: it is either
at the level of know-how where underlying fundamentals are not detailed (shallow
knowledge); or at a level where its theoretical and scientific fundamentals are deeply
expressed (deep knowledge). There are several ways of representing either type of
knowledge in an cxpert systcm. The three most popular methods arc rules, frames, and

semantic networks.

27

The four main components of an cxpert system are:

(1)

(i1)

(iii)

(iv)

Knowledge basc. This contains knowledge about the problem domain. It can
comprise rules, rule scts, frames, classes, and procedures.

Inference engine. This manipulates the stored knowledge to produce solutions
to problems. The inference engine in a rule-based expert system scans the
knowledge base, sclecting and applying appropriate rules. Inference can
procced in different ways according to different control procedures.

User interface or explanation module. This handles communication with the
user in a “natural” language. A set of general facilitics to be provided by a
user interface module is documented by Zahedi [Zahedi, 1990].

Knowledge acquisition. This assists with the development of the knowledge
basc by facilitating the capturc and encoding of the domain knowledge. The
main principles and stratcgies for knowledge acquisition may be found in
Cullen and Bryman [Cullen and Bryman, 1988]. The main components of an
expert system arc illustrated in Figure 2.5. Expert systems have been applicd

in SPC to automate control chart selection, construction, and analysis.

Some of the traditional mcthods for CCPR have been implemented using the expert

system technique. Swift [Swift, 1987] has described a knowledge-based control chart

pattern recogniser. The system employs a statistical hypothesis and is designed for off-

linc usc. A drawback of the system is that it assumes an in-control statc always follows

an out-of-control statc whereas, in practice, once a process has gone out-of-control, it is

unlikely to retumn to an in-control state without corrective intervention.

28

Similar systems have been reported for control chart pattern recognition using templates
[Cheng, 1989; Cheng and Hubele, 1989] or control theory [Love and Simaan, 1989;
Simaan and Love, 1990] instcad of statistical hypotheses. Pham and Oztemel [Pham and
Oztemel, 1992a] have described an on-line control chart pattern recogniser utilising
heuristic rules and statistical hypothesis. Swift and Mize [Swift and Mize, 1995] used
statistical significance tests as interpretative rules to determine the pattern vanation.
Generally, they reported promising results, and noted the feasibility of the expert system

for control chart pattern recognition.

Rescarchers have shown that expert systems arc a powerful tool for knowledge gathering,
knowledge retrieval, and decision making. Some drawbacks of the system are its limited
use for pattern recognition, particularly in a dynamic environment, and that it is time
consuming to train the expert systems with all possible pattens. Furthermore, as
mentioned above, expert systems require human experts to provide all the possible rules.
This may create difficulty when recognising patterns that have not been encountered

previously.

29

Expert or
knowledge)

cnginecr

Knowledge
acquistion

Inference
engine

Knowledge
base

User
interface

Figure 2.5: Main components of an expert system

30

User

The inflexibility of expert systems has limited their effectiveness in recognising control
chart patterns, particularly within changing and dynamic manufacturing environments.

Artificial ncural networks were found to be a promising tool to overcome this limitation.

2.4.2.3 Artificial Neural Networks

The pattern recognition and classification capabilitics of ncural networks have been
shown to be better than those of traditional techniques [Lippmann, 1989]. Neural
networks first appeared in the late 1980s. An artificial ncural network is a massively
parallel-distributed processor that has the ability to leamn, recall, and generalise
knowledge [Haykin, 1999]. A grcat deal of research in neural networks for pattern
recognition has focused on classification leamning, the main aim of which is to increase
the accuracy of correct classification. Ncural nctwork-based pattern recognisers perform
identification and classification with minimum process knowledge, requiring only
examples of how different patterns are classified. Such pattern recognisers are able to

gencralise from given examples. This enables arbitrary pattcrns to be readily classified.

Sutton, Pham and Zhang [Sutton, 1992; Pham and Oztemel, 1994; Zhang et al., 1995]
provide more detailed information regarding the application of NNs to manufacturing in
general. The principle reason for applying NNs to SPC is to automate SPC chart
interpretation. Accurate representation of the process without oversimplification, and
adaptability to necw changes, were among the features highlighted by Jacobs and Luke

[Jacobs and Luke, 1993] as the desired characteristics of a real-time SPC system within a

31

highly automated and integrated manufacturing environment. NNs can potentially satisfy

these requirements.

Rescarchers have applied various examples of NN architecture to pattern recognition.
Existing popular NN architectures arc: Multi-Layer Perceptron (MLP), Radial Basis
Function (RBF), Learning Vector Quantization (LVQ), Adaptive Resonance Theory
(ART), Auto-Associative NNS, and Kohonen Self-Organising Maps (SOM). As with NN
architecture, there are also many rules for NN learning. Hwang and Hubele [Hwang and
Hubele, 1993a, 1993b] have applied NNs with Back-propagation architecture. They used
the Average Run Length (ARL) as the performance criterion. Pham and Oztemel [Pham
and Oztemel, 1993a, 1993b] applied BPN with a hybrid structure and used classification
accuracy (%) as thc performance criterion. In 1994, Pham and Oztemel [Pham and
Oztemel, 1994] applied the structure of LVQ-X. They used classification accuracy as the
performance critcrion. Hwang and Chong [Hwang and Chong, 1995] used ART! mod
architecture, but they used modified ARL as the performance criterion. Yang and Yang
[Yang and Yang, 2002] proposed a new supervised LVQ for control charts based on a
fuzzy-soft competitive leaming network. They used classification accuracy as the
performance criterion. Generally, all the researchers reported promising results. Among
the existing NN architectures, LVQ structures have a very simple architecture. In this
thesis, LVQ structures will be of most interest and will be discussed in detail in Chapter

3.

32

2.5 Spiking Neural Networks

Expcrimental cvidence from the past few years indicates that many biological neural
systems usc thc timing of single spikes (temporal coding) for very rapid speed
information processing. It is considered that the timing of the first spike contains most of
the relevant information needed for processing. As a result, very recently, researchers’
attention has shifted to spiking ncurons. This research is concemed with spiking neuron
nctworks as the ANN technique for control chart pattern recognition. Spiking ncuron
networks have a similar architccture to traditional ncural networks, have spiking neurons
as processing units, transmit information by spike (pulses), and use spikes as the basis for

information processing.

Spiking neural networks are networks of spiking neurons, which represent an entirely
new generation of artificial ncurons. The next subsection introduces SNNs, including the

biological background, coding scheme, and neuron models.

2.5.1 Biological Background

Resecarch from the past hundred years has shown that the brain is comprised of neurons.
The most pertinent structures in ncurons are axons, dendrites, the cell body, and
synapscs. The axons carry signals away from the cell body to other ncurons. A ncuron
receives connections from thousands other ncurons. Most of these contacts take place on

the ncuron dendrites trees; however they can also exist on the soma or the axon of the

33

ncuron. The morphology of the dendrites trec plays an important role in the integration of
the synaptic inputs and it influences the way the neuron processes information and
computes [Mel, 1993]. The strengths of the charges received by a neuron on its dendrites
are added together through a nonlincar process of spatial and temporal summation [Koch,
1999]. The dendrites reccive stimuli and carry it to the cell body. The cell body is
scparated from the surrounding medium by a sclectively permeable membrane. There is
an clectric potential which is also known as action potential associated with the
concentration of charged ions inside the cell. When the cell receives a signal, the signal

may causc it to cither increase or decreasc the potential.

If the action potential cxceeds a certain threshold, the neuron fires, sending signals to
every other ncuron to which it is connected through a synapse. Synapses play an
important role in ncuronal information processing. Immediately after a neuron fires, its
potential is drastically lowered, which prevents it from repeatedly firing in some
circumstances. Figure 2.6, Figure 2.7 and 2.8 show an action potential exceeding the

threshold 6, a biological ncuron, and the structure of a nerve respectively.

34

Membrane
voltage

6 F--coee Xl —
[]
]
[]
]
]
¢ o time
J SAP

Figure 2.6: Action potential in the visual cortex of a monkey

35

dendrite

terminal

soma

Figure 2.7: Biological neuron

36

Dendrites: Receive signals

Synaptic terminals: Bring from other neurons
signals from other neurons

Cell body: Integrates

signals; coordinates
Action potential metabolic activities.
starts here.

Myelin: Insulates the
axon and speeds
conduction

Arrows indicates
direction oftravel of
action potential.

Exposed areas of

axon Dendrites of other

neurons receive

)) signals.
Synaptic terminals:

Transmit signals to
other neurons.

Figure 2.8: Structure of a nerve

37

2.5.2 Neuronal Coding Scheme

The mammalian brain contains more than 10'° densely packed neurons that are connected
to an intricate network. In every small volumes of cortex, thousands of spikes are emitted
cach millisccond. Generally, it is agreed that the information from one ncuron to another
is transmittcd by an action potential. The action potential can travel along the neuronal
fibres at a speed of about forty meters per second. However, there are still a few
questions that remain unanswered, such as what is the information contained in such a
spatial-temporal pattern of pulses, what is the code used by the neurons to transmit that
information, and how might other neurons decode the signal. Therefore, there is a lot of
ongoing rescarch with ncuronal spikes and it has resulted in several coding schemes.
Among the potential coding schemes are rate coding, temporal coding, and population
coding. However, in this thesis only rate coding and temporal coding are discussed in
order to make a comparison of the coding logic for these two. The next section analyses
the most widely accepted coding schemes, which are rate coding and temporal coding in

traditional neural networks and spiking neural networks respectively.

2.5.3 Rate Codes

In a seminal contribution more than 75 years ago, Adrian showed that the firing rate of
stretch receptor neurons is related to the force being applied to the muscles [Adrian,
1926]. As a rcsult, carly ncural network models interpreted the output of artificial
neurons as an abstraction of the firing rate or rate coding in their biological counterparts.

In a general way, rate coding is transferring information by means of the firing rate of a

38

ncuron. There arc three definitions of rate coding which refer to three different averaging
procedures: 1) An average over time. 2) An average over several repetitions of the

experiment. 3) An average over a population of neurons.

2.5.3.1 Rate as an Average over Time

This is the first and most commonly used definition of a firing rate, referred to as a
temporal average. Rate as a spike count is essentially the spike count in an interval of
duration T divided by T. Figure 2.9 (a) and (b) illustrates this coding. The length T of the
time window is sct by the experimenter and depends on the type of neuron from which it
records and on the stimulus. In practice, to get sensible averages, several spikes should
occur within the time window. This definition of rate has been successfully used in many
rescarch activities, particularly in cxperiments on sensory or motor systems. A classical

example is the cxperiment on a stretch receptor in a muscle spindle [Adrian, 1926].

39

Rate = Average over time (single
ncuron, single run)

Figure 2.9 (a): Definition of the mean firing rate via a temporal average.

W
splke count max
\? = &P
T
1 ;.
) I,

Figure 2.9 (b): Gain function, schematic. The output rate 1-is given as a function of the
total input.

40

2.5.3.2 Rate as a Spike Density (Average over Several Repetitions of the

Experiment)

This is a coding ratc based on the average of spikes over several observations with the
same stimulation. The samc stimulation sequence is repeated several times and the
ncuronal responsc is reported in a Per-Stimulus-Time Histogram (PSTH). Figure 2.10
shows the PSTIL. The time t is mecasured with respect to the start of the stimulation
sequence and At is typically in the range of one or a few milliseconds. The spike density
mecasure is a uscful method for evaluating neuronal activity, particularly in the case of

time-dependent stimuli.

The obvious problem with this approach is that it cannot be the decoding scheme used by
ncurons in the brain. Consider, for cxample, a frog which wants to catch a fly. It cannot
wait for the insect to fly repeatedly along cxactly the same trajectory. The frog has to

base its decision on single ‘run’.Each fly, and each trajectory, is different.

41

Rate = Average over several runs (single neuron, repeated runs)

Input o

st run | L | Spike density in PSTH
nd_| | | | Ll |
- I | I [l p = T K Nt A L)
Lo ™ p

Figure 2.10: Definition of the spike density in the Per-Stimulus-Time Histogram (PSTH)
as an average over several runs of the experiment.

42

2.5.33 Rate as a Population Activity (Average over Several Neurons)

The number of neurons in the brain is huge. The brain often has many ncurons with
similar propertics which respond to the same stimuli. For example, neurons in the
primary visual cortex of cats and monkeys are arranged in columns of cells with similar
propertics [Hubel, 1988; Hubel and Wicsel, 1962]. In particular, all ncurons in the
population should have the same pattern of input and output connections. Figure 2.11(a)

and (b) show the population activity.

A potential problem with this coding is that it formally requires a homogeneous
population of neurons with identical connections, which is hardly realistic. Real
populations will always have a ccrtain degree of heterogeneity both in their internal
parameters and in their connectivity patterns. Rate as a population activity may, however,

be a uscful coding principle in many areas of the brain.

2.5.4 Temporal Coding

The classical point of view that neurons transmit information exclusively via modulations
of their mean firing rates [Shadlen and Newsome, 1998; Mazurek and Shadlen, 2002;
Litvak et al., 2003] seems to be at odds with the growing empirical evidence that neurons
can generate spike-timing patterns with millisccond temporal precision in vivo [Chang et

al., 2000; Tetko and Villa, 2001] and in vitro [Mao et al., 2001; lkegaya ct al., 2004].

43

1)
Population =~

A

m

Figure 2.11(a): A postsynaptic ncuron receives spike input from the population m with

activity Ay,

Rate = Average over pool of equivalent neurons
(several neurons, single run)

J= l l‘ H l ':0 - o
R l l l'l I\.. (o] .0'
| I l
. [|1 Activity
N | L | N L Macdtit+At)
T At N

Figure 2.11(b): The population activity is defined as the fraction of neurons that arc
active in a short interval ¢, r + A¢] divided by A¢.

Patterns can be found in the firing sequences of single neurons [Reinagel and Reid, 2002]
or in the relative timing of spikes of multiple ncurons [Chang et al., 2000] forming a
functional ncuronal group [Edclman, 1993]. Activation of such a neuronal group can be
triggered by stimuli or by behavioural events [Villa et al., 1999; Richle et al., 1997]. In
temporal coding, information is transmitted by the timing of each spike. These findings
have been widely used to support the hypothesis of “temporal coding” in the brain
[Abcles, 2002; Diesmann ct al. 1999]. Within temporal coding, several variations exist by
considering the relations between spikes and other neurons. The main consideration in
this relationship is whether or not the individual action potentials and individual neurons
encode independently, or if the correlations between different spikes from the same or

several neurons carry significant information.

2.5.4.1 Time-to-first-spike Coding

Time-to-first-spike is a potential coding strategy that is based on temporal coding which
counts only the first spike of cach neuron. In this thesis, first spike was chosen as the
coding strategy as it is reliable and easy to implement. Morcover, there are few

discussions from previous rescarch that support the idea of using first spike.

Firstly, in a realistic situation, it is quitc common that a ncuron may abruptly receive a
ncw input at time t . This means that a ncuron might be driven by an cxtemal stimulus
which is suddenly switched on at time t (. Consider the following situation which
happens in the retina. When somceone looks at a picture, their gaze jumps from one point

to the next.

45

After cach saccade, there is a new visual input at the photo receptors in the retina.
Information about the time t o of a saccade would easily be available in the brain. Then
imaginc a code where for cach ncuron the timing of the first spike to follow t o contains
all information about the new stimulus. Hence, all following spikes would be irrelevant.
Altcmatively, each ncuron cmits cxactly onc spike per saccade and is shut off by
inhibitory input afterwards. The time gap between a reference signal and the first spike is
cnough to pass the information. It is also clear that, in such a scenario, only the timing
conveys information and not the number of spikes. This coding strategy is certainly an

idealization which formally analyzed by Wolfgang Maass [Maass, 1997b].

Secondly, in a slightly different context, coding by first spikes has also been discussed by
S. Thorpe [Thorpe et al., 1996]. He argues that the brain does not have time to evaluate
morc than onc spike from cach ncuron per processing step. Therefore, the first spike
should contain most of the relevant information. Using information-theoretic measures on
their experimental data, several groups have shown that most of the information about a
new stimulus is indeed conveyed during the first 20 or 50 milliseconds after the onset of
the neuronal response [Optican and Richmond, 1987; Kjaer et al., 1994; Tovee et al.,

1993; Tovee and Rolls, 1995].Figure 2.12 shows time-to-first-spike coding strategy.

46

T Stimulus

Figure 2.12: Time to first spike

47

An carly spike, which will result in a small time gap, could signal a strong stimulation,
and a later spike would signal a weaker stimulation. A coding scheme based on the time
to first spike is certainly an idcalization and simple. Thesc advantages mean that it is

applicd widely in analytical studics.

2.5.4.2 Phase Coding

A coding scheme with time to first spike codes the information by means of the time gap
between a ncuron spike and a static reference signal. Compared to time-to-first-spike
coding, a periodic signal is used as reference in phase coding. Oscillations of some global
variables such as the population activity are quite common in some areas of the brain
(hippocampus, olfactory). These oscillations could serve as an internal reference signal
for coding purposes. The concept of coding by phases has been studied by several
diffcrent groups, not only in model studies [Hopfield, 1995], but also experimentally
[O’Keefe and Recce, 1993]. There is evidence that the phase of a spike during an
oscillation in the hippocampus of the rat conveys information on the spatial location of
the animal which is not accounted for by the firing rate of the neuron alone. Figure 2.12

shows phasc coding.

48

,,,, Poees. L
Background oscillation
Figure 2.13: Phase coding
,1'/\\\‘ /’/\‘\ ;’/\‘\
i I i { l \ ! | y
‘ H 4
[AR
B |

Figure 2.14: Corrclation / synchrony coding

49

2.5.43 Correlations and Synchrony

Corrclations and synchrony coding usc spikes from other neurons as the reference signal
for a pulse code. Synchrony between a pair and a group of neurons could signify special
cvents and convey information which is not contained in the firing rate of the ncurons.
Onc famous idca is that synchrony could mecan ‘belonging together’ [Milner, 1974;
Malsburg, 1981]. Consider for example a complex scene consisting of several objects. It
is represented in the brain by the activity of a large number of neurons. Neurons which
represent the same object could be ‘labelled’ by the fact that they fire synchronously.

Figure 2.14 shows correlations and synchrony coding.

2.5.5 Spiking Neuron Model

There are several models which describe the neuronal activity in the brain for various
level abstractions. Spiking neuron models are high level models in which biological
neurons are considered as homogeneous processing units. There are two models for
spiking ncurons based on temporal coding. First, the Spike Response Model (SRM)
[Gerstner and Van Hemmen, 1994]. Second, the Leaky Integrate-and-Fire Model (LIFM),
[Maass, 1997a]. However, this rescarch will adopt SRM only. The study of spiking
necural networks as the tool for pattern recognition is mainly motivated by the desire to
develop more realistic necuron models and to automate the systems, as the SNNs have
morc computational power [Maass, 1996] in comparison with the traditional ncural
network model. Conscquently, the system should give higher accuracy in pattern

recognition or classification.

50

SRM s basically a generalised leaky integrate-and-fire model. The leaky integrate-and-
firc model describes the biophysical mechanisms of the neuron mainly by means of its
membrane potential. In addition, this model gives much importance to the time lag from
the last firing event. The SRM model is the basis for the SNN proposed in this thesis. The

model descnbes the state of a ncuron j at time ¢ by the state variable uj(t) [Maass,

2001a). Let F; be the inputs the neuron j receives from pre-synaptic neurons i € T,

where ;= {i | pre-synaptic to j}. In general, pre-synaptic neurons are the input spikes
data and j ncurons are basically the hidden neurons or called post-synaptic neurons. In a
typical network, a ncuron would have several pre-synaptic neurons and each could

present several input spikes. The effect of an input spike given at tff) to the neuron j at

()

1

time ¢, (t >¢!/") will be wﬂ.sﬂ.(t —t) , where ¢, is called the spike response function.
The input spikes can either increase or decrease the state variableu ;. An output spike will
be generated when u; cxcceds a threshold value @ at some time 7. In this thesis, ¢ is the
simulated time. All the previous output spikes of ncuron j will be F; where F; -
{(tﬁ:”)l < f<ny={f|u,(¢)=6andu(r)> 0} at a particular time ¢. Here, #'/) is the time

where the state variable u; crosses the threshold value from below. A neuron potential

(referred to post-synaptic neuron) will be set to a very low value immediately after a
particular firing cvent. This phenomenon will return the neuron potential to its normal

statc after a significant amount of time. This is known as the refractoriness of a neuron.

This statc variable « (t) can be defined with cquation:

51

u, ()=, (-10)+ X Y we, e -1)

) iel” /)
/e iel’; /e

where 7, is the function to reflect the refractoriness of the neuron j, the strength of the
conncction between the neuron 7 and j is represented by w), and €, represent the spike
response function, which can be ecither excitatory or inhibitory. An excitatory spike
response function will increase the potential of the receiving neuron while an inhibitory

spike response function with ncgative cffect will decrease the potential of the receiving

ncuron.

2.6 Optimisation Algorithm

Many complex multi-variable optimisation problems cannot be solved exactly within
polynomial bounded computation times. This has generated interest in scarch algorithms
that find near-optimal solutions in reasonable running times. The algorithm described in
this paper is a search algorithm capable of locating good solutions efficiently. The
algorithm is inspired by the food foraging behaviour of honey bees and could be regarded
as belonging to the category of “intelligent” optimisation tools [Pham et al., 2006]. This
thesis proposes a modified version of the basic Bees Algorithm, specifically for
determining the neighbourhood range and presents an application of the new algorithm to
spiking ncural networks. The algorithm is also among the first applications to control
chart pattern recognition. The aim of applying the Bees Algorithm in the proposed

nctworks here is for optimising the network topology to the size of the network, the time

52

needed for the optimisation and the classification accuracy. This algorithm is presented in

detail in chapter S.

2.7 Summary

This chapter has given background information on pattern recognition and leaming
algonthms with attention focused on control chart pattern recognition. The basic concepts
of control chart pattern recognition have been described and the three main types of
lcamning algorithms available have been presented. This chapter has also outlined a
number of algorithms of each type and discussed their performance for control chart
pattern recognition. Finally, recent directions in research approaches have been

presented.

53

CHAPTER 3

S-LVQ: A SPIKING LEARNING VECTOR QUANTISATION

ALGORITHM

3.1 Preliminaries

Learning vector quantisation (LVQ) networks as originally proposed by Kohonen
[Kohonen, 1984] are known good neural classifiers which provide fast and accurate
results for many applications. LVQ is a widely used approach to classification. It is
applied in a variety of practical problem areas including medical image and data
analysis, for example in speech recognition and in control chart pattern recognition.
This is a supervised version of vector quantization. Classes are predefined and the
data are labelled. The goal is to determine a set of prototypes that best represent each
class. In vector quantization, it is assumed that there is a codebook which is defined
by a set of M prototype vectors. (M is chosen by the user and the initial prototype

vectors arc chosen arbitrarily).

The first part of this chapter, from section 3.2 to section 3.6, is organised as follows:
section 3.2 introduces the general structure of LVQ networks; a review of LVQ
algorithm is then given; this is followed by a detailed description of the existing
learning procedure in LVQ networks including the standard LVQ and variants of its
lcarning procedures; finally, scction 3.6 outlines the control chart pattern recognition

problem using LVQ and previous work addressing it.

54

3.2 LVQ Network Structure

An LVQ network comprises threc layers of neurons: an input buffer layer, a hidden
laycr, and an output layer. The structure of an LVQ is shown in Figure 3.1. The input
layer carries out no information processing and only conveys the input patterns to the
nctwork. The hidden layer (also known as the Kohonen layer) performs actual
information processing. The output layer yields the category of the input pattern. The
nctwork is fully connected between the input and hidden layers and partially
connccted between the hidden and output layers. Each output neuron is linked to a
different cluster of hidden ncurons. The hidden layers to output layer connections
have their values fixed to 1. The weights of the connections between the input and
hidden layers constitute the components of the reference vectors (one reference vector

1s assigned to cach hidden neuron).

The reference vectors’ values are modified during the training of the network. Both
the hidden neurons and the output neurons have binary outputs. When a Kohonen
neuron wins the competition, it is turned ‘on’ (its activation value is made equal to 1)
while others are automatically switched ‘off’ (their activation values are set to 0).
This, in turn, makes the output neuron connected to the activated Kohonen neuron or
to the cluster of hidden neurons that contains the winning neuron switch ‘on’ (emits a
‘1”) and the rest switch ‘off” (emits a ‘0’). The output neuron that produces a ‘1’ gives

the class of the input pattern. Each output neuron is dedicated to a different class.

55

Class 1

Output layer

Hidden
JCohonen)
layer =~

Input layer

Input vector

Reference vector

Figure 3.1: Standard learning vector quantisation network structure

56

3.3 The LVQ Algorithm

LVQ, as its name indicates, is based on vector quantisation, which is the mapping of
an n-dimensional vector into one belonging to a finite set of representative vectors.
That is, vector quantisation involves clustering input samples around a predetermined
number of reference vectors. Learning in an LVQ network consists essentially of
finding those reference vectors. The classification of input values into clusters is
conducted on the basis of nearest neighbourhood, and the smallest distance between
the input vector and reference vectors is sought (smallest in the sense of the normal
Euclidean distance). For each training pattern, the reference vector that is closest to it
is determined. The corresponding output neuron is also called the winner neuron. At
cach learning iteration, the network is told only if its output is correct or incorrect and
only the reference of that neuron which wins the competition by being closest to the
input vector is activated and allowed to modify its connection weights. This
movement of the reference vector is controlled by a parameter called the /earning
rate. It states how far the reference vector is moved as a fraction of the distance to the
training pattern. Usually the learning rate is decreased in the course of time, so that
initial changes are larger than changes made in later epochs of the training process. A

simple LVQ training procedure is as follows [Pham and Liu, 1995]:

(1) Initialise the weights of the reference vectors;

(i) Present a training input pattern to the network;

(iii) Calculate the (Euclidean) distance between the input pattern and cach reference

vector;

57

(iv) Update the weight of the reference vector that is closest to the input pattern, that
is, the reference vector of the winning hidden neuron. If the latter belongs to the
cluster connected to the output neuron in the class that the input pattern is known to
belong to, the reference vector is moved closer to the input pattern. Otherwise, the

reference vector is moved away from the input pattern;

(v) Return to (i1) with a new training input pattern and repeat the procedure until all

training patterns arc correctly classified (or a stopping criterion is met).

