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Summary

Rod catches of Atlantic salmon (Salmo salar) from the River Wye were previously the 
greatest in England and Wales. However, a 30-year decline in catches of salmon and 
brown trout (S. trutta) prompted management action. Since 1996, the Wye and Usk 
Foundation have excluded livestock, managed riparian trees, protected banks, cleared 
migratory barriers and limed selected tributaries. The aim was to enhance salmon 
habitat and extend spawning opportunities. The outcomes of such activities in Britain 
are still poorly understood.
This thesis i) identified variations in the water quality, aquatic invertebrates and 
salmonids of the Wye catchment; ii) evaluated the impact of recent management on 
habitats and aquatic organisms; iii) assessed whether any larger-scale factors could 
explain management effects. Because no suitable project-specific data were collected, 
routine monitoring data and surveys were applied in the most applicable post-hoc 
experimental designs.
Ecological quality varied widely among the Wye’s tributaries. Combined biotic indices 
supported the need to mitigate acidification in some upland streams and reduce diffuse 
nutrients in the lower catchment.
Riparian management appeared to reduce bank poaching and increase algae by 
comparison with reference streams. Post-treatment invertebrate communities were 
richer in recently managed streams than in controls. However, there was no evidence 
that management reversed the decline in salmonid populations.
The typical life-cycle of salmonids in the Wye might delay response to management, 
but this effect cannot be evaluated with only six years’ post-treatment data. 
Alternatively, local effects could be masked by larger-scale trends. In particular, 
salmonid abundance in the Wye declines significantly with increasing summer 
temperatures, decreasing summer rainfall and discharge.
I conclude that riparian management has had some of the desired outcomes at the reach 
or tributary scale. However, salmonid numbers in the Wye potentially reflect climatic 
effects, implying a need to consider climate-change in future management action.
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Chapter 1

General Introduction:
Recent trends among aquatic biota in the catchment of the River 

Wye (Wales) and the effects of riparian management



Intrihhienon

f 1.1 ] Background to the project

Despite their ecological importance, the fragmentation and loss of riparian corridors is 

continuing on a global scale (Naiman et al, 1993; Kentula 1997; Pusey and 

Arthington 2003). Agricultural practices, such as intensification, are amongst the 

major causes of riparian habitat decline (Kentula 1997; Hendry et al, 2003). 

Recognition of such changes has generated management activities to maintain this 

diverse ecotonal habitat and to restore damaged riparian zones (Malanson 1993; 

Naiman et al, 1993; White 1996; Kentula 1997; Naiman and Decamps 1997; Hendry 

et al, 2003). Management of riparian habitat is a step towards a whole ecosystem 

approach to maintaining river habitat and diversity (Imhof et al, 1996; Kauffman et 

al, 1997). While much of this work was previously undertaken in Northern America, 

there is increasing emphasis on riparian management also along British rivers. Here, 

however, scientific evaluations of ecological outcomes are still scarce.

Riparian management has frequently targeted individual key species on the 

assumption that their protection will benefit characteristics of the wider ecosystem 

(Landers 1997; Roper et al, 1997; Mather et al, 1998; Muotka et al, 2002; Hendry et 

al, 2003). For example, salmonids are economically important and charismatic 

species that are sensitive to environmental change, and are subjects of a large body of 

literature (Mather et al, 1998). Consequently, much riparian management is 

undertaken to promote in-stream habitat that is preferable to salmonids and intended 

to increase their populations (Krog and Hermansen 1985; Hemphill and Bramley 

1989; Salmon Advisory Committee 1991; O'Grady 1993; Imhof et al, 1996; 

Kauffman et al, 1997; Hendry et al, 2003; Pusey and Arthington 2003). Studies 

assessing the consequences for other organisms, and for overall habitat structure, are 

scarcer (e.g. Liljaniemi et a l , 2002; Kiffhey et al., 2003; Wright et a l, 2003; Lepori 

et a l, 2005). This gap in understanding increasingly needs to be filled as European 

Directives and UK legislation emphasise the importance of freshwaters for a range of 

organisms in addition to fishes (e.g. Habitats Directive 92/43/EEC).

The management of riparian habitat to promote salmonids and associated evaluations 

have often been reach-based. However, factors that affect the riparian and aquatic 

environment, such as livestock overgrazing or other changes in catchment land-use, 

often impact rivers at large scales (Hendry et al, 2003). Long-term, catchment-wide 

experiments are therefore potentially the most appropriate means to assess the

2



Introduction

efficacy of riparian management but their scale also creates substantial challenge 

(Imhof et al., 1996; White, 1996; Kauffman et al, 1997; Kershner, 1997; Naiman and 

Decamps, 1997; Downes et al., 2002; Milner et al., 2003). For example, to effectively 

isolate the effects of management from confounding factors, pre-treatment data would 

ideally be collected at managed and control sites and compared against data recorded 

after management (Stewart-Oaten et al, 1986; Kondolf 1995; Downes et al, 2002) 

using ‘Before-After-Control-Intervention’ experiments (Stewart-Oaten et al, 1986; 

Downes et al, 2002). Although BACI designs are often advocated in the evaluation of 

in-stream and riparian management, they have rarely been applied to such studies 

(Minns et al, 1996; Sarr 2002; Pretty et al, 2003). In part, this reflects the spatial 

extent and duration over which landscape-scale effects on rivers develop (Manel et a l 

2000). Yet, despite the challenge, reliable evaluations of riparian and catchment-scale 

effects on rivers will be increasingly required in Europe as the Water Framework 

Directive begins to promote large-scale ‘programmes-of-measures’ intended to 

deliver ‘good ecological status’ over most water bodies (2000/60/EC).

This thesis explores some of these generic and international themes in a specific case- 

study in the catchment of the Welsh river Wye.
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In tro d  net ion

[1.21 The project.

Of all English and Welsh rivers, the Wye has long been the most noted for its rod 

catch of Atlantic salmon Salmo salar, and in particular its population of spring-run 

fish characterised by multiple winters at sea (Environment Agency, 2003b). Although 

catches once contributed over 25% of all declared catches from England and Wales, a 

major decline over the last 30 years has caused widespread concern for conservation 

agencies, the Environment Agency and for those concerned with the Wye’s salmon 

fishery (Environment Agency, 2003a, b).

While government bodies (Countryside Council for Wales and the Environment 

Agency) have remained centrally involved with the assessment and management of 

salmon in the Wye, some of the major practical steps have been undertaken by a 

rivers’ trust, the Wye and Usk Foundation (WUF). Aiming to restore wild populations 

of salmon and trout for conservation and economic benefit, the WUF have, since 

1996, undertaken extensive management work on tributaries considered as 

traditionally ‘good’ salmon rivers (Slater 1988; Luxton, 2002; Wye and Usk 

Foundation, 2006a): the middle and upper Wye tributaries, initially under the Wye 

Habitat Improvement Project (WHIP) and later as part of the Powys Habitat 

Improvement Scheme (pHISH) (Wye and Usk Foundation (2006a, b, c, d). In addition 

to the use of calcium carbonate to buffer acidification (Lewis, 2006), management has 

involved a range of livestock exclusion measures, riparian tree-management, bank 

protection, spawning gravel restoration, the clearance of barriers to fish movement 

and the installation of fish passes (Wye and Usk Foundation 2006b; see Chapter 2). 

The overall aim has been to benefit salmonid populations, enhance habitat character, 

open more of the river catchment to fish spawning and locally increase the production 

of prey organisms.

In the early stages of the Wye Habitat Improvement Project (WHIP), the Clywedog 

Brook was used as an experimental river on which riparian management techniques 

were compared between reaches. However, this pseudoreplicated design limited 

conclusions about treatment effects on stretches within the skme river (Hurlbert, 1984; 

Luxton, 2002). Moreover, by 2004, the WUF had expanded riparian management 

activity to cover 13 different tributaries (stream orders 2-4), with barriers removed 

from an additional 29 (Table 1.1). This meant that a catchment-scale assessment of 

the effects of recent management, with whole tributaries acting as true replicate units,
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hiiroductiop.

might be appropriate to examine management effects on stream habitats and 

organisms. However, there were also major constraints in that treatments were applied 

at different times, treatments were not randomised across rivers, and no organised 

data on habitats or river organisms were collected before riparian management 

occurred (Stewart-Oaten et al, 1986; Kondolf and Larson 1995; Manel et a l , 2000; 

Downes et a l, 2002). The only options for evaluating treatment effects were 

therefore:

i) To use surveys following treatments to compare conditions among tributaries 

grouped by treatment type. Although the lack of time-series data in this approach 

means that effects could not be ascribed unequivocally to treatment, this was the only 

pragmatic possibility where no pre-treatment data existed. This is a common problem 

with large-scale and long-term effects on ecosystems (Manel et al 2000).

ii) To attempt to evaluate treatment effects using data available from other sources, 

for example long-term monitoring data from the Environment Agency. This approach 

clearly required that monitoring data be available, and that the frequency and extent of 

collection from treatment and control rivers should allow some form of organised 

analysis. While experimental design in such cases is seldom ideal, the standardised 

approach to data collection is an advantage and a range of qusasi-experimental 

methods are applicable (e.g. ‘Before-after-control-intervention’ type designs; Stewart- 

Oaten et al, 1986; Downes et al, 2002).

Both of these approaches would benefit from an understanding of general trends in 

the ecology of the Wye that might affect interpretation. Thus, in addition to evaluating 

differences in ecological conditions among sites with and without recent management, 

some of the following chapters also assess wider spatial and temporal patterns in 

ecological conditions in the Wye.
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11.31 Aims and thesis structure

This thesis aimed to identify any spatio-temporal trends in the water quality, aquatic 

invertebrates and salmonids of the River Wye catchment. Second, and against this 

background, it aimed to evaluate the impact on riparian habitats, aquatic invertebrates 

and salmonids within the Wye system of recent riparian management intended to 

promote salmonid populations. Specific research questions addressed in each chapter 

were:

i) From current literature, what is the current understanding of riparian 

influences on the aquatic environment? (Chapter 2)

ii) What are the current ecological conditions across the Wye catchment, and how 

might these inform management priority? (Chapter 3)

iii) Do riparian and in-stream habitats in the Wye differ under different forms of 

riparian land-use? (Chapter 4)

iv) Does riparian management affect aquatic invertebrate assemblages and 

salmonids? (Chapters 5 and 6)

v) Are there any larger trends among salmonid populations that might affect the 

outcomes from more local habitat management? (Chapters 6 and 7)

vi) Has recent riparian management locally within the Wye system reversed 

declining trends in salmonid populations? (Chapter 6)

In common with modem thesis styles, the work has been prepared so that each 

individual chapter is self-contained with its own contents list and references. This is 

intended to facilitate the development of subsequent publications.
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f 1.41 Management of the Wye Catchment. Wales.

The Wye is a Welsh, upland river system (Edwards and Brooker, 1982; Jarvie et al., 

2003). The rural catchment (4136km2) is dominated by rough pastoral agriculture and 

conifer forestry in the upland north west, and by arable and dairy faming on the 

eastern lowlands (Ormerod, 1987, 1988; Ormerod and Edwards, 1987; Edwards et al., 

1990; Ormerod et al, 1993; Jarvie et al., 2003). A comprehensive description of the 

physico-chemical and biotic character of the catchment is detailed in Chapter 3.

Techniques to create optimum habitat for salmonids by the management of riparian 

habitat are designed to promote spawning and nursery habitat for salmonids and 

increase autochthonous production (Hemphill and Bramley, 1989; Salmon Advisory 

Committee, 1991; Giles and Summers, 1996; Holmes, 2002; Chapter 2). Management 

usually involves fencing of a riparian buffer and coppicing or thinning of bank-side 

trees (Hemphill and Bramley, 1989; Hendry and Cragg-Hine, 1997). It aims to reduce 

livestock poaching (trampling) and shading of channels that limits bank vegetation 

and contributes to bank destabilisation (Garcia de Jalon, 1995; Hendry et al, 2003). 

By encouraging riparian vegetation, management also aims to reduce silt input to the 

river from the banks as well as from runoff from the surrounding landscape. Trees are 

also coppiced to promote bank and channel vegetation. The idea is to create more 

complex in-stream habitats that provide more refuges for fry and juvenile fish and 

more prey organisms thus increasing the carrying capacity of the river (O'Grady, 

1993; Garcia de Jalon, 1995; Hendry et al, 2003).

Management work on the River Wye, Mid-Wales, between 1996 and 2003 aimed to 

change the in-stream environment to increase the quality and quantity of habitat 

available to salmonid fish, primarily Atlantic salmon (Salmo salar) and brown trout 

(S. trutta) (The Wye and Usk Foundation, 2006 c, d). Alder (Alnus sp.) and willow 

(Salix sp.) trees on the river banks were coppiced or thinned and approx l-3m of the 

riparian zone was fenced to exclude grazing (Luxton, 2002). In instances where there 

was no grazing access, or adjacent land was not stocked, only coppicing of riparian 

trees was undertaken (Table 1.1).

Sites selected for restoration by the WUF were those traditionally considered to be 

good salmon rivers. Riparian management primarily took place on the lower reaches 

of tributaries. The Clywedog and Edw were the most extensively managed tributaries

7
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and were coppiced, fenced or both along much of their length (Table 1.1). 

Management was least (<1.5km) on the Felindre, Cniffiad, Tregoyd and Sgithwen. On 

the Clettwr, Duhonw, Bach Howey, Marteg and Triffiwd less than 33% of the river 

length was fenced, coppiced or both. On the Hafrena and Llynfi Dulas between 33 

and 66% of the bank length was altered (Table 1.1; Chapters 4 and 6; the exact 

locations and extents are confidential due to information regarded grant-in-aid).

In 1996, obstructions which may have impeded salmonid migration to spawning 

grounds were removed from the tributaries of the upper and mid Wye (The Wye and 

Usk Foundation, 2006b; Chapter 6). The programme included the removal of debris 

dams and installation of fish passes where practical.

8
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Table 1.1 Tributaries of the Wye system, Wales, on which the riparian zone was 

managed by fence and/or coppice between 1997 and 2004. Sub-tributaries are given 

in parenthesis. Fish passes were installed or barriers to migration removed in 1996 as 

well as from a further 29 tributary streams (see Chapter 6 for locations of fish passes). 

Precise locations and extents of riparian management are confidential (locations of 

tributaries are given in Chapters 4 and 6).

Wye tributary Tributary Riparian Management Fish pass
length or
(km) clearance

Year Type Extent
(% of tributary 
length)

Tregoyd 6.9 2002 Coppice
Fence and Coppice

<33% 4
Felindre 7.4 2002 Fence and Coppice <33% 4
Triffrwd 8.0 2003 Fence and Coppice <33%
Llynfi Dulas 11.1 2003 Fence and Coppice 33% - 66%

Bach Howey 18.2 2002 Coppice <33% 4
Clettwr 11.0 2002 Coppice <33% 4
Sgithwen 9.2 2000

1997
Coppice
Coppice

<33% 4
Edw 24.5 1999 Fence and Coppice >66%
Duhonw (Nant Gwyn) 18.1 2001

2002
Coppice
Fence

<33% 4
Hafrena 4.5 2003 Coppice 33% - 66% 4
Cniffiad 7.5 1997 Coppice <33% 4
Clywedog (Bachell 
Brook, Cwm Hir)

23.3 1998 Fence and Coppice >66% 4
Marteg 18.4 1998

2001
Fence
Coppice

<33%

9
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[2.01 Abstract

Riparian zones are key elements of riverine environments. Their ecological functions 
are many, including the mediation of two-way energy transfer across the land-water 
boundary; hydrological and hydrochemical controls on catchment exports; influences 
on channel habitat conditions; and the provision of diverse habitat types in the wider 
riverine landscape. In addition to their basic geomorphology, important features in the 
riparian zone include the nature and extent of riparian vegetation; soils and associated 
wetlands.

Recognition of the importance of riparian zones and concerns about their 
fragmentation and degradation is increasingly leading to attempts at riparian 
management, protection and restoration. Although undertaken for a wide range of 
purposes, such management in temperate areas is often undertaken to favour 
populations of economically important salmonid fishes. In these cases, consequences 
for other organisms are likely to be large, but are less often evaluated. This review 
evaluates i) the ecological functions of the riparian zone, ii) the types of riparian 
management undertaken for salmonids and iii) the potential effects on habitats and 
other riverine organisms and iv) the methods used to evaluate the effects of riparian 
management.

In the UK, riparian management for salmonids is primarily undertaken on streams that 
have been affected by intensively grazed pasture, plantation forest and flood defence. 
Primary aims include the reduction of siltation (particularly of spawning gravels); 
increased habitat suitability for all fish requirements (feeding, resting, movement 
etc.); enhanced prey availability; increased production; and the creation of favorable 
flow and/or thermal conditions. Satisfactory management in all these cases requires a 
sound understanding of natural river ecology and this may differ between different 
locations.

The effects of riparian management on salmonid fish and macroinvertebrates, when 
reported, have been mixed. Increases in the biomass, density, abundance, and size of 
salmonids have all been reported, but not in all cases. This could be attributed to 
variations in outcome between individual catchments. Responses to riparian 
management might also lag behind action depending on the features measured or the 
life-cycles of organisms. There are many cases of riparian management where 
assessment has been poor, badly designed and under-reported.

Currently, there is a need for improved evaluation of riparian restoration and 
management. There are also opportunities to develop multi-benefit strategies that will 
augment conditions for a wide range of organisms in addition to salmonids as well 
key ecological processes (e.g. production; nutrient processing). The need to adapt to 
climate change, and the need to see reach-based actions as part of wider catchment 
management, will also change management emphasis. Systematic, scientific design of 
management projects (that include pre-treatment data) and the dissemination of results 
are now necessary to further scientific understanding and inform evidence-based 
conservation and management.
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[2.11 Introduction

Riparian ecosystems are terrestrial or wetland habitats that border rivers and interact 

strongly with the wetted channel to support many important ecological functions 

(Gregory et al., 1991; Malanson, 1993; Goodwin et al., 1997; Naiman and Decamps, 

1997). Recognition of the importance of the riparian zone and concerns raised about 

the fragmentation and degradation of riparian landscapes, largely attributed to 

agriculture, commercial forestry, urbanization and the needs of flood defence, have 

generated management activities to maintain this ecotone habitat as a key part of river 

conservation (Malanson, 1993; White, 1996; Naiman and Decamps, 1997; Hendry et 

a l , 2003; Reeves et al., 2006; Lovell and Sullivan, 2006).

Some of the current themes in riparian management can be gleaned by assessing the 

types and scope of scientific papers published over recent years. For example, riparian 

research is currently increasing as a contribution to river and wetland science (Figure 

2.1; Goodwin et al., 1997). Of papers published between 1981-2004 and listed on the 

ISI® database, using the term ‘riparian’ somewhere in the title or abstract, 25%, 10% 

and 2%, respectively, also used the terms ‘management’, ‘restoration’ or 

‘rehabilitation’. Increasing use of the terms ‘riparian’ and ‘management’ demonstrates 

increasing recognition of the importance of the riparian zone in river restoration 

(Figure 2.1; Naiman et al., 1993; White, 1996; Goodwin et al., 1997; Naiman and 

Decamps, 1997). A large proportion (84%) of these made recommendations or 

suggested considerations for riparian management. However, not all such 

recommendations have been adequately researched. Only a quarter of papers 

published between 1981 and 2004 on riparian management/restoration/rehabilitation 

(n=30) directly evaluated the impact of management, which supports the assertion that 

many riparian restoration projects were conducted without adequate monitoring 

and/or experimental design (O'Grady, 1998; Rinne, 1999).

Twenty five percent of papers on riparian management with specific reference to the 

aquatic environment concerned fish populations, often focusing primarily on salmonid 

species (Table 2.1; Landers, 1997, Muotka et al., 2002a, Hdndry et al., 2003; Pusey 

and Arthington, 2003). Some authors (e.g. Kauffman et al., 1997; Roper et al., 1997; 

White, 2002) have advocated a move towards an ecological perspective on salmonid 

restoration programmes. This is inline with the relatively recent concept of
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management to maintain ecological integrity; the terms ‘riparian management’ and 

‘ecological integrity’ were first used together in the 1990’s (e.g. Ward, 1998).

Another key finding from an overview of published papers is geographical bias. The 

majority of research (66% of papers) has been conducted in North America 

(predominantly the USA), which represents just 12% of global surface waters (Figure 

2.2; World Resources Institute; 2003). Europe contributed only 11% of the papers 

demonstrating a need for further exploration of riparian and in-stream dynamics 

within the European region (Minshall et al., 1983). As a consequence, increased 

research activity here seems warranted.

This review focuses on studies relevant to temperate ecoregions of the world but 

draws on studies from elsewhere, when appropriate. This review evaluates: i) the 

ecological functions of the riparian zone, ii) the types of riparian management 

undertaken for salmonids, iii) the potential effects on habitats and other riverine 

organisms and iv) the methods used to evaluate the effects of riparian management. 

More specifically, it investigates the effects of the riparian environment, primarily 

riparian habitat, on aquatic habitats and organisms - notably benthic 

macroinvertebrates and salmonid fish.
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Figure 2.1. The proportion of papers using the search terms ‘riparian’ or ‘riparian and management’ as a percentage of 
wetland research (defined as those papers with ‘stream’, ‘river’, ‘riparian’ or ‘wetland’ in their title or abstract) listed on the 
ISI® database (1981-2004). Numbers of papers with ‘riparian and management’ as search terms are shown within bars.
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Figure 2.2.
a) The percentage of papers published by region with 'riparian management', 

'riparian restoration' and 'riparian rehabilitation' in their title, abstract or as 
keywords, (excluding reviews, theoretical models and laboratory experiments), 
listed by the ISI® database, 1981 -2004.

b) The annual extent of the contribution of surface water to Internal Renewable 
Water Resources (IRWR) (km3) by region, expressed as a percentage of global 
surface IRWR (Global surface IRWR =40,594 km3) (World Resources Institute 
2003).
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Figure 2.3. The influence of riparian habitat on the aquatic environment (adapted from 
Sweeney 1992 and Pusey and Arthington 2003). Arrows indicate interactions.
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[2.21 Riparian influence on the aquatic environment.

Riparian vegetation affects the physical and chemical environment within a river or 

stream (Figure 2.3). By shaping the quality and quantity of habitat available to stream 

biota, the character of the riparian zone influences the floral and faunal communities 

and trophic nature of the stream (Figure 2.3; Sweeney, 1992; Pusey and Arthington, 

2003). The physical environment is primarily altered by shading of the stream 

channel, modification of water cycling, the input of matter and structural bank 

changes (Vought et al., 1994).

Light is intercepted by the riparian canopy (Platts et al., 1989). In a study of streams 

with widths of 3-5m in New Zealand, willow trees reduced incident stream 

illumination by as much as 80% (Lester et al., 1994). Riparian land use and 

vegetation type affect the degree of stream shading and direct input of solar energy to 

the stream (Lester et al., 1994; Knapp and Mathews, 1996; Friberg and Winterboum, 

1997). Friberg and Winterboum (1997) found that wooded buffers in Wells Creek, a 

tributary to the Mississippi River, Minnesota, had a significantly higher percentage 

shade compared to grazed or successional buffers. Seasonal fluxes in riparian cover 

also vary the light available to streams (Sweeney, 1992).

The importance of canopy shading on the stream environment varies along the river 

continuum (Vannote et a l , 1980). Small, narrow, headwater streams can be 

completely shaded by bank-side vegetation. Friberg and Winterboum’s model 

simulations indicated that grasses and forbs provided as much shade as wooded 

buffers in streams with a width less than 2.5m. Further downstream, on far wider, 

lowland rivers, the riparian trees shade a much smaller proportion of the stream area.

The extent of riparian influence on water temperature depends on local and regional 

conditions (Gregory et al., 1991). Water temperature is affected by the density and 

upstream extent of streamside canopy, the size of the canopy opening above the 

stream relative to the size of the stream, the season, geographic location and climatic 

conditions (Barton et al., 1985; Sweeney, 1992; Li et al., 1994; Collier and Smith, 

2000). Understanding of these interactions is good enough to enable development of 

models that relate riparian forest and stream temperature (Theurer et a l, 1985; Chen 

et a l, 1998; Blann, 2002; Davies-Colley and Rutherford, 2005; Gaffield et a l, 2005). 

Changes in the productivity and composition of riparian vegetation can alter stream
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temperature (Beschta and Platts, 1986). Comparatively cooler temperatures are 

associated with shaded, forested streams and increased temperatures following the 

loss of riparian vegetation, through logging or grazing have most frequently been 

reported (Barton et al., 1985; Martin et al., 1986; Platts et al., 1989; Davies and 

Nelson, 1994; Li et al., 1994; Tait et al., 1994; Blann, 2002; Baillie et al., 2005; 

Welsh et al., 2005). For example, Barton et al. (1985) found that 58 % of variation in 

maximum water temperatures was explained by the fraction of bank forested within 

2.5 km upstream.

Impacts of riparian vegetation on water cycling can be divided into physical and 

physiological impacts (Bren, 1993; Tabacchi et al., 2000). Tabacchi et al. (2000) 

summarised the main physical impacts of riparian vegetation on water cycling as: 1) 

interaction with over-bank flow by stems, branches and leaves (turbulence), 2) flow 

diversion by log jams, 3) change in infiltration rate of flood waters and rainfall by 

litter, 4) increase of turbulence as a consequence of root exposure, 5) increase of 

substrate macroporisity by roots, 6) increase of the capillary fringe by fine roots, 7) 

stemflow (the concentration of rainfall by leaves, branches and stems), and 8) 

condensation of atmospheric water and interception of dew by leaves. In addition, 

riparian poaching (trampling) by livestock can reduce the hydraulic conductivity, 

macropore volume and bulk density of soil (see review by Drewry, 2006). Intensive 

livestock grazing can also directly destabilize banks and reduce the growth of 

vegetation which might normally give additional support to the banks (Easson and 

Yarbrough, 2002; Hook, 2003; Evans et al., 2006). Deep, silted, homogenous 

channels can result (Whol and Carline, 1996; Hook, 2003; Kondolf, 1993).

The main physiological impacts of riparian vegetation on water cycling were 

identified as: 1) hydraulic lift, 2) hydraulic redistribution, 3) water storage in large 

roots, 4) water storage in the stem, 5) water storages in branches and leaves, and 6) 

evapotranspiration. Surface runoff and subsurface flows are the main pathways of 

exchanges between the stream and its surroundings (Vought et al., 1994). Water 

cycling variation has important implications for the physical processes, such as 

erosion and sediment dynamics, and the chemical properties of stream water. The 

storage of water in the vascular systems of plants, retention of water in soils, and 

additional friction imposed by riparian vegetation can lower the flood hydrograph 

peak, lessen the force of water flowing over-land and reduce its erosive power (Hook,
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2003; Dabney et al., 2006). For example, under simulated rainfall events, Butler et al 

(2006) found that mean runoff volume from bare ground was generally twice that 

observed from plots with 45-95% cover of grassland vegetation (Festuca arundinacea 

Schreb. and Paspalum dilatatum Poir.). Models suggested that bare areas of manured 

riparian pasture could contribute substantial sediment (> 215 kg ha'1) and P (0.7 kg P 

ha'1) to surface waters during heavy rainfall and that export may be reduced equally 

well by low (45%) vegetation cover.

Riparian vegetation, especially that with relatively high stem densities and root mass 

development, helps to stabilise channel banks and reduce bank erosion (Beschta and 

Platts, 1986; Hupp, 1992; Sweeney, 1992; Abemethy and Rutherfurd, 1998; Easson 

and Yarbrough, 2002; McKergow et al., 2003). Lyons et a l (2000) found significant 

effects of riparian land use on erosion and in-stream habitat, with riparian land use 

accounting for 51% of variation in percentage bank erosion. Williamson et a l (1992) 

suggested that the dominant erosion mechanism was the undercutting of banks. In 

Bear Creek in a rural Iowa, U.S.A., Zaimes et a l (2004) discovered that bank erosion 

rates were greatest from streams draining row-crop fields, followed by continuously 

grazed pastures with the lowest erosion rates from stream-banks with riparian forest 

buffers. Zaimes et a l  (2006) estimated that the establishment of riparian forest buffers 

along all non-buffered sub-reaches Bear Creek would have reduced stream-bank soil 

loss by 77-97 %. On the same water course, grass and woody buffers of approx .16m 

removed 95-97%, 80-94% of the total-nitrogen, 62-85% of the nitrate-nitrogen, 78- 

80% of the total-phosphorus (P), and 58-80% of the phosphate-phosphorus (P04-P) 

from runoff (Lee et al., 2003).

Along the length of a river different processes may be dominant in the transfer of 

sediment to flow. In a study of the Latrobe River, Abemethy and Rutherfurd (1998) 

identified the second quarter of the river's length as the critical zone in which 

revegetation would be most effective in reducing bank erosion. Riparian vegetation 

not only influences the amount of sediment that reaches the stream from the adjacent 

banks but coupled with accumulated leaf litter, vegetation increases hydraulic 

roughness and traps sediment from overland flow (Herron and Harsine, 1988; Rabeni 

and Smale, 1995). Once in the stream, sediment alters the form of the channel itself. If 

hydraulic conditions in the channel promote sediment retention, sediment accumulates 

in gravel interstices, modifying the composition of the riverbed and reducing the
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heterogeneity of the stream channel (Naiman and Decamps, 1997; Dale Jones III et 

a l , 1999).

Riparian land use can have significant effects on width/depth channel dimensions 

(Sweeney, 1992; Lyons and Weigel, 2000; Anderson et a l , 2004). Streams with 

grassy riparian vegetation tend to have smaller stream widths and greater depths 

compared to those which have either been intensively grazed or shaded by riparian 

forest, (e.g. Sweeney, 1992; Knapp and Mathews, 1996). Vegetation overhang into 

the stream is a feature of grassy vegetation. Sediment deposits into the vegetation and 

gradually builds up the bank, narrowing the channel (Williamson et a l, 1992; 

Kondolf, 1993). Anderson et al. (2004) found that the effect of vegetative controls on 

channel width depended on the size of the river. In channels with small watersheds 

<10km , streams with wooded bank vegetation were wider than those with un

forested banks, but the converse was true for larger rivers with catchment areas of 10 

to 100km2. In eastern Pennsylvanian streams with drainage basin areas from 0.4 to 13 

km2 forested reaches were wider than non forested reaches with rates of deposition 

and lateral migration higher in non-forested than forested reaches (Allmendinger et 

a l, 2005).

The provision of woody debris to streams has received much attention in the literature 

in recent years (e.g. Inoue and Nakano, 1998; Keim et a l, 2002; Tabacchi and Planty- 

Tabacchi, 2003, Haschenburger and Rice, 2004; Chen et a l, 2006). The amount of 

woody debris in streams increases with forest cover (Liljaniemi et a l, 2002; Heartsill- 

Scalley and Aide, 2003). Accumulations of woody debris from the riparian zone 

impact on the hydrological, hydraulic, morphological and biological characteristics of 

river channels (Gumell et a l, 1995). Woody debris increases pool volume and cover 

in stream channels and provides more varied and complex habitats (Montgomery, 

1997; Keim et a l, 2002; Rosenfeld and Huato, 2003; Haschenburger and Rice, 2004; 

Opperman, 2005). The retention of organic matter is also important to stream 

productivity and will be discussed later (Vannote et a l, 1980; Cummins et a l, 1989; 

Sweeney, 1992). Riparian vegetation is a major determinant of efficiency with which 

matter is retained within streams, which is a function of stream hydrology and channel 

structure (Speaker et a l, 1984).

Riparian vegetation controls the quantity and type of terrestrially derived organic 

matter delivered to streams (Gregory et a l, 1991; Molinero and Pozo, 2004). The role
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of riparian vegetation in the provision of particulate organic matter to streams not 

only contributes to the physical properties of aquatic habitat, but also to chemical and 

energetic qualities of streams. The amount of coarse organic matter provided by the 

vegetation varies with the type of vegetation and size of the stream (Tabacchi et al., 

2000). Stream bank vegetation is a source of organic matter and large woody debris 

also controls the transport of organic matter by modifying the retentiveness of the 

channel (Speaker et al., 1984; Maridet et al., 1997; Pretty and Dobson, 2004; Lepori 

et al., 2005). Lester et al. (1994) found that stream reaches with riparian willow trees 

had significantly higher amounts of coarse particulate organic (CPOM; >5mm) 

compared to reaches without trees. Similarly, Pretty and Dobson (2004) found that 

woody debris increased retentiveness but also that deciduous leaves tended to be more 

retentive than conifer needles.

The type of riparian vegetation also affects the quality of organic matter that enters 

the stream. Herbs and shrubs provide a high quality (low C:N ratio, e.g. alder 15:1) 

source of energy compared with forested streams that receive larger woody debris of 

low energetic content (Gregory et al., 1991; Giller and Malmqvist, 1998). Deciduous 

and non-woody plants with higher C:N ratios (typically 200->l000:1) are more 

rapidly broken down by microbes, fungi and invertebrates (Cummins et al., 1989; 

Giller and Malmqvist, 1998; Hicks and Laboyrie, 1999; Quinn et al., 2000). Similarly, 

in British Columbia, decomposition rates of deciduous alder (Alnus rubra) were about 

50% faster than the two conifer Utter types (cedar (Thuja plicata) and western 

hemlock (Tsuga heterophylla) (Richardson et al., 2004). Elliott et al. (2004) found 

that C:N ratios at coniferous sites were significantly higher than those at alder- 

dominated deciduous sites or at sites without riparian cover. Litter fall in deciduous 

stands exceeds that of evergreen stands and exhibits more pronounced seasonal 

patterns of input (Gregory et al., 1991). The timing of leaf-fall influences the seasonal 

dynamics of organic matter, with maximum input during the autumn months (Kochi 

et al., 2004).

Breakdown of coarse and fine particulate organic matter will also contribute to 

dissolved organic matter through breakdown in the stream channel, but the riparian 

zone is also a direct source of dissolved organic matter to the stream (Fiebig et al., 

1990; Sweeney, 1992; Naiman and Decamps, 1997; Tabacchi et al., 2000).
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Streamside forests also alter many other chemical qualities of stream water, dependent 

on the species composition, age distribution and density of streamside trees as well as 

the rate and spatial pattern of water movement through the riparian zone (Sweeney, 

1992). The main impacts of riparian vegetation on water quality have been 

comprehensively reviewed by Tabacchi et al., (2000) and were summarised as: direct 

nutrient uptake, root excretion, storage and concentration of mineral and organic 

components, fast decomposing organic matter release from litter, slow decomposing 

organic matter release from woody debris, indirect uptake through symbiotic 

associations (bacteria and fungi) and leaching of pollutants and natural compounds at 

the surface of the plant.

The addition of a riparian buffer to a landscape can decrease the discharge of material 

to streams, slow down the transport of chemicals to the stream, and change the 

chemical composition of runoff that enters a stream (Gregory et al., 1991; Giles and 

Summers, 1996; Weller et al., 1998; McKergow et al., 2003; Fisher and Acreman, 

2004; Nieminen et al., 2005). Riparian zones are increasingly used to control diffuse 

sources of pollution, such as fertilisers, pesticides and sediment (Norris et al., 1991; 

Waters, 1995; Naiman and Decamps, 1997; Gippel and Collier, 2000; Lowrance et 

al., 2000; Felsot et al., 2003; McKergow et al., 2003; Anbumozhi et al., 2005).

The use of riparian buffer zones in mitigating against the export of plant nutrients 

(primarily nitrogen and phosphorus) from agriculture has received most attention in 

the literature (see recent review by Lovell and Sullivan, 2006). Riparian zones may 

significantly modify the amount, form, and timing of nutrient export from watersheds 

(Gregory et al., 1991). Roots intercept soil-water and uptake nutrients directly. They 

can also increase the time that soil-water stays in contact time with sites of 

biogeochemical processing (Sweeney, 1992; Vought et al., 1994).

Riparian zones can therefore act as sinks for nitrogen and phosphate (Phillips, 1989; 

Mulholland, 1992). However, buffer effectiveness is variable and limited by spatial 

and temporal conditions, such as season, soil type and redox-potential, and the 

magnitude of pollutant loads (Phillips, 1989; Tabacchi et all, 1998; McKergow et al., 

2003). When the riparian system becomes saturated, it can also act as a source of 

organic and inorganic matter to streams. At the end of the growing season in 

temperate regions, terrestrial litter provides seasonal pulses of dissolved leachates to 

streams (Gregory et al., 1991). Chemicals that adsorb to sediment, such as
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phosphorus, can be removed from overland flows when sediment is deposited in the 

riparian zone (Vought et a l , 1994; Naiman and Decamps, 1997; Lockaby et al., 

2005). Conversely, erosion may also provide a source of such chemicals to streams, 

particularly under anaerobic conditions in the case of phosphate (Mulholand, 1992).

Nutrients in a stream do not cycle between water, particulates and consumers in one 

place, but are transported downstream (Vannote et al., 1980). This ‘nutrient spiraling’ 

concept dictates that riparian influence on nutrient dynamics in the headwaters of 

streams will also have downstream effects (Newbold et al., 1981).

Dry atmospheric deposits can provide additional sources of nitrogen, as well as 

sulphates (Tabacchi et al, 2000). Also, the leaf canopy provides cations such as 

potassium, calcium and magnesium (Tabacchi et al, 2000). Atmospheric pollutants, 

such as sulphates, ‘scavenged’ by the forest canopy are transported to the soil and 

groundwater (Tabacchi et al, 2000). Plantations of exotic conifers in particular can 

accentuate the acidification of freshwaters in catchments with base-poor rocks and 

soils (Ormerod et al, 1989; Ormerod et al, 1993). Acidity promotes the mobilisation 

of metals in the soil. For any given pH in Welsh upland streams, aluminium 

concentrations were, on average 46pgl'1, higher in streams draining conifer 

catchments than in streams draining catchments of moorland or deciduous woodland. 

This effect occurred irrespective of buffer strips in conifer catchments and the taxon 

richness of macroinvertebrates aquatic declined with increasing acidity and 

aluminium concentration (Ormerod et al, 1989; Ormerod et al, 1993).
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12.31 Riparian impact on aquatic biology.

Riparian influence on channel form, substrate characteristics and the provision of 

overhead cover shapes the quality and quantity of in-stream habitat for aquatic flora 

and fauna (Wesche et a l , 1987). Through its impact on the aquatic habitat, 

productivity and food web, the riparian zone ultimately affects the fitness of 

individuals and composition of aquatic communities.

Riparian vegetation provides allochthonous energy inputs into stream ecosystems 

whilst shading the stream channel and limiting autochthonous productivity. Reduced 

riparian shading and higher irradiance is associated with increased algal abundance 

and biomass (Murphy et al., 1981; Davies and Nelson, 1994; Li et al., 1994; Friberg 

and Winterboum, 1997; Quinn et al., 1997; Sabater et al., 1998). Seasonal patterns of 

light and riparian cover therefore affect algal productivity (Sweeney, 1992). On 

investigating small, headwater streams (1st - 3rd order) on the Olympic Peninsula of 

Washington, U.S.A., Elliott et al. (2004) found higher concentrations of diatoms in 

sites that lacked canopy cover. Riparian forests also affect the structure and 

productivity of the microbial (algae and bacteria) food web by modifying the levels of 

dissolved organic carbon and nutrients (Sweeney, 1993).

Stream width relative to vegetation overhang determines the degree of riparian 

influence on the production of aquatic flora. In streams that are comparatively narrow, 

a higher proportion the channel bed can potentially be shaded by riparian vegetation 

(Vannote et al., 1980; Gregory et al., 1991). In these smaller, headwater streams, 

allochthonous and autochthonous food resources for invertebrate consumers, 

detritivorous and herbivorous fish are more strongly controlled by riparian zones 

(Gregory et al., 1991; England and Rosemond, 2004). Downstream, as stream size 

increases, the importance of terrestrial organic input is less, increasing the 

significance of autochthonous primary production and organic transport from 

upstream sources (Vannote et al., 1980).

[2,3,1] Riparian influence on benthic invertebrates,

Benthic invertebrates are the primary consumers within river systems and have a 

diverse range of feeding mechanisms. They include filter-feeders, detritivores, 

scrapers and grazers and others, such as Odonata, a number of Heteroptera, Diptera 

and Trichoptera and some leeches that are predatory (Moog, 1995). Modification of
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the riparian character influences the relative composition of functional feeding groups 

and trophic structure of invertebrate assemblages (Gregory et al., 1991; Rundle et al., 

1992). By controlling the sources of energy reaching the stream, riparian zones 

determine the quality and quantity of food available to aquatic consumers. So, the 

abundance of shredders decreases with increasing stream width, as the relative 

influence of bank-side trees is less (Vannote et al., 1980; Statzner et al., 2004).

Following alteration of the riparian wetlands, changes in the structure of invertebrate 

communities are frequently reported (Ormerod et al., 1993; Davies and Nelson, 1994; 

Sabater et al., 1998; Benstead et al., 2003; Fuchs et al., 2003; Parkyn et al., 2003; 

Wright et al., 2003; Sweeney et al., 2004; Hernandez et al., 2005; Kreutzweiser et al., 

2005). Riparian induced changes in community assemblage are often attributed to an 

increase in herbivore abundance in open sites and higher numbers of shredders in 

forested sites (Hawkins et al., 1982; Minshall et al., 1983; Gregory et al., 1991; 

Sweeney, 1993; Tait et al., 1994; Sabater et al., 1998; Wright et al., 2003). For 

example, in first-order streams in northern New England (U.S.A.), proportional 

representation of shredders was positively correlated with canopy cover (r = 0.584) 

which increased post-logging. The proportion of grazing invertebrates was correlated 

with recently logged, high-density stands with low mean tree diameter (r =0.604). 

