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Abstract

In this study, the expression of several sensory neuron specific/predominant genes, 
and the effects o f neurotrophic factors upon them were studied in embryonic, 
postnatal and adult mouse sensory neurons.

In the embryonic mouse, NGF/TrkA signalling was shown to be essential for the 
expression of mRNAs encoding substance P and the sodium channels N avi.8 and 
N avi.9 in DRG and trigeminal ganglia. Differential regulation of the two isoforms of 
calcitonin gene related peptide (CGRP) mRNA was apparent in the DRG with a 
requirement o f NGF/TrkA signalling for expression of a , but not p CGRP. This was 
not reflected in the trigeminal ganglia.

Postnatally, experiments revealed that NGF/TrkA signalling within the DRG and 
trigeminal ganglia is 1) essential for expression of SP, aCGRP, pCGRP, N avi.8, 
Navi .9 mRNAs, 2) possibly required for expression of the neuropeptide galanin and 
the capsaicin receptor vanilloid receptor 1 (VR1) mRNAs, 3) not required for 
pituitary adenylate cyclase-activating peptide (PACAP) mRNA. Conversely, within 
the nodose ganglia, expression of N avi.8 and N avi.9 mRNAs did not require 
NGF/TrkA signalling. No regulation of all aforementioned genes by neurotrophin-3 
(NT-3) was observed in trigeminal, nodose or dorsal root ganglia.

In the adult mouse, DRG cultures were utilised to study gene regulation by the 
neurotrophic factors NGF, artemin and macrophage stimulating protein (MSP). 
Expression o f SP, aCGRP, pCGRP, N avi.8, N avi.9 and VR1 mRNAs all showed a 
decrease following 96 hours in culture that was inhibited by presence of MSP 
(50ng/ml), NGF (lOng/ml) or artemin (lOng/ml). PACAP, galanin, damage induced 
neuronal endopeptidase (DINE) and activating transcription factor 3 (ATF3) mRNAs 
increased over time, but neurotrophic factors could impede such increases. No 
axotomy or neurotrophic factor-induced effects were observed for P2X3, N avi.6 or 
Navi .7 mRNAs. Interestingly the additional presence of leukaemia inhibitory factor 
(LIF) opposed NGF, MSP and artemin-induced effects on PCGRP, SP, VR1 and 
galanin mRNAs, whilst enhancing effects on PACAP and DINE transcripts.
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Chapter 1 

General Introduction

This thesis concerns aspects o f the development o f the peripheral nervous system 

(PNS) and the regulation of gene expression in developing and mature PNS neurons 

in response to secreted signalling proteins. The PNS works alongside the central 

nervous system (CNS) with the primary function of ensuring the organism’s ultimate 

survival by enabling it to react to the internal and external environment, in the most 

appropriate or advantageous way. Not surprisingly, the most complex organ system 

in a vertebrate is its nervous system. The ubiquitous presence o f the system 

throughout the body, the diversity of neuronal type, and the intricate, yet precise, 

connectivity all contributes to its complexity. The development, maintenance and 

function o f the nervous system is precisely regulated by a range o f endogenous 

signalling proteins produced from a wide variety of cells within the nervous system 

and other tissues, at different times and by a number of different routes.

In this introductory chapter I will briefly review salient aspects o f the development of 

the nervous system, with particular emphasis on the PNS, and especially sensory 

neurons of the PNS, as these neurons have been extensively studied in this thesis. I 

will provide an overview o f functional aspects o f sensory neurons, especially in 

relation to pain transmission and painful states, as this is o f particular relevance to 

the work presented in the thesis. I will provide an overview of the neurotrophic 

hypothesis and the roles o f secreted signalling proteins like neurotrophic factors in 

neuronal development. Finally, I will describe relevant aspects o f the developmental 

and functional significance o f the various families of neurotrophic factors and their 

receptors in the nervous system.

1.1. Origins of the vertebrate nervous system

The vertebrate nervous system is divided into the central nervous system, made up of 

the brain and spinal cord, and the peripheral nervous system, consisting of the cranial

1



and spinal nerves, and the autonomic nervous system. The function o f the central 

nervous system (CNS) is to interpret incoming nervous activity, process it and 

generate a response whilst the peripheral nervous system (PNS) acts as the bridge for 

nerve signals between the brain and spinal cord and the peripheral receptors and 

actuators.

The embryological development o f the nervous system begins with a process known 

as “gastrulation” when the blastula, which is made of a single layer o f cells, is 

transformed into a three-layered structure, consisting of endoderm, mesoderm and 

ectoderm. Each o f these layers eventually gives rise to specific systems and tissues. 

The innermost layer, the endoderm, develops into the epithelial components of the 

respiratory system, digestive system, pancreas, liver, urinary bladder, thyroid, 

parathyroids, tonsils and middle ear. The middle layer, the mesoderm, gives rise to 

muscles, connective tissue and the vascular and urogenital systems. The outermost 

layer, the ectoderm, develops into the skin and nervous system. Following 

gastrulation, “neural induction” occurs. In this process, the dorsal aspect of the 

ectoderm thickens and becomes what is referred to as the “neural plate”. The lateral 

edges o f the plate rise up whilst the midline sinks, folding the plate centrally to 

produce a canyon, the neural fold. The edges of the fold then grow together and fuse 

to produce a hollow tube, the ‘neural tube’, which runs along the dorsal midline of 

the developing embryo. The neural tube gives rise to the CNS, its hollow becoming 

the ventricular system while the epithelial walls become the neuronal and glial 

tissues.

The PNS is derived from a collection of “neural crest” (NC) cells. The crest (NC) 

develops from outer margins of the ectodermal neural tube. The NC cells detach 

from the dorsal aspect o f the neural tube and migrate through the mesoderm, 

following well-defined pathways. Differences in their environment and the inbuilt 

“drivers” lead the NC cells to migrate to specific regions of the developing embryo. 

Here these cells differentiate into the various cell types o f the PNS and a variety of 

other cell types. Those NC cells that migrate just beneath the surface of the ectoderm
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form pigment cells (melanocytes) of the skin, while the sensory ganglia are formed 

from those that take an intermediate pathway. The autonomic sympathetic and 

parasympathetic ganglia form from those that take a more medial pathway. Schwann 

cells and satellite cells are also o f neural crest origin (Jessen and Mirsky, 1998), as 

are the chromaffin cells o f the adrenal medulla and many o f the skeletal and 

connective tissue components of the head. The neurons of certain sensory cranial 

ganglia differentiate from another group of cells, the “neurogenic placodes”, which 

develop as thickenings of the rostral ectoderm (D’Amico-Martel and Noden 1983; Le 

Douarin, 1986).

In its development, there are a number of influences. These include two important 

classes o f proteins, the bone morphogenetic proteins (BMPs) (originating in the 

epidermal ectoderm) and the sonic hedgehog (SHh) morphogen, which is expressed 

in the axial mesoderm and stimulates vascular growth (Reviewed in Le Douarin and 

Dupin, 2003; Kandel, principles o f neuroscience 4th edition). Genes such as Mash1 

and ngns are important in specification of sensory and autonomic neurons. 

Endothelin-3 (ET3) and its receptor, the endothelin-B receptor (EDNRB) regulate the 

development o f melanocytes, the enteric nervous system and posterior enteric nerve 

plexuses (Nataf et al., 1996; Reviewed in Le Douarin and Dupin, 2003).

1.2. Development of the peripheral nervous system

The PNS is divided into the somatic and autonomic nervous systems. Somatic 

nerves, are those which link the CNS to systems which are under direct conscious 

control (movement o f the limbs, eyes, etc.) and convey sensory information that is 

generally consciously perceived, while the autonomic nerves link the CNS with 

systems which run (largely) without conscious control (e.g. motor activity in the gut, 

accommodation in the eye, etc.). The autonomic nerves may travel with or separately 

from the somatic nerves. In the PNS, the nerve cell bodies are gathered into groups,
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known as ganglia, but may also be found within neural plexuses. The main ganglia of 

these systems will be discussed briefly here.

1.2.1. Sensory ganglia of the peripheral nervous system

Sensory ganglia are subdivided into cranial ganglia and dorsal root ganglia (DRG). 

The DRG are located on the dorsal roots of the spinal nerves. Their neurons 

innervate sensory receptors in the skin, muscles and joints of the trunk. Cranial 

sensory ganglia innervate sensory receptors predominantly in the head and are 

located on five o f the twelve pairs o f cranial nerves. The location o f the twelve 

cranial nerves is shown in figure 1.1 and the main function of each nerve outlined in 

table 1.1. Neurons o f the trigeminal ganglion are located on cranial nerve V and 

innervate the mechanoreceptors, thermoreceptors and nociceptors o f the face and oral 

and nasal cavities. The geniculate ganglion, located upon cranial nerve VII, 

innervates anterior taste buds of the tongue. The vestibular and cochlear ganglia 

(cranial nerve VIII) are required for hearing and balance, with neurons innervating 

the hair cells in the cochlea, utricle, saccule and semicircular canals. The petrosal 

ganglion (glossopharyngeal nerve, IX) innervates posterior taste buds of the tongue 

and pharynx. Neurons o f the jugular (superior vagal) and nodose (inferior vagal) 

ganglia, (vagus nerve X) innervate the oro-pharynx, oesophagus and the gut in the 

chest and abdomen and the respiratory tract. Finally the superior glossopharyngeal 

ganglion, located on nerve IX, provides somatic sensory innervation to the tongue 

and throat and is important in swallowing reflexes.

The only neural crest-derived cranial sensory neurons found in a CNS site are those 

of the trigeminal mesencephalic nucleus (TMN), which is found in the midbrain. 

These neurons innervate stretch receptors in the muscles of mastication.
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The Cranial Nerves

wr /  4p i t u i t a r y  g l a n d

m e s e n c e p h a l o n
I /

p o n s --------------- 3

e x t e n t marrow

Figure 1.1. The location o f the 12 cranial nerves. Taken from

http://www.becomehealthvnow.com/images/organs/nervous/cranial nerves.jpg

CRANIAL NERVE: MAJOR FUNCTIONS:
I Olfactory • Smell
II Optic • Vision
III Oculomotor • Eyelid and eyeball movement

IV Trochlear
• Innervates superior oblique
• Turns eye downward and 

laterally

V Trigeminal
• Chewing
• Face & mouth touch & pain

VI Abducens • Turns eye laterally

VII Facial
• Controls most facial expressions
• Secretion o f tears & saliva
• Taste

VIII Vestibulocochlear 
(auditory)

• Hearing
• Equilibrium sensation

IX Glossopharyngeal • Taste
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• Senses carotid blood pressure |

X Vagus

• Senses aortic blood pressure I
• Slows heart rate I
• Stimulates digestive organs I
• Taste I

XI Spinal Accessory
• Controls trapezius & I 

sternocleidomastoid I
• Controls swallowing movements |

[XII Hypoglossal • Controls tongue movements |
Table 1.1. The main functions o f each o f the 12 cranial nerves.

Adapted from: http://www.gwc.maricopa.edu/class/bio201/cn/cranial.htm

1.2.2. Autonomic ganglia

The autonomic nervous system is divided into the sympathetic, parasympathetic 

systems and the enteric nervous system within the gut. The sympathetic and 

parasympathetic nervous systems control the gut, exocrine secretions (e.g. saliva) 

and the heart rate, allowing the body to react to environmental surroundings and 

prepare for ‘fight or flight’. The sympathetic ganglia are further subdivided into 

paravertebral and prevertebral ganglia. Paravertebral ganglia include the superior 

cervical ganglion (SCG), which innervates the salivary, lacrimal and sweat glands; 

the middle cervical ganglion and the stellate ganglion, which innervates heart, lungs 

and bronchi; and the sympathetic chain ganglion, which also contributes to the 

innervation o f the thoracic viscera, and neurons of the entire paravertebral chain 

innervate vascular smooth muscle throughout the body. Prevertebral sympathetic 

ganglia include the (abdominal) coeliac ganglion, which innervates oesophagus and 

stomach; aorticorenal ganglia, innervating the kidneys; the superior mesenteric 

ganglion, which innervates the small intestine; and the inferior mesenteric ganglion, 

which innervates the colon and pelvic organs. Parasympathetic ganglia include the 

ciliary ganglion, pterygopalatine ganglion, submandibular ganglion and otic 

ganglion, which innervate lachrymal, salivary and other glands. In addition, the 

terminal ganglion o f the vagus nerve and the pelvic plexus innervate the gut and 

areas of the uro-genital tract. The enteric nervous system is comprised of networks of 

sensory, intemeurons, motor neurons and astrocyte glia, which are divided into two
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separate groups, the myenteric (Auerbach’s) plexus and the submucosal (Meissner’s) 

plexus. Together these neuronal plexuses regulate and co-ordinate gut movement and 

intestinal exocrine secretions.

1.3. Origins of the peripheral nervous system

Sensory neurons differentiate from progenitor cells that are derived from two 

sources: the neural crest or the neurogenic placodes. Placodes are discrete regions of 

thickened ectoderm in the head. Neural crest (NC) cells are generated as a result of 

cell-cell interaction between the epidermis and neural plate, and they separate and 

migrate from the epidermis as the neural plate fuses to form the neural tube (Selleck 

and Bronner-Fraser, 1995). NC cells migrate through the mesoderm to specific 

regions o f the embryo where they differentiate into their destined cell type.

Detailed mapping experiments have determined the origins o f avian cranial sensory 

ganglia. The neural crest gives rise to neurons of the dorsomedial part o f the 

trigeminal ganglion, trigeminal mesencephalic nucleus, jugular ganglion, superior 

glossopharyngeal ganglion and the dorsal root ganglia (DRG), whilst neurons of the 

venterolateral part o f the trigeminal ganglion and the vestibulo-cochlear, geniculate, 

petrosal and nodose ganglia are derived from neurogenic trigeminal, epibranchial and 

otic placodes (Noden, 1978; D ’Amico-Martel, 1982; D’Amico-Martel and Noden, 

1983; Le Douarin, 1986; Le Douarin, 2004).

In the autonomic nervous system, the neurons of the parasympathetic and 

sympathetic ganglia are derived from neural crest cells of the entire trunk, whilst 

enteric nervous system neurons are derived from three distinct areas of the neuronal 

crest: the vagal, the sacral and the truncal regions (Epstein et al., 1994; Serbedzija et 

al., 1991; Le Douarin et al., 2004).

All Schwann cells and satellite cells o f the PNS are derived exclusively from the 

neural crest (D ’Amico-Martel and Noden, 1983).
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Transplantation experiments have revealed that both presumptative placodal 

ectoderm and premigratory neural crest cells are not predestined to particular cell 

types. Environmental cues and other external factors along their migratory track are 

responsible for designating a cell to a particular neuronal fate (Vogel and Davies, 

1993; Le Douarin et al., 2004).

1.4. The Mature PNS

1.4.1. Anatomy of the PNS

Mature peripheral nerves are composed o f myelinated and unmyelinated nerve fibres. 

Fibres surrounded by myelin sheaths have a greatly enhanced speed o f transmission. 

In the PNS, the myelin sheath o f the nerve fibre is formed from the encircling 

compressed layers o f  Schwann cell plasma membrane (see figure 1.2). Breaks in the 

myelin sheath (the node o f  Ranvier -  see figure 1.2) occur at intervals. Unmyelinated 

fibres are surrounded solely by Schwann cell cytoplasm. In the CNS, 

oligodendrocytes, rather than Schwann cells produce myelin sheaths.

A peripheral nerve is composed o f many nerve fibres. A nerve fibre bundle is known 

as a fascicle and is invested with connective tissue called endoneurium. Several 

smaller bundles o f  nerve fibres are enclosed in a connective tissue sheath known as

call mambrane 
Schwann call 
containing my*

Schwann call

Figure 1.2. Schwann cells in the PNS 

Taken from.

http://www.unis.org/UNIScienceNet/Schwann cell 800.html 

htto://www.infodotinc.com/corpsman/32.htm

8

http://www.unis.org/UNIScienceNet/Schwann
http://www.infodotinc.com/corpsman/32.htm


the perineurium, and the collections o f these larger nerve fibre bundles that make up 

the complete nerve fibre are in turn invested with a loose vascular connective tissue 

sheath known as the epineurium. Each nerve fibre can be thought o f as living inside 

its own protective pipe, a structure essential to assist in the accurate re-growth in the 

event o f fibre damage (see figure 1.3 and 1.4).

Interfascicular
epineurium

Nerve

Perineurium Endoneurium

Schwann cell

Axon

Figure 1.3. Composition o f a peripheral nerve. Taken from: 

http://www.backpain-guide.com/Chapter Fig folders/ChlO Recover Folder/ChlO-

1 NerveStruct.html
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Epineurium

Vessel

Perineurium

Myetm

Nucleus of 
Schwann ceil

Endoneurlum 

Erythrocyte

Perineurium

B_________________________________________

Figure 1.4. (A). The main structures that make up a transected peripheral nerve as would be depicted 

by light microscopy. (B) Closer detail o f the transected nerve as observed in electron microscopy.

Taken from ‘Neuroanatomy’ Fitzgerald, 1992

1.4.2. Microanatomy of the PNS - Classification of mature 

peripheral neurons

Peripheral nerves can be classified on the basis of their fibres (rather than their cell 

bodies) with regards to myelination, diameter and conduction velocity. The Gasser 

and Erlanger system is one o f the most commonly used classification systems. In this 

system, nerves are categorised as A, B and C, with the A fibres further subdivided 

into A a, Ap, Ay and A8. (See table 1.2.)

10
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FIBRE

GROUP

INNERVATION MYELINATION MEAN

DIAMETER

(pM)

MEAN

CONDUCTION

VELOCITY

(M/S)

A a Primary muscle 

spindle motor to 

skeletal muscle

Yes 15 100

Ap Cutaneous touch and 

pressure afferents

Yes 8
50

1 ^ Motor to muscle 

spindle

Yes 6 20

A8 Mechanoreceptors,

thermoceptors

Yes <3 15

B Sympathetic

preganglionic

Yes 3

7C Mechanoreceptors,

nociceptors,

sympathetic

postganglionic

No 1

Table 1.2. Gasser and Erlonger classification o f fibres in peripheral nerves. 

Adapted from  Ferrante, Postoperative pain management, 1993.
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1.4.3. Sensory neurons

This thesis concerns regards sensory neurons, in particular those o f the nodose 

ganglia, trigeminal ganglia and DRG. For this reason, the different subtypes o f 

sensory neurons will be discussed, followed by details o f the composition o f the 

sensory ganglia o f interest, and information on the proportions and biochemical 

properties o f relevant neuronal subpopulations.

The large diameter A a  and Ap fibres carry impulses from low threshold mechano

receptors (LTM), and the nerve and receptor combined are often referred to as the 

low threshold mechanoreceptors (LTMs). They respond to low threshold non- 

noxious stimuli such as touch, pressure and proprioception (which enable the brain to 

establish its overall position in space). Many subtypes o f A a  and p LTMs exist. 

These include, the slowly adapting type 1 nerves with Merkel end organs that 

respond to pressure (figure 1.5A); slowly adapting type II type with Ruffini ending 

(figure 1.5B); Gj and G2 hair follicles which respond to hair movement; and rapidly 

adapting neurons, which respond to tapping and whose end organ is the Meissner 

corpuscle (figure 1.5C).

A. Merkel ending B. Ruffini ending C. Meissner

Capsule

Figure 1.5. The receptor endings o f LTMS
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In general non-nociceptive afferents have a lower threshold o f stimulation than 

nociceptive. However, a subpopulation of the small diameter A8 mechanoreceptive 

fibres, known as the high-threshold mechanoreceptors (HTM), become more 

sensitive over time so that small amounts o f non-damaging, but sustained, pressure 

cause pain.

Nociceptors (nociceptive neurons and their associated receptors) comprise small 

diameter A8 fibres and unmyelinated C fibres. A8 fibres are often referred to as 

mechano-heat fibres as respond to mechanical and thermal stimulus. They have 

restricted and small receptive fields. They respond to severe deformation of the skin, 

such as pinching. The pain sensation(s) they produce is one of sharpness and 

stinging. Thermoreceptive neurons are A8 fibres that sense cold and C fibres that 

sense heat.

C fibres are unmyelinated and of small diameter. As a result they the slowest of the 

small fibres. They have a wider receptive field and respond to noxious, mechanical, 

thermal and chemical stimuli. As a result, they are often referred to as “C-polymodal 

nociceptors” (C-PMN). C-PMNs “sensitise”, developing a lower threshold of 

stimulation with repetitive stimulation: they can develop an ongoing, continuous 

discharge. It is these nerve fibres that are responsible for the more prolonged intense 

aching or dull pain that experienced with inflammation or following nerve damage.

Subtypes o f neurons within mature DRG. trigeminal ganglia and nodose ganglia

Sensory neurons can be classified at a gross histological level into two broad groups. 

The first group consists o f small diameter nociceptive or thermal A8 or C fibres and 

are often referred to as ‘dark neurons’. The second group is made up of large 

diameter, A a  or p, mechanoreceptive ‘light’ neurons. Large light neurons bind the 

neurofilament antibody, RT97 (Lawson et al., 1984), whereas the majority of small, 

dark neurons can bind and transport the isolectin B4 (IB4) (Silvermann et al., 1988;
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Kitchener et al, 1993; Wang et al., 1994, 1998). These two markers can bind the 

majority (approximately 80%) of DRG neurons.

Neurons can also be categorised into smaller subpopulations based upon expression 

of neurotrophin receptors, (the receptor tyrosine kinase of the,= Trk family, and 

common receptor p75) and other sensory neuron specific genes. For example, in 

adult rats, approximately 40% of DRG neurons express the nerve growth factor 

(NGF) receptor tyrosine kinase TrkA (Verge et al., 1989, 1992). O f these, the 

majority (approximately 92%) co-express the neuropeptides “calcitonin gene related 

peptide” (CGRP) and substance P (SP), but not the genes somatostatin or thiamine 

monophosphatase (Verge et al., 1989; Averill et al., 1995). Only 18% of these TrkA- 

expressing neurons bind the marker o f large neurons, the neurofilament protein RT97 

(Averill et al., 1995). This proportion of TrkA expressing DRG neurons are, 

therefore, termed small diameter “peptidergic” neurons. A proportion o f adult rat 

DRG neurons do not express TrkA and are not labelled by neurofilament. These 

neurons comprise approximately 30% of DRG neurons and are unmyelinated small 

diameter neurons that also bind the isolectin B4 (Molliver et al., 1995; Averill et al.,

1995).

O f the other neurotrophin receptors, TrkC is expressed almost exclusively by large 

diameter sensory afferents o f the DRG (Mu et al., 1993; McMahon et al., 1994).

The low affinity common neurotrophin receptor, p75, is not expressed independently 

o f Trks and is found co-localised on the majority of TrkA and TrkB expressing 

neurons, but only on approximately 50% of TrkC neurons (Wright and Snider, 1995).

The “Sensory Neuron Specific” (SNS) “Tetrodotoxin Resistant” (TTX-r) sodium 

channels, N av i.8 and N avi.9, respectively, have specific expression profiles within 

adult rat DRG neurons. N avi.8 is found both in small diameter non-myelinated 

sensory neurons (C-fibres) and in 10% of large neurons with myelinated axons 

corresponding to A6 nociceptors (Sangameswaren et al., 1996; Amaya et al., 2000). 

The second TTX-R alpha subunit, N avi.9 (NaN/SNS2) is predominantly located in 

small diameter sensory neurons (Black et al., 1996; Dib-Hajj et al., 1998; Tate et al.,
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1998; reviewed in Lai et al, 2004), expressed specifically within C neurons, and is 

not detectable in neurons with myelinated axons (Amaya et al., 2000; Fang et al., 

2002).

In rat DRG, the capsaicin receptor, Vanilloid receptor 1 (VR1) is expressed by the 

TrkA- positive, peptidergic neurons, and the non-peptidergic IB-4 reactive 

population (Mantyh and Hunt, 1998; Michael and Priestly 1999; Guo et al., 1999). In 

contrast, in the mouse, only a small (2-3%) population of DRG neurons are both IB4 

and VR1 positive (Zwick et al., 2002), the majority of functional VR1 receptors 

being expressed by the TrkA expressing peptidergic neurons. This observation 

highlights the important fact that species differences occasionally occur.

In the adult rat, only 2% of intact DRG neurons are galanin mRNA positive (Xu et 

al., 1996; Ma et al., 1999). These neurons are predominantly small/medium sized 

peptidergic neurons and also express CGRP. However some expression in large size 

neurons has also been observed (Xu et al., 2000; Ma et al., 1999).

The trigeminal ganglia, which convey sensory information from the facial area have 

many similarities with DRG. It contains similar subpopulations of neurons and 

shows similar patterns o f expression of neurotrophin receptors and other sensory 

neuron specific genes (Matsumoto et al., 2001). The nodose ganglia, which are 

important for transmission o f cardiovascular, respiratory and gastrointestinal signals, 

shows some clear differences from DRG and trigeminal ganglia (Zhou et al., 1997). 

The nodose ganglia are derived from the neurogenic placode, and during 

development the neurons are reliant upon neurotrophic factors that differ from those 

o f the NC-derived DRG and trigeminal ganglia. Only approximately 5% of the 

nodose neurons express TrkA and 10% TrkC (Verge et al., 1992; Zhou and Helke

1996). Nevertheless, the mean density o f expression of p75 has been shown to be the 

same or higher than that o f the DRG or trigeminal ganglia (Verge et al., 1992). 

Expression o f other genes also differs. In the nodose ganglion, TrkB, rather than 

TrkA is co-localised withVRl mRNA (Michael and Priestly, 1999). This co

expression o f VR1 and TrkB reflects the observation that BDNF, but not NGF, can
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regulate the capsaicin sensitivity of cultured adult rat nodose neurons (Winter 1998). 

Galanin immunoreactivity is detected in the nodose ganglia, but in contrast to 

trigeminal ganglia and DRG, it is expressed predominantly in large diameter neurons 

(Calingasan and Ritter, 1992). Expression of other genes in the rodent, including 

CGRP and SP mRNA are seen in similar populations and proportions o f nodose 

neurons to that o f the DRG and trigeminal (Helke and Hill 1988; Czyzyk-Krzeska et 

al., 1992; Stemini and Anderson, 1991).

1.4.4. Sensory neurons, insult, injury and the inflammatory 
response

Because this thesis focuses on sensory neurons of the PNS a brief overview of the 

involvement o f these neurons in pain states and diseases affecting these neurons in 

the adult is relevant.

1.4.4.1. Inflammation

Inflammation is characterised by four features “calor, rubor, dolor and tumor” -  heat, 

redness, pain and swelling. Heat and redness are due to capillary dilatation; swelling 

is due to extravasation o f protein-rich oedema fluid from the capillaries; pain occurs 

because o f swelling (stretching of tissues) and the presence of a host o f inflammatory 

mediators including prostaglandins. The inflammatory response has hallmarks 

similar to the “triple response” in which tissue injured by, for instance a scratch 

demonstrates the three features redness, flare and swelling.

The inflammatory stimulus is first sensed by polymodal nociceptors (C-fibres) in the 

deep epidermis. These receptors (Figure 1.6) subsequently transmit messages 

through to the CNS, and also stimulate the production of the neuropeptide Substance 

P (SP) from sensory nerves. SP is able bind to receptors on arterioles allowing 

arterial dilation and the characteristic ‘flare response’. SP is also able to bind to mast 

cells, stimulating the release of histamine and 5- hydroxytryptamine (5HT), which
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alters the permeability o f  capillaries, producing accumulation o f tissue fluid and the 

‘wheal response’.

Figure 1.6. Free epidermal nerve endings found in the deep layers o f  the epidermis

The release o f  SP in response to peripheral inflammation is well characterised 

(Duggan et al., 1987; Oku et al., 1987; Schaible et al., 1990), and is required for the 

development o f  the whole pattern o f inflammation and for the painful sensations with 

which it is accompanied. Intrathecal administration o f SP results in hyperalgesia 

(Moochhala et al., 1984). The application o f antagonists to the SP receptor, 

neurokinin 1 (NKj), results in a loss in the increased excitability in response to 

noxious thermal stimulation and also in a loss o f ‘wind-up’, (an increase in the 

response following repetitive stimuli o f equivalent strength so that the response to 

the last o f  the stimuli is much greater than that to the first stimulus, despite being the 

same strength) (Thompson et al., 1995; Radhakrishnan et al., 1998). Furthermore, 

ablation o f  SP neurons results in the loss o f response to capsaicin and a loss o f both 

thermal hyperalgesia and o f  mechanical allodynia1 which are normally associated 

with inflam m atory pain (Nichols et al., 1999; Khasabov et al., 2002).

In addition to the increased expression o f SP that follows inflammatory stimuli, 

alterations in other neuropeptides and sensory neuron specific genes are observed. 

These changes are also thought to be responsible for the subsequent inflammatory 

pain. For instance, an increase in the potent vasodilator “Calcitonin Gene Related

1 Allodynia refers to the feeling of pain from stimuli that are not normally painful e.g. touch of 
feather.
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Peptide” (CGRP) is also observed. CGRP potentiates the release o f SP (a positive 

feedback), thus enhancing the transmission of nociceptive information (Oku et al., 

1987; Brain et al., 1989). CGRP has also been shown to potentiate oedema formation 

when co-injected with histamine, a potent mediator o f vascular permeability that is 

released in the triple response. (Brain et al., 1992). Additionally, CGRP can affect 

the immune response to inflammation at the cellular level, where it can directly and 

indirectly affect production of chemotactic compounds from macrophages e.g. 

cytokines2. The presence of CGRP attenuates release o f the cytokine interleukin-1 

(IL-1), but produces an increase in production of the cytokine, interleukin- 10 (IL- 

10) (Torii et al., 1997). CGRP can also indirectly enhance lipopolysaccharide (LPS)3 

(also known as endotoxin) induced release of interleukin-6 (IL-6) from macrophages 

through induction o f nitric oxide (NO) (Tang et al., 1999).

Transcripts o f the neuropeptide, “Pituitary Adenylate Cyclase-Activating 

Polypeptide (PACAP) are increased in small-medium neurons following 

inflammatory stimulation, suggesting a role in inflammation and the associated 

inflammatory pain (Zhang et al., 1998; Jongsma-Wallin et al., 2003). Furthermore, 

Mabuchi et al., (Mabuchi et al., 2004) showed that PACAP*7' mice do not exhibit 

inflammatory pain induced by the injection of a carrageenan (a polysaccharide 

extracted from red seaweed).

An increased expression o f the capsaicin receptor, VR1, is also observed in the DRG 

following application o f the local irritant, Freund’s Complete Adjuvant (CFA) 

(Amaya et al., 2003; Ru-Rong et al., 2002). This increase is thought to play a role in 

the generation o f thermal hyperalgesia because mice lacking VR1 do not show this 

hypersensitivity effect following induction of inflammation (Caterina et al, 2000).

Following carrageenan injection (Colpaert, 1987; Butler et al., 1992; Ji et al., 1995) 

or administration o f CFA (Calza et al., 1998), decreases in both protein and mRNA

2 Cytokines are proteins produced by cells. They can effect cellular interaction/communication and 
can also affect cellular behaviour
3 Lipopolysaccharide (LPS) or endotoxins are structural components o f gram-negative bacteria,
mainly released when the bacteria are lysed. Endotoxins are pyrogens producing fever and can
activate inflam m ation
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expression o f the neuropeptide galanin are observed in the DRG, despite an increase 

in galanin immunoreactivity in the dorsal horn (Ji et al., 1995). Calza et al., (Calza et 

al., 1998) further monitored its expression following the onset of inflammation and 

found that galanin mRNA and peptide levels recovered to normal 5 days post

injection. Interestingly, 21 days post-injection a significant increase from basal level 

was observed. It is thought that this increase in galanin expression could reflect 

neuronal damage, as discussed (above), and that the pain felt might therefore change 

from inflammatory to neuropathic pain (Calza et al. 1998).

One o f the adenosine triphosphate (ATP) receptors, the purigenic receptor P2X3, is 

also affected by inflammation. A low dose of ATP injected into rats skin previously 

inflamed with carrageenan produces an enhanced and greater pain response than in 

normal, untreated rats (Hamilton et al., 2001). This suggests that P2X receptors are 

sensitised by inflammation, and that the enhanced sensitivity may be due to 

mediators released as a result o f inflammatory stimulation. SP and bradykinin, which 

are both known to mediate pain perception, have both been shown to potentiate 

P2X3 and P2X2/3 heteromeric ion channels through phosphorylation. This suggests 

that such an action can subsequently sensitise nociceptors, producing an enhanced 

response to ATP (Paukert et al., 2001). CFA-induced inflammation also produces an 

increase in P2X3 protein in small-medium neurons of the rat DRG (Xu and Huang, 

2002).

Alterations in sodium channel expression also occur following inflammation. 

Carrageenan injection into adult rats leads to increased expression of two of the 

“Tetrodotoxin sensitive” (TTX-S) sodium channels N avi.3 and N avi.7 in DRG, 

producing an increase in TTX-S currents (Black et al., 2004). It was proposed that 

this increased sodium conductance contributes to the neuronal hyper-excitability and 

onset o f inflammatory pain. Additionally, the finding that application o f the “Cyclo- 

Oxygenase (COX) inhibitors, ibuprofen or NS-398 (a COX-2 specific inhibitor), 

prior to CFA injection, prevents the inflammation-induced up-regulation in N avi.7 

protein observed in adult rat DRG (Gould et al., 2004). These observations suggest 

that components o f the COX pathway are involved in the up-regulation of N avi.7.
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Alterations in the TTX-resistant (TTX-R) sodium channel N avi.8 are also observed 

in inflammation. Within 48 hours of CFA-induced inflammation in adult rats, there is 

a dramatic increase in N avi.8 protein in DRG neurons (Gould et al., 1998; Tanaka et 

al., 1998; Gould et al., 2004; Coggeshall et al., 2004). In small neurons, the 

inflammation-induced enhanced level o f N avi.8 persists and remains unchanged, 

while, as allodynia subsides, the expression of N avi.8 in the large neurons falls back 

to baseline (Gould et al., 2004). It was therefore proposed that the increased 

expression of Navi .8 in large neurons is responsible for the hyperalgesia observed in 

such inflammatory states, whilst the persistent up-regulation in small diameter 

neurons produces a prolonged increased sensitivity that could provide a protective 

role, to ensure the organism’s vigilance (and self protection) during healing (Gould et 

al., 2004). Further evidence o f Navi .8’s role in inflammatory pain has been provided 

by the use o f antisense oligonucleotides to attenuate Navi. 8 expression. Injection of 

these “anti-Navl.8” oligonucleotides into rats prevented PGE2-induced hyperalgesia 

and increased the threshold to mechanical nociceptive stimuli (Khasa et al., 1998).

1.4.4.2. Nerve injury and neuropathic pain

Following peripheral nerve damage or crush, in a process named Wallerian 

degeneration, axons degenerate distal to the lesion. During the first 48 hours 

following injury, lysosomal activity of Schwann cells breaks the myelin and axons 

into ‘ellipsoids’. Monocytes enter the nerve from the bloodstream through breaks in 

the endoneurium and begin to clear the debris. The end result o f the degenerative 

process is a shrunken nerve, but with intact endoneurium and a core o f functioning 

Schwann cells.

Unlike the neuronal damage in the CNS, neuronal regeneration in the PNS can occur, 

provided the cell body remains intact. Following a clean cut of a nerve fibre (or 

bundle) the process o f regeneration can begin within hours: the “clean up” process is 

localised and relatively quick. However, in crush or tear injuries, degeneration of
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axons is more widespread and so regeneration is delayed. The process o f 

regeneration begins with axonal sprouting from the distal nerve fibre stump, and the 

contact o f these sprouts with the local Schwann cells. Successful regeneration relies 

on this contact, without which regenerating axons become trapped. In this case, 

continued growth leads to the development of a tangled mass and the formation of a 

neuroma. Neuromas are frequently painful.

Successful axonal sproutings form growth cones, which produce fine “filopodia”

(fine precursors to the fibre) that can extend along the length o f the Schwann cell. 

They anchor temporarily to the basement membrane. Actin filaments within the 

filopodia are now able to attach to basement membrane receptors, and once firmly 

bound act as a platform for onward migration of the growth cone. Schwann cells then 

now begin myelination of the newly regenerating nerve. Complete regeneration is 

likely, provided the proximal and distal ends are aligned correctly, and the 

appropriate endoneurial tubes have been entered: sensory axons have the ability to 

regenerate along former motor tubes and vice versa. For this reason, injuries in which 

the endoneurium is preserved (for example a nerve crush), are likely to recover better 

than when a nerve is cut.

Nerve injury (crush or transection) may lead to the onset o f neuropathic pain. This 

has been found to be associated with alterations in the expression o f neuropeptides 

and other sensory neuron specific genes. However, these changes often differ from 

those observed in inflammation, and may serve to protect against or to contribute 

towards the onset o f neuropathic pain. Two genes, normally expressed at barely 

detectable levels in sensory neurons, are dramatically up-regulated following 

peripheral nerve injury. These are “Activating Transcription Factor-3” (ATF-3) and 

“Damage Induced Neuronal Endopeptidase” (DINE). ATF3 is markedly up-regulated 

following axotomy. In rats subject to sciatic nerve transection, 82% of L4 DRG 

neurons become immunoreactive for ATF3: control rats show no immunoreactivity 

(Averill et al., 2004). In a pattern similar to the neuropeptide galanin, DINE is also
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up-regulated in specifically IB4 negative and partly TrkA positive neurons (Kato et 

al., 2002).

In contrast to inflammation, peripheral nerve injury results in a decrease in the 

neuropeptides SP and CGRP. Transection of the rat sciatic nerve results in down- 

regulation o f SP peptide (Nielsch et al., 1987; Zhang et al., 1995; Sterne et al., 1998) 

and a decrease in expression of both iso forms of CGRP mRNA in DRG (Noguchi et 

al., 1990; Mulder et al., 1997; Sterne et al., 1998; Shi et al., 2001; Shadiack et al.,

2001). This has been proposed to result from a loss of retrograde transport of 

neurotrophic factors. This down-regulation o f SP and CGRP is not observed within 

the nodose ganglion following axotomy of the rat cervical vagus nerve (Helke et al., 

1991), suggesting that expression of these genes in this neuronal population is 

regulated in a different way from that in sensory neurons of the DRG.

PACAP is up-regulated in medium to large DRG neurons following either peripheral 

axotomy (Zhang et al., 1995; Zhang et al., 1996; Jongsma-Wallin et al., 2001; 

Armstrong et al., 2003) or nerve compression (Pettersson et al., 2004) in the rat. 

Mabuchi et al., (Mabuchi et al., 2004) showed that PACAP^' mice do not exhibit 

neuropathic pain following nerve transection, implicating PACAP up-regulation in 

the onset o f neuropathic pain.

In the rat, an increase in galanin transcripts and peptide is also observed following 

spinal nerve transection (Hokfelt et al., 1987; Villar et al., 1989; Noguchi et al.,

1993), chronic constriction injury (Nahin et al., 1994; Ma et al., 1997; Shi et al., 

1999) and spinal nerve ligation (Fukuoka et al., 1998). Following axotomy (Xu et al., 

1996; Shi et al., 1997) o f rat sciatic nerve, associated alterations in galanin receptors 

are also seen with a significant down-regulation of GAL-R1 and GAL-R2 in DRG 

neurons. Such an up-regulation of galanin would suggest a role in the production of 

neuropathic pain associated with such nerve injury. However, there are conflicting 

results showing both inhibitory (Wiesenfeld-Hallin et al., 1992; Hao et al., 1999; Yu 

et al., 1999; Liu and Hokfelt 2000) and stimulatory (Thompson et al., 1996;
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Thompson et al., 1998; Murphy et al., 1999; Kerr et al., 2000) effects o f galanin on 

pain transmission in the rodent. This is discussed in more detail in chapter 3.

A down-regulation in expression o f the capsaicin receptor VR1 is observed in adult 

DRG neurons following axotomy or nerve transection (Michael and Priestly, 1999; 

Michael and Priestly 2002; Fukuoka T et al., 2002). Conversely, expression of VR1 

in uninjured neurons appears to be differentially regulated. Following partial nerve 

injury o f rat DRG, expression of VR1 protein in those neurons remaining intact was 

increased (Hudson et al., 2001; Fukuoka et al., 2002), and may be crucial to the 

development o f neuropathic pain following axotomy.

Expression o f the ATP receptor P2X3 is up-regulated in small-medium neurons of 

the DRG following chronic constriction injury to the rat sciatic nerve (Novakovic et 

al., 1999). In the trigeminal ganglion, an increase in P2X3 immunoreactivity was 

also observed following ligation/section or chronic constriction of the inferior 

alveolar branch o f the mandibular nerve (Eriksson et al., 1998). Such an up- 

regulation would suggest a function following nerve damage. However other 

research has produced conflicting results. Fukuoka and colleagues (Fukuoka et al.,

2002) found no change in P2X3 immunoreactivity in the DRG following L5 spinal 

nerve ligation.

Injury related decreases have also been observed. Bradbury et al., (Bradbury et al.,

1998) found that following axotomy of the sciatic nerve, P2X3 immunoreactivity in 

the L4/L5 DR, decreased by 50%. A similar decrease was observed in lumbar DRG 

using a model o f spinal nerve ligation (Kage et al., 2002). These discrepancies might 

be due to differences in the models o f neuropathic pain but could also be a reflection 

of the differing mechanisms or types of regulation found in injured and in non

injured neurons. Tsuzuki and colleagues (Tsuzuki et al., 2001) used ATF3 as the 

marker o f injured neurons to selectively study expression of P2X3 in injured neurons 

in the trigeminal ganglia and DRG following nerve transection. This study revealed a 

decrease in P2X3 mRNA in injured (ATF3-expressing) neurons, despite an overall 

increase in P2X3 mRNA expression throughout the ganglia. The increased 

expression o f P2X3 within intact neurons might play a role in the pathophysiology of
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nerve injury and the related neuropathic pain or may play a role in the regeneration 

of damaged neurons following injury. Further evidence supporting a role for P2X3 in 

injury-associated neuropathic pain was obtained using antisense oligonucleotides to 

downregulate P2X3 expression in a partial sciatic ligation model o f neuropathic pain 

(Barclay et al., 2002).

Following nerve damage and axotomy of peripheral DRG neurons, an increase in 

excitability and an enhancement of repetitive firing has been observed. This occurs 

alongside a reduction in action potential threshold (Zhang et al., 1997). This pattern 

of response is thought to underlie the generation o f the neuropathic pain associated 

with nerve injury. It has been attributed, at least partly, to alterations in sodium 

channel expression and conductance. An increased density in TTX-S channels 

following sciatic nerve axotomy is observed. This produces an increased sodium 

conductance within DRG, which is thought to contribute to the increased excitability 

in the axotomised neurons (Zhang et al., 1997; Black et al., 1999). This hyper

excitability has been attributed to an up-regulation of the, normally silent, voltage 

gated sodium channel (VGSC) N avi.3 (Waxman et al., 1994; Cummins and 

Waxman, 1997, Sleeper et al., 2000). An up-regulation in N avi.3 mRNA has also 

been observed in medium to large size DRG neurons following spinal nerve ligation 

(SNL) in the rat (Kim et al., 2001; Abe et al., 2002; Chung et al., 2004). This up- 

regulation is maintained for at least 7 days post-procedure (Kim et al., 2001), and is 

associated with a more rapidly repriming TTX-S current. These axotomy/injury- 

induced changes in sodium channels are thought to alter neuronal excitability and 

contribute to the inappropriate firing observed following nerve damage. N avi.3 is 

also up-regulated in dorsal horn nociceptive neurons four weeks after rat spinal cord 

injury, coinciding with the onset of pain-related behaviours and neuronal 

hyperexcitability, implicating N avi.3 in the development of central neuropathic pain 

(Hains et al., 2003).

Despite these findings, a recent paper suggested that N avi.3 alone was not sufficient 

to account for the voltage-gated sodium channel dependent behavioural 

hypersensitivity that is associated with nerve injury (Lindia et al., 2005). It was
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found that following peripheral nerve lesion, only 18% of neurons expressing the 

injury factor ATF3 co-expressed N avi.3, which suggests that the up-regulation of 

Navi .3 observed following nerve injury was predominantly within intact neurons. 

Furthermore, although the use of the voltage-gated sodium channel blocking drugs, 

mexiletine and lamotrigine, partially alleviated mechanical allodynia, the use of 

antisense oligonucleotides specific for N avi.3 had no effect on the injury-induced 

mechanical and cold allodynia (Lindia et al., 2005).

Other sodium channels that may also contribute to changes in neuronal properties as 

a result o f injury are those belonging to the family o f TTX-R channels. Alongside 

alterations in TTX-S channels, changes in expression of the TTX-R channels are also 

observed following nerve damage. A decrease in expression o f both N avi.8 and 

N avi.9 is observed in small diameter DRG neurons following axotomy or sciatic 

nerve section (Okuse et al., 1997; Cummins et al., 1997; Tate et al., 1998; Dib-hajj et 

al., 1998; Novakovic et al., 1998 Sleeper et al., 2000; Decosterd et al., 2002). Such a 

down-regulation o f TTX-R channels is thought to contribute indirectly to the hyper

excitability o f axotomised sensory neurons through the interaction of TTX-R 

currents with TTX-S sodium conductances (Zhang et al., 1997; Cummins et al.,

1997; Sleeper et al., 2000). The persistent TTX-R current carried by N avi.9 is 

thought to contribute a depolarising influence to the resting membrane potential of 

sensory axons (Cummins et al., 1999). The down-regulation of N avi.9 following 

injury would therefore produce a hyperpolarizing shift in resting membrane potential. 

This is proposed to relieve the inactivation of TTX-S channels, producing an increase 

in the TTX-S currents and neuronal excitability (Sleeper et al., 2000). In a computer 

model, the loss o f the slow inactivating TTX-R current carried by N avi.8 has also 

been shown to cause a lowering of action potential threshold and spontaneous, 

repetitive firing even in the absence of stimulation (Elliot, 1997; Schild and Kunze,

1997). A down-regulation in expression of both N avi.8 and N avi.9 is therefore 

implicated in the neuronal hyperexcitability that contributes to neuropathic pain 

following nerve damage. The down-regulation of N avi.9 mRNA has been observed 

in two radicular pain models and one peripheral neuropathic pain model (Abe et al.,

2002). A direct link between N avi.8 and neuropathic pain, has also been

25



demonstrated by Lai et al., (Lai et al., 2002), who used antisense oligonucleotides to 

‘knock down’ the expression of N avi.8 in DRG of rats. In these rats neuropathic 

pain induced by spinal nerve injury was no longer observed, although the effects of 

acute pain and responses to non-noxious stimuli remained (Lai et al., 2002).

A number of other alterations in gene expression occur following nerve injury. For 

example, an increase in the enzyme neuronal nitric oxide synthase (NOS)4 is also 

observed in rat and monkey DRG following peripheral nerve lesion (Fiallos-Estrada 

et al., 1993; Verge et al., 1992; Zhang et al., 1993). This increase in NOS leads to 

increased production of the vasodilator nitric oxide (NO). However, the purpose of 

this increase is not known.

1.4.4.3. Peripheral neuropathies

If the cell body remains intact, PNS neurons have the ability to regenerate. In some 

neuropathies only the axon is damaged (“axonopathy”), while in most, both the nerve 

fibre and the cell body are damaged and die. Neuropathies may be generalised or 

focal. Focal neuropathies are usually a result of trauma or ischemia, whilst 

generalised lesions are usually caused by toxic effects (e.g. heavy metals and certain 

drugs), alterations in metabolism such as in diabetes, the genetically transmitted 

porphyria vitamin deficiencies (e.g., of the B vitamins thiamine and cobalamin). 

Other peripheral neuropathies, such as Guillain Barre syndrome, affect just the 

Schwann cells and hence lead to disorders in myelination, Guillain Barre syndrome 

(also known as acute inflammatory demyelinating polyneuropathy or Landry’s 

ascending paralysis) begins with a rapid onset o f weakness, with numbness or 

paralysis o f the feet and then legs, perhaps spreading to include the hands, then arms 

and finally face and breathing muscles. The cause is unknown. However in 50% of 

sufferers, it occurs following viral (cytomegalovirus, Epstein Barr) or bacterial 

infection e.g. Campylobacter. It is thought to be an autoimmune disorder in which

4 neuronal NOS is one o f  a family o f  several NOS’s. This family are responsible for the synthesis o f 
Nitric Oxide (NO). Three types o f NOS exist: neuronal NOS (nNOS), endothelialNOS (nNOS) and 
inducibleNOS (iNOS). nNOS produces NO in neuronal tissue o f both the CNS and PNS.
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the body’s own cellular defence mechanisms attack myelin sheaths preventing the 

fast transmission of peripheral information.

1.4.4.4. Post herpetic neuralgia

Herpes zoster virus causes pain and blistering of the skin supplied by a particular 

nerve root -  its dermatome. The illness is called “shingles”. Following apparent 

resolution o f the infection, a chronic pain, referred to as post-herpetic neuralgia 

(PHN) often develops. This is pain that persists after the pain associated with the 

viral infection has subsided. It is caused by the neuronal damage produced by the 

acute infection, in which inflammation and ischaemia cause necrotizing damage in 

the dorsal root, the DRG and the dorsal hom of the spinal cord. Predominantly large 

neurons are damaged leading to a relative increase in nociceptive transmission at the 

dorsal hom, and subsequent pain. This can be due to the reorganisation of central 

connections leading to enhanced spontaneous firing, but also as a result o f the loss of 

inhibitory signals transmitted by large diameter neurons. The elderly are particularly 

susceptible to PHN as they already have a reduced number o f large neurons.

1.4.4.5. Trigeminal neuralgia

The trigeminal nerve carries sensory information from the face, scalp, teeth and oral 

and nasal cavities, and is the motor nerve of the muscles involved in chewing. 

Trigeminal neuralgia - “tic douloureux” - is pain in one or more o f the three divisions 

o f the trigeminal nerve. It can be idiopathic (primary neuralgia), or be associated 

with another systemic disorder, such as compression by a tumour or central lesion, or 

demyelination as a result of multiple sclerosis (MS) (secondary neuralgia). Those 

with primary neuralgia have no abnormal physical signs, whilst those with secondary 

neuralgia may have sensory impairments (or other signs) as a result o f the secondary 

disorder. Symptoms common to both types include frontal or unilateral face pain, 

which is abrupt in onset and can last from a few seconds to two minutes. The pain is
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stereotypical to the patient and may be spontaneous or triggered by such things as 

chewing, talking or even a cold wind on the face. The pain felt is intense with a 

sharp/ stabbing quality that may be interspersed with dull aching pain.

1.5. Regulation of cell survival and neuronal number in the 
developing peripheral nervous system

1.5.1 The neurotrophic factor hypothesis

During the development o f the vertebrate nervous system neurons are produced in 

excess. A large proportion are lost during a period of developmentally programmed 

cell death. The target fields o f axons are thought to regulate this process by the 

production o f target derived survival factors, known as “neurotrophic factors”

(NTFs) (Levi-Montalcini, 1987, Farinas, 1999). These molecules are produced in 

limited quantities: the idea that innervating neurons compete for this limited supply 

is referred to as the ‘neurotrophic hypothesis*. Excess neurons and those forming 

inappropriate connections die by apoptosis, allowing the survival o f the appropriate 

number o f neurons.

Several lines o f research led to the formulation of this hypothesis. In vivo 

experiments involving sympathetic and sensory neurons, that are shown to be 

dependent upon Nerve Growth Factor (NGF) in vitro, illustrate that administration of 

anti-NGF antibodies during the time of target innervation results in a death of these 

neurons (Levi-Montalcini, 1987). Furthermore, addition of exogenous NGF allows 

survival o f neurons that would normally be lost, producing an excess o f neurons 

innervating their targets (Levi-Montalcini, 1987).

The use of transgenic mice illustrates and confirms these findings. Mice with 

targeted null mutations for NGF or its receptor tyrosine kinase TrkA have a loss of
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the same populations of peripheral neurons, whereas over-expressing NGF in target 

fields causes an excess o f neurons to survive and innervate their target fields (Lewin 

and Barde, 1996). Studies of the timing, location and level o f expression of NGF 

during development have reinforced this ‘neurotrophic hypothesis’. Target fields 

start producing NGF at a time coinciding with target field innervation (Davies et al., 

1987; Clegg et al., 1989), and the levels o f NGF produced are proportional to the 

number o f neurons innervating it (Harper and Davies, 1990). Target ablation 

experiments also confirm this, with increased cell death observed when specific 

developmental targets are removed (Caldero et al., 1998).

The neurotrophic hypothesis has become more elaborated in recent years with the 

recognition that survival and development of different subpopulations o f peripheral 

neurons are dependent upon the presence of a variety o f neurotrophic factors both 

before and after target field innervation. Sources of NTFs, other than targets, exist, 

with NTFs produced by cells along the route of axon extension or via autocrine 

pathways (Caldero et al., 1998; Maina et al., 1998; Wright et al., 1992; Robinson et 

al., 1996). Other work has shown that the particular NTF requirements o f certain 

neurons change during development (Davies et al., 1994, 1997; Buchman and 

Davies, 1993; Emfors et al., 1994a, 1994b; Francis et al., 1999; Zhou and Rush 

1995).

1.5.2. Roles of neurotrophic factors in the developing 

sensory neurons

This thesis focuses upon the sensory neuronal portion of the PNS, and, in particular, 

upon neurons o f the trigeminal ganglia, nodose ganglia and DRG. For this reason, 

the roles of various neurotrophic factors in the development o f these sensory ganglia 

will be briefly discussed.
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Trigeminal ganglia

Mouse trigeminal ganglia sensory neurons require several neurotrophic factors at 

different times through development. Initially when their axons are growing towards 

their targets, the neurons survive independently of neurotrophic factors. They 

become neurotrophin dependent following target innervation (Davies and Lumsden, 

1984; Vogel and Davies, 1991). Following sensory neuron target innervation, 

neurons are transiently supported by Brain Derived Neurotrophic Factor (BDNF) and 

Neurotrophin-3 (NT-3), before becoming dependent upon NGF at approximately 

embryonic day 13 (E13)5. Survival o f cultured embryonic day 10 (E10) trigeminal 

neurons is sustained and even increased in the presence o f NT-3 or BDNF for 48 

hours. However, this effect is not observed in cultured E l3 neurons, which show 

only 5% survival after 48 hours. At this stage, NGF has become essential for survival 

(Buchman and Davies, 1993; Buj-Bello et al., 1994). This suggests a transitory 

survival response to BDNF and NT-3 and a switch in neurotrophin dependence to 

NGF (Buchman and Davies, 1993), which was confirmed by following the 

neurotrophic factor requirements of BrdU-labelled subsets o f neurons in culture 

(Enokido et al., 1999). This change in dependence coincides with suitable alterations 

in Trk receptor expression, from initially high levels of TrkB (the preferred receptor 

for BDNF) and TrkC (the preferred receptor for NT-3), with low levels of TrkA to an 

increase in TrkA expression and a restriction of TrkB and TrkC in certain 

subpopulations (Arumae et al., 1993; Wyatt and Davies, 1993; Ninkina et al., 1996). 

The identity o f neurotrophin production from target tissues is also altered, showing 

neurons respond in sequence to target-derived NTFs (Buchman and Davies, 1993; 

Enokido et al., 1999; Davies et al., 1987). It is of note that “late bom” trigeminal 

neurons (those bom after target innervation) do not show this switch in 

responsiveness, and require NGF from the offset (Enokido et al., 1999; Huang et al., 

1999). The use o f transgenic mice also illustrates this switch from BDNF to NGF, 

with TrkB7' mice showing a loss in trigeminal neurons at much earlier stages than 

TrkA7' (Pinon et al., 1996).

5 Stages o f  em bryonic development. E l refers to embryonic day 1, the first day a vaginal plug is found 
indicating em bryonic conception.
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This early switch from BDNF and NT-3 to NGF is not the only switch that occurs 

during the development of trigeminal neurons. At late fetal stages and in the neonatal 

period, trigeminal neurons become responsive to members of other families of 

neurotrophic factors, such as macrophage stimulating protein (MSP) (Forgie et al.,

2003) and also the cytokine, ciliary neurotrophic factor (CNTF) (Horton et al., 1998). 

Additionally, it has been reported that mice with a null mutation in the gene encoding 

the Glial Cell Line-Derived Neurotrophic Factor (GDNF) family member neurturin 

(Neurturin'7' mice) have a reduced number of trigeminal ganglion neurons at 

postnatal ages. This suggests that neurturin is responsible for the normal 

development o f a subpopulation of trigeminal ganglia neurons at this late stage of 

development (Heuckeroth et al., 1999).

Nodose ganglia

Unlike trigeminal neurons, nodose neurons do not show an early developmental 

switch in neurotrophic factor requirements. These neurons depend mainly upon 

BDNF and to a lesser extent NT-3 during early embryonic development (Buj-Bello 

et al., 1994). A minor, subpopulation of nodose neurons are also dependent upon 

NGF for survival (Forgie et al., 2000).

Dorsal Root Ganglia

DRG contain subsets o f neurons that respond to and require NGF, BDNF and NT-3 

during embryonic development (Lindsay et al., 1985; Davies et al., 1986; Kalcheim 

et al., 1987). Experiments on chick sensory DRG neurons have also shown that 

BDNF produced by an autocrine route, is likely to allow maturation - but not survival 

of - early embryonic neurons prior to target innervation (Davies and Wright, 1995).

Following birth, a subpopulation of small diameter neurons, initially responsive to 

NGF, begin to down-regulate TrkA and become dependent upon GDNF family 

members in vivo (Tessarollo et al., 1993; Bennett et al., 1996; Molliver and Snider, 

1997; Molliver et al., 1997). This subpopulation is immunoreactive for the isolectin-
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B4 (I-B4) and thus is often referred to as the IB4 reactive subpopulation. By late 

post-natal ages, small diameter unmyelinated DRG neurons are categorised into two 

types: those with a high affinity for NGF and express TrkA, and those that are not 

NGF responsive and are characterised by an ability to bind the isolectin IB4. The 

neuropeptides CGRP and SP are expressed by the TrkA-positive neurons, whilst the 

1B4 reactive neurons express the neuropeptide somatostatin, the enzyme thiamine 

monophosphatase (TMPase), the P2X3 receptor and also the GDNF family receptor 

components: c-ret and GDNF Family Receptor a  (GFR) family members. Further 

research has shown that despite survival responses by GDNF family ligands only 

occurring postnatally, expression of GDNF family receptors occurs embryonically 

(Molliver et al., 1997; Baudet et al., 2000). It would, therefore, seem that 

neurotrophins are essential in embryonic development, although some 

subpopulations switch dependence to GDNF family members following birth.

By adulthood, sensory neurons can survive both in vitro and in vivo without the need 

for neurotrophic factor support (Lindsay, 1988). However, neurotrophic factors 

continue to have roles following neuronal insult by damage or disease. Roles include 

axonal regeneration and maintenance of neuronal phenotype. They can also alter the 

expression o f other sensory neuron specific genes in such conditions, producing 

neuroprotection or enhancing the associated hyperalgesia.

1.6. The biology of the neurotrophic factors

Since the discovery o f NGF and the elucidation of the neurotrophic factor 

hypothesis, several other neurotrophins -  “Brain-Derived Neurotrophic Factor” 

(BDNF), “Neurotrophin-3” (NT-3), “Neurotrophin-4/5” (NT-4/5), “Neurotrophin-6” 

(NT-6) and “Neurotrophin-7” (NT-7) - have been characterised. Other families of 

proteins with similar survival promoting effects have also been discovered. These 

molecules are collectively referred to as neurotrophic factors, although some were 

initially characterised for their regulatory properties in other systems, e.g. 

macrophage stimulating protein (MSP) and leukaemia inhibitory factor (LIF).
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The main families o f neurotrophic factors to date are the neurotrophins (NGF, 

BDNF, NT-3, NT-4/5, NT-6 and NT-7), the GDNF family (GDNF, persephin, 

neurturin and artemin), the neuropoietic cytokines (Ciliary neurotrophic factor, 

CNTF); leukaemia inhibitory factor, LIF; Oncostatin M, OsM; cardiotrophin-1, CT- 

1; interleukin-6, IL-6; interleukin-11, IL-11; cardiotrophin-like cytokine, CLC; 

neuropoietin) and two cytokine related factors, also known as plasminogen related 

growth factors (Hepatocyte Growth Factor, HGF, and Macrophage Stimulating 

Protein, MSP). These families, the individual members and their receptors are 

outlined in table 1.

1 FAMILY NEUROTROPHIC

FACTOR

ABBREVIATION RECEPTOR 

(NON

PREFERRED IN 

BRACKETS)

NGF Nerve Growth 

Factor

NGF TrkA

Brain-Derived

Neurotrophic

Factor

BDNF TrkB

Neurotrophin-3 NT-3 TrkC (TrkA, TrkB)

N eurotrophin-4/5 NT-4/5 TrkB

Neurotrophin-6 NT-6 TrkA

Neurotrophin-7 NT-7 TrkA

GDNF Glial Cell Line 

Derived 

Neurotrophic 

Factor

GDNF G FR al (GFRa2)

Neurturin NTN GFRa2 (G FRal)
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Artemin GFRa3 (G FRal)

Persephin GFRa4

Plasminogen -  

Related Growth 

Factors

Macrophage 

Stimulating Protein 

/ Scatter Factor

MSP / SF STK/Ron

Hepatocyte growth 

factor

HGF Met

Neuropoietic

Cytokines

Ciliary

Neurotrophic

Factor

CNTF CNTFRa bound to 1 

heterodimer o f I 
LIFRp and gpl30

Leukemia 

Inhibitory Factor

LIF Heterodimer of 1 

LIFRp and gpl30

Oncostatin M OsM Heterodimer of 

OsMR and gpl30

Cardiotrophin-1 CT-1 As yet unknown a  

subunit, bound to 

heterodimer o f I 
LIFRP and gp 130 I

Cardiotrophin-

Like-Cytokine

CLC CNTFRa bound to 

heterodimer of 

LEFRp and gpl30

Interleukin-6 IL-6 IL6Ra bound to 

gp 130 homodimer

Interleukin-11 IL-11 IL1 IR a  bound to 

gp!30 homodimer
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neuropoietin CNTRa bound to

heterodimer of

LIFRP and gp 130

Table 1.3. The main neurotrophic factor families

As well as effects on neuronal survival, research has demonstrated numerous other 

roles for NTFs throughout development and in the adult. Effects on neurite 

outgrowth, regeneration, axonal branching, precursor proliferation, neuronal form 

and synaptic function have all been described, as well as effects on gene expression 

and maintenance of neuronal phenotype following neuronal damage. Effects in 

systems other than the nervous system have also been extensively documented.

The most relevant o f these factors and their receptors, their biology, expression 

patterns and regulation of expression will now be discussed.

1.6.1. The neurotrophins

The neurotrophin family of neurotrophic factors consists o f nerve growth factor 

(NGF), brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), 

neurotrophin-4/5 (NT-4/5) and the two fish neurotrophins neurotrophin-6 (NT-6) and 

neurotrophin-7 (NT-7). They are all produced as precursors which are proteolytically 

cleaved to produce the mature molecule, made up of a homodimer of approximately 

120 amino acid subunits. The family shares approximately 50% sequence similarity 

(Radziejewski et al., 1992). The crystal structures of the mature neurotrophins have 

been determined. They reveal a common tertiary fold and cysteine knot (McDonald 

et al., 1991; Fandl et al., 1994; Robinson et al., 1995; Butte et al., 1998; Robinson et 

al., 1999).
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All neurotrophins have specific and essential roles in the survival, differentiation and 

gain of phenotype of particular subpopulations of neurons of the CNS and/or the 

PNS throughout development. Although adult neurons can survive independently of 

neurotrophic factor support, neurotrophins have been implicated in responses 

following injury or neuronal damage. They may act sequentially, in synergy or in 

opposition.

Initial efforts to isolate neurotrophin receptors led to the discovery o f the common 

neurotrophin receptor p75NTR. Initially, this receptor was thought specific for NGF, 

but further research by Rodriguez-Tebar et al., (Rodriguez-Tebar et al., 1991) 

revealed it could bind all of the neurotrophin ligands with similar affinity. Despite 

similar binding strength, the binding rate constants were found to be markedly 

different, suggesting that p75 may, to some extent, discriminate between ligands 

(Rodriguez-Tebar et al., 1992).

The Trk family o f tyrosine kinase neurotrophin receptors were discovered later. This 

family consists o f TrkA, TrkB and TrkC, with NGF, BDNF and NT-3 binding 

preferentially to TrkA (Cordon-Cardo et al., 1991; Kaplan et al., 1991, 1991b; Klein 

et al., 1991a) TrkB (Glass et al., 1991; Squinto et al., 1991; Klein et al., 1991b) and 

TrkC (Lamballe et al., 1991), respectively. Additionally, NT-3 can also bind, but 

with lower affinity, to TrkA and TrkB (Squinto et al., 1991; Klein et al., 1991b; 

Soppet et al., 1991), and NT-4, can also signal via TrkB (Klein et al., 1992; Conover 

et al., 1995). These binding patterns are illustrated in figure 1.7.
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Figure 1.7:

Binding o f neurotrophins to their preferred receptors (Bold arrows), and other ligand 

receptor interactions that can occur (dashed arrows). Taken from Barbacid M, 1994

Upon ligand binding, the Trk receptors form homodimers, allowing phosphorylation 

o f tyrosine residues within the receptor, leading to signal transduction. The Trk 

family and signalling will be discussed further following descriptions o f each 

neurotrophin.

1.6.1.1. Nerve growth factor (NGF)

The classic neurotrophic factor, NGF, was discovered by chance, when application 

o f a snake venom to chick sensory ganglia was shown to elicit neurite outgrowth 

(Cohen and M ontalcini, 1956). A non-dialyzable, heat labile protein responsible for 

this neurotrophic activity was purified from the fraction and was named nerve 

growth factor (Cohen et al., 1960). Angeletti and Bradshaw (Angeletti and 

Bradshaw, 1971) determined the amino acid sequence o f mouse NGF, and 

subsequently cDNAs o f  mouse, human, bovine and chick NGF have all been cloned 

(Scott et al., 1983; Ullrich et al., 1983; Meier et al., 1986; Ebendal et al., 1986). 

Mouse NGF is initially produced as a 307 amino acid precursor that is cleaved to 

leave the mature, 118 amino acid protein which contains the cysteine knot m otif 

characteristic o f  the neurotrophins (Berger and Shooter, 1977; Scott et al., 1983;
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Edwards et al., 1988). Dimerisation of this mature form produces biologically active 

NGF (McDonald et al., 1991).

In the rat nervous system, NGF is abundant in areas innervated by the magnocellular 

cholinergic neurons, namely, the hippocampus, olfactory bulb and cerebral cortex 

(Korsching et al., 1985; Whittemore et al., 1986; Maisonpierre et al., 1990). Regions 

containing the cell bodies of these neurons (septum, nucleus of the diagonal band of 

Broca and the nucleus basalis of Meynert) are also NGF immunoreactive (Korsching 

et al., 1985). Accordingly, NGF only supports the survival o f basal forebrain 

cholinergic neurons within the CNS (Chun and Patterson, 1977; Levi-Montalcini, 

1987; Hatanka et al., 1988; Hartikka and Hefti, 1988). Other areas o f the CNS also 

express NGF, but at much lower levels (Korsching et al., 1985; Whittemore et al., 

1986). Outside the CNS, NGF is expressed by the target tissues of NGF-responsive 

sensory and sympathetic neurons in proportion to their innervation density (Davies et 

al., 1987; Heumann et al., 1984; Korsching et al., 1985; Korsching and Thoenen, 

1983, 1988; Shelton and Reichardt, 1984; Harper and Davies, 1990).

Recent work has shown that the precursor to NGF, proNGF, selectively induces cell 

death through activation o f p75 by a mechanism that is dependent upon presence of 

the membrane protein sortolin (Lee et al., 2001; Ibanez, 2002; Nykjaer et al., 2004). 

This signalling pathway is thought to be important following neuronal injury when 

expression o f both p75 and proNGF are up-regulated (Beattie et al., 2002; Harrington 

et al., 2004). This pathway has been proposed as the route for elimination of 

damaged cells.

NGF binds not only to p75, the receptor common for all neurotrophins, but also to 

the receptor tyrosine kinase TrkA. TrkA was the first member o f the Trk family of 

neurotrophin receptors to be discovered. This 140 kDa protein has a restricted 

expression, only being detectable centrally in cholinergic neurons of the basal 

forebrain and the striatum (Vasquez and Ebendal 1991, Holtzman et al., 1992; Merlio 

et al., 1992; Steininger et al., 1993) and sympathetic neurons and the neurons of the
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DRG and cranial ganglia that that require NGF for survival (Martin-Zanca et al., 

1990; Tessarollo et al., 1993; Schropel et al., 1995). In the DRG of embryonic day 

17.5 (El 7.5) mice, the majority of neurons express TrkA (Tessarollo et al., 1993), 

but following birth, a subpopulation of small diameter DRG neurons down-regulate 

TrkA and become responsive to GDNF family ligands (Molliver et al., 1997). This 

subpopulation are also immunoreactive for the isolectin-B4 (I-B4), and are therefore 

often called the “IB4-reactive subpopulation”. Outside the nervous system, TrkA is 

expressed on T cells and monocytes (Ehrhard et al., 1993, 1993a).

Transgenic mice with null mutations in the TrkA and the NGF genes have facilitated 

a clearer understanding o f the biology of this signalling pathway. Both TrkA*7' and 

NGF*7* mice die shortly after birth with massive loss of sympathetic neurons and 

small diameter sensory neurons in DRG and trigeminal ganglia (Smeyne et al., 1994; 

Crowley et al., 1994). The small diameter sensory neurons that are lost are 

responsible for transmission of nociceptive information: this is indicated by a failure 

of both NGF'7* and TrkA*7* mice to respond to noxious stimuli (Smeyne et al., 1994; 

Crowley et al., 1994). The size of the other main population o f neurons that 

expresses TrkA, the basal forebrain cholinergic neurons o f the CNS, is unaffected in 

both null mutations. This would suggest that NGF/TrkA signalling is not required for 

the formation and survival o f these neurons,. However, there is a reduced expression 

of choline acetyltransferase (ChAT) in the basal forebrain cholinergic neurons in 

both NGF*7* mice, suggesting that although NGF might not be directly involved with 

cholinergic neuron survival, it may affect the function o f these neurons (Crowley et 

al., 1994). Because NGF*7* and TrkA*7' mice die shortly after birth, it is not possible 

to examine the importance of this ligand receptor system post-natally in these mice.

The expression o f TrkA by basal forebrain cholinergic neurons has raised the 

possibility that activation of NGF/TrkA signalling in neurodegenerative disorders 

associated with loss o f such neurons may be therapeutically valuable. The potential 

for NGF in the treatment o f Alzheimer’s disease (AD) was highlighted several years 

ago by grafts o f cells genetically engineered to produce NGF into the brain of
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primates. These grafts were shown to inhibit the cholinergic neuron degeneration that 

is associated with the onset o f AD (Tuszynski et al., 1996; Martinez-Serrano et al., 

1995). More recently, phase I clinical trials have been carried out. In these trials, 

fibroblasts, engineered to express NGF, were implanted into the brains of 8 patients 

with mild AD. No adverse effects due to the presence of NGF were found after 22 

months, and its presence led to a decline in the rate of cognitive degeneration 

(Tuszynski et al., 2005).

The expression o f TrkA in the small diameter nociceptive sensory neurons has 

implicated a role for NGF/TrkA signalling in nociception. In support o f this is the 

finding that NGF*7* and TrkA*7' mice fail to respond to noxious stimuli (Smeyne et al., 

1994; Crowley et al., 1994), and that direct administration of NGF leads to pain and 

hyperalgesia in human and rodents (Dyck et al., 1997; Lewin et al., 1993). 

Furthermore, in inflammatory conditions such as arthritis, an increase in NGF 

mRNA and NGF protein have been detected in the inflamed tissues (Aloe et al.,

1992; Aloe et al., 1993; Falcini et al., 1996; Halliday et al., 1998; Lowe et al., 1997; 

Miller et al., 2002). Additionally, application of inhibitors to NGF attenuates pain 

induced by the inflammatory agents CFA and carrageenan (Woolf et al., 1994; 

Safieh-Garabedian et al., 1995; McMahon et al., 1995; Dmitrieva et al., 1997; 

Delafoy et al., 2003). NGF is thought to contribute to the associated hyperalgesia 

through sensitisation of mast cells (Bischoff and Dahinden, 1992) and through 

increased production o f the neuropeptides CGRP and SP. NGF also potentiates 

nociceptive signalling pathways by regulating expression of the capsaicin receptor 

VR1 and the acid sensing ion channel 3 (ASIC3) (Ji et al., 2002; Amaya et al., 2004; 

Shu and Mendell, 1999; Mamet et al., 2003). In addition to its contribution to 

inflammatory pain, NGF has a role in promoting neuropathic pain in the chronic 

constriction injury (CCI) model of this kind of pain (Herzberg et al., 1997; Ro et al.,

1999). Taken together, the above findings suggest therapeutic roles for antagonists of 

NGF in the management of neuropathic and inflammatory pain.
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1.6.1.2. Brain-derived neurotrophic factor

BDNF was first isolated from pig brain using its ability to support survival of 

cultured chick embryonic sensory neurons as an assay (Barde et al., 1982). Survival 

in vivo was not demonstrated until 1988, when BDNF became accepted as a 

neurotrophic factor similar to NGF (Hofer and Barde, 1988). Porcine, human, mouse 

and rat BDNF have since been cloned and characterised (Leibrock et al., 1989; Hofer 

et al., 1990; Jones and Reichardt, 1990; Maisonpierre et al., 1991). Like NGF, BDNF 

is secreted as a precursor molecule which is proteolytically cleaved to produce the 

approximately 120 (13-14kDa) amino acid mature active protein (Leibrock et al., 

1989) which dimerizes to form a homodimer (Radziejewski et al., 1992). The mature 

form of BDNF shares approximately 50% homology with NGF (Maisonpierre et al., 

1991).

Expression o f BDNF is low early in CNS development, but increases with 

maturation, with notable expression in cortex, hippocampus and cerebellum of adult 

mice (Maisonpierre et al., 1990). It is also detected, at lower levels, in striatum, 

hindbrain, midbrain, olfactory bulb and spinal cord (Leibrock et al., 1989; Hofer et 

al., 1990). In the PNS, BDNF is expressed embryonically by sympathetic ganglia, 

and sensory ganglia including DRG and trigeminal ganglia (Schecterson and 

Bothwell, 1992). It is also expressed in target tissues of nodose ganglia and 

vestibular ganglia neurons during development (Robinson et al., 1996). Outwith the 

nervous system, BDNF mRNA transcripts are detectable in tissues innervated by 

BDNF responsive neurons, namely those of the heart, lung and skeletal muscle 

(Maisonpierre et al., 1990, 1991; Buchman and Davies, 1993).

BDNF can support survival o f retinal ganglion cells (Johnson et al., 1986; Thanos et 

al., 1989), basal forebrain cholinergic neurons (Alderson et al., 1990; Knusel et al., 

1991) and prevent axotomy-induced degeneration of postnatal rat motor neurons 

(Sendtner et al., 1992; Koliatsos et al., 1993). It can also promote survival of 

dopaminergic neurons o f the substantia nigra (Hyman et al., 1991; Knusel et al.,
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1991; Altar et al., 1992), which would implicate this neurotrophin in the therapeutic 

treatment of Parkinson’s disease. This will be discussed later.

In the PNS, target-derived BDNF has been shown to promote survival o f neural crest 

derived DRG (Lindsay et al., 1995; Davies et al., 1986; Kalcheim et al., 1987) and 

also populations of sensory neurons insensitive to NGF, i.e. those o f the placode- 

derived nodose ganglia (Davies et al., 1986; Lindsay et al., 1985; Buj-bello et al.,

1994).

Experiments on early chick DRG neurons have also shown that BDNF produced by 

an autocrine route is likely to allow maturation, but not survival, o f these neurons 

prior to target innervation (Davies and Wright, 1995). This autocrine route of BDNF 

production may also occur in adult DRG neurons for survival purposes (Acheson et 

al., 1997). Adult mouse DRG neurons can survive in culture independently of 

exogenous NTFs. However application of antisense oligonucleotides to BDNF, 

which inhibit expression of BDNF, results in a dramatic loss o f neurons (Acheson et 

al., 1997). This loss could be reversed by application of BDNF but not by any other 

NTF. Recent work has shown that in the same way as proNGF, proBDNF, the 

precursor o f BDNF, also affects neuronal survival, inducing neuronal apoptosis in 

cells co-expressing p75 and a co-receptor sortolin (Teng et al., 2005).

Analysis o f the product o f the trkb gene, gpl45trkB in NIH 3T3 cells, found that it 

could be phosphorylated by BDNF (Soppet et al., 1991), indicating that this receptor 

was the high affinity BDNF receptor. Other groups have confirmed or shown BDNF 

affinity and signalling for TrkB (Squinto et al., 1991; Soppet et al., 1991; Glass et 

al., 1991; Klein 1991b). NT-3 can also activate TrkB as well as its preferred receptor 

TrkC (Klein et al., 1991, 1992; Soppet et al., 1991).

TrkB is a 145kDa protein that shares approximately 69% homology with TrkA 

(Klein et al., 1989). TrkB can be detected within the mouse embryo at E9.5 (Klein et 

al., 1990), and unlike the restricted expression profile o f TrkA, TrkB shows 

widespread expression in the CNS, with expression being particularly notable in 

tissues o f the hippocampus, hypothalamus, brainstem, cerebellum and spinal cord
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motor neurons (Klein et al., 1989; Merlio et al., 1992). In the PNS, TrkB is also 

widely expressed, being detectable in almost every peripheral ganglion (Klein et al., 

1989; Ninkina et al., 1996; Carroll et al., 1992; Tessarollo et al., 1993; Lamballe et 

al., 1994). TrkB is also found in Schwann cells (Carroll et al., 1992) and is observed 

outside the nervous system in lung, muscle and ovaries (Klein et al., 1989).

The importance o f BDNF in neuronal development is highlighted by the phenotype 

of BDNF'7' mice. The majority of BDNF*7' mice die shortly after birth (Emfors et al., 

1994; Jones et al., 1994). Such mice have severe deficits o f co-ordination and 

balance due to the loss of the majority o f vestibular sensory neurons (rather than 

cerebellar dysfunction). They also have reduced numbers o f other cranial and DRG 

sensory neurons. Detailed analysis has shown that there are no defects in motor or 

sympathetic neurons (Emfors et al., 1994; Jones et al., 1994). Research using mice 

with either a conditional mutation in the BDNF gene or who carry a deletion in one 

copy of the BDNF gene shows that these mice have impaired learning abilities, 

suggesting a role for BDNF in learning and memory, possibly through effects on 

long term potentiation (LTP)6 (Linarsson et al., 1997; Minichello et al., 1999). Mice 

with a disruption in the TrkB gene, can survive up to birth. However feeding 

mechanisms are absent and so most die by Postnatal day 1 (PI) (Klein et al., 1993). 

The observation that the phenotype of TrkB*7' mice is more drastically affected than 

BDNF'7' mice is consistent with the finding that NT-4/5 and NT-3 can also signal via 

this receptor (Conover et al., 1995; Soppet et al., 1991; Klein et al., 1991, 1992).

The effects o f BDNF on motor neurons following spinal nerve injury have also been 

observed in mature adult mice. In this model, application of BDNF following the 

axotomy o f spinal motor neurons attenuated injury-induced alterations in neuronal 

phenotype (Friedman et al., 1995). BDNF has also been shown to have important 

effects on neuro-regeneration in adult neurons. When fetal spinal cord was 

transferred into rat spinal cord following complete spinal cord transection, it was 

found that addition o f exogenous BDNF (or NT-3) promoted axonal growth, 

allowing some functional restoration of anatomical connections (Coumans et al.,

6 LTP is the process in which a synapse can be strengthened (or potentiated) by repetitive stimulation. 
It is thought to contribute to synaptic plasticity producing an adaptable nervous system.
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2001). Furthermore, addition of antibodies against BDNF following peripheral nerve 

injury significantly attenuated the length of the regenerated nerve by 24% and 

produced abnormalities in the lamellar layers of the myelin sheath (Zhang et al.,

2000).

BDNF also has a nociceptive role, regulating spinal cord excitation. Following 

inflammatory stimulus and nerve injury, an increase in BDNF contributes to the 

associated central sensitisation of spinal processing and subsequent hyperalgesia 

(Chao et al., 1997a, b; Tonra et al., 1998; Michael et al., 1999; Kerr et al., 1999; Ha 

et al., 2001; Yajima et al., 2002). Evidence has suggested that it may act as a 

neurotransmitter in the pain pathway of adult animals (Thompson et al., 1999). 

Antagonists o f BDNF might therefore be of therapeutic use in the treatment of 

hyperalgesia associated with persistent inflammatory states or following nerve 

damage.

Parkinson’s disease (PD) is a neurological disorder associated with the progressive 

loss o f dopaminergic neurons from the substantia nigra pars compacta (SNc). Current 

treatments involve administration of levadopa (L-Dopa), which aims to replenish the 

diminishing levels o f dopamine, but produces significant, distressing side-effects and 

ultimately does not address the neuronal degeneration at the route of the disorder.

The discovery that BDNF can exert neurotrophic factor effects on dopaminergic 

neurons (Hyman et al., 1991; Knusel et al., 1991; Altar et al., 1992; Klein et al.,

1999), associated with a down-regulation of BDNF mRNA and protein in substantia 

nigra of sufferers o f PD (Mogi et al., 1999; Howells et al., 2000), raised the 

possibility that BDNF might have a role in the treatment of this disorder. Gene 

transfer o f BDNF into rat nigrostriatal neurons, prior to 6-hydroxydopamine (6- 

OHDA)7 lesion, led to significant reduction in the degeneration of dopaminergic 

neurons and also corrected behavioural deficits (Sun et al., 2005; Mohapel et al., 

2005). Research by Guillin et al., (Guillin et al., 2001, 2003) also showed that TrkB 

was co-expressed with the D3 dopamine receptor and that BDNF produced by 

dopaminergic neurons stimulates the production of D3 receptors in the nucleus

7 6-hydroxydopamine (6-OHDA) is a neurotoxin used to specifically kill dopaminergic and 
noradrenegic neurons
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accumbens during development and maintains its expression in the adult. Agonists of 

the D3 receptor have been shown to inhibit the L-dopa induced dyskinesia, without 

affecting the beneficial therapeutic effects of this drug (Guillin et al., 2003). BDNF 

has also been shown to augment effects of levodopa. It is thus clear that BDNF, 

through regulation of D3 receptor production, is of potential therapeutic use, 

enhancing the effects of L-Dopa treatment, whilst attenuating troublesome side 

effects.

1.6.1.3. Neurotrophin-3

NT-3 was the third neurotrophin discovered. The gene encoding it was cloned 

following comparisons o f sequence homologies of BDNF and NGF and the design of 

oligonucleotides complimentary to regions of such homology (Emfors et al., 1990; 

Maisonpierre et al., 1990; Hohn et al., 1990; Rosenthal et al., 1990). Like NGF and 

BDNF, NT-3 is synthesized as a precursor which is cleaved to generate a mature 

active protein of 119 amino acids (approximately 13.6kd) with 57.6% and 55.6% 

sequence identity to NGF and BDNF, respectively (Rosenthal et al., 1990). The 

mature form exists as a homodimer (Radziejewski et al., 1992). In the developing 

embryo, NT-3 is expressed very early, peaking at E4.5 and declining steadily 

thereafter. It is broadly expressed, detectable in peripheral tissues including heart, 

liver, spleen, kidney and lung. In the CNS, it is expressed at greatest concentrations 

in the hippocampus and cerebellum (Emfors et al., 1990; Hohn et al., 1990; 

Maisonpierre et al., 1990; Rosenthal et al., 1990). Expression of NT-3 is initially 

high in regions o f developing CNS, but levels decrease as maturation progresses 

(Maisonpierre et al., 1990).

NT-3 has neurotrophic factor activity in many of the neuronal populations of the 

CNS. Embryonic noradrenergic neurons of the locus coeruleus (LC) can be 

supported in culture by NT-3, while in adult neurones, its presence can prevent 6- 

OHDA-induced degeneration of such neurons (Arenas and Persson, 1994). NT-3 can 

support survival o f embryonic rat motor neurons (Henderson et al., 1993), but cannot 

rescue postnatal motor neurons from axotomy-induced degeneration (Sendtner et al.,
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1992; Koliatsos et al., 1993). It is also essential for the survival and differentiation of 

oligodendrocyte precursors (Barres et al., 1993, 1994; Rubio et al., 2004).

In the PNS, NT-3 is important in initial survival of NC-derived trigeminal sensory 

ganglia just after target innervation and prior to a switch in responsiveness to NGF 

(Buchman and Davies, 1993; Buj-bello et al., 1994; Wilkinson et al., 1996) (see 

1.5.2.). NT-3 can also promote survival of other sensory neuronal containing ganglia 

including the DRG, parts of the trigeminal mesencephalic nucleus and also the, 

placode-derived nodose sensory ganglia (Rosenthal et al., 1990; Emfors et al., 1990; 

Maisonpierre et al., 1990; Hohn et al., 1990; Wilkinson et al., 1996). Other PNS 

neurons responsive to NT-3 include the sympathetic ganglia o f the paravertebral 

chain (Zhou and Rush, 1995; Maisonpierre et al., 1990).

NT-3 also influences the development of PNS neuronal precursors, inducing their 

survival, differentiation and proliferation (Kalcheim et al., 1992; Pinco et al., 1993; 

DiCicco-Bloom et al., 1993; Verdi and Anderson, 1994; Karavanov et al., 1995; 

Memberg and Hall, 1995; Elshamy and Emfors, 1996; Elshamy et al., 1996). NT-3 

has also been suggested as having a role very early in PNS neuronal development, 

contributing to initial ganglia formation (Ockel et al., 1996).

Lamballe et al. (Lamballe et al., 1991) discovered the 145kDa protein receptor,

TrkC, by screening a mouse brain cDNA library using the gene encoding TrkA as a 

probe. TrkC is first detected in the mouse embryo at E9.5 (Lamballe et al., 1991) and 

shows widespread expression, both throughout development and in the adult, being 

detectable in similar tissues as its ligand, NT-3 (Lamballe et al., 1994). Like TrkB, 

TrkC is widely distributed in the brain, with high expression in neocortex, caudate, 

putamen, brainstem, hypothalamus, hippocampus, cerebellum, and spinal cord motor 

neurons (Merlio et al., 1992; Tessarollo et al., 1993). Some tissues co-express TrkB 

and TrkC (Tessarollo et al., 1993). However, although general tissue expression is 

similar, the two receptors show distinct patterns of expression on specific
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subpopulations of neurons, which suggests different survival roles for NT-3 and 

BDNF (Merlio et al., 1992).

Broad expression of TrkC is also observed in the PNS, detectable to some extent in 

most ganglia and also within migratory cells of the neural crest (Tessarollo et al., 

1993). Expression of TrkC is also observed in the enteric nervous system and in non

neuronal tissues, including the vibrissae and dental papillae, the submandibular 

gland, the wall o f the aorta and the brown adipose tissue surrounding the cervical 

spinal cord (Tessarollo et al., 1993; Lamballe et al., 1994). The distribution is similar 

to that o f its ligand NT-3.

As stated earlier, NT-3 can also bind to TrkA and TrkB (Soppet et al., 1991; Klein et 

al., 1991b; Cordon-Cardo et al., 1991; Glass et al., 1991; Ip et al., 1993), albeit with 

lower affinity than their preferred ligands NGF and BDNF, and can also signal via 

these receptors. NT-3’s effects on survival and neurite outgrowth of sympathetic 

neurons are mediated through TrkA rather than TrkC (Belliveau et al., 1997).

Mice with a null mutation in the gene encoding NT-3 die within a few weeks of birth 

and suffer from abnormal limb movement most likely due to a lack o f muscle 

afferent projections to the spinal cord (Farinas et al., 1993; Emfors et al., 1994). No 

defects in enteric or motor neurons are apparent, but affected animals show much 

loss o f sensory neuron populations (Liebl et al., 1997). Disruption o f the TrkC gene 

to remove the catalytic portion of the receptor also produces mice with severe 

proprioceptive sensory neuron loss (Klein et al., 1994). Unlike NT-37'mice, some 

TrkC7' mice can survive for long periods following birth, and only show 30% loss of 

sensory neurons rather than the 70% deficit of the NT-37' mice (Liebl et al., 1997). 

This probably illustrates the ability of NT-3 to signal through other Trks. NT-3 

supports the survival of both cultured trigeminal and nodose ganglion neurons from 

TrkC7' mice, to an extent comparable to NGF and BDNF, respectively (Davies et al.,

1995). This suggests that NT-3 can also signal via TrkA and TrkB in the absence of 

its preferred Trk receptor, TrkC. This has been further confirmed using studies of 

NIH 3T3 cells expressing various Trks, which illustrate that NT-3 can bind and
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signal via TrkA and TrkB, although with lower potency than via TrkC (Cordon- 

Cardo et al., 1991; Glass et al., 1991; Ip et al., 1993) and by the observation that NT- 

3 can displace NGF from its preferred receptor (Emfors et al., 1990).

In the adult, NT-3 has a number of effects following neuronal injury or insult. Thus, 

the presence o f NT-3 has been shown to increase numbers of oligodendrocytes and 

thus enhance CNS myelin repair following chemical demyelination of CNS neurons 

(Jean et al., 2003). This action would suggest a potential therapeutic role for NT-3 in 

the treatment o f the debilitating demyelination disorders such as MS. Additionally 

following injury, NT-3 acts in an antagonistic fashion to the pro-hyperalgesic effects 

of NGF (Wilson-Gerwing et al., 2005) by competition for TrkA binding sites (Gratto 

and Verge, 2003) and by decreasing the levels of BDNF (Karchewski, et al., 2002), 

SP and CGRP (Jongsma Wallin, 2001).

1.6.1.4. Neurotrophin-4/5

A fourth neurotrophic factor, was discovered by polymerase chain reaction (PCR) 

techniques, using oligonucleotides designed to contain regions conserved in NGF, 

BDNF and NT-3 (Berkemeier et al., 1991; Hallbook et al., 1991; Ip et al., 1991). 

This neurotrophin was originally identified in Xenopus oocytes (Hallbook et al., 

1991) and named neurotrophin-4 (NT-4). Rat and human forms encoding a similar 

receptor were discovered shortly after but were named neurotrophin-5 (NT-5) 

(Hallbook et al., 1991; Ip et al., 1992). With approximately 65% identity, it was 

thought that NT-4 and NT-5 (Berkemeier et al., 1991; Ip et al., 1992), were likely to 

be identical: the factor is now referred to as NT-4/5. Like other neurotrophin family 

members, NT-4/5 is secreted as a precursor, although the pro-region o f NT-4 is 

significantly shorter (approximately 60 amino acids) than NGF, BDNF and NT-3 

(Berkemeier et al., 1991; Ip et al., 1992). The precursor is cleaved to produce mature 

active NT-4/5, which shares 50%, 56% and 55% homology to NGF, BDNF and NT- 

3 respectively (Berkemeier et al., 1991).

48



Rat NT-4 is widespread, detected in lung, thymus, muscle, ovary, heart and stomach 

both in the adult and in development (Berkemeier et al., 1991; Ip et al., 1992; 

Timmusk et al., 1993). Within the brain it is detected in many areas including cortex, 

pons, cerebellum, hippocampus, olfactory bulb and hypothalamus (Timmusk et al., 

1993).

NT-4/5 has been shown to bind to (Klein et al., 1992) and signal (Ip et al., 1992) via 

TrkB. Weak tyrosine phosphorylation of TrkA was also observed for NT-4/5 in 

studies using NIH 3T3 cells (Ip et al., 1992).

NT-4/5 exerts neurotrophic factor effects on many subpopulations of neurons. In the 

CNS, it can promote survival and neurite outgrowth of cultured adult retinal ganglia 

cells (Cohen et al., 1995). It can also enhance ChAT activity in cultured embryonic 

cholinergic neurons of the basal forebrain and locus coeruleus (LC), and enhance 

their survival (Friedman et al., 1993). Effects on motor neurons have also been 

observed. NT-4/5 can promote survival of cultured corticospinal motor neurons from 

the neonatal rat (Junger et al., 1997) and rescue injury-induced loss of facial motor 

neurons in vivo (Koliatsos et al., 1994). Application to embryonic motor neurons can 

also stimulate differentiation to the cholinergic phenotype by up-regulation of 

(ChAT) (Wong et al., 1995). In the PNS, NT-4/5 can promote survival and neurite 

outgrowth o f embryonic mouse trigeminal neurons in vitro at a time coinciding with 

early stages o f target field innervation (Davies et al., 1993; Ibanez et al., 1993). 

Potent survival effects are also observed for NT-4/5 on cultured embryonic chick 

DRG neurons (Berkemeier et al., 1991; Ip et al., 1992) and for mouse, but not chick, 

nodose neurons at a time coinciding with naturally occurring cell death (Davies et al., 

1993). Species differences in NT-4 effects are thus apparent, and suggest that NT-4 

is not well conserved between mammals and birds (Davies et al., 1993). Additionally 

NT-4/5 can promote survival and neurite outgrowth of embryonic sympathetic 

ganglia neurons, but with low potency (Berkemeier et al., 1991; Hallbook et al., 

1991).
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In the adult, NT-4 is a potent stimulus to axon outgrowth in explanted mouse nodose 

ganglia (Wiklund et al., 2000). These effects on axonal outgrowth suggest a role for 

NT-4/5 in regeneration of neurons following injury (Blesch et al., 2004). After 

thoracic spinal cord injury in rats, application of NT-4/5 significantly improved 

axonal regrowth of motor axons, coerulospinal, reticulospinal, and propriospinal 

neurons (Blesch et al., 2004). Positive effects of NT-4/5 on nerve regeneration were 

also observed following sciatic nerve transection (Yin et al., 2001; Simon et al.,

2003). NT-4/5 regulation of gene expression following injury is also notable in the 

adult rat. NT-4/5 can prevent axotomy-induced changes in neuronal phenotype 

following axotomy of spinal motor nerves (Friedman et al., 1995) and also 

cholinergic hypoglossal motor neurons (Tuszynski et al., 1996)

Mice with a null mutation in the NT-4/5 gene reveal an essential role for NT-4/5 in 

development o f a specific subpopulation of sensory neurons (Conover et al., 1995; 

Liu et al., 1995). NT-4/57* mice are viable and fertile and have a milder neurological 

phenotype than other neurotrophin knockouts. They have a reduced number of 

nodose sensory neurons in comparison to wild-type mice (Conover et al., 1995; Liu 

et al., 1995). NT-4/5'/_ mice have abnormal and enlarged neuromuscular junctions 

with disassembled expression of the acetylcholine receptor (AChR), suggesting a 

role for NT-4/5 in the maintenance of neuromuscular connections (Belluardo et al.,

2001).

1.6.1.5. Neurotrophin-6 and neurotrophin-7

The most recently described neurotrophins, NT-6 and NT-7, are exclusively present 

in fish. Compared with mammalian neurotrophins, they share greatest similarity with 

NGF and signal exclusively via TrkA (Lai et al., 1998; Nilsson et al., 1998). In some 

fish species (pufferfish and salmon) only one NT-6/7 like protein can be found 

(Dethleffsen et al., 2003). NT-6 and NT-7 have been distinguished as separate factors 

in other fish species, as they share relatively low sequence similarity (63%) (Nilsson 

et al., 1998) and their expression patterns are different (Gotz et al., 1994; Lai et al., 

1998; Dethleffsen et a., 2003).
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NT-6 was isolated from the teleost fish Xiphophorus and is expressed as early as 

stage 13 o f embryonic development (Gotz et al., 1994). Although it has not been 

found in mammals, recombinant purified NT-6 has been shown to act in a similar 

fashion to NGF, promoting both neurite outgrowth and survival o f chick sensory 

DRG explants, but with a much lower potency (Li et al., 1997). NT-6 differs from 

other neurotrophin family members in being glycosylated (Li et al., 1997). The 

biological significance of this glycosylation is yet to be determined.

The fish neurotrophin NT-7 was isolated from both carp (Lai et al., 1998) and 

zebrafish (Nilsson et al., 1998). Like NT-6, NT-7 is most similar to NGF (with 65% 

sequence identity) and acts exclusively via TrkA (Lai et al., 1998; Nilsson et al.,

1998).

1.6.1.6 Neurotrophin receptors

Neurotrophins signal via two types of receptor: the common receptor p75, and the 

ligand specific Trk neurotrophin receptors. These receptors have been mentioned 

briefly whilst discussing the individual neurotrophins. More information about 

structure, signalling pathways, and splice variants follows in this section.

P 7 5 NTR

The p75NTR receptor was the first neurotrophin receptor discovered. p75NTR has been 

isolated in rat, chicken and human, with all forms showing significant homology 

(Chao et al., 1986; Johnson et al., 1986; Radeke et al., 1987). Initially, p75NTR was 

thought to be a specific NGF receptor, but was later shown to bind NGF, BDNF and 

NT-3 with equal affinity (Rodriguez-Tebar et al., 1991). p75 NTR is a distant member 

of the tumour necrosis factor (TNF) receptor family, containing the characteristic 

cysteine repeats in the extra-cellular domain. It is approximately 75kDa (Johnson et
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al., 1987; Radeke et al., 1987) and contains 4 cysteine residues important for ligand 

binding (Welcher et al., 1991; Yan and Chao, 1991).

p75 NTR is widely expressed throughout the chick and rat brain both during 

development and in the adult, with highest levels in the cerebellum and septum 

(Emfors et al., 1988; Buck et al 1988; Yan and Johnson, 1989). In the PNS of the 

chick, p75 NIR is present in embryonic premigratory neural cells and all the 

sympathetic, parasympathetic and sensory tissues derived from them (Heuer et al., 

1990; Hallbook et al., 1990; Wyatt et al., 1990). Moreover, in chick sensory ganglia, 

p75 NTR expression is increased during development as the first axons reach their 

targets. It continues to increase throughout target innervation, plateauing when all 

neurons have reached their target field (Wyatt et al., 1990).

v j 'r n
The role o f p75 is controversial and complex. In addition to regulating Trks

signalling and neuronal responsiveness to neurotrophins, p75 NTR can also directly act 

as both an inhibitor and promoter of apoptosis, dependent upon presence and/or 

absence o f neurotrophin ligands. The complex balance between concentration of 

Trks and p75 NTR, their direct and indirect actions and the presence and absence of 

endogenous or exogenous ligands, determine the cellular outcome of neurotrophin 

binding at different developmental stages. These factors will be discussed briefly 

here

p75 NTR as a regulator of Trk responsiveness

p75 NTR has been shown to alter responsiveness to neurotrophins. Studies using 

transgenic mice show that NT-3- induced survival of sympathetic neurons via TrkA, 

is more effective in the absence of p75 NTR (Brennan et al., 1999). Such an inhibitory 

effect on NT-3/TrkA mediated neurite outgrowth was also observed in vitro in 

cultured PC 12 cells8 (Benedetti et al., 1993; Clary and Reichardt, 1994). Conversely 

cultured embryonic DRG and SCG neurons from p757' mice show a decreased

8 PC 12 cells are sympathetic neurons.
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response to NGF, suggesting p75 NTR enhances NGF-induced TrkA signalling (Lee et 

al., 1994).

p75 NIR, a promoter of survival or anoptosis

As well as regulating Trk signalling, p75 NTR is able to regulate cellular survival in 

the absence of Trks. p75 NTR appears to both promote survival and apoptosis, 

depending upon the subpopulation of neurons. In the CNS, p75 NTR has been shown 

to promote death of chick retinal cells (Frade et al., 1996; Frade and Barde, 1998), 

spinal motor neurons (Frade and Barde, 1999), oligodendrocytes (Casaccia-Bonnefil 

et al., 1996) and basal forebrain cholinergic neurons of the mouse (Van der zee et al., 

1996; Yeo et al., 1997), whilst enhancing cell survival of rat hippocampal neurons in 

the presence o f glutamate (Bui et al., 2002). In the PNS, p75 NTR promotes apoptosis 

of chick trigeminal neurons (Davey and Davies, 1998) and mouse sympathetic 

neurons o f the SCG (Majdan et al., 2001), whilst enhancing survival of mouse 

sensory neurons of the DRG in the absence of trophic support (Barrett and Barlett, 

1994; Longo et al., 1997).