3.4 Learning Procedure in Standard LVQ networks

Good performance in an LVQ network depends on the correct number of reference
vectors being assigned to each category, their initial values, and the choice of a proper
learning rate and stopping criterion. In general, the Euclidean distance is adopted as a

basic rule of competition between the weight vectors of the reference vectors and the

input vector. The distance d, between the weight vectors W, of neuron i and the input

vector X is given by:

d=|w - x|= W, - X)) (8)

Where W, and X, arc the j th components of W, and X, respectively. As mentioned

in scction 3.3, the ncuron which has the minimum distance wins the competition and
is permitted to change its connection weights in each learning iteration. The learning

formula for updating the reference vector is given as follows:

If the winning neuron is in the correct category, then;

58

Wm. :Wold+/1(X_Wold) (9)

and if the winning neuron is in the incorrect category, then;

Weew =W —AX =W,,;) (10)

new

In equations (9) and (10), Ais the learning rate (usually,0<A<I), which decreases
monotonically with the number of itcrations. The implication of the learning rule
cxpressed in equations (9) and (10) is that the weight or reference vector is updated to
be close to the input vector if it represents the input pattern, and is pushed away if it

does not. Figure 3.2 summarised the features of a standard LVQ network.

3.5 Variants of LVQ Learning Procedures

3.5.1 LVQ2

LVQ2 was also developed by Kohonen [Kohonen et al. 1988, Kohonen 1990]. It is
usually employed after acceptable results have been obtained by applying the standard
procedure. LVQ2 refines the solution boundary between regions where
misclassifications have occurred. The learning algorithm modifies simultaneously two

reference vectors w, and #, in cach learning iteration if:

(i) w, and w, are the closest and next closest neighbours of the input vector, where #,

is in the incorrect category and W, is in the correct category, and

59

Features of an LVQ network

1) Vector quantisation

2) Representative classifiers — Nearest neighbour

3) Learning algorithm — Reinforcement

4) Learning rules — Winner-Takes-All

5) Learning rate — Monotonically decreasing

6) Input layer ————— Hidden layer «wieseseescrannnee. Output layer

fully connected partially connected

Figure 3.2: Features of an LVQ network

60

(11) The input vector x falls inside a window located centrally between w, and w, .

The learning formula for updating the reference vector is given as follows:

Mnew=Mota= UX =Wot) (11)

W2 new=Wao1d = A(X - Waotd) (12)

where #i,. and #,,, arc the new reference vectors. The learning rate 1 is a

monotonically decreasing function of time. Other connection weights of the network
rcmain untouched. This weight modification procedure is represented geometrically in

Figure 3.3.

61

Window
width

Figure 3.3: Geometric representation of LVQ2 procedure

62

3.5.2 LVQ with A Conscience

This version of LVQ was originally developed by DeSieno [DeSieno, 1988] to avoid
the problem that some ncurons tend to win too often while others are always inactive.
The standard LVQ algorithm can suffer from this type of problem. This happens
particularly when the ncurons arc initialized far from the input vectors. In this case
some ncurons would quickly move closer to the input vectors and the others would
rcmain pcrmanently far away. The conscience mechanism gives the neuron which
wins too often a ‘guilty conscience’ and penalises it by adding a distance bias to the
true distance between that neuron and the input vector. The distance bias is based on
the number of times the neuron has won the competition. The distance bias is

calculated as:

b =C[p,- 'WJ (13)

Where C is a constant bias factor, N is the number of Kohonen neurons, and p, is the

probability of the competition being won by neuron i. The probability is initially set at

1/N but is then updated according to the following equation:

Pinew =P iold +B((Vi—piold) (14)

Where B is a constant selected to prevent random fluctuations in the data, ;=1 if

ncuron i wins the competition, and 0 otherwise. The new distance d; new of neuron i

from the input vector is calculated as:

dinew =diold +bi (15)

63

The competition is carried out with the new distances, and the same weight updating

procedure is then applied as for the standard LVQ.

3.53 LVQ-X

The training procedure employed is largely based on the learning procedure originally
developed by Kohonen [Kohonen, 1990]. As mentioned before, in the two existing
LVQ models, only one weight vector is updated at each learning iteration. In LVQ?2,
however, two weight vectors arc updated at a time, which happens under rare
circumstances. In LVQ-X, the extended version of the LVQ learning procedure, two
reference vectors are updated in most iterations, resulting in a decrease in the learning

time and an increase in the generalisation capability of the system.

The main idea of LVQ-X is to modify two candidate weight vectors. The first, called
the “global winner”, is the weight vector nearest to the input vector. The second, the
“local winner”, is the weight vector which is in the correct category and nearest to the
input vector in that category. If the global winner is not in the correct category then it
is pushed away from the input vector and at the same time the local winner is brought
closer. This gives a chance for the correct neuron to win the competition in the next
itcration. Obviously, if the global winner is also the local winner then only one weight

vector needs to be updated.

64

In this case, the weights are modified as follows:
Wnew: Wold+j'(X—W()ld) (16)

where /4 is the learning rate. If the global winner is different from the local winner

then:
Wnew:Wold_A(X_Wold) (17) and
Wne»v:W01d+]'(X—Wold) (18)

Pham and Oztemel [Pham and Oztemel, 1994] claim that numerical comparison
showed that LVQ-X has a better classification accuracy within a shorter training time
than LVQ and its two variants, of LVQ2 and of LVQ with a conscience mechanism.
Moreover, dependency on the initial values of the weight vectors is virtually
climinated and the performance of the network is almost the same for the cases of
arbitrary initial weight values and initial weight values taken from the training set. A
comparison of the various LVQ models is given in Table 3.1. The proposed LVQ-X
network achieves even better classification accuracy than that obtained with the MLP

network.

65

' Pattern reci)gniser | Number of | Learning

1

Test performance

' training epochs performance (%) | (%)

LVQ (Standard) ; 70 | 95.18 92.31
LVQ2 | 4 94.31 89.62
- LVQ (Standard) + 74 96.18 92.61
! LVQ2
LvQ (with a 70 95.98 92.71
~ conscience mechanism) ‘
| LVQ-X ; 20 ‘{ 100.0 97.70

Table 3.1: Performance of various LVQ pattern recognisers

66

3.6 Discussion for LVQ

Experiments showed that in standard LVQ some neurons may win too often while
others are always inactive. This means that only a few neurons have been learning,
hence resulting in poor initial performance. This situation may occur when a network
cannot learn the complete sct of training patterns when the weights are randomly
initialised. The accuracy levels achieved are below 60%. To solve this initialisation
problem, some of the patterns in the training set were assigned as initial weight
vectors. The number of patterns that can be learned had increased. However, the
network still did not achieve 100% learning. The classification accuracy levels of the
network after 70 training epochs are 95.18% for the training data and 92.3% for the

test data.

Experiments again showed that the initialisation procedure problem occurs in LVQ2.
Patterns from the training set were assigned as the initial values of the weight vectors
since the network cannot learn with random initial weight values. Furthermore, after
only four training epochs the LVQ2 learning procedure was no longer applicable
because of the conditions set out as mentioned above in section 3.5.1. The overall
accuracy levels of the network are 94.31% for the training set and 89.62% for the test

set after 4 training epochs.

Applying LVQ2 to a network using the standard LVQ algorithm showed some
improvement in the accuracy level. The accuracy levels achicved after the network is

traincd for 70 cpochs are 96.18% for the training set and 92.61% for the test set.

67

Applying a conscience mechanism to the standard LVQ model increases the learning
capability of the network. It also helps to reduce the dependence on using training
cxamples as initial weights. Results showed that an LVQ module with a “conscience”
can learn 95.98% of the training set and correctly classify 92.71% of the test set

following 70 training epochs.

Pham and Oztemel [Pham and Oztemel, 1994] reported that at the end of 10 training
cpochs, the network of LVQ-X can correctly classify 99.39% of the training set and
96.30% of the test sct. After 20 training epochs, the overall recognition accuracy level
increases to 100% for the training set and 97.70% for the test set in a shorter training
time. Despite the good classification performance of LVQ-X, at the same time, two
weights at most need to be modified for LVQ-X. The first is called the “global
winner”, which is the one globally nearest to the training vector but not necessarily in
the correct category. The sccond is called the “local winner” and is the one nearest to
the training vector in the correct category. Pham and Oztemel {Pham and Oztemel,
1994] claimed that this approach gives an opportunity for the correct neuron to win in

the next iteration.

It could therefore be concluded that most of the existing LVQ algorithms were
originally designed to tackle the problem that some ncurons may win too often while
others are always inactive, thus reducing the dependency on using training examples
as initial weights. Morcover, a significant drawback of many of these techniques is

the poor classification accuracy.

68

The second part of this chapter reviews current trends in SNNs research. The review
includes the network architecture and it existing learning procedure. Section 3.8
discusses the pattern recognition problem using SNNs and previous work addressing

it. SNNs research has been making significant progress in many directions.

This section cxamines two of the most important directions and discusses some
current problems. The two directions are those based on supervised learning and on

unsuperviscd learning.

3.7 Current Trends in Spiking Neural Networks Research

3.7.1 Typical Spiking Neural Networks Architecture

Spiking neural networks have a similar architecture to traditional neural networks.
Elements that differ in the architecture are the numbers of synaptic terminals between
cach layer of neurons and also the fact that there are synaptic delays. Several
mathematical models have been proposed to describe the behaviour of spiking
neurons, such as the Hodgkin-Huxley model [Hodgkin and Huxley, 1952], the Leaky
Integrate-and-Fire model (LIFN) [Maass, 1997] and the Spike Response Model
(SRM) [Bialek, Rieke, de Ruyter and Warland, 1991]. Figure 3.4 shows the network

structure as proposed by Natschlager and Ruf [Natschlager and Ruf, 1998].

69

This structure consists of a feedforward fully connected spiking neural network with
multiple delayed synaptic terminals. The different layers are labelled H, I, and J for
the input, hidden, and output layer respectively as shown in Figure 3.4. The adopted
spiking ncurons are based on the Spike Response Model to describe the relationship

between input spikes and the internal state variable. Consider a neuron j, having a
sct D, of immediate pre-synaptic neurons, receiving a set of spikes with firing times
t,, i € D, 1tis assumed that any ncuron can generate at most one spike during the

simulation interval and discharges when the internal state variable reaches a threshold.

The dynamics of the internal statc variable x,(¢) are described by the following

function:

@O w,y, @) (19)

ieD,
y,(t)is the un-wcighted contribution of a single synaptic terminal to the state variable

which described a pre-synaptic spike at a synaptic terminal k as a PSP of standard

height with delay 4"

yE=e@t-1,-d") (20)

70

Figure 3.4: Feedforward spiking neural networks

71

The time ¢, is the firing time of pre-synaptic neuroni, and d* the delay associated

with the synaptic terminal & . Considering the multiple synapses per connection case,

the state variable x, (z)of neuron j receiving input from all ncurons i is then

described as the weighted sum of the pre-synaptic contributions as follows:

m
_ ko k
x, (1) = ZZW,;)’,- () 1)
ieD; k=1
The effect of the input spikes is described by the function & (t) and called the spike

response function and w, is the weight describing the synaptic strengths. The spike

response function & (t) is modelled with an « -function, thus implementing a leaky-

integratc-and-fire spiking neuron, and is given by:

t

1-—

! T
fort>0,else £(t)=0 (22)

7 is the time constant which defines the rise time and the decay time of the post-
synaptic potential (PSP). The individual connection, which is described in
[Natscchlager and Ruf, 1998], consists of a fixed number of m synaptic terminals.
Each terminal serves as a sub-connection that is associated with a different delay and
weight, see Figure 3.4. The delay d* of a synaptic terminal k is defined as the
difference between the firing time of the pre-synaptic neuron and the time when the
post-synaptic potential starts rising. The threshold & is a constant and is the same for

all ncurons in the network.

72

3.7.2 A Review of Existing Spiking Neural Networks Learning Procedure

Network architectures based on spiking neurons that encode information in the
individual spike times have yielded, amongst other things, a self-organising map akin
to Kohonen’s SOM [Ruf and Schmitt, 1998], and networks for unsupervised
clustering [Bohte ct al., 2000; Natscchlager and Ruf, 1998]. The principle of coding
input intensity by relative firing time has also been applied successfully to a network
for character recognition [Buonomano and Merzenich, 1999]. Recently, a review of a
spiking ncural network model based on supervised learning for spike time coding has

been carried out [Ponulak, 2005].

3.7.2.1 SNNs for Supervised Learning Procedure

Generally, supervised learning procedures in SNNs are categorised into two groups
based on the underlying training strategy. The groups are error gradient descent based
models and Hebbian rule based models. Furthermore, since the input information in
SNNs can be encoded either in the connection weights or delays, the two models can
also be grouped based on the encoding strategy. The following subsection gives

details of the above mentioned learning models.

73

3.7.2.1.1 Error Gradient Based Learning Procedures

Bohte et al. [Bohte et al., 2000] proposed a network of spiking neurons that encodes
information in the timing of individual spike times. They derive a supervised learning
rule, SpikeProp, akin to traditional error-backpropagation. They utilise a fully
connected feedforward spiking ncural network. Each connection between two neurons
corrcsponds to sixteen sub-conncctions. Each sub-connection is characterised with a
different delay and weight. In Bohte et al’s work, using this algorithm, they
demonstrate how networks of spiking neurons with biologically reasonable action
potentials can perform complex non-linear classification in fast temporal coding just

as well as rate-coded networks.

A drawback of Bohte et al.’s work is that a large set of weights have to be adjusted,
so the size of the network increases drastically with the number of neurons. A simpler
learning procedure might help to reduce this problem. The presented Spikeprop
algorithm was reinvestigated in Schrauwen and Campenhout [Schrauwen and Van
Campenhout, 2004], Moore [Moore, 2002], and Jianguo and Embrechts [Jianguo and
Embrechts, 2001]. Schrauwen and Campenhout proposed an improvement on Bohte
ct al.’s model. They proposed to adopt connection delays; a time constant, and the
neuron’s threshold instead of adapting only the connection weights. In Moore’s work
[Moore, 2002], the weights were initialized with a value that led the network to
successful training in a similar number of iterations as in Bohte’s work, but with high
lcarning rates. However, this conflicts with Bohte’s work as hc argued that the
approximation of the threshold function implies that only small learning rates can be
used. Jianguo and Embrechts [Jianguo and Embrechts, 2001] improved the proposed

model by Bohte et al. by adding a momentum term to the learning rule.

74

3.7.2.1.2 Hebbian-based Supervised Learning Procedures

Hebbian learning is much more biologically realistic. There are numerous examples in
biological modelling studies where Hebbian-based learning has been implemented.
Hebb’s rule states that synaptic strength will be increased if the post-synaptic neuron
and the pre-synaptic ncuron are both highly active at the same time. According to the
Supervised Hebbian Learning, it is assumed that learning rules apply to all synaptic
inputs of the learning neuron and the post-synaptic neuron receives an additional
“tcaching” input /(z). This additional input could either arise from a second group of
neurons or from the intracellular current injection. The role of /(?) is to increase the
probability that the neuron fires at or close to the desired firing time. Maass [Maass,
1997b] proposed a monosynaptic learning rule which trains a single synapse with
temporarily encoded inputs. The network is activated for a time period during each
learning cycle. An important assumption in this model is that the potential rise in the
neuron due to an incoming spike is linear. However, in a practical situation where
neurons have several incoming connections and receive inputs from each connection,
it is difficult to find the effect induced by a single connection. Ruf and Schmitt [Ruf
and Schmitt, 1997] suggested a Hebbian-based supervised learning model which
encodes the information in the connection weights. It was suggested also that the
connections in Maass’s work can be trained in parallel through a normalisation

technique.

75

3.7.2.2 SNNs for Unsupervised Learning Procedure

Hopfield [Hopfield, 1995] presents a model of spiking ncurons for discovering
clusters in an input space akin to Radial Basis Functions. Extending Hopfield’s idea,
Natschlager and Ruf [Natschlager and Ruf, 1998] proposed a learning algorithm that
performs unsupervised clustering in spiking necural networks using spike-times as
input. This model encodes the input patterns in the delays across its synapse and is
shown to reliably find centers of high-dimensional clusters. Generally, there are two
kinds of model for the unsupervised learning:

(i) Encodes the input vectors in the connection weights;

(11) Encodes the input vectors in the connection delays.

Basically, both of the models use Hebbian-based self-organised weight adaptation.

3.7.2.2.1 Weight-based Learning

The model discussed below encodes the input information in the connection weights.

Ruf and Schmitt [Ruf and Schmitt, 1998] proposed a model for self-organisation in a
network of spiking neurons which encodes the input information in connection
weights. The effect of weight normalisation also has becn studied in several
implementations of the SOM. It was discovered that, after a certain number of
learning cycles, approximately the same degree of topology preservation could be

achieved regardless of whether or not the weights were normalised.

In contrast to the standard formulation of the SOM, their work has the additional
advantage that the winner among the competing neurons can be determined quickly

and locally by using lateral excitation and inhibition. These lateral connections also

76

constitute the neighbourhood relationship among the neurons. In order to realise
cooperation among neurons in the neighbourhood of the winning neuron, two simple
measures were implemented as follows:

(1) Neurons which are topologically closer were assigned with strong excitatory lateral
connections and remotc ncurons were assigned with strong inhibitory lateral
connections. Through these conncctions the neurons closer to the winning neuron are
cncouraged to fire while the other neurons are discouraged from firing;

(11) Neurons which fire temporally closer to the winning neuron are encouraged more

than the ncurons which fire later after the winning neuron.

Ruf and Schmitt [Ruf and Schmitt, 1998] in this work proposed a self-organising rule

as specified in equation (23) below:

T,

_ out J (B)

Owji =n—— X —wj; 23)

out

where ow ji is the modification for the connection weight w;; at some learning

cycle, (7>0) is the learning rate and is slowly decreased during learning, and

X = (xl seens x,,,) is the input vector presented to the network. Synaptic modification in

cquation (23) is based on the firing time /; of the output neuron. 7, is an upper limit
to specify the applicability of the rule among the compcting neurons. Synaptic
connections of those ncurons which fire before T, arc updated, while others remain

Toue 1t

out
unchanged. The term (—7—j), defines the effect on ncighbouring neurons based
out

77

Tout —t;
on the spike time. Since the winner is the one which fires first, then (T) will

out
return a higher value, while returning low values for late neurons. Generally, their
work showed that the spiking neural network model along with temporal coding is
capable of preserving the topology of the input space in a fashion similar to

Kohonen'’s sclf-organising map.

3.7.2.2.2 Delay-based Learning

In delay-based learning, the input information is encoded in the connection delays
through adapting the connection weights. Hebbian-based learning modifies the
connection weights based on the time difference between the pre-synaptic and post-
synaptic firing of a neuron. Through the weight adaptation strategy, suitable delayed
connections are selected while pruning the unwanted connections. In unsupervised
learning, the rules applied enhance the strength of some connections while weakening
others. This results in some selected delayed connections with high strength and the
rest with very low or null strength. This helps to encode the input information
effectively in the connection delays. Hopfield [Hopfield, 1995] was the first to
introduce this and showed that the input spike patterns can be stored in the delays

across the synapses.

His work was supported by Gerstner’s [Gerstner ct al., 1996] work which established
that an encoded delay pattern will balance the differences of the firing times of the
input neurons such that the dclayed input spikes reach the output neurons at almost

the same time, enabling them to fire. This type of learning is claimed to be more like

78

the learning in a Radial Basis Function (RBF) network. This approach is supported by
many neurobiological findings reported in Habberly’s, and O’Keefe and Reece’s
works [Habberly, 1985; O’Keefe and Reece, 1993]. Gerstner et al. [Gerstner et al.,
1996] performed a modelling study through computer simulations on the barn owl’s
auditory system. A Hebbian-based unsupervised learning mechanism was proposed to
train a single integrate-and-fire neuron with multisynapse (several sub-connections)
connections for each single connection. Each sub-connection is characterised with a
weight and a delay. The learning rule proposed here enhances the strength of the
connections which are repeatedly active shortly before a postsynaptic spike event.
Conncctions which are active shortly after the postsynaptic event are weakened. This
learning rule then selects connections with suitable delays from a distribution of
connections with different delays. The learning rule also selects the correct delays

from two independent groups of inputs, for example, from the left and right ear.

Natschlager and Ruf [Natschlager and Ruf, 1998] extended the approach reported in
Gerstner’s et al. work [Gerstner et al., 1996]. In contrast with Gerstner’s et al. work,
here the firing times of the output neurons are considered where the firing or non-
firing of a neuron was taken into consideration. The network architecture deployed in

their work is a two layered fully connected feedforward network.

The model proposed in Natschlager and Ruf [Natschlager and Ruf, 1998] was further
improved by Bohte ct al.,, [Bohtc et al,, 2002], in order to increase the precision,
capacity, and clustering capability of the specified spiking neural network model. This
was achieved through a population coding scheme and the model’s performance was

proved with clustering several real world data sets. Previous research by Bohte et al,,

79

[Bohte et al., 2002] on unsupervised learning used the Winner-Takes-All learning rule
to modify the weights between the source neurons and the neuron first to fire in the
target layer, using a time-variant version of Hebbian learning. The firing time of an
output neuron reflects the distance of the evaluated pattern to its learned input pattern.
The first neuron to fire is chosen as the winner. If the start of the post-synaptic
potential (PSP) at a synapsec slightly precedes a spike in the target neuron, the weight
of this synapse is increased, as it exerts significant influence on the spike-time by
virtue of a relatively large contribution to the membrane potential. Earlier and later

synapses are decreased in weight, reflecting their lower impact on the target neuron’s

spike time. For a weight with delay d* from neuron i to neuron j, Bohte et al used

equation (24) to update the weights;

_(AT—)?
2
Mwf;=n|LAT)=m(l-b)e # +b (24)

Where the parameter b determines the effective integral over the entire learning
window B sets the width of the positive learning window, and ¢ determines the

position of this peak. The value of AT denotes the time difference between the onset
of a PSP at a synapse and the time at which the spike is generated in the target neuron.

The weight of a single terminal is limited by a minimum and maximum value of 0 and

Wmax respectively. In their experiments, AT is set to [0-9] (ms) and delays d ¥to 1-15

(ms) in 1 ms intervals (m=16). The parameter values used by Bohte et al. for the

learning function L(AT) were set to: b = -0.2, ¢ = -2.85, B =1.67, 11=0.0025 and

80

Wmax =2.75. To model the post-synaptic potentials, they used an « -function with

7 =3.0 (ms) as in equation (22) in section 3.7.1.

3.8 Discussion of SNNs

Generally, the rescarch work on supervised lecarning with SNNs discussed above
applicd a fully connected feedforward network (back-propagation) with multi-synapse
conncctions. The most usual arrangement has 12 to 16 sub-connections, with delays
of up to 15 (ms). The combination of this type of architecture with multi-synapse
connections will increase the network complexity and training time since a large set
of weights have to be adjusted. Lippman [Lippmann, 1991] has carried out a critical
overview of neural network pattern classifiers. He presented the results of handwritten
digit recognition experiments using Multi-Layer Perceptron, k-Nearest Neighbour,
and Radial Basis Function classifiers as shown in table 3.2. The result showed that
Back-propagation requires a longer training time compared with the other three
classifiers. Research work on unsupervised learning mostly applied the Kohonen’s
network with delay-based learning as discussed above. Previous research on
unsupervised learning used the Winner-Takes-All learning rule to modify the weights
between the source neurons and the neuron first to fire in the target layer, using a

time-variant version of Hebbian learning.

The remainder of this chapter is organised as follows: section 3.9 explains in depth
LVQ and SNN nectworks’ pattern detection capability which motivate the research
into this arca; section 3.10 dectails the proposed supervised SNN learning model with
an LVQ structure, the so called S-LVQ, for the application to control chart pattern

recognition; section 3.13 presents the pattern recognition results obtain using the

81

Back-Prop KNN RBF
- Error rate (no rejections) 5.15% 5.14% 4.77%
' Free parameters 5,472 11,016,000 371,000
Training time (hours) 67.7 0.0 16.5
" Classification time (secs/char) 0.14 6.22 0.24

Table 3.2: Results of handwritten digit recognition

82

proposed S-LVQ networks; lastly, section 3.14 discusses some interesting findings on
the proposed learning model. This chapter concludes with a summary of all the three

parts.

