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Abstract

Over the past twenty-five years malicious software has evolved from a minor annoyance 
to a major security threat. Authors of malicious software are now more likely to 
be organised criminals than bored teenagers, and modern malicious software is more 
likely to be aimed at stealing data (and hence money) than trashing data. The arms 
race between malware authors and manufacturers of anti-malware software continues 
apace, but despite this, the majority of anti-malware solutions still rely on relatively 
old technology such as signature scanning, which works well enough in the majority of 
cases but which has long been known to be ineffective if signatures are not updated 
regularly.

The need for regular updating means there is often a critical window between the 
publication of a flaw exploitable by malware and the distribution of the appropriate 
counter measures or signature. At this point a user system is open to attack by hitherto 
unseen malware. The object of this thesis is to determine if it is practical to use machine 
learning techniques to abstract generic structural or behavioural features of malware 
which can then be used to recognise hitherto unseen examples.

Although a sizeable amount of research has been done on various ways in which malware 
detection might be automated, most of the proposed methods are burdened by excessive 
complexity. This thesis looks specifically at the possibility of using learning systems to 
classify software as malicious or nonmalicious based on easily-collectable structural or 
behavioural data. On the basis of the experimental results presented herein it may be 
concluded that classification based on such structural data is certainly possible, and 
on behavioural data is at least feasible.
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Chapter 1
Introduction

1.1 W hat Is M alicious Software?

A m alicious program is a program deliberately designed to cause some form of harm 
or damage to the user or the system. Examples would be viruses, Trojan horses, back­
doors, and spyware, all of which are referred to by the umbrella term ‘malware’.1 The 
problem of malicious software (or ‘software written for malicious purposes’) will be 
familiar to most people -  by now, nearly any computer user will have had some experi­
ence of it. An increased number of online transactions means most malicious software 
is now written and deployed by fraudsters or organised criminals [Bradbury, 2006]. 
Malicious software can be used to send untraceable spam email, to steal confidential 
data, or as a means of extortion. Existing approaches to control of malicious software 
have limitations, and research into possible new methods is therefore worthwhile.

As the interconnection of computer systems has risen the need for intelligent flexible 
counter intrusion systems has become imperative. Existing systems, such as signature- 
based malware (virus) scanners and Intrusion Detection Systems, have disadvantages. 
For example, malware scanners will only function properly if they are constantly up­
dated with newT malwrare signatures. Software companies must therefore continue to 
produce updated signature files. If they do not charge for this service they may lose 
money, but if they do, users are less inclined to update. Current Intrusion Detection 
Systems are predominantly concerned with protection against attacks launched from

1 This definition intentionally excludes cases of software which causes unintentional harm (e.g. 
owing to a bug), and will also leave aside philosophical questions about the intent of the author or 
introducer of the software (who might be termed a “malicious agent”).
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outside via network services. For total protection, it would be ideal to have a sys­
tem which could combine protection against attackers on the outside with protection 
against malicious software from the inside.

1.2 The C onnectivity Issue

Before computers were networked on a large scale, connectivity was not really an issue, 
as the only way most people could transfer data between computers was by moving disks 
or tapes from one machine to another. Someone who wished to gain unauthorised access 
to a computer would first need to break in to the building and room in which it was 
situated, and someone who wished to introduce malicious software would have to have 
the same physical access to the data media (disks or tapes) or the computer. Computer 
security, in those days, was mostly a m atter of physically securing the computer and 
its media.

At the present time, however, almost every computer is networked in some wray -  even 
laptops and mobile devices (PDAs or mobile telephones) are generally connected. In 
1995 Internet Protocol version 6 [Deering and Hinden, 1995] was introduced to serve 
the growing demand for network addresses -  and there was much talk of a time when 
all consumer appliances -  fridges, freezers, toasters, washing machines, televisions -  
would have an internet connection. That point may not have been reached in practice, 
but the number of consumer appliances with network connectivity is growing. Witness 
the current popularity of ‘media centres’ -  specialised computers wdiich perform all 
the functions of a DVD recorder, set-top box, games console and music centre. Mi­
crosoft’s XBox 360, though primarily a games console, is in reality an example of this 
-  its website proudly states that users can “Play the most compelling games. Watch 
DVD movies. Enjoy digital music, photos, and videos in an integrated entertainment 
system.” [Microsoft, 2005].

Unfortunately, such widespread connectivity raises many security issues which may not 
have been anticipated, since most of the impetus for consumer appliance connectivity 
has come for other reasons. It is conceivable that appliance-cracking may become as 
popular as computer-cracking. Despite the obvious objection that the only people 
who would get a kick out of making people’s food go off or burn or replacing their 
video libraries with offensive or pornographic material are immature e-vandals, more 
serious scenarios are possible -  for example, burglars being able to compromise and 
disable alarms and access control systems if these are connected to the Internet. If,
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as predicted, there is a rapid increase in connected consumer devices, then an equally 
rapid increase in security awareness will be needed if a security disaster is to be avoided. 
At the moment home users have enough trouble keeping their computers secure and 
free of malicious software: the task will become much more complicated when all their 
appliances are online as well.