Total macroinvertebrate and chironomid abundance were correlated with canopy 

cover (r=0.586 and 0.80, respectively). In contrast, Sweeney (1993) observed a 

decline in the abundance of grazing species and an increase in filter feeders in 

response to reduced light levels (hence algal availability). Sweeney suggested that 

under reduced algal conditions, the grazing species expanded their territory in order to 

meet their individual nutrient requirements, which resulted in lower densities of 

grazers, and hence more room for filter feeding species.

Riparian vegetation primarily affects macroinvertebrate diversity through effects on 

benthic habitat (Sweeney, 1993; Naiman and Decamps, 1997). Complex in-stream 

habitat is created by living and dead components of riparian vegetation, and 

diversifies the macroinvertebrate community (Sweeney, 1992; Ormerod et al., 1993). 

Conversely, the loss of riparian vegetation can cause sedimentation of gravel 

substrates and decrease the abundance macroinvertebrates in riffles (Davies and 

Nelson, 1994; Waters, 1995). For example, the density and abundance of 

macroinvertebrates, biomass of shredders and amount of particulate organic matter
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are often lower in streams without riparian grazing than in streams with livestock 

(Davies and Nelson, 1994; Whol and Carline, 1996; Robertson and Rowling, 2000; 

Scrimgeour and Kendall, 2003). The surface area of organic and inorganic substrate 

that is available for colonisation by aquatic species is modified through riparian 

effects on the structure and retentive capacity of the stream (Speaker et al., 1984; 

Sweeney, 1992, 1993). In support of this idea, Sweeney (1992) found that woody 

roots were also particularly important habitat for invertebrates, as was large woody 

debris (>0.3m long) in a small forested stream.

The provision of particulate organic matter to streams promotes detritivore 

assemblages but their abundance and composition varies with the structure and 

chemical make-up of riparian plant communities (Vannote et a l , 1980; Speaker et al., 

1984; Cummins et al., 1989; Gregory et a l , 1991; Dobson et al., 1995; Linklater, 

1995; Haapala et al., 2003). For example, in British Columbia during the autumn, 

invertebrate assemblages in streams draining alder (Alnus rubra) and cedar (Thuja 

plicata) forests were distinguished from those with western hemlock (Tsuga 

heterophylla) by the high densities numbers of detritivores (Lepidostoma, Zapada, 

and Paraleptophlebia) on the former litter types (Richardson et al., 2004).

Overhanging tree shade, total tree cover and abundance of Fraxinus angustifolia and 

Alnus glutinosa explained 18% of total invertebrate variation in the lowland Sado 

basin, Portugal (Aguiar et al., 2002). The type of tree, native or exotic, coniferous or 

deciduous will also shape the invertebrates that inhabit the stream. In the British 

uplands, grazer abundances were lowest at sites with riparian zones of conifer 

compared with riparian moorland and grassland and broadleaved trees (Rundle et al., 

1992). Similarly, in New Zealand and Australia, exotic European willow trees, Salix 

sp., were widely planted in an attempt to stabilize river banks but may support fewer 

terrestrial and aquatic species of invertebrates than in rivers with native trees (Lester 

et al., 1994; Wilkinson, 1999; Greenwood et al., 2004).

The width of the riparian zone has often been implicated in the control of invertebrate 

density, and the presence of individual species, e.g. the dragonfly Chlorolestes 

tessellatus which prefers a buffer width of > 30 m (Samways and Steytler, 1996; 

Fitzpatrick et al., 2001). Wider buffers might be able to satisfy a greater range of 

ecological functions (Davies and Nelson, 1994; Nakamura and Yamada, 2005).
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Riparian effects on macroinvertebrates result from complex interactions between 

energy inputs, stream physical structure and chemistry (Ormerod et al., 1993). 

General trends in invertebrate abundance and diversity in relation to riparian 

vegetation are therefore difficult to define and vary with local environmental 

conditions. This is illustrated by two studies undertaken by Lester et al (1994) and 

Glova and Sagar (1994). They compared invertebrate communities in small streams in 

New Zealand, with and without (exotic) riparian willow (Salix sp.). Glova and Sagar 

(1994) found higher species richness and diversity of benthic invertebrates in 

willowed sections. Conversely, Lester et al. (1994) observed lower invertebrate 

densities and biomass in willowed sections. Environmental variables other than 

riparian vegetation, such as acidity, may have overriding effects of on aquatic 

communities, such effects may be moderated by riparian vegetation (Ormerod et al., 

1993; Tiemey et al., 1998; Liljaniemi et al., 2002).

[2.3.2] Riparian influence on fish.

The availability of habitat and food to fish is intricately linked to the riparian zone 

(Gregory et al., 1991). It controls the food resource of herbivorous and detritivorous 

fishes by provision of organic matter (leaf litter, woody debris, etc.) and by the 

regulation of primary production through shading (Gregory et al., 1991; Glova and 

Sagar, 1994; Whol and Carline, 1996; Abe et al., 2003). The biomass of predatory 

fishes is limited by the provision of terrestrial invertebrates as well as the production 

of aquatic prey within the stream (Lobon-Cervia, 2000; Allan et al., 2003; Baxter et 

al., 2005; Bojsen, 2005; Nakamura and Yamada, 2005). Brook trout (Salvelinus 

fontinalis) density (R = 0.431) and biomass (R = 0.26) were directly and positively 

related to total benthic invertebrate abundance in a study investigating the effects of 

logging and riparian forest characteristics on biota in headwater streams (Nislow and 

Lowe 2006). Brown trout (Salmo trutta) take approximately equal proportions of 

terrestrial and aquatic prey, and may alter their primary food source to compensate for 

losses of prey due to acidification or riparian fragmentation (Allan et al., 2003; 

Ormerod et al., 2004; Baxter et al., 2005; Bojsen, 2005).

Riparian effects on fish are site-specific and vary along the river continuum (Vannote 

et al., 1980). In headwater streams, inputs of allochthonous material may increase the 

density of invertebrates and hence fish biomass (Wipfli and Musslewhite, 2004).
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Further downstream, shading of in-stream macrophytes by riparian trees may limit 

aquatic production and reduce the abundance and diversity of fishes adapted to 

lowland rivers (Growns et al., 2003).

Modification of riparian forest by deforestation, afforestation, livestock grazing or 

exclusion can induce changes in channel habitat, such as the amount of overhead 

cover or pool habitat which may then induce shifts in the structure of fish assemblages 

(Chapman and Knudsen, 1980; Maridet and Souchon, 1995; Dale Jones HI et al., 

1999; Bojsen, 2005; Feyrer et al., 2006). For example, salmonids spawn in redds 

created in gravel substrate and eggs can be suffocated by sediment entering the stream 

unimpeded by riparian vegetation (Kondolf and Wolman, 1995; Chapman, 1988; 

Platts et al., 1989; Waters, 1995; Whol and Carline, 1996; Moir et al., 1998; Malcolm 

et al., 2003). In reaches with fragmented riparian vegetation and high sediment loads, 

fish species that require swift, shallow water and well aerated substrates or do not 

guard eggs may decrease; whereas fishes that guard nests or live in slower, deeper 

water may increase in abundance (Dale Jones in  et al., 1999; Brazner et al., 2005). 

Dale Jones HI et al. (1999) found that longer deforested patches were associated with 

decreased abundance of benthic-dependent species, which were replaced by sediment 

tolerant and sometimes invasive species. Fine sediment also adversely impacts the 

productivity of periphyton and aquatic invertebrates and hence fish feeding, growth 

and survival (Suttle et al., 2004; Nakamura and Yamada, 2005).

The relationship between riparian cover and fish populations is unclear, probably 

because effects are specific to species and to the reach environment (Armstrong et al., 

2003). Without riparian vegetation, temperatures in some streams may exceed the 

tolerance ranges of fish species (Theurer et al., 1985; Tait et al., 1994; Nakamura and 

Yamada, 2005). Whilst reduced temperatures in some shaded, temperate streams may 

slow the growth of trout (Eklov et al., 1999; Lobon-Cervia, 2000). Lobon-Cervia 

(2000) found that in forested, shaded sites in northern Spain, adult trout grew more 

slowly and spawned fewer larger eggs that resulted in larger alevins, compared to 

open sites. In Irish rivers, ‘tunnelling’ by dense vegetation over the stream was 

correlated with reduced salmonid numbers during summer days (O’Grady, 1993). 

However, the availability of cover to juvenile salmonids is a major factor that 

promotes the abundance of salmonids (Armstrong et al., 2003). Cover protects against 

predators and delimits feeding territories (Keeley and Grant, 1995, Steingrimsson and
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Grant, 1999; Imre et al., 2002; Mossop and Bradford, 2004). It is provided by surface 

water turbulence, submerged structures, undercut banks, overhanging vegetation, the 

last three of which are promoted by the presence of riparian vegetation (Wesche et al., 

1987; Armstrong et al., 2003; Spina, 2003). Woody debris and riparian cover offer 

protection for fishes, especially during the winter (Wesche et al., 1987; Cunjak et al., 

1998; Inoue and Nakano, 1998; Young et al., 1999; Mossop and Bradford, 2004). 

Brooks et al. (2004) reintroduced woody debris to the Williams River, Australia. 

Areas of pools and riffles, as well as pool depth increased, as did the species richness 

and abundance of fish assemblages. A greater availability of habitat area can increase 

fish biomass; whilst complex habitats promote species diversity (Iwata et al., 2003; 

Brooks et al., 2004; Coutant, 2004).

The large body of literature exploring the habitat preferences of salmonids was 

recently reviewed by Armstrong et al. (2003). Salmonids require different water 

velocity, depth, substrate, cover and oxygen requirements in spawning, nursery (used 

during the first summer after hatching) and rearing areas, so need complex habitats to 

complete their lifecycle. Well aerated gravels are necessary for spawning and egg 

survival (Armstrong et al., 2003). Fry establish feeding territories and refuges in 

riffles thus avoiding competition or predation from older salmon which prefer deeper 

water (Armstrong et al., 2003).

Density dependent mechanisms are important in limiting the capacity of streams to 

accommodate salmonid populations, especially in the juvenile life stages (Alabaster 

and Lloyd, 1980; Kondolf and Wolman, 1995; Armstrong et al., 2003; Milner et al., 

2003). Population bottlenecks that occur when the standing crop approaches the 

carrying capacity of the environment and restrict the growth of salmonid populations 

have been reported to occur at times of spawning (redd construction) and fry 

emergence (Cunjak et al., 1998; Bardonnet and Bagliniere, 2000; Armstrong et al., 

2003; Milner et al., 2003). Self-thinning is the term used to define the progressive 

decline in density caused by competitively induced losses in a cohort of growing 

individuals (Lonsdale, 1990; Steingrimsson and Grant, 1999; Milner et al., 2003). 

Examination of the density-dependent mechanisms responsible for self-thinning of 

populations has generated two hypotheses: the energy equivalence and the space 

hypothesis (Steingrimsson and Grant, 1999). The energy equivalence hypothesis 

suggests that food availability limits the production of juveniles, whilst the space
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hypothesis proposes competition for space as the driving mechanism. The two 

hypotheses are not mutually exclusive. Both mechanisms have been reported and one 

or the other has rarely been entirely rejected (Elliott, 1993; Grant et al., 1998; 

Steingrimsson and Grant, 1999; Milner et al., 2003). The distribution and abundance 

of salmonids are therefore strongly influenced by their habitat, especially during 

population bottlenecks (Armstrong et al., 2003).
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[2.41 Management of riparian habitat for salmonids.

Modification of the riparian zone, namely through livestock grazing and forestry 

practices in rural catchments, changes the composition and structure riparian 

vegetation and consequently the stream habitat (Platts, 1991; Putman et al., 1991; 

Lewis and Williams, 1994; Liljaniemi et al., 2002; Kauffman et al., 2004). Plantations 

of exotic tree species, clear cutting of plantations and livestock grazing all contribute 

to a loss of riparian habitat diversity and potentially reduce the benefits of the riparian 

zone to the aquatic environment (Putman et al., 1991; Davies and Nelson, 1994; 

Lewis and Williams, 1994; Knapp and Mathews, 1996; Tiemey et al., 1998; 

Robertson and Rowling, 2000; Hendry and Cragg-Hine, 2002; Kauffman et al., 2004; 

Wissmar, 2004).

In response to widespread salmonid declines, fisheries managers now advocate the 

restoration of natural processes and functions of aquatic ecosystems in order to sustain 

the production of wild salmon populations (Salmon Advisory Committee, 1991; 

Schramm and Hubert, 1996; Kauffman et ah, 1997; Roper et ah, 1997; Williams et 

ah, 1999; White, 2002). They recognise the importance of riparian vegetation in the 

functioning of the aquatic ecosystem and modification of the riparian zone is a central 

theme of salmonid restoration (Platts and Wagstaff, 1984; Barton et ah, 1985; Theurer 

et ah, 1985; Martin et ah, 1986; O'Grady, 1993; Roper et ah, 1997; Hendry et ah, 

2003). Traditionally, only the stream channel itself was altered by the provision of in- 

stream structures such as groynes, brush bars, large woody debris or provision of 

gravels (House and Boehne, 1985; Armantrout, 1991; Konynenbelt, 1993; Karle and 

Densmore, 1994; Jungwirth et ah, 1995; House, 1996; O'Grady, 1998; Clarke and 

Scruton, 2002; Lehane et ah, 2002; Roni, 2002; White, 2002; Merz et ah, 2004). 

Direct alteration of in-stream habitat is now considered a short-term solution to stream 

enhancement, in advance of development of the functional attributes of riparian 

vegetation (Beschta, 1991; Karle and Densmore, 1994; Imhof et ah, 1996; Lehane et 

ah, 2002; White, 2002; Erskine and Webb, 2003; Opperman, 2005). For example, the 

artificial provision of woody debris to a channel might not be necessary once trees 

planted in a riparian zone started to contribute their trunks and branches to the river.

Technical guidance on the management of riparian vegetation has been provided 

alongside recommendations for structural modification of the channel by research 

organizations, consultancies, government agencies, river and conservation trusts
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(White and Brynildson, 1967; Hemphill and Bramley, 1989; Salmon Advisory 

Committee, 1991; Giles and Summers, 1996; Hendry and Cragg-Hine, 1997; Rickard, 

2002; Urbani, 2002; Correll, 2005). Such management has been implemented under 

the auspices of projects such as the US Fish and Wildlife Service's Partners for Fish 

and Wildlife Programme, Columbia River Basin Fish and Wildlife Program, Trout 

Unlimited in Virginia and the Aquatic Conservation Strategy, in the Pacific 

Northwest, USA, Australia’s Landcare Programme, Trout 2010 in Germany and the 

River Restoration Project in the UK (Campbell et al., 1997; Butler et al., 1999; River 

Restoration Centre, 1999; Williams et al., 1999; Gippel and Collier, 2000; McGurrin 

and Duff, 2002; Tent, 2002).

Management of riparian habitat to promote conditions within the stream that are 

preferable to salmonids is primarily undertaken on streams that drain intensively 

grazed pastures and commercially managed forests (Welsh, 1993; Davies and Nelson, 

1994; Lyons and Weigel, 2000; Hendry and Cragg-Hine, 2002; Rowe et al., 2002; 

Hendry et al., 2003; Northcote and Hartman, 2004). It includes the reduction of 

siltation of spawning gravels and promotion of cover (Krog and Hermansen, 1985; 

Hemphill and Bramley, 1989; Salmon Advisory Committee, 1991; Lewis and 

Williams, 1994; Giles and Summers, 1996; Naiman and Decamps, 1997; Glen, 2002) 

Attempts have also been made to increase supplies of allochthonous or autochthonous 

energy to streams, to enhance biotic production and hence salmonid density (Krog 

and Hermansen, 1985; O'Grady, 1993; Lewis and Williams, 1994; Giles and 

Summers, 1996; Clarke and Scruton, 2002). Although some controversy exists as to 

the value of in-stream plant production against the loss of leaf litter as a food source 

for invertebrates in headwaters, the maintenance of structural diversity within riparian 

areas is generally considered to be beneficial to the aquatic environment (Lewis and 

Williams, 1994; Maltby, 1994; Garcia de Jalon, 1995; Hendry et al., 2003).

Riparian buffer strips can be effective in maintaining native fish communities and 

macroinvertebrates (Webster et al., 1992; Davies and Nelson, 1994; Dale Jones III et 

al., 1999; Rowe et al., 2002). Davies and Nelson (1994) recommended a minimum 

width of >30m for riparian buffers within commercial forestry plantations, to increase 

salmonid production in Tasmanian streams. Petersen et a l (1992) suggested buffer 

strips at least 10m wide on each side of the stream as a restoration goal, based on 

nutrient reduction and habitat considerations. Buffer widths of 10m tend to protect the
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physical and chemical characteristics of a stream, while the maintenance of ecological 

integrity requires widths closer to 30 meters (Broadmeadow and Nisbet, 2004). 

Conversely, Lakel et al., (2006) suggested that a relatively small (7.62 meters per 

side) forested streamside management zone is just as effective at protecting against 

post-harvest erosion losses of sediment as much larger (15.24 and 30.48 meters) 

buffers, probably due to an increase in understorey vegetation following harvest. 

Alternative widths of buffers are likely to be appropriate for different management 

targets, such as nutrient reduction, protection of fish or bird communities, and 

biodiversity conservation (Petersen et al., 1992).

Suitable widths of riparian buffers to ameliorate forestry practices have received 

much attention, but very little guidance exists on the extent of fencing for grazed 

catchments (Keller and Burnham, 1982; Platts and Wagstaff, 1984; Anderson et al., 

1993; Comer and Bassman, 1993; O'Grady, 1998). In catchments of multiple 

landownership the width of riparian buffers often varies because the extent of grazing 

elimination is dependent on the support of riparian owners (Konynenbelt, 1993; 

Gippel and Collier, 2000; Rhodes et al., 2002; Opperman, 2005). The dimensions of 

riparian zones that are required for effective buffering also vary with land use and 

hydrogeology of the catchment and riparian zone (Davies and Nelson, 1994; 

Lowrance et al., 2000; Sabater et al., 2003; Hefting et al., 2004; Burt, 2005).

Dale Jones HI et al. (1999) advised that the length of a riparian buffer be considered, 

as well as adjacent riparian width, in stream protection and restoration plans. Parkyn 

et al. (2003) also noted that improvement in invertebrate communities was linked to 

decreases in water temperature and suggested that the restoration of in-stream 

communities could only be achieved after canopy closure along long buffer lengths. 

Small, headwater streams are important sources of invertebrates, detritus and 

sediment to downstream reaches as well as being important rearing habitat for trout 

(Rosenfeld et al., 2002; Moerke and Lamberti, 2003; Cornell, 2005; Wipfli, 2005). 

However, they are often excluded from restoration initiatives, a failing which could 

counteract any positive effects of restoration (Rosenfeld et al., 2002; Moerke and 

Lamberti, 2003).

Fencing is frequently erected to exclude livestock grazing, and to encourage the 

development of riparian vegetation; in addition, native trees may be planted and / or 

exotic species removed (Keller and Burnham, 1982; Platts and Wagstaff, 1984;
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Williamson et al., 1992; Welsh, 1993; Butler et al., 1999; McKergow et al., 2003). 

Thinning of riparian trees is advocated to promote grassy vegetation and to prevent 

excessive shading of channels (O'Grady, 1993; Garcia de Jalon, 1995; Hendry and 

Cragg-Hine, 1997; Lyons and Weigel, 2000; Hendry et al., 2003). Long-term 

programmes of fencing, alongside planting and pruning of trees have been proffered 

to maintain the diversity and complexity of bank-side habitat and to optimise the in- 

stream environment for salmonids (Garcia de Jalon, 1995; Giles and Summers, 1996; 

Hendry et al., 2003).

Once fenced, riparian habitat often changed rapidly but gradual changes in channel 

morphology and bed characteristics were not always sufficient to alter fish 

communities (Platts and Wagstaff, 1984; Kondolf, 1993; Lyons and Weigel, 2000; 

Nerbonne and Vondracek, 2001; Agouridis et a l , .2005). Conversely, on rivers in 

catchments that were previously overgrazed in Ireland, bioengineering techniques in 

combination with fencing programmes demonstrated a relatively quick ecological 

recovery once physical stability was restored (O'Grady, 1998; Gargan et al., 2002; 

O'Grady et al., 2002b). For example, the numbers of trout parr and macroinvertebrate 

taxa increased after 4 years, as did the variety of invertebrate feeding guilds in the 

Glenglosh River (O'Grady et al., 2002a). In other cases, the management of riparian 

habitat has successfully promoted the production of fish. Increases in the biomass, 

density, abundance, and size of fishes have all been reported in response to exclusion 

or reduction of livestock grazing (Chapman and Knudsen, 1980; Keller and Burnham, 

1982; Li et al., 1994; Knapp and Mathews, 1996; Whol and Carline, 1996). Most of 

those studies were concerned with cattle grazing, but there were some examples of 

sheep or mixed grazing (e.g. Platts, 1991; Williamson et al., 1992; Hendry and Cragg- 

Hine, 2002). Riparian buffers within logged catchments have also been associated 

with increased salmonid abundance, fish numbers, and enhanced native fish 

communities (Davies and Nelson, 1994; Rowe et al., 2002).

The impacts of livestock grazing and plantation forestry on salmonids do vary from 

place to place. For example, elevation of temperature to leyels at the extreme of 

salmonid tolerance can be induced by livestock grazing in desert streams, a factor 

unlikely to be of similar significance in temperate streams (Li et al., 1994; Tait et al.,

1994). Similarly, the impact of plantations of exotic conifers on stream acidity, and 

potentially on fish production, may be exacerbated by base poor soils (Edwards et al.,
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1990; Lacroix and Korman, 1996; Tierney et al., 1998). It is hardly surprising then 

that the outcomes of riparian restoration are also variable. The vast majority of studies 

on riparian buffers were conducted in the U.S.A.’s Pacific north-west (primarily in 

Oregon), with contributions from the American mid-west, Canada and New Zealand 

(Platts, 1991; Simpkins et a l, 2002; Compton et al., 2003; Donnelly, 2003; Meleason 

et al., 2003; Parkyn et al., 2003; Reeves et al., 2003; Boothroyd et al., 2004; 

Kauffman et al., 2004; Moerke and Lamberti, 2004; Mossop and Bradford, 2004). 

Whilst general trends can be gleaned from these studies, restoration efforts elsewhere 

should tailor management to suit river-basin characteristics (Blinn and Kilgore, 2001; 

Brazner et al., 2005; Watanabe et al., 2005). Characterization of river catchments is 

therefore important to identify priorities for management (Imhof et al., 1996; Boon et 

al., 2002; Logan and Furse, 2002; Dudgeon, 2003; Sear and Newson, 2003). This is 

now recognised in European legislation. Under the Water Framework Directive 

(Directive 2000/60/EC) ‘River Basin Management Plans’ will establish the ecological 

status of surface waters and detail programmes of measures to prevent deterioration 

and to ‘protect, enhance and restore all bodies of surface water’.

Methods employed to restore rivers should be based on fundamentals of ecological 

and physical science and appropriate to the stream character and management 

objectives, but not loose sight of conditions at the landscape scale (Platts and Rinne, 

1985; White, 1991; Muhar et al., 1995; Fiest et al., 2003; Martin et al., 2006). Simple, 

reach scale, solutions are unlikely to be effective on their own. Often the cause of 

change has occurred over a larger scale than the remedial solutions, and restoration 

treats the symptoms rather than the cause of the problem (O'Grady et al., 2002a). 

Large-scale, watershed characteristics and climatic conditions may have greater 

control over fish populations than riparian factors alone (Platts and Wagstaff, 1984; 

Ormerod et al., 1993; Imhof et al., 1996; Whol and Carline, 1996; Kauffman et al., 

1997; Stefansson et al., 2003). Management of riparian habitat is a step towards a 

whole ecosystem approach to maintaining river habitat and diversity, restoration 

might best be administered at the catchment scale (Harper et al., 1999; Giller and 

O'Halloran, 2004).
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[2.51 Evaluation of riparian management.

Evaluation of management has two primary functions. First, to establish the effects of 

management, second, to inform management so that practices can be improved. Each 

restoration project, or management action, constitutes an experiment, and assessed as 

such (Kondolf, 1995; Minns et al., 1996; White, 1996; Landers, 1997). Objective and 

robust project evaluation enables scientists and managers to learn from management 

experiences and improve approaches to management (Kondolf, 1995; Minns et al., 

1996; White, 1996).

For effective evaluation, scientific design, systematic post-project evaluation, and 

dissemination of results (both positive and negative) are important elements in 

development of management strategy (Kondolf, 1995; Minns et al., 1996; White, 

1996; Bash and Ryan, 2002). In the past, all or some of these elements were lacking 

in riparian research, and within the field of river restoration (Kondolf, 1995; Muhar et 

a l, 1995; O'Grady, 1998; Rinne, 1999; Sarr, 2002). The key strategy for inference of 

impacts is to find some evidence for impact that cannot easily be explained away by 

various other processes, such as natural variation in the system (Downes et al., 2002). 

The principles of restoration ecology provide a unifying model framework for riparian 

management (Sarr, 2002). Kondolf (1995) set out five elements for effective 

evaluation of river and stream restoration projects; clear objectives, baseline data, 

good study design, commitment to the long term and a willingness to acknowledge 

failures.

The need for clear objectives to enable effective study design and evaluation has been 

repeatedly expressed in the literature (White, 1991; Frissel and Nawa, 1992; Muhar et 

al., 1995; Jones et al., 1996). Muhar et al. (1995) stated that the main objective should 

be a comprehensive ecological improvement, taking the entire catchment into 

consideration. Ideally, this would be achieved through a series of broad objectives 

leading to more specific, quantifiable objectives (White, 1991; Kondolf, 1995). In this 

way, monitoring designs can be developed from project goals (Bash and Ryan, 2002; 

Ryder and Miller, 2005).

Monitoring variables are dictated by project objectives. Species-specific approaches 

to riparian management may result in limited data retrieval. Bash and Ryan (2002) 

suggest that biological measures, such as salmonid population data, are appropriate
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measures of project goals, as population conditions are subject to a multitude of 

variables. However, due to the large number of variables to which fish respond, it is 

also appropriate to monitor physical, chemical and water quality parameters (Bash 

and Ryan, 2002). White (1996) noted that the literature, pre 1988, contained little 

about the effects of habitat management at ecosystem or community levels and that 

some early papers covered only the physical durability of structural work. Positive 

responses of fish to management have been attributed to increased habitat availability, 

and / or productivity, but such assumptions have rarely been tested in the evaluation 

of management (Chapman and Knudsen, 1980; Whol and Carline, 1996).

The majority of recent papers that have evaluated riparian management focused on 

physical and fish based parameters (e.g. Chapman and Knudsen, 1980; Kondolf, 

1993; Knapp and Mathews, 1996; Lyons and Weigel, 2000; Brooks et al., 2004; 

Opperman, 2005). There are few examples of studies that evaluate how ‘single-goal’ 

restorations aimed at salmonid fisheries affect other stream biota (Muotka and 

Laasonen, 2002). Some assessed benthic invertebrate or algal responses to 

management (e.g. Sabater et a l , 1998; Liljaniemi et al., 2002; Kiffney et a l , 2003; 

Wright et a l , 2003; Harrison et a l , 2004; Kiffney et a l, 2004). Very few explored 

any other aspect of the aquatic environment, such as microbial responses and 

ecosystem function (e.g. Murphy et a l, 1981; Lepori et a l, 2005). Cognizance of 

natural stream features and processes has increased, as reflected by more recent 

papers that have explored the response of water chemistry, invertebrates and the 

aquatic community to management (e.g. White, 1996; Whol and Carline, 1996; 

Scrimgeour and Kendall, 2003).

Baseline data are collated to establish the pre-treatment condition of study sites. These 

data should be consistent with project objectives as an objective basis for evaluating 

change caused by the project, to determine whether objectives were met (Kondolf,

1995). Baseline data can also be used in the planning of habitat improvements and to 

confirm whether the project objectives were appropriate (Diamond et a l, 2002; 

Stanfield and Kilgour, 2002). For example, if objectives call for the addition of woody 

debris to streams, baseline data may confirm a paucity of woody debris in treatment 

streams.

Pre-treatment data are necessary to identify change and is particularly important when 

management activities cannot be replicated or controls are absent, which is often the
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case in studies on livestock exclusion (Sarr, 2002). Data should therefore be collected 

for as long as possible during the pre-project period (Kondolf, 1995). Whilst fisheries 

and ecologically based management have better track records in collection of pre

project data than projects focusing on ‘engineering’ goals, this is the area of project 

evaluation most frequently absent from stream and riparian management projects 

(Bash and Ryan, 2002; Sarr, 2002). A recent review of stream restoration and 

enhancement projects in Washington State, USA, found only 53% of had baseline 

data, and a survey of stream restorations in Indiana found that fewer than half 

conducted pre- or post-project monitoring (Bash and Ryan, 2002; Moerke and 

Lamberti, 2004). In some cases, when pre-treatment was available, results were 

expressed in the literature as percentage change (e.g. Platts and Nelson, 1985). 

Statistical evaluation would have established the significance of those results, and 

further aided subsequent projects.

Project success can only be evaluated objectively in the context of quantifiable change 

(Kondolf, 1995; Rinne, 1999). Any effects of management on the complex river 

environment must be distinguished from many other simultaneous changes in the 

aquatic environment (Kondolf, 1995). Studies therefore need to be carefully designed 

prior to treatment and a number of authors have called for guidelines on study design 

(Kondolf, 1995; Minns et al., 1996; Rinne, 1999; Bash and Ryan, 2002; Sarr, 2002)

Such guidelines would probably constitute an experimental design involving a 

framework of pre- and post-treatment data with control sites and replication, where 

possible, suitable for statistical evaluation (Table 2.1; Kondolf, 1995; Downes et al., 

2002). Such guidelines must be flexible in their approach, to account for 

environmental, anthropogenic and financial constraints on ideal study designs (Platts 

and Rinne, 1985). For example, lack of pristine (ungrazed) reference streams is a 

constraint common to many studies evaluating effects of management of riparian 

grazing (Platts and Rinne, 1985; Sarr, 2002).

Control sites are extremely useful in highlighting changes that may have resulted from 

influences other than effects of the project (Stewart-Oaten et al., 1986; Kondolf, 

1995; Landers, 1997; Downes et al., 2002). Spatial replication of treatment and 

control sites help to overcome confounding factors which may be specific to a 

individual sites and can draw out factors associated with management and increase 

statistical power (Hair et al., 1995; Downes et al., 2002; Sarr, 2002).
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Replicate reaches or streams within experimental design have been common, and 

many (e.g. paired designs) have replicate controls (Table 2.1). In the evaluation of 

riparian and stream management for salmonids control sites have most frequently 

been located on the same stream as treatment sites, often as paired reaches on the 

same stream ( Table 2.1; Chapman and Knudsen, 1980; Murphy et al., 1981; Davies 

and Nelson, 1994; Robertson and Rowling, 2000; Pretty et al., 2003; Opperman and 

Merenlender, 2004). Sampling of independent control streams is an objective method 

to avoid the pseudoreplication of data within streams due to downstream effects 

(Hurlbert, 1984). It is preferable to have a large number of control streams to 

overcome confounding factors introduced by stream variability (Green, 1993; Hair et 

al., 1995). However, in practice this is not always possible due to the availability of 

suitable control or replicate streams (Platts and Rinne, 1985; Sarr, 2002; Opperman 

and Merenlender, 2004).

A few studies evaluating management for salmonids have made significant inferences 

from experimental designs with only one control (e.g. Scrimgeour and Kendall, 2003) 

and some studies without controls and / or replicates have been reported (Table 2.1; 

House et al., 1991; Frissel and Nawa, 1992; Karle and Densmore, 1994; Penczak, 

1995; Blann, 2002; McKergow et al., 2003). Subjectivity is introduced in determining 

whether observed changes were a response to management or wider environmental 

conditions, especially in single reach studies (Karle and Densmore, 1994; Penczak, 

1995; McKergow et al., 2003). However, the majority of study designs had some 

replicate and control reaches or streams (85%) and 79% presented a degree of 

statistical assessment of the significance of results (Table 2.1). Analysis of variance 

designs have been most commonly applied to determine significant differences 

between control and treatment site variables in the absence of pre-treatment data (e.g. 

Keller and Burnham, 1982; Williamson et al., 1992; Sabater et al., 1998; Robertson 

and Rowling, 2000; Muotka and Laasonen, 2002; Rowe et al., 2002; Kiffney et al., 

2003; Harrison et al., 2004; Opperman and Merenlender, 2004). Occasionally 

correlation and regression statistics have been applied to data, and potential 

relationships and variance explained by different physical variables presented (e.g. 

Frissel and Nawa, 1992; Linlokken, 1997; Kiffney et al., 2003; Pretty et al., 2003).

Before-After-Control-Impact (BACI) designs involve sampling control and impact 

locations, both before and after putative impact, together with proper replication of
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each of these four elements, where possible (Stewart-Oaten et a l , 1986; Green, 1993; 

Downes et al., 2002). Replicated BACI-type designs allow us to separate, with 

relatively high confidence, human-caused effects from natural processes (Downes et 

al., 2002). Despite recommendation for use in the design of experiments involving the 

modification of riparian and in-stream habitat, BACI designs have rarely been applied 

to such studies ( Table 2.1; Minns et al., 1996; Sarr, 2002; Pretty et a l , 2003). Only 

15% of studies identified in this review that evaluated habitat manipulation that aimed 

to promote salmonids incorporated pre-treatment data, control sites and replication as 

well as statistical analysis (Table 2.1).

Emphasis has been frequently placed on the need for long-term commitment to the 

post-evaluation period of projects, in order to identify management impacts, and the 

durability of impacts (Reeves et al., 1991; Kondolf, 1995; Trexler, 1995; Bash and 

Ryan, 2002; Sarr, 2002). The duration of post-project monitoring necessary to 

determine efficacy depends on project goals and on trends in the natural variability of 

the riparian and aquatic environment (Reeves et al., 1991; Trexler, 1995; Landers, 

1997; Bash and Ryan, 2002; Parkyn et a l , 2003). For example, if the endpoint 

defined for a project is a rise in fish population size, large natural fluctuations in fish 

populations may confound the difficulty in detecting changes (Reeves et a l , 1991; 

Trexler, 1995). The time for required changes to take effect may be substantial, for 

example, between fifty and one hundred years may be required for riparian forest 

regeneration. Five to ten years has been suggested as a suitable period for 

identification of changes due to river restoration projects, such as woody debris 

addition to streams (Kondolf, 1995; Trexler, 1995; Bash and Ryan, 2002).

In its most simplistic form, evaluation identifies whether or not management 

objectives were achieved, with a view to implement those practices with the desired 

outcome. This approach was frequently adopted by riparian projects aimed at single 

species, such as salmon (Muotka et a l , 2002). However, this ‘black box’ approach to 

evaluation fails to identify causative mechanisms involved in the pathway from 

management to effect, and is of limited value to adaptive management (Platts and 

Rinne, 1985; Jones et al., 1996; Rinne, 1999). Studies of fish responses to 

management have yielded very different results but the mechanisms underlying 

responses have rarely been explored (Platts and Rinne, 1985; Jones et a l , 1996; 

Rinne, 1999). Scientific studies can help to evaluate the ecological success of
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restoration projects, beyond specific management objectives (Muhar et al., 1995). 

Spatial and temporal scales of ecosystem responses are often greater than the scales of 

human intervention and assessment but understanding of the scales and mechanisms 

of ecosystem recovery remains limited (Imhof et al., 1996; Minns et al., 1996; Poff, 

1997; Sarr, 2002; Allan, 2004).

The scale of observation is an important consideration in designing a strategy for the 

evaluation of management. There is a nested hierarchy of spatial and temporal scales 

at which ecosystems operate, human impacts occur and assessments are carried out, in 

which larger scale variables exert control on finer scale variables (Figure 2.4; Imhof et 

al., 1996; Minns et al., 1996). However, linkages between processes operating at 

different scales are not necessarily linear or straightforward (Imhof et al., 1996, Poff, 

1997; Royer and Minshall, 2003; Allan, 2004). Action, or evaluation, at one scale 

cannot be assumed to affect, or represent, processes operating at another scale (Imhof 

et al., 1996). Small-scale investigations may yield contrasting results to larger scale 

investigations of the same management event (Fiest et al., 2003). The scale and 

method of evaluation should therefore be appropriate for the assessment of project 

objectives (Rabeni and Smale, 1995; Minns et al., 1996).
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Figure 2.4. A nested hierarchy of spatial scales of 
ecosystem function and evaluation, approximate linear 
dimensions of spatial units and associated scales of biotic 
assemblages (adapted from Rabeni and Smale 1995; Imhof 
et al., 1996 and Royer and Minshall 2003).

Small scale-investigations can provide valuable information on the effects of habitat 

variables, such as depths, velocities, cover factors on habitat preferences and of 

distribution individuals (Figure 2.4; Rabeni and Smale, 1995). Intermediate 

investigations at the stream-system level can relate individual fish preferences to the 

availability of habitat to populations, as determined by geomorphic and fluvial 

dynamic forces. Meanwhile, evaluation at the ecoregion level can demonstrate the 

overriding influence of physiographic variables on both the composition of 

communities and abundance of populations. Perception of which habitat variables are 

important in the restoration of salmon habitat is therefore a function of the scale of 

observation (Fiest et a l, 2003). The design of restoration activities at all spatial
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scales, will enable the examination of functional relationships among them and help 

to identify the scales at which management is most appropriate (Imhof et al., 1996; 

Landers, 1997).
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Table 2.1. Elements of study design applied by work published (between 1981 and 
2003, n=33) on the evaluation of management undertaken in riparian areas and 
streams to benefit salmonids.

Elements of study design

focus
Reference Pre-treatment

data
Control Replication Statistical

evaluation
All 4 elements

Lyons and Weigel 2000 4 4 4
Scrimgeour and Kendall 4 4 4
2003
Kondolf 1993 4 4 4
Chapman and Knudsen 4 4 4
1980
Li et al., 1994 4 4
Keller and Burnham 4 4 4
1982
Platts and Nelson 1985 4 4 4
Robertson and Rowling 4 4 4
2000
Knapp and Mathews 4 4 4
1996
Williamson et al, 1992 4 4 4
Whol and Carline 1996 4 4 4
Muotka and Laasonen 4 4 4 4 4
2002
Brittain et al., 1993 4 4 4 4 4
Pretty et al., 2003 4 4 4
Jung worth et al., 1995 4 4
Muotka et al., 2002 4 4 4 4 4
Armantrout 1991 4 4
House etal., 1991 4 4
House and Boehne 1985 4 4 4
House 1996 4 4 4
Frissell and Nawa 1992 4 4 4
Linlekken 1997 4 4 4
Karle and Densmore 4
1994
Young etal., 1999 4 4 4 4 4
Davies and Nelson 1994 4 4 4

Grazing

In-stream
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Table 2.1. continued...

Elements of study design
Management
focus

Reference Pre-treatment
data

Control Replication Statistical
evaluation

All 4 elements

In-stream
modification

Murphy etal., 1981 y f y f y f

Rowe et al., 2002 y f y f y f

Riparian
modification

Penczak 1995 s f y f

Dale Jones III et al., 
1999

y f y f y f

Sabater etal., 1998 y f y f y f y f y f

Liljaniemi et al., 2002 y f y f y f

Blann et al., 2002 y f

McKergow et al, 2003 y f y f

Proportion of papers with 
elements of study design

42% 79% *5% 79% 15%
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[2.61 Riparian management for salmonids: research needs.

Interest in riparian research is increasing (Goodwin et al., 1997; Pusey and 

Arthington, 2003; Shields et al., 2003). An understanding of the general functions of 

the riparian zone can be applied to develop management to conserve aquatic 

environments (Vannote et al., 1980; Gregory et al., 1991; Sweeney, 1993; Chen et al., 

1998; Tabacchi et al., 1998; Blann, 2002). However, many riparian restoration 

projects have been conducted without sufficient monitoring and/or experimental 

design (e.g. Table 2.1). Further research is required to establish the impacts of riparian 

management on habitats and organisms as well as the mechanisms underlying 

responses to management (Sweeney, 1992; Vought et al., 1994; Jones et al., 1996). 

Understanding the factors driving ecological change will become increasingly 

important as organisms respond to new environmental conditions in the light of 

climate change (Hulme et al., 2002; Harris et al., 2006).

Management of riparian areas is beginning to move beyond a focus on single species 

at the reach scale to encompass the whole ecosystem (Kauffman et al., 1997; Muotka 

et al., 2002; White, 2002; Katopodis, 2005). Research that assesses management 

impacts on the structure and function of aquatic communities within the context of the 

wider catchment should now be conducted (Imhof et al., 1996; White, 1996; Landers, 

1997). Systematic, scientific design of management projects (that include 

pretreatment data) and the dissemination of results is now required to further scientific 

understanding and inform management (Kondolf, 1995; Muhar et al., 1995; Minns et 

al., 1996; White, 1996; Hendry and Cragg-Hine, 1997; O’Grady, 1998; Rinne, 1999; 

Bash and Ryan, 2002; Sarr, 2002; Hendry et al., 2003).
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Chapter 3

Standard biotic indices identify catchment-scale priorities for 
restoration and management in the Wye river system.
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13.01 Abstract

Although biotic indices derived from invertebrates are used often in river monitoring 
and surveillance, their use in diagnosing problems and prioritising management 
response is less common. Here, semi-diagnostic biotic indices from archived data 
were used in combination to characterise catchment-wide macroinvertebrate 
assemblages in the Wye river system.