Several signalling pathways have been implicated in the mediation of the effects of 

p75 NTR. Survival effects are thought to be mediated by the transcription factor NFkB 

(Carter et al., 1996; Hamanoue et al., 1999; Foehr et al., 2000; Gentry et al., 2000), 

whilst c-Jun N-terminal kinase (JNK) pathways have been implicated in pro- 

apoptotic effects (Cassaccia-Bonnefil et al., 1996; Yoon et al., 1998; Harrington et 

al., 2002). Induction of the intracellular mediator, ceramide, through hydrolysis of 

sphingomyelin (Dobrowsky et al. 1994,1995) has also been shown to occur
N T Rfollowing p75 activation.

Binding o f the zinc finger protein, neurotrophin receptor interacting factor (NRIF) 

has been shown to play a role in p75 NTR -induced apoptosis (Bamji et al., 1998; 

Casedemunt et al., 1999). Tumor Necrosis Factor Receptor Associated Factor-6
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(TRAF-6)9 has also been shown to mediate p75 NTR signalling via NFkB and INK 

signalling (Foehr et al., 2000; Yeiser et al., 2004).

The effects o f p75 NTR in certain cell types also vary depending on the presence or 

absence of neurotrophin ligands. In PC 12 cells, p75 NTR was shown to enhance 

apoptosis in the absence of NGF (Rabizadeh et al., 1993), but in the presence of 

NGF, cell death by p75 NTR was inhibited (Rabizadeh et al., 1993). The use of 

antisense oligonucleotides against p75 NTR show that the survival response o f early 

DRG neurons (E l2 -E l5) to NGF is lost in the absence of p75 NTR. However, by E l9 

-  P2, the absence of p75 NTR enhances the survival o f DRG neurons in the absence of 

NGF (Barrett and Bartlett, 1994). These results not only highlight the effects of 

ligand upon p75 NTR - induced apoptosis, but also detail a developmental switch in 

sensory neurons of the role of p75 NTR as an inhibitor o f apoptosis to one of 

promotion.. This role in apoptotis for p75 NTR could be important during the 

developmental periods of naturally occurring cell death that occur within both the 

PNS and CNS (Bamji et al., 1998; Casedemunt et al., 1999).

Mice with a null mutation in the gene encoding the p75 NTR receptor are viable and 

fertile. However, sensory deficits due to defective innervation of TrkA expressing 

peptidergic sensory neurons lead to an impaired response to heat and noxious stimuli 

(Lee et al., 1992; Stucky and Koltzenberg, 1997; Bergmann et al., 1997). This could 

be due to alterations in the response to neurotrophins in the absence o f p75 NTR, 

mentioned previously. It would seem that p75 NTR plays an essential part of the 

functional development of, and not just survival of, sensory neurons.

NTR •Regulation o f p75 expression

Several factors, most notably the neurotrophin NGF, have been shown to contribute 

to the regulation o f p75 NTR expression. In cultured embryonic and adult sensory 

neurons, NGF promotes an increase in p75 NTR mRNA expression (Wyatt et al., 

1993).: Lindsay et al., 1990; Verge et al., 1992). Likewise, NGF enhances p75 NTR

9 Tumour Necrosis Factor (TNF) is a cytokine with a number o f proinflammatory actions. TRAF-6 is 
a protein that can associate with TNF receptor to modify its action.

54



mRNA expression in neonatal and adult sympathetic neurons both in vitro and in 

vivo (Doherty et al., 1988; Miller et al., 1991, 1994; Verge et al., 1992). However, 

mice with a null mutation in the NGF gene show no alterations in p75 NTR expression 

within trigeminal ganglia (Davies et al., 1995), illustrating that the normal 

developmental expression pattern of p75 NTR is not dependent upon endogenous 

NGF.

p75 NTR expression on Schwann cells increases following nerve transection (King et 

al., 2000), and the number of myelinated axons and thickness of myelin is 

significantly reduced in p75'/'mice following sciatic nerve injury, suggesting a role
KJTp

for p75 in remyelination following peripheral nerve injury (Song et al., 2006). 

BDNF and NT-3 increase in p75 on Schwann cells at the lesion site (King et al., 

2000), and a role for BDNF in the successful regeneration and remyelination of 

axons following nerve injury has been suggested previously (Zhang et al., 2000;

Song et al., 2006). It is possible that these effects of BDNF are thus mediated 

through p75 NTR signalling on Schwann cells.

The Trk family

The second class o f neurotrophin receptors, the Trk (tropomyosin kinase) family, 

were discovered after p75 NTR. This family has of three members: TrkA, TrkB and 

TrkC, with each member displaying several characteristic features. On the 

extracellular portion, three leucine repeat motifs are flanked by cysteine rich clusters. 

Two immunoglobulin (IgG)-like domains, adjacent to the transmembrane region are 

responsible for neurotrophin binding (Martin-Zanca et al., 1989; Perez et al., 1995) 

and an intracellular tyrosine kinase domain provides catalytic effects.

The trk proto-oncogene was first isolated from a human colon carcinoma biopsy 

(Martin-Zanca et al., 1989). This 140kDa glycoprotein was referred to as “gpl40trk” 

and subsequently “TrkA”. Other trk-related transcripts were isolated by screening a 

mouse brain cDNA library using a human trk probe under relaxed hybridisation
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conditions. This led to the discovery of the 145kDa (approximately) TrkB (Klein et 

al., 1989) and TrkC (Lamballe et al., 1991) receptors.

Splice variants

Several splice variants o f the Trk receptors have been characterised. Two isoforms of 

TrkA exist, TrkAI and TrkAII, which differ by the insertion of a 6 amino acid insert 

into the extracellular domain (Barker et al., 1993). The presence of the insertion 

(TrkAII) appears to have no effect on either affinity of ligand binding or on receptor 

signalling. In the rat and human, only the TrkAII form is expressed in neuronal 

tissues at appreciable levels. TrkAI expression is found in non-neuronal cells such as 

mast cells (Barker et al., 1993; Horigome et al., 1993).

Two truncated TrkB transcripts, TrkB.Tl and TrkB.T2, have been observed. They 

are identical to the 9kb (145kDa) TrkB protein, but lack the cytoplasmic region 

containing the catalytic tyrosine kinase domain (Klein et al., 1990; Ninkina et al., 

1996; Middlemas et al., 1991). This renders these isoforms catalytically inactive. 

Other isoforms, which contain deletions in the leucine-rich motifs o f the extracellular 

domain, also exist (Ninkina et al., 1997).

The truncated ‘inactive’ forms of TrkB receptors appear later in development than 

the complete form (Escandon et al., 1994). The physiological role o f these receptors 

is unsure. Experimental studies have shown that presence o f the truncated forms can 

attenuate the survival response of BDNF, acting via catalytic TrkB. This could be 

due to competitive effects of two splice variants for BDNF binding, or be due to 

formation of inactive receptor heterodimers (Eide et al., 1996; Ninkina et al., 1996). 

Due to the location of the truncated versions on the choroidal plexus and ependymal 

linings of the cerebral ventricles, it has been proposed that they may mediate the 

active transfer o f the ligand BDNF (or even NT-4/5) around the brain and might aid 

transfer across the blood brain barrier (Klein et al., 1990). Other suggestions include 

a role in the recruitment of ligand for the catalytic form of the TrkB receptor, or that 

these truncated versions are not receptors at all, but may function as cell adhesion
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molecules, or ligands for an, as yet, unknown receptor (Klein et al., 1990; Middlemas 

et al., 1991).

At least four isoforms of the TrkC receptor have been identified. Three contain an 

insert into the kinase domain, while one is truncated and lacks the intracellular 

catalytic kinase domain (Tsoulfas et al., 1993; Valenzuela et al., 1993). Insertion of 

the TrkC iso forms into PC 12 cells, reveal that those containing an insert in the kinase 

domain can still autophosphorylate in response to NT-3. However, it is unable 

promote neurite outgrowth (Tsoulfas et al., 1993; Valenzuela et al., 1993; Guiton et 

al., 1995). It is o f note that truncated TrkC is the only isoform found in astrocytes 

and non-neuronal cells (Valenzuela et al., 1993).

Neurotrophin Receptor signalling:

When Trk receptors bind with ligands they form homodimers. As a result, the 

autophosphorylation o f specific tyrosine residues on the intracellular portion of the 

receptor can occur (reviewed in Kaplan and Stephens, 1994). The phosphorylated 

residues act as docking sites for intracellular signalling proteins that carry Src 

homology-2 (SH-2) domains or phosphotyrosine-binding (PTB) motifs. These 

adaptor molecules link Trks to signalling pathways, which include the 

phosphatidylinositol-‘3 kinase (PI3-K)/Akt kinase, the ras/ERK (extracellular signal- 

regulated kinase) pathway and the phospholipase C y (PLC y) pathways. Activation 

of these pathways ultimately leads to regulation of gene expression by stimulation of 

transcription factors.

Mutational studies have shown that the She family o f proteins are important adaptor 

molecules for neurotrophin signalling and activation of the ras/ERK pathways 

(Minichello et al., 1998). The She family consists of ShcA, ShcB/SCK and the most 

recently discovered neuronal She (n-Shc) also known as “ShcC” (Nakamura et al., 

1996). The neuronal form is active in the CNS, while other members have signalling 

roles in non-neuronal tissues. n-Shc binds to phosphotyrosine residues on Trks via 

two domains, either the Src homology domain-2 (SH-2) domain or the
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phosphotyrosine binding domain (PTB) (Kavanaugh and Williams, 1994). This 

allows phosphorylation o f tyrosine residues and subsequent binding to the Grb2 

(Growth factor receptor bound protein 2) adaptor protein. Activation o f the 

MAPK/ERK signalling pathway then ensues. This pathway involves activation o f the 

G protein “ras” , the serine/threonine kinase “r a f ’, mitogen and extracellular 

regulated kinase (MEK) and the extracellular signal-regulated kinase (ERK) 

(Obermeier et al., 1994; Stephens et al., 1994; Marshall et al., 1995). Activated 

ERKs can then regulate gene expression via activation o f specific transcription 

factors and produce effects on neurite outgrowth (Vambutas et al., 1995). This is 

illustrated more clearly in figure 1.8.
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Figure 1.8. Signalling via the ras/ERK pathway. Taken from 

http://fbspcuO 1 .leeds.ac.uk/users/bmbatrl/apoptosis 13 .gif

Two o f the key phosphotyrosine residues required for activation o f Ras/ERK 

signalling cascades were determined using PC 12 cells carrying TrkA receptors with
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mutations at phosphotyrosine sites Y490 and Y785 (Stephens et al., 1994; Obermeier 

et al., 1994). Mutation of tyrosine residues individually had no effect, but the 

combined mutation of both resulted in lack of activation of ERK and attenuation of 

the subsequent neurite outgrowth. This would indicate that phosphorylation of both 

Y490 and Y785 is important in activating the Ras/ERK pathway in PC 12 cells.

Another adaptor protein, the 90kDa Sue 1-associated tyrosine phosphatase-1 (SHP-1) 

or fibroblast growth factor receptor substrate-2 (FRS), is phosphorylated following 

neurotrophin binding. It is thought to be of importance in neurotrophin signalling via 

the ERK/MAPK pathway (Rabin et al., 1993; Ong et al., 1996). SHP-1 competes 

with SHC for phospho-Y490 on activated TrkA (Meakin et al., 1999).

Phosphorylated SHP-1 is then able to bind to other adaptor proteins, including Grb2 

(Growth factor receptor bound protein 2) (Califano et al., 2000), Crk and the 

phosphatase SH-PTP-2 (Meakin et al., 1999). This ultimately results in activation of 

the ERK/MAPK signalling pathway, with effects on differentiation and survival 

(Meakin et al., 1999). SHP-1 thus provides an alternative to SHC for activation of the 

ERK/MAPK pathway.

As discussed earlier, Trk activation also activates other signalling pathways 

including the PI3-K (phosphatidylinositol-‘3 kinase) pathway. She proteins mediate 

activation of the PI3-K pathway through recruitment of the adaptor protein Grb2 that 

can then bind to Gabl (Grb-2 associated binder-1), which in turn binds to and 

activates PI3-K. Activation of the enzyme PI3-K results in stimulation of the serine 

threonine kinase Aktl which can exert inhibitory or excitatory effects on a number of 

other proteins, including the transcription factor forkhead, the pro-apoptotic proteins 

BAD and p53 and activation of the NFkB signalling pathway. PI3-K signalling 

produces effects on cell survival and gene transcription with a cascade of other 

effects (Reviewed in Huang and Reichardt 2001).

Phospholipase Cyl (PLC-yl) signalling pathways begin with binding of PLC-yl 

directly to phosphorylated Y785 on activated TrkA (Vetter et al., 1991; Stephens et 

al., 1994). This leads to the generation of the second messengers inositol tris-
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phosphate (IP3) and diacylglycerol (DAG). The increased level of EP3 mobilises 

Ca2+ from storage organelles causing an increase in intracellular Ca2+. This allows 

activation of Ca2+ dependent enzymes including Ca2+ regulated forms of protein 

kinase C (PKC) and Ca2+ calmodulin dependent kinases and phosphatases. DAG also 

stimulates activation of PKC iso forms, including PKC8, which can induce neurite 

outgrowth in PC 12 cells and can also activate the ERK cascade (Corbit et al., 1999).

A more in-depth look at the functional outcome of each signalling pathways 

associated with NGF-induced growth and differentiation during development has 

been studied using mice in which the gene encoding the pro-apoptotic protein Bax 

has been knocked out (Markus et al., 2002). Neurons from these mice can grow in 

culture in the absence of NGF, allowing effects of exogenous signalling mediators to 

be observed. Experimental studies have found that Raf-Erk signalling can mediate 

axon elongation, whilst PI3K/Akt pathways influence other aspects such as axon 

branching (Markus et al., 2002).

1.6.2. The GDNF family

The GDNF family of neurotrophic factors are distant members of the transforming 

growth factor beta (TGFP) superfamily, with all members containing the seven 

cysteine residues in the same spacing (cysteine knot), characteristic of this family. 

The GDNF family contains glial cell line-derived neurotrophic factor (GDNF), 

persephin, neurturin and the most recently discovered artemin. Unlike other TGFp 

family members, the GDNF family signals via a receptor tyrosine kinase called Ret 

(Jing et al., 1996; Treanor et al., 1996) rather than the typical serine/threonine 

kinases utilised by other members of the TGFp family. Receptors for the GDNF 

ligands (GDNFLs) are multicomponent (Treanor et al., 1996) consisting of the 

common signalling receptor tyrosine kinase Ret, and a member o f the GFRa family: 

G FR al, 2, 3 or 4 which confers ligand specificity (Jing et al., 1996; Treanor et al., 

1996; Trupp et al., 1996). The GFRa protein is activated by binding of the correct 

homodimeric GDNF family ligand. It can then form a homodimeric complex that
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binds to ret, leading to its dimerisation, phosphorylation and ultimately intracellular 

signalling (illustrated in figure 1.9).
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Figure 1.9. GDNF family signalling. A homodimer of the GDNF family ligand binds to its preferred 

GFRa protein, leading to its dimerisation and binding to ret. Ret now dimerises, leading to 

autophosphorylation o f its tyrosine residues and subsequent signalling. Taken from Sariola and

Saarma, 2003.

Preferentially, GDNF binds to G FR al (Jing et al., 1996, 1997; Treanor et al., 1996), 

neurturin to G FR a2 (Baloh et al., 1997; Buj-Bello et al., 1997; Klein et al., 1997; 

Sanicola et al., 1997), artemin to GFRa3 (Baloh et al., 1998a) and persephin to 

G FRa4 (Masure et al., 2000; Enokido et al., 1998), although some receptor 

promiscuity has been observed. Neuronal cultures have revealed that GDNF can also 

signal through G FR a2 (Sanicola et al., 1997; Jing et al., 1997), neurturin through 

G F R al and 4 (Creedon et al., 1997; Jing et al., 1997) and artemin can also bind to 

G F R al (Baloh et al., 1998b). It is o f note that persephin only binds to G FRa4 

(Enokido et al., 1998; Lindahl et al., 2000). These binding affinities are illustrated in
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figure 1.10. Despite such receptor cross-talk apparent in vitro, analysis o f knockout 

mice has revealed that in vivo, each ligand shows a more specific role, binding to its 

preferential receptor complex.
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Figure 1.10.

GDNF family ligand binding to preferred GFRa family members (shown in bold arrows). Other 

ligand/receptor interactions are also shown (dashed arrows). Taken from Sariola and Saarma, 2003.

Following ret phosphorylation, several intracellular signalling pathways are 

activated. M ost o f  these pathways are similar to those activated by neurotrophin/Trk 

binding mentioned previously. Phosphorylation o f ret on specific tyrosine residues 

(Y905, Y1015, Y1062, Y1096) allows the binding o f proteins to PTB or SH2 

domains on ret (Asai et al., 1996; Arighi et al., 1997; Tsui-Pierchala et al., 2002). 

These molecules include the she family, Grb proteins, and the adaptor proteins Crk 

and Nek (Pandey et al., 1995, 1996; Bocciardi et al., 1997; De Falco et al., 2005). 

These proteins act as signalling intermediates, and upon binding activate several 

intracellular signalling pathways such as the MAPK/Akt, PI3K and JNK pathways.

62



Activation of She and Grb2 leads to stimulation of both MAPK/Akt and the PI3K 

pathways, which are important in neurite outgrowth and survival (Kaplan and Miller, 

2000; Encinas et al., 2001; Murakami et al., 1999). Ret signalling via PI3K also 

stimulates activation of several focal adhesion proteins important in survival 

signalling, such as focal adhesion kinase (FAK), paxillin and pl30Cas (Murikami et 

al., 1999). PLCy can also bind to phosphorylated tyrosine residues of ret (Borrello et 

al., 1996). Activation of PLCy subsequently regulates intracellular calcium via an 

increase in inositol trisphosphate. This pathway also mediates the oncogenic activity 

of GDNF ligands (Borrello et al., 1996).

Two splice variants o f ret exist: a short iso form of 1072 amino acids, known as ret9, 

and a long iso form of 1114 amino acids, ret 51. Mice lacking the ret51 type are 

normal. On the other hand, mice lacking the short isoform suffer from renal 

abnormalities and enteric aganglionesis (Srinivas et al., 1999), which suggests a role 

for ret9 in kidney development. The two isoforms differ in binding sites for she 

proteins, with ret51 only containing the SH2 binding site, but the short isoform 

having both SH2 and PTB (Ohiwa et al., 1997; Lorenzo et al., 1997; Tsui-Pierchala 

et al., 2002). These isoforms can therefore form different signalling complexes 

explaining their differing cellular actions. ret51 can associate more strongly than ret9 

with the ubiquitin ligase Cbl, allowing faster turnover. Furthermore, it can bind to 

Crkl allowing activation of Erkl and Erk2 (Scott et al., 2005).

GFRa (GDNF family receptor) family members are bound to the outer leaflet of the 

plasma membrane via a GPI anchor (as shown in figure 1.9.). Such a location 

suggests the ability to recruit and signal via the cholesterol rich microdomains, 

known as lipid rafts. Research on GDNF and GFRal signalling has shown that 

G FRal recruits ret to lipid rafts, where it can then bind to adaptor proteins and other 

signalling molecules such as src kinases within or outwith the raft (Tansey et al., 

2000; Encinas et al., 2001; Paratcha et al., 2001). The formation of lipid rafts is 

essential for GDNF-induced signalling, differentiation and neuronal survival (Tansey 

et al., 2000). However, GFRa4, the receptor component binding persephin, does not
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have the ability to recruit ret to lipid rafts (Yang et al., 2004). It is o f interest that 

following GDNF activation, ret preferentially associates with She outside of lipid 

rafts, leading to activation of MAPK/Akt pathways. However, within the rafts, She 

binds with FGF ,FRS2, suggesting that GDNF signalling through ret inside and 

outside of rafts can produce different responses (Paratcha and Ibanez, 2002)

GFL signalling via such GFRa/ret complexes is fairly well characterised. However, 

expression of GFRa family members is more widespread than that of ret, suggesting 

that GFLs may be able to signal via another receptor type (Trupp et al., 1997; Golden 

et al., 1998; Kokaia et al., 1999). It has been shown that in the absence of ret, GDNF 

family members can signal via the neural cell adhesion molecule (NCAM) in various 

parts o f the nervous system (Paratcha et al., 2003; Enomoto et al., 2004). In the 

absence of ret, G FR al is able to bind to NCAM, which facilitates binding of the 

GDNF ligand to NCAM and subsequent activation of the cytoplasmic kinases, Fyn 

and focal adhesion kinase (FAK) (Paratcha et al., 2003).

1.6.2.1. Glial cell line derived neurotrophic factor

GDNF was initially characterised as a neurotrophic factor for embryonic midbrain 

dopaminergic neurons, supporting survival and differentiation as well as promoting 

increased dopamine uptake (Lin et al., 1993). GDNF has since been shown to exert 

effects on several other CNS neurons including spinal cord motor neurons 

(Henderson et al., 1994; Oppenheim et al., 1995), facial motor neurons (Yan et al.,

1995), central adrenergic neurons (Arenas et al., 1995), cerebellar Purkinje neurons 

(Mount et al., 1995) and cholinergic neurons of the basal forebrain (Williams et al., 

1996; Golden et al., 2003). In the PNS, GDNF supports the survival of cranial 

parasympathetic neurons and sensory neurons of the nodose ganglia, DRG and 

trigeminal ganglia (Trupp et al., 1995; Ebendal et al., 1995; Hashino et al., 2001; 

Forgie et al., 1999; Enomoto et al., 2000; Hashino et al., 2001). GDNF can also 

promote cell survival and neurite outgrowth from PC 12 cells (Chen et al., 2001) via 

PI3K and MAPK dependent mechanisms, respectively (Chen et al., 2001; Encinas et
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al., 2001). GDNF can also support neurons of the enteric nervous system (Hearn et 

al., 1998; Heuckeroth et al., 1998).

Consistent with these effects, GDNF mRNA is detectable in various areas of the rat 

brain and developing spinal cord (Schaar et al., 1993; Trupp et al., 1995; Golden et 

al., 1998). Outside the nervous system, GDNF mRNA expression is detected in 

developing skin, kidney, bladder, stomach and testis with a lower expression in 

developing skeletal muscle, lung, ovary and adrenal gland (Trupp et al., 1995; 

Golden et al., 1998; 1999; Kawakami et al., 2003). Such a high expression in non

neuronal tissues might suggest other important functions for GDNF, as confirmed by 

studies of the phenotype of mice lacking GDNF or G FRal (Moore et al., 1996; 

Sanchez et al., 1996; Pichel et al., 1996; Cacalano et al., 1998; Enomoto et al., 1998). 

In both GDNF’7' and G F R al'7’ mice, the enteric nervous system is absent and ureters 

and kidneys do not develop.. It is of interest that mice with a null mutation in the 

gene encoding ret show a similar phenotype. Mice homozygous for the mutation die 

shortly after birth with renal agensis or severe dysgenesis. The enteric nervous 

system is also undeveloped (Schuchardt et al., 1994).

The preferential ligand-binding component for GDNF is G FRal (Jing et al., 1996; 

Treanor et al., 1996), although GDNF can also bind with lower affinity to GFRa2 

(Sanicola et al., 1997; Jing et al., 1997). GFRal (Jing et al., 1996; Treanor et al.,

1996) is widely expressed throughout the body and in the nervous system of 

embryonic and adult mice (Golden et al., 1998; 1999; Kawakami et al., 2003), 

although not always co-localised with ret.

Studies of GDNF'7' and GFRal*7' mice have permitted further characterisation of the 

effects o f GDNF/GFRal signalling in the nervous system. GDNF'7* mice have 

reduced numbers o f neurons in the DRG, nodose ganglia and sympathetic neurons, 

but display normal development of hindbrain, noradrenergic, midbrain dopaminergic 

neurons and motor neurons (Moore et al., 1996; Sanchez et al., 1996). However, 

more recent studies using in vivo transgenic approaches and also in vitro experiments 

using neuronal cultures gave differing results, which are discussed here.
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GDNF regulation of motor neuron number has been extensively studied. A reduction 

in the majority of spinal and cranial motor neurons has been observed in GDNF7* and 

G F R al7' mice (Oppenheim et al., 2000; Garces et al., 2000; Cacalano et al., 1998). 

This role for GDNF in motor neuron development was also reflected in GDNF over

expressing mice, which display enhanced motor neuron survival (Oppenheim et al., 

2000). Furthermore, in vitro studies using embryonic cultures of mammalian and 

avian motor neurons found that GDNF could support survival (Henderson et al., 

1994; Oppenheim et al., 1995; Soler et al., 1999) by a PI3K dependent pathway 

(Soler et al., 1999).

Survival o f DRG sensory neurons was found to be unaffected in GDNF7', G FR al7' 

and GDNF over-expressing mice (Oppenheim et al., 2000). A study of GFRal 

deficient mice showed no neuronal losses within peripheral ganglia, including SCG 

and nodose (Enomoto et al., 1998). On the other hand, in vitro experiments have 

shown a role for GDNF in the survival of a specific subpopulation of developing 

sensory neurons after birth. GDNF was found to only support the survival o f 10% of 

cultured rat embryonic DRG neurons (Kotzbauer et al., 1996; Matheson et al., 1997). 

However, a much greater proportion were rescued in cultured DRG neurons from 

newborn rats (Matheson et al., 1997; Bennett et al., 1998), which illustrates the 

switch in dependence from neurotrophins to GDNF ligands which occurs postnatally 

for a subpopulation of nociceptive neurons (Molliver et al. 1997; Baudet et al.,

2000). There was an additive effect of NTN and GDNF on the number o f surviving 

neurons, but no additive effect for cultures containing either o f these neurotrophic 

factors and artemin. This suggests that GFRal is expressed by a subpopulation of 

neurons distinct from those expressing the neurturin receptor component GFRa2, 

and that GFRa3 is expressed by both GFRal and GFRa2 expressing neurons 

(Baudet et al., 2000).
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1.6.2.2 Neurturin

The second member of the GDNF family, neurturin (NTN), was originally identified 

as a survival factor for cultured sympathetic neurons (Kotzbauer et al., 1996). It has 

since been shown to act as a neurotrophic factor for other populations o f neurons 

including sensory neurons of nodose and DRG (Kotzbauer et al., 1996; Forgie et al.,

1999), cranial parasympathetic neurons (Forgie et al., 1999; Hashino et al., 2001), 

spinal motor neurons (Klein et al., 1997), embryonic and adult dopaminergic neurons 

(Horger et al., 1998; Tseng et al., 1998) embryonic basal forebrain cholinergic 

neurons (Golden et al., 2003) and enteric neurons and glia (Heuckeroth et al., 1998). 

Like GDNF, active NTN is produced by cleavage of the 195 amino acid precursor 

molecule, preproNTN. The amino acid sequence of the, 100 amino acid, mature 

NTN, shares 42% similarity with GDNF (Kotzbauer et al., 1996).

NTN transcripts are detectable in the cerebral cortex, striatum, brain stem and pineal 

gland of the developing nervous system (Widenfalk et al., 1997). It is widely 

expressed in other areas of the body. Throughout development, high levels of NTN 

mRNA are detectable in pituitary, bladder, intestine and testis, and moderate levels in 

adrenal gland, kidney, ovary, thyroid and spleen. This would suggest that NTN might 

be involved in the maintenance of these peripheral organs, as well as a target derived 

neurotrophic factor for innervating neurons (Golden et al., 1999; Xian et al., 1999; 

Kawakami et al., 2003). In the adult, expression is much less widespread, being 

detected predominantly in the gut, testis and oviduct (Golden et al., 1999).

GFRa2 is the preferred ligand-binding portion of the NTN receptor. Mammalian 

GFRa2 was isolated by several groups (Baloh et al., 1997; Buj-Bello et al., 1997; 

Klein et al., 1997; Sanicola et al., 1997; Widenfalk et al., 1997). Expression is more 

widespread than NTN throughout the nervous system. GFRa2 is detectable in both 

the developing and the adult nervous system in areas of cortex, cerebellum, thalamus, 

hypothalamus and brain stem. In peripheral sensory neurons, GFRa2 is expressed
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predominantly in 80% of IB4 reactive small diameter neurons (Bennett et al., 1998), 

but is barely detectable in TrkA-expressing nociceptors. At various stages of 

development, GFRa2 is also present in other tissues, including bladder, heart, 

digestive tract, respiratory system, skin, bone and endocrine glands (Golden et al., 

1999; Kawakami et al., 2003).

Although neurturin preferentially signals via GFRa2, it can also to bind to GFRal 

and GFRa4 (Creedon et al., 1997; Jing et al., 1997). The recent identification of a 

cell-line, NG108-15, that endogenously expresses ret and G FR al, but not GFRa2 or 

GFRa4 has proved useful in the elucidation of the individual effects of NTN on 

G FRal (Lee et al., 2006). It has been demonstrated that application of GDNF, but 

not NTN could promote survival of NG108-15 cells through a MAPK signalling 

pathway. However NTN, but not GDNF was shown to promote neurite outgrowth 

(Lee et al., 2006). It appears that NTN and GDNF have differential effects via the 

G FRal-ret complex and the biological responses that occur are determined by ligand 

concentration and receptor availability.

Mice with null mutations in the neurturin or GFRa2 genes are viable and fertile, but 

show defects in parasympathetic cholinergic neurons, with poor innervation in the 

lacrimal and salivary glands (Heuckeroth et al., 1999; Rossi et al., 1999). Noxious 

heat transduction is also lost in this null mutant due to loss of IB-4 reactive 

nociceptive neurons (Stucky et al., 2002).

In culture, parasympathetic neurons are initially dependent upon GDNF for survival, 

but switch to NTN at a later stage of embryonic development (Forgie et al., 1999; 

Enomoto et al., 2000; Hashino et al., 2001). In developing DRG neurons, NTN is 

able to promote survival and enhance neurite outgrowth (Kotzbaur et al., 1996; Yan 

et al., 2003). Additionally, NTN can stimulate axon outgrowth from DRG of young 

adult mice (Paveliev et al., 2004).

Outside the nervous system, a role for NTN in the immune system has been 

suggested by the discovery that T cells, B cells and monocytes can all produce NTN
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(Vargas-Leal et al., 2005). Quantitative PCR also reveals that these cells express 

significant levels of GFRa2 transcripts (Vargas-Leal et al., 2005).

1.6.2.3. Persephin

Persephin (PSP), the third member of the GDNF family discovered, is cleaved from 

the 156 amino acid precursor, preproPSP (Milbrandt et al., 1998). The mature 

cleaved form has only 96 amino acids and shares 40% identity with GDNF and NTN. 

It is ubiquitously expressed throughout the CNS, but at very low levels (Milbrandt et 

al., 1998; Jaszai et al., 1998).

Culture studies have shown that PSP is able to promote survival and differentiation 

of embryonic basal forebrain cholinergic neurons, with an efficacy comparable with 

NGF (Golden et al., 2003). This suggests a role for PSP in the development of such 

neurons and thus in normal cognitive function. No survival effects on peripheral 

neurons have been observed.

GFRa4 comprises the ligand-binding portion of the PSP receptor. Mammalian 

GFRa4 (Masure et al., 2000; Lindahl et al., 2000) was isolated following earlier 

characterisation of the avian form (Enokido et al., 1998; Thompson et al., 1998). 

Mammalian GFRa4 has a markedly different sequence from the rest of the GFRa 

family and also lacks the first cysteine rich domain observed in G F R al-3. It also 

shares only 37% sequence similarity with the avian form (Masure et al., 2000). 

Unlike other GFRa family members, it does not recruit ret into lipid rafts upon 

ligand binding (Yang et al., 2004). The mammalian form is detected in both the 

developing and mature nervous system, and in testis and thyroid gland. It is also 

expressed at very low levels in developing and adult kidney, muscle spleen and liver 

(Lindahl et al., 2000; Masure et al., 2000). It is alternatively spliced in a tissue 

dependent fashion with a GPI linked isoform being exclusively expressed in juvenile 

thyroid C cells and parathyroid gland, but another transmembrane, non-GPI anchored 

form is present in new bom and adult thyroid, parathyroid pituitary and adrenal gland
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(Lindahl et al., 2000). In the peripheral nervous system, GFRa4 mRNA expression 

has been noted within the sympathetic chain ganglia and SCG and also in sensory 

neurons of the trigeminal ganglia and DRG (Lindahl et al., 2000). In adult DRG, 

transcripts do not encode the GPI anchored form (Paveliev et al., 2004).

Much evidence indicates the potential for PSP in the treatment o f Parkinson’s disease 

through protection of dopaminergic neurons. PSP is also able to support survival of 

cultured midbrain dopaminergic neurons to an extent comparable with GDNF 

(Akerud et al., 2002). In vivo, PSP is localised to nigrostriatal dopamine neurons and 

its receptor, GFRa4 is detected in midbrain dopaminergic neurons (Akerud et al., 

2002). Moreover, two weeks following 6-OHDA-induced injury, an increase in PSP 

mRNA is observed in the ipsilateral striatum. (Zhou et al., 2000). The use o f rodent 

models o f PD has further indicated therapeutic potential for PSP. In one study, neural 

stem cells were genetically engineered to over-express PSP and were grafted into the 

striatum of a rodent model of PD (Akerud et al., 2002). Within the first month, PSP 

dispersed successfully throughout the striatum, and in mice injured by 6-OHDA 

injections, the loss in dopamine neurons and behavioural impairment was prevented 

(Akerud et al., 2002). Furthermore in mice subject to OHDA lesioning, enhanced 

dopamine dependent behaviour was observed. The ability o f PSP to act only via one 

receptor, GFRa4, combined with its slightly more restricted expression pattern in 

comparison to other GDNF family members, might make it a more attractive 

candidate for the treatment of this neurodegenerative disorder than other members of 

the GDNF family.

Studies on PSP7' mice have indicated a role for PSP in neuroprotection following 

ischaemic insult. Phenotypically, PSP7' mice seem normal. They are viable, healthy 

and display no behavioural or developmental impairments. However, following focal 

ischaemia, the mice show increased cerebral infarction when compared with wild- 

type litter-mates (Tomac et al., 2002). Such effects could be attributed to the loss of 

regulatory effects o f PSP on glutamate-induced Ca2+ influx. Without regulation, a 

dramatic influx in Ca2+ could lead to neuronal damage.
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Mutations in the GFRa4 gene have recently been implicated in the rare inherited 

cancer syndrome, multiple endocrine neoplasia 2 (MEN2) also known as Sipple’s 

syndrome). It leads to medullary carcinoma of the thyroid gland and 

phaeochromocytoma (neuroendocrine tumour of the adrenal gland resulting in 

excessive secretion of catecholamines). This disorder has been attributed in part to 

mutations in the ret receptor gene. However the phenotypic variability in MEN2 

sufferers who carry the same ret mutation, combined with the finding that a small 

minority o f patients do not have mutations in the ret gene, suggest that other factors 

are involved. The GFRa4 gene has been implicated by the overlapping expression of 

ret and GFRa4 (but not other GFRa family members), in normal and malignant 

thyroid medullary cells (Lindahl et al., 2001). Two particular mutations were found 

in patients suffering from this disorder. The first was a single base substitution 

upstream of the coding region, altering the reading frame of the receptor. The 

second, was a 7 base pair insert that would alter the formation of ret signalling 

complexes through a shift in membrane binding (Vanhome et al., 2005). It is thought 

that these mutations might contribute to MEN2 in the absence of a ret mutation, or 

that they might alter the ret mutation phenotype (Vanhome et al., 2005).

1.6.2.4. Artemin

The 113 amino acid mature protein, artemin (ART) was the last of the GDNF family 

to be cloned (Baloh et al., 1998b; Masure et al., 1999). The rodent form was cloned 

by exploring DNA databases using NTN as a query (Baloh et al., 1998b). Masure et 

al., (Masure et al., 1999) isolated and characterised the human form of artemin and 

subsequently named it “enovin”. For the purpose of this thesis however, the rodent 

form will be discussed. Artemin has 45% sequence identity with NTN and PSP, and 

slightly less similarity (36%) with GDNF. It was first isolated for its ability to 

support the survival of sympathetic and sensory neurons in culture, but has also been 

shown to promote survival of dopaminergic neurons signalling via the GFRal-Ret 

receptor (Baloh et al., 1998b). This highlights the cross talk between receptor types. 

Artemin mRNA is present at low levels in fetal and adult brain. In the CNS, artemin 

transcripts are detectable in basal ganglia and thalamus. Its expression in non
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neuronal tissues is observed in pituitary gland, placenta and trachea o f the adult and 

in the kidney and lung of the fetus (Baloh et al., 1998).

Only artemin can bind to GFRa3, with no other GFLs having this affinity. The 

amino acid sequence of GFRa3 is 32% identical with GFRal and 37% identical 

with GFRa2 (Naveilhan et al., 1998; Baloh et al., 1998a; Widenfalk et al., 1998; 

Worby et al., 1998). Unlike GFRal and GFRa2, whose expression is found in 

overlapping populations of the adult rodent CNS, expression of GFRa3 is primarily 

in the PNS. It is predominantly expressed by small diameter nociceptive sensory 

neurons, the majority co-expressing TrkA, CGRP and VR1. A significant proportion 

are IB4 reactive (Baloh et al., 1998a; Naveilhan et al., 1998; Widenfalk et al., 1998; 

Worby et al., 1998; Orozco et al., 2001). GFRa3 immunoreactivity is barely 

detectable in the adult, although during development prominent expression can be 

detected in the DRG and trigeminal sensory ganglia where it is found on a mixed 

subpopulation of neurons that also express GFRal or GFRa2 (Baloh et al., 1998a; 

Naveilhan et al., 1998; Widenfalk et al., 1998; Worby et al., 1998; Baudet et al.,

2000). It is also expressed on sympathetic neurons (Baloh et al., 1998a; Widenfalk et 

al., 1998; Worby et al., 1998), and on non-neuronal immature Schwann cells 

(Widenfalk et al., 1998).

Prominent expression during development and production of artemin by Schwann 

cells suggest that artemin influences the development of PNS neurons (Baloh et al., 

1998b). Artemin expression is detectable in blood vessels embryonically, at a time 

when sympathetic neurons are using blood vessels as the pathway to reach their final 

target tissues (Enomoto et al., 2001). Study of ret7'mice, artemin7' mice and GFRa3' 

A mice reveal defects in sympathetic neuron migration, axonal outgrowth and 

neuronal survival (Nishino et al., 1999; Enomoto et al., 2001; Honma et al., 2002; 

Andres et al., 2001). Furthermore, in vitro, early embryonic SCG cultures show 

enhanced neurite outgrowth in the presence of artemin (Yan et al., 2003). Artemin 

also promotes proliferation of sympathetic neuroblasts (Andres et al., 2001).
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Artemin is also important in the development of sensory neurons, but at slightly later 

stages. It can support the survival of a proportion of cultured sensory DRG neurons 

at early postnatal stages and also enhance neurite outgrowth (Yan et al., 2003). 

Neurons rescued correspond to the IB4 reactive population of neurons 

(approximately 35% of total DRG) that switch dependence from NGF to GDNF 

family ligands after birth (Baloh et al., 1998b; Widenfalk et al., 1998). It is of 

particular interest that by late postnatal ages, artemin signalling is able to inhibit 

survival effects of other GDNF family members. Experiments by Baudet et al., 

(Baudet et al., 2000) using cultures of PI 5 DRG neurons demonstrated that artemin, 

in combination with GDNF and/or neurturin, supported the survival o f significantly 

fewer neurons than with either factor alone. It is unclear why this effect is observed 

at these ages, but it has been postulated that possible formation of heterodimeric 

complexes might prevent receptor binding, or, that artemin might possibly signal via 

another receptor in order to promote inhibitory effects (Baudet et al., 2000).

In the adult, it has been suggested that artemin might have a role following neuronal 

injury. Following sciatic nerve axotomy, a dramatic increase in GFRa3 expression in 

DRG neurons occurs such that all small diameter DRG neurons were found to be 

GFRa3 immuno-reactive (Bennett et al., 2000). An increase in artemin production 

from Schwann cells was also apparent (Baloh et al., 1998b). These findings suggest a 

possible role for artemin in injury associated neuropathic pain. This is supported by 

the observation that administration of artemin following SNL leads to a reversal of 

nerve-injury related pain behaviour and the associated alterations in biochemical 

phenotype (Gardell et al., 2003). Artemin antagonists are therefore of potential 

therapeutic benefit in the treatment of neuropathic pain. A role for artemin following 

neuronal trauma and in nerve regeneration is also implicated following the 

observation that it is able to stimulate axon outgrowth in cultured DRG neurons 

taken from the young adult mouse (Paveliev et al., 2004). It is thus of potential 

therapeutic benefit following neuronal trauma.
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1.6.3. The plasminogen-related growth factors

Plasminogen-related growth factors (or cytokine-related factors) are a new family of 

growth factors related to the blood proteinase plasminogen. This family contains just 

two factors: hepatocyte growth factor/scatter factor/plasminogen-related growth 

factor 1 (HGF/SF/PRGF1) and macrophage stimulating protein/plasminogen-related 

growth factor 2 (MSP/PRGF2). These factors will be referred to as “HGF” and 

“MSP”.

Both of these factors have evolved from the same ancestral gene as plasminogen and 

apolipoprotein that consisted of an N-terminal corresponding to the plasminogen 

activation peptide (PAP), at least 3 copies of the kringle domain10 and a serine 

protease domain (Donate et al., 1994). It is of interest that activation of plasminogen 

and apolipoprotein requires cleavage o f the N terminal domain. This does not occur 

for HGF and MSP, suggesting that this portion is important for their function 

(Matsumoto et al., 1991; Okigaki et al., 1992; Donate et al., 1994). Like other 

members of the family, HGF and MSP are secreted as inactive single chain 

precursors (pro-MSP and pro-HGF). These precursors are cleaved by trypsin-like 

serine proteases to produce the biologically active molecules (Naldini et al., 1992). 

Proteolysis produces a disulphide linked otp chain heterodimer, the a  chain 

containing the kringle subunit (62 kDa for HGF and 53kDa for MSP) and the P chain 

forming the serine proteinase-like subunit (32kDa for HGF and 62kDa for MSP) 

(Skeel et al., 1991). This is shown for MSP in figure 1.11. (taken from Leonard and 

Danilkovitch, 2000). Unlike plasminogen and apolipoprotein, MSP and HGF have no 

enzymatic activity due to amino acid substitutions in catalytic triad of the p subunit 

(Yoshimura et al., 1993).

10 Kringle domain -  a conserved sequence in a triple disulphide loop structure
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Figure 1.11 The cleavage o f  MSP from  its precursor pro-M SP by trypsin-like serine proteases (Taken

from Leonard and Danilkovitch, 2000)

1.6.3.1. Hepatocyte growth factor

Hepatocyte growth factor (HGF), also known as scatter factor (SF), is a pleiotropic 

factor which was discovered independently by several groups as a molecule that was 

able to trigger motility, proliferation and morphogenesis in a variety o f epithelial and 

other cells (Ebens et al., 1996; Montesano et al., 1991; Shima et al., 1991; Weidner et 

al., 1991; Gheradi et al., 1989; Nakamura et al., 1989; Miyazawa et al., 1989; Rubin 

et al., 1989; Stoker et al., 1987). HGF has since been found to have a wide variety of 

roles. Thus during embryogenesis, HGF is required for development o f many organs 

and tissues including liver, kidney, lung, gut, skeletal muscle and placenta 

(Matsumoto et al., 1996; reviewed in Birchmeier and Gherardi, 1998). In the adult, it 

supports the regeneration of organs such as liver, lung and kidney (Ueki et al., 1999; 

Matsumoto et al., 1996).

HGF is found in both the developing and mature CNS and PNS where it displays 

neurotrophic factor-like activity (Thompson et al., 2004; Hamanoue et al., 1996;
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Maina et al., 1997; Maina and Klein, 1999; Davey et al., 2000; Ebens et al., 1996; 

Wong et al., 1997; Yamamoto et al., 1997). It is localised both in neurons and in non

neuronal cells including Schwann cells, for which it is a mitogen (Krasnoselsky et 

al., 1994), and microglia (Hamanoue et al., 1996). Thus, HGF may affect neurons 

both directly, through receptors on neurons, and indirectly, through actions on non

neuronal cells. It would seem, for example, that survival and maturation of 

embryonic rat dopaminergic mesencephalic neurons is promoted by HGF secreted 

from microglia (Hamanoue et al., 1996). During development, HGF itself can 

directly support the survival of a subpopulation of motoneurons of a similar size to 

that supported by either BDNF or CNTF (Ebens et al., 1996; Wong et al., 1997; 

Yamamoto et al., 1997).

In the PNS, HGF has no effect on sensory neurons on its own, but enhances 

neurotrophic factor effects of NGF and CNTF on differentiation, axonal outgrowth 

and survival in vitro (Maina et al., 1997; Maina and Klein, 1999; Davey et al., 2000). 

Mice which carry a signalling defect in the HGF receptor (met) gene have 

intercostal nerves that are significantly shorter and contain less branching than their 

wild type litter mates, further suggesting that HGF signalling is important in the 

development of sensory neuronal populations (Maina et al., 1997). HGF is also 

important in development of other peripheral neurons. It can promote survival and 

neurite outgrowth of mature sympathetic neurons in vitro (Thompson et al., 2004) 

and also enhance in vitro effects of NGF-induced neurite outgrowth (Maina et al.,

1998). The use of pharmacological inhibitors has shown that effects on survival and 

growth of sympathetic neurons are actioned through PI-3 kinase and MAP kinase 

dependent mechanisms (Thompson et al., 2004).

The HGF receptor is encoded by the c-met proto-oncogene, a transmembrane protein 

with tyrosine kinase activity. This oncogene was identified by immunoblot analysis 

(Bottaro et al., 1991) and confirmed as the receptor for HGF/SF by further 

experiments, which included ligand induced tyrosine phosphorylation of the p 

subunit and co-precipitation (Naldini et al., 1991).
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The importance of HGF signalling has been highlighted by the generation of mice 

with a null mutation in the gene encoding HGF. HGF'A mice die as embryos, 

suggesting an essential role for HGF signalling in development (Schmidt et al., 1995; 

Uehara et al., 1995). Livers from embryos are much reduced in size. Embryos also 

lack muscles of the forelimbs and diaphragm, confirming an important role for HGF 

in organogenesis and tissue development. Furthermore, placental function is severely 

impaired, so that it is unable to invade maternal uterine tissue in order to expand the 

placenta, implicating HGF in placental invasive growth. The early lethality of this 

defect in these mice prevents the investigation into roles for HGF in the adult.

1.6.3.2. Macrophage stimulating protein

Macrophage stimulating protein (MSP) was originally characterised as a chemotactic 

factor for macrophages (Leonard and Skeel, 1978). It has since been isolated from 

human blood plasma. Cloning (Skeel et al., 1991;Yoshimura et al., 1993) has 

allowed further characterisation and the identification of additional functions. MSP 

has been shown to modulate the growth of various cell types, including the 

enhancing of proliferation of keratinocytes (Wang et al., 1996); the growth of bone 

marrow megakaryocytes (Banu et al., 1996) and resorption of bone by osteoclasts 

(Kurihara et al., 1996; Kurihara et al., 1998).

MSP has 45% sequence identity with HGF. As a result, it is often termed “HGF-like 

protein”. MSP exerts its effects via the tyrosine kinase receptor recepteur d ’origine 

nantis (Ron), also known in the mouse as stem cell derived tyrosine kinase (STK). 

The cDNA encoding human Ron was first isolated from a transformed foreskin 

keratinocyte cell line (Ronsin et al., 1993). The murine form, STK was later isolated 

from hematopoietic stem cells (Iwama et al., 1994). For the purpose of this study, 

Ron/STK will be referred to only as “Ron”. Ron is structurally related to the HGF 

receptor, c-Met proto-oncogene, displaying 63% sequence identity in the intracellular 

region (Ronsin et al., 1993). In the adult, Ron transcripts have been shown to be 

detectable in almost all tissues with the exception of spleen and heart (Guadino et al., 

1995). During development Ron can be detected in liver, lung, kidney bone, adrenal
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glands, digestive tract, testis and the brain (Quantin et al., 1995; Guadino et al.,

1995). This widespread expression would suggest an important role for Ron 

signalling in the development of many tissues. In the immune system, Ron 

expression is tightly restricted to certain types of macrophages. Peritoneal, skin, liver 

and bone macrophages have all been found to express the receptor (Iwama et al., 

1995; Kurihara et al., 1996; Nanney et al., 1998). However macrophages from the 

lung, spleen or bone marrow show no expression (Iwama et al., 1995). Additionally, 

blood monocytes, neutrophils and lymphocytes all do not express this receptor 

(Iwama et al., 1995). During late development, in the mouse, the Ron receptor is 

detectable at particularly high levels in the trigeminal ganglia and hypoglossal 

nucleus (Gaudino et al., 1995; Quantin et al., 1995).

In the nervous system MSP has been shown to act as a neurotrophic factor for many 

populations of neurons. MSP exerts neurotrophic factor-like effects on motor 

neurons promoting both survival and neurite outgrowth in cultured embryonic chick 

hypoglossal motor neurons (Schmidt et al., 2002). In the PNS, MSP can support the 

in-vitro survival of sensory neurons from the mouse (Forgie et al., 2002). This 

survival effect has also been observed for early embryonic sympathetic neurons in 

vitro. However this effect is lost by birth, coinciding with a decrease in Ron mRNA 

in sympathetic targets (Forgie et al., 2003). In adult mouse hypoglossal neurons,

MSP has also been shown to prevent motor neuron atrophy following axotomy 

(Stella et al., 2001). No studies on other populations of adult neurons have been 

done.

Mice with a null mutation in the MSP gene have been found to develop normally and 

are viable. They suffer from liver abnormalities, shown by lipid containing vacuoles 

present in the cytoplasm of hepatocytes. However hepatic function is unaffected and 

mice can still survive into adulthood (Bezzera et al., 1998). Ron/STK'7’ mice show 

different effects. Mice carrying a homologous mutation die embryonically, which has 

confirmed an essential role for Ron signalling in the development of numerous 

tissues and organs. In order to facilitate further study, mice in which the tyrosine 

kinase portion of the receptor had been removed, were generated. These knockout
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mice were viable and appeared healthy. However, they displayed enhanced tissue 

damage in response to acute and cell-mediated inflammation (Waltz et al., 2000; 

reviewed in Wang et al., 2002). In addition, peritoneal macrophages produced 

enhanced levels of nitric oxide (NO) in response to the inflammatory mediator, 

interferon (IFN)-gamma, but levels of pro-inflammatory cytokines were unaffected 

(Correll et al., 1997). A significant increase in inducible -nitric oxide synthase 

(iNOS)11 within the ovary was also observed, producing higher levels of NO, which 

led to a decrease in ovulation rate (Hess et al., 2003).

These observations indicate a normally inhibitory effect of MSP/Ron signalling on 

NO production, allowing regular ovulation rates and also an attenuation of the 

harmful effects of the cellular immune response that can lead to tissue damage. This 

effect has also been observed in vitro. In this study, physiological concentrations of 

MSP, applied to mouse peritoneal macrophages, were found to inhibit 

lipopolysaccharide-(LPS)-induced production of inducibleNOS (iNOS) and 

subsequent NO production (Wang et al., 1994; Chen et al., 1998). Expression of 

other pro-inflammatory molecules has also been found to be negatively regulated by 

MSP/Ron signalling. Cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) are 

both produced from macrophages to enhance pathophysiological effects of 

inflammation. MSP has been found to inhibit the LPS-induced production of both 

COX-2 and PGE2 from macrophages (Zhou et al., 2002).

More recent studies have revealed that expression of Ron is also regulated by 

inflammation. Levels of Ron have been found to be decreased by the inflammatory 

mediators’ lipopolysaccharide (LPS) and IFNy (Wang et al., 2000). Further 

investigation has revealed that these inflammatory mediators stimulated NO 

production, which subsequently attenuated Ron expression via suppression of the 

Ron gene promoter activities (Wang et al., 2000). Taken together, these results

11 iNOS -  inducible Nitric Oxide Synthase is one o f a family o f several N O S’s. As mentioned 
previously, this family are responsible for the synthesis o f Nitric Oxide (NO). iNOS is found 
predominantly in the immune system, where it is used by macrophages to defend the body from 
pathogens.
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would therefore suggest that cytoplasmic signalling via the Ron receptor is important 

for inflammatory responses, but is not essential for survival.

Genetically modified mice, which over-express Ron, have also highlighted additional

effects of this receptor. Over-expression of Ron in lung epithelia, which normally

show barely detectable levels, resulted in the formation of multiple pulmonary
cctiv* »t <M«t ftfHHN VhWh ill alii v m m m h m  uriMm him

also been shown in colon (Chen et al., 2000), breast (Maggiora et al., 1998) and

ovarian (Maggiora et al., 2003) tumours. Epithelial cells from such tissues normally 

show barely detectable levels of this receptor. It is thought the abnormal up- 

regulation of this receptor and the increased signalling can enhance invasive activity 

of cells and protect them from apoptosis. A role for Ron in the progression of 

carcinomas to the invasive metatastic phenotype is thus suggested and provides a 

possible therapeutic target for the treatment of such carcinomas.

1.6.4. The neuropoietic cytokines

The neuropoietic cytokine family (also known as gpl30 cytokines or the interleukin- 

6 family of cytokines) contains ciliary neurotrophic factor (CNTF), leukaemia 

inhibitory factor (LIF), oncostatin M (OsM), cardiotrophin-1 (CT-1), interleukin-6 

(IL-6), interleukin-11 (IL-11), cardiotrophin-like cytokine (CLC) and neuropoietin. 

All members of the family share low sequence homology. However, a similar tertiary 

structure has suggested a possible common ancestral gene (Bazan et al., 1991; Bruce 

et al., 1992). With the exception of LIF, which is introduced in a small section of 

chapter four, this family is not studied in this thesis. Only brief information will 

therefore be provided about each factor, with an outline of the receptor complex. LIF 

is discussed in more depth in the introduction to Chapter Four.

The neuropoietic cytokines are often referred to as the gpl30 family, because all 

utilise the common receptor signalling subunit, gpl30. gpl30 then forms hetero- or 

homo-dimers with additional a  and/or p receptor subunits dependent upon the ligand 

involved. The two interleukins, IL-11 and IL-6 form homodimers o f gpl30 following
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binding of their own supplementary subunits, IL6 R a and IL1 IR a (Barton et al., 

2000; Murakami et al., 1993). CNTF, LIF, CT-1, CLC and neuropoietin form 

heterodimers comprising of gpl30 and the p receptor subunit (LIFR) (Gearing et al., 

1991). CNTF, CLC and neuropoietin must also firstly bind to the a  subunit, 

CNTFRa, which allows the formation of the high affinity complex with LIFRp and 

gpl30 (Davis et al., 1991, 1993; Gearing et al., 1991; Ip et al., 1993; Stahl and 

Yancopoulos, 1994; Elson et al., 2000). CT-1 also requires an alpha subunit, but this 

protein is yet to be identified (Pennica et al., 1995a; Pennica et al., 1996a). The OSM 

ligand binds to the heterodimeric complex of the OSM receptor subunit, OSMR and 

gpl30, without the need for LIFRp (Ichihara et al., 1997; Lindberg et al., 1998; 

Heinrich et al., 2003)

Neither gpl30 nor LIFR contain tyrosine kinase activity, so in order for the receptor 

complex to become active, membrane bound j anus kinases (JAKs) must 

phosphorylate tyrosine residues in the cytoplasmic region of gpl30. Signal 

transducers and activators of transcription (STAT) family members can then bind to 

these phosphorylated residues via their SH2 domain. Phosphorylated ST AT dimers 

are then translocated to the nucleus where they initiate transcription of target genes 

(reviewed in Heinrich et al., 1998). gpl30 cytokine family members show many 

neurotrophic factor-like effects, promoting survival of both embryonic sensory 

neurons (Horton et al., 1998; Their et al., 1999) and motor neurons (Arce et al.,

1999).

1.6.4.1. Ciliary neurotrophic factor

CNTF was originally discovered as a trophic factor that promotes the survival of 

chicken embryo ciliary ganglion neurons (Adler et al., 1979). It has since been 

shown to promote survival of a range of neurons including certain chick and rodent 

sympathetic and sensory neurons (Barbin et al., 1984; Horton et al., 1996) and chick 

embryonic motor neurons (Arakawa et al., 1990). CNTF can also regulate 

differentiation of sympathetic neurons. The presence of CNTF can induce ChAT 

expression in primary cultures of rat sympathetic neurons, together with a reduction
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in tyrosine hydroxylase (TH) 12 levels, promoting differentiation to a cholinergic 

phenotype (Saadat et al., 1989). CNTF mRNA is present at high levels within the 

sciatic nerve, spinal cord, optic nerve and olfactory bulb, with lower expression in 

other brain areas (Stockli et al., 1991; Dobrea et al., 1992).

1.6.4.2. Leukaemia inhibitory factor

Leukaemia inhibitory factor (LIF) (also known as cholinergic differentiation factor, 

CDF), is widely expressed throughout the mammalian nervous system and has 

pleiotropic activity in several adult and embryonic systems. In the hematopoietic 

system, LIF induces the proliferation of hematopoietic stem cells (Fletcher at al., 

1990; Leary et al., 1990) as well as the differentiation of leukaemic cells (Tomida et 

al., 1984) and megakaryocyte progenitor cells (Metcalf et al., 1990). LIF affects bone 

resorption (Abe et al., 1986) and also inhibits adipogenesis by negative regulation of 

lipoprotein lipase (Mori et al., 1989). Other inhibitory effects on cell differentiation 

are observed for kidney epithelial cells (Tomida et al., 1990) and also for embryonic 

stem cells, where the inhibitory effects of LIF has been shown to maintain their 

developmental potential (Smith et al., 1988; Williams et al., 1988). In the nervous 

system, LIF displays neurotrophic factor-like activity with effects on both nerve 

differentiation and survival on several subpopulations of neurons (Yamamori et al., 

1989; Murphy et al., 1991; Murphy et al., 1993). Other effects and regulation of LIF 

will be discussed in more depth in chapter four.

1.6.4.3. Oncostatin M

Oncostatin M (OsM) was originally isolated as an inhibitor of tumour progression 

(Zarling et al., 1986). However, it has since been shown to have neurotrophic factor 

effects in the nervous system. OsM can promote the survival and differentiation of 

oligodendrocytes (Vos et al., 1996), while in the PNS it can support the survival of 

certain subpopulations of sensory neurons (Horton et al., 1996). This survival role is

12 TH is an enzyme used in the body in the manufacture o f adrenaline. It catalyses the conversion o f 
L-tyrosine, to the dopamine precurose, dihydroxyphenylalanine (DOPA).
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further shown in a study of OsM_/* mice, which display a loss in a subpopulation of 

VR1 and P2X3 expressing DRG neurons in comparison to wild-type litter-mates 

(Morikawa et al., 2004). OsM has also been shown to affect neuronal differentiation 

of PNS neurons, enhancing ChAT activity in sympathetic neurons, and promoting 

differentiation towards a cholinergic phenotype (Rao et al., 1992).

1.6.4.4. Cardiotrophin-1

Cardiotrophin-l (CT-1) was originally cloned from mouse embryoid body cDNA 

library (Pennica et al., 1995, 1996). The human form has also been identified and 

shares 80% identity (Pennica et al., 1996b). CT-1 is found predominantly in the 

heart, although is also expressed in many other areas including fetal kidney and lung 

and in adult skeletal muscle, prostate and ovary (Pennica et al., 1995b, 1996b). CT-1 

was originally identified as a factor that induces cardiac myocyte hypertrophy 

(Pennica et al., 1995). It can also promote survival and differentiation of several 

populations of neurons including rat dopaminergic neurons, chick ciliary neurons 

(Pennica et al., 1995b), motor neurons (Arce et al., 1998) and sensory neurons of the 

nodose and trigeminal ganglion (Horton et al., 1998).

1.6.4.5. Interleukin-6

Interleukin- 6  (IL-6 ) (also known as B cell stimulating factor-2 (BSF-2)) was 

discovered in 1986 as factor that regulates immunoglobulin production from B 

lymphocytes (Hirano et al., 1986). IL- 6  can also support survival of several 

subpopulations of neurons including sensory neurons (Horton et al., 1996), 

catecholaminergic neurons from both fetal and postnatal rats and also postnatal 

cholinergic neurons (Kushiman et al., 1992a, 1992b, Hama et al., 1989). Additionally 

it can enhance ChAT activity in cholinergic neurons.

1.6.4.6. Interleukin-11

Interleukin-11 (IL-11) was cloned in 1990 (Paul et al., 1990) and initially considered 

a hematopoietic cytokine. It can also affect non-hematopoietic systems stimulating
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osteoclasts, megakaryocyte maturation, platelet maturation and inhibition of 

adipogenesis (Teramura et al., 1992; Yang et al., 1993; Keller et al., 1993; Girasole 

et al., 1994). IL-11 transcripts have been found in a wide range of tissues, but highest 

levels are observed in the testis and brain, particularly the hippocampus (Du et al., 

1996). The high expression in hippocampus concurs with its ability to stimulate 

proliferation of a hippocampal neuronal progenitor cell line in vitro (Du et al., 1996). 

Also in the nervous system, IL-11 enhances the in vitro survival o f rat postnatal DRG 

but only in the presence of its soluble receptor component ILRa (Their et al., 1998).

1.6.4.7. Cardiotrophin-like cytokine

Cardiotrophin-like cytokine (CLC) (also named novel neurotrophin-l/B cell- 

stimulating factor-3 (NN1/BSF-3)) was originally identified as a protein with the 

capacity to bind to gpl30 and for its ability to stimulate B-cells (Shi et al., 1999; 

Senaldi et al., 1999). Highest expression of CLC has been found in the spleen and 

lymph node (Shi et al., 1999; Senaldi et al., 1999), but it is also detectable in a 

variety of other tissues including thymus, lung, uterus, ovary and testis (Senaldi et 

al., 1999). It has been found to have highest homology to CNTF and CT-1, and to 

show similar activities to other family members, including an ability to promote 

survival of chick embryo motor and sympathetic neurons (Senaldi et al., 1999). CLC 

has also been shown to stimulate differentiation of astrocytes (Uemura et al., 2002).

1.6.4.8. Neuropoietin

The remaining member o f the family, neuropoietin, has only been recently 

discovered, following a structural profile-based computational screen (Derouet et al., 

2004). It has been shown to share similarities with CNTF, CT-1 and CLC. It is not 

expressed in adult tissues, but high specific expression is found in embryonic 

neuroepithelia (Derouet et al., 2004). Neuropoeitin has been found to support 

survival of embryonic motor neurons and to stimulate the proliferation of neural 

precursors in vitro when associated with epidermal growth factor (EGF) and 

fibroblast growth factor-2 (FGF-2) (Derouet et al., 2004). This effect, when
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combined with the specific embryonic expression, would implicate an important role 

for neuropoietin in the development of the nervous system.
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1.7 Aims and Objectives

In this study the neurotrophic factor regulation of genes within mouse sensory 

neurons is to be studied at various ages. The thesis thus falls neatly into three 

chapters which explore expression at a) embryonic ages (chapter 2 ), b) postnatal 

ages (chapter 3) and in c) the adult (chapter 4).

Several genes have been chosen that are required for a number o f key functional 

properties o f subsets of sensory neurons, and in this study I hope to gain more 

knowledge about their regulation and patterns of expression at various stages of 

development.

Previous work on expression of the selected genes has largely focused on the adult 

and postnatal DRG, therefore I want to initially determine if regulation of expression 

by neurotrophic factors differs in the embryonic mouse and also to explore 

expression within other sensory neuronal ganglia.

In the embryonic mouse those genes chosen are important in determining the 

functional characteristics o f sensory neurons. Although work on the regulation of 

expression of these genes has been explored in postnatal and adult mice, I want to 

identify if the initial induction o f  expression of such genes at early embryonic stages 

is regulated by neurotrophic factors. Knockout mice in which genes encoding 

neurotrophic factor receptors or the neurotrophic factors themselves have been 

chosen as a suitable and reliable method for this work, and due to the low levels of 

RNA available for study at this young age the highly sensitive methods of 

competitive RT-PCR and also real-time QPCR were chosen as the most suitable 

techniques for quantification o f gene expression.

Postnatally, as mentioned, research has focussed on expression of genes within the 

DRG. In this chapter, as well as reconfirming previous published findings, I wanted 

to explore gene expression and neurotrophic factor regulation in other sensory 

neuronal ganglia. To date very little has been known about the regulation of
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expression of nociceptive neurons markers in the, neurogenic placode-derived, 

nodose ganglion, either under normal conditions or following nerve lesion/trauma so 

in this chapter I wanted to explore how expression and regulation of genes differed in 

this ganglia from regulation in neural crest derived trigeminal and dorsal root 

ganglia. Once again I chose to use knockout mice, however neurotrophin and 

neurotrophin receptor knockout mice do not survive to postnatal ages, so the use of 

double knockout mice in which the proaptotic gene Bax had also been removed was 

employed. In vitro cultures were also set up for comparison and the sensitive and 

efficient method of real-time QPCR was, once again, chosen for quantification.

In the final chapter I wanted to explore gene expression in adult sensory neurons and 

in addition to the mRNAs examined in previous chapters, I wanted to also examine 

the transcriptional regulation of a number of other genes that may play important 

roles both in determining normal nociceptive thresholds, and in the generation of 

inflammatory and neuropathic pain conditions.

Since all the genes selected have important roles in determining nociceptive 

thresholds, it seems important to establish the neurotrophic growth factor, or 

combination of growth factors, that set these steady state expression levels. This is 

o f particular importance, since changes in the expression of these genes, that occur 

during inflammation and following nerve trauma, and which may be causally related 

to pathological pain conditions, are likely to be driven, at least in part, by a change in 

the availability of neurotrophic factors that normally regulate their steady state levels 

in the “normal” adult. Since adult rodent DRG neurons can survive in culture 

independently of neurotrophic factors (Lindsay, 1988), they allow a direct 

comparison of the effects of specific neurotrophic factors on regulating gene 

expression as a true ‘no neurotrophic factors control’ can be set up without the need 

for caspase inhibitors to prevent apoptosis.

In many respects, culturing neurons can be regarded as a model of axotomy and/or 

peripheral nerve injury. Indeed, adult DRG cultures have been extensively used in 

the fields of inflammatory and neuropathic pain research to examine the regulation of

87



a number of genes that have previously been implicated in the aetiology of 

neuropathic pain following in-vivo nerve lesion/axotomy/crush models. As such my 

results may provide an insight into alterations in gene expression occurring in 

situations of nerve injury and the neurotrophic factor regulation that can enhance or 

attenuate such effects. This work would therefore be of potential therapeutic benefit, 

providing further background to research in the fields of nerve injury and 

neuropathic pain.
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Chapter 2

Nerve growth factor regulation of the early induction of sensory neuron gene 

expression in the developing mouse embryo

2.1. Introduction

It has previously been demonstrated that NGF/TrkA signalling is necessary to 

maintain the expression of several sensory neuron specific genes (e.g. CGRP, SP, 

N avi.8 , N avi.9), within mouse DRG neurons, normally in the neonatal period and 

also following neuronal damage, axotomy or inflammation in the adult (Patel et al., 

2000; Dib-Hajj et al., 1998; D’Arcangelo G et al., 1993). However, whether 

NGF/TrkA signalling is required for the initial induction of expression of these genes 

is unclear. In addition, few studies have addressed the role of NGF/TrkA signalling 

in the regulation of gene expression in other sensory populations, such as those 

within the nodose ganglia or trigeminal ganglia. In this chapter the role of NGF and 

TrkA signalling in the initial induction of expression of the neuropeptides Calcitonin 

Gene Related Peptide (CGRP) and Substance P (SP), and the sensory neuron 

specific, tetrodotoxin resistant (TTX-R) sodium channels N avi . 8  and N avi.9, in 

trigeminal ganglia and DRG, will be explored.

2.1.1. Calcitonin gene related peptide (CGRP)

Calcitonin gene related peptide (CGRP) is a 37 amino-acid neuropeptide that is 

expressed throughout the peripheral and central nervous system (Amara et al., 1992; 

Rosenfeld et al., 1993; reviewed in Ishida-Yamamoto and Tohyama, 1989). It is 

predominantly located in small sensory unmyelinated, C and myelinated A8  fibres in 

the periphery, often colocalised in C fibres with the tachykinin peptides, SP and 

neurokinin A (Lundberg et al., 1985; Lee et al., 1985; Skofitsch et al., 1985). CGRP 

is usually located in nerves closely associated with blood vessels, suggestive of a 

cardiovascular role, which will be discussed later (Sexton et al., 1991; Brain et al., 

1996; Wimalawansa et al., 1997). It belongs to the calcitonin family of peptides that
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consists o f calcitonin (CT), adrenomedullin (AM), amylin (AMY) and the two 

isoforms of CGRP, a-CGRP and p-CGRP. Although primary sequence homology 

between peptides is weak, they do show significant similarities at the secondary 

structure level. They all have a six amino acid ring structure at the N termini and are 

amidated at the C terminal. A region of potential amphipathic a  helix also lies 

adjacent to the N terminal (Reviewed in Breiner et al., 1988; Poyner et al., 2004).

a-CGRP is the product o f a calcitonin/a-CGRP transcript (CALC1) that is 

alternatively spliced to allow tissue specific production of either CT or a-CGRP 

(Amara et al., 1982; Rosenfeld et al., 1983). Calcitonin is a potent inhibitor of bone 

resorption and is produced in abundance in parafollicular C-cells (Amara et al., 1982; 

Rosenfeld et al., 1983). a-CGRP peptide and transcripts are widely distributed 

throughout both the CNS and PNS. (Amara et al., 1992; Rosenfeld et al., 1993; 

reviewed in Ishida-Yamamoto and Tohyama, 1989).

P-CGRP was isolated later, and found to differ from the a  iso form by just one amino 

acid in the rat (Amara et al., 1995), and three amino acids in the mouse (Thomas et 

al, 2001). This high degree of sequence homology is observed at both the nucleotide 

and amino-acid levels, but despite the similarity, p-CGRP is the product of a separate 

gene that lacks the exon encoding CT and is thought to have arisen by partial gene 

duplication.

Despite almost perfect sequence homology, the two CGRP isoforms show different 

expression profiles. The isoforms do coexist in many tissues, however a-CGRP is 

found predominantly in the CNS and PNS (Amara et al., 1995), whilst p-CGRP 

predominates in the enteric nervous system (Mulderry et al., 1988; Schutz et al.,

2004) and pituitary gland (Jonas et al., 1985; Petermann et al.,1987).

Developmental switches in expression also occur. In adult rats, a-CGRP is the 

abundant isoform in both DRG neurons and motor neurons of the spinal cord (Amara 

et al. 1985, Gibson et al., 1988), however, during embryonic development, 

transcripts of the p- isoform are initially predominant, with a switch during perinatal
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stages (Terrado et al., 1999). Using in-situ hybridization, Terrado et al. found that, p- 

CGRP mRNA, but not a-CGRP mRNA was expressed in cells o f both trigeminal 

ganglia and DRG at E l4. a-CGRP mRNA was not co-expressed with p-CGRP 

mRNA, until E l 6 .

The recent sequencing of the mouse P- isoform (Thomas et al, 2001) and the 

production of mice that lack a functional a-CGRP gene has led to further 

investigation into the distinct expression of both a - and p- iso forms in the mouse. 

Homozygous a-CGRP knockout mice are viable and fertile, with no obvious 

abnormalities (Lu et al., 1999). In DRG of the adult a-CGRP*7* mouse, little or no 

CGRP transcript (due to P-CGRP) was observed in comparison to wild-type (Zhang 

et al., 2001; Schutz et al., 2004), suggesting a predominance of the a - isoform in 

accordance with the data from rat.

Receptors

CGRP receptors are divided into two categories CGRPi and CGRP2 . Differentiation 

between the subtypes was permitted by the discovery of the receptor antagonist 

CGRPi2-37 and the receptor agonists [Cys(ACM)2,7]haCGRP and 

[Cys(Et)2.7]haCGRP (Dennis et al., 1989; Dennis et al., 1990; Dumont et al., 1997). 

CGRPi receptors show more sensitivity to CGRP 12-37 than CGRP2 receptors (Dennis 

et al., 1989; Dennis et al. 1990), whilst CGRP agonists are more potent at CGRP2 

receptors. Although this classification still exists, it is not universally accepted with 

many still questioning the selectivity of the CGRP agonist, [Cys(ACM)2,]haCGRP 

(Poyner and Marshall, 2001).

A breakthrough in the structure determination of these receptors was made following 

the discovery o f the rat calcitonin like receptor (CL) (Njuki et al., 1993), and two 

years later human CL (Fluhmann et al., 1995). These receptors could not bind CGRP 

and were deemed orphan receptors. However the cloning of the human CGRPi 

receptor (Aiyar et al., 1996), which showed high sequence homology with CL,
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combined with work by McLatchie et al (McLatchie et al.,1998) led to the realisation 

that CL must be combined with a receptor activity-modifying protein (RAMP) in 

order to produce a functional CGRP receptor.

The RAMPS are a family of single transmembrane domain proteins that consist of 

RAMP1, RAMP2 and RAMP3 (McLatchie et al., 1998). CL is a seven- 

transmembrane spanning G protein coupled protein which, when combined with 

RAMP1 , produces a CGRP receptor that is antagonised by CGRPg-37 (CGRPI). 

Combined with RAMP2 it produces an amylin receptor and with RAMP3 another 

AM receptor, that may also have the ability to bind PCGRP (Reviewed in Poyner et 

al., 2 0 0 2 ).

Physiological Role

As few studies have discriminated between isoforms, the subsequent background 

information provided here will refer to both isoforms, a- and P-, as CGRP, unless 

otherwise mentioned. CGRP is distributed widely throughout the CNS and PNS, 

regulating the biological function of tissues including those of the gastrointestinal 

(GI), respiratory, endocrine and CNS. CGRP has a number of physiological roles 

within the body most notably with regards to its cardiovascular effects, hence the 

wide expression in nerves closely associated with blood vessels. Both isoforms of 

CGRP are potent arterial and venous vasodilators through activation of the CGRPi 

receptor (Brain et al. 1986). At the cellular level effects via two pathways have been 

suggested. The first is endothelium dependent and the second, endothelium 

independent.

In the endothelium independent pathway has CGRP produces an increase in cAMP 

via adenyl cyclase. This stimulates the production o f protein kinase A (PKA), which 

can open K+ channels, in turn activating Ca2+ sequesteration and producing the 

relaxation of smooth muscle (Crossman et al., 1990; Hirata et al., 1988; Nelson et al.,

1990). The majority o f tissues appear to use this endothelium dependent pathway, 

including rat perfused mesentery (Han et al., 1990), cat cerebral artery (Edvinsson et
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al., 1985) and porcine coronary artery (Yoshimoto et al., 1998). Exceptions however 

do exist which require the presence of endothelium and activation of the smooth 

muscle relaxant, nitric oxide (NO). In this model, CGRP once again activates PKA 

through increases in adenyl cyclase and cAMP. PKA activates endothelial nitric 

oxide synthase (eNOS), stimulating the production of NO, which produces 

subsequent muscle relaxation through guanylate cyclase and accumulation of cGMP 

(Brain et al., 1985; Gray and Marshall, 1992a, 1992b).

The intravenous administration of CGRP and use of antagonists have shown that 

CGRP is associated with hypotension, as a result of such vasorelaxant effects. It has 

also been found to promote positive effects on the force o f muscular contractions and 

the rate of heart contraction (Ando et al., 1990; Gardiner et al., 1991; Bell and 

McDermoot, 1994). In contrast intracerebroventricular administration increases 

blood pressure in rats due to actions on sympathetic nerves and the release of 

norepinepherine (Fisher et al., 1983). These general effects of CGRP will be 

discussed here with regards to effects in other tissues.

CGRP and blood pressure

Studies o f the role of CGRP in maintenance of basal blood pressure have produced 

conflicting results. Intravenous injection of the CGRP antagonist into adult rodents 

or dog has shown no effect on resting blood pressure (Gardiner et al., 1989; Shen et 

al., 2001), however studies in transgenic mice have produced varying results. Lu et 

al., (Lu et al., 1999) found no change in basal blood pressure in aCGRP'A, however 

mice in which the gene encoding both aCGRP and calcitonin is knocked out, show 

an increase in both systolic and mean arterial pressure (Gangula et al., 2000). This 

was originally thought to be due to effects of additionally removing calcitonin, 

however other studies by Oh-hashi et al., (Oh-hashi et al., 2001) in which solely 

aCGRP is knocked out, show an increase in mean arterial pressure and heart rate.
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CGRP and migraine

A role for CGRP in the onset of migraine and also cluster headache was suggested as 

in both conditions an increased release of CGRP into cranial circulation is observed 

(Goadsby et al., 1990, 1994). Furthermore, addition of exogenous CGRP induces 

delayed migraine like headache in sufferers (Lassen et al., 2002). It is proposed that 

CGRP promotes vasodilation of cerebral blood vessels, which allows stimulation of 

perivascular sensory nociceptive nerve fibres producing the subsequent pain 

(Goadsby et al., 2000). The use of CGRP antagonists in the treatment of migraine has 

much therapeutic potential and has been shown to be clinically effective (Brain et al., 

2004; Goadsby et al., 2005).

Protective effects of CGRP in heart conditions

The heart is innervated by CGRP containing fibres (Gulbenkian et al., 1993; Sun et 

al., 1993), and the local production of CGRP has been shown to be protective in 

many heart conditions. Indeed an increase in CGRP immunoreactivity is observed 

following myocardial infarction, suggesting release as a protective mechanism 

(Preibisz et al., 1993; Roudenok et al., 2001). In patients with congestive heart 

failure, infusion of CGRP can produce an increase in cardiac output and a decrease in 

blood pressure through vasodilation (Gennari et al., 1990; Shekhar et al., 1991). 

Additionally effects o f CGRP are useful in patients suffering from angina, a 

condition in which coronary arteries are narrowed by several factors including stress 

or fatty deposits, resulting in severe chest pain in situations when the heart rate is 

increased. The use o f CGRP was illustrated by clinical trial, in which CGRP was 

administered to exercising angina sufferers. CGRP produced dilation of coronary 

arteries, which delayed the onset of myocardial ischemia induced by the exercise 

(Uren et al., 1993).
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Pulmonary hypertension

Constriction of lung arterioles leads to pulmonary hypertension and is caused by a 

misbalance in endogenous vasodilators and constrictors. Indeed a decrease in blood 

CGRP was observed in a rat model of pulmonary hypertension (Keith et al., 2000). 

Exogenous CGRP has also been shown to prevent development of pulmonary 

hypertension (Tjen et al., 1992, 1998) and to relax precontracted pulmonary arteries 

in vitro (Martling et al., 1990).

CGRP and blushing

Blushing, such as that observed in menopausal women, is believed to be due to a 

release of CGRP and its subsequent vasodilatory effects in skin arterioles. Indeed 

elevated levels of CGRP were noted in serum and urine during attacks of hot flushes 

and sweating in menopausal women (Wyon et al., 1998, 2000).

CGRP. inflammation and hyperalgesia

The distribution o f CGRP on small diameter nociceptive neurons of the PNS 

(Molliver et al., 1997; Snider and McMahon, 1998; Lewin et al., 2004; Lewin and 

Moshourab, 2004; Green et al., 2004) suggests a role for CGRP in pain. An increase 

in CGRP is observed in primary sensory neurons following application of 

inflammatory stimuli such as complete Freud’s adjuvant (CFA), suggesting a role for 

CGRP in inflammation (Donaldson et al., 1992; Donnerer et al., 1992; Woolf et al., 

1994). Experiments have revealed roles in both the immune response to 

inflammation and also within the associated hyperalgesia.

Vasodilator effects of CGRP allow enhanced activities of inflammatory cells, 

through increased blood flow, and thus circulating cells such as neutrophils, to the 

area (Buckley et al., 1991). It can also directly and indirectly affect production of 

chemotactic compounds from macrophages. The presence of CGRP attenuates



release o f interleukin-1 (IL-1), but produces an increase in production of IL-10 (Torii 

et al., 1997). It can also indirectly enhance LPS induced release o f IL- 6  from 

macrophages through induction of NO (Tang et al., 1999). As well as macrophages 

CGRP has been shown to be chemotactic for human T lymphoctes (Foster et al.,

1999) and can also attenuate lymphocyte activity (McGillis et al., 2002). A role for 

CGRP in the cellular response to inflammation is thus likely.

Studies o f mice with null mutations in the a-CGRP gene have illustrated a role for 

CGRP in the inflammation-associated hyperalgesia. CGRP'7' mice, in which the gene 

encoding both a-CGRP and calcitonin has been disrupted, are less sensitive to 

thermal hyperalgesia, failing to develop secondary hyperalgesia following knee joint 

inflammation (Zhang et al., 2001). Mice, in which a-CGRP, specifically, is knocked 

out, show a decrease in response to inflammatory stimuli including capsaicin, 

formalin and carrageenan (Salmon et al., 2001).

Additionally CGRP has also been shown to potentiate oedema formation when co

injected with histamine, a potent mediator of vascular permeability that is released 

following application of inflammatory stimuli (brain et al., 1992). It also enhances 

the release of SP, thus promoting the inflammatory response and associated 

hyperalgesia (Oku et al., 1987; Brain et al., 1989).

Nerve damage and neuropathic pain

In contrast to inflammatory stimuli, following axotomy or transection of sciatic nerve 

a decrease in expression of both isoforms of CGRP peptide and transcripts is 

observed in adult lumbar DRG (Noguchi et al., 1990; Mulder et al., 1997; Sterne et 

al., 1998; Shi et al., 2001; Shadiack et al., 2001). Interestingly axotomy of the 

cervical vagus to identify alterations within nodose ganglia, showed no difference in 

CGRP immunoreactivity (Helke et al., 1995). This illustrates how the sensory 

neurons from different populations are phenotypically different and often regulated 

by different factors.
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Neurotrophic Regulation

The regulation of CGRP mRNA and peptide expression in sensory neurons of the 

DRG, by NGF has previously been studied in adult and neonatal rodents.

As mentioned, sciatic nerve axotomy or transection in adult rats results in the loss of 

target field trophic support and a massive decrease in CGRP mRNA and peptide.

This decrease in CGRP expression can be prevented by application of exogenous 

NGF, both in-vivo and in-vitro when cultured neurons can be used as a model of 

axotomy (Lindsay et al., 1989; Verge et al., 1995; Jiang and Smith, 1995; Price et al,

2005). Sequestering endogenous NGF with anti-NGF antibodies or TrkA IgG also 

reduces CGRP expression, inducing axotomy like changes (Shadiack et al, 2001; 

Christensen and Hulsebosch, 1997; McMahon et al, 1995). The addition of 

exogenous NGF or NGF over expression has also been shown to stimulate the 

expression of CGRP in intact and capsaicin lesioned DRG neurons of the adult 

rodent (Ma et al, 1995; Schuligoi and Amann, 1998; Schicho et al, 1999; Tandrup et 

al., 1999; Price et al., 2005) and cause a prolonged hyperalgesia (Lewin and Mendell, 

1993). All of the above studies only measured the expression of the aCGRP isoform.

NGF regulation of CGRP has also been shown postnatally by the use of anti-NGF 

antiserum and TrkA/Bax and NGF/Bax double knockout mice (Tonra and Mendell, 

1998; Patel et al, 2000). TrkA and NGF single knockout mice have a dramatic 

phenotype, with massive sympathetic and sensory neuronal loss resulting in death 

shortly after birth (Smeyne et al., 1994; Crowley et al., 1994). By additionally 

knocking out the gene that encodes the pro-apoptotic protein Bax, Patel et al., found 

that cells normally lost in the single knockout survive. These surviving neurons are 

also phenotypically identical to those that would be lost (Patel et al, 2000). 

Postnatally, the expression of CGRP and SP was dramatically reduced in DRG of 

TrkA/Bax and NGF/Bax null mutant mice (Patel et al.2000). However the study of 

alpha and beta isoforms individually was not addressed in this publication.
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Effects of the GDNF neurotrophic factor family member, artemin on CGRP 

expression have been observed in a model of neuropathic pain. Following sciatic 

nerve ligation, the associated down-regulation in CGRP mRNA observed in rat 

DRGs was partially reversed by the presence of artemin (Gardell et al., 2003). 

Additionally, in uninjured neurons, intrathecal administration of GDNF produced an 

increase in CGRP immunoreactivity in the GDNF receptor expressing proportion of 

DRG neurons (Ramer et al., 2003).

Fibroblast growth factor 2 (FGF2) can also regulate CGRP expression in sensory and 

motor neurons. Analysis o f mice carrying null mutations in FGF2 gene and also in its 

receptor, FGFR3, showed a decrease in the loss of CGRP normally observed 

following injury (Jungnickel et al., 2005). Within motor neurons, an increase in 

CGRP is observed following lesion. This can be abolished upon application of bFGF 

(Piehl et al., 1995, 1998).

In this chapter TrkA and NGF knockout mice were used to study the regulation of a- 

and P- CGRP mRNA expression by NGF in both DRG and trigeminal ganglion 

neurons during embryonic development rather than postnatally or in the adult

The arrival of new Real-time PCR technology in the lab allowed me to extend this 

study further. Real-time PCR is a highly sensitive and fast form o f quantitative PCR 

(QPCR) and the computer package Beacon Designer permitted the production of 

more efficient and specific PCR primers that could distinguish between the two 

closely related CGRP isoforms, allowing me to look at the expression of alpha and 

beta CGRP separately, alongside studying the expression of other interesting sensory 

neuron specific genes. Any competitive data produced for CGRP could also be 

reconfirmed.

2.1.2. Substance P (SP)

Substance P (SP) is an 11 amino acid neuropeptide of the tachykinin family. It was 

first synthesised by Susan Leeman and colleagues back in 1971 (Chang et al., 1971),
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following deduction of the amino acid sequence as Arg-Pro-Lys-Pro-Gln-Gln-Phe- 

Phe-Gly-Leu-Met.NH2 (Tregear et al., 1971). Expression studies revealed that SP is 

confined to the CNS and PNS, where it is localised in cell bodies and nerve terminals 

(Hokfelt et al., 1975; Cuello et al., 1978). Predominant expression is within sensory 

nuclei particularly within small diameter non-myelinated sensory neurons and thinly 

myelinated A-delta nociceptive neurons that express TrkA and are NGF responsive 

(Hokfelt et al., 1975; Cuello et al., 1978; Skofitsch and Jacobowitz, 1985; Lee et al.,

1985). Within the CNS it is also detected at high levels in the thalamus, 

hypothalamus and extrapyramidal system and at lower levels in the spinal root 

ganglia, caudoputamen and globus pallidus, but is not detectable in the majority of 

the cortex (Cuello et al., 1978). The expression pattern corresponds with a role as a 

widespread neurotransmitter and this was confirmed by work of Otsuka and Konishi 

who illustrated SP release into the spinal cord after application of electrical stimuli 

(Otsuka and Konishi, 1976).

SP belongs to a family of small, biologically active, peptides collectively called 

tachykinins. SP is the most widely characterised member of this peptide family, 

however other members include Neurokinin A (NKA) and Neurokinin B (NKB). SP, 

NKA and NKB are all produced by alternative splicing of a precursor gene. SP and 

NKA are derived from the same precursor gene, preprotachykinin (PPT)-A, whilst 

NKB is generated from a separate gene PPT-B. Both PPT-A and PPT-B originate 

from the same common ancestral gene by duplication (Carter et al., 1990). 

Alternative splicing of the PPT-A gene (Figure 2.1.) generates four transcripts a , p, 8  

and y PPT-A mRNAs (Carter et al., 1990). The sequence for SP is present in all four, 

however the sequence for NKA is only present in p and y splice forms (Carter et al., 

1990; Holzer and Holzer-Petsche, 1997).

The cloning of the first neuropeptide receptor, that of Substance K, by Masu et al., 

(Masu et al., 1987) was a breakthrough, allowing the subsequent cloning of many 

more neuropeptide receptors, including those of SP and the other tachykinins, 

namely the neurokinin (NK) receptors. The family of NK receptors consist of NKi, 

NK2 and NK3 , which bind preferentially to SP, NKA and NKB (Regoli et al., 1987;
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Maggi et al., 1987). Ligand promiscuity does occur however dependent upon ligand 

concentration and receptor availability. The preferred SP receptor, NK] is located 

throughout the CNS with highest levels in olfactory bulb, hippocampus, striatum and 

superior colliculous. It is also detected to a lesser extent in areas including the 

substantia nigra, cerebral cortex and within the dorsal horn o f the spinal cord (Shults 

et al., 1984; Dam et al., 1986)

Because o f  the small size o f SP, amplification via PCR is impossible. In this study, 

part o f  the precursor PPT-A was amplified instead. Primers were designed that 

detected only p and y PPT-A mRNA in the portion that encodes the active SP 

peptide. They did however also span the region encoding NKA. The product 

produced is therefore representative o f the precursor for both these neuropeptides and 

not a true representation o f SP mRNA expression alone

PPT-A gene

Exon I Exon II Exon III Exon IV ExonV Exon VI Fxon VII

—n — m — — ■ —  — qp— w s m s —
encoding SP encoding NKA

Figure 2.1 Diagram to represent the organization o f  the PPT-A gene with its seven exons.

Exon III encodes SP and exon VI encodes NKA. There are 4 splice variants produced from this gene. 

aPPT-A has all exons except VI, p contains all exons, the 5 transcript is missing exons IV and VI and 

the y form is missing exon IV. Taken from Qian et al., 2001.

Substance P knockout

Mice with null mutations in the tachykinin 1, preprotachykinin gene and also in the 

NKi receptor gene are all viable and fertile, but have defects in nociceptive 

transmission and cellular responses to inflammatory stimuli (Cao et al., 1998; De- 

Felipe et al., 1998; Zimmer et al., 1998; Ahluwalia et al., 1999; Mansikka et al.,

1999; Bester et al., 2001; Kidd et al., 2003). This suggests a role for SP in 

transmission o f nociceptive information particularly following inflammatory stimuli.
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This will be discussed whilst examining the physiological roles of this neuropeptide 

and its effects in peripheral tissues.

Physiological roles

SP and neurogenic inflammation

SP is a sensory neurotransmitter that is produced particularly following inflammatory 

stimulation (Donaldson et al., 1992; Donnerer et al., 1992; Woolf et al., 1994), and 

effects produced by release of SP from nerve endings of capsaicin-sensitive sensory 

neurons is referred to as ‘neurogenic inflammation’. The released SP causes 

vasodilation of arterioles and plasma protein extravasation (Ferrante and 

VadeBoncouer, 1993). It also has many tissue specific effects including smooth 

muscle contraction/relaxation in iris and bladder and bronchoconstriction of the 

airways. Such effects suggest many roles for SP in the GI tract, genitourinary 

disorders, migraine and asthma.

Nociception

SP is synthesised and located in a subpopulation of small diameter DRG neurons, 

implicating a nociceptive role. It is released from sensory neurons in response to 

inflammatory stimuli (Duggan et al., 1987; Oku et al., 1987; Schaible et al., 1990), 

alongside an increase in transcripts of its preferential receptor NK]t within the 

superficial dorsal horn (Krause et al., 1995). It is thus implicated in nociceptive 

transmission and the hyperalgesia associated with application of inflammatory 

stimuli (Hokfelt et al., 1975). An increase in SP production is also observed in 

diseases of chronic inflammation (Oku et al., 1987; Krause et al., 1995).

Much evidence implicates a role for SP in the hyperalgesia associated with 

inflammation. Intrathecal administration of SP results in hyperalgesia (Moochhala et 

al., 1984). Application of NKj antagonists results in a loss in the increased
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excitability in response to noxious thermal stimulation and also in a loss of ‘wind

up*, (a concept in which following repetitive stimulation, the response will increase 

markedly, so that the response to the last stimuli is much greater than that to the first 

stimuli, despite being the same strength) (Thompson et al., 1995; Radhakrishnan et 

al., 1998). Furthermore ablation of SP neurons results in a loss of capsaicin 

responsiveness and the thermal hyperalgesia and mechanical allodynia associated 

with neuropathic or inflammatory pain (Nichols et al., 1999; Khasabov et al., 2002).

Further information on the functional role for SP in peripheral inflammation has been 

gained following the generation of mice with a null mutations in the NKi receptor 

and the PPT gene. In both N K f7' and PPT*7* mice, hyperalgesia develops normally 

(De Felipe et al., 1998; Cao et al., 1998; Zimmer et al., 1998; King et al., 2003), 

however NKi7' mice display a loss of hyperalgesia in response to more chronic 

phases of inflammatory disease (Kidd et al., 2003). Furthermore such mice show a 

loss of response to noxious chemical signalling (Laird et al., 1998; Mansikka et al.,

1999), and also display a loss of intensity coding of nociceptive stimuli and a 

decrease in ‘wind-up’, alongside a decrease in stress-induced analgesia (De-Felipe et 

al., 1998; Bester et al., 2001).

Migraine

SP is present in cerebral arteries o f several species (Edvinsson et al., 1983). Upon 

release it can produce arterial relaxation and plasma extravasation, suggestive that SP 

signalling contributes to the onset of migraine (Moskowitz et al., 1992; Moussaoui et 

al., 1993). Such effects are proposed to be mediated by NKi receptors, as SP-induced 

plasma extravasation in cerebral arteries of the rat and guinea pig can be prevented 

by application of antagonists to NKi, but not NK2 (Mousanni et al., 1993; 

O’Shaughnessy et al., 1994).
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Asthma and chronic bronchitis

A role for SP in the inflammation of the airways associated with asthma and chronic 

bronchitis has been suggested. Neurogenic inflammation of the airways leads to 

bronchoconstriction and in some cases bronchorelaxation (Figini et al., 1996), as 

well as secretion from secromucous glands (Geppetti et al., 1993) and release of 

mediators from the epithelium such as prostaglandins and NO. It is proposed that SP 

and neurogenic inflammation produce the airway hyperresponsiveness following 

allergen challenge (Bertrand et al., 1996). Application of NKi antagonists abolishes 

hyperresponsiveness and microvascular permeability in animal models (Mashito et 

al., 1999; Schuiling et al., 1999). Analysis of autopsy, biopsy and bronchoscopy 

tissue samples from asthmatics support such a role for SP in development of 

bronchial hyperresponsiveness. A decrease in SP immunoreactivity in tracheal (Lilly 

et al., 1995) and lung (Howarth et al., 1991) tissue of asthmatic illustrates an 

enhanced release of SP, which is reflected by the observation of an increase in SP 

immunoreactivity in sputum collected from asthmatics following antigen challenge 

(Nieber et al., 1992).

Gastrointestinal (GI) tract

The gut is innervated by extrinsic and intrinsic enteric neurons, which regulate 

motility and fluid secretion. These neurons are likely to contain SP (Costa et al.,

1986). SP has been shown to contract all parts of the GI tract in all mammals 

including man, despite regional variations in SP expression between species 

(reviewed in Bartho and Holzer, 1994; Bartho et al., 1995). It can also stimulate 

plasma extravasation in post capillary venules of stomach, small and large intestines 

and pancreas, via NKi, in mouse (Figini et al. 1997) and in stomach, small intestine 

and pancreas of the rat (Nicolau et al., 1993). Such effects, illustrate the role of SP 

and regulation of neurogenic inflammation in the GI tract.

Alterations in SP signalling have been postulated to contribute to diseases of the GI 

tract. An increase in NKi receptor sites is observed in inflammatory bowel disease
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(Holzer, 1998), Crohns disease and ulcerative colitis (Mantyh et al., 1988). Studies of 

NKI-/- mice also suggest a role for SP signalling via NKi in proinflammation and 

severity of pancreitis (Saluja et al., 1999; Grady et al., 2000).

Genitourinary tract

SP immunoreactive fibres are present in the bladder (Maggi et al., 1988). SP 

increases motility and plasma extravasation in the genitourinary tract (Hua et al., 

1987; Maggi et al., 1987; Maggi et al., 1988) and is thought to contribute to cystitis.

In interstitial cystitis the number of NKi receptors around small blood vessels is 

increased alongside NKi receptor transcripts within the bladder endothelium 

(Marchand et al., 1998; Buffington et al., 1998). Furthermore, NKi receptor 

antagonists inhibit the onset of the early phase of plasma extravasation in xylene- 

induced cystitis (Maggi et al., 1988b).

Immune System

SP can regulate activity o f many cells of the immune system affecting the cellular 

response to inflammation. SP can stimulate interleukin- 8  (IL-8 ) synthesis and release 

(Serra et al., 1994); is chemotactic for neutrophils and eosinophils in vitro (Cazlan et 

al., 1993; Roch-Arveiller et al., 1986); is required for IL-lbeta induced neutrophil 

accumulation in response to inflammation (Ahluwalia et al., 1999) and can contribute 

to antibody dependent cell mediated toxicity (Wozniak et al., 1993). Additionally it 

has indirect effects on cells of the immune system, producing a priming effect on 

responses mediated by other molecules such as platelet activating factor (PAF) and 

recombinant human interleukin 5 (rhIL-5) (El-Shazly et al., 1996; Wiedermann et al.,

1991).
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SP. nerve injury and neuropathic pain

Transection of the sciatic nerve results in a down-regulation of SP expression within 

DRG (Nielsch et al., 1987; Zhang et al., 1995; Sterne et al., 1998). Such a down- 

regulation is not observed within the nodose following axotomy of cervical vagus 

(Helke et al., 1995), suggesting that SP expression in this neuronal population is 

regulated differently from that in sensory neurons of the DRG. Additionally the 

inflammation induced increase in SP observed in DRG of a mouse model of arthritis, 

is also attenuated following nerve section (Ahmed et al., 1995). Such effects are 

thought to be due to a loss of target derived factors such as NGF which regulate 

expression of SP.