The subject of ‘information warfare’ was widely discussed during the 1990s. An oft- 
cited early commentator on this issue was Winn Schwartau, whose book on the subject 
[Schwartau, 1994] provides extensive analysis with reference to the global sociopolitical 
and economic conditions of the early 1990s. While it is true that the more extreme 
scenarios it outlines have not come to pass, many of the smaller predictions it makes 
have been accurate, including the prediction of the rise of international terrorism. 
Schwartau makes the point that information has become the most valuable commodity 
in the modern economy. Anyone who can disrupt, corrupt, or destroy information has a 
potent weapon. Despite over ten years having passed since Schwartau’s book, one of his 
main points -  that most organisations give little thought to protecting their information 
assets -  remains true in many cases. Some factors have changed since Schwartau wrote 
his book. For instance, passive eavesdropping has become much easier owing to the 
introduction of wireless networking. In Schwartau’s scenarios, would-be eavesdroppers 
had to rely on the use of Van Eck-type equipment to pick up stray radiation from 
display units [Eck, 1985], or electronic snoopers which were physically connected to 
network wiring. As wired networks are replaced by wireless ones, these eavesdropping 
methods from the past become obsolete: all that is needed now is a laptop with a 
wireless network card and the appropriate software. Early encryption methods such 
as WEP were repeatedly shown to be insecure [Cam-Winget et a/., 2003]. Even now 
that better encryption and authentication is available for wireless networks, users (even 
businesses) resist deploying it because of the inconvenience it entails -  particularly in 
an organisation which has many visitors who require legitimate access to the wireless 
network.

A company may pride itself on its commitment to security, its constantly-updated 
firewall, committed system administrators, VPNs, Intrusion Detection Systems, etc., 
but all this impressive security technology is rendered instantly useless if the internal 
network traffic passes unencrypted across the company wireless LAN and can be picked 
up by someone across the street with a laptop. In large cities, where many companies 
have wireless LANs, the sport of ‘wardriving’ -  moving around an urban area with a 
wireless-enabled computer trying to find and gain access to wireless networks -  has 
proliferated. The main motivation for wardriving is to obtain free internet access:
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however, the potential for security breach should be obvious.

Even if nothing is compromised on the internal network, unwittingly sharing one’s 
internet access with the rest of the world is not a good idea. Assume someone is able 
to gain internet access via an unsecured business WLAN. He or she could then proceed 
to malicious or illegal activities -  hacking, viewing child pornography, blackmail, fraud, 
etc. -  and any tracing would lead back to the company whose LAN was abused, who 
would then have a difficult time proving that it was not one of their employees who 
committed the crime! In any case, the genuine perpetrator is highly unlikely to be 
caught. Back in the days before widespread computer networking and when telephone 
switching was still analogue, persons known as “phone phreaks” or “telephone hackers” 
would explore telecommunications networks in much the same way that their later 
counterparts did computer networks. Telephone hackers who wished to perform high- 
risk exploration without being traced would take steps to obscure the point at which 
they were accessing the telephone network. The simplest way to do this was to gain 
access to someone else’s telephone line, usually via a telephone company junction box 
on the outside of a house or in the street. A payphone could also be used, especially 
in the USA where local calls were often free of charge (telephone hackers had many 
ways of fooling switching equipment into connecting other types of call at local rates). 
This way, when the telephone company and/or law enforcement finally tracked down 
the source of all the fraudulent calls, they ended up arresting the innocent owner of 
the compromised telephone line. The same techniques were later used by the first 
computer hackers to avoid paying for their extensive data calls and to further frustrate 
tracing attem pts by law enforcement. Wardriving could be seen as the 21st-century 
equivalent, with the added bonuses that you are less likely to get caught (no wires) 
and it can be done in relative safety from the comfort of your vehicle.

Another of Schwartau’s points is that malicious software programs may be used as 
weapons in information warfare. During the first Gulf War, it was rumoured that the 
National Security Agency had embedded a virus in a chip that controlled a certain 
printer, one or more of which were subsequently sold to Iraq. During the war, the 
virus was activated and used to destroy the Iraqi air defence system. Despite the 
small matter of the source material being dated April 1st, not to mention the many 
technical problems such a method would face, national news agencies in America are 
said to have broadcast the story as fact. W ith present-day technology, an attack based 
on a similar method could certainly work in many circumstances. Despite increased 
awareness of the need for information security since 1994, many laypeople still often 
assume that information security is only about preventing hackers from accessing your
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system from outside over a network. Conventional Intrusion Detection Systems (IDS) 
concentrate on protecting against this threat . The state of technology to defend against 
malicious programs -  which may be introduced unwittingly by legitimate users inside an 
organisation -  is much less advanced. Though various alternatives have been proposed, 
the basic signature-based virus scanner still reigns supreme.2 Few higher technology 
alternatives exist outside classified military research -  Schwartau reports rumours that 
governments and military organisations have been interested in the offensive potential 
of computer viruses for some time. If this is so, it would be logical for them also to be 
considering defensive measures against such viruses. One factor which must constantly 
be considered when investigating malware is the principle of ‘greatest cost to the user’. 
In other words, there are certain types of malware which have the potential to produce 
the ‘worst-case scenario’, and both the scenario and the malware have changed. Back in 
the early days, losing data was the worst thing that could happen. Whilst loss of data 
would undoubtedly still be a major concern, an argument could be made that it is no 
longer the most serious thing that could happen in the event of a malware ‘attack’. As 
it is, in today’s networked world, the strongest contender is undoubtedly the leaking of 
private or confidential information. Since online shopping and banking became popular, 
more and more individuals and businesses are storing confidential information such as 
bank and credit card details on networked personal computers. Countermeasures are 
sometimes taken by banks, but in some cases these have been shown to be ineffective 
[Goring et a/., 2007], and consequently, malware which is specifically designed to acquire 
such information and feed it back to the author or controller is going to become a serious 
problem.

The risk that an average individual internet user will suffer a Distributed Denial of Ser­
vice (DDoS) attack is quite small. The risk for a business is a little larger, particularly 
if they are large or have much ‘web presence’. However, the cost of a DDoS attack is 
insignificant compared to the cost of having your customers’ credit card details leaked 
[Thurston, 2007]. It is well known that many DDoS and cracking attacks are now 
being orchestrated by organised crime interests for the purposes of extortion [Brad­
bury, 2006]. It is also to be expected that criminals will start attempting to obtain 
confidential information via specifically targeted malware.