3.9 Motivation for Research

Control chart patterns normally contain a random noisc element. Therefore, it would
be difficult to classify these patterns using simple heuristic rules with fixed and well-
defined detection limits. Experiments have shown that the noise filtering and
generalisation capabilities of neural networks make them suitable for this
classification task. This is clearly demonstrated by the good identification results
presented in table 3.1. Although the standard LVQ network has a relatively poor
performance, after a slight modification, it achieves the best classification
performance in a short training time. Lippman [Lippman, 1991] reported that
characteristics which often differ dramatically across classifiers include classification
time, training and adaptation time, ecase of implementation, memory requirements,
rejection accuracy, and usefulness of outputs as estimated by Bayes’ probability.
Among the most attractive features of LVQ is the natural way in which it can be
applied to multi-class problems and its simple learning rule. The reason for the focus
on LVQ networks is the proven strength of their classification abilities [Baig et al.,

2001].

Previous rescarch on ANNs showed that most practical applications of ANNs are
basecd on computational models involving the propagation of continuous variables

from one processing unit to the next using the concept of mean firing rates. The

83

concept of mean firing rates has been applied successfully during the last 80 years. It
dates back to the pioneering work of Adrian [Adrian, 1926] who showed that the
firing rate of stretch receptor neurons in muscles is related to the force applied to the
muscle. In the following decades, measurement of firing rates became a standard tool
for describing the properties of all types of sensory or cortical neurons [Mountcastle,
1957; Hubel and Wiesel, 1959], due partly to the relative ease of measuring rates

experimentally.

It 1s clear, however, that an approach based on a temporal average neglects all the
information possibly contained in the exact timing of the spikes. It is therefore no
surprise that the firing rate concept has been criticized repeatedly and is the subject of
an ongoing debate [Abeles, 1994; Bialek et al., 1991; Hopfield, 1995; Shadlen and
Newsome, 1994; Softky, 1995; Rieke et al., 1996]. Although ANNSs are considered to
be one of the most powerful and flexible computational models known today, recent
research has found that ANNs are not powerful enough as a biological counterpart
due to their more simplified approach and coding of information [Zador A M, 2000;
Maass W, 1997]. In recent years, more and more neurobiological experimental
evidence has accumulated showing clearly that biological neural networks, which
communicate through pulses, use the timing of these pulses to transmit information
and to perform computation. In addition, SNNs are deemed computationally more
powerful than common ANNSs formalisms on the basis of extensive theoretical work

by Maass [Maass W, 1996].

Together, these realisations have stimulated or motivated a significant growth of
rescarch activity in the area of pulsed neural networks. These range from

neurobiological modelling and theoretical analyses, to algorithm development and

84

hardware implementations. Generally, pattern recognition problems are involved with
research activity in algorithm development. Much of the research into learning
algorithms for pulsed neural networks has been focused on unsupervised learning and
most of these existing learning algorithms adjust the synaptic weights based on the
adaptation of a Hebbian rule. According to Ammar [Ammar et al., 2003] the first
supervised training was suggested by Bohte [Bohte et al., 2000] where the classical
back propagation, which is a gradient descent based algorithm, is adapted to temporal
coding, and an approximation of the post-synaptic potential is assumed to allow

derivation.

However, a large set of weights has to be adjusted since a connection between two
neurons corresponds to sixteen sub-connections, so the size of the network increases
drastically with the number of neurons. Therefore, more research into supervised
learning for pulsed neural networks is essential. In addition, a more efficient
supervised learning algorithm is needed for the better exploitation of pulsed neural

networks models.

Together with the advantages of LVQ, a new approach for supervised training called
the “Spiking Learning Vector Quantisation (S-LVQ)” algorithm is proposed in this
chapter to address this problem. The proposed S-LVQ uses spiking neurons instead of
the common neurons in LVQ. It uses the motivation concepts in behavioural
neuroscience [Berridge, 2004], instead of a penalty, to encourage a neuron to be a
winner. It is expected that these concepts, together with the new updating weights rule
proposed in this chapter, will help to increase the classification performance. The
proposed S-LVQ updates the weights of the winning neurons and of its neighbours in

the same cluster simultaneously. Furthermore, S-LVQ gives more concentration to the

85

neurons in the correct category and in the same cluster, as this is more practical. This
will help to fully use the number of hidden neurons in each cluster in the network.
This concentration might lead to a decrease in the number of inactive neurons in the

network.

The remainder of this chapter is organised as follows: section 3.10 describes in detail
the proposed S-LVQ that consists of the suggested network structure and the
supervised learning algorithm; section 3.12 describes the training and testing data sets
in control charts; in section 3.13 an empirical evaluation of the method is presented,;
scction 3.14 provides general discussion about an interesting finding on the effect on
classification accuracy of various hidden neurons; finally, a summary of the findings

of the chapter is given.

3.10 Proposed S-LVQ Algorithm

3.10.1 Network Structure

This thesis proposes a new architecture for spiking learning vector quantisation for
control chart pattern recognition. Generally, the proposed architecture uses the
structure of an LVQ network with some modification in the connection. It consists of
spiking neurons instead of common neurons. It is a feedforward network of spiking
ncurons which is fully connected between the input and hidden layers. It has multiple
dclayed synaptic terminals (m) and is partially connected between the hidden and
output layers, with cach output ncuron linked to a different cluster of hidden neurons.
An individual connection consists of a fixed number of m synaptic terminals, where

cach terminal serves as a sub-connection that is associated with a different delay and

86

weight between the input and hidden layers. The weights of the synaptic connections
between the hidden and output neurons are fixed at 1. Experiments were carried out
with a number of nctwork structures with different parameters and learning
procedures. The network finally adopted had 60 input neurons in the input layer,
which means the input patterns consisted of the 60 most recent mean values of the
process variable to be controlled. One input neuron was therefore dedicated for each
mecan value. There were six output neurons, one for each pattern category, and 36
hidden neurons (as in LVQ). Table 3.3 shows the details of the networks used. At the
beginning of training, the synaptic weights were set randomly between 0 and +1. The
input vector components were scaled between 0 and 1. Using a temporal coding
scheme, the input vector components were then coded by a pattern of firing times
within a coding interval, and each input neuron was allowed to fire no more than once
during this interval. In this work, the coding intervals AT were set to [0-100] ms and
the delays «* to {1,, 15}[ms] in 10 ms intervals. The available synaptic delays were
therefore 1-16 (ms). These parameters were chosen experimentally to produce the best
results. The post-synaptic (PSP) was defined by a a- function with a constant time
=120 (ms). Input vectors were presented sequentially to the network together with
the corresponding output vectors identifying their categories as shown in Table 3.3.
Unlike the network structure and its variants used in the standard LVQ, as shown in

Figure 3.1 and Figure 3.2 respectively, the proposed structure has different features:

(1) It uses spiking neurons instead of the common neurons;

(11) It uses multi-synapse terminals instead of single reference vector between
input layer and hidden layer;

(iii) For each reference vector each multi-synapse terminal has delay and

weight instead of weight only.

87

The difference between spiking neurons and conventional neurons that enable
spiking neurons to outperform conventional neurons is that they represent a more
plausible model of real biological neurons, since spiking neurons consider time as
an important feature for information representation and processing. Another
important feature is that the models of SNNs are much more nonlinear and that
more parameters are considered than in the conventional networks. Hence, a
nctwork of spiking neurons appears to be an interesting tool for investigating
temporal neural coding and for exploiting its computational potential in a much

more sophisticated manner than offered by conventional networks.

Another difference in the application of the network structure is the multiple
synapse approach. The existence of multiple synapses is biologically plausible
[Wolf, Zhao and Roberts, 1998], since in brain areas like the neocortex a single
pre-synaptic axon makes several independent contacts with the post-synaptic
neuron. The practical aspects of this theory have been discussed recently and
using this approach for neural computation has already been demonstrated [Wei
and Fahn, 2002; Nager, Storck, and Deco, 2002; Natschlager, Maass, and Zador,
2001; Maass and Zador, 1999]. Instead of a single synapse, with its specific delay
and weight, this synapse model consists of many sub-synapses, each one with its
own weight and delay as shown in Figure 3.5. The use of multiple synapses
cnables an adequate delay selection using the learning rule that is presented in the
next scction. For each multiple synapse connecting input neurons to hidden

ncurons, the resulting PSP is given by equation (21) in sub section 3.7.1.

88

Number of inputs = 60 i Number of outputs = 6

I
|]

Number of hidden neuron for cach output | Initial weights range =0 to 1

category = 6 _ .
Scaling range = 0 to 1 Coding interval = 0 to 100 |
| erc-aming rate = 0.0075 | Delay intervals = 15 (ms) in 10 (ms)
o interval
Synaptic delays = 1 to 16 (ms) Time constant = 120 (ms)

Table 3.3: Details of the proposed S-LVQ network used for control charts

_ Pattern { Outputs
§
1 2 3 4 5 6
|
Normal i 1 0 0 0 0 0
rl}lcreasing trend | 0 1 0 0 0 0
%Decreasing trend | O 0 1 0 0 0
| Upward shift 0 0 0 1 0 0
: |
{Downward shift | 0 0 0 0 1 0
Cycle : 0 0 0 0 0 1

i

Table 3.4: Representation of the output categories

89

Class 1

Output layer

Hidden
(Kohonen
layer)

Input layer (in time
coding)

Input vector

Figure 3.5

Figure 3.5: The proposed S-LVQ network structure

Figure 3.6: Multi-synapse terminals for the S-LVQ spiking neural network

90

Compared to the network structure used in Natschlager and Ruf [Natschlager and Ruf,
1998] and Bohte et al. [Bohte et al., 2000], the proposed structure helps to reduce the
complexity of the connections where the multiple synaptic delays exit only between

the input and hidden neurons.

3.10.2 S-LVQ Learning Procedure

In this research, the adopted spiking neurons were based on the Spike Response
Model [Gerstner and Kistler, 2002] with some modification to the spike response
function in order for the networks to be applied to control chart pattern recognition.

The spike response function used in this architecture has been modified to:

1 _(1+s1) _(l+sl)
e(t) = —————{e “ o-e) (25)

In this spike response function, fce and fci represent the time constant for membrane
and synapse respectively and fce = 120 (ms) and and f¢i=20 (ms). Here st is equal

to(r-¢ -d*) where ¢ is the simulating time (0 to 300), (, is the firing time of pre-

synaptic neurons, and 4* represents the delay withk =16.

91

With this proposed spike response function, the spiking neural network technique
worked well for control chart data. Bohte et al [Bohte, 2000] have stated that
“Depending on the choice of suitable spike response functions, one can adapt this

model to reflect the dynamics of a large variety of different spiking neurons.”

There are, at most, two weights to be modified for the LVQ-X and the variant of the
LVQ as discussed in section 3.6. As discussed in sections 3.3 to section 3.6, the main
problem with standard LVQ is that only the winning neuron is permitted to modify
the connection weights in each learning iteration. This is the so-called “winner-take-
all” competition. This will result in a situation where some neurons may win too often
while others are always inactive. Although each cluster of neurons has more than one
neuron, most of the time only one neuron seems to be contributing or playing a role
during the learning. This means that only a few neurons have been learning and the
potential of the other neurons, especially the neurons in the cluster which belong to

the correct category, is wasted.

To address this problem, a new supervised LVQ architecture based on an SNN model
learning algorithm is proposed. Moreover, due to the time-series nature of control
chart data, an SNN with temporal coding would more naturally be able to learn to
process the data and detect any patterns in it. This is expected to result in a compact
classifier that is easy to train. There are two methods applied in the proposed network

(S-LVQ): firstly, to boost the ncuron potential; secondly, to motivate the neurons.

92

3.10.2.1 Boosting

Generally, one spike is not enough to cause a post-synaptic neuron to fire. Biological
necurons typically must have their potentials raised by around 20mV, while individual
spikes change this potential by a few millivolts at most [Maass, 1997]. Therefore, to
determine a potential for a neuron at a certain time ¢, it is necessary to integrate the
response function for each spike encountered before time ¢. This could be a daunting
task as spikes accumulate over a simulation. This might result in M potential winners,
corresponding to the top M extcrnal inputs. In general, when the external inputs are
close in magnitude, M tends to be larger. If M > 1, the selection of the actual winner is
strongly influenced by the initial states (membrane potential). For some initial states,
the winner is the first neuron to spike, and the computation is done at the first spike of
the network [Jin and Seung, 2002]. Experiments performed on control chart data sets
have confirmed this biological phenomenon in the proposed network. This means that
there is more than one potential winner and the selection of the actual winner is

strongly influenced by the initial states (membrane potentials).

To address this problem, a boosting technique is applied to the proposed learning rule.
With supervised learning, the classes of the training patterns are known. When a
training pattern is presented to the network, a bias value may be injected to boost the
initial state of the spiking neuron’s potential in the cluster that belongs to the class of
that training pattern. This bias value is selected after a few experiments to give a
reliable value. The sclected value will produce a reasonable distance for the particular
cluster from the other clusters in the network. The best value found for control chart
data with the proposed S-LVQ network was in the ranges of 0.5 to 1.0. The value

chosen is fixed for all the spiking neuron clusters in the network. The effectiveness of

93

this boosting technique depends upon how efficiently the updating weights are

implemented and upon the regularity of the data to which the training is applied.

3.10.2.1 Motivating

Concepts of motivation arc vital to progress in behavioural neuroscience.

Motivational concepts help one to understand what limbic brain systems are chiefly

cvolved to do, i.e., to mediate psychological processes that guide real behaviour.

Motivational concepts arec needed to properly understand how real brains generate real

behaviour [Berridge, 2004]. Epstein [Epstein, 1982] suggested that three additional

criteria arc needed to distinguish truly motivated behaviour. These criteria are as
follows:

(1) Flexible goal directedness. This means behavioural demonstration that the target
was a true goal, shown by flexible learning and coordinated appetitive behaviour
aimed at obtaining the goal, both changing appropriately when the alteration of
circumstances necessitate new strategies to obtain the goal. It means ruling out
both simple forms of learning and simple drive activation of behaviour.

(2) Goal expectation. This means expecting to find something interesting.

(3) Affect. This means that rcal motivation is always accompanied by affective

reactions to the goal itself.

These three criteria arc used as a guideline to measure the effectiveness of the

motivation concepts implemented in the proposed learning rule. This will be

supported by empirical evaluation of the proposed learning rule.

94

In the proposed learning rule, the goal is to learn a set of firing times at the output
layer, for a given set of temporal input patterns. The learning rule is easy to
implement. The proposed S-LVQ updates not only the weights of the winning neuron
but also the other spiking necurons in the same cluster simultaneously. Moreover,
instead of penalising the winner as implemented in previous work, the winner and the

spiking neurons in the same cluster are motivated.

The main idea or the goal expectation here is that the spiking neurons in the same
cluster with the winner arc as motivated as the candidates to be the winner in the next
iteration. By motivating the other spiking neurons in the same cluster with the winner,
their weight vectors which are in the correct category with the winner will get closer
to the input vector in that category. Obviously, this approach gives a chance to the
other spiking neurons in the same category with the winner to win the competition in
the next iteration. In this way, most probably, all the spiking neurons in the same
cluster will be activated. Clearly, this method gives more concentration to the spiking

neurons in the same cluster with the winning neuron.
Based on the goal and its expectation mentioned above, the learning rule should give
an affective reaction which acts on the goal itself. As more spiking neurons become

activated, then the performance of the learning algorithm will become better.

A pscudo-code description for updating the weight of S-LVQ is given in Figure 3.6.

The details of the pscudo-code are as follows.

95

Procedure Training For S-LVQ Algorithm
1) Define the network structure ;
2) Initialise the weights and the delays;
3) Encode the input data into temporal coding;
4) Present a training input pattern to the network;
5) For each t (simulation time) Do
i) Update the synapse potential ;
i) Update the output (boosting);
While (t <time window)
6) Find the winner;
7) Update the weights as the following:
For Category = 1 Do
Process=1 End For
For Category = 2 Do
Process =2 End For
Continue until
For Category = n Do

Process=n End For
8) Return to (4).

Figure 3.7: A pseudo-code description for S-LVQ Algorithm

96

The algorithm requires the network structure definition. This involves deciding on the
number of inputs and outputs, the number of sub-connections, the learning rate, the
time constant, and the threshold parameter. The chosen values for these parameters
were mentioned in sub-section 3.10.1 and in table 3.3. SNN is a complex network
modcl with a number of parameters which control its functionality. Tuning the
nctwork by assigning appropriate values for these parameters is essential for the
smooth functioning of the network and for obtaining optimum performance. There is
a lack of clear guidelincs regarding the selection of these parameters. Hence, in this
work, these parameters were found by analysing the preliminary results obtained with

some initial trial values.

In step 2, initialising the network plays an important role in the learning process. The
important parameters here are the weights and delays of the interconnections between
the input neurons and the output neurons. The chosen values for these two parameters
have been mentioned in sub-section 3.10.1 and table 3.3 In the proposed model the

connection weights are assigned only with positive values and all the connections are

realised as excitatory with positive spike response function & ® €[0.1] _ This is to

ensure that the effect of most of the input parameters contributes positively to the

output.

In step 3, another important aspect of implementing the model is effected, the
temporal coding for thc continuous input values. Precision of the temporal code
should be sclected in a way as to attain adequate accuracy with optimal computational
cfficiency. Experiments have revealed that an input time window with 100 units is

adequate in the case of control chart data sets for this learning rule.

97

In step 4, a training input pattern will be presented to the network sequentially.

In step 5, the simulation time (¢) is selected as from 0 to 300 units. For each ¢ the
nctwork is updating the synapse potential for the training input pattern. This is then
followed by updating the output. The potential ncurons of the class belonging to that

particular training input are raised here.

In step 6, the system will determine the first neuron to fire. The first neuron to fire is

determined as the winner and will specify the class of the input vector.

In step 7, the winning neuron and other neurons in the same cluster with the winner
will be modified or updated. If the winning neuron is in category (class) 1, then
proceed with process 1. Process 1 involves updating that winning neuron and also
other neurons in category 1 only. If the winning neuron is in the correct category and
AT > 0, the neurons will be updated using equation (26). If AT < 0, equation (27) is
used, which is mentioned below. If the winning neuron is in the incorrect category for
AT >0 or AT <0, then equation (28) is used. This process will be continued for other

categories.

In step 8, the system will return to step 4 with a new training input pattern and will

repeat the procedure until all training patterns are correctly classified (or a stopping

criterion is mct).

98

In this research, the unsupervised learning equations in (24) in sub section 3.7.2.2.2

were modified to create a supervised learning equation using the following update

cquations. Learning is achieved through adapting the weights in the network

connections to encode the input information.

If the winner is in the correct category, then:

Wiow = Woa T dw where

ne

dw = n(—je{ ;/’T] JorAT >0,

dw=| - U(Eli}{%] forAT <0

If the winner is in the incorrect category, then:

Wew = Wold - dW where
[AJ]
1 282
dw = an[a—e - for AT >0 or AT <0

99

(26)

27)

(28)

In the simulation, the parameter values for the lcarning function L(AT) were set to:
n =0.0075, g =35 A=J(2*(22/7)) , AT=[0-100], « = 0.8, w,,, is the new
value for the weight, and w ,, is the old weight value. The parameter 7 is the constant

lcarning rate. Parameter g scts the width of the positive part of the learning window
and AT dcnotes the time difference between the onset of a PSP at a synaptic terminal
and the time of the spike gencrated in the winning output neuron. Parameter a was

used because in supervised learning there is prior information about the training sets.

3.11 Setting the Weights, Delay, and Threshold

In this chapter, in order to realise a neuron as an integrator, a time constant that is
longer than the time input window is selected. In addition, the threshold & value
should be reliable in order to get better accuracy. A suitable threshold value for this
experiment could be the number of inputs multiplied by the number of multi-synapses
multiplied by the average of the connection weights, and all this multiplication
divided by a constant number. In this experiment, the corresponding value is 10. The

weights range is 0 to 1 and the delay interval is 10 for each of the synapses.

3.12 Data Set

Expcriments have shown that the ability of the networks to generalise is affected
significantly by the quality of data available and by the effectiveness of the techniques

used for analysing the data. The process simulator designed to create the required

100

training data set has been described in Chapter 2. There were 1500 data sets generated
using this simulator. From these data sets, 1002 were used as training patterns (167
patterns in each category) and 498 (83 patterns in each category) were used for the

testing patterns. The patterns were sequentially applied to the network.

3.13 Empirical Evaluation of S-LVQ

This section presents an empirical evaluation of the control chart pattern recognition
performance with the S-LVQ algorithm. Two criteria were used to evaluate the
performance of the tested algorithm, namely, number of training epochs and
classification accuracy. The number of epochs was taken as the total number of
epochs to get the best performance during the training and testing process.

Classification accuracy is generally the most important criterion in control chart
pattern recognition performance. It is defined as the percentage of instances from the
test set that were correctly classified when the network developed from the
corresponding training set was applied. The accuracy level was calculated using the

following equation.

Number of patterns correctly classified
Total number of patterns tested

X 100

Accuracy (%) =

The results obtained with the proposed architecture and the supervised learning
proccdure for control chart pattern recognition are presented in Table 3.5, together
with the results obtained with an LVQ network and its variants. The results in Table

3.7 are presented graphically in Figure 3.7.

101

Pattern recogniser Number of Learning Test performance
training epochs performance (%) (%)

LVQ (Standard) 70 95.18 92.31

LVQ2 4 94.31 89.62

LVQ (Standard) + 74 96.18 92.61
LVQ2

LVQ (with a 70 95.98 92.71

conscience mechanism)
LVQ‘X 20 100.0 97.70
S-LVQ 40 99.85 98.28

Table 3.5: Results of different pattern recognisers applied to control chart data set.

100

Accuracy (%)

20 30 40 50 60 70 80

Number of training epochs

= LVQ m LVQ2 LVQ+LVQ2
LV Q(CSM) m LVQ-X m S-LVQ

Figure 3.8: Graph showing the result ofthe different pattern recognisers

102

3.14 Comparison with LVQ and its Variants

S-LVQ was compared with LVQ and its variant as mentioned in section 3.5.
Experimental results have demonstrated that the proposed S-LVQ gives better
performance compared to the other five LVQ pattern recognisers. With only 40
training cpochs, it can recach 98.28% of classification accuracy. Although LVQ-X has
fewer numbers of training epochs, the classification accuracy is only 97.70%. Overall,

S-LVQ gives the best performance among the other pattern recognisers.

3.15 The Effect of Number of Hidden Neurons on S-LVQ

The primary factors which controlled the behaviour of the LVQ network were the
number of hidden neurons, the learning rate, and the training time. In the proposed S-
LVQ, some interesting findings have been made. In S-LVQ, the number of hidden
neurons effects the number of active neurons in a particular cluster. Hence, it will
affect the classification accuracy. Five different numbers of hidden neurons have been
tested in this problem. Experiments showed that the number of hidden neurons
activated in the same cluster increased with the number of hidden neurons. With 36
hidden ncurons, all of the six hidden neurons in the same cluster were active in almost
each learning iteration. When the number of hidden neurons was decreased to 24,
only 3 or 2 of the hidden necurons in the same cluster were active. Table 3.6 shows the
result of the effect of the number of hidden neurons on the proposed S-LVQ, and this
is shown in a graphical presentation in Figure 3.8. Figure 3.9 shows the summary of
the implementation of the proposed S-LVQ algorithm for control chart pattern

recognition.

103

Number of hidden

neurons

18

24

36

42

Number of active

neurons

Less than 2

Less than 3

Less than 4

All neurons in the

same cluster

All neurons in the
same cluster

Learning

performance (%)
88.73
92.02
96.88
99.85

99.97

Test performance

(%)

87.22

90.33

94.25

98.28

98.30

Table 3.6: The effect ofthe number ofhidden neuron

12

18 24

36 42

Number of hidden neurons

training
testing

Figure 3.9: The classification accuracy for different number ofhidden neurons

104

A
Input Representation,
Design and Training

LVQ Spiking neural
networks

Figure 3.10: The implementation ofthe proposed S-LVQ algorithm for control chart
pattern recognition.

105

3.16 Summary

This chapter has presented a new spiking learning vector quantisation (S-LVQ)
algorithm for classification learning, particularly for control chart patterns which
include the new architecture and new learning rule for S-LVQ. Modifications were
made to suit the typical spiking neural networks used for control chart pattern
rccognition. Spiking neuron networks together with the LVQ structure have resulted
in a simple structurc of spiking neurons for control chart data, reducing the
complexity of implementation. As in LVQ-X, there is no dependency on the initial
values of the weights in spiking neural networks for control chart pattern recognition.
The training and adaptation time of the S-LVQ was clearly shorter than that for LVQ
and its variant. The new learning rule has increased the numbers of hidden neurons
activated and has greatly improved the efficiency of the algorithm in terms of
classification accuracy. This shows clearly the superior performance of the S-LVQ
networks technique in an application to control chart data over other procedures using

traditional neural networks.

The algorithm presented in this chapter is an implementation of spiking neurons to the
standard LVQ which involved some modification of the architecture and learning
rule. A new algorithm based on S-LVQ but with much simpler architecture than S-

LVQ is considered in the next chapter.