Invertebrates from streams (n=55) in three sub-catchments, distinguished on geology, 
topography and land use, varied significantly in taxonomic composition and feeding 
guild representation. There were also major variations in indices of organic pollution 
(BMWP/ASPT) and acidification (AWIC), with acidified and enriched sites both 
distinct from semi-natural sites across the catchment.

Although the Wye is designated for its conservation importance, these data illustrate 
the need to mitigate acidification in upland base-poor regions and to better manage 
diffuse nutrient sources in the lower catchment. These data illustrate how classical 
and novel biotic indices, applied to routine monitoring data, can aid in prioritising 
restoration and management. The development of bio-diagnostic tools for identifying 
sedimentation and habitat degradation would further aid in identifying diffuse 
management problems in river systems.
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[3.11 Introduction

Throughout the world, the ecological status of rivers is assessed using biological 

indicators (Whiles et al, 2000; Cai et al, 2003; Metzeling et al., 2003; Camargo et 

al., 2004; Mancini et al., 2005; Uyanik et al, 2005; Padisak, 2006). In some of the 

most successful of all the developments from ecological monitoring, biotic metrics 

have identified problems ranging from classical insanitary pollution to the detection 

of acidification, eutrophication and metals (Rosenberg and Resh 1993; Hawkes, 1997; 

Kelly, 1998; Davy-Bowker et a l , 2005). Effective bioassessment not only detects 

pollution or impacts, but also appraises the outcomes of restoration or management 

(Bailey et al, 1998; Stone and Wallace, 1998; Lakly and McArthur, 2000; Purcell et 

al, 2002). In Europe, the need to identify the effects of pressures on rivers and to 

maintain or restore good ecological status has been thrown into particularly sharp 

profile by the Water Framework Directive (‘WFD’, Directive 2000/60/EC).

Biotic indices have been developed from communities of fish, diatoms, 

phytoplankton, protozoans and protists but the majority utilise benthic 

macroinvertebrates in a range of rapid assessment protocols (Resh and Jackson, 1993; 

Metcalfe-Smith, 1994; Kelly, 1998; Madoni, 2000; Lobo et al, 2004; Cao et al, 

2005; Jiang, 2006; Pont et al, 2006). This group has the advantage of being 

ubiquitous, relatively easy to collect and identify, and diverse enough to include taxa 

with varying sensitivity to a range of pollutants (Rosenberg and Resh, 1993; 

Metcalfe-Smith, 1994; Yuan and Norton, 2003). Typically, a standardised kick- 

sample of invertebrates is collected from the benthos and scores are then assigned to 

taxa according to their sensitivity to a given range of pollutants (Metcalfe-Smith, 

1994; Bradley and Ormerod, 2002a). These scores in turn, are formed into metrics or 

indices that are considered to vary systematically with water quality (Resh and 

Jackson, 1993). In some cases modelling methods are also used that detect departures 

from putative reference conditions (Wright et al., 1998).

Many indices were developed primarily for sanitation purposes, such as organic 

pollution from sewage effluent and other toxic contamination of drinking water 

(Caims and Pratt, 1993). Now, indices based on benthic macroinvertebrate 

communities are a key feature of assessments of the ‘ecological status’, ‘health’ and 

‘biotic integrity’ of rivers (e.g. Reice and Wohlenberg, 1993; Harding et a l , 1999;
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Griffith et al., 2005; Donohue et al., 2006). In order to fulfil this role, indices should 

be more than auto-indicative, revealing the wider biological character of communities.

Macroinvertebrate indices are routinely applied in the USA, Australasia, and much of 

Europe and new indices are being developed elsewhere (e.g. Zamora-Munoz and 

Alba-Tercedor, 1996; Thome and Williams, 1997; Mustow, 2002; Czemiawska- 

Kusza, 2005). Their ability to simplify complex data is widely recognised but 

questions still arise as to their value in revealing the detail of assemblage structure 

(Cao et a l, 1997; Cao and Hawkins, 2005). It is often reported that single indices 

cannot fully describe changes or variation in community structure (e.g. Lydy et al., 

2000). Therefore, many authors still prefer to complement biotic metrics with 

multivariate techniques, frequently ordination (Cao et al., 1996; Zamora-Munoz and 

Alba-Tercedor, 1996; Klemm et al., 2002; Griffith et al., 2003; Herlihy et al., 2005). 

In contrast to biotic indices, ordination reveals much of the complexity of 

communities but interpretation can be ambiguous (Austin, 1985). Biotic indices have 

the advantage of being standardised and comparable.

Many studies have been devoted to identifying the ‘best’ biotic indicator for a 

particular site or pollutant (e.g. Cao et al., 1997; Lydy et al., 2000; Solimini et al.,

2000) but less attention has been focused on the complementary use of different biotic 

metrics (e.g. Barton and Metcalfe-Smith, 1992; Chessman and McEvoy, 1998; 

Klemm et al., 2002). In a study to establish the capacity of biotic metrics to detect 

stressors, Griffith et al. (2003) defined the diagnosis of environmental stressors to 

lotic ecosystems as the ‘use of biological data to identify the presence and relative 

importance of a particular environmental stressor at individual sites’. Different indices 

measure different aspects of assemblages and used in combination might not only 

detect problems but diagnose the causes of impairment.

In the UK there has been particular focus on BMWP (Biological Monitoring Working 

Party) scores, for which invertebrates are identified to family (Hawkes, 1997; 

Environment Agency, 1999). More recent indicators include the Acid Water Indicator 

Community (AWIC), a system for detecting the impacts of acidification based on the 

same families recorded in the BMWP (Davy-Bowker et al., 2005; Ormerod et al., 

2006).
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Index scores calculated at the species level often reveal more detailed differentiation 

between sites and more subtle impacts (Resh and Jackson 1993; Chessman, et al., 

2002; Waite et al., 2004). Therefore, some authors claim that family-level data 

reduces the performance of analysis techniques and can bias assessment scores (e.g. 

Resh and McElravy, 1993; Gabriels et al., 2005). Others (e.g. Vos et al., 2002; Waite 

et al., 2004) have demonstrated spatial and temporal variation in family-level data and 

maintain that identification to the family level is sufficient for biomonitoring and 

assessment (Verdonschot, 2000). Can the AWIC and BMWP indices reveal structural 

variation in invertebrate communities within river basins?

This chapter aimed to address some of the questions surrounding the value and 

applicability of biotic indices to contrasting conditions -  and hence potentially 

contrasting management problems -  in the catchment of the Welsh River Wye. In 

particular, I asked whether family-level data are sufficient to detect variations in 

environmental quality, reveal assemblage structure and diagnose causes of 

impairment. Specific objectives were to identify: i) environmental variation among 

sub-catchments of the Wye, ii) the extent to which biotic metrics reflected 

environmental gradients, iii) whether biotic metrics could identify spatio-temporal 

patterns among sub-catchments and through time and iv) whether biotic indices 

revealed differences between sites in assemblage structure and guild composition.
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[3.21 Study Area

The River Wye rises in the Plynlimon Hills in Mid-Wales (at 741 metres above 

Ordinance Datum) and flows for about 250 km along the Wales / England border 

before joining the Severn Estuary at Chepstow (Figure 3.1; Edwards and Brooker; 

1982; Jarvie et al., 2003). The ecological character of the Wye was extensively 

described by Edwards and Brooker (1982). The largely rural catchment (4136km2) is 

dominated by rough pastoral agriculture and conifer forestry in the upland north west 

and by arable and dairy faming on the eastern lowlands (Ormerod, 1987, 1988; 

Ormerod and Edwards, 1987; Edwards et al., 1990; Ormerod et al., 1993; Jarvie et 

al., 2003). Variation in land use largely reflects geology, with base-poor Ordovician 

and Silurian formations in the upper catchment and base-rich Devonian Old Red 

Sandstone forming the lowlands along with an upland massif in the south west 

(Edwards and Brooker, 1982; Environment Agency, 1998; Brennan et al., 2003). The 

relatively impermeable geology and large volume of precipitation (2453mm average 

annual rainfall at Cefii Brwyn 1961-1990) in the uplands results in flashy river 

regimes. Low precipitation (1011mm average annual rainfall at Redbrook 1961-1990) 

and a more substantial groundwater supply to lowland tributaries create more constant 

flow regimes (Jarvie et al., 2003; NERC, 2005).

The upper Wye between its source and Builth Wells has a V-shaped channel, riffles 

and pools and is fringed by trees. Tributaries in the upper catchment are fast flowing 

with relatively large bed gradients (Edwards and Brooker; 1982). The Wye has four 

major tributaries the Irfon (244 km2) to the north-west, the Ithon (365km2) in the 

north-east, the Lugg (1070km2) to the east and Monnow (433km2) to the south. The 

Irfon has high relief, similar to the upper Wye and contrasts with the lower elevation 

and subdued relief of the Ithon. The Lugg and Monnow are largely characterised by 

broad valleys and low altitude, except for the upper Monnow which rises in the Black 

mountains. Downstream from Builth Wells, the valley floor of the main River Wye 

widens and the channel gradient is more gentle and meanders are interrupted only at 

gorge sections downstream from Builth Wells and at Ross.

Edwards and Brooker (1982) reported that bryophytes were dominant in the upper 

Wye (e.g. Marsupella emarginata) as were amphibious vascular plants (e.g. Juncus 

bufonis and Rorippa islandica) and tall herbs (e.g. Chrysanthemum vulgare and
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Artemesia vulgare) in the lower catchment. Invertebrate communities in the main 

River Wye also demonstrated altitudinal zonation. Phagocata vitta, Chloroperla spp., 

Sericostoma personatum, Simulium variegatum and Eusimulium brevicaule were 

restricted to the upper part of Wye (<120m from source) while Dugesia lugubris and 

Hellobdella stagnalis only occurred at more than 150 km from the source of the Wye. 

In addition, geology and water chemistry influenced the distribution of species. 

Assellus aquatucus, Gammarus pulex were only found where calcium concentrations 

were >9mg/l and Gammarus were absent at pH <5.7.

The River Wye and its tributaries are Sites of Special Scientific Interest and a Special 

Area of Conservation (SAC) under the terms of the European Union Habitats 

Directive 1992 (Environment Agency, 2000; Environment Agency, 2003). 

Internationally important species supported by the Wye system include the European 

otter (Lutra lutra), White-clawed crayfish (Austropotamobius pallipes) Atlantic 

salmon (Salmo salar), bullhead (Cottus gobio), Twaite shad (Alosa fall ax), Allis shad 

(A I os a alosa), sea, brook and river lampreys (Petromyzon marinus, Lampetra planeri, 

Lampetra fluviatilis) and water crowfoot (Ranunculus fluitans) (Environment Agency, 

1998; JNCC, 2006).

Restoration programmes on the Wye currently focus on treating the symptoms of 

acidification by catchment liming in the uplands. Fencing of riparian zones in the 

middle catchment aims to reduce sediment input and enhance riparian and in-stream 

biodiversity. Point sources of phosphates from sewage treatment works have also 

been reduced in the last decade (Environment Agency, 2000).

For this study, three sub-catchments were distinguished as the upper- mid- and lower- 

sub-catchments after Edwards and Brooker (1982) and Jarvie et al (2003) (Figure 

3.1). Only tributary streams (n=55) were used in analyses, main river sites were 

excluded. Two additional sites, Monk’s ditch and Mounton Brook, are technically 

outside the Wye catchment, but as directly adjacent lower-catchment tributaries of the 

Severn they were included here (Figure 3.1).
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Macroinvertebrate sampling
• Sites with chemistry data 

© 1990 1995 2000

O 1990 to 2003 

 River

K ilom ete rs

Figure 3.1. Macroinvertebrate sites in the Wye river system (as defined by the 

Environment Agency) sampled during 1990-2003 ( © ). Sites sampled in 1990, 

1995 and 2000 (•) where water chemistry data were available are shown (■). The 

map was extracted from the Ordnance Survey 1:50000 Scale Colour Raster 

available from Digimap® (EDINA, Edinburgh). The inset map delineates the upper 

(1), mid (2) and lower (2) sub-catchments of the Wye
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[3.31 Methods

[3.3.1] Data collection

Archived surveys of aquatic invertebrates between 1990 and 2003 were available for 

the Wye catchment from the UK Environment Agency’s ‘BIOSYS’ database and 

predominantly reflected sampling in 1990, 1995 and 2000 (Figures 3.1 and 3.2). In 

those three years 85% of samples from the Wye tributaries were taken in spring 

(March, April and May) and autumn (September and October) (Figure 3.3).

Benthic macroinvertebrates were collected by a standardised kick-sample of three 

minutes duration plus a manual search of one minute (Environment Agency, 1999). 

Inter-operator variation is negligible (Clarke et al., 2002). Invertebrates were 

identified to family in accordance with the Biological Monitoring Working Party 

(BMWP) method (Appendix HI; Hawkes, 1997; Environment Agency, 1999). Only 

BMWP-scoring taxa that were present in more than 1% of samples were used for 

analysis.

The UK Environment Agency categorised invertebrate abundances for each taxon into 

counts of 1-9, 10-99, 100-999, 1000-9999 and >10000 individuals. For statistical 

analysis, categories were converted to a logarithmic scale of 1, 10, 100, 1000 and 

10000 respectively and reciprocally transformed to reduce skew and kurtosis (SPSS 

for Windows, 2001; Tabachnick and Fidell, 2001; Environment Agency, 1999).

The BMWP method scores taxa from 1 to 10 in increasing order of sensitivity to 

organic pollution (Appendix HI). The BMWP score is the sum of all scores from 

invertebrate families recorded in the sample. The average score per taxon (ASPT) is 

considered less sensitive to sampling effort and seasonal changes (Hawkes, 1997; 

Environment Agency, 1999). Taxon richness, ASPT and BMWP scores were taken 

directly from the UK Environment Agency’s ‘BIOSYS’ database.
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Figure 3.2. The number of invertebrate surveys undertaken on tributaries of the River 

Wye in each year between 1990 and 2003.
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Figure. 3.3. The number of invertebrate samples taken from tributaries of the Wye in 

each month during the years 1990,1995 and 2000.
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one to six, high scoring taxa are those most sensitive to acidity (Appendix III). The 

AWIC score is the mean score of all taxa present in the sample.

Following the initial definition of feeding guilds among invertebrates (detailed in 

Cummins, 1973; 1974; Cummins and Klug, 1979 and Merritt and Cummins 1984), 

Moog (1995) redefined a scoring system for functional feeding guilds for the families 

and genera of Austrian aquatic organisms. Taxa present in each sample form the Wye 

were given scores to represent their role as shredders (SHR), grazers (GRA), active 

filterers (AFIL, e.g. Bivalvia), passive filterers (PFIL, e.g. Philopotamidae), 

detritivores (DET), miners (MIN), xylophages (XYL), predators (PRE) parasites 

(PAR) and others (OTH) (Appendix II).

Since invertebrates were identified to family and Moog (1995) assigned feeding 

preference by genera or species, representative scores for each family were calculated. 

Three different average scores were calculated; the median, mean and a mean 

weighted by the frequency of occurrence of species during a comprehensive survey of 

the Wye catchment in 1982 (Ormerod, 1987). There was no difference between scores 

generated by each method (One way ANOVAs: P>0.05 df 2,219). So, the median score 

for each family was applied because it was independent of earlier studies in the Wye 

and it represented the most common score for that family (Appendix HI).

The feeding guilds SHR, GRA, PFIL, DET and PRE each accounted for more than 

one percent of the taxa recorded so were used in further analyses and transformed to 

reduce skew and kurtosis of the data (SPSS for Windows, 2001; Tabachnick and 

Fidell, 2001).

Ephemeroptera, Plecoptera and Trichoptera (‘EPT’) represent key orders of aquatic 

invertebrates (Ormerod et al, 1993; Wallace et al, 1996). Abundance categories 

were summed for each order and that score used to approximate the abundance of 

Ephemeroptera, Plecoptera and Trichoptera respectively.

Chemical data were obtained from the UK Environment Agency’s Water 

Management Information System (WMIS) and historical archives of water chemistry 

from the river Wye catchment. Monthly ammoniacal nitrogen (mg/1), dissolved 

oxygen (DO mg/1), Biochemical Oxygen Demand (BOD mg/1), and pH data were 

available for 94% of invertebrate sites surveyed in 1990, 1995 and 2000 (Figure 3.1).
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For those sites, determinand means were calculated for seasons antecedent to 

invertebrate surveys.

Analysis by the Environment Agency and its predecessors involved standard 

spectrophotometric methods (SCA, 1978, 1979, 1980, 1981, 1987, 1988; 

Environment Agency, 2001). Briefly, the methods were as follows: ammoniacal 

nitrogen (‘total ammonia’) was the total concentration of ammonium salts (NFLj*) and 

free ammonia. (NH3), derived form the reaction of ammonia with hypochlorite to 

form monochloramine, in turn measured as a blue indo-phenol complex measured 

colorimetrically at 656nm. Biochemical Oxygen Demand was analysed in the 

presence of allylthiourea (ATU) to suppress the uptake of oxygen by ammonia (SCA, 

1981, 1988; Environment Agency, 1997). The ATU nitrification suppression variant 

of the BOD5 test measured the uptake of dissolved oxygen by the sample during 5 

days at 20°C in the dark. Dissolved oxygen concentration was determined from the 

partial pressure of oxygen in equilibrium with the water at the membrane surface, 

measured by an electrochemical oxygen sensor covered with a gas-permeable 

membrane (SCA, 1979). PH was measured electrometrically with a glass electrode in 

the laboratory (SCA, 1978).

Mean values for each chemical determinand were calculated for the ‘winter’ 

(September - February) and ‘summer’ (March - August) antecedent to each 

invertebrate sampling period (spring or autumn) after identifying outliers. For each 

chemical determinand, standard deviates (z scores) from the overall mean were 

calculated. Samples with standard deviates greater than 5 were removed (Sokal and 

Rohlf, 1995). Values recorded at the lower limit of detection were given a value of 

half the detection limit (Sowerby and Brook, 2001). If detection limits reduced 

through time, the lower detection limit was set to that of the earliest samples in the 

time series. Missing values were replaced where possible with the mean for the 

appropriate year, season and section of river; otherwise data were excluded from 

analysis.

All Geographical and topographical variables were extracted from spatial data layers 

using the ArcView® Geographical Information System (GIS) package (Version 9, 

ESRI Inc., California) and analyses were performed in SPSS (Version 11.5, SPSS 

Inc., Chicago) (see Table 3.1).
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Table 3.1. Catchment attributes used to describe local river 
characteristics within the Wye catchment, Mid-Wales.

Catchment Attribute Units
Strahler stream order
Altitude mOD
Buffering capacity Low (1), Intermediate (2), High (3)
Slope m/km
Broad-leaved woodland km within a 500m buffer
Coniferous woodland km2 within a 500m buffer
Neutral grassland km2 within a 500m buffer
Calcareous grassland km2 within a 500m buffer
Acid grassland km2 within a 500m buffer
Arable and horticultural km2 within a 500m buffer
Improved grassland km2 within a 500m buffer
Built up areas, gardens km within a 500m buffer
Summer / Winter Sept - Feb / Mar -  Aug

The slope (m/km) of each stream was obtained from the Environment Agency’s site 

registration information (Environment Agency, 1999). Strahler stream orders were 

obtained from a river network GIS layer supplied by the Centre for Ecology and 

Hydrology (CEH) at the 1:50 000 scale (Richards, 1982). The altitude of each site was 

estimated to the nearest 5m above sea level from contours derived from the Ordnance 

Survey’s profile digital elevation model (DEM). The underlying solid geology of each 

site was ranked according to its buffering capacity; the Ordovician system was classed 

as a ‘low buffer’, Silurian as an ‘intermediate buffer’ and Devonian as ‘high buffer’ 

(Homung et al., 1990; Environment Agency, 1998; Appendix I). Geology surveys 

were undertaken at the 1: 250000 scale by the British Geological Society and 

distributed as vector data.

Land use classes were attained from a raster layer of the CEH ‘Land Cover Map 

2000’ (LCM2000) survey. The area under each land use was calculated to the nearest 

25m2 within 500m buffers around each sample point (each with an area of 

approximately 0.8km) using the spatial analyst extension for ArcView (version 9) 

(Fuller et al., 2000). LCM2000 defined 16 ‘target’ classes, comprised of 26 subclasses 

of land use that were represented by 25m2 cells (Appendix IV). More generalised 

‘target’ classes (e.g.) were used for analysis when constituent ‘subclasses’ were 

under-represented (i.e. <2% of land use within 500m buffers around sample points).
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Target classes that accounted for less than 1% of the land use (e.g. Bracken) were not 

included in analyses. Land use types used for analysis were Broad-leaved woodland, 

Coniferous woodland, Neutral grassland, Calcareous grassland, Acid grassland, 

Arable and horticultural land, Improved grassland and Built up areas (Table 3.1; 

Appendix IV).

[3.3,2] Data analysis

Principal Component Analysis was used to reveal gradients in macroinvertebrate 

assemblage structure across the whole of the Wye catchment. PCA was chosen for 

this purpose because taxonomic change across ordered sites was linear, rather than 

unimodal (ter Braak and Smilauer, 1998). Scores were derived from all data available 

on the BIOSYS database for the Wye catchment. PC scores were then extracted for 

the surveys undertaken in 1990, 1995 and 2000 and treated as metrics to represent the 

structure of invertebrate communities.

Variation in biotic metrics between sub-catchments (1,2 and 3) and years (1990,1995 

and 2000) and interaction terms were revealed through a multivariate, crossed 

ANOVA, using the GLM. Interactions between years and sub-catchments were 

further investigated through Tukey pair-wise comparisons and one-way ANOVAs 

between sub-catchments for each year. River reaches with replicates in 1990, 1995 

and 2000 were used in spatio-temporal examination of the data. Often only one site 

was sampled within a river, but larger rivers had multiple sample sites and 

comparable reaches were defined as lengths of river with similar Strahler stream 

order, altitude and geological system. For sites without data in one season, metrics 

were replaced by mean for that year, season and reach where possible otherwise they 

were excluded from analyses, thus balancing the number of samples in each year.

The environment of the Wye catchment was characterised by a Principal Component 

Analysis (PCA) of physico-chemical variables. Environmental differences between 

the three sub-catchments of the Wye were then identified through a multivariate one

way ANOVA on catchment attributes and water chemistry with streams and years as 

samples.

Catchment attributes that best explained variation in biotic indices were identified 

through linear, logarithmic, quadratic and cubic regression. Biotic indices that
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demonstrated spatial variation across the Wye were regressed against PC axes 

representing major gradients in geography, topography and chemistry.

All analyses were repeated separately for spring and autumn samples to account for 

the seasonal nature of macroinvertebrate communities and water chemistry. Results 

were similar for both seasons. So, only spring surveys are presented here. Analyses 

were performed in SPSS (version 11.5) and CANOCO for Windows (version 4) with 

Bonferroni adjustment for multiple tests (ter Braak and Smilauer, 1998; SPSS for 

Windows, 2001; Quinn and Keough, 2002). Data were transformed to reduce skew 

and kurtosis of the data where appropriate. When data were reciprocally transformed 

(V fn+i]) the sign (+/-) of each value was reversed before Principal Components 

Analyses (SPSS for Windows, 2001; Tabachnick and Fidell, 2001).
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[3.41 Results

[3.4.1] Environmental conditions

Water chemistry, altitude, and land use varied across sub-catchments (Table 3.2). 

Ordination of environmental variables revealed an altitudinal gradient from steep, 

upland, acid, wooded reaches to lowland, arable streams with moderately increased 

BOD and ammonia (Figure 3.4; Table 3.3). Altitude, acidity, slope and the proportion 

of acid grassland and conifer trees all declined south eastwards from the upper 

catchment. By contrast, ammoniacal nitrogen, BOD and the proportion of arable 

farming were greater in the lower catchment. Improved grassland and broadleaved 

woodland were most extensive in the mid-Wye. Dissolved oxygen (DO) was least in 

the lower catchment in winter, but did not demonstrate any significant trend in the 

summer (Table 3.2). Independent of these sub-catchment divisions, there was also a 

trend from small streams with high ammoniacal nitrogen to large tributaries with 

relatively high dissolved oxygen (Figure 3.4; Table 3.3).

[3.4.2] Biotic indices and assemblage composition

Biotic indices varied between sub-catchments and demonstrated strong altitudinal 

gradients down the catchment (Table 3.4; Figures 3.5 and 3.6). For example, BMWP 

scores were significantly reduced respectively in the acidified upper and lower 

catchments, reflected also in low ASPT in the lower catchment and reduced taxon 

richness in the upper catchment (Figures 3.5 and 3.6). AWIC scores declined in the 

acidified upper catchment (Figure 3.5).

Biotic indices mirrored sub-catchment differences in assemblage and guild 

composition (Table 3.4; Figures 3.5 and 3.6). Variations among invertebrates closely 

followed catchment character (Figures 3.7). Assemblages on PCI varied from those 

comprised of typical families from upland, fast-flowing streams (Baetidae, 

Heptageniidae, Hydropsychidae, Lepidostomatidae and Leuctridae) to lowland 

families such as Asellidae, Planorbidae and Sialidae (Figure 3.7; Table 3.5). On PC2, 

there was an increase in acid tolerant Perlodidae, Nemouridae and Leuctridae and a 

decline in populations of acid-sensitive taxa (Gammaridae, Hydrobiidae and 

Sphaeriidae) (Figure 3.7). PC scores on both these axes, together with feeding guild 

composition differed between sub-catchments. PCI demonstrated that communities in
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the lower catchment were indeed typical of lowland habitats, while PC2 scores 

declined with acidity downstream. Shredders, grazers and predators were more 

represented in the uplands while filtering and detritivorious taxa tended to increase in 

the lower catchment (Table 3.4; Figure 3.5).

[3.4.3] Variations through time

In contrast to strong variations between locations, there were no trends in invertebrate 

composition through time. Assemblage composition was apparently stable between 

1990, 1995 and 2000, and there were only minor variations among some feeding 

guilds (Table 3.4). Significant interactions between catchment and year were also 

minor, although there was a reduction in taxon richness in the upper Wye in 1995 and 

2000 by comparison with 1990, when values were similar in all three sub-catchments 

(one-way ANOVA; Tukey pair-wise comparisons, P<0.05).
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Table 3.2. Variation in environmental variables (mean ±SE) between three sub
catchments of the Wye (GLM; df=2,84; *P<0.05; **P<0.01, and ***P<0.001). Pair
wise differences are indicated by sub-catchment numbers in superscript (P>0.05). 
Areas under different categories of land use are given as area (km ) within buffers of 
500m radius around each sample point (area of each buffer was approx. 0.8km2).

Sub-catchment
Catchment Attribute_______Upper___________ Middle________Lower__________F
Strahler stream order 3.9 (0.3) 3.7 (0.2) 3.4 (0.1) 1.0
Altitude m OD 192 (24) 23 143 (1 4 ))1,3 79(4)i.2 36.6***
Buffering capacity <

00 2.1 (0 .1) 2.4 (0.1)' 7.9*
Slope m/km 5.9 (0.8) 3 10.2 (2 .0 ) 3 4.0 (0.5) 1,2 7.3*
Broadleaved woodland km 0.074 (21) 2 0.129 (20) 1,3 0.060 (7) 2 9.2**
Coniferous woodland km 0.042 (25) 0.029 (8 )3 0.011 (3) 2 7.2*
Neutral grassland km2 0.041 (20) 0.008 (5) 0.035 (8) 1.4
Calcareous grassland km2 0.050 (29) 0.092 (40) 0.048 (8) 0.9
Acid grassland km2 0.131 (52)3 0.006 (3) 3 0 .0 0 0 (0 )1,2 22.5***
Arable and horticultural km2 0.016 (6 )3 0.049(H )3 0.248 (23)1,2
Improved grassland km2 0.283 (72)2 0.385 (42)1,3 0.266 (18)2 7.0*
Built up areas, gardens km2 0.063 (26) 0.028 (10) 0.052 (10) 0.1
NH4 as N mg/1 summer 0.022 (0.006) 3 0.031 (0.004)3 0.074 (0.01) 1’2 7.6*
BOD mg/1 summer 0.94 (0.09)3 1.2 2 (0 .10) 1.42(0.07)' 10.2**
DO mg/1 summer 10.52(0.1) 10.2 (0 .2) 9.9 (0.1) 2.9
PH summer 7.0 (0.2) v 8.0 (0 .1) ' 8.1 (0 .0) ' 71.7***
NH4 as N mg/1 winter 0.023 (0.007) 3 0.031 (0.005)3 0.099 (0.012) 1,2 10.1**
BOD mg/1 winter 0.87 (0.17)2,3 1.25 (0.08)1,3 1.59 (0.07)1,2 20.4***
DO mg/1 winter 10.9 (0.2) 3 10.6 (0 .2 )3 9.8(0.1) 1’2 13.7***
pH winter 6.9 (0.2) 2,3 7.7 (0.1) 1,3 7.9 (0.0) 1,2 71 8***
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Figure 3.4. Major sources of environmental variation betweens sites sampled in 
spring, demonstrated by the first and second Principal Component axes. Seasonal 
means of chemical determinands were calculated for the summer (‘_s’) and winter 
(‘_w’) antecedent to the spring sampling period (see Table 3.1 for full details of 
catchment attributes and Table 3.3 for analysis).
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Table 3.3. Loading of catchment attributes on Principal Component axes describing 
major sources of environmental variation between sites. Summer (‘_s’) and winter 
(‘_w’) means of chemical determinands were from seasons antecedent to the sampling
periods in spring and in 
highlighted in bold.

autumn. Correlation coefficients

Loading of catchment attributes 
Autumn

greater than 0.5 are

on principal component axes. 
Spring

% of Variance
PCI
26.9

PC2
11.2

PC3
9.9

PCI
26.0

PC2
11.7

PC3
10.3

Environmental Variable
Strahler stream order 0.171 -0.675 -0.056 0.208 -0.596 -0.006
Altitude 0.782 0.287 0.127 0.753 0.303 0.210
Buffering -0.464 -0.176 -0.110 -0.426 -0.226 -0.181
Slope 0.358 0.410 0.148 0.369 0.256 0.058
Broadleaved woodland 0.327 -0.114 0.354 0.355 -0.248 0.366
Conifer woodland 0.490 0.033 0.197 0.473 -0.055 0.197
Neutral grassland -0.140 0.328 -0.495 -0.153 0.320 -0.451
Calcareous grassland -0.014 -0.295 0.640 0.004 -0.310 0.634
Acid grassland 0.712 0.293 0.002 0.691 0.316 0.059
Arable -0.550 0.097 -0.304 -0.549 0.114 -0.255
Improved grassland 0.158 -0.328 0.690 0.191 -0.411 0.625
Built up -0.035 -0.229 0.323 -0.042 -0.289 0.329
NH4_S -0.493 0.333 0.125 -0.561 0.449 0.260
B O D s -0.668 0.093 0.204 -0.584 -0.012 0.164
DO_s 0.412 -0.476 -0.395 0.423 -0.437 -0.450
PH_s -0.714 -0.445 -0.111 -0.684 -0.542 -0.120
NH4 W -0.568 0.483 0.209 -0.575 0.432 0.275
B O D w -0.740 0.103 0.275 -0.724 0.022 0.298
DO_w 0.561 -0.368 -0.308 0.593 -0.337 -0.367
PH w -0.798 -0.344 -0.056 -0.752 -0.402 -0.139
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Table 3.4. Variation in biotic indices and invertebrate composition between sub
catchments (1, 2 and 3) and years (1990, 1995 and 2000) in the Wye catchment 
during spring showing also significant interactions (*P<0.05; **P<0.01, ***P<0.001). 
See Figure 3.5 for graphical display. Principal Components (PCI and PC2) were 
derived from Principal Component Analyses of invertebrate families sampled in 
spring (see Figure 3.7).

Sub
catchment

Year Interaction

BMWP 16.6*** 0.6 4.9*
ASPT 60.2*** 0.6 2.0
No. TAXA 0.2 5.3**
AWIC 106.9*** 0.3 1.3
SHR 19 9*** 2.2 1.0
GRA 26.1*** 8.6* 0.4
PFIL 4.6 1.9 2.6
DET 1.3 1.9 1.7
PRE 38.3*** 7.3* 5.1**
Ephemeroptera 16 9*** 3.1 0.6
Plecoptera 90 0*** 2.1 0.9
Trichoptera 5.4 5.2 2.9
PCI 55.6*** 0.6 1.4
PC2 92.0*** 0.7 4.2
df sub-catchment, year, sub-catchment * year, error = 2,2,4,  30
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Appendix HI (see Table 3.5 for analysis).
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Table 3.5. Loading of commonly occurring invertebrate families on Principal 
Component axes describing major sources of variation in invertebrate communities 
sampled in the autumn and spring respectively. Correlation coefficients greater than 
0.5 are highlighted in bold.

Autumn Spring
PCI PC2 PCI PC2

% of Variance 18.9 10.7 18.5 11.6
Family
Ancylidae -0.431 -0.405 -0.200 -0.434
Asellidae 0.503 -0.413 0.556 -0.315
Baetidae -0.614 -0.272 -0.507 -0.490
Caenidae -0.144 -0.201 -0.415 -0.281
Chironomidae -0.058 -0.267 0.118 -0.358
Dytiscidae Noteridae 0.255 -0.227 0.115 -0.027
Elmidae -0.526 -0.448 -0.512 -0.415
Ephemeridae -0.375 -0.272 -0.324 -0.402
Ephemerellidae -0.152 -0.340 -0.225 -0.439
Erpobdellidae 0.316 -0.527 0.444 -0.379
Gammaridae Crangonyctidae 0.068 -0.579 0.166 -0.643
Glossiphoniidae 0.494 -0.487 0.468 -0.408
Gyrinidae -0.422 -0.110 -0.471 -0.098
Heptageniidae -0.778 -0.067 -0.813 -0.137
Hydrobiidae Bithyniidae 0.071 -0.632 0.232 -0.566
Hydrophilidae Hydraenidae -0.341 -0.097 -0.244 -0.046
Hydropsychidae -0.734 -0.288 -0.701 -0.232
Hydroptilidae -0.221 -0.431 -0.159 -0.442
Lepidostomatidae -0.635 -0.132 -0.590 -0.121
Leptoceridae -0.119 -0.266 -0.247 -0.408
Leptophlebiidae -0.426 -0.029 -0.202 -0.245
Leuctridae -0.645 0.226 -0.577 0.391
Limnephilidae -0.056 0.005 0.067 -0.275
Lymnaeidae 0.203 -0.441 0.451 -0.217
Nemouridae -0.332 0.111 -0.439 0.197
Oligochaeta -0.072 -0.303 0.071 -0.398
Perlodidae -0.514 0.277 -0.688 0.236
Planariidae Dugesiidae 0.069 -0.266 0.183 -0.252
Planorbidae 0.540 -0.344 0.582 -0.222
Rhyacophilidae Glossosomatidae -0.592 -0.037 -0.602 -0.184
Sericostomatidae -0.518 -0.330 -0.417 -0.322
Sialidae 0.534 -0.180 0.399 -0.107
Simuliidae -0.563 -0.160 -0.338 -0.313
Sphaeriidae 0.478 -0.574 0.586 -0.508
Tipulidae -0.477 -0.211 -0.314 -0.269
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[3.51 Discussion

This study supported previous work in distinguishing ecological differences among 

regions within the Wye catchment (Edwards and Brooker, 1982; Ormerod and 

Edwards 1987; Ormerod 1987, 1988; Environment Agency, 1998; Brennan et a l , 

2003; Jarvie et al,. 2003). More importantly, it showed that biotic metrics track the 

variations across these contrasting catchments, revealing potential management 

problems: sub-catchments varied in acidity and trophic status, to which different 

biotic indices responded diagnostically.

In the acidic, oligotrophic environment of the upper Wye acid tolerant orders such as 

Plecoptera dominated. Plecopteran families such as Perlodidae, Nemouridae and 

Leuctridae are tolerant of acidification, whereas many ephemeropterans, such as 

Ephemerellidae and Ephemeridae are highly sensitive to acidification (Elliott et al., 

1988; Ormerod, 1992; Davy-Bowker et al, 2005; Appendix HI). The BMWP and 

ASPT scores responded to reductions in ephemeroptera but alone could not diagnose 

acidification issues in the upper Wye. The new AWIC score was able to clarify the 

acidification issue. The AWIC score compared favourably with direct pH 

measurement as found by Ormerod et a l (2006) who also demonstrated that AWIC 

was indicative of calcium concentration, alkalinity and metals toxic at low pH, such as 

aluminium. AWIC, BMWP and ASPT results described here demonstrate how, when 

used together, indices reveal more detail of the underlying structure of invertebrate 

communities. This adds weight to the argument for the use of multiple indices in 

diagnosis of management issues (Griffith et a l , 2003).

The upper Wye has low concentrations of base-cations and high acidity (Edwards and 

Brooker, 1982; Ormerod and Edwards, 1987). Waters running though the mineral- 

poor Ordovician Rock of the upper Wye are susceptible to acidification because the 

base-poor rocks and soils provide little buffering (Appendix I; Reuss and Johnson, 

1985; Homung et a l , 1990; Ormerod, 1992). These data reveal that acidification 

problems are still a widespread feature of the upper catchment, with little sign of 

recovery so far (see also Lewis et a l , 2007 in press). Catchment-scale management 

options are available to treat acidification symptomatically -  for example additions of 

calcium carbonate using various methods (Weatherley et al, 1995; Svenson et al, 

1995). The liming of entire catchments is a relatively new technique that aims to 

increase the pH of runoff before it reaches watercourses (Rundle et al, 1995;
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Ormerod et al., 1990; Bradley and Ormerod, 2002b). In the Wye, liming of wetlands 

within the most acidified areas of the catchment began in 2001 (Borg et al., 1995; 

Gunn et al., 2001; Lewis, 2006).

Biotic indices showed that invertebrates in the lower Wye catchment were more 

typical of eutrophic waters, consistent with moderately elevated BOD and ammonia 

concentrations and the increased proportion of arable land. Indices applied here, 

however, did not account for river ‘type’. Environmental Quality Indices (EQI) have 

been developed for BMWP, AWIC and richness scores and are proposed for the 

AWIC index that weight scores according to river ‘type’. Cluster analyses is used to 

classify river reaches according primarily to size and distance along the river 

continuum (Vannote, 1980; Wright et al., 1998). This enables the prediction of 

‘expected’ biotic scores and comparison of observed scores against them. Water 

quality is then assessed based on the comparison of observed against expected scores 

for each river type, according to the RTVPACS (River InVertebrate Prediction And 

Classification System) model (Wright et al., 1998). Further examination of indices in 

the lower catchment might therefore be prudent to assess whether water quality in the 

lower Wye catchment is any different from what might be expected for a river in its 

lower stages.

Elevated BOD and ammonia are often attributed to arable farming, the predominant 

land-use within the lower catchment (e.g. Johnes, 1996; Arheimer and Liden, 2000; 

Smith et al., 2001; Donohue et al, 2006). In the Windrush catchment in the English 

Cotswolds, cereal cultivation was one of the greatest contributors to the total loads of 

nitrogen and phosphorus in the river (Johnes, 1996). In the Wye, catchment-wide 

trends associating stream order with BOD and ammonia suggested that small streams 

were unable to dilute ammoniacal inputs. Perhaps special attention should be paid to 

nutrient loading onto fields in close proximity to smaller streams.

In the lower catchment, nutrient enrichment has been a persistent concern over the last 

25 years. In 1982, Edwards and Brooker identified the greatest nutrient concentrations 

downstream of Hereford and implicated the arable lands of the Lugg basin in the 

nutrient-rich character of the lower Wye catchment. Later, in 1998, the lower Wye 

received sewage discharge at Hereford and Ross in excess of 160,000 population 

equivalent as well as farm effluents and diffuse inputs nutrient from agricultural land 

(Environment Agency, 1998; Environment Agency, 2000). Designation of the River
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Wye from Hereford as a ‘eutrophic sensitive area’ under the Urban Wastewater 

Treatment Directive (‘UWWTD’, Directive 91/271/EEC) improved phosphate 

removal at sewage treatment works (Environment Agency, 2000). Despite this and the 

classification of the Wye and its tributaries as Sites of Special Scientific Interest 

(SSSIs) and a Special Area of Conservation (SAC), nutrient concentrations remain 

highest in the lower catchment (Jarvie et al,. 2003; CCW, 2006a-c; JNCC, 2006). As 

reported elsewhere in the UK, results suggest that designation was not sufficient to 

protect water quality (Boon, 1995). A catchment-wide management plan should 

incorporate reduction of nitrogen and phosphate sources from agricultural land 

(Environment Agency, 2000; Mancini et al., 2005). Although the BMWP and ASPT 

scores were designed to detect organic pollution they also respond to other pollutants 

and forms of impairment. For example, Garcia-Criado et al. (2002) found that the 

Spanish BMWP scores were similar to the tolerance levels of the taxa to coal mining. 

Chemicals used in sheep dip (e.g. diazinon and propetamphos) also reduce BMWP 

scores. This study BMWP, ASPT and Richness were reduced in the acidified uplands 

(DEFRA, 2002). More comprehensive analyses of water chemistry may confirm the 

impact of plant nutrients and highlight any other contaminants.