In a conventional DDoS attack it is necessary for the controller of the botnet to send 
some kind of signal to start the attack -  possibly leading to their detection. Similarly, 
malware which steals data generally has to know how to send it back to the controller,

2This is a slight assumption, since manufacturers tend not to release much information on their 
products, but it is certainly true that all existing anti-malware products require regular updates.
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who can thus be traced. However, this could be avoided via the use of covert channels. 
Consider a hypothetical situation where a piece of malware, propagated via virus or 
worm techniques and covertly present on a home user’s PC, could leak confidential 
information in the form of a (perhaps steganographically-disguised) newsgroup posting. 
Most newsgroup users would ignore the message -  but someone ‘in the know’ could 
read between the lines and extract the relevant information.

In many countries it is a criminal offence to gain unauthorised access to a computer 
system, whether to extract confidential information or otherwise: however, if a com­
puter, under the control of a piece of malware, sends confidential information to the 
public domain, the legal position is trickier: the author of the malware would almost 
certainly still be liable, but it may be impossible to trace them, and it would certainly 
be impossible to arrest everyone who read the newsgroup. All in all, it is arguable that 
the need for protection against malware has never been greater.

1.3 Combat Approaches

A full survey of the approaches that are currently used to combat malware wTill be 
given in section 2.4 of Chapter 2. However, it is possible (with some overlap) to divide 
past and present approaches to malware into four main categories:

• Detection: the determination that a given program is likely to be malicious.

• Identification: classifying a given program as identical to or related to a known 
piece of malware.

• Prevention: stopping a given program from carrying out hostile functions.

• Recovery: removing a malicious program from a system and/or repairing any 
damage it has caused.

An ideal system to protect against malware ought to span all these categories, though 
the most popular practical systems at the present time are category 2 and 4 (signature- 
based malware scanners). Academic research has proposed various solutions which fit 
categories 1 and 3, but these have rarely resulted in practical implementations. For 
the purpose of this thesis, consideration wall only be given to the first three categories.
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1.4 Scope and Aim

1.4 .1  H y p o th eses

1. An automated classification system, provided with structural data on malicious 
and non-malicious programs, should be able to distinguish between the two classes 
with a high degree of accuracy.

2. Since other types of malicious program, such as Trojans, do not necessarily have 
marked structural anomalies, one might expect that a structural classification 
system would have much more difficulty distinguishing them from non-malicious 
programs.

3. In contrast an automated classification system, provided with behavioural data 
instead of structural data, should be able to classify all types of malicious software 
with equal success.

1.4 .2  A im s

The aim of this PhD, broadly stated, is to determine whether the detection of malicious 
programs can be automated using a learning system, and to develop programs utilising 
this concept. Such programs might eventually form parts of an intelligent, flexible 
counter-intrusion system that can defend a computer or network against malicious and 
unauthorised programs. Use will be made of an isolated computer on which viruses 
and other malicious programs may run, in order that their characteristics can be stud­
ied safely. Software tools to analyse what is running on the isolated machine will be 
developed. These tools will gather pertinent statistics and output results which can be 
fed into learning systems. Experiments can then be performed to determine whether 
machine learning systems can be used to detect malicious software, firstly by deter­
mining whether the rules produced by the learning systems from a set of training data 
correspond to the rules already produced by human experts, and then by determining 
whether the learning systems can classify unseen programs as benign or malicious with 
a high degree of accuracy.

If this proves practical, the ideas could be used to develop some or all of the components 
of an intelligent and flexible counter-intrusion system that can defend a computer 
network against malware. By “intelligent and flexible” it is meant that the response of 
the counter-intrusion system should be reasonably context-sensitive (e.g. the response
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will differ in different circumstances). However, the development of such a system is 
far beyond the scope of a PhD thesis.

1.4 .3  P rin cip a l C o n tr ib u tio n s

The major contribution of this thesis is to show that the use of such systems could 
help bridge the vital time-gap, wThich exists at present, between the central detection 
of a new outbreak and the manual creation of a new signature file for download to 
subscribers’ computers. In essence, the thesis demonstrates that the decision tree 
classifier approach is perfectly feasible on simple structural data and offers a relatively 
high degree of protection. Whilst a preliminary investigation for the same techniques 
applied to behavioural data has also been conducted, the results were less clear-cut.

The structure of the thesis is as follows: Chapter 2 will give a brief historical overview of 
the development of different types of malware and malware combat methods, followed 
by a review of the academic literature on the subject. Chapter 3 is a case study 
which uses a real-life security flaw to illustrate both the actual and potential uses of 
malware for financial fraud. Chapter 4 gives information about the machine learning 
systems and classification methods chosen and the reasons for their choice. Chapter 
5 describes how structural and behavioural program/process data may be collected 
on the Windows operating system.3 Chapter 6 gives information on the structural 
classification experiments, with analysis of the results, and Chapter 7 gives similar 
information on the behavioural classification experiments. Finally, Chapter 8 gives an 
overall evaluation of the results and a retrospective on the PhD project, and lists future 
work that could be done in this subject area.

Any trademarks referred to in this thesis are the property of their respective owners.

3Investigation was restricted to the Windows operating system due to the vast majority of malware 
being written for Windows.
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Chapter

Historical Background and Literature Review

This chapter starts with an overview of the different types of malware and their history, 
and the development of tools to combat them. This is followed by a review of the 
available literature.