106

CHAPTER 4

ENHANCED S-LVQ NETWORK (NS-LVQ)

4.1 Previous Work

Extensive recurrent connections between neurons exist in the brain. This has inspired
researchers to propose recurrent neural network models with multiple feedback loops
for many computations done in the brain, such as the Winner-Takes-All (WTA)
computation [Hahnloser et al.,, 2000]. A WTA results when the dynamics of the
network lead to sustained spiking of a single neuron or a group of neurons (the
“winner”), although all neurons are driven by external inputs and are capable of
spiking in the absence of couplings with other neurons. WTA behaviour in the brain’s
neural networks could be the basis of perceptual decision making [Salzman and
Newsome, 1994] and control of visual attention [Niebur and Koch, 1996; Lee et al.,
1999]. WTA can also be used for implementing universal computations [Maass,
2000] and as a hierarchical model of vision [Riesenhuber and Poggio, 1999].
However, recurrent networks are often assumed to be slow in converging to the
computational results [Jin and Seung, 2002]. Jin and Seung in their work have shown
that recurrent networks can perform fast computation if the detailed dynamics of
individual spikes are considered. They specifically analyse a simple spiking recurrent
nctwork that performs WTA computation. In their work, they impose a structural
symmetry on the nctwork by using neurons with identical parameters, that is

cxcitatory connections with the same strength. However they also neglect the time

107

course of the spikes and the time delay of spike transmissions. The external inputs are
modelled as constant currents injected into the neurons. When inhibition and/or
excitation are strong enough, the network performs a WTA computation for all
possible external inputs and initial states of the network. The computation is done as
soon as the winner spikes once. This is because the inhibition from the winner
prevents other neurons from spiking. In general, the selection of the winner can be
strongly influenced by the distribution of the external inputs and by the initial states of
the network. In another case, if a group of neurons get external inputs close to the
maximum input, the network is multistable, and any neuron in the group can be the
winner. As to which neuron will be the actual winner, this depends largely on their

initial membrane potentials.

Previous studies all assumed a particular initial state of the networks where all
neurons are at the resting membrane potential, and they proposed that the winner will
be the neuron with the maximum external input. In the brain, this assumption is too
restrictive, since the membrane potential of the neurons often deviates from the

resting membrane potential because of noise and the inputs from other brain areas.

Generally, their analysis shows that initial states of the network can strongly influence
the selection of the winner, depending on the distribution of the external inputs. Their
work also showed that WTA have the potential to carry out fast computation with

suitable parameters and initial state of the membrane potential of the network.

108

Inspired by the fast computation of the Winner-Takes-All learning rule, together with
the superior results of S-LVQ and the finding about SNNs with fewer neurons
[Maass, Schnitger, and Sontag, 1991], this chapter presents an enhanced S-LVQ and

so-called NS-LVQ

4.2 Motivation for Research

According to Ammar [Ammar et al., 2003], the first supervised training was
suggested in Bohte [Bohte et al., 2000] where the classical back propagation, which is
a gradient descent based algorithm, is adapted to temporal coding, and an
approximation of the post-synaptic potential is assumed to allow derivation. A large
sct of weights have to be adjusted, since a connection between two neurons
corresponds to sixteen sub-connections. The size of the network therefore increases
drastically with the number of neurons. For this reason, more research into supervised
learning for pulsed neural networks is essential. In addition, a more efficient
supervised learning algorithm is needed for the better exploitation of the pulsed neural

networks models.

To address this problem, a new approach for supervised training is proposed in
Chapter 3 above with the so-called S-LVQ algorithm. The algorithm is applied to
control chart pattern recognition. As mentioned in Chapter 3, S-LVQ is the
combination of LVQ structure and spiking neuron models. The structure of LVQ was
chosen because it is simple and casy to implement. These factors help to reduce the

complexity of the spiking neuron network with multi-synapse. Results showed that

109

the algorithm gave better performance compared to traditional neural networks.
However, previous experiments with spiking neuron networks have demonstrated the
ablility to perform well with fewer neurons than a traditional neural network [Maass,

Schnitger, and Sontag, 1991].

The proposed NS-LVQ presents an improvement to the network architecture of S-
LVQ. The proposed architecture consists of a feedforward network with a simple
structure of spiking neurons where each class of control chart patterns is represented
by a single hidden neuron. The simple structure reduces the number of weights to be
adjusted since it is fully connected between input layer and hidden layer only. It is
partially connected between the hidden layer and output layer. The next section is
organised as follows: first, section 4.3 will describe the proposed spiking neural
networks architecture; next, section 4.4 gives the description of setting the weights,
delays and the threshold; section 4.5 introduces the technique of pre-process weights;
the next section describes the learning procedure applied here, which defines its
characteristics, and its strengths and limitations are given in the context of
classification problems; next comes an empirical evaluation of the proposed network
and lastly a description of an experiment using a different learning rate technique on

the proposed algorithm.

4.3 NS-LVQ Networks Architecture

This structure consists of a feedforward network fully connected between the input
and hidden layers with multiple delayed synaptic terminals (m) and partially
connected between the hidden and output layers, with each output neuron linked to

different hidden neurons. An individual connection consists of a fixed number of

110

m synaptic terminals, where each terminal serves as a sub-connection that is
associated with a different delay and weight between the input and hidden layers. The
weights of the synaptic connections between the hidden and output neurons are fixed
at 1. Experiments were carried out with a number of network structures with different
parameters and learning procedures. The networks finally adopted had 60 input
ncurons in the input layer, which means the input patterns consisted of the 60 most
recent mean values of the process variable to be controlled. One input neuron was
therefore dedicated for each mean value. There were six output neurons, with one for
cach pattern category, and six hidden neurons where the number of hidden neurons
here depends on the number of classes. Table 4.1 shows the details of the networks

used.

At the beginning of training, the synaptic weights were set randomly between 0 and
+1. The input vector components were scaled between 0 and 1. Using a temporal
coding scheme, the input vector components were then coded by a pattern of firing
times within a coding interval and each input neuron allowed firing once at most
during this interval. In this work,, the coding intervals AT were set to [0-100] ms and
the delays d* to {1,..., 15} [ms] in 10 ms intervals. The available synaptic delays
were therefore 1-16 ms. The PSP was defined by an « -function with a constant time
7 =150 ms. Input vectors were presented sequentially to the network together with the
corresponding output vectors identifying their categories as shown in table 4.2. Unlike
the network structure used in S-LVQ, [Natschlager and Ruf, 1998] and [Bohte, Poutre
and Kok, 2000], the proposed structure helps to reduce the complexity of the
connections where the multiple synaptic delays only exist between the input and

hidden neurons. There were six output neurons, one for each pattern category, and six

111

hidden ncurons (the number of hidden neurons here depends on the number of

classes).

Only single connections between the hidden and output neurons and the weights were
fixed to 1. This reduced the number of weights that had to be adjusted since only the
connections between the input and hidden neurons had multiple synaptic terminals.
Generally, the NS-LVQ network adopted the spiking neuron models from S-LVQ.
These two models, S-LVQ and NS-LVQ were based on the Spike Response Model

[Gerstner and Kistler, 2002] with some tuning in the parameter used for NS-LVQ
model in order for the network to be applied to control chart pattern recognition. The
spike response function used in this architecture is exactly the same as in Chapter 3 in
equation (25). The only difference is the value of the parameter for membrane time
constant tce, which is 150 (ms). The synapse time constant tci used in this spike

response function is 20 (ms). Here, st is equal to(- - 4*) as in S-LVQ where ¢ is
the simulating time (0 to 300), ;, is the firing time of pre-synaptic neurons and 4*

represents the delay withk =16. Other parameters in this spike response function are

the same as in S-LVQ in Chapter 3.

112

* Number of inputs = 60 Number of outputs = 6

Number of hidden neuron for each output | Initial weights range =0to 1

category=1 L

Scaling range =0 to 1 Coding interval = 0 to 100

Learning rate = 0.0075 | Delay intervals = 15 (ms) in 10 (ms)
7 B interval

Synaptic dclays = 1 to 16 (ms) Time constant = 150 (ms)

Table 4.1: Details of the proposed NS-LVQ network used for control charts

Pattern | Outputs

|

l 1 2 3 4 5
' Normal (1 0 0 0 0
' |
| Increasing trend | 0 1 0 0 0
| Decreasing trend 0 0 1 0 0
~Upward shift 0 0 0 1 0
Downward shift 0 0 0 0 1
Cycle 0 0 0 0 0

Table 4.2: Representation of the output categories

113

Unlike the network structure used in the traditional neural network, the proposed

structure has different features:

(1) Using spiking neurons instead of the common neurons;

(1) Multi-synapse terminals instead of a single reference vector between input
layer and hidden layer;

(iif) Each multi-synapse terminal has delay and weight instead of weight only
for cach reference vector;

(iv) The proposed network has a fewer neurons.

Compared to the structure of the S-LVQ network, the NS-LVQ structure has been
modified to be simpler than the structure of the traditional LVQ, where only one

hidden neuron is used to represent each category of patterns.

Figure 4.1 and Figure 4.2 show the architecture of the proposed network. Figure 6
demonstrates the multi-synapse terminals for the NS-LVQ network. The different
layers are labelled as input, hidden, and output layer respectively as shown in Figure
4.1. It is assumed that any neuron can gencrate at most one spike during the

simulation interval and discharges when the internal state variable reaches a threshold.

4.4 Setting the Weights, Delays and Threshold

Onc of the most important roles in a learning process is initialising the network. The
important parameters in the networks are the weights, delays and also the threshold
value. The connection weights are allowed in the range [0, 1] and the delays in the

range of {1, ..., 15} [ms] in 10 ms intervals. This value was chosen after to give the

114

best performance after a few experiments. The available synaptic delays were

therefore 1-16 (ms).

In the proposed network, in order to ensure that no neuron dominates all the other
ncurons for all or most of the input pattern, a pre-process weights technique is
proposed. The range of the weights and delays are exactly the same as for the S-LVQ

algorithm in Chapter 3.

The selection of the threshold value for a neuron needs more concentration as too low
a value will force the ncuron to fire prematurely without reflecting the entire input
pattern. On the other hand, too high a value will prevent the neurons from firing and
will block the learning process because a neuron can learn only when it is active.
Therefore, the threshold value should be set to an appropriate value to capture the
effect of all or most of the inputs while ensuring that it fires.

A suitable threshold value in this proposed algorithm is as the following equation:

Threshold = (Inputy x (Num of sub—connection x (Weights average)

A constant value

115

Outputs

Output layer

Hidden layer

Figure 6

Inputs

Figure 4.1: A structure proposed for the NS-LVQ network

Hidden layer

Input layer

Figure 4.2: Multi-synapse terminals for the NS-LVQ network

116

4.5 Pre-process Weights

As mentioned before, in the “Winner-Takes-All” learning rule some neurons may win
too often while others are always inactive. In order to prevent this drawback of the
lcarning rule, a pre-process weights technique is presented in this work. The pre-
process weights arc applied before the training procedure. This technique is repeated
for a few times to find the best setting. As a suitable selection, repeating was set to 6.
The main purpose of this technique is to balance the weights among the hidden
neurons. Hence, the value for the connection weights will be almost equal and will not
dominate the effect of delays. The pseudo-code of the pre-process weight is shown in

Figure 4.3. A detailed description of the technique is as follows:

In step 1, for each hidden neuron, do the summation of the weights for the sub-
connections for that particular neuron. This will give the total weights for each hidden
neuron. Do the calculation for each training pattern.

In step 2, the average of weights for hidden neurons is calculated in order to find the
average value of total weights for each hidden neuron. This is calculated using the
following equation:

The total weights of all hidden neuron
Number of output

Average =

In step 3, compare the total weights of each hidden neuron with the average value in
step 2. This is to find the final distance to be used as a bias value in step 4.

In step 4, for a winning ncuron the weights will be decrease by the value found in step
3.

A step 5 is repeating the procedure until a certain time or until a stopping criterion is

met. In this work, the procedure is repeated for 6 times.

117

4.6 NS-LVQ Learning Procedure

As mentioned in sub-section 3.9.2.1 in Chapter 3, there are, at most, two weights to be
modified for the LVQ and its variant including LVQ-X methods. As discussed in
sections 3.3 to 3.6, the main problem with the standard LVQ is that only the winning
neuron is permitted to modify the connection weights in each learning iteration. This
is so-called “Winner-Takes-All” competition. This will result in some neurons

winning too often while others are always inactive.

Inspired by the fast computation of the “Winner-Take-All” learning rule [Jin and
Seung, 2002], the proposed NS-LVQ algorithm applies the “Winner-Take-All”
learning rule. Taking into account that the membrane potential of the neurons often
deviates from the resting membrane potential because of noise and the inputs from
other brain areas, the proposed network also applies the boosting technique as applied
in the S-LVQ algorithm in Chapter 3. Moreover, this technique has been proved by S-

LVQ to contribute to better classification.

118

Procedure for Pre-process Weights

1) Calculate the total weights for each hidden neuron;
2) Calculate the Average of weights for hidden neuron;
3) For cach hidden ncuron Do

If the (total weight > Average) Then
Distance = (total weights — Average)
Else
Distance = (Average - total weights)
Final distance = Distance / (Number of input)*Number subconnection
End For;
4) If a hidden neuron is the winner Then
Weight = Weight — Final distance for that particular hidden neuron
Else
Weight = Weight + Final distance for that particular hidden neuron;

5) Repeat this procedure (1) to (4) until a certain time or until a stopping

criterion is met.

Figure 4.3: A pseudo-code description for pre-process weight

119

The technique of boosting applied in this network is similar to that applied for the S-
LVQ network. The Winner- Takes-All learning rule applied here will modify the
weights between the input neurons and the neuron first to fire (winning neuron) in the
hidden layer. The winner will be activated to 1 and the others to 0. In this learning
procedure, only if the winning ncuron is in the correct category and the start of the
PSP at a synapse slightly precedes a spike in the target neuron, is the weight of this
synapsc increased, as it exerts a significant influence on the spike-time by virtue of a
rclatively large contribution to the membrane potential. A pseudo-code description for
updating weight of S-LVQ is given in Figure 4.3. The details of the pseudo-code are

as follows:

The network structure needs to be defined. This involves deciding on the number of
inputs, outputs, and the number of sub-connections, the learning rate, and time
constant parameter. The chosen values for theses parameters were mentioned in sub-
section 4.3. SNN is a complex network model with a number of parameters which
control its functionality. Tuning the network by assigning appropriate values for these
parameters is essential for the smooth functioning of the network and for obtaining
optimum performance. There is a lack of clear guidelines regarding the selection of
these parameters. Hence, in this work, these parameters were found by analysing the

preliminary results obtained with some initial trial values.

In step 2, initialising the nctwork plays an important role in the learning process. The
important parameters here are the weights and delays of the interconnections between
the input ncurons and the output ncurons and also the threshold. The chosen values

for thesc two parameters have been mentioned in section 4.4. In the proposed model,

120

the connection weights are assigned only with positive values and all the connections

are realised as excitatory, with positive spike response function £(f) €[0.1] | This

is to ensure that the effect of most of the input parameters contributes positively to the

output.

In step 3, another important aspect of implementing the model is addressed, namely
the temporal coding the continuous input values. Precision of the temporal code
should be selected in such a way as to attain adequate accuracy with optimal
computational efficiency. Experiments have revealed that an input time window with

100 units is adequate in the casc of control chart data sets.

In step 4, a training input pattern will be presented to the network sequentially.

In step 5, the simulation time (¢) in this work is selected at from 0 to 300 units. For
each ¢, the network is updating the synapse potential for the training input pattern.

Then followed the updating of the output. Here is where the potential neurons of the

class belonging to that particular training input are raised.

121

Procedure Training For NS-LVQ Algorithm

1) Define the network structure ;

2) Initialise the weights and the delays;

3) Encodc the input data into temporal coding;

4) Present a training input pattern to the network;

5) For cach t (simulation time) Do
i) Update the synapse potential ;
i1) Update the output (boosting);

While (t < time window)
6) Find the winner;
7) Update the weights as the following:

8) Return to (4).

Figure 4.4: A pseudo-code description for NS-LVQ Algorithm

122

In step 6, the system will determine the first neuron to fire. The first neuron to fire is

determined as the winner.

In step 7, the weight of the winning neuron only will be modified or updated. If the
winning neuron is in the correct category and a7 > 0, the neurons will be updated
using cquation (29) or A7 < 0, the equation (30) is used. If the winning neuron is in

the incorrect category for A7 > 0 or a7 <0, then equation (31) is used.

In step 8, the system will return to step 4 with a new training input pattern and repeat
the procedure until all training patterns are correctly classified (or a stopping criterion

1s met).

In this rescarch, the unsupervised learning equations in (24) were employed to create
a supervised learning equation using the following update equations:

If the winner is in the correct category, then

w ew = wold + dW where

n

1), 1)
dw = n(ﬁje 2 forAT >0 (29)

AT
dw= —U(El/{]e (2/32] fOr‘AT<O (30)

123

If the winner is in the incorrect category, then

w =W, — dw where

new

AT
dw =|an [——]e [-ﬂ] for AT>0 or AT (3])

In the simulation, thc parameter values for the learning function L(AT) were set to:
n =0.0075, g =35 A=.f(2*22/7) , AT=[0-100], @ = 0.8, w,,, is the new
value for the weight and w,,, is the old weight value. The parameter 5 used here is a
static learning rate. Parameter g sets the width of the positive part of the learning
window and AT denotes the time difference between the onset of a PSP at a synaptic
terminal and the time of the spike generated in the winning output neuron. Parameter
a was used because in supervised learning there is prior information about the

training sets.

4.7 Data Set

The same data set as used in Chapter 3 is used here in order to make a comparison of
the network. There were 1500 data sets generated, using the process simulator
mentioned above. From these data sets, 1002 were used as training patterns (167
patterns in cach catcgory) and 498 (83 patterns in each category) for the testing

patterns. The patterns were sequentially applied to the network.

124

4.8 Empirical Evaluation of NS-LVQ

This section presents an empirical evaluation of the control chart pattern recognition
performance with the NS-LVQ algorithm. Two criteria were used to evaluate the
performance of the tested algorithm, namely, number of training epochs and the
classification accuracy. The number of epochs determine the training time. The
performance of the nectwork is calculated based on the classification accuracy. The

calculation of the accuracy was made using the following equation:

Number of patterns correctly classified
Total number of patterns tested

Accuracy (%) = 100

The results obtained with the proposed architecture and the supervised learning
procedure for control chart pattern recognition are presented in Table 4.3. A
comparison was made with the results obtained with an LVQ network [Pham and

Oztemel, 1994] and a back-propagation neural network.

125

‘NIA)at;cm recogniser | Num. of training | Learning Test
o | _epochs _performance (%) | performance (%)
- LVQ-X | 20 100.00 97.70
. Back-propagation | 200 100.00 95.00

- !

S-LVQ 40 99.85 98.28
- NS-LVQ | 15 99.93 97.85

!

A:I‘able 4.3: Results of different pattern recognisers applied to control chart data set.

126

4.9 Comparison with S-LVQ and Traditional Neural Networks

In Bohte et al’s work, a large set of weights have to be adjusted since a connection
between two ncurons corresponds to sixteen sub-connections, so the size of the
network increases drastically with the number of neurons. Furthermore, the network is
fully connected. Modifications werc made to suit the spiking learning vector
quantisation (S-LVQ) used for a much simpler network. Compared to S-LVQ, the
resulting network has a shorter training time although the classification accuracy of S-
LVQ is slightly better. The resulting neural nctwork has a simple structure of spiking
neurons for control chart data, reducing the complexity of implementation. As
mentioned in Chapter 3, the resulting network has no dependency on the initial values
of the weights. The training and adaptation time of the resulting spiking network
clearly was shorter than that for LVQ and back-propagation networks [Pham and
Oztemel, 1992; Pham and Oztemel, 1994]. At the end of 10 training epochs, the
network was able to classify correctly 98.73% of the training data set and 95.89% of
the test set. After 15 training epochs, the overall recognition accuracy level was
increased to 99.93% for the training set and 97.85% for the test set. This shows
clearly the superior performance of the spiking neural networks technique in an
application to control chart data over the other procedures using traditional neural

networks.

127

4.10 Learning Parameter (77)

As mentioned in the above chapter, SNNS is a complex model which involves more
parameters. Choosing the suitable parameters will affect the efficiency of the
recogniser. Another important parameter to be identified is the learning parameter 77 .
There is no way to decide it theoretically. The maximum allowable static value of the
learning parameter can be obtained empirically. However, there are two techniques to
determine the most suitable learning value. There are:

1) Static learning rate;

2) Adaptive learning rate.

4.10.1 Static Learning Rate

Static learning rate means that the value is fixed for all iterations. Experiments
showed that the classification accuracy with a small learning parameter is better and
the learning time is faster than with a larger learning rate. The smaller learning rate is
in the range of [0.0025, 0.01] and the larger is in the range of [0.05-0.1]. In this thesis,

the reasonable value of learning rate that give the best performance is 0.0075.

4.9.2 Adaptive Learning Rate

The adaptive learning rate monotonically decreases with time ¢. Different functions

could be adopted to implement n(@) , including the exponential decay function as in
Figure 4.4 and the linear decay function as in Figure 4.5. The allowed value for every
step in both functions is 0.003. The learning rate value is updated at each learning

iteration.

128

S

0 >
Iterations

Figure 4.5: Exponential decay function

0 >

Iterations

Figure 4.6: Lincar decay function

129

Learning parameter Number of iterations
5 10 15 20

0.0025 91.83 97.87 98.21 98.72
0.0050 91.72 97.14 97.84 97.84
0.0075 93.06 97.23 97.85 97.85
0.01 93.77 97.13 97.74 95.42
0.05 93.63 96.46 97.39 94.68
0.1 90.33 94.72 95.25 96.36

Table 4.4: Testing accuracy for different values of static learning rate

Epochs Testing accuracy with Testing accuracy with
| exponential decay linear decay
; [0.0025-0.01] [0.0025-0.01]
) 5 | 94.26 % 92.35%
10 96.56% 95.67%
15 2 95.83% 95.67%
' 20 93.17% 94.33%

Table 4.5: Comparison of training accuracy based on two different types of adaptive
learning rate.

130

Percentage of
accuracy

99
98
97
96
95
94
93
92
91
90
&9

[teration

Adaptive-E —a—Adaptive-L Static

Figure 4.7: Adaptive vs. static learning for classification accuracy

131

4.10.3 Static Vs Adaptive Learning Rate

Tables 4.4 and 4.5 show the results for control chart data using static learning rate and
adaptive learning rate respectively. Figure 4.7 presents the results clearly in a
graphical way. Table 4.6 shows the results of different cases of static value. From the
results shown in table 4.6, it is clear that with a small learning parameter, which is in
the range of [0.0025, 0.01], the performance of the classification is much better. The
percentage of correct classifications is between 91.71% and 93.77% for 5 learning
cpochs. The percentage is better with the increasing epochs. The best performance is
at 15 learning epochs. The percentage of correct classifications is between 97.74%
and 97.85% and the best performance is 97.85% with the static learning rate at
0.0075. After 20 learning cpochs, the performance remains static. The adaptive
learning strategy proposed here showed that it learns much faster for the first 10
iterations. The classification accuracy reaches 96.56% at 10 iterations. However, this
is the highest percentage reached. In these experiments, static learning produced
better results than adaptive learning. This is in contradiction to the results reported by
Xin and Embrechts [Xin and Embrechts, 2001]. The adaptive learning strategy

proposed here can be improved in future to get better results.

4.11 Summary

This chapter has presented an enhanced spiking learning vector quantisation (S-LVQ)
algorithm, so-called NS-LVQ, particularly applied for control chart patterns. Here, a
new architecture and a technique for pre-process weights were proposed. Previously,
neural networks have proved capable of data smoothing and generalisation. This

research has shown that spiking neural networks with a simpler architecture together

132

with an efficient learning rule can produce good capability in data smoothing and
generalisation. This permits them to recognise noisy control chart patterns not
identical to those they have been taught, as indicated by the good results presented in

this work. Some improvement in the adaptive strategy proposed in this chapter will

enable better classification accuracy.

133

CHAPTERSS

OPTIMISATION OF SPIKING NEURAL NETWORKS USING

THE BEES ALGORITHM

5.1 Preliminaries

Generally, an optimisation algorithm is defined as a numerical method or algorithm
for finding a value x such that f(x) is as small (or as large) as possible, for a given
function f, possibly with some constraints on x. Here, x can be a scalar or vector of
continuous or discrete values. If x is continuous, then the study of the algorithm is part
of numerical analysis. However, classical optimisation methods encounter great
difficulty when faced with the challenge of solving hard problems with acceptable
levels of time and precision. It is generally believed that NP-hard problems cannot be
solved to optimality within polynomial bounded computation times, thus generating
much interest in approximation algorithms that find near-optimal solutions within

reasonable running times.

Over the past several years, researchers have been inspired by nature in many
different ways. Swarm-bascd optimisation algorithms (SOAs) mimic naturc’s
mcthods to drive a scarch towards the optimal solution. They often provide state-of-
the-art solutions for hard optimization problems. They have been demonstrated to be

cificient algorithms for tracking or finding the optimal solution in the dynamic

134

cnvironment and have reccived increasing interest. Successful optimisation methods

play a crucial role for finding optimal or near-optimal solutions for such problems.

5.2 Intelligent Swarm-based Optimisation Algorithms (SOAs)

Swarm intelligence is an innovative computational way to solve hard problems.
Swarm intelligence (SI) is an artificial intelligence technique based around the study
of collective behaviour in decentralised, self-organised systems. The expression
"swarm intelligence" was introduced by Beni & Wang in 1989 [Beni and Wang,

1989], in the context of cellular robotics systems.

This discipline is mostly inspired by the behaviour of swarms of ants, termites, bees,
wasps, fishes and other biological creatures. In general, there is some kind of
mimicking of the behaviour of these swarms. Sl systems are typically made up of a
population of simple agents interacting locally with one another and with their
environment. Although there is normally no centralized control structure dictating
how individual agents should behave, local interactions between such agents often
lead to the emergence of global behavior. Swarm Intelligence is a relatively novel
discipline devoted to the study of self-organizing collective processes in Nature and

Human artefacts as well as on their applications.