Diffuse sources of pollution are inherently more difficult to control than point-sources 

(e.g. Directive 91/676/EEC 1991). Many landscape-scale initiatives operate in an ad 

hoc manner and vary between catchments. Independent landowners gain grants from 

the (Welsh) ‘Tir Gofal’ and (English) ‘Countryside Stewardship’ schemes in return 

for managing their farms in an environmentally sensitive manner (Howell and 

Mackay, 1997; Ovenden et al., 1998; Carey et al., 2001; CCW, 2006d). Rivers Trusts 

bring landowners together with countryside agencies and scientists to conserve the 

river environment, often with a focus on salmonid fish. Additionally, in the Wye, the 

Environment Agency’s ‘PSYCHIC’ model aims to identify sediment and nutrient loss 

within the catchment, while the ‘Wyecare’ collaboration of conservation agencies 

intends to address diffuse pollution (Environment Agency, 2000; English Nature, 

2003; Environment Agency, 2003).

In contrast to the upper and lower catchments, tributaries of the Middle-Wye were 

relatively unpolluted: neither acidification nor organic enrichment were significant 

issues according to AWIC score (mean > 4.6) and BMWP scores (mean ASPT = 5,

BMWP >130) (Hawkes, 1997; Davy-Bowker et al., MWP scores reflect
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rich communities with an abundance of high-scoring ephemeropteran families (e.g. 

Caenidae, Baetidae and Ephemerellidae) were well represented which require well 

oxygenated waters and are often adapted to grazing (Merritt and Cummins 1984; 

Elliott et al., 1988; Moog, 1995; Hawkes, 1997; Appendix III). Certainly, in terms of 

invertebrate communities and water chemistry the mid-Wye is of ‘very good quality’ 

(BMWP>130) suggesting that current management of the middle Wye is adequate 

(Pugh, 1997; Environment Agency, 1998). In terms of BOD and ammonia, the upper 

and middle catchments were in classed as having ‘very good water quality’, while the 

lower catchment attained ‘good water quality’ in terms of General Quality 

Assessment (Pugh, 1997). However, this study does not reveal the relevance of 

invertebrate-derived indices to other aspects of the aquatic ecosystem, such as other 

biotic groups (e.g. fish), physical habitat or ecosystem processes (e.g. production). For 

example, Griffith et al. (2005) found that fish, macroinvertebrates and periphyton 

differed in their sensitivity to stressors. Conversely, Balestrini et al. (2004) reported 

that the macroinvertebrate based ‘Hilsenhoff index’ and fish-derived indices of biotic 

integrity and diversity responded similarly to catchment land use and embeddedness. 

Surveys of 1874 stream sites across Idaho, USA demonstrated similar responses of 

macroinvertebrate metrics and salmonids to fine sediment while only 

macroinvertebrate biotic index scores decreased with increasing copper (Mebane,

2001). Beyond the structural organisation of aquatic communities, more complex 

information on ecosystem function may require the development of new, specific 

indices (Lecerf et al., 2006).

Biotic metrics presented here were derived from routine monitoring of invertebrate 

communities which is undertaken throughout the UK by the Environment Agency 

(Environment Agency, 1999). Similar surveys are already undertaken throughout 

much of Europe and will be implemented throughout the continent under the Water 

Framework Directive (Directive 2000/60/EC). Under the WFD, ‘River Basin 

Management Plans’ will establish the ecological status of surface waters and detail 

programmes of measures to prevent deterioration and to ‘protect, enhance and restore 

all bodies of surface water’.

Some authors, such as Donohue et al. (2006) suggest that once relationships have 

been established between catchment characteristics and biotic metrics, land-cover and 

chemistry data alone could establish the ecological status of rivers. However, biotic
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metrics provide direct measures of the ecological nature of rivers. Moreover, in 

establishing ecological status a baseline can be set against which to measure the 

outcomes of programmes of measures within river basins (Resh and Jackson, 1993). 

River restoration, such as liming or nutrient reduction can affect chemical change in 

the absence of biological change and, as yet, the mechanisms of recovery and the 

chemical and biological interactions involved remain unclear (Soulsby et a l , 1997; 

Stevens et al., 1997; Raddum and Fjellheim, 2003; Jeppesen et al., 2005). It is 

therefore important to include a measure of biological response to change and biotic 

indicators could serve this purpose. However, in summarising trends in 

macroinvertebrates, biotic indicators inevitably reveal only a part of the variation in 

communities (Resh and McElravy, 1993). Here, broad differences in communities 

were revealed at the sub-catchment scale but can indices also detect more subtle 

impacts within sub-catchments or rivers?

BMWP and ASPT are routinely used in biomonitoring. They can detect small-scale 

impairment within rivers and are often used up- and down-stream of a pollution 

incident (Jacobsen, 1998; Camargo, 1992; Perdikaki and Mason, 1999; Wright et al, 

2000; DEFRA, 2002). In contrast, the AWIC index is relatively new and there are 

few examples of its application (Ormerod et al., 2006; Lewis et al, 2007 in press). It 

may also suffer from some of the non-specifity issues surrounding the BMWP. 

Ormerod et al. (2006) point out that the score cannot differentiate between natural and 

anthropogenic acidity nor acidified (low pH, increased Al) and acid sensitive (low Ca, 

low alkalinity) streams. They suggest that increased taxonomic resolution of some 

families might improve the sensitivity of the index. This, along with recording of 

actual abundance of taxa may improve the ability of biotic indices to diagnose 

problems and evaluate management practice.

This chapter demonstrates that routinely collected macroinvertebrate data, identified 

only to family-level, can be usefully summarised as biotic indices that are able to 

detect sub-catchment variation in the ecological status of rivers. In combination, 

scores of BMWP, ASPT, AWIC and richness can reveal greater detail of invertebrate 

community structure. Multiple metrics can then aid diagnosis of problems such as 

acidification or enrichment within catchments. Here, the three regions of the Wye 

catchment require different management approaches; work is needed to ameliorate 

acidification in the upper Wye and reduce nutrient inputs to eutrophic reaches in the
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lower catchment while the semi-natural reaches of the middle catchment were largely 

unpolluted. However, the development of bio-diagnostic tools for identifying 

sedimentation and habitat degradation would further aid in identifying management 

priorities. Biotic indices provide an elegant means of presenting complex data sets in 

order to communicate the ecological status of rivers, establish priorities for 

management, define programmes of measures and evaluate restoration, all of which 

are set to be major themes in aquatic research in the next decade (Ormerod, 2004).
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A P P E N D IX  I

Geological types of the Wye catchment, their buffering capacity and susceptibility to 
the acidification of freshwater, summarised from Homung et a l (1990) and

Environment Agency (1998).
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Geology Geological Buffering capacity
period

Ashgill and Caradoc Upper Ordovician Little or no buffering capacity
Division

Llandovery beds Silurian Low buffering capacity

Ludlow and Wenlock beds Silurian Low buffering capacity

Lower Old Red Sandstone Devonian Greater buffering capacity
Compared to Ordovician / 
Silurian.

Susceptibility to 
acidification

HIGH

INTERMEDIATE

INTERMEDIATE

LOW
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A P P E N D IX  II

Functional Feeding Guilds as defined by Moog (1995)

110



B io tic  indices identify priorities for management

Feeding Type____________ Abbreviation Sources of Food
Shredders SHR

—------------------------------------------------------------------------------------------------ ------------------------------------------------$ ---------------------

Fallen leaves, plant tissue, CPOM .
Grazers, scrapers, raspers GRA Epilithic algal tissues, biofilm, partially 

POM*, endo and epilithic algal tissues, 
partially tissues of living plants.

Filtering collectors, active AFIL Suspended FPOM*, CPOM*, prey.
filter-feeders, eddy Food in water current is actively
filterers filtered. Suspended FPOM*, micro 

prey is whirled.
Passive filter feeders PFIL Food brought by flowing water current.
Detritus feeders (gathering DET Sedimented FPOM*.
collectors)
Leaf borers, miners, MIN Leaves of aquatic plants. Algae and
piercers cells of aquatic plants.
Xylophagous XYL Woody debris.
Predators PRE Prey.
Parasites PAR Host.
Other feeding types OTH Cannot be classified into this scheme.

(* F / C POM = Fine / Coarse Particulate Organic Matter)

Moog (1995) based this classification on previous classifications by Cummins (1973, 
1974), Cummins and Klug (1979) and Merritt and Cummins (1984).
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A P P E N D IX  III

The Biological Monitoring Working Party (BMWP), Acid Water Indicator 
Community (AWIC) and Feeding Guild (adapted from Moog 1995; See Appendix II) 

scoring systems. Commonly occurring families are highlighted in bold.
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Family Family
code

BMWP AWIC SHR GRA AFIL PFDL DET MIN XYL PRE PAR OT1

Aeshnidae 1 8 1
Ancylidae 2 6 6
Aphelocheiridae 3 1 1
Asellidae 4 3 6 2 2 2 5
Astacidae 5 8 3 1 4
Baetidae 6 5 6 5 5
Brachycentridae 9 1 2 4 3
Caenidae 10 8 6 1
Calopterygidae 11 8 6 1
Capniidae 12 1 6 2 2
Chironomidae 13 2 4 1
Chloroperlidae 14 1 1 1 2 6
Coenagriidae 15 6 1
Cordulegasteridae 16 8 1
Corduliidae 17 8 1
Corixidae 18 5 6 1
Dendrocoelidae 20 5
Dryopidae 21 5 5 3 3
Dytiscidae / Noteridae 23 1
Eimidae 24 5 6 1
Ephemerellidae 25 1 6 5 5
Ephemeridae 26 1 6 1
Erpobdellidae 27 3 6 1
Gammaridae / Crangonyctidae 28 1 1 2 1
Gerridae 29 5 1
Glossiphoniidae 30 3 6
Goeridae 32 1 4 9 1
Gomphidae 33 8 1
Gyrinidae 34 5 3 1
Haliplidae 35 5
Heptageniidae 36 1 6 5 5

*Hirudinidae 37 3 1
Hydrobiidae / Bithyniidae 39
Hydrometridae 40 5 1
Hydrophilidae / Hydraenidae 41 3 3
Hydropsychidae 42 5 4 2 5 3
Hydroptilidae 43 6 6 5 5
Lepidostomatidae 45 1 2 2 5 3
Leptoceridae 46 1 6 5 1
Leptophlebiidae 47 1 6 1
Lestidae 48 8 1
Leuctridae 49 1 1 3 3 4
Libellulidae 50 8 1
Limnephilidae 51 8 4 5 2 1
Lymnaeidae 52 3 6 3 4 1 2
Mesoveliidae 53 5 1
Molannidae 54 1 3
Naucoridae 55 5 1
Nemouridae 56 8 1 4 3 3
Nepidae 57 5 1
Neritidae 58 6 1
Notonectidae 60 5 1
Odontoceridae 61 1 6 3 3 4
Oligochaeta 62 1 6 1
Perlidae 63 1 6 1 9
Perlodidae 64 1 2 1 8
Philopotamidae 65 8 6 1
Phryganeidae 66 1 2 1 1 6
Physidae 67 3 6 2 5 2 2
Piscicolidae 68 5 6 1
Planariidae / Dugesiidae 69
Planorbidae 70 3 6 2 6 2
Platycnemididae 71 6 1
Pleidae 72 5 1
Polycentropodidae 73 8 1 1 9
Potamanthidae 74 1 1 9
Psychomyiidae 75 8 6 8 1 1 1
Rhyacophilidae / Glossosomatidae 76 2
Scirtidae 77 « 5 6
Sericostomatidae 78 1 4 1
Sialidae 79 5 6 1
Simuliidae 80 5 3 1 9
Siphlonuridae 81 1 1
Sphaeriidae 82 3 6
T aeniopterygidae 83 1 6 3 5 3
Tipulidae 84 5 4 7 3
Unionidae 85 6 1
Valvatidae 86 3 6 1 4
Viviparidae 87 6 7 3
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A P P E N D IX  IV

Land Cover Map 2000 class variants mapped on to ‘Broad Habitats’ from Fuller 
(2000). Broad habitats in bold are those used in analyses.



*

Broad Habitat (BH)______________ Class variants of subclasses, which can be combined into 16 target classes

1. Broadleaved woodland deciduous, mixed, open birch, scrub
2. Coniferous woodland conifers, felled, new plantation
4. Arable & horticultural barley, maize, oats, wheat, cereal, cereal (winter), arable bare ground, carrots, field beans, horticulture, 

linseed, potatoes, peas, oilseed rape, sugar beet, unknown, mustard, non-cereal (spring), orchard, arable 
grass (ley), set-aside (bare), set-aside (undifferentiated)

5. Improved grassland Intensive, grass (hay/ silage cut),grazing marsh
6. Neutral grassland rough grass (unmanaged), grass (neutral / unimproved)
7. Calcareous grassland calcareous (managed), calcareous (rough)
8. Acid grassland Acid, acid (rough), acid with Juncus, acid Nardus/Festuca/Molinia
9. Bracken bracken
10. Dwarf shrub heath heath dense (ericaceous), gorse
11. Fen, marsh and swamp Swamp, fen/marsh, fen willow
12. Bog bog (shrub),bog (grass/shrub), bog (grass/herb), bog (undifferentiated)
13. Standing water/canals water (inland)
15. Montane habitats montane
16. Inland rock Despoiled, semi-natural
17. Built up areas, gardens suburban/rural developed, urban residential/commercial, urban industrial
18. Supra-littoral rock rock
19. Supra-littoral sediment shingle (vegetated), shingle, dune, dune shrubs
20. Littoral rock rock, rock with algae
21. Littoral sediment mud, sand
22. Inshore sublittoral sea
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[4.01 Abstract

As ecotones linking river habitats to their surroundings, the restoration of riparian zones 
is attracting increasing interest. However, there are questions about i) whether riparian 
zones can be sufficiently modified to alter riparian habitat and channel conditions; ii) 
whether riparian management efforts can override the effects of wider catchment 
pressures and iii) whether these effects can be detected quantitatively.
This chapter introduces a catchment-scale experiment to assess the impact of riparian 
habitat management in the Wye river system (Wales). In a hierarchically designed field 
survey, differences in river-habitat character were assessed between tributaries with 
riparian land-uses that were respectively: recently managed (n=9 streams), unmanaged 
control (n=12), intensive grazing pasture (n=3) and coniferous woodland (n=3). Riparian 
management activities along ‘recently managed’ streams aimed to exclude grazing, 
enable vegetation to develop and create potential refuges available for salmonids. 
Riparian zones along the 9 tributaries were coppiced and /or fenced between 1997 and 
2003. Habitats were assessed using the Environment Agency’s ‘River Habitat Survey’ 
(RHS), with habitat variation then quantified using Principal Components Analysis.
Streams draining intensive grazing pasture were characterised by finer substrata and more 
active channels than elsewhere. Streams within conifer plantations had more rocky 
substrata, and recently managed streams had less poaching and more filamentous algae 
compared to controls. Coppicing and riparian fencing appeared to have successfully 
excluded grazing on banks and increased in-stream vegetation, but substrata, flow type 
and channel features were not markedly different from control sites, intensive pastoral 
agriculture or conifer streams.
These data show that the RHS can detect habitat variation among streams with 
contrasting riparian land use. The effects of recent management in the Wye, although 
significant, are so far restricted either because insufficient time has elapsed since 
treatment or because land management within the wider catchment overrides effects at 
the riparian scale. The biological significance of these results is addressed elsewhere 
(Chapters 5 and 6).
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[4.11 Introduction

The management of riparian zones of rivers to benefit biodiversity is an expanding area 

of research (Gregory et al, 1991; Mulholland, 1992; Bren, 1993; Naiman et al, 1993; 

Goodwin et al., 1997; Naiman and Decamps, 1997; Tockner and Ward, 1999; Gippel and 

Collier, 2000; Lowrance et al., 2000; Tabacchi et al, 2000; McKergow et al., 2003, 

also see Chapter 2). The aims are often to buffer aquatic environments against diffuse 

sources of pollution, such as plant nutrients and sediment, to stabilize banks and create 

more complex habitats (Goodwin et al., 1997; McKergow et al., 2003; Chapter 2). 

Techniques involve fencing to exclude livestock grazing from the river bank, 

management of riparian trees and exclusion of exotic species (Platts and Wagstaff, 1984; 

Lewis and Williams, 1994). Tree management often comprises a balance of planting, 

coppicing, thinning and pruning to maximize the structural diversity of the riparian 

vegetation in order to maximize habitat complexity and improve bank stability (Garcia de 

Jalon, 1995; Hendry et al., 2003). Such management recognizes the importance of 

riparian corridors to regional biodiversity in both riverine and adjacent terrestrial 

environments (Naiman et al., 1993). However, as ecotones linking the aquatic and 

terrestrial landscape, riparian zones influence the aquatic environment only within the 

context of the wider landscape (Naiman et al., 1993; Poff, 1997).

In upland environments in Wales, nutrient-poor soils typically support plantation forestry 

or, following soil treatments, pastoral agriculture (see Chapter 3; Ormerod et al., 1989; 

Ormerod et al., 1993; Parsons et al., 2003; Liebault et al., 2005). As forestry and 

agriculture within stream catchments become more intensive, their influence on the 

riparian environment become more pronounced (Martin et al., 2006). For example, 

streams draining conifers tend to have more exposed rocks and less riparian vegetation 

than streams in grassland (Rutt et al. 1989). Conifer plantations also alter the physical 

structure of the riparian zone, modify vegetation structure, change the hydraulic 

environment and enhance erosion and sedimentation (Ormerod et a l , 1993; Ormerod et 

al., 1986). Intensive livestock grazing within a river catchment often contributes to 

increased sediment input to streams (Harding et a l , 1999; Zaimes et al., 2004). Pasture 

land is less able to impede rainfall impaction or surface runoff than scrub or woodland, so 

that sediment is both more readily mobilized and less easily trapped on catchment
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surfaces during rainfall events. Increased velocity of overland flow over grassland 

enables further erosion. Livestock ‘poaching’ (trampling and churning of the ground) 

contributes additional sediment to rivers, often directly from the riparian zone. When 

livestock are allowed to graze in high densities on the river banks, direct destabilization 

of the banks is likely along side a reduction in the growth of vegetation which might 

normally give additional support to the banks (Easson and Yarbrough, 2002; Hook, 2003; 

Evans et al., 2006). Deep, silted, homogenous channels can result (Whol and Carline, 

1996; Hook, 2003; Kondolf, 1993).

In Mid-Wales, these effects of intensive riparian grazing were suspected of contributing 

to declines in salmonid catches (Environment Agency, 2003a, b). In response, riparian 

management work was instigated in 1997 within the River Wye catchment, and aimed to 

change the in-stream environment to augment habitats available to salmonid fish (see 

Chapters 1 and 2). Management was primarily undertaken in the upper and mid-Wye 

catchment, to the north-west of Hay on Wye in which the predominant land use was 

pastoral agriculture with exotic coniferous plantations in the northern and western 

extremities (see Chapter 3). Three key questions are i) whether these changes in the 

riparian zones are sufficient to alter riparian habitat and channel conditions; ii) whether 

riparian management efforts can override the effects of wider catchment pressures, and in 

particular how the effects of such recent management compare with longer-standing 

basin management and iii) whether these effects can be detected quantitatively.

One of the limitations to understanding the effects of riparian and catchment management 

on rivers is that effects can be difficult to appraise and quantify. Not only does the 

evaluation of riparian management require careful data collection, but effects on 

environments as structurally complex as rivers can be difficult to detect. The River 

Habitat Survey (RHS), developed to assess the habitat quality of rivers in the UK, could 

offer one option if the complex data that result could be analysed suitably (Raven et 

al., 1997; Raven et al, 1998). Raven et al. (2000) suggested that habitat features identified 

by the River Habitat Surveys, such as submerged tree roots and fallen trees, could be 

used in post-project appraisal to help predict and confirm the ecological consequences of 

river management. Moreover, Vaughan & Ormerod (2005) have recently developed 

methods of synoptically quantifying RHS data to investigate management effects.
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However, RHS has rarely been applied to evaluate effects of land use and riparian 

management within a rural setting (Manel et al., 2000; Davenport et al., 2004). Recent 

management and contrasting land use within the Wye catchment presented an 

opportunity to test the scope for using RHS to detect variation in stream habitat with land 

use.

In this chapter, the River Habitat Survey was used to investigate links between riparian 

land-use and habitat structure in streams within the Wye catchment. In an attempt to 

contextualise the effects of recent riparian management, in-stream and riparian habitats 

were compared across four land use types that were respectively: recently managed 

riparian habitats (coppiced and fenced), control reaches with trees lining >20% of the 

(500m) reach length but without recent management, exotic coniferous plantations and 

intensively grazed pasture.
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[4.21 Site description and management

The River Wye drains a large (4136km2) rural catchment in mid-Wales, an area described 

in detail in Chapter 3 and by other authors (e.g. Edwards and Brooker, 1982; Ormerod 

and Edwards, 1987, Ormerod 1987, 1988; Environment Agency, 1998; Brennan et al., 

2003; Jarvie et al., 2003). This study focuses on the upper and middle reaches of the Wye 

catchment (as defined in Chapter 3), which are dominated by pastoral agriculture with 

some coniferous plantations (Jarvie et al., 2003; Chapter 3).

The Wye and Usk Foundation (WUF) began riparian management in the Wye catchment 

in 1996 and by 2004 had instigated work on 13 tributaries (orders 2-4) within the Wye 

catchment, which exceeded 1.5km on 9 tributaries (Figure 4.1). Sites selected for 

restoration by the WUF were those considered to be good salmon rivers or that had been 

popular with anglers in the past. Riparian management primarily took place on the lower 

reaches of tributaries. Management consisted of fencing a riparian buffer from the bank- 

top (typically to l-3m from the stream) and coppicing and thinning of bank-side trees 

(Luxton, 2002). On the Clettwr, Duhonw, Bach Howey, Marteg and Triffrwd less than 

33% of the river length was fenced, coppiced or both. On the Hafrena and Llynfi Dulas 

between 33 and 66% of the bank length was altered. Only the Clywedog and the Edw 

were almost entirely altered (Figure 4.1; exact locations confidential)

Fencing was designed to prevent poaching by livestock and to encourage the 

development of vegetation. The intention was to stabilize the banks and to reduce bed 

siltation (Krog and Hermansen, 1985; Hemphill and Bramley, 1989; Salmon Advisory 

Committee, 1991; Hendry and Cragg-Hine, 1997). Coppicing and thinning of deciduous 

trees on the banks was intended to reduce shading and increase the complexity of riparian 

and in-stream vegetation thus stabilizing banks and creating refuges for salmonids 

(O'Grady, 1993; Garcia de Jalon, 1995; Growns et al., 2003; Hendry et al., 2003).
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 River Wye

River Wye Tributaries 

Treated rivers 

Control rivers 

A  Conifer reaches 

0  Pastoral reaches 0 5 10 1________ I

Figure 4.1. Recently treated, control, coniferous and intensive grazing pasture 
(‘pastoral’), reaches of tributaries of the Wye on which River Habitat surveys were 
undertaken in 2004.
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[4.31 Methods

[43,1] Study design

Tributary streams, of orders 2-4, were sampled from four riparian management types: 

recently managed, control, conifer, and intensively grazed pasture within the Wye and 

Usk catchments, categorised as below, (Table 4.1; Figure 4.2). In all, 27 tributaries were 

surveyed. Three replicate reaches were surveyed on each tributary, except the Edw on 

which 6 reaches were surveyed. This gave 84 replicate 500m reaches as follows. Treated 

reaches (n=30), on which Riparian Habitat Management (RHM) was implemented 

between 1998 and 2003, were compared against control reaches (n=36) as well as reaches 

with either coniferous plantations (n=9) or intensive pastoral agriculture as the dominant 

land use within 50m of the stream channel (n=9) (Table 4.1). Control streams (n=12) 

were assigned post-management, to represent geology, stream order, local land use and 

altitude that were similar to treated streams (Table 4.1; Figure 4.2; Edwards and Brooker, 

1982; Homung et al., 1990; Environment Agency, 1998). Large numbers (n=84) of 

replicate reaches were identified to overcome any possible bias associated with site- 

specific characteristics (Figure 4.2). Control streams were predominantly selected from 

the Wye catchment but two tributaries of the directly adjacent River Usk, the Honddu and 

the Grwyne Fawr, were also considered as appropriate for comparison (Figure 4.2). 

Surveys were undertaken, where possible, in the upper, middle and lower third of each 

reference tributary.
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Table 4.1. Identification of riparian management types from which the physical habitat of 
streams was surveyed in 2004.

Treatment_______________
Riparian habitat management 
(‘RHM’)

Conifer plantation (‘Conifer’)

Intensive grazing pasture 
(‘Pastoral’)

Control

Definition____________________________________ _
Riparian trees were coppiced and /or fencing erected to exclude 
grazing under the Wye and Usk Foundation’s scheme.

Conifer plantations dominated the immediate vicinity of the 
stream and were the predominant land use within 50m.

Streams passed through intensively grazed fields, identified from 
maps* as having little riparian tree cover (trees lining <20% of 
river extent), a regular pattern of small fields rather than expansive 
areas of open common land, with pastoral agriculture as the 
predominant land use within 50m. In such reaches, riparian 
fencing was almost entirely absent.

Control streams were chosen based on land use beyond the river 
bank which was often pastoral but with tree cover that could be 
identified from maps*, and was similar to that of ‘RHM’ streams 
(trees lining >20% of river extent). Control streams were chosen to 
represent similar stream order (2 to 4), altitude, and underlying 
geology to that of RHM streams (see Figure 4.2).______________

*Maps used to assist the identification of riparian land use were Ordinance Survey maps, scale 1:25 000.
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Figure 4.2. Hierarchical ANOVA design used to assess variations in river habitat character 
between and within tributaries, within management types. Stream order and underlying 
geology were used to identify appropriate controls in a stratified sampling programme. 
Management types are defined in Appendix I, geological types in Chapter 3.
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n = reach replicates (of 500m) within each tributary
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[43,2] Data collection and treatment

Habitat surveys were undertaken in July and August 2004, using the 2003 version of 

the UK Environment Agency’s River Habitat Survey (RHS) (Raven et al, 1998; 

Environment Agency, 2003c). RHS data are collected as over 100 attributes along a 

500m river reach (Fox et al., 1998). 10 ‘spot checks’ are recorded at 50m intervals 

within each reach and a sweep-up set of variables records features over the entire 

500m. At each spot check, features of the flow, channel, banks and immediate land 

use are recorded, typically as the dominant type from a pre-determined series of 

categories. For example, dominant flow type is chosen from ten possibilities 

(Environment Agency, 2003c; Vaughan, 2004). Most sweep-up variables are ordinal, 

often recorded as either absent, present over < 33% of the reach, or present at > 33% 

(= ‘extensive’) (Environment Agency, 2003c; Vaughan, 2004 ).

RHS variables were treated using variable clustering as described by Vaughan and 

Ormerod (2005). Using this method, the multicolinearity of RHS variables was 

reduced by identifying groups of similar variables through cluster analysis. Principal 

Components Analysis (PCA) was then performed on each group and the scores of the 

first PC axis of variation used to represent that aspect of river character as a 

‘compound variable’ (Vaughan and Ormerod, 2005).

In this study, 87 study sites were surveyed and 10 variables were investigated, 

resulting in a casesivariables ratio of less than 10:1. In order to reduce this ratio, all of 

the surveys on the 2005 version of the RHS database for the UK (n=14814) were used 

to derive principal component scores to represent river habitat characteristics (Harrell 

et al. 1984; Vaughan and Ormerod, 2005; Table 4.2). Surveys undertaken in 2004 as 

part of this study were added to the data base and the relevant PC scores were 

extracted for use in further analyses. In accordance with Vaughan and Ormerod 

(2005), a Principal Components Analysis (PCA) that incorporated optimal scaling was 

used to account for the ordinal nature of some variables. When a cluster of RHS 

variables included ordinal variables ‘CATPCA’ (Categorical Principal Components 

Analysis) was used to generate scores, otherwise a standard., PCA based on correlation 

was applied (SPSS for Windows, 2001).

Ten variable-clusters were chosen that represented features likely to be altered by 

management in order to contrast habitat characters of rivers with different riparian
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land-use. Tree cover, improved pasture and poaching of the bank-tops were used to 

measure the direct effects of riparian alteration (Table 4.2). Since the object of 

riparian management was to alter the in-stream habitat, an additional 7 variable 

clusters were used to represent die indirect effects of riparian change on the channel 

(‘bars, cliffs and pools’, rocky, cobbles, bank vegetation, channel vegetation, riffles 

and filamentous algae). The ‘Bars, Cliffs and Pools’ cluster largely represented 

features typical of actively meandering channels, such as unvegetated bars but also 

stable and eroding cliffs (Table 4.2; Vaughan, 2004). ‘Rocky’ was indicative of 

bedrock and boulders and associated flow types such as cascades. ‘Cobbles’ 

represented a gradient from cobble through to silt substrata. ‘Bank vegetation’ 

described a change from ‘uniform’ to ‘simple’ vegetation structure, whilst channel 

vegetation was derived from the occurrence of macrophytes within the channel at spot 

checks (Table 4.2; Vaughan, 2004). Vaughan and Ormerod (2005) used the 

predominant land-use within 50m from the bank top in their clusters. This study 

investigated pastoral land-use within 5m of the bank-top since treatment aimed to 

alter the land-use within close proximity to the bank top. Vaughan and Ormerod 

(2005) found a median Spearman’s correlation of 0.75 between land use variables 

recorded at 5m and at 50m, so the use of their cluster groupings was considered valid 

in this study.

[4.3.3] Data analysis

A Hierarchical ANOVA was used to assess variations in river habitat between 

riparian treatments and rivers within treatments, with pair-wise comparisons made by 

Tukey tests (lies, 1993; SPSS for Windows, 2001). Data manipulation and statistical 

analyses were performed in SPSS and Canoco (ter Braak and Smilauer, 1998, SPSS 

for Windows, 2001). Bonferroni adjustment for multiple tests was applied where 

appropriate (Hair, 1995). Since riparian management was largely undertaken in the 

lower third of tributary streams, any confounding influence of the more lowland 

locations of treated reaches had to be accounted for. Comparisons of physical habitat 

between ‘treated’ and ‘control’ management types were, therefore repeated using 

ANOVA confined to reaches from the lower third of tributaries.
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[4.41 Results

Although riparian and in-stream habitats were highly variable within the Wye 

catchment, systematic differences were apparent among rivers and treatments (Table 

4.3). Riparian management appeared to reduce poaching on the bank-top while 

increasing filamentous algae within the channel (Figure 4.3).

The proportion of pasture on the bank top was similar at treated and control reaches 

but was greater where catchments were dominated by intensive grazing (Figure 4.3). 

‘Tree cover’ primarily represented broadleaved woodland and associated features and 

was greatest within treated reaches despite efforts to reduce channel shading (Table 

4.2; Figure 4.3). Reaches which ran though conifer plantations were not shaded by the 

canopy and had few of the features, such as underwater roots, exemplified by 

deciduous trees, such as alder. Moorland was often present within 5m of those 

streams; consequently moorland-pasture was most commonly associated with conifer- 

lined tributaries.

No significant differences were detected in the structure of bank vegetation between 

rivers or treatments (Table 4.3). Channel vegetation varied between rivers and, 

although more vegetation was recorded in the channels of treated sites, there was no 

significant treatment effect (Table 4.3). Other in-stream features (‘bars, cliffs and 

pools’, rocky and cobble substrata and riffles) were unaffected by riparian alteration 

(Table 4.3). However, a trend towards finer substrata and more ‘bars, cliffs and pools’ 

was evident in ‘pastoral’ rivers (Table 4.2; Figure 4.3). ‘Conifer’ rivers differed from 

others in almost all aspects. They were more rocky with fewer riffles, bars, cobbles 

and algae (Figure 4.3).

None of these trends were different in analyses comparing treated streams with 

‘downstream’ controls, indicating that the predominantly downstream location of 

treatment did not bias comparisons of physical habitat (One-way ANOVA comparing 

poaching, filamentous algae and ‘bars, cliffs and pools’ P <0.05; d f totai, error = 40,1).
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Table 4.2. Loading of River Habitat Survey (RHS) variables on Principal component 
axes derived from variable clusters.

Tree Cover (X = 10. CATPCAI 
Broad-leaved woodland 35.7
‘Complex’ bank-face vegetation 30.8 
‘Complex’ bank-top vegetation 35.2
Extent of tree cover 42.9
Shading of channel 42.5
Overhanging boughs 40.6
Exposed bank-side tree roots 39.7
Exposed underwater roots 35.0
Fallen trees in channel 37.3
Woody debris 37.9

Cobbles (X = 4. PCA)
Cobble channel substratum 0.8
Cobble banks 0.7
Unvegetated side bars 0.7
Silt substratum -0.7

Bank Vegetation (X = 4. PCA)
‘Uniform’ bank-face vegetation -0.8
‘Simple’ bank-face vegetation 0.8
‘Simple’ bank-top vegetation 0.8
‘Uniform’ bank-top vegetation -0.7

Moorland - Pasture (X = 3. PCA) 
Moorland/heath 0.8
Peat banks 0.8
Improved grassland -0.6

Bars / Cliffs / Pools (X = 7. CATPCA) 
Eroding cliffs > 0.5m 48.0
Stable cliffs > 0.5m 39.0
Number of pools 45.7
Number of unvegetated point bars 56.7 
Vertical + toe bank profile 46.5
Marginal dead-water 30.1
Unvegetated mid-channel bars 48.4

Rocky (X = 12, CATPCA)
Bedrock banks 36.4
Boulder banks 34.0
Earth banks -24.6
Bedrock channel substratum 32.9
Boulders channel substratum 35.0
‘Chute’ flow type 31.8
‘Broken wave’ flow type 27.3
Bryophytes 32.0
Cascades 35.8
Rapids 33.6
Exposed bedrock in channel 35.6
Exposed boulders in channel 38.3

Channel Vegetation IX = 7. PCA) 
Reeds/sedges/rushes 0.7
Free floating 0.7
Submerged fine/linear-leaved plants 0.7
Submerged fine/linear-leaved plants 0.7
Emergent broad-leaved 0.6
Submerged broad-leaved 0.6
Amphibious 0.4

Riffles (X = 2. PCA) 0.9
‘Unbroken wave’ flow type 0.9
Number of riffles

Runs (X = 2. CATPCA) 85.5
‘Rippled’ flow type 85.5
Extent of runs

Poaching (X = 2. CATPCA) 86.1
Composite bank profile 86.1
Poaching of channel margin

Filamentous Algae 
Unique variable

Coniferous plantation 
Unique variable
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Table 4.3. Variation in river habitat between rivers within treatments and between 
treatments (riparian management control, conifer and pastoral reaches), as defined by 
variable clusters (after Vaughan and Ormerod, 2005; See Table 4.2).

Habitat PCs
describing: River (Treatment) 

F P
Treatment
F P

Tree Cover 10.49 <0.001 34.47 <0.001
Moorland - Pasture 1.72 0.057 9.17 <0.001
Poaching 2.75 0.001 17.59 <0.001
Bars / Cliffs / Pools 1.68 0.064 6.54 0.001
Rocky 3.05 0.001 4.74 <0.001
Cobbles 7.27 <0.001 18.53 <0.001
Bank Vegetation 1.40 0.162 2.06 0.116
Channel Vegetation 2.53 0.003 1.93 0.135
Riffles 2.38 0.006 4.94 0.004
Filamentous Algae 7.75 <0.001 19.53 <0.001
df (Numerator, Denominator) 21,54 3,54
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Figure 4.3. Comparisons of river habitat between treated, control, coniferous and pastoral 
reaches of the Wye represented as mean (± SE) scores of variable clusters after Vaughan 
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and 0. (Tukey tests; P<0.05) (See Table 4.3 for analysis).
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[4.51 Discussion

Habitat varied widely across the Wye catchment, between land-use types as well as 

within rivers. Within rivers, tree cover, poaching, substrata, flow types and channel 

vegetation all varied. Despite the highly variable habitats within rivers, distinct 

differences in almost all aspects of habitat were evident between riparian land-use types. 

Streams draining intensive pasture tended to be characterised by fine substrata and 

features typical of ‘active’ channels, recently managed streams by less poaching and 

more filamentous algae compared to controls. Streams within conifer plantations had 

more rocky substratum and lacked improved grassland or features associated with 

deciduous trees.

The variability of habitats within and between river environments demonstrates the 

importance of exploring the effects of riparian land use at different scales (Townsend et 

al., 2004). However, many riparian management projects are conducted without adequate 

monitoring and often with weak experimental design (Kondolf, 1995; Muhar et al., 1995; 

O'Grady, 1998; Rinne, 1999; Sarr, 2002). Typically, pre-treatment data are few, reference 

streams or reaches are seldom monitored and the scale of manipulations are limited 

(Ormerod 2004). Under these circumstances, reaching an evidence-based view on the 

value of riparian management can be difficult. In instances where no pre-treatment data 

are collected, survey-based comparisons between treated sites and carefully selected 

control sites can be used to infer change through time. Although not without difficulties 

and drawbacks, in some cases this is the only option available (Manel et al.,2000). This 

was the case in the Wye catchment. Here, an experimental design was imposed 'post hoc ’ 

on an already operational scheme which incorporated multiple management techniques, 

coppice, or fence and coppice and fence, often within the same rivers or reaches. Despite 

the confounded effects of treatments, the River Habitat Survey was able to detect general 

differences between recently managed streams, controls and streams running through 

coniferous plantation or intensively grazed pasture. Some aspects of the different 

management techniques may have had contrasting effects on the river environment. 

Across the catchment, reduced tree cover was associated > with increased channel 

vegetation whilst there was often less channel vegetation where bank vegetation was
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greater. Coppicing and fencing may therefore have had conflicting effects on channel 

vegetation.

In a study contrasting streams in improved pastoral and native grassland in the South 

Island of New Zealand, Townsend et al., (2004) also found inter-river variation in 

riparian and stream vegetation (overhanging vegetation and moss cover) as well as 

habitat variation between rivers with different riparian land use. In that study, streams 

running through pasture had less in-stream moss cover, endemic riparian species, lower 

water velocity and more erosion and sediment. Similarly, in Welsh streams in intensively 

grazed pasture, substrata tended to be finer along with more ‘bars, cliffs and pools’. 

However, control streams running through what appeared from Ordinance Survey maps 

(1:25,000) as less intensive pasture land (see Table 4.1) were grazed to the extent that 

poaching was most evident on the banks here than under any other riparian land-use. 

Streams with recent riparian management were less poached than controls, indicating 

success in excluding grazing from banks.

Structural changes in bank-side vegetation following riparian management are likely to 

develop over time -  perhaps even years where the development of woody vegetation is 

involved. Reports of a lagged response of channel morphology and biota to riparian 

fencing are therefore not uncommon (Kondolf, 1993, Agouridis et al., 2005). When 

surveyed in 2004, recently managed reaches had been altered between 1 and 6 years 

previously, so that limited effects on riparian vegetation and channel structure might be 

expected. By contrast, the more immediate impact of livestock poaching appeared to be 

reduced by stock exclusion, while structural changes in the bank vegetation were not 

detected.

A disadvantage of the inevitable variation in the timing of habitat management was that 

although deciduous trees were coppiced, after six years there was considerable re-growth. 

For example, the Clywedog was altered in 1998, and by 2004 the coppice had created 

‘tunnels’ of tree cover (O’Grady, 1993; Hendry et al., 2003). Without maintenance, the 

coppiced trees had created a more shaded channel which was contrary to management 

goals (Wye and Usk Foundation, 2006; Hendry and Cragg-Hine, 1997; Crompton, 1994, 

see Chapter 1).
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Tree features recorded by the RHS are predominantly associated with deciduous trees, 

such as the exposed tree roots of alders. Shading of the river channel and ‘extent of tree 

cover’ were important components of the ‘tree cover’ variable, yet bank-side conifer trees 

tend not to group with any other RHS habitat variable and were treated as a unique 

variable (Table 4.2; Vaughan, 2004). Conifer trees lining the stream reaches (orders 1-4, 

widths approx 2-12m) investigated in this study did not shade the water. In fact, a 

deciduous tree or, most frequently, a moorland buffer of l-10m was evident on most 

reaches. Forestry Commission guidelines suggest that buffers of 10m on either side of 

small stream channels (l-2m wide) and 20m for larger streams (Forestry Commission,

2003). Although some streams were not buffered to the extent suggested by the current 

guidelines, trees rarely over-hung into the stream. This contrasts with surveys undertaken 

in 1990 on smaller streams in the UK (orders 1-3) in which coniferous plantations shaded 

streams passing through them (Ormerod, 1993). Never the less, the association of ‘hard’ 

in-stream features, such as coarse substratum, with ‘conifer’ streams was common to both 

studies.

Despite ‘tree cover’ being greater in recently managed sites than controls, a proliferation 

of in-stream flora was detected within treated reaches. These results may indicate growth 

of Lemanea and Rhodophyta (red macro-algae) which are adapted to shaded conditions 

and were observed post-treatment on the river Clywedog (Hynes, 1970; Thrib and 

Benson-Evans, 1983, 1984; Luxton, 2002). Alternatively, the apparent contradiction in 

shading and algal growth in recently managed streams may simply be a result of the 

scales at which each feature was observed; ‘spot checks’ every 50m recorded frequencies 

of vegetation types within the channel whilst tree cover was estimated for the entire 500m 

reach (Imhof et al., 1996). The greater resolution of spot check variables may have 

detected changes ‘missed’ by ‘sweep-up’ variables.

The riparian zone is an interface between the wider catchment and the river itself 

(Malanson, 1993). Although approximately 58 km of river had been coppiced and / or 

fenced throughout the Wye system by June 2004, this was still only a small part of the 

landscape that ultimately affected the river channel (Harper et al a 1999; Townsend et a l ,

2004). By 2004, the majority of riparian management had taken place on the lower third 

of each tributary. Even on the most extensively managed rivers, the Clywedog and the
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Edw, fencing did not reach far into the upper third of the river. This meant that upstream 

impacts on the channel such as potential sources of sediment remained unchecked.