2.1 Types of Malware

This section aims to give an overview of the more common types of malicious program. 
The definition of a malicious program (‘malware’) varies. Authors such as [Gollmann, 
1999] gives only four types: Trojan horses, viruses (resident and transient), logic bombs 
and worms. Confusingly, Gollmann seems to refer to all malware as ‘viruses’ (see for 
instance [Gollmann, 1999] ppl34-136). On the other hand, David Salomon gives seven 
types ([Salomon, 2006] p34). Salomon’s list is reproduced here in Table 2.1, since it 
includes distinctions not made by other authors:

T ype D escrip tion
Virus
Logic bomb 
Time bomb 
Rabbit 
Backdoor 
Worm
Trojan horse

Resides in an executable file and propagates to other executables 
A virus whose payload is delayed and is triggered by some event in the computer 
A special case of logic bomb where the trigger is a particular time or date 
A virus whose payload is to annoy and vex the user rather than destroy data 
A hidden feature (normally in Trojans or spyware) tha t gives certain people special privileges 
Executes independently of other programs, replicates itself, and spreads through a network 
Hides in the computer as an independent program and has a malicious function

Table 2.1: Salomon’s Seven Types of Malware

Salomon’s list is probably the most comprehensive available in the literature, and he 
also recognises that some of the definitions are overlapped (for instance Backdoors and 
Trojans are not always distinct).

2

Malware Detection using Structural and Behavioural Features and Machine Learning Joseph Rabaiotti



2.1 Types of Malware 23

2.1 .1  V iru ses

Salomon’s definition of a virus has already been given in Table 2.1. However, a more 
general definition is given by Bishop: “a sequence of instructions that copies itself into 
other programs in such a way that executing the program also executes that sequence 
of instructions.” [Bishop, 1992]. Like biological viruses, true computer viruses cannot 
exist independently from their host programs. Unfortunately the term “virus” is often 
used as a generic term for any piece of malware,1 which means that the reader may 
encounter this sense even here, especially in quotes or references to other authors.

There are many types of virus. This section will give a relatively simple overview of 
the more common types. More technical details will be given in subsequent chapters. 
The reader is also referred to Peter Szor’s monumental “The Art of Computer Virus 
Research and Defense” [Szor, 2005], one of the most up-to-date books on the subject.

Figure 2.1 shows how three types of file-infecting virus modify program files.
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Figure 2.1: How Different File Infectors Infect Files

1Furthermore, common terms for malware-fighting software are ‘antivirus’ or ‘virus scanner’ rather 
than ‘anti-malware’ or ‘malware scanner’.
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Overwriting Viruses

These are the simplest viruses. As their name suggests, these viruses overwrite target 
programs in such a way that the program is no longer able to carry out its original func­
tion. The older overwriting viruses could generally only cope with simple executable 
file formats (such as the DOS COM format, inherited from CP/M). One advantage of 
overwriting is that the virus cannot be detected by simply observing file size changes. 
Furthermore, such viruses are very easy to write, even in high-level languages on mod­
ern operating systems with complicated file formats. They thus represent very little of 
a technical challenge for virus writers, and since such viruses are very easy to detect 
as infected programs no longer work, they remain uncommon.

A ppending and Prepending Viruses

The viral code is appended or prepended to the target executable, and the executable 
header is patched so that the viral code executes first, then passing control back to the 
target. If the viral code is sufficiently small and efficient, the user of the target program 
will be unaware of any change in its function. Appending viruses that attack complex 
executable files (e.g. Win32 PE format, UNIX ELF/CO FF formats) generally append 
a new section to the file, altering the file headers, but sometimes they can make use of 
unused areas in existing sections, or enlarge the sections by patching the section table.

Prependers can be as complex as appenders, but are often far simpler, as illustrated 
by the variety which merely creates a new copy of itself with the target executable 
compressed and stored as data within the executable. Then, the target executable is 
deleted and the new virus executable is given the target’s original name. When the new 
executable runs, the virus code executes first, then the code for the target executable is 
decompressed, copied to a temporary file, and executed. This type of prepender virus 
might be expected to appeal to novice virus writers as it can be written in a variety of 
high-level languages ([Szor, 2005] pl35) and requires little in the way of technical skill.

M em ory-resident Viruses

A memory-resident virus is a virus which remains in memory and continues to infect 
files rather than infecting just a few files and then terminating. This sort of virus was 
common in the days of MS-DOS, because the service routines for various interrupts -  
used by DOS as an API -  could be modified by any program. It was thus possible for
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a virus to load itself into memory and redirect one or more interrupt service routines 
to point to its own code, then terminate itself without freeing the memory. Whenever 
a hooked interrupt was called, the virus would be executed.2 Viruses used the hooked 
interrupts to locate files to infect, as well as to hide the results of infections (such as 
increased file sizes).

The most well-known form of memory-resident virus is the boot sector virus, which is 
covered below. Boot sector viruses generally used interrupt hooks to determine when 
a disk was inserted or read from. They would then write themselves to its boot sector, 
thus infecting the new disk. Like the boot-sector virus, the form of resident virus 
described here died out with MS-DOS (e.g. Windows 98/Me), but equivalents were 
soon developed, and for a full description of these the reader is directed to Chapter 5 
of [Szor, 2005].

B oot Sector Viruses

Boot sector viruses are a special case of memory-resident virus. The ‘boot sector’ 
of a disk contains the code which starts the operating system. When a computer is 
switched on, the BIOS, having completed its various initial functions, passes control 
to the program in the boot sector. All disks contain a boot sector even if they are 
not actually bootable: therefore, in the days when floppy disks were more widely 
used to transfer data between computers, boot sector viruses were extremely common. 
Generally, these viruses infected the boot sector of the hard drive, which meant that 
they were loaded whenever the computer was started. They then subverted the disk 
access routines of the operating system (usually DOS, in which case the subversion was 
done by hooking Interrupt 19H) so that they could infect any floppies that were used 
in the machine.