Neurotrophic factor regulation

SP is co-expressed with CGRP in the same subpopulation of sensory neurons, and 

both neuropeptides appear to be regulated by NGF. Exogenous NGF stimulates the 

expression of SP and CGRP in intact DRG of the rat (Schuligoi and Amann, 1998; 

Tandrup et al., 1999). and both neuropeptides are massively down-regulated in 

TrkA'^/Bax7' and NGF^'/Bax'7' mice (Patel et al., 2000). The axotomy-induced 

decrease in SP in wild-type mice can also be prevented by NGF administration 

(Lindsay et al., 1989; Zhang et al., 1995).

2.1.3. Voltage gated sodium channels (VGSC), Nav1.8 and 

Navi .9

Sodium channels allow the generation and propagation of the compound action 

potential in electrically excitable tissues such as nerve, muscle and the heart. 

Depolarisation of tissues is caused by Na+ ion diffusion through voltage gated 

sodium channels (VGSCs).
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Sodium channel structure

Mammalian VGSCs are multimers, composed of a central pore forming a  subunit 

(approx 260kDa) and auxilliary p subunits. The alpha subunit forms the ion pore and 

is responsible for voltage sensing of the channel. Multiple isoforms of the alpha 

subunit exist in different regions of the brain and peripheral nervous system. These 

are outlined in figure 2.2. Isoforms differ in their kinetic properties and expression 

pattern. Sensitivity to the neurotoxin, tetrodotoxin (TTX), a toxin from the puffer 

fish, is used to pharmacologically distinguish between a  subunits. Only three of the 

subunits show TTX resistance (TTX-R), N avi.5, N avi . 8  and N avi.9, the remaining 

channels are TTX sensitive (TTXS) (Black et al., 1996; Akopian et al., 1996; 

Sangameswaren et al., 1996; Dib-Hajj et al., 1998; Tate et al., 1998; Plummer and 

Meisler, 1999). Interestingly the genes encoding these three TTX-R subunits all exist 

on the same chromosome (Chromosome 3p21-24 in mice), suggesting an 

evolutionary link between these channels (Plummer and Heisler, 1999 and Goldin et 

al., 2000). Future references to sodium channels will be referred to as the gene (e.g. 

SCN10A) or the new nomenclature (e.g. N avi.8 ).

p subunits act as accessory subunits, modulating the channel kinetics and membrane 

localisation (Catterall., 1992; Isom et al., 1994; Kazen-Gillespie et al., 1999; Isom et 

al., 2001). Three such subunits have been identified, these are p i (SCN1B, 36kDA), 

p2 (SCN2B, 33kDa) (Isom et al., 1994; Catterall., 1992) and the most recently 

discovered p3 (Morgan et al., 2000).
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Table 1. Mammalian Sodium Channel a  8ubunit»

Chromosomal
Type Former Name Qenbank Number* Gene 8ymbol Location 8p«oe Variants Primary Tissues

Na,1.1 rat 1 X03638 ft) 8CN1A Mouse 2 Navi .1 a CNS
HBSCI XB5362 (h) Human 2q24 PN8
QPBI AF003372(gp)
SCN1A

Navi .2 rat II
HBSCII
HBA

X03639 (r) 
X81149 (r) 
X85361 (h) 
M94056 (h)

8CN2A Mouse 2 
Human 2q23-24

Nav1.2a CN8

Nay1.3 rat III YQ0766 (f) SCN3A Mouse 2 
Human 2q24

N%1.3a 
Nayl .3b

CNS

Nav1.4 SkM1. M20643 (r) 
M81758 (h)

SCN4A Mouse 11 
Human 17q23-25

sk. muscle

Nay1.5 SkM2 M27902 (r) SCN6A Mouse 9 Uninnervated sk.
H1 M77235 (h) Human 3p21 muscle, heart

Navi .6 NaChfi
PN4
Scn8a
Cerill

L39018 (r)
AF049239 (r) 
AF049240 (r) 
U26707(m) 
AF049617 (m) 
AF060738 (h) 
AF225988 (h) 
AF003373(gp)

8CN8A Mouse 15 
Human 12q13

Na«1.ea CN8, PNS

Nav1.7 NaS U35238 (rb) SCN9A Mouse 2 PNS
hNE-Na X82836 (h) Human 2q24 Schwann cels
PN1 079688 (r) 

AF000368 (r)
Na«1 -8 SNS

PN3
NaNQ

X92164 (r) 
U53833 (r) 
Y09108 (m) 
U60600 (d)

8CN10A Mouse 9 
Human 3p22-24

DRG

Navi .9 NaN
SNS2
PN8
NaT
SCN12A

AF069030 (i) 
AJ237862 (i) 
AF118044 (m) 
AB031389 (m) 
AF126739 |h) 
AF188679 (h) 
AF109737 (h) 
AF150882(h)

SCN11A Mouse 9 
Human 3p21>24

Nav1.9a PNS

Na, Nay2.1 M91566(h) SCN7A Mouse 2 heart, uterus,
Na-G M96678 (r) SCN6A* Human 2q21 -23 sk. muscle
SCL11 Y09164 (r) astrocytes,
Nar2.3 L38179 (m) DRG

* The letter In parentheses after each accession number indicates the species of origin for the sequence, as follows: h, human; r, rat; rfe, 
rabbit; m, mouse; gp, guinea pig; d, dog.
6 This gene was originally assigned symbols SCN6A and SCN7A, which were mapped in human and mouse, respectively. The two most likely 
represent the sam e gene, and the SC NBA symbol w tt probably be deleted.

Figure 2.2. Nomenclature and location o f  mammalian sodium channel alpha subunits. 
Taken from Goldin et al., 2000



The use of in situ hybridization and RT-PCR has revealed that nine of the ten alpha 

subtypes and all three of the beta subtypes are present in sensory neurons (Black et 

al., 1996; Renganathan et al., 2002; reviewed in Lai et al., 2004). Expression profiles 

of different subunits vary considerably. Of the TTXR channels, N avi . 8  is highly 

expressed in small diameter neurons, with some expression in medium and large 

neurons, whist N avi.9 is only expressed only in small diameter neurons (Black et al., 

1996). The remaining TTX-R channel, N avi.5, is predominantly a cardiac channel, 

however some expression has been observed in embryonic DRG (Renganathan et al., 

2002). TTX-S channels in sensory neurons include N avi . 6  and N avi.7 whose 

expression is detectable to some extent in all sensory neurons (Tzoumaka et al.,

2000). N avi.2 can be found in all sensory neurons, but at barely detectable levels. 

Other sodium channels have a more restricted expression profile (Black et al., 1996). 

N avl.l is preferentially expressed in large diameter neurons and N avi.3 is 

developmentally regulated, showing high expression embryonically, but very low 

expression in the adult rat (Waxman et al., 1994).

These voltage gated sodium channels collectively, are responsible for the current 

flow required within sensory neurons to propagate the compound action potential. 

Electrophysiological results indicate that there are two general sodium currents in 

DRG, one sensitive to TTX (TTX-S), and one unaffected by TTX (TTX-R) (Kostyuk 

et al., 1981; Cafffey et al., 1992; Roy and Narahashi, 1992). The TTX-S current is 

predominant in large sensory neurons, however small neurons additionally contain 

the TTX-R component, which compliments the restricted expression profiles of the 

TTX-R channels, N avi . 8  and N avi.9 in small diameter neurons (Roy and Narahashi 

1992; Rush et al., 1998). Additionally, more in-depth, work has recently shown that 

within small diameter sensory neurons TTX has no effect on sodium currents in IB4 

positive neurons, but can inhibit AP generation in approximately 50% IB4 negative 

neurons (Wu et al., 2004). This provides more information of the distinct expression 

of TTX-S and TTX-R channels within subclasses of small diameter sensory neurons, 

peptidergic neurons containing a compliment of both TTX-S and TTX-R, but IB4 

reactive small diameter neurons containing just TTX-R channels. The presence of the
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TTX-R current only in a sub-population of small sensory neurons suggests a function 

for TTX-R VGSCs in nociception. This will be discussed further later.

Information on the discrete functions of each VGSC, within sensory neurons, has 

been hindered by the lack of specific channel blockers. Some insight has been gained 

using novel approaches and pharmacological techniques. Most of the VGSCs giving 

rise to the TTX-S current have a low activation threshold (in the region of -50mv and 

-40mV) with fast activation and inactivation. The application of TTX to distal axons, 

blocks nerve impulse conduction, evidence that TTX-S channels are required to 

mediate action potential generation in both myelinated and unmyelinated axons 

(Brock et al., 1998; Gold et al., 2003).

Several subtypes of the TTX-R current exist within the DRG, these are termed TTX- 

Rl,2 and 3. TTX-R1 has a high threshold for activation (approximately -36mV) and 

steady state inactivation. It activates and inactivates relatively slowly, but recovers 

from inactivation rapidly such that when other channel subtypes are inactivated by 

depolarisation, low levels of activity can be sustained by this current (Ogata et al., 

1993; Elliott et al., 1993 Rush et al., 1998). There is evidence to suggest that N avi . 8  

is the sodium channel underlying this current. Injection of N avi . 8  into N avl.8 7' mice 

produces a TTX-R current with characteristics identical to this TTX-R 1 (Akopian et 

al., 1999). These null mutant mice also no longer display the all-or-nothing action 

potentials characteristic o f such neurons, suggesting a role for TTX-R1 and N avi . 8  

in action potential generation electrogenesis (Renganathan et al., 2001).

TTX-R2 has unique biophysical properties with slow activation kinetics and a 

persistent nature with very low threshold for inactivation (between -70mV and -  

90mv) (Cummins et al., 1999). The properties of this current suggest that it is 

unlikely to contribute to the action potential upswing. However, its slow inactivation 

and its regenerative properties suggest a role in determination of membrane resting 

potential (Cummins et al., 1999; Herzog et al., 2001; Baker et al., 2003). The finding 

that this current still persists in N avl.8 'A, and indeed is further enhanced following 

GDNF infusion in the null mouse indicates that another TTX-R channel underlies
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this current (Cummins et al., 1999; Cummins et al., 2000). This is most likely 

Navi.9, due to its similar activation kinetics (Baker et al., 2003; Priest et al., 2005; 

Reviewed in Wood et al., 2004).

The TTX-R3 current has very similar kinetics to that of the TTX-S current, with 

low threshold of activation, combined with rapid rates of activation and inactivation 

(Rush et al., 1998). The physiological and pharmacological profile of this current 

suggests that the predominantly cardiac channel, N avi.5 carries it (Renganathan et 

al., 2002). N avi.5 is developmentally regulated, suggesting this current is only seen 

within DRG embryonically.

In this thesis it was decided to initially focus on the expression of the two sensory 

neuronal predominant TTX-R VGSCs, N avi . 8  (also known as SNS/PN3) and 

Navi.9 (also known as NaN).

Expression

N avi . 8  (SNS/PN3) was cloned from rat DRG, and shown to display 65% identity to 

the rat cardiac TTX-R channel, N avi.5 (Sangameswaran et al., 1996; Akopian et al., 

1996). It is encoded from the gene ScnlOa and is sensory neuron specific. It is found 

both in small diameter non-myelinated sensory neurons (C-fibres) and in 10% of 

small diameter myelinated axons corresponding to A-delta nociceptors 

(Sangameswaren et al., 1996; Amaya et al., 2000). Of such small diameter 

unmyelinated neurons, N avi . 8  is expressed equally in the peptidergic TrkA positive 

population and in the IB4 reactive populations (Benn et al., 2001).

The second TTX-R alpha subunit, Navi.9 (NaN/SNS2) is encoded from the Scnl la 

gene (Dib-Hajj et al., 1998). It exhibits only 42-53% similarity to N avi.8 . Navi.9 is 

predominantly located in small diameter sensory neurons, but is also expressed at 

low levels within the CNS (Black et al., 1996; Dib-Hajj et al., 1998; Tate et al., 1998; 

reviewed in Lai et al, 2004). Within sensory neurons, Navi.9 is expressed 

specifically within unmyelinated small C fibres that are peptidergic and
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immunoreactive for TrkA. It is not detectable in neurons with myelinated axons 

(Amaya et al., 2000; Benn et al., 2001; Fang et al., 2002). Such a specific expression 

within the unmyelinated nociceptive neurons is suggestive of a role for Navi .9 in 

pain. This will be discussed later.

Physiological function

Both channels are resistant to TTX and are important in the TTX-R currents within 

sensory neurons. As discussed, Navi.9 is implicated to underlie the persistent TTX- 

R2 current that is thought to play a role in determination of membrane resting 

potential. N avi.8 is responsible for the TTX-R1 current that has been implicated in 

action potential generation within nociceptive neurons of the DRG (Reneganathan et 

al., 2001). Working in conjunction with TTX-S channels, N avi.8 produces the 

characteristic shape of the nociceptive action potential, which displays a rapid 

depolarisation with a prominent shoulder during the falling phase. The upstroke of 

the nociceptor action potential is produced by an influx of positive charge through 

both TTX-R channels (Approximately 58%) and TTX-S channels (approximately 

40%), with a small contribution (2%) from Calcium channels. TTX-S channels then 

rapidly inactivate, but the TTX-R 1 current remains to sustain low levels of activity 

(Ogata et al., 1993; Elliott et al., 1993 Rush et al., 1998). This, in combination with 

Ca2+ influx, produces the characteristic nociceptor AP shoulder.

Navi .8. Navi .9 and pain

Both Navi .8 and Navi .9 are strongly implicated in the molecular mechanisms of 

nociception, as discussed above. In the following section I will discuss in turn the 

roles of these channels in neuropathic pain as a result of neuronal injury and in 

inflammatory pain.

Following nerve damage and axotomy of peripheral DRG neurons, an increase in 

excitability and enhanced repetitive firing has been observed, alongside a reduction 

in action potential threshold (Zhang et al., 1997). Such effects are thought to underlie
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the neuropathic pain associated with nerve injury and have been attributed partly to 

alterations in sodium channel expression and conductance. An increased density in 

TTX-S channels following axotomy is observed, producing an increased sodium 

conductance within DRG thought to contribute to the increased excitability in the 

axotomised neurons (Zhang et al., 1997; Black et al., 1999). This has been attributed 

to an up-regulation of the normally silent VGSC N avi.3, and is discussed further in 

chapter 4 (Waxman et al., 1994; Cummins and Waxman, 1997, Sleeper et al., 2000).

Alongside alterations in TTX-S channels, alterations in the TTX-R channels Navi.8 

and Navi.9 are also observed. In contrast, expression of these channels is decreased 

within small diameter neurons of the DRG following peripheral axotomy or sciatic 

nerve section (Okuse et al., 1997; Cummins et al., 1997; Tate et al., 1998; Dib-hajj et 

al., 1998; Novakovic et al., 1998 Sleeper et al., 2000; Decosterd et al., 2002). Such a 

down-regulation of TTX-R channels is thought to contribute indirectly to the hyper

excitability of sensory neurons, following axotomy, through the interaction of TTX- 

R currents with TTX-S sodium conductances (Zhang et al., 1997; Cummins et al., 

1997; Sleeper et al., 2000). The persistent TTX-R current carried by Navi .9, is 

thought to contribute a depolarising influence to the resting membrane potential of 

sensory axons (Cummins et al., 1999). The down-regulation of N avi.9 following 

injury would therefore produce a hyperpolarizing shift in resting membrane potential. 

This shift is proposed to relieve the inactivation of TTX-S channels, resulting in an 

increase in TTX-S currents and subsequent neuronal excitability (Sleeper et al.,

2000). Loss o f the slow inactivating TTX-R current carried by Navi .8 has also been 

illustrated, by computer simulation, to result in a lowered AP threshold and 

spontaneous/repetitive firing in the absence of stimulation (Elliot, 1997; Schild and 

Kunze, 1997). Down-regulation of both N avi.8 and N avi.9 channels is therefore 

implicated in the neuronal hyperexcitability that contributes to neuropathic pain 

following nerve damage.

A direct link between Navi .8 and neuropathic pain, was demonstrated by Lai et al., 

(Lai et al., 2002), who used antisense oligonucleotides to ‘knock down’ the 

expression of Navi .8. In such mice, neuropathic pain induced by spinal nerve injury
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was no longer observed, but effects of acute pain and responses to non-noxious 

stimuli remained (Lai et al., 2002). A down-regulation of N avi.9 mRNA is also 

observed in three separate models of neuropathic pain (Abe et al., 2002).

Of therapeutic interest were results following experiments to study the 

electrophysiological properties of Navi. 8 by cloning this channel into xenopus 

oocytes (Chevrier et al., 2004). The local anaesthetic, lidocaine was found to have a 

strong affinity for N avi.8, binding to the slow inactivated state of the VGSC, where 

it is thought to block nociceptor firing and prevent the proposed positive effects of 

N avi.8 on neuropathic pain. Such LA sensitivity was not observed for other 

channels, namely N avi.7 (Chevrier et al., 2004), which correlates with results of Roy 

and Narahashi (Roy and Narahashi, 1992) who found that TTX-R currents were 

more sensitive to lidocaine than TTX-s channels in native DRG neurons. These 

results suggest the TTX-R channels, particularly Navi.8, are suitable targets for the 

development of drugs to treat neuropathic pain. Despite such findings, recent work 

by Nassar et al., (Nassar et al., 2005) shows conflicting results. In this study cre-lox 

transgenic mice, in which N avi.8 and N avi.7 are both specifically knocked out in 

nociceptive neurons, show normal generation of neuropathic pain, despite a lack of 

inflammatory pain symptoms.

A role for TTX-R channels in inflammatory pain has also been investigated. The 

generation of mice with null mutations in sodium channel genes has been useful in 

further characterising such a role. Navl.8'7' mice appear normal, and are viable and 

fertile, however, behaviourally such mice display a pronounced analgesia to noxious 

mechanical stimuli, have small deficits in noxious thermoception and show a delayed 

development o f inflammatory hyperalgesia (Akopian et al., 1999; Ogata et al., 2001). 

Such mice also display an increase in current densities of TTX-S channels, 

implicating an up-regulation of TTX-S currents within the DRG to compensate for 

the loss of TTX-R flow (Akopian et al., 1999; Ogata et al., 2001). Such an up- 

regulation in TTX-S currents was also observed following the down regulation of
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TTX-R channels in models of nerve damage and neuropathic pain, as mentioned 

previously.

Inflammatory pain caused, for example, by CFA injection into adult rat skin, 

produces a dramatic increase in N avi.8 protein expression in DRG ;within 48 hours 

(Gould et al., 1998; Tanaka et al., 1998; Gould et al., 2004; Coggeshall et al., 2004). 

This is observed in both small and large neurons, and both myelinated and 

unmyelinated axons (Gould et al., 2004; Coggeshall et al., 2004). The inflammation- 

induced, enhanced level in small neurons persists. However as allodynia subsides, 

the expression of N avi.8 within large neurons decreases back to baseline (Gould et 

al., 2004). It has been proposed that the increase in Navi .8 in larger neurons is likely 

to be responsible for the hyperalgesia observed in such inflammatory states. The 

persistent up-regulation in small diameter neurons is proposed to produce prolonged 

increased sensitivity that could provide a protective role, to ensure vigilance during 

healing (Gould et al., 2004). Further evidence of a role in inflammatory pain was 

provided by the use of antisense oligonucleotides to attenuate Navi. 8 expression. 

Injection of such oligonucleotides into rats, prevented PGE2 induced hyperalgesia 

and increased the threshold to mechanical nociceptive stimuli (Khasa et al., 1998). 

Interestingly no increase was observed in N avi.9 in inflammatory states, suggesting 

that unlike N avi.8, Navi .9 plays no role in the peripheral sensitisation early in 

inflammation (Coggeshall et al., 2004).

The dynamic alteration in Sodium channel levels in response to injury or 

inflammation is suggestive of a role in the associated neuropathic/inflammatory pain. 

A TTX-R current only found in small nociceptive neurons also would indicate a role 

in nociceptive transmission. The precise mechanisms by which such channels could 

mediate effects are yet to be elucidated. However the limited expression of the 

sodium channels, N avi.8 and Navi.9 to sensory neurons, provides strong therapeutic 

potential, allowing the manipulation of specific subpopulations of sensory neurons.
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Regulation of Na channel expression bv neurotrophic factors

The increase in NGF released in vivo as part of the inflammatory response is thought 

to mediate such increases in N avi.8 in small DRG neurons. Indeed, administration of 

NGF has been shown to increase N avi.8 protein expression in DRG and produce a 

decrease in paw withdrawal latencies characteristic of hyperalgesia. Furthermore pre

blocking NGF with anti-NGF antibodies prevented the NGF-induced effects on paw 

withdrawal latencies and significantly reduced expression of N avi.8 protein (Gould 

et al., 2000).

In addition to altering expression of Navi.8 in response to inflammation, NGF also 

regulates the TTX-R current and TTX-R sodium channel expression following 

axotomy of adult DRG neurons. As mentioned, axotomy of DRG neurons produces a 

decrease in TTX-R currents (Cummins and Waxman, 1997; Sleeper et al., 2000) in 

response to a decrease in expression of the sodium channels N avi.8 (Dib-Hajj et al., 

1996; Okuse et al., 1997) and N avi.9 (Dib-Hajj et al., 1998a; Tate et al., 1998). 

Following axotomy of DRG neurons, retrograde transport of NGF from peripheral 

targets is prevented. This reduction of NGF at the site of injury is thought to be 

responsible for several of the axotomy related phenotypic changes in DRG neurons, 

including the reduction in TTX-R current and channels. Much evidence supports this. 

NGF has been shown to restore the down-regulation of TTX-R currents following 

axotomy of DRG neurons in vitro (Aguayo and White, 1992; Black et al., 1997; Fjell 

et al., 1999) and in vivo (Dib-Hajj et al., 1998), attributable to positive effects of 

NGF on TTX-R channel expression (Black et al., 1997; Dib-Hajj et al., 1998).

GDNF has also been shown to promote similar effects following axotomy both in 

vivo and in vitro (Fjell et al., 1999; Cummins et al., 2000). GDNF treatment of 

cultured rat DRG produced an up-regulation in levels of both Navi. 8 and Navi.9 

mRNAs, alongside increasing both the slowly inactivating and the persistent TTX-R 

currents (Cummins et al., 2000). In vivo, infusion of GDNF to axotomised DRG 

neurons also resulted in an increase in N avi.8 and Navi.9 protein levels and an up- 

regulation in TTX-R currents (Cummins et al., 2000). Another GDNF family
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member, artemin, has also been shown to reduce the SNL-induced down-regulation 

of N avi.8 protein in a rat model of experimental neuropathy (Gardell et al., 2003). 

NGF, GDNF and artemin therefore all prevent axotomy/nerve damage induced 

changes in sodium channel expression, which are thought to contribute to the onset 

of neuropathic pain. A clearer understanding of the role and pathways involved with 

such neurotrophic factor effects would therefore be of interest for the design of novel 

drugs in the treatment of neuropathic pain.

Neurotrophic factor-induced regulation of Navi.9 has also been observed in other 

populations of neurons. BDNF has been shown to evoke TTX-R currents in 

hippocampal neurons mediated by Navi.9 (Blum et al., 2002), and it is proposed that 

such currents play a role in long term potentiation (LTP) (Kovalchuck et al., 2002). 

Interestingly these N avi.9 generated currents differ from those seen in sensory 

neurons being smaller; readily blocked by the neurotoxin, saxitoxin; and only 

observed in TrkB positive neurons (Blum et al., 2002). Furthermore HEK293 cells 

transfected using cDNA clones encoding Navi .9 with or without TrkB, showed 

characteristics of both types of current (Blum et al., 2002). The ability of Navi.9 to 

mediate a different current according to cell type could be attributable to post- 

transcriptional regulatory steps, for example trans-splicing (Akopian et al., 1999); 

post-translational modulation of alpha subunits e.g. phosphorylation by PKA (Gold 

et al., 1999); or through modulation by accessory p subunits (Isom et al., 2001, 

reviewed in Wood et al., 2004).

Little has been done on the effects of neurotrophic factors on TTX-R channels in 

development. In cultured embryonic DRG neurons it was found that the expression 

of both N avi.8 and N avi.9 mRNA was decreased following NGF withdrawal, 

suggesting NGF is required for their expression (Zur et al., 1995; Klein et al, 2003). 

However, the interpretation of findings is complicated by the fact that the neurons 

are dependent on NGF for survival and that NGF withdrawal of NGF leads to the 

death of these neurons.
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Other functions

Despite the generally healthy and viable phenotype of the N avi.8 null mutant, a 

surprising role for incorrect expression of Navi. 8 has been found in sufferers of 

multiple sclerosis (MS). N avi.8 is normally expressed within the PNS, but not in the 

brain, however in a mouse model of MS, Navi.8 mRNA and protein were expressed 

in cerebellar Purkinje cells (Black et al., 2001). This was also found in post-mortem 

tissue from patients with MS, but not in control tissue from subjects with no 

neurological disorders. These results suggest that expression of Navi. 8 is altered 

within neurons in the brain of MS sufferers. This abnormal expression may 

contribute to characteristic traits of the disorder, such as ataxia (Black et al., 2001)

2.1.4. NGF and TrkA knockout mice

In this chapter gene regulation by NGF was explored using mice with null mutations 

in the NGF gene. TrkA'7' mice were also used to to investigate NGF signalling via 

this receptor tyrosine kinase. Homologous recombination methods in embryonic 

stem cells allowed the generation of mice with a deletion in the coding sequence of 

the NGF gene (Crowley et al., 1994) and the TrkA gene (Smeyne et al., 1994). 

Histological analysis of mice homozygous for NGF disruption revealed a severe cell 

loss in both sensory and sympathetic ganglia, alongside an inability to respond to 

noxious mechanical stimuli (Crowley et al., 1994). Similarly, TrkA knockout mice 

had severe sensory and sympathetic neuropathies, most dying within one month of 

birth (Smeyne et al., 1994). Because of this drastic phenotype, I studied gene 

expression in these mice at embryonic stages before the onset of excessive neuronal 

cell death and after normal expression of TrkA and NGF occurs. A small time 

window between E l2 and E l6 was possible for these experiments.
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2.2. Materials and methods

2.2.1. Transgenic mice

The TrkA and NGF knockout mice used were those originally generated by 

homologous recombination by Smeyne et al., 1994 and Crowley et al, 1994.

Embryos of the required stage were obtained from overnight matings of TrkA and 

NGF heterozyote mice. The date of identification of vaginal plug was set to be 

embryonic day 1. Pregnant females were killed by carbon dioxide asphyxiation 

followed by cervical dislocation at 13, 14, and 15 days of gestation. Embryos were 

carefully removed from the amniotic sac and the precise stage of development was 

determined by the criteria of Theiler (Theiler K, 1972).

2.2.2. Dissections

Dissections of trigeminal, nodose and DRG from staged embryos were performed 

under a stereo-microscope, using a fibre-optic light source that allows illumination of 

specimens without overheating. Dissections were carried out in filter sterilised 

Liebowitz-15 (L-15) medium (pH 7.3) supplemented with penicillin (60mg/l) and 

streptomycin (100mg/l).

Dissections were carried out using forceps and scissors (E l5) followed by tungsten 

needles to remove adherent connective tissue. For younger ages (E l3, E l4), tungsten 

needles were used for the whole dissection. Tungsten needles were made from 

0.5mm diameter tungsten wire electrolytically sharpened in 1M KOH whilst being 

held in chuck-grip platinum wire holders (Davies AM, 1988). All tools were flamed 

with alcohol to sterilise prior to dissection.
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Dorsal Root Ganglia (DRG) Dissection

The head and tail of the embryo were severed so just the trunk region remained. Skin 

and internal organs were then removed to leave just the spinal column. Cuts were 

made along the length of the spinal column by inserting one blade of the scissor (or 

one needle) inside the column and cutting along the ventral aspect. This was done on 

either side to allow the removal of the ventral section of the spinal column. The DRG 

were now visible in gaps between where ribs were to form. Ganglia were gently 

isolated, and any adherent nerves and connective tissue cut off using needles. A 

Pasteur pipette was used to transfer collected ganglia to 1.5ml micro-centrifuge 

tubes. Ganglia were stored at -80°C until genotyping was complete.

Trigeminal Dissection

The dissection of these ganglia varied with the age of the mouse. From embryonic 

day 15, the top of the skull was removed using fine scissors and the brain gently 

removed using forceps. The two trigeminal ganglia were now visible on either side 

of the midbone at the base of the skull. The ganglia were removed using forceps and 

tungsten needles were used to clean them of any adherent connective tissue. At 

younger ages (E l4 and below) the dissection was carried out by initially using 

tungsten needles (E l3) or scissors (E l4) to make two coronal incisions between the 

maxillary and mandibular processes of the first brachial arch, one just above the eye 

and the second below the eye. The opaque structures of the two trigeminal ganglia 

were now visible just behind either eye in this tissue slice. They were freed from this 

tissue slice by slowly removing the surrounding tissue with tungsten needles. See 

figure 2.3.

Both types of ganglia were dissected from each individual mouse, collected in 1.5ml 

micro-centrifuge tubes and stored at -80°C until genotyping was complete.

Following genotyping, ganglia from knockout and wild-type mice had RNA 

extracted from them prior to RT-QPCR analysis of gene expression.
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Figure 2.3 : Dissection o f  the trigeminal ganglia
A: The lateral aspect o f El 1 mouse head. Dotted likes represent the location o f the transverse 
incisions that are made to obtain a tissue slice containg the trigeminal ganglia (TG), B: The 
rostral aspect o f the tissue slicecontaining the TG.
(Mx - Maxillary process; Mn - Mandibuar process; IV - fourth ventricle.
Taken from Davies, 1995



2.2.3. Genotyping

Genotyping was used to determine whether dissected mice were knockout, wild-type 

or heterozygote for the gene of interest. To avoid contamination, all DNA extractions 

and Polymerase Chain Reactions (PCRs) were carried out in a DNA free 

environment, following standard procedures to minimise exposure to DNases and 

contaminating DNA species.

DNA Extraction

DNA was extracted from a small amount of the remaining tissue of each dissected 

embryo using a Nucleospin Tissue DNA extraction kit (Macherey-Nagal, Germany), 

following the manufacturers protocol. In brief, tissue was broken down by overnight 

incubation at 56°C in a micro-centrifuge tube containing lysis buffer and 25 pg/ml 

proteinase K. The following day, tubes were centrifuged at 10,000RPM for 5 

minutes, to pellet the undigested tissue and 200pl of the supernatant was transferred 

to a fresh 1.5 ml micro-centrifuge tube along with an equal volume of dt^O. 200pl 

of this diluted solution was added to an equal volume of buffer B3 and the samples 

were incubated at 70°C for lOmins. Samples were centrifuged again, at 10,000rpm 

for lOmins, and the supernatant transferred to a spin tube with a DNA binding filter. 

Bound DNA was washed to remove contaminating proteins and salts, using an 

ethanol based solution and centrifugation. Finally, the DNA was eluted from the 

membrane by the addition of 120pl of low ionic-strength elution buffer (supplied by 

the manufacturer) that had been pre-heated to 70°C. Extracted DNA was stored at -  

20C whilst awaiting genotyping by PCR.

PCR

PCR reactions were designed to distinguish whether individual embryos from 

heterozygote X heterozygote crosses contained just knockout alleles, just wild type 

alleles or were heterozygous for both. PCR reactions were performed in duplicate 

from the DNA sample of each mouse. Details of reaction conditions and primer
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sequences are outlined below. A master mix was made up for each reaction, 19pl of 

which was added to 1 pi DNA. Mastermix recipes are outlined below.

NGF TRKA

1 Ox hot taq buffer (GeneSys Ltd) 2 pi 2pl

5mM dNTPs (Promega) 1 pi lpl

WT primers (MWG) 0.34pl 0.2pl

KO Primers (MWG) 0.67 pi 0.2pl

Common Primers (MWG) 0.5pl 0.23pl

Hot Start Taq (GeneSys Ltd.) 0.13pl 0.2pl

25mM MgCL (GeneSys Ltd.) 4pl lpl

Mr solution (GeneSys Ltd.) 6.61 pi -

dH20  (GIBCO) 6.61 pi 13.167pl

Table 2.1 Reaction mix for genotyping reactions

The combination of 3 primers could potentially produce 2 products, one for the wild 

type allele and one for the knockout allele. DNA from Heterozygote animals 

contained both products.

Primer sequences are outlined below

TrkA:

P095-4 (wild type): 5’-CGG ACC TCA GTG TTG GAG AGC TGG-3’

P096-0 (mutant): 5’-CAC CCT GCA CTG TCG AGT TTG C-3’

P097-0 (common): 5 ’-GCT CCC GAT TCG CAG CGC ATC G-3 ’

NGF:

NGF1 (wild-type) 5’-ACA GAT AGC AAT GTC CCA G-3’

NGF 2 (mutant) 5’-TCT GGA TTC ATC GAC TGT G-3’

NGF C (common) 5 ’-GGT GCT GAA CAG CAC ACG-3 ’
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Two drops of mineral oil were layered on top of each PCR reaction to prevent 

evaporation of reagents during thermocycling. The Taq polymerase used for 

genotyping had been genetically altered to be inactive unless heated at 95 °C for 15 

minutes. Such “hot start” polymerases reduce the amount of mispriming in the first 

PCR cycle and, therefore, give cleaner, more efficient PCR reactions. Initially 

samples were heated to 95°C for 15 minutes to activate taq. A variable number of 

PCR cycles were then performed to amplify the product, the exact number of cycles 

depending on the concentration of the DNA and the amplification efficiency of the 

primer sets used. Each cycle followed the same general pattern. First, tubes were 

heated to 95°C to denature secondary structure in the DNA, and separate double

stranded DNA into single-stranded DNA. Next, the reaction was cooled to the 

specific annealing temperature of the primer set, to allow primers to anneal. The 

annealing temperature was determined according to primer sequence and size. 

Finally, the reaction was heated to 72°C to allow the taq DNA polymerase to extend 

primers and synthesize a complementary copy of the single stranded DNA template. 

Following cycling, samples were heated to 72°C for lOmins for a final extension step 

to ensure all products of the PCR reaction were full length.

Reaction conditions for both knockout strains are outlined below.

NGF TRKA

Denaturation 95°C 15mins 95°C 15mins

Denaturation 95°C 40s 95°C 40s

Annealing 55°C lmin 10s 65°C lmin 10s

Extension 72°C lmin 50s 72°C lmin 40s

No. Cycles 45 38

Final Extension 72°C 72°C

Hold 4°C 4°C

Table 2.2 Reaction conditions for genotyping reactions
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Visualisation o f  Products

Once the PCR reaction was completed, the PCR products were visualised by adding 

4ul o f 6X loading dye (0.25% bromophenol blue, 0.25% xylene cyanol FF, 15% 

Ficoll in dH20) and runninglOpl on a 2% agarose gel, made with TAE buffer and 

containing 1 pg/ml ethidium bromide (Sigma).

The wild type lower band and knockout upper band could be visualised in the gel 

using a UV gel documentation system (Biogene). Figures 2.4. and figure. 2.5. show 

representative gels o f genotyping products from NGF and TrkA mice, respectively. 

Expected PCR product sizes are outlined below

NGF TRKA

Wt band size 190 400

KO band size 610 800

Table 2.3 Band sizes fo r  genotyping reactions

NGF

1 2 3 4 5 6 7 8 9  10

Figure 2.4: Genotyping gel showing the three possible genotypes o f  embryos from  NGF+A crosses.

Lanes 1, 2, 5 and 6 show the PCR product from the wild-type DNA. Lanes 3, 4, 9 

and 10 show the PCR product from the knockout DNA. Lanes 7 and 8 show the 

products from the heterozygote DNA. The size o f the products is shown with respect 

to a 1 kb ladder. (N.B. -C  shows the negative controls in which DNA extractions 

were done with no tissue. +C is a positive control using DNA shown to be 

heterozygote previously).
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TrkA

1 2 3 4  5 6 7 8 9  10

Figure 2.5: Genotyping gel showing the three possible genotypes o f  embryos from  TrkA +A crosses. 

Lanes 1 and 2 show the PCR product from the knockout DNA. Lanes 3, 4, 5, 6, 7 and 8 show the PCR 

product from the heterozygote DNA. Lanes 9 and 10 show the products from the wild-type DNA.

The size of the products is shown with respect to a 1 kb ladder.

As the expression o f the genes investigated in this chapter is low in young embryos, 

knockout and wild-type ganglia were pooled separately to give a more concentrated 

RNA sample following RNA extraction. 6 ganglia per replicate were pooled for E l3, 

4 for E l4 and 3 or 4 ganglia for E l5. 3 or 4 replicates were collected for each type of 

ganglia at each age (n = 3-4).

2.2.4. RNA extraction

RNA from collected ganglia was extracted using a phenol-based method described 

by Chomcynski and Sacchi (Chomcynski and Sacchi, 1987). 500pl o f Solution D 

lysis buffer (4M guanidine thiocyanate, 25mM tri-sodium citrate pH 7.0, 0.5% N- 

lauroylsarcosine, 0.1M p mercaptoethanol), was added to each tube containing 

ganglia, and the ganglia were homogenized by passing up and down through a 25 

gauge needle. The following was then added sequentially to the lysed cell solution: 

lp l lOmg/ml E-coli transfer-RNA (Sigma); 50pl sodium acetate, pH 4.4; 500pl 

water-saturated acidic phenol (Sigma); 150pl o f 25:1 chloroform: isoamyl alcohol 

(Sigma). The solution was mixed vigorously and tubes left on ice for 1-5 minutes 

before centrifugation at 13,000rpm for 20 minutes. Following centrifugation the 

RNA solution had separated into two layers, the upper aqueous phase containing 

total RNA. This top layer, approx. 450pl, was transferred to a clean 1.5ml micro

centrifuge tube and twice the volume of 100% ethanol (AnalR grade) was added. The

125



samples were vortexed and put at -20°C overnight to allow precipitation of total 

RNA.

The following day, samples were centrifuged at 13,000 rpm for 20 minutes, the 

supernatant discarded and the compact white pellet formed washed in 70% ethanol. 

The pellet was allowed to air-dry before the addition of a DNase solution. (N.B In 

order to prevent false-positive results following RT-PCR, the samples were 

extensively DNased to remove any contaminating genomic DNA). 50pl of the 

following DNase solution was added to each pellet: lOmM Tris pH 7.5 (Sigma),

6mM MgCh (Promega), 20mM Vanadyl-ribonucloeside complex (VRC, an RNase 

inhibitor) (Sigma), and 5pl of 7,500 units/ml RNase-ffee DNase I (Pharmacia). The 

samples were then put in a 37°C water bath for 2-3 hours to allow degradation of any 

contaminating genomic DNA. Following the DNase step an RNA extraction kit was 

used to purify the RNA further (RNaid kit from BIO 101). 180pl binding solution 

(3M NaClOa) and 20-30pl, dependent of the amount of starting tissue, RNA binding 

(RNaid) matrix was added to samples. Tubes were incubated at room temperature for 

10-25 minutes, with occasional shaking to allow RNA to bind to the matrix. The 

matrix containing bound RNA was then sedimented by brief centrifugation at 

13,000rpm and the supernatant was discarded. The matrix was washed with 700pl 

wash solution (RNaid kit, Amersham), centrifuged, the supernatant discarded and the 

wash step repeated. The RNA was then eluted by addition of 30-1 OOjlxI DEPC-treated 

dH20 and heating the samples to 65°C for 2-3 minutes. Samples were centrifuged at 

13,000rpm for 1 minute, to sediment the matrix, and the supernatant containing the 

RNA was pipetted off carefully into new RNase-ffee micro-centrifuge tubes and 

stored at -80°C until required.

2.2.5. Competitive RT- PCR

RT-PCR is a sensitive method of detecting rare mRNAs in small amounts of tissue. 

The method of competitive RT- PCR described below allows the expression levels of 

specific mRNAs to be accurately quantified. The technique involves spiking the RT 

reaction with a known concentration of a synthetic competitor cRNA, which is
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identical to a portion of the mRNA that is being quantified, but with the addition of 

3-4bp between the PCR primer binding sites. The mRNA and competitor cRNA are 

both converted to cDNA with equal efficiency in the same reverse transcription (RT) 

reaction. During the subsequent PCR reaction, competitor cDNA and cDNA from the 

endogenous target mRNA are amplified with the same primers. Because the 

competitor cDNA and cDNA from the endogenous target are virtually identical they 

are amplified with equal efficiency. For this reason, the ratio between the RT- PCR 

products of the cRNA and mRNA at the end of the PCR reaction, observed by 

separating them on a polyacrylamide gel, staining with SYBR Gold and viewing 

under UV, accurately reflects the ratio of cRNA competitor and endogenous mRNA 

before the RT reaction. If the amount of the cRNA added to each RT reaction at the 

beginning of the RT-PCR assay is known and an imaging system is used to quantify 

the ratio between the SYBR Gold stained RT-PCR products, then the initial amount 

of mRNA can be easily calculated. This use of competitor cRNAs rather than 

competitor cDNAs makes a more accurate and reliable assay, since it takes account 

of variation in the efficiency of reverse transcription between individual reactions.

2.2.5.1. Production of competitors

The cRNA competitors used to assay GADPH and CGRP mRNAs were transcribed 

in-vitro from a competitor cDNA that had been constructed from a cDNA clone of a 

portion of CGRP and GAPDH mRNAs.

General Method

RT-PCR to clone the competitor

The cDNA clones were made by RT-PCR amplification of E14 mouse trigeminal 

ganglia total RNA, with GAPDH or CGRP specific primers.

8pl of E14 mouse trigeminal RNA was reverse transcribed in a 40pl mixture below:
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REAGENT VOLUME

5x RT Superscript buffer (Gibco) 8 pi

5mM dNTPs (MBI Fermentas) 4pl

lOOpM Random Hexanucleotides 4pl

0.1MDTT 4pl

dH20 12pl

Table 2.4 Reverse Transcription reaction for producing cDNA clones.

The reaction mix was heated for 2 minutes at 90°C followed by addition of 2ju,l 

Superscript reverse transcriptase. Samples were incubated for 90 minutes at 37°C 

and then the temperature increased to 95°C for 6 minutes to stop the reaction and 

degrade the RNA template.

PCR was used to amplify cDNAs of interest. Primer sequences were based on 

published sequence information and were selected carefully to ensure amplification 

of a region between 400 -  800bp. Primer sequences are shown in table 2.5.

GENE PRIMERS FRAGMENT SIZE

GAPDH Forward: 5’-CTT CAT TGA CCT CAA CTA 

CAT G-3’

Reverse: 5’-GGC ATG GAC TGT GGT CAT-3’

401 bp

CGRP Forward: 5’-AAG AGT CAC CGC TTC GCA 

AGC A-3’

Reverse: 5’-AGC TCC TGT CAA AGG GAG 

AAG-3’

628bp

Table 2.5 Primer sets and fragment sizes for cDNA fragments to produce competitor species
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50pl reactions were set up comprising of:

REAGENT VOLUME

Reverse Transcription Product 5 pi

lOx Hot Start Taq buffer (Gibco) 4.5pl

5mM dNTPs (MBI Fermentas) 2pl

50pmoles primers (MWG-Biotech) 5 pi

Hot Start Taq polymerase (Gibco) 0.5pl

dH20 33pl

Table 2.6 PCR reaction reagents for amplification o f DNA fragments

3 drops of mineral oil was layered on the top of each reaction and the tubes 

transferred to the heating block of a PCR machine.

The following protocol was run:

STEP TEMPERATURE TIME

Activation of Taq 95°C 10 minutes

Annealing at 55°C (for both GAPDH and CGRP 55°C 60 seconds

Synthesis 72°C 90 seconds

Extension 72°C 10 minutes

Table 2.7 PCR protocol for amplification o f cDNA clones

Products were run on a 1% agarose gel and the band of interest cut out using a razor 

blade. Purification of the gel fragment was done using the Gene Clean®II kit and 

DNA recovered in 20pl dtkO.
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The cDNA fragment generated was cloned into pGEM T-vector (Promega) following 

the manufacturers protocol. This ligation mixture was then used to transform 

competent E.coli XLI cells (Stratagene).

Transformation of Competent Cells

1/10 volume of the ligation mixture was added to competent cells and left on ice for 

lhour. Cells were then heat-shocked by placing in a 42°C waterbath for 90 seconds, 

before returning to ice for 5 minutes. 800pl LB broth was added to cells and tubes 

incubated at 37°C for 1 hour, before plating onto LB agar (Gibco) dishes. The LB 

agar contained lOOmg/ml ampicillin; hence only colonies containing the transformed 

vector with ampicillin resistance will grow. Dishes were placed at 37°C overnight to 

facilitate growth.

Analysis of Transformants

Single colonies were picked from plates and used to inoculate 3ml LB broth 

containing lOOmg/ml ampicillin. Tubes were placed in a shaking incubator overnight 

at 37°C. Plasmid DNA was now extracted from the resulting bacterial suspension 

using a QLAprep Spin Miniprep kit (Qiagen) and eluted in 50pl dH20 . To check for 

presence of the insert, 5 pi of plasmid DNA was digested with appropriate restriction 

enzyme for 1 hour in a 20pl reaction. The digest was run on a 1 % agarose gel to 

ensure products of the correct size had been generated.

Modification of Cloned DNA to Produce Competitor DNA

40pl of remaining plasmid DNA was cut at a certain unique restriction site by 

incubation overnight with specific restriction endonuclease, Hindlll for GAPDH and 

BAMHI for CGRP. The reaction contained 5pi lOx buffer (chosen according to the 

restriction enzyme being used), 2pl dH20  and 3 pi restriction enzyme. The restriction
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enzyme was chosen for each reaction to allow a single cut in cDNA that leaves a 4-5 

bp 5’ overhang.

Following digestion, plasmids were purified using the Gene Clean ® II kit. The 

overhang was now filled in and blunt ended by the use o f Klenow polymerase (see 

figure 2.6). A 20pl reaction was set-up containing 15pl plasmid DNA 2pl lOx 

klenow buffer and 3pi 5mM dNTPs. After mixing, lp l o f  Klenow enzyme was 

added, and the reaction incubated at room temperature for 5 minutes. The reaction 

was stopped by the addition o f Nal from the Geneclean® II kit and the DNA was 

purified again.

Figure 2.6: The use o f  klenow polymerase to fill in missing base pairs o f  a DNA overhang.

Taken from Bowen, 1999

The blunt ends were then re-ligated using the reagents o f p-GEM T-vector kit. 9pl of 

the newly filled-in DNA were incubated overnight at 4°C with lOpl 2x ligase buffer 

and lp l o f 400u/pl T4 DNA ligase. Following ligation, the Gene Clean®II kit was 

used to remove DNA ligase and T4 ligase buffer and the DNA was recovered in 20pl 

dH20. This resulted in a competitor cDNA that was 3-4bp longer than the original 

native cDNA.

Linearisation and Purification

To produce cRNA from the competitor cDNA, the plasmid was first linearised at the 

3’ end o f the inserted DNA by overnight digestion with an appropriate restriction 

endonuclease (Sal I for gapdh and Nco I for CGRP). Enzymes were chosen for their 

ability to produce blunt ends, or 5’ overhangs and to cut only once, as far away from 

the insert site as possible. Gel electrophoresis was used to visualise the digest to 

ensure complete linearisation. The DNA band corresponding to the linearised cDNA

5  * A -G -G -C -f i-G  
3* T -C “ C ~G ~T -C ~C ~T “ A-G
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was then cut out of the gel with a razor blade and purified using the Gene Clean®II 

kit following the manufacturers protocol.

In-Vitro Transcription

cRNA was transcribed in-vitro from the linearised competitor cDNA using T7 RNA 

polymerase (Promega). 2x50pl reaction mixtures were set up containing the 

following, added sequentially:

REAGENT VOLUME

5x Transcription Buffer (Promega) lOpl

lOOmM ATP (Promega) 5 pi

lOOmM CTP (Promega) 5 pi

lOOmM GTP (Promega) 5 pi

lOOmM UTP (Promega) 5 pi

lOOmM DTT (Promega) 5 pi

RNAguard (Pharmacia) 2 pi

dH20 6pl

Plasmid DNA (l-5pg) 7 pi

30-50u T7/SP6 RNA polymerase (Promega) 2pl
FM mng-minCTW TT—FT —     Bgg

Table 2.8 Reagents for In- Vitro Transcription o f competitor cDNAs

After thorough mixing, the reaction was incubated for 1 hour at 37°C. After this time 

2pl more of T7/SP6 polymerase was added to the reaction, which was then incubated 

for a further hour. The remaining plasmid DNA was now degraded by the addition of 

2pi VRC and 5pi of 7,500u/ml DNase I, and incubation for 2 hours at 37°C.

The RNA transcripts were then purified, as previously, using the RNaid kit (Bio 101) 

(See 2.2.3) and eluted in lOOpl DEPC water. The integrity and approximate size of 

the purified cRNA was determined by gel electrophoresis on a 1 % agarose DEPC 

treated gel in a DEPC treated gel tank (DEPC (di-ethyl-pyrocarbonate) treatment
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effectively removes contaminating RNases). Next, a spectrophotometer was used to 

determine the concentration. The remaining RNA was then diluted with water and 

precipitated at a concentration of lng/pl by the addition of an appropriate volume of 

water, 0.1 volume of 3M sodium acetate (pH5.5), 3 volumes of ethanol and 20ng 

E.coli tRNA for every lng of transcript. The ethanol-precipitated transcript was 

stored at -20°C until use.

2.2.5.2 The competitive RT-PCR assay

Reverse Transcription (RT)

Initially total RNA was reverse transcribed to cDNA. Competitor cRNAs were 

included in the reverse transcription reaction along with the competitor for the 

housekeeping gene GAPDH.

The protocol used for reverse transcription is outlined below. To lp l of RNA sample 

the following was added:

REAGENT VOLUME FOR 1 

REACTION

5x buffer (GIBCO, included in superscript kit) 8 pi

lOOpM Random Hexanucleotides (RH) (Pharmacia, 

Amersham)

4pl

5mM dNTPs (Fermentas) 4pl

0.1M DTT (GIBCO, included in superscript kit) 4pl

Competitor RNA lpl

GAPDH competitor RNA lpl

dH20 16pl

Table 2.9 Reverse transcription reaction reagents for competitive PCR

The mixture was heated to 90°C for 2 minutes to allow any secondary structures 

within the RNA to be broken down. After rapid cooling on ice, 1 pi of Superscript
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reverse transcriptase (GIBCO) was added to all samples, excluding those samples 

that were to serve as no RT negative controls (these samples contained everything 

but enzyme, and were used to check for the presence of contaminating genomic 

DNA). Immediately after the addition of enzyme, samples were incubated at 37°C 

for lhour, and finally the reaction was halted by heating the sample to 95°C for 6 

minutes, resulting in denaturation of the reverse transcriptase and degradation of the 

RNA template.

Polymerase Chain Reaction (PCR)

PCR reactions were carried out for CGRP and GAPDH separately. 5 pi cDNA was 

used in a 40pl reaction as below.

A mastermix was made up using the following protocol:

REAGENT VOLUME

lOx buffer (Helena biosciences) 4pl

Primers 1:1 ratio of forward and reverse 50pmoles (MWG) 4pl

5mM dNTPs lp l

Taq polymerase, 5U/pl (Helena Biosciences) 0.125pl

dH20 30.875pl

Table 2.10 PCR reagents for competitive PCR

After mixing, mineral oil was layered on the top of each sample and tubes transferred 

to the heating block of a PCR machine. Samples were initially denatured by heating 

to 95°C for 1 minute, followed by annealing (53°C GAPDH, 59°C CGRP) for 60 

seconds and then synthesis at 68°C for 60seconds. Annealing and synthesis steps 

were then repeated (24 cycles for GAPDH and 32 cycles for CGRP) before a final 

extension step at 68°C for lOmins.
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Primers used were designed to span the region of the competitor insert so that two 

separate products would be produced, the product from the cRNA being 4bp bigger 

than that of the native product. The primers are shown below:

Calcitonin Gene Related Peptide (CGRP):

Forward: 5’-TCT GCT GAG CAG ATC AGG AG-3’

Reverse: 5’-GGG CTG TTA TCT GTT CAG GC-3’

GAPDH:

Forward: 5’-TCC AGT ATG ACT CCA CTC AC-3’

Reverse: 5’-TCC TGG AAG ATG GTG ATG G-3’

Electrophoresis of Products

PCR products were run on an 8% (29:1) polyacrylamide gel to allow the very small 

differences in size of product and competitor cDNA to be visualised. Following 

electrophoresis, gels were stained for 15 minutes in the dark with SYBR Gold 

solution at a 10,000 x dilution (molecular probes). SYBR Gold is a non-isotopic UV- 

sensitive dye that intercalates between double stranded DNA, allowing PCR products 

to be visualised under UV light. PCR product bands were visualised using a UV 

video imaging system (Biogene) and the intensity of the adjacent bands were 

compared via densiometry using phoretix ID quantifier software. As the 

concentration of competitor added to the reaction was known, the amount of mRNA 

in samples could be calculated by the ratio of the intensity of the competitor RT-PCR 

product band compared to the mRNA RT-PCR product band. This value was then 

normalised against GAPDH to account for any differences in starting levels of total 

RNA between different RT-PCR reactions.

Initially, a competitor titration reaction was carried out to determine the optimum 

amount (fg) of each competitor species to use in the PCR reaction (CGRP and 

GAPDH). Ideally, an approximately equal amount of competitor and target product

135



should be amplified, as would be shown by 2 bands o f similar intensity on the gel. 

Such titration results are shown in figure.2.7. More than a five-fold difference in 

amplified product to amplified competitor cannot be detected accurately by the 

imaging software.

Figure 2.7. Titration reactions to determine levels o f  CGRP competitor species to use in RT-PCR 

reactions.

0.5fg to 50pg of CGRP competitor was used to determine the most suitable amount to use with E14 

trigeminal RNA samples (A) and E14 DRG samples (B). The RT-PCR product of the competitor is 

the higher molecular weight band at the top and the RT-PCR product o f the CGRP mRNA is the 

lower band. 50fg was the most suitable competitor concentration to use for trigeminal RNA and 5fg 

for DRG RNA, as at these competitor concentrations both competitor and mRNA RT-PCR products 

have a similar intensity.

2.2.6. Real t im e quan t i ta t ive  PCR -  S t r a t a g e n e  

MX3000P

A new Q-PCR machine, Stratagene's MX3000P, was acquired in the lab allowing 

validation o f previous competitive RT-PCR results and also enabled quantitative

136



study o f expression levels o f additional mRNAs using a method that has a broader 

dynamic range and is quicker to optimise reactions for new mRNAs. Additionally, 

reactions are set-up and run in a 96-well format and PCR products do not have to be 

resolved by gel electrophoresis, making it significantly faster than competitive RT- 

PCR.

Unlike competitive RT- PCR used previously, real-time PCR monitors the progress 

o f the PCR reaction continuously through the use o f dual-labelled fluorescent probes, 

single labelled hybridisation probes or, as in the majority o f the reactions performed 

in this project, a dye (SYBR green) that fluoresces upon binding to double-stranded 

DNA. SYBR green generation o f fluorescence is significantly cheaper and more 

sensitive than probe systems, but is not specific to any one PCR product (see figure 

2.8). SYBR green is a double stranded (ds) DNA-binding dye. It is thought to bind in 

the minor groove o f double-stranded DNA and upon binding its fluorescence 

increases over a hundred-fold.

SYBR Green

'  j
V
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Figure 2.8.: SYBR green is a non-specific fluorescent dye that, upon binding to any double-stranded 

DNA, fluoresces.

Taken from Rasmussen, 2001

After each PCR cycle the fluorescence, and hence product accumulation, is recorded 

and represented graphically on a PC attached to the PCR machine. A sigmoidal curve 

illustrates the reaction. It shows the initial build up o f the product followed by the 

exponential amplification, and then the plateau when either one or all reagents are 

used up or become limiting, or single stranded template re-annealing becomes the 

dominant kinetic process (figure 2.9A). By monitoring the number o f cycles required
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to produce a threshold amount of product, the relative quantity of mRNA of interest 

within a sample can be calculated. The process is outlined in more detail below.

2.2.6.1 Reverse transcription

For reactions on the Stratagene MX3000P, cDNA was produced using a Stratagene 

reverse transcription enzyme, Stratascript, rather than the GIBCO Superscript used 

previously. In initial pilot studies, Stratascript was found to produce consistently 

higher yields of cDNA than Superscript and was found to be significantly more cost 

effective. In addition, the amount of cDNA produced shows a stronger linear 

relationship with reference to the amount of input total RNA than with Superscript. 

Importantly, active Superscript that carries over into the QPCR reaction was found to 

inhibit QPCR much more strongly than Stratascript (data not shown).

5 pi RNA was transcribed to cDNA using Stratascript reverse transcriptase 

(Stratagene) in the following 40pl reaction.

REAGENT VOLUME

10x buffer (Stratagene) 4pl

Random Hexanucleotides lOpM (Pharmacia) 2pl

dNTPs, lOOmM (Stratagene) 2 pi

Stratascript Enzyme (Stratagene) 0.4pl

dH20  (GIBCO) 31.6pl

Table 2.11 Reaction mix fo r  Stratagene Reverse Transcription

Samples were incubated at 37°C for 1 hr 15 minutes. Unlike previous reverse 

transcription reactions for competitive RT-PCR, a final 95°C step was not included 

because the QPCR enzyme used was a “hot start” enzyme and required 10 mins at 

95°C as the first step of the PCR reaction.
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2.2.6.2 Real-time quantitative PCR

Real time QPCR was carried out using the Stratagenes’ MX3000P. A mastermix was 

set up and 22.5pl added to 2.5pl of cDNA.

Per sample:

REAGENT VOLUME

lOx buffer (stratagene) 2.5pl

MgCl2 20mM (stratagene) 1.5pl, 2pl or 2.5pl to give a final 

concentration of 3mM, 4mM or 5mM 

respectively.

15pM forward and reverse primer mix 

(MWG)

0.5pl

Rox reference dye at a dilution of 1/500 

in dH20  (Stratagene)

0.4jil

SYBR Green at a dilution of 

l/4000(Molecular Probes)

0.25pl

dNTPs 20mM (Stratagene) lpl

Taq (Stratagene) 0.33pl

dH20 15.8pl, 15.3pl or 14.8pl (volume 

dependent on MgCl2 concentration

Table 2.12 Reaction mix fo r  Real-Time PCR

Samples were initially heated to 95°C for 10 minutes to denature DNA secondary 

structure, degrade Stratascript and RNA and activate the “hot start” taq. The cycling 

stage now began with samples being heated to 95°C, cooled to the primer annealing 

temperature (determined by the primer sequence being used), and then heated back 

up to 72°C to allow the DNA polymerase to extend the primers and synthesize a copy 

of the template DNA. This cycle was repeated 40 times to ensure ample fluorescent 

product build up. A fluorescence measurement was taken from all wells at the end of 

each annealing step
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As SYBR green can bind to all double-stranded DNA, the specific product, non

specific products and primer dimers are all detected equally well. This problem can 

be ameliorated by using a “hot start” taq polymerase and careful primer design. For 

this project ‘Beacon Designer’ software (Biosoft International) was used for primer 

design. Following cycling, due to the non-specificity of SYBR green, it was 

important to include a melting curve to ensure that only the correct product had been 

amplified The samples were gradually heated from 65°C to 95°C at 1 ° C per minute 

with continuous monitoring of fluorescence. A rapid drop in fluorescence is recorded 

at the temperature that the PCR products separate or melt. If the rate of change of 

fluorescence is plotted against temperature a sharp peak is obtained at the melting 

temperature of each PCR product. A good PCR reaction will have only one clean 

peak at the expected melting temperature of the correct PCR products (as determined 

by computer software) and no additional peaks at lower temperature corresponding 

to primer artefacts (see figure 2.9B). Reactions that did not show a melting curve 

with these characteristics were not used for data analysis.

The concentration of SYBR green added to the reaction was optimised in a series of 

pilot experiments as preliminary experiments showed that at lower SYBR green 

concentrations insufficient fluorescence is emitted, but at higher concentrations, the 

PCR reaction was inhibited. A 1/4000 dilution seemed to produce optimum results 

(data not shown).

In some cases, when primer artefacts confounded obtaining good quantitative data, 

specific Molecular Beacon probes were used in place of SYBR Green. Such 

Molecular Beacons are designed so that they only bind to the specific amplified 

product of the gene of interest. In this case no melting curve was required. A probe 

for beta CGRP was often used. The sequence for this probe is given below, designed 

on Beacon Designer and produced by Biosearch Technologies, Inc.

5’Quasar 670 d(CGC GAT AAA TAT GAT GGT GTC TCC CAC TGG ATC GCG) 

BHQ-2 3’
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Amplification P lots

Dissociation Curve

Figure 2.9. Real time PCR
A) After each cycle the level of fluorescence emitted is recorded. This represents the amount 
of PCR product present, which builds up to produce a sigmoidal shaped curve. Each coloured 
line represents a different cDNA sample. B) Melting curve of samples. After the PCR reaction 
is complete, samples are heated gradually to determine the melting temperature o f the product 
and to check for primer dimers or other contaminating products. Only one peak should be seen



For all the mRNAs assayed by RT followed by QPCR, the reaction was run using the 

protocol outlined below with the only variation being the annealing temperature. The 

melt was also not included when using molecular probes, rather than S YBR green.

STEP CONDITIONS

Denaturation 95°C 15mins

Denaturation 95°C 30s

Annealing X°C 30s

Extension 72°C 30s

No. Cycles 40

Melt Heated up to 95°C by 1°C per minute

Table 2.13 Reaction Conditions for Quantitative Real-Time PCR

QPCR - Further reaction optimisation

For each gene the primers used were designed on ‘Beacon Designer’ computer 

software, to ensure the utmost efficiency and specificity and the minimum of 

primer/primer interactions.

The reaction for each mRNA was optimised to determine the optimum MgC^ 

concentration and annealing temperature required to produce the most efficient 

reaction (as determined by the slope of a standard curve (see below)), but with a 

clean single product of the correct melting temperature and no primer artefacts. 

Reactions were always run for 40 cycles to ensure ample product amplification. For 

real time PCR the actual cycle number used is less important than with semi- 

quantitative PCR, as analysis of product concentration is done during the exponential 

phase of the reaction, and not after the reaction has approached the plateau phase..
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Standard Curve

Real-time PCR is a relative quantitative method for measuring gene expression. The 

reaction is monitored constantly throughout the reaction and the product build-up is 

illustrated by a sigmoidal curve (see figure 2.10A). The principal behind 

quantification is due to the inverse correlation between cycle number and product 

concentration. In general, the lower the cycle number required to amplify the 

product, the higher the concentration, and vice versa. Some standards, which contain 

known concentrations of cDNA are therefore required. These samples can then be 

used to determine the relative concentration of mRNA within an unknown sample

To this end, in each run, samples were included to allow production of a standard 

curve. These samples contained cDNA diluted lx, 1/3, 1/9 and 1/27 and were 

referred to as 27, 9, 3 and 1 arbitrary units respectively. For accuracy, a serial 

dilution was set up using an RT mix to dilute the samples. This RT mix was 

produced by carrying out a reverse transcription reaction, as before, with all reagents 

except the RNA template. If the standard curve was diluted in water, a linear 

standard curve was not produced. This is because reagents in the RT mix (most 

notably the RT enzyme and random hexamers) inhibit the QPCR reaction strongly; 

therefore at each dilution with water the QPCR reaction becomes more efficient.

The standards were run alongside the other unknown samples in the PCR reaction. 

See figure 2.10A for a graphical representation and note that the sigmoidal curves, 

representing product build up, are equidistant apart for each step up in concentration, 

resulting in a linear standard curve (figure 2.10A and C). From data like this the 

computer could produce a standard curve plotting cycle number to threshold vs. 

arbitrary concentration. An example standard curve is shown in Figure 2.IOC. The 

standard curve should have an RSq value as close tol as possible. RSq values of less 

than 0.95 were deemed unsatisfactory and results were not calculated from these data 

sets. The efficiency of the PCR reaction was calculated from the slope of the 

standard curve by the MX300P software. 100% efficiency corresponds to a doubling 

of product at each PCR cycle. For most mRNAs, efficiencies of 80-100% were
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obtained after reaction optimisation. In the case where reactions generated a lot of 

false products and primer artefacts, as determined by melting curve analysis, the 

PCR reaction efficiency was often seen to be over 100%. In these cases the data was 

rejected.
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Amplification Plots
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Figure 2.10. Production o f  standard curve.
Samples o f a serial dilution of cDNA are included in each PCR run. 3 replicates of lx, 1/3, 1/9 and 1/27 
are shown as they amplify (A). They all have the correct melting temperature (B) and produce a 
standard cure with RSq just below 1.
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Figure 2.11. Quantification o f  data.
A) PCR product builds up exponentially the number o f cycles required to produce a threshold 
amount o f product is recorded (x) and extrapolated onto the standard curve (B) to determine 
the relative concentration o f mRNA in that sample (arbitrary units).



The standard curve generated in each reaction was used to determine the relative 

level of mRNA in the unknown samples by identifying the number of cycles required 

to produce a threshold amount of product, and extrapolating it on the calibration 

curve as shown in figure 2.11.

Reaction conditions and primer sequences for all reactions are outlined as below:

GENE PRIMER SEQUENCES m g c l 2

CONCN.

(MM)

ANNEALING 

TEMP. (°C)

a-CGRP Forward:

5’-AAG AAA GGC TGA 

AAG ACA-3’

Reverse:

5’-GGA TAC AGA GTC 

AC A TAC AAC AC-3’

5 51

P-CGRP Forward:

5’-GAG TTA ATT CTG 

TGT TTG TTT GC-3’ 

Reverse:

5’-TTG GCT GGA TGG 

CTC TTG-3’

5 51

Substance P (SP) Forward:

5’-CCC AAG CCT CAG 

CAG TTC-3’

Reverse:

5’-GCC CAT TAG TCC 

AAC AAA GG-3’

5 51

Sodium channel Nav1.8 Forward:

5’-AGG CTG GAT GGA

4 51
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CAT TAT G-3’

Reverse:

5’-TGA AGA CGA AGT 

ATA GG-3’

Sodium channel Nav1.9 Forward:

5’-CCT TCC GAG TGT 

TGA GAG-3’

Reverse:

5’-AAA GAG AGT GAG 

GAC CAT C-3’

5 51

Gapdh Forward:

5’-TCC CAC TCT ACC 

TTC-3’

Reverse:

5’-CTG TAG CCG TAT 

TCA TTG TC-3’

3 51

Table 2.14 Primer Sequences, MgCU concentration and annealing temperature fo r  all 

genes

a- and p-CGRP mRNAs are almost identical in sequence and are the products of two 

separate genes. The competitive RT-PCR initially used to analyse CGRP expression 

could not distinguish between the two different CGRP mRNAs. However, careful 

primer design generated specific QPCR reactions for a- and p-CGRP.
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2.3. Results

2.3.1. NGF/TrkA signalling is not required for initial induction 
of CGRP mRNA expression in early embryonic mouse 
sensory neurons.

Initially, the expression of CGRP mRNA was studied in TrkA and NGF knockout 

mice using a quantitative form of RT-PCR, competitive PCR. In these experiments 

primers were unable to distinguish between the two isoforms of CGRP.

Trigeminal and DRG were dissected from TrkA7' and NGF7' and their wild-type 

littermates. Ganglia were pooled, as expression of the genes of interest is low at 

young ages. Total RNA was extracted using a phenol based method and reverse 

transcribed. Expression of CGRP was quantified using competitive PCR. Primers 

used here allowed amplification of both transcripts equally.

Competitive PCR involved the use of a synthetic RNA competitor (cRNA) that 

differed from the amplified product by just 3-4bp. Both competitor and RNA were 

reverse transcribed and amplified together. Due to their similarities, they compete for 

primer binding and subsequent amplification. The two amplified products could be 

distinguished on an acrylamide gel. As the concentration of competitor added to the 

reactions was known, the relative concentration of native product could be 

determined from band intensity. The housekeeping gene GAPDH was also amplified 

within each sample and used to normalise results to account for any differences in 

starting RNA. Expression of CGRP was studied in both trigeminal and DRG from 

E13-E15.

In this chapter, data was statistically analysed by use of the t-test. The t-test was 

chosen as only two sets of data were being compared (knockout vs wildtype) and the 

data would be expected to fit into the following criteria:

• Both sets of data are normally distributed

• The variances of the samples are similar to each other
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This test is also used in the following chapter (chapter 3), as once again only two sets 

of data are being compared (knockout mouse vs wild-type mouse or 0 hours vs 96 

hours). An unpaired t-test was used in all cases since experiments being compared 

were independent of each other. The t-test compares the mean of each data set, whilst 

taking into account the variance of the results (the spread of results around the 

mean). Thus the formula for the t-test (see below) is a ratio - the top part being the 

difference between the two means or averages, whilst the bottom part illustrates the 

variance of the results (standard error of difference).

The significance levels in this thesis are when p <0.05 ( *) and when p<0.001 (**) 

i.e. results are classed as ‘significantly different’ when confidence levels reach 95% 

that the results are not different just due to random chance (or there is only 5% 

chance that you find the results as significantly different when they are not (i.e by 

random chance)).

Trigeminal ganglion

In the trigeminal ganglion, the expression of CGRP did not differ between wild-type 

and NGF'7' or TrkA'7', as shown in figure 2.12. This would suggest that in the 

trigeminal ganglion, the onset of CGRP expression does not require NGF/TrkA 

signalling.

CGRP mRNA was found to be expressed at lower average levels in DRG than in 

trigeminal ganglia (figure 2.13, note scale change), suggesting it is either expressed

t

DRG
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in a larger sub-population of trigeminal ganglia neurons compared to DRG neurons, 

the levels of CGRP mRNA per neuron are higher in the trigeminal ganglia than in the 

DRG or that trigeminal ganglia are developmentally more advanced at these ages 

than DRG. The expression of CGRP mRNA normalised to the levels of GAPDH 

mRNA is shown in figure 2.13 for both the TrkA'7' (A) and the NGF'7' (B) mice in 

comparison to their wild-type littermates at ages between E l3 and E l5. In TrkA'7' 

mice CGRP mRNA levels in DRG are comparable to those in wild-type mice (figure 

2.13 A), as was seen in trigeminal ganglia. Although there is a lower level of CGRP 

mRNA expression in the null mutant at E l5 compared to wild type mice (Figure 

2.13B), this reduction in expression is not statistically significant.

It is worth mentioning that NT-3 signalling via TrkA will also be lost in TrkA'7' 

mice. NT-3 is important during the early embryonic development of sensory neurons 

(Buchman and Davies, 1993). As well as signalling via its preferred receptor TrkC, 

NT-3 can also bind to TrkA (Soppet et al., 1991; Klein et al., 1991b; Cordon-Cardo 

et al., 1991; Glass et al., 1991; Ip et al., 1993) and signal via this receptor. NT-3 was 

shown to support the survival of cultured trigeminal ganglia from TrkC'7' mice to an 

extent comparable to NGF (Davies et al., 1995). This suggests that NT-3 can also 

signal via TrkA. This has been further confirmed through the observation that NT-3 

can displace NGF from its preferred receptor (Emfors et al., 1990). It is quite 

possible that following the additional loss of NT-3 signalling via TrkA in TrkA'7' 

mice, neurons that do survive and differentiate have a slightly different phenotype 

from those of the NGF'7' mice. NT-3 can also regulate PNS neuronal precursors, 

inducing survival, differentiation and proliferation of a wide range of cell types, 

including NC precursors, sympathetic neuroblasts and trigeminal progenitor cells 

(Kalcheim et al., 1992; Pinco et al., 1993; DiCicco-Bloom et al., 1993; Verdi and 

Anderson, 1994; Karavanov et al., 1995; Memberg and Hall, 1995; Elshamy and 

Emfors, 1996; Elshamy et al., 1996). Some of these effects could also be mediated 

by TrkA and thus neuronal phenotype may be altered in these TrkA'7' mice. Indeed 

CGRP levels appear lower in the TrkA'7' than in the NGF"7' (figure 2.12 and 2.13) this 

could be a reflection of the differences in the phenotype of surviving neurons.
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Trigeminal TrkA-'-

Trigeminal A/GPA ;

Figure 2.12. Expression o f  CGRP in trigeminal o f  TrkA"/* and NGF"A ra/ce.

Trigeminal ganglia were dissected from E l3 -  E l5 null mutant and wild-type mice and the 
expression of CGRP mRNA quantified by competitive RT-PCR. Expression o f CGRP in 
trigeminal of TrkA_/* (A) and NGF_/' (B) is shown in comparison to their wild-type 
littermates. All data is normalised with respect to GAPDH mRNA.
Error bars +/- standard error, n = 3-4. * = p = <0.05, ** = p = <0.0las determined by two- 
tailed unpaired t-test.



Figure 2.13. Expression o f  CGRP in DRG o f  TrkA A and NGFL/_ mice.

DRG were dissected from E l3 -  E l5 null mutant and wild-type mice and the expression 
of CGRP mRNA quantified by competitive RT-PCR. Expression of CGRP in DRG of 
TrkA-7' (A) and NGF'7' (B) is shown in comparison to their wild-type littermates. All 
data is normalised with respect to GAPDH mRNA.
Error bars +/- standard error, n = 3-4. * = p = <0.05, ** = p = <0.0las determined by 
two-tailed unpaired t-test.



Non-normalised data

Embryonic day 13-15 mice were chosen specifically for this study so that cell death 

in the absence of NGF/TrkA signalling would not confound the results. However, to 

confirm that loss in cell survival was not affecting results, the level of mRNA for the 

housekeeping protein, GAPDH was plotted for each ganglia at each age studied. The 

non-normalised levels of CGRP mRNA were also plotted for each ganglia at each 

age studied. Results are shown in figures 2.14-2.17

Trigeminal ganglia

In the trigeminal ganglia of both TrkA'7' and NGF'7' mice the expression of GAPDH 

mRNA is constant and at a similar level to that seen in wild-type mice (figure 2.14), 

suggesting no significant cell death occurs in the trigeminal ganglia of these null 

mutant mice up to E l5. There is also no significant difference in CGRP mRNA 

levels between wild-type and TrkA'7' or NGF'7' mice (Figure 2.15), in agreement with 

normalised data (Figure 2.12).

DRG

Non-normalised data from the DRG is shown in figures 2.16 and 2.17. The levels of 

GAPDH mRNA are also fairly constant and there is no significant difference in 

GAPDH mRNA levels between TrkA'7' mice or NGF'7' mice and their wild-type 

littermates as determined by two-tailed t-test (figure 2.16), although a slightly lower 

GAPDH mRNA level is apparent at E l5 in DRG from the NGF null mutant (2.16B). 

This data could reflect some cell death, which could possibly account for the 

difference in expression of CGRP mRNA in the normalised data at El 5 (Figure 

2.13B). However, as results were normalised against this GAPDH data to take into 

account such a loss, it is unlikely. On the whole GAPDH mRNA levels are 

unaffected suggesting little cell death.

Non-normalised CGRP mRNA levels are shown in DRG from TrkA'7' and NGF'7' 

mice (figure 2.17). The non-normalised data appear to show a significant difference
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in CGRP mRNA expression at E l5 in DRG from NGF'7' mice compared to wild-type 

mice, which is not seen in DRG from TrkA'7'mice. This seems to reflect observations 

in normalised data in which DRG of NGF'7'mice show a decreased expression 

(figure 2.13).
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Figure 2.14. Expression o f  GAPDH per ganglia in trigeminal o f  TrkA-'' and NGF'- mice prior 
to normalisation..

Trigeminal were dissected from E l3 -  E l5 null mutant and wild-type mice and the expression 
of GAPDH mRNA quantified by competitive RT-PCR. Expression o f GAPDH mRNA per 
ganglia in TrkA'7' (A) and NGF'7* (B) is shown in comparison to their wild-type littermates.

Error bars +/- standard error, n = 3-4. * = p = <0.05, ** = p = <0.0las determined by two-tailed 
unpaired t-test.



Trigeminal TrkA A;

20    -----------------------------

59

re 15
■ wt
■ TrkA ko

Trigeminal NGFV

■ wt
■ NGF ko

Figure 2.15. Expression o f CGRP per ganglia in trigeminal o f  TrkA'1' and NGF'1' mice prior 
to normalisation..

Trigeminal were dissected from E l3 -  El 5 null mutant and wild-type mice and the 
expression of CGRP mRNA quantified by competitive RT-PCR. Expression of CGRP 
mRNA per ganglia in TrkA'7' (A) and NGF'7' (B) is shown in comparison to their wild-type 
littermates.
Error bars +/- standard error, n = 3-4. * = p = <0.05, ** = p = <0.01 as determined by two- 
tailed unpaired t-test.
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Figure 2.16. Expression o f  GAPDH per ganglia in DRG o f  TrkA"A and NGF1' mice prior to 
normalisation..

DRG were dissected from E l3 -  E15 null mutant and wild-type mice and the expression of 
GAPDH mRNA quantified by competitive RT-PCR. Expression of GAPDH mRNA per ganglia 
in TrkA'7' (A) and NGF"7' (B) is shown in comparison to their wild-type littermates.
Error bars +/- standard error, n = 3-4. * = p = <0.05, ** = p = <0.0las determined by two-tailed 
unpaired t-test.
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Figure 2.17. Expression o f CGRP per ganglia in DRG o f TrkA A and NGF~A mice prior to 
normalisation..

DRG were dissected from E l3 -  E l5 null mutant and wild-type mice and the expression of 
CGRP mRNA quantified by competitive RT-PCR. Expression of CGRP mRNA per ganglia 
TrkA'7" (A) and NGF'7' (B) is shown in comparison to their wild-type littermates.
Error bars +/- standard error, n = 3-4. * = p = <0.05, ** = p = <0.0las determined by two- 
tailed unpaired t-test.



2.3.2. Alpha and beta transcripts of CGRP may be 
differentially regulated in the early embryonic mouse

The arrival of new technologies in the lab allowed the analysis of CGRP mRNA 

expression in absence of NGF/TrkA signalling to be extended further. Real-time 

PCR (QPCR) is a very sensitive and fast form of quantitative PCR, which allowed 

me to look at the expression of other genes and also reconfirm competitive data for 

CGRP. The computer program ‘Beacon Designer’ also allowed the production of 

more specific and efficient primers.

Primers used earlier in this chapter for competitive PCR did not distinguish between 

the mRNAs for the a- and P-CGRP peptides. Data presented in figures 2.12 to 2.17, 

therefore represent the combined expression of both mRNAs. The recent sequencing 

of both isoforms of CGRP in the mouse, and the subsequent design of new primers 

permitted the amplification of the two isoforms separately.

RNA extracted previously for competitive RT-PCR studies was used in this study. 

However, Stratscript reverse transcription enzyme, and real-time PCR was used to 

quantify gene expression (See materials and methods 2.2.5). Results were normalised 

against GAPDH, to account for any discrepancies in initial RNA levels between 

samples. Transcripts for both CGRP isoforms appear to be expressed to a similar 

extent in both DRG and trigeminal ganglia of the developing mouse (figures 2.18 -  

2.21). Once again, the expression of CGRP mRNAs in trigeminal ganglia was visibly 

higher than in DRG.

q-CGRP

In the DRG, as was indicated by the competitive data, there was a marked decrease 

in a-CGRP mRNA expression in NGF7' mice compared to NGF+/+ mice, becoming 

significant by E l5 (figure 2.18B). This was once again not reflected in the TrkA7* 

mouse (figure 2.18A). This could suggest a role for NGF signalling via p75 rather
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than TrkA in the onset of a-CGRP expression or it could be a reflection of the loss of 

NT-3/TrkA signalling that could affect the phenotype of neurons in these TrkA7' 

mice.

In the trigeminal ganglia the expression of a-CGRP mRNA was not diminished in 

either NGF7' or TrkA7' mice compared to wild type mice (figure 2.19A and B), 

suggesting that in the trigeminal ganglia NGF and TrkA signalling are not required 

for the onset of expression of the a  isoform.

B-CGRP

Unlike a-CGRP mRNA, there is no significant difference in P-CGRP mRNA levels 

in TrkA7' or NGF7' DRG in comparison to wild-type (figure 2.20.A and B). In the 

trigeminal ganglia, the same result as for a-CGRP mRNA is observed, with no 

difference in expression of P-CGRP between either null mutants in comparison to 

wild-type (figure 2.21. A and B)
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Figure 2.18. Expression o f alpha CGRP mRNA in DRG o f TrkA1' and NGF ̂  mice.
DRG were dissected from El 3-El 5 null mutant and wild-type mice and the expression of alpha 
CGRP mRNA quantified via real-time QPCR. Expression of alpha CGRP mRNA in the DRG of 
TrkA '^A) and NGF*/_(B) mice is shown in comparison to their wild-type litter mates.
Error bars +/- standard error. * = p =<0.05, ** = p = <0.01 as determined by two-tailed unpaired 
t-test, n = 3-4
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Figure 2.19. Expression o f alpha CGRP mRNA in trigeminal ganglia o f TrkA*A and NGF-/- mice. 
Trigeminal ganglia were dissected from El 3-El 5 null mutant and wild-type mice and the 
expression o f alpha CGRP mRNA quantified via real-time QPCR. Expression o f alpha CGRP 
mRNA in the trigeminal ganglia of TrkA'/_(A) and NGF A(B) mice is shown in comparison to 
their wild-type litter mates.
Error bars +/- standard error. * = p =<0.05, ** = p = <0.001 as determined by two-tailed unpaired 
t-test, n = 3-4
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Figure 2.20. Expression ofbeta-CGRP mRNA in DRG o f TrkA'A and NGFL/mice.
DRG were dissected from El 3-El 5 null mutant and wild-type mice and the expression ofbeta- 
CGRP mRNA quantified via real-time QPCR. Expression of beta CGRP mRNA in the DRG of 
TrkA'^A) and NGF'7'(B) mice is shown, in comparison to their wild-type litter mates.
Error bars +/- standard error. * = p =<0.05, ** = P = <0.01 as determined by two-tailed unpaired t- 
test, n = 3-4
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Figure 2.21. Expression o f beta CGRP mRNA in trigeminal ganglia o f TrkA'A and NGFL/'. 
Trigeminal ganglia were dissected from El 3-E l5 null mutant and wild-type mice and the 
expression o f beta CGRP mRNA quantified via real-time QPCR. Expression of beta CGRP 
mRNAin the trigeminal ganglia of TrkA '^A) and NGF'/_(B) mice is shown in comparison to their 
wild-type litter mates.
Error bars +/- standard error. * = p =<0.05, ** = p = <0.001 as determined by two-tailed unpaired 
t-test, n = 3-4



These results parallel those obtained by competitive RT-PCR where a decrease in 

CGRP mRNA in the DRG of NGF7' mice was observed, but was not significant, in 

comparison to wild type mice. This lack of significance could be due to the 

additional detection of the p- isoform by the non-specific competitive primers. P- 

CGRP mRNA was not found to be down-regulated in NGF7* mice(figure 2.20B), so 

any real decrease in a-CGRP mRNA may have been masked.

A table to summarise the regulation of both CGRP mRNA isoforms in DRG and 

trigeminal ganglia is shown below.

ALPHA CGRP BETA CGRP

NGF TrkA NGF TrkA

DRG X X X

Trigeminal X X X X

Table 2.10 Summary ofNGF/TrkA signalling required for expression o f  a  and f3 CGRP transcripts, in 

embryonic (E l3-E l5) mouse DRG and trigeminal.

S  = required, x = not required.

2.3.3. Differential regulation of substance P in trigeminal 
ganglia and DRG

SP is largely co-expressed with CGRP in the same subpopulation of sensory neurons 

in the adult (Lee et al., 1985; Skofitsch et al., 1985; Lundberg et al., 1985). To 

investigate whether the expression pattern of SP parallels that of CGRP throughout 

development and if there is comparable neurotrophic factor regulation during 

development, the expression of the SP precursor mRNA was quantified in embryonic 

trigeminal ganglia in TrkA7' and NGF7' mice and their wild type littermates using
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reverse transcription followed by real-time PCR. SP is only 12 amino acids long, and 

because of its small size was difficult to detect via PCR. Instead the mRNA for the 

PPTA precursor was reverse transcribed and amplified at the portion that is cleaved 

to produce SP (see figure 2.1.). Because the expression levels of SP precursor mRNA 

at early ages is low and very difficult to detect in DRG, since they are smaller than 

trigeminal ganglia and yield less purified RNA, only results for the trigeminal 

ganglia were obtained (figure 2.22).

In trigeminal ganglia of both TrkA'7' and NGF'7' mice there is a decrease in the 

expression of SP precursor mRNA in comparison to wild-type mice at both E14 and 

E l5. This reduction is significant at E l5 in both null mutants and also at E l4 in 

NGF'7* mice. This would suggest that NGF and TrkA expression are both required at 

least in part for the onset of SP precursor mRNA expression in developing trigeminal 

ganglia. The expression of SP precursor mRNA at El 3 was very low, but still 

detectable, suggesting that the onset of SP precursor mRNA expression may occur at 

this age.

These data for SP differ from those of both isoforms of CGRP mRNAs. Neither C o 

nor p-CGRP mRNAs showed an apparent requirement for NGF/TrkA signalling for 

initial induction of expression in the trigeminal ganglia (figures 2.19 and 2.21).
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Figure 2.22. Expression o f SP mRNA in sensory neurons o f TrkA'A and NGF~\
Trigeminal ganglia were dissected from El 3-El 5 null mutant and wild-type mice and the expression 
of SP mRNA quantified via real-time QPCR. Expression of SP mRNA in the trigeminal ganglia of 
TrkA_/‘(A) and NGF'^fB) mice is shown in comparison to their wild-type litter mates.
Error bars +/- standard error. * = p =<0.05, ** = p = <0.01 as determined by two-tailed unpaired t- 
test, n = 3-4



2.3.4. Initial induction of mRNA expression of the 
Tetrodotoxin (TTX) resistant sodium channels Nav1.8 and 
Nav1.9 is reliant upon NGF/TrkA signalling

The role that NGF/TrkA signalling plays in regulating the expression of Navi.8 and 

Navi.9 mRNAs in developing trigeminal ganglia and DRG was examined by 

measuring the expression of both mRNAs by RT-QPCR in ganglia from NGF and 

TrkA null mutants and their wild type littermates. The two genes ScnlOa and Scnl la 

are transcribed to produce the functional proteins Navi.8 and Navi.9 respectively. 

Primers were designed to allow amplification of Navi.8 and Navi.9 mRNAs using 

reverse transcription followed by real time Q-PCR RNA samples from TrkA and 

NGF null mutants that had been collected previously and used for the competitive 

RT-PCR and real time-QPCR studies of CGRP and SP mRNA expression were used 

to determine the expression of sodium channel mRNAs.

Figure 2.23 shows the expression levels of Navi.8 mRNA in DRG of TrkA'7' (A) and 

NGF'7' (B) mice and figure 2.24 show expression in the trigeminal ganglia of TrkA'7' 

(A) and NGF'7'(B) mice compared to that of their wild-type littermates. Nav 1.8 

mRNA expression is just detectable at E l3 in DRG, more noticeably so in trigeminal 

ganglia. Nav 1.8 mRNA is therefore detectable at a younger age than Navi .8 protein, 

which cannot be detected until E l5 (Benn et al., 2001), as would probably be 

expected given the high sensitivity of this method of RT-QPCR. Nav 1.8 mRNA 

levels are similar in both trigeminal ganglia and DRG, unlike CGRP isoforms 

mRNA, whose expression is greater in trigeminal ganglia than in DRG .

The data in figures 2.23 and 2.24 suggest that the initial induction of expression of 

Navi.8 mRNA is regulated to some extent by TrkA/NGF signalling. In both DRG 

and trigeminal ganglia there is a large, often significant reduction in expression of 

Navi.8 mRNA in both TrkA'7' and NGF'7' mice compared to wild type mice (figures 

2.23 and 2.24). This is observed from E14 in DRG and from E l3 in trigeminal
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ganglia, suggesting that TrkA/NGF signalling is required for the initial onset of 

Navi. 8  expression.

Data showing the expression of Navi.9 mRNA in DRG and trigeminal ganglia from 

E13 to E15 is plotted in figures 2.215 and 2.26. Navi.9 mRNA was not detectable at 

El 3, but was apparent by E14. This later expression of Navi.9 than N avi . 8  follows 

the expression pattern at the protein level where Navi . 8  is detectable at E l5, whereas 

Navi.9, is below the limits of detection until E17 (Benn et al., 2001). Navi.9 mRNA 

is expressed at similar levels in DRG and trigeminal ganglia. Like Navi.8 , 

NGF/TrkA signalling seems to be required for the onset of Navi.9 mRNA 

expression in both ganglia, with mRNA levels being significantly diminished in 

DRG and trigeminal ganglia from both null mutants at E l5 compared to ganglia from 

wild type mice (figures 2.25 and 2.26).
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Figure 2.23. Expression o f Nav 1.8 mRNA in DRG o f TrkA'A and NGFA.
DRG were dissected from El 3-El 5 null mutant and wild-type mice and the expression o f Nav 1.8 
mRNA quantified via real-time QPCR. Expression o f N avi.8 mRNA in the DRG of TrkA_/'(A) and 
NGF /'(B) mice is shown, in comparison to their wild-type littermates.
Error bars = +/- standard error. * = p =<0.05 and ** = p =<0.01 as determined by two-tailed, 
unpaired t-test, n = 3-4
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Figure 2.24. Expression o f Nav 1.8 mRNA in trigeminal ganglia o f TrkAA and NGFL/‘.
Trigeminal ganglia were dissected from El 3-El 5 null mutant and wild-type mice and the 
expression o f Navi .8 mRNA quantified via real-time QPCR. Expression o f Navi .8 mRNA in the 
trigeminal ganglia o f TrkA'A(A) and NGF' '(B) mice is shown in comparison to their wild-type 
litter mates.
Error bars +/- standard error. * = p =<0.05, ** = p = <0.01 as determined by two-tailed unpaired 
t-test, n = 3-4
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Figure 2.25. Expression o f Nav 1.9 mRNA in DRG o f TrkA-'- and NGF-'-.
DRG were dissected from El 3-El 5 null mutant and wild-type mice and the expression of Nav 1.9 
mRNA quantified via real-time QPCR. Expression of N avi.9 mRNA in the DRG ofTrkA '/_(A) 
and NGF'/_(B) mice is shown, in comparison to their wild-type litter-mates.
Error bars +/- standard error. * = p =<0.05 and ** = p=<0.01 as determined by two-tailed 
unpaired t-test, n = 3-4
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Figure 2.26. Expression o f Nav 1.9 mRNA in trigeminal ganglia o f TrkA A and NGFL/'.
DRG and Trigeminal ganglia were dissected from El 3-El 5 null mutant and wild-type mice and 
the expression of N avi.9 mRNA quantified via real-time QPCR. Expression of Nav 1.9 mRNA in 
the trigeminal ganglia o f TrkA'^A) and NGF'A(B) mice is shown, in comparison to their wild- 
type litter-mates.
Error bars +/- standard error. * = p =<0.05 and ** = p=<0.01 as determined by two-tailed 
unpaired t-test, n = 3-4
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2.3.5 All PCR reactions are highly efficient

To check the reliability and specificity of the QPCR reactions for a- and p-CGRP, 

SP, N avi . 8  and Navi.9, RT-QPCR reactions were run using RNA extracted from 

tissue that should not express any of these mRNAs mouse liver was chosen for this 

purpose. Mouse Liver RNA (Ambion) was reverse transcribed, as described 

previously. Mouse trigeminal RNA was also transcribed alongside liver RNA, to act 

as a positive control and ensure efficient transcription. No expression of a-CGRP, p- 

CGRP, SP, N avi . 8  and Navi.9 mRNAs could be detected in liver RNA. Any 

amplification (as observed by increasing fluorescence with increasing PCR cycle 

number) occurring in these QPCR reactions was due to primer artefacts or 

amplification of non-specific products (figure 2.27). GAPDH mRNA was present in 

both liver and trigeminal, acting as a positive control (figure 2.27).
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Figure 2.27. Expression o f genes o f interest in Liver RNA.
To check the ‘Leakiness’ o f the PCR reactions, reactions were run for all genes using RNA from Liver. No gene expression 
of any genes under test was observed in liver, with the exception of GAPDH.
A and B show expression o f GAPDH clearly present. C and D show the absence of a  CGRP mRNA expression. N.B. 
Although some amplification is seen late on (C) the product produced is not the correct one, as illustrated by the melting 
curve (D).



2.4. Discussion

The highly sensitive, quantitative methods of competitive RT-PCR and, more 

recently, real time-QPCR, have allowed investigation into the developmental 

expression of several genes that are important in determining the functional 

characteristics of sensory neurons. The use of embryonic transgenic mice allowed the 

effects of NGF and TrkA signalling on the developmental expression of these genes 

to be studied. This helped to ascertain if NGF and TrkA signalling are required for 

the initial induction of transcripts for these genes in the different sensory ganglia of 

the embryonic mouse.

Whilst interpreting results, one important caveat should be bom in mind. The Real 

time Q-PCR technique used in this thesis allows relative quantification of mRNA 

levels i.e. comparisons are made between samples after normalising for differences 

in sample concentration and loading. Normalisation is necessary to control for the 

numerous errors associated with such experiments, including the inherent variability 

of RNA, the variability of extraction protocols and the differences in efficiencies 

between reverse transcription and PCR. However, despite its necessity, normalisation 

remains one of the main problems and drawbacks of real-time QPCR at present.

Several methods of normalisation exist. Two such techniques are: a) Ensuring similar 

sample sizes are initially obtained prior to RNA extraction and b) Normalising 

results to total RNA within the sample. Neither of these methods however control for 

errors that occur at the reverse transcription or PCR stages. To this end, the most 

popular method of normalisation employed tends to be the use of a reference gene. In 

this method an internal control is amplified, in the PCR reaction, alongside the gene 

of interest. This method is particularly advantageous as the internal control is subject 

to the same conditions as the mRNA of interest, and it was this method that was used 

in this thesis.
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The identity of the most reliable internal control is still a controversial and much 

debated topic. The ideal RNA species for an ‘internal control’ should be expressed at 

a constant level throughout the tissue in question and should not be regulated by the 

experimental conditions. Unfortunately, there is no single RNA which can fulfil such 

criteria at present, with most being altered through the course of the experiment. The 

most popular internal controls used experimentally include p actin, Glyceraldehyde - 

3-phosphate-dehydrogenase (GAPDH), hypoxanthine-guanine phosphoribosyl 

transferase (HPRT) and 18s ribosomal RNA. Despite all being used frequently, as 

illustrated in numerous published papers, they all have drawbacks. Levels of 

GAPDH and p-actin have been shown to vary over certain conditions, however 

because of its abundance the use of 18S rRNA impedes the detection of the PCR 

product of rare messages.

Throughout this thesis Glyceraldehyde -3-phosphate-dehydrogenase (GAPDH) was 

chosen as internal control. The mRNA encoding GAPDH is moderately expressed in 

many tissues including neuronal cells, and has been used as an internal control in 

many similar experiments. As mentioned briefly, GAPDH levels can vary with 

developmental stage and so its use may not provide the accurate results sought. This 

possibility should be borne in mind when intertpreting results.

A round-table debate on the limitations of the use of such internal controls was 

published in the journal of leukaemia in 1997-1998, and is still of debate to this day. 

There is a thought that perhaps an ‘alien RNA’ molecule that could be synthesised 

and added in accurate quantities prior to RNA extraction could solve most problems, 

however until such a molecule is created researchers must continue to debate the pros 

and cons of the ‘classic’ housekeeping genes to make their, albeit not 1 0 0 % 

foolproof, decision as to which will be the gene of choice in their laboratory.
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Table 2.11 summarises findings.

ALPHA

CGRP

BETA

CGRP

SP NAVI . 8 NAV 1.9

NGF TrkA NGF TrkA NGF TrkA NGF TrkA NGF TrkA

DRG X X X - - ✓ V /

Trigeminal X X X X S

Table 2.11 Summary o f  NGF/TrkA signalling required fo r  expression o f  sensory neuron predominant 

genes, in embryonic (El 3-El 5) mouse DRG and trigeminal.

S  = required, x = not required. - = not carried out

Initially, the investigation of the neuropeptide CGRP was studied using competitive 

PCR to quantify mRNA expression in DRG and trigeminal ganglia of TrkA'7’ and 

NGF'7' mice in comparison to wild-type littermates. The development of real-time 

QPCR in the laboratory allowed me to extend this analysis. This method of PCR was 

favoured due to its efficiency and flexibility. In particular, time did not have to be 

spent in the manufacture of competitors for each gene, gels did not need to be run 

and reactions could be set-up in a high-throughput 96-well format. In addition,

QPCR has the advantage that it has a much wider dynamic range than competitive 

RT-PCR, allowing the direct comparison of samples that have greatly differing levels 

of target mRNA expression. Although QPCR is not as accurate or reproducible as 

competitive PCR, performing more replicates can compensate for this drawback and 

the advantages of the system far outweigh the disadvantages.

The introduction of QPCR and a more efficient primer design package, allowed me 

to design primers and set up reactions that allowed both isoforms of CGRP to be 

studied separately. Little research thus far has been done on the mouse (3-CGRP 

isoform for several reasons. First, high sequence homology between the two isoforms 

has led to a practical difficulty in discriminating between them. Secondly, little has 

been done in the mouse, as until recently both genes were not sequenced in this
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species (Thomas et al., 2001). Finally the a- transcript is usually considered the more 

abundant of the two, at least in the adult (Amara et al. 1985, Gibson et al., 1988), so 

research has tended to focus on this isoform. Throughout development, however, p- 

CGRP has been shown to be the predominant form in many areas of the nervous 

system, suggesting a strong developmental role (Terrado et al., 1999). My results do 

show that p-CGRP is indeed expressed to a similar extent to the a  isoform in both 

trigeminal and DRG at these early stages of development. Although no statistical 

comparisons have been made, the pattern of P-CGRP mRNA expression in 

trigeminal ganglia of wildtype mice (figure 2 .2 1 ) is indeed comparable to that of a- 

CGRP mRNA (figure 2.19). In trigeminal ganglia of wild-type mice from TrkA7' 

litters i.e. TrkA+/+ mice, expression of both a  and p CGRP mRNA is similar at El 3. 