A key difference between SOAs and direct search algorithms such as hill climbing
and random walk is that SOAs use a population of solutions for every iteration instead
of producing a single solution. As a population of solutions is processed in iteration,
the outcome of cach iteration is also a population of solutions. If an optimisation

problem has a single optimum, SOA population members can be expected to

135

converge to that optimum solution. However, if an optimisation problem has multiple

optimal solutions, an SOA can be used to capture them in its final population.

Among the most popular SOAs are the Ant Colony Optimisation (ACO) algorithm
[Dorigo and Stutzle, 2004], the Genetic Algorithm (GA) [Goldberg, 1989] and the

Particle Swarm Optimisation (PSO) algorithm [Eberhart, Shi, and Kennedy, 2001].

An cxample of a particularly successful research direction in swarm intelligence is ant
colony optimisation (ACO), which focuses on discrete optimisation problems, and has
been applied successfully to a large number of hard discrete optimisation problems,
including the travelling salesman, the quadratic assignment, scheduling, vehicle

routing, etc., as well as to routing in telecommunication networks.

However, apart from these remarkably successful applications in optimisation as well
as on their critical features as bio-inspired computational paradigms, a small number
of research works have still been devoted to Pattern Recognition , Data Classification
and Retrieval Systems, Clustering, Distributed Data-Mining, Web Mining and
GRIDS, Collaborative Filtering, Image Analysis and Signal Processing, Pattern

Formation, Perception, Memory and Generalisation.

In the real world onc usually has to dcal with the task of searching for an optimal
solution in a dynamic cnvironment. Because of the continual change of both the
external cnvironment and parameters, the optimum solution will also change with
time. In contrast to the static case, the main goal in dynamic optimisation problems is
no longer to acquire just the global extreme but to track its orbit through space as
closcly as possible, or to find a robust solution that opcrates optimally in the prescnce

of uncertaintics. Many algorithms fail when applied to the dynamic problem due to

136

their inability to adapt or sclf-adapt to the change of the environment. Currently, a
swarm-based algorithm, the so called Bees Algorithm (BA), is claimed to be capable

of locating good solutions cfficiently [Pham ct al, 2006].

This algorithm is inspired by the behaviour of honey bees [Pham ct al, 2005]. There
arc other SOAs with names suggestive of possibly bee-inspired operations [Frisch,
1976: Sceley, 1996, Bonabcau, 1999, and Camazine et al, 2003]. However, as far as
the author is aware, those algorithms do not closely follow the behaviour of bees. In
particular, thcy do not scem to implement the techniques that bees employ when

foraging for food.

5.3 The Basic Bees Algorithm

5.3.1 Honey Bees in Nature

A colony of honey bees can extend itself over long distances (more than 10 km) and
in multiple directions simultaneously to exploit a large number of food sources
[Frisch, 1976; Seeley, 1996]. A colony prospers by deploying its foragers to good
fields. In principle, flower patches with plentiful amounts of nectar or pollen that can
be collected with less effort should be visited by more bees, whereas patches with less
nectar or pollen should receive fewer bees [Bonabcau, 1999, and Camazine et al,

2003].

137

The foraging process begins in a colony by scout bees being sent to scarch for
promising flower patches. Scout bees move randomly from one patch to another.
During the harvesting scason, a colony continucs its exploration, keeping a percentage
of the population as scout bees [Seeley, 1996]. When they return to the hive, those
scout bees that found a patch which is rated above a certain quality threshold
(mcasured as a combination of some constituents, such as sugar content) deposit their
ncctar or pollen and go to the “dance floor” to perform a dance known as the “waggle

dance” [Frisch, 1976].

This mysterious dance is essential for colony communication, and contains three
pieces of information regarding a flower patch: the direction in which it will be found,
its distance from the hive and its quality rating (or fitness) [Frisch, 1976; Camazine ct
al. 2003]. This information helps the colony to send its bees to flower patches
preciscly, without using guides or maps. Each individual’s knowledge of the outside

environment is gleaned solcly from the waggle dance.

This dance cnables the colony to cvaluate the relative merit of different patches
according to both the quality of the food they provide and the amount of cnergy
nceded to harvest it [Camazine ct al, 2003]. Afier waggle dancing on the dance floor,
the dancer (i.c. the scout bee) goces back to the flower patch with follower bees that
were waiting inside the hive. More follower bees arce sent to more promising patches.

This allows the colony to gather food quickly and cfficiently.

While harvesting from a patch, the bees monitor its food level. This is necessary to

decide upon the next waggle dance when they return to the hive [Camazine et al,

138

2003]. If the patch is still good cnough as a food source, then it will be advertised in

the waggle dance and more bees will be recruited to that source.

5.3.2 Bees Algorithm

As mentioned above, the Bees Algorithm finds the optimal solution to a problem by
copying the natural foraging bchaviour of honey bees [Pham et al, 2005]. Figure 5.1
shows the flowchart for the basic Bees Algorithm in its simplest form [Pham et al,
2005]. Figure 5.2 illustrated the Bees Algorithm in a simple but attractive graphical
representation [Pham et al, 2005]. The details of the Bees Algorithm will be described

in the next section, with an addition to it.

5.3.3 Characteristics of Bees Algorithm

Population (n) is one of the key parameters in the Bees Algorithm. Pham et al., 2005
presented an experiment designed to measure the effect of changing population size
on the mean number of iterations, number of evaluated points and reliability of
successfulness of the algorithm. Experiments proved that increasing the population
size will result in a reduced number of iterations. Elitism (e) is another important
parameter. The number of elites does not have a major effect on the performance of

the Bees Algorithm. Thus, the number of elites can be a small number more than zero.

139

Neighbourhood search is an essential concept for all evolutionary algorithms
including the Bees Algorithm. In the Bees Algorithm, the searching process in the

neighbourhood range is similar to the foraging field exploitation of natural bees.

In the Bees Algorithm, the natural behaviour of bees to find quality nectar has been
used as a neighbourhood search. Only one bee is chosen from each neighbourhood
sitc (foraging site). This bee has the best solution information about the field.
Neighbourhood search is based on the random distribution of bees in a predefined
ncighbourhood range. For every selected site, bees are randomly distributed to find a
better solution. The number of recruited bees around selected sites should be defined
properly. Experiment has shown that increasing the number will result in increasing
the probability of finding a good solution. This problem also depends on the
neighbourhood range. Neighbourhood range is another variable which needs to be

tuned for different types of problem spaces.

140

Initialise a scout bee population (1)

!

R Evaluate fitness of the population

y

Select elite bees (e)

Neighbourhood search

Sclect sites for ncighbourhood search (m-e)

Determine the neighbourhood range

Recruit the bees around selected sites

A

Select fittest bees from each site

Assign remaining bees to random search (n-m-e)

|

New population of scout bees (e+m+ (n-m-e))

Figure 5.1: Flowchart of Bees Algorithm

141

?

*
*

Graph 1. Initialise population with random solutions and i
evaluate the fitness.

Graph 5. Recruit bees around selected sites.

:

Graph 2. Select elite bees “*=”.

Graph 6. Select the fittest from each site «¥en

3

Graph. 3. Select sites for neighbourhood search**s”
and‘tu7’.

Graph 7. Assign remaining bees to search randomly and
evaluate their fitness

:

Graph 4. Define neighbourhood range.

Graph 8. New population with “previous elite bee”,
representative bees and randomly distributed bees

Figure.5.2: Graphical illustration of bee algorithm.

142

Therefore, it is necessary to discuss different strategies for increasing the robustness
and quality of the algorithm. In this chapter, a shrinking method is applied to the Bees
Algorithm in order to get better result and to speed the computation time. Details of

the proposed method are discussed in following section.

5.4 Bees in Artificial Neural Networks

Optimising the topology of artificial neural networks is an important task, when one
aims to get smaller and faster networks, as well as a better generalisation
performance. Moreover, optimisation automatically avoids the time-consuming search
for a suitable topology. The main criterion for optimising the network topology is the
size of the network. The time needed for the optimisation and the classification

accuracy are also important.

The Bees Algorithm has shown good performance in its application to neural
networks for control chart pattern recognition. Architectures used are Learning
Vector Quantisation (LVQ), Radial Basis Function (RBF), and Multi-Layer Peceptron
(MLP) [Pham et al., 2006]. These papers have described the use of the Bees

Algorithm to train the network for control chart pattern recognition

143

In terms of the Bees Algorithm, each bee represents an LVQ network with a particular
set of reference vectors. The aim of the algorithm is to find the bee with the set of
reference vectors producing the smallest value of the error function. The LVQ
networks adopted had 60 input neurons in the input layer, 6 output neurons, and 36
hidden neurons. The algorithm was initialised with all weight values set randomly
within the range 0 to 1. The classification accuracy levels achieved after 4000
iterations were 96.56% for the training data and 95.47% for the test data. The authors
reported that despite the high dimensionality of the problem,(each bee represented
2160 (60X36) parameters that had to be determined) the algorithm still succeeded in
training more accurate classifiers than those produced by the standard LVQ training

algorithm.

[Pham et al., 2006] explained both the standard RBF training method and a training
procedure based on the Bees Algorithm. In this algorithm, each bee represents an
RBF network with a particular set of basis function centres, spreads and weight
vectors. The aim of the algorithm is to find the bee producing the smallest value of the
error function. The RBF network configuration used involves three layers: an input
layer, a hidden layer and an output layer. The input layer has 60 neurons, one for each
point in a pattern. The hidden layer consists of 35 neurons. The output layer
comprises 6 neurons, one for each of the six classes. They reported that despite the
high dimensionality of the problem (each bee represented 2345 (60*35+6*35+35)
parameters that had to be determined), the algorithm still succeeded in training the
network with 99.1% classification accuracy and their results are comparable with

those given by conventional RBF networks.

144

For MLP networks, each bec represents an MLP network with a particular set of
weight vectors. The aim of the algorithm is to find the bee with the set of weight
vectors producing the smallest value of the error function. MLP networks are trained
with the Bees Algorithm as well as with the standard back-propagation algorithm. The
multi-layer perceptron (MLP) configuration used involves three layers: an input layer,
a hidden layer and an output layer. The input layer has 60 neurons, one for each point
in a pattern. The output layer comprises 6 neurons and the hidden layer consists of 35
ncurons. The input neurons perform no processing roles, acting only as buffers for the
input signals. Processing is carried out by the hidden and output neurons, the
activation functions for which were chosen to be of the sigmoidal type. In addition,
the algorithm was initialised with all weight values set randomly within the range -1
to 1. The authors reported that at the end of 1000 iterations, the MLP network was
able correctly to classify 98.2% of the training set and 96.9% of the test set. The
network was also here applied to a high dimensionality of the problem as each bee
represented 2310 (60*35+35*6) parameters that had to be determined. Their results

demonstrated that this algorithm outperformed the back-propagation algorithm.

Table 5.1 shows the values of the parameters adopted for the Bees Algorithm for the

three recognisers. The values were decided empirically. The performance of the

ANNSs mentioned above is shown in Table 5.2.

145

Artificial neural networks architecture

Bees Algorithm parameter LVQ RBF MLP
Population (n) 200 200 200
Number of selected sites (m) 20 10 20
Number of elite sites (e) 1 2 2
Initial patch size (ngh) 0.01 0.1 0.1
Number of bees around clite

points (nep) 20 80 50
Number of bees around other

sclected points (nsp) 10 20 20

Table 5.1: The parameters of the Bees Algorithm for LVQ, RBF and MLP

for control chart pattern recognition

Pattern recogniser with Bees

Learning accuracy

Test accuracy

LVQ 96.56% 95.47%
RBF 99.59% 99.10%
MLP 98.2% 96.9%

Table 5.2: Performance of different pattern recognisers with Bees

146

5.5 Evaluation Strategy (ES) in SNNs

In [Belatreche et al, 2003], the authors investigate the viability of evolutionary
strategies (ES) regarding supervised learning in spiking neural networks. The use of
the evolutionary strategy is motivated by the ability of ESs to work on real numbers
without complex binary encoding schemes. ESs proved to be well suited for solving
continuous problems [Spears et al,, 1993]. The ESs are used to search for the
optimum weights and delays that minimise the total error between actual and target

output firing times. The objective function to be minimised is given by equation (32):
- 2
a !
E=) Y (t2()-1,(1)) (32)
t o€l

where 25 (¢) and £, () are, respectively, actual and target output firing times of

node i for pattern t, and T is the total number of patterns in the training set. In their
work, a modified ES is used to train the spiking network in a supervised way, where a

combination of Cauchy and Gaussian mutation is used.

A feedforward fully connected spiking network is implemented in their work.
Basically there are input, hidden and output layers (16X10X1) for IRIS benchmark
data. The adopted spiking neurons are based on the Spike Response Model [Gerstner
and Kistler, 2002] and are connected via synapse, which are characterised by a weight
representing the synaptic strength and a delay for the time a spike takes to reach the
post-synaptic neuron. The advantage herc is its simple structure. The structure

considers only one synaptic connection between two neurons, each of which is

147

characterised by a weight and a delay value. Moreover, both positive and negative
weights are allowed. The approach has been reported as successful for learning
nonlinearly separable problems without using any gradient information. The
classification accuracy level achieved for the IRIS data set is 98.67% for the training
sct and 94.67% for the test set. However, a disadvantage of this approach is that it is
time-consuming. These results demonstrate that an alternative approach such as
optimisation for supervised learning with spiking neural network have a great

potential.

5.6 Motivation for Research

Although significant progress has already been made in recognisng information codes
that can be beneficial for computation in SNNs [Gerstner and Kistler, 2002a; Maass,
1999; 2003; Maass and Bishop, 1999], how to determine efficient neural learning
mechanisms that facilitate the implementation of these particular time coding schemes
is still an open problem. Numerical experiment has proved that the performance of the
S-LVQ and the NS-LVQ algorithms is superior to that of the standard ANNSs.
However, experiment using a single synapse for each connection between two
neurons showed that further work is needed to improve the performance of the
classification achieved. These algorithms still suffer from problems that limit their
efficiency and widespread use. One of the main limitations is the method used to set
the values of weights and delays. In these algorithms, the value of weights, delays and

of the delay interval must be set by trial and error to get the best result.

148

This section presents S-LVQ and NS-LVQ with the Bees Algorithm, an alternative
algorithm which addresses the limitation of the spiking networks. In particular, it
employs a new optimisation algorithm, which modifies the basic Bees Algorithm.
Generally, the proposed Bees Algorithm applies the shrinking method to narrow the
neighbourhood size in order to focus the searching process. This enhancement enables

an improvement of performance for both networks.

The remainder of this chapter is organised as follows: section 5.7 gives a detailed
description of the proposed Bees Algorithm and the spiking neural network structure;
section 5.8 presents the pattern recognition results obtained using the S-LVQ and NS-

LVQ networks with the Bees Algorithm.

5.7 Spiking Neural Networks with Proposed Bees Algorithm

5.7.1 Networks Structure

Optimisation using the Bees Algorithm will involve both of the proposed spiking
networks presented above in Chapters 3 and 4, the so called SB-LVQ and NSB-LVQ
networks respectively. In order to maintain comparability, the structure of the spiking
neural networks (number of hidden layers and number of neurons) remained the same
throughout. The networks and parameters adopted here are exactly the same. Details
of the network structurcs are presented in Tables 5.1 and 5.2 respectively. Basically,
those networks have a similar architecture to both the S-LVQ and the NS-LVQ
nctworks, as explained above in Chapters 3 and 4 respectively. In this work, the
adopted spiking ncurons arc based on the Spike Response Model [Gerstner and

Kistler, 2002] with some modification to the spike response function in order for the

149

networks to be applicable to control chart pattern recognition. The spike response
function used in that architecture is as explained in equation (21) in Chapter 3. Input
vectors were also presented sequentially to the network together with the
corresponding output vectors identifying their categories as shown in Table 3.4 above.
Unlike the network structure used for S-LVQ and NS-LVQ in Chapters 3 and 4, this
structure considers only one synaptic connection between two neurons, each of which
is characterised by a weight and a delay value. Furthermore, this structure is much
simpler compared to both previously proposed algorithms as only one synapse is

considered. As previous work, only positive values of weights are tested here.

5.7.2 Optimising the Networks

Previously the method presented for refining such a spiking network was the use of
the proposed S-LVQ and NS-LVQ algorithms. However, in both of the proposed
algorithms, during the training phase, the new learning algorithms are used to adjust
the weights. In this thesis, a modified version of Bees Algorithm is used to optimise
the weights and the delays of the networks previously developed in Chapters 3 and 4 .
The main motive for using the Bees Algorithm is to search for the optimum set of
both synaptic weights and delays that allow the spiking network to learn temporal

patterns.

150

Nufﬁbér ;)f inputs = 60 Number of outputs = 6

Number of hidden neuron for each output | Initial weights range =0 to 1

|

_category = 6 J
- Scaling range =0 to 1 Coding interval = 0 to 100
vl;gzrlming rate = 0.0075 Time constant = 120 (ms)

Table 5.3: Details of the proposed S-LVQ network used for control charts
with the Bees Algorithm.

ﬁwNumber of inputs = 60 Number of outputs = 6

mﬁumber of hidden neuron for each output | Initial weights range =0to 1

_category = |
Scaling range =0 to 1 Coding interval = 0 to 100
| ALVc;arlming rate = 0.0075 Time constant = 150 (ms)

Table 5.4: Details of the proposed NS-LVQ network used for control charts
with the Bees Algorithm.

151

Figure 5.3: Single synapse connection between two neurons for the proposed spiking

neural network with the Bees Algorithm.

152

5.7.3 Proposed Bees Algorithm

As mentioned above, figure 5.4 shows the pseudo-code for the proposed Bees
Algorithm. The modification to the basic Bees Algorithm is the addition at step

number 6 and 9. The detailed description of the pseudo-code is as follows:.

The algorithm starts with the n scout bees being placed randomly in the search space.

The fitnesses of the points visited by the scout bees are evaluated in step 2.

Subsequently, in step 4, the m sites with the highest fitnesses are designated as

“selected sites” and chosen for neighbourhood search.

Then, in steps 5-8, the algorithm conducts searches around the selected sites,
assigning more bees to search in the vicinity of the best e sites. Selection of the best
sites can be made directly according to the fitnesses associated with them.
Alternatively, the fitness values can be used to determine the probability of the sites
being selected. Searches in the neighbourhood of the best e sites, those which
represent the most promising solutions, are made more detailed. As already
mentioned, this is done by recruiting more bees for the best e sites than for the other
selected sites. Together with scouting, differential recruitment is a key operation of
thc Bees Algorithm. As explained previously, both scouting and differential

recruitment are used in nature.

In step 6, the shrinking method is applied for neighbourhood size if the value of the

fittest bee remains unchanged. This is determined after certain number of iterations.

153

Procedure for Proposed Bees Algorithm

1.

2.

Initialise population with random solutions.
Evaluate fitness of the population.
While (stopping criterion not met)
// Forming new population.
Select elite bees and elite sites for neighbourhood search.
Select other sites for neighbourhood search.
Use initial patch size or shrink the patch size if the value of the fitness remains
unchanged.
Recruit bees around selected sites (more bees for best elite sites) and evaluate
fitnesses.
Select the fittest bee from each site.
Assign remaining bees to search randomly and evaluate their fitnesses.

(After some iteration, reduce the population of the bees)

10. End While.

Figure 5.4: Pseudo-code of the proposed Bees Algorithm

154

The objective of using this method is to focus the searching in a smaller
neighbourhood size. If the point is close to the optimum solution or the peak, a bigger
neighbourhood range makes the search more difficult. Therefore, the patch size needs
to be shrinking in order to speed up the search. After a few iterations of time
shrinking, if there is no improvement to the value of the fittest bee then it means that
the bee is at the peak, so the shrinking is stopped. This phenomenon is illustrated
using a simple graphical cxample in figure 5.5. So far, this shrinking method has only

been tested on an artificial ncural network problem.

In step 8, for each patch, only the bee that has found the site with the highest fitness
(the “fittest” bee in the patch) will be selected to form part of the next bee population.
In nature, there is no such a restriction. This restriction is introduced here to reduce

the number of points to be explored.

In step 9, the remaining bees in the population are assigned randomly around the

search space to scout for new potential solutions.

At the end of each iteration, the colony will have two parts to its new population:
representatives from the selected patches, and scout bees assigned to conduct random
searches. After some iteration, reduce the population of the bees as this will speed up

the algorithm.

Lastly, steps 4-9 are repeated until the stopping criterion is met. This usually means

that cither the best fitness value has stabilised over a number of iterations or the

specified maximum number of iterations has been reached.

155

ii

Initial patch size Patch size after shrinking

Figure 5.5: Graph illustrating the shrinking method for points that
are near to the peak

156

5.7.4 Spiking Networks Training Procedure

The training of the artificial network can be regarded as the minimisation of an error
function. The error function defines the total difference between the actual output and

the desired output of the network over a set of training patterns [Pham and Oztemel,
1992]. Training proceeds by presenting to the network a pattern of known class taken
randomly from the training set. If the class of the pattern is correctly identified by the
nctwork, the error component associated with that pattern is null. If the pattern is
incorrectly identified, the error component is set to 1. The procedure is repeated for
the entire pattern in the training set and the error components for all the patterns are
summed to yield the value of the error function for the spiking networks with a given

set of weights and delays.

In terms of the Bees Algorithm, each bee represents an S-LVQ or NS-LVQ network
with a particular set of the weights and delays vectors. The aim of the algorithm is to
find the bee with the set of weights and delays producing the smallest value of error
function. In this research, a modified Bees Algorithm is used to train the spiking
network in a supervised way. The spiking network training procedure using the Bees
Algorithm thus comprises the following steps:

1. Generate an initial population of bee;

2. Apply the training data set to determine the value of the error function associated
with each bee;

3. Based on the error value obtained in step 2, create a new population of bees
comprising the best bees in the selected neighbourhoods and randomly placed scout

bees;

157

4. Stop if the value of the error function has fallen below a predetermined threshold;

5. Else, return to step 2.

5.7.5 The Proposed Bees Algorithm Parameters

Table 5.5 shows the values of the parameters adopted for the Bees Algorithm for the
spiking nctworks. The values were decided empirically. In addition, as mentioned
above, only positive values for weights were tested. The algorithm was initialised
with all weight values set randomly within the range 0 to 1. The range value of the
delays was initially set empirically from 30 to 80. This is based on experience from

the previous experiments in chapters 3 and 4 above.

5.8 Data Set

Spiking neural networks with the Bees Algorithm used the same data sets as described
in Chapter 2. These were also generated using the previously mentioned process
simulator. From these data sets, 1002 were used as training patterns (167 patterns in
each category) and 498 (83 patterns in each category) were used for the testing

patterns. The patterns were sequentially applied to the network.

158

Bees Algorithm parameters Symbol Value
Population n 1000
Number of selected sites m 20
Number of elite site e 5
Initial patch size ngh 0.5
Final patch size ngh 0.007
Number of bees around elite points nep 70
Number of bees around other selected points nsp 50

Table 5.5: The parameters of the proposed Bees Algorithm

159

5.9 Empirical Evaluation of Spiking Networks with Proposed Bees Algorithm

This section presents an empirical evaluation of the control chart pattern recognition
performance for spiking ncural networks with a single connection using the Bees
Algorithm. Two criteria were used to evaluate the performance of the tested
optimisation algorithm, namely, the simple structure and classification accuracy. The

accuracy level was calculated using the same equation as explained in chapters 3 and

4,

The results obtained with the proposed architecture and the supervised learning
procedure for control chart pattern recognition using the Bees Algorithm are
presented in Table 5.7. The results obtained for the S-LVQ and NS-LVQ networks
with single synapse connection without optimisation are also presented. The results in

Table 5.6 are presented graphically in Figure 5.6.

160

Pattern recogniser Learning Test accuracy

accuracy

LVQ (standard) 95.18% 92.31%
S-LVQ (single synapse) 94.24% 86.65%
NS-LVQ (single synapse) 93.49% 85.10%
LVQ (Bees) 96.56% 95.47%
S-LVQ (single synapse with Bees) 96.44% 95.28%
NS-LVQ (single synapse with Bees) 94.24% 93.70%

Table 5.6: Results of different pattern recognisers

Figure 5.6: Classification accuracy of different pattern recognisers

161

5.9.1 Comparison with Spiking Network without Bees Algorithm

Spiking neural networks for single synapse connection for S-LVQ and NS-LVQ
architecture was compared with S-LVQ and NS-LVQ with the Bees Algorithm.
Experimental results have demonstrated that the proposed Bees Algorithm gives
better performance compared to single synapse architecture without the algorithm.
Afier 2000 iterations, S-LVQ can reach 95.28% of classification accuracy. NS-LQ
achicved the classification accuracy 93.70% after 1000 iterations. The optimisation
algorithm successfully improved the performance of the spiking network with single
synapse connection. S-LVQ and NS-LVQ alone with single synapse only achieved
86.65% and 85.10% classification accuracy respectively. Compared to spiking
nctworks without optimisation [Table 5.6], the performance demonstrated that the
Bees Algorithm still succeeded in training more accurate classifiers despite the high
dimensionality of the problem it faced as each bee represented 2160 (60X36) for S-
LVQ and 360 (60X6) for NS-LVQ parameters need to be determined. Moreover,
these results are comparable to the LVQ with Bees and represent a better performance

than achieved by the standard LVQ training algorithm.