The Michaelangelo virus was a fairly run-of-the-mill boot sector virus which had a 
destructive payload [Kephart et a/., 1993]. If an infected computer was booted on 
March 6th, the virus would destroy all the data on the hard drives. Thus, the weeks 
before March 6th 1992 were characterised by doom-laden press reports and hysterics 
from computer users. However, as in most cases, the situation was severely over-hyped: 
IBM estimated that more hard drives died of routine hardware failure on March 6th 
1992 than were affected by the virus [Kephart et a/., 1993]. The massive epidemic 
that the press had been predicting did not occur -  however, massive public demand

2It should be noted that this idea, known as Terminate-Stay-Resident (TSR), was also used by 
legitimate programs.
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for antivirus products was generated, with some vendors selling more of their product 
in the week before March 6th than in all of the rest of the year.

Boot sector viruses could spread rapidly but most did not contain destructive payloads
-  the Michaelangelo virus was a notable exception. Others, such as the ANTICMOS 
family, contained a payload which, as the name suggests, attempted to corrupt the 
target’s BIOS -  though it is unclear whether this ever succeeded. Boot sector viruses 
are generally thought to be obsolete (along with floppy disks) but with the advent of 
bootable CDs and DVDs and Flash RAM disks, there is clearly some potential for new 
boot sector viruses to be developed.

M acro Viruses

Macros are defined by Wikipedia as “an abstraction, whereby a certain textual pattern 
is replaced according to a defined set of rules.” Macros are often used in compilers and 
assemblers to allow programmers to shortcut frequently-used sequences. Eventually, 
the term was applied to any software which gave the user the facility to automate tasks
-  present in many programs since the early days of personal computing. Most of these 
originally used a ‘record/playback’ system -  users would set the program to ‘record’ 
their input, and do a task manually. They could then ‘play back’ that task whenever 
they wanted to do the same thing (the Recorder in Windows 3.0 was an early example). 
Later, programming languages specifically designed for writing macros were produced.

Many products produced by Microsoft contain inbuilt support for macros written in 
a special form of the BASIC programming language known as Visual Basic for Ap­
plications (or VBA). VBA can perform many functions normally restricted to ‘real’ 
programming languages (e.g. reading and writing files) -  and was also designed to be 
compatible across the entire Microsoft Office suite. As a result it was not long before 
the first macro viruses appeared in Microsoft Word documents. When an infected doc­
ument was opened, the macro code within it would run automatically, installing itself 
in the user’s ‘document template’ file. This meant that every new document produced 
by that user would be infected. Microsoft did provide a warning message about macros, 
but most users ignored it or switched it off, especially if they used macros for legitimate 
purposes. Macro languages have also been used to create email worms.
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2 .1 .2  W orm s

Worms differ from viruses in that they are autonomous programs in their own right. 
Their aim is to spread from computer to computer, and they usually exploit vulnera­
bilities in network interface software to do this. When the worm runs, it connects to 
a remote computer and attempts to inject its exploit code via a known vulnerability. 
The wTorm’s exploit code will attempt to subvert the vulnerable process into somehow 
receiving a copy of the worm’s code, saving it to a file and executing it on the target 
computer.

In 1988, Robert Morris, a graduate student at Cornell University and, ironically, the son 
of the head of the NSA’s Computer Security division, developed what came to be known 
as the Internet Worm. Morris’ program, which he claimed had escaped accidentally, 
spread rapidly across the Internet (which was of course vastly smaller than it is today) 
and caused widespread disruption. This event is also documented in [Stoll, 1989]. 
The Internet Worm spread from computer to computer by exploiting buffer overflow 
vulnerabilities in privileged network utility programs running on BSD Unix systems. 
Luckily, other operating systems were unaffected, leading Stoll to make comments 
about operating system diversity being a good thing. These comments seem prescient 
considering the Windows worms that emerged ten years later: Blaster, Sasser and all 
the others once again exploited buffer overflow vulnerabilities in privileged network 
service programs. But whereas in 1988 the various system administrators who ran the 
large computers which made up the Internet could neutralise the worm within a few 
days (according to [Stoll, 1989]), the Windows worms had a vastly larger Internet to 
spread around and a huge number of unpatched home computers to infect. As a result, 
cleaning up the mess was much harder.

Email W orms

As previously mentioned, VBA macros were designed to be compatible across many 
different Microsoft applications. This included the Microsoft email client, Outlook, or 
the cut-down version Outlook Express. Macros within email messages could send email, 
read data from address books, download and execute programs, and do many other 
things -  all without the knowledge or consent of the user. In some cases, an infected 
message would not even need to be opened. Furthermore, Outlook left macros turned 
on by default, and not everyone knew how to turn them off. It had been common to 
send malicious programs as email attachments for some time -  usually with something 
to entice the user to execute the attachment (such as a message body stating that it
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contained free pornography). Now, with the addition of a suitable macro, there was no 
need to spend time enticing the user -  they could be infected at the click of a mouse.

The first email macro worms (such as the ‘Love Bug’ of 2000) tended to do little 
damage beyond clogging up inboxes. Thanks to increased awareness and Microsoft 
making its Outlook email client more secure, emailed macro worms have now mostly 
been superseded by binary email worms (as opposed to macro-based ones). Such binary 
email worms usually attempt to connect to a mail server and send out multiple copies 
of an email with the worm attached, bypassing the user’s mail client entirely. Worms 
may also spread using alternative communications protocols such as IRC and ICQ.