Many programmes that alter riparian habitat aim to change in-stream morphology by 

stabilising banks, increasing the width:depth ratio of channels and reducing 

sedimentation of the substrata thus encouraging the development of riffle-pool sequences 

(Hendry et al., 2003; Landers, 1997; Chapter 2). However, characters related to sediment 

supply and substrata are likely to be controlled by topography, hydrology and land use 

within the wider catchment (Asselman et al., 2003; Opperman et al., 2005; Restrepo and 

Syvitski 2006). Here, streams with catchments dominated by pastoral agriculture and 

conifer plantations were geomorphologically distinct from others in terms of substrata, 

flow type and channel features. This suggests that to achieve any morphological change 

practitioners should look beyond the immediate riparian interface (Kentula, 1997; 

Wissmar and Beschta, 1998).

Coppicing and riparian fencing, however, appeared to have successfully excluded grazing 

on banks and increased filamentous algae within the stream. The consequences of such 

riparian management for organisms will be investigated in Chapters 4 and 5.
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Effects of riparian management on macro invertebrates

[5.01 Abstract

In upland, rural locations, pastoral agriculture or forestry in river catchments can 
influence assemblages of river organisms. In addition to wider effects on catchment 
hydrology and chemistry, intensive livestock grazing can cause bank erosion and increase 
the sediment supply to streams. Semi-natural riparian buffers are frequently established to 
offset any negative ecological effects, often for the enhancement of salmonid populations. 
However, effects on other groups of organisms are less often assessed. Benthic 
macroinvertebrates, which are ubiquitous across river habitats, and vary in composition 
with land-use and physico-chemical condition, are ideal indicators in which to appraise 
management effects.
A programme of fencing and coppicing of riparian trees was implemented on upland 
tributary streams of the River Wye in Mid-Wales from 1997. In the absence of project- 
specific invertebrate monitoring, data from the UK Environment Agency’s BIO SYS 
database were used opportunistically to compare assemblages in three recently managed 
streams and five adjacent control streams. Data were available between 1995 and 2004, 
enabling some comparisons of pre-and post-treatment assemblage pattern in the recently 
managed and control streams, respectively.
Over time, in all reaches irrespective of treatment, families typical of lowland, more 
eutrophic rivers increased in occurrence and taxon richness declined. Post-treatment 
(2000-2004) assemblages were richer in recently managed streams than in controls, 
mostly due to effects from taxa typical of channel margins and lowland conditions, but 
these results were equivocal. This study highlights die importance of the riparian zone 
and local land-use to stream biota, but also reveals the importance of careful study design 
in the evidence-based evaluation of riparian management. The reasons for the recent 
decline in the richness of typical headwater organisms from some tributaries of the Wye 
require further investigation.
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[5.11 Introduction

The management of river catchments has far-reaching impacts on both the physical and 

biotic character of rivers (Manel et al., 2000; Snyder et al., 2003; Danger and Robson, 

2004; Thompson and Townsend, 2004; Townsend et al., 2004; also see Chapter 2). In 

addition to river hydrology, hydrochemistry and sediment regimes (see Russell et al., 

2001; Steegen et al., 2001; McKergow et al., 2003; Peckham, 2003; Evans et al., 2006), 

the supply of terrestrial organic matter to river ecosystems, such as terrestrial 

invertebrates and detritus (see Wipfli, 1997; Pretty and Dobson, 2004; Wipfli and 

Musslewhite, 2004; Baxter et al., 2005), are ultimately under the control of the terrestrial 

environment. In rural catchments, forestry and agriculture, and their relative intensity can 

substantially modify biotic communities (Ormerod et al., 1993; Weatherley et al., 1993; 

Parsons et al., 2003; Buck et al., 2004; Giller and O'Halloran, 2004; Neal et al., 2004; 

Ormerod et al., 2004; Liebault et al., 2005; Chapter 3).

The responses of aquatic biota to local land-use are often reported as variations in the 

assemblage composition of benthic macroinvertebrates and fish (e.g. Brewin et al., 1995; 

Monaghan et al., 2000; Nerbonne and Vondracek, 2001; Meador and Goldstein, 2003; 

Zimmerman et al., 2003; Sandin and Johnson, 2004; Ormerod et al., 2004). Benthic 

macroinvertebrates are particularly suited to comparative studies because the relative 

compositions of species, families and feeding guilds vary closely with local land-use and 

physico-chemical condition (Rundle et al., 1992; Ormerod et al., 1993; Rosenberg and 

Resh, 1993; Brewin et al., 1995; Monaghan et al., 2000; Sandin and Johnson, 2004; 

Townsend et al., 2004). The richness among invertebrates, distinction in habitat 

requirements, responsiveness to ecological conditions and well-known ecology also make 

invertebrates excellent subjects in river research.

The presence of trees within a catchment and the proportion of deciduous, coniferous, 

exotic and native species affects both the quantity and quality (C:N ratio) of organic input 

to streams (Dobson et al., 1995; Quinn et al., 2000; Elliott et al., 2004; Swan and Palmer, 

2004; also see Chapter 2). The relative importance of forestry to riverine productivity 

varies also with river size. Smaller streams tend to be influenced by riparian trees which 

can shade the channel directly as well as providing allochthonous matter (Vannote et al.,
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1980). Invertebrate assemblages in smaller, headwater streams in temperate zones tend to 

be dominated by shredding and detritivorus feeding guilds with a greater proportion of 

families typical of stream margins rather than the herbivorous and filter-feeding taxa 

found further downstream in more ‘open’ channels (Vannote et al., 1980; Cummins et al., 

1989, Sweeney, 1992, 1993; also see Chapter 2).

In contrast to afforested areas, pastoral agriculture is often associated with a reduction in 

tree and shrub cover both in close proximity to the stream and throughout the catchment 

(Nakamura and Yamada, 2005). Implications for invertebrate communities include 

reduced shading, increased algal productivity and increased density of invertebrate 

herbivores (e.g. Sabater et al., 1998). The proportions of woody debris, detritus, sediment 

and nutrients within streams are also modified. Vegetation within the catchment can 

intercept sediment and nutrients and help to reduce additional soil loss through erosion 

(Easson and Yarbrough, 2002; Hook, 2003). In combination with poaching (trampling) 

by livestock, loss of terrestrial vegetation can increase the amount of sediment in the 

benthos (Evans et al., 2006). This can adversely impact on periphyton productivity, the 

density and diversity of aquatic invertebrates, fish feeding, fish spawning and egg 

survival (Waters, 1995; Harding et al., 1999; Nakamura and Yamada, 2005).

As the interface between the river and the wider catchment (Malanson, 1993), 

management of the riparian zone can offer a means of mitigating the effects of wider 

catchment management on river systems. For example, wooded or grassed riparian 

buffers can ameliorate some of the negative impacts of agricultural and forestry practices, 

such as sediment and nutrient release to the stream environment (Petersen et al., 1992; 

Garcia de Jalon, 1995; Goodwin et al., 1997; Hendry et al., 2003; McKergow et al., 

2003; Broadmeadow and Nisbet, 2004; also see Chapter 2). Fenced riparian buffers to 

exclude livestock grazing, as well as the management of riparian trees, are widely 

advocated in programmes that aim to improve salmonid fisheries (White, 1996; Hendry 

and Cragg-Hine, 1997; Roper et al., 1997; White, 2002; Hendry et al., 2003). However, 

the effects of such programmes on other aspects of freshwatef ecology are rarely reported 

(White, 1996; Kauffman et al., 1997; Chapter 2).
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In the UK, across Europe and throughout much of the developed world, invertebrate 

communities are routinely monitored (Environment Agency, 1999; Rosenberg and Resh, 

1993; European Directive 2000/60/EC). Such data are readily available, spatially 

extensive and in the UK have been collected over at least 15 years. Unfortunately, the 

application of national archives of ecological data in the assessment of river management 

projects is seldom published within the academic literature. This chapter demonstrates the 

application of routinely collected macroinvertebrate data to assess the effects of riparian 

management on stream biota.

A programme of fencing along with coppicing and thinning riparian trees was 

implemented on tributary streams of the River Wye in Mid-Wales from 1997 (see 

Chapter 1). Because macroinvertebrates were not monitored specifically for the project, 

invertebrate monitoring data from the UK Environment Agency’s BIOSYS database were 

used to compare communities between three recently managed streams and five control 

streams (Figure 5.1; Environment Agency, 1999). Archived data were also available from 

1995 (2-3 years prior to management), thereby enabling additional comparisons of pre- 

and post-treatment condition in the recently managed and control streams. Specifically, 

the questions asked were: i) was there any interaction between time period and riparian 

treatment? ii) were post-treatment assemblages different in treated and control streams? 

iii) did assemblages change following treatment, in either treated or control streams?
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[5.21 Site description and management

The River Wye, its rural catchment (4136km2) and invertebrate communities were 

comprehensively described in Chapter 3 and have also been described elsewhere (e.g. 

Edwards and Brooker, 1982; Ormerod and Edwards, 1987, Ormerod 1987, 1988; 

Environment Agency, 1998; Brennan et al., 2003; Jarvie et al., 2003). In the middle and 

upper reaches of the Wye catchment (defined in Chapter 3, figure 3.1) pastoral 

agriculture is the dominant land-use. Tributaries of the Middle-Wye are relatively 

unpolluted, being largely unaffected by organic enrichment or acidification (see Chapter 

3). Ephemeropteran families, such as Caenidae, Baetidae and Ephemerellidae are well 

represented in invertebrate assemblages, which are relatively rich, compared with the 

upper, acidified reaches of the Wye (see Edwards and Brooker; 1982; Chapter 3).

The Wye Habitat Improvement Project (WHIP), implemented by the Wye and Usk 

Foundation (WUF), aimed to create optimal habitat for salmonid fish in order to boost 

populations of Atlantic salmon (Salmo salar) and brown trout (S. trutta) within the Wye 

catchment (Wye and Usk Foundation, 2006). It involved a programme of fencing to 

exclude livestock grazing on the river banks (typically l-3m from the stream bank) and 

coppicing of riparian trees (see Chapter 1). Riparian management took place between 

1997 and 2000 on the Clywedog, Edw and Sgithwen tributaries of the River Wye, of 

Strahler stream orders 4, 3, and 2 respectively at their confluence with the main river 

Wye (Figure 5.1; exact locations confidential). The Clywedog and Edw were the most 

extensively managed tributaries and were coppiced, fenced or both along over two thirds 

of their length (river length = 15.3 and 24.5 km respectively). The Sgithwen was 

coppiced close to its confluence with the Wye in 1997, and then additional coppicing 

took place further upstream in 2000, thus managing less than two thirds of the river’s 

length (Sgithwen length = 9.2 km).
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Figure 5.1. Treated and control tributaries of the Wye on which macroinvertebrate 
surveys were undertaken between 1995 and 2004.
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[5.31 Methods

[5.3.1} Study Design

This study investigated the effects of recent riparian management (undertaken between 

1997 and 2000) on three tributary streams in the Wye catchment, the Edw, Clywedog and 

Sgithwen (Figure 5.1). Recently managed tributaries were compared against control 

tributaries. Replicate rivers (n=8) were identified to overcome any possible bias 

associated with tributary-specific characteristics. Control streams (n=5) were assigned 

post-management, to represent geology, Strahler stream order (3-4), local land use and 

altitude were used to select streams similar to treated streams within the constraint that 

invertebrate data had to be available (see Table 5.1; Edwards and Brooker, 1982; 

Homung et al., 1990; Environment Agency, 1998).

Biological data were available from UK Environment Agency but surveys were not 

undertaken on every river in each year (Environment Agency, 1999). In order to 

maximise the number of rivers in the investigation, post-treatment condition was 

averaged from a 5 year period from between 2000 and 2004 (Figure 5.1). Benthic 

invertebrate samples taken in 1995 represented the pre-treatment condition.

A balanced ‘BACI’-type experiment was not possible due a lack of replicate pre- and 

post- treatment years (Stewart-Oaten et al.; 1986;Downes et al., 2002). Instead, 

interactions between time period and treatment were tested for. Post-treatment condition 

was compared between treated and control streams and trends through time were 

established separately for treated and control groups respectively.

Since no macroinvertebrate surveys were undertaken specifically for this study, the 

experimental design could only be devised retrospectively using data available from other 

sources. The effects of this unavoidable constraint on conclusions are discussed below. 

All streams were surveyed in 2000 but the years in which additional surveys were done 

varied. Treated streams were largely sampled in 2000 and 2004; whilst the controls were 

surveyed in 2000 and either 2002 or 2003. Since any treatment effects might be 

confounded by year effect, analyses were repeated, taking only the surveys done in 2000 

to represent post-treatment conditions.
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[5.3.2] Data Collection and treatment

Biological data were collected prior to treatment as part of the UK Environment Agency 

(EA)’s routine monitoring and archived on their ‘BIOSYS’ database (Environment 

Agency, 1999). Benthic macroinvertebrates were sampled from reaches close to the 

confluence with either the main River Wye or two major tributaries of the Wye, the Irfon 

and Ithon. Invertebrates were collected by a standardised kick-sample, identified to 

family-level and their abundance recorded on a semi-quantitative logarithmic scale of >1, 

>10, >100, >1000 and >10000 in accordance with the Biological Monitoring Working 

Party (BMWP) method (See Chapter 3 for detail; Hawkes, 1997; Environment Agency, 

1999).

Macroinvertebrate data were treated as described in detail in Chapter 3 (Figure 5.1). 

BMWP-scoring taxa that were present in more than 1% of samples were used for analysis 

and abundances were reciprocally transformed to reduce skew and kurtosis (SPSS for 

Windows, 2001; Tabachnick and Fidell, 2001). Six biotic metrics were derived from 

standardised kick-samples of invertebrate families (Environment Agency, 1999; Clarke et 

al., 2002, also see Chapter 3). Variations in trophic putative structure were assessed from 

the proportions of ‘shredder’, ‘grazer’ and ‘detritivore’ feeding guilds (see Chapter 3; 

Moog, 1995). Changes in the structure of invertebrate communities were represented by 

taxon richness (number of families) and the first two axes of a Principal Component 

Analysis on family abundance. ‘PCI’ and ‘PC2’ reflected gradients in assemblage 

composition.

In this study, 8 rivers were surveyed and 35 invertebrate families were investigated, 

resulting in a cases:variables ration of less than 5:1, and hence possible problems in data 

analysis and interpretation (see Vaughan & Ormerod, 2003). In order to reduce this ratio, 

surveys on the BIOSYS database for the UK were used to derive Principal Component 

scores that represented invertebrate assemblages (Harrell et al. 1984; Vaughan and 

Ormerod, 2005). PC scores of samples relevant to this study were then extracted for use 

in further analyses. Years 2000-2004 and 1995 were used to derive PC scores when
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interactions between treatments and time periods or temporal changes were investigated 

(Table 5.3). When post-treatment comparisons were made, data were extracted from 

2000-2004 only in order to generate PC scores (Table 5.2). Loadings on the first and 

second axes were similar in both cases (see Tables 5.2 and 5.3).

[5.3.3] Data analysis

Interactions between treatments (recently managed or control) and time periods (1995 or 

2000-2004) were established by a repeated measures ANOVA that crossed treatment with 

time period (Tabachnick and Fidell, 2001). Post-treatment differences in invertebrate 

assemblage composition and feeding guild in recently managed and control reaches were 

then investigated by one-way ANOVA (Sokal and Rohlf, 1995).

To assess the effects of treatment through time, pre-treatment macroinvertebrate data 

were compared against post-treatment data by repeated measures ANOVA (Tabachnick 

and Fidell, 2001). These analyses were repeated for recently managed and control reaches 

respectively.

Data manipulation and statistical analyses were performed in SPSS and CANOCO (ter 

Braak and Smilauer, 1998, SPSS for Windows, 2001). Bonferroni adjustment for multiple 

tests was applied where appropriate (Hair, 1995).
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Table 5.1 Definition of riparian management types from which the macroinvertebrate 
data were collected between 1995 and 2004.

Treatment_________________  Definition____________________________________
Riparian habitat management Riparian trees were coppiced and / or fencing erected to exclude
(‘RHM’) grazing under the Wye and Usk Foundation’s scheme.

Control Control streams were chosen based on land use beyond the river
bank which was often pastoral but with tree cover that could be 
identified from maps* that was similar to that of ‘RHM’ streams 
(trees lining >20% of river extent). Control streams were chosen to 
represent similar stream order (3 to 4), altitude, and underlying

_____________________________ geology to that of RHM streams (see Chapter 4).______________
♦Maps used to assist the identification of riparian land use were Ordinance Survey maps, scale 1:25 000.

151



t f feeis of riparian management on m.acrotiivenebrates 

[5.41 Results

[5.4.1] Overall assemblage composition

In a PCA of all samples, families typical of channel margins or slack waters (e.g. 

Caenidae, Gyrinidae, Leptophlebiidae, Sericostomatidae) were positively loaded on 

the first PC axis (Tables 5.2 and 5.3). This axis explained 25-29% of the total 

variance among family and was highly correlated (Spearman’s rs = 0.9) with taxon 

richness. Assemblages shifted from typical upland families (Baetidae, Heptageniidae, 

Hydropsychidae, Lepidostomatidae and Leuctridae) to lowland families such as 

Asellidae, Planorbidae and Sialidae on PC2 (Tables 5.2 and 5.3).

[5.4.2] Treatment effects

Interactions between treatment and time period were significant in autumn for PCI, 

which represented families typical of channel margins (Table 5.4). Marginally 

significant interactions were suggested for PC2 in spring and PCI in autumn (Table 

5.4). Treatment effects were evident as a shift towards families typical of channel 

margins and more lowland conditions in treated sites relative to controls (Tables 5.4 

and 5.6.).

Post-treatment (2000-2004) invertebrate assemblages were richer in recently managed 

streams than in controls. Assemblage composition, suggested by PC scores, indicated 

that recently managed streams held taxa more associated with channel margins (i.e. 

those loading positively on PCI) and lowland conditions (i.e. those loading negatively 

on PC2) (Figure 5.2; Table 5.5). There was some tendency towards fewer shredders 

and more grazers in treated streams but differences between treatments were not 

significant (Figure 5.2; Table 5.5). Patterns in these invertebrate metrics were similar 

in spring and autumn (Table 5.5). However, when analyses were repeated with the 

post-treatment condition represented by only surveys undertaken in 2000 (i.e when all 

sites were surveyed in the same year) no post-treatment effects were apparent (one

way ANOVA; df total, error = 7,6; P>0.05).
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[5,4,3] Trends through time

Temporal variations in richness, PC2 and feeding guilds were similar in both recently 

managed and control streams (Table 5.6). Although the representation of different 

feeding guilds within invertebrate communities did not vary between time-periods 

(Repeated Measures ANOVA; P<0.05 df total, error = 1,2 and 1,4, respectively), lowland 

families represented by PC2 increased through time in spring samples (Table 5.6). 

Taxon richness significantly declined over time in autumn (Table 5.6), when 

reductions in richness were between 15% and 20%. Contrasting trends in PCI were 

evident in the two treatments. Communities in treated streams shifted towards 

families more typical of channel margins while the converse was true in controls 

(Table 5.6).
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Table 5.2. Loading of commonly occurring invertebrate families on Principal 
Component axes describing major sources of variation in invertebrate communities 
sampled between 2000 and 2004 in the autumn and spring respectively. Correlation 
coefficients greater than 0.5 are highlighted in bold.

Autumn Spring
PCI PC2 PCI PC2

% of Variance 
Family

25 14 23 14

Ancylidae 0.503 -0.167 0.514 0.065
Asellidae 0.206 0.665 0.236 0.676
Baetidae 0.454 -0.415 0.448 -0.271
Caenidae 0.664 0.196 0.646 -0.099
Chironomidae 0.091 0.016 0.056 0.200
Dytiscidae Noteridae 0.402 0.452 0.533 0.282
Elmidae 0.447 -0.272 0.465 -0.283
Ephemeridae 0.603 -0.068 0.573 -0.031
Ephemerellidae 0.676 0.226 0.658 0.118
Erpobdellidae 0.267 0.535 0.185 0.581
Gammaridae Crangonyctidae 0.259 0.307 0.247 0.399
Glossiphoniidae 0.265 0.689 0.305 0.624
Gyrinidae 0.721 -0.003 0.755 -0.062
Heptageniidae 0.634 -0.487 0.597 -0.574
Hydrobiidae Bithyniidae 0.333 0.346 0.321 0.469
Hydrophilidae Hydraenidae 0.588 -0.037 0.579 0.012
Hydropsychidae 0.571 -0.467 0.541 -0.482
Hydroptilidae 0.627 0.130 0.579 0.134
Lepidostomatidae 0.612 -0.351 0.588 -0.339
Leptoceridae 0.562 0.189 0.618 0.073
Leptophlebiidae 0.701 -0.031 0.603 0.082
Leuctridae 0.580 -0.405 0.473 -0.434
Limnephilidae 0.497 0.139 0.368 0.255
Lymnaeidae 0.314 0.423 0.330 0.567
Nemouridae 0.632 -0.014 0.517 -0.249
Oligochaeta 0.060 -0.011 0.125 0.191
Perlodidae 0.713 -0.108 0.572 -0.474
Planariidae Dugesiidae 0.332 0.243 0.313 0.344
Planorbidae 0.321 0.670 0.331 0.665
Rhyacophilidae Glossosomatidae 0.520 -0.395 0.523 -0.385
Sericostomatidae 0.633 -0.162 0.652 -0.087
Sialidae 0.449 0.613 0.563 0.457
Simuliidae 0.458 -0.395 0.296 -0.193
Sphaeriidae 0.171 0.677 0.148 0.750
Tipulidae 0.414 -0.289 0.423 -0.122
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Table 5.3. Principal Components used to explore temporal variation in invertebrate 
assemblage structure. Loading of commonly occurring invertebrate families on 
Principal Component axes describing major sources of variation in invertebrate 
communities sampled in 1995 and between 2000 and 2004 in the autumn and spring 
respectively. Correlation coefficients greater than 0.5 are highlighted in bold.

Autumn Spring
PCI PC2 PCI PC2

% of Variance 
Family

28 13 29 13

Ancylidae 0.485 -0.248 0.546 0.016
Asellidae 0.421 0.583 0.554 0.509
Baetidae 0.354 -0.483 0.236 -0.253
Caenidae 0.743 0.111 0.680 -0.201
Chironomidae 0.085 0.003 0.060 0.179
Dytiscidae Noteridae 0.525 0.398 0.714 0.090
Elmidae 0.380 -0.317 0.355 -0.291
Ephemeridae 0.596 -0.204 0.550 -0.180
Ephemerellidae 0.740 0.149 0.710 0.028
Erpobdellidae 0.392 0.469 0.395 0.516
Gammaridae Crangonyctidae 0.323 0.253 0.297 0.424
Glossiphoniidae 0.432 0.624 0.544 0.511
Gyrinidae 0.740 -0.028 0.808 -0.194
Heptageniidae 0.567 -0.541 0.429 -0.694
Hydrobiidae Bithyniidae 0.400 0.348 0.443 0.482
Hydrophilidae Hydraenidae 0.614 -0.122 0.622 -0.177
Hydropsychidae 0.485 -0.547 0.392 -0.581
Hydroptilidae 0.650 0.083 0.595 0.119
Lepidostomatidae 0.553 -0.421 0.527 -0.427
Leptoceridae 0.614 0.180 0.673 -0.009
Leptophlebiidae 0.745 -0.083 0.657 -0.010
Leuctridae 0.539 -0.491 0.440 -0.624
Limnephilidae 0.557 0.075 0.488 0.237
Lymnaeidae 0.419 0.356 0.626 0.346
Nemouridae 0.687 -0.032 0.604 -0.306
Oligochaeta 0.103 -0.066 0.158 0.197
Perlodidae 0.741 -0.161 0.558 -0.549
Planariidae Dugesiidae 0.407 0.134 0.467 0.236
Planorbidae 0.572 0.538 0.667 0.447
Rhyacophilidae Glossosomatidae 0.466 -0.428 s 0.434 -0.332
Sericostomatidae 0.619 -0.177 0.682 -0.102
Sialidae 0.624 0.505 0.781 0.208
Simuliidae 0.383 -0.488 0.154 -0.130
Sphaeriidae 0.352 0.606 0.435 0.655
Tipulidae 0.406 -0.397 0.384 -0.178
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Figure 5.2. Mean (±SE) indicators of invertebrate assemblage 
composition in treated and control streams surveyed in spring between 
2000 and 2004.
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Table 5.4. Interactions between treatments (recently managed or control) and time 
periods (1995 or 2000-2004) identified by repeated measures within-subjects
ANOVA (df time period, treatment *  time period, error = 1»1 »6).

Spring________  Autumn______
F P F P

Richness 1.22 0.312 24.06 0.228
PCI 8.87 0.025t 22.07 0.003
PC2 5.04 0.066 6.58 0.043t

7-------------------------------------------------------------------
No longer significant at 95% Cl after Bonferroni correction for multiple tests (P/3)

Table 5.5. Post-treatment variation in the structure of invertebrate communities 
between treated (n=3) and control (n=5) streams in the River Wye system (2000- 
2004). df total, error = 7,6.

Spring__________ Autumn
F P F P

Richness 11.02 0.016 5.40 0.059
PCI 107.40 <0.001 78.85 <0.001
PC2 19.14 0.005 6.87 0.039
Shredders 1.29 0.300 0.29 0.610
Detritivores 0.70 0.436 0.10 0.767
Grazers 1.77 0.232 4.24 0.085
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Table 5.6. Temporal variation in the structure of invertebrate communities in a) 
treated (n=3) and b) control (n=5) streams in the Wye catchment.

Spring Autumn
Richness PCI PC2 Richness PCI PC2

1995
2000 - 2004 
df group, error 
F 
P

25.3 (0.9) 
24.8 (1.5) 

1,2 
0.14 

0.742

0.3 (0.1) 
0.9 (0.1) 

1,2 
8.30 

0.102

-1.6 (0.2) 
-0.5 (0.1) 

1,2 
12.53 
0.071

27.3 (0.9) 
23.1 (1.3) 

1,2 
111.08 
0.009

0.2 (0.3) 
0.7 (0.1) 

1,2 
4.01 

0.183

-0.6 (0.2) 
-0.3 (0.3) 

1,2 
11.44 
0.077

b)
Spring Autumn
Richness PCI PC2 Richness PCI PC2

1995
2000 - 2004 
df group, error 
F 
P

21.0(2.1) 
17.7 (1.4) 

1,4 
3.52 

0.134

-0.4 (0.2) 
-0.7 (0.1) 

1,4 
2.43 

0.194

-1.1 (0.1) 
-0.6 (0.1) 

1,4 
31.92 
0.005

25.4 (2.4) 
18.0 (1.5) 

1,4 
17.61 
0.014

0.1 (0.2) 
-0.6 (0.1) 

1,4 
27.60 
0.006

-0.6 (0.2) 
-0.8 (0.2) 

1,4 
2.31 

0.203
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[5.51 Discussion

Post-treatment (2000-2004) invertebrate communities were richer in recently 

managed streams and had taxa more indicative of channel margins and lowland 

conditions than in controls. However, no ‘treatment’ effects were evident when 

considering only surveys undertaken immediately post-treatment in 2000, the only 

year in which survey data were available in all streams. Significant treatment effects 

observed between 2001 and 2004 could have been confounded by year effects since 

post-treatment surveys were undertaken in different years on different streams, 

notably treated streams were all surveyed in 2004 but controls were not. Alternatively 

treatment effects may not yet have become evident (Kondolf, 1993, Agouridis et al.,

2005), with consequences for in-stream habitat and invertebrates developing only 

progressively (Nerbonne and Vondracek, 2001).

A comparison of preliminary investigations undertaken in 1998 and 1999 on the 

Clywedog brook, immediately after management suggested that there was an increase 

in Perlodidae and Tipulidae and Leuctridae during that first year post-treatment 

(Ambler, 1998; Williams, 2000). Although this result was not explicitly tested, results 

from this chapter concur with the assertion that Perlodidae and Tipulidae and 

Leuctridae were greater in treated streams. All three families were positively loaded 

on PCI which was higher in treated streams. So, treatment effects observed during 

2000-2004 may have been genuine despite the confounding effects of sample years.

Previous studies on the Clywedog investigated different treatments (fence and 

coppice, fence only, fenced without trees and controls without a fence) within the 

same river (Williams, 2000; Luxton 2002). Differences in invertebrate communities 

between treatments were identified; in 1999 fenced and coppiced sites tended to have 

more Perlodidae, Baetidae and Tipulidae, whilst Gammarus pulex were most 

abundant in controls (Williams, 2000). Although these results may have been 

confounded by the pseudoreplication of surveys in close proximity within the same 

river, they suggest that there were localized treatment effects (Hurlbert, 1984). In this 

study, evaluation at the whole river-scale may have overlooked any small-scale 

habitat effects on invertebrate communities.

A disadvantage of using the Environment Agency’s macroinvertebrate data was that 

the resolution of the data was limited to family-level, with abundance recorded semi-
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quantitatively (see section 5.3.2). More precise taxonomy and quantification would 

instill greater confidence in results, and could potentially have yielded different 

results. For example, differences in feeding guilds across treatments may become 

evident if assessed from species rather than family data since not all members of a 

family share similar feeding preference (Moog, 1995). Averaging the feeding 

preference across each family, as done here, might therefore mask effects on trophic 

structure. Similar arguments might be made for families represented by PC axes.

Potential treatment effects on invertebrates, evident as a shift towards families more 

typical of river margins, imply that riparian alteration promoted marginal habitats. 

Although River Habitat Surveys undertaken in 2004 did not detect higher occurrences 

of channel vegetation there was significant variation between rivers and filamentous 

algae was more frequent in treated streams (see Chapter 4). Changes in amphibious 

habitat that were sufficient to change stream biota could have been beyond the 

resolution of the RHS or too subtle to identify amongst the diversity of rivers within 

the catchment.

Temporal trends in invertebrates across all reaches indicated that families typical of 

lowland, more eutrophic rivers were favoured at the expense of ‘upland’ families, thus 

reducing taxon richness. The lowland shift was most evident in treated reaches which 

might reflect aspects of the rehabilitation programme that were developed for lowland 

chalk streams (Giles and Summers, 1996; Summers et al., 2005). In lowland streams, 

the coppicing of riparian trees is not only designed to allow bank vegetation to 

develop, thus stabilising the bank, but also to promote in-stream vegetation as energy 

sources and refuges for fish. In low-gradient streams, macrophytes and algae 

proliferate and ‘channel choking’ is not uncommon (Holmes et al., 1998; 

Environment Agency, 2003). Conversely, in the steep, erosive environment of small 

upland streams aquatic assemblages dominated by ‘shredders’ are often driven by 

allochthonous energy sources derived from bank-side trees (Vannote et ah, 1980; 

Rundle et al., 1992). However, the establishment of in-stream flora may well support 

invertebrate assemblages that are indicative of more vegetated lowland reaches. 

Results hint at a shift from shredding to grazing assemblages. This suggests a move 

from allochthonous sources of energy to autochthonous sources as might be expected 

under more ‘lowland’ conditions (Vannote et al., 1980).
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Taxon richness tends to be greater in channel margins than in riffles and in Welsh 

upland streams increased with the amount of grassy vegetation (Ormerod et a l , 1993; 

Bradley and Ormerod, 2002). The increase in families indicative of margins could 

have slowed the decline in taxon richness in treated sites relative to controls thus 

causing the disparity between treated and control reaches post-treatment. 

Nevertheless, the general decline in richness and upland families implicates larger- 

scale factors in the structuring of stream communities (Bradley and Ormerod, 2001; 

Malmqvist, 2002; Johnson et al., 2004).

Differences observed in invertebrate assemblages suggest that riparian restoration 

might have been sufficient to change aquatic biota. Fencing and coppicing regimes 

appeared to promote richer assemblages with more marginal, lowland species. Results 

support the role of the riparian zone in maintaining biodiversity but imply a shift away 

from communities typical of upland streams (Naiman et al., 1993). However, further 

investigation is required to establish reasons for reduced richness among typical 

headwater organisms. Unfortunately, only tentative conclusions can be drawn from 

this study because treatment effects were confounded by year effects. This highlights 

the importance of experimental design and the need for project-specific data 

collection in the evaluation of management (Kondolf, 1995; Minns et al., 1996; 

White, 1996; Bash and Ryan, 2002; Harrison et al., 2004).
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[6.01 Abstract

Although salmon abundance is generally declining in England and Wales, local trends 

may differ from generalised pattern. Local catchment management could make a 

particularly important contribution to offsetting such effects, but few quantitative case 

studies are available.

In the UK, the Rivers’ Trusts have pioneered ambitious schemes that aim primarily to 

augment river habitats for salmonids. However, the documentation and evaluation of 

such projects has been limited. One such project was initiated in 1996 by the Wye 

and Usk Foundation (WUF) and comprised a catchment-wide scheme of riparian 

management that aimed to reverse a perceived downward trend in salmonid 

populations across the Wye system.

The analysis of data from routine monitoring undertaken extensively in the Wye by 

the Environment Agency between 1985 and 2004 confirmed a decline in populations 

of Atlantic salmon (Salmo salar) and brown trout (S. trutta) (of 50% and 67% in 

juveniles, respectively) but trends varied between species and tributary streams (n = 

41). Juvenile (>0+) salmon, juvenile trout and salmon fry (0+) all demonstrated 

declines but similar trends were not observed in trout fry. Trends through time 

indicated distinctions between streams with strongly decreasing mildly decreasing or 

increasing trends in salmonid populations prior to riparian management (1985-1997). 

Streams in which populations declined were defined as those within which abundance 

was negatively correlated with time. Declining trends in juvenile trout were evident 

in 66% of rivers, and declines in salmon were also observed in 66% of rivers in which 

this species were present during the study period.

The effects of recent riparian management on salmonid populations are so far

negligible. Three possible explanations are that i) 6 years is too short a period to

detect any response; ii) local trends in salmonids are governed by larger-scale

processes or iii) effects are masked by other manipulations, for example the removal
>

of barriers, that have led to wider fish dispersion within treated tributaries.
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f6.ll Introduction

The abundances of many vertebrate species, including birds, amphibians and fish, 

have declined over the last century in response to widespread changes in land use and 

management (Pitcher and Hart, 1982; Fuller et al, 1995; Noon and McKelvey, 1996; 

Kirk and Hyslop, 1998; Edwards et al, 2000; Alford et al., 2001). A framework of 

agreements, Directives (e.g. 92/43/EC and 2000/60/EC) and legislation such as the 

Ramsar and Bonn Conventions of the 1970’s and the Convention on Biological 

Diversity in 1992 aim to conserve and where possible to boost native populations, 

often by provision and protection of suitable habitat (Dias, 1996; Rieman et al., 2001; 

O'Connell and Yallop, 2002; Smith and Hellmann, 2002; Benton et al., 2003). For 

some organisms however, populations are widely dispersed outside protected areas 

during some or all of their life cycles (Friedland, 1998; Thiollay, 2006). Moreover, 

habitats such as rivers and wetlands are often affected by processes over large spatio- 

temporal extents so that protected areas alone are insufficient to guarantee effective 

conservation (Buckton and Ormerod, 2002; Allan, 2004; Gaston et al., 2006). For 

migratory fish in rivers, these two effects are compounded (Durance et al. 2006).

One option in these circumstances is to use local management or restoration in an 

attempt to drive population abundance in directions that deviate from global or 

regional trends (Pechmann et al., 1991; Alford and Richards, 1999). Such restoration 

or management schemes should be appropriate to specific populations, while using 

evaluation methods that are suited to local conditions (Kondolf, 1995; Bash and Ryan, 

2002; Downes et al., 2002). In rivers, the catchment is seen as the most appropriate 

unit for management, with activities sufficiently dispersed to capture as a large a 

proportion as possible o f threatened populations. Ideally, baseline data should be 

collected to identify whether populations respond in desired ways to management 

action. In many cases, however, organised data collection is overlooked or considered 

expensive so that alternative assessment methods must be sought.

Declines in fish populations have been widely reported, and in river systems are often 

attributed to pollution, climate change, exploitation pressure, habitat loss, effects of 

exotic species and fragmentation (Mills, 1971; Pitcher and Hart, 1982; Noakes et al, 

2000; Ormerod 2003). For example, the numbers of salmon from English and Welsh
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rivers alive in the sea on 1st January in the first sea winter (the pre-fishery abundance, 

PFA) and the numbers of returning salmon declined between 1970 and 2004 by 50 

and 35 percent, respectively (Environment Agency and CEFAS, 2004).

Salmonid abundance is naturally variable over time both within populations and 

between populations, in response to environmental change and the genetic 

predisposition of the fish (Pitcher and Hart, 1982; Milner and Elliot, 2003). It follows 

that the national decline in salmon over the last three decades might not be reflected in 

every individual river (Environment Agency, 2003a; Environment Agency and 

CEFAS, 2004). For example, contrary to national trend, salmonid abundances in the 

Tyne, Wear, and Taff have increased over the last thirty years (Environment Agency, 

2003a; Environment Agency and CEFAS, 2004).

A decline in salmon abundance on the River Wye, Mid-Wales is apparent from rod 

catches available since 1974 (Gee and Milner, 1980; Environment Agency, 2003a and 

b). This, along with anecdotal evidence from local angling groups, prompted a scheme 

of riparian management of tributary streams within the Wye catchment, to promote 

nursery habitat for salmonids. This catchment-wide management scheme, launched by 

the Wye and Usk Foundation (WUF) in 1996, aimed to reverse a perceived downward 

trend in salmonid populations across the Wye catchment. Riparian management 

undertaken on tributaries of the Wye catchment was based on the assertion that there 

was a downward trend in salmonid density that might be reversed, at least in managed 

locations.

This chapter uses routinely collected data to determine whether management effects 

can be detected against a background of spatio-temporal variations in salmonid 

density across the Wye catchment. Given likely variation of trends in salmonid 

abundance across British rivers, and unreliability of rod-catch statistics in general, any 

evidence for a decline in salmonid density across the Wye catchment was first tested 

(Bielak and Power, 1988; Mills, 1989). Second, rivers with similar trends in salmonid 

density between 1985 and 1997 were identified. Then, the effect of riparian
s

management on treated streams (post 1998) was tested against reference streams that 

had demonstrated similar trends in salmonids during the pre-treatment period (1985- 

1997). Research questions addressed were therefore i) was there a decline in salmonid 

density over time? ii) was a general decline salmonid populations evident in all
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tributary rivers prior to management? iii) did riparian management have an effect on 

salmonid populations?
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[6.21 Study Area and Riparian Management.

The Wye system has been extensively described by Edwards and Brooker (1982), 

Ormerod (1987,1988), Ormerod and Edwards (1987) and Jarvie et al. (2003) and also 

in Chapter 3 of this thesis.

Traditionally, the River Wye was famous for its spring-run salmon (Environment 

Agency, 2003b). Atlantic Salmon (Salmo salar) are now explicitly mentioned on the 

Habitats Directive (Directive 92/43/EEC) and are a species cited in the Sites of 

Special Scientific Interest (SSSI) and Special Area of Conservation (SAC) 

designations of the Wye (Environment Agency, 1998; Environment Agency, 2000; 

Joint Nature Conservancy Committee, 2004). Over the last 30 years, a downward 

trend in rod catches has caused concern for the salmon fishery in particular 

(Environment Agency, 2003b). Rod catches of trout (Salmo trutta) have also declined 

in the Wye (Environment Agency, 2003a).

In the UK, techniques to create optimum habitat for salmonids by the management of 

riparian habitat have been applied primarily on lowland chalk rivers (Salmon 

Advisory Committee, 1991; Giles and Summers, 1996; Holmes, 2002). Such 

management was designed to promote spawning and nursery habitat for salmonids 

and autochthonous production (see Chapter 2). Additional benefits might include 

reductions in livestock poaching (trampling), and shading of channels that limit bank 

vegetation and contribute to bank destabilisation (Garcia de Jalon, 1995, Hendry et 

al, 2003). Siltation of spawning gravels and less complex habitat often result 

(Hemphill and Bramley, 1989, Salmon Advisory Committee, 1991). Management of 

the riparian zone to create optimum habitat for salmonids usually involves fencing of 

a riparian buffer and coppicing or thinning of bank-side trees (Hemphill and Bramley, 

1989; Hendry and Cragg-Hine, 1997). The primary aim is to encourage riparian 

vegetation in order to stabilise banks and reduce silt input to the river from the banks 

themselves as well as from runoff from the surrounding landscape. Trees are coppiced 

to promote bank and channel vegetation (O'Grady, 1993). Reduced shading of banks 

may encourage more complex vegetation structure, thus stabilising banks. In addition, 

allowing more light into the stream channel can promote the growth of macrophytes 

and algae within the stream. In-stream and amphibious plants may then increase the 

complexity of the channel and provide refuges for fry and juvenile fish.
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Riparian management work on the River Wye, Mid-Wales, aimed to change the in- 

stream environment to increase the quality and quantity of habitat available to 

salmonid fish (The Wye and Usk Foundation, 2006a, b). Management of riparian 

habitat was implemented on the tributary rivers of the River Wye in Mid-Wales from 

1996. This study examines the effect of habitat alteration on salmonid density in two 

rivers, the Clywedog and the Edw, on which extensive management which began in 

1998 and was completed in 1998 and 1999 respectively (Figure 6.1). Alder (Alnus sp.) 

and willow (Salix sp.) trees on the river banks were coppiced and approx l-3m of the 

riparian zone was fenced to exclude grazing. In 1996, obstructions which may have 

impeded salmonid migration to spawning grounds were removed from the tributaries 

of the upper and mid Wye (Figure 6.2; The Wye and Usk Foundation, 2006c). The 

programme included the removal of debris dams and installation of fish passes where 

practical.