5.10 Summary

This chapter has presented a modified Bees Algorithm for optimising supervised
spiking neural networks for classification learning particularly for control chart
patterns, which include the simple architecture. This study was motivated by the
recent experimental results on Bees Algorithm on artificial neural networks as
cxplained above. This section also presented briefly various approaches to the task of

optimising and discussed their potential in artificial neural networks. From the

162

literature review, only Evolution Strategy (ES) has been implemented for optimising
spiking neural networks with single synapse. However, this method was only tested
on XOR problems and on IRIS data. As far as the author is aware, this is the first
application of the Bees Algorithm for optimising spiking neural networks for control

chart pattern recognition.

163

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter summarises the main contributions of this work and the conclusions

rcached. It also provides suggestions for future work.

6.1 Contributions

This research addressed the problem of pattern recognition in control chart data sets.
The aim is to develop a good learning algorithm based on the spiking neuron model
so that they can be successfully applied to control chart data sets. Its contributions

include:

e A thorough analysis of the issue of pattern recognition. A critical overview
has been conducted of recently available or applied learning techniques
ranging from statistical to artificial intelligence methods specifically applied to
control chart data sets. This also includes a discussion of their potential for the
application of control chart pattern recognition. This led to the design of

networks using the architecture of conventional ANNS.

164

A thorough analysis of spiking neural networks. A critical overview has been
performed of more plausible models of real biological neurons and also the
existing learning algorithms, especially those suitable for pattern recognition.
Their potential and successful application in pattern recognition were
discussed. Finally, this led to the design of networks with spiking neurons
instead of common neurons, that consider time as an important feature for

information representation and processing.

A simpler architecture for the proposed spiking networks. Four new
architectures were developed, S-LVQ, NS-LVQ, SB-LVQ and NSB-LVQ. S-
LVQ is a simple structure network similar to that of an LVQ network (S-
LVQ). An enhanced network of S-LVQ (NS-LVQ) which is simpler than S-
LVQ was developed. An optimisation technique was used to simplify both of
the proposed spiking networks to a single synapse network instead of multi-
synapses, as in SB-LVQ and NSB-LVQ. The implementation of these simple
structures to the networks significantly reduced the complexity of the network

and the learning time.

An efficient learning algorithm for better exploitation of this plausible model
of real biological neurons. The proposed algorithms employed appropriate
strategies adopted from of nature and weight updating techniques that

significantly increase the classification accuracy.

165

Nature-inspired techniques for improved spiking network learning. The
presented techniques for learning, which are boosting and motivation, were
built inspired by the behaviour of human neuroscience for training purposes
[Cooper, 2002; Tolman, 1948; Barch, 2005; Berridge, 2004]. These techniques
overcame drawbacks in the spiking neural network applied to control chart
pattern recognition. The Bees Algorithm is a new population-based search
algorithm. The shrinking method proposed for the Bees Algorithm procedures
is reliable for artificial neural network problems. This optimisation method
resulted in a simpler architecture as well as better accuracy for control chart

pattern recognition with spiking networks.

Supervised classification learning algorithms appropriate for control chart
data. Three new learning algorithms were developed, S-LVQ, NS-LVQ, and
SB-LVQ and NSB-LVQ. The adopted spiking neurons in these networks are
based on the Spike Response Model [Gerstner and Kistler, 2002] with some
modification to the spike response function in order for the networks to be
applied to control chart pattern recognition. The learning algorithm for S-LVQ
is based on the integration of boosting and motivation techniques mentioned
above. Such integration led to an efficient and effective learning rule for
control chart pattern recognition. NS-LVQ is an enhanced network of S-LVQ.
NS-LVQ is based on the integration of the boosting technique mentioned
above and the Winner-Takes-All [Jin and Seung, 2002] updating weights. The
main advantageous features of NS-LVQ over S-LVQ are simpler architecture

and faster computation. Enriched with these new features, NS-LVQ should

166

produce a shorter learning time as well as better classification accuracy for
control chart data sets. SB-LVQ and NSB-LVQ are improved versions of the
two networks mentioned above respectively. Both networks used the Bees
Algorithm to search for the optimum set of both synaptic weights and delays
that allow the spiking network to learn temporal patterns. The main
improvement of SB-LVQ and NSB-LVQ over NS-LVQ and S-LVQ is the
simplified network structure as mentioned above. Such an optimisation
method allows the network to implement a single synapse with better

classification accuracy for control chart data sets.

An interesting effect for different numbers of hidden neurons. The new
learning algorithm proposed for S-LVQ took full advantage of the numbers of
neurons in the hidden layer to improve its performance. It produced a precise
learning rule as well as a learning time comparable to that achieved with
standard LVQ and its variants and also with Back-propagation. This effect

also resulted in better classification accuracy.

An effective method for pre-processing weights. This method follows a simple
mathematical formula. The weights pre-processing method which is applied
before the training process overcame the drawback of using only a small range
of weights in spiking networks. It is found that weight initialisation is a critical
factor for good performance of the learning rule [Moore, 2002; Schrauwen and
Van Campenhout, 2004; Tino and Mills, 2005; Xin and Embrechts, 2001] in

certain algorithms such as SpikeProp.

167

6.2 Conclusions

To gain the edge in today’s competitive environment, companies must employ
effective tools to ensure that their products are of the highest quality. Moreover,
continuous improvement of their production process is important in order continually
to raise quality standards. Statistical Process Control (SPC) is a quality improvement
tool widely adopted in industry and the most popular tool is control charts. It uses
simple rules to determine if a process is out of control and needs corrective action. It
is also possible to detect incipient problems and to prevent the process from going out
of control by identifying the type of patterns displayed by the control charts [Pham
and Oztemel, 1996]. Control chart pattern recognition has been successfully trained
using artificial neural networks [Zorriassatine and Tannock, 1998]. For many years a
common belief was that essential information in neurons is encoded in their firing
rates. However, recent neurophysiological results suggest that efficient processing of
information in neural systems can be founded also on the precise timing of action
potentials (spikes) [Bohte, 2004; VanRullen et al.,, 2005; Thorpe et al., 2001].
Although the creation and development of ANNs were inspired by biological neural
systems, ANNs are considered to be limited compared to their biological counterparts

due to their simplistic structure and behaviour [Zador, 2000; Maass, 1999].

These considerations have led to increased interest in temporal-coding spiking
neurons which are more biologically realistic artificial neurons and in Spiking Neural
Networks (SNNs) which are made up of such neurons. SNNs have shown great
promise as pattern recognisers [Hopfield, 1995]. Most of the existing learning
algorithms are unsupervised, based on an adaptation of the famous Hebbian rule.

Hebbian learning is biologically based and is a simple learning method. Therefore it is

168

a natural candidate for application to spiking neural networks [Kunkle and Merrigan,
2005). However, the unsupervised approach is not suitable for learning tasks that
require an explicit goal definition. Most of the supervised learning algorithms in
previous research adopted the Multilayer Peceptron network with the classical back-
propagation learning algorithm. However, the sizes of the network increases
drastically with the number of neurons as a large set of weights have to be adjusted

for multi-synapse connection.

Therefore, a new approach for supervised training is needed. Moreover, most existing
algorithms were designed for low dimensions of data set. As far as the knowledge of
the author goes, this thesis presents the first application of the spiking network to
control chart pattern recognition [Pham and Shahnorbanun, 2006]. Producing a good
supervised learning algorithm for such high dimension data sets is a formidable
challenge. Therefore, simple networks architecture together with efficient and
effective learning algorithm is needed for better exploitation of these new

applications.

This research presented a new supervised learning algorithm that can efficiently
extract accurate and comprehensible models from high-dimensional data sets such as
control charts. These algorithms were tested in several experiments and the results

proved that they produced better performance as regards classification accuracy.

A simulator have been developed to create and to perform a detailed analysis of

spiking neuron networks on CCPR. The code for the simulator can be found in

Appendix A and B.

169

Chapter 3 presented a supervised learning algorithm that is suitable specifically for
application to control chart pattern recognition. The proposed algorithm employs a
new learning rule, which embodies several techniques of natural behaviour and
conventional architecture. Such integration produced a simple network which reduced
the network complexity as well as overcaming the drawbacks of most LVQ learning
algorithms. This algorithm also demonstrated the interesting effect of using different
numbers of hidden neurons in the network. This effect resulted in precise

classification accuracy.

Chapter 4 concentrated not only on enhancement of the proposed network mentioned
above, but also on the procedure before the training process. The main objective of
chapter 4 is to produce a simpler architecture provided with an efficient learning
algorithm. The procedure before training, so called pre-process weights, is a reliable
way to balance the weights so that they will not dominate the neuron potential.
Adaptive learning rate experiments were also carried out, aiming to take into account
the effect of the learning parameter on the learning time of the network. Experiments
indicated that the proposed network with the integration of several procedures

substantially improved performance in terms of learning time.

The application of spiking neural networks to control chart pattern recognition is a
new research area. Therefore, it is formidable challenge to develop powerful learning
mechanisms with a non-complex architecture. Setting the values of several
parameters, such as the threshold, the range of the weights and the delays, are very
important as they play an important role in the network. Optimisation methods are

well suited for solving this task. Chapter 5 introduced a new optimisation method, the

170

Bees Algorithm (BA), to search for these parameters. This thesis presents the first
application of the Bees Algorithm to the optimisation of parameters of spiking neural
networks for control charts. The Bees Algorithm is employed to search for the
optimum set of both synaptic weights and delays. The threshold is based on the
previous experiments in chapters 3 and 4. The BA allows the networks to consider
only a single synapse instead of multi-synapse as in the networks proposed in chapters
3 and 4. Moreover, it produces a simpler architecture for both networks. In this work,
software called CONDOR is used to speed up the optimisation process. CONDOR is
a software system that creates a High-Throughput Computing (HTC) environment.
Condor effectively utilises the computing power of workstation that communicate
over a network. Condor’s power comes from the ability to effectively harness
resources under distributed ownership. The new optimisation technique demonstrated
competitive results in terms of classification accuracy compared to a spiking neural

network with a single synapse for the networks proposed in chapters 3 and 4.

6.3 Future Work

This section suggests some of the ways in which the method and algorithms

developed in this thesis could be enhanced.

e In the proposed network, only the first spike produced by a neuron is relevant
and the rest of the time course of the neuron is ignored. Whenever a neuron
fires a single spike, it is not allowed to fire again and this is so called ‘time-to-
first-spike’ coding scheme [Kasinski and Ponulak, 2006]. The reason for

considering this coding scheme is to ease the implementation of the network.

171

However, further work should consider investigating the second, the third and

the rest of the spike as well as the first spike.

The proposed networks were only tested positive weight values. The weights
were initialised within the range of 0 and 1. Further work should allow
negative weights which still lead to successful convergence. Examples of

research in this area can be found in [Moore, 2002; Xin and Embrechts, 2001].

In [Schrauwen and Van Campenhout, 2004], the authors adapted the gradient
descent method derived in SpikeProp to adjust not only synaptic weights, but
also synaptic delays, time constants and neurons’ thresholds. They claimed
that this resulted in faster algorithm convergence and in smaller network
topologies required for the given learning task. A further research task is to
optimise these parameters using the Bees Algorithm, as in BA each bee

represent an individual bee.

It is also possible to apply other competitive optimisation algorithms such as
the Ant Colony (ACO) algorithm [Pham et al, 2006; Dorigo et al., 2004],
Genetic Algorithms [Pham et al, 2006; Goldberg 1989], and the Particle
Swarm Optimisation (PSO) algorithm [Xu and Eberhart, 2002a and 2002b;
Carlisle and Dozier 2002; Eberhart et al., 2001] to spiking neural networks to

make a realistic comparison in terms of speed of optimisation and accuracy.

In the Bees Algorithm, the values of the tuneable parameters used are set by

conducting a number of trials. Further work should address a method to solve

172

this drawback and to achieve a reduction of parameters. Since this algorithm

is new, it is still an open problem to determine efficient learning mechanisms.

The experiments carried out for the proposed shrinking method in the Bees
Algorithm demonstrated that this method is limited for artificial neural

network problems only. Further work should address a method suitable for

general purposes.

173

Appendix A
C++ simulator for Spiking Learning Vector

Quantisation (S-LVQ) and Enhanced- Spiking
Learning Vector Quantisation (NS-LVQ)

174

MAIN

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iostream>
#include <stdlib.h>

#include "spkmodified.h"
//#include "cancer.h"
//include "irish.h"
//#include "xor.h"

int main(int argc, char *argv[])
{
spkmodified_dataset snnRBF;
snnRBF .start();
return EXIT SUCCESS;

}

MATRIX

#include "Vector.h"
using namespace std;

class matrix{
private:
int rows; int cols; double *melt; int *meltct;

public:
matrix(int,int); int ctype; int index(int i,int j){return (i-1)*cols+j-1;};
void initmatrix(double type); void fill random(int seed);
void print_matrix(); int nrows(){return rows;}; int ncols(){return cols;};
double getelt(int,int); void setelt(int, int , double);
int get_ row_Vector(int rowno, int scol, int ecol, Vector v);
int set_row_Vector(int rowno, int scol, int ecol, Vector v);
int get_col Vector(int colno, int srow, int erow, Vector v);
int set_col_Vector(int colno, int srow, int erow, Vector v);

175

int addmatrix(matrix); int vmproduct(Vector, Vector);

int mmproduct(matrix, matrix);

int copymatrix(int srow, int scol,int erow, int ecol, matrix);

void transpose(); void v_normalize(); void h_normalize();

int read_matrix_from_file(const char*); int write_matrix_to_file(const char*, int);
void multiply(double); void swap_rows(int,int); void swap_cols(int,int);

void shuffle(int);

b

matrix::matrix(int m, int n)
{
rows=m; cols=n; melt=new double[rows*cols*sizeof{double)];

!

double matrix::getelt(int i, int j)
{
return(melt{(i-1)*cols+j-1]);

}

void matrix::setelt(int i, int j, double ¢)
{
melt[(i-1)*cols+j-1]=¢;

|

void matrix::initmatrix(double type)
{
for(int i=0;i<rows;i++)
for(int j=0;j<cols;j++)
melt[i*cols+j]=type;

}

void matrix::multiply(double val)

{
double tmp;

for(int i=0;i<rows;i++)
for(int j=0;j<cols;j++){
tmp=melt[i*cols+j]*val;
melt[i*cols+j]=tmp;
}
H

void matrix::fill random(int seed)
{
int tmpl;
double tmp2;
srand(seed);
for(int i=0;1<rows;i++)
for(int j=0;j<cols;j++){
do{

176

tmp 1=rand()%1000;
tmp2=tmp1/1000.0;
} while((tmp2<0.3)||(tmp2>0.8));
melt[i*cols+j]=tmp2;
}
}

void matrix::print_matrix()
{
for(int i=0;i<rows;i++)
{
for(int j=0;j<cols;j++){
cout.width(wdth);
cout<< melt[i*cols+j]<<" ";
}
cout<<endl;
}
}

int matrix::addmatrix(matrix am)
{
if ((rows!=am.nrows())||(cols!=am.ncols()))
cout<<"Dimensions do not match(addmatrix)";

else
{ . ..
nt L,j;
for(i=1;i<=rows;i++)
for(j=1;j<=cols;j++)
setelt(i,j,getelt(i,j)+am.getelt(i,}));
return 1;

}

return 0;

}

int matrix::mmproduct(matrix pm, matrix opm)
{
if (cols!=pm.nrows())
cout<<"Dimensions do not match(mmproduct)";

else
{

double sum,;

int 1,),k;

for(i=1;i<=rows;i++)

for(j=1;j<=pm.cols;j++)
{
sum=0;
for(k=1; k<=pm.rows;k++)
sum=sum+getelt(i,k)*pm.getelt(k,j);

177

opm.setelt(i,j,sum);

}

return 1;

}

return 0;

;

int matrix::vmproduct(Vector pv, Vector opv)

{
if (rows!=pv.getcnt()){
cout<<"Dimensions do not match(vmproduct)";

}

clse

{

double sum;
int j,k;

for(j=1;j<=cols;j++)
{
sum=0;
for(k=1; k<=rows;k++)
sum=sum+pv.getelt(k)*getelt(k,));
opv.setelt(j,sum);

}

return 1;

}

return 0;

}

int matrix::copymatrix(int srow, int scol, int erow, int ecol, matrix cpym)

int i,j,nrow,ncol;

nrow=erow-srow+1;
ncol=ecol-scol+1;

for(i=1;i<=nrow;i++)
for(j=1;j<=ncol;j++)
cpym.setelt(i,j,getelt(i+srow-1,j+scol-1));

return 1;

}

int matrix::get_row_Vector(int rowno, int scol, int ecol, Vector rowv)

{

int cnt;
cnt=ecol-scol+1;
double tmp;

178

int tmpcl;

if{cnt>rowv.getent())
cout<<"Destination dimension do not match(getrowvect)";

clse
{
for(int i=1;1<=cnt;i++){
ifli==1){
tmpcl=getelt(rowno, i+scol-1);
rowv.setelt(i,tmpcl);
ctype=tmpcl;
}
clse
{
tmp=getelt(rowno,itscol-1);
rowv.setelt(i,tmp);
}
}
return 1;
}
return 0;
}

int matrix::set_row_Vector(int rowno, int scol, int ecol, Vector rowv)

{

int cnt;
cnt=ecol-scol+1;
if{cnt>rowv.getcnt())
cout<<"Destination dimension do not match(getrowvect)";

else
{
for(int i=1;i<=cnt;i++)
ifi==1){
setelt(rowno,i,rowv.getelt(it+scol-1));
1
else
setelt(rowno,i,rowv.getelt(it+scol-1));
return 1;
;
return 0;
}
int matrix::get_col Vector(int colno, int srow, int erow, Vector colv)
{
int cnt;

cnt=erow-srow+1;
if(cnt>colv.getent())

179

cout<<"Destination dimension do not match(getcolvect)";

else
{
for(int i=1;i<=cnt;i++)
colv.setelt(i,getelt(i+srow-1,colno));
return 1;
}

return 0;

'

int matrix::set_col_Vector(int colno, int srow, int erow, Vector colv)
{-
int cnt;

cnt=erow-srow+1;

if(cnt>colv.getent())

cout<<"Destination dimension do not match(setcolvect)";

clse

{
for(int i=1;1<=cnt;i++)
setelt(i+srow-1,colno,colv.getelt(1));
return 1;

}

return 0;

}

int matrix::read_matrix_from_file(const char *file_name)

{

int 1,j; char ch; double ele;

ifstream infile(file_name);
for(i=1;i<=rows;i++){
for(j=1;j<cols;j++){
if G==1){
infile>>ctype;
infile>>ch;
setelt(i,j,ctype);
}
else {
infile>>ele;
infile>>ch;
setelt(i,j,ele);
}
b

infile>>ele;
setelt(i,j,ele);
}

infile.close();

180

return 1;

}

int matrix::write_matrix_to_file(const char *file_name,int type)

{

char ch; int i,j; ch=")";
if (type==1){
ofstream outfile(file_name);
for(i=1;i<=rows;i++){
for(j=1;j<=cols-1;j++)
outfile<<getelt(i,j)<<ch;
outfile<<getelt(i,j)<<endl,;
}
outfile<<endl;
outfile.close();
}
else{
ofstream outfile(file_name,ios::app);
for(i=1;i<=rows;i++)
for(j=1;j<=cols;j++){
if (j<cols) outfile<<getelt(i,j)<<ch;
else outfile<<getelt(i,j)<<endl;
!
outfile<<endl;
outfile.close();

}

return 1;

MATRIX 3D
//#tinclude "Vector.h"

class matrix3D{
private:
int rows; int cols; int planes; int P_ele; //No of elements in a plane
int N _ele; //Total no of elements double *melt;
public:
matrix3D(int,int,int); void initmatrix(double type); void fillrandom(int seed);
void fill_inc(int seed,int, int); void print_matrix(); int nrows(){return rows;};
int ncols() {return cols;}; int nplanes(){return planes;}; double getelt(int,int,int);
void setelt(int, int , int, double); void setelt1(int, int , int, double);
int read_matrix_from_file(const char*); int write_matrix_to_file(const char*, int);
void multiply(double);

b

matrix3D::matrix3D(int |, int m, int n)

181

{
rows=m; cols=n; planes=I; P_ecle=rows*cols; N_ele=I*P_ele;
melt=new double[N_ele*sizeof{double)];

}

double matrix3D::getelt(int i, int j, int k)
{

return(melt[(k-1)*P_ele+(i-2)*cols+j-1]); }
void matrix3D::setelt(int i, int j, int k, double €)
{

melt[(k-1)*P_ele+(i-2)*cols+j-1]=e¢;
}

void matrix3D::setelt1(int i, int j, int k, double ¢)

{
melt[(k-1)*P_ele+(i-2)*cols+j-1] = e+0.4;

if (melt[(k-1)*P_elet+(i-2)*cols+j-1] > 1) {
melt[(k-1)*P_ele+(i-2)*colstj-1]=1;
y
}

void matrix3D::initmatrix(double type)
{
for(int k=0;k<N_ele;k++)
melt[k]=type;
t

void matrix3D::multiply(double val)

d
double tmp;

for(int k=0;k<N_ele;k++){
tmp=melt[k]*val;
melt[k]=tmp;
h
}

void matrix3D::fill_inc(int seed, int min, int max)

{

int rnd; double val,s,p; srand(seed); p=planes; s=(max-min)/p;

for(int i=1;i<=rows;i++)
for(int j=1;j<=cols;j++) {

val=min;

for(int k=1;k<=planes;k++){
rmd=rand()%1000;
val=val+(rnd/1000.0)*s;
setelt(i,j,k,val);

}

182

}

void matrix3D::fillrandom(int seed)
{

int rnd, tot_ele;

double val;

srand(seed);

tot_cle=rows*cols*planes;

for(int k=0;k<tot_ele;k++){

/I do{ testing 4/10/05

rnd=rand()%1000;
val=rnd/1000.0;
melt[k]=val;

}

t

void matrix3D::print_matrix()
{
for(int i=0;i<rows;it++){
for(int j=0;j<cols;j++){
for(int k=0;k<planes;k++){
cout.width(wdth);
cout<< melt[k*P ele+i*colstj]<<" ";

}

cout<<endl,

i
cout<<endl;
}

h

int matrix3D::read_matrix_from_file(const char *file_name)

{

int 1,j,k; char ch; double ele;

ifstream infile(file_name);
for(k=1;k<planes;k++){
for(i=1;i<=rows;i++){
for(j=1;j<cols;j++){
infile>>ele;
infile>>ch;
setelt(k,1,j,ele);
}
infile>>ele;
setelt(i,j,k,cle);
}
}

return 1;

}

183

int matrix3D::write_matrix_to_file(const char *file_name,int type)

{

char ch; int i,j,h; ch="";
if (type==1){
ofstream outfile(file_name);
for(i=2;i<=rows+1;i++)
for(j=1;j<=cols;j++){
for(h=1;h<planes;h++)
outfile<<getelt(i,),h)<<ch;
outfile<<getelt(i,j,h)<<endl,
}
outfile<<endl;
}
clse{
ofstream outfile(file_name,ios::app);
for(i=2;i<=rows+1;i++)
for(j=1;)<=cols;j++){
for(h=1;h<planes;h++)
outfile<<getelt(i,j,h)<<ch;
outfile<<getelt(i,j,h)<<endl;
!

outfile<<endl;

}

return 1;

MULTISYNAPSE

#include "matrix.h"
#include "matrix3d.h"
#include <iostream>
#define PI1 22.0/7.0
using namespace std;

inline double mod(double val){return (val<0) ? -val : val;}

void write_string_to_file(const char *file_name ,const char *text)

{

ofstream outfile(file_name,ios::app);
outfile<<text<<endl;

;

void write_number_to_file(const char *file_name ,double number)

{

ofstream outfile(file_name,ios::app);
outfile<<number<<endl;

}

184

double round(double num, double preci)

{

double multiplier=pow(10,preci);
int val=(int)(num*multiplier+0.5);
return val/multiplier;

}

double normdist(double ¢)

{

double sigma=0.2; double mu=0.5; double val;

val=2*sigma*sqrt(2*PI); val=1/val;
val=val*exp(-(e-mu)*(e-mu)/(2*sigma*sigma));

rcturn val,;

}

class spikeNN_multi{
protected:

int N_records,N_attrib,N_target_attrib,N_train,N_test,N_class,N_sample,N_bias;
int max_epocs, cont_learn;
int N_input,N_output,N_subc,N popNeuron,N_rows,N_cols;
const char *trainset,*train_targetset,*testset,*test_targetset,*sampleset;
const char *outputfile,*outputfile 2,*outputfile sample,*outputfile2;
matrix *train_matrix,*tv_train,*tv_test,*test matrix;

double maxw, minw; Vector *threshold; Vector *pspmax;

int t,dt,twindow_input,twindow,timestep,early fire,late_fire;//time,
double winning_time; int winner,winner_found;

double min_learning_rate, max_learning_rate, learning_rate;
float min_nehbr_width, max_nehbr_width, nehbr_width_time,nehbr_width_dist;

double total error, min_error,tolerance;
int precision;
Vector *inpv;

double winner_bias_chg, looser_bias_chg;

matrix3D *wght; //Synaptic weights - N_input X N_output X N_subc
matrix3D *dwght; //weight change

double tce,tci; //syanptic time constant

matrix3D *dclay; //Synaptc delays

Vector *iln_type; Vector *oln_type;

matrix3D *sp; //synapse potential - N_input X N_output X N_subc

185

Vector *np; //Neuron(soma) potential - N_output

Vector *op; //Output - N_output

Vector *exact_op; //Exact Output - N_output

matrix *test_output; //to store test output N_test X N_output
matrix *test_winner; matrix *train_winner;

public:
spikeNN_multi(); void createNN(); void init_spikeNN();
void init_parameters(); void set_neuron_type();
double correct_class(); double patterns_evaluated(); float dist(int, int);
int check_convergence(); void set_threshold min(int seed);
double adj_learning_rate(double delta_step);
void preprocess_weight(const char *opt_train);

void update_synapse potential(); void update output();

void update_output_test(); void update output_pw();

void find winner(int output_label); void prefind winner

void train_spikeNN(); void test_spikeNN(const char *opt_train);
double error_train_set();

double calculate _error(); double error(int ,int); int set_error_vect();

void update _weight(int classt); void update_weight_new();
void update_weight modified();

double spike response(double t); double spike response Char(double st);
double spike response Shah(double st); double spike response_abc(double st);
double spike response newl(double st); double spike_response 123(double st);

double spike time_total; double spike time_new[6]; double dif spike_time[6];
double test win_t[6]; double arr_op[6];

double etamin; float train_accuracy,test_accuracy;

int ctype; int classtype; int patterns,total; int sum_total,sum_patterns;
15

spikeNN_multi::spikeNN_multi()