2 .1 .3  O ther E m ail Tricks

Emailed malware employs various ruses to trick the user into running the executable 
payload, usually by representing it as an ‘important document’ or as a pornographic 
picture. Some such ruses are technical as well as psychological. Knowledgeable users 
know that one should not run executable attachments unless from a trusted source, 
so the viruses have started disguising the attachments as innocuous files. There is 
a particularly insidious way of doing this which exploits two Windows features. By 
default, Windows will hide file extensions from the user if the file is a recognised type 
(such as a program). Thus, it is possible to have a file called ‘xxxpics.jpg.scr’.3 By 
default, Windows will hide the ‘.scr’ or \exe’ extension from the user, who will only 
see the ‘.jpg’ extension. If the malicious author has been clever enough, he or she will 
have assigned an icon to the malicious program which looks like a picture (or like the 
standard Windows picture icon). So the user is confronted with a file which appears to 
have a picture file extension, and has the correct picture icon. What harm could there 
be in opening it...? An astute user may have noticed that, with extension hiding turned 
on, the ‘.jpg’ extension ought to be hidden for a real picture file, but even astute users 
may well overlook such an apparently insignificant detail, and it is also possible to hide 
the ‘real’ file extension by putting lots of spaces or other characters in the filename, 
e.g.

xxxslutz.jpg .exe

Since email clients often used to display only the first characters of a long filename, 
users may not think to check before they attempt to open the file. On the other hand,

3For historical reasons to do with screensavers, ‘.scr’ is a Windows executable file extension equiv­
alent to  ‘.exe’, though users may be unaware of this.
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some modern email clients will warn users if a message has an executable attachment. 
However, in the right circumstances, the attacker may even be able to send a genuine 
picture file to accomplish a malicious purpose. For instance, in 2004 a buffer overflow in 
a Microsoft JPEG rendering library was discovered, which meant that it was possible 
for an attacker to embed malicious code in a JPEG image that would get executed 
when the image was viewred ([Salomon, 2006] p59).

2 .1 .4  T rojan  H orses

As might be guessed from the title, these are programs which appear to have an 
innocuous function but which contain hidden code wiiich does something harmful. 
Some have claimed that the first Trojan Horse was written by the East German hacker 
Karl Koch (‘Hagbard’) whose attacks on United States military computer systems wrere 
documented by Clifford Stoll in “The Cuckoo’s Egg” . This could refer to pages 55-57 
which documents an attempt to install a shell script which masquerades as the login 
program to steal passwords -  as Stoll writes,

“The hacker’s Trojan horse program collected passwords. Our visitor wanted our passwords 

badly enough to risk getting caught installing a program that was bound to be detected.

Was this program a Trojan horse? Maybe I should call it a mockingbird: a false program 

that sounded like the real thing. I didn’t have time to figure out the difference...” -  [Stoll,
1989].________________________________________________________________

Most modern Trojans employ various enticement techniques in order to induce people 
to download and run them (for example, by masquerading as pornography or cracked 
software). They may also be 'dropped’ (as a payload) by viruses or worms. It seems 
there is no longer any requirement for a program to pretend to perform a legitimate 
function in order to be called a Trojan, and the definition overlaps with 'Backdoor’ to 
a considerable extent.

2 .1 .5  B ackdoors

A backdoor was originally a hidden function in a legitimate program which allowed 
those privy to its secret to obtain special privileges -  for instance, a cryptography 
program could contain a backdoor which allowed a user’s private key to be recovered. 
In the late 1990s the discovery that part of the verification mechanism for the Microsoft
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Crypto API was called ‘NSAKEY’ led to allegations that Microsoft had installed such 
a backdoor at the behest of the NSA, though this was considered extremely unlikely 
by security experts, not least because if the NSA had wanted covertly to compromise 
the Microsoft Crypto API, they would have been extremely unlikely to be so obvious 
about it.

Modern backdoors are more likely to be Trojans of the ‘remote control’ type. Two of 
the earliest examples were ‘BackOrifice’4 and ‘SubSeven’, both developed in the late 
1990s, though very similar programs have been developed ever since. These programs 
consisted of two parts: a server, which had to be installed on the target computer, 
and a client, which was used by the attacker. The servers, which communicated with 
the clients over high network ports (BackOrifice famously used port 31337 by default), 
would generally modify the Windows registry to ensure that they were run (transpar­
ently to the user) every time the computer was started. Attackers had almost complete 
control -  they could access any files, delete or modify them, display messages, open 
and close windows and in some cases even take control of the mouse and CD-ROM 
drive. The definition of a Backdoor is not discontinuous: some programs considered to 
be Backdoors by some antivirus researchers are classified as Trojans by others. Fur­
thermore, some legitimate remote administration software has the potential to be used 
as a backdoor if improperly set up or installed without a user’s knowledge.

2 .1 .6  Spyw are and A d  ware

Spyware is the term given to a piece of software (which can be a program, part of a 
program, or a web browser extension) which overtly or covertly collects information 
about the user of a computer or program. Adware refers to advertising-supported 
software, but there is a substantial overlap with spyware as adware often also collects 
user data in order to display targeted advertisements.

Information collected by spyware or adware can range from relatively harmless usage 
statistics through to outright invasions of privacy. The motivation for adware and 
spyware is commercial -  advertisers will pay large sums for the data it can gather. 
Sometimes, the data are used to display tailored advertisements to the user, but in 
other situations the user may be entirely unaware that the data gathering is going on. 
In the early days, programs which had spyware or adware components would mention 
it openly in the licence agreement, often claiming that the only way they could justify

4The name was a pun on a Microsoft product called BackOffice Server, which was discontinued in 
1999.
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releasing their program as freeware or shareware was by generating revenue through 
a data-gathering/targeted advertising combination. However, modern spyware is de­
signed specifically to hide from the user (except when it is popping up advertisement 
windows), and to make uninstallation as difficult as possible. Such programs are often 
automatically downloaded and installed when a user visits a certain web site (this is 
known as a ‘drive-by download’) . Not only is this unethical, it is also unsafe, as the 
same techniques can and have been used by malicious programs which attem pt to steal 
passwords etc.