174



Salmonid populations in the Wye catchment, Wales.

Chwefri

Figure 6.1. The Wye Catchment, Mid-Wales. Location of rivers that were treated with riparian 
habitat management (1996 to 2003) and rivers used as controls. Treated rivers were classified as 
those which had been treated along >66% and <33% of their length respectively.
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X Barriers removed 1996 
0 Electrofishing sites 1985-2004

0 10km

Figure 6.2. Location of obstructions removed from tributaries of the Wye in 1996 and 
electro fishing sites sampled during the period from 1985 and 2004.
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[6.31 Methods

Tributaries in the Wye catchment have been surveyed for salmonids, by the 

Environment Agency, using electrofishing since the late 1970’s, and more 

consistently since 1985. No data were collected in 2000 due to Foot and Mouth 

disease in the UK. The majority of sampling (91% of samples on the database) took 

place during the summer months of July, August and September. During the period 

1985 to 2002 salmonid densities per 100m2 of river length were estimated by 

electrofishing using pulsed D.C. output. Density estimates from quantitative (Q) and 

semi-quantitative (SQ) electrofishing surveys were included in the data set. 

Quantitative surveys (29%) estimated the density of fish from three electrofishing 

runs per site, and in semi-quantitative surveys (71%) densities were recorded from 

just one run per site. Q is a population estimate per 100m2, SQ is the actual number of 

fish caught per 100m2 (Department of the Environment, 1988). Quantitative survey 

data were used to calibrate semi-quantitative surveys against quantitative surveys 

according to the method described by Strange et al. (1989) (see Appendix I for 

calibration equations). All surveys could therefore be reported as an estimate of 

population density, as numbers of fish per 100m2 of river. On each sampling occasion 

numbers of Atlantic salmon (Salmo salar) and trout (Salmo trutta) fry (age 0+) and 

juveniles (age >0+) were recorded. No distinction is made between the brown trout 

and sea trout, but in the Wye trout are predominantly resident brown trout (Edwards 

andBrooker, 1982; Slater, 1988).

The majority of records on the Environment Agency’s (EA’s) electrofishing database 

were undertaken as part of the ‘National’ (formerly ‘Regional’) ‘Juvenile Salmonid 

Monitoring Programme’ (NMP), for which ‘temporal’ and ‘spatial’ sites were 

surveyed across England and Wales. Sites intended for spatial comparison of

salmonid populations were monitored on a 5 year rolling programme, and sites which
%

were monitored primarily for use in temporal analyses were surveyed annually 

(Environment Agency and CEFAS, 2004). Other surveys included those carried out 

for Environmental Impact Assessments (ELA’s) and post-stocking. All such surveys 

were included in analyses.
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One of the aims of this chapter was to identify variation in salmonid densities between 

the tributaries of the Wye. Data from sites within each tributary were therefore 

pooled. Grouping data by tributary also helped to overcome some of the difficulties 

imposed by a non-uniform set of data. The number of tributaries sampled varied from 

year to year, partly because of the initial design and subsequent modification of the 

NMP, and partly because of the inclusion of ad hoc surveys in the data set. Precise 

locations of surveys within rivers also altered over the years, which limited the scope 

for direct comparison of individual sites.

Since long-term trends were of interest over an eighteen year period, any river which 

had fewer than 5 replicate years of data prior to treatment (up to and including 1996) 

was excluded from analyses. Similarly, when data obtained before and after treatment 

were compared, rivers with less than 3 replicate years of data post-treatment (from 

1997 to 2002) were excluded. A total of 37 rivers were included in this study, 

including two (Clywedog and Edw) on which over 66% of the length of riparian 

habitat was altered from 1998 (Figure 6.1; exact locations confidential). Not every 

river was sampled in each year, and from 1997 the frequencies of rivers sampled each 

year were less consistent than they had been in the previous 10 years previously (1985 

-  1995) (Appendix II).

The majority of rivers sampled were electrofished just once each year; however some 

rivers were sampled more than once or had multiple sample sites. A mean annual 

density was therefore calculated for each river. Analyses were performed separately 

for each salmonid species age-group, using the SPSS statistics package (Version 

11.5). Those rivers for which there were no records of either juvenile salmon or 

salmon fry were excluded from analyses of juvenile salmon or salmon fry 

respectively.

Densities of salmon fry, juvenile salmon, trout fry and juvenile trout were normalised 

by log (n+1) transformation prior to analyses, according (o protocols outlined in Fry 

(1993). Transformed densities of each salmonid species age-group were then 

standardised by river, to avoid the bias of the results by any one river which may have 

had numerous fish to start with (Sokal and Rohlf, 1995). Each river therefore had a

178



Salmonid populations in the Wye catchment, Wales.

mean density of 0 and standard deviation was equal to 1. The resulting z scores were 

used in all analyses.

[6.3.1] Trends in salmonid density over time

In order to establish whether there was a general decline in salmonid density over 

time in the Wye density data were grouped into 5 subsets of years (1985-1988, 1989- 

1992, 1993-1996, 1997-1999 and 2000-2004). This removed any autocorrelation of 

density between years, identified from plots of autocorrelation functions (SPSS for 

Windows, 2001; Tabachnick and Fidell, 2001). When values of annual density were 

missing for a particular river, they were replaced with the mean z scores for that river 

in the relevant time period. Linear relationships between relative salmonid density 

(standardized by river) between time periods were then tested for by regression. 

(Sokal and Rohlf, 1995).

Correlation analyses on the frequency of years that each river was sampled and 

densities of salmonids (standardized by river) in the Wye catchment were used to 

identify rivers with sampling frequencies that may have obscured trends in density. 

There were rivers with sampling frequencies that correlated with the general trends 

observed in salmon fry and juveniles and trout fry densities in the Wye catchment 

(Appendix II). Regression analyses were then repeated without those rivers to 

establish whether trends observed were symptomatic of the frequency of sampling.

[6.3.2] Variations between tributaries

Correlation between salmonid densities and time were used to discover whether a 

general decline in salmonid populations was evident in all tributary rivers prior to 

management. Spearman’s correlation coefficients (rs) described the monotonic 

correlation between mean annual salmonid density and year for each tributary during 

the period 1985 to 2004 (Sokal and Rohlf 1995). Each coefficient was taken to 

represent the temporal trend in salmonid density for each river. Positive correlation 

coefficients, approaching 1.0 could be said to represent tributaries with an increasing 

trend in salmonid density, whilst negative coefficients, approaching -1.0, represented 

tributaries with declining salmonid populations.
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If there was no general trend of salmonid decline across the catchment, a normally 

distributed population of r coefficients (rs) centred on a mean of zero change in 

density would be expected. The expected frequencies of rs in this ‘expected’ 

population were calculated as a normal distribution of rs with the same standard 

deviation as the observed population but a mean rs equal to 0. The normal distribution 

of ‘observed’ populations of rs was confirmed by Kolmogorov-Smimov tests.

The departure of the ‘observed’ correlation coefficients from those ‘expected’ was 

tested by Chi-squared goodness of fit tests (Sokal and Rohlf 1995). Frequencies of 

observed rs values were tested against expected rs values for four categories of rs 

values (-l>-0.5, -0.5 > 0, 0 < 0.5, and 0.5 < 1.0).

If greater numbers of tributaries had densities of salmonids that were negatively 

correlated with year greater than that which may be expected due to random chance, 

the general assumption of declining salmonid populations in the Wye catchment 

would be supported.

[6.3.3] The effects o f riparian management

A Before-After-Control-Impact (BACI) method was employed to establish whether 

riparian management had an effect on salmonid populations. It compares the 

difference between control and treated (impacted) rivers, before and after treatment 

(impact).

First, suitable groups of control rivers were identified for each of the treated rivers. 

Rivers were grouped into those that demonstrated similar trends in density prior to 

treatment; between 1985 and 1995 for streams from which obstructions were removed 

and 1985 and 1997 for those with altered riparian habitat (Appendices III and IV). 

This was done by taking the rs describing the correlation between annual densities of 

salmonids and year (from 1985 to 1995) and grouping rivers by four categories of rs 

(Table 6.1). Control rivers were then allocated to treatment rivers that were classified 

similarly prior to treatment.

Mean annual densities of each salmonid species age-group were standardized by river 

to give a mean annual value of relative density. The ‘BACI’ analyses was then
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performed on the relative densities of control and treatment rivers from each group of 

tributary rivers (Table 6.1; Stewart-Oaten et al.t 1986; Downes et al, 2002). A two 

sample /-test compared the mean differences in relative density (density in the 

‘control rivers’ minus the density in the ‘treated river(s)’) before and after treatment. 

Divergence of treated rivers from controls post-treatment would demonstrate a 

treatment effect.

Table 6.1. Method of classification of tributary rivers with similar temporal trends in 
salmonid density prior to treatment.

Group Spearman’s Strength of correlation Inference of trend in
correlation coefficient between salmonid salmonid population.

__________(rs).__________________ density and year._________________________
4 0.5 < 1.0 Strong positive Increasing population
3 0.0 < 0.5 Weak positive Slight increase
2 -0.5 > 0.0 Weak negative Slight decrease
1 -1.0 >-0.5______________ Strong negative_________ Declining population

If treatment was effective, a lagged response to riparian alteration would be 

anticipated (Kondolf, 1993). This could result in a relatively large variation in the 

difference in density (treatment minus control) during the post-treatment phase. 

Conversely, the control sites were chosen for their similarity to the treated sites and 

there would be little variation in the difference between them prior to treatment (Table 

6.1). The t statistics were therefore adjusted for unequal variances in each case (Quinn 

and Keough, 2002).

Rivers which had only limited riparian alteration (<33% of their length) and 

tributaries on which obstruction removal had taken place in 1996 were excluded from 

control groups (Appendix III; Figure 6.1). The Edw and Clywedog therefore 

represented the rivers with riparian-treatment, which was completed in 1998 on the 

Clywedog and 1999 on the Edw. To account for multiple tests on species-age groups 

of salmonids, ‘Bonferroni’ adjustments were made independently for each river, since 

treatment occurred at different times (Quinn and Keough, 2002).

The effect of barrier removal on salmonid density was similarly tested. Five tributary 

streams (the Aran, Cammarch, Chwefri, Sgithwen, and Nantmel Dulas) had sample 

sites that were all above the point at which a blockage was cleared in 1996 (Figure
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6.2; Appendix IV). A second BACI analysis tested for the effects of obstruction 

removal, by comparison of treated and control streams prior to and after the winter of 

1996 (Table 6.1; Appendix IV).
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[6.41 Results

[6.4.1] Trends in salmonid density over time

A decline in density was evident in juvenile salmon and fry and juvenile trout 

between 1985 and 2004 across the Wye catchment (Figure 6.3, Table 6.2). Densities 

were also highly variable within and between years and suggested some non-linear 

change through time (Figure 6.3). Trends observed in salmonid densities were not 

affected by the frequency of rivers sampled in each year (Figure 6.3; Appendix II).

[6.4.2] Variations between tributaries

Declining densities of salmon fry, juvenile salmon, and juvenile trout between 1985 

and 2004 were evident in more than half of the streams (Figure 6.4). Observed 

frequencies of correlation between density and year were normally distributed but 

mean coefficients (rs) for salmon fry, juvenile salmon and juvenile trout were negative 

(-0.4, -0.4, -0.6 respectively). The densities of trout fry did not deviate from those 

expected due to random chance, with approximately equal numbers of rivers having 

increasing and decreasing trends in fry (mean rs of -0.1; Figure 6.4).

Prior to riparian management (1985-1997) on the Edw, juvenile trout demonstrated a 

strong decline (rs between density and time = -0.6, in Group 1; Appendix III), and 

trout fry and juvenile salmon declined less dramatically (Group 2; Appendix III). 

Weakly declining trends were also observed in salmon densities (fry and juveniles) in 

the Clywedog. Conversely, weakly positive correlations were observed between year 

and densities of trout (fry and juveniles) in the Clywedog, and salmon fry in the Edw 

(Group 3; Appendix III). None of the treated streams demonstrated strong positive 

increases in salmonid densities in the pre-management period (Group 4; Appendix 

in).

When trends prior to management were determined from pre-1995 densities, species- 

age classes of salmonids from treated streams were assigned to similar control groups 

as they had been when the pre-treatment period extended through to 1997
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(Appendices III and IV). Exceptions were juvenile trout in the Clywedog and salmon 

fry which were placed in either group 2 or 3.

[6.4.3] The effects o f riparian management

No positive effects of the removal of barriers were detected in salmonid populations 

(Appendix V). In fact, a 54% decrease in salmon fry density was observed after 1996 

on the Nantmel Dulas. Similarly, riparian management had very little effect on fish 

density. Only densities of juvenile trout in the Edw suggested a positive response to 

management, having demonstrated marginally significant treatment effects (Table 6.3; 

Figure 6.5). In that instance, density continued to decline in control groups, whilst 

numbers increased in the treated river (Figure 6.5).
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Table 6.2. Regression of salmonid densities against five time periods between 1985 

and 2004 a) within the Wye catchment b) excluding rivers for which survey 

frequency was correlated with salmonid densities in the Wye (Appendix II)
( * * * p < 0  O O l).

a)
Time Period Salmon Fry Juvenile Salmon Trout Fry Juvenile Trout
1985- 1988 68.8 (5.9) 7.9 (0.7) 8.6 (1.2) 10.5 (0.7)
1989- 1992 58.1 (6.1) 6.3 (0.7) 9.6 (2.1) 6.9 (0.6)
1993- 1995 57.2 (6.9) 5.7 (0.7) 11.8 (2 .1) 9.1 (0.9)
1997- 1999 38.1 (4.1) 4.7 (0.4) 14.8 (2.9) 5.6 (0.5)
2000- 2004 44.6 (5.2) 3.9 (0.6) 13.5 (3.0) 5.4 (0.6)
df total, error 535,534 522, 521 554, 553 554,553
r 2 % 12.7 13.8 0.0 7.0
F 77.6*** 83.5*** 1,27 41 3***

b)
___________Salmon Fry Juvenile Salmon Trout Fry Juvenile Trout

df total, error 467,466 456,473 474,473 474,473
R2 % 14.7 17.8 0.1 8.0
F 80.2*** 98.4*** 0.3 41.3***
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Figure 6.3 a). Relative densities of salmon fry in the Wye tributaries 1985 -  2004. 

Densities were estimated as number per 100m2 of river. Mean (±SE) Z scores, 

standardised by river are displayed (N indicates the number of rivers that contributed 

to the mean annual density of the catchment).
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Figure 6.3 b). Annual densities of juvenile salmon in the Wye tributaries 1985 -  

2004. Densities were estimated as number per 100m of river. Mean (±SE) Z scores, 

standardised by river are displayed (N indicates the number of rivers that contributed 

to the mean annual density of the catchment).
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Figure 6.3 c). Annual densities of trout fry in the Wye tributaries 1985 -  2004. 

Densities were estimated as number per 100m of river. Mean (±SE) Z scores, 

standardised by river are displayed (N indicates the number of rivers that contributed 

to the mean annual density of the catchment).

188



Salmonid populations in the Wye catchment, Wales.

C/5

a<D

<D>
•  1— 4 
4—>
cd

Pi

S '
C/D

i

C3
cd
<D

.5

.0

.5

[] -L -

[] —I— C3
[]

- L  C]

N = 92 93 55 53 58 60 61 72 151 47 59 126 82 105 17 39 145 35

< n ' O h O O ^ O H ( S f O ^ , | O N M O \ O M f r) , ct-
O O O O O O O O O O O ' n O' s O n O' n O n O n O n O' n O' n O O O O
^ ^ \ O N Q \ ( ^ ^ O N O \ ^ \ O n ^ O \ G \ G \ 0 0 0 0
rH 1—4 1“4 i-4 1-4 i-4 i—4 r-4 i—4 i—4 i-4 i*4 i—I i—H (N) fSj

Year

Figure 6.3 d). Annual densities of juvenile trout in the Wye tributaries 1985 -  2004. 

Densities were estimated as number per 100m2 of river. Mean (±SE) Z scores, 

standardised by river are displayed (N indicates the number of rivers that contributed 

to the mean annual density of the catchment).
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Figure 6.4. Variation across streams in trends in salmonid density prior to treatment. 

Observed and expected frequencies of rivers (f) with increasing and decreasing trends 

in salmonid populations over time as defined by Spearman’s correlation coefficients 

(rs). The expected curve is a normal distribution curve with a mean of zero and the 

same standard deviation from the mean as the observed data. Chi-squared (x2) tested 

the goodness of fit between observed and expected trends indicated by (*P>0.05).
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Table 6.3. The density of salmonids (Mean ± SE) before and after the completion of 

management work on the Clywedog and Edw, in 1998 and 1999 respectively. 

Differences between the relative densities of salmonids (standardized by river) in 

treated and control streams (Control minus Treatment) were tested for by two-sample 

/-tests, /-values are shown in bold. Degrees of freedom were adjusted for unequal 

variances when appropriate. P values prior to ‘Bonferroni’ adjustment for multiple 

tests are displayed.

Clywedog Edw

Control 
Group 
Mean (SE)

Treatment 
Mean (SE)

Control 
Group 
Mean (SE)

Treatment 
Mean (SE)

Salmon Fry

Juvenile Salmon

Trout Fry

Juvenile Trout

pre- treatment 48.7 (5.4) 69.2 (7.9) 44.3 (3.1) 156.2 (17.5)
post- treatment 36.5(3.8) 53.4 (6.8) 40.1 (16.2) 196.7 (37.8)
Df 7.36 5.185
t -0.464 -2.032
P 0.656 0.096

pre- treatment 6.2 (0.4) 7.5 (1.4) 6.2 (0.4) 12.8 (2.1)
post- treatment 4.8 (1.4) 1.3 (0.6) 5.0 (1.1) 11.3(4.5)
Df 16.0 4.7
t 0.570 -0.800
P 0.576 0.462

pre- treatment 10.2 (2.1) 13.6 (4.6) 7.8 (1.4) 3.6 (1.2)
post- treatment 17.8 (8.1) 3.5 (3.4) 6.2 (2.3) 4.0 (1.4)
Df 14.2 9.7
t 2.401 -0.730
P 0.031 0.483

pre- treatment 7.2 (0.7) 4.4 (0.9) 7.9 (1.2) 4.3 (0.8)
post- treatment 5.3 (0.2) 2.0 (0.8) 2.9 (0.7) 11.5 (3.3)

Df 11.8 4.368
t 1.004 -3.619
P 0.335 0.0191

t After Bonferroni adjustment for multiple tests (P/4), treatment effects are evident at the 90% level 
of confidence.

i
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Figure 6.5. The relative density of juvenile trout in the Edw, control streams (Control 

Group 1) and the difference between the treated and control streams, ‘Edw - Control’ 

(1985-2004). The arrow indicates when riparian management took place (1999).
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[6.51 Discussion

The primary aim of this chapter was to establish the effectiveness of management 

works in elevating salmonid populations in the Wye system. The first challenge of 

this study was to establish a baseline against which to evaluate management in the 

absence of project-specific monitoring.

Routine annual monitoring was sufficient to detect long-term trends (over 19 years) 

within tributary streams. Salmon and trout populations were predominantly in decline 

within the River Wye system during the period 1985-1998, prior to management. This 

confirmed the premise for intervention (The Wye and Usk Foundation, 2006a; 

Luxton, 2002). Those baseline data were used to identify suitable controls against 

which to evaluate management. Attempts to improve riverine habitat did not reverse 

declining trends in salmonid populations in the Wye catchment within the first 5 years 

post-treatment.

There are a number of possible reasons why no effect of treatment was detected in the 

Wye. The (whole river) scale of investigation could have been too coarse to detect the 

effects of management. Ecological restoration often takes time to effect change and 

perhaps an effect will become evident in time. Alternatively, either the location of 

works or the techniques applied may not have been entirely appropriate. A further 

possibility is that factors driving population declines operated over much larger, 

regional or global, scales and masked the effects of habitat alteration.

Population densities of salmonids were recorded at one site, often within the 

downstream reaches of rivers, on an annual basis. On the Clywedog and Edw the vast 

majority of the river length was fenced, coppiced or both but management was not 

entire and often dependent on landowner compliance. It is possible that changes 

affected by management elsewhere along the river may not have been detected at the 

study reach. Despite being relatively crude, electro-fishing methods employed were 

able to detect long-term change within populations. If a reversal of decline were 

affected within the river a change might also be anticipated at the study site. 

Management aimed to increase populations of salmonids within tributary streams of 

the Wye catchment. Results suggest that, up to 2004, restoration at the whole-river 

scale was not in effect.
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A lagged response of biota to river management is frequently reported (e.g. Scmton et 

al., 1998; Moerke and Lamberti, 2003). It takes time for riparian vegetation to 

develop before it can provide habitat cover, increase bank stability and buffer against 

siltation (Kondolf, 1993). Even if or when habitat conditions are optimal for juvenile 

salmonids there may be a lag before subsequent generations are able to take full 

advantage of those resources. For example, if an optimal habitat were created, egg 

survivorship in clean gravels might improve, the following year fry emergence might 

be affected which would in turn impact on juvenile density in the year after that 

(Armstrong et al, 2003). A significant change in density might not be affected until 

that first cohort spawned its own young; some 4 years later (Slater, 1988; Klemetsen 

et al, 2003; Milner et al.,, 2003).

It is possible that juvenile trout populations in the Edw demonstrated a lagged 

response to management. In 2004 post-treatment densities continued to rise, while 

populations control streams (in which populations demonstrated a similar decline 

prior to management) continued to decline. Continued investigation of this river could 

establish whether populations are truly recovering and rule out the effects of random 

population fluctuations (Pechmann et al, 1991).

In the absence of data both above and below obstructions and without any baseline 

‘downstream’ data for comparison, the effects of barrier removal were particularly 

difficult to ascertain. Survey sites that were upstream of removed barriers were few 

(n=5) and often confounded by limited riparian or other work, such as gravel cleaning. 

No changes in populations were detected at study sites upstream from blockage 

removal which suggests that barrier removal at those locations did not elevate 

salmonid populations. However, there were a number of locations (n=33) at which 

barriers were removed or fish passes installed at which no data were available.

While fish passes at weirs and the removal of barriers that impede salmonid migration 

can help populations to expand their range, the removal of ‘log-jams’ and large 

woody debris from streams is controversial (Hendry at al, 2003). Juvenile and
s

spawning habitats of Pacific salmonid have benefited from the addition of large 

woody debris to streams in the American Pacific Northwest (House and Boehne, 

1985; Keim, 2002). Woody debris also contributes to stream production, particularly 

in headwaters, through the provision of coarse, particulate and dissolved organic 

matter (Bilby and Likens, 1980; Gumell et al, 1995). Further investigation by
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project-specific monitoring may be better employed to detect effects of the removal of 

barriers from tributaries o f the Wye (Hart, 2002).

Juvenile trout populations in the Edw were the only species-age group to demonstrate 

any positive response to riparian management and no effect of the removal of barriers 

to migration was detected. Although lagged responses to riparian management could 

yet occur, this does raise the question of whether the method and location of 

management were appropriate.

The Clywedog and Edw were the rivers most extensively managed and the two rivers 

investigated in this chapter. However, prior to management (1985-1997) their 

populations of salmon and trout were either slightly increasing or slightly declining 

(Appendix III). Only juvenile trout in the Edw were classed as strongly declining, and 

it was only on the Edw that populations suggested some evidence of recovery. This 

suggests that i) management was not targeted at the worse affected tributaries and ii) 

perhaps it would have been more effective if applied to rivers where populations 

demonstrated most dramatic declines.

The worse affected rivers were not targeted since a better chance of recovery was 

anticipated on tributaries that were traditionally ‘good’ salmon rivers, such as the 

Clywedog and Edw (Slater 1988; Luxton, 2002; The Wye and Usk Foundation, 

2006b). After 2003, beyond the scope of this study, management was undertaken on 

the Llynfi Dulas, Duhonw, Triffrwd and Hafrena, all of which demonstrated strongly 

declining salmonid populations prior to 1997 (Appendix HI). In view of post

treatment changes in trout densities in the Edw, management might be more 

successful here. By the same reasoning riparian management might be appropriate for 

juvenile populations on the Llynfi and Garth Dulas (Appendix Eli).

Ecologically sensitive or ‘soft engineering’ of rivers is still an emerging and largely 

untested science. In rural areas, exclusion of livestock by fencing is the most 

established technique used to promote riparian vegetation and stabilise banks. 

However, buffers that store sediment can also contribute to the river load during high 

rainfall events (Hook, 2003; Davies et al., 2006). This is not a criticism of fencing per 

se but of land management within the wider catchment that may increase the sediment 

load in runoff. The buffer alone may not be sufficient to counterbalance soil erosion 

within the wider catchment.
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In pursuit of an improved riparian habitat, advice on the treatment of riparian trees 

often appears to be conflicting. Planting is recommended, as is coppicing, thinning 

and pruning (Broadmeadow, 2004). Many authors advocate a balanced approach that 

is appropriate to river type (O'Grady, 1993; Hendry et al 2003; Summers et al, 

2005). Tree roots bind the soil, adding tensile strength to the banks (Easson and 

Yarbrough, 2002). Conversely, trees with large canopies may be more susceptible to 

falling during storms, taking large sections of bank with them. During the 18th and 

19th centuries at the height of the clog-making industry, alders were coppiced along 

the banks of the Wye (Slater, 1988). Coppicing retains the root system of the tree 

whilst modifying the canopy, initially allowing more light to the banks and stream 

(Rackham, 1986). Prior to the arrival of clog-making in Britain in the 16th century, 

many of the upland valleys of the Wye remained densely wooded (Slater, 1988). 

Natural cycles of tree fall would have resulted in a mosaic of light and shady patches 

along the river. In the absence of sediment sources from intensively farmed land as 

today, sediment introduced by falling trees was unlikely to have over-loaded 

spawning gravels. In our managed landscape, rotational coppice can maintain a 

patchy, diverse habitat and promote understorey growth and stabilise stream banks 

(Rackham, 1986). For these reasons, the Wye Habitat Improvement Programme 

adopted coppicing as a restoration technique to stabilise banks but also to promote in- 

stream cover and production (Luxton, 2002; The Wye and Usk Foundation, 2006a, b).

The use of coppice in the UK as a salmonid habitat improvement technique has been 

largely confined to lowland streams (e.g. Giles and Summers, 1996) . The river 

continuum concept describes the structure and function of communities along a river 

system (Vannote et al, 1980). The concept characterises upland, headwater streams 

(orders 1-3) as being ‘strongly influenced by riparian vegetation which reduces 

autotrophic production by shading and contributes large amounts of allochthonous 

detritus’. The ecology of upland streams is therefore adapted to depend on terrestrial 

inputs and typically invertebrate communities comprise a high proportion of shredders 

rather than grazers (Vannote et al, 1980). This description differs markedly from that 

of lowland chalk rivers in the UK on which coppicing and fencing have been 

successfully employed to boost trout populations (Giles and Summers, 1996; 

Summers et al, 2005). Summers et a l (2005) described one such low gradient 

English chalk stream as having banks and margins vegetated with tough grasses such
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as reed canary-grass (Phalaris arundinacea L.) and emergent plants like watercress 

(Rorippa nasturtiumaquaticum L.), with ‘fool's water-cress’ (Apium nodiflorum L.) 

along the margins, and submerged macrophytes, typically Ranunculus (sp.) in the 

mid-channel. In fact, species of algae found within the Wye catchment, such as 

Lemanea and Rhodophyta (red macro-algae), are adapted to shaded conditions (Hynes 

1970; Thrib and Benson-Evans 1983, 1984; Luxton, 2002). Perhaps opening up the 

canopy was not appropriate to the upland streams of the Wye?

The increased light afforded by initial coppicing may be short-lived. In 2004, middle 

reaches of the Clywedog appeared largely ‘tunnelled’ by 5 year-old re-growth of 

willow (see Chapter 4). Similar observations were made by Luxton (2002) just one 

year post-coppice who also observed ‘no tunnelling’ of bank vegetation prior to 

treatment. It is possible that neither light interception nor allochthonous leaf-litter 

input were reduced by coppicing in the long term. However, the thinning and 

coppicing of approximately 50% of bank-side trees within the Wye catchment 

probably diversified the age structure of riparian trees, which is generally considered 

beneficial to salmonid populations, notably trout, as well as general biodiversity 

(Lewis and Williams 1994; Luxton, 2002; Broadmeadow, 2004).

Functional relationships between habitat variables and fish production remain poorly 

understood and so responses to riparian alteration are difficult to predict and interpret 

(Armstrong et al., 2003). Cover is likely to be a key attribute in promoting salmonid 

abundance and is broadly defined as anything beneath which a fish could be hidden 

from above such as overhanging and in-stream vegetation, undercut banks, woody 

debris, rocks, deep or turbulent water (Heggenes, 1988; Milner et al.,, 2003). Over

head shade from tree canopies can provide additional cover, allochthonous energy 

sources and protection from extremes of temperature (see review by Armstrong et al., 

2003). Conversely, juvenile trout (>0+) surveyed by Eklov et al. (1999) in southern 

Sweden during late summer / early autumn demonstrated a negative relationship with 

temperature which implies that shading reduces trout production in cool, temperate 

regions (Armstrong et al., 2003).

The decline observed in juvenile trout, in the absence of any decline in fry densities 

suggests that the two life-stages responded to different regulating factors. If habitat 

were the key factor driving fry densities it seems that it was sufficient to sustain a 

trout fry population at least. For juvenile trout, and salmon fry and juveniles, either
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habitat or food were in decline and restricted the river’s capacity to hold salmonids or 

other environmental factors impacted adversely on populations (Steingrimsson and 

Grant, 1999; Milner et al.„ 2003).

Although salmon and trout often inhabit similar high velocity, well aerated rivers, the 

two species and their life-stages are commonly segregated either through niche 

separation or inter-year class and inter-specific competition (Bremset and Heggenes, 

2000; Armstrong et al., 2003; Milner et al.,, 2003). Salmon were consistently more 

abundant than trout across the catchment as a whole but perhaps their decline 

favoured trout fry? Trout tend to out-compete salmon except in areas of particularly 

fast flows (Armstrong, 2003). Climate or land-use changes could have modified river 

environments to the extent that trout fry had an advantage over salmon fry where 

salmon were in decline.

Population declines were evident in both migratory and non-migratory salmonid 

stocks suggesting that factors operating on river systems were instrumental in 

population declines. Habitat is only one of a vast array of interacting factors that 

impact on salmonid populations (see reviews by Armstrong, 2003; Milner et al.,, 2003 

and Ormerod, 2003). Habitat alteration may influence territorial competition and 

possibly food availability thus regulating population abundance through density- 

dependent feedback (Elliott, 1994; Milner et al., 2003). Meanwhile, density- 

independent factors, such as climate, operate over much larger, regional or global 

scales and can mask the density-dependent effects of habitat intervention (Elliott, 

1995; Milner et a l, 2003). The effects of landscape and climatic factors on trends in 

salmonid populations in the Wye are investigated in Chapter 7.

198



Salmonid populations in the Wye catchment, Wales.

[6.61 References

Alford, R.A., Dixon, P.M. and Pechmann, J.H.K. (2001) Global amphibian population 
declines. Nature 414 449-500.

Alford, R.A. and Richards, S.J. (1999) Global Amphibian population declines: a 
problem in ecology. Annual Reviews Ecology and Systematics 30 133-65.

Allan, J.D. (2004) Landscapes and riverscapes: The influence of land use on stream 
ecosystems. Annual Review of Ecology Evolution and Systematics 35 257-284.

Armstrong, J.D., Kemp, P.S., Kennedy, G.J.A., Ladle, M. and Milner, N.J. (2003) 
Habitat requirements of Atlantic salmon and brown trout in rivers and streams. 
Fisheries Research 62 143-170.

Bash, J.S. and Ryan, C.M. (2002) Stream restoration and enhancement projects: is 
anyone monitoring? Environmental Management 29 877-885.

Benton, T.G., Vickery, J.A. and Wilson, J.D. (2003) Farmland biodiversity: is habitat 
heterogeneity the key? Trends in Ecology and Evolution. 18 182-188.

Bielak, A.T. and Power, G.G. (1988) Catch-records - facts or myths? In: Mills, D. and 
Piggins, D. (Eds.) Atlantic salmon: planning for the future. Croom Helm, London, 
UK.

Bilby, R.E. and Likens, G.E. (1980) Importance of organic debris dams in the 
structure and function of stream ecosystems. Ecology 611107-1113.

Bremset, G. and Heggenes, J. (2001) Competitive interactions in young Atlantic 
salmon and brown trout in lotic environments. Nordic Journal of Freshwater 
Research 75 127-142.

Broadmeadow, S. and Nisbet, T.R. (2004) The effects of riparian forest management 
on the freshwater environment: a literature review of best management practice. 
Hydrology and Earth System Sciences 8 286-305.

Buckton, S.T. and Ormerod, S.J. (2002) Global patterns of diversity among the 
specialist birds of riverine landscapes. Freshwater Biology 47 695-709.

Chapman, D. (1992) Water quality assessments : a guide to the use of biota, sediments 
and water in environmental monitoring, published on behalf of UNESCO United 
Nations Educational, Scientific and Cultural Organization, WHO World Health 
Organization, UNEP United Nations Environment Programme.

Davies, B.R., Biggs, J. and Williams, P. (2006) Towards achieving sustainability for 
the biodiversity of aquatic habitats in UK agricultural landscapes. In (Davies, B.R. 
and S., T. (Ed,A(Eds)Water and the landscape: the landscape ecology of freshwater 
ecosystems.Intemational Association for Landscape Ecology (UK) and Pond 
Conservation., Oxford.

Department of the Environment. (1988) Methods for sampling fish populations in 
shallow rivers and streams 1983. HMSO, London.

Dias, P.C. (1996) Sources and sinks in population biology. TREE 11 326-330.
Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and 

flora (1992) The European Parliament and Council.http://ec.europa.eu/environment 
/nature/nature_conservation/eu_nature_legislation/habitats_directive/index_en.htm 
[Accessed 27/11/06]

Directive 2000/60/EC of the European Parliament and of the Council establishing a 
framework for the Community action in the field of water policy (2000) The 
European Parliament and Council, http://eur-lex.europa.eu/pri/en/oj/dat/2000/ 
l_327Zl_32720001222en00010072.pdf [Accessed 12/7/06]

Downes, B.J., Barmuta, L.A., Fairweather, P.G., Faith, D.P., Keough, M.J., Lake, 
P.S., Mapstone, B.D. and Quinn, G.P. (2002) Monitoring ecological impacts.

199

http://ec.europa.eu/environment
http://eur-lex.europa.eu/pri/en/oj/dat/2000/


Salmonid populations in the Wye catchment, Wales.

Concepts and practice in flowing waters. Cambridge university press, Cambridge, 
UK.

Durance, I., Lepichon, C. and Ormerod, S.J. (2006) Recognizing the importance of 
scale in the ecology and management of riverine fish. River Research and 
Applications 22 1143-1152.

Easson, G. and Yarbrough, L.D. (2002) The effects of riparian vegetation on bank 
stability. Environmental & Engineering Geoscience 8 247-260.

Edwards, P.J., Fletcher, M.R. and Bemy, P. (2000) Review of the factors affecting the 
decline of the European brown hare, Lepus europaeus (Pallas, 1778) and the use of 
wildlife incident data to evaluate the significance of paraquat. Agriculture 
Ecosystems and Environment 79 95-103.

Edwards, R.W. and Brooker, M.P. (1982) The Ecology of the Wye. Dr. W. Junk 
Publishers, The Hague, Holland.

Eklov, A., Greenberg, L., Bronmark, C., Larsson, P. and Berglund, O. (1999) 
Influence of water quality, habitat and species richness on brown trout populations. 
Journal of Fish Biology 54 33-43.

Elliott, J.M. (1994) Quantitative ecology and the brown trout. Oxford University 
Press, Oxford, UK.

Elliott, J.M. (1995) The ecological basis for management of fish stocks. In: Harper, 
D.M. and Ferguson, A.J.D. (Eds.) The ecological basis for river management. John 
Wiley and Sons, Chichester, pp. 323-337.

Environment Agency (2003a) Our nations' fisheries. The migratory and freshwater 
fisheries of England and Wales., Environment Agency., Bristol, UK.

Environment Agency (2003b) River Wye Salmon Action Plan. October 2003., 
Environment Agency, Bristol, UK.

Environment Agency and CEFAS (The Centre for Environment, Fisheries and 
Aquaculture Science) (2004) Annual assessment of salmon stocks and fisheries in 
England and Wales, 2003. Preliminary assessment prepared for ICES, March 
2004., Environment Agency and CEFAS, Bristol, UK.

Environment Agency (1998) Local Environment Agency Plan. Wye Area. 
Environmental Overview., Environment Agency, Cardiff, UK.

Environment Agency (2000) Local Environment Agency Plan. 2000-2005. Wye Area 
Action Plan April 2000., St. Mellons, Cardiff, UK.

Friedland, K.D. (1998) Ocean climate influences on critical Atlantic salmon (Salmo 
salar) life history events. Canadian Journal of Fisheries and Aquatic Sciences 55 
119-130.

Fry, J.C. (1993) One-way analysis of variance. In: Fry, J.C. (Ed.) Biological data 
analysis. A practical approach. Oxford University Press., Oxford, UK.

Fuller, R.J., R.D., G., Gibbons, D.W., Marchant, J.H., Wilson, J.D. and Carter, N. 
(1995) Population declines and range concentrations among lowland farmland 
birds in Britain. Conservation Biology 9 1425-1441.

Garcia de Jalon, D. (1995) Management of physical habitat for fish stocks. In: Harper, 
D.D. and Ferguson, A.J.D. (Eds.) The Ecological Basis for River Management. 
Wiley, Chichester, UK.

Gaston, K.J., Charman, K., Jackson, S.F., Armsworth, P.R., Bonn, A., Briers, R.A., 
Callaghan, C.S.Q., Catchpole, R., Hopkins, J., Kunin, W.E., Latham, J., Opdam, 
P., Stoneman, R., Stroud, D.A. and Tratt, R. (2006) The ecological effectiveness of 
protected areas: The United Kingdom. Biological Conservation 132 76-87.

200



Salmonid populations in the Wye catchment, Wales.

Gee, A.S., Milner, N.J. (1980) Analysis of 70-year catch statistics for Atlantic salmon 
(Salmo salar) in the River Wye and implications for management of stocks. 
Journal of Applied Ecology 17 41-57.

Giles, N. and Summers, D. (1996) Helping fish in lowland streams. Game 
Conservancy Ltd., Fordingbridge, Hampshire, UK.

Gumell, A.M., Gregory, K.J. and Petts, G.E. (1995) The role of coarse woody debris 
in forest aquatic habitats: implications for management. Aquatic Conservation: 
Marine and Freshwater Ecosystems 5 143-166.

Hart, D.D., Johnson, T.E., Bushaw-Newton, K.L., Horwitz, R.J., Bednarek, A.T., 
Charles, D.F., Kreeger, D.A. and Velinsky, D.J. (2002) Dam removal: challenges 
and opportunities for ecological research and river restoration. (Articles). 
Bioscience 52 669-682.

Heggenes, J. (1988). Effect of experimentally increased intraspecific competition on 
sedentary adult brown trout (Salmo trutta) movement and stream habitat choice. 
Canadian Journal of Fisheries and Aquatic Sciences 45 1163-1172.

Hemphill, R.W. and Bramley, M.E. (1989) Protection of river and canal banks. CIRIA 
and Butterworths, London.

Hendry, K. and Cragg-Hine, D. (1997) Restoration of riverine salmonid habitats. 
Environment Agency, Bristol, UK.

Hendry, K , Cragg-Hine, D., O'Grady, M., Sambrook, H. and Stephen, A. (2003) 
Management of habitat for rehabilitation and enhancement of salmonid stocks. 
Fisheries Research 62 171-192.

Holmes, N.T.H. (2002) River Rehabilitation in Low Energy Rivers - the Chalk Rivers 
of England. (Ed,A(Eds)13th International Salmonid Habitat Enhancement 
WorkshopCentral Fisheries Board, Westport, Co. Mayo, Ireland.

Hook, P.B. (2003) Sediment retention in rangeland riparian buffers. Journal of 
Environmental Quality 32 1130-1137.

House, R.A. and Boehne, P.L. (1985) Evaluation of instream enhancement structures 
for salmonid spawning and rearing in a coastal Oregon stream. North American 
Journal of Fisheries Management 5 283-295.

Hynes, H.B.N. (1970) The ecology of running waters. Liverpool University Press, 
Liverpool, UK.

Jarvie, H.P., Neal, C., Withers, P.J.A., Robinson, A. and Salter, N. (2003) Nutrient 
water quality of the Wye catchment, UK: exploring patterns and fluxes using the 
Environment Agency data archives. Hydrology and Earth System Sciences 7 722- 
743.

Joint Nature Conservancy Committee (2004) The Habitats Directive: selection of 
Special Areas of Conservation in the UK. [WWW] http://www.jncc.gov.uk/page- 
1457 [Accessed:23/06/05].

Keim, R.F., Skaugset, A.E. and Bateman, D.S. (2002) Physical aquatic habitat II. 
Pools and cover affected by large woody debris in three western Oregon streams. 
North American Journal of Fisheries Management 22 151-164.