Levels of both then double from El 3 -  El 4 before dropping back to approximately 

El 3 levels by El 5 (figures 2.19A and 2.21 A). In trigeminal ganglia of wildtype mice 

from NGF7' litters i.e. NGF+/+, a similar mRNA level for a  and p CGRP is found 

once again at E l3. A two-fold increase in expression is then observed in both 

isoforms between E13 and E14 (figure 2.19B and 2.21B), and this increase is 

maintained until El 5. This maintenance in expression between El 4-El 5 in 

trigeminal of NGF+/+mice is in contrast to the dip observed in TrkA+/+ mice. Such 

discrepancies between TrkA+/+ and NGF+/+ are odd since both of these phenotypes 

are essentially wild-type. However it could be due to experimental issues, or down to 

differences in the strain or background of the mice. In the DRG, a-CGRP mRNA 

was also expressed to a similar extent to P-CGRP mRNA. In TrkA+/+mice 

expression of both isoforms increased in DRG from El 3 -  El 5 (figure 2.18A and 

2.20A). In DRG of NGF+/+mice, levels of a-CGRP mRNA were initially higher than 

those of the p isoform, however by El 5 both isoforms were detectable at comparable 

levels (figure 2.18B and 2.20B). These results would indicate that P-CGRP is 

expressed as abundantly as the a- isoform, at least in some sensory neuronal 

populations of the developing mouse. A possible role for p-CGRP in development 

of such neuronal subpopulations is therefore indicated.
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Despite a high sequence homology between the CGRP isoforms, the two peptides are 

transcribed from separate genes that most probably arose as a result of gene 

duplication. The difference in expression patterns in development, and their 

production from distinct genes would therefore suggest functionally different roles 

for a- and p-CGRP in the young embryo, and possible differential regulation by 

trophic factors. My results showed that mRNAs for both a- and P- transcripts are 

present at a similar level in both sensory ganglia studied from E l3 up to El 5. Both 

transcripts are expressed more highly in the trigeminal ganglia than in the DRG. In 

embryonic trigeminal ganglia, no significant difference between the expression of the 

a- and P- transcripts was observed between wild-type and TrkA and NGF null 

mutant mice from E13 to E15 (figures 2.19 and 2.21). This suggests no regulation of 

expression of either a- or p- CGRP mRNA by NGF or TrkA signalling in the 

embryonic trigeminal ganglia at these ages. This demonstrates that NGF/TrkA 

signalling is not required for the induction of a- and P- CGRP expression in 

trigeminal neurons. In the DRG, however, NGF may play a role in regulating the 

expression of a-CGRP mRNA, but not the mRNA for the p- isoform. No difference 

was seen in the expression of a-CGRP mRNA in the DRG of TrkA7' mice compared 

to TrkA+/+ mice, however, in NGF7' mice there was a notable decrease in the 

expression of the a  transcript compared to wild-type mice. This was seen in real-time 

data (figure 2.18) and also suggested in competitive data (figure 2.13.) p-CGRP 

mRNA was conversely expressed at similar levels in DRG from TrkA and NGF null 

mutants and wild type mice (figure 2.20). It is therefore apparent that despite high 

sequence homology, the two CGRP transcripts are regulated differentially in the 

DRG of the developing mouse. This suggests that not all subpopulations of sensory 

neurons require NGF/TrkA signalling for the induction of CGRP expression, as has 

been thought previously from a much less extensive study of developing sensory 

neurons (Patel et al., 2000).

It is curious that a-CGRP mRNA induction and maintenance of expression between 

E l4 to El 5 is independent of TrkA signalling in developing DRG, but appears to 

require NGF signalling. One possibility is that NGF regulated induction and intial 

up-regulation of a-CGRP mRNA expression is affected entirely through signalling
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through the common p75 neurotrophin receptor. Analysis of the expression of a- 

CGRP mRNA in the DRG of p75 knockout mice would address this possibility. 

Another possibility is that the TrkA and NGF mouse colonies show subtle inherent 

strain differences in the timing of sensory neuron loss in the absence of functional 

TrkA/NGF signalling. The neurotrophin NT-3 can also signal through TrkA (Soppet 

et al., 1991; Klein et al., 1991b; Cordon-Cardo et al., 1991; Glass et al., 1991; Ip et 

al., 1993). NT-3 is required for the correct timing of neuroblast differentiation 

(Kalcheim et al., 1992; Pinco et al., 1993; Elshamy and Emfors, 1996), and mice 

deficient in NT-3 show a perturbation in sensory neuron differentiation and a 

subsequent loss of post-mitotic neurons (Liebl et al., 1997). Much of the effects of 

NT-3 on survival and differentiation of sensory neurons are proposed to be via 

receptors other than its preferred receptor TrkC, since NT-3’7' mice show 70% loss in 

sensory neurons, a much greater proportion than the 30% loss observed in TrkC'7' 

mice (Liebl et al., 1997). It is possible that TrkA*7' mice suffer a loss of functional 

NT-3/TrkA signalling as well as NGF/TrkA signalling during the period E l3 to E l5 

with concomitant derangement of normal neuronal differentiation that may lead to 

DRG with different proportions of different neuronal sub-types (CGRP mRNA 

expressing or non-expressing) and different numbers of neurons at El 5 compared to 

wild-type mice or NGF'7' mice.

It is noteworthy that figure 2.13 shows that the timing of CGRP mRNA up- 

regulation from basal levels is different in DRG of wild type mice from the TrkA and 

NGF colonies. In the TrkA colony, CGRP mRNA increases in the DRG of wild type 

mice from E l4 to E l5, but this is not the case in wild-type mice from the NGF 

colony. Similar differences between strains are also shown for a-CGRP mRNA in 

figure in 2.18, and in trigeminal ganglion in figure 2.12. Perhaps both strains show 

subtle differences in the timing of the induction and up-regulation of CGRP mRNA 

and/or the requirement for NGF/TrkA signalling to up-regulate CGRP mRNA from 

the basal levels expressed immediately after initial induction. This could be 

responsible for the data, suggesting that NGF but not TrkA signalling is required for 

the up-regulation of a-CGRP mRNA expression between E l4 and El 5 in DRG. This 

hypothesis is supported by the observation that both TrkA and NGF are necessary for
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the up-regulation of CGRP expression in the late embryonic period and the 

maintenance of expression in the neonatal period (Patel et al, 2000).

The neuropeptide SP is expressed in the same subpopulation of neurons as CGRP. 

However, as revealed by my studies, its regulation by NGF/TrkA signalling is 

different from that of CGRP. In particular, SP does require TrkA/NGF signalling for 

the onset of expression in the trigeminal ganglion, unlike a- or P- CGRP. In both 

null mutants there was a decreased expression of SP mRNA in comparison to wild

type (figure 2.22). This decrease was significant at E l4 in NGF'7' mice and at E l5 in 

both TrkA*7* and NGF'7' mice. SP mRNA was expressed at lower levels than CGRP 

mRNA in trigeminal ganglia at all ages studied but could not be detected in the early 

DRG, possibly because it is not expressed at this young age or because levels are too 

low to detect because the smaller size of the DRG compared to the trigeminal 

ganglion may result in a lower concentration of total RNA in DRG samples. Taken 

together, these results indicate that the induction of expression and up-regulation of 

SP mRNA from E l3 to E l5 is largely dependent on NGF acting via its receptor 

tyrosine kinase TrkA in trigeminal sensory neurons.

The expression of the two TTX resistant sodium channels Nav 1.8 and Nav 1.9 was 

also investigated. Previous research has identified that NGF and GDNF regulate the 

expression of both channels in adult DRG (Fjell et al., 1999), but the regulation of 

these sodium channel mRNAs in sensory neurons during embryonic development 

has not been previously addressed. Throughout embryonic development GDNF will 

no doubt have little effect on the expression of either channel as the majority of 

sensory neurons don’t respond to this factor until after birth, when approximately 

half of small diameter neurons down-regulate TrkA and up-regulate receptors for 

members of the GDNF family of neurotrophic factors (Molliver and Snider, 1997; 

Molliver et al., 1997; Baudet et al., 2000). My results have shown that NGF does 

play a role in onset of expression and intial developmental up-regulation of these 

channels in sensory neurons during embryonic development. In both trigeminal 

ganglia and DRG of TrkA and NGF null mutant mice there was a large reduction in 

Navi. 8  mRNA levels in comparison to wild-type mice, at all ages studied, this
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suggests a critical role for NGF/TrkA signalling in regulating the expression of this 

sodium channel in embryonic sensory neurons. The onset of expression of Nav 1.9 

mRNA in sensory neurons was later than that for Navi .8 , as Navi .9 mRNA was not 

detectable in E l3 mice in either DRG or trigeminal ganglia. This is in accordance 

with sodium channel protein expression patterns. Benn et al. (Benn et al., 2001) 

showed N avi . 8  protein was detectable at E l5 whilst Navi.9 protein was not 

detectable until E l7 in mouse DRG. At E l5 the induction and developmental up- 

regulation of Navi.9 mRNA, like Navi . 8  mRNA, showed a distinct requirement for 

NGF/TrkA signalling with a significant reduction in Nav 1.9 mRNA in both DRG 

and trigeminal ganglia of NGF'7' and TrkA'7' mice in comparison to wild-type mice.

Summary

In this chapter the expression of several genes that are required for a number of key 

functional properties of subsets of sensory neurons have been studied in the DRG 

and trigeminal ganglia during the early stages of sensory neuron development. 

Previous work on the expression of these genes has largely focused on the adult and 

postnatal DRG. In contrast to these earlier studies, which have concluded that NGF 

positively regulates the expression of all of these genes, my results have revealed that 

the expression of only some of these genes is regulated by endogenous NGF and 

TrkA signalling during the earlier stages of development. This was true for Navi . 8  

and Navi.9. mRNAs whose levels were significantly decreased in sensory neurons of 

TrkA'7' and NGF'7' mice in comparison to wild type mice. Likewise, the expression of 

SP is highly dependent on NGF/TrkA signalling for initial induction and up- 

regulation in the trigeminal ganglia. Despite the co-expression of CGRP and SP in 

subsets of sensory neurons and the previous demonstration of co-regulation by NGF 

(Lundberg et al., 1985; Donaldson et al., 1992; Donnerer et al., 1992; Woolfe et al., 

1994; Jiang and Smith, 1995; Verge et al., 1995; Shadiack et al., 2001; Gardell et al.,

2003), the expression of CGRP is more complex than was previously thought. It 

seems that mRNAs for the two isoforms of CGRP, a- and p-, are regulated 

differentially in the DRG developmentally, but neither have a requirement for 

NGF/TrkA signalling in the trigeminal ganglia. This contradicts the previous
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hypothesis that NGF and TrkA signalling was imperative for the induction and initial 

up-regulation of expression of CGRP mRNA in sensory neurons of the developing 

mouse (Patel et al., 2000). In the DRG, P-CGRP mRNA expression also showed no 

requirement for NGF/TrkA signalling. Of interest was the finding that a-CGRP 

mRNA expression does seem to be dependent upon NGF signalling within the DRG, 

but not on TrkA signalling. This suggests either that NGF may regulate the 

expression of the a  isoform solely through the common neurotrophin receptor p75 at 

these early stages of DRG development or that subtle strain differences exist between 

the timing of CGRP mRNA expression and the requirement for NGF/TrkA signalling 

for its up-regulation between the TrkA mouse line and the NGF mouse line. 

Alternatively, the timing of neuronal cell death in sensory ganglia in the absence of 

functional TrkA signalling may be different to that in the absence of NGF, since the 

neurotrophin NT-3 can also signal through TrkA.
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2.5. Results in Brief

As discussed, this chapter explored the expression of several mRNAs of interest, and 

their regulation by neurotrophic factors, in embryonic mice (E l3-E l5). Results and 

findings can be summarised as below:

CGRP:

• a- and p-CGRP mRNAs appear to show differing regulation in embryonic 

DRG. Results suggest that NGF signalling (through TrkA/p75?) may be 

required for initial induction of a  CGRP mRNA expression, but not for p 

CGRP mRNA.

• Expression of both a  and p CGRP mRNA seems to be independent of 

TrkA/NGF signalling within the trigeminal ganglia.

• Differences in results in the DRG vs the trigeminal ganglia show that not all 

genes are regulated in a similar fashion in all sensory neuronal ganglia, a- 

CGRP mRNA seems dependent upon NGF/TrkA signalling within the DRG, 

but not in the trigeminal ganglia.

SP:

• In trigeminal ganglia, initial induction of SP mRNA requires NGF/TrkA 

signalling, despite the finding that a  and p CGRP mRNAs do not. This is of 

interest since SP and CGRP are predominantly co-localised and usually 

regulated in a similar fashion.
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Nav1.8 and Nav1.9:

• NGF/TrkA signalling is required for initial induction of expression of both 

N avi . 8  and Navi.9 mRNAs in both trigeminal and dorsal root ganglia at 

embryonic ages.
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Chapter 3

The role of NGF and NT-3 in the regulation of gene 
expression in sensory neurons of the early postnatal mouse

3.1 Introduction

In the previous chapter the effects of NGF/TrkA signalling on sensory neuron gene 

expression were explored in the mouse embryo. The results showed that NGF 

signalling, via TrkA, has distinctive effects on the expression of SP, CGRP, N avi . 8  

and Navi .9 mRNAs in embryonic DRG and trigeminal sensory ganglia. In the 

current chapter, the previous study was extended to analyse the role that neurotrophin 

signalling plays in regulating the mRNA expression of these genes in sensory 

neurons later in development. Expression was additionally studied in another sensory 

neuronal ganglion, the nodose ganglion (or inferior vagal ganglia). The majority of 

nodose neurons express TrkB rather than TrkA, making them predominantly 

dependent upon BDNF for survival during development. However, since a small 

population of nodose neurons are NGF dependent during the late embryonic period 

(Forgie et al., 1999), the effect of NGF/TrkA signalling on nodose neuron gene 

expression was investigated. In addition, the effects of NGF on the expression of 

some other important sensory neuron genes was studied alongside those mRNAs 

investigated in chapter 2 .

In the current chapter, the effects of NT-3 on sensory neuron gene expression were 

also investigated. NT-3, like NGF, is highly important throughout development both 

with regards to neuronal survival and determination of neuronal phenotype. 

Embryonic sensory neuron survival is influenced by both factors, as is illustrated 

through study of transgenic mice with null mutations in the genes encoding these 

neurotrophic factors and their preferred receptors. Both TrkA'7' and NGF'7* mice die 

shortly after birth and show a massive loss of small diameter sensory neurons of the
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DRG and trigeminal ganglia (Smeyne et al., 1994; Crowley et al., 1994). The small 

diameter sensory neurons lost are responsible for transmission of nociceptive 

information. This is reflected by a failure of both NGF'7' and TrkA'7' mice to respond 

to noxious stimuli (Smeyne et al., 1994; Crowley et al., 1994). Mice with a null 

mutation in the gene encoding NT-3 die within a few weeks of birth and suffer from 

abnormal limb movement, most likely due to a lack of muscle afferent projections to 

the spinal cord (Farinas et al., 1993; Emfors et al., 1994). Disruption of the TrkC 

gene to remove the catalytic portion of the expressed receptor also produces mice 

with severe proprioceptive sensory neuron loss (Klein et al., 1994). These results 

highlight the essential role for NGF in the development of small nociceptive neurons 

and NT-3 in the development and maintenance of large proprioceptive neurons.

TrkA is the preferred receptor for NGF and TrkC the preferred receptor for NT-3, 

and both ligands additionally bind to the common neurotrophin receptor p75. 

Although NGF specifically binds to TrkA (Cordon-Cardo et al., 1991; Kaplan et al., 

1991, 1991b; Klein et al., 1991a), NT-3 can also signal through other Trk receptors, 

binding to TrkA and TrkB, as well as its preferred receptor, TrkC (Lamballe et al., 

1991; Squinto et al., 1991; Klein et al., 1991b; Soppet et al., 1991). Because of this, 

NT-3 may not only exert effects on gene expression in large TrkC expressing 

neurons, but also upon genes present in the small, peptidergic, TrkA-positive and low 

threshold mechanoreceptor, TrkB-positive sub-populations of trigeminal and dorsal 

root ganglia neurons. In addition, NT-3 may possibly regulate gene expression in 

TrkB responsive nodose neurons as well as the small sub-population of NGF 

responsive nodose neurons. Indeed, both mid-embryonic nodose and trigeminal 

neurons from TrkC kinase domain knockout mice survive in-vitro in the presence of 

NT-3, despite the lack of its preferred receptor (Davies et al., 1995). This TrkC 

knockout shows a decrease in 6-22% of trigeminal neurons (Pinon et al., 1996), 

which is significantly less than the 70% neuronal deficit in the NT-3 knockout 

(Wilkinson et al., 1996; Elshamy and Emfors, 1996; Liebl et al., 1997), a clear 

indication that NT-3 activation of TrkA and TrkB is highly important throughout 

development. Indeed, few mid-embryonic trigeminal neurons survive with NT-3 

when they lack functional TrkA expression. Likewise, loss of functional TrkB
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prevents NT-3 from promoting the survival of a large proportion of mid-embryonic 

nodose neurons (Davies et al., 1995).

Interestingly, NT-3 has also been shown to regulate expression of TrkA, in the adult. 

Exogenous NT-3 down-regulates the expression of TrkA at the protein and mRNA 

level in nociceptive adult DRG neurons in-vivo (Gratto and Verge, 2003). Such 

regulation of TrkA receptors could have effects on gene expression and the 

nociceptive phenotype associated with TrkA expression in small nociceptive neurons 

(Gratto and Verge, 2003; Wilson-Gerwing et al., 2005). It is proposed therefore, that 

NT-3 may not only have effects on gene expression through activation of TrkC 

receptors present on large proprioceptive neurons. It may also have direct actions on 

non-preferred Trk receptors, and the subsequent alteration of mRNA levels in small 

peptidergic nociceptive sensory neurons and medium sized mechanoreceptive 

sensory neurons. Moreover, NT-3 may modulate NGF mediated gene expression 

through alterations in TrkA receptor availability.

The effects of both NT-3 and NGF on the expression of sensory neuron genes is 

therefore of interest. This will be addressed in this chapter. Real time QPCR was 

used to quantify changes in relative mRNA levels, both in-vitro using neuronal 

cultures and in-vivo using transgenic mice with null mutations in genes encoding 

neurotrophic factors and their receptors.

TrkA null mutant mice suffer a dramatic loss of sensory neurons, an attenuated 

response to pain and die shortly after birth (Smeyne et al., 1994). NT-3 null mutant 

mice display severe movement defects of the limbs due to the loss of proprioceptive 

sensory and sympathetic neurons and also die shortly after birth (Emfors et al.,

1994). To overcome this loss of neurons, mice heterozygous for a null mutation of 

the pro-apoptotic protein Bax were crossed with TrkA and NT-3 heterozygous mice 

to create TrkA’̂ /Bax'7' and N T ^ '/B ax’7' double knockout mice, respectively. Bax is 

a pro-apoptotic member of the bcl- 2  family and is required for apoptotic cell death in 

many tissues. In these double knockouts, the large decrease in cell death normally 

seen in the single knockouts is prevented. In TrkA'7TBax'7' mice, the cells that survive
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show a phenotype similar to those that are normally lost in the single knockout. In 

the DRG they have been shown to express TrkA and also the neuropeptides CGRP 

and SP suggesting that, in-vivo, a deficiency of Bax permits the survival of TrkA 

peptidergic neurons in the absence of NGF/TrkA signalling (Patel et al., 2000). 

Similarly, in N T ^ '/B ax '7' mice, NT-3 dependent sensory neurons survive and 

express the proprioceptive neuronal marker, paravalbumin (Patel et al., 2003).

The NGF and NT-3 mediated regulation of all the mRNAs studied in Chapter 2 were 

included in this study (a- and P- CGRP, SP, Navi.8 , Navi.9) alongside some 

additional primary sensory neuron expressed genes: Galanin, Pituitary Adenylate 

Cyclase-Activating Peptide (PACAP) and Vanilloid Receptor 1 (VR1). These genes 

are not exclusively expressed in primary sensory neurons, but are expressed 

significantly within these subpopulations. These additional genes will be discussed 

further here with regards to physiological relevance, expression patterns and 

regulation by neurotrophic factors.

3.1.1. Pituitary adenylate cyclase-activating peptide (PACAP)

PACAP is a neuropeptide belonging to the glucagon/secretin/vasoactive intestinal 

peptide (VIP) family, and shares 70% homology with VIP. Originally isolated from 

ovine hypothalamic tissues (Miyata et al., 1989), its name reflects its ability to 

stimulate production of adenylate cyclase (AC) in cultured rat anterior pituitary cells 

(Miyata A et al., 1998). A single gene product is alternatively spliced to give rise to 

two isoforms of the peptide. The predominant form is a 38 amino acid peptide, 

PACAPi.38, but it also exists as PACAP1-27, which consists of the 27 NH2 terminal 

residues of PACAP1.38 (Miyata et al., 1999).

Receptors

Ligand binging studies revealed two proposed binding sites for PACAP, one with a 

much higher affinity binding for PACAP than the other, which could bind both

192



PACAP and VIP equally (Shivers et al., 1991). This led to the subsequent discovery 

o f two receptor types, PACi and VP AC (reviewed in Harmar et al., 1995). PACi was 

discovered by 6 different laboratories (Hashimoto et al., 1993; Hoysoya et al., 1993; 

Morrow et al., 1993; Pisegna and Wank, 1993; Spengler et al., 1993; Svoboda et al.,

1993) and was found to have a high affinity for PACAP and a very low affinity for 

VEP. It is located predominantly in the CNS, most abundantly in the olfactory bulb, 

thalamus, hypothalamus, the dentate gyrus o f the hippocampus; granule cells o f the 

cerebellum and in the adrenal medulla (Spengler et al., 1993; Hashimoto et al.,

1996). PACi expression has not been found in adult DRG neurons, but it is expressed 

by dorsal horn second order sensory neurons (Jongsma et al., 2000; Vaudry et al., 

2000). Six splice variants o f the PACi receptor have been isolated in the rodent.

They differ with binding affinities and potency o f second messenger stimulation. 

They can all act via Gs to activate AC and subsequently stimulate the production of 

cAMP (Spengler et al., 1993). Phospholipase C (PLC) accumulation is also triggered 

to varying degrees via Gq, although this is dependent on the splice variant receptor 

activated and the ligand form o f PACAP (38 or 27) (Spengler et al., 1993; for review 

see Sherwood et al., 2005). In addition to activating AC and PLC, PACAP also 

appears to modulate Ca2+ signalling pathways by signalling through PACi (Spengler 

et al., 1993; Chatteijee et a., 1996).

VP AC has equal binding affinity for both PACAP and VIP (Ishihara et al., 1992; 

Lutz et al., 1993; Couvineau et al., 1994; Rawlings and Hezareh, 1996; Cai et al.,

1997) and exists in two isoforms: VPACi and VPAC2 (reviewed in Harmar et al.,

1998). VPACi was isolated from a rat lung cDNA library (Ishihara et al., 1992) and 

VPAC2 was cloned from the rat olfactory bulb (Lutz et al., 1993) and later published 

independently by Usdin et al. (Usdin et al., 1994). VPACi and VPAC2 have very 

different distribution patterns. VPACi mRNA is widely distributed in the CNS, most 

abundantly in cerebral cortex and hippocampus (Ishihara et al., 1992; Usdin et al.,

1994) and in peripheral tissues including liver, lung and intestine (Ishihara et al., 

1992; Usdin et al., 1994). VPAC2 mRNA is abundant in the thalamus and 

superchiasmatic nucleus (SCN) and at lower levels in the hippocampus, brain stem, 

spinal cord and DRG (Usdin et al., 1994; Sheward et al., 1995). This receptor
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subtype is also found in many peripheral tissues including pancreas, skeletal muscle, 

heart, kidney, adipose tissue, testis and stomach (Adamou et al., 1995; Krempels et 

al., 1995; Usdin et al., 1994).

VPACi couples with Gs to stimulate an increase in cAMP via AC. Originally VPACi 

activation was not thought to stimulate the inositol phosphate/phospholipase C 

(IP/PLC) system (Ishihara et al., 1992; Couvineau et al., 1994), however following 

transfection into hamster Chinese hamster ovarian (CHO) cells, VPACi-receptor 

couples with Gj/0 to stimulate inositol phosphate (IP) production. IP production can 

then regulate intracellular calcium, affecting a number of pathways and signalling 

proteins. The VPAC2 receptor also stimulates the production of cAMP via activation 

of AC (Lutz et al., 1993; Usdin et al., 1994). Effects of VPAC2 activation on calcium 

regulation are suggested by the PACAP-induced increase in inositol trisphosphate 

(IP3) production in rat strial cells (Cai et al., 1997). Furthermore, effects on calcium- 

activated chloride currents mediated by the VPAC2 receptor have been observed in 

Xenopus oocytes (Inagaki et al., 1994).

PACAP expression

In the CNS, PACAP and PACAP mRNA are most abundantly expressed in the 

hypothalamus, with lower levels in other brain tissues (Ghatei et al., 1993). They are 

also present in peripheral tissues including: gastro-intestinal (GI) tract, adrenal gland 

and testis (Ghatei et al., 1993; reviewed in Arimura and Shioda, 1995). The 

expression patterns of PACAP suggest involvement in various bodily functions. 

PACAP expression within adult sensory neurons is primarily localised to small and 

medium sized neurons. The distribution pattern of PACAP is similar to that of CGRP 

and SP, but less widespread, PACAP being expressed by 10% of neurons and CGRP 

by 46% of neurons within adult DRG (Moller et al., 1993; Mulder et al., 1994). 

Developmentally, PACAP expression is detectable within sensory neurons at early 

embryonic stages. Both the peptide and PACI receptor mRNAs can be detected in 

El 1.5 mice in abundance in both DRG and trigeminal using in-situ hybridisation 

(Sheward WJ et al., 1998). Levels of PACAP mRNA and protein decrease with age, 

with less PACAP immunoreactive neurons being present in the adult mouse and fish
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(Shuto et al., 1996; Waschek et al., 1998; Jiang et al., 2003), indicative of an 

important role for PACAP in sensory neuron development.

Physiological functions of PACAP

PACAP has been shown to have a wide array of effects within the body. Roles in cell 

cycle and development, the cardiovascular system, the immune system, bone 

metabolism and as a mediator of endocrine, paracrine and exocrine secretions have 

all been suggested. I will briefly discuss some of these effects here.

Evolutionary conservation of PACAP combined with high level of expression in the 

embryo (Sheward et al., 1998) suggests a strong role for PACAP in embryonic 

development. Reglodi et al., found that injection of PACAP into young rat pups 

accelerated development with regards to facial features and sensory and motor 

neurological signs (Reglodi et al., 2003). Anti-PACAP treatment had the opposite 

effect, retarding ear folding, eye opening and hindlimb placing.

Sixty-percent of mice, with a null mutation in the VPACi gene, die within the first 

four weeks of birth (Jamen et al., 2000). Surviving VPACi'7' mice have an impaired 

insulintropic response to glucose, showing reduction in glucose-stimulated insulin 

secretion both in-vitro and in-vivo. This suggests that PACAP, acting via VPACi, has 

an important role in the normal insulin secretory response to glucose. Such a role has 

been suggested previously by findings that PACAP can potentiate glucose stimulated 

insulin secretion both in-vitro, in isolated perfused rat pancreas (Kawai et al., 1992; 

Bertrand et al., 1996) and in rat and mouse islets (Yada et al., 1994; Filipsson et al.,

1999), and in-vivo in the mouse (Filipsson et al., 1998). Both isoforms of PACAP 

(PACAP38 and PACAP27) can stimulate insulin secretion with similar efficacies in 

mouse and rat islets (Yada et al., 1994; Filipsson et al., 1998).

As well as insulin secretion, PACAP has also been shown to have effects on 

catecholamine secretion, potentiating the release of noradrenaline and adrenaline 

from chromaffin cells of the rat adrenal medulla (Chowdhury et al., 1994; Guo et al.,
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1994; Watanabe et al., 1994). Both PACAP27 and PACAP3g also have a mitogenic 

effect on such cells, stimulating the proliferation of cultured adult chromaffin cells 

via a PKA mediated signalling pathway (Tischler et al., 1995). Conversely mitogenic 

concentrations of PACAP inhibit mitogenic effects of NGF or FGF (unpublished 

observation in Frodin et al., 1994) indicating both mitogenic and anti-mitogenic roles 

for PACAP in adult rat chromaffin cell cultures (Tischler et al., 1995).

Within the cardiac system, intravenous or intra-arterial injection of PACAP into rats 

has been shown to cause a decrease in blood pressure (Nandha et al., 1991; Minkes et 

al., 1992). Such effects are mediated by the vasorelaxant activity of PACAP on 

arterial segments (Warren et al., 1991; Huang et al., 1993; Cardell et al., 1997), 

mediated via AC/cAMP signalling (Absood et al., 1992; Warren et al., 1991).

A role for PACAP as a daytime regulator of the biological clock has also been 

suggested. The suprachiasmatic nucleus (SCN), located in the hypothalamus acts as 

an endogenous pacemaker generating circadian rhythms. It regulates the production 

of melatonin from the pineal gland, in response to environmental cues such as 

light/dark cycles. PACAP immunoreactivity has been found in axons from the retinal 

ganglion cells, which transmit information on light/dark cues to the SCN (Hannibal 

et al., 1997). Levels of PACAP are low during the day, and high at night, suggestive 

of circadian rhythm signalling. Within the SCN, PACAP has been shown to regulate 

phosphorylation of CREB, which mediates melatonin synthesis (Kopp et al., 1997). 

This increase in melatonin is then thought to negatively feedback and inhibits the 

PACAP induced phosphorylation of CREB (Kopp et al., 1997). Evidence suggests 

that these effects of PACAP are mediated via the VPACi receptor subtype. Agonists 

of this receptor potently stimulate melatonin production and likewise, antagonists 

prevent the action of PACAP (Simonneaux et al., 1998).

A role for PACAP in the immune system has been suggested by its widespread 

location in central and peripheral lymphoid tissues (Gaytan et al., 1994; Abad et al.,

2 0 0 2 ). PACAP38 and PACAP27 can protect CD4+ CD8+ thymus lymphocytes from 

glucocorticoid-induced apoptosis in the rat (Delgado et al., 1996). Suggesting a role
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for PACAP in T-cell maturation. Furthermore, an indirect role for PACAP in 

lymphocyte maturation is suggested through the stimulation of interleukin-6 (IL-6) 

release from folliculostellate cells in the pituitary gland (Tatsuno et al., 1991), via a 

PACAP mediated increase in intracellular Ca2+ levels (Yada et al., 1993). The 

subsequent release of IL-6 stimulates the growth and maturation of B cells (Tatsuno 

et al., 1991; Yada et al., 1993).

Within the CNS and PNS, PACAP has been shown to promote the in vitro survival 

of several populations of neurons. It can prevent NMDA-induced cell death in rat 

cortical cultures (Frenchilla et al., 2001) and it can also promote survival and neurite 

outgrowth in rat cerebellar neuroblasts (Cavallaro et al., 1996; Gonzalez et al., 1997; 

Kienlen Campard et al., 1997; Vaudry et al., 1998), PC 12 cells (Hernandez et al., 

1995; Tanaka et al., 1997; Lazarovici et al., 1999) and rat basal forebrain cholinergic 

neurons (Takei et al., 2000) by signalling through the cAMP/PKA pathway. The 

same survival and neurite outgrowth promoting effects were observed in cultured 

embryonic and neonatal DRG neurons, alongside an increased immunoreactivity for 

the neuropeptide CGRP (Lioudyno et al., 1998). Such effects of PACAP on neurite 

outgrowth and gene expression suggest a role for PACAP in modulating sensory 

neuron differentiation as well as survival. Nielsen et al., (Nielsen et al., 2004) 

provided further evidence for this. They found that exogenous PACAP could 

enhance neuronal differentiation of cultured embryonic chick DRG. Furthermore, the 

addition of PACI receptor antagonists’ reduced neuronal differentiation in cultured 

DRG, suggesting that endogenously produced PACAP or a similar peptide acts via 

VPACI to produce neuronal differentiation. Of further interest was the discovery 

that both NT-3 and CNTF can block this effect. It has also been suggested that the 

survival promoting effects of PACAP are mediated through cross-talk with Trk 

neurotrophin receptors (Lee et al., 2002; Rajagopal et al., 2004). Such regulatory 

effects of neurotrophic factors on PACAP will be discussed later.

Further to its neurotrophic effects on sensory neuron survival, a role for PACAP in 

nerve regeneration has been suggested following facial nerve injury. PACAP 

treatment was shown to restore the latency of compound muscle action potentials
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after facial nerve transection in guinea pigs (Kimura et al., 2003; Kimura et al.,

2004). Numerous pieces of experimental data suggest that PACAP plays a role in 

nociception. For example, inflammation, that is associated with thermal and tactile 

hyperalgesia, causes an NGF-mediated increase in PACAP mRNA expression in 

TrkA expressing nociceptive neurons that can be blocked by administration of an 

anti-NGF antibody (Zhang et al., 1998; Jongsma-Wallin et al., 2003). Following both 

sciatic nerve transection and sciatic nerve compression (procedures that also lead to 

tactile and thermal hyperalgesia), a large up-regulation of PACAP mRNA and 

peptide is observed in DRG neurons. In the case of nerve transection this up- 

regulation predominantly occurs in medium and large neurons, which normally 

display negligible PACAP expression, and it is partially antagonised by exogenous 

NT-3 (Jongsma-Wallin et al., 2001). Nerve compression leads to an increase in 

PACAP expression in both large and small DRG neurons (Pettersson et al., 2004). 

This data may suggest a role for PACAP in the generation of inflammatory and 

neuropathic pain.

PACAP’s role in nociception is somewhat conflicting, with PACAP both inhibiting 

(Zhang et al., 1993; Zhang et al., 1996; Yamamoto and Tatsuno, 1995), and 

potentiating pain (Narita et al., 1996; Xu and Wiesenfeld-Hallin, 1996; Jongsma et 

al., 2001, Mabuchi et al., 2004). For example, PACAP administered intrathecally 

could produce anti-nociceptive effects following formalin-induced pain in adult rats 

(Yamamoto and Tatsuno, 1995). Conversely, VPACI7' mice have a 75% decrease in 

nociceptive response; and Mabuchi et al., showed that PACAP7' mice do not exhibit 

inflammatory pain induced by carrageenan injection, or neuropathic pain following 

nerve transection.

Neurotrophic factor regulation of PACAP and PACAP receptor/Trk cross-talk

In adult rat DRG, different neurotrophic factors have been shown to have differing 

effects on PACAP expression in inflammation and also following nerve injury, in 

both injured and intact neurons. Expression of PACAP mRNA is up-regulated in 

small-medium neurons in response to inflammation (Zhang et al., 1998; Jongsma-
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Wallin et al., 2003. The inflammation associated increase in NGF has been 

implicated in producing the observed alterations in neuropeptide levels (Reviewed in 

McMahon et al., 1996). Systemic administration of anti-NGF antibodies prevented 

the inflammation associated increase in PACAP mRNA (Jongsma-Wallin et al.,

2003).

Neurotrophic factor regulation of PACAP expression has also been observed in 

models of nerve damage and axotomy. In intact sensory neurons of the DRG, 

PACAP protein and mRNA is predominantly expressed by small/medium-sized 

neurons that also express TrkA. Following sciatic nerve transection, however, there 

is a large increase in the expression of PACAP mRNA in medium to large, 

predominantly TrkC expressing neurons (Zhang et al., 1995; Zhang et al., 1996; 

Jongsma Wallin et al., 2001). Infusion of NT-3 resulted in a decrease in the injury- 

induced increase in PACAP protein and mRNA expression in TrkC-positive neurons. 

In non-lesioned animals, NT-3 also decreased PACAP expression selectively in 

TrkA-expressing nociceptive neurons (Jongsma Wallin et al., 2001), an effect 

possibly mediated by NT-3 induced down-regulation of high affinity NGF receptors 

(Gratto and Verge, 1997). Whilst NGF increased the expression of PACAP in small, 

TrkA-expressing, nociceptive neurons in both lesioned and intact animals, it also 

selectively reduced the expression of PACAP in large proprioceptive neurons after 

nerve transection, but not in intact animals (Jongsma Wallin et al., 2001). How 

endogenously produced neurotrophic factors affect expression of this neuropeptide, 

is of interest with regards to the ability of PACAP peptide to provide its own trophic 

effects, possibly indirectly via effects on Trk receptors.

PACAP has been shown to have effects on differentiation in late embryonic and 

neonatal rat DRG neurons, alongside survival effects similar to that of NGF 

(Lioudyno et al., 1998). Recent work suggests that such effects could be mediated 

through GPCR cross-talk with the neurotrophin Trk receptors (Lee et al., 2002; 

Rajagopal et al., 2004). PACAP treatment has been shown to cause an increase in 

TrkA tyrosine kinase activity in PC 12 cells and TrkB activity in rat hippocampal 

cells (Lazarovici et al., 1999; Lee et al., 2002; Rajagopal et al., 2004). Furthermore, 

this VPACi mediated Trk activation led to an up-regulation of phosphorylated Akt
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and subsequent cell survival. Blockade of Trk receptors with K252a prevented 

PACAP-induced phosphorylation of Akt and neuronal survival confirming a Trk 

mediated pathway of cell survival (Lee et al., 2002; Rajagopal et al., 2004). More 

recently, however, Nielsen et al. (2004) found no such effect of Trk receptor 

blockade on PACAP induced neuronal differentiation in chick DRG, rather they 

demonstrated that differentiation was effected via a VPACI/MAPK pathway. It 

therefore seems that the many actions of PACAP are mediated through different 

pathways, which may interact with those of the neurotrophins.

The ability of PACAP to regulate the expression of neurotrophins is of further 

interest. In rat cortical cultures, presence of PACAP prevented cell death induced by 

NMD A and also attenuated serum-induced apoptosis (Frenchilla et al., 2001). BDNF 

protein expression was reduced by NMDA in both cellular injury conditions, but 

presence of PACAP prevented this decrease in BDNF and prevented cell death. 

Furthermore pre-incubation with anti-BDNF prevented the neuroprotective effects of 

PACAP38, suggesting PACAP-induced survival is mediated by preventing the 

suppressed expression of a neurotrophin essential for cortical neurotrophin survival. 

The ability of PACAP to regulate expression of neurotrophic factors, alongside the 

receptor cross-talk that occurs between its GPCRs and the Trk receptors adds 

complexity to the regulation of PACAP expression by neurotrophic factors 

investigated in this chapter.

3.1.2. Vanilloid receptor 1 (VR1)

Capsaicin, a component of chilli peppers, has been widely studied for its effects upon 

primary afferent neurons. It depolarises subsets of primary sensory neurons (Oh et 

al., 1996) to evoke pain. The associated release of the neuropeptides SP and CGRP 

contribute to inflammation and subsequent hyperalgesia (Malmberg and Yash, 1992; 

Hingtgen et al., 1995; Traub et al., 1996; Kilo et al., 1997). Conversely, capsaicin has 

been shown to act as an anti-inflammatory and anti-nociceptive agent for the 

treatment of painful disorders (e.g. bladder hyperreflexia), through nociceptor 

desensitisation (Maggi et al., 1987; reviewed in Szallasi and Blumberg, 1996).

Studies found that capsaicin, alongside other molecules such as resiniferatoxin
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(RTX), produce their effects by activating a sensory neuron specific calcium channel 

(Wood et al., 1988).

The cloned VR1 receptor, also known as TRPV1, encodes an 838 amino acid protein 

with a molecular weight of 92,000 Da that is a non-selective cation channel with high 

calcium permeability (Caterina et al., 1997; Szallasi and Blumberg, 1999). In 

addition to capsaicin, numerous other molecules can activate VR1. These include the 

vanilloids, zingerone and piperine, and non-vanilloids like the endocannabinoid, 

anandamide (Hwang et al., 2000; Reviewed in Sterner et al., 1999). Thermal stimuli 

in the noxious range, can also directly open the channel, further suggestive of a role 

for VR1 as a transducer of painful stimuli (Caterina et al., 1997; Helliwell et al.,

1998). Protons have been shown to act as modulators of VR1 gating, with low 

concentrations (moderate acidification) facilitating channel opening and lowering 

heat thresholds (Tominaga et al., 1998) and high concentrations blocking VR1 

activation (Baumann et al., 2000). VR1 appears also to be a sensor of noxious 

hypertonicity and can be directly gated by divalent and monovalent cations (Ahem et 

al., 2005).

Following the discovery of VR1, three more homologous receptors (VRL-1 (TRPV2) 

VRL-2 (TRPV4) and VRL-3 (TRPV3)) have been isolated and, together with VR1, 

these compose the transient receptor potential vanilloid (TRPV) family, a subgroup 

of the transient receptor potential (TRP) family of ion channels. See figure 3.1. for 

details of phylogenetic relationship among mammalian TRP channels and details of 

TRPV channel nomenclature.
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VRL-3 TRPV3? - - - 17p13
ECAC1 TRPV5 CaT2, ECaC, OTRPC3 Human, rat, rabbit 83 kDa 7q35
ECAC2 TRPV6 CaT, CaT1, CaT-like Human, m ouse, rat 83 kDa 7q35

Figure 3.1. Phylogenetic relationship among the mammalian TRP channels with further detail on 
the nomenclature o f the TRPV channels. Taken from Tominga and Caterina, 2004 and Gunthorpe 
et al., 2002.



VRL-1 was identified through a search of genomic databases for TRPV1 

homologues (Caterina et al., 1999; Reviewed in Gunthorpe et al., 2002, Benham et 

al., 2003 and Tominaga and Caterina, 2004). VRL-1 is not activated by ligands of 

TRPV1, but is activated by noxious heat (>53°C). It has been suggested that VRL-1 

mediates responses to extreme noxious temperatures, whilst VR-1 responds to 

medium -  high noxious temperatures (Xu et al., 2002). VRL-1 is predominantly 

expressed in a subpopulation of medium sized thinly myelinated sensory neurons 

(A5 neurons), but it is also present at low levels in the CNS and non-neuronal tissues, 

suggestive of another role and other possible ligands.

VRL-2 (also named TRPV4, VR-OAC, OTRPC4 and TRP 12) was discovered using 

in-silico analysis of expressed sequence tag (EST) databases and conventional 

molecular cloning (Delany et al., 2001). It appears to be an osmotically regulated 

cation channel, opening in response to hypotonic swelling of the cell (Liedtke et al., 

2000; Strotmann et al., 2000; Delany et al., 2001). Like VR1 and VRL-1, VRL-2 is 

expressed in sensory neurons and their peripheral fibres (Leidtke et al., 2000; Guler 

et al., 2002; Alessandri-Haber et al., 2003). VRL-2 is also expressed in sympathetic 

and parasympathetic nerves, on airway and kidney epithelia, sweat glands, intestine 

and blood vessels (Delany et al., 2001). Additionally, VRL2 expression has been 

observed in keratinocytes where it appears to mediate warmth evoked currents in 

conjunction with VRL-3 (Chung et al., 2004; Tominaga and Caterina, 2004).

The virtual completion of the human genome project allowed identification of VRL- 

3 (TRPV3) through a search of genomic sequences (Smith et al., 2002; Xu et al.,

2002 , reviewed in Benham et al., 2003). In humans it is expressed mainly in CNS 

and sensory neurons (Smith et al., 2002; Xu et al., 2002), but also in skin and 

keratinocytes (Peier et al., 2002). Like VR1 and VRL-1, VRL-3 is sensitive to heat, 

although the reported temperature of activation varies from 23°C to 39°C (Smith et 

al., 2002; Xu et al., 2002; Peier et al., 2002). This discrepancy between the activation 

temperatures determined by different groups is thought due to the fact that the
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channel becomes sensitised to heat, opening at lower temperatures, once it has been 

heat-gated for the first time. The result of this is that the recorded temperature of 

activation in any one experimental manipulation is dependent on the “heat history “ 

of the VL-3 expressing cells under investigation (Benham et al., 2003). The recent 

production of TRPV37' mice has confirmed a role for this receptor in heat sensation. 

Mice with a mutation in this receptor have strong deficits in responses to innocuous 

and noxious heat, but not in other sensory modalities (Moqrich et al., 2005). Recently 

non-thermal stimuli have also been determined for this receptor. 2- 

Aminoethoxydiphenyl (2-APB) was shown to activate the receptor in HEK cells 

(Chung et al., 2004). The natural compound camphor, known for its heat sensation- 

producing effects in humans, was also shown to produce effects in cultured mouse 

primary keratinocytes, an effect that was abolished in TRPV3'/' mice (Moqrich et al., 

2005). Other more distant cousins of VR1 include two epithelial Ca2+ channels, 

TRPV5 (ECAC1) and TRPV6 (ECAC2). I will not discuss these further here, but for 

a review see Gunthorpe et al., 2002.

Expression profile of VR1

VR1 is located predominantly in primary sensory neurons, but is also found in 

various brain nuclei and spinal cord (Mezey et al., 2000). Non-neuronal cells have 

also been shown to express VR1 (TRPV1) including: pancreatic B cells (Akiba et al., 

2004), liver epithelial cells (Reilly et al., 2003), astrocytes from the rat spinal cord 

(Doly et al., 2004), endothelial cells (Yamaji et al., 2003), polymorphonuclear 

granulocytes (Heiner et al., 2003), macrophages (Chen et al., 2003), oral epithelial 

cells (Kido et al., 2003) and thymocytes (Amantini et al., 2004).

In DRG, VR1 is expressed by small-medium sized neurons (Caterina et al., 1997) 

that have either non-myelinated (C-fibre) or thinly myelinated (A8-fibre) axonal 

processes (Michael and Priestly, 1999; Guo et al., 1999; Tominaga et al., 1998). In 

rat DRG, VR1 is expressed by both TrkA- positive, peptidergic nociceptive neurons, 

and GDNF responsive Griffonia simplicifolia isolectin B4 (IB4) positive c-fibre 

nociceptors (Michael and Priestly 1999; Guo et al., 199). In contrast, in mouse DRG,
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only a small (2-3%) population of neurons are both IB4 and VR1 positive (Zwick et 

al., 2002), the majority of functional VR1 receptors being expressed by the 

peptidergic TrkA expressing neurons. It is also worth noting that approximately 10% 

of VR1 positive rat lumbar DRG neurons are SP and IB4 negative (Tominga et al., 

1998). A heterogeneous population of cells therefore express VR1 within the DRG.

In nodose ganglia, expression of VR1 mRNA is co-localised with that of TrkB rather 

than TrkA (Michael and Priestly, 1999).

Roles of VR1

The apparent pro-nociceptive and anti-nociceptive effects of capsaicin mentioned 

above are thought to be mediated via VR1. Further evidence for such apparent 

contradictory roles of VR1 was provided by the production of a VR1 null mutant 

mouse (Caterina et al., 2000; Bolcskei et al., 2005). Mice lacking the capsaicin 

receptor exhibited impaired detection of painful heat and, unlike wild type mice, 

failed to develop thermal hyperalgesia after mustard oil, CFA or acid application to 

the hindpaw or a mild bum injury, showing that VR1 is necessary for normal thermal 

nociception and plays a role in the generation of thermal hyperalgesia in response to 

noxious chemical and heat insults. (Caterina et al., 2000; Bolcskei et al., 2005). In 

contrast, VR1 knockout mice were identical to wild type mice developed mechanical 

hyperalgesia in response to formalin and carrageenan treatment and partial sciatic 

nerve lesion in an identical manner to wild type mice. VR1 is therefore not 

apparently necessary for normal mechanical nociception or the development of 

mechanical hyperalgesia. The data from VR1 knockout mice have been confirmed by 

experiments that specifically blocked the peripheral activation of VR1 in sensory 

fibres of the sciatic nerve by intra-plantar injection of the potent VR1 antagonist 

iodoresiniferatoxin (IRTX). Low dose IRTX blocked the increase in excitatory 

electrical responses evoked by noxious heat in wide dynamic range (WDR) c-fibre 

nociceptive neurons that typically occurs after carrageenan application and spinal 

nerve ligation (SNL). In contrast, IRTX failed to inhibit the increased response of 

WDR neurons to mechanical stimuli that occur following carrageenan treatment and 

SNL. In addition, higher doses of IRTX reduced the heat response but not the
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mechanical response of naive WDR neurons that were not subjected to inflammatory 

insult or SNL (Jhaveri et al., 2005). Interestingly, anti-nociceptive effects of VR1 on 

mechanical thresholds have been suggested by examination of VR1 null mice 

subjected to agents that induce polyneuropathy. Chronic mechanical hyperalgesia 

evoked by streptozotocin-induced diabetes and cisplatin-evoked toxic 

polyneuropathy occurred earlier and was of greater magnitude in VR1 knockout mice 

compared to wild-type mice (Bolcskei et al., 2005).

Post-translational modification of VR1 in response to inflammation and chemical 

insult has been postulated to regulate onset of hyperalgesia and enhance VR1 

activity. In the absence of any other agonist, PKC activation has been shown to 

phosphorylate VR1, inducing its activity and enhancing the response of the receptor 

to capsaicin (Crandall et al., 2002; Premkumar et al., 2000). cAMP can similarly 

phosphorylate VR1, leading to an enhanced response to capsaicin through reduced 

desensitisation of the receptor (Bhave et al., 2002). This has also been illustrated in a 

mouse model of diabetic neuropathy (Hong and Wiley, 2005). Hong and Wiley 

(Hong and Wiley, 2005) show that painful diabetic neuropathy is associated with not 

only alterations in VR1 levels, but also by PKC-mediated phosphorylation, which 

blunts VR1 desensitisation, allowing enhanced flow of receptor currents. NGF 

rapidly potentiates TRPV1 channel activity in cultured DRG neurons treated with 

capsaicin (Shu and Mendell, 1999; Bonnington and McNaughton, 2003). Studies 

using pharmacological inhibitors in these neurons suggest that the PI3K pathway is 

crucial step in mediating NGF sensitization, with both calcium/calmodulin- 

dependent kinase II (CaMK II) and PKC involved downstream of PI3K (Bonnington 

and McNaughton, 2003; Zhuang et al., 2004). PKCe sensitizes TRPV1 by directly 

phosphorylating this channel, leading to increased channel activity (Cesare et al., 

1999; Premkumar and Ahem, 2000; Numazaki et al., 2002) and translocation of the 

channel to the cell surface (Morenilla-Palao et al., 2004). Consistent with these 

findings, NGF-induced hyperalgesia is inhibited by a PKCe-selective peptide 

inhibitor (Khasar et al., 1999).
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Aside from an obvious role in peripheral nociception, VR1 also appears to play a role 

in visceral nociception. A role for VR1 in the gastrointestinal (GI) tract is suggested 

by the demonstration of VRl-like immunoreactivity on sensory fibres that enter 

myenteric ganglia and surround enteric neurons and fibres that run in the 

interganglionic fibre tracts throughout the GI tract. These sensory fibres are largely 

CGRP positive and originate from thoracic and lumbar DRG, although a small 

number appear to originate from the nodose ganglion (Ward et al., 2003). 

Interestingly, the expression of VR1 is up-regulated in colonic nerve fibres of 

patients with active inflammatory bowel disease (IBD) compared to control subjects, 

suggesting a role for VR1 in the aetiology of this condition (Yiangou et al., 2001; 

Facer et al., 2001). More recently, it has been demonstrated that activating VR1 in 

nerve fibres innervating the mucosa, blood vessels and smooth muscles of the 

stomach by the intragastric administration of specific VR1 agonists in rats reduces 

the severity of gastric lesions due to the intragastric administration of 0.6 N HC1 in a 

dose dependent manner. Moreover, the protective effect of VR1 activation is blocked 

by specific VR1 antagonists, again in a dose dependent manner (Horie et al., 2004).

Recently, evidence has emerged suggesting that VR1 also plays a role in regulating 

urine production. Activation of VR1 in rat sensory afferents innervating the kidney 

by perfusion of capsaicin into the pelvis leads to increases in urine flow rate and 

urinary sodium excretion (Zhu et al., 2005). VR1 is expressed in bladder 

neuroepithelial cells and sensory fibres innervating the bladder. Up-regulation of 

VR1 in both these cell types is associated with neurogenic detrusor overactivity 

(NDO) and treatment with low doses of the VR1 agonist resiniferatoxin ameliorates 

the symptoms of this condition, possibly by causing a sustained slow depolarization 

of VR1 positive afferents (in the absence of action potentials) that prevents action 

potential generation by other physical and chemical VR1 agonists (Apostolidis et al., 

2005; Raisinghani et al., 2005). Recently it has been demonstrated TRPV1 is 

functionally expressed in rat islet p cells where it may play a role in insulin secretion 

as a calcium channel. This finding may account for the effect of capsaicin on food 

intake and energy consumption as well as on the pathophysiological regulation of 

pancreatic endocrine functions (Akiba et al., 2004)
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VR1 also appears to plays a role in regulating blood pressure and blood flow in the 

cardiovascular system. Anandamide has been shown to act via the VR1 receptor to 

produce vasodilation, most likely through the accompanied release of the vasodilator, 

CGRP (Zygmunt et al., 1999; Vaishnava et al., 2003). Additionally capsaicin, and 

also to a lesser extent anandamide, can produce a dose dependent decrease in heart- 

rate and blood pressure, an effect that can be reversed by the addition of the VR1- 

specific antagonist, capsazepine (Malinowska et al., 2001).

Regulation of VR1 expression by neurotrophic factors following nerve damage, 

axotomv and inflammation

Local inflammation, produced by application of the local irritant, Freuds Complete 

Adjuvant (CFA) causes a p38 MAP kinase dependent increase in VR1 protein 

expression in adult rat DRG neurons (Amaya et al., 2003; Ji et al., 2002). This 

increase in VR1 expression appears to play a role in the generation of thermal 

hyperalgesia, as mice lacking VR1 no longer show hypersensitivity to heat following 

inflammation (Caterina et al, 2000). Studies using anti-sera against NGF and GDNF 

in the adult rat have shown that both neurotrophic factors have a role in the onset of 

such thermal hyperalgesia following inflammation through up-regulation of VR1 

(TRPV1) expression. CFA induces an up-regulation of NGF and GDNF protein in 

adult rat DRG, and anti-serum to both trophic factors prevents the up-regulation of 

VR1 in TrkA expressing and IB4 positive nociceptors, respectively, and also 

ameliorates the thermal hyperalgesia that develops in response to CFA (Amaya et al., 

2004; Ji et al., 2002; Woolf et al., 1994). Up-regulation of VR1 by NGF and GDNF 

is not likely to be the only way these trophic factors contribute to the generation of 

thermal hyperalgesia in adult rodents. For example, NGF has been shown to regulate 

the expression of a number of other genes in DRG neurons, to increase the release of 

neuropeptides (possibly via increased VR1 activation) and lead to the release of a 

number of inflammatory mediators from mast-cells (reviewed in Hefti et al., 2006).
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VR1 mRNA and protein are down-regulated in injured adult rat DRG neurons 

following sciatic nerve or spinal nerve transection (Michael and Priestley, 1999; 

Michael and Priestley, 2002; Fukuoka T et al., 2002; Wendland et al., 2003). This 

effect is proposed to be due to the limited availability of endogenous neurotrophic 

factor support in such conditions. Much evidence supports this hypothesis. 

Administration of NGF and GDNF can prevent the axotomy-induced down- 

regulation of VR1 mRNA observed in cultured adult rat DRG (Winston et al., 2001; 

Ogun-Muyiwa et al., 1999 Wendland et al., 2003). Furthermore, in-vivo 

sequestration of NGF using neutralising anti-sera also reduces sensitivity of neurons 

to capsaicin through a loss of VR1 (McMahon et al., 1995). Following total or partial 

sciatic nerve transection (Hudson et al., 2001) or spinal nerve ligation (Hudson et al., 

2001; Fukuoka et al., 2002) in rats, expression of VR1 in intact DRG neurons 

increased (Hudson et al., 2001; Fukuoka et al., 2002). This increase in undamaged 

nerves may be due to increased availability of growth factors from target tissues 

because of an overall reduction in the amounts of growth factors taken up from the 

tissue by retrograde transport.

Nodose ganglia

Previous studies on the expression of VR1 in nodose ganglia have revealed 

expression and regulation patterns that differ from those observed in the DRG. In 

nodose ganglia, the majority of VR1 positive cells also express TrkB, with very few 

being TrkA immuno-reactive (Michael and Priestly, 1999). This co-expression of 

VR1 and TrkB agrees with the finding that BDNF, but not NGF, can regulate the 

capsaicin sensitivity of cultured adult rat nodose neurons (Winter, 1998). It is worth 

noting however that the use of BDNF in these experiments was very high at lpg/ml, 

suggesting that at physiological levels such effects may not be observed. This 

difference in the regulation of VR1 expression between nodose ganglia and DRG 

demonstrates that a particular determinant of nociceptive thresholds is not regulated 

in the same manner in all types of rat sensory neurons. A study of the regulation of 

VR1 expression in the trigeminal ganglion would therefore be of interest to
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determine whether VR1 is regulated by NGF or BDNF in these cranial sensory 

neurons.

Summary

VR1 (TRPV1) functions in many systems within the body, including the 

cardiovascular system, GI tract and nervous system, although most work has focused 

on the role of VR1 in pain. Several neurotrophic factors have been implicated in the 

regulation of VR1 expression and the gating properties of this ion channel. From a 

therapeutic perspective, it is important to understand fully the regulation of VR1 

expression as this is an established drug target in painful conditions.

To date there is little experimental data concerning the regulation of VR1 expression 

in neonatal sensory neurons. One of the objectives of the studies reported in this 

chapter was to explore how neurotrophic factors regulate the expression of VR1 in 

post-natal sensory neurons

3.1.3. Galanin

Background

The neuropeptide galanin was isolated from porcine intestine in 1983 by Tatemoto et 

al. (Tatemoto et al., 1983). It is a 29 amino acid peptide that is widely expressed in 

the nervous system and present in a small population of peptidergic, small-diameter 

adult DRG neurons (Chang et al., 1985; Skofitsch and Jacobowitz 1985). Galanin 

mRNA is expressed in the majority of embryonic sensory neurons, peaking at E 15- 

El 7 in DRG and trigeminal ganglia, but decreasing after birth so that only 2% of 

adult DRG neurons are galanin mRNA-positive (Xu et al., 1996; Ma et al., 1999). 

Such high levels of expression in embryonic sensory neurons suggest an important 

role for galanin in sensory neuron development (discussed below). Although galanin 

expression is predominantly in small/medium sized peptidergic neurons in the adult, 

some expression in large diameter neurons has been observed (Xu et al., 2000; Ma et
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al., 1999). Whilst galanin expression levels are low in adult sensory ganglia, 

expression is dramatically increased in large diameter neurons following nerve injury 

or axotomy. This contrasts with many neuropeptides, for example, SP and CGRP, 

whose expression decreases following axotomy. Up-regulation of galanin following 

injury raises the possibility that this neuropeptide may play a role in promoting 

neuron survival and/or regeneration following nerve trauma and may also play a role 

in the modulation of nociceptive thresholds, since these can change following nerve 

trauma. These aspects of galanin function are discussed below.

Receptors

Galanin mediates its effects via three G protein coupled receptors; GAL-R1 (Habert- 

Ortoli et al., 1994), GAL-R2 (Smith et al., 1997) and GAL-R3 (Wang et al., 1997; 

Smith et al., 1998). There is a region of 83 amino acids conserved in all three rat 

galanin receptor subtypes, whilst outside this conserved region, homology is only 

approximately 23% (Branchek et al., 2000). GAL-R1 mRNA is found in 

approximately 50% of rat DRG neurons, predominantly in those that are of medium 

and large size (O’Donnell et al., 1999; Xu et al., 1996). In contrast, GAL-R2 mRNA 

is expressed in approximately 80% of rat and mouse DRG neurons, with 60% of 

these being small CGRP-positive neurons (O’Donnell et al., 1999; Shi et al., 1997; 

Liu and Hokfelt, 2002). Only low levels of GAL-R3 can be detected in DRG neurons 

(Waters and Kraus 2000; reviewed in Branchek et al., 2000).

The expression patterns and the downstream signal transduction pathways recruited 

following receptor activation differ for the three galanin receptors (reviewed in 

Bartfai et al., 1993 and Branchek et al., 2000). GAL-R1 and GAL-R3 mediate their 

effects through Gj/0 type proteins, leading to an inhibition of adenylate cyclase 

(Habert-Orli et al., 1994; Smith et al., 1998; Wang et al., 1997). Conversely GAL-R2 

acts via Gq to activate phospholipase C that in turn causes a mobilisation of calcium 

and activation of protein kinase C (PKC) (Fathi et al., 1998; Howard et al., 1997; 

Waters et al., 2000). Signalling via GAL-R2 can also activate MAP kinase pathways 

(Wang et al., 1998).
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Physiological function

Because of its widespread distribution and interactions with multiple signalling 

pathways, a role for galanin in a wide variety of physiological processes is to be 

expected. The effects of galanin are commonly mediated through modulation of 

hormone and neurotransmitter secretion. For example, galanin inhibits the release of 

noradrenaline, serotonin, acetylcholine and glutamate (Seutin et al., 1989; Pieribone 

et al., 1995; reviewed in Bartfai et al., 1993). These molecules have a variety of 

actions within the body, hence the multiple effects of galanin throughout the nervous 

system. A role for galanin in a number of important bodily functions has been 

implicated. Effects on; cognition (Chan-Palay, 1988; Mastropaolo et al., 1988; Ogren 

et al., 1996; Robinson and Crawley, 1993; Malin et al., 1992; Reviewed in Wrenn 

and Crawley, 2001; Wrenn et al., 2004; Rustay et al., 2005), stress and anxiety 

(Ceresini et al., 1998; Reviewed in Branchek et al., 2000; Khoshbouei et al., 2002; 

Holmes et al., 2003), endocrine modulation (Bartfai et al., 1993; Carey et al., 1993 

Pieribone et al., 1995), nociception (Reviewed in Xu et al., 2000; Reviewed in Liu 

and Hokfelt, 2002, Hygge-Blakeman et al., 2004; Wiesenfeld-Hallin et al., 2005), 

feeding (Crawley et al., 1990; Dube et al., 1994; Crawley, 1999) and in nerve 

regeneration following injury (Wynick et al., 2001; Holmes et al., 2005) have all 

been reported.

Co-localisation of galanin with acetylcholine (ACh) and choline acetyltransferase 

(ChAT) in medial septal neurons projecting to the rodent hippocampus, suggest a 

role for galanin in the modulation of cholinergic transmission and thus cognition 

(Melander et al., 1995, 1996). Indeed, negative effects of galanin over-expression on 

learning and memory were demonstrated by several studies in the rat in which central 

injection of galanin produced performance deficits in working memory, fear 

conditioning and spatial tasks (Mastropaolo et al., 1988; Malin et al., 1992; Robinson 

and Crawley, 1993; Ogren et al., 1996). These findings, combined with the discovery 

that galanin is over-expressed in the basal forebrain during the onset of Alzheimer’s
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disease (AD) (Chan-Palay, 1988; Beal et al., 1990), has led to the conclusion that 

galanin may be the cause of the cognitive dysfunction characteristic of AD (Chan- 

Palay, 1988; Hokfelt et al., 1997; Wrenn and Crawley, 2001). The production of 

mice that over-express galanin has further supported this hypothesis. Although 

galanin over-expressing mice, display normal general health, they are impaired in 

cognitive tasks including the Morris water-maze probe trial and trace fear 

conditioning (Steiner et al., 2000; Kinney et al., 2002). They also displayed 

neurochemical deficits characteristic of AD, with reduced levels of ChAT-containing 

cells in the horizontal diagonal band (HDB) (Steiner et al., 2000). The signalling 

pathways galanin utilises to produce these detrimental effects are unclear. Of note, 

however, is that mice with a null-mutation in the GAL-R1 gene were found to 

behave normally on most memory tasks, implicating other receptor subtypes in such 

spatial learning and memory (Wrenn et al., 2004; Rustay et al., 2005).

Although GAL-R1 null mice show no deficits in memory-related tasks, they do 

display increased anxiety-like behaviour, suggesting a role for GAL-R1 and hence 

galanin in stress and anxiety (Holmes et al., 2003). This hypothesis is reinforced by 

the expression of galanin in neural systems that utilise noradrenaline and serotonin as 

neurotransmitters. Further studies have noted increased levels of prepro-galanin 

mRNA in the locus coeruleus (LC) in situations of high stress that produce high 

levels of noradrenaline release, e.g. repeated exercise (O’Neal et al., 2001) and 

chronic social stress (Holmes et al., 1995). However, low stress tasks such as 

swimming (Austin et al., 1990) or wheel running (Soares et al., 1999) show no such 

increase in prepro-galanin mRNA. These results suggest galanin gene expression is 

modulated in response to repeated stress, but not to low stress tasks. Its up-regulation 

in the LC in situations of high stress, and the increase in anxiety in GAL-R1 

knockout mice suggest galanin may attenuate noradrenergic neuron firing here to 

produce anxiolytic effects. Indeed an inhibitory effect of galanin on the firing rate of 

LC neurons has previously been observed (Seutin et al., 1989; Pieribone et al., 1995). 

Such a role for galanin in modulating stress responses is further supported by studies 

in the galanin over-expressing (OE) mouse. Such mice were normal with regards to 

general health, however showed no anxiety-like phenotype to three separate anxiety
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tests in comparison to wild-type mice (Holmes et al., 2002). Furthermore, stimulation 

of noradrenergic cells with the alpha 2 adrenoreceptor antagonist, yohimbine 

produced pro-anxiety effects in wild-type mice in the light-dark exploration test, but 

no such effects were observed in galanin over expressing mice (Holmes et al., 2002). 

Taken together, these data suggest that galanin and its receptors, particularly GAL- 

R l, are potential therapeutic targets for the development of novel anxiolytic 

treatments.

Epilepsy is a diverse neurological disorder caused by a misbalance between 

excitatory (glutamatergic) and inhibitory (GABAergic) neurotransmission leading to 

hyperexcitability in neuronal circuits. A potential role for galanin as an 

anticonvulsant is suggested following the discovery that galanin antagonises 

glutamatergic neurotransmission in the hippocampus (Zini et al., 1993, 1993b; 

reviewed in Mazarati et al., 2001). Such effects of galanin on glutamate are mediated 

by K+ channels, as effects were abolished by the K+ blocker, glibenclamide (Zini et 

al., 1993). The production of transgenic mice has further supported these hypotheses. 

Mice that over-express galanin have been shown to exhibit a marked suppression of 

seizure development in an animal model of human complex partial seizures (Kokai et 

al., 2001). Furthermore, mice with a null mutation in the GAL-R1 gene show an 

enhanced susceptibility to seizures in limbic status epilepticus (SE), suggesting that 

the ability of galanin to reduce seizures is mediated through GAL-R1 (Mazarati et 

al., 2004). A role for GAL-R2 has also been implicated in mediating the 

anticonvulsant effects of galanin (Mazarati et al., 2004a, Lu et al., 2005). Taken 

together, these results suggest that agonists for both GAL-R1 and GAL-R2 would be 

of therapeutic use in the treatment of seizures. However, since GAL-R2, but not 

GAL-R1, protein and mRNA levels are decreased following pilocarpine induced SE 

(Lu et al., 2005), GAL-R1 would seem to be the better therapeutic target.

The distribution of galanin in brain areas that regulate ingestive behaviours led to a 

number of studies on the role of galanin in feeding (reviewed in Crawley, 1999). It 

was shown that centrally administered galanin in the rat induced a dramatic increase 

in food consumption (Crawley et al., 1990; Dube et al., 1994), an effect that could
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be attenuated by injection of the galanin antagonist, M40 (Bartfai et al.,1993), into 

the hypothalamus or amygdala prior to injection of galanin (Bartfai et al., 1993; 

Corwin et al.,1993). No effect of M40 alone on food intake was observed (Bartfai et 

al., 1993; Corwin et al., 1993; reviewed in Crawley, 1999).

A role for galanin in nociception is well established. Following peripheral nerve 

damage or axotomy in adult rodents, a dramatic up-regulation in galanin mRNA and 

protein expression is observed in sensory neurons (Hokfelt et al., 1987; Villar et al., 

1989; Wiesenfeld-Hallin., 1992; Zhang et al., 1998; Holmes et al., 2005). This up- 

regulation of galanin expression is accompanied by a down-regulation in GAL-R1 

and GAL-R2 expression (Xu et al., 1996; Shi et al., 1997; Reviewed in Wiesenfeld- 

Hallin, 2001). Following nerve injury, intrathecal application of exogenous galanin 

produces an enhanced inhibitory effect on nociceptive behaviours (Hao et al., 1999; 

Yu et al., 1999; Liu and Hokfelt, 2000), whilst application of the high affinity 

galanin receptor antagonist, M3 5, increases pain-like behaviour (Wiesenfeld-Hallin 

et al., 1992, Liu and Hokfelt., 2000).

Transgenic mice have provided further evidence for an inhibitory role for galanin in 

nociception. Mice over-expressing galanin show significant elevation of nociceptive 

threshold to thermal stimulation in both the tail-flick and Hargreaves test (Blakeman 

et al., 2001) and a decrease in the development of pain-like behaviours following 

partial sciatic nerve injury (Hygge-Blakeman et al., 2004; reviewed in Wiesenfeld- 

Hallin et al., 2005). Interestingly, GAL-R1 knockout mice show no differences 

compared to wild type mice in either the tail flick test, or in paw withdrawal latency 

to radiant heat stimulation. There was a slight, but significant reduction in the latency 

to jumping/hind-paw licking in the hotplate test in GAL-R1 knockout mice versus 

wild type mice and also an increase in response scores to cold stimulation (Hygge- 

Blakeman et al., 2003; Reviewed in Wiesenfeld-Hallin et al., 2005). Such GAL-R1'7' 

mice therefore only have a subtle nociceptive phenotype, suggesting a possible role 

for other galanin receptor subtypes in mediating the inhibitory effects of galanin on 

nociception. As mentioned above, GAL-R2 is expressed predominantly on small

215



nociceptive neurons, unlike GAL-R1, and hence may have a more prominent role 

than GAL-R1 in mediating galanin’s effects on nociceptive thresholds..

Alongside these physiological roles, galanin has also been shown to act as a survival 

factor for a population of developing sensory neurons. Adult galanin null mutant 

mice contain 13% less DRG neurons than wild type mice due to increased cell death 

neonatally. Analysis of neuronal properties determined that the neurons lost were 

those specifically <200microns in diameter (Holmes et al., 2000). This would 

suggest that galanin expression is important for the development of a specific 

subpopulation of small primary sensory neurons within the DRG. A further trophic 

role for galanin is suggested in the adult, since mice with a null mutation in the 

galanin gene showed a reduced rate of regeneration following nerve injury (Holmes 

et al., 2000). Additionally, a 30% reduction in neurite outgrowth was observed in 

cultures of adult DRG from these mice. (Holmes et al., 2000; reviewed in Holmes et 

al., 2005 and Wynick et al., 2001). This apparent neurotrophic effect of galanin will 

need to be considered when interpreting the effects of other neurotrophic factors on 

modulating galanin expression

Regulation of galanin mRNA expression by neurotrophic factors

Although some studies of the regulation of galanin mRNA expression by 

neurotrophic factors has been undertaken in the adult, little is known about the roles 

of neurotrophic factors in regulating galanin expression in developing sensory 

neurons. The role of NGF in strongly up-regulating galanin mRNA is suggested by 

several observations. NGF up-regulates galanin mRNA in cultured DRG (Kerekes et 

al., 1997; Ozturk and Tonge, 2001). Injection of anti-NGF antibody into mice 

produced an increase in galanin mRNA that mimicked the effects seen in axotomy 

(Shadiack et al., 2001). Infusion of NGF following nerve damage produced a 

decrease in galanin immunoreactivity (Verge et al., 1995). Interestingly, no effect of 

exogenous NGF on galanin mRNA or protein levels is observed in intact neurons 

(Verge et al., 1995), suggesting an inhibitory role for NGF on galanin expression in- 

vivo only following nerve damage.
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Aside from NGF, other neurotrophic factors have also been shown to regulate 

galanin expression. BDNF treatment decreases galanin mRNA levels in cultured 

adult DRG (Kerekes et al., 1997). Additionally, following nerve injury, GDNF given 

intrathecally was found to inhibit several of the nerve injury-related alterations in 

gene expression, including the up-regulation of galanin in large diameter neurons 

(Wang et al., 2003).
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3.2. Material and Methods

3.2.1. Transgenic mice

3.2.1.1. Bax double knockout mice

To produce the data in this chapter, several different transgenic mouse strains were 

used to study the effects of growth factors and their receptors on gene expression in- 

vivo.

Since neurons that are dependent on NGF for embryonic survival undergo extensive 

cell death in TrkA'7' and NGF'7‘ fetuses (Crowley et al 1994, Smeyne et al, 1994), it 

was necessary to produce double-transgenic mice that were homozygous for a null 

mutation in the gene encoding the pro-apoptotic protein BAX in order to study the 

in-vivo regulation of gene expression by NGF/TrkA signalling.. Both NGF'7TBax'7' 

and TrkA'7TBax'7' have been generated previously (Patel et al., 2000). In both double 

mutants the large decrease in cell death seen in TrkA or NGF knockout mice does 

not occur. In fact in DRG of TrkA+/+/Bax'7' mice at P0, neuron counts are actually 

higher than those in DRG of TrkA+7+/Bax+7+, most likely attributable to the 

elimination of naturally occurring cell death (Patel et al., 2000). Furthermore similar 

increases in neuronal number are found in DRG of TrkA'7TBax'7'mice at P0 in 

comparison to DRG of TrkA+7+/Bax+7+ indicating that the absence of Bax allows the 

rescue/survival of all neurons requiring NGF/TrkA signalling during embryonic life 

(Patel et al., 2000). The sensory neurons that survive in these double knockout mice 

are small and atrophic (Patel et al., 2000), however such “rescued” neurons have 

been shown to express peripherin and the neuropeptides CGRP and SP. DRG 

neurons of NGF'77Bax*7' mice have also have been shown to express TrkA. These 

findings suggest that an in-vivo deficiency of Bax permits the survival of peptidergic 

neurons in the absence of NGF/TrkA signalling (Patel et al., 2000).
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In this chapter TrkA'7'/Bax'7' mice were used to explore the regulation of gene 

expression by NGF/TrkA signalling. It would have also been informative to use 

NGF‘7'/Bax'7' mice, however time constraints hindered this investigation.

TrkA'7/Bax'7' mice were generated by breeding TrkA+/7Bax+/\  The pups produced 

were therefore one of nine possible genotypes:

TrkA'7TBax'7\

TrkA'7TBax+7',

TrkA'7TBax+7+,

TrkA+/7Bax’7',

TrkA+/7Bax+/',

TrkA+/7Bax+/+,

TrkA+/+/Bax+7',

TrkA+7+/Bax'7‘,

TrkA+7+/Bax+7+

On the day of birth, the whole litter of mice were killed by decapitation just above 

the neck. Tail tips were kept for genotyping and each pup was individually dissected 

to remove trigeminal ganglia, nodose ganglia and DRG. Ganglia were stored at -  

80°C until genotyping was complete.

Following genotyping ganglia from mice that contained null mutations in both genes 

(TrkA'77Bax‘7') were kept alongside ganglia from wild-type litter mates 

(TrkA+7+/Bax+7+) for further investigation. In addition, as a control, to ensure that the 

deletion of functional Bax did not have profound effects on sensory neuron gene 

expression, sensory ganglia were also collected from Bax single knockout mice 

(TrkA+/+/Bax'7'). All other ganglia were discarded.

NT-3 null mutant mice also have a severe phenotype, displaying pronounced limb 

movement defects, due to loss of sensory and sympathetic neurons, and perinatal 

mortality (Emfors et al., 1994). In order to study the effects of NT-3 in regulating
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gene expression in sensory neurons in vivo, NT-3 7Bax'A mice were therefore 

generated. In these double null mutant mice, NT-3 dependent neurons can now 

survive, and express the proprioceptive marker paravalbumin, suggesting these 

“rescued” neurons display characteristics of proprioceptive neurons from normal 

wild-type mice (Patel et al., 2003).

NT-S^VBax7' mice were generated by breeding NT-3+/7Bax+/' with NT-3+/7Bax+/'. 

Each pup from these parents will therefore be one of nine possible genotypes: 

NT-3~/7Bax‘/',

NT-3'/7Bax+/',

NT-3'/7Bax+/+,

NT-3+/7Bax"\

NT-3+/7Bax+/',

NT-3+/7Bax+/+,

NT-3+/+/Bax+/',

NT-3+/+/Bax'/_,

NT-3+/+/Bax+/+

On the day of birth, the whole litter of mice were killed by decapitation just above 

the neck. Tail tips were kept for genotyping and each pup was individually dissected 

to remove trigeminal ganglia, nodose ganglia and DRG. Ganglia were stored at -  

80°C until genotyping was complete.

Following genotyping, ganglia from mice that contained null mutations in both genes 

(N T ^'/B ax7') were kept alongside ganglia from their wild-type litter mates (NT- 

3+/+/Bax+/+). In addition, as a control, to ensure that the deletion of functional Bax did 

not have profound effects on sensory neuron gene expression, sensory ganglia were 

also collected from Bax single knockout mice (NT-3+/+/Bax7*).
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3.2.1.2. Dissections

Trigeminal ganglia

At PO, this dissection is very similar to that of the late embryonic mouse (see 2.2.1). 

Serrated scissors are used to cut off the top of the skull in a plane just above the eyes 

and whisker pads. The brain was gently removed to reveal the two trigeminal ganglia 

lying at the base of the skull, sitting in two niches either side of the mid-bone (as 

seen previously in figure 2.2). The ganglia were removed with forceps and adherent 

connective tissue removed with tungsten needles.

Nodose ganglia

The two murine nodose ganglia, also known as the inferior vagal ganglia, are situated 

just below the base of the skull, close to the jugular foramen. The top of the skull and 

underlying brain were removed and the head bisected along the sagittal plane. The 

hindbrain was removed from each half of the head, and the slit-like jugular foramen 

was now visible. By opening up the mouth of the foramen, the nodose ganglion was 

revealed lying just above the superior cervical ganglia (SCG). The SCG is composed 

of sympathetic neurons and is distinct from the nodose ganglion by its oval, 

elongated structure and its attachment to the thin sympathetic chain. The nodose 

ganglion is a clearly defined spherical structure, which has the prominent vagus 

nerve projecting from its distal aspect. The nodose ganglion was removed from each 

side of the head using forceps to gently tease it from surrounding tissue, and once 

again ‘cleaned’ of any adherent connective tissue using tungsten needles (figure 3.2)

DRG

For the DRG, the dissection was very similar to that described in section 2.2.1. First, 

skin was cut away from the back of the mouse, and a portion of the lumbar spinal 

column was removed using serrated scissors. As with the embryo, small scissors 

were used to cut the length of this section of spinal column along the ventral aspect
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Figure 3.2: Dissection o f  the nodose ganglia
The medial aspect o f half o f the head of an E14 muse embryo. A: An incision is made from the jugular 
foramen (J) to the midline (dotted line) and the occipital bone is reflected in the direction of the arrow. B: 
The jugular foramen is now open to reveal the nodose (N) and superior cervical ganglion (s) just beneath. 
(T - tongue, ACF - anterior cranial fossa, IE - inner ear, R - root of the trigeminal nerv).
Taken from Davies, 1995.



3.2.2. Genotyping

Genotyping was performed in a similar manner to that outlined in section 2.2. DNA 

was extracted and the presence or absence of the knockout allele identified by PCR.

DNA Extraction

Genomic DNA was extracted from tails of all mice using the Nucleospin DNA 

extraction kit following the manufacturers protocol as detailed in section 2.2.

PCR

PCR reactions were carried out to determine the genotype of each mouse dissected. 

Details of primer sequences and PCR reactions are outlined below

A master mix solution containing all reagents was made up for each reaction, 19pl 

(or 15 pi for Bax) of which was added to lpl (or 5 pi for Bax) of genomic DNA. 

Mastermix recipes are shown below:

TRKA NT-3 BAX

lOx hot taq buffer 2pl 2pl 2pl

5mM dNTPs lpl lpl lpl

WT primers (lOpmol/pl) 0.2pl 0.4pl 0.45pl

KO Primers (lOpmol/pl) 0.2pl 0.4pl 0.3pl

Common Primer (lOpmol/pl) 0.23pl 0.4pl 0.525pl

Hot Start Taq (GeneSys Ltd.) 0.2pl 0.15pl 0.2pl

25mM MgCl2 lpl 0.4pl 2pl
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Mr solution - 3.8 pi 3.8pl

dH20 14.17pl 10.45 pi 4.725pl

DNA lpl lpl 5 pi

Table 3.1. Mastermix reagents for genotyping reactions

Primer sequences are outlined below:

TrkA:

P095-4 : 5’-CGG ACC TCA GTG TTG GAG AGC TGG-3’

P096-0: 5’-GAC CCT GCA CTG TCG AGT TTG C-3’

P097-0: 5’-GCT CCC GAT TCG CAG CGC ATC G-3’

Bax:

IN5R 5 ’-TTG ACC AGA GTG GCG TAG-3 ’

EX5F 5’-GCT GAT CAG AAC CAT CAT G-3 ’

NeoR 5 ’-GCT TCC ATT GCT CAG CG-3 ’

NT-3:

N3 (wild-type) 5’-CCT GGC TTC TTT ACA TCT CG-3’

N4 (mutant) 5’-TGG AGG ATT ATG TGG GCA AC-3’

PI (common) 5’-GGG AAC TTC CTG ACT AGG GG-3’

Two drops of mineral oil were layered on top of each PCR mix to prevent 

evaporation of reagents during thermocycling.

Initially samples were heated to 95°C for 15 minutes to activate taq. This was 

followed by a series of heating and cooling steps to allow denaturation of secondary 

structure, annealing of primers and elongation of product. Finally samples were 

heated to 72°C for lOmins for final extension. The length and temperature of these 

steps are specific to each reaction and are repeated in a cycling fashion to build up 

the PCR product. The details of each reaction are outlined in table 3.2.
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TRKA NT-3 BAX

Denaturation 95°C 15mins 95°C 15mins 95°C 15mins

Denaturation 95°C 40s 95°C 40s 95°C 40s

Annealing 65°C lmin 10s 65°C lmin 10s 50°C lmin 20s

Elongation 72°C lmin 40s 72°C lmin 40s 72°C 2min 20s

No. of cycles 38 40 38

Final Extension 72°C lOmin 72°C lOmin 72°C lOmin

Hold 4°C 4°C 4°C

Table 3.2. Reaction conditions for genotyping PCRs

Products were run on agarose gel cast with 1 X TAE and containing ethidium 

bromide (lpg/ml) (Sigma). PCR product DNA bands were then visualised using a 

UV gel documentation system (Biogene). An example gel for Bax genotyping is 

shown in Figure 3.3.

TRKA NT-3 BAX

Wt band size 400 250 307

KO band size 800 350 507

Table 3.3. Band sizes for genotyping gels

Bax genotyping

^  mm mm m i 4Mi m  mm mm mm ^  MB
mm mm mm mm m i #** E l  mm mmm m P

/>
1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.3: Genotyping gel showing the three possible Bax genotypes.

Lanes 1,2,5 and 6 show the knock-out DNA, lanes 3,4,9,10,11 and 12 show products from 

heterozygote DNA and lanes 7 and 8 show products from the wild-type DNA.

For the TrkA/Bax and NT-3/Bax mice, double-knockout pups needed to have both 

copies of both genes knocked out, only a 1 in 16 chance. Similarly, double
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homozygous wild-type mice only occurred with a frequency of 1 in 16. Therefore, 

many litters of mice had to be dissected in order to obtain enough ganglia of each 

genotype to allow sufficient replicates for RT-QPCR. Following genotyping, ganglia 

from double knockouts, wild type and single Bax knockouts, were identified and 

RNA was extracted, as described later in this chapter. At least 4 replicates were 

collected for each ganglia for each of the desired genotypes.

Time-course

To study the expression of all genes of interest over a period of time in wild-type 

mice, ganglia were also dissected from E l6, PO, P5 and P60 mice. Six replicates of 

each ganglia at each age were collected. RNA was extracted and used to produce a 

time-course of mRNA expression for all genes.

3.2.3. Neuronal cultures

To confirm that changes in mRNA expression observed in knockout neonates were 

due to the absence of neurotrophic factors or receptors and not cell death, neuronal 

cultures of nodose and trigeminal ganglia neurons were set up to study the effects of 

the neurotrophic factors, NT-3, NGF and artemin on gene expression in primary 

sensory neurons in-vitro. DRG cultures were not set up since trigeminal neurons are 

functionally and biochemically similar to DRG neurons at neonatal ages and in vivo 

results showed gene expression to be similarly regulated in these two ganglia. At 

these early postnatal stages, wild-type sensory neurons do not survive in culture 

without the addition of neurotrophic factors (NGF for trigeminal neurons and BDNF 

for nodose neurons). For this reason, caspase inhibitors were used to prevent the 

normal apoptosis that would occur in the absence of trophic support, thus allowing a 

true no neurotrophic factors control to be set up.

Overnight matings of CD-I mice were set up. Pups were collected on the day of birth 

(PO) and killed by decapitation. All dissections and subsequent preparations were
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carried out in a laminar flow hood using standard sterile techniques. Dissections of 

trigeminal and nodose ganglia were performed (as described earlier in this chapter,

3.2.1.1) under stereomicroscope with fibre-optic light source to illuminate specimens 

but prevent overheating of tissue. Dissections were carried out in sterile plastic 

60mm petri dishes (Greiner) in Liebowitz (L-15, Invitrogen) medium, pH 7.3, 

(supplemented with streptomycin (100mg/l) and penicillin (60mg/l)), that had been 

filtered and pre-heated to 37°C. All dissection tools were sterilised by flaming in 

70% ethanol prior to dissection.

Ganglia were dissected and collected in Calcium and Magnesium free Hank’s 

Balanced Salt Solution (CMF-HBSS) in 15ml falcon tubes. Approximately 30 

ganglia were used per experiment with approximately 10 ganglia per tube. Ganglia 

were incubated in 0.05% trypsin (Worthington), at 37°C for 30 minutes, to allow 

enzymatic break down of the ganglia. Ham’s F12 medium, supplemented with 10% 

heat inactivated horse serum (HIHS), was then used to wash cells twice and to arrest 

trypsin action. The ganglia were transferred into defined, serum free, FI4 medium 

(Imperial), supplemented with Albumax I and 2mM glutamine (both from 

Invitrogen). A flame-polished, sterile, siliconised glass Pasteur pipette was used to 

mechanically dissociate ganglia and to produce a single cell suspension.

High-density cultures were required in order to obtain the concentrated RNA 

required for RT-QPCR analysis of rare genes. Cells were plated at approximately 

3000 - 5000 neurons per 35mm diameter plastic tissue culture dish (Greiner). The 

dishes had been prepared in advance by coating with a substratum of poly-DL- 

omithine (0.5mg/ml in 0.15M borate buffer, pH 8.4) overnight at room temperature. 

The following day they were washed three times with sterile water and left to dry. 

Prior to culture, dishes were treated with laminin (20pg/ml in CMF-HBSS, Sigma), 

for 4 hours, at 37°C.

After 4 hours, laminin was washed from dishes using F I2 + HIHS, before adding 

lml of F14 medium supplemented with glutamine and Albumax I. It was important 

to ensure that dishes were not allowed to dry at any point during this washing step.
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lml of the dissociated cell suspension was added to each dish to give a final volume 

of 2ml. After plating the cells, the appropriate neurotrophic factors were added to 

each dish. Additionally at this point four tubes of this single cell suspension were 

collected as a ‘time 0’ sample. These four tubes of cells (lml per tube) were spun 

down, the supernatant was removed and the cell pellets were re-suspended in 350pl 

RLT lysis buffer, containing 1% p mercaptoethanol (Qiagen) to lyse the cells and 

release RNA.

Cells were grown with no factors, or in the presence of lOng/ml NGF or NT-3 (these 

concentrations had been determined previously in the Davies lab to be saturating 

concentrations for promoting survival and neurite outgrowth of PO neurons). 3 or 4 

replicates per condition were set up. Caspase Inhibitors (caspase inhibitor 1 

(Calbiochem) to a final concentration of 50pM.) were added to all dishes so that 

some cells could be grown in the absence of all neurotrophic support as a true 

control. Representative photomicrographs of cultured sensory neurons are shown in 

Figure 3.3a

Plated cells were grown in 5.5% CO2 in a humidified incubator, at 37°C, for 24 

hours (nodose and trigeminal ganglia) or 48 hours (just trigeminal ganglia), after 

which RNA was extracted from them by gently removing the culture media and 

replacing it with 350pl RLT lysis buffer supplemented with 1% p mercaptoethanol. 

Dishes were left at room temperature for 10-15 minutes, to allow cell lysis, and then 

the lysis buffer containing extracted RNA was transferred to RNase free 1.5ml tubes 

and stored at 4°C until all samples had been collected. It was only possible to extract 

RNA from nodose neurons at one time point, since the small nodose ganglia contain 

too few neurons to seed enough tissue culture dishes for two time points.
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Figure 3.3a: Representative photomicrographs o f cultured sensory neurons.

A) Nodose neurons cultured for 4 hours. B) A single trigeminal neuron, following 72 hours growth in 

the presence of NGF. Note the considerable growth of neurites following time in culture.

Survival counts

To ensure that differential survival of neurons in the different culture conditions did 

not confound the interpretation of gene regulation data, neuronal survival was 

assessed over the culture period. Initial neuronal counts were done 3 hours after 

plating (to allow cell attachment to culture dishes), and survival after 24 hours and 48 

hours was expressed as a percentage of this 3 hour count.

N.B. Details of all tissue culture reagents, their preparation and storage are given in 
appendix II.
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3.2.4. RNA extraction

A new method of RNA extraction (RNeasy Kit, Qiagen) was chosen for QPCR as 

preliminary experiments showed that the previous RNA extraction method, used in 

chapter 2, resulted in RNA that contained inhibitors of the QPCR reaction. In 

addition, the RNeasy protocol proved to be more reliable, faster to carry out and 

avoided the use of hazardous chemicals like phenol. (Data not included).

RNA was extracted following the manufacturers protocol. In brief, cells/ganglia were 

immersed in 350pl RLT lysis buffer containing 1% P mercaptoethanol. In the case of 

whole ganglia, the ganglia in lysis buffer were passed up and down through a 25G 

needle to break them up and ensure all cells within the ganglion were exposed to the 

lysis buffer. The same volume of 70% ethanol (analytical reagent grade) was added 

and samples thoroughly mixed. Each sample was transferred to an RNeasy filter 

mini-column in a 2ml collecting tube and centrifuged, in a microfuge, at 10,000 rpm 

for 15s. The supernatant was discarded and 350pl RW wash solution was added to 

the spin columns. Following this, the columns/tubes were centrifuged again, for 15s 

at 10,000rpm, and the supernatant was discarded. Next, a DNase step was included to 

remove any contaminating genomic DNA. 80pl DNase solution (10pl DNase (273U) 

+ 70j l x 1 RDD buffer, Qiagen) was added directly to the filter membrane and tubes 

were left at room temperature for 30 minutes. Several more wash steps, using an 

ethanol based wash solution and centrifugation, were performed after DNase 

treatment to remove residual DNase and RDD buffer. After the final wash step, the 

RNA was eluted in nuclease free water. The volume in which RNA was eluted was 

determined according to the amount of starting tissue and the RNA concentration 

required for RT-QPCR. In general, RNA was eluted in lOOpl for whole ganglia and 

40pl in the case of neuronal RNA. Samples were stored at -80°C until required for 

RT-QPCR.
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3.2.5. Reverse-transcription real-time quantitative PCR

Real Time quantitative PCR (QPCR), after reverse transcription of mRNAs to 

cDNA, was used to quantify the mRNA levels of the genes of interest in total RNA 

from both neuronal cultures and from whole ganglia collected from transgenic mice. 

The MX3000P (Stratagene) was used as outlined in section 2.2.5. Stratascript reverse 

transcriptase was used for the reverse transcription reaction as previously. Details of 

reaction preparation and conditions for both RT and PCR are outlined in section 

2.2.5. For each gene, the primers were designed on ‘Beacon Designer’ computer 

software, to ensure the utmost efficiency and specificity. The annealing temperature 

for all primer pairs for genes studied in this chapter was 51°C, and 40 cycles of 

amplification was sufficient to allow accurate quantification of all reverse transcribed 

mRNAs . The optimal reaction conditions to amplify each cDNA of interest were 

determined empirically in a series of pilot experiments. This ensured the highest 

reaction efficiencies and the absence of mispriming and primer dimer artifacts. These 

optimal conditions are outlined in table 3.4.

In the experimental work that is documented in this chapter, I investigated the roles 

that the neurotrophic factors NGF and NT-3 play in regulating neonatal sensory 

neuron expression of all the mRNAs studied in chapter 2 (aCGRP, pCGRP, SP, 

Navi.8, Navi.9 and GAPDH). In addition, I investigated the regulation of three 

additional mRNAs that encode proteins/peptides that play important roles within the 

peripheral sensory nervous system, namely Pituitary Adenylate Cyclase Activating 

Peptide (PACAP), Galanin and Vanilloid Receptor 1 mRNAs. Primers and reaction 

conditions for amplifying the cDNAs of these additional mRNAs are outlined below:
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GENE PRIMER

SEQUENCES

m g c l 2

CONCENTRATION

(MM)

ANNEALING 

TEMP. (°C)

Pituitary Adenylate 

Cyclase-Activating 

Peptide (PACAP)

Forward:

5’-TGG TGT ATG 

GGA TAA TAA 

TGC-3’

Reverse:

5’-TTC CGT CCT 

GGT CGT AAG-3’

4 51

Galanin Forward:

5’-GTT ACA ACT 

GGA GGT GGA G- 

3’

Reverse:

5’-TAG GTC TTC 

TGA GGA GGT G-3’

3 51

Vanilloid Receptor 

1 (VR-1)

Forward:

5’-CAA TGT GGG 

TAT CAT CAA CG- 

3’

Reverse:

5’-GGT GCT ATG 

CCT ATC-3’

5 51

Table 3.4. Primer sequences for additional genes.

Due to the relatively low abundance of p-CGRP mRNA, some difficulty was 

encountered when assaying its cDNA by QPCR (recalcitrant primer artifacts and 

insufficient sensitivity when input total RNA concentrations were low as in the case 

of total RNA from nodose ganglia). To ameliorate these problems a Molecular 

Beacon probe was employed to assay p-CGRP mRNA expression in nodose ganglia
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from transgenic and wild type. The sequence of the beacon is shown below. It was 

labelled with the fluorophore Quasar670 at its 5’ end , which was visible on the Cy5 

channel of the MX3000 QPCR machine, and had blackhole quencher 2 at its 3’ end.

B-CGRP Beacon

5’ Quasar670 d(CGC GAT AAA TAT GAT GGT GTC TCC CAC TGG ATC 

GCG)BHQ-2 3’

Molecular Beacons probes, unlike Sybr green, emit a fluorescent signal only when 

they bind to a specific DNA sequence and do not detect primer artifacts. 

Consequently, melting curve analysis after cycling is not required to validate the 

identity of the correct PCR products. Molecular Beacon probes emit very little 

background fluorescence compared to TaqMan probes, and are not as vulnerable to 

exonuclease attack resulting in a progressive increase in background fluorescence as 

the QPCR reaction proceeds. SYBR green was not included in QPCR reactions 

containing the p-CGRP Molecular Beacon. Molecular Beacon probes were not 

routinely used for QPCR throughout the work contained in this thesis because, 

despite their advantages in terms of specificity and insensitivity to primer artefacts, 

they are very expensive and complicate the design of QPCR assays.

234



3.3. Results

3.3.1. Time course of expression

Initially, the expression of a- and P-CGRP, SP, galanin, PACAP, Navi.8, Navi.9 and 

VR1 mRNAs in each of the sensory ganglia were studied over a developmental time 

course to determine how the expression of these genes changes throughout 

development and into adulthood in normal wild-type mice. Once again, as in chapter 

2 (See 2.3.1), data was statistically analysed by use of the t-test.

Trigeminal, nodose and dorsal root ganglia were dissected from E l6, PO, P5 and adult 

(approximately P60) CD-I mice and RNA was extracted using the Qiagen RNeasy kit 

(see 3.2.4.). Two ganglia were collected per replicate and six replicates were collected 

for each kind of ganglion at each time point. RNA was reverse transcribed and the 

expression of a-CGRP, P-CGRP, SP, Navi.8, Navi.9, PACAP, VR1 and galanin 

cDNAs were quantified by QPCR. The expression of GAPDH mRNA was also 

quantified in all samples and used to normalise all results to account for any 

differences in the amounts of starting RNA and differences in the efficiency of 

reverse transcription between samples.

Although they are the products of two separate genes, a-CGRP and p-CGRP mRNAs 

showed very similar patterns of developmental regulation between El 6 and P60 

(adult) in all ganglia. In trigeminal, nodose and dorsal root ganglia, both mRNAs 

showed a steady increase in expression, relative to GAPDH, from E l6 to a peak at 

P60. Both mRNAs were also most highly expressed in DRG and expressed at lowest 

levels in nodose ganglia (figure 3.4 and 3.5).
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Figure 3.4. Expression o f alpha CGRP mRNA in sensory neurons throughout development 
Trigeminal ganglia (A), nodose ganglia (B) and DRG (C) were collected from E l6, PO, P5 
and adult mice and expression of alpha CGRP mRNA was quantified via real-time QPCR. 
Error bars = +/- standard error, n = 6
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Figure 3.5. Expression o f beta CGRP mRNA in sensory neurons throughout development 
Trigeminal ganglia (A), nodose ganglia (B) and DRG (C) were collected from E l6, PO, P5 
and adult mice and expression of beta CGRP mRNA was quantified via real-time QPCR. 
Error bars = +/- standard error, n = 6



The expression level of SP mRNA was very low in all ganglia at all ages studied. 

Again, as was the case for a- and p-CGRP mRNAs, expression levels of SP mRNA 

were consistently lower in the nodose ganglion compared to the other sensory ganglia 

studied. In the trigeminal ganglion, there was little developmental change in the levels 

of SP mRNA between E l6 and adult. In contrast, there was a small, but significant, 

increase in SP mRNA levels between E l6 and P5 in DRG neurons and the level at P5 

was maintained until P60. Similarly, the amount of SP mRNA expressed by nodose 

neurons increased gradually from El 6 to P5, however, in the case of the nodose 

ganglion, the levels of SP mRNA expressed by neurons dropped between P5 and the 

adult (figure 3.6).

The sodium channels Navi.8 and Navi.9, showed similar, but not identical, 

developmental mRNA expression patterns. In trigeminal ganglia and DRG, Navi.8 

mRNA levels increased markedly between E l6 and PO, remain constant between PO 

and P5 and fall about 50% from P5 to adulthood. In the nodose ganglion, there was 

little change in the levels of expression of Navi. 8 mRNA between El 6 and P5 and, in 

marked contrast to the two other sensory ganglia studied, there was an almost 100% 

increase in the levels of Navi.8 mRNA from P5 to P60. In the case of Navi.9, 

mRNA levels in trigeminal ganglia and DRG increased from E l6 to peak at P5 and 

then, in a similar way to Navi.8 mRNA, fall around 50% between P5 and adulthood. 

The expression pattern of Navi .9 mRNA in the nodose ganglia was broadly the same 

as that in DRG and trigeminal ganglia, although the drop in expression between P5 

and adult, seen in both DRG and trigeminal ganglia, did not occur in nodose ganglia. 