The Gator eWallet program [Gator, 2005] is a particularly insidious, if dated, ex­
ample of spyware. The user would download and install a program to assist them in 
‘remembering’ passwords and form entries on web pages5. What the user might not 
have realised was that the program was also tracking their internet usage habits and 
sending data back to the Gator company. Furthermore, the Gator program could also 
be included with other software -  the user might not have chosen to download and 
install it at all. According to [Webb, 2005] this was done in a particularly insidious 
manner. A user would download and install an unrelated piece of shareware, which -  
unknown to the user -  contained a program called ‘trickier’. This would then modify 
the user’s registry so that it ran every time the computer was started. The trickier 
program would then slowly download the full Gator program, then install and run it. 
The download was done slowly so that the user wouldn’t notice their bandwidth being 
lost. Once running, the Gator program would display advertisements while the user 
was online. This included replacing the original advertisement images on a web site 
with differing ones. Several companies sued Gator for stealing their advertising space 
(see [Edelman, 2002], an expert witness statement from the case, which was eventually 
settled in 2003).

Programs like Gator and other explicitly advertisement-supported programs had a 
measure of legitimacy in that users were informed, in theory at least, of the data 
collection process when they read the license agreement, and could choose not to use 
the program if they were unhappy with it. This clearly does not apply to modern 
examples of spyware, which are much more obviously malicious. Not all programs 
which collect data are spyware, but the definition is a little less clear-cut. The following 
lists may provide helpful criteria for distinguishing spyware and malicious adware from 
legitimate advertisement-supported software.

5This functionality was later integrated into web browsers.
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CHARACTERISTICS OF LEGITIMATE SOFTWARE

1. The user is clearly informed th a t the program collects data and/or is supported by advertise­
ments (e.g. not as a footnote hidden away at the bottom  of the license agreement).

2. The user is informed exactly what data  are being collected, where it is being sent, and what is 
being done with it (and the company or organisation receiving the data has a clearly-defined 
privacy policy).

3. Advertisements, if present, are displayed only within the program’s main window and only 
when the program is in use.

4. The program does not collect any data which personally identifies the user or their computer.

5. All data-collecting components are part of the program, do not function independently of it, do 
not use up excess resources, and are uninstalled completely when the program is uninstalled.

CHARACTERISTICS OF ADWARE AND SPYWARE

1. The data  collection process is hidden from the user, as is the type, quantity, destination and 
use of any data collected.

2. Advertisements, if present, appear as separate pop-up windows and randomly, regardless of 
whether the supported program is running or not.

3. The data-collection and advertisement-display features are separate and autonomous from the 
main program.

4. The program refuses to allow itself to be uninstalled or term inated.

5. The data-collection or advertisement-display features do not get uninstalled with the main 
program, but remain on the system, often going to elaborate lengths to hide themselves and 
prevent removal.

2 .1 .7  B o tn e ts  and D D oS  A ttack s

Some of the latest Trojans are designed for a specific purpose. They spread using 
the usual techniques (either as spammed email attachments, or as the payloads of 
worms or conventional viruses), or may be introduced deliberately by human crackers 
who have compromised a system. The Trojans, known as bots, sit unobtrusively on a 
computer. Each individual bot will contain code for communicating via the internet, 
often using the Internet Relay Chat (IRC) protocol. The malware author or controller 
can thus search for infected machines (which are sometimes termed ‘zombies’), and 
send commands to them. The group of infected computers controlled by an attacker 
are known collectively as a botnet. Such botnets may be used for a variety of purposes, 
and controllers may sell or rent access to them, the commonest purchasers of such access 
being spammers and organised criminal groups [Bradbury, 2006].

One of the first uses for botnets was the co-ordination of denial-of-service attacks. In
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such a case, whoever controls the botnet instructs each bot to launch a denial-of-service 
attem pt against a target IP address. On its own, one bot may be insignificant, but 
with hundreds or thousands of zombies hammering away at an IP address, the situation 
is very different. Such an attack is known as a Distributed Denial-of-Service (DDoS) 
attack. Various companies have been subject to extortion relating to botnets, with 
criminals threatening to launch DDoS attacks against them unless some sort of ransom 
is paid. The more computers that are infected by bots, the greater the effectiveness 
of DDoS attacks, but the greater the risk of the bot being discovered and added to 
virus scanner signature lists. For this reason, modern bot authors are moving away 
from massive untargeted distribution via worms and towards less noticeable forms of 
distribution. According to a virus expert quoted by Danny Bradbury in his article on 
the motivation of malware authors:

"..sending out a rapidly proliferating worm to create a huge botnet is too obvious and raises 

too many alarms, prompting users to take security measures. Yesterday’s hobbyist malware 

writer was generally an adolescent male wanting to be noticed by his peers. Today’s for- 

profit malware writers want to stay under the radar, because if their product is noticed it 

prom pts victims to take action and reduces the number of compromised machines. This 

is why modern malware is less likely to deliver a payload obvious to the victim, such as 

deleting files from the hard drive. Organised commercial malware authors want to enslave, 

not destroy, their targets.” [Bradbury, 2006]