{

y

void spikeNN_multi::createNN()
{

train_matrix=new matrix(N_train,N_attrib*N_popNeuron); //Matrix contains the
training records;

186

test_matrix=new matrix(N_test,N_attrib*N_popNeuron); //Matrix contains the test
records;

inpv =new Vector(N _attrib);

wght =new matrix3D(N_subc,N_input,N_output);

dwght=new matrix3D(N_subc,N_input,N_output);

iln_type=new Vector(N_attrib); oln_type=new Vector(N_output);

delay=new matrix3D(N_subc,N_input,N_output);

sp=new matrix3D(N_subc,N_input,N_output);

threshold=new Vector(N_output); pspmax=new Vector(N_output);
np=new Vector(N_output);

op=new Vector(N_output); exact_op=new Vector(N_output);
test_winner=new matrix(N_test,4); train_winner=new matrix(N_train,4);

}

void spikeNN_multi::init_parameters()
{
//to be defined in the parent class}
double spikeNN_multi::adj learning rate(double delta_step)
{

learning_rate=(learning_rate - delta_step);

if(learning_rate < etamin)

learning_rate = etamin;
return learning_rate;

}

void spikeNN_multi::init_spikeNN()
{
sp->initmatrix(0.0);
np->initialise(0.0);
op->initialise(twindow);
exact_op->initialise(twindow);
dwght->initmatrix(0.0);
}
void spikeNN_multi::set_neuron_type()
{
int i;
for(i=+2;i<=N_input+1;i++)
iln_type->setelt(i,1);

for(i=1;i<=N_output;it++)
oln_type->sctelt(i,1);
}
void spikeNN_multi::set_threshold_min(int seed)
{

int rownum,active,i; double max_threshold;

187

srand(seed);
max_threshold=(N_input*N_subc*0.5)/10;
inpv->initialise(40.0);

do{
init_spikeNN();
rownum=rand()%N _train;
train_matrix->get_row_Vector(rownum,1,N_attrib,*inpv);
for(i=1;i<=N_output;it++){
threshold->setelt(i,max_threshold);
}

t=0;

active=true;

init_spikeNN();

do{
t=t+dt;
update_synapse_potential();
update_output();

} while(t<twindow);

for(i=1;i<=N_output;i++)
if (active) active=(op->getelt(i)<twindow);

max_threshold-=5.5;
twhile(!(active)&&(max_threshold>0));

threshold->initialise(max_threshold-5.0); //testing
cout<<"Threshold:"<<threshold->getelt(1)<<endl;
if (!(active)) cout<<"Not all neurons can fire";

}
double spikeNN multi::spike response 123(double st)

{
double val=0.0;

if (st>0) val=(1/(1-(tce/tci)))* (exp((-(1+st)/tci))-exp((-(1+st)/tce)));
return val,

}

void spikeNN_multi::update synapse_potential()

{
double inpT,dlay,spikeT,spoten,type; int i,j,k,inpTclass;

for(i=1;i<=N_attrib;i++){
ifti==1){
inpTclass=inpv->getelt(i);}
clse {
inpT=inpv->getelt(i);
type=iln_type->getelt(i);
if ((inpT<0)||(inpT>twindow_input)) continue;

188

for(j=1;j<=N_output;j++){
if (np->getelt(j)<0.0) continue;
for(k=1;k<=N_subc;k++){
dlay=delay->getelt(i,j,k);
spikeT=t-inpT-dlay;

if (spikeT<0) continue;
/* if (inpTclass==1){
spoten= spike_response 123(0.1+spikeT)*wght-
>getelt(1,j,k) *type;
sp->setelt(i,},k,spoten); }
clse if (inpTclass==2){
spoten= spike_response_123(0.3+spikeT)*wght-
>getelt(i,j,k)*type;
sp->setelt(i,j,k,spoten); }
else if (inpTclass==3){
spoten= spike_response_123(0.5+spikeT)*wght-
>getelt(i,j,k) *type;
sp->setelt(i,j,k,spoten); }
else if (inpTclass==4){
spoten= spike_response_123(0.7+spikeT)*wght-
>getelt(i,j,k)*type;
sp->setelt(i,j,k,spoten); }
else if (inpTclass==5){
spoten= spike_response_123(0.9+spikeT)*wght-
>getelt(i,j,k) *type;
sp->setelt(i,j,k,spoten); }
else {
spoten= spike_response 123(0.95+spikeT)*wght-
>getelt(i,j,k)*type;
sp->setelt(i,j,k,spoten); }
spoten=spike_response_123(spikeT)*wght->getelt(i,j,k)*type;

sp->setelt(i,j,k,spoten);

} /lend for k
}//end for j

189

}//end for i

H
// outfile.close();

}

void spikeNN_multi::update _output_pw()
{

double sv,pnp,spike time; int i,j,k,outTclass;

for(i=1;i<=N_output;i++){
if(np->getelt(i)<0) continue;

sv=0.0;
for(j=1;j<=N_attrib;j++)
ifj==1) {
outTclass=inpv->getelt(j);}
else {

for(k=1;k<=N_subc;k++)

SFSV+Sp'>geleh(j’ l,k) ’

}

ifi==outTclass) {
pnp=np->getelt(1);
np->setelt(i,sv=sv+0.0);

}

else
{
pnp=np->getelt(i);
np->setelt(i,sv);
H
pnp=np->getelt(i);
np->setelt(i,sv);

if(sv>=threshold->getelt(i)) {
spike time=(threshold->getelt(i)-pnp)/(sv-pnp);

op->setelt(i,t);
exact_op->setelt(i,t-1+spike_time);

np->setelt(i,-1000);
for(j=+2;j<=N_attrib;j++)
for(k=1;k<=N_subc;k++)
sp->setelt(j,1,k,0);
}
}
}

void spikeNN_multi::update_output()
{

190

double sv,pnp,spike_time; int i,j,k,outTclass;

for(i=1;i<=N_output;i++){
if(np->getelt(1)<0) continue;

sv=0.0;
forG: 1 ;j<=N_attrib ;J++)
ifj==1) {
outTclass=inpv->getelt(j);}
else {

for(k=1;k<=N_subc;k++)

SV:SV+Sp_>geteh(j’ lak),

}

if(i==outTclass) {
pnp=np->getelt(i);
np->setelt(i,sv=sv+0.9);
}
else
{
pnp=np->getelt(i);
np->setelt(i,sv);
}
pnp=np->getelt(i);
np->setelt(i,sv);

if(sv>=threshold->getelt(1)) {
spike time=(threshold->getelt(i)-pnp)/(sv-pnp);

op->setelt(i,t);
exact_op->setelt(i,t-1+spike time);

np->setelt(i,-1000);
for(j=+2;j<=N_attrib;j++)
for(k=1;k<=N_subc;k++)
sp->setelt(j,1,k,0);

}
}
}
void spikeNN_multi::update_output_test()
{

.

double sv,pnp,spike time; int i,j,k,outTclass;

for(i=1;i<=N_output;i++){
if{lnp->getelt(i)<0) continue;

sv=0.0;
for(j=1;j<=N_attrib;j++)
ifj==1) {
outTclass=inpv->getelt(j);}
else {

191

for(k=1;k<=N_subc;k++)

sv=SV+Sp'>geteltG ,iak) >

}

if(i==outTclass) {
pnp=np->getelt(i);
np->setelt(i,sv=sv);}
clse
{
pnp=np->getelt(i);
np->setelt(i,sv);
}
pnp=np->getelt(i);
np->setelt(i,sv);

if(sv>=threshold->getelt(i)) {
spike_time=(threshold->getelt(i)-pnp)/(sv-pnp);

op->setelt(i,t);
exact_op->setelt(i,t-1+spike time);

np->setelt(i,-1000);
for(j=+2;j<=N_attrib;j++)
for(k=1;k<=N_subc;k++)
sp->setelt(j,1,k,0);

}
}
}
void spikeNN_multi::prefind winner()
{

double win_t=twindow;

for(int i=1;i<=N_output;i++)

if (win_t>=exact_op->getelt(i)) {
winner=i;
win_t=op->getelt(i);

}

winner_found=(win_t<twindow);
winning_time=win_t;

'

void spikeNN_multi::find_winner(int output_label)
{

double win_t=twindow;
int winning_node, winner_category;

192

for(int i=1;i<=N_output;i++)

if (win_t>=exact_op->getelt(i)) {
winner=i;
win_t=op->getelt(i);

}
winner_found=(win_t<twindow);
winning_time=win_t;

winning_node = winner;
ifflwinning_node==1)
{winner_category = 1;}
clse iflwinning node==2)
{winner_category = 2;}
else if{fwinning_node==3)
{winner_category = 3;}
else if{l winning_node==4)
{winner_category = 4;}
else if{winning_ node==5)
{winner_category = 5;}
else
{winner_category = 6;}

//*****Update Number Of Correct Classifications*****

ifflwinner_category == output_label) {
correct_class();

f

//*****Jpdate Number of Patterns Processed******

patterns_evaluated();

}

double spikeNN_multi::correct_class()
{

total = total + 1;

sum_total = total;

return (sum_total-1);

}

double spikeNN_multi::patterns_evaluated()
{
patterns = patterns + 1;
sum_patterns = patterns;
return (sum_patterns-1);
}
void spikeNN_multi::train_spikeNN()
{

int epoc; int max_epocs=15; double eta=0.0003; etamin=0.0025;

193

double learning_rate=0.0075; double delta_eta;
wght->write_matrix_to_file(outputfile,1); epoc=0;

min_error=1000; total error=0.0; cont_learn=1; total=0; patterns=0;
train_accuracy=0.0;

do{
epoctt;
delta_eta=(learning_rate-eta);

for(int =1;r<=N_train;r++){
spike time_total=0;
init_spikeNN();

train_matrix->get_row_Vector(r,1,N_attrib,*inpv);
classtype=train_matrix->getelt(r,1); //add on 5/8/05 to classify

inpv->write_Vector_to_file(outputfile,2);
t=0;
winner_found=0;

do{
t=t+dt;
update_synapse_potential();
update_output();
} while(t<twindow);

find_winner(classtype);
if (winner_found) update weight(classtype); //add on 5/8/05 to classify
cont_learn=check convergence();

}

cout<<"epoc :"<<epoc<<endl;
adj learning_rate(delta_eta);

} while((epoc<max_epocs) & cont_learn);
train_accuracy=((float)correct_class()/(float)patterns_evaluated())*100.00;
cout<<"train accuracy :"<<train_accuracy<<"\n";

}

int spikeNN_multi::check convergence()

{

int converged;double acc_weight_change;

for(int j=1;j<=N_output;j++)
for(int i=2;i<=N_input+1;it++)
for(int k=1;k<=N_subc;k++)
acc_weight_changet=mod(dwght->getelt(i,j,k));

194

converged=(acc_weight_change<tolerance);
converged=1;
return converged;

}

void spikeNN_multi::update _weight(int classt)

{
double input,weight,newweight,dw,deltaT,dlay;
double wf,output; int type,winning_node,winner_category;
double beta=35; double spi=sqrt(2*22.0/7.0); cont_learn=1;

winning_node = winner;
if{lwinning_node==1)
{winner_category = 1;}
else if{winning_node==2)
{winner_category = 2;}
else if{winning_node==3)
{winner_category = 3;}
else iff winning_node==4)
{winner_category = 4;}
else if{lwinning_node==5)
{winner_category = 5;}
else
{winner_category = 6;}
output=op->getelt(winner);
for(int i=2;i<=N_attrib;i++){
input=inpv->getelt(i);
type=(int)iln_type->getelt(1);

if (input<0) continue;

for(int k=1;k<=N_subc;k++){
dlay=delay->getelt(i,winner,k); //testing on 12/9/05
deltaT=output-dlay-input;
weight=wght->getelt(i,winner,k); //testing on 12/9/05
wf=0.0; dw=0.0; newweight=0.0;

if{fwinner_category==classt) {
if (deltaT>=0)

dw=learning_rate*(1/(beta*spi))*exp(-
(sqrt(deltaT*deltaT)/(2.0*beta*beta)));//add on 5/8/05 to classify

else
dw=-lcarning_rate*(1/(beta*spi))*exp(-
(sqrt(deltaT*deltaT)/(2.0*beta*beta)));

newweight=weight+dw;

195

if (newweight<0.0) newweight=0.0;
if (newweight>1.0) newweight=1.0;

}

/I *** Weight Adjustments For Incorrect Output Label *** //
else {
if (deltaT>=0)

dw=0.8*learning_rate*(1/(beta*spi))*exp(-
(sqrt(deltaT*deltaT)/(2.0*beta*beta)));

else

dw=-0.8*(-learning_rate)*(1/(beta*spi))*exp(-
(sqrt(deltaT*deltaT)/(2.0*beta*beta)));

newweight=weight-dw;
if (newweight<0.0) newweight=0.0;
if (newweight>1.0) newweight=1.0;

dwght->setelt(i,winner,k,dw);
wght->setelt(i,winner,k,newweight);

}
}
}
h
/ *
void spikeNN_multi::update weight(int classt)
{

double input,weight,newweight,dw,deltaT,dlay;
double wf,output; int type,winning_node,winner_category;

double beta=35; double spi=sqrt(2*22.0/7.0); cont learn=1;
winning_node = winner;
iflwinning_node==1)
{winner_category = 1;}
else if{fwinning node==2)
{winner category = 2;}
else if{lwinning_node==3)
{winner_category = 3;}
else if{fwinning_node==4)
{winner_category = 4;}
clse iff winning_node==5)
{winner_category = 5;}
clse
{winner_category = 6;}

output=op->getelt(winner); //testing on 12/9/05

196

for(int i=2;i<=N_attrib;i++){
input=inpv->getelt(i);
type=(int)iln_type->getelt(i);
if (input<0) continue;
for(int k=1;k<=N_subc;k++){
dlay=delay->getelt(i,winner,k); //testing on 12/9/05

deltaT=output-dlay-input;
weight=wght->getelt(i,winner,k); //testing on 12/9/05

wf=0.0; dw=0.0; newweight=0.0;
if (deltaT>=0)

dw=learning_rate*(1/(beta*spi))*exp(-
(sqrt(deltaT*deltaT)/(2.0*beta*beta)));

else

dw=-learning_rate*(1/(beta*spi))*exp(-(sqrt(deltaT*deltaT)/(2.0*beta*beta)));

// *** Weight Adjustments For Correct Output Label *** //

if{lwinner_category==classt) {

newweight=weight+dw;

if (newweight<0.0) newweight=0.0;
if (newweight>1.0) newweight=1.0;

dwght->setelt(i,winner,k,dw);
wght->setelt(i,winner,k,newweight);

}

/| *** Weight Adjustments For Incorrect Output Label *** //

else {

newweight=weight-dw;
if (newweight<0.0) newweight=0.0;
if (newweight>1.0) newweight=1.0;

dwght->setelt(i,winner,k,dw);
wght->setelt(i,winner,k,newweight);

}
}
}
}
*/
void spikeNN_multi::test_spikeNN(const char *opt_test)
{

197

test_accuracy=0.0;

test_matrix->write_matrix_to_file(opt_test,1);
wght->write_matrix_to_file(opt_test,2);
for(int r=1;r<=N_test;r++){

init_spikeNN();

test_matrix->get_row_Vector(r,1,N_attrib,*inpv);
t=0;
do{
t=t+dt;
update_synapse_potential();
update output_test();
{while(t<twindow);

op->write_Vector_to_file(opt_test,2);
find winner(classtype);

;
test_accuracy=((float)correct_class()/(float)patterns_evaluated())*100.00;

cout<<"test accuracy :"<<test_accuracy<<"\n"; }
SPKMODIFIED
#include "multisynapse.h"

class spkmodified_dataset: public spikeNN multi
{

private:

public:
spkmodified_dataset();voidselect_data();voidpreprocess_data();

void shuffle trainset();void init_parameters();void set_neuron_type();
void start();

}s

spkmodified_dataset::spkmodified_dataset()

{

max_epocs=5; N_attrib=61; N_target_attrib=1; N_train=1002; N_test=498;
N_input=N_attrib-1; N_rows=1; N_cols=6; N_output=N_rows*N_cols;

N _subc=16; N_popNeuron=1; N_class=6; Ilearning_rate=0.001;

dt=1; timestep=1; twindow=300; early_fire=15; late_fire=25;
twindow_input=100; tolerance=1.0; maxw=1.0; minw=0.0;

outputfile="cchart_test output.txt"; outputfile 2="cchart_test.txt";

1=0;
}

void spkmodified_dataset::preprocess_data()

{

198

int 1,j,category; double target,;

for(i=1;i<=train_matrix->nrows();i++)
for(j=1;j<=train_matrix->ncols();j++){

ifG==1){
category=train_matrix->getelt(i,j);
train_matrix->setelt(i,j,category);
i
else {
target=train_matrix->getelt(i,j);
/Narget=100-(target*100);
target=1*target;
train_matrix->setelt(i,j,target);
h
t

for(i=1;i<=test_matrix->nrows();it++)
for(j=1;j<=test_matrix->ncols();j++){

ifj==1) {
category=test matrix->getelt(1,j);
test_matrix->setelt(i,j,category);
}
else {
target=test matrix->getelt(i,j);
/I target=100-(target* 100);
target=1*target;
test_matrix->setelt(i,j,target);
}
;
}

void spkmodified_dataset::init_parameters()

{

int seedgen;int seed_array[35000]; int seed_cnt=0;int i,j,k;

seedgen=time(NULL)%1000;
for(i=0;i<seedgen;it+)
rand();
for(i=0;1<35000;1++)
seed_array[i]=rand();

for(i=2;i<=N_input+1;i++)
for(j=1;j<=N_output;j++)
for(k=1;k<=N_subc;k++){
delay->setelt(i,j,k, k*10);

}
wght->fillrandom(seed_array[seed_cnt++]);
for(i=2;i<=N_input+1;i++)

for(j=1;j<=N_output;j++)

199

for(k=1;k<=N_subc;k++){
wght->setelt(i,j,k,double(wght->getelt(i,,k)));
¥

wght->write_matrix_to_file(outputfile,1);

}

void spkmodified_dataset::set_neuron_type()

1

for(int i=2;i<=N_input+1;i++)
iln_type->setelt(i,1);
f

void spkmodified_dataset::start()

{

createNN(); set_neuron_type(); select data(); preprocess data();
init_parameters();

tce=150; tci= 20;

set_threshold min(time(NULL));

for(int i=1;i<=5;i++)

/I preprocess_weight("preprocess_wght.txt");
set_threshold min(time(NULL));
train_spikeNN();
test_spikeNN("test_set_output.txt");

}

void spkmodified dataset::select data()
{ . .
int i;
matrix sourcetr_matrix(N_train,N_attrib);
matrix sourcete_matrix(N_test,N_attrib);
sourcetr_matrix.read_matrix_from_file("R:\Traindata.txt");
sourcete_matrix.read_matrix_from_file("R:\Testdata.txt");
Vector svect(N_attrib);
for(i=1;i<=N_train;i++) {
sourcetr_matrix.get_row_Vector(i,1,N_attrib,svect);
train_matrix->set_row_Vector(i,1,N_attrib,svect);
}
for(i=1;i<=N_test;i++) {
sourcete_matrix.get_row_Vector(i,1,N_attrib,svect);
test_matrix->set_row_Vector(i,1,N_attrib,svect);
}
}

VECTOR

include <iostream>
include <math.h>
include <stdlib.h>
include <time.h>

200

include <fstream>
using namespace std;

#define wdth 15
typedef double eltype;

class Vector{

privatc:
int nelt;
double *velt;

public:
Vector(int); void initialise(double val); int getcnt(){return nelt;};
double getct(int 1) {return velt[i-1];}; double getelt(int i){return velt[i-1];};
void sctelt(int 1, double e){velt[i-1]=c;}; void sctct(int i,int €) {velt[i-1]=e;}
double min(); double max(); void print_Vector(); void normalize();
int write_Vector_to_file(const char*,int);//File name, open type(write/append)
int read_Vector_from_file(const char*); void fill inc(int seed, int min, int max);
void fill_random(int secd); void multiply(double); void code temporal();
void swap_elts(int, int); void shuffle(int);

!5

Vector::Vector(int n)
{
nelt=n;
velt=new eltype[nelt*sizcof{cltype)];

}

eltype Vector::min()
{
eltype mn=10;
for(int i=0;i<nelt;i++)
if (velt[i]<mn) mn=velt[i];
return mn;
;
cltype Vector::max()
{
eltype mx=0;
for(int 1=0;i<nelt;i++)
if (velt[i]>mx) mx=velt[i];
return mx;

}

void Vector::initialisc(double val)

{
for(int i=0;i<nclt;i++)
velt[i]=val;

}

201

void Vector::print_Vector()
{
for (int i=0;i<nelt;i++){
cout.width(wdth);
cout<<velt[1]<<" ";
}

cout<<endl;

'

void Vector::normalize()

d
cltype mn,mx,diff,tmp;

mn=min()-0.5; mx=max()+0.5; diff=mx-mn;
for(int j=0;j<nelt;j++) {
tmp=1-((velt[j]-mn)/difY);
velt[j]=tmp;
}

}

int Vector::write_Vector_to_file(const char *file name,int type)

{

if (type==1){
ofstream outfile(file_name);
for(int j=0;j<nelt;j++)
outfile<<velt[j]<<" ";
outfile<<endl<<endl;
}
else {
ofstream outfile(file_name,ios::app);
for(int j=0;j<nelt;)++)
outfile<<velt[j]<<" ";
outfile<<endl;

}

return 1;

}

int Vector::read Vector_from_file(const char *file_name)

{

int k; char ch; doublc clc;

ifstream infile(file_name);
for(k=1;k<nelt;k++){
infile>>cle;
infile>>ch;
setelt(k,ele);

202

}
infile>>ele;
setelt(k,ele);
return |;

}

void Vector::fill_random(int seed)

{
double md1,md2;

srand(seed);

for(int k=1;k<=nelt;k++){
do{
mdl=rand()%1000;
md2=rnd1/1000.0;
} while((rnd2<0.3)(|(rnd2>0.8));

setelt(k,rnd2);

}

}

void Vector::multiply(double val)
{

double ¢;

for(int k=1;k<=nelt;k++){
e=getelt(k)*val;
setelt(k,e);
}
}

void Vector::fill_inc(int seed, int min, int max)
{

int rnd;

double val,s;

srand(secd);

s=(max-min)/double(nelt);

val=min;
for(int k=1;k<=nelt;k++){
md=rand()%1000;
val=val+s*rnd/1000.0;
setelt(k,val);
}
}

void Vector::codc temporal()

{

double val;

for(int k=1;k<=nelt;k++){

203

val=getelt(k);
val=10-val;
setelt(k,val);
}
}

void Vector::swap_clts(int i, int j)

{
double tmp;

tmp=getclt(j);
sctelt(j,getelt(i));
sctelt(i,tmp);

}

void Vector::shuffle(int sced)

{

srand(sced);int nshuffle=rand()%10;int ¢1,¢2;

for(int cnt=0;cnt<=nshuffle;cnt++){
el=1+rand()%neclt;
e¢2=1+rand()%nelt;
swap_clts(el,e2);
}
}

204

Appendix B

C++ for Pre-process Weight

205

void spikeNN_multi::preprocess_weight(const char *opt_train)

{
double weight;
double twon[16]; //array of 3 variables twon: total weight output neuron
double totalow; // total output weight

double ttow_gr[6]; double Sum_totalw; double Average; double dif ttow;
double dist_diftw[6];

for(int r=1;r<=N_train;r++){
init_spikeNN();
train_matrix->get_row_Vector(r,1,N_attrib,*inpv);

1=0;

do{
t=t+dt;
update_synapsc_potential();
update_output_pw();

twhile(t<twindow);

prefind winner(); // add on 5/8/05 for classifying
Sum_totalw=0;
for(int j=1;j<=N_output;j++){
totalow=0;
for(int i=2;i<=N_attrib;i++){

for(int k=1;k<=N_subc;k++)

weight=wght->getelt(i,j,k);

wght->setelt(i,j,k,weight);
twon[k] = weight;

totalow += twon[k];

}

ttow_gr(j] = totalow;
Sum_totalw += ttow_grfj];

}

Average = Sum_totalw / N_output;
for(j=1;j<=N_output;j++){
if (ttow_gr[j] > Average)
dif ttow = ttow_gr[j] - Average;
clse

dif_ttow = Average - ttow_gr[j];

dist_diftw[j] = dif_ttow / ((N_attrib-1)*N_subc);
}

for(int i=2;i<=N_attrib;i++)
for(int j=1;j<=N_output;j++){

206

if (j==winner)

for(int k=1;k<=N_subc;k++)

{
weight=wght->getelt(i,j,k);
weight=weight - dist_diftw[j];
wght->setelt(i,j,k,weight);
}
clse
for(int k=1;k<=N_subc;k++)
{

weight=wght->getelt(i,j,k);
weight=weight + dist_diftw[j];
wght->setelt(i,j,k,weight);}

207

Appendix C

Procedure for Basic Bees Algorithm

208

Initialise population with random solutions.