The levels of Navi.9 mRNA were significantly lower in nodose neurons at all ages 

compared to the other two sensory ganglia (figure 3.7. and 3.8.).
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Figure 3.6. Expression o f SP mRNA in sensory neurons throughout development 
Trigeminal ganglia (A), nodose ganglia (B) and DRG (C) were collected from E l6, PO, 
P5 and adult mice and expression of SP mRNA was quantified via real-time Q-PCR. 
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Figure 3.7. Expression o f Navi.8 mRNA in sensory neurons throughout development 
Trigeminal ganglia (A), nodose ganglia (B) and DRG (C) were collected from E l6, PO, P5 
and adult mice and expression of N avi.8 mRNA was quantified via real-time QPCR.
Error bars = +/- standard error, n = 6
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Figure 3.8. Expression o f Navi.9 mRNA in sensory neurons throughout development 
Trigeminal ganglia (A), nodose ganglia (B) and DRG (C) were collected from E l6, P0, P5 
and adult mice and expression of Navi.9 mRNA was quantified via real-time QPCR.
Error bars = +/- standard error, n = 6



The developmental expression pattern of galanin mRNA was different in all three 

sensory ganglia studied. In DRG a high level of galanin mRNA expression at El 6 

drops 3.7 fold between E l6 and P5, and there was a further 25% drop in expression 

between P5 and P60. In trigeminal ganglia there were lower levels of galanin mRNA 

expressed than in DRG neurons, but there was a similar, 2.9-fold drop in galanin 

mRNA levels between E l6 and P5. However, in contrast to DRG, galanin mRNA 

expression did show a 50% increase between P5 and adulthood in trigeminal ganglia. 

There is little developmental change in the expression of galanin mRNA in nodose 

ganglia (figure 3.9).

PACAP mRNA showed a similar expression pattern and similar mRNA levels in all 

three sensory ganglia. Expression increased from E l6 to P0, after which it dropped by 

around 50% to P5. Between P5 and P60 PACAP mRNA levels fell a further 25% in 

all ganglia (figure 3.10.).

The developmental expression pattern of VR1 mRNA in the nodose ganglia, contrasts 

markedly with that seen in the DRG and trigeminal ganglia. In nodose ganglia, 

expression levels were low at E l6, but increased 3-fold to P0 and a further 2-fold 

from P0 to P5. There was a marked 5-fold drop in the amount of VR1 mRNA 

expressed by nodose neurons between P5 and P60. The expression of VR1 mRNA in 

trigeminal and DRG neurons showed a similar developmental pattern, with highest 

levels being observed at E l6, a gradual decrease in VR1 mRNA levels between E l6 

and P5 and a more pronounced drop, especially in DRG neurons, between P5 and 

adult. It seems that adult trigeminal neurons express significantly lower average levels 

of VR1 mRNA than either nodose or DRG neurons (figure 3.11).
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Figure 3.9. Expression o f galanin mRNA in sensory neurons throughout development 
Trigeminal ganglia (A), nodose ganglia (B) and DRG (C) were collected from E l6, PO, P5 
and adult mice and expression of galanin mRNA was quantified via real-time QPCR.
Error bars = +/- standard error, n -  6
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Figure 3.10. Expression o f PACAP mRNA in sensory neurons throughout development 
Trigeminal ganglia (A), nodose ganglia (B) and DRG (C) were collected from E l6, PO, P5 and 
adult mice and expression of PACAP mRNA was quantified via real-time QPCR.
Error bars = +/- standard error, n = 6
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Figure 3.11. Expression o f VR1 mRNA in sensory neurons throughout development 
Trigeminal ganglia (A), nodose ganglia (B) and DRG (C) were collected from E l6, PO, 
P5 and adult mice and expression of VR1 mRNA was quantified via real-time QPCR. 
Error bars = +/- standard error, n = 6



All mRNA levels were normalised against GAPDH mRNA to account for any 

differences in the starting concentration of total RNA (due to the varying size of the 

different ganglia and inconsistencies in the efficiency of RNA extraction and 

purification) and variations in the efficiency of reverse transcription between different 

samples. The expression level of GAPDH mRNA/ganglion in each type of ganglion 

at each of the ages studied is shown in figure 3.12.

All three types of ganglion showed a similar developmental pattern of GAPDH 

mRNA expression, with a 50-75% drop in GAPDH levels between E l6 and PO, a 7- 

to 8-fold increase between PO and P5 and a 3- to 4-fold drop in GAPDH mRNA 

expression between P5 and the adult. The relative levels of GAPDH mRNA expressed 

by the three ganglion types at each age reflects the difference in the size of the ganglia 

in terms of neuronal numbers, with the largest ganglion being the trigeminal ganglion 

and the smallest being the nodose ganglion.

In summary, the expression patterns of mRNA from all these predominantly sensory 

neuron specific genes, varied considerably. Some showed highest levels of expression 

in the adult, whilst others peaked at younger ages. The expression pattern of each 

mRNA is probably indicative of the discrete roles of each of these genes in sensory 

neuron development and function. Moreover, differences in the expression of 

individual mRNAs between the individual ganglia types may reflect differences in the 

number of sensory neurons subserving each sensory modality in different ganglia. 

These points are discussed more fully in the conclusion to this chapter.
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Figure 3.12. Expression o f GAPDH mRNA pePganglion in sensory neurons throughout 
development

Trigeminal ganglia (A), nodose ganglia (B) and DRG (C) were collected from E l6, P0, P5 and 
adult mice and expression of GAPDH mRNA was quantified via real-time QPCR and 
expression per ganglion calculated.
Error bars = +/- standard error, n = 6



3.3.2. Sensory neurons from Bax''* mice are phenotypically 
similar, but not identical, to those from Bax+/+ mice

Mice with double null mutations in either the TrkA or NT-3 locus, together with the 

Bax locus, were used in this chapter to obtain data reflecting the roles of NGF and 

NT-3 in regulating a number of sensory neuron mRNAs. As described above, by 

knocking out the gene encoding the proapototic protein Bax, the apoptotic cell death 

that normally occurs in the single TrkA or NT-3 null mutants is prevented and sensory 

neurons that are normally lost in the single null mutants survive. To ensure these 

surviving neurons are phenotypically similar to neurons from wild-type animals, and 

the relative ratios between phenotypically distinct sub-population of neurons are 

maintained, the expression levels of each of the mRNAs investigated in this chapter 

were assayed in ganglia from Bax"7' and wild-type mice

Trigeminal ganglia, nodose ganglia and DRG were dissected from PO Bax'7' mice and 

their wild-type littermates. RNA was extracted, reverse transcribed and the expression 

levels of each of the mRNAs to be examined in the double null mutants was 

quantified using QPCR. Figure 3.13 shows the expression of a-CGRP mRNAs in 

trigeminal, nodose and dorsal root ganglia from Bax'7' and wild-type mice. a-CGRP 

mRNA was detected at a similar level in trigeminal ganglia, however in nodose and 

dorsal root ganglia expression was significantly reduced in Bax'7' mice. Expression of 

the Sodium channels Navi.8 and Navl.9 mRNAs are shown in figure 3.14. Navi.8 

mRNA was expressed at similar levels in Bax'7' and Bax+/+ in all ganglia, however 

Navl.9 mRNA expression was significantly reduced in the DRG of Bax'7* mice, 

whilst levels were unaffected in the trigeminal and nodose ganglia.

Figure 3.15 shows the expression of galanin (A) and PACAP (B) mRNAs in Bax'7' 

and wild-type ganglia. For each mRNA, expression levels were, on the whole, 

comparable between Bax+/+ and Bax'7' mice in each of the ganglia. However, in DRG 

of Bax'7' mice, galanin mRNA expression was reduced by approximately 30%.
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Figure 3.13. Expression o f alpha CGRP mRNA in sensory neurons o f Bax single knockout 
mice at PO

Trigeminal ganglia, nodose ganglia and DRG were dissected from PO Bax*7' mice-and wild- 
type litter mates and expression of alpha CGRP mRNA was quantified using real-time 
QPCR. Expression was similar in trigeminal ganglia of both wild-type and Bax*7* mice, 
however in the nodose and dorsal root ganglia mRNA was significantly lower in the double 
knockout.

Error bars = +/- standard error, n = 6. * = p = <0.05, ** = p = <0.01 as determined by two 
tailed unpaired t-test.
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Figure 3.14. Expression o f Navi.8 and Navl.9 mRNAs in sensory neurons o f Bax 
single knockout mice at PO

Trigeminal ganglia, nodose ganglia and DRG were dissected from PO B ax'' mice-and 
wild-type litter mates and expression o f N avi.8 (A) and Navl.9 (B) mRNAs were 
quantified using real-time QPCR. For the majority, expression was similar in both 
wild-type and Bax'7' mice, however in the DRG, expression of Navl.9 mRNA was 
significantly lower in Bax_/‘ mice.

Error bars = +/- standard error, n = 6. * = p = <0.05, ** = p = <0.01 as determined by 
two tailed unpaired t-test.
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Figure 3.15. Expression o f galanin and PACAP mRNAs in sensory neurons o f Bax single knockout 
mice at PO

Trigeminal ganglia, nodose ganglia and DRG were dissected from PO Bax'^mice and wild-type litter 
mates and expression of galanin (A) and PACAP (B) mRNAs were quantified using real-time 
QPCR.

Expression is similar in both wild-type and Bax /' in most cases, although in the DRG of Bax' " mice 
expression of galanin mRNA was significantly lower.

Error bars = +/- standard error, n = 6. * = p = <0.05, ** = p = <0.01 as determined by two tailed 
unpaired t-test.



VR1 mRNA was unaffected in trigeminal and dorsal root ganglia of Bax7', however 

in the placode derived nodose ganglia, expression is reduced to approximately 50% of 

that observed in Bax+/+ (figure 3.16).

Finally the expression of GAPDH mRNA was quantified in Bax7' and wild-type 

ganglia, as shown in figure 3.17. Levels of GAPDH mRNA were similar in Bax7' 

mice and Bax+/+ mice in all ganglia, suggesting that little or no cell death occurred in 

the knockout mouse. Because of the reduction of cell death in Bax7* mice, an increase 

in GAPDH mRNA in these mice might be expected. The lack of an apparent increase 

will be discussed below in the concluding section of this chapter

Although, on the whole, levels of mRNA expression were similar for the genes 

studied in Bax7"and wild-type ganglia, significant differences in mRNA expression 

levels between the two genotypes do occur in some ganglia for some genes.

For this reason, ganglia from Bax7' mice and not true wild-type mice were used as a 

control when investigating the effects of neurotrophins on gene regulation using 

double-null mutant mice.

No data was collected for SP and p-CGRP. There was difficulty in detecting these 

two genes in these initial experiments, due to the low levels of expression in these 

ganglia, however due to costand time limitations it was decided that sufficient data 

had been obtained to conclude that further experiments should go ahead using Bax 

single knockout litter-mates mice as a control comparison rather than wild-type mice.

252



I
trigem  ko trigem  w t nod ko nod wt drg ko drg wt

Figure 3.16. Expression ofVRl mRNA in sensory neurons o f Bax single knockout mice at PO

Trigeminal ganglia, nodose ganglia and DRG were dissected from PO B ax7'mice and wild-type litter 
mates and expression of VRlmRNA was quantified using real-time QPCR.

Expression is similar in both wild-type and Bax'7' in trigeminal and dorsal root ganglia, although in 
the nodose of Bax'7' mice expression of VR1 mRNA is significantly lower in comparison to Bax+/+.

Error bars = +/- standard error, n = 6. * = p = <0.05, ** = p = <0.01 as determined by two tailed 
unpaired t-test.
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Figure 3.17. Expression o f gapdh mRNA in Trigeminal, DRG and nodose o f Bax single knockout 
mice at PO

Trigeminal ganglia, nodose ganglia and DRG were dissected from PO Bax ' and wild-type litter 
mates and expression of gapdh mRNA was quantified using real-time QPCR. No significant 
difference between wild-type and Bax_/ mice is obvious.

Error bars = +/- standard error, n = 6. * = p = <0.05, ** = p = <0.01 as determined by two tailed 
unpaired t-test.
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3.3.3. The use of TrkA' /̂Bax"7' null mutant mice to study the 
role of TrkA signalling in gene expression in early postnatal 
sensory neurons.

Real time-QPCR was used to quantify the expression levels of a- and p-CGRP, SP, 

Galanin, PACAP, Navi.8, Navl.9 and VR1 mRNAs in trigeminal, nodose and dorsal 

root ganglia that had been dissected from PO TrkA'7TBax'7' and Bax'7' mice using RT- 

QPCR. The expression of both isoforms of CGRP was determined in PO TrkA'7TBax'7 

and Bax'7' mice (figure 3.18). By PO, the data clearly shows that the normal levels of 

expression of both a- and p-CGRP mRNA are reliant upon TrkA signalling (and 

presumably NGF induced TrkA signalling), as a significant reduction in the 

expression of both mRNAs was observed in trigeminal ganglia and DRG of TrkA'7' 

/Bax*7' neonates compared to Bax*7' neonates (figure 3.18). Nodose ganglia also 

showed a significant reduction in a-CGRP mRNA expression in the double null 

mutant compared to the single Bax knockout. p-CGRP mRNA levels were also 

reduced in nodose ganglia of TrkA'7TBax'7' mice compared to the single Bax null 

mutant, although this drop was not quite statistically significant. The reduction of p- 

CGRP mRNA levels, as a result of the loss of TrkA signalling, is less dramatic than 

the reduction in aCGRP mRNA levels in all three sensory ganglia.
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Figure 3.18. Expression o f  alpha CGRP and beta CGRP mRNAs in sensory neurons o f PO TrkA^ 
/Bax'/~mice
Trigeminal ganglia, nodose ganglia and DRG were dissected from PO Bax^/TrkA^ and also Bax'- 
mice, and expression o f alpha CGRP (A) and beta CGRP(B) mRNAs were quantified by real-time 
QPCR.
Expression o f both alpha and beta CGRP mRNA were significantly reduced in sensory ganglia of the 
TrkA-/*/Bax'/‘ mice.
N.B. where wt actually represents data from Bax single knockout mice.
Error bars +/- standard error, n = 6 -  8 .*  = p = <0.05, ** = p = <0.0 las determined by two-tailed 
unpaired t-test.



Figure 3.19 shows the expression of Navi. 8 and Navl.9 mRNAs in PO sensory 

ganglia from both genotypes. In accordance with the embryonic data presented in 

chapter 2, the normal levels of expression of both mRNAs was dependent upon TrkA 

signalling as illustrated by the significant reduction in mRNA levels observed in both 

trigeminal ganglia and DRG of TrkA77Bax7' neonates compared to Bax7' neonates 

(figure 3.19.). Interestingly, although nodose ganglia contain a sub-population of NGF 

responsive neurons, no difference in the levels of sodium channel mRNAs was 

apparent between nodose ganglia from the two genotypes. This would suggest that 

either the expression of both these mRNAs is not confined to the subset of TrkA 

expressing, NGF responsive, nodose neurons, or, if it is, the expression of TTX 

resistant sodium channels is regulated in a different manner in these neurons 

compared to TrkA expressing neurons within the trigeminal and dorsal root ganglia.

Like a-CGRP mRNA, the expression of SP mRNA appears to be dependent upon 

TrkA signalling in trigeminal, nodose and dorsal root ganglia during the neonatal 

period (figure 3.20A). This is not unexpected, since both mRNAs are co-expressed 

predominantly in the same sub-population of NGF responsive sensory neurons during 

postnatal development and both have previously been shown to be regulated in a 

similar manner in the adult(Lundberg et al., 1985; Lee et al., 1985; Skofitsch et al., 

1985)

The data presented in figure 3.20 B suggests that TrkA signalling does not regulate 

the expression of PACAP mRNA in neonatal trigeminal, nodose, or dorsal root 

ganglia, with levels of PACAP mRNA being comparable in TrkA7TBax7' neonates 

and Bax7' neonates. This is in marked contrast to the positive effect that NGF has on 

PACAP mRNA expression in adult rat nociceptive neurons (Jongsma Wallin et al., 

2001,2003).
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Figure 3.19. Expression o f Navi.8 and Navl.9 mRNAs in sensory neurons ofPO TrkA'1'/Bax1' 
mice
Trigeminal ganglia, nodose ganglia and DRG were dissected from PO Bax^/TrkA7' and also Bax' 
A mice, and expression of N avi.8 (A) and Navl.9 (B) mRNAs quantified by real-time QPCR. 
Expression of both N avi.8 and Navl.9 mRNA was dramatically down-regulated in trigeminal 
ganglia and DRG of the TrkA'7/Bax~7‘ mice. No alteration o f expression was observed in the 
nodose ganglia.
N.B. where wt actually represents data from Bax single knockout mice.
Error bars +/- standard error, n = 6 - 8 .  * = p  = <0.05, ** = p = <0.01as determined by two-tailed 
unpaired t-test
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Figure 3.20 Expression ofSP and PACAP mRNA in sensory neurons o f TrkA'/VBax'/'mice

Trigeminal ganglia, nodose ganglia and DRG were dissected from P0 TrkA^YBax- ' and Bax~/_ 
mice, and expression of SP (A) and PACAP (B) mRNAs were quantified by real time QPCR.

N.B. Where wt actually represents data from Bax single knockout mice.

Error bars +/- standard error, n = 6 - 8 .  * = p = <0.05, ** = p = <0.01 as determined by two- 
tailed unpaired t-test.



The expression levels of galanin and VR1 mRNAs in PO sensory ganglia from the two 

genotypes was also explored (figure 3.21). Galanin mRNA expression levels were the 

same in the trigeminal and nodose ganglia of double null neonatal mice as they were 

in Bax'7' neonates (figure 3.21 A). However, a small but significant decrease in galanin 

mRNA expression levels was observed in the DRG of double mutant neonates 

compared to the DRG of single Bax mutant neonates.

No significant differences in VR1 mRNA expression levels were apparent between 

TrkA'7'/Bax'7' and Bax'7' neonates in both trigeminal ganglia and DRG (figure 3.2IB). 

Conversely, the expression of VR1 mRNA was markedly higher in nodose ganglia 

from TrkA'7TBax'7'PO pups compared to nodose ganglia from Bax'7' pups (figure 

3.21B).

To compensate for cell death that may occur in the absence of functional TrkA 

signalling and to allow for variations in RNA extraction and reverse transcription 

efficiency between samples, mRNA levels were normalised against expression of 

GAPDH mRNA (shown in figure 3.22). No significant difference was observed 

between the different genotypes in the levels of GAPDH mRNA expressed in PO 

trigeminal and nodose ganglia. In contrast, the expression of GAPDH mRNA in DRG 

was significantly lower in double-knockout neonates compared to Bax'7' neonates.
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Figure 3.21. Expression o f galanin and VR1 mRNA in sensory neurons ofTrkA/VBax'/'mice

Trigeminal ganglia, nodose ganglia and DRG were dissected from PO TrkA^ /Bax 7' and B ax/_ mice, 
and expression of galanin (A) and VR1 (B) mRNAs were quantified by real time QPCR.

Expression of galanin mRNA was significantly decreased in DRG of TrkA'^/Bax7' mice, it is however 
still expressed at a relatively high level in the null mutant. No difference was observed in expression 
in trigeminal or nodose ganglia. Expression of VR1 mRNA was upregulated in nodose ganglia of 
TrkA'^/Bax*7' mice, no difference in mRNA expression was observed in trigeminal ganglia or DRG.

N.B. Where wt actually represents data from Bax single knockout.

Error bars +/- standard error, n = 6 - 8. * = p = <0.05, ** = p = <0.01 as determined by two-tailed 
unpaired t-test.
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Figure 3.22. Expression o f gapdh mRNA in sensory neurons o f TrkA'^/Bax^'mice

Trigeminal ganglia, nodose ganglia and DRG were dissected from TrkA_/'/B ax/_ and Bax A mice and 
expression of Gapdh mRNA was quantified by real time QPCR.

Expression of gapdh was significantly less in DRG of TrkA'^/Bax7' than single Bax 7' mice, but no 
difference is observed in trigeminal or nodose ganglia. The decreased level o f gapdh mRNA, suggests 
cell death in the DRG of double knockout mice.

N.B. Where wt actually represents data from Bax single knockout mice.

Error bars +/- standard error, n = 6 - 8 .  * = p = <0.05 ** = p = <0.01 as determined by two-tailed 
unpaired t-test.
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3.3.4. The use of NT^'/Bax'7' null mutant mice to study the 
role of NT-3 in gene expression in early postnatal sensory 
neurons

The expression levels of GAPDH mRNA in the three sensory ganglia from NT-3'7' 

/Bax’7’ mice and Bax'7' mice are shown in figure 3.23. There was markedly less 

GAPDH mRNA expressed by trigeminal ganglia and DRG dissected from double 

knockout neonates compared to those from Bax'7' neonates, although this difference 

only reaches statistical significance in the case of trigeminal ganglia. No difference 

was seen in the amount of GAPDH mRNA expressed by nodose ganglia from the two 

different genotypes

The levels of a-CGRP, P-CGRP (figure 3.24), Navi.8, Navl.9 (figure 3.25) and SP 

(figure 3.26A) mRNAs were similar in trigeminal, nodose and dorsal root ganglia of 

NT-3'7'/Bax'7' and Bax'7' neonates, suggesting that the expression of these mRNAs is 

not regulated by NT-3 at PO.

Although PACAP mRNA (figure 3.26B) levels were similar in nodose ganglia from 

single and double transgenic PO pups, there was a marked increase in the expression 

of PACAP mRNA in trigeminal and dorsal root ganglia in the absence of NT-3. In the 

case of DRG, this increase did not quite reach statistical significance (p = 0.061). 

Similarly, the expression levels of VR1 mRNA were also greater in both DRG and 

trigeminal ganglia dissected from the double knockout neonatal mice compared to 

those from Bax'7' neonates (figure 3.27A). There was no difference in the expression 

of VR1 mRNA between the nodose ganglia of the two genotypes.

In the case of galanin mRNA, significantly higher levels of expression were found in 

trigeminal ganglia from NT-3'7'/Bax*7' neonatal mice than trigeminal ganglia from 

Bax'7' neonates (figure 3.27B). In contrast, there was no significant difference 

between the two mouse strains in the expression of galanin mRNA in DRG and 

nodose ganglia (figure 3.27B).
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Figure 3.23. Expression o f GAPDH mRNA in sensory neurons o f NT-3'1'/Baxr'mice

Trigeminal ganglia, nodose ganglia and DRG were dissected from PO N T ^'/B ax"" and Bax'7" 
mice and expression of gapdh mRNA quantified by real time PCR.

N.B. Where wt actually represents data from bax single knockout mice.

Error bars = +/- standard error, n = 5 - 8 .  * = p < 0.05, ** = p < 0.01
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Figure 3.24. Expression o f alpha CGRP and beta CGRP mRNAs in sensory neurons o f 
NT-3'/'/Bax'/ mice

Trigeminal ganglia, nodose ganglia and DRG were dissected from PO NT-3'/'/Bax"/' 
and Bax'7 mice and expression of alpha CGRP (A) and beta CGRP (B) mRNAs were 
quantified by real time QPCR.

N.B. Where wt actually represents data from bax single knockout mice.

Error bars +/- standard error, n = 5 - 8. * = p = <0.05, ** = p = <0.01 as determined by 
two-tailed unpaired t-test.
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Figure 3.25. Expression o f Navi. 8 and Navl.9 in sensory neurons o f NT-3'1'/Bax1'mice

Trigeminal ganglia, nodose ganglia and DRG were dissected from P0 NT-3' VBax ' 
and Bax'/_ mice and expression of alpha N avi.8 (A) and Navl.9 (B) mRNAs quantified 
by real time QPCR.

N.B. Where wt actually represents data from bax single knockout mice.

Error bars +/- standard error, n = 5 - 8 .*  = p = <0.05, ** = p= < 0.01 as determined by
two-tailed unpaired t-test.
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Figure 3.26. Expression ofSP and PACAP mRNAs in sensory neurons o f NT-3~/~/Bax~/’mice

Trigeminal ganglia, nodose ganglia and DRG were dissected from P0 NT-3'/"/Bax-/- and 
Bax'y' mice and expression of SP (A) and PACAP (B) mRNAs were quantified by real time 
QPCR.

N.B. Where wt actually represents data from bax single knockout mice.

Error bars +/- standard error, n = 5-8. * = p = <0.05, ** = p = < 0.01 as determined by two- 
tailed unpaired t-test.
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Figure 3.27. Expression ofVRl and galanin mRNAs in sensory neurons o f NT-3'^/Bax^'mice

Trigeminal ganglia, nodose ganglia and DRG were dissected from PO NT-3'/*/Bax'/‘ and Bax /_ 
mice and expression o f VR1 (A) and galanin (B) mRNAs were quantified by real time QPCR.

N.B. Where wt actually represents data from bax single knockout mice.

Error bars +/- standard error, n = 5 - 8 . *  = p = <0.05, ** = p = < 0.01 as determined by two-
tailed unpaired t-test.



3.3.5. The use of primary neuronal cultures to explore the role 
of NGF and NT-3 in gene expression in early postnatal 
sensory neurons

Neuronal cultures were used to study the in-vitro expression of the mRNAs that were 

previously investigated in transgenic neonates to ascertain if NGF and NT-3 regulate 

the expression of these mRNAs when the neurons are cultured independently of their 

normal cellular environment. The previous analysis of transgenic neonates, detailed 

above, revealed that the mRNA levels of any given gene were modulated in a similar 

fashion by either NT-3 or TrkA dependent neurotrophic factor signalling in both 

trigeminal and dorsal root ganglion neurons. In contrast, transcriptional regulation of 

the panel of genes was often markedly different in nodose neurons compared to 

neurons from the other two sensory ganglia. For this reason, I decided to compare the 

transcriptional regulation of the selected panel of genes by neurotrophic factors only 

in cultured trigeminal and nodose ganglia neurons (trigeminal ganglia neurons were 

chosen rather than DRG neurons because PO trigeminal ganglia contain significantly 

more neurons than PO DRG).

CD-I litters were collected at birth and cultures were set up as outlined in 3.2.3. 

Neurons were plated onto poly-omithine/ laminin pre-treated dishes and placed into 

an incubator (5% CO2,37°C). In the case of trigeminal ganglion neuronal cultures, 

cells were cultured for 0, 24 and 48 hours, in either the presence or absence of 

lOng/ml NT-3 or NGF. Because PO nodose ganglia contain significantly less neurons 

than PO trigeminal ganglia, only two time points, 0 and 24 hours, were examined for 

nodose neuron cultures. Following incubation at 37°C for the appropriate time period, 

the neuronal cultures were lysed by the addition of a chaotropic RNA extraction 

buffer, RNA was purified with the RNeasy kit and mRNA expression was quantified 

using RT- QPCR.

3.3.5.1. Survival of cultured PO trigeminal and nodose neurons

Caspase Inhibitors were included in all culture dishes to prevent cell death in the 

absence of neurotrophic support confounding the interpretation of mRNA expression
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data. To ensure that neuronal survival was similar in all the culture conditions, the 

number of healthy neurons in each culture was counted at 24 hours and/or 48 hours 

(depending on the neuron type) and neuronal survival was expressed as a percentage 

of the number of neurons in each culture at 3 hours (3 hours was chosen as the time 

point for the initial neuronal count as this period allowed time for neurons to adhere to 

the culture dishes and therefore be easily identified by their round phase bright 

appearance).

The survival of both trigeminal and nodose ganglia neurons, in the presence and 

absence of NGF, is shown in figure 3.28. Approximately all trigeminal neurons 

survive for 48 hours when cultured in the presence of caspase inhibitors and NGF, as 

would be anticipated. However, the number of surviving neurons falls to 80% of the 

initial starting number by 24 hours and 60% by 48 hours in the presence of caspase 

inhibitors alone. A similar decrease in the number of surviving neurons at 24 hrs (to 

60% of initial numbers) was seen for all conditions in the case of nodose ganglia 

neurons, which are largely dependent upon BDNF for survival at this age. Although 

there was significant death of nodose and trigeminal neurons in culture in the 

presence of caspase inhibitors alone (due to a lack of appropriate neurotrophic factor 

support), survival is much improved from the cell death that was seen in the absence 

of caspase inhibitor support. In the case of trigeminal neurons, approximately 30% 

trigeminal neurons survived after 24 hours with no factors, and by 48 hours this was 

down to 5%. In the case of nodose neurons, approximately only 25% of neurons 

survived in the absence of neurotrophic factors and caspase inhibitors following 24 

hours in culture.
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Figure 3.28. Survival o f P0 nodose ganglia (A) and trigeminal ganglia (B) neurons cultured in the 
presence or absence o f NGF and caspase inhibitors

Trigeminal and nodose were dissected from P0 CD-I mice and cultured in-vitro for 24 (nodose) or 48 
(trigeminal) hours in the presence or absence of NGF (lOng/ml). Caspase inhibitors (50pM) were added 
to the growing medium to allow survival of the neurons at this young age in the absence of trophic 
support.

60- 80% of cells survive after 24hours in culture and 60% survival is observed after 48hours in the 
absence of factors. Presence of NGF does not have an effect on survival of nodose neurons (A), however 
an increased survival is observed with trigeminal neurons (B) which are largely dependent upon NGF for 
survival.

Any gene expression analysed will be normalised against GAPDH mRNA to account for the small loss in 
cell number observed here.

N.B. Survival is calculated as a percentage of starting cell number in a 1cm grid at time 0 (counted 4 hours 
after plating)
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The survival of trigeminal and nodose neurons in cultures supplemented with caspase 

inhibitors either in the presence or absence of NT-3 is shown in figure 3.29. Once 

again, some loss of neurons was observed in the presence of caspase inhibitors alone, 

with approximately 80% survival of both nodose and trigeminal neurons at 24 hours. 

By 48 hours, trigeminal ganglia neurons survival was reduced to 60% in the presence 

of caspase inhibitors. NT-3 was not able to promote the survival of either neuron type 

above that seen with caspase inhibitors alone.
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Figure 3.29. Survival o f PO nodose ganglia (A) and trigeminal ganglia neurons (B) cultured in the 
presence or absence o f NT-3 and caspase inhibitors
Trigeminal and nodose were dissected from P0 CD-I mice and cultured in-vitro for 24 (nodose) or 48 
(trigeminal) hours in the presence or absence o f NT-3 (lOng/ml). Caspase inhibitors, 50pM were added 
to the growing medium to allow survival o f the neurons at this young age in the absence of trophic 
support.
Approximately 80% of cells survive after culture for 24 hours for both nodose and trigeminal ganglia. 
Approximately 60% survival of trigeminal ganglia neurons are observed after 48hours. No difference is 
observed with or without factors.
Any gene expression analysed will be normalised against GAPDH mRNA to account for the small loss 
in cell number observed here.
N.B. Survival is calculated as a percentage of starting cell number in a 1cm grid at time 0 (counted 4 
hours after plating)
Error bars = +/- standard error, n = 4
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3.3.5.2. The regulation of mRNA expression in cultured PO 
sensory neurons by NT-3 and NGF

Some mRNAs were difficult to accurately quantify using real-time-QPCR analysis of 

RNA extracted from sensory neuron cultures, since these cultures yielded little RNA 

in comparison to the whole ganglia that were used for previous RT-QPCR analysis of 

mRNA expression. For this reason no data for galanin mRNA expression could be 

obtained for cultured PO nodose and trigeminal ganglia neurons. pCGRP and VR1 

mRNAs could also not be quantified in RNA extracted from nodose neuron cultures, 

which contained fewer cells than trigeminal neuron cultures.

3.3.5.3. Trigeminal neuron cultures

Figures 3.30 and 3.31 show the expression levels of a-CGRP, P-CGRP and SP 

mRNAs in trigeminal ganglia neurons cultured in the presence or absence of NGF. 

The expression of a-CGRP mRNA (figure 3.30A) and SP mRNA (figure 3.31) both 

decreased around 5-fold over 48 hrs in culture, an effect that is also seen in 

axotomised adult neurons (Nielsch et al., 1987; Noguchi et al., 1990; Zhang et al., 

1995; Mulder et al., 1997; Sterne et al., 1998; Shi et al., 2001; Shadiack et al., 2001). 

Culturing trigeminal neurons with lOng/ml NGF effectively prevents this decrease. A 

similar positive regulation by NGF was observed for P-CGRP mRNA (figure 3.30B) 

at 24 hours, but not at 48hours, and in addition the decrease in expression over time 

in culture, which was observed for a-CGRP mRNA did not occur for p-CGRP 

mRNA. This suggests that the two isoforms respond to the same environment in 

different ways at this developmental stage. This provides another example of the 

distinct regulation of the two transcripts, despite their high sequence homology.

Figure 3.32 shows the expression levels of Navi.8 and Navi.9 mRNAs in trigeminal 

ganglia neurons cultured in the presence or absence of NGF. Both Navi. 8 and 

Navi.9, mRNAs all showed a greater than 10-fold decrease in expression over 48hrs 

in culture, again an effect which has been observed in adult DRG following axotomy 

(Okuse et al., 1997; Cummins et al., 1997; Tate et al., 1998; Dib-hajj et al., 1998;
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Novakovic et al., 1998 Sleeper et al., 2000; Decosterd et al., 2002). The presence of 

10 ng/ml NGF totally prevented the time dependent decrease in Navi .8 mRNA 

expression, but only partially prevented the decrease in Navi .9 mRNA levels.

In a similar fashion to the TTX sodium channels, expression of VR1 was reduced 

approximately 10 fold over time in culture to levels that cannot be detected accurately 

by PCR (figure 3.33A). Such a decrease has been observed in axotomised sensory 

neurons previously (Michael and Priestly, 1999; Michael and Priestly 2002; Fukuoka 

T et al., 2002). The presence of NGF inhibited this decrease, with levels returned 

close to those at time 0 by 48 hours (figure 3.33A).

In contrast to the mRNAs for CGRP, SP and TTX-resistant sodium channels, PACAP 

mRNA expression levels increased 5-fold during the first 24 hours in culture (figure 

3.33B). Over the next 24 hrs, the markedly elevated levels of PACAP mRNA 

decreased some 2.5-fold to remain at twice the initial level at 48 hrs. An increase in 

PACAP mRNA expression has also been observed in axotomised DRG neurons 

(Jongsma Wallin et al., 2001). No regulation of PACAP mRNA expression by NGF 

was observed in culture.

The expression of GAPDH mRNA in cultured trigeminal neurons is shown in figure 

3.34. As would be expected, the levels of GAPDH mRNA were higher in cultures 

containing NGF compared to those with caspase inhibitors alone (approximately a 

60% reduction compared to time 0 in cultures supplemented with only caspase 

inhibitors). This was due to a combination of decreased survival in cultures containing 

caspase inhibitors alone (40% reduction- see figure 3.28), along with the fact that 

cells cultured in caspase inhibitors alone are atrophic and are probably less healthy 

than those supplemented with NGF. This result re-affirms the need to normalise 

results against GAPDH mRNA to provide a true representation of mRNA expression 

that is not just a reflection of decreased cell vigour and cell death.

Data representing the effects of exogenous NT-3 on the expression of a-CGRP, p- 

CGRP and SP mRNAs in cultured trigeminal neurons is shown in figures 3.35 and 

3.36. As in previous trigeminal ganglion neuronal cultures, a decrease in the 

expression of a-CGRP (figure 3.35A) and SP (figure 3.36) mRNAs was observed
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over time in culture, but p-CGRP mRNA expression was slightly increased after 24 

hrs in culture and returned to initial levels at 48 hrs (figure 3.35B). The expression of 

a- and p-CGRP and SP mRNAs were not regulated by NT-3.

The expression levels of Navi. 8 and Navi. 9 in trigeminal neurons from control 

cultures, containing caspase inhibitors alone, and cultures supplemented with lOng/ml 

NT-3 are illustrated in figure 3.37. Both Navi.8 and Navi.9 mRNAs respond to the 

culture environment in a similar way to the previous NGF cultures (figure 3.32.), with 

marked decreases in the expression of both over time in culture. In contrast to NGF, 

culturing trigeminal neurons in the presence of lOng/ml NT-3 did not appear to 

ameliorate the decrease in Navi.8 and Navi.9 mRNA levels. Expression of VR1 

mRNA also showed similar effects to that seen in NGF trigeminal cultures (figure 

3.33A), with a substantial decrease observed over time in culture. Presence of NT-3 

did not affect this culture-induced reduction. In contrast to other genes, an increase in 

the expression of PACAP mRNA over the same time period was observed (figure 

3.33B). Additionally NT-3 did appear to increase the levels of PACAP mRNA 

expressed by trigeminal neurons after 24 and 48 hours in culture, although this 

increase only reached significance at 48 hours.

The expression of GAPDH mRNA in trigeminal neurons cultured in caspase 

inhibitors alone or with caspase inhibitors supplemented with lOng/ml NT-3 is shown 

in figure 3.39. In cultures containing caspase inhibitors alone, there was 

approximately a 60% reduction in the expression of GAPDH mRNA by 48 hrs, 

probably reflecting cell death in the cultures (40% see figure 3.28) and the 

compromised health of remaining neurons (discussed below). This is in agreement 

with the control trigeminal neuron cultures set up for the NGF experiments described 

above. However, in contrast to the effects of NGF, NT-3 was not able to prevent the 

decrease in GAPDH mRNA expression that occurs over time in culture, reflecting the 

inability of NT-3 to prevent the death of trigeminal neurons in culture or improve the 

vitality of those that avoid apoptosis.
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Figure 3.30. Expression o f alpha- and beta-CGRP mRNAs in P0 trigeminal ganglia neurons cultured in 
the presence or absence o f NGF (lOng/ml) and caspase inhibitors.
Trigeminal ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
of NGF (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression of alpha CGRP (A) and beta CGRP (B) 
were quantified by real-time QPCR.
Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by two-
tailed unpaired t test.
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Figure 3.31. Expression ofSP mRNA in PO trigeminal ganglia neurons cultured in the presence or 
absence o f NGF (lOng/ml) and caspase inhibitors.
Trigeminal ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
of NGF (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression of SP mRNA was quantified by real-time 
QPCR.
Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by two- 
tailed unpaired t test.
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Figure 3.32. Expression o f Navi.8 and Navi.9 mRNAs in trigeminal ganglia neurons cultured in the 
presence or absence o f NGF (lOng/ml) and caspase inhibitors.
Trigeminal ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
of NGF (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression o f N avi.8 (A) and N avi.9 (B) were 
quantified by real-time QPCR.
Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by two-
tailed unpaired t test.
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Figure 3.33. Expression ofVRl and PACAP mRNAs in trigeminal ganglia neurons cultured in the 
presence or absence o f NGF (lOng/ml) and caspase inhibitors.
Trigeminal ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
of NGF (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression o f VR1 (A) and PACAP (B) mRNAs were 
quantified by real-time QPCR.
Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by two-
tailed unpaired t test.
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Figure 3.34. Expression o f GAPDH mRNA in trigeminal ganglia neurons cultured in the presence or 
absence o f NGF (lOng/ml) and caspase inhibitors.
Trigeminal ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
of NGF (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression o f GAPDH mRNA was quantified by real
time QPCR.
Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by two- 
tailed unpaired t test.
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Figure 3.35. Expression o f alpha- and beta-CGRP mRNAs in P0 trigeminal ganglia neurons cultured in 
the presence or absence ofNT-3 (lOng/ml) and caspase inhibitors.
Trigeminal ganglia were dissected from P0 CD-I mice and cultured in-vitro in the presence or absence 
ofNT-3 (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression of alpha-CGRP (A) and beta-CGRP (B) 
mRNAs were quantified by real-time QPCR.
Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by two- 
tailed unpaired t test.
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Figure 3.36. Expression ofSP mRNA in PO trigeminal ganglia neurons cultured in the 
presence or absence ofNT-3 (lOng/ml) and caspase inhibitors.

Trigeminal ganglia were dissected from PO CD-I mice and cultured in-vitro in the 
presence or absence ofNT-3 (lOng/ml). Caspase inhibitors (50pM) were included in all 
dishes to allow survival in the absence of correct neurotrophic factor support. 
Expression of SP mRNA was quantified by real-time QPCR.

Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as 
determined by two-tailed unpaired t test.
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Figure 3.37. Expression o f Navi.8 and Navi.9 mRNAs in PO trigeminal ganglia neurons cultured in the 
presence or absence ofNT-3 (lOng/ml) and caspase inhibitors.
Trigeminal ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
ofNT-3 (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression of Navi .8 (A) and Navi .9 (B) mRNAs were 
quantified by real-time QPCR.
Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by two-
tailed unpaired t test.
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Figure 3.38. Expression ofVRl and PACAP mRNAs in PO trigeminal ganglia neurons cultured in the 
presence or absence ofNT-3 (lOng/ml) and caspase inhibitors.
Trigeminal ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
ofNT-3 (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression of VR1 (A) and PACAP (B) mRNAs were 
quantified by real-time QPCR.
Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by two- 
tailed unpaired t test.



120

100
3*
'§  80

ro
I  60
•21
% 40
ClroO)

20

0

Figure 3.39. Expression o f mRNA o f GAPDH trigeminal ganglia neurons cultured in the presence or 
absence ofNT-3 (lOng/ml) and caspase inhibitors.
Trigeminal ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
ofNT-3 (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression of GAPDH mRNA was quantified by real
time QPCR an used to normalise data for other genes.
Error bars = +/- standard error, n = 4. Where * = p = < 0.05 and ** = p = < 0.01 as determined by two- 
tailed unpaired t test.
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3.3.5.4 Nodose neuron cultures

p-CGRP and VR1 mRNAs could not be accurately quantified in total RNA extracted 

from nodose neurons. This was due to a combination of low neuronal number in these 

cultures (due to the small size of nodose ganglia) combined with the low levels of 

expression of these genes in nodose ganglia.

Figure 3.40 shows the effect that lOng/ml NGF has on the expression of a-CGRP and 

SP mRNAs in cultured nodose neurons. The expression levels of both mRNAs were 

considerably lower than those found in cultured trigeminal neurons. As was observed 

for trigeminal neurons, both mRNAs showed decreased expression levels over time 

when cultured in the absence of neurotrophic factor support. NGF was able to 

partially prevent the decrease in expression of both of these neuropeptide mRNAs. 

Over the 24 hour culture period, Navi .8 and Navi .9 mRNAs displayed a dramatic, 

greater than 10-fold, decrease in their levels of expression in nodose neurons cultured 

without neurotrophic factor support (figure 3.41). NGF was able to increase the levels 

of both mRNAs by around 2-fold compared to neurons cultured in caspase inhibitors 

alone, a rise that was statistically significant. As in the case of trigeminal neurons, the 

expression of PACAP mRNA in nodose neurons increased some 5-fold over a 24 

hour period in culture (figure 3.42). The addition of lOng/ml to the culture medium 

was able to reduce the up-regulation of PACAP mRNA expression slightly, although 

the effect did not reach statistical significance (p = 0.0625) (figure 3.42).

GAPDH mRNA expression levels decreased by around 40% in nodose neurons, 

cultured in caspase inhibitors for 24 hours (figure 3.43). NGF was able to partially 

reduce the decrease in GAPDH mRNA expression levels, although the rescue of 

GAPDH mRNA expression was not statistically significant.

Unlike NGF, NT-3 cannot prevent any of the decrease in the expression of a-CGRP 

and SP mRNAs that occurs when nodose neurons are cultured for 24 hours without 

neurotrophic support (figure 3.44). Similarly, NT-3 was not able to enhance the 

expression of Navi. 8 and Navi.9 mRNAs and thereby prevent the marked drop in 

expression of these two mRNAs that occurs in nodose neurons cultured for 24 hours 

in caspase inhibitors (figure 3.45).
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The expression of PACAP mRNA in cultured nodose neurons is shown in figure 3.46. 

In accordance with the NGF series of experiments, the amount of PACAP mRNA 

expressed by nodose neurons increased markedly (over 5-fold) over a 24 hour culture 

period when the neurons were cultured with caspase inhibitors alone. NT-3, like NGF, 

appeared to be able to partially prevent the increase in PACAP mRNA expression, 

although, as in the case of NGF, this did not reach statistical significance (p = 0.123), 

possibly due to error bars. This data is in contrast to the positive regulatory effect that 

NT-3 appears to have on PACAP mRNA expression in cultured trigeminal neurons 

(figure 3.46), but is in agreement with the data for nodose ganglia from Bax v7  NT-3* 

/_transgenic neonates (figure 3.26).

As for NGF cultures (figure 3.43), expression of GAPDH was reduced in nodose 

neurons following 24 hours in culture in the absence of neurotrophic factor support 

and presence of caspase inhibitors (figure 3.47). NT-3 could not prevent this decrease, 

illustrating the inability of this factor to support survival of such sensory neuronal 

populations.
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Figure 3.40. Expression o f alpha CGRP and SP in PO nodose neurons ganglia cultured in the 
presence or absence o f NGF (lOng/ml) and caspase inhibitors.

Nodose ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or 
absence of NGF (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow 
survival in the absence of correct neurotrophic factor support. Expression o f alpha CGRP (A) 
and SP (B) mRNAs were quantified by real-time QPCR.

Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by 
two-tailed unpaired t test.
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Figure 3.41. Expression o f mRNAs o f Navi.8 and Navi.9 in PO nodose ganglia neurons cultured in 
the presence or absence o f NGF (lOng/ml) and caspase inhibitors.

Nodose ganglia were dissected from PO, CD-I mice and cultured in-vitro in the presence or absence 
of NGF (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression of N avi.8 (A) and N avi.9 (B) mRNAs 
were quantified by real-time QPCR.

Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by
two-tailed unpaired t test.
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Figure 3.42. Expression o f PACAP mRNA in PO nodose ganglia neurons cultured in the presence or 
absence o f NGF (lOng/ml) and caspase inhibitors.

Nodose ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
of NGF (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression o f PACAP mRNA was quantified by 
real-time QPCR.

Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by 
two-tailed unpaired t test.



2 4 h r N G F (10ng/m l)

Figure 3.43. Expression o f GAPDH mRNA in PO nodose ganglia neurons cultured in the presence 
or absence o f NGF (lOng/ml) and caspase inhibitors.

Nodose ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
of NGF (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression of GAPDH mRNA was quantified by 
real-time QPCR.

Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by 
two-tailed unpaired t test.
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Figure 3.44. Expression o f alpha CGRP and SP mRNAs in PO nodose ganglia neurons cultured in the 
presence or absence o f NT-3 (lOng/ml) and caspase inhibitors.

Nodose ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence of NT- 
3 (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the absence of 
correct neurotrophic factor support. Expression of alpha CGRP (A) and SP (B) mRNAs were quantified 
by real-time QPCR.

Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by two-
tailed unpaired t test.
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Figure 3.45. Expression o f Navi.8 and Navi.9 mRNAs in PO nodose ganglia neurons cultured in 
the presence or absence o f NT-3 (lOng/ml) and caspase inhibitors.

Nodose ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
of NT-3 (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression of N avi.8 (A) and N avi.9 (B) mRNAs 
were quantified by real-time QPCR.

Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by 
two-tailed unpaired t test.
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Figure 3.46. Expression o f PACAP mRNA in PO nodose ganglia neurons cultured in the presence 
or absence o f NT-3 (lOng/ml) and caspase inhibitors.

Nodose ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
of NT-3 (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression o f PACAP mRNA was quantified by 
real-time QPCR.

Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by 
two-tailed unpaired t test.
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Figure 3.47. Expression o f GAPDH mRNA in PO nodose ganglia neurons cultured in the presence 
or absence o f NT-3 (lOng/ml) and caspase inhibitors.

Nodose ganglia were dissected from PO CD-I mice and cultured in-vitro in the presence or absence 
of NT-3 (lOng/ml). Caspase inhibitors (50pM) were included in all dishes to allow survival in the 
absence of correct neurotrophic factor support. Expression of GAPDH mRNA was quantified by 
real-time QPCR.

Error bars = +/- standard error, n = 4. Where * = p = <0.05 and ** = p = < 0.01 as determined by 
two-tailed unpaired t test.



3.4. Discussion

In this chapter, I used RT-QPCR to determine the roles that NT-3 and NGF (via TrkA 

dependent signalling) play in regulating the mRNA expression of several functionally 

important sensory neuron genes in neonatal trigeminal, nodose and dorsal root 

ganglion neurons. The roles of these neurotrophic factors in regulating neonatal 

sensory neuron mRNA expression was studied in vivo in transgenic mice and in vitro 

in primary neuronal cultures.

One important caveat should be bom in mind when interpreting the data presented in 

this chapter. Previously published data suggest that all the genes investigated in this 

chapter are predominantly or exclusively expressed by neurons within peripheral 

sensory ganglia of “normal” adult rodents, in-vivo. Whilst this is probably the case in 

both neonatal and transgenic animals as well as in neuronal cultures, the possibility 

exists that under these circumstances that non-neuronal cells within sensory ganglia 

also begin to express the mRNAs being investigated. The only way to rule out this, 

albeit remote, possibility is to carry out a comprehensive in-situ hybridisation, 

immuno-histochemistry and immnuo-cytochemistry study for each of the genes under 

investigation. Unfortunately, limited time precluded such a study. Therefore, the 

formal possibility exists that some of the data presented in this chapter reflects 

unexpected mRNA expression by glial cells within whole sensory ganglia and non

neuronal cells in dissociated cultures.

I will discuss the in-vitro and in-vivo regulation of each mRNA, in the various 

ganglia, in turn.

3.4.1. GAPDH
Non-neuronal cells within sensory ganglia contain extremely small relative levels 

(approximately 1000-fold to 5000 fold-less depending on neuron size) of GAPDH 

mRNA compared to the much larger neurons (S Wyatt unpublished observation), and 

as such only make up a small-percentage of the total amount of GAPDH mRNA 

expressed by neonatal sensory ganglia. The potential effects that TrkA and NT-3
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deletion have on non-neuronal cells and how this relates to alterations in the 

expression of GAPDH mRNA by non-neuronal cells can, therefore, be discounted.

In general the amount of GAPDH expressed by cells directly reflects the size of the 

cells (S Wyatt unpublished data). The smaller a cell is, the less energy it requires for 

maintenance and function. A reduced energy requirement would be expected to be 

reflected by a lowered rate of glycolysis and hence a reduced requirement for 

GAPDH (although obviously this is over simplistic and cell energy requirements are 

also dictated by cell function). The loss of TrkA did not significantly alter the levels 

of GAPDH mRNA expressed by neonatal trigeminal and nodose ganglia (figure 

3.22). In some respects the data for trigeminal ganglia is surprising, since the lack of 

NGF/TrkA signalling would be expected to make NGF-responsive neurons atrophic 

and would also be expected to limit their ability to innervate peripheral targets and 

decrease their degree of terminal arborisation (e.g. Patel et al., 1990; Lentz et al.,

1999; Gene et al., 2004). Moreover, cultured PO trigeminal neurons display a 

significant reduction in neurite outgrowth, cell soma size and expression of GAPDH 

mRNA in the absence of NGF (data not shown and figure 3.30), making the in-vivo 

data even more curious. In nodose ganglia, it is not surprising that the loss of TrkA 

had no discemable effects on GAPDH mRNA levels, since nodose ganglia contain 

such a small number of NGF-responsive neurons (Forgie et al., 1999). In contrast to 

the other two sensory ganglia studied, neonatal DRG from TrkA/Bax double-null 

mutants do show significantly lower levels of GAPDH mRNA compared to Bax 

single-null mutants, probably reflecting the atrophic nature of NGF-responsive 

neurons in the absence of NGF/TrkA signalling (figure 3.22).

Both neural crest-derived sensory ganglia showed a loss of GAPDH mRNA 

expression in NT-3/Bax double-null mutant neonates compared to Bax'7' neonates 

(figure 3.23). Although the TrkC-positive sub-population of proprioceptive neurons is 

only a small percentage of all DRG sensory neurons (predominantly being found in 

DRG innervating the limbs), proprioceptive neurons are large and as a consequence 

probably express a relatively large proportion of total DRG GAPDH mRNA (see 

above). NT-3 and Bax deficient DRG are likely to display a significant reduction in 

proprioceptive neuron cell size and a reduction in the complexity of terminal 

arborisation of these neurons, with a concomitant reduction in their expression of

280



GAPDH mRNA. This phenomenon may account for some of the reduction in 

GAPDH mRNA levels seen in the DRG of NT-3/Bax double-null mutant neonates. In 

addition, it has recently been shown that NT-3/Bax double-null mutant neonatal DRG 

contain fewer TrkC-positive neurons and more TrkA-positive neurons than WT 

animals (Gene et al., 2004). In DRG, TrkA-positive cells are predominantly small 

nociceptive neurons, expressing relatively low amounts of GAPDH mRNA. In 

contrast, TrkC positive DRG neurons are predominantly large proprioceptors 

expressing large amounts of GAPDH mRNA. Therefore, the change in the ratio of 

TrkA-positive to TrkC-positive neurons is also likely to reduce GAPDH mRNA 

levels in the absence of NT-3.

The trigeminal ganglion does not have a proprioceptive neuron component (these 

reside in the trigeminal mesencephalic nucleus) and neonatal trigeminal ganglia 

contain few TrkC positive neurons (Emfors et al., 1992). Therefore, the reduction in 

the levels of GAPDH mRNA expressed by trigeminal ganglia in the absence of NT-3 

signalling is less likely to be as a consequence of a reduction in neuron size and/or 

extent of terminal arborisation of TrkC-positive neurons. It is also unlikely to be the 

consequence of a change in the ratio of TrkA-positive to TrkC-positive neurons. The 

reduction in GAPDH mRNA expression in the absence of NT-3, is also unlikely to be 

as a result of the loss of NT-3/TrkA signalling, since as observed in figure 3.22, TrkA 

deletion does not reduce GAPDH mRNA levels in trigeminal ganglia. It is of course 

possible that NT-3 normally signals through its other non-preferred receptor TrkB or 

through the common neurotrophin receptor, p75, to exert its trophic effects on 

trigeminal ganglion neurons. Since these receptors (especially p75) are widely 

expressed in the neonatal trigeminal ganglion, it is possible that a loss of NT-3 will 

cause a reduction in size and a reduction in target field innervation/terminal 

arborisation of a large number of neurons, hence leading to a reduction in GAPDH 

mRNA levels. Analysis of NT-3 null mutant mice has come up with a number of 

hypotheses to account for the loss of neurons in neural crest-derived sensory ganglia. 

These range from direct apoptosis of post-mitotic neurons (Wilkinson et al., 1996), to 

apoptosis of proliferating neuronal precursors (ElShamy and Emfors 1996 a and b) 

and finally to premature differentiation of neuronal precursors resulting in a reduction 

in the precursor pool during the peak period of neurogenesis (Farinas et al., 1996). At
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present, it is not clear which of these three scenarios is the correct one. The deletion of 

Bax will prevent the first two events taking place in the absence of NT-3 signalling, 

allowing the maintenance of neuronal numbers. However, the premature 

differentiation of neuronal precursors into neurons will not be prevented by Bax 

deletion. It is therefore possible that NT-3/Bax double-null mutant neonates contain 

fewer trigeminal neurons than Bax'7' neonates, and this could account for the drop in 

GADPH mRNA levels in trigeminal ganglia of NT-3'77Bax'7' neonates. Of course, this 

hypothesis could also explain some or all of the reduction in GAPDH mRNA levels 

found in double-null mutant DRG. Careful histology-based analysis of neuron 

numbers in sensory ganglia from NT-3'77Bax'7' mice and Bax'7' mice would determine 

whether this hypothesis is true.

The deletion of NT-3 did not significantly alter the levels of GAPDH mRNA 

expressed by neonatal nodose neurons in-vivo (figure 3.23), suggesting that NT-3 

does not exert trophic effects on significant number of neonatal nodose neurons. This 

data is in agreement with a visual inspection of neonatal nodose cultures in the 

presence or absence of NT-3. NT-3 did not markedly increase neuron cell body size 

or increase neurite outgrowth compared to nodose neurons grown without trophic 

factor support (data not shown).

GAPDH mRNA levels were significantly less, at both 24 and 48 hr time points, in PO 

trigeminal neurons cultured in the absence of NGF compared to those cultured in 10 

ng/ml NGF (figure 3.34). This reduction in GAPDH mRNA levels was not due to a 

reduction in neuronal survival, since neurons were grown in the presence of caspase 

inhibitors that block apoptosis. However, neurons grown in the absence of NGF were 

clearly small and atrophic and displayed very little neurite outgrowth compared to 

those cultured with NGF. Since cell size generally correlates directly with GAPDH 

mRNA expression levels (see above), this data is not surprising. NT-3, in contrast to 

NGF, did not markedly increase the size of neuronal soma in PO trigeminal cultures, 

nor did it enhance neurite outgrowth signficantly (data not shown). In accordance 

with this observation, NT-3 did not prevent the decrease in GAPDH mRNA 

expression that occurs when trigeminal neurons are placed in culture (figure 3.39).
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NGF was only able to marginally prevent the drop in GAPDH mRNA expression that 

occurred when PO nodose neurons were cultured without neurotrophic factors for 24 

hrs (figure 3.43). This is not surprising in light of the small percentage of NGF- 

responsive nodose neurons at PO (Forgie et al., 1999). NT-3 did not alter GAPDH 

mRNA levels in neonatal nodose neuron cultures (figure 3.47)

The GAPDH mRNA data presented in this chapter clearly demonstrates that the levels 

of GAPDH mRNA expressed by sensory neurons, both in-vivo and in-vitro, can be 

modulated by exposure to the neurotrophins NGF and NT-3. This observation is 

important for interpreting expression data for other transcripts normalised to GADPH 

mRNA.

3.4.2. a- and p- CGRP

To date, few studies have addressed the regulation of the expression of a- and (3- 

CGRP separately, either at the mRNA or peptide level. Most mRNA expression 

studies have either used methods that are unable to distinguish between the two 

CGRP transcripts (e.g. Patel et al., 2000), or have just studied the expression of the a- 

CGRP transcript because this has been reported to be the more highly expressed 

transcript in the adult. Throughout development, however, p-CGRP is the 

predominant transcript expressed in many tissue types and, despite high sequence 

homology, a- and p- CGRP are transcribed from separate genes. This would, 

therefore, suggest functionally distinct roles for the peptide products of each transcript 

in development.

In chapter 2, the differential regulation of a- and p- CGRP mRNAs was demonstrated 

in sensory neurons of the embryonic mouse. This research has been extended in this 

chapter to explore a- and p- CGRP mRNA expression patterns and the regulation of 

their expression at postnatal ages. An initial investigation into the expression of both 

mRNAs in sensory neurons from wild-type late embryonic, neonatal and adult mice 

showed very similar expression patterns for both transcripts. Both mRNAs showed an 

increase in expression from embryonic ages into the adult in all three sensory ganglia 

studied. Such relatively high levels of P-CGRP mRNA in the adult were unexpected,
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since previous publications have suggested that p-CGRP is poorly expressed in adult 

tissues (Amara et al., 1985, Gibson et al., 1988). It should be bom in mind that the 

RT-QPCR data, although normalised to GAPDH mRNA expression, does not reflect 

the absolute levels of mRNA transcripts relative to the amount of GAPDH mRNA. To 

achieve a measure of this, a standard curve would need to be constructed, prior to 

reverse transcription of RNA, from known amounts of the cRNAs of GAPDH and the 

other assayed genes. In fact, the CT (threshold-crossing values) of RT-QPCR 

amplified p-CGRP transcripts from late embryonic, neonatal and adult sensory 

ganglia, were higher than those of a-CGRP. Since the efficiency of both QPCR 

reactions was very similar (data not shown), this demonstrates that a-CGRP is 

expressed at higher levels than P-CGRP. Nevertheless, it was surprising to find P- 

CGRP transcripts expressed at higher levels in RNA extracted from adult sensory 

ganglia compared to RNA from neonatal sensory ganglia given the previously 

published data (this can be stated with certainty, since the mRNA levels of p-CGRP 

from the different ganglia at different ages were all assayed in the same QPCR plates 

using the same standard curve).

During the embryonic period, the presence of NGF was not essential for the initial 

induction of either a- or p- CGRP mRNAs in trigeminal ganglia or p-CGRP in DRG 

neurons (see chapter 2). However, NGF/TrkA signalling seems to be important for the 

expression of both isoforms by birth, since TrkA7'/Bax7' neonates showed a 

significant loss of a- and p~ CGRP mRNAs in both trigeminal ganglia and DRG 

compared to Bax7' neonates (figure 3.18). NGF/TrkA signalling also appeared to be 

required for full expression of both a- and P-CGRP mRNAs by nodose neurons 

(figure 3.18). Interestingly, it would appear that the reduction in p-CGRP mRNA 

expression in all three ganglia in the absence of NGF/TrkA signalling was less 

pronounced than the reduction in a-CGRP mRNA expression. This suggests that 

either other factors co-operate with NGF in regulating the expression of p-CGRP 

mRNA in NGF responsive neurons, or that p-CGRP mRNA expression is not entirely 

restricted to the TrkA positive, NGF responsive, sub-population of sensory neurons in 

each ganglion at PO. Immuno-histochemistry and/or in-situ hybridisation, using 

probes and antibodies against TrkA and P-CGRP, would help to resolve these 

possibilities.
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Much of the data presented in this chapter came from TrkA/Bax and NT-3/Bax 

double-null mutant neonatal mice and from single-null mutant Bax'7' neonates.

Because these animals are not temporally controlled, conditional null mutants, they 

lack functional NGF/TrkA and NT-3-dependent signalling and are devoid of Bax 

from the moment of conception. This has two potentially important consequences on 

sensory neuron development that must be kept in mind when interpreting results. The 

differentiation of sensory neurons can effectively be divided into “primary” and 

“secondary” processes. In the primary differentiation event, proliferating, committed 

sensory neuron precursors stop dividing and become post-mitotic sensory neurons. In 

mice, this occurs between E9 and E l4, and results in broad sub-classes of 

presumptive proprioceptive, mechanoreceptive and nociceptive (TrkA-positive) 

neurons. A second period of differentiation occurs around birth and extends to around 

P7 in the mouse. During this second period of differentiation, sensory neurons of each 

broad sub-class become “specialized” into distinct sub-populations that have specific, 

refined, functional characteristics and sensory modalities (e.g. Molliver et al., 1997). 

The data comparing gene expression between wild type mice and Bax'7' mice tends to 

suggest that the differentiation program of sensory neurons is largely unaffected by 

the lack of Bax expression (figures 3.13 to 3.17). However, it is not clear to what 

extent the lack of NGF/TrkA- or NT-3-dependent signalling during the embryonic 

and neonatal period effects either the primary or secondary differentiation of sensory 

neurons.

This chapter explores the expression of mRNAs that are predominantly restricted to 

TrkA-positive, peptidergic nociceptive neurons within adult sensory ganglia. Any 

changes in primary or secondary differentiation, as a result of the loss of NT-3- or 

TrkA-dependant signalling, may alter the number of TrkA-positive presumptive 

nociceptive neurons initially generated between E10 and E14 or the number of TrkA- 

positive peptidergic, nociceptors present within neonatal sensory ganglia at PO. This 

phenomenon may alter the levels of the mRNAs under investigation in the absence of 

genuine transcriptional regulation by NT-3 or NGF/TrkA-dependant signalling. The 

loss of NT-3 has been shown to effect the timing of the “primary” differentiation of 

DRG neurons (Farinas et al., 1996), and is associated with an increase in the ratio of 

TrkA-positive neurons to TrkC-positive neurons in developing sensory ganglia of NT-
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3'/7Bax'/‘ double-null mutants compared to wild-type mice (Gene et al., 2004.)

Sensory ganglia have not been examined in the TrkA'^/Bax'7' double-null mutant to 

determine whether there is a change in the number of TrkA-positive neurons initially 

generated in the absence of NGF/TrkA signalling (this would necessitate using a 

reporter gene driven by the TrkA promoter, since TrkA is deleted). Neither double

null mutant strain has been examined to determine whether there is an alteration in the 

secondary differentiation process that may lead to a change in the number of TrkA- 

positive, peptidergic nociceptors that reside within postnatal sensory ganglia.

The second thing that must be taken into account when interpreting data from the 

transgenic neonatal ganglia is the possibility that the loss of neurotrophic support 

during the period of target field innervation, that occurs when TrkA or NT-3 is 

deleted from conception, may alter the pattern and density of normal target field 

innervation. Moreover, at older ages the loss of trophic support from NGF or NT-3 

may alter the degree of terminal arborisation, particularly in peripheral targets (e.g. 

Patel et al., 2000; Lentz et al., 1999; Gene et al., 2004). The alteration in target field 

innervation/arborisation may effectively reduce the accessibility of sensory neurons to 

other target field-derived trophic factors, and this may in turn affect neuronal gene 

expression. Thus the deletion of TrkA or NT-3 from conception could again lead to 

changes in gene expression within neonatal sensory neurons that are not the result of 

direct transcriptional regulation by NGF or NT-3.

This scenario, described in the above two paragraphs, could theoretically account for 

some or all of the reduction in the expression of both CGRP mRNAs in sensory 

ganglia from TrkA/Bax double-null mutant neonates, rather than a direct regulation of 

CGRP mRNA expression by NGF per se. However, this would seem unlikely given 

that the in-vitro data (see below) and previous publications on adult rodents (Lindsay 

et al., 1989; Verge et al., 1995; Jiang and Smith, 1995; Price et al., 2005; Ma et al., 

1995; Schuligoi and Amann, 1998; Schicho et al., 1999; Tandrup et al., 1999; Price et 

al., 2005) clearly demonstrate that NGF can directly influence the expression of 

CGRP. Further experiments using in-situ hybridisation and immuno-histochemistry 

(with probes against well characterized phenotypic markers of different neuronal sub

populations) and/or experiments with temporally controllable TrkA or NGF 

conditional knockout mouse lines would categorically address this question.
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In-vitro cell culture data revealed that NGF is necessary to maintain the expression of 

a-CGRP mRNA over time in culture in both trigeminal and nodose neurons (figure 

3.30. and 3.40 respectively). Dissecting out neurons and culturing them in-vitro 

effectively removes them from target field-derived neurotrophic factor support, and it 

is this lack of neurotrophic factor support that is largely responsible for the decrease 

in a-CGRP mRNA expression over time in culture. Sciatic nerve transection in adult 

mice and rats also removes target field-derived neurotrophic factor support from DRG 

neurons and leads to a reduction in the expression of a-CGRP mRNA and peptide 

(Noguchi et al., 1990; Mulder et al., 1997; Sterne et al., 1998; Shi et al., 2001; 

Shadiack et al., 2001). The fact that NGF can totally restore a-CGRP mRNA levels in 

cultured trigeminal neurons to levels comparable (in fact slightly greater) to those 

found at the time of plating, and hence in-vivo, suggests that a-CGRP mRNA is 

predominantly expressed in TrkA expressing NGF-responsive trigeminal neurons at 

P0. Developing nodose ganglia contain a small sub-population of NGF responsive 

neurons (Forgie et al., 1999). Since NGF can totally prevent the culture induced 

down-regulation of a-CGRP mRNA expression in nodose neurons, it is tempting to 

speculate that it is target field-derived NGF withdrawal that is responsible for the drop 

in a-CGRP mRNA expression and that a-CGRP is predominantly expressed by the 

NGF responsive sub-population of nodose neurons at P0.

Interestingly, P-CGRP mRNA expression was sustained in culture at in vivo (time 0) 

levels in trigeminal neurons in the absence of neurotrophic factor support for at least 

48 hrs (figure 3.30.). This could suggest that NGF, or indeed other target field-derived 

neurotrophic factors, is/are not entirely responsible for setting the steady state in vivo 

expression levels of this mRNA at P0. In support of this is the fact that, although p- 

CGRP mRNA expression is clearly reduced in trigeminal ganglia of transgenic mice 

lacking functional TrkA/NGF signalling, the reduction is only two-fold and is 

significantly less than the reduction of a-CGRP expression in the same ganglia. An 

alternative explanation for the lack of a fall in pCGRP mRNA expression in 

trigeminal neurons deprived of neurotrophic factor support (and in particular NGF), 

may be that pCGRP mRNA is a stable mRNA with a long “turn-over” time and so it 

takes longer for mRNA levels to fall after withdrawal of support from target field
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derived NGF. It is curious that whilst lOng/ml NGF can enhance 24-hour p-CGRP 

mRNA expression levels to levels significantly above those found in-vivo, it cannot 

maintain this enhanced expression at 48 hours (figure 3.30). All the other mRNAs that 

showed enhanced in-vitro expression levels when trigeminal neurons were cultured 

for 24 hours with NGF, remained at elevated expression levels at 48 hours (e.g. a- 

CGRP and see below).

The data presented in this chapter suggests an essential role for NGF/TrkA signalling 

in regulating the expression of a- and p-CGRP mRNAs in neonatal trigeminal, 

nodose and DRG neurons. This data compliments the previous study by Patel et al., 

(Patel et al., 2000) who explored CGRP expression in PO mouse DRG by immuno- 

histochemistry. The data is also in accordance with numerous studies in the adult 

rodent highlighting the positive effects of NGF signalling on the expression of CGRP 

by DRG neurons, as discussed in 2.1.1. (Verge et al., 1995; Jiang et al., 1995; Price et 

al., 2005; Lindsay et al., 1989; Shadiack et al., 2001; Christensen et al., 1997; 

McMahon et al., 1995; Schicho et al., 1999; Schuligoi and Amann, 1998; Ma et al., 

1995).

In stark contrast to the NGF/TrkA dependent regulation of a- and p-CGRP mRNA 

expression, NT-3 does not appear to regulate the expression of CGRP mRNAs in any 

ganglia either in-vitro or in-vivo (figures 3.24, 3.35 and 3.44). To date, no other data 

has arisen from other publications to suggest that NT-3 can regulate either of these 

mRNAs in sensory neurons under other experimental paradigms. This finding is not 

entirely unexpected given that the cognate NT-3 receptor, TrkC, is not expressed by 

peptidergic nociceptive neurons. However, NT-3 can, in certain circumstances signal 

through TrkA and also activates the common neurotrophin receptor p75 (Davies et al., 

1995, Huang et al., 1999) which raised the possibility that NT-3 could possibly play a 

role in regulating gene expression in TrkA expressing, nociceptive sensory neurons (a 

sub-population that also express p75). Moreover, it has been suggested that NT-3 

plays a role in regulating the timing and extent of sensory neuron differentiation from 

proliferating neuronal precursors in mid-gestation mouse embryos, and may thus in 

some way regulate the functional phenotype of sensory neurons (Farinas et al., 1996). 

This published data further suggests that a perturbation in normal NT-3 dependent
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signalling during development may effect the expression of certain phenotypic 

markers that characterise functionally distinct sensory neuron sub-populations. These 

reasons were the rationale behind measuring the expression of nociceptive sensory 

neuron specific markers in NT-3'7'/ Bax'7' mice and determining whether NT-3 could 

regulate their expression in-vitro.

3.4.3. Substance P

On the whole, Substance P (SP) mRNA showed a very similar pattern of regulation to 

that of a- and p-CGRP mRNAs with which it is co-expressed in the same sub

population of small diameter peptidergic, TrkA positive, adult sensory neurons 

(Lundberg et al., 1985; Lee et al., 1985; Hokfelt et al., 1975; Cuello et al., 1978; 

Skofitsch and Jacobowitz, 1985). The expression levels of SP mRNA, however, show 

little change between E l6 and adult in all three sensory ganglia studied, a situation 

that is markedly different to the significant developmental increase in expression 

levels observed for CGRP mRNAs (figure 3.6.). SP mRNA levels are, on the whole, 

markedly lower than those of CGRP mRNAs (especially at postnatal ages), as 

evidenced by the higher QPCR CT values for SP mRNA compared to CGRP mRNAs 

and a similar QPCR reaction efficiency (data not shown). The data in chapter 2 

revealed that SP mRNA required NGF/TrkA signalling for embryonic induction. In 

accordance with this, the transgenic studies carried out in this chapter revealed a 

dramatic loss of SP mRNA in all three sensory ganglia of PO TrkA'7'/Bax'7' mice 

compared to PO Bax '7' mice (figure 3.20A), suggesting that NGF/TrkA signalling is 

required to establish and maintain the correct in-vivo expression levels of SP mRNA 

in nociceptive sensory neurons of all three ganglia in the neonatal period. It seems 

that the loss of SP mRNA in the absence of NGF/TrkA signalling is not as dramatic as 

the loss of CGRP, suggesting that an additional factor may also positively regulate the 

expression of SP at the transcriptional level. These data differ slightly from those of 

Patel et al (1990). These authors were unable to detect either SP peptide or mRNA in 

DRG from TrkA'7' /Bax'7' neonates. This difference may be due to the different mouse 

strains used in my study (CD1 background) and the Patel study (C57 background) or, 

more likely, due to the greater sensitivity of RT-QPCR compared to in-situ 

hybridisation.

289



It is possible that, as in the case of a- and P-CGRP, the lack of functional NGF/TrkA 

signalling from the earliest stages of development changes the programme of neuronal 

differentiation in sensory ganglia and significantly alters the pattern of target field 

innervation (see above). Such a scenario could theoretically account for some/all of 

the reduction in SP mRNA expression in sensory ganglia, rather than reflecting a 

direct regulation of SP mRNA expression by NGF per se. However, this would seem 

unlikely given that the in-vitro data (see below) and previous publications on adult 

rodents (Lindsay et al., 1989; Zhang et al., 1995; Schuligoi and Amann, 1998;

Tandrup et al., 1999) clearly demonstrate that NGF can directly influence the 

expression of SP. Again, as in the case of CGRP, further experiments with temporally 

controllable TrkA or NGF conditional knockout mouse lines, as well as detailed in- 

situ hybridisation and/or immuno-histochemical analysis of ganglia from knockout 

neonates, would definitively address this question.

NGF was able to prevent the rapid decrease in the levels of SP mRNA expressed by 

cultured neonatal sensory neurons as a result of their removal from a source of target 

field-derived neurotrophic factors (figures 3.31. and 3.40B.). This result reflects the 

drop in SP mRNA and peptide levels that are observed in small, peptidergic, L4-L6 

DRG neurons of adult rodents following sciatic nerve injury due to a reduction in the 

availability of foot-pad derived neurotrophic factors (Nielsch et al., 1987; Zhang et 

al., 1995; Sterne et al., 1998). The results in this chapter show that in the case of 

trigeminal neurons, lOng/ml NGF can totally prevent the decrease in SP mRNA 

expression that occurs over time in culture, suggesting that SP mRNA is 

predominantly expressed in NGF responsive, PO trigeminal neurons in a similar 

manner to adult DRG sensory neurons. In contrast, lOng/ml NGF can only partially 

prevent the time-dependent decrease in SP mRNA levels that occurs in cultured 

nodose neurons, perhaps suggesting that SP mRNA is expressed by both the small 

NGF-responsive sub-population of nodose neurons and also by another sub

population of non NGF-responsive nodose neurons. In-situ hybridisation and/or 

immuno-histochemistry of neonatal nodose ganglia could determine whether this is 

the case. Alternatively, NGF may act in conjunction with other trophic factors, in a 

partially redundant way, to regulate SP mRNA expression in TrkA-positive nodose 

neurons. Data from culture experiments and RT-QPCR analysis of RNA extracted
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from sensory ganglia of NT-3'7TBax'7' and Bax'7’ mice did not reveal a role for NT-3 in 

regulating the neonatal expression of SP mRNA, either in-vitro or in-vivo (figures 

3.26A, 3.36, 3.44B.

3.4.4. Nav1.8 and Nav1.9

Messenger RNAs for the two TTX-resistant sodium channels, Navi.8 and Navi.9, 

were expressed at all developmental ages assayed (figures 3.7 and 3.8). The mRNAs 

for both of these TTX-resistant sodium channels showed a similar, but not identical 

developmental pattern of expression between the ages of El 6 and adult. For both 

mRNAs, the lowest levels of expression were found at El 6 in all three sensory 

ganglia, and both showed a drop in expression between neonatal ages and adulthood 

in all ganglia. An exception to this was Navi.8 mRNA, which showed peak levels of 

expression in adult nodose ganglia, not neonatal nodose ganglia. These data raise the 

possibility that Navi.8 and Navi.9 mRNAs are regulated in-vivo by a similar 

mechanism, as might be expected given the co-localization of both sodium channels 

in many nociceptive adult DRG sensory neurons (Roy and Narahashi 1992; Black et 

al., 1996; Rush et al., 1998; Amaya et al., 2000). Navi.8 is expressed in most C- and 

A-8- (and a few A-p) fibre rodent DRG nociceptive neurons (Sangameswaren et al., 

1996; Amaya et al., 2000; Fang et al., 2005). Navi.9 seems to be more restricted in its 

expression pattern, being most highly expressed in small diameter, non-peptidergic, 

IB4-positive, C-fibre nociceptors (Black et al., 1996; Amaya et al., 2000; Benn et al., 

2001; Fang et al., 2002).

In chapter 2 ,1 provided data to show that NGF/TrkA signalling is required for the 

induction and correct regulation of both Navi.8 and Navi.9 mRNA expression in 

mouse sensory neurons during the embryonic period. The results presented in this 

chapter suggest that the expression of both of these mRNAs is also regulated by 

NGF/TrkA signalling in P0 trigeminal ganglia and DRG. A significant reduction in 

the expression levels of both mRNAs was observed in trigeminal and dorsal root 

ganglia of P0 TrkA'7TBax'7’ mice compared to Bax'7* mice (figure 3.19). This decrease 

in TTX-resistant sodium channel expression was not seen in TrkA'7TBax'7' nodose 

ganglia neurons. The number of NGF responsive, TrkA-positive neurons within the
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PO nodose ganglion is small (Forgie et al., 1999), whilst the number of nociceptive 

neurons that would be expected to express these TTX-resistant sodium channels is 

likely to be large. Therefore, it is not surprising that NGF does not play a significant 

role in regulating the expression of Navi.8 and Navi.9 mRNAs in the nodose 

ganglion. The fact that there is absolutely no decrease in the expression of either 

sodium channel mRNA in the absence of NGF/TrkA signalling (in fact a slight 

increase was apparent) may be because the NGF responsive sub-population of nodose 

neurons are not nociceptive, and hence do not normally express nociceptor specific 

TTX-resistant sodium channel mRNAs. However, this seems unlikely since the 

CGRP and SP mRNA expression data presented above suggests that NGF responsive 

nodose neurons are peptidergic and as has been previously discussed peptidergic 

TrkA-positive neurons are nociceptive in neural crest-derived sensory ganglia. In-situ 

hybridisation could be used to address this question.

Perhaps a more likely scenario to explain the nodose ganglion data from TrkA/Bax 

double-null mutant neonates is that other growth factors act (possibly in a partially 

redundant way) to regulate the expression of TTX-resistant sodium channels in the 

NGF-responsive sub-population of nodose neurons (see discussion of in-vitro data 

below). BDNF, NT-4 and GDNF have all been demonstrated to have trophic effects 

on nodose ganglion neurons and are candidates for growth factors that may regulate 

TTX-resistant sodium channel expression in this ganglion (Davies et al., 1986; 

Lindsay et al., 1985; Davies et al., 1993; Buj-bello et al., 1994; Cummins et al., 2000; 

Wiklund et al., 2000; Blum et al., 2002).

Data from P0 neuronal cultures demonstrate that NGF positively regulates the 

expression of Navi. 8 and Navi.9 mRNA in trigeminal neurons. Exogenous NGF 

prevented, to some extent, the rapid drop in TTX-resistant sodium channel mRNA 

levels that is a consequence of removing trigeminal neurons from their target field- 

derived source of neurotrophic factor support (figure 3.32). The drop in Navi.8 and 

Navi.9 levels in culture mirrors that seen in L4-L6 DRG neurons following peripheral 

axotomy or sciatic nerve section (Okuse et al., 1997; Cummins et al., 1997; Tate et 

al., 1998; Dib-hajj et al., 1998; Novakovic et al., 1998 Sleeper et al., 2000; Decosterd 

et al., 2002). It is worth noting that although levels of Navi.8 mRNA are retained at 

levels close to those at time 0 in the presence of exogenous NGF, Navi.9 mRNA
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expression is only partially rescued by NGF. This could be due to a difference in the 

expression patterns of these two sodium channels. In the adult, Navi. 8 is expressed by 

the majority of C- and A-fibre nociceptive rodent DRG neurons, whilst Navi.9 is 

more highly expressed by, and more restricted to, the IB4-positive, TrkA-negative 

population of small-diameter DRG neurons. It has not been determined whether this is 

the case in neonatal sensory neurons where the majority of presumptive nociceptive 

neurons are still TrkA-positive. In the adult rodent, the IB4-reactive population of 

neurons are predominantly responsive to GDNF family members, and in particular 

GDNF itself, rather than the neurotrophins. It is therefore possible that the presence of 

both NGF and GDNF in PO trigeminal neuron cultures might restore expression of 

Navi.9 mRNA to that seen at time 0 in-vivo. Although a number of TrkA-negative, 

NGF non-responsive, neurons expressing Navi.8 mRNA almost certainly exist in the 

neonatal trigeminal ganglion, NGF appears to be able to almost completely maintain 

the levels of Navi. 8 mRNA in cultured trigeminal neurons. It is possible that the 

addition of exogenous NGF at a concentration of lOng/ml can increase Navi.8 

mRNA expression to levels higher than those found in-vivo in TrkA-positive cultured 

trigeminal neurons, hence giving the illusion that NGF is regulating Navi.8 mRNA 

expression in cultured TrkA-negative nociceptors.

Interestingly, NGF appears to be able to prevent part of the decrease in Navi .8 and 

Navi.9 mRNA expression levels in nodose neurons that occur as a consequence of in- 

vitro culture. Although the efficacy of NGF in maintaining TTX-resistant sodium 

channel expression in nodose neurons is small, it is statistically significant (figure 

3.41). As it is such a small effect it is likely that this represents the ability of NGF to 

maintain levels of these sodium channel mRNAs in the small sub-population of TrkA- 

positive nodose neurons, rather than acting through p75 to promote Navi.8 and 

Navi.9 mRNA expression across the nociceptive nodose neuron population as a 

whole. A question that arises from the in-vitro data is why nodose ganglia from PO 

TrkA’7'/ Bax7' mice do not show a reduction in TTX-resistant sodium channel mRNA 

expression compared to nodose ganglia of PO Bax7' mice when NGF appears to be 

able to positively regulate the expression of both sodium channel mRNAs in culture? 

In fact, nodose ganglia from double-null mutant neonates appear to express higher 

levels of these mRNAs, although this is not statistically significant (figure 3.19). As 

alluded to above, it is possible that there is a redundancy inherent in the regulation of
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TTX-resistant sodium channel expression in NGF-responsive nodose neurons that 

could account for this discrepancy. If NGF and another growth factor can both 

promote Navi .8 and Navi .9 mRNA expression in NGF-responsive nodose neurons, 

the loss of TrkA by these neurons may not reduce the expression of either sodium 

channel mRNA, as the second growth factor would be sufficient to maintain 

expression. Alternatively, the lack of NGF/TrkA signalling from conception raises the 

possibility that neuronal differentiation is altered in the TrkA/Bax double-null mutant 

mouse line with the consequence that the NGF responsive nodose neuron sub

population do not arise but are replaced by neurons of a different phenotype. If this is 

correct and the “replacement” neurons express higher levels of Navi.8 and Navi.9 

mRNAs than the “normal” TrkA expressing sub-population, this would account for 

the data obtained in the in-vivo study. Careful analysis of nodose ganglia from TrkA'7' 

/Bax'1' and Bax'7' neonates using a combination of in-situ hybridisation and immuno- 

histochemistry and/or further experiments with a temporally controllable, TrkA 

conditional knockout mouse line would address this possibility. As in the case of 

CGRP and SP mRNAs, RT-QPCR data from transgenic animals and in-vitro cultures 

suggests that NT-3 plays no role in regulating the expression of Navi. 8 and Navi.9 

mRNAs in sensory ganglia of neonatal mice (figures 3.25, 3.37 and 3.45).

3.4.5. Galanin

The expression of galanin mRNA was investigated in TrkA/Bax double-null mutant 

and NT-3/Bax double-null mutant transgenic neonatal mice. However, since galanin 

mRNA could not be reliably quantified in sensory neuron cultures, no culture data is 

presented in this chapter. This is most likely due to low-level expression of galanin in 

the neuronal cultures combined with the small amount of total RNA that can be 

extracted and purified from cultured neurons. In addition, the galanin QPCR reaction 

was not as efficient, or sensitive as many of the other QPCR reactions.

The developmental expression pattern of galanin mRNA was similar in both 

trigeminal and dorsal root ganglia, with highest expression levels at E l6 and levels 

gradually decreasing as development proceeds (figure 3.9). Once again, as with 

Navi.8 and Navi.9 mRNAs, the developmental expression pattern was different in
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nodose ganglia compared to the other two sensory ganglia. In the case of nodose 

ganglia, there was no significant difference in the levels of galanin mRNA expressed 

from El 6 to adult, suggesting that a similar number of nodose ganglion neurons 

express the message for this neuropeptide at all developmental stages (figure 3.9). The 

data from trigeminal and dorsal root ganglia is broadly in agreement with previous 

studies, and is indicative of an important role for galanin in developing sensory 

neurons (Xu et al., 1996; Ma et al., 1999). It is, perhaps, a little strange that the drop 

in galanin mRNA expression levels that occurs between neonatal ages and adult in 

both trigeminal and dorsal root ganglia was not greater than that observed, as previous 

research has shown that whilst the majority of developing sensory neurons from these 

ganglia express galanin, only 5% of adult neurons continue to express mRNA for this 

neuropeptide (Xu et al., 1996; Ma et al., 1999). It can only be assumed that this small 

population of neurons that retain expression of galanin mRNA significantly up- 

regulate the expression of this mRNA between birth and adulthood.

There was a significant decrease in galanin mRNA expression in the DRG of TrkA'7' 

/Bax'7' neonates compared to Bax'7' neonates (figure 3.21 A). A small decrease in the 

expression of this neuropeptide mRNA was also observed in the trigeminal ganglia of 

TrkA'77Bax'7' neonates compared to Bax'7' neonates, although this decrease was not 

statistically significant. These data suggest a role for NGF as a positive regulator of 

galanin mRNA expression within neonatal, neural crest-derived sensory neurons. 

However, since the reduction in galanin mRNA in trigeminal and dorsal root ganglia 

of TrkA'7'/Bax'7' neonates was small, it would appear that NGF/TrkA signalling is 

not absolutely essential for maintaining galanin mRNA expression at this age, and 

other factors have a role in the regulation of this neuropeptide in these ganglia. This 

is not surprising in light of the fact that galanin mRNA is expressed in the majority of 

neonatal trigeminal and DRG neurons, whereas TrkA expression is becoming more 

restricted by this stage to presumptive peptidergic, nociceptive neurons. Indeed,

GDNF and BDNF (Wang et al., 2003; Kerekes et al., 1995 respectively) have both 

been shown to regulate galanin mRNA expression in adult rat DRG (albeit in a 

negative manner). Receptors for these neurotrophic factors (especially TrkB) are 

expressed on neonatal DRG and trigeminal neurons, therefore a role for these 

neurotrophic factors in regulating galanin expression in neonatal neural crest-derived 

sensory neurons is also possible. The levels of galanin mRNA expressed by nodose
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neurons from TrkA^TBax'7' neonates were similar to those found in nodose neurons 

from Bax’7' neonates. This would suggest that either galanin is not expressed in the 

small TrkA-positive sub-population of nodose neurons, or that, if it is, NGF plays no 

role in regulating its expression at neonatal ages.

The apparent positive regulatory effects of NGF on galanin mRNA expression 

conflicts with previous work on adult, rodent sensory neurons that suggested a 

negative role for NGF in regulating galanin mRNA and peptide expression (Verge et 

al., 1995 Kerekes et al., 1997; Ozturk and Tonge; Shadiack et al., 2001). There may 

be several reasons why the results from transgenic animals presented in this chapter 

suggest a positive rather than a negative regulatory role for NGF in modulating 

neonatal galanin expression. The simplest explanation is that neonatal rodent neurons 

respond differently to NGF compared to adult neurons. The widespread expression of 

galanin in developing sensory ganglia and its subsequent restriction to a very small 

subset of neurons in the adult (Xu et al., 1996; Ma et al., 1999), suggests that galanin 

plays an important role in the survival and/or development of sensory neurons, a role 

that becomes redundant in the adult. Differential regulation of this neuropeptide 

mRNA in developing and adult neurons may therefore be anticipated. The data from 

transgenic animals presented in this chapter was obtained from intact, non-lesioned 

neurons. The negative effects of NGF on modulating galanin expression that were 

observed in previously published research appears to have been restricted to damaged 

neurons. For example, exogenous NGF is unable to decrease the expression of galanin 

in non-injured lumbar DRG neurons following partial sciatic nerve lesion in adult 

rodents, but it can prevent the up-regulation of galanin expression in neighbouring 

injured neurons (Verge et al., 1995). Postnatal culture data from PO sensory neurons, a 

situation that effectively mimics injured/axotomised neurons, would have proved 

informative in determining whether the ability of NGF to inhibit galanin mRNA 

expression is restricted to damaged sensory neurons in the neonatal rodent in the same 

way as it appears to be in the adult. Unfortunately, this data could not be obtained due 

to a lack of sensitivity of the PCR reaction and the small amount of total RNA that 

can be extracted and purified from cultured sensory neurons.

Once again, it is also possible that the lack of functional NGF/TrkA signalling from 

conception in the TrkA/Bax double null mutants effects the differentiation of sensory
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neurons into different functional sub-populations. This raises the possibility that the 

reduction of galanin expression in the absence of TrkA reflects an alteration in the 

composition of sensory ganglia, with regards to the numbers of neurons with different 

functional modalities, rather than a direct effect of NGF/TrkA signalling on galanin 

mRNA regulation. Further experiments with temporally controllable TrkA or NGF 

conditional knockout mouse lines would address this possibility, as would a detailed 

m-situ hybridisation and immuno-histochemistry analysis of sensory ganglia from 

TikA/Bax double-null mutants using antibodies and probes against galanin and other 

markers that characterise functionally distinct neuronal-sub-populations.

It is also possible that the lack of functional NGF/TrkA signalling throughout 

development reduces the target field innervation density of sensory neurons and/or 

leads to inappropriate target field innervation patterns. This may affect the 

accessibility of sensory neurons to additional target field-derived trophic factors that 

normally positively regulate galanin mRNA expression during embryonic 

development and in the neonatal period.

Galanin has been shown to have survival promoting effects on developing, mainly 

- nociceptive, sensory neurons. Analysis of the adult galanin null mutant mouse 

revealed a 13% reduction in, predominantly, small DRG neurons. This loss of neurons 

equated to a 24% decrease in TrkA-positive neurons that express SP, i.e. peptidergic 

nociceptive neurons (Holmes et al., 2000). Since NGF/TrkA signalling appears to 

promote the expression of galanin mRNA in developing sensory neurons, it is 

intriguing to propose that some of the sensory neuron cell loss observed in NGF and 

TrkA single knockout embryos/neonates occurs as a result of a galanin deficiency that 

is as consequence to the lack of functional NGF/TrkA signalling.

The data obtained from RT-QPCR analysis of RNA extracted from sensory ganglia of 

NT-3'7'/Bax'7' and Bax *7' neonatal mice suggests that NT-3 may play a role in 

regulating galanin mRNA expression in neonatal trigeminal neurons, but not nodose 

or DRG neurons (figure 3.27B). Trigeminal ganglia from NT-3'7'/Bax'7' neonates 

contained significantly higher levels of galanin mRNA than trigeminal ganglia from 

Bax'7' mice, suggesting that NT-3 normally acts to suppress galanin mRNA 

expression. Since the deletion of TrkA resulted in a decrease in galanin mRNA



expression in trigeminal ganglia, it is unlikely that NT-3 signals through TrkA to 

suppress galanin mRNA expression. Unlike DRG, trigeminal ganglia do not contain a 

sub-population of proprioceptive neurons expressing full-length functional TrkC in 

the neonatal period (these reside in the trigeminal mesencephalic nucleus) and 

, therefore probably contains very few neurons expressing functional TrkC (Emfors et 

al., 1992). This raises the possibility that NT-3 suppresses galanin mRNA expression 

by signalling through the common p75 neurotrophin receptor. NT-3 can, under certain 

|  ihcumstances signal via TrkB (Davies et al., 1995; Huang et al., 1999), so it is also 

possible that NT-3 signals through TrkB to inhibit galanin mRNA expression in the 

trigeminal ganglion. As mentioned previously, study of null mutant mice has shown 

. that a lack of NT-3 expression from conception can also alter the timing and dynamics 

of sensory neuron differentiation (Farinas et al., 1996). It is therefore possible that the 

increased expression of galanin mRNA within trigeminal ganglia in the absence of 

NT-3 observed here, reflects a change in the number of trigeminal neurons that 

differentiate into galanin-positive neurons rather than an indication of direct 

regulation of galanin mRNA expression by NT-3. Alternatively, the marked drop in 

GAPDH mRNA expression observed in trigeminal ganglia of NT-3*/'/Bax'/' neonates 

(3.23A) (see explanation above) may give the impression that galanin mRNA 

' expression is higher in trigeminal ganglia from these animals compared to ganglia 

from Bax7' mice after normalisation, when in reality the galanin mRNA levels per 

galanin-positive neuron may be very similar in ganglia from both genotypes. Once 

again, a detailed immuno-histochemistry and in-situ hybridisation analysis of sensory 

ganglia from NT-3/Bax double-null mutant neonates would prove useful in addressing 

these questions. In addition, further experiments using p75 and TrkB null mutants, or 

* a temporally controllable, conditional NT-3 null mutant would help to determine 

which of the above mechanisms operate to alter the levels of galanin mRNA 

expression within the neonatal trigeminal ganglion in the absence of NT-3. Culture 

data from experiments where trigeminal neurons were grown in the presence or 

absence of NT-3 would also shed light on this question, however, the limited 

? sensitivity and efficiency of the galanin mRNA RT-QPCR reaction preclude this 

approach at present.
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3.4.6. PACAP

The developmental time-course of PACAP mRNA expression is identical in all three 

sensory ganglia studied. In all three ganglia, there is a 2- to 3-fold increase in the 

expression of this neuropeptide mRNA between El 6 and PO, followed by a drop back 

to E l6 levels by P5. PACAP mRNA levels are maintained at P5 levels until adulthood 

in all ganglia (figure 3.10). This conflicts, somewhat, with previous data that shows a 

significantly more widespread expression of PACAP mRNA and peptide in 

embryonic sensory ganglia compared to adult (Shuto et al., 1996; Waschek et al.,

1998; Jiang et al., 2003). This result might therefore suggest that as the expression of 

PACAP mRNA becomes more restricted, the levels of mRNA expression increase in 

those cells that retain expression.

No difference in the expression of PACAP mRNA was observed between sensory 

ganglia isolated from either TrkA^'/Bax7' or Bax*7* neonates, suggesting that 

NGF/TrkA signalling plays no role in regulating PACAP mRNA expression 

perinatally (figure 3.20). This conclusion would seem to be confirmed by the results 

obtained from PO trigeminal and nodose neuron cultures. PACAP mRNA expression 

levels increased significantly over the first 24 hrs in culture for both trigeminal and 

nodose neurons cultured in the absence of neurotrophic factor support (figures 3.33B 

and 3.42). This increase mirrors that seen following axotomy of adult DRG neurons 

and probably reflects the removal of target field derived neurotrophic support from 

neurons (Jongsma Wallin et al., 2001). Whilst PACAP mRNA levels fell after 24 hrs 

in trigeminal neuron cultures, they still remained above in-vivo, levels at 48 hrs. The 

addition of lOng/ml NGF to cultures had no statistically significant effect on the 

levels of PACAP mRNA expressed by either nodose or trigeminal ganglia neurons 

(figure 3.33B and 3.42). The in-vitro and in-vivo data presented in this chapter 

conflicts with data from previous research using adult rodents which demonstrated 

that PACAP mRNA expression is positively regulated by NGF in both intact and 

injured DRG neurons, and following inflammation (Jongsma-Wallin et al., 2001, 

2003).

The simplest explanation of the discrepancy between the in-vivo data presented here 

and the data published previously, is that the regulation of PACAP mRNA expression

299



is fundamentally different in neonatal sensory neurons compared to adult sensory 

neurons. PACAP mRNA and peptide are reported as widely expressed in embryonic 

and neonatal sensory ganglia, whereas in adult sensory ganglia, expression is 

predominantly restricted to a small sub-population of peptidergic nociceptors 

(Sheward WJ et al., 1998; Shuto et al., 1996; Waschek et al., 1998; Jiang et al., 2003; 

Moller et al., 1993; Mulder et al., 1994). The identity of the neuronal sub-populations 

expressing PACAP mRNA in neonatal sensory ganglia has not been established. 

However, it is possible that the majority of PACAP mRNA positive neonatal sensory 

neurons do not express TrkA, therefore the deletion of TrkA would not be expected to 

significantly alter the levels of PACAP mRNA in neonatal sensory neurons. 

Alternatively, it is possible that NGF regulates the expression of PACAP mRNA in 

neonates and adults by signalling through the common neurotrophin receptor, p75, 

and not TrkA, a scenario that is consistent with both the in-vivo data presented here 

and previously published in-vivo data from adult rats. Indeed, NGF has been reported 

to reduce the expression of PACAP mRNA in adult proprioceptive, TrkA negative, rat 

DRG neurons following nerve transection (Jongsma Wallin et al., 2001). Whilst this 

may reflect a paracrine effect of NGF on proprioceptive neurons, via actions on TrkA 

positive peptidergic nociceptors, it may also indicate that NGF can regulate PACAP 

mRNA expression via p7 5-dependent signalling (data suggesting that lesioned 

proprioceptive neurons start expressing TrkA has not emerged). Additional analysis 

of PACAP expression in neonatal and adult NGF/Bax and p75/Bax double-null 

mutants would determine whether NGF regulates PACAP mRNA expression in 

sensory neurons in-vivo via TrkA or p75 dependent signalling.

Another possible explanation for the unexpected data from TrkA/Bax double-null 

mutants stems from the observation that NT-3 appears to decrease PACAP mRNA 

and peptide expression selectively in TrkA-expressing nociceptive neurons in intact, 

non-lesioned adult rats (Jongsma-Wallin et al., 2001). If the actions of NT-3 are 

mediated by TrkA (and not p75), PACAP mRNA expression in peptidergic 

nociceptors would appear to be regulated in an antagonistic manner by NGF and NT- 

3 both signalling via TrkA. If the regulatory influences of both neurotrophins were of 

similar magnitude, the loss of TrkA expression in TrkA/Bax double-null mutants 

would not be expected to significantly alter the expression levels of PACAP mRNA.
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Based on the results of previous in-vivo experiments, one would perhaps predict that 

NGF would up-regulate the expression of PACAP mRNA in cultured neural crest- 

derived neonatal sensory neurons. Figure 3.33B clearly shows that this is not the case. 

This unexpected data can be explained in a number of alternative ways, none of which 

are mutually exclusive. First, it has been widely reported that axotomy, a situation that 

is largely mimicked by placing neurons in culture, leads to an increase in PACAP 

mRNA expression in large, non-nociceptive TrkC/TrkB expressing neurons that do 

not express TrkA (Zhang et al., 1995; Zhang et al., 1996; Jongsma-Wallin et al.,

2001). The up-regulation of PACAP mRNA in cultured sensory neurons is clearly 

evident from the data presented in figures 3.33B, 3.38B, 3.42 and 3.46. Since the 

majority of sensory neurons expressing PACAP mRNA in culture do not express 

TrkA (particularly in the case of the nodose ganglion), it is perhaps not surprising that 

NGF does not appear to regulate the expression of this peptide in culture. In-vivo data 

showing that NGF up-regulates the expression of PACAP mRNA and peptide in adult 

DRG neurons has been based on in-situ hybridisation and immuno-histochemistry, 

techniques that allow analysis of gene expression at the level of the individual neuron. 