Kirk, D.A. and Hyslop, C. (1998) Population status and recent trends in Canadian 
raptors. Biological Conservation 83 91-118.

Klemetsen, A., Amundsen, P.-A., Dempson, J.B., Jonsson, B., Jonsson, N., 
O’Connell, M.F. and Mortensen, E. (2003) Atlantic salmon Salmo salar (L.), 
brown trout Salmo trutta (L.) and Arctic charr Salvelinus alpinus (L.): a review of 
aspects of their life histories. Ecology of Freshwater Fish 12 1-59.

Kondolf, G.M. (1993) Lag in stream channel adjustment to livestock exclosure, White 
Mountains, California. Restoration Ecology 1 226-230.

201

http://www.jncc.gov.uk/page-


Salmonid populations in the Wye catchment, Wales.

Kondolf, G.M. (1995) Five elements for effective evaluation of stream restoration. 
Restoration Ecology 3 133-136.

Lewis, G. and Williams, G. (1994) The Rivers and Wildlife Handbook. The Royal 
Society for the Protection of Birds and The Royal Society for Nature Conservation, 
UK.

Luxton, R. (2002) The effects of riparian management techniques on the biota of the 
Clywedog Brook, Wales. Ph.D. Thesis. University of Wales, Cardiff., Cardiff, UK.

Mills, D. (1971) Salmon and trout: a resource, its ecology, conservation and 
management. Oliver and Boyd, Edinburgh, UK.

Mills, D. (1989) Ecology and management of Atlantic salmon. Chapman and Hall, 
London, UK.

Milner, N.J., Elliott, J.M., Armstrong, J.D., Gardiner, R., Welton, J.S. and Ladle, M. 
(2003) The natural control of salmon and trout populations in streams. Fisheries 
Research 62 111-125.

Moerke, A.H. and Lamberti, G.A. (2003) Responses in fish community structure to 
restoration of two Indiana streams. North American Journal of Fisheries 
Management 23 748-759.

Noakes, D.J., Beamish, R.J. and Kent, M.J. (2000) On the decline of Pacific salmon 
and speculative links to salmon farming in British Colombia. Aquaculture 183 363- 
386.

Noon, B.R. and McKelvey, K.S. (1996) Management of the spotted owl: a case 
history in conservation biology. Annual Reviews Ecology and Systematics 27 135- 
162.

O'Connell, M.O. and Yallop, M. (2002) Research needs in relation to the conservation 
of biodiversity in the UK. Biological Conservation 103 115-123.

O'Grady, M.F. (1993) Initial observations on the effects of various levels of deciduous 
bankside vegetation on salmonid stocks in Irish waters. Aquaculture and Fisheries 
Management 24 563-573.

Ormerod S. J. (1987) The influences of habitat and seasonal sampling regimes on the 
ordination and classification of macroinvertebrate assemblages in the catchment of 
the river Wye, Wales. Hydrobiologia 150 2 143-151.

Ormerod S. J. (1988) The micro-distribution of aquatic macroinvertebrates in the Wye 
river system - the result of abiotic or biotic factors. Freshwater Biology 20 2 241- 
247.

Ormerod S.J. and Edwards R.W. (1987) The ordination and classification of 
macroinvertebrate assemblages in the catchment of the river Wye in relation to 
environmental-factors. Freshwater Biology 17 3 533-546.

Ormerod, S.J. (2003) Current issues with fish and fisheries: editor's overview and 
introduction. Journal of Applied Ecology 40 204-213.

Pechmann, J.H.K., Scott, D.E., Semlitsch, R.D., Caldwell, J.P., Vitt, L.J. and 
Gibbons, J.W. (1991) Declining amphibian populations: the problem of separating 
human impacts from natural fluctuations. Science 253.

Pitcher, T.J. and Hart, P.J.B. (1982) Fisheries Ecology. Kluwer Academic Publishers, 
London, UK.

Quinn, G.P. and Keough, M.J. (2002) Experimental Design and Data Analysis for 
Biologists. Cambridge University Press, Cambridge, UK.

Rackham, O. (1986) The history of the countryside. Dent, London, UK.
Rieman, B., Peterson, J.T., Clayton, J., Howell, P., Thurow, R., Thompson, W. and 

Lee, D. (2001) Evaluation of potential effects of federal land management

202



Salmonid populations in the Wye catchment, Wales.

alternatives on trends of salmonids and their habitats in the interior Columbia River 
basin. Forest Ecology and Management 153 43-62.

Salmon Advisory Committee (1991) Factors affecting natural smolt production. 
Ministry of Agriculture Fisheries and Food, Lowestoft, UK.

Scruton, D.A., Anderson, T.C. and King, L.W. (1998) Pamehac Brook: A case study 
of the restoration of a Newfoundland, Canada, river impacted by flow diversion for 
pulpwood transportation. Aquatic Conservation-Marine and Freshwater 
Ecosystems 8 145-157.

Slater, F. (1988) The nature of central Wales : the wildlife and ecology of Powys 
incorporating the original counties of Montgomery, Radnor and Brecon. Barracuda 
Books, Buckingham, UK.

Smith, J.N.M. and Hellmann, J.J. (2002) Population persistence in fragmented 
landscapes. Trends in Ecology and Evolution 17 397-399.

Sokal, R.R. and Rohlf, F.J. (1995) Biometry. The principles and practice of statistics 
in biological research. W.H. Freeman and Company, New York, USA.

SPSS for Windows (2001) SPSS. Base System. SPSS Inc., Chicago.
Stewart-Oaten, A., Murdock, W.W. and Parker, K.R. (1986) Environmental impact 

assessment: 'pseudoreplication' in time? Ecology 67 929-940.
Strange, C.D., Aprahamian, M.W. and Winstone, A J. (1989) The assessment of a 

semiquantitative sampling technique for juvenile Atlantic salmon and trout in small 
streams. Aquaculture and Fisheries Management 21 47-66.

Summers, D.W., Giles, N. and Stubbing, D.N. (2005) The effect of riparian grazing 
on brown trout, Salmo trutta, and juvenile Atlantic salmon, Salmo salar, in an 
English chalk stream. Fisheries Management and Ecology 12 403-405.

Tabachnick, B.G. and Fidell, L.S. (2001) Using multivariate statistics. Allyn and 
Bacon, London.

Thiollay, J.M. (2006) The decline of raptors in West Africa: long-term assessment and 
the role of protected areas. Ibis 148 240-254.

Thrib, H.H. and Benson-Evans, K. (1983) The effect of different light intensities and 
wavelengths on carpospore germination and the apical tips of the red alga Lemanea 
Bory (1808). Nova Hedwigia 37 669-682.

Thrib, H.H. and Benson-Evans, K. (1984) The efect of temperature on the growth of 
Lemanea thalli and carpospore germination. Archiv Fur Hydrobiologie 103 341- 
346.

Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Cushing, C.E. 
(1980) The River Continuum concept. Canadian Journal of Fisheries and Aquatic 
Sciences 37 130-137.

Wye and Usk Foundation (2006a) History of the Foundation. [WWW] 
http://www.wyeuskfoundation.org/history.php [Accessed:6/11/2006].

Wye and Usk Foundation (2006b) Reconnecting the rivers. [WWW] 
http ://www. wyeuskfoundation.org/proj ects/reconnecting.php 
[Accessed:6/11/2006].

Wye and Usk Foundation (2006c) WHIP - The Wye Habitat Improvement Project. 
[WWW]http://www.wyeuskfoundation.org/projects/whip.php 
[Accessed:6/11/2006].

203

http://www.wyeuskfoundation.org/history.php
http://www.wyeuskfoundation.org/projects/whip.php


Salmonid populations in the Wye catchment, Wales.

A P P E N D IX  I

Equations used to calibrate semi-quantitative surveys of salmonid density (actual 
number of fish caught per 100m2 of river) against Quantitative survey data 

(population estimate of fish numbers per 100m2 of river) after Strange et al (1989).
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Salmon Fry

Quantitative density = 13.5 + 2.00 Semi-quantitative density 
(R-Sq = 87.4%)

Juvenile Salmon

Quantitative density = 2.13 + 1.41 Semi-quantitative density 
(R-Sq = 82.5%)

Trout Fry

Logio Quantitative density = 0.0808 + 1.16 Logio Semi-quantitative density 
(R-Sq = 90.9%)

Juvenile Trout

Quantitative density = 0.703 + 1.35 Semi-quantitative density 
(R-Sq = 88.6%)
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A P P E N D IX  II

Sensitivity of analyses to identify whether the sampling frequency of rivers within the 
Wye catchment 1985-2004 influenced temporal trends observed in fish density.
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correlated with salmonid densities in the Wye.
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A P P E N D IX  III

Groups of tributaries of the Wye that demonstrated similar trends in salmonid density 
over time during the period prior to riparian restoration (1985-1997). Streams on 

which riparian habitat was manipulated are highlighted in bold, those with limited 
riparian alteration are in parenthesis, and those from which obstructions were 

removed from a point downstream from the survey site are in italic.
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Groups of tributaries that demonstrated similar trends in salmonid density over time during 
_________________ the period prior to riparian restoration (1985-1997)._________________

Salmon fry Juvenile salmon Trout fry Juvenile trout
Group 1 Arrowds Chwerfri Bleddfa Aran
r -1 > -0.5 Cledan Cnyffiad Demol Arrowds

Cnyffiad Duhonw Nantmel Dulas Chwerfri
Duhonw Einon Hafrena Edw
Irfon Garth dulas Garth dulas
Llynfi dulas Llynfi Hafrena
(Sgithwen) Llynfi dulas Hindwell
Triffrwyd (Sgithwen) Llynfi

Triffrwyd Llynfi dulas
Nant Gwynfel 
Norton brook 
Pinsley brook 
(Sgithwen)
South dulas - Irfon 
Triffrwyd_______

Group 2 Arrowus Arrowds Aran Arrowus
r -0.5 > 0 Bidno Arrowus Arrowus Bleddfa

Chwerfri Cledan Chwerfri Cledan
Clywedog Clywedog Cnyffiad Cnyffiad
Demol Demol Edw Demol
Dore Dore Garth dulas Dore
Nantmel Dulas Nantmel Dulas Gwesyn Duhonw
Einon Edw Hindwell Nantmel Dulas
Frome Hindwell Honddu Gwesyn
Ithon Irfon Llynfi Honddu
Lingen brook Llanwrthwl brook Nant Gwynfel Lingen brook
Llanwrthwl brook Monnow Pinsley brook Luggus
Llynfi Pinsley brook (Sgithwen)
Monnow South dulas - Irfon South dulas - Irfon
Norton brook Triffrwyd
South dulas - Irfon

Group 3 Aran Aran Arrowds Bidno
r 0 > 0.5 Cammarch Bidno Bidno Cammarch

Edw Gwesyn Cammarch Clywedog
Garth dulas Honddu Cledan Einon
Gwesyn Ithon Clywedog Irfon
Hindwell Lugg_ds Dore Ithon
Honddu Lugg_us Duhonw Llanwrthwl brook
Luggds (Marteg) Einon Luggds
Luggus Trothy Ithon (Marteg)
(Marteg) Lingen brook Monnow
Nant Gwynfel Llanwrthwl brook Trothy
Pinsley brook Llynfi dulas

Lodon 
Luggds 
(Marteg) 
Norton brook 
Olchon 
Trothy_____

Group 4 Hafrena Cammarch Frome Frome
r 0.5 > 1 Frome Irfon Lodon

Nant Gwynfel Luggus
Monnow

Olchor
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A P P E N D IX  IV

Groups of tributaries of the Wye that demonstrated similar trends in salmonid density 
over time during the period prior to the removal of barriers to migration (1985-1995). 

Streams from which barriers were removed are underlined, those on which riparian 
habitat was manipulated are highlighted in bold and tributaries with only limited 

(<33%) riparian treatment are in italic.

210



Salmonid populations in the Wye catchment, Wales.

Groups of tributaries that demonstrated similar trends in salmonid density over time during 
the period prior to the removal of potential barriers to salmonid migration (1985-1995).

Salmon fry Juvenile salmon Trout fry Juvenile trout
Group 1 Llynfi dulas Duhonw Llynfi dulas Arrow ds
r -1 > -0.5 Cnyffiad Triffrwyd Sgithwen Aran

Irfon Einon Bleddfa Norton brook
Triffrwyd Chwerfri Nantmel Dulas Edw
Demol Arrow us Demol Garth Dulas
Cledan Llynfi Llynfi

South Dulas - Irfon
Pinsley brook 
Chwerfri
South Dulas - Irfon 
Llynfi 
Sgithwen 
Nantmel Dulas 
Triffrwyd_______

G roup 2 A rrow us Cledan Cnyffiad Duhonw
r -0.5 > 0 Monnow Garth Dulas Hindwell Hindwell

Norton brook Monnow Garth Dulas Bleddfa
Duhonw Hindwell Triffrwyd Nant Gwynfel
A rrow ds Cnyffiad Aran Cnyffiad
Lingen brook Clvwedog Bidno Arrow us
Llynfi Irfon Edw Demol
Chwerfri Dore Arrow us Lingen brook
Dore Pinsley brook Norton brook Luggus
Bidno Llanwrthwl brook Pinsley brook Gwesyn
Hindwell Nantmel Dulas Nant Gwynfel Clywedog
Llanwrthwl brook Sgithwen Gwesyn Honddu
South Dulas - Irfon Demol Dore
Ithon Honddu Lugg ds
Frome Edw
Edw Trothy
Honddu South Dulas - Irfon
Nantmel Dulas

G roup 3 Sgithwen Ithon Cammarch Ithon
r 0 > 0.5 Luggus Bidno Lingen brook Cledan

Einon Lugg us Ithon Llanwrthwl brook
Pinsley brook Luggds Marteg Bidno
CIvwedog Aran Honddu Cammarch
Marteg Marteg Clvwedog Monnow
Garth Dulas Arrow ds Frome Irfon
Cammarch Dore

Chwerfri
Duhonw
Llanwrthwl brook
Luggds
Trothy
Einon
Arrowds
Lodon
Cledan
Irfon
Olchon

Marteg
Einon

G roup 4
r 0.5 > 1 Lugg ds Nant Gwynfel Monnow Trothy

Gwesyn Cammarch Lugg_us Olchon
Aran Llynfi dulas Lodon
Nant Gwynfel Frome

Llynfi dulas
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A P P E N D IX  V

The density (Mean ± SE) of a) salmon fry, b) juvenile salmon, c) trout fry and d) 
juvenile trout before and after the removal of barriers in 1996 from the Aran, Chwefri, 
Sgithwen, Nantmel Dulas and Cammarch. Differences between the relative densities 
of salmonids (standardized by river) in treated and control streams (Control minus 

Treatment) were tested for by two-sample /-tests, /-values are shown in bold. Degrees 
of freedom were adjusted for unequal variances when appropriate. P values prior to 

‘Bonferroni’ adjustment for multiple tests are displayed.
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a) Salmon fry

Pre-
Treatment

Post-
Treatment

df t P

Aran Treated 64.2 (7.0) 31.3 (8.0)
Controls 15.5 (2.4) 16.6 (5.4) 13 1.642 0.125

Chwefri Treated
Controls

69.6 (13.0) 
31.8 (3.5)

42.7 (12.6) 
17.3 (1.8)

14 0.256 0.802

Sgithwen Treated
Controls

127.1 (24.7) 
16.1 (2.8)

57.6 (10.0) 
8.2 (2.7)

9 1.278 0.233

Nantmel Dulas Treated
Controls

10.1 (0.7) 
31.8 (3.5)

13.5 (0.0) 
17.3 (1.8)

12 -3.529 0.004

Cammarch Treated
Controls

116.2 (19.2) 
16.1 (2.8)

70.7 (17.4) 
8.2 (2.7)

12 -0.103 0.919

b) Juvenile salmon

Pre-
Treatment

Post-
Treatment

df t P

Aran Treated
Controls

4.1 (0.8)
4.1 (0.4)

3.5 (2.2) 
3.1 (0.4)

14 -0.318 0.755

Chwefri Treated
Controls

4.4 (0.9) 
16.8 (3.0)

1.2 (0.4) 
5.0 (1.4)

14 0.853 0.408

Sgithwen Treated
Controls

20.7 (6.5) 
6.5 (0.5)

7.0 (1.8)
6.0 (1.4)

10 0.665 0.521

Nantmel Dulas Treated
Controls

4.4 (1.2)
6.5 (0.5)

2.3 (0.8) 
6.0 (1.4)

12 0.087 0.932

Cammarch Treated
Controls

12.2 (2.8) 
5.6 (1.9)

4.0 (1.4) 
5.5 (1.3)

7 0.412 0.693
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a) Trout fry

Pre-
Treatment

Post-
Treatment

df t P

Aran Treated
Controls

3.7 (0.9) 
9.9 (2.0)

2.8 (1.3) 
15.8 (6.2)

14 0.789 0.443

Chwefri Treated
Controls

17.4 (6.7) 
10.8 (2.7)

15.6 (7.9) 
13.1 (3.0)

14 0.539 0.598

Sgithwen Treated
Controls

5.5 (2.1) 
19.7 (6.5)

4.5 (1.9) 
23.2 (8.2)

12 1.584 0.139

Nantmel Dulas Treated
Controls

15.2 (5.7) 
19.7 (6.5)

3.3 (0.9) 
23.2 (8.2)

10 -0.050 0.961

Cammarch Treated
Controls

3.6 (0.9) 
10.8 (2.7)

3.5 (1.6) 
13.1 (3.0)

12 0.329 0.748

b) Juvenile trout

Pre-
Treatment

Post-
Treatment

df t P

Aran Treated
Controls

8.8 (1.5) 
9.1 (1.6)

2.7 (1.1) 
3.9 (0.5)

14 1.812 0.091

Chwefri Treated
Controls

9.5 (1.9) 
9.1 (1.6)

5.2 (0.9) 
3.9 (0.5)

14 0.746 0.468

Sgithwen Treated
Controls

7.8 (2.4) 
9.1 (1.6)

3.5 (0.9) 
3.9 (0.5)

10 0.232 0.822

Nantmel Dulas Treated
Controls

4.8 (1.4) 
9.1 (1.6)

4.5 (1.3) 
3.9 (0.5)

11 -1.194 0.320

Cammarch Treated
Controls

5.9 (3.3)
6.9 (0.8)

1.7 (0.8) 
6.5 (0.2)

12 0.513 0.617
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Chapter 7

Recent trends in juvenile salmonid populations in the Wye
catchment, Mid-Wales.



Recent trends in salmonid populations

[7.01 Abstract

Populations of Atlantic salmon (Salmo salar) and trout (Salmo trutta) have declined 
throughout much of their range over recent decades. Factors such as pollution, 
density-dependent processes, climate, exploitation and adverse land management are 
all implicated, but there have been few assessments of longer-term data that help to 
interpret trends.

The River Wye was traditionally regarded as one of the best salmon angling rivers in 
England and Wales, but stocks of Atlantic salmon {Salmo salar) and brown trout 
{Salmo trutta) have declined over the last 20 years. Consequently, an extensive habitat 
improvement programme was launched in 1998. By 2004, trends in populations of 
salmon and trout had not been reversed raising the possibility that population trends 
might be driven by larger-scale factors -  i.e. beyond die habitat scale.
This chapter compares possible regional and local explanations for recent trends 
among salmonids in the Wye by appraising whether 1) climatic, chemical and 
hydrological factors could explain long-term trends in juvenile populations and 2) 
local characteristics of rivers could explain localised trends.

Although some local factors discriminated among rivers that had contrasting trends in 
salmonid populations, declining trends for both species were evident over a range of 
environmental conditions. In the Wye catchment as a whole, climate was as a key 
correlate with population trends; salmonid abundance and population increases were 
positively correlated with summer rainfall and river discharge, while populations 
declined when summer temperatures increased.
If substantiated, the widespread decline of salmonid populations in the Wye in 
response to climate would imply that climatic effects may have masked or offset more 
local habitat effects, including local riparian management. Climate projections for the 
UK suggest that altered flow pattern and increasing summer temperatures might 
exacerbate losses further.
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f7.11 Introduction

Populations of Atlantic salmon (Salmo salar) and trout (Salmo trutta) have declined 

in recent decades across their range (Slaney et al., 1996; Parrish et al., 1998; Beamish 

et al., 1999; Environment Agency and CEFAS, 2004). However, the factors involved 

remain poorly understood despite the large literature on salmonid life histories and 

environmental preferences (Marschall and Crowder, 1996; Slaney et al., 1996; de 

Groot, 2002; Armstrong et al., 2003; Milner et al., 2003; Ormerod, 2003). Particular 

difficulties arise in migratory salmonids because their life cycle is divided between 

marine and ffeshwaters environments so that population trends can result from supra- 

regional, catchment or local (river or reach) effects (Poff, 1997; Poff and Huryn, 

1998). In addition, abundance reflects both density-independent processes, such as 

climate or pollution, and also density-dependent feedback mechanisms, such as 

territorial competition (Milner et al., 2003). Population decline undoubtedly results 

from many factors in combination (Marschall and Crowder, 1996; Parrish et al., 1998; 

de Groot, 2002; Milner et al., 2003). Density-dependence, environmental and 

demographic stochasticity, climatic forcing and land management are all implicated in 

current trends (Wilzbach et al., 1998; Parrish et al., 1998; Bjomstad and Grenfell, 

2001; Ormerod, 2003). Evaluating among these potentially competing explanations is 

challenging.

Over regional scales, direct exploitation and disease can alter salmonid populations 

(Bowker et al., 1998; Ormerod, 2002; Bruno, 2004; Almodovar and Nicola, 2004; 

Jokikokko and Jutila, 2005; Costello, 2006; Hari et al, 2006; Quinn et al, 2006). 

Commercial fishing of Atlantic salmon (Salmo salar) mostly occurs in near-shore 

areas including Ireland and the UK and over-fishing has previously been implicated in 

decline (Mills, 1989; Parrish et al., 1998; Common Fisheries Policy, Council 

Regulation 2371/2002/EC; Potter, et al, 2003). The widespread reduction of salmon 

has also prompted some authors to cite regional climatic factors, such as rising sea 

surface temperatures, as key factors in population change (Noakes et al, 2000; 

Beamish et al, 1999; Beaugrand and Reid, 2003; Tolimieri and Levin, 2004). In 

addition to directional climate change, the North Atlantic Oscillation (NAO) has been 

linked to changes in fish production in both marine and freshwater ecosystems in the 

Northern hemisphere (Bradley and Ormerod, 2001; Parsons and Lear, 2001).
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At catchment scales, barriers to migration, habitat fragmentation, diffuse pollutants, 

agricultural intensification and industrialization can have adverse effects on stream 

habitat and water quality and hence salmonid populations (Cazemier, 1994; Naiman 

and Turner, 2000; McCarty, 2001; Kauffman et al., 2004). Salmonids require well 

aerated gravels for spawning and are sensitive to organic enrichment and acidification 

(Herrmann et al., 1993; Kondolf and Wolman, 1995; Armstrong et al., 2003). In the 

UK, point-sources of organic pollution, such as sewage, have been largely controlled 

(Ormerod, 2003; Dudgeon et al., 2006). Legislation, such as the Freshwater Fish 

Directive in Europe (78/659/EEC; soon to be consolidated within the Water 

Framework Directive, 2000/60/EC) specifies standards water quality for salmonids 

e.g. dissolved oxygen (>9mg/l), total ammonium (1.0 mg/1) and pH (6-9) as well as 

guidelines for suspended solids (25 mg/1) nitrites (0.01mg/l) and total ammonium 

(0.04 mg/1) (78/659/EEC; Annex 1). In rural catchments, particular attention has been 

given to diffuse pollutants such as acid deposition, eutrophication and sediments 

(Parrish et al., 1998; Ormerod, 2003; Merz, et al., 2006; Suttle et al., 2004). For 

example, increased exports of sediment to water courses may decrease the growth and 

survival of juveniles by altering the availability of prey and increasing foraging effort 

in addition to the well-documented clogging of spawning gravels causing suffocation 

of eggs within redds (Suttle et al., 2004).

At the reach scale, many authors have identified habitat as a major influence on 

salmonid abundance (e.g. Borsuk, et al., 2006). Consequently, management to restore 

salmon populations is often directed towards creating optimal habitats for salmonids 

at the river- or riparian-scale (e.g. Kondolf, 1993; Moerke and Lamberti, 2003; 

Opperman and Merenlender, 2004; see Chapter 2). In reality, however, the effects of 

such local activities on populations could easily be subsumed or offset by larger-scale 

processes. Understanding how best to direct such local efforts in the face of larger- 

scale impacts is thus a key question.

Although long-term data sets are increasingly available through which possible 

explanations for salmonid declines might be assessed, evaluations are still few 

(Thomas, 1996; Bjomstad and Grenfell, 2001; Daufresne et al., 2004; Hulme, 2005; 

Crozier and Zabel, 2006). The River Wye provides a particularly important case study 

because riparian and in-stream management to benefit salmonids have been 

attempted. The Wye was traditionally one of the best salmon angling rivers in the UK
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(Figure 7.1; Slater, 1988; Gough et al., 1992). However, in recent decades, stocks of 

Atlantic salmon {Salmo salar) and brown trout {Salmo trutta) have both declined (See 

Chapter 6; Gee and Milner, 1980; Gough et al., 1992; Environment Agency, 2003). 

Catchment-wide habitat management has yet to reverse trends in populations of 

salmon and trout, possibly because of the limited timescale so far involved (see 

Chapter 6). However, an alternative explanation is that larger-scale pressures have 

greater effects on the Wye’s salmonids than local management, and this possibility 

requires assessment.

This chapter aimed to identify any large-scale environmental correlates with salmonid 

density which could have masked, offset or subsumed any local habitat effects. 

Specific objectives were to i) describe long-term variations in water chemistry and 

climatic variables in the Wye catchment, ii) establish whether local river 

characteristics can discriminate between rivers with different trends in salmonid 

densities and iii) identify any correlation between climatic, chemical and hydrological 

factors and juvenile salmonid populations in the Wye catchment. Greater effects of ii) 

rather than iii) would imply that local management might be able to offset population 

decline, while the reverse would support the importance of larger effects.
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[7.21 Study Area

The Wye catchment is primarily located in mid-Wales before the river crosses the 

English boarder to join the Severn Estuary at Chepstow (Figure 1). The Upper Wye is 

typical of upland, high-velocity rivers in the UK. To the west of the catchment, where 

exotic conifers were extensively planted, streams are also acidified (Ormerod et al., 

1989; Edwards et al., 1990). Land-use in the upper and mid-Wye is dominated by 

pastoral agriculture, while arable farming predominates in the fertile Lower Wye 

valley (Edwards and Brooker, 1982). The general ecology, land use and water quality 

of the Wye catchment are described in Chapter 3 and elsewhere (Edwards and 

Brooker, 1982; Ormerod and Edwards, 1987; Ormerod, 1988; Edwards et al., 1990; 

Environment Agency, 1998; Brennan et al., 2003).

The temperate climate of mid-Wales is generally wetter than the average for England 

and Wales for which precipitation averaged 912mm per annum between 1941 and 

1970 (Hughes and Morley, 2000). Average annual precipitation across the Wye 

catchment ranges from of approximately 700 to 2500mm per annum, with higher 

values in the upper and western catchment (recorded at Cefii Brwyn) (Jarvie et al, 

2003; NERC, 2005).
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o

O
Electro fishing sites with water chemistry data 1990-2000 
Electro fishing sites with water chemistry data 1985-2003 
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Wye tributaries
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Figure 7.1. Location of electro fishing sites within the River Wye catchment, Wales 
for which chemical data were also available:
i) orthophosphate, total oxidised nitrogen, nitrite, magnesium and suspended solids, 
ammoniacal nitrogen, dissolved oxygen, BOD and pH between 1990-2000 (used to 
describe local river character)
ii) ammoniacal nitrogen, dissolved oxygen, BOD and pH between 1985-2003 (used to 
identify temporal trend and correlates with salmonid density).
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[7.31 Methods

[7.3,1] Study Design

Electrofishing sites investigated in Chapter 6 were used as a basis for these analyses 

of salmonid populations. Climatic data were used to represent all sites and site- 

specific corrections were made where possible (see section 7.3.2.3). Land use and 

topographic data were also available for the entire Wye catchment. Water chemistry 

and electrofishing data sets, whilst both obtained from the Environment Agency, were 

sampled at different locations. Electrofishing sites were therefore matched to water 

chemistry samples based on their proximity and stream order. Some electrofishing 

sites had no comparable water chemistry data (i.e no data within the same river) and 

were excluded from analysis.

Between 1980 and 2003, ammoniacal nitrogen (mg/1), dissolved oxygen (mg/1), 

Biological Oxygen Demand (BOD [ATU]) (mg/1), and pH were monitored every 

month in the Wye catchment. In addition, from 1990 orthophosphate (mg/1), Total 

Oxidised Nitrogen - as N (TON, mg/1), nitrite (NO2’, mg/1) magnesium (Mg, mg/1), 

suspended solids (SS, mg/1) data were also collected monthly. Data were scarce in 

1993, so no data were included from that year. The availability of water chemistry 

data dictated the study design.

Strahler stream order, altitude, land-use within 500m and water chemistry were used 

to characterise local river catchments. Land use and topographic data were only 

available from single surveys. So, chemical determinands were averaged for each site. 

To maximise the array of chemical determinands used to describe sites, seasonal 

means for chemical determinands were calculated from data recorded between 1990 

and 2000. This enabled the inclusion of orthophosphate, TON, nitrite, magnesium and 

suspended solids. The power of river characteristics to discriminate between local 

trends in salmonid densities was established from 182 sites (reaches) within the Wye 

catchment (Figure 7.1).
**

In order to investigate temporal trends in salmonid densities and environmental 

variation a longer data set was preferable. Salmonid data were available from 1985 

onwards. Chemical variables available for 1985-2003 (i.e. ammoniacal nitrogen, 

dissolved oxygen, BOD and pH) were therefore used in analyses to identify any
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correlation between climatic, chemical and hydrological factors and juvenile salmonid 

populations in 27 rivers of the Wye catchment (Figure 7.1).

[7.3.2] Data collection and treatment

[7.3.2.1] Salmonids

Electrofishing data recorded for the Wye system from 1985 to 2003 were provided by 

the UK Environment Agency. Quantitative and semi-quantitative surveys of salmon 

(Salmo salar) and trout (Salmo trutta) juveniles and fry were undertaken during the 

summer months, most frequently in July. Quantitative surveys (29%) involved three 

electrofishing runs per each (approx. 50m) stretch of river to yield a population 

estimate as density of fish per m2 of river. Semi-quantitative surveys (71%) involve 

just one run per site and data were converted to equivalent ‘quantitative’ population 

estimates according to calibration equations given in Chapter 6, according to Strange 

et a l (1989). Densities were log transformed to achieve normality. Missing data were 

treated as described in Chapter 6.

[7.3.2.2J Water chemistry

Chemical data were obtained from the Environment Agency’s Water Management 

Information System (WMIS) for the river Wye catchment. Chemical analyses were 

undertaken by the Environment Agency and its predecessors using standard 

spectrophotometric methods (SCA, 1977, 1978, 1979, 1980 a, b, 1981 a, b, 1987 a, b, 

1988, 1992; Environment Agency, 2001). Methods used to determine ammoniacal 

nitrogen, dissolved oxygen concentration, Biological Oxygen Demand, and pH are 

detailed in Chapter 3. Nitrite (mg/1) was measured as an azo dye at 520 nm and nitrate 

was reduced to nitrite to ascertain the concentration of total oxidised nitrogen (TON 

mg/1) (SCA, 1981b; Environment Agency, 2001). Magnesium was determined from 

the acidified sample treated with a lanthanum salt and aspirated into the flame of an 

atomic absorption spectrophotometer at 282.2 nm (SCA, 1977, 1987b). The 

concentration of suspended solids (SS mg/1) was obtained by filtration of the sample 

through a glass-fibre paper, then drying at 105°C and Weighing the recovered matter 

(SCA, 1980).

Initially, the concentration of orthophosphate was determined from the reaction of 

orthophosphate with acidic molybdate reagents to form a reduced phospho- 

molybdenum blue complex which was analysed discretely at 724 nm and 660 nm.
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Total phosphate was determined when all forms of phosphorus were converted to 

reactive phosphorus (orthophosphate) by mild oxidative digestion (SCA, 1980). From 

1994, air segmented flow analyses were used for the determination of total- and ortho

phosphate. The method oxidised all forms of phosphorus to reactive phosphorus 

which was then measured colorimetrically at 760nm/880nm (SCA, 1992). To 

overcome any effects of methodological change, detection limits for determinands 

were set to half that at the beginning of the time series and outliers were excluded 

from analyses (as described in Chapter 3). Missing values were replaced, where 

possible, with the mean for the appropriate year, season and section of river. 

‘Summer’ (April - September) and ‘winter’ (October - March) means were calculated 

for seasons antecedent to electrofishing.

[73.2.3] Climatic variables

Mean monthly minimum (tmin) and maximum (tmax) temperatures (°C) and rainfall 

(mm) were obtained for the meteorological station at Ross-on-Wye (Met Office, 

2004). Temperature was adjusted for altitude according to an environmental lapse rate 

of 6.5 °C per 1000m (Ruddiman, 2001). Median winter (October -March) and summer 

(April - September) discharge (m /s) data from the gauging station at Plynlimon were 

supplied by Cascade Consulting. The North Atlantic Oscillation (NAO) index is the 

normalized pressure difference between the Azores and Iceland. The index is 

associated with changes in the surface westerlies across the North Atlantic to Europe 

and represents dry, cold winters when negative and warm wet winters when positive 

(Hurrell, 1995). Monthly mean NOA index values between were obtained from the 

Climatic Research Unit and used to calculate summer and winter means (Climatic 

Research Unit, 2005; Osborn, 2005).

[73.2.4] Land use, geographic and topographic data

Land-use classes from the ‘Land Cover Map 2000’ were used in analyses and 

included broad-leaved woodland, coniferous woodland, neutral grassland, calcareous 

grassland, acid grassland, arable and horticultural land, improved grassland and built 

up areas. Geographic and topographic data were obtained from the Centre for Ecology 

and Hydrology (CEH), the British Geological Society and the Land Cover Map 2000 

survey and were treated as described in Chapter 3. All Geographical and 

topographical variables were extracted from spatial data layers using the Arc View® 

Geographical Information System (GIS) package (Version 9, ESRI Inc., California).
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[7,3.3] Data analysis

Spearman’s coefficients of correlation (rs) between environmental variables and year 

indicated temporal trends in physicochemistry between 1985 and 2003. Temporal 

variation in environmental variables was characterised using separate Principal 

Components Analysis on mean ‘climatic’ and ‘water quality’ variables for summer 

and winter respectively. Scores of the first PC axes were used as measures of 

environmental variation (Table 7.2).

To establish trends in salmonid densities in rivers between 1985 and 2004, rivers were 

grouped according to the coefficient of correlation between salmonid density and year 

(as in Section 6.3.3.). Rivers in group 1 demonstrated a marked decline in salmonid 

populations (rs 0.5 < 1.0), group 2 demonstrated a slight decrease in density (rs 0.0 < 

0.5), group 3 a slight increase (rs -0.5 > 0.0) and populations in rivers in group 4 

increased strongly (rs -1.0 > -0.5). Catchment attributes and water chemistry were then 

used to discriminate between groups of tributary rivers that demonstrated similar 

trends in salmonid density. For this purpose, discriminant analysis was used to 

identify environmental factors that might account for variation in salmonid population 

trends between rivers (Tabachnick and Fidell, 2001). Chi-squared statistics, 

transformed from Wilks A, established the significance of each discriminant function 

in predicting local trends in salmonid populations. Variables retained in the 

discriminant model were those that demonstrated significant discriminating power 

between rivers with differing trends in salmonid populations.

‘Variable clustering’ was adopted to reduce the number of variables used in 

discriminant analysis and multicolinearity of environmental variables (after Vaughan 

and Ormerod 2005; see also Chapter 4). Three observations per variable per group are 

suggested as the minimum number of variables used in discriminant analysis. In this 

study there were 182 sites and 4 discriminant groups (Williams and Titus, 1988). So, 

ideally, just 15 variables would have been investigated to achieve stability in 

discriminant function loadings. In this study, 27 environmental variables were 

available for analysis. Hierarchical agglomerative clustering was used to establish 

groups of variables that similarly described variation between river reach 

characteristics. Average, single, centred and centroid linkage methods were applied to 

euclidean distance and Pearson’s similarity matrices in order to define variable
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clusters. Average-linkage (between groups) clustering of a euclidean squared distance 

matrix are presented here (Appendix I). Variable groups were those clustered at less 

than 10 standardised distance units. Principal Components Analysis (PCA) was then 

performed on each group and the scores of the first PC axis of variation used to 

represent a single compound variable in discriminant analysis. The model therefore 

analysed 16, rather than 27 environmental variables on 182 sites (reaches).

Potential effects of environmental variables on the density of juvenile salmonid 

populations between 1986 and 2003 in the Wye was established from a multi-level 

linear regression model (also called mixed effects models) using the SPSS (vl2) 

‘MIXED’ procedure. Multi-level regression models contain both fixed and random 

effects. Random coefficients are generated for each river to model the (covariance) 

structure of the data in order to establish the fixed effects of the variables of interest. 

A two-level design whereby observations were clustered within rivers in a ‘random 

intercept’ model accounted for the autocorrelated nature of the repeated observations 

on rivers (Twisk, 2006). The random intercept regression model was a better fit than a 

model that included a random slope and examination of the residual variance 

indicated that that further modelling of any additional variance was not required. The 

predicted change in density with actual climatic variables was estimated by examining 

raw variables values at the 5, 25, 75 and 95 percentiles of PCA scores (section 7.4.1) 

with the corresponding predicted density of salmonids. Spearman’s correlations were 

also used to identify the degree of correlation between raw variables that contributed 

to PC axes that were significantly related to salmonid density in the regression model.

Analyses were performed in SPSS, version 11.5 (SPSS Inc., Chicago), except 

multilevel analyses which were performed in version 12 due to the unstable nature of 

mixed-models in earlier versions (SPSS for Windows, 2001; Tabachnick and Fidell,

2001). Data were transformed to reduce skew and kurtosis of the data when 

appropriate (SPSS for Windows, 2001, Tabachnick and Fidell, 2001). Bonferroni
V

adjustment for multiple tests are reported where appropriate (ter Braak and Smilauer, 

1998; Quinn and Keough, 2002). Analyses were repeated for juvenile salmon (>0+) 

and juvenile trout (>0+).
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[7.41 Results

[7.4.1] Long-term trends in environmental variables and salmonid density

Summer climate was well described in PCA by an axis that reflected high maximum 

temperatures and sunshine when positive but increased rainfall and discharge when 

negative (Table 7.2). In contrast, an axis describing winter climate largely reflected 

warmer temperatures with higher rainfall and discharge (Table 7.2). Axes of variation 

in water quality reflected trends from high ammonia and biochemical oxygen demand 

to high dissolved oxygen. pH increased along this axis, particularly in winter (Table 
7.2).

Annual densities of salmonids in the Wye system either declined or remained stable in 

more than half of the years between 1986 and 2003 (Figure 7.2). During this period, 

biochemical oxygen demand and concentrations of ammonia generally declined. By 

contrast, ambient temperatures increased, particularly during the summer (Figure 7.3).

[7.4.2] Local river characteristics and trends in salmonid density

The majority of rivers (75% and 69% for salmon and trout respectively) in the Wye 

system demonstrated either ‘strongly’ or ‘mildly’ declining population trends in 

salmonids during the period 1985 to 2004 (Table 7.1). Although populations of both 

salmon and trout juveniles increased in less than 30% of rivers, river groupings based 

on population trend were not consistent across the two species (Table 7.1).

Variable clustering of river characteristics yielded 12 unique variables and 4 

compound variables that could potentially discriminate among rivers with different 

population trends (Appendix I). The first principal components describing each 

compound variable explained over 75% of the variation in constituent variables 

(Appendix II). Respectively, they represented i) pH, magnesium and total oxidized 

nitrogen, ii) orthophosphate, nitrate and winter BOD, iii) altitude and acid grassland 

and iv) dissolved oxygen (Appendix II).

Different characteristics discriminated between rivers with increasing or declining 

population trends of salmon and trout (Table 7.3). {Phosphate-Nitrate-BOD}, 

ammonia, (pH- Mg-TON}, arable land use, stream order, summer suspended
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sediment and BOD best discriminated between rivers with varying trends in salmon 

populations (Table 7.3).

When trends in salmon were considered against river character, the first and second 

functions discriminating among rivers accounted for 66% and 27% of the variance in 

river character respectively (Figure 7.4; Table 7.4). The first discriminant function 

represented higher concentrations of suspended solids and large streams when 

negative and higher phosphate, nitrate and BOD when positive (Figure 7.4; Table 

7.4). The second function described a gradient from high ammonia, BOD and 

proportion of arable land when negative through to high pH, magnesium, total 

oxidised nitrogen, suspended solids and larger streams when positive (Figure 7.4; 

Table 7.4).

River characters that discriminated among rivers with differing trends in trout 

populations differed from those that characterised differences observed in salmon 

trends. For trout, suspended solids concentrations in winter, calcareous grassland, 

stream order and {pH-Mg-TON} accounted for variation in population trend across 

rivers (Table 7.3). The first discriminant function accounted for 67% of variation in 

river characters, the second 26%. In this instance, the first discriminant function 

described higher suspended solids through to larger streams with higher 

concentrations of phosphate, magnesium and total oxidised nitrogen (pH- Mg-TON) 

(Figure 7.4; Table 7.4). The second axis indicated a higher concentration of suspended 

solids when negative (Figure 7.4; Table 7.4).