Evaluate fitness of the population.

While (stopping criterion not met)

// Forming ncw population.

. Select clite bees and clite sites for neighbourhood search.

Sclect other sites for neighbourhood search.

Recruit bees around sclected sites (more bees for best elite sites) and evaluate
fitnesses.

Select the fittest bee from each site.

. Assign remaining bees to search randomly and evaluate their fitnesses.

End While.

209

REFERENCES

Adrian, E. D. (1926). “The impulse produced by sensory nerve endings.” Journal of
Physiology, London, vol. 61, pp.49-72.

Abeles, M. (2002) “Synfirc chain.” The handbook of Brain theory and neural
nctworks, MIT Press, New York, USA, pp. 1143-1146.

Hassan, A. (2002) “On-line recognition of developing control chart patterns”. PhD

Thesis, Universiti Teknologi Malaysia.

Abeles, M., Domany, E., Schulten, K. and van Hemmen, J.L., (1994) “Firing rates
and well-timed events” Models of Neural Networks 2, Springer, New York, chapter 3,
pp. 121-140.

Ammar, N., Nelis, E., Merlini, L., Barisic, N., Amouri, R., Ceuterick, C., Martin, J.J.,
Timmerman, V., Hentati, F., and De Jonghe, P. (2003) “Identification of novel
GDAP! mutations causing autosomal recessive Charcot-Marie-Tooth disease”.

Neuromuscul Disord 13, pp 720-728.

Baig, S., and Liechti, P.A. (2001). “Ozone treatment for bio refractory COD removal”
Water Science and Technology, vol. 43(3), pp. 197-204

Barch, D.M., (2005). “The relationships among cognition, motivation, and emotion in
schizophrenia: How much and how little we know”. Schizophrenia Bulletin, vol.

31(4), pp. 875-881.

Belatreche, A., Maguire, L.P., McGinnity, M., and Wu, Q.X,, (2003). “An
cvolutionary stratcgy for supervised training of biologically plausible neural
networks”. The Sixth International Conference of Computational Intelligence and

Natural Computing, Cary, North Carolina,USA, pp. 1524-1527.

Berridge, K.C., (2004). “Motivation concepts in behavioural neuroscience”.

Physiology and Behaviour, vol. 81, pp.179-209

210

Bialek, W., Rieke, F., de Ruyter, RR, and Warland, D. (1991).”Reading a neural
code”. Science, vol. 252(5014), pp. 1854-1857.

Bonabeau, E., Dorigo, M., and Theraulaz, G., (1999). “Swarm intelligence: from

Natural to artificial systems”. New York: Oxford University Press.

Buonomano, D.V., and Merzenich, M. (1999). “A neural network model of temporal

code generation and position invariant pattern recognition”. Neural Computation, vol.

11, pp.103-116.

Bohte, S.M., Kok, J.N., and Poutre, H.L., (2000). “Unsupervised classification in a
layered network of spiking neurons” Proceedings of IICNN, vol. iv, pp.279-285.

Bohte, S.M., (2004). “The evidence for neural information processing with precise

spike-times: A survey”. Natural Computing, vol. 3(4), pp. 195-206.

Camazine, S., Dencubourg, J.L., Franks, N.R., Sneyd, J., Theraula, G., and Bonabeau,
E. (2003). “Self-organisation in biological systems”. Princeton:Princeton University

Press.

Carlisle, A. and Dozier, G. (2002). “Tracking changing extreme with adaptive particle
swarm optimiser”. Proceedings of the Fifth Biannual World Automation Congress,

Orlando, Florida, USA, pp. 265-270.

Cheng, C. S. (1995). “A multi-layer neural network model for detecting changes in

the process means”. Computers and Industrial Engineering, vol. 28, pp. 51-61.

Cheng, C. S and Hubele, N. F. (1992) “Design of knowledge-based expert systems for
statistical process control”. Computers and Industrial Engineering, vol. 22(4), pp.

501-517.

Cheng, C. S. (1997) “A neural network approach for the analysis of control chart
patterns”. International Journal of Production Research, vol. 35(3), pp. 667-697.

211

Cheng, C., (1989). “Group technology and expert system concepts applied to
statistical process control in small batch manufacturing” PhD Dissertation, Graduate

College, Arizona State University, Tempe, AZ.

Cheng, C. S. and Hubele, N. F. (1996). “A pattern recognition algorithm for an X-Bar
Control Chart.” lIE transactions, vol. 28, pp. 215-224.

Chang, S. I. and Aw, S. A. (1996). “A ncural fuzzy control chart for detecting and
classifying process means shifts” International Journal of Production Research, vol.34
(8), pp.2265-2278.

Cullen, J. and Bryman, A. (1988). “The knowledge acquisition bottleneck: Time foe
reassessment” Expert Systems, vol. 5(3), pp.216-225.

Cheng, C.S., Hubele, N.F. (1989), "A framework for rule-based deviation recognition
systems in statistical process control." Proceedings of 1989 International Industrial

Engineering Conference, Toronto, Canada, pp.617-682.

Cooper, D.C., (2002). “The significance of action potential bursting in the brain

reward circuit”. Neurochemistry International, vol. 41, pp.333-340.

Diesmann, M., Gewaltig, M. O. and Aertsen, A. (1999) “Stable propagation of
synchronous spiking in cortical neural networks” .Nature, vol. 402, pp. 529-533.

DeSieno, D., (1988). “Adding a conscience to competitive learning”. Proceeding of
the International Joint Conference on Neural Networks, San Diego, California, vol. 1,

pp. I-117-1-124.

Dorigo, M., and Stutzle, T., (2004). “Ant colony optimisation”. Cambridge: MIT

Press.

Eberhart, R., Shi, Y. and Kennedy, J. (2001). “Swarm intelligence”. San Francisco:

Morgan Kaufmann.

212

Fine, G.A. (1983). “Shared Fantasy”. Chicago: The University of Chicago Press, pp.
186.

Frisch, K.V., (1976). “Bees: Their vision, chemical senses and language. Revised

Edition”. Ithaca, New York: Cornell University Press.

Garvin, D. A. (1987) “Competing in the eight dimensions of quality”. Harvard

Business Review, Sep. — Oct.

Goldberg, D.E., (1989). “Genetic Algorithms in search, optimisation and machine
learning”. Reading: Addison-Wesley Longman.

Guo, Y and Dooley, K. J. (1992). “Identification of change structures in statistical

process control”. International Journal of Production Research, vol. 30, 1655-1669.

Guh, R. S, Tannock, J. D. T and O’Brien, C. (1999a). “IntelliSPC: A hybrid
intelligent tool for on-line economical statistical process control”. Expert Systems

with Application, vol. 17, pp. 195-212.

Guh, R. S and Tannock, J. D. T. (1999). “Recognition of control chart concurrent
patterns using a neural network approach”. International Journal of Production

Research, vol. 37 (8), pp. 1743-1765.

Gerstner, W. (1995). “Time structure of the activity in neural network models”.

Physical Review, vol. 51, pp. 738-758.

Gerald M. Edclman (1993). “Neural Darwinism: Selection and reentrant signaling in

higher brain function”. Neuron, vol.10, pp. 115-125.

Gerstner, W. and Van Hemmen, J.L. (1994). “How to describe neuronal activity:
spikes, rates, or assemblies?” Advances in Neural Information processing Systems,

vol. 6, pp. 463-470.

213

Gerstner, W., Van Hemmen, J.L., and Cowan, J.D., (1996). “What matters in neuronal

locking” Neural Computation, vol. 8(8), pp. 1653-1676.

Gerstner, W., and Kistler, W.M. (2002). “Spiking neuron models”. Cambridge
University Press, New York.

Hwang, H. B. and Hubcle, N. F. (1993). “Back-propagation pattern recognisers for X-
bar control charts: methodology and performance”. Computers and Industrial

Engineering, vol. 24(2), pp. 219-235.

Hwang, H. B. (1992). “Pattern recognition on Shewhart control charts using a neural

network approach. Arizona State University: PhD Dissertation.

Haykin, S. (1999). “Neural networks: A comprehensive foundation.” 2 ed. Upper
Saddle River, N. J. Prentice Hall.

Hopfield, J. (1995). “Pattern recognition computation using action potential timing for

stimulus representation.” Nature, vol. 376, pp. 33-36.

Hubel, D.H (1988). “Eye, Brain, and Vision.” New York, WH Freeman.

Hubel, D.H., and Wiesel, T.N. (1962). “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex.” Journal of Physiology (London),

vol. 160, pp. 106-154.

Hwang, H.B. and Hubele, N.F. (1993a). “Back-propagation pattern recognizers for X-
Bar control charts; Methodology and performance.” Computers Industrial.

Engineering, vol. 24(2), pp 219-235.
Hwang, H.B. and Hubele, N.F. (1993b). “X-bar control chart pattern identification

through cfficient off-line neural network training.” IIE Transaction, vol. 25(3), pp. 27-
40.

214

Hwang, H.B., Chong, C.W. (1995). “Detecting process non-randomness through a
fast and cumulative learning ART-based pattern recogniser.” International Journal of

Production Research, vol 33(7), pp. 1817-1833.

Hodgkin, A.L and Huxley, A.F. (1952). “Hodgkin and Huxley model” Journal of
Physiology, vol. 116, pp. 449-566.

Hubel, D. H., and Wiescl, T. N. (1959). “Receptive fields of single neurons in the
cat’s striate cortex” Journal of Physiology, vol. 148, pp.574-591.

Hopfield, J.J. (1995) “Pattern recognition computation using action potential timing

for stimulus representation” Nature vol. 376, pp.33-36.

Hahnloser, R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., and Seung, H.S,,
(2000). “Digital selection and analogue amplification coexist in a cortex-inspired

silicon circuit”. Nature, vol. 405, pp. 947-951.

Ikegaya, Y., Aaron, G. Cossart, R., Aronov, D., Lamp], 1., Ferster, D., and Yuste, R.
(2004). “Synfire chains and cortical songs: Temporal modules of cortical activity.”
Science, vol. 304(5670), pp. 559-564.

Jacob, D.A. and Luke, S.R. (1993). “Training artificial neural networks for statistical
process control.” The Tenth Biennial University Government Industry

Microelectronics Symposium IEEE, Piscataway, NJ, USA, pp. 235-239.
Jianguo, X., and Embrechts, M.J. (2001). “Supervised learning with spiking neural
networks” Proceedings of Neural Networks. IEEE International Joint Conference, vol.

3, pp. 1772-1777.

Jin, D.Z. and Seung, H.S. (2002). “Fast computation with spikes in a recurrent neural

network”. Physical Review E, vol. 65(5), pp.051922-1-051922-4.

215

Kahraman, C., Tolga, E. and Ulukan, Z. (1995). “Using triangular fuzzy numbers in
the tests of control charts for unnatural patterns”. Proceedings of INRIA/IEEE
Symposium on Emerging Technologies and Factory Automation, vol. 3, pp. 291-298.

Kasinski, A., and Ponulak, F., (2006). “Comparison of supervised learning methods
for spike time coding in spiking neural networks”. International Journal of Applied

Math and Computing Science, vol. 16(1), pp. 101-113.

Koch, C. (1999). “Biophysics of Computation.” Oxford University Press, New York.
Kohonen, T. (1984). *“Self-Organisation and associative memory.” Berlin etc.:

springer-Verlag

Kohonen, T. (1988). “Learning vector quantisation”. Neural Networks, vol. 1(303).

Kohonen, T. (1990) “Improved versions of learning vector quantisation”. Neural

Networks, IJCNN International Joint Conference, San Diego, CA, USA.

Kunkle, D.R., and Merrigan, C., (2005). “Pulsed neural networks and their
application”. Neurobot: A Computation Neuroscience Weblog, Rochester Institute of

Technology, Rochester, New York.

Lippmann, R. P., (1989). “Pattern classification using neural networks”. IEEE

Communications magazine, pp. 47-64.

Litvak, V., Sompolinsky, H., Segev, 1., and Abeles, M. (2003). “On the transmission
of rate code in long feed forward networks with excitatory-inhibitory balance.”

Journal of Neuroscience, vol. 23(7), pp. 3006.

Lippmann, R.P. (1991) “A critical overview of neural network pattern classifiers”
Neural Networks for Signal Processing, Proceedings of the 1991 IEEE Workshop, pp.
266-275.

216

Lee, B.B, Dacey, D. M., Smith, V. C., and Pokorny, J. (1999). “Horizontal cells
reveal cone type-specific adaptation in primate retina”. Proc Natl Acad Sci U S A,

vol. 96(25) pp.14611-14616.

Lai, T L. (1995). “Sequential change point detection in quality control and dynamical
systems (with discussion)”. Journal of the Royal Statistical Society, Ser. B, vol. 57,
pp. 613-658.

Love, P.L. and Simaan, M. (1989) “A knowledge -based system for the detection and
diagnisos of out-of-control events in manufacturing processes”. American Control

Conference, Pittsburgh, PA, vol. 3, pp. 2394-2399.

Mass, W. (1997a). “Networks of spiking neurons: the third generation of neural

network models. Neural Networks, vol. 10, pp. 1659-1671.

Mass, W., and Bishop, C. M (2001).” Pulsed neural networks”. MIT Press, MA, USA.

Mel, B.W. (1993). “Synaptic integration in an excitable dendrite tree.” Journal of
Neurophysiology, vol. 70, pp. 1086-1101.

Maass, W. (1997a). “Fast sigmoidal networks via spiking neurons” Neural

Computation, vol. 9(2), pp. 279-304.

Milner, P.M. (1974). “A model for visual shape recognition.” Psychological Review,
vol. 81, pp. 521-535

Mao, B., Wu, W., Li, Y., Hoppe, D., Stannek, P., Glinka, A., Niehrs, C. (2001).
“LDL-receptor-related protein 6 is a receptor for Dickkopf proteins” Nation, vol.

41(6835), pp. 321-325.

Mazurck, M.E., and Shadlen, M.N., (2002). “Limits to the temporal fidelity of cortical
spike rate signals” Natural Neuroscience, vol. 5(5), pp. 463-471.

217

Maass, W. (1997b). “Networks of spiking neurons: the third generation of neural
network model” Neural Networks, vol. 10(9), pp. 1659-1671.

Maass W., (1996). “On the computational power of noisy spiking neurons” Advances
in Neural Information Processing Systems 8. Proceedings of the 1995 Conference,
MIT Press, Cambridge, MA.

Maass, W., and Zador, M. A_, (1999). “Dynamic stochastic synapses as computational
units” Neural Computation, vol. 11(4), pp. 903-917.

Maass, W. (2000). “On the computational power of winner-take-all”. Electronic

Colloquium on Computational Complexity, report no. 32.

Maass, W. Schnitger, G. and Sontag, E.D. (1991). “On computational power of
sigmoid versus Boolean threshold circuits”. Foundation of Computer Science.

Proceedings, 32" Annual Symposium, pp.767-776. San Juan, Puerto Rico.

Montgomery, D. C. (1997). “Introduction to statistical quality control (3" ed.)”. New
York: Wiley,

Moore, S.C. (2002). “Back-propagation in spiking neural networks”. M.Sc. thesis,

University of Bath, available at: http://www.simonchristianmoore.co.uk.

Mountcastle, V.B. (1957). “Modality and topographic properties of single neurons of
cat’s somatosensory cortex”. Journal of Neurophysiology, vol. 20, pp.408-434.

Natschlager, T., Maass, W., and Zador, M.A,, (2001). “Efficient temporal processing
with biologically realistic dynamic synapses” Network Computation in Neural

systems, vol. 12(1), pp. 75-87.

Nager, C., Storck, J., and Deco, G. (2002) “Speech recognition with spiking neurons
and dynamic synapses” Neurocomputing, vol. 44-46, pp. 937-942.

218

http://www.simonchristianmoore.co.uk

Niebur, E. and Koch, C. (1996). “Control of elective visual attention: Modelling the

‘where’ pathway”. Advances in Neural Information Processing Systems vol. 8. pp.
802-808. MIT Press, Cambridge, MA.

Natschlager, T., and Ruf, B. (1998). “Spatial and temporal pattern analysis via spiking
neurons” Network Computation in Neural Systems, vol. 9(3), pp. 319-332.

O’Keefe, J., and Recce, M. (1993) “Phase relationship between hippocampal place
units and the hippocampul theta rhythm” Hippocampus, vol. 3, pp. 17-330.

Pandya, A. S and Macy, R. B. (1995). “Pattern recognition with neural networks in
C++”. IEEE Press

Perry, M B; Spoerre, J K; and Velasco, T. Control chart pattern recognition using
artificial neural networks. International Journal of Production Research, vol. 39(15),
pp. 3399-3418, 2001

Pham, D.T, and Oztemel, E. (1992). “Control chart pattern recognition using neural

networks” Journal of Systems Engineering.

Pham, D. T and Oztemel, E. (1992a).”XPC: An on-line expert systems for statistical
process control”. International Journal of Production Research, vol. 30 (12), pp. 2857-
2872.

Pham, D. T and Oztemel, E.(1992b). “Tempex: An expert systems for temperature
control in an injection moulding process”. Quality and Reliability Engineering

International, vol. 8, pp. 9-15, 1992b.
Pham and Oztemecl, (1993a). “Combining multi-layer perceptrons with heuristics for

reliable control chart pattern classification”. Application of Artificial Intelligence in

Engincering Confcrence Proceedings, pp. 801-810.

219

Pham and Oztemel, (1993b). “Control chart pattern recognition using combinations of
multi-layer perceptrons and learning vector quantisation networks”. Journal of

Systems and Control Engineering, Proceeding Institute Mech. Engrs.,pp. 113-118.

Pham, D.T and Oztemel, E. (1994). “Control chart pattern recognition using learning
vector quantization networks”. International Journal of Production Research,vol. 32,
pp. 721-729, 1994.

Pham, D.T and Oztemel, E. (1996). “Intelligent quality systems”. Springer-Verlag,
London, UK, ISBN 3-540-76045-8, 201pp.

Pham, D.T., and Wani, M.A., (1997). “Feature-based control chart pattern
recognition” International Journal of Production Research, vol. 35(7), pp. 1875-1890.

Pham , D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. (2006).
“The Bees Algorithm, a Novel tool for complex optimisation problems”. Proceeding
2™ International Virtual Conference on Intelligent Production Machines and Systems
(IPROMS’06). Oxford, Elsevier, pp. 454-459.

Pham, D.T., and Sahran, S., (2006) “Control chart pattern recognition using spiking
neural network”. Proceeding 2" International Virtual Conference on Intelligent

Prouction Machines and Systems (JPROMS 2006), Oxford: Elsevier, pp. 319-325.

Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. (2005).
“Technical note: Bees Algorithm”. Manufacturing Engineering Centre, Cardiff

University: Cardiff.

Ryan, T P. Statistical methods for quality improvement (2nd edition.) New York:

Wiley, 2000.

Reinagel, P., and Reid, R.C. (2002). “Precise Firing Events Are Conserved across
Neurons” Journal of Neuroscience, vol. 22(16), pp. 6837-6841.

220

Riehle, A., Grun, S., Diesmann, M., and Aertsen, A. (1997). “Spike synchronization
and ratc modulation differentially involved in motor cortical function” Science, vol.

278(5345), pp. 1950-1953.

Ricke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1996).
“Spikes-cxploring the ncural code”. MIT Press, Cambridge, MA.

Riesenhuber, M. and Poggio, T. (1999). “Hierarchical models of object recognition in
cortex”. Nature Neuroscience, vol. 2(11), pp. 1019-1025.

Rowlands, H. and Wang, L.R. (2000). “An approach of fuzzy logic evaluation and
control in SPC”. International Journal of Quality and Reliability Engineering, vol. 16,
pp.- 91-98.

Ruf, B. and Schmitt, M. (1998). “Self-organisation of spiking neurons using action
potential timing.” Neural Networks, IEEE Transactions, vol. 9(3), pp. 575-578.

Salzman, C.D. and Newsome, W.T. (1994). “Neural mechanisms for forming a

perceptual decision”. Science, vol. 264(5156), pp. 231-237.

Schalkoff, R.J. (1997). “Artificial neural networks”. Computer Science Series”
McGraw-Hill Co. Inc. New York.

Seeley, T.D., (1996). “The wisdom of the hive: The social physiology of honey bee

colonies”. Cambridge, Massachusetts: Harvard University Press.

Shewhart, W. A. (1931). “Economic Control of Quality of Manufactured Products”.
New York: Van Nostrand, 1931

Shadlen, M.N. and Newsome, W.T. (1998). “The variable discharge of cortical

neurons: implications for connectivity, computation and information coding”. Journal

of Neuroscience, vol.18, pp. 3870-3896.

221

Simaan, M. and Love, P.L. (1990). “Knowledge-based detection of out-of-control
outputs in process control”. Proceeding of the 29" IEEE Conference on Decision and

Control, Honolulu, Hawaii, pp.128-129.

Schrauwen, B., and Van Campenhout, J., (2004). “Extending spikeprop” Proceedings

of Neural Networks. IEEE International Joint Conference, vol. 1, pp. 475.

Shadlen, M. N., and Newsome, W. T. (1994). “Noise, neural codes and cortical
organization” Current Opinion in Neurobiology, vol. 4, pp. 569-579.

Softky, W. R. (1995). “Simple codes versus efficient codes” Current Opinion in
Necurobiology, vol. 5, pp.239-247.

Spears, W.M., Jong, K.A.D., Baeck, T., Fogel, D.B., and de Garis H., (1993). “An
overview of evolutionary computation”. Proceeding European Conference Machine

Learning, Vienna, Austria, vol. 667, pp. 442-459.

Swift, J.A., and Mize, J. H., (1995). “Out-of-control pattern recognition and analysis
for quality control charts using LISP-based systems”. Computers and Industrial

Engineering, vol. 28(1), pp. 81-91.
Swift, J.A. (1987). “Development of a knowledge-based expert system for control
chart pattern recognition analysis”. PhD dissertation, Graduate College, Oklahoma

State University, Stillwater, Oklahoma.

Thorpe, S., Fize, D., and Marlot, C., (1996). “Speed of processing in the human visual
system”. Nature, vol. 381, pp.520-522.

Thorpe, S.J., Delorme A. and VanRullen R., (2001). “Spike-based strategies for rapid
processing” Neural Network, vol.14 (6-7), pp. 715-726.

Tino, P. and Mills, A.J. (2005).”Learning beyond finite memory in recurrent networks

of spiking necurons”. Advances in Natural Computation-ICNC 2005, (L. Wang K.

222

Chen and Y. Ong, Eds.), Lecture Notes in Computer Science, Berlin, Springer, pp.
666-675.

Tolman, E.C., (1948). “Cognitive maps in rats and men [1]”. The Psychological
Review, vol. 55(4), pp. 189-208. (Classics in the history of psychology: An internet

resource developed by Christopher D. Green, York University, Toronto, Ontario.

Turban, E. (1995). “Decision support and expert systems: management support

systems”. Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

Van Rullen R., Guyonncau R. and Thorpe S.J., (2005). “Spike times make sense”
TRENDS in Neuroscience, vol. 28(1), pp. 1-4.

Villa et al.(1999). “Spatial-temporal activity patterns of rat cortical neurons predict

responses in a conditional task”. Proc Natl Acad Sci USA. vol. 96, pp. 1106-1111.

Wolf, E., Zhao, F.Y., and Roberts, A. (1998). “Non-linear summation of excitatory
synaptic inputs to small neurones: a case study in spinal motoneurones of the young

Xenopus tadpole” The Journal of Physiology, vol. 511(3), pp. 871-886.

Wei, C.H., and Fahn, C.S. (2002). “The multisynapse neural network and its
application to fuzzy clustering” IEEE Transaction on Neural Networks, vol. 13(3), pp.
600-618.

Xin, J. and Embrechts, M.J. (2001). “Supervised learning with spiking neuron
networks”. Proceeding IEEE Int. Joint Conf. Neural Networks, IJCNN’01,
Washington D.C., pp.1772-1777.

Xu, X. and Eberhart, R.C. (2002a). “Adaptive particle swarm optimisation: Detection

and response to dynamic Systems”. Proceedings of the IEEE Congress on

Evolutionary Computation, Honolulu, Hawaii USA, pp. 1666-1670.

223

Xu, X. and Eberhart, R.C. (2002b). “Multi-objective optimisation using dynamic
neighbourhood particle swarm optimisation”. Proceedings of the IEEE Congress on

Evolutionary Computation, Honolulu, Hawaii USA, pp. 1677-1681.

Wang, L.R. and Rowlands, H. (1999) “A fuzzy logic application in SPC evaluation
and control”. Proceeding of 7™ IEEE International Conference on Emerging

Technologies and Factory Automation, vol. 1, pp. 679-684.

Zahedi, F. (1990) “A method of quantitative evaluation of expert systems” European

Journal of Operational Research, vol. 48, pp. 136-147.

Zador A.M, (2000). ’The basic unit of computation” Nature Neuroscience, vol. 3, pp.
1167.

224