The RT-QPCR assay used in this thesis reveals the changes in gene expression across 

the whole population of neurons within sensory ganglia. If the number of neurons 

expressing TrkA is small in the neuronal population from which total RNA for RT- 

QPCR analysis was extracted, and at the same time the number of neurons expressing 

PACAP message is large, NGF induced changes in PACAP mRNA levels in the small 

NGF-responsive sub-population will be unlikely to be detected. This explanation, 

however, cannot be the whole answer, as data presented in chapter 4 clearly show that 

NGF down-regulates PACAP mRNA expression in cultured adult DRG neurons 

where the majority of neurons are likely to be TrkA-negative.

Second, it is possible that the in-vitro regulation of PACAP mRNA expression does 

not reflect the in-vivo regulation of expression. All the data on the regulation of 

PACAP mRNA published to date has come from in-vivo experiments, predominantly 

sciatic nerve lesion. It appears that for most genes investigated in this thesis, placing 

neurons in culture mimics the effects of sciatic nerve lesion with regard to changes in 

mRNA expression. It also appears that for most genes investigated the regulation of 

mRNA expression by trophic factors in-vitro mirrors that seen after sciatic nerve 

lesion following infusion of trophic factors. It may be that PACAP is just an
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exception to this apparently general rule. Placing neurons in culture alters the 

expression of a large number of mRNAs and proteins. Perhaps key elements of the 

signalling pathways regulating PACAP mRNA expression show aberrant 

expression/phosphorylation in-vitro and this perturbs the normal regulation of mRNA 

expression. Alternatively, it may be that NGF normally regulates PACAP mRNA 

expression in-vivo in a co-operative manner with additional trophic factors.

Exogenous NGF therefore may not have the expected effects on PACAP mRNA 

expression in the absence of these additional trophic factors in the culture medium.

The third possible explanation to account for the discrepancy between my culture data 

and the previously published results of in-vivo experiments concerns the fact that all 

the latter data has come from the analysis of DRG neurons. It may simply be that 

neurotrophic factors regulate PACAP mRNA expression in trigeminal neurons in a 

different manner to DRG neurons. However, since NGF is shown to repress the 

expression of PACAP mRNA by cultured adult DRG neurons, in a dose-dependent 

manner, in chapter four of this thesis, this hypothesis seems unlikely. The fourth 

possible explanation for the inability of NGF to positively regulate PACAP mRNA 

expression in cultured neonatal, PO, trigeminal neurons concerns the fact that all 

previous in-vivo experiments have been performed on the rat, whereas my data is 

from mouse sensory neurons. It is possible that the regulation of PACAP mRNA 

expression differs between rat and mouse sensory neurons. There is a precedent for 

this in data from previous work. For example, it has been observed that the regulation 

of expression of the mRNAs encoding the NT-3 receptor, TrkC, and the MSP 

receptor, RON, are fundamentally different in cultured rat sensory neurons compared 

to cultured mouse sensory neurons (S. Wyatt unpublished data). This explanation is 

also consistent with the data on PACAP mRNA expression presented in chapter 4.

One interesting observation from the culture data is that PACAP mRNA levels 

increase significantly more in cultured nodose neurons (approximately nine-fold) 

compared to cultured trigeminal neurons (approximately four-fold) over the first 24 

hours after plating (figures 3.33B, 3.38B, 3.42 and 3.46). This raises the possibility 

that PACAP plays a particularly important role in regeneration following lesion of the 

vagal nerve or other trauma to nodose neurons. Unfortunately, the lesion-induced 

dynamics of gene expression changes in nodose neurons in-vivo have not been
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investigated, so it is not known whether the dramatic up-regulation of PACAP mRNA 

expression occurs in nodose neurons following trauma.

Trigeminal ganglia from PO NT-3"7TBax'7' neonates displayed a small but statistically 

significant increase in the expression levels of PACAP mRNA compared to ganglia 

from Bax single-null mutant neonates (figure 3.26B). An increase in the levels of 

PACAP mRNA was also observed in DRG obtained from double-null mutants 

compared to those from Bax'7* neonates, although in this case the increase was not 

quite statistically significant. These data would suggest a role for NT-3 as a negative 

regulator of PACAP mRNA expression in neonatal sensory neurons. A similar role 

for NT-3 has been shown in adult sensory neurons. In the adult rat, NT-3 infusion 

down-regulates the expression of PACAP mRNA in non-lesioned peptidergic 

nociceptors residing within lumbar DRG, and prevents the increased expression of 

PACAP mRNA by large, predominantly proprioceptive, DRG neurons following 

sciatic nerve lesion (Jongsma-Wallin et al., 2001). In contrast to trigeminal and DRG 

neurons, the data in figure 3.26 shows that NT-3 does not regulate PACAP mRNA 

expression in neonatal nodose neurons in-vivo. NT-3 also does not regulate PACAP 

mRNA expression in cultured neonatal nodose neurons (figure 3.46). These data 

provide another example of gene expression being regulated in a different manner in 

placode-derived sensory neurons compared to neural crest-derived sensory neurons.

Previously published data from experiments with adult rodents, and the data I 

obtained from NT-3/Bax double-null mutant neonates, indicate that NT-3 normally 

acts to suppress the expression of PACAP mRNA in neural crest-derived sensory 

neurons. However the results from my culture experiments with PO trigeminal 

neurons suggest the opposite. As shown in figure 3.38B, NT-3 significantly increases 

the amount of PACAP mRNA expressed by neonatal trigeminal neurons after 48 

hours in culture. This somewhat surprising result is difficult to explain. Neurons 

placed in culture can often show aberrant gene expression. An unpublished 

observation that has been made previously in our lab, is that early embryonic mouse 

trigeminal sensory neurons rapidly down-regulate expression of the full-length 

functional form of the cognate NT-3 receptor, TrkC, when placed in culture. Although 

it is not clear whether the same phenomenon occurs in the case of neonatal trigeminal 

neurons, this may explain why NT-3 cannot prevent the increase in PACAP mRNA
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expression that occurs in predominantly larger, non-nociceptive (TrkC/TrkB 

expressing), sensory neurons when target field derived neurotrophic factor influences 

are removed. This does not, however, explain why NT-3 appears to enhance PACAP 

mRNA expression in trigeminal neuron cultures. Some or all of the explanations in 

the previous paragraph regarding the unexpected effect of NGF in regulating the in- 

vitro expression of PACAP mRNA may apply to the unexpected effects of NT-3. As 

mentioned previously, adult trigeminal ganglia do not contain a sub-population of 

TrkC positive proprioceptive neurons and neonatal trigeminal ganglia contain few 

full-length TrkC-positive neurons (Emfors et al., 1992). This would suggest that the 

effects of NT-3 in increasing PACAP mRNA expression in cultured trigeminal 

neurons are mediated via TrkA, TrkB or p75.

3.4.7. VR1 (TRPV1)

The developmental pattern of VR1 mRNA expression is similar for both trigeminal 

and dorsal root ganglia, although expression levels are significantly higher at all ages 

in DRG compared to trigeminal ganglia (figure 3.11 A and C). In both ganglia, the 

highest expression levels of VR1 mRNA are found at E l6 and there is a gradual, but 

highly significant, drop in the expression of this ion channel from El 6 to adulthood. 

This is in agreement with the observation that virtually all newly “bom” mouse TrkA- 

positive, presumptive nociceptive sensory neurons express VR1 mRNA and protein 

(Patrik Emfors, Karolinska Institute, personal communication). During the late 

embryonic period and first post-natal week many of these VR1 positive sensory 

neurons lose expression of this ion channel, especially the sub-population that become 

IB4-positive c-fibre nociceptors (P Emfors, personal communication). The expression 

data presented in figure 3.11A and C is also in agreement with previously published 

data. In the adult mouse, VR1 expression is predominantly restricted to TrkA- 

positive, peptidergic nociceptive neurons (Zwick et al., 2002). During the first post

natal week around half of the population of nociceptive neurons down-regulate 

expression of TrkA and begin to express receptors for the GDNF family of trophic 

factors (Molliver et al, 1997).
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Once again, the data presented in figure 3.11 B (and figure 3.19B) reveals that the 

regulation of nociceptive neuron markers differs in the predominantly placode- 

derived nodose ganglia, compared to the neural-crest derived sensory ganglia. E l6 

nodose ganglia express significantly lower levels of VR1 mRNA than trigeminal and 

dorsal root ganglia. Expression of this ion channel mRNA increases significantly in 

the nodose ganglion between E l6 and PO, and then between PO and P5, so that by P5 

the levels of VR1 mRNA are markedly higher in the nodose ganglia that they are at 

E l6 in trigeminal and dorsal root ganglia. This would suggest that VR1 mRNA is not 

restricted to the small TrkA-positive, apparently peptidergic, sub-population of 

nodose neurons during development, as discussed below. Between P5 and adulthood, 

there is a dramatic drop in the levels of VR1 mRNA expressed by nodose neurons, 

although the adult levels of this ion channel mRNA are still higher than those in adult 

trigeminal and dorsal root ganglia. This raises the possibility that VR1 mRNA 

expression become largely restricted to TrkA-positive peptidergic neurons in the adult 

mouse nodose ganglion in the same way as it is in adult neural-crest derived sensory 

ganglia (although it is not certain whether a TrkA positive, peptidergic sub-population 

of neurons exists in the adult mouse nodose ganglion). This would not appear to be 

the case according to a previous publication from the rat (Michael and Priestley,

1999). In-situ hybridisation and/or immuno-histochemistry would determine whether 

VR1 expression patterns are the same in adult mouse and rat placode-derived sensory 

ganglia.

The data from neonatal trigeminal ganglia cultures, clearly demonstrates that NGF 

can significantly prevent the drop in VR1 mRNA expression that occurs when 

trigeminal neurons are removed from their source of target-field derived neurotrophic 

factor support (figure 3.33A). This drop in VR1 mRNA expression mirrors the 

changes in the expression of VR1 mRNA within adult rodent DRG neurons following 

sciatic nerve lesion (Michael and Priestley, 1999; Michael and Priestley 2002; 

Fukuoka T et al., 2002; Wendland et al, 2003). Interestingly, this drop in VR1 mRNA 

expression over time in culture is dependent on culture conditions and/or neuron 

density. Trigeminal neurons from neonatal rats and mice do not show a reduction in 

VR1 mRNA or protein expression when they are cultured at a high density, in serum 

containing media, in the absence of added growth factors (Simonetti et al., 2006). 

Presumably under these conditions the culture media contains sufficient levels of
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NGF (and/or other growth factors), either as a result of autocrine/paracrine production 

by neurons or non-neuronal cells, or from the serum itself, to prevent a decrease in 

VR1 mRNA expression. My data clearly shows that in the absence of exogenous 

NGF, VR1 mRNA is virtually undetectable in RNA extracted from trigeminal 

neurons that have been cultured for 48 hours, at low density, in defined medium 

(figures 3.33A and 3.38A). lOng/ml NGF can restore VR1 mRNA levels to those 

found in-vivo (figure 3.33A). This would suggest that VR1 mRNA, a known marker 

of nociceptive neurons, is predominantly expressed in TrkA-positive, nociceptive, 

neonatal mouse trigeminal neurons (at this age the majority of presumptive 

nociceptive neurons express TrkA, although the IB4-positive, TrkA-negative 

nociceptive population are beginning to appear (Molliver et al, 1997)). Indeed, in the 

adult mouse, VR1 is predominantly a marker of TrkA-positive, peptidergic 

nociceptors in the same way as substance P and CGRP (Zwick et al., 2002).

The in-vitro NGF data presented in this chapter are in agreement with previous in- 

vitro and in-vivo data from adult rodent DRG neurons showing that NGF can promote 

VR1 mRNA expression following both sciatic nerve lesion and in culture, and also 

data showing that sequestration of NGF with an antibody reduces the capsaicin 

sensitivity of naive DRG neurons (McMahon et al., 1995; Michael and Priestly, 1999; 

Shu and Mendell, 1999). Moreover, an increase in VR1 expression, driven by an 

inflammation associated increase in NGF expression, has been observed in TrkA- 

positive nociceptive neurons within rat lumbar DRG following CFA injection to the 

rat hindpaw. This increase in VR1 expression can be prevented by the concomitant 

administration of an NGF blocking antibody (Amaya et al., 2004).

No difference in VR1 mRNA expression was observed in neural crest-derived sensory 

ganglia dissected from TrkA^'/Bax'7' mice, compared to those from Bax’7' mice (figure 

3.2IB). This data is somewhat surprising in light of the in-vitro data obtained from PO 

trigeminal neuron cultures (figure 3.33A) and the substantial evidence indicating that 

NGF can up-regulate the in-vitro and in-vivo expression of VR1 mRNA in adult DRG 

neurons (including the data presented in chapter 4 of this thesis). Results presented in 

this chapter from NT-3*/'/Bax'/' mice, however, may provide an explanation for this 

observation (figure 3.27 A). An increase in VR1 mRNA levels was observed in 

trigeminal ganglia and DRG of N T ^ '/B ax7' neonates, suggesting that NT-3 may
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normally act in the neonatal period to repress VR1 mRNA expression in-vivo 

(although see alternative explanations below). Since VR1 is predominantly expressed 

by TrkA positive, peptidergic neurons in the adult mouse, and not those expressing 

TrkC (or the other possible NT-3 receptor, TrkB), it is quite possible that the negative 

effects of NT-3 on neonatal VR1 mRNA expression are predominantly mediated 

through its non-preferred receptor TrkA. If one hypothesised that NGF and NT-3 are 

both signalling via TrkA to regulate VR1 expression in opposite directions during the 

neonatal period, deleting TrkA may therefore not be expected to significantly alter 

VR1 expression in neonatal ganglia. However, although a feasible explanation, it 

should be borne in mind that the time course data suggested that VR1 mRNA is likely 

to be more widely expressed in neonatal trigeminal and DRG neurons and not entirely 

restricted to TrkA-positive cells (see above), and it is also possible that NGF and/or 

NT-3 can regulate VR1 expression via p75 dependent signalling. Analysis of VR1 

mRNA expression in neural crest-derived sensory ganglia from TrkC/Bax double-null 

mutant, NGF/Bax double-null mutant and p75/Bax double- null mutant mice would 

help to determine whether this hypothesis is correct. Such analysis is, however, 

beyond the scope of this thesis.

It is possible that peripheral target fields contain trophic factors, apart from NT-3, that 

normally act to suppress VR1 mRNA expression. Target field innervation is seriously 

compromised in TrkA/Bax double-null mutant animals (Patel et al, 2000) thus 

preventing sensory neurons from being exposed to putative target field-derived 

negative regulators of VR1 mRNA expression. If this hypothesis were correct, 

neonatal TrkA^TBax7" sensory neurons would be deprived of exposure to positive and 

negative regulators of VR1 mRNA expression and the net result may be no change in 

VR1 mRNA expression levels.

An alternative hypothesis to explain the TrkA/Bax double-null mutant data for 

trigeminal and dorsal root ganglia is that VR1 mRNA expression is positively 

regulated by a number of different trophic factors in a partially redundant way in 

neonatal mice. The data from chapter 4 of this thesis support this idea. NGF, MSP and 

artemin can all positively regulate VR1 mRNA expression in cultured adult mouse 

DRG neurons (figures 4.9C, 4.15B, 4.23B). If all these trophic factors play a role in 

positively regulating VR1 mRNA expression in neonatal neural crest-derived sensory
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neurons, the loss of NGF/TrkA signalling may not lead to a decrease in VR1 

expression if MSP and/or artemin (or possibly additional, as yet unidentified, factors) 

can compensate for its loss. Determining the validity of this hypothesis would require 

a careful analysis of VR1 mRNA expression in sensory ganglia of double- and triple

null mutants for TrkA, GFR-a 3 and RON, preferably as temporally controllable 

conditional null mutants. This is clearly beyond the scope of this thesis.

Once again, it is possible that the lack of functional NGF/TrkA signalling from 

conception perturbs the programme of “primary” and/or “secondary” differentiation 

in neural crest-derived sensory ganglia in such as way as to result in the loss, or 

reduction, of the sub-population of neurons that ordinarily become neonatal TrkA- 

positive peptidergic nociceptors. This functional sub-group may, under these 

circumstances, be partly or wholly replaced by other sub-populations of VR1 mRNA- 

positive neurons that are not responsive to NGF. Careful immuno-histochemical 

analysis of sensory ganglia from TrkA/Bax double-null mutants and Bax null mutant 

neonates and/or analysis of VR1 mRNA in temporally-controlled TrkA conditional 

null mutants would determine whether this hypothesis is valid.

Interestingly, VR1 mRNA levels are significantly increased in nodose ganglia of 

TrkA'77Bax'7' neonates compared to nodose ganglia of Bax'7' mice (figure 3.21 B). The 

simplest explanation for this is that NGF/TrkA signalling negatively regulates the 

expression of VR1 mRNA in the small NGF-responsive sub-population of neonatal 

nodose neurons. This explanation makes the assumption that VR1 mRNA expression 

is predominantly restricted to TrkA-positive, peptidergic, placode-derived neonatal 

mouse sensory neurons in the same way as it is in adult mouse neural crest-derived 

sensory neurons. The high levels of VR1 mRNA expressed by neonatal nodose 

ganglia, in comparison to the levels of VR1 mRNA in adult trigeminal and dorsal root 

ganglia (figure 3.11), and the observation that VR1 is co-expressed with TrkB in adult 

rat nodose ganglia (Michael and Priestley, 1999) would tend to argue against this 

possibility, however, as mentioned for other genes, expression patterns differ between 

rat and mouse in adult neural crest-derived sensory ganglia as could be the case for 

VR1. In-situ hybridisation and/or immuno-histochemical analysis of neonatal nodose 

ganglia would address this point.
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Alternatively, if VR1 mRNA is indeed expressed by a large proportion of neonatal 

nodose neurons, most of which are TrkA-negative, it is possible that NGF/TrkA 

signalling normally represses VR1 mRNA expression in these neurons by an indirect, 

paracrine mechanism. For example, NGF activation of TrkA expressed on a small 

sub-population of nodose neurons may result in the release of a second trophic 

molecule that can then down regulate VR1 mRNA expression in TrkA-negative 

nodose neurons. Determining whether NGF can down-regulate VR1 mRNA 

expression, in low-density cultures of neonatal nodose neurons, would be useful to 

show whether NGF has the ability to decrease VR1 mRNA expression under 

conditions where paracrine mechanisms are likely to be inefficient. Unfortunately, 

reliable quantitative data on VR1 mRNA expression in cultured nodose neurons could 

not be obtained due to a combination of the small amount of total RNA that can be 

extracted from nodose neuron cultures and the relative inefficiency or the VR1 QPCR 

reaction. Once again, a perturbation in primary and secondary neuronal differentiation 

may account for the data from TrkA/Bax double-null mutant animals, especially if 

this results in the expansion of a sub-population of TrkA-negative neurons that 

express high levels of VR1 mRNA.

Although the data from NT-3/Bax double-null mutant neonates suggest that NT-3 acts 

during the perinatal period to suppress VR1 mRNA expression in neural crest-derived 

sensory ganglia, but not nodose sensory ganglia, the in-vitro data does not 

conclusively support this hypothesis (figure 3.38A). The VR1 mRNA levels 

expressed by PO trigeminal neurons show a significant reduction after 24 hours in 

culture in the absence of neurotrophic factor support. It appears that lOng/ml NT-3 

may accentuate this reduction, however, the effect of NT-3 does not reach statistical 

significance. By 48 hrs in culture, VR1 mRNA can no longer be detected in 

trigeminal neurons, therefore any further reduction in VR1 mRNA expression as a 

result of exogenous NT-3 are impossible to detect. More detailed time-course 

experiments (with readings at 6, 12,18 and 24 hrs) may help to determine whether 

NT-3 can down-regulate VR1 mRNA expression in cultured PO trigeminal neurons.

The in-vivo data presented in figure 3.27A is in agreement with a recent publication 

documenting the role of NT-3 in regulating VR1 mRNA expression following chronic
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constriction injury (CCI) of the adult rat sciatic nerve. Although there is a large 

decrease in VR1 mRNA expression in injured nociceptive neurons following CCI, 

non-injured nociceptive neurons and a few large mechanoreceptive neurons display 

greatly increased expression of VR1 mRNA that can be prevented by NT-3 infusion. 

NT-3 infusion also concomitantly decreased injury associated hyperalgesia (Wilson- 

Gerswing et al., 2005). It has been proposed by the authors that the effects of NT-3 

are mediated through TrkA rather than TrkC.

3.4.8. Summary

This chapter has focussed on the regulation of gene expression in neonatal trigeminal, 

nodose and dorsal root ganglia. The regulation of gene expression by the neurotrophic 

factors NGF and NT-3 was explored both in-vivo, using transgenic mice, and in-vitro, 

using cultured neurons.

The data for a-CGRP, SP, Navi.8 and Navi.9 mRNAs in neural crest derived- 

sensory ganglia was broadly in line with previously published in-vitro and in-vivo 

data from adult rodents, and demonstrated that NGF/TrkA, but not NT-3, signalling 

plays an important role in regulating the expression of these mRNAs in the neonatal 

period. In fact, the data for a-CGRP, SP and Navi.8 mRNAs, in particular, would 

suggest that NGF alone is the primary positive-regulator of transcriptional activity for 

these genes in neonatal neural crest-derived sensory neurons. Whilst p-CGRP and 

Navi.9 mRNAs are clearly regulated by NGF/TrkA signalling in neonatal, neural 

crest-derived sensory ganglia, the data suggest that other factors co-operate with NGF 

in regulating the expression of these mRNAs.

Much of the data presented on the regulation of CGRP, substance P and TTX-resistant 

sodium channel mRNAs in the neonatal period is novel, since most previous 

investigations have concentrated on their regulation in the adult, predominantly in 

models of nerve-lesion and inflammation. This neonatal data has important 

implications, since all of these mRNAs encode proteins and peptides that play 

important roles in setting sensory thresholds. Changes in their expression are also
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associated with neuropathic pain syndromes as detailed in section 1. The data 

suggests that the regulation of these genes following nerve-trauma (a situation that 

often leads to neuropathic pain) will be similar in neonatal and juvenile mice 

compared to adult mice. Extrapolation of this data to the human may be useful in 

future studies on chronic pain conditions in babies and children.

Analysis of the regulation of galanin, PACAP and VR1 mRNA expression in neural 

crest-derived sensory neurons produced some results that are in accordance with the 

regulation of these mRNAs in adult rodent neural-crest derived sensory neurons. 

However, some of the data highlights important differences in the regulation of these 

mRNAs in the neonatal period compared to the adult. One thing these three mRNAs 

have in common is that they are much more widely expressed amongst different 

sensory neuron sub-populations in the developing mouse nervous system than they 

are in the adult (in the adult mouse, these mRNAs are predominantly expressed in a 

sub-population of TrkA-positive, peptidergic, nociceptive neurons). This fact alone 

may account for much of the unexpected data that arose during my investigation of 

their neonatal expression.

The existing published literature has established that galanin mRNA expression is not 

affected by exogenous NGF in intact adult sensory neurons. In contrast, NGF appears 

to suppress the expression of galanin in damaged neural crest-derived sensory neurons 

(Hokfelt et al., 1987; Villar et al., 1989; Wiesenfeld-Hallin., 1992; Zhang et al., 1998; 

Holmes et al., 2005). Surprisingly, my data suggests that NGF positively regulates the 

expression of galanin mRNA in neonatal trigeminal and DRG neurons, probably in 

conjunction with other neurotrophic factors. In contrast, NT-3 appears to be able to 

suppress the expression galanin mRNA in neonatal trigeminal neurons. A number of 

caveats have to be bom in mind when interpreting the in-vivo data presented in this 

chapter, and alternative explanations of the data, other than direct transcriptional 

regulation of the various mRNAs by NGF and NT-3, are possible (see above). 

However, if galanin transcription is directly regulated by NGF and NT-3 in 

undamaged neonatal, neural crest-derived neurons, this data may have important 

implications for the study of pathological pain states in babies and children given the 

anti-nociceptive effects of galanin in the adult rodent (Hao et al., 1999; Yu et al.,
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1999; Liu and Hokfelt 2000; Blakeman et al., 2001; Hygge-Blakeman et al., 2004; 

reviewed in Wiesenfeld-Hallin et al., 2005).

The existing literature, based predominantly on in-vivo studies of the adult rat, 

indicates that NGF positively regulates the expression of PACAP mRNA in neural 

crest-derived sensory neurons (Jongsma-Wallin et al., 2001, 2003). My data, however, 

suggests that NGF does not regulate the expression of PACAP mRNA in neonatal 

sensory neurons. Whilst a number of hypotheses could account for this discrepancy 

(described in detail above), the data may reflect a genuine difference in the regulation 

of PACAP mRNA expression between neonatal and adult sensory neurons. The data 

presented in this chapter indicates that NT-3 negatively regulates PACAP mRNA 

expression in neonatal neural crest-derived mouse sensory neurons in a similar 

manner to its action on PACAP mRNA expression in the adult rat (Jongsma-Wallin et 

al., 2001).

The in-vitro data presented in this chapter shows that NGF can regulate the expression 

of VR1 mRNA in cultured neonatal, neural crest-derived sensory neurons. This data is 

in agreement with data from adult rodents and the observations made in chapter 4 of 

this thesis (McMahon et al., 1995; Michael and Priestly, 1999; Shu and Mendell,

1999). In contrast to the in-vitro data, no loss of VR1 mRNA expression was observed 

in either the trigeminal or dorsal root ganglia of TrkA/Bax double-null mutant 

neonates. This may reflect a combination of the widespread expression of VR1 

mRNA in neonatal sensory ganglia together with a redundancy in the regulation of 

VR1 mRNA by a combination of growth factors. The data presented in chapter 4 of 

this thesis supports the validity of the latter hypothesis. It is not known to what extent 

other growth factors positively regulate the expression of VR1 mRNA in adult rodent 

sensory ganglia in-vivo. An analysis of VR1 mRNA expression in either TrkA/Bax or 

NGF/Bax double-null mutant adult mice (preferably temporally controlled conditional 

knockouts) may reveal a similar redundancy in the regulation of VR1 mRNA 

expression in adult sensory neurons. Given the importance of VR1 in setting sensory 

thresholds and its implication in the aetiology of neuropathic pain, determining 

whether several factors can regulate the expression of VR1 mRNA in a redundant 

way, in both neonates and adults, is an important question. In agreement with data 

from adult rodents, NT-3 appears to have a negative regulatory influence on VR1
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mRNA expression in neonatal, neural crest-derived, mouse sensory neurons. The 

negative regulatory effects of NT-3 on galanin, PACAP and VR1 mRNA expression 

within neonatal and adult sensory neurons (data presented here and Wilson-Gerswing 

et al., 2005; Jongsma-Wallin et al., 2001) may warrant a thorough investigation into 

the efficacy of NT-3 in treating neuropathic pain.

To date very little has been known about the regulation of expression of nociceptive 

neurons markers in the neurogenic placode derived nodose ganglion, either under 

normal conditions or following nerve lesion/trauma. The data presented in this chapter 

demonstrates that developmental expression patterns and transcriptional regulation 

differs between placode-derived, neonatal sensory neurons and neural-crest derived, 

neonatal sensory neurons for many of the mRNAs investigated. Whilst this may partly 

reflect the small population of TrkA-positive nociceptors that reside within nodose 

ganglia, it seems likely that there are some genuine differences in the growth factor 

control of nociceptive neuron marker mRNA expression. The data presented in this 

chapter suggests that a-CGRP is almost exclusively restricted to the NGF-responsive 

population of nodose neurons whereas substance P and P-CGRP mRNAs are 

expressed in this neuronal subset and another, probably small, subset of nodose 

neurons. Navi.8 and 1.9 mRNAs would appear to be expressed widely in the nodose 

ganglion. NGF can positively regulate the expression of all these mRNAs, with the 

largest regulatory effect apparent for a-CGRP mRNA in accordance with the 

apparently exclusive expression of this mRNA within NGF-responsive nodose 

neurons. Of particular note, is the observation that NT-3 appears to be able to 

negatively regulate galanin, PACAP and VR1 mRNA expression in neural crest- 

derived sensory neurons, but not in nodose ganglion neurons. This may reflect a lack 

of functional NT-3 receptors on neonatal nodose neurons, or a genuine difference in 

the regulation of these mRNA between placode-derived and neural-crest derived 

sensory neurons. Further work will be needed to determine which of these two 

possibilities are correct and whether the same situation exists in the adult. Given the 

importance of all three of these molecules in nociception, and their potential 

involvement in the generation of neuropathic pain, these are important questions to 

answer. The most striking difference between neonatal nodose- and neural crest- 

derived sensory neurons is in the regulation of VR1 mRNA expression by NGF. NGF
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positively regulates the expression of VR1 mRNA in both cultured neonatal and adult 

neural-crest derived sensory neurons in-vivo. In marked contrast, NGF appears to 

repress the expression of VR1 mRNA in neonatal nodose neurons in-vivo, possibly 

via a paracrine mechanism. A number of possible alternative explanations exist for 

the data suggesting this, especially in the absence of in-vitro culture data showing a 

direct down-regulation of VR1 mRNA by NGF. However, if NGF really is a negative 

regulator of VR1 mRNA expression in placode-derived sensory neurons this has 

important implications for researchers working on the role of VR1 in the aetiology of 

neuropathic pain and visceral pain states, especially if VR1 mRNA expression is 

regulated in a similar way by NGF in adult nodose neurons. Further experimental 

work is needed to clarify whether NGF is a true negative regulator of VR1 mRNA 

expression in neonatal and adult mice.
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3.5. Results in Brief

Chapter 3 focussed upon the expression of particular mRNAs of interest, and their 

neurotrophic regulation in the postnatal mouse. Both transgenic mice and neuronal 

cultures were used and expression of mRNAs of interest were quantified using real

time Q-PCR. The key findings can be outlined as below:

a-CGRP (and also p-CGRP and SP):

• NGF/TrkA signalling is required for expression of a- and p-CGRP, and SP 

mRNAs in trigeminal, nodose and dorsal root ganglia.

• NT-3 produces no effect on the expression of these mRNAs.

Nav1.8 (and Nav1.9):

• NGF/TrkA signalling is required for expression of both Navi .8 and Navi .9 

mRNAs in trigeminal ganglia and DRG, but results suggest this is not the case 

for cells of the nodose ganglia.

• NT-3 produces no effect on the expression of these mRNAs.

PACAP:

• Results show no apparent effects of NGF on PACAP mRNA expression 

despite previous research showing a positive role for NGF/TrkA signalling on 

PACAP mRNA and protein expression in DRG.

• NT-3 appears to show an inhibitory effect on PACAP mRNA expression in 

vivo, and this effect could explain why no alteration in expression, either 

positive or negative is observed in TrkA^TBax7' mice. If both the inhibitory
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effects of NT-3 and the positive effects of NGF are produced via TrkA, then 

the antagonistic effects of both factors will be lost in the transgenic knockout.

• In contrast to the above finding, NT-3 seems to show a positive effect on 

PACAP mRNA in vitro.

G alanin:

• A significant down-regulation in galanin mRNA in trigeminal ganglia of 

TrkA'7TBax'7' mice in comparison to Bax'7' mice, and a notable, but not 

significant, down-regulation in DRG of TrkA"77Bax'7* was observed in 

comparison to Bax'7' mice. These results suggest a role for NGF as a positive 

regulator of galanin mRNA within neural crest derived sensory neurons, 

however, as effects were only small it suggests that NGF is not exclusively 

responsible for the regulation of galanin mRNA expression in these ganglia at 

this age.

• No effect on galanin mRNA expression was observed in neurons of the nodose 

ganglia, suggestive that either galanin is not expressed in small TrkA positive 

subpopulation of nodose neurons, or that, if it is, NGF plays no role in 

regulating its expression at neonatal ages.

• NT-3 may act to suppress galanin mRNA expression in the trigeminal, but not 

in the nodose or dorsal root ganglia, however results from the TrkA'7TBax'7' 

mouse suggest that this effect is not mediated via TrkA. Since trigeminal 

ganglia do not contain a subpopulation of neurons that expression functional 

TrkC receptors, this raises the possibility that NT-3 suppresses galanin mRNA 

expression by signalling through the common p75 neurotrophin receptor.

VR1:

• NGF was found to positively regulate the expression of VR1 mRNA in 

cultured trigeminal ganglia neurons.
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• BUT no difference in VR1 mRNA in trigeminal or dorsal root ganglia was 

observed in TrkA7TBax7' mice vs Bax7' mice.

• NT-3 could suppress expression of VR1 mRNA in trigeminal and dorsal root 

ganglia, as revealed by study of NT-37TBax7' mice. This may explain why no 

positive effects of NGF/TrkA signalling were observed in TrkA7'/Bax7' mice. 

If both the negative effects of NT-3 and the positive effects of NGF are 

mediated via TrkA, then no alterations in VR1 mRNA expression would be 

anticipated in mice lacking functional TrkA receptors.

• Other explanations for results observed in TrkA7TBax7' mice include:

o Compensation by other neurotrophic factors 

o Lack of TrkA from conception could alter the differentiation of 

a subset of neurons, such that those that express TrkA no longer 

express VR1

• Study of results for nodose neurons suggests NGF/TrkA signalling negatively 

regulates the expression of VR1 mRNA in nodose neurons. However nodose 

neurons tend to express TrkB rather than TrkA, so results might suggest 

NGF/TrkA signalling can repress VR1 mRNA expression via a paracrine 

mechanism.
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Chapter 4

Neurotrophic Factor Regulation of Gene Expression in Adult
Sensory Neurons

4.1 Introduction

In chapters 2 and 3 of this thesis, I investigated the developmental transcriptional 

regulation of a number of proteins and peptides that are markers of peptidergic, 

nociceptive sensory neurons in the adult rodent. The developmental mRNA 

expression profile for each of these markers was determined in neural crest- and 

placode-derived sensory neurons. In addition, the role that the neurotrophic factors 

NGF and NT-3 play in initiating and regulating the transcriptional expression of each 

mRNA was investigated using in-vivo and in-vitro approaches. In this chapter, I 

investigate the transcriptional regulation of the same mRNAs in cultured adult DRG 

neurons. In addition to the genes examined in previous chapters, I also examine the 

transcriptional regulation of a number of other genes that may play important roles 

both in determining normal nociceptive thresholds, and in the generation of 

inflammatory and neuropathic pain conditions. These additional genes are the non- 

peptidergic nociceptive neuron marker, P2X3; the TTX-sensitive sodium channels, 

Navi.6 and Navi.7; and two proteins whose expression is associated with neuronal 

damage, DINE and ATF3. The previous two chapters have concentrated on 

examining the transcriptional regulation of nociceptive neuron markers by NGF and 

NT-3.1 extend the study in this chapter to include an investigation of the effects that 

the neurotrophic factors artemin, MSP and LIF have on the regulation of gene 

expression at the transcriptional level.

Under normal circumstances, the mRNA levels of all the genes examined in this 

chapter are likely to be fairly static within each adult sensory neuron sub-population 

(in the case of DINE and ATF3 expression is effectively absent, as described below). 

Since all these genes have important roles in determining nociceptive thresholds, it is
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important to establish the neurotrophic growth factor, or combination of growth 

factors, that set these steady state expression levels. This of particular importance, 

since changes in the expression of these genes that occur during inflammation and 

following nerve trauma, and which may be causally related to pathological pain 

conditions, are likely to be driven, at least in part, by a change in the availability of 

neurotrophic factors that normally regulate their steady state levels in the “normal” 

adult. For example, inflammation is associated with an increase in the levels of NGF 

and GDNF in tissues surrounding nerves, Schwann cells and within DRG themselves. 

These increases in neurotrophic factor expression drive changes in neuronal gene 

expression, either directly or indirectly, that can lead to mechanical and thermal 

hyperaglesia (e.g. Amaya et al., 2004; Ji et al., 2002; Hefti et al., 2006). Conversely, 

neuronal damage reduces the accessibility of neurons to target field-derived 

neurotrophic factors and leads to changes in gene expression in damaged neurons that 

may contribute to the development of neuropathic pain. The reduced ability of 

damaged neurons to sequester and retrogradely transport target field-derived 

neurotrophic factors effectively increases the availability of these factors to 

undamaged sensory neurons innervating the same target field. This in turn leads to 

changes in the expression of functionally important genes in these “spared” neurons, 

which in itself may drive the generation of pathological pain (e.g. Hudson et al., 2001; 

Fukuoka et al., 2002; Winston et al., 2001; Ogun-Muyiwa et al., 1999 Wendland et al,

2003). Quite clearly, therefore, it is vital to fully understand the neurotrophic 

factor/factors that regulate the expression of functionally important genes within adult 

sensory neurons, as this will lead to an increased understanding of how inflammatory 

and neuropathic pain develops. Such an increased understanding of gene regulation 

may lead future research down fruitful therapeutic avenues.

The most direct way of determining which neurotrophic factors regulate the 

expression of sensory neurons genes in the adult would be to use transgenic animals 

that have null deletions of either the neurotrophic factors, or their receptors. This 

approach was used, successfully, in chapter 2 to determine whether NGF/TrkA 

signalling was important for the induction of a number of genes that are nociceptive 

neuron markers. In chapter 3, double-null-mutant mice, that contained a deletion of 

either TrkA or NT-3 in addition to a deletion of the pro-apoptotic protein, Bax, were 

used to examine the regulation of sensory neuron gene expression in neonatal sensory

319



ganglia. The double-null mutant approach was necessary to ensure that results were 

not confounded by widespread loss of specific neuronal sub-sets in the absence of 

neurotophic factor signalling during the period of naturally occurring neuronal death. 

Despite the deletion of Bax and the concomitant prevention of neuronal cell death, 

there are a number of caveats to the interpretation of data from chapter 3 regarding the 

effects of trophic factor/receptor deletion on neuronal differentiation and target field 

innervation (discussed in detail in chapter 3). For this reason, it was necessary to 

validate data from the transgenic mice with cell culture data. Such cautionary 

interpretation of data is likely to be more important in the case of adult transgenic 

mice, so, although null mutants of artemin, NGF, MSP and LIF receptors are 

available, it was decided to carry out the entire study on gene regulation in adult 

sensory neurons using an in-vitro, cell culture approach.

Ideally, a temporally and spatially controlled knockout of neurotrophic factor receptor 

genes, using a cre-ERT2/loxP-site system, would have been used to generate in-vivo 

gene regulation data, thus avoiding the pitfalls of aberrant differentiation and/or target 

field innervation affecting the results. However, whilst suitable nociceptive neuron- 

specific cre-recombinase (Agarwal et al., 2004) and floxed LIF and MSP receptor 

(Betz et al., 1998; Waltz et al., 2001) mouse lines exist, mouse strains containing loxP 

flanked TrkA and GFR-a 3 have not been generated to date. Using gene targeting 

approaches to generate floxed TrkA and GFR-a 3 alleles is both time-consuming and 

costly and far beyond the scope of this thesis. Another alternative approach that could 

be used to, determine the effects that neurotrophic factors have on regulating gene 

expression in the adult, is intraplantar injection of exogenous neurotrophic factors, 

function blocking antibodies or receptor-Fc constructs into one hindpaw footpad of 

mice over a number of days. Hindpaw footpads receive their sensory innervation from 

L4, 5 and 6 lumbar DRG. An analysis of mRNA expression from ipsilateral L4-L6 

DRG and contralateral L4-L6 DRG (as controls) would allow analysis of the effects 

that increasing (neurotrophic factors) or decreasing (blocking antibodies and receptor- 

Fc) target field neurotrophic factor levels has on the transcriptional regulation of the 

genes in question. This approach, however, has two major drawbacks. The first is the 

cost of the large amounts of neurotrophic factors and blocking reagents required to 

successfully alter gene expression in L4-L6 DRG of a number of animals. The second

320



drawback is the possibility that any effects that exogenous neurotrophic factors and 

blocking reagents have on changing DRG mRNA expression may be via a paracrine 

effect, on other tissues expressing receptors for the neurotrophic factors, and hence 

not reflect the direct effects of neurotrophic factor signalling on DRG neurons. For 

these two reasons, I decided not to pursue this approach.

Since adult rodent DRG neurons can survive in culture independently of neurotrophic 

factors (Lindsay, 1988), they allow a direct comparison of the effects of specific 

neurotrophic factors on regulating gene expression as a true ‘no neurotrophic factors 

control’ can be set up without the need for caspase inhibitors to prevent apoptosis.

In many respects, culturing neurons can be regarded as a model of axotomy and/or 

peripheral nerve injury. In culture, and following peripheral nerve injury, neurons 

have their processes damaged and are deprived of their usual source of target field- 

derived neurotrophic factors. In both cases, neurotrophic factor deprivation leads to 

significant changes in the expression of a number of functionally important proteins 

and peptides including CGRP, SP, Navi.8, Navi.9, PACAP and VR1 (Lindsay et al., 

1989; Verge et al., 1995; Jiang and Smith, 1995; Price et al, 2005; Lindsay et al., 

1989; Zhang et al., 1995; Aguayo and White, 1992; Black et al., 1997; Fjell et al., 

1999; Jongsma Wallin et al., 2001; McMahon et al., 1995; Winston et al., 2001; 

Ogun-Muyiwa et al., 1999 Wendland et al., 2003). Indeed, adult DRG cultures have 

been extensively used in the fields of inflammatory and neuropathic pain research to 

examine the regulation of a number of genes that have previously been implicated in 

the aetiology of neuropathic pain following in-vivo nerve lesion/axotomy/crush 

models (Nielsch et al., 1987; Zhang et al., 1995; Sterne et al., 1998; Zhang et al., 

1996; Jongsma-Wallin et al., 2001; Armstrong et al., 2003 Hokfelt et al., 1987; Villar 

et al., 1989; Noguchi et al., 1993; Nahin et al., 1994; Ma et al., 1997; Shi et al., 1999; 

Michael and Priestly, 1999; Michael and Priestly 2002; Fukuoka T et al., 2002; 

Waxman et al., 1994; Cummins and Waxman, 1997, Sleeper et al., 2000; Kim et al., 

2001; Abe et al., 2002; Chung et al., 2004 Okuse et al., 1997; Cummins et al., 1997; 

Tate et al., 1998; Dib-hajj et al., 1998; Novakovic et al., 1998; Sleeper et al., 2000; 

Decosterd et al., 2002). For this reason, the data generated in this chapter will largely 

be interpreted in the context of its relevance to studies on inflammatory and 

neuropathic pain.
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The main introduction in chapter one includes a detailed account of the biology of the 

neurotrophic factors; NGF, artemin, MSP, and their respective receptors LIF was 

mentioned briefly and is described in more depth further in this chapter. The 

introductions to chapters 2 and 3 discuss the function, significance and regulation of: 

the neuropeptides SP, galanin, PACAP, and a- and p-CGRP; the TTX-resistant 

sodium channels Nav 1.8 and Nav 1.9; and the TRP ion channel, VRl.The remainder 

of this introduction will give some background to the new genes studies in this 

chapter, namely; P2X3, Nav 1.6, Nav 1.7, DINE and ATF3.

4.1.1. Damage-induced neuronal endopeptidase (DINE)

Damage-induce neuronal endopeptidase (DINE) is a membrane-bound enzyme 

belonging to the family of Zn-metalloproteases, which includes: neural endopeptidase 

(NEP); Kell blood group antigen (KELL); the endothelin-converting enzymes, ECE-1 

and ECE-2 and PEX (See Turner et al., 1997 for a review; Valdenaire et al., 2000). 

Two independent groups, using different techniques, initially discovered DINE. 

Valdenaire et al., (Valdenaire et al., 1999) screened human caudate nucleus and spinal 

cord cDNA libraries, whilst Kiryu-Seo et al., (Kiryu-Seo et al., 2000) used differential 

display PCR on reverse transcribed RNA that had been extracted from either lesioned 

or non-lesioned hypoglossal nuclei.

In the developing rat, DINE mRNA expression is first apparent in the neural tube at 

El 2-El 3. DINE mRNA expression is restricted to differentiated neurons and is absent 

from neural precursors, glial precursors and glial cells (Nagata et al., 2006). At early 

developmental stages (El 2-El 4), most differentiated neurons of the neural tube 

express DINE mRNA. However, as these cells migrate during development, DINE 

mRNA expression becomes increasingly restricted to several specific brain nuclei that 

characteristically contain cholinergic and/or peptidergic neurons. DINE mRNA 

expression is significantly more widespread in the embryonic and neonatal CNS 

compared to the adult CNS. In the developing PNS, DINE mRNA is only expressed 

transiently in sensory ganglia shortly before birth. In contrast, DINE expression is 

maintained in sympathetic ganglia in the adult (Nagata et al., 2006). DINE mRNA
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expression is highest in the hypothalamus; large cholinergic cells within the striatum 

and some cranial motor nerve nuclei within the adult rodent CNS (Valdenaire et al., 

1999; Kiryu-Seo et al., 2000; Nagata et al., 2006).

Whilst DINE protein and mRNA are only detectable at very low levels in the adult 

nervous system under normal circumstances, they are dramatically up-regulated in 

response to nerve injury (Kiryu-Seo et al., 2000; Kato et al., 2002; Ohba et al., 2004). 

For example, sciatic nerve lesion induces DINE mRNA expression in predominantly 

IB4-negative, TrkA-positive neurons, in a similar pattern to that of the neuropeptide 

galanin (Kato et al., 2002). The dramatic increase in DINE expression is only 

observed in neurons, with no detectable expression in injured glial cells (Kiryu- Seo et 

al., 2000; Kato et al., 2002; Ohba et al., 2004; Nagata et al., 2006).

To date, no specific substrate for the enzymatic activities of DINE has been identified. 

However, since the expression of many neuropeptides, growth factors and 

transcription factors are increased following nerve injury, it is possible that DINE 

processes some of these molecules to activate them (Nagata et al, 2006). This may be 

particularly true in the case of neuropeptides, since DINE is largely restricted to the 

endoplasmic reticulum, which is the major site of neuropeptide processing (Benoit et 

al, 2004). Within motor neurons, at least, DINE is the only known protease that is 

significantly up-regulated in response to nerve injury, suggesting it may modulate the 

cellular response to injury and act in a neuroprotective manner (Kiryu-Seo et al.,

2000). In support of this hypothesis, DINE can partially inhibit C2-ceramide-induced 

apoptosis in COS cells, possibly by enzymatically activating enzymes such as Mn- 

superoxide dismutase and Cu/Zn-superoxide dismutase (Kiryu-Seo et al., 2000).

A CNS neuroprotective role for DINE is also suggested following ischemic injury. A 

late-onset, prolonged expression of DINE mRNA is detected in the peri-infarct cortex 

and specific nuclei of the thalamus following middle cerebral artery occlusion in adult 

rats (Ohba et al., 2004). It has been suggested that this up-regulation could stimulate 

antioxidant activity that in turn promotes neuroprotective effects. This hypothesis is in 

accordance with the observation that middle cerebral artery occlusion leads to 

increased neuronal cell death, as a result of increased oxidative stress, in mice
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deficient in Mn-superoxide dismutase or Cu/Zn-superoxide dismutase (Kondo et al.,

1997).

A DINE knockout mouse has been generated to further investigate the biological roles 

of this enzyme. Homozygous null-mutant mice die shortly after birth from respiratory 

failure, due to a lack of lung ventilation (Schweizer et al., 1999; Valdenaire and 

Schweizer, 2000). Histological analysis of homozygous null-mutant neonates revealed 

that all other tissues and organs developed normally (Schweizer et al., 1999; 

Valdenaire and Schweizer, 2000). The restricted expression of DINE in the nervous 

system and the lethal phenotype of the knockout mouse would, therefore, suggest a 

vital role for DINE in the nervous system control of respiration.

In addition to its proposed neuroprotective role, and a role in regulating respiration, 

recent experimental evidence has suggested a possible role for DINE in the regulation 

of the sleep cycle. The expression of DINE mRNA is significantly suppressed in a 

subgroup of anterior pituitary cells in animal models of extreme fatigue. Furthermore, 

DINE mRNA expression continues to decrease in these cells if the period of sleep 

disturbance is extended (Ogawa et al., 2005). No alterations in DINE mRNA were 

observed in other brain areas. This effect is reversible, although the recovery is slow, 

taking approximately 72 hours for DINE mRNA levels to return control levels 

(Ogawa et al., 2005).

The nerve trauma induced up-regulation of DINE mRNA expression by adult rat 

DRG neurons has previously been studied using both in-vitro and in-vivo approaches 

(Kato et al., 2002). It appears as if DINE mRNA induction within adult DRG neurons 

is the consequence of a combination of target field-derived NGF withdrawal and 

increased exposure to LIF that is generated by Schwann cells at the site of lesion.

4.1.2. Activating Transcription Factor 3 (ATF3)

Activating transcription factor 3 (ATF3), also known as LRF-1, LRG-21or CRG-5, is 

a member of the ATF/CREB family of transcription factors. The name ATF was 

assigned in 1987 to refer to proteins that could bind to the adenovirus early promoters
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E2, E3 and E4 at a specific core sequence ‘CGTCA’ (Lee et al., 1987). The specific 

consensus sequence for binding was later defined as TGACGT(C/A)(G/A) (Lin and 

Green, 1988). The cAMP responsive element binding protein (CREB) was named in a 

similar manner to define a category of proteins that could bind to the cAMP 

responsive element (CRE), TGACGTCA, on the somatostatin promoter (Montminy 

and Bilezsikjian, 1987). The unexpected discovery of an identical consensus 

sequence for both subfamilies led to the amalgamation of both families to create the 

ATF/CREB family.

ATF3 regulates transcription by binding, through a leucine zipper region, to its 

consensus DNA binding sites. ATF3 is an unusual member of the ATF family, as it 

has the ability to both activate and suppress transcription. As a homo-dimer, ATF3 

represses transcription (Chen et al., 1994), but upon forming a heterodimeric complex 

with Jun proteins it becomes an activator of transcription (Hai and Curran, 1991; Hsu 

et al., 1991). Multiple splice variants of ATF3 mRNA have been identified that 

encode different variants of the protein (e.g. Hashimoto et al., 2002; Hua et al., 2006).

The rapid, marked induction of ATF3 expression has become a well-established 

marker of stress and injury in a number of cells and tissues. Examples of injuries that 

induce ATF3 expression include: mechanical and toxin-induced injury to the rodent 

liver; ischemia in the rat heart and kidney; the action of pro-inflammatory cytokines 

on p cells; excito-toxic brain seizure; diabetes-induced peripheral neuropathies; 

exposure to high concentrations of nitric oxide (NO) (Chen et al., 1996; Yin et al., 

1997; Hai et al., 1999; Allen-Jennings et al., 2002; Hartman et al., 2004; Wright et al.,

2004). ATF3 is also dramatically up-regulated in DRG neurons following axotomy, 

with 82% of L4 DRG neurons becoming immuno-reactive for ATF3 following sciatic 

nerve transection; whilst in control rats no immuno-reactivity for ATF3 is observed 

(Wang et al, 2003; Averill et al., 2004). In partial nerve injury paradigms, ATF3 

mRNA and protein are only induced in damaged neurons, in a pattern that 

corresponds to the expression of phosporylated c-Jun, and remains absent from 

neighbouring “spared neurons” (Tsujino et al., 2000; Tsuzuki et al., 2001; Obata et 

al., 2003; Wang et al., 2003). An up-regulation of ATF-3 mRNA expression has also 

been demonstrated in cultured trigeminal ganglion neurons, a further indication that
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culturing neurons can be regarded as a model of injury/axotomy (Dussor et al., 2003). 

Interestingly, ATF3 and its dimerisation partner, c-Jun, are also dramatically up- 

regulated in Schwann cells ensheathing peripheral nerves following nerve lesion. The 

timing of Schwann cell ATF3/c-Jun induction appears to coincide with the onset of 

Wallerian degeneration (Hunt et al., 2004).

Although the functional significance of ATF3 induction in response to injury in non

neuronal cells is still unclear, its up-regulation following insult and injury suggests 

that it may play a role in protecting cells from stress. Indeed, a role in cell survival has 

been implicated by data from Kawauchi et al. (Kawauchi et al., 2002). They found 

that the adenoviral mediated over-expression of ATF3 in human umbilical vein 

endothelial cells could protect these cells from TNF-a induced apoptosis by 

suppressing the expression of the pro-apoptotic protein p53. Interestingly, p53 itself 

may induce the expression of ATF3 in human cell lines following cell trauma (Zhang 

et al., 2002). Conversely, however, several laboratories have suggested that the 

induction of ATF3 in liver cells, following stress from ischemia (Haber et al., 1993), 

partial hepatectomy (Hsu et al., 1991) or overexposure to toxins such as alcohol or 

acetaminophen (Chen et al., 1996), may actually exacerbate cell damage and promote 

apoptosis. Data from transgenic mice supports this latter interpretation of the role of 

ATF3 in non-neuronal cells following traumatic stimuli. Mice over-expressing ATF3 

display many symptoms of liver dysfunction, including; enhanced levels of; serum 

bilirubin, bile acids, alkaline phosphatase, alkaline transaminase and aspartate 

transaminase. Furthermore, the over-expression of ATF3 leads to a repression of a 

key enzyme in the gluconeogenic pathway, phosphoenolpyruvate carboxy-kinase, 

(PEPCK) leading to alterations in glucogenesis and subsequent detrimental effects on 

glucose homeostasis (Allen-Jennings et al., 2002). In addition to this, mice over

expressing ATF-3 in the heart display contractile dysfunction and conduction 

abnormalities (Okamoto et al., 2001).

Micro-array analysis of MDA-1986 cells treated with the tumour repressor curcumin 

has suggested that ATF3 plays a part in mediating the beneficial effects of this drug 

(Yan et al., 2005). Curcumin treatment causes an increase in ATF3 mRNA expression 

that appears to be casually linked to the pro-apoptotic, anti-tumour effects of
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curcumin (Yan et al., 2005). It has been suggested that induced ATF3 may act by 

blocking the ubiquitination and subsequent degradation of the tumour suppressor, p53 

(Yan et al., 2005). In contrast to the data from MDA-1986 cells, ATF3 has been 

causally implicated in the malignant growth of Hodgkin/Reed-Stemerg (HRS) cells, 

which underlie classical Hodgkin lymphoma (cHL). Micro-array analysis of Hodgkin 

and non-Hodgkin cell lines initially demonstrated that ATF3 mRNA was much more 

highly expressed in the former cell lines (Janz et al., 2005). Subsequent RNA 

interference experiments, in which ATF3 expression was selectively “knocked 

down”, significantly reduced the viability of Hodgkin cells, suggesting that over

expression of ATF3 contributes to the malignant growth of Hodgkin cells.

In-vitro and in-vivo experiments investigating the role of ATF3 in the nervous system 

suggest that ATF3 may be both neuroprotective and enhance nerve regeneration 

following nerve injury. For example, co-expression of ATF3 with its potential 

dimerisation partner, c-Jun enhances neurite outgrowth in both PC 12 and Neuro2a 

cell cultures (Pearson et al., 2003). Moreover, inhibition of c-Jun phosphorylation, by 

inhibition of JNK (c-Jun N-terminal Kinase) dramatically reduces axonal outgrowth, 

and ATF-3 induction, in nodose, dorsal root, and superior cervical ganglia explant 

cultures. The same effect is observed in dissociated cultures of nodose and DRG 

neurons (Lindwall et al., 2004; 2005). In accordance with these observations, JNK 

activation, c-Jun phosphorylation and ATF3 induction are associated with 

regenerating sensory neurons in-vivo following sciatic or vagal nerve transection 

(Lindwall et al., 2004). DNA micro-array analysis has revealed that JNK activation 

(and hence c-Jun phosphorylation) in combination with the over-expression of ATF3 

induces the expression of the heat shock protein Hsp27 in PC 12 cells (Nakagomi et 

al., 2003). Over-expression of Hsp27 itself can block JNK-mediated apoptosis of 

cultured SCG neurons and PC 12 cells, apparently by phosphorylating and activating 

Akt. It is the activation of Akt that enhances neurite outgrowth from neuronal cells 

(Nakagomi et al., 2003). Taken together, this data suggests that the JNK mediated 

phosphorylation of c-jun promotes the induction of ATF-3 expression in neurons. 

ATF-3/c-Jun heterodimers, in turn, induce Hsp27 expression, which in turn 

phosphorylates and activates Akt to both prevent JNK-mediated apoptosis and to 

promote neurite outgrowth. The hypothesis that ATF3 plays a neuroprotective role 

following neuronal trauma finds support in the observation that adenovirus mediated
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over-expression of ATF3 in adult rat hippocampal neurons prevents excitotoxic cell 

death following intra-hippocamapal injection of kainic acid (Francis et al., 2004).

Regulation of ATF-3 expression by neurotronhic factors

The dramatic increase in ATF-3 protein expression that occurs within adult rat DRG 

neurons following sciatic nerve transection can be partly ameliorated by infusion of 

NGF or GDNF. NGF appears to suppress ATF3 expression in predominantly small 

neurons, whereas GDNF exerts its effects on both small and large neurons (Wang et 

al., 2003; Averill et al., 2004). It is not clear whether the effects of the two trophic 

factors in ameliorating the induction of ATF3 are partially or totally additive. 

Exogenous GDNF can also partially block the increase in ATF3 expression that 

occurs in adult mouse facial motor neurons following facial nerve transection 

(Parsadanian et al., 2006). The experimental paradigms used in these studies cannot 

rule out the possibility that the effects of GDNF and/or NGF in suppressing ATF3 

expression occur as a result of a paracrine action of the neurotrophic factors on other 

cell types rather than a direct action on neurons. This may explain why a previous 

study failed to demonstrate that NGF regulates the expression of ATF3 mRNA in 

cultured adult rat trigeminal neurons (Dussor et al., 2003). Alternatively, the 

regulation of ATF3 mRNA and protein expression may differ in trigeminal neurons 

compared to motor neurons and DRG neurons. To date, there are no other reports in 

the literature describing the regulation of ATF3 mRNA or protein expression by other 

neurotrophic factors.

4.1.3. P2X3

ATP has many roles within both the PNS and CNS, functioning as an energy source, a 

neurotransmitter, a neuromodulator and a transmitter of pain (Bean, 1992; Gallighan 

and Bertrand, 1994). In the latter case, the source of ATP that activates sensory 

neurons to signal pain is usually ATP that is released from damaged cells following 

inflammation or physical trauma (reviewed in North, 2002 and 2003). ATP mediates 

its effects by binding to purinoceptors of two families, the P2X and the P2Y family 

(for reviews see Bumstock, 2000 or North, 2002). Upon binding ATP is rapidly
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degraded by cell surface phosphatases to adenosine diphosphate (ADP), adenosine 

monophosphate (AMP) and adenosine.

The P2X3 receptor protein is one of seven cloned P2X receptor subunits (P2X1 -  

P2X7) that are between 384 and 595 a.a. in length and act as cell surface, ATP-gated 

ion channels. Each P2X protein has two membrane spanning hydrophobic regions 

separated by a large extra-cellular region. Carboxyl and amino terminal domains are 

located within the cytoplasm (North, 2002 and 3003). Whilst it is certain that 

functional channels comprise many subunits interacting with each other, in either a 

homo- or hetero-multimeric way, the precise topology of native functional P2X ATP- 

gated ion channels has remained elusive.

Two separate laboratories originally cloned P2X3 from a sensory neuron cDNA 

library in 1995 (Chen et al., 1995; Lewis et al., 1995). P2X3 expression appears to be 

almost entirely restricted to primary afferent sensory neurons in adult rodents. In 

particular, P2X3 mRNA and protein expression is mainly localised to a sub

population of C-fibre nociceptive neurons that are predominantly non-peptidergic and 

IB4-positive, and, in the case of DRG neurons, whose central projections terminate in 

the inner region of lamina II of the dorsal horn (Vulchanova et al., 1997 and 1998; 

Bradbury et al., 1998; Ramer et al., 2001). Interestingly, the more rostral DRG at 

cervical levels contain a greater number of P2X3-positive neurons than those at lower 

levels. In particular, cervical DRG contain a sub-population of IB4-negative, A-5 

fibre (myelinated) peptidergic nociceptive neurons that express P2X3 (Ramer et al.,

2001). This is in accordance with a study reporting that 40% of RT-97-positive, 

myelinated, trigeminal ganglion neurons (the most rostral neural crest-derived sensory 

ganglia) express protein for this ion channel in addition to virtually all IB-4 positive 

C-fibre neurons (Eriksson et al., 1998). P2X3 protein expression is found in the 

central and peripheral terminal arbors of nociceptive neurons as well as their cell 

bodies (North et al., 2003). In addition, P2X3 expression often coincides with the 

expression of the TRP ion channel, VR1, in the rat (Petruska et al., 2000 a and b and

2002).
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In contrast to the adult, P2X3 protein is expressed in a number of sites outside of 

sensory ganglia in the embryonic mouse (Kidd et al., 1998; Boldogkoi et al., 2002). 

For example, P2X3 immuno-reactivity is evident between E9.5 and E14 in: the 

hindbrain, midbrain, marginal layer of the diencephalon and motor neuron precursors 

within the CNS; paravertabral sympathetic chain; testis; aorta. However, P2X3 

protein is no longer detectable in the rodent CNS by P14 (Kidd et al., 1998).

Similarly, P2X3 immuno-staining (and ATP gated channels with characteristics 

resembling P2X3) is widespread in perinatal rat SCG neurons, but largely disappears 

by PI7 (Dunn et al., 2005). P2X3 immuno-reactivity is found in DRG and trigeminal 

ganglion neurons as early as E9.5. In contrast to the adult expression pattern, P2X3 

protein is found within the majority of sensory neurons between E9.5-E14.5, rather 

than being predominantly restricted to small IB4-positive sensory neurons (Boldogkoi 

et al., 2002; Ruan et al., 2004). P2X3 expression progressively disappears from the 

majority of large myelinated neurons and CGRP-positive nociceptors during the first 

two post-natal weeks, so that by P14 the expression pattern of P2X3 in sensory 

ganglia resembles that of the adult (Ruan et al., 2004). The restriction of P2X3 

expression to IB4-positive nociceptive sensory neurons in the adult suggests an 

important role for ATP and P2X3 in pain processing. This is discussed in more detail 

below.

Immuno-histochemistry has detected both P2X2 and P2X3 proteins in the same adult 

rat sensory neuron terminal arbors, suggesting that P2X3 subunits are able to form 

both homo-multimeric ion channels and hetero-multimeric ion channels, in 

combination with P2X2 subunits, in these neurons (Vulchanova et al., 1997). 

Heterologous expression of P2X subunits in cell lines has demonstrated that P2X3 

homo-multimers have a high binding affinity for agonists and display rapid activation 

and rapid desensitisation kinetics following repeat agonist exposure (North et al., 

1997; for a review see Ralevic and Bumstock, 1998). P2X2 homo-multimers, 

however, have a low agonist affinity combined with slow activation rates and slow, 

only partial, desensitisation following repeated agonist exposure (Evans et al., 1992; 

Collo et al., 1996). P2X3 subunit containing channels are also unique in that they 

respond to the synthetic agonist aPmeATP. Hetero-multimeric P2X2/P2X3 channels 

have activation kinetics that combine properties of both subunits in that they display 

sensitivity to aPmeATP, have high affinity, rapid agonist binding and slow,
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incomplete, desensitisation (Ralevic and Bumstock, 1998). Experimental evidence 

suggests that heterologously expressed P2X2/P2X3 hetero-multimeric receptors 

contain one P2X2 subunit and two P2X3 subunits (Jiang et al., 2003). 

Electrophysiological recordings of sensory neurons appear to confirm the existence of 

P2X3 homo- and P2X2/P2X3 hetero-multimeric channels, but not P2X2 homo

multimeric channels, in adult rat trigeminal and dorsal root ganglion neurons (Lewis 

et al., 1995; Roberson et al., 1996; Cook et al., 1997). However, homo-multimeric 

P2X2 channels appear to be present in adult nodose neurons (Zhong et al., 2001)

P2X3 and Pain

As mentioned above, ATP has been shown to elicit pain. For example, application of 

ATP, via ionophoresis, to the forearms of human volunteers produces a modest 

burning pain (Hamilton et al., 2000). Similarly, the injection of ATP into the trapezius 

of human volunteers produces a moderate sensation of pain (Mork et al., 2003). The 

injection of ATP into the footpad of rats produces nocifensive behaviour that includes 

paw licking and lifting. Such nocifensive behaviour is an indication of the animals 

suffering pain (Bland Ward et al., 1997; Hamilton et al., 1999). Furthermore, ATP 

injection into the footpads of rats suffering carrageenan induced inflammation, 

produces an enhanced pain response in comparison to injection into naive rats, 

suggesting enhanced sensitisation of P2X receptors by inflammation (Hamilton et al.,

2001). Further studies have revealed that the enhanced sensitivity may be due to the 

release of the inflammatory mediators, SP and bradykinin. Downstream signalling 

following the binding of SP and bradykinin to their receptors is thought to potentiate 

the activation of P2X3 and P2X2/3 ion channels by phosphorylating them (Paukert et 

al., 2001). The observation that CFA-induced inflammation produces an increase in 

P2X3 protein expression in small-medium neurons of the DRG, further suggests that 

P2X3 plays a role in the generation of inflammatory hyperalgesia (Xu and Huang,

2002). Moreover, the intrathecal administration of antisense oligo-deoxynucleotides 

against P2X3 or subcutaneous injection of a specific P2X3 antagonist can reduce CFA 

(but not carrageenan) induced thermal and mechanical hyperalgesia in the rat (Honore 

et al., 2002; Barclay et al., 2002; Jarvis et al., 2002; Wu et al., 2004).
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The role of P2X3 in the generation of inflammatory hyperalgesia suggests that this 

ion channel may also play a role in the aetiology of neuropathic pain following nerve 

trauma, a hypothesis that is supported by data showing that P2X3 is up-regulated in 

some experimental nerve injury paradigms. For example, the expression of P2X3 

protein has been shown to be up-regulated in small-medium sized neurons of the 

DRG following chronic constriction injury of the rat sciatic nerve (Novakovic et al., 

1999). An increase in the number of neurons showing P2X3 immunoreactivity was 

also observed in the trigeminal ganglion following either ligation/section or chronic 

constriction of the mandibular inferior alveolar nerve in adult rats (Eriksson et al.,

1998). Both these injury models are partial injury models in that the ganglion from 

which the damaged nerve generates will contain ATF3-positive damaged neurons and 

ATF3-negative “spared” neurons (see above). A more detailed examination of P2X3 

mRNA expression following two partial nerve injury models in the rat demonstrates 

that P2X3 mRNA expression only increases in undamaged or “spared” trigeminal and 

dorsal root ganglion neurons, whilst it actually decreases in damaged, ATF3-positive, 

neurons (Tsuzuki et al., 2001). In accordance with this observation, P2X3 protein 

expression is significantly reduced in L4 and L5 DRG when the rat sciatic nerve 

(arising from L4, 5 and 6 DRG) is completely transected (Bradbury et al., 1998). A 

similar decrease in P2X3 protein expression was observed in L5 and L6 DRG using a 

model of tight spinal nerve ligation of both L5 and L6 nerves, a model that effectively 

leaves no “spared” neurons in the corresponding DRG (Kage et al., 2002). Further 

analysis of activation kinetics suggested that the channels down-regulated were homo

multimeric P2X3 channels without a P2X2 component. Interestingly, no alteration in 

P2X3 immunoreactivity was observed in the small subpopulation of A-p fibre large 

DRG neurons that express this ion channel. One can postulate that this decrease in 

P2X3 expression in damaged neurons is partly the consequence of the reduced ability 

of damaged neurons to retrogradely transport neurotrophic factor/neurotrophic factor 

receptor complexes from their central and/or peripheral terminals back to the cell 

body. Spared neurons may well have greater accessibility to target field-derived 

neurotrophic factors and this may be partly responsible for the increase in P2X3 

expression observed. In contradiction to the other published data described above, an 

injury model that involves ligation of the rat L5 spinal nerve, failed to promote an
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increase in P2X3 protein expression in “spared” L4 DRG neurons (Fukuoka et al.,

2002). The reasons behind this unexpected observation are unclear.

The up-regulation of P2X3 mRNA and protein in spared neurons following nerve 

injury supports the notion that this ion channel could play a role in the generation of 

mechanical and thermal hyperalgesia that can occur following nerve injury. In support 

of this hypothesis, antisense oligo-deoxynucleotides or siRNA knockdown of P2X3 

expression in DRG neurons (following intrathecal administration) reduces the degree 

of hyperalgesia that results from partial sciatic nerve and spinal nerve ligation in rats 

(Honore et al., 2002; Barclay et al., 2002; Dorn et al., 2004). Similarly, subcutaneous 

injection of a specific and selective P2X3 antagonist, blocks the generation of thermal 

hyperalgesia and mechanical allodynia following sciatic nerve chronic constriction 

injury in the rat (Jarvis et al., 2002). Moreover, sciatic nerve injury appears to enhance 

the cell surface expression of P2X3 containing channels by inducing an alteration in 

receptor trafficking, and this has been proposed to contribute to the generation of 

hyperalgesia and allodynia (Chen et al., 2005). After peripheral nerve injury there is 

extensive sprouting of post-ganglionic sympathetic nerves into the site of injury 

(neuroma) and DRG (McLachlan et al., 1993; Ramer et al., 1997). Since sympathetic 

neurons can release ATP as a neurotransmitter, P2X3 and P2X2/P2X3 channels may 

mediate part of the sympathetic maintenance/enhancement of neuropathic pain that 

results in complex regional pain syndromes (reviewed in Janig and Habler, 2000). A 

significant up-regulation of P2X3 protein expression in the terminal arbors of CGRP 

immuno-reactive nociceptive neurons, but not non-peptidergic nociceptive neurons, in 

a mouse bone cancer model has recently led to the suggestion that P2X3 is involved 

in the aetiology of bone cancer pain (Gilchrist et al., 2005).

Two different laboratories have generated P2X3*7' mice (Cockayne et al., 2000; 

Souslova et al, 2000). In both strains of mice apmeATP fails to elicit currents in 

nodose or dorsal root ganglia neurons, demonstrating a lack of functional P2X3 

homo-multimeric or P2X2/P2X3 hetero-multimeric receptors. P2X3 7' mice also 

display a dramatically reduced pain and electrophysiological response to intraplantar 

injection of ATP, highlighting the importance of P2X3 and P2X2/P2X3 multimeric 

channels in mediating the response to ATP. Both strains of mice also display a
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modest reduction in hindpaw licking and lifting after interplantar injection of 

formalin, confirming that P2X3 plays a role in the generation of inflammatory 

hyperalgesia. In contrast, P2X3 "A mice show normal responses to acute noxious 

thermal and mechanical stimuli. The effect that P2X3 deletion has on the generation 

of hyperalgesia and allodynia following sciatic nerve lesion has not been tested to 

date. Interestingly, the reduced inflammatory pain response to formalin is also 

observed in P2X2"7' and P2X2'7' /P2X3‘A double knock-out mice (Cockayne et al.,

2005), suggesting a role for the P2X2/P2X3 heterodimeric receptors in inflammatory 

pain sensation. Unexpectedly, the development of thermal hyperalgesia in response to 

chronic inflammation induced by CFA, but not short term inflammation induced by 

carrageenan or capsaicin, is markedly potentiated in P2X3‘/_ mice compared to wild 

type mice (Souslova et al., 2000). In addition, P2X3 mice appear to have a deficit in 

response to non-noxious thermal stimuli in the absence of an inflammatory lesion. A 

more thorough investigation of the response of P2X3’7' animals to noxious and 

innocuous heat stimuli reveals a blunted response of dorsal horn second order sensory 

neurons to innocuous heat and a paradoxical increased avoidance of noxious heat and 

cold by P2X3"7’ animals placed in a thermal gradient. In addition P2X3‘/_ animals 

show significantly shorter latencies of withdrawal to noxious temperatures in the tail- 

flick test (Shimizu et al., 2005). Systemic application of specific P2X3 antagonists in 

wild type mice failed to reproduce the behavioural phenotype of P2X3'7' mice, 

suggesting that the phenotype of the null-mutant mice is partially due to 

compensatory changes in the expression of other P2X / P2Y receptor subunits, and/or 

other ion channels, in the absence of P2X3.

Another striking phenotype of P2X3‘7‘ mice is bladder hypo-reflexia. Null mutant 

mice show an increased bladder capacity and decreased voiding frequency (Cockayne 

et al., 2000). Bladder distension has subsequently been shown to induce the release of 

ATP from bladder endothelial cells of mice, and application of ATP to the bladder 

endothelium, or bladder distension, rapidly induces activity of pelvic nerve afferents. 

These latter effects are absent in P2X3'7' mice (Vlaskovska et al., 2001) and P2X27' 

and P2X3 '77P2X2 ''' mice (Cockayne et al., 2005). These observations strongly 

suggest a role for P2X3 homo-multimeric and P2X2/P2X3 hetero-multimeric 

channels in regulating mechanosensory signal transduction in the rodent bladder. 

Evidence to suggest that these purine channels may also play an important role in
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regulating sensory perception in the human bladder comes from the observations that 

an increase in the expression of P2X3 and P2X2 proteins is observed in the bladder 

urothelium of patients suffering from interstitial cystitis (Tempest et al., 2004). In 

addition, human bladder endothelial cells release ATP and increase expression of 

P2X3 when mechanically stretched (Sun and Chai, 2004). Antagonists of the P2X3 

and P2X2 receptor could thus be of therapeutic potential in the treatment of 

overactive bladder and in relieving the pain of chronic interstitial cystitis.

Neurotrophic factor regulation of P2X3 expression

Since P2X3 expression is predominantly localised to the IB4-reactive subpopulation 

of small-diameter sensory neurons, it would seem likely that its expression will be 

regulated by members of the GDNF family of neurotrophic factors rather than the 

neurotrophins. Indeed, intrathecal administration of GDNF or artemin to rats 

following sciatic nerve lesion significantly reduces the injury induced decrease in 

P2X3 observed in damaged DRG neurons (Bradbury et al., 1998; Wang et al., 2003; 

Gardell et al., 2003). Intrathecal administration of GDNF to non-lesioned adult rats 

also increases the expression of P2X3 in cervical and lumbar DRG neurons that 

project to the inner region of lamina II in the dorsal horn of the spinal cord (Ramer et 

al., 2001). In contrast, whilst null deletion of the neurturin receptor GFR-a2 reduces 

the size and degree of terminal arborization of IB4-positive c-fibre nociceptors, it 

does not decrease the number of DRG neurons expressing P2X3, suggesting that this 

GDNF family member does not regulate P2X3 expression in intact neurons (Lindfors 

et al., 2006). Perhaps surprisingly, intrathecal administration of NGF to non-lesioned 

rats appears to produce a small, but significant, increase in the number of DRG 

neurons expressing P2X3 protein (Ramer et al., 2001). The additional DRG neurons 

that express P2X3 are CGRP-positive and project to more superficial laminae of the 

dorsal horn than those of control animals, as well as to the ventro-medial afferent 

bundle that lies close to the central canal of the spinal cord. It is not clear whether 

NGF causes de-novo expression of P2X3 in some peptidergic nociceptors or merely 

increases expression of this ion channel to make it more readily detectable by 

immuno-histochemistry. In either case, the fact that NGF appears to increase the 

expression of P2X3 in peptidergic nociceptive neurons may partly explain why pre
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existing inflammatory conditions (that will increase NGF expression in the vicinity of 

the inflammation (Hefti et al., 2006)) sensitise the response of sensory neurons to 

ATP (Hamilton et al., 2001; Paukert et al., 2001; Xu and Huang, 2002).

4.1.4. Nav1.6 and 1.7

In chapter 2 ,1 outlined the structure and function of the voltage-gated sodium 

channels with particular reference to the TTX-resistant sodium channel alpha 

subunits, Navi.8, and Navi.9. In this chapter, I investigate the transcriptional 

regulation of two TTX-sensitive (TTX-S) sodium channel alpha subunits, Navi.6 and 

Navi.7.

As discussed in chapter 2, sodium channels are responsible for the current flow 

required within sensory neurons to propagate an action potential. Electrophysiological 

recordings indicate that there are two general sodium currents in DRG neurons, one 

sensitive to TTX (TTX-S), and one unaffected by TTX (TTX-R) (Kostyuk et al.,

1981; Cafffey et al., 1992; Roy and Narahashi, 1992). The TTX-S current is the 

predominant current in large proprioceptive and mechanoreceptive sensory neurons, 

whereas small nociceptive neurons contain both the TTX-S and TTX-R currents (Roy 

and Narahashi 1992; Rush et al., 1998; Cummins et al., 1998; Herzog et al., 2003).

In general, TTX-S channels tend to have a low threshold for activation (-55 to - 

40mV) and are rapidly activating and inactivating (reviewed in Lai et al., 2004). The 

application of TTX to distal axons, blocks nerve impulse conduction completely, 

providing evidence that TTX-S channels are required to mediate action potential 

generation in both myelinated and unmyelinated axons (Brock et al., 1998; Gold et 

al., 2003).

Navi.6

Navi.6 is encoded by the gene Scn8a and was initially isolated from the rat CNS and 

PNS (Schaller et al., 1995). Navi.6 is broadly expressed throughout the nervous 

system, in both neurons and glia of the CNS, PNS and enteric nervous system
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(Schaller et al., 1995; Black and Waxman, 1996; Felts et al., 1997; Black et al., 2002; 

Bartoo et al., 2005). Navi.6 produces a strong, persistent sodium current with high 

firing rates (Smith et al., 1998) and has been shown to cluster at the nodes of Ranvier 

of mature myelinated sensory, motor and other CNS neuron axons. In addition,

Navi.6 is also localized to some neuronal dendrites and synapses within the CNS 

(Caldwell et al., 2000; Tzoumaka et al., 2000). Navi.6 channels within myelinated 

sensory neurons display rapid repriming kinetics and the rapid development of closed- 

state inactivation. These two properties are significantly different to other TTX- 

sensitive sodium channels and account for the high repetitive firing rates, and the lack 

of response to slow depolarising stimuli, that are characteristic of myelinated sensory 

neurons (Cummins et al., 1998 and 2001; Herzog et al., 2003a). The lack of response 

to slow depolarising stimuli is important, since it ensures that transient nodal after 

currents, which can occur after action potential propagation through the nodes, do not 

trigger additional, spontaneous action potentials.

Two important studies have used the optic nerve as a model to address the 

mechanism that leads to the clustering of Navi.6 at the nodes of Ranvier in mature 

myelinated neurons (Boiko et al., 2001; Kaplan et al., 2001; reviewed in Salzer,

2002). The optic nerve is populated by axons from retinal ganglion cells (RGCs). 

RGC axons display clearly demarcated myelinated regions, outside of the eye in the 

optic nerve, and unmyelinated regions, within the retina, making them an ideal system 

in which to study the role of myelination in regulating sodium channels clustering and 

expression. RGCs express two TTX-S sodium channels, Navi.2 and Navi.6. The 

expression of these two TTX-S sodium channels, and their axonal location, appear to 

be developmentally regulated in the mouse in accordance with the timing of 

myelination (Boiko et al., 2001; Kaplan et al., 2001). Navi.2 is expressed prior to 

Navi.6 during embryonic development, and it is initially localised at developing 

nodes of Ranvier. As myelination continues, Navi.2 is gradually down-regulated at 

the maturing nodes and replaced by Navi .6, so that by adulthood Navi .2 is only 

present within the retina whilst Navi .6 is localised at the nodes of Ranvier in 

myelinated axons (Boiko et al., 2001). The study of shiverer mice, a strain that 

displays severe hypomyelination within the CNS as a result of oligodendrocyte 

dysfunction, has confirmed that the myelination process regulates the expression and 

localization of Navi.6 in RGC axons. In shiverer mice, the expression of Navi.2 is
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abundant in all regions of damaged, poorly myelinated RGC axons, whereas Navi. 6 

is only detectable in the few nodes that retain functional integrity (Boiko et al., 2001). 

It appears that oligodendrocytes release a soluble factor that is responsible for 

regulating the initial clustering of Navi.2 at immature RGC axonal nodes. However, a 

physical interaction between Navi.6 and myelinating oligodendrocytes would appear 

to be required for clustering of this channel to mature RGC nodes of Ranvier (Kaplan 

et al., 2001).

Several proteins are known to interact with TTX-sensitive sodium channel alpha units 

and are thought to help direct their trafficking to nodes, as well as regulating their 

functional characteristics. These include sodium channel beta-subunits pi and p3, 

neurofascin-186 and calmodulin (Ratcliffe et al., 2001; Herzog et al., 2003b). Navi.6, 

in particular, has been shown to interact with ankyrin-G, pIV spectrin, neurofascin, 

NrCAM, calmodulin and FHF2 (Jenkins and Bennet, 2001; Herzog et al., 2003b; 

Wittmack et al., 2004). A further study has suggested that contactin-associated- 

protein regulates the formation of transverse bands in axonal paranodal regions, and 

these are important in regulating nodal formation. Indeed, the lack of contactin- 

associated-protein, and the subsequent loss of transverse bands, leads to aberrant 

Navi.6 and Navi.2 expression in myelinated CNS neurons (Rios et al., 2003).

To date, the mechanism that regulates the nodal clustering of Navi.6 in myelinated 

peripheral sensory neurons has not been fully determined. However, of note is the 

observation that contactin-associated-protein deletion does not lead to aberrant 

expression of Navi .6 or Navi .2 in myelinated peripheral neurons in the same way as 

it does in myelinated CNS neurons (Rios et al., 2003). Furthermore, a recent 

publication has also suggested that, unlike the situation in the CNS, immature PNS 

nodes do not undergo a period of transient Navi .2 expression prior to Navi .6 

channels populating the nodes, rather Navi.6 is the major sodium channel expressed 

at immature nodes (Shafer et al., 2006). These two observations suggest that 

myelinating glial cells within the PNS use a different instructive mechanism, 

compared to those within the CNS, to regulate nodal Navi.6 expression. This 

hypothesis is further supported by the observation that Navi.6 is associated with 

fibroblast growth factor homologous factor 2 (FHF2) at sensory neuron nodes of 

Ranvier, but not motor neuron or optic nerve nodes (Wittmack et al., 2004). Ectopic
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expression of the closely related factor, FHF2B, in the neuronal cell line ND7/23 

increases the amplitude of the sodium current that is generated by Navi .6, 

demonstrating that the association of FHF2 family members with Navi.6 has 

functionally important consequences (Wittmack et al., 2004).

Whilst the current view is that Navi.6 expression is largely restricted to myelinated 

neurons, and is indeed the main effecter of saltatory action potential conduction 

within these neurons, evidence has also been presented to suggest that Navi .6 plays a 

functional role in generating sodium currents in unmyelinated C-fibre nociciceptive 

sensory neurons of rat and mouse (Black et al., 2002). Navi.6 protein appears to be 

expressed throughout the entire length of peripherin-positive C-fibres innervating the 

epidermis (DRG derived) and the cornea (trigeminal ganglion derived). Expression is 

generally low and in a continuous pattern, not being restricted to nodal or other 

specific regions. A number of naturally occurring mouse Navi.6 null-mutant strains 

have been identified. These mouse strains lack functional expression of Navi.6 due 

either to the insertion of transposable elements into the Scn8a gene or spontaneous 

mutations in the gene. Animals in these med (Motor isnd-Plate Disease) mouse lines 

develop various motor disorders within the first two weeks of birth and die by three 

weeks (Duchen and Stefani, 1971; Burgess et al., 1995; Kohrman et al., 1996a and b; 

Garcia et al., 1998; Hamann et al., 2003). C-fibre nociceptors (and nodes of 

myelinated axons) do not stain for Nav 1.6 protein in postnatal med mice. The lack of 

functional Navi.6 in med mice C-fibres does not lead to conduction block in these 

neurons, but it does lead to a signficant reduction in compound action potential 

amplitude and conduction velocity, thus highlighting the functional significance of 

Navi.6 sodium channels in these neurons (Black et al., 2002). The absence of 

conduction block in c-fibres from med mice reflects the fact that C-fibre nociceptors 

also express the TTX-sensitive sodium channel, Navi.7 (see below). The observation 

that Navi.6 is expressed in unmyelinated C-fibres of the sensory nervous system is 

not the only report of Nav 1.6 being expressed in unmyelinated fibres. Navi .6 

channels also appear to be present in unmyelinated parallel fibres derived from 

granule cells in the molecular layer of the cerebellar cortex (Krzemien et al., 2000; 

Tzoumaka et al., 2000; Levin et al., 2006).
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Navi.6 appears to be responsible for the phenomenon of resurgent sodium currents in 

cerebellar Purkinje cells and large DRG neurons. In this phenomenon sodium 

channels open transiently during recovery from activation, thereby generating a 

“resurgent” sodium current that flows immediately after action potential propagation 

and displays very slow decay kinetics. Resurgent sodium currents are thought to be 

critical in determining the rapid firing pattern of Purkinje cells and are virtually 

eliminated in med mice and conditional knockout mice containing a Purkinje cell 

specific deletion of Navi.6 (Raman and Bean, 1997; Raman et al., 1997; Levin et al.,

2006). The role that resurgent currents play in regulating the excitability of 

myelinated sensory neurons is not clear, but such currents certainly exist in large 

myelinated DRG neurons and are dependent on Navi.6 expression (Cummins et al.,

2005).

The role of Navi .6 in injury and inflammation

There is a scarcity of data investigating the role of Nav 1.6 in the aetiology of neuropathic 

and inflammatory pain syndromes. This is likely due to the widespread assumption that 

Navi.6 is only expressed in myelinated neurons (despite Black et al., 2002) and the even 

more widespread assumption that unmyelinated nociceptive C-fibre neurons are the only 

neurons involved in the aetiology of these pathological conditions. In a study examining a 

possible link between Navi.6 and pathological pain conditions, the expression of Navi.6 

mRNA has been shown to decrease in ipsilateral L4 DRG (containing “spared” neurons) 

and L5 DRG (containing damaged neurons) following L5 tight spinal nerve ligation (Kim 

et al., 2002). This has been interpreted as an indication that Nav 1.6 is not involved in the 

generation of the ectopic electrical discharges that are associated with the onset of 

hyperalgesia/allodynia following sciatic nerve lesion. However, this study measured 

Nav 1.6 mRNA levels by an RNase protection assay on total RNA extracted from L4 and 

L5 DRG. This approach can only measure a global change in Navi.6 mRNA expression 

within all neurons and cannot determine whether certain neuronal subpopulations show 

increased or decreased expression of Nav 1.6 mRNA. In addition, it is not clear whether 

Navi.6 protein levels alter following sciatic nerve lesion. In any case, a decrease in Navi.6 

mRNA/protein expression following sciatic nerve injury could be causative in the aetiology 

of neuropathic pain/hyperalgesia as its expression may be replaced by that of other TTX-S
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sodium channels like Navi.3 and Nax (e.g. Kim et al., 2001 and 2002). This in turn may 

alter the response of myelinated sensory neurons to slow, sub-threshold depolarisations and 

lead to ectopic firing (see above). Therefore, to date, it is not entirely clear whether altered 

Nav 1.6 sodium channel expression, or modulation of its functional properties, contributes 

to the generation of lesion induced spontaneous ectopic sodium currents, and hence 

neuropathic pain. Likewise, no data has emerged, to date, that directly addresses whether 

altered Nav 1.6 expression or function contributes to the generation of inflammatory 

hyperalgesia. However, it has recently been demonstrated that p38 MAP kinase can 

phosphorylate Nav 1.6, thereby leading to a reduced sodium current density. The reduced 

current density has been postulated to be the result of the phosphorylation event targeting 

Nav 1.6 channels for ubiquitination and degradation (Wittmack et al., 2005). P38 MAP 

kinase has been shown to be activated in lumbar DRG neurons following sciatic nerve 

lesion and NGF driven inflammation, and is causally related to the generation of 

hyperalgesia/allodynia (Jin et al., 2002; Ji et al., 2002; Obata et al., 2004). These 

observations further raise the possibility that_aberrant Nav 1.6 expression/modulation is 

involved in the generation of neuropathic and/or inflammatory pain. Clearly this hypothesis 

needs to be investigated further.

Despite no obvious function in the generation of pathological pain, following nerve 

injury or inflammation, aberrant Navi.6 expression and function has been implicated 

in the onset of other neurological disorders.

Navi.6 and Multiple Sclerosis

The regulation of Navi.6 expression, and its subsequent nodal localization, by 

myelination raises the possibility that this sodium channel may play a role in the 

aetiology of pathological disease symptoms in demyelinating disorders. Multiple 

Sclerosis (MS) is an inflammatory, demyelinating disease of the CNS. Originally it 

was thought that myelinating oligodendrocytes were the cell type most affected by the 

disease. However, more recently it has become evident that axonal and neuronal 

degeneration occurs in both MS and experimental autoimmune encephalomyelitis 

(EAE), a mouse model showing many features of MS (Reviewed in Bechtold et al.,

2005).
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Initial studies, on the optic nerve, established that voltage-gated sodium channels can 

participate in the production of calcium-mediated axonal degeneration, following 

anoxia, by providing a route for persistent sodium influx that drives reverse Na /Ca 

exchange through the Na+/Ca2+ exchanger, NCX (Stys et al., 1992). Later studies in 

spinal cord dorsal columns provided further evidence for the involvement of sodium 

channels and NCX in axonal degeneration following exposure to anoxia (Imaizumi et 

al., 1998) and high levels of nitric oxide, a characteristic of MS (Kapoor et al., 2003). 

In accordance with these observations, non-specific blocking of sodium channels by 

flecainide or phenytoin in mice with EAE prevents axonal degeneration in the spinal 

cord and attenuates the reduction in compound axonal potential that is characteristic 

of the disease (Lo et al., 2003; Bechtold et al., 2004). However, until recently the 

identity of the sodium channels involved in triggering calcium-mediated axonal 

degeneration has remained a mystery. It has now been established that mice with EAE 

show abnormal retinal ganglion cell (RGC) and optic nerve expression of Navi.2 and 

Nav 1.6 (Craner et al., 2003). In particular, mice with EAE show widespread 

expression of Navi.2 in RGCs and degenerating optic nerve nodes with significantly 

reduced expression of Nav 1.6, a situation that is characteristic of immature RGCs and 

optic nerve. Further in the progression of the disease, mice with EAE display random 

diffuse expression of both TTX-S sodium channels along the entire optic nerve. 

Furthermore, mice with EAE also display diffuse expression of Navi.2 and Navi.6 

protein in demyelinated spinal cord axons, and the expression of Navi.6, in particular, 

coincides with that of the beta amyloid precursor protein, a marker of axonal injury, 

and the Na+/Ca2+ exchanger (NCX) (Craner et al., 2004 a). This data strongly supports 

the notion that aberrant Navi.6 (and Navi.2) expression, as a result of defective 

myelination and/or demyelination, contributes to the axonal and neuronal 

degeneration that is characteristic of EAE. Nav 1.6 protein has also been shown to be 

expressed in a diffuse pattern, overlapping that of NCX, within demyelinated axons 

residing in areas of acute MS plaques in human optic nerve and spinal cord post

mortem tissue, suggesting that the aetiology of EAE and MS are the same (Craner et 

al., 2004b). A recent publication has also implicated Navi.6 as having a causative role 

in the activation of microglia and macrophages that is concomitant with the onset of 

inflammation in the early stages of MS and EAE (Craner et al., 2004). Sodium 

channel blockade may, therefore, not only reduce neuronal degeneration in the latter
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stages of MS/EAE, but may also ameliorate the inflammatory insult that contributes 

to the onset of these pathological conditions.

Navi.6 and other neurological disorders

The analysis of med mice has suggested that aberrant Nav 1.6 expression and function 

may play a role in the aetiology of a number of neurological disorders. As mentioned 

above, the various strains of med mice develop a number of progressively worsening 

motor disorders within the first two weeks after birth (a time period coinciding with 

the replacement of Nav 1.2 with Nav 1.6 at developing nodes of Ranvier) and neonates 

of most strains die by three weeks. Neonatal med mice display certain symptoms of 

several human diseases including; dystonia, motor endplate disease and inherited 

cerebellar ataxia (Burgess et al., 1995; Garcia et al., 1998; Hamann et al., 2003;

Levine et al., 2006).

Motor end plate disease has been postulated to arise in med mice because changes in 

the conduction velocity and amplitude of motor neuron action potentials, together 

with aberrant sprouting of motor neuron terminal arbors, prevent current penetration 

through the neuromuscular junction (Duchen, 1970; Duchen and Stefani, 1971; 

Kearney et al., 2002). A recent publication has demonstrated robust Navi .6 

expression in the Schwann cells that wrap around motor neuron terminal arbors at the 

neuromuscular junction. These Schwann cells are absent in med mice, and it has been 

postulated that their absence (probably due to the lack of Navi.6 expression) 

contributes to the aberrant sprouting of motor neuron terminal arbors (Musarella et al.,

2006).

Other aspects of med mouse motor disorders are likely to arise from inappropriate 

signalling through brain regions that regulate coordination, such as the cerebellum and 

basal ganglia. For example, TTX-sensitive resurgent and steady-state sodium currents 

decrease disproportionately relative to transient currents in Purkinje cells of juvenile 

med mice, thereby changing the kinetics of total sodium currents in these cells. The 

result of changed sodium channel kinetics is that the action potential activation
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threshold of Purkinje cells is shifted by +10mv and the rate of spontaneous, repetitive 

firing of action potentials within these cells is reduced (Harris et al., 1992; Raman and 

Bean, 1997; Raman et al., 1997; Smith et al., 1998). Because med mice die within 

three weeks of birth and lack Nav 1.6 expression in all cell types that normally express 

this sodium channel, it has not previously been possible to determine the extent to 

which the specific lack of Navi.6 expression in Purkinje cells, or other cells within 

the cerebellum, directly contributes to the behavioural phenotype of med mice.

Neither has it been possible to determine whether Navi .6 deletion in adult cells of the 

cerebellum leads to adult mice with a similar behavioural phenotype to that of 

juvenile med mice. A recent study, using conditional deletion of Navi.6 in Purkinje 

cells, granule cells or both, has attempted to address these questions (Levin et al.,

2006). Whilst adult mice with a granule cell specific deletion of Navi.6 only exhibit 

minor behavioural abnormalities, adult mice lacking Navi.6 specifically in Purkinje 

cells display ataxia, tremor and impaired coordination that correspond to a significant 

drop in both the ratio of resurgent-to-transient currents and spontaneous firing rates in 

Purkinje cells. This data clearly demonstrates that the lack of Navi.6 expression in 

Purkinje cells is responsible for many of the motor related behavioural abnormalities 

of med mice.

To date, no data has emerged regarding the transcriptional or translational regulation 

of Navi.6 expression by neurotrophic factors.

Navi.7

The existence of a sodium channel with the expression pattern and functional 

characteristics of Navi.7 was initially suggested by a study on PC12 cells that 

revealed a TTX-sensitive sodium current that was distinct from that generated by 

Navi .2, a sodium channel that was known to be expressed in this cell line, and that 

was rapidly up-regulated by NGF- induced PC 12 differentiation (D’Arcangelo et al., 

1993; Toledo-Aral, 1995). Northern blotting of PC 12 cell RNA, using a probe against 

a highly conserved region of all known sodium channels, revealed a novel 11 kb 

transcript that did not correspond in size to any known sodium channels and was also 

present in RNA extracted from rat DRGs, but not rat brain. This transcript was shown

344



to be rapidly up-regulated by NGF-induced PC 12 cell differentiation, in accordance 

with the NGF induced increase in sodium currents (Toledo-Aral, 1995). The first 

cDNA corresponding to Nav 1.7 was initially isolated from the human medullary 

carcinoma cell line (hMTC) and termed human neuroendocrine sodium channel 

(hNE-Na), (Klugbauer et al., 1995). A rabbit homologue was cloned a in the same 

year from a rabbit Schwann cell library (Belcher et al., 1995) and the cloned cDNA 

was used to identify the location of the corresponding gene, Scn9a, within the mouse 

genome (Beckers et al., 1996).The rat homologue of Navi.7, also known as PN1, was 

isolated soon afterwards from PC 12 cell and rat DRG cDNA libraries (Toledo-Aral et 

al., 1997 Sangameswaran et al., 1997).

An initial screen of rat tissues, using Western Blotting, RNase protection assay and 

Northern Blotting, demonstrated that Navi .7 mRNA and protein are principally 

expressed in sensory and sympathetic ganglia of the PNS and are virtually 

undetectable in the brain, spinal cord and non-neuronal tissues (Toledo-Aral et al., 

1997). A more sensitive RT-PCR assay has revealed low-level expression of Nav 1.7 

mRNA in adult rat brain and heart, but not skeletal muscle (Sangameswaran et al., 

1997). Indeed, a recent publication has demonstrated expression of Navi.7 mRNA in 

the atrio-ventricular node of the mouse heart (Marionneau et al., 2005). Functional 

Nav 1.7 also appears to be expressed in mouse smooth muscle myocytes and mouse 

pancreatic B cells (Saleh et al., 2005; Vignali et al., 2006)

In situ hybridization and immunohistochemistry have localised Navi.7 mRNA and 

protein expression specifically to neurons within embryonic and adult rat DRG, with 

no apparent expression in either satellite cells or Schwann cells (Toledo-Aral et al., 

1997; Sangameswaran et al., 1997). Interestingly, Navi.7 protein expression is 

highest at the terminal arbors of cultured embryonic rat DRG neurons, with only low 

level, diffuse expression along neurites and within cell bodies (Toledo-Aral et al., 

1997). The majority of adult and embryonic rat DRG neurons appear to express 

Nav 1.7 mRNA, although with some variation in the levels of expression between 

neurons (Felts et al., 1997; Black et al., 1996; Toledo-Aral et al., 1997). In accordance 

with this observation, embryonic DRG also display widespread neuronal expression 

of Navi.7 protein (Toledo-Aral et al., 1997). In contrast, immunohistochemistry has 

revealed that Nav 1.7 protein is predominantly expressed in small, presumptive
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nociceptive, DRG neurons in the adult rat and guinea pig (Porreca et al., 1999, Gould 

et al., 2000; Djouhri et al., 2003). An electrophysiological analysis of adult guinea pig 

DRG neurons expressing high levels of Nav 1.7 protein has demonstrated that, whilst 

nociceptive neurons predominantly express this sodium channel, some low-threshold 

mechanoreceptors also express Navi.7 at high levels and Navi.7 is more closely 

correlated to action potential conduction velocity than cell size (Djouhri et al., 2003). 

A recent publication has investigated alternative splicing of Navi.7 mRNA in both 

human and rat DRG (Raymond et al., 2004). Four alternative splice variants of 

Nav 1.7 exist in human and rat DRG, encompassing changes in the splicing of exon 5 

and exon 11 of the Scn9a gene by the use of alternative splice donor sites. Whilst all 

splice variants are reduced in rat lumbar DRG following L5 spinal nerve ligation, two 

of the transcripts are significantly enriched in comparison to the others, suggesting 

that alternative splicing of Nav 1.7 may play a role in the generation of neuropathic 

pain associated with spinal nerve ligation (Raymond et al., 2004). The differences in 

the functional properties of the Nav 1.7 channels encoded by each splice variant have 

not yet been determined.