Despite the significance of discriminant functions and the correct classification of 

42% and 56% of rivers for salmon and trout respectively, there was much overlap in 

environmental conditions among river groups at which populations were either 

declining or increasing (Figure 7.4; Table 7.4). For salmon populations, rivers with 

strongly declining trends in salmon (Group 1) were virtually ubiquitous (Figure 7.4a). 

Rivers with slightly declining salmon populations (Group 2) tended towards higher 

suspended sediment, pH and larger streams but their ranged overlapped with Groups 1
s

and 3 in discriminant space (Figure 7.4a). Rivers with slightly increasing populations 

of salmon (Group 3) occurred where streams were smaller and there was less 

suspended sediment (Figure 7.4a). The remaining 4 rivers in which salmon 

populations strongly increased (Group 4) generally had a higher nutrient status, less 

suspended sediment and were more alkaline than other streams (Figure 7.4a).

228



Recent trends in salmonid populations

There was even greater overlap in the range of discriminant scores for rivers with 

decreasing and slightly increasing trends in trout populations (Groups 1-3) (Figure 

7.4b). Rivers with strongly decreasing populations of trout (Group 4; n=4) tended 

towards higher concentrations of suspended sediment, higher acidity and were smaller 

than in other river groups (Figure 7.4b).

Together, the widespread tendency toward salmonid population decline and weakness 

of local factors in explaining trends suggested that larger-scale factors could be more 

important.

[7.4.3] Climatic and water quality correlates with salmonid density

The multilevel regression model of environmental factors on juvenile density 

indicated that correlates with temporal trends in salmonid population densities were 

similar in trout and salmon (Table 7.5). Densities of juvenile salmonids declined when 

PCI was higher, i.e. when antecedent summer climate was sunnier with higher 

maximum temperatures and reduced rainfall and discharge (Table 7.2; Table 7.5).

According to the model, a change across the inter-quartile range for PC scores 

representing summer climate would equate to a 0.3 °C increase in maximum 

temperature and a 10.1 mm decrease in monthly rainfall. This would yield a reduction 

of 1.7 salmon (per 100m of river) and 1.8 trout (per 100m of river) respectively (Table 

7.6).

Spearman’s correlations between raw climatic variables and densities of trout were 

weak but significant for maximum temperature (rs -0.254, P=0.02), sun (rs -0.186 

P0.001), rainfall (rs 0.118, P=0.026), and discharge (rs 0.124 P=0.020). For salmon 

correlations were significant for density with sun (rs -0.168 P=0.002) and with 

maximum temperature (rs -0.126 P=0.018).
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Figure 7.2. Annual change in mean (±SE) densities of salmonids (number of fish per 
100m2 river stretch, standardized by river) between 1985 and 2003 in the Wye 
catchment.
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Table 7.1. Groups of tributaries of the Wye that demonstrated similar temporal trends in the density 
of juvenile salmonids during the period 1985 to 2004. Salmonid trends were defined by Spearman’s 
correlation between density and year (rs). Rivers were grouped into 4 categories: Group 1 (strong 
decline in salmonid density), Group 2 (slight decrease in density), Group 3 (slight increase) and 
Group 4 (strong increase).

Salmon Trout
Group 1 Einon Sgithwen
rs -1 > -0.5 Sgithwen South dulas - Irfon
‘strong decline’ Lodon Olchon

Chwerfri Hafrena
Triffrwyd Llanwrthwl brook
Clywedog Cammarch
Olchon Marteg
Duhonw Ithon
Llanwrthwl brook Llynfi
Llynfi Demol
Arrowus Pinsley brook
Cnyffiad Hindwell
Monnow
Irfon

Luggds

Group 2 South dulas - Irfon Nant Gwynfel
rs -0.5 > 0 Arrowds Dore
‘mild decline’ Cledan Monnow

Nantmel Dulas Bidno
Pinsley brook Clettwr
Ithon Arrowds
Hindwell Clywedog
Aran Edw
Lugg_ds Honddu
Demol Garth dulas
Lugg_us Lodon
Cammarch Lugg_us
Garth dulas Frome
Edw Cnyffiad
Clettwr Aran
Trothy Duhonw

Bleddfa
Group 3 Marteg Norton brook
rs 0 > 0.5 Llynfi dulas Arrow_us
‘mild increase’ Dore Chwerfri

Honddu Irfon
Nant Gwynfel o Triffrwyd
Bidno Dulas brook 

Cledan 
Lingen brook

Group 4 Dulas brook Nantmel Dulas
rs 0.5 > 1 Frome Llynfi dulas
‘strong increase’ Hafrena Einon

Gwesyn Gwesyn
The suffix ‘ds’ or ‘us’ denotes the downstream or upstream section of larger tributaries respectively.
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Figure 7.3. Temporal variation in (seasonal mean ± SE) climatic and water chemistry 
variables and (median) stream discharge relevant to the Wye catchment between 
winter 1984/5 and summer 2003. Spearman’s coefficients of correlation (rs) between 
environmental variables and year represent temporal trends in physicochemistry 
between 1985 and 2003, in summer and winter respectively.
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Table 7.2. Principal Component (PC) axes representing variation in ‘climatic 
variables’ and ‘water quality’ relevant to the Wye system recorded between 1985 and 
2000 in summer (April - September) and winter (October - March), respectively. 
Eigenvectors indicate the loading of variables on the first PC axis extracted in 
Principal Component Analyses.

Summer ,climatet Component

48.9 % variance explained

Sun 0.907
Discharge -0.856
Rain -0.851
Tmin 0.081
Tmax 0.755
NAO 0.278

Winter ’climate* Component

45.0 % variance explained

Sim 0.278
Discharge 0.702
Rain 0.619
Tmin 0.857
Tmax 0.885
NAO 0.479

Summer ’water quality1 Component

40.3 % variance explained

AN 0.722
BOD 0.762
DO -0.639
pH 0.317

Winter ’water quality* Component

47.3 % variance explained

AN 0.739
BOD 0.606
DO -0.696
pH 0.704
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Table 7.3. Equality tests of group means for different site characters for juvenile 
salmon and trout. A small Wilks X and high x2 indicate greater discriminating ability.

Site character Wilks X x 2 P

Salmon

{Phosphate-Nitrate-BOD} 0.667 29.32 <0.0001
Ammonia (winter) 0.753 19.22 <0.0001
(pH- Mg-TON} 0.775 17.07 <0.0001
Ammonia (summer) 0.819 12.98 <0.0001
Arable and horticultural 0.879 8.11 <0.0001
Strahler stream order 0.889 7.30 0.0001
Suspended sediment (summer) 0.917 5.32 0.0016
BOD (summer) 0.920 5.11 0.0021'

Trout

Suspended sediment (winter) 0.824 12.28 <0.0001
Calcareous grassland 0.910 5.70 0.0010
Strahler stream order 0.949 3.10 0.0281*
{pH- Mg-TON} 0.950 2.99 0.0324*

+ Significant at 90% Cl after Bonferroni correction for multiple comparisons.
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Figure 7.4. Variables that discriminated between local trends in populations of 
juvenile a) salmon b) trout within the Wye catchment.
i) Standardized canonical discriminant function coefficients of environmental 
variables, ‘ s’ and ‘_w’ indicate chemical data recorded in ‘summer’ and ‘winter’ 
respectively.
ii) The range of site scores and group centroids of standardized canonical discriminant 
function coefficients for discriminant functions 1 and 2. Groups represent rivers with 
strongly increasing salmonid populations (4), mildly increasing populations (3), 
mildly decreasing populations (2) and strongly declining populations (1).
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Table 7.4. Standardized canonical discriminant function coefficients of environmental 
variables that discriminated between trends in saimonid populations in tributaries of 
the Wye. A small Wilks X and high X2 indicate a greater ability to discriminate 
between streams of varying saimonid status.

Salmon

Function 1 2 3
% of variance explained 66.3 27.1 6.6

Arable and horticultural 0.206 -0.113 -0.406
Strahler stream order -0.343 0.443 0.296
{pH- Mg-TON} -0.157 0.670 -0.154
{Phosphate-Nitrate-BOD } 0.742 0.100 -0.310
Ammonia (summer) 0.202 -0.425 0.552
Ammonia (winter) 0.309 0.148 0.350
BOD (summer) 0.002 -0.220 0.322
Suspended sediment (summer) -0.421 0.452 0.561

Wilks X 0.411 0.719 0.924
x 2 153.8 57.0 13.8
P <0.001 <0.001 0.032*

Original Model 56.1
% of cases correctly classified

Cross-validated Model 51.7
% of cases correctly classified

Trout

'Function 1 2 3
% of variance explained 67.1 25.5 7.4

Suspended sediment (winter) 1.001 -0.249 0.290
Calcareous grassland 0.397 0.631 -0.220
Strahler stream order -0.151 0.276 1.010
{pH- Mg-TON} -0.306 0.478 -0.561

Wilks X 0.696 0.879 0.974
X2 62.0 22.0 4.4
p <0.001 0.001

•>
0.109

Original Model 44.9
% of cases correctly classified

Cross-validated Model 42.0
% of cases correctly classified

fNo longer significant at 95% Cl after Bonferroni correction for multiple comparisons
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Table 7.5. Structure of the multilevel regression model of environmental factors on 
log transformed juvenile density in a) salmon and b) trout in the River Wye catchment 
detailing regression coefficients (Estimate ± SE), 95% confidence intervals (Cl) and 
corresponding p-values.

a)

Variable______________________ Estimate (SE) df t_______P_______ 95% Cl

Intercept
Summer ’climate' last year 
Winter 'climate' last year 
Summer 'water quality' last year 
Winter 'water quality' last year

0.67 (0.04) 
-0.03 (0.01) 
-0.01 (0.01) 
-0.01 (0.02) 
-0.02 (0.02)

25.48
213.11
214.02
236.66
236.21

17.14
-2.50
-1.02
-0.36
-0.87

0.000
0.013
0.309
0.720
0.386

0.59 - 0.75 
-0.06 - -0.01 
-0.04- 0.01 
-0.05 - 0.04 
-0.07 - 0.03

b)

Variable Estimate (SE) df t P 95% Cl

Intercept 0.69 (0.04) 26.81 17.78 0.000 0.61 - 0.77
Summer 'climate' last year -0.05 (0.01) 214.96 -3.58 0.000 -0.08 - -0.02
Winter 'climate' last year -0.01 (0.01) 216.05 -0.35 0.729 -0.03 - 0.02
Summer 'water quality' last year -0.03 (0.02) 238.32 -1.48 0.141 -0.08 - 0.01
Winter 'water quality' last year 0.03 (0.03) 231.94 1.02 0.308 -0.02 - 0.08

Table 7.6. Values of raw climatic variables (monthly average) at 5, 25, 75 and 95 

percentiles of Principal Component scores derived from a Principal Component 

Analysis of summer climatic variables relevant to the Wye river system (see Table 7.2 

for loadings).

PCI summer PCI summer Rainfall Sun NAO Discharge Tmax Tmin
percentiles scores (mm) (hours) (m3 / s) °C °C
5% -1.469 62.4 173.3 -0.131 0.346 18.2 9.3
25% -0.828 48.2 169.8 -0.588 0.264 18.6 10.1
75% 0.761 38.2 202.1 -0.222 0.130 18.9 9.0
95% 1.762 36.0 213.6 0.340 0.124 20.5 10.0
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[7.51 Discussion

At local scales, some environmental factors discriminated among sites with increasing 

densities of salmonids from others with declining or more stable populations. One 

implication would be that local factors play some role in wider population trends. 

Thus, for example salmon appeared to have increased in more productive streams 

where suspended sediment was lower. These results are consistent with the well- 

documented negative effects of sediment on salmonids documented (e.g. Kondolf and 

Wolman, 1995; Platts et al., 1989; Suttle et al., 2004). However, trout populations 

apparently increased under slightly more acid conditions where suspended solids were 

higher, conditions usually considered adverse to salmonids (Parrish et al., 1998; 

Armstrong et al., 2003; Poleo et al., 1997). Sediment concentrations in the Wye were 

below (summer median = 7.5 mg/1, winter median = 11.0mg/l) guideline 

concentrations acceptable for saimonid fish (average suspended solids <25 mg/1) 

given in the Freshwater Fish Directive (78/659/EEC; Lloyd, 1992). Concentrations of 

suspended solids in the Wye were therefore within the tolerance range of both species. 

Salmon and trout are adapted to different ecological niches and there is also evidence 

that species interact and compete (Armstrong et al, 2003; Milner et al., 2003). Chapter 

6 suggests that trout and salmon fry might respond differently to changing 

environmental conditions; unlike salmon fry, trout fry density did not demonstrate 

declines over time. Streams where trout populations tended to increase were also 

characterised here by lower stream orders. Trout populations could be doing better in 

smaller streams despite relatively higher sediment and acidity, possibly mediated by 

niche separation and competitive release from salmon. However, few streams had 

increasing salmonids numbers (n=4) and the dominant trends were of decline. The 

risk of spurious factors affecting such small numbers if sites is clearly large and the 

more important result in this chapter therefore involves the widespread and long-term 

reduction.

Despite some apparently local patterns that distinguished among rivers with different 

trends in saimonid populations, declining trends for both brown trout (Salmo trutta) 

and Atlantic salmon (S. salar) were evident over' a wide range of sites and 

environmental conditions. This suggests that declining trends might be explained by 

some catchment-wide effect (Rieman et al., 2001; Regetz, 2003). Possible effects of 

climate and water quality were therefore investigated. Climatic variables, rather than 

water quality appeared to describe long-term trends in populations of juvenile 

salmonids. Saimonid abundance and population increases were positively correlated
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with summer rainfall and river discharge, while populations declined with increasing

summer temperatures.

At this point is perhaps prudent to outline some of the limitations of this study. In 

attempting to identify likely environmental correlates with saimonid density linear 

species-environment responses were assumed. However, species do not necessarily 

respond linearly to environmental gradients (Armstrong et al, 2003; Austin et al., 

1990). For example, growth rates are temperature-dependent and reach an asymptotic 

optima of 15.9 and 13.1 °C in salmon and trout respectively implying a Gaussian 

response of salmonids to temperature (Elliott and Hurley, 1995, 1997). The model 

presented here rather oversimplifies species-environment interaction but can provide a 

guide as to the potential responses of saimonid to variation in climatic and water 

quality if it is assumed that they exist within their optimal range, which is likely given 

that Wales is well within the native range of S. salar and S. trutta (Mills, 1989; Elliott, 

1994; Maitland, 2004). Modelling non-linear responses of organisms using more 

advanced mixed models may improve the fit of models presented here (Twisk, 2006).

Models were also simplistic in the sense that they took environmental conditions in 

the year preceding fish sampling to explain saimonid response. Saimonid life cycles 

operate over multiple years and are complex, involving migration to accommodate the 

different habitat preferences of each life-stage. For example, specific requirements for 

spawning, such as minimum spawning depths of approximately the same depth as the 

fish (often averaging between 25 and 50cm), and egg development in redds (oxygen 

concentrations ^ .0  mg I”1, temperature 12.5 °C, water velocity ^ 0 0  cm h-1 for 

survival circa 100%) are important to saimonid survival (see Armstrong et al., 2003; 

Crisp, 1996). The effects of environment on salmonids are therefore likely to be 

integrated across the entire lifespan of the fish as well as that of the previous 

generation. Gee et a l (1978) observed that in most cases low values for salmon 

production could be attributed to poor spawning. Climatic effects operating on the fry 

of one cohort may not be evident in juvenile populations until the next generation, 

some 4 or more years later. The life cycle of salmon in the Wye system requires at 

least 4 years from egg to adult spawner, more in the ease of multiple-sea-winter fish 

which made up approximately 90% of rod catches in 1977 (Edwards and Brooker, 

1982). However, the ‘critical period’ in the dynamics of saimonid populations is 

reported as that between emergence and the establishment of feeding territories 

(Armstrong et a l , 2003; Nislow et a l , 2004). Climatic variables presented here 

operated over that critical period in the development of the juvenile salmonids in the
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Wye. Correlations between climatic variables and salmon densities were generally

greater for the preceding year when considered against the each of the preceding 7

years respectively.

Environmental factors other than those climatic and water quality variables examined 

are also likely to have influenced fish populations. These may include anthropogenic 

influences such as exploitation and the effects of other pollutants such as pyrethroids 

(Muir et al., 1994; Moore and Waring, 2001). Factors driving population change also 

operate at multiple spatial and temporal scales. Infrequent, ‘transient’ events, such as 

episodic acidification, can shape populations (Bulger et al., 2000; Rice, 2001; 

Hastings, 2004; Rodriguez-Arias and Rodo, 2004). Also, the importance of hydraulic, 

climatic or habitat variables may vary depending on season or time of day (Heggenes 

et al., 1999). More complex models may be able to account for some of these factors.

Two important anthropogenic factors that can influence the population size and 

demographics of salmonids were not investigated in this study; exploitation at sea 

through commercial fishing and angling in freshwaters. Both have increased over the 

last century making fishing and climate effects difficult to dissociate (Gee et al., 1978; 

Marschall and Crowder, 1996; Finney et al., 2000). Exploitation effects on fish 

populations are most frequently reported as a change in age-class structure, with 

artificial selection against larger fish (Gee and Milner, 1980; Brana et al., 1992; 

Quinn et al., 2006). In the Wye, numbers of multiple-sea-winter (MSW) and spring 

salmon stocks have declined (Environment Agency, 2003b). In response, byelaws 

were introduced from the 1990’s to reduce the catch of MSW salmon and the Wye 

and Usk Foundation have a voluntary catch and release scheme in order to increase 

spawning escapement (Mawle and Black, 2003).

In the Usk, a catchment adjacent to the Wye, a reduction in estuarine drift netting in 

from 1992 was linked to an increase in rod catches implying that commercial fishing 

had an adverse effect on Welsh stocks of salmon (Bowker et al., 1998). Similar 

effects have been noted elsewhere (Jutila, 2005; Potter et al., 2003). Sediment records 

from Alaskan lakes have been used to identify trends in Pacific salmonids over 300 

years using stable nitrogen isotopes (Finney et al., 2000; Finney et al., 2002). Trends 

in salmon that were probably driven by climatic forcing were identified prior to and 

after the onset of commercial fishing. Authors suggested that both commercial fishing 

and climatic variation can influence salmon.

In the Wye, Atlantic salmon (S. salar) were migratory but brown trout (S. trutta) were

mostly non-migratory (Edwards and Brooker, 1982; Slater, 1988). Correlates of both
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S. salar and S. trutta with climate therefore imply that factors operating on the river

environment were important in saimonid population declines.

Climate-related variables, such as rainfall and temperature, can impact directly on the 

river habitats preferred by salmonids therefore influencing their behaviour, growth 

and survival. In rivers, fry (0+) and juvenile (<0+) S. salar and S. trutta require well- 

oxygenated (5.0-5.5 mg I-1), cool (optimal between 13 and 16 °C), relatively fast 

flowing water (approximately 10-30 cm s-1 and 20-50 cm s-1 respectively) (see 

review by Armstrong et al., 2003). Both species inhabit deeper water as they grow, 

with post-young-of-the-year (PYOY, age >0+) salmon and trout typically inhabiting 

water depths of 25-60 cm and 20-70 cm respectively (Armstrong et al., 2003).

The role of river discharge and water temperature in determining the composition and 

population dynamics of freshwater fish communities is well recognised. Classical 

river zonation describes the transition from upland to lowland river environments 

according to fish assemblage, the ‘trout zone’ being defined as narrow, shallow and 

fast flowing with clear waters (Hawkes, 1975; Aarts and Nienhuis, 2003). More 

recently, a study of coarse fish in the Upper Rhone River demonstrated that low flows 

and high temperatures favoured thermophilic fish species (e.g. Leuciscus cephalus 

and Barbus barbus) at the expense of northern, cold-water fish species (e.g. Leuciscus 

leuciscus), a trend which was also reflected in the macroinvertebrate fauna (Daufresne 

et al., 2004).

As poikilotherms, the foraging behaviour and habitat use of salmonids is strongly 

influenced by temperature (Armstrong et al., 2003). Elevated temperatures in 

temperate climates may extend the growing season for salmonids but possibly 

increase susceptibility to disease (Elliot et al., 1998). For example, in alpine streams 

in Switzerland increased water temperatures induced higher incidences of 

proliferative kidney disease in brown trout at higher altitudes (Hari et al., 2006). 

Changes in the intensity and frequency of rainfall affect river flow regimes and have 

implications for the accessibility and suitability of spawning grounds (Armstrong et 

al., 2003; Hakala and Hartman, 2004). In addition, the confounded effects of 

temperature and discharge affect the concentration of pollutants and oxygen in river 

water (Whitehead et al, 2006).

Considering the correlation of saimonid densities with climatic variables identified in

the Wye against the growing background of evidence on environmental effects on

salmonids, this study supports the assertion that climate is a key factor in regulating

saimonid populations (Beamish et al., 1999a; Beamish et al., 1999b; Beaugrand and
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Reid, 2003; Tolimieri and Levin, 2004). Potentially adverse effects of reduced rainfall

and river discharge and high temperature on migratory (S. salar) and non-migratory

(S. trutta) saimonid populations, suggest that climatic factors operating on the river

environment are important in the regulation of both species, although this does not

preclude any oceanic effects on anadromous populations (e.g. McFarlane et al., 2000;

Finney et al., 2000).

In the Wye, summer rainfall and river discharge were positively correlated with 

increases in juvenile salmonids and elevated temperatures and low flows with 

declining populations. If substantiated, the widespread decline of saimonid 

populations in the Wye in response to climate would imply that climatic effects may 

have masked more local habitat effects (Poff, 1997; Poff and Huryn, 1998). This 

includes the effect of local riparian management.

The UK climate is likely to be between 2 °C and 5 °C warmer by 2080 (Hulme et al.,

2002). In Wales, winters are likely to become more wet and summers drier (Conway, 

1998; Hulme et al., 2002). Studies on the Upper Wye experimental catchment suggest 

that the occurrence and amount of precipitation will decrease in summer and autumn, 

while evapotranspiration will increase, resulting in more frequent Tow flows’ (Pilling 

and Jones, 2002). Extreme drought events, as seen in the in 1970’s (Edwards and 

Brooker, 1982) may become more frequent. Such changes might further exacerbate 

climate effects on salmonids, potentially altering access to spawning grounds, 

availability of nursery habitat (e.g. pools), and the concentration of pollutants in river 

water. The importance of river discharge to salmonids in the summer suggests that 

water conservation might be a priority for the management of fish stocks within the 

catchment in the future. In addition, riparian management might have an important 

role in providing shade to reduce potentially lethal summer temperatures (Rutherford 

et al., 2004; Watanabe et al., 2005).
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A P P E N D IX  I

Hierarchical average-linkage clustering of environmental characteristics of river 
reaches of the Wye catchment. Variables with rescaled (squared euclidean) distance 

units of less than 10 were considered as ‘variable groups’ in further analyses
(Appendix II).
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A P P E N D IX  II

The first axes extracted by Principal Components Analysis on groups of 
environmental variables that similarly described variation between rivers of the Wye 

system as identified from cluster analysis, after Vaughan and Ormerod (2005) 
(Appendix I). Eigenvectors define the loading of river characteristics on component

axes.
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{pH- Mg-TONl Component

77.5 % variance explained

pH summer 0.859
pH winter 0.875
Magnesium summer 0.887
Magnesium winter 0.928
Total Oxidized Nitrogen summer 0.846
Total Oxidized Nitrogen winter 0.886

{Phosphate-Nitrate-BODl Component

77.6 % variance explained

Ortho-Phosphate summer 0.924
Ortho-Phosphate winter 0.932
Nitrate summer 0.861
Nitrate winter 0.917
Biochemical Oxygen Demand winter 0.758

{Altitude-Acid grassland! Component

81.5 % variance explained

Altitude 0.903
Acid grassland 0.903

{DOs-DOwl Component

76.2 % variance explained

Dissolved Oxygen summer 0.873
Dissolved Oxygen summer 0.873
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Chapter 8

General Discussion:

Recent trends among aquatic biota in the catchment of the River Wye 
(Wales) and the effects of riparian management.



Discussion

[8.11 Introduction

The role of the riparian zone in river ecology has received increased attention over the 

last 20 years (Chapter 2). Consequently, riparian management programmes that aim to 

increase the quality and quantity of in-stream habitat for salmonids are currently being 

implemented in the UK and elsewhere (Krog and Hermansen 1985; Hemphill and 
Bramley 1989; Salmon Advisory Committee 1991; O'Grady 1993; Imhof et al, 1996; 

Kauffman et al., 1997; Hendry et al., 2003; Pusey and Arthington 2003). However, 

experiments evaluating such management have been few, especially those investigating 

effects on other aspects of aquatic ecology (Liljaniemi et al., 2002; Kiffney et al., 2003; 

Wright et al., 2003; Lepori et al., 2005). Riparian management undertaken within the 

Wye system is an example of a catchment-wide programme intended to promote 
saimonid populations. The Wye catchment is an important conservation area, designated 

as a Site of Special Scientific Interest and Special Area of Conservation (CCW, 2006 a-c; 

JNCC, 2006). It was traditionally considered as one of the best salmon rivers in the 

England and Wales but declining rod catches over recent decades caused concern for the 

fishery (Edwards and Brooker, 1982; Environment Agency, 2003a). This prompted 

habitat management work to mitigate against the perceived effects of intensive pastoral 

land use within the catchment (Wye and Usk Foundation, 2006a, b, c). Routine 

monitoring data and standard techniques were used throughout this thesis to demonstrate 

trends in aquatic habitats and biota in space and time within the Wye catchment. This was 

used as a basis against which to evaluate the effects of land use and riparian management 

on habitats and salmonids. Because no suitable project-specific data were collected, 

routine monitoring data and river habitat surveys were used in the best post-hoc 
experimental designs applicable (e.g. ‘Before-After-Control-Intervention’; ANOVA 

among treated and reference sites; multiple regression). Benthic invertebrates were used 

to indicate effects on aquatic communities and water quality. This brief concluding 

section discusses the main findings of the thesis, considers the limitations, reviews the 

relevance to wider issues of river and riparian management and considers further possible 

work.
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[8.21 Main findings

Notwithstanding the challenges of study design, this thesis identified i) large spatial 

variations in ecological quality between tributaries of the Wye, ii) long-term and 

widespread trends over 20 years in biota and water chemistry, iii) some effects of 

management on habitats and invertebrates in expected directions, but no treatment effect 

on salmonids and iv) potential larger-scale effects, linked to climatic variation, on fish 

populations that might mask the effects of local habitat management.

Ecological quality varied widely among the Wye’s tributaries reflecting different 

management pressures (Chapter 3). Combined biotic indices supported the need to 

mitigate acidification in some upland streams and reduce diffuse nutrients in thp lower 

catchment (Chapter 3). Streams in intensive pasture had finer substrata and more active 

channels than elsewhere supporting the assertion that agricultural practice is linked to 

sedimentation of spawning gravels in the Wye (Chapter 4; Harding et al., 1999; 

Armstrong et al., 2003; Zaimes et al., 2004).

Changes in the water quality and aquatic communities of the Wye over time were evident 

from routinely collected data. Between 1985 and 2003, biochemical oxygen demand and 

concentrations of ammonia generally declined (Chapter 7). By contrast, ambient 

temperatures increased, particularly during the summer (Chapter 7). Invertebrate taxon 

richness in the mid-Wye fell from 1995 to 2004, with families typical of lowland, 

eutrophic rivers favoured at the expense of upland taxa (Chapter 5). Saimonid fry and 

juvenile populations fell between 1985 and 2004 throughout the catchment (Chapter 6).

Riparian habitat management appeared to reduce bank poaching (trampling) and increase 

filamentous algae by comparison with reference streams (Chapter 4). Post-treatment 

(2000-2004) invertebrate communities were richer in recently managed streams than in 

controls due mostly to taxa typical of channel margins and lowland conditions (Chapter 

5). However, there was no evidence that management reversed the decline in saimonid 

populations (Chapter 6).

The typical life-cycle of salmonids in the Wye, ranging from 2-7 years from egg to 

spawner including multi sea-winter fish, might delay response to management (Edwards 

and Brooker, 1982; Elliott, 1994). This effect cannot be evaluated with only six years’

258



Discussion

post-treatment data. Alternatively, local effects could be masked or offset by larger-scale 

trends. For example, changes in water quality (e.g. biochemical oxygen demand and 

ammonia) could not explain changes in fish populations (Chapter 7). However, salmonid 

abundance in the Wye declined significantly with increasing summer temperatures, 

decreasing summer rainfall and decreasing summer discharge (Chapter 7).

All of these results have implications for the management of land and water resources 

within the catchment, given its importance to fisheries and conservation (Edwards and 

Brooker, 1982; Environment Agency, 1998; Environment Agency, 2003b; JNCC, 2006). 

Declines in salmonids alongside reductions in invertebrate taxon richness over recent 

decades suggest that such measures should be designed to protect and, if possible, restore 

ecosystems of the Wye catchment.
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[8.31 Limitations and caveats

The constraints on studies presented here in terms of their design were outlined from the 

outset (Chapter 1). The management programme in the Wye was already underway at the 
start of this investigation; treatments had been applied at different times, were not 

randomised across rivers, and no project-specific data on habitats or river organisms had 

been collected. Critically, no data on habitat structure, local salmonid densities or 

invertebrates had been collected prior to riparian management at most of the managed 
sites.

Routine monitoring and survey techniques provided standardised and therefore 

comparable data that were at least semi-quantitative. Many of the drawbacks of using 

such methods have been discussed throughout the scientific literature and are well-known 

(Resh and McElravy, 1993; Crozier and Kennedy, 1994; Raven et a l , 2002). For 

example, all the invertebrate data available involved family level identifications, thus 

missing potential important variations at more specific levels. Offsetting the cost of the 

level of identification of invertebrates against the time spent on identification has often 

been debated (Resh, 1994). In this study, over-simplistic generalisations may have 

resulted in Chapters 3 and 5. However, the detectability of variations among sites and 

treated/reference even at crude taxonomic levels implies that such effects may be 

substantial.

Freshwater ecologists, practitioners and government organisations will increasingly have 

to consider the challenges of appropriate identification and data availability under the 

Habitats Directive (Directive 92/43/EEC), Water Framework Directive (Directive 

2000/60/EC) and the developing Environmental Liability Directive (Directive 
2004/35/CE) pervade the management of the river environment. The UK is in a better 

position than most when it comes to archived data on its freshwater systems and at the 

forefront in the development of tools adapted to interpret them e.g. RIVPACS 

(ZamoraMunoz and AlbaTercedor, 1996; Wright et al, 1998; Mustow, 2002). Studies of 

the type presented here demonstrate how such resources might be utilised in setting 

priorities for management (see Chapter 3). They also demonstrate some of the limitations 

of those data sets and highlight a need for project-specific monitoring. Whilst, long term
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datasets are useful in setting a background against which to identify management issues, 

given the broad nature of their remit they may not always be sufficient to identify the 

effects of management projects against specific aims (see Chapter 2; Imhof et al., 1996; 
Minns et al., 1996).

This thesis provided a broad over view of the biotic and abiotic character of the Wye, 

given the resources available. Each chapter therefore provides a background against 

which entire projects might be developed in their own right. For example, in Chapter 5, 

declines in taxon richness were identified in the mid-Wye but only examined here in the 

context of confounding the effects of management. Further investigation of these results 
would be invaluable in revealing detail on the trends and factors driving them in the Wye. 

For example, comparisons of data presented here against an earlier study of the 

invertebrate communities in the Wye undertaken to species level by Ormerod in 1982 

(Ormerod and Edwards, 1987; Ormerod et al., 1987) alongside a re-survey of Ormerod’s 

sites could explore changes over 25 years. Such a study might also incorporate 

experiments to establish some of the ecological processes that might underlie the 

responses of communities to riparian alteration, such as by contrasting leaf processing in 

treated and control streams (Royer and Minshall, 2003; Danger and Robson, 2004).

Elsewhere in the thesis the organisms and environmental variables and anthropogenic 

factors investigated were, by necessity, limited. Biotic responses to management were 

exemplified here by benthic macroinvertebrates and salmonid fish which by no means 

encompasses the range of aquatic, terrestrial and amphibious species which have 
lifecycles and requirements intricately linked to riparian habitat (e.g. Bodie, 2001; 

Semlitsch and Bodie, 2003; Zoellick et al., 2005). A number of studies on birds in 

particular have demonstrated that the management of riparian habitats have far-reaching 

implications for the ecological integrity of aquatic and terrestrial systems (Tyler and 

Ormerod, 1991; Naiman et al., 1993; Kinley and Newhouse, 1997; Shirley and Smith, 

2005;; Lussier et al., 2006). Broader studies might include other species and perhaps 

investigate interactions between them. s

The scale at which evaluation was undertaken here was designed to match the scale of 

management. The management programme attempted to reverse declining rends across
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the catchment through extensive riparian habitat alteration. So, replicate control and 

treated tributaries were compared in a catchment-scale investigation. However, this may 

have meant that reach-scale treatment effects were missed (see discussions in Chapter 4, 

5 and 6) and that larger-scale factors operating beyond the catchment, particularly those 

concerning the migration costs on Atlantic salmon populations, were not fully 
investigated (Chapters 6 and 7). Chapter 7 attempts an examination of potential 

environmental drivers of change and demonstrates the challenge of evaluating among 

correlated environmental data and potentially competing explanations of salmonid 

decline using weak inference from correlation and regression statistics. It sets the scene 

for a more detailed investigation into salmonid population dynamics and causes of 

change (see Chapter 7 for a more detailed discussion).

262



Discussion

[8.41 Management of freshwaters and the constraints of scale

The importance of large-scale factors, such as climate, on populations of salmonids might 

bring the value of local habitat management into question. Alternatively, these larger- 

scale pressures might be taken to imply that local management is even more crucial. 

Documented effects of intensive land management practices on aquatic systems and the 

importance of the quality and availability of habitat to salmonids suggest that without 

such undertakings population decline might be even more rapid (see Chapters 2, 5 and 6). 

One key need is to identify where population pressures on salmonids might reflect 

climate, and act accordingly at the scale required (Durance et al. 2006). At local scales, 

riparian trees have marked effects on thermal regimes and riparian management could 

provide methods for adapting to climate change effects by providing shade and 

preventing lethal summer temperatures (Rutherford et al., 2004; Watanabe et al., 2005; 

Durance & Ormerod in press).

Rivers are increasingly being managed from an ecological basis, by viewing species 

within the context of the wider biotic community and environment (Harper and Smith, 

1995; Ward, 1998; Solomon, 2003). The management of riparian habitats on the Wye 

demonstrates a habitat focus for species protection. However, riparian management is 

intermediary between boosting populations of single species, for example fish-stocking, 

and broader conservation which protects the entire catchment (Wissmar and Beschta, 
1998; Harper et al., 1999; Verdonschot, 2000; McGinnity, 2002; Aprahamian et al., 

2003; Solomon et al., 2003; Donohue et al., 2006). A significant reversal of salmonid 

decline in response to management given the size of the restoration programme in 

relation to the size of the catchment might not be expected. For example, upstream effects 

on the lower reaches of tributaries, where most management was undertaken, may still 
affect habitat quality and impede population movement (Chapter 4; Dudgeon et al., 2006; 

Evans et al., 2006). Similarly, larger catchment-scale effects can offset the effects of 

local riparian management (Ormerod et al., 1993). Prior to the WFD, such effects could 

not be so effectively managed, so that riparian measuressoffered one of the few practical 

means of influencing the river environment. The conservation of freshwaters at the 

catchment-scale, involving interconnected landscape units is widely accepted by 

freshwater scientists as necessary for the conservation of biodiversity and is now being
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incorporated into legislation (Ormerod, 1999; Logan and Furse, 2002; Ormerod, 2004; 
Dudgeon et al., 2006).

Local management activities need to be appropriate to a given catchment, or even sub
catchment given the contrasting management strategies required in the Wye (Chapter 3). 

The applicability of habitat management undertaken in the Wye to its predominantly 

upland character given that much work of this type is undertaken on lowland systems was 

questioned in Chapter 6. Further, scientific investigations into the effects of riparian 

management and land use on upland systems in particular are warranted. Reporting and 

dissemination of results of studies such as this, alongside the evaluation of similar 

projects undertaken by River’s Trusts, will help to broaden current understanding of how 

different systems respond to habitat work.

To date, the project undertaken by the Wye and Usk Foundation is one of the largest in 

the UK. It demonstrates the importance of habitat in the protection of a single-species for 

economic as well as environmental benefit to mid-Wales. Recently the term ‘ecological 

reconciliation’ has emerged from the scientific literature (Rosenzweig, 2003). It describes 

the compromise that is often made between restoring an ideal and the objectives of 

multiple stakeholders. In an ideal situation conservation, restoration, or environmental 

management would not be undertaken without an ‘holistic understanding of natural river 

ecosystems’ (Ward, 1998). Given the reality o f ‘anthropogenic landscapes’ (Rosenzweig, 

2003) management, based on the best available ecological knowledge, can benefit 

ecosystems and if scientifically designed can inform future management (Dudgeon et al., 
2006). The concept of ecological reconciliation underlines the importance of maintaining 

a dialogue between landowners, practitioners, scientists and the general public, such 

partnerships are exemplified by projects such as WHIP (The Wye Habitat Improvement 

Project) and PHISH (Powys Habitat Improvement Scheme) (Wye and Usk Foundation, 

2006b, c).
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[8.51 Conclusions

Riparian management in the Wye catchment had some of the desired outcomes at the 

reach or tributary scale, supporting the case for riparian management. However, reversal 

in salmonid declines is not yet evident. Limits on management effects imply a need for 

increased protection of river systems over wider spatial scales. Salmonid numbers in the 

Wye potentially reflect climatic effects of the type observed elsewhere (e.g. Byrne et al., 
2003; Byrne et al., 2004; Crozier and Zabel, 2006) and this implies the need to consider 

climate-change in future management action at all scales.

This thesis demonstrates the importance and relevance of in-situ, replicated, catchment- 

scale experiments to understanding how organisms and habitats respond to environmental 

conditions, particularly in the event of a changing climate. The publication and 

dissemination of this work and similar projects will help to direct future management.
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[8.61 Recommendations for future management

The riparian zone is an essential element in the conservation of freshwater organisms and 
ecological functions (Naiman et al., 2005; Chapter 2). It supports aquatic species through 

the provision of allochthonous energy sources and by buffering against diffuse pollutants 

and provides habitat for terrestrial and amphibious species (such as invertebrates, birds, 
bats and otters) that contribute to regional biodiversity. The two-way energy exchange 

that occurs between streams and their surroundings is globally important by virtue of the 
sheer extent of stream networks, with over 20,000 km in Wales alone. However, 

informed management of this ecotone requires both better evidence of the effects of 
various management techniques and improved understanding of riparian processes.

In the Wye, reduced bank poaching along streams with stock exclusion suggests that 

riparian management work can alter bank habitats and may be a precursor to further 

development of bank vegetation. Although significant changes in fish populations have 

not yet been observed (Chapter 6), effects on invertebrates illustrate links between 

management action and ecological response (Chapter 7). The results of thesis therefore 
support the case for continued riparian fencing.

Elements of the current management programme that require further investigation are the 

opening up of the canopy and removal of large woody debris from streams. Temperate 

streams, like those in the upper Wye system, typically represent shaded conditions 

characterised ecologically by allochthony rather than authochthony (see discussion in 

Chapter 6). In fact, tree planting on river reaches where trees are absent represents a 
closer return to semi-natural conditions than selective thinning or coppicing. Aquatic 

macrophytes are unlikely to develop within the channels of upland streams -  where 
production is dominated by bryophytes and algae - to the same extent as in lowland 

streams, for which coppicing is advocated (Giles and Summers, 1996). The importance of 

woody debris to fish production is increasingly recognised, and its removal may have 
negative effects on local fish production (Gumell et al., 1995; Keim, 2002).

One other element to be borne in mind with respect to stream management is that climate 

is increasingly changing the context in which management takes place and the priorities 
for action. Should reduced discharge and higher temperatures in summer have negative
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impacts on fish stocks (as suggested in Chapter 7) or exclude other key organisms 

adapted to cool-water regimes, shaded channels with well vegetated banks could offer 

important benefits. Shading may reduce lethal temperatures in summer (Rutherford et al, 
2004; Watanabe et a l, 2005).

In addition, the legislative and policy context for stream and river management is also 

changing. Not only the Water Framework Directive, but also policies encouraging 

Catchment Sensitive Farming are increasingly emphasising whole river basins in 

management planning (Directive 2000/60/EC; DEFRA, 2004). By contrast, much 

previous work by NGOs (e.g. Rivers Trusts) and statutory organisations (e.g. country 

agencies such as Countryside Council for Wales, Scottish National Heritage and Natural 

England) has focused on the riparian zone of tributaries because of the difficulties of 
work at larger scales. Upstream expansion of fences along streams, such as the Edw, may 

help to tackle diffuse sources of sediment. Perhaps more importantly, catchment sensitive 

farming practices, supported through broad-scale agri-environment schemes and the 

designation of sensitive areas (e.g. nitrate sensitive areas), would be beneficial. Better 

links between riparian and catchment-scale management offer an important way forward, 

but also will occur at a scale that means that evaluation will be challenging. A shared 

vision of river management objectives between National Governments, the Environment 

Agency, the Countryside Agencies, the Rivers’ Trusts and farming agencies would 

clearly help to develop catchment-wide programmes of measures to protect and enhance 

aquatic ecosystems in accordance with the Water Framework Directive.
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