Over-expression of mouse Navi .7 in mouse DRG neurons has revealed that this 

sodium channel produces a fast activating and inactivating TTX-sensitive current that 

is characterised by having very slow rates of closed state inactivation and repriming 

(Herzog et al., 2003a). The properties of ectopically expressed Navi.7 are similar to 

the properties of native TTX-sensitive currents in nociceptive A-delta and C-fibre 

neurons, further suggesting that Nav 1.7 is largely responsible for generating the TTX- 

sensitive currents in nociceptive neurons (Herzog et al., 2003a). The ectopic 

expression of human Navi.7, in the non-neuronal cell lines CHO and HEK293, has 

revealed that the human homologue of rat Navi.7 has similar electrophysiological 

properties to its rodent counterpart (Cummins et al., 1998; Akiba et al., 2003).

Navi.7 and Pain

The observation that Nav 1.7 is generally expressed at higher levels in nociceptive 

sensory neurons of the DRG, compared to proprioceptive neurons and the majority of 

low-threshold mechanoreceptive neurons, suggests that this sodium channel may have
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a role in the response of sensory neurons to noxious stimuli and may be involved in 

pain signalling. The expression of Nav 1.7 predominantly in nociceptive neurons also 

raises the possibility that it is involved in the aetiology of inflammatory and/or 

neuropathic pain.

Conditional transgenic mice, using cre-recombinase mediated deletion of loxP flanked 

Navi.7 exons that encode the voltage sensor of the channel, have been used to 

investigate the role of Nav 1.7 in normal nociception and in the generation of 

pathological pain states (Nassar et al., 2004). Globally deleting floxed Navi.7 exons 

during the embryonic period confers neonatal lethality, apparently because of a failure 

of neonates to feed, precluding an investigation of the role Nav 1.7 in normal 

nociception. To circumvent this problem, a Navi .8 promoter driven cre-recombinase 

was used, by the same authors, to delete Navi.7 specifically in nociceptive sensory 

neurons of the mouse PNS. Surprisingly, isolated Navi.7 deficient DRG neurons only 

show a small reduction in peak TTX-sensitive current, probably reflecting the 

continued expression, or perhaps increased expression, of Navi. 1 and Navi.6 in 

Navi.7 deficient nociceptive neurons. Similarly, deleting Navi.7 in afferent 

nociceptive neurons does not significantly alter the evoked electrophysiological 

response of spinal cord dorsal horn neurons following peripheral stimulation with 

innocuous or noxious thermal (hot or cold) stimuli. However, Navl.7 A mice show a 

small, but significant, reduction in their sensitivity to noxious heat in the Hargreaves 

test (Nassar et al., 2004). The evoked electrophysiological response of dorsal horn 

neurons to peripheral noxious mechanical stimulation, but not low threshold 

mechanical stimuli, is significantly reduced in the absence of nociceptor Navi.7. In 

accordance with this observation, mice with a nociceptive neuron specific deletion of 

Navi.7, show a pronounced analgesia to noxious, but not low-threshold, mechanical 

stimuli in behavioural tests.

The most dramatic phenotype of mice containing a nociceptive neuron specific 

deletion of Nav 1.7 is a striking deficit in the development of inflammatory 

hyperalgesia. Navi.7 deficient mice show significantly less nocifensive behaviour in 

the first and second phase responses to intraplantar injection of formalin (Nassar et 

al., 2004, 2005). In addition, the marked thermal and mechanical hyperalgesia that 

arises following intraplantar CFA injection is virtually absent in mice lacking Navi.7
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expression in nociceptive neurons. Thermal hyperalgesia is also significantly reduced 

in Navl.7'A mice following NGF and carrageenan induced inflammation (Nassar et 

al., 2004).

The role that Navi.7 plays in the generation of neuropathic pain has been investigated 

in mice containing a nociceptive neuron specific deletion of Navi.7, and also in mice 

with a nociceptor specific double-deletion of both Nav 1.7 and the TTX-resistant 

sodium channel, Navi.8 (Nassar et al., 2005). Both mutant mouse strains display a 

normal development of mechanical allodynia following L5 spinal nerve ligation, 

suggesting that neither sodium channel plays a role in the aetiology of allodynia 

following nerve damage. This is, perhaps, a surprising result in light of the role that 

Nav 1.7 plays in determining normal sensory thresholds to noxious mechanical stimuli 

and the significant change in the ratios of Navi.7 splice variants that is observed in 

the same lesion model (Nassar et al., 2004; Raymond et al., 2004). However, in 

accordance with the null mutant data, Navi .7 mRNA expression within DRG neurons 

appears to fall significantly following spinal nerve ligation (Kim et al., 2002). 

Furthermore, Navi.7 protein levels decrease significantly in DRG from human 

patients suffering from traumatic central or peripheral axotomy (Coward et al., 2001).

The data from both conditional Navi.7 null mice and conditional Navl.7/Navl.8 

double-null mice demonstrates that Navi .7 plays a role in determining the response to 

high-threshold painful thermal and, in particular, mechanical stimuli. The data also 

demonstrates that Navi .7 plays an important role in the generation of inflammatory 

thermal and mechanical hyperalgesia (Nassar et al., 2004, 2005). Other experimental 

evidence supports this latter conclusion. For example carrageenan-induced 

inflammation has been shown to increase Navi .7 protein expression within DRG 

neurons in parallel with an increase in TTX-sensitive sodium currents and the 

development of hyperalgesia (Black et al., 2004). Moreover, Herpes virus vector 

mediated antisense knockdown of Nav 1.7 has been shown to ameliorate CFA 

induced, inflammatory thermal hyperalgesia in mice (Yeomans et al., 2005). In 

addition, the anti-inflammatory cyclooxygenase (COX) inhibitors ibuprofen and NS- 

398 can prevent the CFA-induced up-regulation in Navi.7 protein levels observed in 

adult rat DRG when they are applied prior to CFA administration (Gould et al., 2004).
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Importantly, the COX inhibitor associated amelioration of CFA induced Navi.7 up- 

regulation corresponds with a reduction in inflammation-induced hyperalgesia.

The important role that Navi.7 plays in regulating normal nociceptive thresholds to 

noxious stimuli has been highlighted by the recent discovery that mutation of this 

sodium channel is associated with the painful condition, primary erythermalgia (also 

called erythromelalgia). This neuropathy is characterised by burning pain and redness 

of the skin of the extremities, in response to warm stimuli or moderate excercise, and 

can either arise spontaneously or be inherited (Layzer et al., 2001). The symptoms of 

this condition are probably due to a combination of peripheral sensory neuron hyper

excitability and an alteration of sympathetic vasomotor activity (Rush et al., 2006). A 

number of research groups have now identified at least 10 point mutations in the 

Scn9a gene that are associated with either familial or spontaneous (sporadic) 

erythermalgia (Kanadia et al., 2003; Yang et al., 2004; Drenth et al., 2005; Michiels et 

al., 2005; Dib-Hajj et al., 2005; Han et al., 2006). The effects that two of these point 

mutations have on the functional properties of Navi. 7 have been investigated by 

ectopically expressing mutated Navi.7 in a kidney cell line (Cummins et al., 2004). 

Both mutations shift the activation threshold of Navi.7 by 15 mV in a hyperpolarizing 

direction, as well as significantly slowing the rate of channel closing. In addition, 

mutant channels show a much larger response to slow, small depolarising stimuli. The 

net result of these changes in-vivo is likely to be hyper-excitability of primary sensory 

neurons. The transfection of cDNAs encoding mutant channels into cultured DRG 

neurons has been used to investigate the electrophysiological properties of Navi.7 

channels carrying a different erythermalgia-associated point mutation to those 

investigated by Cummins et al., (Dib-Hajj et al., 2005). Once again, the mutation 

confers a gain of function phenotype on mutated channels that is characterised by a 

lowered activation threshold and delayed channel closure. Interestingly, one of the 

first mutations of Navi. 7 to be characterised as being involved in erythermalgia, 

L858H, (Yan et al., 2004) produces functional hyper-excitability when over-expressed 

in sensory neurons but hypo-excitability when over-expressed in sympathetic neurons, 

clearly demonstrating that the physiological functional effects of any one ion channel 

is partly dependant on the cellular context in which it is expressed (Rush et al., 2006). 

Despite the growing data implicating aberrant Navi.7 function in the aetiology of
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erythermalgia, one group has documented cases of the disease that are not associated 

with mutation of Navi.7 (Bums et al., 2005).

Regulation of Navi.7 expression bv neurotrophic factors

Initial studies on the regulation of Navi.7 mRNA expression were carried out using 

Northern Blotting analysis of RNA extracted from PC12 cells (D’Arcangelo et al., 

1993; Toledo-Aral et al., 1995). A brief 1 minute exposure of PC12 cells to NGF has 

been shown to rapidly up-regulate the expression of the 11Kb Navi .7 message.

Navi.7 mRNA expression peaks at 3 hours post-NGF exposure and returns to basal 

levels by 24 hours. Patch clamping experiments have revealed that the increase in 

Navi.7 mRNA expression is accompanied by a dramatic increase in sodium current 

that is first apparent at eight hours after NGF application and persists for at least 24 

hours (Toledo-Aral et al., 1995). Interestingly, the up-regulation of Navi.7 mRNA 

appears to be dependent on new protein synthesis, suggesting that NGF-induced 

immediate early genes mediate the increase in sodium channels expression. A brief 

exposure to interferon-y, epidermal growth factor or basic fibroblast growth factor 

also increases the expression of Navi.7 mRNA in PC12 cells (Toledo-Aral et al., 

1995).

In contrast to PC 12 cells of the sympatho-adrenal lineage, NGF dose not appear to 

regulate Navi.7 expression in sensory neurons. Transgenic mice that over-express 

NGF specifically in skin do not show increased expression of Navi.7 mRNA in DRG 

neurons (Fjell et al., 1999a). Moreover, Schwann cells or Schwann cell conditioned 

media, that are a source of NGF, do not increase neuronal expression of Navi.7 

mRNA when added to cultured adult DRG neurons, although they increase the 

neuronal expression of other sodium channels that have previously been shown to be 

regulated by NGF (Hinson et al., 1997). In agreement with this, TTX-sensitive 

currents do not decrease in TrkA expressing nociceptive neurons (in which Navi.7 is 

the main TTX-S sodium channel) in animals that have reduced levels of target field 

NGF, as a result of immunization-induced anti-NGF antibody production. TTX- 

resistant sodium currents, however, are reduced in these animals in accordance with
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the known ability of NGF to regulate both TTX-resistant sodium channel alpha- 

subunits, thus demonstrating the effectiveness of anti-NGF antibody production in 

NGF-immunized mice (Fjell et al., 1999b). It can be hypothesised that the reduction 

in the expression of Navi. 7 mRNA and protein within DRG neurons that has 

previously been observed following peripheral nerve lesion (Coward et al., 2001 ;Kim 

et al., 2002) occurs as a result of the loss of accessibility of DRG neurons to target 

field-derived factors. This would suggest that additional target-field derived factors, 

other than NGF, normally regulate the expression of Navi.7 in adult DRG neurons.

In this chapter I will determine whether the other target field-derived factor/s that 

regulate Navi.7 mRNA expression in sensory neurons could be artemin or MSP.

4.1.5. LIF

Leukaemia inhibitory factor (LIF) is a neuropoietic cytokine (also known as 

cholinergic differentiation factor, or CDF) that has pleiotropic activity in several adult 

and embryonic systems. In the haematopoietic system, LIF induces the proliferation 

of haematopoietic stem cells (Fletcher at al., 1990; Leary et al., 1990) as well as the 

differentiation of leukaemia cells (Tomida et al., 1984) and megakaryocytic 

progenitor cells (Metcalf et al., 1990). LIF affects bone resorption (Abe et al., 1986) 

and also inhibits adipogenesis by negative regulation of lipoprotein lipase (Mori et al.,

1989). Furthermore, LIF inhibits kidney epithelial cell and embryonic stem cell 

differentiation (Tomida et al., 1990; Smith et al., 1988; Williams et al., 1988). In the 

latter case, LIF acts to maintain the multipotent developmental potential of embryonic 

stem cells. Within the nervous system, LIF displays neurotrophic factor like activity 

with effects on both neuronal differentiation and survival within the CNS and PNS. 

LIF can also modulate astrocyte and oligodendrocyte differentiation (Yamamori et al., 

1989; Murphy et al., 1991; Murphy et al., 1993; Murphy et al., 1997; Horton et al., 

1998; Thier et al., 1999; Arce et al., 1999).

LIF belongs to the family of gpl30 cytokines, (also known as the interleukin-6 family 

of cytokines). Family members include interleukin-6 (IL-6), IL-11, ciliary derived

351



neurotrophic factor (CNTF), Oncostatin M, cardiotrophin-1 (CT-1), and 

cardiotrophin-like cytokine (CLC) (reviewed in Taga, 1996; Murphy et al., 1997)

All the members of this cytokine family utilise a common p receptor signalling 

subunit, gpl30. gpl30 can form hetero- or homodimers with additional a  and/or p 

receptor subunits. IL-11 and IL-6 signal by inducing homodimerisation of gpl30, 

whereas CNTF, LIF and CT-1 induce heterodimerisation of gpl30 and the LIF p 

receptor subunit (LIFR). OSM induces heterodimerisation of gpl30 and the OSM (3- 

receptor subunit (Gearing et al., 1991, Taga et al., 1996; Tanaka et al., 1999). IL-6,

IL-11 and CNTF initially bind to ligand specific a  subunits (IL6Ra, IL-1 la ,

CNTFRa) before inducing p subunit dimerisation and signal transduction.

Neither gpl30 nor LIFR contain intrinsic tyrosine kinase activity, so in order for the 

receptor complex to become active, membrane bound j anus kinases (JAKs) must 

phosphorylate tyrosine residues in the cytoplasmic region of gpl30. Signal 

transducers and activators of transcription (STAT) family members can then bind via 

their SH2 domain to these phosphorylated residues. Phosphorylated STAT dimers are 

then translocated to the nucleus where they initiate transcription of target genes 

(reviewed in Heinrich et al., 1998).

LIF and its role in the peripheral sensory nervous system

LIF has neurotrophic properties on developing peripheral sensory neurons. For 

example, LIF promotes the differentiation of sensory neurons from proliferating 

progenitors in neural crest cells cultures. LIF also promotes the survival of late 

embryonic sensory neurons with an efficacy comparable to NGF (Murphy et al.,

1991; Murphy et al., 1993; Horton et al., 1998; Horton et al., 1996) LIF is 

retrogradely transported and accumulates in specific DRG neurons following intra- 

neural injection into the sciatic nerve of adult rats. The neurons that express functional 

LIF receptors and retrogradely transport this cytokine are predominantly small in 

diameter, with the majority (~81%) co-labelling for CGRP. Interestingly, 62% of LIF 

containing neurons are immuno-positive for TrkA and 34% are immuno-reactive for 

IB4 (Thompson et al., 1997), suggesting that LIF can exert neurotrophic effects on a
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sub-population of nociceptive adult sensory neurons that are partly peptidergic and 

partly IB4-reactive.

LIF appears to play an important role in the response to nerve injury and, in 

particular, may enhance axonal regeneration. LIF is not normally detectable in the 

adult nervous system (Yammamori, 1991), however, an increase in LIF mRNA and 

protein is observed following sciatic nerve ligation, transection or crush. This increase 

occurs at the site of injury within dedifferentiating Schwann cells (Banner and 

Paterson, 1994; Bolin et al., 1995; Sun and Zigmund, 1996; Hirota et al., 1996; Kurek 

et al., 1996; Ito et al., 1998; Thompson and Majithia, 1998). LIF expression is not 

enhanced within DRG following sciatic nerve lesion. In contrast, LIF is induced in 

both the lesioned nerve and in sympathetic ganglia following post-ganglionic 

sympathetic nerve lesion (Sun and Zigmond 1996 a and b). LIF can initiate enhanced 

neurite outgrowth in freshly plated, CGRP-positive, cultured DRG neurons, but only 

in the presence of added NGF (Cafferty et al., 2001). LIF also enhances the 

elongation of established neurites in more mature DRG cultures in the absence of 

NGF. A conditioning lesion, prior to a second lesion, has been shown to enhance the 

regenerative capacity of sciatic nerves lesioned for a second time (Sjoberg and Kanje,

1990). The conditioning lesion appears to change the intrinsic growth characteristics 

of injured nerves, from branched growth to more elongated growth, and the effect 

appears to require novel gene transcription (Smith and Skene, 1997). The regeneration 

enhancing effects of a conditioning lesion are lost in LIF'7' mice, suggesting that the 

primary lesion induces Schwann cells to produce LIF, and that Schwann cell-derived 

LIF is responsible for enhanced regeneration following a second lesion (Cafferty et 

al., 2001). Surprisingly, in-vivo peripheral nerve regeneration appears to be unaffected 

in LIF*7' mice in the absence of a conditioning lesion, despite the fact that an in-vitro 

assay demonstrates that damaged nerves from wild type mice, but not LIF'7' mice, can 

enhance neurite outgrowth from cultured DRG neurons (Ekstrom et al., 2000). 

However, this unexpected result may be as a result of the extended time points at 

which regeneration was assessed in this study if LIF, as has been suggested (Cafferty 

et al., 2001) only accelerates the rate of initial nerve regeneration.

Since LIF is up-regulated following nerve lesion, there is a possibility that it plays a 

role in the generation of inflammatory and neuropathic pain. Experimental evidence is
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now building to support this hypothesis. For example, intraplantar injection of LIF 

into juvenile rats induces mechanical allodynia, but not thermal hyperalgesia, that can 

be prevented by a LEF blocking antibody (Thompson et al., 1996). In addition, 

intrathecal administration of LIF, via a mini osmotic pump, can induce the sprouting 

of sympathetic nerves into adjacent DRG and their peripheral nerves (Thompson and 

Majithia, 1997). Furthermore, the sprouting of sympathetic neurons into DRG that 

occurs following spinal nerve ligation can be significantly reduced by a gp 130 

blocking antibody and increased by exogenous LIF. Sympathetic innervation of DRG 

and damaged nerves has been implicated in the aetiology of neuropathic pain, and in 

particular in sympathetically maintained complex regional pain syndromes (reviewed 

in Janig and Habler, 2000). LIF null-mutant mice show a deficit in the number of 

macrophages, neutrophils, mast cells and T lymphocytes that infiltrate the lesion site 

in the first few days following sciatic nerve injury, and this is concomitant with a 

reduced inflammatory response (Sugiura et al., 2000). This would suggest that LIF 

might mediate some aspects of inflammatory hyperalgesia, although nociceptive 

thresholds were not measured in this study. In contrast, LIF knockout mice display an 

increased inflammatory response to CFA injection, a treatment that appears to raise 

the endogenous levels of LIF within the skin of wild type mice (Banner et al,. 1998). 

Moreover, exogenous LIF ameliorates CFA induced thermal and mechanical 

hyperalgesia in rats but does not change nociceptive thresholds in non-CFA treated 

animals, suggesting that endogenous LIF normally acts in an anti-inflammatory 

manner. In agreement with this hypothesis, LIF mRNA levels within damaged nerves 

are negatively correlated with the number of macrophages infiltrating the nerve in 

post-mortem samples from human patients with varying peripheral neuropathies (Ito 

et al., 2001). However, LIF mRNA levels are dramatically increased in damaged 

human nerves, posing the question of whether LIF up-regulation is either protective or 

causative in human cases of peripheral painful neuropathy. The demonstration that 

exogenous LEF can reverse deficits in sensory neuron conduction velocity and tail 

flick latency in mice with cisplatin induced sensory neuropathy, mainly by beneficial 

effects on Schwann cells, suggests that the former scenario is true (Ozturk et al.,

2005).

A number of studies have examined the role of LIF in modulating the widespread 

changes in neuronal gene expression that occur within DRG following nerve trauma.
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For example, it is now well established that placing adult DRG neurons in culture 

leads to a time-dependent increase in the expression of galanin mRNA and protein 

that mimics the in-vivo changes in galanin expression following sciatic nerve lesion 

(Hokfelt et al., 1987; Villar et al., 1989; Wiesenfeld-Hallin., 1992; Kerekes et 

al.,1997, Zhang et al., 1998; Ozturk and Tonge, 2001; Holmes et al., 2005). The 

addition of LIF to adult and embryonic rodent DRG cultures significantly increases 

the number of galanin immuno-reactive neurons after 3 days, but only in the absence 

of exogenous NGF (Comess et al., 1998; Ozturk and Tonge., 2001). Furthermore, 

significantly fewer DRG neurons from LIF'7' mice express galanin message associated 

peptide (GMAP) and galanin mRNA after 72 hours in culture compared to cultured 

DRG neurons from wild-type mice, demonstrating the importance of Schwann cell 

derived LIF in regulating galanin expression following nerve injury (Kerekes et al., 

1999). The addition of exogenous LIF to DRG cultures from LIF -/- mice restores the 

number of galanin mRNA and GMAP-positive neurons to that seen in DRG cultures 

from wild type mice. In accordance with the above in-vitro data, DRG from LIF'7' 

mice contain dramatically fewer galanin and GMAP immuno-reactive neurons 

following sciatic nerve transection compared to DRG from wild type mice (Comess et 

al., 1996, Sun and Zigmond, 1996).

LIF also appears to play a role in modulating the up-regulation of DINE mRNA 

expression within small lumbar DRG neurons following sciatic nerve injury (Kato et 

al., 2002). Intra-sciatic nerve injection of a neutralizing anti-gpl30 antibody 

ameliorates the increase in DINE mRNA expression following sciatic nerve 

transection in adult rats. Interestingly, intra-sciatic nerve injection of LLF or an anti- 

NGF antibody can induce DINE mRNA expression in lumbar DRG neurons of non- 

lesioned rats, and the effects of LIF and anti-NGF are additive, suggesting that DINE 

expression is induced in sensory neurons by a combination of increased Schwann cell- 

derived LIF and a reduction in NGF availability following nerve lesion.

Reg-2 is a secreted protein that is not normally expressed in the adult nervous system. 

Reg-2 is rapidly induced in a subset of small DRG neurons following sciatic nerve 

crush or transection and appears to enhance axonal regeneration by acting as a 

Schwann cell mitogen (Livesey et al., 1997; Averill et al., 2002). By 7days post 

sciatic nerve lesion, Reg-2 is no longer expressed in a subset of small, damaged DRG
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neurons, rather its expression in prominent in a sub-population of medium- to large

sized damaged DRG neurons. Reg-2 is normally expressed in embryonic sensory 

neurons, however, it is not expressed in embryonic sensory neurons from LIF receptor 

knockout mice, suggesting that LEF controls its developmental expression in sensory 

neurons (Livesey et al., 1997; Averill et al., 2002). This observation raises the 

possibility that Schwann cell-derived LEF induces Reg-2 expression in sensory 

neurons following sciatic nerve lesion. Since, galanin, DINE and Reg-2 have been 

postulated to have a neuroprotective role following nerve trauma (Holmes et al., 2000; 

Holmes et al., 2005; Kiryu-Seo et al., 2000; Livesey et al., 1997; Averill et al., 2002), 

the above data re-affirms the potentially important role that LEF plays in promoting 

neuronal regeneration following injury.

Whilst the available experimental data suggests that Schwann cell derived LEF may, at 

least partly, drive the changes in DINE, galanin and Reg-2 expression that occur 

within sensory neurons following nerve lesion, this does not appear to be the case for 

two neuropeptides, SP and CGRP, that also displays dramatic changes in expression 

following nerve trauma. The down-regulation of SP peptide following sciatic nerve 

transection is of the same magnitude in LEF7' mice as it is in wild type mice (Sun and 

Zigmond, 1996a). The application of LEF to the proximal transected sciatic nerve 

stump can reduce the axotomy-induced down-regulation of SP mRNA in lumber 

DRG neurons (Zhang et al., 1995). The apparent up-regulation of substance P mRNA 

in axotomized DRG neurons by LEF mirrors the effects of LEF in up-regulating the 

expression of SP mRNA and peptide in sympathetic ganglia following sympathetic 

nerve transection, and the ability of LEF to increase the expression of SP mRNA in 

cultured sympathetic neurons (Ludlam et al., 1995; Sun and Zigmond 1996b). 

Exogenous LEF increases the expression of CGRP peptide in explanted mouse lumbar 

DRGs compared to explants cultured in the absence of growth factors (Ozturk et al., 

2002). This data is a little difficult to interpret however, since explanted lumbar 

DRGs, unlike dissociated lumbar DRG neuron cultures, do not appear to be a good 

model of sciatic nerve lesion. In the absence of added growth factors the number of 

CGRP immuno-positive neurons within lumbar DRG explants hardly changes over 

time, and NGF does not appear to enhance CGRP expression (Ozturk et al., 2002). In 

contrast, lumbar DRG neurons display a dramatic reduction in CGRP staining both in-
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vivo, following sciatic nerve lesion, and in-vitro in dissociated cultures. In both these 

latter cases, exogenous NGF significantly prevents the fall in CGRP expression 

(Noguchi et al., 1990; Mulder et al., 1997; Sterne et al., 1998; Shi et al., 2001;

Shadiack et al., 2001Lindsay et al., 1989; Verge et al, 1995; Jiang and Smith, 1995; 

Price et al, 2005). There is no data documenting the effects of exogenous LIF on the 

expression of CGRP in dissociated sensory neuron cultures.

To date, there is no published data addressing the question of whether LIF plays a role 

in regulating the transcriptional expression of the sodium channels Navi.6, 1.7, 1.8 or 

1.9, either in culture of following nerve lesion. Similarly, it is not known whether LIF 

can regulate the expression of ATF3, P2X3, VR1 or PACAP in sensory neurons. In 

this chapter, I will report the results of experiments to investigate whether LIF can 

regulate the transcription of these mRNAs, as well as the transcription of galanin, SP 

and a- and P-CGRP mRNAs, in dissociated cultures of adult mouse DRG neurons.
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4.2 Materials and Methods

4.2.1 Neuronal Cultures

Neuronal cultures of adult DRG were set up to identify the effects of NGF, Artemin 

and additionally MSP on the expression of various mRNAs in sensory neurons. DRG 

was the most suitable of the sensory ganglia to culture at this age. Practically, it is the 

easiest to dissect and culture, and, as each mouse contains a large number of DRG, it 

facilitates setting up a large number of dense cultures from a small number of mice, 

thus allowing many different experimental conditions to be included in each 

experiment. In addition, the majority of other studies on gene regulation and nerve 

injury and regeneration in adult sensory neurons, as well as models of neuropathic 

pain and sensory neuropathy, have used rodent DRG.

Adult CD-I Mice (approximately P60) were killed with CO2 followed by cervical 

dislocation. All subsequent dissections and preparations were carried out in a laminar 

flow hood using standard sterile techniques. Dissections were performed under a 

stereomicroscope using a fibre optic light to effectively illuminate samples, but 

prevent overheating of the specimen. Ganglia were initially dissected using forceps 

and scissors that had previously been sterilised by flaming in alcohol. Tungsten 

needles were required to complete the dissection by removing any adherent 

connective tissue. Dissections were carried out in filter sterilised LI 5 medium, pH 

7.3, supplemented with penicillin and streptomycin as previously.

Dorsal Root Ganglia (DRG):

The DRG dissection in the adult is essentially the same as that for the postnatal mouse 

(see 3.2), but requiring tougher instruments to cut through bone. Several ganglia are 

present per mouse and run the length of the spinal cord. Dissection from the adult 

firstly involved the removal of the skin from the back. The whole spinal column was 

then removed and cut into 2 or 3 pieces to facilitate the next step of the dissection. As 

for the postnatal and embryonic mouse, cuts were then made by inserting one scissor
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blade inside the spinal column and cutting the full length of the column on both sides. 

The ventral section of the spinal column was now removed and the spinal cord taken 

out. The DRG were visible on either side of the dorsal half of the column, spread out 

uniformly along the length of the column. The membrane covering the surface of the 

spinal column was removed, followed by each DRG. At this age there is an 

abundance of nerves and connective tissue, and so time had to be spent using tungsten 

needles to remove as much adherent material as possible. Ganglia were transferred to 

15ml falcon tubes using a flame-sterilised, siliconised glass Pasteur pipette. 

Approximately 50 ganglia per culture were dissected, and the ganglia were divided 

into approximately 10 ganglia per tube to allow thorough enzymatic degradation of 

collagen and connective tissue within the ganglia, prior to dissociation of the ganglia 

into a single cell suspension.

Because of the increasing amounts of collagenous connective tissue in older ganglia, 

the use of collagenase was required initially to breakdown this tissue, prior to 

trypsinization. Once all ganglia were dissected 980pl Hanks Balanced Salt Solution 

(+ Calcium(0.097mg/ml) and Magnesium (0.0185mg/ml)) and 20pl collagenase 

(lOOmg/ml) (Sigma) was added to each tube. Ganglia were initially incubated on ice 

for 30mins followed by incubation at 37°C for 25mins. Ganglia were then washed 

twice in CMF-HBSS and further enzymatically treated by incubation with 0.05% 

trypsin, for 30 minutes, at 37°C. To arrest trypsin action, ganglia were washed in FI2 

+ HIHS. Ganglia could then be mechanically dissociated by gentle trituration using a 

fire-polished, narrowed, siliconized Pasteur pipette to produce a single cell 

suspension. This trituration was done in F I4 medium supplemented with albumax I 

and glutamine. The trituration was monitored at various stages by examining droplets 

of the dissociated cell suspension under an inverted phase-contrast microscope.

Once a single cell suspension was obtained, cells were made to up to the required 

volume in FI4 + Albumax and plated onto 35mm culture dishes (Greiner). As these 

cultures were to be used for RT-PCR they were plated at high density (approximately 

1000-2000 cells per dish). Dishes had been previously prepared by coating with 

substratum of poly-DL-omithine (0.5mg/ml in 0.15M borate buffer, pH 8.4, overnight 

at room temperature) and then laminin (20pg/ml, Sigma in F14 medium, 4 hours at
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37°C). Prior to plating, dishes were washed twice with F12+HIHS to remove laminin 

and then 1ml F14 supplememted with Albumax I and 2mM glutamine was added to 

each dish. Next, 1ml of cell suspension was added per dish and cells were grown with 

or without neurotrophic factors in a humidified 5.5% CO2 incubator, at 37°C for 48 or 

96hours.

In the adult, sensory neurons do not require neurotrophic support for survival so 

caspase inhibitors were not required. Cells were, therefore, either grown without 

factors or in the presence of NGF (lOng/ml), Artemin (lOng/ml) or MSP (50ng/ml). 

LIF was also used in some cultures at a concentration of 50ng/ml.

Following incubation cells were collected for RNA extraction in 350pl RLT buffer (+ 

1% P mercaptoethanol) (Qiagen) ready for RNA extraction.

To ensure any observed changes in mRNA expression were not due to differential 

survival of neurons in the presence of neurotrophic factors, survival counts were done 

at 3,48 and 96 hours after plating using a 1cm grid. Survival at 48 hrs and 96hrs was 

expressed as a percentage of the 3 hour count.

4.2.2. RNA extraction

RNA was extracted using the Qiagen RNeasy kit (described in 2.2.5), and Stratascript 

reverse transcriptase was used for reverse transcription (described previously in 

2.2.5).

4.2.3. Real-time PCR-Stratagene MX3000P

Real Time PCR was used to identify changes in gene expression in adult sensory 

neurons cultured for 96 hours in the presence or absence of NGF, Artemin or MSP.

Reverse Transcription of RNA samples was done as in chapter 2 (see 2.2.5.1) and 

PCRs set up as in 2.2.5.2. All genes mentioned in chapters 2 and 3 were investigated, 

and this study was also extended further to examine other potentially interesting
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genes. Newer genes included many that are up-regulated following axotomy or nerve 

damage, and also in in-vitro cultures. Experiments were performed ostensibly to see if 

NGF, ART and MSP could reverse axotomy-induced changes in gene expression.

Additional genes investigated included: the purine receptor, P2X3; the sodium 

channels Navi.3, Navi.6 and Navi.7; Damage Induced Neuronal Endopeptidase 

(DINE); Activating Transcription Factor 3 (ATF3). The latter two mRNAs are 

expressed at very low levels in vivo under normal circumstances but are massively up- 

regulated following axotomy or nerve damage (Tsujino et al., 2000, Kiryu-Seo et al., 

2000).

All genes outlined in 3.2.5 were investigated alongside several others. The primers 

used and reaction conditions for new genes are outlined below.

Primers:

GENE PRIMER SEQUENCE MGCL

CONCENTRATION

(MM)

ANNEALING

TEMPERATURE

(°C)

P2X3 Forward:
5-GTG CTT CCC GCT 

AAG ACC TG-3* 

Reverse:

5’_TTT g g a  a a t  g g a  

TGG ATG CTT GG-3’

3 52

Navi.6 Forward:

5’-GAC ACA CAG 

AGC AAG CAG ATG- 

3’

Reverse:

5’-GGA GAG AAT 

GAC CAC CAC AAA 

G-3’

3 52
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Navi.7 Forward:

5’-GCT ACA TCA TCA 

TAT CCT TCC TG-3’ 

Reverse:

5’-GAA CAT CTC AAA 

GTC GTC CTC-3’

3 49

Damage

Induced

Neuronal

Endopeptidase

(DINE)

Forward:

5’-GTA TTG GCA CCA 

TCA TTG-3’

Reverse:

5’-GTG AAG TTG TCA 

TAG AGG-3’

3 52

Activating 

Transcription 

Factor 3

Forward:

5’-GAG AGT GTG 

AAT GCT GAG-3’ 

Reverse:

5’-TCT GTT GGA TAA 

AGA GGT TC-3’

3 51

Table 4.1. Primer sequences, annealing temperatures and Mg concentration used fo r  detection o f  new 

genes.
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4.3. Results

4.3.1. Developmental expression patterns of the new mRNAs 
assayed in chapter 4

The expression of DINE, ATF3, P2X3, Navi.6 and Navi.7 mRNAs were quantified 

by real time QPCR using RNA that had been extracted from E l6, PO, P5 and adult 

trigeminal, nodose and dorsal root ganglia. Results are shown in figures 4.1 and 4.2.

In this chapter, results were statistically compared by the use of an ANOVA (analysis 

of variance) test. This test is useful as, although similar to the t-test, it can be used to 

compare several sets of data. This was thus useful in this chapter, when several 

variables were apparent.

As anticipated from the published literature (see above), the levels of DINE and ATF3 

mRNAs were extremely low in all ganglia studied, at all ages (figure 4.1 B and C).

The developmental expression pattern of P2X3 mRNA within sensory ganglia is 

shown in figure 4.1 A. All three sensory ganglia displayed similar patterns of P2X3 

mRNA expression and the amounts of P2X3 mRNA expressed were of the same order 

of magnitude within each of the three ganglia. In general, fairly constant levels of 

P2X3 mRNA were expressed between E l6 and P5 in all three ganglia and this is 

followed by a marked drop in expression between P5 and adulthood. The drop in 

P2X3 mRNA levels between P5 and the adult was most marked in the trigeminal 

ganglion.

This chapter also explores the expression of two TTX-sensitive sodium channel 

alpha-subunits, Navi.6 and Navi.7. The developmental expression pattern of Navi.6 

mRNA is very similar in both trigeminal and dorsal root ganglia and is markedly 

different to the expression patterns of the TTX-resistant sodium channels, Navi. 8 and 

Navi.9 (see chapter 3). In both neural crest-derived sensory ganglia, Navi .6 mRNA
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levels increased approximately 3-fold from E l6 to P5, followed by a modest drop in 

the levels of expression between P5 and adulthood (figure 4.2 A). In both ganglia the 

levels of Navi.6 mRNA expressed in the adult were higher than those expressed at 

E16. Navi.6 mRNA showed a slightly different developmental pattern of expression 

in nodose ganglia compared to trigeminal and dorsal root ganglia. In this placode- 

derived ganglion the increase in expression between E l6 and neonatal ages was 

modest and the peak of expression was at PO. However, once again, as in the case of 

the neural crest-derived sensory ganglia, there was a small drop in the level of Navi.6 

mRNA between P5 and adulthood, so that in the adult the levels of Navi.6 mRNA 

were slightly lower than those at E l6 (figure 4.2A).

The developmental expression pattern of Navi.7 mRNA more closely resembles that 

of the TTX-resistant channels, Navi.8 and Navi.9, than Navi.6 mRNA does. In all 

ganglia, significantly less Navi.7 mRNA was expressed in the adult compared to E l6 

(figure 4.2B). In the case of the nodose ganglion, Navi.7 mRNA expression levels 

peak at PO, whereas in trigeminal and dorsal root ganglia, peak expression of Navi.6 

mRNA occurs at E l6.
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Figure 4.1. Developmental expression o f P2X3, DINE and ATF3 mRNAs in sensory neurons

Trigeminal ganglia, nodose ganglia and DRG were collected from E l6, PO, P5 and adult mice 
and RNA extracted. Expression of P2X3, DINE and ATF3 mRNAs were quantified via real
time QPCR.

Error bars = +/- standard error, n = 6
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4.3.2. Survival of adult DRG neurons in culture

It is well-established belief that adult sensory neurons can survive in culture in the 

absence of neurotrophic support (e.g. Lindsay et al., 1988), although this view has 

been occasionally challenged (e.g. Acheson et al., 1995). To confirm that DRG 

neuron survival was not compromised over time in culture, or indeed further 

enhanced in the presence o f additional neurotrophic factors, experiments were 

performed to assess the survival o f adult DRG neurons over 96 hours in culture, either 

without the addition o f exogenous neurotrophic factors or with the addition of 

lOng/ml artemin, lOng/ml NGF or 50ng/ml MSP (these concentrations were 

determined in a series o f pilot experiments and were used for all future experiments - 

see 4.3.3 below). Neuronal numbers were initially determined 3 hours after plating to 

allow sufficient time for the neurons to adhere to the laminin substratum. A second 

neuron count was made 96 hours after plating and the percentage o f healthy, phase 

bright cells was calculated relative to those at the 3-hour count. The survival data is 

presented in figure 4.3. In the absence o f neurotrophic support, approximately 75 % of 

neurons survived for 96 hours. The 25% reduction in neuronal number is unlikely to 

be due to the effects o f withdrawal from target field-derived neurotrophic support, 

rather it is likely to reflect lethal cell damage during the dissociation procedure. A 

similar number of neurons were lost after 96 hours o f culture in the presence o f 

50ng/ml MSP. lOng/ml NGF appears to increase neuronal survival by about 10 % 

over control cultures, however this increase does not reach statistical significance. 

Interestingly, the presence o f lOng/ml artemin seemed to completely prevent neuronal 

loss at 96 hours. This increase in survival was statistically significant compared to 

control cultures and MSP supplemented cultures. The apparent survival promoting 

effect of artemin, and to a lesser extent NGF, may have more to do with both factors 

having a hypertrophic effect on neuronal morphology, thus making small neurons 

more obvious and easier to count at 96 hrs, rather than direct effects on neuronal 

survival. This is discussed more fully below. Since neuronal survival was not 

significantly compromised by the lack o f neurotrophic factor support, all future
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culture experiments analysing the effects of NGF, MSP and artemin on adult sensory 

neuron gene expression were carried out in the absence of caspase inhibitors.
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Figure 4.3. Survival o f  cultured adult DRG neurons
Adult DRG neurons were cultured in the presence or absence of artemin (lOng/ml), NGF 
(10ng/ml) or MSP (50ng/ml) for 96 hours. The number o f phase bright healthy neurons 
were counted 3 hours after plating (Ohrs) and then a further 96 hours later. Survival was 
calculated as a percentage o f this ‘Ohr’ count. Error bars are +/- standard error, where n = 
4, * = p<0.05, ** = p<0.01



4.3.3. Pilot neurotrophic factor dose responses

Throughout this chapter several experiments were set up to explore the effects of 

artemin, MSP and NGF on gene expression within cultured DRG neurons. To 

determine the most suitable concentration of each factor to use for these experiments, 

initial pilot dose response experiments were set up.

Adult DRG cultures were set up as outlined in 4.2.1. and either MSP, artemin or NGF 

was added to dishes at concentrations of 2ng/ml, lOng/ml or 50ng/ml. Control dishes 

containing no neurotrophic factors were also included. As these initial experiments 

were designed to determine suitable concentrations of neurotrophic factors for use in 

future, more comprehensive, experiments, it was decided to only analyse the effects 

of neurotrophic factors on the expression of three mRNAs, SP, Navi. 8 and ATF3. 

These mRNAs were chosen simply because they produced robust real time-QPCR 

reactions. Following culture for 96 hours in various concentrations of neurotrophic 

factors, RNA was extracted from DRG neurons and the expression of SP, Navi.8 and 

ATF-3 mRNAs were quantified by real time-QPCR. Several samples of DRG neurons 

were lysed immediately following dissociation to provide RNA for a time 0 time- 

point that could used to evaluate the levels of mRNA expression within DRG neurons 

in-vivo. The data from the pilot dose response experiments is presented in figures 4.4 

to 4.6. Statistical analyses were performed using ANOVA tests to compare data 

groups (n = 4). Statistical comparisons between the different neurotrophic factor 

concentrations and controls are presented in the tables underneath each graph.

In chapters 2 and 3, t-tests were sufficient to analyse the statistical significance 

between data sets, so data was analysed and graphs were presented in an Excel 

spreadsheet format. However, in this chapter several data sets are being compared 

against each other, thus requiring a statistical package that could carry out more in- 

depth analyses. For this reason, results in this chapter were calculated in StatView and 

hence the graphs appear in a different format.
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The expression of SP mRNA in control cultures and cultures supplemented with 

different concentration of either artemin, MSP or NGF is shown in figure 4.4. The 

levels of SP mRNA expressed by adult DRG neurons grown in the absence of 

neurotrophic factor support decreased markedly over time in culture. This is in 

accordance with the neonatal sensory neuron culture data presented in chapter three of 

this thesis and previously published data from sciatic nerve lesion experiments 

(Nielsch et al., 1987; Zhang et al., 1995; Sterne et al., 1998). The decrease in SP 

mRNA was significantly attenuated by the addition of NGF at all concentrations and 

artemin at lOng/ml and 50ng/ml. The expression enhancing effects of NGF were not 

significantly different between 2ng/ml and 50ng/ml. Likewise, 50ng/ml artemin was 

not significantly more effective in enhancing SP mRNA expression than lOng/ml 

artemin. MSP could also partially prevent the time-dependent decrease in SP mRNA 

expression that occured in cultured DRG neurons, although not at a concentration of 

2ng/ml.

The amount of Navi. 8 mRNA expressed by cultured adult DRG neurons also 

decreased over time in culture in the absence of neurotrophic factor support (figure 

4.5). Once again, this is in agreement with the neonatal culture data presented in 

chapter 3 of this thesis and the published literature documenting the expression of this 

sodium channel following sciatic nerve lesion (Okuse et al., 1997; Cummins et al., 

1997; Tate et al., 1998; Dib-hajj et al., 1998; Novakovic et al., 1998 Sleeper et al., 

2000; Decosterd et al., 2002). The addition of 2, 10 or 50ng/ml of NGF or artemin 

significantly attenuated the decrease in Navi.8 mRNA expression. Once again, as in 

the case of SP mRNA, there was no statistically significant difference between the 

regulatory effects of 2ng/ml NGF and 50ng/ml NGF. In the case of Navi. 8 mRNA, 

50ng/ml artemin was significantly more effective in ameliorating the decrease in 

mRNA expression than 2ng/ml or lOng/ml artemin. Whilst all concentrations of MSP 

were capable of enhancing Navi.8 mRNA expression, only 50ng/ml had a statistically 

significant effect on Navi.8 mRNA expression.
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Figure 4.4. Effect o f increasing concentrations o f  artemin, MSP and NGF on the expression o f  SP 
mRNA in cultured adult mouse DRG neurons

Adult mouse DRG neurons were cultured for 96 hours in the presence and absence o f concentrations of 
Artemin MSP and NGF ranging from 2ng/ml to 50ng/ml. Expression of SP mRNA was quantified 
using real-time QPCR and all results were normalised against GAPDH mRNA levels. Results of 
ANOVA analyses are outlined in B-D.

Error bars = +/- standard error, n = 3 -  4 * = <0.05 , ** = <0.01
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Figure 4.5. Effect o f  increasing concentrations o f  artemin, MSP and NGF on the expression o f  Navi. 8 
mRNA in cultured adult mouse DRG neurons

Adult mouse DRG neurons were cultured for 96 hours in the presence and absence o f concentrations of 
Artemin MSP and NGF ranging from 2ng/ml to 50ng/ml. Expression of Navi .8 mRNA was quantified 
using real-time QPCR and all results were normalised against GAPDH mRNA levels. Results of 
ANOVA analyses are outlined in B-D.

Error bars = +/- standard error, n = 3 -  4 *  = <0.05 , ** = <0.01



As anticipated from previously published data documenting the effects of nerve 

damage on the expression of ATF3 (e.g. Averill et al., 2004), the expression of this 

transcription factor increased in adult DRG neurons over time in culture (figure 4.6), 

Both artemin (lOng/ml) and NGF (2, 10 and 50 ng/ml) could significantly reduce the 

up-regulation of ATF3. Interestingly, artemin was not significantly effective in 

reducing ATF3 mRNA levels at concentrations of 2ng/ml or 50ng/ml, suggesting that 

the effects of artemin on regulating ATF3 mRNA expression follow a bell shape dose 

response curve. MSP did not seem to be capable of significantly reducing the 

expression of ATF3 mRNA. However, 50ng/ml MSP was able to decrease ATF3 

mRNA expression to a level that was close to statistical significance.

In light of the data presented above, I decided to use lOng/ml artemin and NGF and 

50ng/ml MSP in all subsequent experiments designed to investigate the modulation of 

DRG neuron gene expression by these neurotrophic factors.
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Figure 4.6. Effect o f  increasing concentrations o f  artemin, MSP and NGF on the expression o f  ATF3 
mRNA in cultured adult mouse DRG neurons

Adult mouse DRG neurons were cultured for 96 hours in the presence and absence o f concentrations of 
Artemin MSP and NGF ranging from 2ng/ml to 50ng/ml. Expression of ATF3 mRNA was quantified 
using real-time QPCR and all results were normalised against GAPDH mRNA levels. Results of 
ANOVA analyses are outlined in B-D.

Error bars = +/- standard error, n = 3 -  4 * = <0.05 , ** = <0.01



4.3.4. Pilot experiments to determine the best culture time 
point for mRNA expression analysis.

Pilot experiments were performed (using the neurotrophic factor concentrations that 

were empirically determined as being optimal in 4.3.3) to investigate whether 

extracting RNA from adult DRG cultures after 48 or 96 hours of culture would 

provide the best assay range for measuring the effects of artemin, MSP and NGF on 

regulating mRNA expression. Once again, the “test genes” chosen for these pilot 

experiments were SP, N avi.8 and ATF3. Adult DRG cultures, supplemented with 

either lOng/ml NGF, 50ng/ml MSP or lOng/ml artemin, were set up and incubated for 

either 48 or 96 hours prior to RNA extraction and purification. Control dishes 

containing no neurotrophic factors were also set up in parallel. Once again, samples of 

DRG neurons were lysed immediately following dissociation to provide RNA for a 

time 0 time-point for evaluating the levels of mRNA within DRG neurons in-vivo.

The results of these pilot experiments are shown in figures 4.7. Significant differences 

in mRNA expression levels, compared to control cultures, at 96 hours are indicated by 

* (p<0.05) or ** (p<0.01) directly above bars as determined by anova statistical 

analysis.

Once again, these cultures demonstrate a marked decrease in the expression of SP and 

Navi.8 mRNAs over time in culture, whilst the expression of ATF3 mRNA 

increased. SP mRNA expression levels dropped 8-fold by 48 hours and this drop was 

increased to 15-fold by 96 hrs. At 48 hours, lOng/ml artemin was able to increase the 

expression of SP mRNA by 3-fold in comparison to the levels in control cultures. By 

96 hours, artemin increased the levels of SP mRNA more than 10-fold compared to 

control cultures. Similarly, 1 Ong/ml NGF doubled SP mRNA expression compared to 

control cultures at 48 hours and this difference between NGF supplemented cultures 

and control cultures was increased to 5-fold by 96 hours. At 48 hours, 50ng/ml MSP 

increased the expression of SP mRNA, although this increase was not statistically 

significant. However, by 96 hours 50ng/ml MSP was as effective as 1 Ong/ml NGF in 

ameliorating the decline in SP mRNA expression (figure 4.7A).
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Navi.8 mRNA levels within control adult DRG cultures dropped by 6-fold compared 

to in-vivo levels over the first 48 hours of culture, and this decrease reached 10-fold 

by 96 hours (figure 4.7B). Artemin appeared to be ineffective in attenuating the 

decrease in Navi.8 mRNA expression at 48 hours, whereas 1 Ong/ml NGF and 

50ng/ml MSP were able to slightly, but significantly, increase the expression of this 

TTX-resistant sodium channel mRNA. At 96 hours, mainly due to the continued 

decreasing expression of Navi.8 mRNA in the absence of neurotrophic factor 

support, all three neurotrophic factors could significantly increase the levels of 

Navi.8 mRNA compared to those in control cultures. However, it is clear that these 

three neurotrophic factors were less able to rescue Navi.8 mRNA expression at 96 

hours than SP mRNA expression.

The mRNA levels of the injury induced factor, ATF3, increased more than 6-fold 

after 48 hours in control cultures compared to the presumptive in-vivo, or time 0, level 

(figure 4.7C). It should be noted that in the case of ATF3 and DINE mRNAs, but not 

the other mRNAs assayed in this chapter, the time 0 mRNA expression levels are 

significantly higher than those found in-vivo, since the dissection and dissociation 

procedures appear to stimulate immediate-early gene type expression of these mRNAs 

(S Wyatt personal communication - data not shown.). At 48 hours, all three 

neurotrophic factors tested appeared to be able to reduce the expression of ATF3 

mRNA by around 25% compared to control cultures, although the reduction was only 

statistically significant in the case of NGF and artemin. After 96 hours in culture,

ATF3 mRNA levels in DRG neurons cultured in the absence of neurotrophic factor 

support dropped 25% compared to 48 hour control culture levels. However, all three 

neurotrophic factors could reduce the expression of this transcription factor mRNA in 

a statistically significant manner at this time-point.

It is clear from the data presented above that determining mRNA expression levels in 

DRG neurons after 96 hours of culture, rather than 48 hours of culture, provides an 

assay with the best dynamic range for investigating the effects of neurotrophic factors 

on regulating gene expression. Therefore, all subsequent real time-QPCR analysis of 

gene expression was performed on RNA extracted from adult DRG neurons that had 

been in culture for 96 hours.
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Figure 4.7. Effect o f artemin, MSP and NGF on the expression ofSP, Navi.8 and ATF3 mRNAs in 
adult mouse DRG neurons cultured for 48 or 96 hours
Adult mouse DRG neurons were cultured in the presence or absence o f artemin (1 Ong/ml), MSP 
(50ng/ml) or NGF (1 Ong/ml) for 48 or 96 hours. SP (A) Navi .8 (B) and ATF3 (C) mRNA levels 
were quantified using real-time QPCR. * = p = <0.05, ** = p = <0.01 as determined by two-tailed 
t-test, in comparison to control samples at that time-point.
Error bars = +/- standard error, n = 4



4.3.5. 96 hour cultures -  artemin, MSP and NGF

The optimal parameters determined in the pilot experiments described above were 

applied in a series of DRG neuron cultures to determine whether the neurotrophic 

factors NGF, MSP and artemin can regulate the neuronal expression of the genes 

studied in chapter 3, together with the additional genes introduced in 4.1. Adult DRG 

neurons were cultured for 96 hours either without neurotrophic factor support or in 

the presence of eitherl Ong/ml artemin, 50ng/ml MSP or 1 Ong/ml NGF. After 96 

hours, RNA was extracted from the neuronal cultures and mRNA levels were 

determined by real time-QPCR. The results of these experiments are presented in 

figures 4.8 -  4.13.

As might be anticipated, due to their co-expression in a similar sub-population of 

small-diameter peptidergic neurons (Lundberg et al., 1985; Lee et al., 1985; Hokfelt et 

al., 1975; Cuello et al., 1978; Skofitsch and Jacobowitz, 1985), the regulation of a- 

CGRP and SP mRNAs by the neurotrophic factors NGF, artemin and MSP appeared 

to be almost identical (4.8A and C). In accordance with both the neonatal data 

presented in chapter 3 of this thesis, and (if one views in-vitro culture as model of 

nerve injury) previously published data from in-vitro and in-vivo experiments using 

adult rodents, both mRNAs were down-regulated over time in culture (Noguchi et al., 

1990; Mulder et al., 1997; Sterne et al., 1998; Shi et al., 2001; Shadiack et al., 2001; 

Nielsch et al., 1987; Zhang et al., 1995). In the case of a-CGRP mRNA, the reduction 

in expression after 96 hours in culture was around 3-fold, whereas for SP mRNA the 

reduction in expression after 96 hours in culture was almost 8-fold. Artemin, MSP 

and NGF all acted to significantly attenuate the decreases in a-CGRP and SP mRNA 

expression in cultured adult DRG neurons. All three neurotrophic factors appeared to 

have a similar efficacy in promoting the transcriptional expression of a-CGRP, 

effectively doubling the levels of a-CGRP mRNA expressed by adult DRG neurons 

after 96 hours in culture compared to control cultures. Artemin appeared to be the 

most effective neurotrophic factor at regulating SP mRNA expression. 1 Ong/ml 

artemin could increase the levels of SP mRNA expressed by DRG neurons that have
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been in culture for 96 hours by 6-fold compared to the levels of this neuropeptide 

mRNA in control cultures. 1 Ong/ml NGF and 50ng/ml MSP were only able to 

increase SP mRNA levels by 3-fold compared to control cultures.

The levels of p-CGRP mRNA expressed by adult DRG neurons also decreased over 

time in culture, although the decrease, only being 2-fold, is not as dramatic as that of 

a-CGRP mRNA (figure 4.8B). NGF, at 1 Ong/ml, entirely prevented the decrease in P- 

CGRP mRNA levels. Whilst MSP and artemin had a tendency to increase the levels 

of this neuropeptide mRNA compared to controls after 96 hours in culture, the 

increases in P-CGRP mRNA levels were not statistically significant. However, in a 

second series of experiments, carried out to produce the “additive” data that is 

presented below, both MSP and artemin were able to significantly enhance the levels 

of P-CGRP mRNA in DRG cultures compared to control cultures (figure 4.14 B).

The two TTX-R sodium channel mRNAs showed a dramatic 10-fold decrease in 

neuronal expression following 96 hours in culture in the absence of neurotrophic 

factor support (figure 4.9 A and B). This decrease in expression levels reflects the 

down-regulation previously observed within small-diameter neurons of the DRG 

following peripheral nerve damage (Okuse et al., 1997; Cummins et al., 1997; Tate et 

al., 1998; Dib-hajj et al., 1998; novakovic et al., 1998 Sleeper et al., 2000; Decosterd 

et al., 2002). The addition of artemin, MSP or NGF significantly increased the 

expression of both mRNAs compared to control cultures. However, these increases in 

the expression of both mRNAs, compared to control cultures, was only of the order of 

2-fold for all the neurotrophic factors. This would suggest that other neurotrophic 

factors are involved, in addition to artemin, MSP and NGF, in regulating the 

expression of these TTX-resistant sodium channels within adult sensory neurons. This 

is discussed more fully below.
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Figure 4.8 Expression o f alpha CGRP, beta-CGRP and SP mRNAs in adult DRG cultured in the presence o f  
artemin, MSP or NGF
Adult mouse DRG were cultured for 96 hours in the presence of artemin (1 Ong/ml), MSP (50ng/ml) or NGF 
(1 Ong/ml). Cultures with no factors were included as a control for comparison. Expression of alpha- 
CGRP(A), beta-CGRP (B) and SP (C) mRNAs were quantified using real-time QPCR. Error bars = +/- 
standard error, n = 15-20. Significant differences to control 96 hours are illustrated. * = p<0.05, ** = p<0.01 
as determined by two tailed t-test.
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Figure 4.9. Expression o f Navi.8, Navi.9 and VR1 mRNAs in adult DRG cultured in the presence o f  
artemin, MSP or NGF
Adult mouse DRG were cultured for 96 hours in the presence o f artemin (1 Ong/ml), MSP (50ng/ml) or NGF 
(lOng/ml). Cultures with no factors were included as a control for comparison. Expression of N avi.8 (A), 
Navi .9 (B) and VR1 (C) mRNAs were quantified using real-time QPCR. Error bars = +/- standard error, n = 
15-20. Significant differences to control 96 hours are illustrated. * = p<0.05, ** = p<0.01 as determined by 
two tailed t-test.



The levels of both VR1 mRNA and protein have been shown to be down-regulated in 

injured adult rat DRG neurons following both sciatic nerve and spinal nerve 

transection (Michael and Priestley, 1999; Michael and Priestley, 2002; Fukuoka T et 

al., 2002; Wendland et al., 2003). Since in-vitro culture of adult DRG neurons can, in 

many respects, be viewed as a model of axotomy, my results, which show a 4-fold 

down-regulation of VR1 mRNA levels over 96 hours in culture in absence of added 

neurotrophic factors, are in agreement with the published data (figure 4.9C). The 

addition of either 50ng/ml MSP or 1 Ong/ml artemin significantly ameliorated the 

reduction in VR1 mRNA levels. Whilst 1 Ong/ml NGF increased the expression of 

VR1 mRNA compared to control cultures at 96 hours, this increase did not quite 

reach statistical significance.

The in-vitro neuronal expression of the mRNAs for the neuropeptides galanin and 

PACAP are shown in figure 4.10. Both neuropeptide mRNAs showed a dramatic, 

greater than 15-fold, increase in expression over 96 hrs in culture. This reflected the 

increases in PACAP mRNA and peptide observed in rodent DRG neurons following 

sciatic nerve transection/compression (Jongsma-Wallin et al., 2001; Pettersson et al., 

2004) and the similar increases in galanin expression within rodent sensory neurons 

following peripheral nerve damage or axotomy (Hokfelt et al., 1987; Villar et al., 

1989; Wiesenfeld-Hallin., 1992; Zhang et al., 1998; Holmes et al., 2005). In my 

experiments, the up-regulation of galanin mRNA could be significantly inhibited by 

the addition of either 10 ng/ml artemin, 50 ng/ml MSP or 1 Ong/ml NGF. NGF and 

artemin were able to reduce the levels of galanin mRNA by as much as 60% 

compared to control cultures. MSP was slightly less efficacious, only being able to 

reduce the levels of galanin mRNA by 40% compared to control cultures. The culture- 

induced up-regulation of PACAP mRNA expression was significantly inhibited by the 

addition of 1 Ong/ml NGF to cultures. The addition of either 50 ng/ml MSP or 10 

ng/ml artemin to DRG cultures also ameliorated some of the increase in PACAP 

mRNA levels observed in control cultures, although the effect did not reach statistical 

significance.
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Figure 4.10. Expression o f galanin and PACAP mRNAs in adult DRG cultured in the presence o f artemin, 
MSP or NGF
Adult mouse DRG were cultured for 96 hours in the presence of artemin (lOng/ml), MSP (50ng/ml) or NGF 
(1 Ong/ml). Cultures with no factors were included as a control for comparison. Expression o f galanin (A) and 
PACAP (B) mRNAs were quantified using real-time QPCR. Error bars = +1- standard error, n = 15-20. 
Significant differences to control 96 hours are illustrated. * = p<0.05, ** = p<0.01 as determined by two 
tailed t-test.



ATF3 and DINE mRNAs were also significantly up-regulated, by 3- and 50-fold, 

respectively, in adult DRG cultures that do not contain neurotrophic factors over a 96 

hour time period (figure 4.11). The increase in the expression of both mRNAs is in 

agreement with previously published data demonstrating an increase in their 

expression within sensory neurons (and in the case of ATF3 glial cells) following 

nerve lesion (Kato et al, 2002; Wang et al., 2003; Averill et al., 2004). The addition of 

either artemin, MSP or NGF to adult mouse DRG cultures could significantly 

attenuate the increase in the expression of both these mRNAs, with artemin appearing 

to be the most effective neurotrophic factor of the three.

As discussed previously, culturing adult DRG neurons can, in many respects, be 

considered to be an in-vitro model of peripheral nerve lesion, since many of the 

changes in neuronal gene expression that occur following sciatic or spinal nerve 

constriction/ligation/transection appear to occur when DRG neurons are placed in 

culture. The two TTX-sensitive sodium channels investigated in this chapter, Navi.6 

and Navi.7, are no exception to this rule. Transcripts for both these sodium channels 

decreased markedly when adult mouse DRG neurons are cultured for 96 hours in the 

absence of neurotrophic factor support (figures 4.12 A and B), reflecting the decrease 

in both these mRNAs observed in rat lumbar DRG following spinal nerve ligation 

(Kim et al., 2002). The decrease in the levels of Navi.6 mRNA over 96 hours in 

culture was modest at around 3.5-fold, whereas the levels of Navi.7 mRNA decreased 

nearly 10-fold. It appears as if neither artemin, MSP or NGF could significantly 

attenuate the decreases in the expression of either TTX-sensitive sodium channel 

mRNA, although, as observed in the “additive” cultures below, NGF and MSP 

appeared to have a tendency to slightly increase the expression of both mRNAs.

Perhaps surprisingly, P2X3 mRNA expression did not appear to significantly change 

when adult DRG neurons are placed in culture for 96 hours (figure 4.12 C) This data 

contradicts the previously published observation that P2X3 mRNA levels decrease 

significantly in damaged, ATF 3-positive, sensory neurons following nerve 

transection (Tsuzuki et al., 2001). Neither MSP nor NGF significantly altered the 

expression levels of P2X3 mRNA over the 96 hour culture period. Whilst the addition
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of 1 Ong/ml artemin appeared to significantly decrease the expression of P2X3 mRNA 

in adult DRG neuron cultures, the decrease was small and inconsistent, not being 

apparent in later tissue culture experiments (see 4.3.6 and 4.3.7).

Figure 4.13 shows the expression of GAPDH mRNA within adult DRG cultures after 

96 hours. In accordance with the low amount of neuronal death observed in adult 

mouse DRG cultures (figure 4.3), GAPDH mRNA levels did not markedly change in 

control cultures compared to those at time 0. The addition of either 1 Ong/ml artemin,

1 Ong/ml NGF or 50ng/ml MSP to cultures did not significantly alter the expression of 

GAPDH mRNA compared to control cultures.

387



Figure 4.11. Expression o f ATF3 and DINE mRNAs in adult DRG cultured in the presence o f artemin, MSP 
or NGF
Adult mouse DRG were cultured for 96 hours in the presence of artemin (1 Ong/ml), MSP (50ng/ml) or NGF 
(1 Ong/ml). Cultures with no factors were included as a control for comparison. Expression of ATF3 (A) and 
DINE (B) mRNAs were quantified using real-time QPCR. Error bars = +/- standard error, n = 15-20. 
Significant differences to control 96 hours are illustrated. * = p<0.05, ** = p<0.01 as determined by two 
tailed t-test.
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Figure 4.12 Expression o f Navi.6, Navi. 7 and P2X3 mRNAs in adult DRG cultured in the presence o f  
artemin, MSP or NGF
Adult mouse DRG were cultured for 96 hours in the presence o f artemin (1 Ong/ml), MSP (50ng/ml) or NGF 
(lOng/ml). Cultures with no factors were included as a control for comparison. Expression of N avi.6 (A), 
Navi.7 (B) and P2X3 (C) mRNAs were quantified using real-time QPCR. Error bars = +/- standard error, n 
= 15-20. Significant differences to control 96 hours are illustrated. * = p<0.05, ** = p<0.01 as determined by 
two tailed t-test.



Figure 4.13. Expression o f GAPDH,mRNA in adult DRG cultured in the presence o f artemin, MSP or NGF 
Adult mouse DRG were cultured for 96 hours in the presence of artemin (1 Ong/ml), MSP (50ng/ml) or NGF 
(1 Ong/ml). Cultures with no factors were included as a control for comparison. Expression of GAPDH 
mRNA was quantified using real-time QPCR, and results were used to normalise other data. Error bars = +/- 
standard error, n = 15-20. Significant differences to control 96 hours are illustrated. * = p<0.05, ** = p<0.01 
as determined by two tailed t-test.



4.3.6. Additive experiments

In section 4.3.5.1 have demonstrated that saturating levels of NGF, artemin and MSP 

can modulate the expression of a number of mRNAs in cultured adult mouse DRG 

neurons, effectively reversing, or partially reversing, culture-induced changes in gene 

expression. The receptors for NGF and artemin are expressed on specific, partially 

overlapping, sub-populations of predominantly small nociceptive sensory neurons in- 

vivo. In the case of the MSP receptor, RON, the identity of the sub-population of 

neurons expressing this receptor in the adult has not yet been determined. Although 

the sub-populations of neurons expressing these receptors may change in culture, it is 

still likely that each receptor is only expressed in a specific sub-population of neurons. 

In order to try and determine whether the receptors for NGF, artemin and MSP are 

expressed on distinct or overlapping sub-populations of adult mouse DRG neurons in 

culture, and how these neuronal sub-populations correlate to the sub-populations of 

neurons expressing each of the mRNAs investigated in this chapter, I carried out a 

series of “additive” tissue culture experiments where neurons were cultured either 

without neurotrophic factors, with a single neurotrophic factor or with combinations 

of two or three neurotrophic factors. The rationale behind this is that one may expect 

the effects of two neurotrophic factors on the expression of any one mRNA to be 

partially additive if the sub-populations of neurons expressing receptors for these 

neurotrophic factors, in addition to the mRNA in question, are not entirely 

overlapping. Conversely, if two neurotrophic factors do not produce an additive effect 

on regulating mRNA expression, it is likely that the majority of neurons responding to 

any one neurotrophic factor, and also expressing the mRNA of interest, contains 

receptors for the other neurotrophic factor i.e. the two sub-populations that express the 

mRNA of interest and respond to each neurotrophic factor are virtually entirely 

overlapping. This rationale is based on two assumptions. First, that each neurotrophic 

factor is being used at a saturating concentration for effects on modulating the 

transcriptional expression of the analysed genes. Second, that the intracellular signal 

transduction pathways that lead to an increase in transcriptional expression of the 

analysed genes are similar for each neurotrophic factor. Therefore, if signalling 

pathways are maximally activated with saturating concentrations of one neurotrophic
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factor within any one cell, the addition of a second trophic factor should not increase 

transcription of the gene in question within the same cell.

The results of the “additive” experiments are presented in figures 4.14 - 4.21. 

Determining the statistical significance of the data is quite complex due to the number 

of conditions under test, thus requiring ANOVA statistical analysis of data sets. 

Significant differences in the expression of each mRNA in comparison to ‘control 

cultures’ at 96hours are highlighted by * (p<0.05) or ** (p<0.01) above the relevant 

bar. To prevent graphs from becoming crowded and over-complicated, other relevant 

comparisons are shown in tables C and D of each figure.

The expression of a-CGRP and p-CGRP mRNAs for the series of cultures that 

provided data for the “additive” experiments is shown in figure 4.14A and B. The data 

for both CGRP mRNAs are very similar. A 3- to 4-fold down-regulation of CGRP 

mRNAs was observed over time in control cultures, which was significantly reversed 

by the addition of either artemin, MSP or NGF. The addition of both 1 Ong/ml artemin 

and 1 Ong/ml NGF to cultures produced significantly higher levels of a-CGRP and P- 

CGRP mRNAs than the addition of either artemin or NGF alone, restoring both 

mRNAs to levels found in-vivo. The partially additive effects of NGF and artemin on 

promoting a- and p-CGRP mRNA expression suggests that these two factors act on 

two partially overlapping sub-populations of peptidergic DRG neurons. This in turn 

suggests that a sub-population of DRG neurons exist, at least in culture, that are 

peptidergic but do not express TrkA, rather they express the artemin receptor, GFR- 

a3. The addition of 5Ong/ml MSP to cultures containing either 1 Ong/ml artemin or 

1 Ong/ml NGF did not significantly increase a-or p-CGRP mRNA levels above those 

found in cultures containing either NGF alone or artemin alone, suggesting that few 

sensory neurons express the MSP receptor RON in the absence of either TrkA or 

GFR-a3. Similarly, the addition of MSP to cultures containing both artemin and NGF 

did not increase a- or p-CGRP mRNA levels above those in cultures containing just 

NGF and artemin.

392



A. alpha C. alpha

□  96hr

CL
CO

LL
O © V)

oz z
+ + + CD
c c CL LL

1 'ECD
CO
2 5

P value Significance

Art, art + MSP 0.8734

Art, art + NGF 0.0165 *

Art, all factors 0.0802

MSP, art + MSP 0.0255 *

MSP, MSP + NGF 0.0053 **

MSP, all factors 0.0003 **

NGF, art + NGF 0.0095 **

NGF, MSP + NGF 0.3765

NGF, all factors 0.0563

B. beta D. beta

□  96hr

CoO

Q.
CO

LL
o

LL
O <n

2 Z Z o
+ + + o

CD
c c Q. LL

i CO
2

5 1

P value Significance

Art, art + MSP 0.9317

Art, art + NGF 0.0018 **

Art, ail factors 0.0459 *
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Figure 4.14. Additive effects o f artemin, MSP and NGF on expression o f alpha CGRP and beta CGRP 
mRNAs in adult mouse cultured DRG
Adult mouse DRG were cultured in the presence or absence of artemin (1 Ong/ml), NGF (1 Ong/ml), 
MSP (50ng/ml) or a combination of factors, for 96 hours. Expression o f alpha CGRP (A) and beta 
CGRP (B) mRNAs were quantified using real-time Q-PCR. ANOVA statistical analyses were carried 
out. Significant differences to expression at ‘control 96 hours’ are inducated directly above bars, other 
relevant comparisons are outlined in C (alpha CGRP) and D (Beta CGRP). * = p<0.05 ** = p<0.01. 
Error bars = +/- standard error, n = 4



The “additive” experimental data for SP mRNA is shown in figure 4.15 A. Once 

again, in accordance with the data presented in section 4.3.5 above, the level of SP 

mRNA expressed by DRG neurons cultured for 96 hours in the absence of 

neurotrophic factor support was dramatically lower than in freshly dissociated 

neurons. Once again, the addition of either 1 Ong/ml artemin, 1 Ong/ml NGF or 

50ng/ml MSP to cultures significantly increased the expression of SP mRNA 

compared to control cultures, with artemin having the greatest efficacy. As in the case 

of CGRP mRNAs, the addition of NGF and artemin to cultures increased the 

expression of SP mRNA to levels above that found in cultures with either factor 

alone. Interestingly, in contrast to the data for CGRP mRNAs, the addition of MSP to 

cultures containing either artemin or NGF alone significantly increased the levels of 

SP mRNA expressed by cultured DRG neurons to levels above those found with 

either artemin or NGF alone. The addition of all three neurotrophic factors to DRG 

cultures did not increase the expression of SP mRNA compared to cultures containing 

any combination of two neurotrophic factors.

The data from the additive cultures for VR1 mRNA is markedly different to that for 

a- and p-CGRP and SP mRNAs (figure 4.15 B). In agreement with the data from 

section 4.3.5 above, VR1 mRNA levels within adult mouse DRG neurons decreased 

significantly over time in culture in the absence of added neurotrophic factors. NGF, 

artemin and MSP could all significantly enhance the expression of VR1 mRNA 

compared to VR1 mRNA levels in control cultures, with NGF being the least 

effective of the three neurotrophic factors. However, unlike SP and CGRP mRNAs, 

no combinations of neurotrophic factors significantly increased the expression of VR1 

mRNA compared to VR1 mRNA levels observed in cultures containing a single 

neurotrophic factor.
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Figure 4.15. Additive effects o f artemin, MSP and NGF on expression o f SP and VR1 mRNAs in adult 
mouse cultured DRG
Adult mouse DRG were cultured in the presence or absence o f artemin (1 Ong/ml), NGF (1 Ong/ml), 
MSP (50ng/ml) or a combination of factors, for 96 hours. Expression of SP (A) and VR1 (B) mRNAs 
were quantified using real-time Q-PCR. ANOVA statistical analyses were carried out. Significant 
differences to expression at ‘control 96 hours’ are indicated directly above bars, other relevant 
comparisons are outlined in C (SP) and D (VR1). * = p<0.05 ** = p<0.01.
Error bars = +/- standard error, n = 4
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The “additive” culture data for the two TTX-resistant sodium channels N avi.8 and 

Navi.9 are similar, but not identical (figure 4.16 A and B). A greater than 10-fold 

decrease in the expression of both mRNAs was apparent in DRG neurons that were 

cultured for 96 hours without neurotrophic factor support. The addition of either 

1 Ong/ml artemin, 1 Ong/ml NGF or 50ng/ml MSP to cultures significantly increased 

the expression of both mRNAs compared to control cultures, although increases are 

only of the order of 2- to 3- fold. The addition of both NGF and artemin to control 

cultures increased the expression of both mRNAs to higher levels than those found in 

cultures containing either neurotrophic factor alone in a partially additive way. In 

contrast, a combination of MSP and NGF did not increase the expression of either 

mRNA compared to cultures containing either factor alone. In the case of Navi.9 

mRNA, artemin and MSP appear to enhance expression in a partially additive way 

compared to cultures containing either neurotrophic factor. This is not the case for 

Navi. 8 mRNA. For both mRNAs, the addition of all three neurotrophic factors to 

cultures did not increase the levels of mRNA expressed compared to cultures 

containing combinations of any two of the neurotrophic factors, suggesting that very 

few neurons exist in adult mouse DRG cultures that express TTX-resistant sodium 

channel mRNAs and only one of the three neurotrophic factor receptors under 

investigation.
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Figure 4.16. Additive effects o f  artemin, MSP and NGF on expression o f Navi.8 and Navi.9 mRNAs in 
adult mouse cultured DRG

Adult mouse DRG were cultured in the presence or absence of artemin (1 Ong/ml), NGF (1 Ong/ml), 
MSP (50ng/ml) or a combination of these factors, for 96 hours. Expression o f N avi.8 (A) and N avi.9 
(B) mRNAs were quantified using real-time Q-PCR. ANOVA statistical analyses were carried out. 
Significant differences to expression at ‘control 96 hours’ are indicated directly above bars, other 
relevant comparisons are outlined in C (Sen 10a) and D (Scnl la). * = p<0.05 ** = p<0.01.

Error bars = +/- standard error, n = 4



The regulation of galanin and PACAP mRNA expression in cultured adult mouse 

DRG neurons is shown in figure 4.17. The 10-fold up-regulation of galanin mRNA 

that occured in control cultures was partially, but significantly, inhibited by all 

neurotrophic factors in agreement with the data presented in figure 4.10A. In 

accordance with the previously presented data, NGF and artemin were more effective 

than MSP at ameliorating the increase in galanin mRNA expression that occurred in 

cultured adult DRG neurons. A combination of MSP and artemin was significantly 

more effective in reducing the expression of galanin mRNA than either neurotrophic 

factor alone. In contrast, a combination of NGF and artemin was not significantly 

more effective at attenuating galanin mRNA expression than artemin alone. Similarly 

MSP in combination with NGF did not significantly reduce galanin mRNA levels 

compared to cultures only supplemented with NGF.

Neither NGF, MSP nor artemin could significantly affect the approximately 5-fold 

up-regulation in PACAP mRNA expression observed in adult DRG neurons cultured 

for 96 hours in the absence of neurotrophic factor support (figure 4.17B). 

Interestingly, a combination of either artemin and MSP or NGF together with MSP 

could slightly, but significantly, attenuate the increase in PACAP mRNA that occurs 

in adult mouse DRG neurons placed in culture.
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Figure 4.17. Additive effects o f  artemin, MSP and NGF on expression o f galanin and PACAP mRNAs 
in adult mouse cultured DRG

Adult mouse DRG were cultured in the presence or absence of artemin (lOng/ml), NGF (lOng/ml), 
MSP (50ng/ml) or a combination of these factors, for 96 hours. Expression o f galanin (A) and PACAP 
(B) mRNAs were quantified using real-time Q-PCR. ANOVA statistical analyses were carried out. 
Significant differences to expression at ‘control 96 hours’ are indicated directly above bars, other 
relevant comparisons are outlined in C (galanin) and D (PACAP). * = p<0.05 ** = p<0.01.

Error bars = +/- standard error, n = 4



In accordance with the data presented in figure 4.11, all three neurotrophic factors 

could partially ameliorate the 50-fold increase in DINE mRNA expression that 

occurred in adult mouse DRG neurons cultured for 96 hours in the absence of 

neurotrophic factor support (figure 4.18 B). However, only artemin, the most 

efficacious neurotrophic factor in figure 4.11, could reduce DINE mRNA expression 

in a statistically significant manner. The addition of either MSP or NGF to cultures in 

combination with artemin did not decrease DINE mRNA levels to a greater extent 

than adding artemin to cultures on its own. Once again, MSP and NGF did not effect 

gene expression in an additive way in the case of DINE mRNA.

The addition of either lOng/ml artemin, lOng/ml NGF or 50ng/ml MSP to adult 

mouse DRG cultures could significantly attenuate the up-regulation in ATF3 mRNA 

expression that occurred in control cultures (figure 4.18A). In agreement with the data 

presented in figure 4.11 A, artemin was the most effective neurotrophic factor in 

reducing ATF3 mRNA levels and MSP was the least effective. Additionally adding 

either NGF or MSP, or indeed NGF and MSP, to cultures containing artemin did not 

further reduce ATF3 mRNA expression compared to cultures containing artemin 

alone. Similarly, NGF and MSP together did not have an additive effect in reducing 

ATF3 mRNA expression compared to NGF alone.

P2X3 mRNA expression did not significantly change over time in culture in adult 

mouse DRG neurons cultured without neurotrophic factor support (figure 4.19A), an 

observation also made in figure 4.12C. As in figure 4.12C lOng/ml artemin appeared 

to reduce the levels of P2X3 mRNA compared to control cultures, although in this 

case the decrease did not quite reach statistical significance. In fact, no neurotrophic 

factor or combination of neurotrophic factors significantly altered the expression of 

P2X3 mRNA in cultured mouse adult DRG neurons
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Figure 4 .18  Additive effects o f artemin, MSP and NGF on expression o f mRNA ofgenes o f 
interest in adult mouse cultured DRG

Adult mouse DRG were cultured in the presence or absence of artemin (1 Ong/ml), NGF 
(lOng/ml), MSP (50ng/ml) or a combination o f these factors, for 96 hours. Expression of 
ATF3 (A), DINE (B) mRNAs were quantified using real-time Q-PCR. ANOVA statistical 
analyses were carried out. Significant differences to expression at ‘control 96 hours’ are 
highlighted directly above bars, other relevant comparisons are outlined in C (ATF3) and D 
(DINE). * = p<0.05 ** = p<0.01.
Error bars = +/- standard error, n = 4
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Art, art + MSP 0.6238
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Figure 4.19. Additive effects o f artemin, MSP and NGF on expression o f P2X3 and Navi.6 
mRNAs in adult mouse cultured DRG

Adult mouse DRG were cultured in the presence or absence of artemin (1 Ong/ml), NGF 
(lOng/ml), MSP (50ng/ml) or a combination o f these factors, for 96 hours. Expression o f P2X3 
(A), N avi.6 (B) mRNAs were quantified using real-time Q-PCR. ANOVA statistical analyses 
were carried out. Significant differences to expression at ‘control 96 hours’ are indicated 
directly above bars, other relevant comparisons are outlined in C (P2X3) and D (Navi.6).

* = p<0.05 ** = p<0.01.
Error bars = +/- standard error, n = 4



The expression of levels of Navi.6 and Navi.7 mRNAs (figures 4.19B and 4.20) both 

decreased over time in control cultures as was observed in figure 4.12A and B. 

However, in the cultures set up for the “additive” data presented in figures 4.19B and 

4.20, the drop in the expression of both mRNAs was attenuated compared to previous 

experiments. No single neurotrophic factor, or combination of neurotrophic factors, 

were able to significantly modulate the expression of either sodium channel mRNA in 

cultured adult DRG neurons, although MSP and NGF did appear to have a tendency 

to increase the expression of both mRNAs.

Figure 4.21 shows the expression of GAPDH mRNA within the neuronal cultures set 

up for the “additive” experiments. In accordance with the low amount of neuronal 

death observed in adult mouse DRG cultures (figure 4.3), GAPDH mRNA levels did 

not significantly change in control cultures compared to time 0. No single 

neurotrophic factor, or combination of neurotrophic factors, significantly altered the 

expression of GAPDH mRNA compared to control cultures.
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Figure 4.20. Additive effects o f artemin, MSP and NGF on expression o f Navi. 7 mRNA in 
adult mouse cultured DRG

Adult mouse DRG were cultured in the presence or absence of artemin (lOng/ml), NGF 
(lOng/ml), MSP (50ng/ml) or a combination o f these factors, for 96 hours. Expression of 
N avi.7 (A) mRNA was quantified using real-time Q-PCR. ANOVA statistical analyses were 
carried out. Significant differences to expression at ‘control 96 hours’ are indicated directly 
above bars, other relevant comparisons are outlined in B (N avi.7). * = p<0.05 ** = p<0.01. 
Error bars = +/- standard error, n = 4
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Figure 4.21. Additive effects o f artemin, MSP and NGF on expression o f GAPDH 
mRNA in adult mouse cultured DRG

Adult mouse DRG were cultured in the presence or absence of artemin (lOng/ml), 
NGF (lOng/ml), MSP (50ng/ml) or a combination of these factors, for 96 hours. 
Expression o f GAPDH mRNA was quantified using real-time Q-PCR. Significant 
differences to expression at ‘control 96 hours’ are indicated directly above bars, other 
relevant comparisons are outlined in B (GAPDH). * = p<0.05 ** = p<0.01.
Error bars = +/- standard error, n = 4



4.3.7. The effects of LIF on sensory neuron gene expression

The data presented in this chapter has clearly displayed that adult DRG neurons 

cultured in the absence of neurotrophic support undergo many alterations in gene 

expression, most of which reflect changes in gene expression observed in damaged 

DRG neurons following nerve transection, constriction or ligation. Whilst many of 

these changes in gene expression are probably, at least partly, due to an alteration in 

the availability of target field-derived neurotrophic factors, alternative mechanisms 

may come into play to modulate gene expression following nerve damage or in-vitro 

culture. For example, another consequence of nerve injury is an up-regulation in LIF 

expression, and its release into the extracellular milieu, by de-differentiating Schwann 

cells (Banner and Paterson, 1994; Bolin et al., 1995; Sun and Zigmund, 1996; Hirota 

et a., 1996; Kurek et al., 1996; Ito et al., 1998; Thomson and Majithia, 1997). This up- 

regulation has been suggested to play a role in some axotomy related changes in gene 

expression, as discussed in the introduction to this chapter. The possibility arises that 

Schwann cells within dissociated DRG cultures release LIF into the culture medium 

and this may be partly responsible for orchestrating some of the changes in neuronal 

gene expression observed in adult DRG cultures. As a first step in determining the 

role of LIF in regulating the in-vitro expression of the mRNAs investigated in this 

chapter, neurons were cultured in the presence or absence of LIF, artemin, MSP or 

NGF and also with LIF in combination with artemin, MSP or NGF for 96 hours. To 

further determine whether the release of LIF from Schwann cells within DRG neuron 

cultures contributes to the changes in neuronal gene expression that occur in culture, I 

had planned to culture DRG neurons in the presence and absence of an antibody that 

functionally blocks LEF from binding to the LIF receptor component, gpl30. 

Unfortunately, time constraints precluded the completion of this work.

The results of culture experiments that included LIF are shown in figures 4.22 - 4.29. 

ANOVA statistical analyses were carried out to compare results. Any significant 

difference to ‘control’ samples at 96 hours is shown directly above the relevant bar by 

the use of* (p<0.05) or ** (p<0.01). Details of other comparisons are shown in the 

table to the right of the appropriate graph.
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Data showing the expression of CGRP mRNAs within adult DRG neurons in the “LIF 

culture” series of experiments is presented in figure 4.22. As previously demonstrated, 

a-CGRP mRNA showed a down-regulation over time in culture in the absence of 

neurotrophic factors, which was significantly attenuated by supplementing cultures 

with either NGF, MSP or artemin. The addition of lOng/ml LIF to DRG cultures did 

not alter the expression of a-CGRP mRNA compared to control cultures. Similarly, 

the addition of LIF to cultures containing either artemin, NGF or MSP did not change 

the expression of a-CGRP mRNA compared to cultures containing the three 

neurotrophic factors alone (figure 4.22A).

In contrast to its lack of effects on a-CGRP mRNA expression, the addition of 

lOng/ml LIF to adult DRG cultures significantly enhanced the down-regulation of p- 

CGRP mRNA that is observed when adult DRG neurons were placed in culture in the 

absence of neurotrophic factor support (figure 4.22 B). Furthermore, lOng/ml LIF 

significantly inhibited the positive regulatory effects that artemin, MSP and NGF have 

on p-CGRP mRNA expression. This not only suggests a role for endogenous LIF in 

regulating the injury induced changes in P-CGRP mRNA expression within DRG in- 

vivo, but also further demonstrates that the two CGRP mRNAs are expressed and 

regulated in different manners.

The effects of LIF on the expression of SP and VR1 mRNAs lie somewhere in 

between its contrasting effects on the regulation of a- and p-CGRP mRNAs. 

Supplementing adult DRG neuron cultures with lOng/ml LIF did not alter the 

expression of SP or VR1 mRNAs compared to control cultures. However, LIF did 

appear to attenuate the expression enhancing effects of artemin, NGF and MSP on 

these mRNAs (figures 4.23 A and B). In most cases the ability of LEF to attenuate 

neurotrophic factor enhanced expression of SP and VR1 mRNAs was significant, 

however LEF failed to significantly down-regulate the expression of VR1 mRNA in 

DRG cultures containing NGF and MSP.
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Figure 4.22. Effect o f LIF in combination with various neurotrophic factors on the expression 
o f alpha and beta CGRP mRNAs in cultured adult mouse DRG neurons 
Adult mouse DRG neurons were cultured in the presence or absence o f NGF (lOng/ml), MSP 
(50ng/ml), artemin (lOng/ml), LIF (50ng/ml) or LIF in combination with one of the fore 
mentioned neurotrophic factors. Expression o f alpha CGRP (A) and beta CGRP (B) mRNAs 
were quantified using real-time QPCR. Significant differences in expression o that at ‘control 
96 hours’ are indicated directly above bars, other relevant comparisons are outlined in C (alpha 
CGRP) and D (beta CGRP). * = p<0.05 ** = p<0.01.

Error bars = +/- standard error, n = 4
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Figure 4.23. Effect o f LIF in combination with various neurotrophic factors on the expression 
o f SP and VR1 mRNAs in cultured adult mouse DRG neurons

Adult mouse DRG neurons were cultured in the presence or absence o f NGF (lOng/ml), MSP 
(50ng/ml), artemin (1 Ong/ml), LIF (50ng/ml) or LIF in combination with one o f the fore 
mentioned neurotrophic factors. Expression of SP (A) and VR1 (B) mRNAs were quantified 
using real-time QPCR. Significant differences in expression to that at ‘control 96 hours’ are 
indicated directly above bars, other relevant comparisons are outlined in C (SP) and D (VR1). 
* = p<0.05 ** = p<0.01.

Error bars = +/- standard error, n = 4



The effects of LIF on the expression of the two TTX-resistant sodium channel 

mRNAs, Navi.8 and Navi.9 are not clear cut (figures 4.24 A and B). This is probably 

partly due to the fact that the expression of these two mRNAs, and the regulatory 

effects of artemin, NGF and MSP, are not exactly the same as that seen in previous 

culture experiments in this chapter. For example, the expression levels of Navi.8 

mRNA only falls some 3.5-fold after 96 hours in control cultures compared to the 10- 

fold plus drop seen in previous experiments. Moreover, in this set of experiments only 

MSP significantly increased the expression of Navi. 8 mRNA compared to control 

cultures. Although NGF and artemin both increased the expression of this mRNA 

compared to control cultures, this increase was not statistically significant. Similarly, 

MSP did not significantly increase the levels of Navi.9 mRNA compared to control 

cultures in this set of experiments, although both NGF and artemin did. The reasons 

behind these discrepancies are unclear, but it is possible that neuronal density in the 

cultures holds the key. It has been observed within our lab that the expression of 

certain mRNAs are very sensitive to cell density in adult DRG cultures, probably due 

to the release of neurotrophic factors that regulate mRNA expression from Schwann 

cells that contaminate cultures and that are in greater numbers in dense cell cultures (S 

Wyatt unpublished observations). It seems clear that the addition of lOng/ml LIF to 

adult mouse DRG cultures did not further decrease the expression of either Navi. 8 or 

Navi. 9 mRNAs compared to the levels of these mRNAs found in control cultures. 

Whilst it is generally true that LIF acts to attenuate the increases in the expression of 

both mRNAs observed when either artemin, NGF or MSP are added to cultures, this 

was only statistically significant in two cases; for Navi.8 mRNA in cultures 

containing MSP and Navi.9 mRNA in cultures containing NGF.
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Figure 4.24. Effect ofLIF in combination with various neurotrophic factors on the expression o f 
Navi.8 and Navi.9 mRNAs in cultured adult mouse DRG neurons

Adult mouse DRG neurons were cultured in the presence or absence of NGF (lOng/ml), MSP 
(50ng/ml), artemin (lOng/ml), LIF (50ng/ml) or LIF in combination with one o f the fore mentioned 
neurotrophic factors. Expression o f ScnlOa (N avi.8) (A) and Scnl la  (Navl.9) (B) mRNAs were 
quantified using real-time QPCR. Significant differences in expression to that at ‘control 96 hours’ 
are indicated directly above bars, other relevant comparisons are outlined in C (N avi.8) and D 
(Navl.9). * = p<0.05 ** = p<0.01.

Error bars = +/- standard error, n = 4



Figure 4.25 shows the expression of galanin and PACAP mRNAs and illustrates a 

greater than 10 fold up-regulation of both mRNAs over the 96 hour culture period.

The up-regulation of galanin mRNA was inhibited, by approximately 30%, by the 

presence of MSP, NGF or artemin (figure 4.25 A). The addition of lOng/ml LIF alone 

to cultures appeared to enhance the culture-induced up-regulation of galanin mRNA, 

further promoting the ‘injured phenotype’, and reflecting the findings of other groups 

that have illustrated positive effects of LIF on galanin expression (Comess et al.,

1996; Thompson et al., 1998; Kerekes et al., 1999; Ozturk and Tonge, 2001). The 

differential effects of LIF and the afore-mentioned neurotrophic factors on regulating 

galanin mRNA expression were highlighted when artemin, NGF and MSP were added 

to cultures in combination with LIF. The inhibitory effects of MSP, NGF or artemin 

on galanin mRNA expression were totally reversed by the addition of LIF to the 

cultures. Indeed, the levels of galanin mRNA expressed by cultures containing LIF 

and each of the other neurotrophic factors was significantly higher than that found in 

control cultures after 96 hours.

In the data presented so far in this section, LIF either does not effect mRNA 

expression or it apposes the regulatory effects of the other neurotrophic factors 

investigated in this chapter. The regulation of PACAP mRNA expression appears to 

contrast to the previously presented data. Once again, the large increase in PACAP 

mRNA expression that occurs in control cultures was slightly ameliorated by artemin, 

NGF and MSP. However, the reduction in PACAP mRNA expression was only 

statistically significant in the case of NGF (figure 4.25 B). The addition of LIF on its 

own to cultures also significantly attenuated the culture-induced increase in PACAP 

mRNA expression. Moreover, adding lOng/ml LIF to cultures that also contain either 

NGF, artemin or MSP further enhanced the effects of these neurotrophic factors in 

reducing PACAP mRNA expression. Whilst the effects of LIF in reducing PACAP 

mRNA expression in cultures also containing either artemin, NGF or MSP did not 

quite reach statistical significance compared to cultures containing these factors in the 

absence of LIF, the data is significant compared to non-supplemented control 

cultures.
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Figure 4.25. Effect o f LIF in combination with various neurotrophic factors on the expression o f  
galanin and PACAP mRNAs in cultured adult mouse DRG neurons

Adult mouse DRG neurons were cultured in the presence or absence o f NGF (lOng/ml), MSP 
(50ng/ml), artemin (lOng/ml), LIF (50ng/ml) or LIF in combination with one o f the fore mentioned 
neurotrophic factors. Expression of galanin (A) and PACAP (B) mRNAs were quantified using real
time QPCR. Significant differences in expression to that at ‘control 96 hours’ are indicated directly 
above bars, other relevant comparisons are outlined in C (galanin) and D (PACAP).

* = p<0.05 ** = p<0.01.

Error bars = +/- standard error, n = 4



The effects of LIF on DINE mRNA expression were very similar to its effects on 

PACAP mRNA expression (figure 4.26B) As in previous adult DRG culture 

experiments, DINE mRNA displayed an approximately 50-fold increase in levels 

after 96 hours in culture in the absence of neurotrophic factors. Whilst supplementing 

cultures with NGF, artemin or MSP appeared to attenuate the increase in DINE 

mRNA expression, only NGF ameliorated the increase in a statistically significant 

manner. Supplementing adult mouse DRG cultures with lOng/ml LIF significantly 

decreased DINE mRNA levels compared to control cultures. Similarly, the addition of 

LIF to cultures containing either artemin, NGF or MSP significantly decreased DINE 

mRNA levels compared to cultures supplemented with any one of these neurotrophic 

factors alone.

The addition of LIF to adult DRG cultures, either alone or in combination with the 

other three neurotrophic factors, did not alter the expression of ATF-3 mRNA 

compared to either control DRG cultures or cultures containing either artemin, NGF 

or MSP alone. In accordance with data presented previously in this chapter, NGF,

MSP or artemin significantly attenuated the increase in ATF3 mRNA expression that 

occurred in adult DRG neurons cultured in the absence of neurotrophic factors (figure 

4.26A).

The expression of P2X3 mRNA in the series of cultures set up to investigate the 

effects of LIF on gene expression is shown in figure 4.27A. As for previous cultures 

(figures 4.12 C and 4.19 A), the expression levels of P2X3 mRNA within cultured 

DRG neurons were not significantly different to those in-vivo. Neither artemin, NGF, 

MSP or LIF could significantly change the expression of P2X3 mRNA compared to 

control cultures.
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Figure 4.26. Effect o f  LIF in combination with various neurotrophic factors on the 
expression o f  ATF3 and DINE mRNAs in cultured adult mouse DRG neurons

Adult mouse DRG neurons were cultured in the presence or absence o f NGF (lOng/ml), MSP 
(50ng/ml), artemin (lOng/ml), LIF (50ng/ml) or LIF in combination with one of the fore 
mentioned neurotrophic factors. Expression o f ATF3 (A) and DINE (B) mRNAs were 
quantified using real-time QPCR. Significant differences in expression to that at ‘control 96 
hours’ are indicated directly above bars, other relevant comparisons are outlined in C (ATF3) 
and D (DINE). * = p<0.05 ** = p<0.01.

Error bars = +/- standard error, n = 4



The expression of Navi.6 and Navi.7 mRNAs in the “LIF culture” series of 

experiments are shown in figure 4.27B and 4.28, respectively. In agreement with 

previously presented data (figures 4.12 A, 4.12 B, 4.19 B and 4.20), the amount of 

Navi.6 and Navi .7 mRNAs expressed within adult DRG neurons decreased greatly 

over 96 hours in culture in the absence of neurotrophic factor support. Also, in 

accordance with previously presented data, MSP and NGF had a tendency to slightly 

ameliorate the decrease in Navi.6 and Navi.7 mRNA expression. However, in 

contrast to previous data, the effects of NGF, but not MSP, were statistically 

significant for both mRNAs in this series of cultures. The addition of lOng/ml LIF on 

its own to adult DRG cultures did not significantly alter the expression of either TTX- 

sensitive sodium channel alpha-subunit mRNAs compared to control cultures. In 

contrast, supplementing cultures containing either one of the other neurotrophic 

factors, with LIF appeared to decrease the expression of both sodium channel mRNAs 

compared to cultures containing NGF, MSP or artemin alone. However, the 

inhibitory effects of LIF on TTX-sensitive sodium channel mRNA expression are 

only statistically significant in the case of Navi.6 mRNA with MSP and Navi.7 

mRNA with NGF.

The expression of GAPDH mRNA for the “LIF series” of cultures is shown in figure 

4.29. There was no significant difference in this series of cultures between the time 0 

levels of GAPDH mRNA and the levels of this mRNA in control cultures after 96 

hours. Similarly, there was no significant difference in the amount of GAPDH mRNA 

expressed by cultures containing NGF, MSP, artemin or LIF compared to control 

cultures. The addition of LIF to adult DRG cultures that also contained NGF, MSP or 

artemin appeared to slightly increase the expression of GAPDH mRNA compared to 

cultures containing only NGF, MSP or artemin.
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Figure 4.27. Effect o f LIF in combination with various neurotrophic factors on the 
expression o f P2X3 and Navi. 6 mRNAs in cultured adult mouse DRG neurons

Adult mouse DRG neurons were cultured in the presence or absence o f NGF (lOng/ml), MSP 
(50ng/ml), artemin (lOng/ml), LIF (50ng/ml) or LIF in combination with one o f the fore 
mentioned neurotrophic factors. Expression o f P2X3 (A) and Navi.6 (B) mRNAs were 
quantified using real-time QPCR. Significant differences in expression to that at ‘control 96 
hours’ are indicated directly above bars, other relevant comparisons are outlined in C (P2X3) 
and D (Navi.6). * = p<0.05 ** = p<0.01.

Error bars = +/- standard error, n = 4
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Figure 4.28. Effect o f LIF in combination with various neurotrophic factors on the expression o f 
Navi. 7 mRNA in cultured adult mouse DRG neurons

Adult mouse DRG neurons were cultured in the presence or absence o f NGF (lOng/ml), MSP 
(50ng/ml), artemin (lOng/ml), LIF (50ng/ml) or LIF in combination with one of the fore 
mentioned neurotrophic factors. Expression of N avi.7 (A) mRNAs was quantified using real
time QPCR. Significant differences in expression to that at ‘control 96 hours’ are indicated 
directly above bars, other relevant comparisons are outlined in B (Navi.7). * = p<0.05 ** =
p<0.01.

Error bars = +/- standard error, n = 4
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Figure 4.29. Effect o f LIF in combination with various neurotrophic factors on the 
expression o f GAPDH mRNA in cultured adult mouse DRG neurons

Adult mouse DRG neurons were cultured in the presence or absence o f NGF (lOng/ml), MSP 
(50ng/ml), artemin (lOng/ml), LIF (50ng/ml) or LIF in combination with one o f the fore 
mentioned neurotrophic factors. Expression o f GAPDH mRNA was quantified using real
time QPCR and all other results normalised against these values.

Error bars = +/- standard error, n = 4



4.4. Discussion

In this chapter, I have investigated whether the neurotrophic factors artemin, MSP, 

NGF and LIF can regulate the transcription of a number of functionally important 

genes within cultured adult mouse DRG neurons. Although extrapolating data from 

culture experiments and interpreting their physiological relevance has a number of 

caveats, in-vivo experimental approaches to investigating gene regulation also have 

drawbacks. Mice with null mutations of the artemin, NGF, MSP and LIF receptor 

genes are all available and would survive into adulthood if crossed with Bax null- 

mutant mice to produce double-null mutant lines. However, as discussed in the 

introduction to this chapter, investigating the regulation of gene expression in adult 

sensory neurons using double-null mutant mouse lines has a number of limitations. 

These factors should be borne in mind as may cause misleading interpretation of data. 

In addition, generating sufficient numbers of double-null mutant adult animals to 

produce statistically significant results would be an extremely time consuming and 

costly exercise that would lead to unacceptably high levels of animal wastage. The in- 

vivo administration of either neurotrophic factors or neurotrophic factor receptor 

blocking reagents to the peripheral or central target field of DRG neurons could also 

have been used to investigate the efficacy of neurotrophic factors in regulating 

neuronal gene expression. However, this approach also has a number of pitfalls that 

were discussed in the introduction to this chapter.

The DRG cultures used to investigate transcriptional gene regulation by NGF, 

artemin, MSP and LIF were mixed cultures containing both neurons and glial cells. In 

fact, non-neuronal cells typically significantly out numbered neurons at the start of the 

culture period. After 96 hours, there were many fewer non-neuronal cells in the adult 

DRG cultures than at the start of the culture period, presumably because the non

neuronal cells did not survive very well in the minimal medium used for the cultures. 

However, despite the time-dependent decrease in the number of non-neuronal cells 

surviving in DRG cultures, significant numbers were still present after 96 hours of 

culture. The level of glial cell contamination in DRG cultures clearly varied from one 

set of cultures to another, but was uniform across all dishes in any one experiment. In-
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vivo, the majority of mRNAs that were assayed in this chapter are predominantly or 

exclusively expressed by neurons within DRG. Since the same is likely to be true in 

culture, the expression of the assayed mRNAs by contaminating glia is unlikely to 

significantly alter the interpretation of data. Neurons and glial cells both express 

GAPDH mRNA. However, the level of GAPDH mRNA expressed by neurons is 

several orders of magnitude greater than that expressed by glia, reflecting the size 

difference between the two cell types (discussed in previous chapters). Therefore, 

GAPDH mRNA expression by non-neuronal cells is unlikely to significantly affect 

the accuracy of neuronal mRNA quantification that is normalised to GAPDH mRNA 

levels. Especially since the level of non-neuronal cell contamination in each dish of 

any one set of cultures is likely to be similar. It is well established that glial cells, and 

Schwann cells in particular, can synthesise and secrete neurotrophic factors, both in- 

vivo and in-vitro. Therefore, it is possible that neurotrophic factors secreted by glia 

may either conceal or exacerbate the effects of exogenous neurotrophic factors in 

regulating transcriptional expression in some cultures. This is a possibility that must 

be borne in mind when interpreting the expression data presented in this chapter.

Below, I will discuss the transcriptional regulation of the mRNAs investigated in this 

chapter in turn, followed by summing up the significance of the data in terms of 

normal nociceptive thresholds and the response of sensory neurons to nerve lesion.

4.4.1. a- and P-CGRP

In chapter two of this thesis, an analysis of trigeminal and dorsal root ganglia from 

transgenic embryos demonstrated the differential regulation of a- and p- CGRP 

mRNAs by NGF/TrkA signalling in embryonic neural crest-derived sensory neurons. 

In chapter three, this research was extended to investigate the in-vitro and in-vivo 

regulation of a- and p- CGRP mRNAs by both NGF/TrkA and NT-3 dependent 

signalling in neonatal neural-crest and placode-derived sensory neurons. Results 

demonstrated that NGF/TrkA signalling was essential to achieve and maintain the 

correct expression levels of both a- and P- CGRP mRNAs in neonatal trigeminal, 

nodose and dorsal root ganglion neurons in-vivo. It was also revealed that NGF could 

maintain the expression of a-CGRP mRNA in cultured neonatal trigeminal neurons
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for 48 hours, preventing the marked drop in the expression of this neuropeptide 

mRNA that occured in control cultures. In contrast to a-CGRP mRNA, my data from 

chapter three showed that p-CGRP mRNA levels did not change significantly in 

neonatal trigeminal neurons cultured for 48 hours without neurotrophic factor support.

Figures 4.8, 4.14, and 4.22 reveal that the levels of a- and P-CGRP mRNAs, 

expressed by cultured adult mouse DRG neurons, fell 2- to 3-fold over 96 hours in the 

absence of neurotrophic factor support. The reduction in a-CGRP mRNA levels was 

consistently more pronounced than the fall in p-CGRP mRNA levels, an observation 

that is in agreement with the data obtained from neonatal trigeminal neuron cultures 

in the previous chapter. If one regards in-vitro culture as a model of nerve injury, then 

the culture data is in accordance with a number of previous publications 

demonstrating that CGRP mRNA and peptide expression falls sharply within 

damaged rat and mouse lumbar DRG neurons in-vivo following sciatic nerve 

transection (Noguchi et al., 1990; Verge et al, 1995; Mulder et al., 1997; Steme et al., 

1998; Shi et al., 2001; Shadiack et al., 2001). The studies by Noguchi et al and Verge 

et al are particularly relevant, since, like the data presented in this chapter, they 

discriminate between a- and p-CGRP mRNAs.

NGF, artemin and MSP were all able to significantly attenuate the culture-induced 

decrease in a- and P-CGRP mRNA expression in adult mouse DRG neurons (figures 

4.8, 4.14 and 4.22). NGF and artemin appeared to have similar efficacies in their 

ability to regulate the expression of a- and P-CGRP mRNAs, whilst MSP was slightly 

less effective in promoting CGRP mRNA expression than the other two neurotrophic 

factors. The ability of NGF to positively regulate the expression of CGRP mRNA and 

peptide within rodent sensory neurons, both in-vitro and in-vivo, has been previously 

well documented (e.g. Lindsay et al., 1989; Verge et al, 1995; Jiang and Smith, 1995; 

Price et al, 2005). Likewise, artemin has also been shown to partially reverse the 

down-regulation of CGRP peptide within adult rat DRG following sciatic nerve 

section or ligation.(Gardell et al, 2003). The demonstration that MSP was able to 

promote the expression of a- and p-CGRP mRNAs in cultured adult mouse DRG 

neurons, thereby partially reversing the axotomized phenotype, is a novel and 

potentially important observation that will be discussed more fully below. The data
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suggests that MSP may play a role in establishing the level of a- and p-CGRP 

mRNAs expressed by nociceptive sensory neurons in-vivo, although additional 

studies, preferably using conditional null-mutant transgenic mice, would be required 

to clarify this hypothesis.

The observations that MSP and artemin could regulate the expression of CGRP 

mRNAs in adult DRG cultures raises the possibility that these neurotrophic factors 

may play a role in the initial induction and developmental regulation of CGRP 

expression in developing sensory neurons, in a similar manner to NGF. An analysis of 

gene expression within sensory ganglia of embryonic and neonatal conditional null- 

mutants for the MSP receptor, RON, or the artemin receptor, GFR-a3, would help to 

determine whether this is the case. A similar approach would also to determine 

whether artemin and/or MSP are also involved in regulating the in-vivo 

developmental expression of the many other genes that were found in this chapter to 

be regulated by these neurotrophic factors in cultured adult DRG neurons (see below).

The combined addition of saturating concentrations of NGF and artemin to adult DRG 

cultures significantly increased the expression of both a- and p-CGRP mRNAs to 

higher levels than those found with either factor alone (figures 4.14 A and B). The 

levels of both CGRP mRNAs in cultures containing a combination of both 

neurotrophic factors was approximately 20% greater than cultures containing a single 

neurotrophic factor, and restored CGRP mRNA levels to time 0 {in-vivo) levels. The 

increase in CGRP mRNA expression may reflect the possibility that both 

neurotrophic factors use different intracellular signal transduction pathways to 

increase the expression of CGRP mRNAs within individual neurons that express 

CGRP and both neurotrophic factor receptors. However, the simplest interpretation of 

the data is that not all CGRP mRNA-positive DRG neurons express receptors for both 

NGF and artemin in culture. In adult rodents, approximately 35% of neurons in L4/L5 

DRG express TrkA. Most TrkA positive neurons are C- or A-5 fibre nociceptors that 

also express CGRP. Around 35% of this population also express the GDNF family 

signal transducing receptor, Ret (Averill et al, 1995; Molliver et al, 1997; Michael and 

Priestley, 1999; Orozco et al, 2001). GFR-a3 expression is restricted to 

approximately 20% of L4/L5 DRG neurons. GFR-a3-positive DRG neurons
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predominantly represent the sub-population of TrkA-positive, CGRP-positive, non

myelinated C-fibre neurons that express Ret. However, 8% o f GFR-alpha 3 

expressing neurons (1.6% o f total neurons in L4/L5 DRG and approximately 5% of 

CGRP-positive neurons) are Ret- and CGRP-positive but TrkA-negative (Orozco et 

al, 2001). Thus, in the absence o f nerve injury, approximately 5% of CGRP-positive 

DRG neurons are responsive to artemin and not NGF, 60% are responsive to NGF but 

not artemin and 35% o f CGRP-positive DRG neurons are responsive to both factors. 

This is illustrated in figure 4.30.

CGRP-CGRP +

60 % 
TrkA+ 

GFRa.3 -

Figure 4.30. proportions o f  CGRPpositive DRG neurons that express 
NGF and artemin receptors

Based on the expression patterns o f NGF and artemin receptors in uninjured DRG, it 

may be predicted that NGF would be more effective than artemin at regulating CGRP 

mRNA expression in-vitro. It might also be anticipated that the addition o f artemin to 

cultures containing NGF would not significantly increase the expression of CGRP 

mRNAs compared to cultures containing NGF alone. However, peripheral nerve 

lesion and in-vitro culture induce many similar changes in neuronal gene expression, 

including changes in neurotrophic factor receptor expression. The number o f rat 

lumbar DRG neurons expressing detectable TrkA mRNA decreases by 50% at 7 days
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following sciatic nerve crush, ligation or transection (Krekoski et al, 1996; Kashiba et 

al, 1998; Shen et al, 1999). Conversely, the number of rat lumbar DRG neurons 

expressing GFR-a3 protein almost doubles by 14 days following spinal nerve 

ligation, so that virtually all C-fibre, peripherin-positive lumbar DRG neurons are 

GFR-a3-positive (Gardell et al, 2003). It is not clear whether similar changes in the 

expression of artemin and NGF receptors occur in DRG neurons at all levels of the rat 

spinal cord following sciatic nerve lesion. Similarly, it is not clear from the published 

literature whether changes in TrkA or GFR-a3 expression occur within mouse DRG, 

either in-vivo, following sciatic nerve lesion, or in-vitro. Unpublished work from 

within my laboratory has revealed a 20% decrease in the levels of TrkA mRNA 

expressed by adult mouse DRG neurons over a 96hour culture period. The culture- 

induced decrease in TrkA mRNA is accompanied by a similar increase in the levels of 

GFR-a3 mRNA (S Wyatt unpublished observation -  data not shown). The net result 

of these changes in receptor gene expression is likely to be a decrease in the 

proportion of DRG neurons expressing either both TrkA and GFR-a 3 together, or 

expressing TrkA alone. An increase in the number of neurons expressing GFR-a 3 in 

the absence of TrkA might also be anticipated. Unfortunately, immuno- 

cyctochemistry data is not available to substantiate this hypothesis. Nonetheless, this 

possibilty could account for the, better than expected, efficacy of artemin in regulating 

the expression of CGRP mRNAs in comparison to NGF. It may also explain the 

partially “additive” ability of NGF and artemin to increase CGRP mRNA expression.

In contrast to cultures containing both NGF and artemin, the addition of saturating 

levels of MSP to cultures containing saturating levels of either NGF or artemin did 

not increase the expression levels of either a- or p-CGRP mRNAs above those found 

in cultures containing just NGF or artemin alone. To date, the distribution of RON 

amongst adult DRG neurons in-vivo has not been determined. Likewise, the identity 

of the cultured adult mouse DRG neurons that express RON has not been established. 

The data presented here from the “additive” culture experiments suggests that the 

majority of cultured DRG neurons that express both RON and CGRP also express 

TrkA and GFR-a 3.
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The addition of 50ng/ml LIF to adult mouse DRG cultures affected the expression of 

a- and p-CGRP mRNAs in markedly different ways. Whilst LIF did not significantly 

alter the expression of a-CGRP mRNA, either alone or in combination with the other 

three neurotrophic factors (figure 4.22 A), it did have a marked effect on the 

expression of p-CGRP mRNA (figure 4.22B). The addition of LIF to cultures 

significantly reduced the expression of p-CGRP mRNA compared to control cultures. 

Moreover, LIF blocked the ability of MSP, artemin and NGF to ameliorate the culture 

induced down-regulation of p-CGRP mRNA expression. LIF mRNA and protein has 

been shown to be up-regulated, and functional LIF released, by de-differentiating 

Schwann cells at the site of nerve damage following nerve ligation, transection or 

crush (Banner and Paterson, 1994; Bolin et al., 1995; Sun and Zigmond, 1996; Hirota 

et al, 1996; Kurek et al., 1996; Ito et al., 1998; Thomson and Majithia, 1998). 

Functional LEF receptors are predominantly expressed by small nociceptive sensory 

neurons, the majority of which are CGRP-positive (Thompson et al, 1997). It has 

previously been postulated that the injury-induced release of LIF by Schwann cells 

may play a role in orchestrating some of the widespread changes in gene expression 

that occur in sensory neurons following peripheral nerve trauma. For example, LIF 

appears to play a role in the up-regulation of galanin and DINE expression following 

nerve injury (Comess et al., 1996; 1998; Ozturk and Tonge, 2001; Kerekes et al., 

1999; Sun and Zigmond, 1996; Kato et al, 2002). The data presented for P-CGRP 

mRNA in figure 4.22 B supports this hypothesis and is the first observation that LIF 

can regulate p-CGRP mRNA expression in dissociated DRG cultures.

Curiously, it has previously been reported that the addition of exogenous LIF to 

mouse lumbar DRG explants increases the expression of CGRP peptide compared to 

explants cultured in the absence of growth factors (Ozturk et al., 2002). However, 

neurons within explanted lumbar DRGs, behave very differently to those in 

dissociated cultures and do not appear to mimic changes in gene expression that occur 

following sciatic nerve lesion. For example, the number of CGRP immuno-positive 

neurons that are present within lumbar DRG explants do not decrease over time. This 

observation is in marked contrast to the rapid drop in CGRP mRNA and peptide 

expression in both dissociated DRG cultures and lumbar DRG subjected to in-vivo 

sciatic nerve lesion (e.g. Lindsay et al., 1989; Verge et al., 1995; Jiang and Smith,
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1995). Moreover, NGF does not appear to enhance CGRP expression in explanted 

DRG (Ozturk et al., 2002), despite the wealth of published data demonstrating that 

NGF can increase the expression of CGRP mRNA and peptide within DRG neurons 

both in culture and following in-vivo peripheral nerve lesion (for references see 

above).

The observation that exogenous LIF could decrease the expression of p-CGRP 

mRNA in adult mouse DRG cultures, whereas it did not affect the expression of a- 

CGRP mRNA, may reflect a genuine difference in the transcriptional regulation of the 

two different CGRP genes. Alternatively, it may reflect a difference in the sensitivity 

of each gene to regulation by LIF. Adult DRG cultures contain Schwann cells that are 

likely to begin synthesizing LEF after they have been removed from their normal in- 

vivo environment. This raises the possibility that LIF, released by Schwann cells 

within DRG cultures, plays a role in promoting some of the culture-induced changes 

in gene expression observed in this chapter. If the a-CGRP gene is very sensitive to 

regulation by LEF, the amounts of LEF present in control cultures may be saturating 

with regard to the regulation of a-CGRP mRNA expression. If the p-CGRP gene is 

less sensitive to regulation by LEF, the amount of LEF in control cultures might not 

have been high enough to significantly reduce p-CGRP mRNA expression. Indeed, 

this may explain why the drop in a-CGRP mRNA levels when DRG neurons were 

placed in culture was consistently greater than the drop in p-CGRP mRNA levels. 

Culturing DRG neurons with and without an antibody that either blocks the function 

of the signal- transducing component of the LEF receptor, gpl30, or sequesters and 

inactivates LEF would address this hypothesis. This approach may also shed further 

light on the ability of LIF to regulate the expression of other mRNAs within cultured 

DRG neurons. Unfortunately, time constraints prevented me from carrying out these 

experiments.

4.4.2. Substance P

Substance P (SP) mRNA showed a very similar pattern of regulation to that of a- and 

P-CGRP mRNAs in cultured adult mouse DRG neurons, reflecting the co-expression
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of SP in a sub-population (around 50%) of CGRP-positive, TrkA-positive, adult 

rodent DRG neurons (Lundberg et al., 1985; Lee et al., 1985; Skofitsch and 

Jacobowitz, 1985; Kashiba et al., 1996; Gardell et al., 2003).

SP mRNA expression levels dropped 8-to 10-fold fold over a 96 hour culture period 

in all cultures of adult mouse DRG neurons analysed (figures 4.7A, 4.8C, 4.15A and 

4.23A). This data is in accordance with previous studies on cultured adult rat DRG 

neurons (Mulderry, 1994; Lindsay et al., 1989). A marked drop in the expression of 

SP mRNA over time in culture was also observed in Chapter three for neonatal 

trigeminal neurons. Similarly, a marked reduction in the expression of SP mRNA and 

peptide within rat lumbar DRG has also been reported following sciatic or spinal 

nerve transection, ligation or crush (e.g. Nielsch et al., 1987; Zhang et al., 1995; Ji et 

al., 1996; Sterne et al., 1998; Gardell et al, 2003). The reduction in SP expression 

following peripheral nerve lesion has been directly attributed to a reduction in the 

supply of target field-derived NGF to neuronal cell bodies within DRG (Shadiack et 

al, 2001). The data presented in this chapter suggests that NGF may not be the only 

target field derived neurotrophin that regulates the steady state expression levels of SP 

within adult DRG neurons.

In chapters two and three of this thesis, I demonstrated that NGF is required for the 

induction and correct developmental regulation of SP mRNA in mouse sensory 

neurons. I also demonstrated that NGF can ameliorate the culture-induced down- 

regulation of SP mRNA in neonatal mouse trigeminal neurons. In accordance with 

this data, NGF could reduce the culture induced drop in SP mRNA expression within 

adult mouse DRG neurons by almost 50% (figure 4.8C). This finding is not novel, 

since NGF has previously been shown to promote the expression of SP in cultured 

adult mouse and rat DRG neurons (Lindsay et al., 1989; Mulderry, 1994; Zhang et al., 

1995; Skoff et al., 2006), and ameliorate the drop in SP expression within rat lumbar 

DRG neurons that occurs following sciatic nerve lesion (Zhang et al., 1995; Ji et al.,

1996). Moreover, transgenic mice ectopically expressing NGF in the spinal cord 

contain significantly more SP-positive neurons within DRG than wild type mice (Ma 

et al., 1995).

428



Artemin could also significantly attenuate the culture-induced drop in SP mRNA 

levels in adult mouse DRG neurons (figures 4.7A, 4.8C, 4.15A and 4.23A). Perhaps 

surprisingly, given the relative distribution of artemin and NGF receptors within 

rodent DRG in-vivo (Averill et al., 1995; Molliver et al., 1997; Michael and Priestley, 

1999; Orozco et al., 2001, and illustrated in figure 4.30 above), artemin is 

significantly more effective than NGF in supporting the expression of SP mRNA in 

cultured adult mouse DRG neurons. However, as discussed above, it seems likely that 

the number of TrkA-positive mouse DRG neurons decreases over time in culture, 

whilst the number of neurons expressing the artemin receptor, GFR-a3, increases 

over time in culture. The data for SP, presented in this chapter, would tend to suggest 

that a proportion of SP-positive DRG neurons lose TrkA expression and gain GFR-a3 

expression during the culture period. The observation that artemin could positively 

regulate the expression of SP is also not novel, since it has previously been 

demonstrated that systemic artemin can ameliorate the fall in SP peptide within adult 

rat DRG neurons following spinal nerve ligation (Gardell et al., 2003). However, the 

observation that MSP was as effective as NGF in reducing the culture-induced down- 

regulation of SP mRNA expression in adult mouse DRG sensory neurons (figures 

4.7A, 4.8C, 4.15A and 4.23A) is a novel finding. This result suggests that a 

significant number of SP-positive mouse DRG neurons express functional MSP 

receptors in culture. Moreover, this data, together with the data from CGRP mRNA 

expression, suggests that MSP may play a role in regulating neuropeptide expression 

in adult DRG neurons in-vivo. Hence MSP may be involved in regulating sensory 

thresholds in nociceptive neurons.

Once again, as in the case of a- and P-CGRP mRNAs, the addition of saturating 

concentrations of NGF together with saturating concentrations of artemin to cultures 

increased the expression of SP mRNA to significantly higher levels than in cultures 

containing either NGF or artemin alone (figure 4.15 A). Moreover, culturing adult 

mouse DRG neurons with both these neurotrophic factors totally prevented the down- 

regulation of SP mRNA over time in culture. This raises the possibility that not all 

DRG neurons that express SP in culture express both TrkA and GFR-a3. Rather, 

since the effects of both factors on SP mRNA expression were not numerically the 

sum of each individual factor alone, it strongly suggests that adult mouse DRG
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neurons that express SP in culture can be divided into three sub-populations with 

regards to the expression of TrkA and GFR-a3. These populations being: A sub

population that expresses SP together with TrkA and GFR-a3; a sub-population that 

expresses SP and just TrkA; a sub-population that expresses SP and just GFR-a3.

The addition of both artemin and MSP to DRG cultures also increased the expression 

of SP mRNA to higher levels than with either neurotrophic factor alone. In fact, this 

combination of neurotrophic factors was as effective as the combination of artemin 

and NGF together, totally preventing the culture-induced down-regulation of SP 

mRNA (figure 4.15 A). In contrast, the addition of MSP and NGF together, to adult 

mouse DRG cultures, only slightly increased the neuronal expression of SP mRNA in 

comparison to cultures containing either NGF or MSP alone. Moreover, the increase 

in SP mRNA expression with both NGF and MSP only reached statistical significance 

when compared to NGF alone. Significantly, the combination of NGF and MSP 

together is markedly less effective in promoting SP mRNA expression than the 

combinations of NGF or MSP with artemin. The most parsimonious explanation for 

this, especially since the efficacies of MSP and NGF individually in promoting SP 

mRNA expression are very similar, is that the majority of SP-positive neurons that 

express RON in culture also express TrkA. The hypothesis that RON expression is 

almost entirely restricted to a subset of NGF-responsive cultured adult mouse DRG 

neurons is supported by much of the other expression data presented in chapter 4 (see 

below).

The addition of 50ng/ml LIF to adult mouse DRG cultures did not alter the levels of 

SP mRNA compared to control cultures. However, LIF significantly attenuated the 

ability of NGF, artemin and MSP to promote the expression of SP (figure 4.23 A).

This data is in agreement with the previous observation that LIF can inhibit the NGF- 

induced up-regulation of SP mRNA in cultured adult rat DRG neurons (Mulderry, 

1994). Whilst my data, and the data from Mulderry, suggests that the release of LIF 

by Schwann cells partly underlies the nerve injury-induced reduction in SP 

expression, two previously published articles present data that opposes this 

hypothesis. First, it has been reported that the, sciatic nerve ligation-induced, down- 

regulation of SP mRNA expression occurs to the same extent in LIF*7* mice as wild-
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type mice, suggesting that nerve lesion-induced reductions in SP mRNA expression 

within DRG neurons are independent of LIF (Sun and Zigmond, 1996). However, LIF 

belongs to a family of cytokines that all signal through a common receptor 

component, gpl30 (reviewed in Taga, 1996; Murphy et al., 1997). This raises the 

possibility that other cytokines replace the functions of LIF in LIF7' mice. CNTF and 

IL-6 are two potential candidates for factors that may compensate for the lack of LIF 

in LIF7' mice. CNTF is expressed within Schwann cells surrounding peripheral 

nerves. Since CNTF lacks a signal peptide sequence it is only thought to be released 

from cells following nerve damage. Indeed, sciatic nerve lesion leads to the release of 

CNTF at the site of lesion resulting in increased retrograde transport in damaged 

sensory neurons (Curtis et al., 1993). IL-6, which like CNTF signals though a receptor 

complex containing gpl30, is rapidly up-regulated in peripheral nerves following 

nerve injury (Ito et al, 1998). Second, application of LIF to the proximal transected 

sciatic nerve stump reduces the axotomy-induced down-regulation of SP mRNA in rat 

lumber DRG neurons (Zhang et al., 1995). However, LIF is only effective in 

increasing the expression of SP within rat DRG neurons when very large amounts are 

applied to the transected nerve stump. Numerous previous unpublished observations 

within my laboratory demonstrate that many neurotrophic factors display a bell

shaped dose response curve in relation to promoting neuronal surival, neurite 

outgrowth and modulating gene expression. This raises the possibility that the 

addition of super-saturating concentrations of LIF to the proximal stump of transected 

sciatic nerves partially reverses the down-regulation of SP mRNA that is induced by 

the release of lower, more physiologically relevant, amounts of LEF from de

differentiating Schwann cells at the site of lesion. More research, perhaps using mice 

lacking functional gpl30 expression in sensory neurons, is required to clarify the role 

of injury released LIF in regulating SP expression in DRG neurons following nerve 

injury

4.4.3. VR1.

In chapter three of this thesis, I demonstrated that NGF/TrkA signalling did not 

appear to be required for the developmental regulation of VR1 mRNA expression in 

neural crest-derived sensory ganglia in-vivo. However, NGF was capable of totally
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preventing the culture-induced down-regulation of VR1 mRNA expression that 

occurs in neonatal trigeminal neurons. I also presented data suggesting that NT-3 

suppresses the expression of VR1 mRNA in developing neural crest-derived sensory 

neurons.

Adult mouse DRG neurons also exhibited a marked drop in VR1 mRNA expression 

over time in culture (figures 4.9 C, 4.15 B and 4.23 B). The culture-induced reduction 

in VR1 mRNA expression mirrors the changes that occur in rodent DRG neurons in- 

vivo following sciatic nerve injury (Michael and Priestly, 1999; Michael and Priestly 

2002; Fukuoka T et al., 2002; Wendland et al., 2003). Saturating concentrations of 

NGF reduced the culture-induced loss of VR1 mRNA expression by around 30% 

(figures 4.9 C, 4.15 B and 4.23 B). This observation is in accordance with previously 

published data demonstrating that exogenous NGF can promote VR1 mRNA 

expression in adult rodent DRG neurons in-vitro and in-vivo (Michael and Priestley, 

1999; Shu and Mendell, 1999; Winston et al., 2001). In addition, CFA-induced 

inflammation has been shown to increase the levels of VR1 protein expressed by 

TrkA-positive DRG neurons via an increase in the expression of NGF at the site of 

inflammation (Amaya et al., 2004). It is curious that NGF could completely prevent 

the culture-induced down-regulation of VR1 mRNA in neonatal trigeminal neurons 

(chapter three), but could only prevent 30% of the decrease in cultured adult mouse 

DRG neurons, especially since VR1 expression is almost entirely restricted to a sub

population of TrkA- and CGRP- positive neurons in adult mouse L4/L5 DRG (Zwick 

et al., 2002). It is possible that the pattern of VR1 expression differs in mouse DRG at 

other axial levels (as represented in my DRG cultures) and/or in culture, being 

expressed in both TrkA-positive and TrkA-negative nociceptive neurons. Another 

explanation to account for the relatively poor ability of NGF to rescue the expression 

of VR1 mRNA in cultured adult mouse DRG neurons is that the proportion of TrkA- 

positive, and hence NGF-responsive, neurons decreases in adult DRG cultures over 

time (see above).

Artemin was also capable of preventing the culture-induced decrease in VR1 mRNA 

expression in adult mouse DRG cultures, with an efficacy slightly greater than NGF 

(figures 4.9 C, 4.15 B and 4.23 B). This would suggest, in culture at least, that VR1 

mRNA is expressed in a sub-population of neurons that predominantly express both
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TrkA and GFR-a3. Further evidence for this hypothesis is found in figure 4.15B. This 

figure demonstrates that the addition of saturating levels of both artemin and NGF to 

cultures did not significantly increase the expression of VR1 mRNA compared to 

cultures containing either NGF alone or artemin alone. The data presented in this 

chapter is the first demonstration that artemin can regulate the expression of VR1 in 

cultured sensory neurons, and raises the possibility that it modulates the neuronal 

expression of this important determinant of thermal and chemical nociceptive 

thresholds in-vivo.

MSP proved to be as effective as NGF in ameliorating the drop in VR1 mRNA levels 

in cultured DRG neurons (figures 4.9 C, 4.15 B and 4.23 B). This is the first 

demonstration that MSP can regulate the expression of VR1 in sensory neurons and 

adds to the number of functionally important sensory neuron mRNAs that can be 

transcriptionally regulated by this novel neurotrophic factor. Interestingly, the 

addition of saturating concentrations of NGF and MSP together to cultures did not 

enhance VR1 mRNA expression compared to either factor alone, suggesting that all 

DRG neurons that express TrkA and VR1 mRNA in culture also express RON. The 

combined effects of MSP and artemin on VR1 mRNA expression were also no greater 

than either of these two factors alone. In fact, the ability of all three neurotrophic 

factors combined to regulate the in-vitro expression of VR1 mRNA was no greater 

than any single neurotrophic factor on its own (figure 4.15 B). Since all three 

neurotrophic factors have a similar efficacy in terms of regulating the expression of 

VR1 mRNA, this raises the possibility that virtually all adult mouse DRG neurons, 

that express VR1 mRNA in culture, also express the receptors for all three 

neurotrophic factors.

The fact that the addition of all three neurotrophic factors together only prevented 

about 30% of the culture-induced reduction in VR1 mRNA expression raises the 

possibility that other neurotrophic factors may additionally regulate the expression of 

VR1 mRNA, both in-vitro and in-vivo. In the rat, VR1 is expressed in both the NGF- 

responsive, peptidergic sub-population of nociceptive neurons and the IB4-binding, 

non-peptidergic, sub-population of nociceptive neurons (Michael and Priestley, 1999; 

Guo et al., 1999). GDNF has been shown to play a role in the inflammation-induced
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up-regulation of VR1 expression in rat DRG (Amaya et al., 2004), and can also 

ameliorate the culture-induced down-regulation of VR1 mRNA in adult rat DRG 

neurons (Ogun-Muyiwa et al., 1999; Wendland et al., 2003). In the rat, the GDNF 

receptor, GFR-a 1 is expressed in 40% of lumbar DRG neurons, and this number 

increases to 60% following sciatic nerve transection (Kashiba et al., 1998; Bennett et 

al., 2000). It is not clear whether an up-regulation in GFR-a 1 expression occurs in 

cultures of rat DRG neurons. It is also not known whether it occurs in the mouse, 

either following peripheral nerve lesion, or in culture. However, it is possible that 

some VR1-positive cultured adult mouse DRG neurons expressing TrkA, lose NGF 

responsiveness over time in culture and gain expression of GFR-a 1, and hence GDNF 

responsiveness. It is interesting to speculate that the addition of GDNF to adult mouse 

DRG cultures containing NGF and/or artemin and/or MSP would restore the 

expression of VR1 mRNA to in-vivo levels. Another candidate for a neurotrophic 

factor that may positively regulate the expression of VR1 mRNA is NT4/5. NT4/5 has 

been shown to increase the capsaicin sensitivity of cultured adult rat DRG neurons 

(Shu and Mendell, 1999), presumably by increasing the expression of VR1 (although 

changes in the phosphorylation status of VR1 can alter its sensitivity to ligands, as 

discussed in the introduction to chapter 3). NT4/5 signals through the tyrosine kinase 

receptor TrkB (Klein et al., 1992; Ip et al., 1992), a receptor that is not normally 

expressed on most VR1-positive sensory neurons. However, NT4/5 can also activate 

TrkA, abeit with low efficiency (Berkemeier et al., 1991; Hallbook et al., 1991; Ip et 

al., 1992), and can also signal through the common neurotrophin receptor, p75 

(Rodriguez-Tebar et al., 1992), providing a theoretical mechanism whereby it could 

increase the expression of VR1 in cultured adult mouse DRG neurons.

The effects of LIF on the expression of VR1 mRNA were very similar to the effects 

of LIF on SP mRNA expression. The addition of LIF alone to cultures did not alter 

VR1 mRNA expression levels compared to controls. However, LIF could attenuate 

the ability of NGF, artemin and MSP to promote VR1 mRNA expression, although 

this is only statistically significant in the case of artemin (figure 4.23 B). This data 

supports the idea that injury-induced LIF production by Schwann cells may drive 

some of the changes in gene expression within DRG neurons that accompany 

peripheral nerve injury.
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LIF may not be the only injury-induced factor that drives changes in the expression of 

VR1 mRNA expression, both in-vivo and in-vitro. The in-vivo and in-vitro data 

presented in chapter three suggested that NT-3 may suppress the expression of VR1 

mRNA in neonatal neural crest-derived sensory neurons. This hypothesis is supported 

by the observation that NT-3 can reverse the thermal hyperalgesia-inducing increase 

in VR1 mRNA and protein expression that occurs following chronic constriction 

injury to the adult rat sciatic nerve (Wilson-Gerwing et al., 2005). Indeed, exogenous 

NT-3 can regulate the expression of a number of genes following axotomy, often in 

an antagonistic manner to NGF, and can prevent the loss of neurons and satellite cells 

within DRG following nerve lesion (Karchewski et al., 2002; Jongsma Wallin et al., 

2001; Park et al., 2003; Sterne et al., 1998; Wilson-Gerwing et al., 2006; Kuo et al., 

2005; Groves et al., 1999). Whilst sciatic nerve lesion reduces the expression of NT-3 

within peripheral nerves (Funakoshi et al., 1993; Cai et al., 1998), macrophages and 

activated T-cells invading the lesion site express NT-3 (Moalem et al, 2000; Sobue et 

al, 1998), raising the possibility that endogenous NT-3 may play a role in 

orchestrating the response of DRG neurons to injury. NT-3 may be particularly 

efficacious as an injury response agent, since it can activate all neurotrophic factor 

receptors to some degree and can thus exert effects on virtually all DRG neurons (see 

previous introductory sections for details). Schwann cells in culture express NT-3 

(Meier et al, 1999; Cai et al, 1999), as well as LIF, raising the possibility that NT-3 

may play a role in regulating the numerous culture-induced changes in gene 

expression observed in adult mouse DRG cultures.

4.4.4. TTX-resistant sodium channels

In chapter two of this thesis, I demonstrated that NGF/TrkA signalling was required 

for the initial induction of Navi.8 and Navi.9 mRNA expression in neural crest- 

derived sensory ganglia in-vivo. In chapter three, I showed that NGF is required for 

the correct developmental expression of both TTX-resistant sodium channel mRNAs 

in neural crest-derived sensory ganglia, but not placode-derived nodose ganglia. 

Moreover, I demonstrated that NGF could partially prevent the culture-induced drop 

in Navi.8 and Navi.9 mRNA expression in neonatal trigeminal and nodose neurons.
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In agreement with my previous data, NGF could ameliorate the reduction in TTX- 

resistant sodium channel mRNAs that also occured in cultured adult mouse DRG 

neurons, thereby partially restoring the “un-injured” phenotype to cultured 

nociceptive neurons (figures 4.9A and B, 4.16A and B and 4.24A and B). The culture 

induced drop in Navi.8 and Navi.9 expression mirrors the effects of peripheral nerve 

lesion in-vivo (Okuse et al., 1997; Cummins et al., 2000; Tate et al., 1998; Dib-hajj et 

al., 1998a, 1999; Sleeper et al., 2000; Decosterd et al., 2002). My data is in agreement 

with previously published data demonstrating that NGF can positively regulate the 

expression of Navi.8 mRNA and peptide both in adult rat DRG cultures (Black et al., 

1997; Fjell at al., 1999a) and in-vivo (Dib-Hajj et al., 1998b Fjell et al., 1999b and c). 

A previous publication failed to demonstrate that NGF could regulate the expression 

of Navi.9 mRNA (Fj ell et al, 1999a). However, the authors used a semi-quantitative 

method for measuring Navi.9 mRNA expression that does not have sufficient 

resolution to determine small changes in gene expression. In contrast, the same 

authors have demonstrated an increased expression of Navi.9 mRNA within DRG in 

mice over-expressing NGF in the skin (Fjell et al., 1999b).

NGF could almost completely prevent the culture-induced drop in Navi.8 mRNA 

expression in neonatal trigeminal neurons (chapter three of this thesis) In contrast, 

saturating levels of NGF were only capable of preventing 15% of the drop in Navi.8 

mRNA expression levels that occurs within cultured adult DRG neurons. The time 

course data that I presented in chapter three suggests that Navi.8 mRNA is 

significantly more widely expressed in neonatal neural-crest derived sensory ganglia 

compared to adult ganglia. P0 sensory ganglia also contain more NGF-responsive 

neurons than adult ganglia (Molliver and Snider, 1997; Molliver et al., 1997) 

suggesting a considerable overlap between TrkA- and Navi.8-positive neurons in 

neonatal sensory ganglia. In adult DRG, Navi.8 mRNA is expressed in virtually all 

A-6 and C-fibre (and some A-p fibre) nociceptive neurons in-vivo (around 65% of 

DRG neurons), whereas TrkA is only expressed in 35% of neurons. The majority of 

Navi.8-positive adult DRG neurons that do not express TrkA are IB4-positive, 

express Ret and are responsive to members of the GDNF family of neurotrophic 

factors (Djouhri et al., 2003; Fang et al., 2005; Averill et al., 1995; Molliver et al.,

436



1997; Michael and Priestley, 1999; Fjell et al., 1999 (a); Amaya et al., 2000; Orozco 

et al., 2001). Indeed, GDNF has been shown to up-regulate the expression of Navi.8 

mRNA, both in-vitro and also in-vivo following sciatic nerve lesion (Fjell et al,

1999a; Cummins et al., 2000). Therefore, it is not surprising that NGF is unable to 

restore Navi.8 mRNA levels to in-vivo levels in adult mouse DRG cultures, 

especially in light of the changes in neurotrophic factor receptor expression that are 

likely to occur in culture. As outlined above such changes include a decrease in NGF 

responsive cells and an increase in GDNF responsive cells over the culture period. It 

is interesting to speculate that a combination of NGF and GDNF would maintain 

Navi.8 mRNA expression at in-vivo levels in cultured adult mouse DRG neurons.

NGF appeared to be even less effective in maintaining Navi.9 mRNA levels at time 0 

levels in culture than it was in maintaining Navi.8 mRNA expression. A situation that 

mirrors the data from neonatal trigeminal neurons, presented in chapter three. In 

contrast to Navi.8, Navi.9 is exclusively expressed in nociceptive C-fibre neurons 

within sensory ganglia, with no expression in either TrkA-positive, A-5 nociceptors or 

the rare A-P nociceptors (Fang et al., 2006). Within C-fibre nociceptive neurons, 

Navi.9 is expressed in both TrkA-positive and IB4-positive sub-populations (Amaya 

et al., 2000). However, Navi.9 expression is positively correlated with IB4 

expression, unlike Navi.8 whose expression is positively correlated with TrkA 

expression (Fang et al., 2005 and 2006). Thus, there are significantly less TrkA- 

positive neurons expressing high levels of Navi.9 mRNA than Navi.8 mRNA in- 

vivo. Conversely, many GDNF responsive, IB4-positive neurons express high levels 

of Navi.9 and are not responsive to NGF. The overlap between TrkA and Navi.9 

mRNA expression is likely to be further reduced in-vitro, accounting for the poor 

efficacy of NGF in promoting the expression of Navi.9 mRNA in adult mouse DRG 

cultures. Once again, as in the case of Navi. 8, GDNF has been previously shown to 

positively regulate the expression of Navi.9 (Fjell et al., 1999a; Cummins et al.,

2000), raising the possibility that a combination of saturating concentrations of NGF 

and GDNF added to cultures could fully maintain Navi.9 mRNA expression at in- 

vivo levels.
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Artemin was also able to partially attenuate the culture-induced drop in TTX-resistant 

sodium channel mRNAs (figures 4.9A and B, 4.16A and B and 4.24A and B). The 

efficacy of artemin and NGF in promoting Navi.8 and Navi.9 mRNA expression is 

similar, reflecting the broad overlap in expression between TrkA and GFR-a3 in 

adult mouse DRG neurons. Artemin has previously been shown to promote the 

expression of Navi.8 protein following spinal nerve ligation (Gardell et al., 2003), 

however, my data is the first demonstration that artemin can modulate the expression 

of Navi.9.

The demonstration that MSP could positively modulate the expression of both Navi. 8 

and Navi.9 mRNAs, is also a novel finding. On the whole MSP has a similar efficacy 

to NGF and artemin in regulating the expression of TTX-resistant sodium channel 

mRNAs, suggesting, as for previous genes above, that there is a fairly broad overlap 

in the expression of TrkA, GFR-a3 and RON by cultured adult mouse DRG neurons. 

This hypothesis is substantiated by the results from experiments where different 

combinations of saturating concentrations of neurotrophic factors were added to adult 

mouse DRG cultures (figures 4.16A and B). Whilst the combination of artemin and 

NGF could significantly increase the expression of both Navi.8 and Navi.9 mRNAs 

compared to either factor alone, the increase in expression of both mRNAs compared 

to cultures with a single factor was only around 20%, suggesting that only a small 

proportion of Navi.8- or Navi.9-positive neurons express either TrkA in the absence 

of GFR-a3 or GFR-a3 in the absence of TrkA. The data for cultures containing a 

combination of artemin and MSP is very similar to the data for cultures containing 

NGF and artemin. Once again, adding both MSP and NGF to cultures did not 

significantly increase the expression of Navi.8 or Navi.9 mRNAs above cultures 

containing either MSP or NGF alone. This data adds weight to the hypothesis that 

TrkA and RON are co-expressed in almost entirely overlapping sub-populations on 

cultured adult mouse DRG neurons.

LIF did not reduce the expression of Navi.8 or Navi.9 mRNAs in adult mouse DRG 

neurons compared to control cultures (figure 4.24 A). Whilst LIF did have a tendency 

to reduce the ability of NGF, artemin and MSP to promote the expression of both 

TTX-resistant sodium channel mRNAs, this was only statistically significant in the
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cases of Navi. 8 mRNA in cultures containing MSP and Navi.9 mRNA in cultures 

containing NGF. Nonetheless, the data raises the possibility that LIF may play a role 

in regulating the nerve lesion -induced drop in TTX-resistant sodium channel mRNA 

in-vivo. As discussed above, the effects of LIF in culture may be masked by LIF 

secreted from Schwann cells within the cultures, especially if Navi.8 and Navi.9 

mRNAs are very sensitive to regulation by LIF. Once again, culturing adult DRG 

neurons with a LIF or gpl30 function blocking antibody may shed more light on the 

role of Schwann cell-derived LIF in regulating the expression of TTX-resistant 

sodium channel mRNAs both in-vitro, and in-vivo, following peripheral nerve lesion.

4.4.5. Galanin

In chapter three, the analysis of transgenic mice produced data suggesting that NGF 

may promote the expression of galanin mRNA in neonatal neural-crest derived 

sensory neurons within trigeminal and dorsal root ganglia. This data was surprising, 

since it contradicted a number of publications demonstrating that a reduction in the 

availability of target field-derived NGF was at least partially responsible for the 

dramatic increase in galanin expression in adult DRG neurons following peripheral 

nerve lesion. Moreover, exogenous NGF has been shown to reduce galanin expression 

in adult DRG neurons, both in culture and in-vivo following peripheral nerve lesion 

(Verge et al., 1995; Kerekes et al., 1997; Ozturk and Tonge, 2001; Shadiack et al., 

2001).

In contrast to chapter three, the data presented in this chapter is in agreement with 

previously published data documenting the regulatory effects of NGF on galanin 

mRNA expression in adult DRG neurons. Galanin mRNA was expressed at very low 

levels in freshly dissociated adult mouse DRG (figures 4.10A, 4.17A and 4.25A), 

corresponding to the restricted expression of galanin in 2-5% of, mainly small- 

diameter, adult rodent DRG neurons in-vivo (Chang et al., 1985; Skotfitsch and 

Jacobowitz, 1985; Xu et al., 1996; Ma and Bisby, 1999). Galanin mRNA expression 

increased more than 20-fold in adult mouse DRG neurons over a 96 hour culture 

period. This is in accordance with previous in-vitro studies on adult mouse and rat 

DRG neurons (Kerekes et al., 1997; Ozturk and Tonge, 2001). A dramatic increase in
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galanin mRNA and peptide expression is also observed in adult rodent DRG 

following peripheral nerve injury (e.g. Hokfelt et al., 1987; Villar et al., 1989; Ma and 

Bisby, 1997, 1999; Zhang et al., 1998). The up-regulation of galanin expression in rat 

DRG following sciatic nerve injury occurs in both injured and “spared” neurons of all 

sizes and modalities (Ma and Bisby, 1997; 1999). A number of elegant transgenic 

studies suggest that lesion-induced galanin acts as a neuroprotective, anti-nociceptive 

agent (reviewed in Holmes et al, 2005).

The addition of lOng/ml NGF to cultures prevented about 40% of the culture-induced 

up-regulation of galanin mRNA (figures 4.10 A, 4.17 A and 4.25 A), an observation 

that is in agreement with previous literature documenting the regulation of galanin 

mRNA and peptide expression by NGF. The ability of NGF to prevent 40% of the 

culture-induced increase in galanin mRNA expression suggests that many of the 

small-diameter cells showing de-novo galanin expression in culture are TrkA-positive.

Artemin was also able to attenuate the increase in galanin mRNA expression in 

cultured DRG neurons, with an efficacy similar to NGF (figures 4.10A, 4.17A and 

4.25 A). The data suggests that most of the galanin-positive neurons that express TrkA 

and respond to NGF in culture also express GFR-a3 and respond to artemin. This 

hypothesis is supported by the observation that the addition of saturating 

concentrations of both artemin and NGF together to adult mouse DRG cultures only 

marginally decreases the expression of galanin mRNA compared to either factor 

alone. Moreover, the further decrease in galanin expression in cultures containing 

both NGF and artemin is only significant compared to cultures containing NGF alone. 

The observation that artemin can ameliorate the culture-induced increase in galanin 

mRNA expression is in accordance with recent data demonstrating that artemin can 

attenuate the increase in galanin peptide expression that occurs in rat DRG neurons 

following spinal nerve ligation (Gardell et al., 2003)

MSP was also able to partially prevent the culture-induced up-regulation in galanin 

mRNA in adult mouse DRG neurons (figures 4.10 A, 4.17 A and 4.25 A), although 

with a slightly lower efficacy than NGF or artemin. The combination of artemin and 

MSP was significantly more effective in reducing galanin mRNA expression than
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either factor alone, reducing the increase in galanin mRNA by around 75%. This 

suggests that a number of galanin mRNA-positive neurons exist in adult mouse DRG 

cultures that express either GFR-a3 or RON (figure 4.17 A). In contrast, MSP- 

responsive neurons expressing galanin would appear to be entirely a subset of NGF- 

responsive, galanin-positive neurons, since the addition of both factors together to 

cultures is no more effective than NGF alone in reducing galanin mRNA levels.

The addition of all three neurotrophic factors to cultures also inhibits the culture- 

induced increase in galanin mRNA by around 75%. The residual increase in galanin 

mRNA levels in the presence of all three neurotrophic factors is probably due to a 

combination of increased galanin mRNA expression in IB4-positive, TrkA-negative 

C-fibre neurons together with increased galanin mRNA expression in medium to 

large-diameter, myelinated neurons (Ma and Bisby, 1997; 1999). The former neuronal 

population expresses functional receptors for GDNF in-vivo (Molliver and Snider, 

1997; Molliver et al., 1997; Kashiba et al., 1998; Bennett et al., 2000) and may well 

respond to GDNF in culture by decreasing their expression of galanin mRNA. GFR- 

a l  expression is up-regulated in a sub-population of medium to large-diameter DRG 

neurons following nerve injury (Kashiba et al., 1998; Bennett et al., 2000). If GFR-al 

is also up-regulated in this neuronal sub-population in culture, GDNF may also be 

able to ameliorate the culture-induced increase in galanin mRNA in larger myelinated 

DRG neurons. Indeed, GDNF can attenuate the increase in galanin peptide that occurs 

in both large- and small-diameter rat DRG neurons following spinal nerve ligation 

(Wang et al., 2003).

Interestingly, BDNF has also been shown to ameliorate culture-induced increases in 

galanin mRNA expression in rat DRG neurons (Kerekes et al., 1997). The BDNF 

receptor, TrkB, is predominantly expressed by medium to large-diameter myelinated 

DRG neurons in the adult rodent (Karchewski et al., 1999; Kashiba et al., 2003), 

raising the possibility that BDNF attenuates increases in galanin mRNA expression in 

this population of neurons in-vitro.

NT-3 is also a candidate neurotrophic factor for attenuating the culture-induced 

increase in the expression of galanin mRNA in large, myelinated, TrkC-positive
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proprioceptive neurons, since it has been shown to reduce the expression of galanin 

mRNA in adult rat DRG neurons following chronic constriction injury (Wilson- 

Gerwing and Verge, 2006).

The presence of LIF significantly enhanced the culture-induced expression of galanin 

mRNA in adult mouse DRG cultures compared to control cultures (figure 4.25 A). LIF 

also significantly reduced the ability of NGF, artemin and MSP to attenuate the 

expression of galanin mRNA in culture. This data is in accordance with several 

previous publications that demonstrate that LIF increases the expression of galanin 

mRNA within adult DRG neurons, both in-vitro and in-vivo (Sun and Zigmond, 1996; 

Comess et al., 1996, 1998; Thompson et al., 1998; Kerekes et al., 1999; Ozturk and 

Tonge, 2001). Whilst these publications have demonstrated that LIF antagonises the 

effects of NGF in suppressing the expression of galanin, the data presented here is the 

first demonstration that LIF directly antagonises the ability of MSP and artemin to 

down-regulate the expression of galanin.

4.4.6. PACAP

The levels of PACAP mRNA expressed by adult mouse DRG neurons consistently 

increased more than ten-fold over 96 hours in culture (figures 4.1 OB, 4.17B and 

4.25B). The low level of PACAP mRNA in DRG neurons that was observed at time 0 

reflects the fact that PACAP is only expressed in 10% of adult rodent DRG neurons, 

predominantly in a sub-population of CGRP- and SP-positive small-diameter neurons 

(Moller et al., 1993; Mulder et al., 1994). The culture-induced increase in PACAP 

mRNA expression mirrors the effects of sciatic nerve transection and nerve 

compression injury (Zhang et al., 1995; Zhang et al., 1996; Jongsma-Wallin et al., 

2001; Pettersson et al., 2004). The former injury leads to a marked increase in the 

number of medium- to large-diameter L4/L5 DRG neurons expressing PACAP 

mRNA and protein, whilst sciatic nerve compression increases the expression of 

PACAP mRNA and protein in both large and small lumbar DRG neurons.

442



The addition of lOng/ml NGF to cultures attenuated the culture-induced increase in 

PACAP mRNA expression. However, the efficacy of NGF in reducing PACAP 

expression was low, and was not statistically significant in all series of culture 

experiments (figure 4.17 B). The ability of NGF to partially prevent the culture- 

induced increase in PACAP mRNA expression within adult DRG neurons was an 

unexpected result, as NGF has previously been shown to play a role in the 

inflammation-induced increase in PACAP expression in TrkA-positive nociceptive 

neurons (Zhang et al., 1998; Jongsma-Wallin et al., 2003). Moreover, exogenous NGF 

increases the expression of PACAP mRNA and protein within rat TrkA-positive 

lumbar DRG neurons, both in the intact animal and following sciatic nerve transection 

(Jongsma-Wallin et al., 2001). However, NGF attenuates the increase in PACAP 

mRNA and peptide that occurs in TrkC-positive proprioceptive neurons of L4/L5 

DRG following sciatic nerve transection (Jongsma-Wallin et al., 2001). Presumably, 

NGF regulates PACAP expression in TrkC-positive neurons via the common 

neurotrophin receptor, p75, since there are no reports of de-novo TrkA expression 

within proprioceptive neurons following nerve injury. Alternatively, NGF may 

regulate PACAP mRNA expression within proprioceptive neurons by a paracrine 

mechanism. Whatever the mechanism, the fact that NGF down-regulates PACAP 

expression in proprioceptive neurons following nerve injury, explains the data 

presented in figures 4.10B, 4.17B and 4.25 B. It is likely that only 10% of DRG 

neurons express TrkA and PACAP mRNA in culture (Moller et al., 1993; Mulder et 

al., 1994), limiting the ability of NGF to increase the expression of PACAP mRNA 

within RNA samples extracted and purified from all cultured neurons. The increase in 

PACAP mRNA within TrkA-positive nociceptive neurons observed may be more 

than offset by the ability of NGF to attenuate the increase in PACAP mRNA within 

cultured proprioceptive neurons. A simple way to test this hypothesis would be to 

culture L4/L5 DRG neurons alongside DRG neurons from lower-thoracic axial levels. 

If the hypothesis is correct, PACAP mRNA levels should be increased by NGF in the 

cultures from thoracic DRG, containing few proprioceptive neurons, and decreased by 

NGF in cultures from L4/L5 DRG that contain relatively high numbers of 

proprioceptive neurons.

Artemin and MSP reduced PACAP mRNA expression in adult mouse DRG cultures 

by 15% compared to control cultures. This reduction, however, does not reach
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statistical significance in any set of cultures. The limited efficacy of MSP and artemin 

in reducing PACAP mRNA expression is in accordance with the observation that 

PACAP mRNA expression is restricted to a small subset of nociceptive neurons in 

adult rodent DRG and its expression is predominantly up-regulated within medium- to 

large-diameter myelinated neurons following peripheral nerve transection (Moller et 

al., 1993; Mulder et al., 1994; Zhang et al., 1995; Zhang et al., 1996; Jongsma-Wallin 

et al., 2001). The majority of larger myelinated neurons do not express GFR-a3 and 

the data presented in this chapter supports the idea that RON expression is also 

restricted to nociceptive neurons. The data suggests that a sub-population of small- 

diameter nociceptive neurons express PACAP mRNA and receptors for artemin and 

/or MSP in control DRG cultures, and that artemin and MSP can significantly 

attenuate PACAP mRNA expression within this sub-population of neurons. If this 

were the case, this would be the first example of artemin and MSP having a different 

effect to NGF on regulating gene expression within nociceptive sensory neurons. 

Whilst this hypothesis would require a detailed immuno-cyctochemistry study for 

verification, the data from the “additive” experiments gives it support. A combination 

of saturating concentrations of artemin and MSP reduced the culture-induced increase 

in PACAP mRNA expression by a statistically significant 30% (figure 4.17B). The 

additive effect of MSP and artemin suggests that most nociceptive DRG neurons 

expressing PACAP mRNA in culture express either GFR-a3 or RON, but not both 

(or, of course, neither receptor).

The addition of 50 ng/ml LIF to adult DRG cultures reduced the expression of 

PACAP mRNA by 25% compared to control cultures, a reduction that is statistically 

significant (figure 4.25B). Moreover, LIF enhances the limited ability of artemin and 

MSP, but not NGF, to attenuate the culture-induced up-regulation of PACAP mRNA, 

although this effect does not quite reach statistical significance. The ability of LIF to 

reverse the “axotomised phenotype” in the case of PACAP mRNA is markedly 

different to the effects that it exerts on the majority of other genes investigated in this 

chapter. Functional receptors for LIF are not expressed on the myelinated, larger- 

diameter DRG neurons that predominantly up-regulate PACAP mRNA expression 

following nerve transection (Zhang et al., 1995; Zhang et al., 1996; Jongsma-Wallin 

et al., 2001; Thompson et al., 1997). However, the data from cultures containing
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artemin and MSP suggests that a sub-population of small-diameter nociceptive 

neurons express PACAP mRNA in control DRG cultures. This raises the possibility 

that LIF decreases the expression of PACAP mRNA in this neuronal sub-population. 

The possibility also exists that LIF attenuates the culture-induced de-novo expression 

of PACAP mRNA within large-diameter myelinated DRG neurons via a paracrine 

mechanism involving the release of a second neurotrophic factor from small-diameter 

DRG neurons.

4.4.7. ATF3 and DINE

ATF3 and DINE are both ostensibly injury induced factors in the adult peripheral 

sensory nervous system. Both are expressed at extremely low levels in undamaged 

adult DRG neurons, but are rapidly induced following various peripheral nerve 

lesions. DINE mRNA is predominantly up-regulated in TrkA-positive, IB4-negative 

nociceptive neurons, and DINE expression is often coincident with de-novo galanin 

expression. No detectable DINE expression is found in glial cells following nerve 

injury (Kiryu-Seo et al., 2000; Kato et al., 2002; Ohba et al., 2004; Nagata et al., 

2006). In contrast, ATF3 mRNA and protein expression is induced within the 

majority of damaged neurons, of all sizes and modalities, following peripheral nerve 

damage (Tsujino et al., 2000; Tsuzuki et al., 2001; Obata et al., 2003; Wang et al., 

2003; Averill et al., 2004) ATF3 is also induced within Schwann cells following 

nerve lesion (Hunt et al., 2004).

The developmental time course data for ATF3 and DINE mRNAs reinforces the 

hypothesis that both factors play a negligible role in maintaining the functions and 

phenotype of healthy sensory neurons (figures 4. IB and C) Both mRNAs were barely 

detactable in either neural crest- or placode-derived sensory neurons at ages between 

E l6 and the adult.

In accordance with the in-vivo nerve injury data, ATF3 and DINE mRNAs were both 

markedly up-regulated in cultured adult mouse DRG neurons over a 96 hour culture 

period (figures 4.11A and B, 4.18A and B and 4.26A and B). This is the first data 

showing that these two genes are induced in adult DRG neurons by cell culture. The
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culture-induced increase in ATF3 mRNA over the 96 hour culture period (2- to 3- 

fold) was significantly less than the culture induced increase in DINE mRNA (30- 

fold). This observation is a little surprising, since, based on in-vivo nerve injury 

studies, DINE mRNA is only likely to be up-regulated in a relatively small sub

population of cultured DRG neurons, whereas ATF3 is likely to be up-regulated in the 

majority of neurons and contaminating Schwann cells. Figure 4.7C provides a partial 

explanation for this observation. The rise in ATF3 mRNA levels appears to be short 

lived, peaking at 48 hours of culture and falling by 96 hours in culture. This is not the 

case for DINE mRNA (data not shown). Indeed, ATF3 mRNA was the only example 

amongst all of the mRNAs assayed showing a greater culture-induced change in gene 

expression at 48 hours than 96 hours (figures 4.7A and B and data not shown). ATF3 

mRNA was also the only mRNA assayed that showed significantly higher expression 

(> 5-fold) in freshly dissociated neurons compared to the intact DRG (data not 

shown), suggesting that the dissection and dissociation procedure initiates rapid ATF3 

mRNA induction. Thus, if the induction of ATF3 mRNA was assessed between intact 

DRG and neurons after 48 hours in culture the magnitude of the culture-induced 

induction would be greater than that of DINE mRNA.

NGF, artemin and MSP were all able to partially attenuate the culture-induced up- 

regulation of ATF3 and DINE mRNAs, although in the case of DINE mRNA the 

effects of the three neurotrophic factors are not always statistically significant (figures 

4.11A and B, 4.18A and B and 4.26A and B). Exogenous NGF has previously been 

shown to reduce ATF3 protein expression in small-diameter lumbar DRG neurons 

following sciatic nerve transection (Averill et al., 2004). My data is the first 

demonstration that NGF can regulate the expression of ATF3 mRNA in cultured adult 

rodent sensory neurons. Although it has not been established whether NGF can 

ameliorate DINE mRNA expression in nociceptive DRG neurons following 

peripheral nerve lesion, sequestering target field-derived NGF with an NGF blocking 

antibody is sufficient to induce DINE mRNA expression within small-diameter DRG 

neurons in the adult rat (Kato et al., 2002). Withdrawal of NGF from neonatal rat 

DRG explant cultures also induces DINE mRNA expression (Kato et al., 2002). 

Neither artemin nor MSP have been previously shown to regulate the expression of 

either ATF3 or DINE mRNAs in adult rodent DRG neurons in-vitro or in-vivo.
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Artemin was consistently the most effective of the three neurotrophic factors in 

reducing both DINE and ATF3 mRNA levels in all experiments here. Whilst both 

TrkA and GFR-a3 are predominantly expressed by small-diameter nociceptive 

neurons in-vivo, the number of DRG neurons expressing TrkA is double the number 

of neurons expressing GFR-a3. It might therefore be anticipated that NGF would be 

more effective than artemin in regulating the expression of neuronal genes (like 

DINE) whose expression is mainly restricted to nociceptive neurons (Averill et al., 

1995; Molliver et al., 1997; Michael and Priestley, 1999; Orozco et al., 2001). 

However, as discussed above, unpublished data from my laboratory suggests that the 

number of NGF responsive neurons decreases in adult mouse DRG cultures, whilst 

the number of artemin responsive neurons increases. This phenomenon may partially 

account for the better than expected efficacy of artemin in regulating DINE and ATF3 

mRNA compared to NGF. NGF and MSP appeared to show a similar efficacy in 

reversing culture-induced changes in ATF3 and DINE mRNA expression.

The addition of saturating combinations of either artemin and NGF or artemin and 

MSP to adult mouse DRG cultures did not significantly decrease the levels of ATF3 

mRNA or DINE mRNA beyond the levels found with artemin alone (figure 4.18A). 

Similarly, the addition of all three neurotrophic factors to cultures is no more effective 

in attenuating the culture induced increase in DINE and ATF3 mRNAs than artemin 

alone. This data suggests that more ATF3 and DINE expressing cells express GFR-a3 

than express TrkA or RON. It could be postulated therefore that NGF- and MSP- 

responsive cells expressing these two injury inducible factor mRNAs are a subset of 

artemin responsive cells. The addition of saturating concentrations of NGF and MSP 

to cultures was also no more effective at reducing ATF3 and DINE mRNA levels than 

either factor alone. The similar efficacy of NGF and MSP in regulating gene 

expression, and the lack of an additive effect of the two neurotrophic factors when 

added to cultures together, is a recurrent theme of the data presented in this chapter 

and suggests that NGF and MSP responsive adult mouse DRG neurons are a broadly 

over-lapping population, at least in culture.
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The addition of either artemin alone or artemin together with any combination of the 

other two neurotrophic factors reduced the levels of ATF3 mRNA to time 0 levels. 

However, based on in-vivo data, ATF3 is likely to be up-regulated in the majority of 

cultured adult mouse DRG neurons (Averill et al., 2004), whereas GFR-a3 

expression, and hence artemin responsiveness, is likely to be restricted to a sub

population of small-diameter nociceptive neurons (Gardell et al, 2003). This raises the 

possibility that the apparent 100% efficacy of artemin in preventing the culture- 

induced up-regulation of ATF3 mRNA is an artifact of the fact that dissection and 

dissociation of DRG induces significant ATF3 mRNA expression, thereby giving an 

artificially high time 0 level of ATF3 mRNA expression. GDNF has been shown to 

reduce the levels of ATF3 in both small- and large-diameter DRG neurons following 

peripheral nerve lesion (Wang et al., 2003; Kato et al., 2004), and is therefore a good 

candidate neurotrophic factor for reducing ATF3 mRNA expression in cultured DRG 

neurons that are not responsive to NGF, artemin or MSP.

DINE mRNA has been reported to be induced in mainly TrkA-positive, nociceptive 

DRG neurons following peripheral nerve injury (Kato et al., 2002). Since this 

neuronal sub-population is responsive to NGF and artemin in culture (for example, 

see CGRP mRNA expression data in this chapter), it is curious that a combination of 

these neurotrophic factors were not more effective in reducing the culture-induced 

increase in DINE mRNA expression. It seems likely that the up-regulation in DINE 

mRNA is not entirely restricted to TrkA-positive nociceptive neurons in culture.

The addition of 50ng/ml LIF to adult mouse DRG cultures did not alter the levels of 

ATF3 mRNA compared to control cultures (figure 4.26 A). Similarly, the addition of 

LIF to cultures containing NGF, artemin or MSP did not alter ATF3 mRNA compared 

to cultures containing either of the three neurotrophic factors alone. The data suggests 

that LIF does not play a role in inducing ATF3 mRNA expression following nerve 

injury. This observation is not that surprising, since functional LIF receptors are 

restricted to small-diameter, nociceptive neurons in the adult rodent (Thompson et al.,

1997), whereas ATF3 is induced in neurons of all sizes and modalities following 

peripheral nerve lesion (Averill et al., 2004). In the absence of published data 

demonstrating that ATF3 expression is positively-regulated by another injury-induced
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neurotrophic factor following nerve lesion, it would seem that neurotrophic factor 

withdrawal drives ATF3 expression. However, this hypothesis does not fit easily with 

the extremely rapid onset of ATF3 mRNA induction compared to the other genes 

analysed in this chapter. Further work needs to be done to establish the factors that 

drive the expression of ATF3 in damaged neurons.

Surprisingly, the addition of LIF to adult mouse DRG cultures partially prevented the 

culture-induced up-regulation of DINE mRNA observed in control cultures.

Moreover, LIF significantly increased the effectiveness of artemin, NGF and MSP in 

ameliorating the increase in DINE mRNA expression (figure 4.26 B). This is the first 

data suggesting that LIF attenuates axotomy/culture induced changes in gene 

expression in nociceptive adult DRG neurons that express functional LIF receptors. 

This observation is a marked contrast to the apparent ability of LIF to enhance or 

drive the “axotomised phenotype” in nociceptive neurons that has been observed for 

many of the genes analysed in this chapter and has also been reported in several 

previous publications (Mulderry, 1994; Comess et al., 1996, 1998; Ozturk and Tonge, 

2001; Kerekes et al., 1999; Sun and Zigmond, 1996).

The data presented in figure 4.26 B conflicts with previous data demonstrating that 

the application of LIF to rat sciatic nerves induced DINE mRNA expression in lumbar 

DRG, as measured by semi-quantitative RT-PCR and in-situ hybridization (Kato et 

al., 2002). The application of a gp 130 blocking antibody was also shown to reduce 

DINE mRNA expression in DRG following sciatic nerve transection. Additionally, 

in-vitro experiments, using explanted lday old rat DRG, demonstrated that LIF could 

increase DINE mRNA expression and that the increased DINE mRNA expression 

could be antagonised by a gp 130 blocking antibody. The data in this publication was 

not convincing, since merely exposing the sciatic nerve to allow the application of 

LIF induced significant DINE mRNA expression and LIF only increased this 

expression 1.3-fold. Similarly, the application of a blocking gpl30 antibody to 

transected sciatic nerve only reduced DINE mRNA expression by 20% compared to 

controls. As discussed above, explant cultures are not a good model of axotomy and 

nerve injury in the adult compared to dissociated cultures, especially with neonatal 

ganglia. Moreover, the changes in DINE mRNA expression in explant cultures 

containing LIF were also only 1.2- to 1.3-fold, in accordance with the in-vivo
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experiments. Neither semi-quantitative RT-PCR nor in-situ hybridization are accurate 

enough techniques to measure the small changes in DINE mRNA expression that 

occurred in both the in-vivo and in-vitro studies presented in this publication.

The interpretation of the data presented in figure 4.26 B is complicated by the 

likelihood that control cultures will contain LIF as a result of contaminating Schwann 

cells. Clearly, further experiments are needed, using LIF together with anti-LIF and 

anti-gpl30 blocking antibodies, to determine whether LIF really does antagonise the 

culture-induced up-regulation of DINE mRNA in adult mouse DRG neurons.

4.4.8. P2X3

The time course of P2X3 mRNA expression revealed that P2X3 mRNA is expressed 

in a similar developmental pattern in nodose, trigeminal and dorsal root ganglia 

(figure 4.1 A). In all three ganglia, P2X3 mRNA levels were highest in the embryonic 

and neonatal period and a significant drop in expression occurred between P5 and the 

adult. The drop in the expression of P2X3 mRNA was most marked in the two neural- 

crest derived sensory ganglia. This data is in agreement with previously published 

observations of P2X3 mRNA and protein expression in the developing and adult 

peripheral sensory nervous system. P2X3 protein is found in the majority of sensory 

neurons within embryonic trigeminal, dorsal root and nodose ganglia (Boldogkoi et 

al., 2002; Ruan et al., 2004). In contrast, within lumbar DRG of the adult rodent, 

P2X3 protein and mRNA are localised to a sub-population of IB4-positive, small- 

diameter neurons. Additional P2X3 expression is also observed within a sub

population TrkA- and CGRP-positive C- and A-5 fibre nociceptors in more rostral 

DRG. P2X3 expression is also restricted to predominantly small-diameter, IB4- 

positive neurons in the adult trigeminal and nodose ganglia (Vulchanova et al., 1998; 

Bradbury et al., 1998; Ramer et al., 2001; Boldogkoi et al., 2002; Ruan et al., 2004).

Cultured adult mouse DRG neurons showed no significant alteration in the levels of 

P2X3 mRNA expression over time in culture (figures 4.12 A, 4.19 A and 4.27A), 

suggesting that nerve injury does not affect the expression of this gene. However, 

peripheral nerve lesion has been shown to induce P2X3 mRNA and protein
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expression in “spared”, predominantly small-diameter, neurons and decrease P2X3 

mRNA and protein expression in damaged, ATF3-positive, neurons (Eriksson et al., 

1998; Novakovic e t ., 1999; Bradbury et al., 1998; Tsuzuki et al., 2001; Kage et al., 

2002; Gardell et al., 2003). Since dissection and dissociation of DRG for culture 

emulates axotomy, an injury paradigm that damages all DRG neurons, it would be 

anticipated that P2X3 mRNA expression would increase over time in culture. P2X3 

mRNA is unique in the context of this study, in that it is the only mRNA analysed that 

does not markedly change its levels of expression over time in control cultures to 

mirror the changes in gene expression that occur in-vivo following nerve lesion- 

induced neuronal damage. This would suggest that restricted access to target field- 

derived neurotrophic factors is not the major driving force behind the fall in 

expression of P2X3 mRNA in injured DRG neurons in-vivo. Rather, the data tends to 

suggest that lesion-induced production and release of an as yet unidentified 

neuroactive molecule/protein, that is not present in culture, is responsible for the 

injury-induced reduction in P2X3 expression.

Exogenous GDNF and artemin can both ameliorate the reduction in P2X3 expression 

in damaged adult DRG neurons (Bradbury et al., 1998; Wang et al., 2003; Gardell et 

al., 2003) and exogenous GDNF and NGF can induce P2X3 expression in adult DRG 

neurons in the absence of peripheral nerve injury (Ramer et al., 2001). This data raises 

the possibility that an increased availability of these three neurotrophic factors may 

induce the increase in P2X3 expression observed in “spared” neurons following 

peripheral nerve lesion. Curiously, NGF and artemin were unable to promote the 

expression of P2X3 mRNA in adult mouse DRG cultures (figures 4.12 A, 4.19 A and 

4.27 A), a rare example of the in-vivo regulation of gene expression within sensory 

neurons not being mirrored in-vitro. MSP was also ineffective in regulating the 

expression of P2X3 mRNA in cultured adult DRG neurons.

The addition of LIF to adult mouse DRG cultures did not significantly alter the 

expression of P2X3 mRNA, either in the presence or absence of the other three 

neurotrophic factors (figure 4.27A). This novel data strongly suggests that injury 

induced LIF is not responsible for the decrease in P2X3 expression that occurs in 

damaged, ATF3-positive, neurons following peripheral nerve lesion.
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4.4.9. TTX-sensitive sodium channels

Navi.6 mRNA expression levels increased between E l6 and P5 in trigeminal and 

dorsal root ganglia, before dropping to slightly lower levels in the adult. In nodose 

ganglia, Navi.6 mRNA expression peaked at PO and there was a more substantial fall 

in the levels of Navi.6 mRNA between neonatal and adult ages, so that the levels of 

Navi.6 mRNA in the adult ganglia were similar to those at E l6 (figure 4.2A). Navi.6 

is expressed at high levels at the nodes of Ranvier in mature myelinated sensory 

neurons where it is responsible for the high repetitive firing rates, lack of response to 

slow depolarising stimuli and resurgent sodium currents that are characteristic of 

myelinated sensory neurons (Cummins et al., 1998; Cummins et al., 2001; Herzog et 

al., 2003a; Cummins et al., 2005).Therefore, it is not surprising that Navi.6 was 

expressed at high levels in adult neural-crest derived sensory ganglia and that its 

expression pattern is in accordance with the functional development of myelinated 

sensory neurons. Navi.6 is also expressed at low levels in a uniform distribution 

along the axons of C-fibre non-myelinated sensory neurons (Black et al., 2002). The 

significantly lower levels of Navi.6 mRNA in nodose ganglia compared to trigeminal 

and dorsal root ganglia may reflect a greater number of nociceptive {unmyelinated) C- 

fibres and a smaller number of low threshold, A-p fibre mechanoreceptors in this 

ganglion compared to neural-crest derived sensory ganglia.

Navi. 7 is found in both large and small sensory neurons of the developing rodent 

DRG, whereas Navi.7 expression is predominantly localised to small-diameter, 

nociceptive sensory neurons in the adult DRG (Felts et al., 1997; Black et al., 1996; 

Gould et al., 2000; Djouhri et al., 2003). The increasingly restricted expression of 

Navi.7 is reflected in the developmental expression pattern of its mRNA (figure 

4.2B). Decreasing levels of Navi.7 mRNA were observed in all three ganglia as 

development proceeds, with expression levels in the adult approximately 50% of 

those at E l6.
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The levels of both TTX-sensitive sodium channel mRNAs expressed within adult 

mouse DRG neurons fell significantly over 96 hours in culture, with the drop being 5 

fold in most sets of cultures (figures 4.12A and B, 4.19B, 4.20A, 4.27B and 4.28 A). 

The levels of Navi.6 and Navi.7 mRNAs expressed by adult L5 DRG neurons also 

falls following L5 spinal nerve ligation (Kim et al., 2002). Interestingly, the drop in 

both TTX-sensitive mRNAs was restricted to damaged neurons, as “spared” L4 DRG 

neurons showed no alteration in their expression of either mRNA (Kim et al., 2002). 

Therefore, my results, showing a fall in the levels of Navi.6 and Navi. 7 mRNAs in 

“axotomised” cultured DRG neurons, agree with the previously published literature.

NGF, artemin and MSP were all ineffective at reproducibly attenuating the culture- 

induced decrease in Navi.6 and Navi.7 mRNA expression within DRG neurons in a 

statistically significant manner. Receptors for NGF and artemin are not expressed on 

the majority of myelinated neurons that show the highest levels of Navi.6 mRNA 

expression in-vivo (Cummins et al., 1998; Averill et al., 1995; Molliver et al., 1997; 

Michael and Priestley, 1999; Orozco et al., 2001; Cummins et al., 2001 Black et al., 

2002). If this in-vivo expression of TrkA, GFR-a3 and Navi.6 mRNAs is reflected in 

cultured DRG neurons, it would not be surprising that NGF and artemin were unable 

to regulate the in-vitro expression of Navi.6 mRNA in a statistically significant way. 

Infact, the medium- to large-diameter myelinated neurons expressing high levels of 

Navi.6 mRNA would be expected to respond to BDNF, NT-3, and to a certain extent 

GDNF, in culture, due to the neurotrophic factor receptors co-expressed on this 

subpopulation of neurons (Karchewski et al., 1999; Kashiba et al., 2003; Kashiba et 

al., 1998; Bennett et al., 2000). It is therefore possible that a reduced access to central 

and/or peripheral target field-derived BDNF, NT-3 and GDNF is the driving force 

behind the inury- and culture-induced decrease in Navi.6 mRNA expression. 

Accordingly, the addition of these neurotrophic factors to cultures may ameliorate the 

decrease in Navi.6 mRNA expression observed over time.

To date, no published data has emerged that describes the neurotrophic factor 

regulation of Navi. 6 mRNA or protein. In contrast, several publications have failed to 

demonstrate that NGF regulates Navi.7 expression in sensory neurons. For example, 

transgenic mice over-expressing NGF specifically in the peripheral target fields of
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DRG neurons do not show increased expression of Navi.7 mRNA (Fjell et al.,

1999b). Moreover, TTX-sensitive currents do not decrease in TrkA expressing 

nociceptive neurons (in which Navi.7 is the main TTX-sensitive sodium channel in 

the non-lesioned rodent) in animals that have reduced levels of target field NGF as a 

result of immunization-induced anti-NGF antibody production (Fjell et al., 1999 (b)).

The addition of LIF to cultured adult mouse DRG neurons did not significantly alter 

the levels of Navi.6 and Navi.7 mRNA compared to control cultures (figures 4.27B 

and 4.28A). However, LIF was able to reduce the expression of Navi.6 and Navi.7 

mRNAs in cultures containing MSP and NGF (although this only reached statistical 

significance in the case of Navi.6 mRNA and MSP and Navi.7 mRNA and NGF). 

This data raises the possibility that LIF may be at least partly responsible for the nerve 

injury- and culture-induced drop in the expression of these two sodium channel 

mRNAs in small-diameter DRG neurons expressing functional LIF receptors. The 

limited ability of exogenous LIF to reduce sodium channel mRNA expression raises 

the possibility that the expression of both mRNAs are almost maximally depressed by 

the low amounts of LIF released into the culture medium by Schwann cells 

contaminating DRG cultures.

Although the data presented in figures 4.27B and 4.28A suggest that LIF may play a 

role in orchestrating the culture- and injury-induced down-regulation of Navi.6 and 

Navi.7 mRNAs, the minimal efficacy of LIF raises the possibility that other 

mechanisms also act to decrease the expression of these mRNAs following neuronal 

damage. The inability of NGF, artemin and MSP to promote the expression of 

Navi.6 and Navi.7 mRNAs suggests that reduced access to peripheral target field- 

derived neurotrophic factors is not the primary reason behind the culture-induced 

down-regulation of TTX-sensitive sodium channel mRNA. This is especially true of 

Navi.7 mRNA, since a large percentage of Navi.7 mRNA-positive cells express 

receptors for NGF and artemin (and probably MSP, according to the data in this 

chapter), yet these neurotrophic factors are ineffective in maintaining Navi.7 mRNA 

expression. In-vivo experiments have demonstrated that Navi.7 plays a role in setting 

normal nociceptive thresholds to noxious mechanical stimuli. More importantly,

Navi. 7 is implicated in the generation of inflammatory mechanical and thermal 

hyperalgesia (Nassar et al., 2004 and 2005; Black et al., 2004; Yeomans et al., 2005).
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Therefore, determining the factors that regulate Navi.7 mRNA expression, both 

following nerve lesion and in inflammatory conditions, is important and warrants 

further research.
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4.5. Results in Brief

In chapter 4, the neurotrophic factor regulation of genes of interest in the adult mouse 

was studied using neuronal DRG cultures. The key results can be summarised as 

below:

a- and p-CGRP:

• Expression of both a- and p-CGRP mRNAs decreased over time in culture, 

reflecting effects observed in situations of nerve damage and axotomy.

• NGF, artemin and MSP were all able to significantly attenuate this culture- 

induced decrease in mRNA expression.

• Effects of NGF and artemin were additive, and may reflect culture induced 

alterations in receptors for NGF and artemin. A culture-induced decrease in 

TrkA mRNA has been observed and is accompanied by a similar increase in 

the levels of GFR-a3 mRNA (S Wyatt unpublished observation -  data not 

shown). The net result of these changes in receptor gene expression is likely to 

be a decrease in the proportion of DRG neurons expressing either both TrkA 

and GFR-a 3 together, or expressing TrkA alone. An increase in the number 

of neurons expressing GFR-a 3 in the absence of TrkA might also be 

anticipated. The partially additive effects of NGF and artemin in this 

experiment might be as a result of such changes.

• The addition of LEF to cultures had markedly different effects on a- and p- 

CGRP:

o LIF had no effect on the culture-induced down regulation of a-CGRP 

or its regulation by NGF, artemin or MSP. 

o Addition of LIF significantly reduced the expression of p-CGRP 

mRNA compared to control cultures. Moreover it significantly 

inhibited the ability of MSP artemin and NGF to reduce the culture- 

induced decrease in mRNA expression.
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SP:

• Expression of SP mRNA decreased over time in culture reflecting the injury- 

induced decrease observed previously in models of nerve injury.

• The presence of NGF, MSP or artemin significantly attenuated the culture- 

induced decease in SP.

• Additive effects of NGF and artemin were observed and are likely to reflect 

the alterations in receptor expression in such culture situations (as mentioned 

above).

• Addition of LIF alone had no effect on the culture-induced down regulation of 

SP mRNA, however it did significantly attenuate the positive effects of NGF, 

artemin and MSP

VR1:

• Expression of VR1 mRNA decreased over time in culture.

• The addition of NGF could partially prevent this decrease, and interestingly, 

both artemin and MSP could also significantly attenuate this decrease.

• No additive effects of any of the three factors was observed suggesting that 

those adult DRG neurons that express VR1 mRNA in culture, also express 

receptors for all three neurotrophic factors.

• Effects of LIF were very similar to those effects on SP. LIF alone had no 

effect on the culture induced down-regulation of VR1 mRNA, however it 

could attenuate the ability of NGF, artemin and MSP to promote VR1 mRNA 

expression.
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Nav1.8 and Nav1.9:

• A culture induced drop in both Navi .8 and Navi .9 mRNA expression was 

observed, mirroring the effects observed in peripheral nerve injury.

• NGF, artemin and MSP could all partially inhibit this downregulation, 

however levels were not returned to those at time 0.

• Additive effects of NGF and artemin were observed suggesting that there is a 

small proportion of TTX-R expressing neurons that express either TrkA in the 

absence of GFRa3 or GFRa3 in the absence of TrkA.

• LIF alone has no effect on the culture-induced downregulation of either TTX- 

R sodium channel, however it did appear to reduce the ability of NGF, artemin 

and MSP to promote the expression of Navi.8 and Navi.9.

Galanin:

• Galanin mRNA expression increased over time in culture in accordance with 

previous studies.

• This up-regulation was inhibited by the presence of NGF, artemin and/or 

MSP.

• Additive effects of MSP and artemin were observed suggesting a population 

of galanin expressing neurons express either RON or GFRa3, but not both.

• The presence of LIF significantly enhanced the culture-induced up-regulation 

of galanin mRNA as well as inhibiting the ability of NGF, artemin and MSP to 

attenuate its expression. This might suggest that the increase in LIF observed
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at sites of nerve injury may promote the subsequent alterations in gene 

expression that occur as a consequence of nerve damage.

PACAP:

• PACAP mRNA expression increased over 96 hours in culture.

• NGF could inhibit this upregulation, however the effect was small and not 

significant in all cultures. Effects of MSP and artemin were also apparent, but 

never reached statistical significance. These results reflect the idea that the 

upregulation in PACAP mRNA observed occurs predominantly in, TrkC 

expressing, medium to large diameter myelinated neurons that are not 

responsive to NGF.

• The additive effect of MSP and artemin observed suggests that most 

nociceptive DRG neurons expressing PACAP mRNA express either GFRa3 

or RON, but not both.

• Interestingly the presence of LIF appears to reverse the culture-induced 

upregulation in PACAP mRNA, and moreover enhances the limited ability of 

artemin and MSP (but not NGF) to attenuate the culture-induced upregulation 

of PACAP mRNA. This conflicts most of the previous data in which LIF 

appears to enhance the culture induced changes in gene expression.

ATF3 and DINE:

• Expression of both ATF3 and DINE mRNAs was markedly up-regulated over 

time in culture.

• NGF, artemin and MSP were all able to inhibit the culture-induced up

regulation in ATF3 mRNA, and also to some extent DINE mRNA (although 

results were not always significant for NGF).
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• Artemin was consistently the most effective of the neurotrophic factors in 

reducing expression of both DINE and ATF3 mRNAs. This might be a 

reflection of the alteration in GFRa3 and TrkA receptors that occurs over time 

in culture (as mentioned previously).

• LIF had no effect on ATF3 mRNA expression, however its presence partially 

prevented the culture-induced up-regulation of DINE mRNA observed in 

control cultures. Furthermore LIF appeared to enhance effects of artemin,

NGF and MSP in attenuating the culture induced up-regulation in DINE 

mRNA.

P2X3:

• No alteration in P2X3 mRNA was observed over time in culture.

• NGF, artemin and MSP did not appear to regulate expression of P2X3 mRNA, 

and the addition of LIF also had no notable effects.

Nav1.6 and Nav1.7:

• Expression of both of these TTX-S sodium channels decreased over time in 

culture.

• No regulatory effects were observed for NGF, artemin or MSP.

• The presence of LIF alone had no effect on expression of Navi .6 or Navi .7 

mRNAs, however in cultures containing MSP or NGF, the addition of LEF was 

able to reduce the expression of Navi.6 and Navi.7 mRNAs further. This 

result might suggest that the increase in LIF following nerve injury is partially
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responsible for the associated alterations in the expression of these sodium 
channels.
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Chapter 5

General Discussion

In the aims and objectives of this thesis I outlined the main objective of this project, - 

to gain an insight and expand knowledge of the regulation and patterns of expression 

of particular genes, which are required for a number of key functional properties of 

subsets of sensory neurons.

In this thesis I have indeed gained much knowledge of the neurotrophic factor 

regulation of such genes. I have identified the differences in expression of the selected 

genes at different ages, in different ganglia and in different subpopulations of sensory 

neurons. I have used both in vitro and in vivo methods and as well as enhancing and 

expanding upon previous research, I have in some cases found conflicting results.

This is hardly surprising however, considering the number of variables involved -  

time, age, species and experimental approach to name just a few.

In chapter 3 of this thesis both in vivo and in vitro experiments were used, and on 

occasion, produced differing results. Likewise the in vitro cultures used in chapter 4, 

occasionally produced findings which conflicted with those from other published 

work in which in vivo approaches were utilised. This, however, is to be anticipated 

due to the different objectives underlying the two types of experiment. In vitro 

experiments tend to focus on organs, tissues, cells etc rather than the whole organism 

and are best suited at deducing the mechanism of action of a particular molecule. In in 

vitro experiments there are fewer variables, and reactions/effects are amplified 

making results more apparent. In contrast, experiments in vivo allow the observation 

of effects of an experiment on its living subject. As such, results from these two types 

of experiment can often be strikingly different, and should therefore be interpreted 

and compared with caution.
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Key Findings

Two of the key main outcomes of this thesis were the discovery of the difference in 

regulation of a  and p CGRP mRNAs, and the finding that MSP can regulate gene 

expression in the adult mouse.

a  and p CGRP share high sequence homology, differing by just one amino acid in the 

rat (and three in the mouse). They are however the products of separate genes and 

show different expression profiles, and as such functionally distinct roles, and 

regulation might therefore be anticipated. Despite this, very few studies have 

discriminated between the two isoforms of CGRP, mainly due to experimental 

difficulties in trying to individually detect such highly homologous molecules.

Real time Q-PCR has enabled me to accurately detect the expression of both isoforms 

and interestingly my results do indeed show that although regulation may be similar 

in some circumstances, in other situations contrasting patterns of regulation are 

apparent.

In the embryonic mouse, results show that the a  isoform of CGRP requires TrkA 

signalling for initial induction of expression within DRG, however p-CGRP shows no 

such requirement. By birth, NGF/TrkA signalling does seem to be important for the 

expression of both isoforms, since TrkA^'/Bax7' neonates showed a significant loss of 

a- and p~ CGRP mRNAs in both trigeminal ganglia and DRG compared to Bax7' 

neonates. NGF/TrkA signalling also appeared to be required for full expression of 

both a- and p-CGRP mRNAs by nodose neurons.

In the adult mouse mRNAs of both isoforms were down-regulated, over time in 

culture and both could be positively regulated by the addition of NGF, MSP or 

artemin. Interestingly however LIF affected the expression of a  and p CGRP in 

markedly different ways. LIF had no effect on the expression of a-CGRP mRNA, 

however its presence significantly reduced the expression of P-CGRP mRNA in
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comparison to control cultures. Furthermore it inhibited effects of NGF, MSP and 

artemin, which all act to attenuate the culture induced decrease in P-CGRP

A second key finding of this thesis was the demonstration that MSP can regulate the 

expression of a number of functionally important sensory neuron mRNAs (a-CGRP, 

p-CGRP, SP, Navi.8, Navi.9, VR1, PACAP, galanin, DINE, ATF3) as outlined in 

chapter 4. This is an entirely novel result. To date effects of this factor on gene 

regulation has only been addressed in the embryonic mouse. This is of particular 

importance, since changes in the expression of the genes under test, that occur during 

inflammation and following nerve trauma, may be causally related to pathological 

pain conditions. A role for MSP and the onset of such pain states is thus indicated.

Further Research

Obviously, had time and cost not been a factor, the thesis could have been expanded 

further, with additional experiments to confirm or disprove many of the theories put 

forward throughout this study.

Experiments using temporally and spatially controlled knockouts of neurotrophic 

factors receptors would be useful as would avoid the pitfalls of aberrant 

differentiation and/or target field innervation affecting the results. However such 

experiments are costly and time-consuming and some strains of mice that would be 

useful do not yet exist.

Immuno-histochemical study of sensory ganglia from TrkA'7'/Bax'7' and NT-3'7'/B ax'7' 

alongside those from temporally controlled TrkA'7' and NT-3'7' would also prove 

useful to determine the subpopulations of neurons within such mice and how the loss 

of TrkA or NT-3 from birth affects the subpopulations of neurons in the sensory 

ganglia.
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In vivo approaches involving injection of neurotrophic blocking reagents or 

neurotrophic factors would allow the study of effects of decreasing/increasing target 

field-derived neurotrophic factors on transcriptional regulation of the genes under test.

With the use of double null mutant adult mice I could explore in vivo effects in the 

adult, however this would be time consuming and costly and result in unnecessary 

animal wastage.

In summing up, this thesis provides further background to the role of neurotrophic 

factors within sensory neurons at different stages of development, providing insight 

into the regulation of some particularly important genes within different populations 

of sensory neurons of the mouse. Since many of the genes studied have roles both in 

determining normal nociceptive thresholds, and in the generation of inflammatory 

and neuropathic pain conditions, a through understanding of their expression and 

regulation is of importance for the therapeutic advancement of research in these 

fields.
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Appendix I

Abbreviations

AC Adenyl Cyclase

Ach Acetylcholine

AChR Acetylcholine receptor

AD Alzheimer’s disease

AM Adrenomedullin

AMY Amylin

ART Artemin

ASO Antisense oligonucleotide

ATF3 Activating transcription factor 3

ATP Adenosine triphosphate

BDNF Brain derived neurotrophic factor

bFGF basic fibroblast growth factor

CaP Prostate cancer

CFA Complete Freud’s Adjuvant

CGRP Calcitonin Gene Related Peptide

ChAT Choline acetyltransferase

CH Cyclohexamide

CHO cells Chinese hamster ovarian cells

CLC Cardiotrophin-like cytokine

CMF-HBSS Calcium and Magnesium Free Hank’s Balanced Salt Solution

CNS Central Nervous System

CNTF Ciliary neurotrophic factor

COX Cyclooxygenase

CT Calcitonin

CT-1 Cardiotrophin-1

DEPC di-ethyl-pyrocarbonate

DINE Damage-induced neuronal endopeptidase

dNTPS Deoxynucleotide triphosphate

DOPA Dihydroxyphenylalanine
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DRG Dichlorobenzimidazole riboside

DRG Dorsal root ganglion

ds Double Stranded

ECE Endothelin-converting enzyme

EDNRB Endothelin receptor B

EGF Epidermal growth factor

ERK Expression-signal related kinase

EST Expression sequence tag

ET-3 Endothelin-3

F12 Ham’s nutrient mixture F I2

F14 Ham’s nutrient mixture F14

IFNy Interferon-y

IR Immunoreactivity

JNK c-jun N-terminal kinase

GAPDH Glyceraldehyde phosphate dehyrogenase

GDNF Glial cell line derived neurotrophic factor

GFLs GDNF family ligands

GFRa GDNF family receptor a

GMAP Galanin Message-Associated Peptide

gpl30 glycoprotein 130

GPI gycosyl-phosphatidylinositol

HBSS Hanks balanced salt solution

HGF Hepatocyte growth factor

HIHS Heat-inactivated horse serum

EB4 Isolectin B4

IL-6 Interleukin-6

IP Inositol Phosphate

JNK c-Jun N-terminal kinases

kDA Kilo dalton

L-15 Liebowitz-15 medium

LA Local Anaesthetic

LC Locus Coeruleus

LIF Leukaemia inhibitory factor



LTP Long term potentiation

MAPK Mitogen-activated protein kinase

MCAO Middle cerebral artery occlusion

MPTP 1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mRNA messenger ribonucleic acid

MS Multiple sclerosis

MSP Macrophage stimulating protein

NCAM Neural cell adhesion molecule

NEP Neural endopeptidase

NGF Nerve growth factor

NKA Neurokinin A

NKB Neurokinin B

NRIF Neurotrophin receptor interacting factor

NTN Neurturin

NTF Neurotrophic factor

NT-3 Neurotrophin-3

OE Over-expressing

OsM Oncostatin M

6-OHDA 6-hydroxydopamine

PACAP Pituitary adenylate cyclase-activating peptide

PBS Phosphate buffered saline

PCR Polymerase chain reaction

PEPCK Phosphoenolpyruvate carboxy-kinase

p g e 2 Prostaglandin E2

PHN Post-herpetic neuralgia

PI3-K Phosphatidylinositol 3-kinase

PLC Phospholipase C

PNS Peripheral nervous system

PPT Preprotachykinin

PSP Persephin

PTB Phosphotyrosine binding domain

RH Random hexanucleotides

RT Reverse transcription

SCG Superior cervical ganglion
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SCN Suprachiasmatic nucleus

SE Status Epilepticus

SG SYBR Green

SNc Substantia nigra pars compacta

SNL Spinal nerve ligation

SP Substance P

SH2 Src homology domain-2

TAE Tris-acetate-EDT A

Taq Thermus aquaticus

TG Trigeminal

TH Tyrosine Hydroxylase

TTX Tetrodotoxin

TNF Tumour necrosis factor

Trk Tropomyosin-related kinase

TRP Transient receptor potential

VGSC Voltage gated sodium channel

VRC Vanadyl-ribonucleoside complex

VR1 Vanilloid Receptor 1

VRL Vanilloid Receptor-like



Appendix II

Tissue culture reagents and media

Liebowitz-15 (L-15) (Dissecting Medium):

Stored at 4°C and made up every 3-4 weeks

1 pot of LI 5 powder (GIBCO, Invitrogen), 60mg penicillin (Sigma) and lOOmg 

streptomycin (sigma) were dissolved in 1 litre deionised, distilled water. The pH was 

adjusted to 7.3 using HC1 and NaOH and the media sterilised by filtering through a 

0.22pm bell filter (PALL) in a laminar flow hood.

Ham’s F12:

Stored at 4°C. After addition of HIHS should be kept for approx. 2 weeks

1 pot of LI 5 powder (GIBCO, Invitrogen), 60mg penicillin (Sigma) and lOOmg 

streptomycin (sigma) were dissolved in 1 litre de-ionised, distilled water. The pH was 

adjusted to 7.3 using HC1 and NaOH and the media sterilised by filtering through a 

0.22pm bell filter in a laminar flow hood. For serum-supplemented media, 10% Heat 

inactivated horse serum (HIHS) was filtered in using a 50ml syringe and 0.22pm bell 

filter.

Ham’s F14 (Final Growing Medium):

Stored at 4°C and made up fortnightly

lOx stock was made up by dissolving a 51 unit of F-14 powder (Imperial) in 500ml of 

de-ionised, distilled water containing 500mg streptomycin (Sigma) and 300mg 

penicillin (Sigma). This lOx stock was stored as 25ml aliquots at -20°C until use. 

lx F14 solution was made by diluting an aliquot of F14 (25ml) in 225ml de-ionised 

distilled dH20. 0.5g sodium hydrogen carbonate was added and pH adjusted to 7 by 

bubbling through CO2 . The media was filter sterilised by passing through a 0.22pm
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bell filter. Whilst filtering, 2.5ml L-glutamine, 200mM (GIBCO, invitrogen) and 

5.5ml Albumax I solution (see below) was added.

Albumax I solution:

Stored at -20°C

20g/ml albumax I (GIBCO, invitrogen) was dissolved in 100ml dH20 and added to 

the solution below:

100ml dH20  

160mg putrescine

lml progesterone (0.625mg/ml in ethanol)

10ml L-thyroxine (0.4mg/ml in ethanol)

10ml sodium selenite (0.4mg/ml in PBS)

10ml tri-iodothyronine (0.34mg/ml in ethanol)

Laminin:

Murine Laminin (Sigma) was defrosted at 4°C and diluted in CMF-HBSS (Calcium 

and Magnesium free Hank’s Balanced Salt Solution), GIBCO, Invitrogen to a 

concentration of 20pg/ml. 120pl of laminin was then pipetted into the centre of each 

35mm dish and spread out using a pipette tip ensuring not to touch the sides of the 

dish. Laminined dishes were incubated at 37°C for a minimum of 4 hours before 

washing twice with F I2 + HIHS and then adding lml final medium.

Polv-DL-ornithine:

Stored at 4°C and made up fortnightly

0.5mg/ml poly-DL-omithine (Sigma) was prepared by dissolving**** in 0.15M 

borate buffer (4.6g boric acid (BDH) in 500ml de-ionised, distilled water, pH 8.4). 

The solution was sterilised by passing through 0.22pm bell filter.
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Trypsin:

1% stock solution was made by dissolving 50mg trypsin (Worthington) was added to 

5ml CMF-HBSS) and sterilised with 0.22pm filter (Nalgene). lOOpl aliquots were 

stored at -20°C until use.

0.05% working solution was made by diluting a 50pl aliquot in 950pl CMF-HBSS. 

Ganglia were incubated at 37°C in this solution to allow trypsinisation. Time varied 

according to age and type of ganglia.

Collaqenase

lOOmg/ml stock solution was made up by dissolving lOOmg in lml of HBSS 

supplemented with Calcium (0.097mg/ml) and Mg (0.185mg/ml). 20pl aliquots were 

stored at -20°C until use.

2mg/ml working solution was made by diluting a 20pl aliquot in 980pl HBSS. Adult 

ganglia were incubated in this solution prior to trypsinisation.
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Appendix III 

Real Time PCR

Reverse Transcription Mastermix:

REAGENT VOLUME MANUFACTURER

Buffer 4pl Stratagene

Random Hexanucleotides 2pl Pharmacia

dNTPS 2pl Stratagene

Stratascript Enzyme 0.38pl Stratagene

dH20 26.6pl GIBCO, Invitrogen

Added to 5 pi RNA

PCR Mastermix:

REAGENT VOLUME MANUFACTURER

lOx buffer 2.5pl Stratagene

MgCl2 1.5, 2 or 2.5pl to give final concn. of 

3, 4 or 5mM resp.

Stratagene

dNTPs (20mM) lpl Stratagene

Rox (1/500) 0.4pl Stratagene

Primers 0.5 pi MWG

Syber Green (1/4000) 0.25pl Molecular Probes

dH20 15.8, 15.3, 14.8pl to give final concn. 

of 3, 4 or 5mM resp.

GIBCO, Invitrogen

Added to 2.5pi cDNA
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