Bradbury’s experts also cite a second reason why bigger is not necessarily better for 
botnet controllers: where bots are used to steal confidential information such as credit 
card numbers, having a million infected hosts risks producing more data than the crim­
inals can handle in one go, so they prefer to infect small numbers of hosts, process the 
data, then repeat the process. Targeted infection is usually accomplished by spamming 
out an infected attachment. As well as stealing confidential data, organised criminals 
are also using botnets as a distributed content serving system. Traditionally, those who 
wished to distribute illicit material via the web (e.g. child pornography or counterfeit 
software) or perform other illegal or objectionable activities (such as running ‘phishing’ 
pages) were vulnerable to having their servers discovered and shut down. If, however, 
some of the machines on the botnet are used as web servers, it becomes much harder 
either to remove the illicit content (because it can be replicated around the botnet) or 
prosecute the perpetrators (because the content is hosted on a machine belonging to 
someone else and without their knowledge). Sometimes, rather than storing content on 
infected PCs, the botnets act as proxy servers, hiding the location of the real w^ebsite 
and allowing the real location of the content to be changed at short notice. Extortion
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is also possible: some Russian Trojans will encrypt portions of a user’s data, then de­
mand payment in return for its decryption. Possibly the biggest users of botnets are 
the spammers. Previously spammers relied on improperly-secured web servers, which 
were easy to trace and fix. Now, spammers buy access to botnets, and use these to 
send spam. As the spam is sent from multiple locations, its source is all the more 
difficult to trace. The following diagram, created by a Wikipedia user, illustrates how 
spammers use botnets:

F ig u re  2.2: A diagram  of th e  process by which spam m ers use zom bie (virus-infected) com ­
p u te rs  to  send spam . Im age and  descrip tion  below copyright © F o o b ar O bfusco 2005, licensed 
under th e  GN U  Free D ocum entation  License)

1. Virus (bot) writer sends out viruses (bots), infecting ordinary users’ Windows 
PCs.

2. Infected PCs log into an IRC server or other communications medium, forming 
a network of infected systems known as a botnet.

3. Spammer purchases access to this botnet from virus writer or a dealer.

4. Spammer sends instructions to the botnet, instructing the infected PCs to send 
out spam.

5. The infected PCs send the spam messages to Internet users’ mail servers.
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2 .1 .8  R o o t k its

Rootkits are designed to subvert the operating system at a low level. They were orig­
inally conceived for use by crackers, who would install one after successfully breaking 
into a system. The rootkit would allow the cracker to hide evidence of the break-in 
from legitimate users. Typical rootkit functions include hiding certain file types from 
the system, or hiding file modification dates. A typical Windows rootkit might hide all 
files having a certain group of characters at the beginning of the filename (i.e. ‘sys’). 
Rootkits may wTork in kernel-mode (meaning that they are fully integrated into the 
OS) or user-mode (easier to create and install but also easier to detect).

In 2005, media company Sony BMG caused controversy when it was discovered that a 
copy-protection system on some of their audio CDs automatically installed a rootkit 
(which also doubled as spyware) on users’ PCs. This was discovered accidentally by 
Mark Russinovich when he was testing his rootkit detection program [Russinovich,
2005], and resulted in Sony having to recall all the affected CDs and fight several 
lawsuits, some of which were still ongoing as of 2007. Some security experts also 
criticised antivirus companies for their sluggish response, given that the software in 
question had been in circulation since 2004 [Schneier, 2005].

2 .1 .9  M alw are P ayloads

The payload refers to a specific malicious function or action, generally independent of 
the functionality which causes the malware to spread. For instance, it is possible to 
take a ‘benign’ virus, which initially causes no damage to files other than the changes 
necessary for it to spread, and modify it so that it performs additional malicious actions 
(adding a payload). Often, the payload is triggered by a time or logical condition.6 For 
instance, the Pathogen virus, extant in the early 1990s and attributed to Christopher 
Pile aka The Black Baron (who later became the first person to be prosecuted under 
UK law for disseminating malware -  see below), had a highly destructive payload 
which would attempt to trash the hard drive of the affected computer if, among other 
conditions, it happened to execute on a Monday between the hours of 5 and 6pm 
[Probert, 1994].

6Some authors classify time bombs and logic bombs as specific categories of malware. However, they 
might more properly be considered as distinct functionalities which malware might have -  evidently, 
if a time or logic bomb is to be set, it must first get itself onto a target computer, generally in the 
form of a backdoor or Trojan.
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2.2 Vulnerabilities exploited by malware

Programs that carry out malicious behaviour need not be specially written as malware 
-  many security breaches have involved the compromise of an existing program by 
an attacker. These attacks wrork best if the program to be compromised has a high 
privilege level and is accessible over network interfaces -  which is why network services 
tend to be attacked in this way -  attacks can be carried out remotely (by an attacker 
on the network) and physical access to the machine is not required. Malware itself 
often takes advantage of these vulnerabilities -  for instance, most worms spread by 
exploiting code injection vulnerabilities in network services.

2.2 .1  C od e In jection

Code injection is defined as inserting new instructions into a program in memory while 
it is executing. There must generally be a pre-existing vulnerability in a program 
that makes it susceptible to various code injection techniques. However, owing to the 
shortcomings of common programming languages, such vulnerabilities are extremely 
common. In fact, the vast majority of code injection techniques exploit shortcomings 
in certain functions of the C programming language. Most C libraries have now been 
modified to implement safer versions of these functions: nevertheless, the old functions 
still exist and it is up to the programmer to decide which to use.

2.2 .2  B uffer O verflow

The C programming language has no mechanism for determining whether an array 
access is out of range. Thus, it is easy to accidentally read or write past the end of the 
array. When this happens, a buffer overflow is said to have occurred. Reading past the 
end of an array will cause no problems -  though what is read will be undefined -  but 
if a program writes past the end of an array, the results can be far worse. On the Intel 
80(x)86 architecture, function calls are implemented by having the processor push the 
address of the next instruction onto the stack, call the function, then pop the return 
address off the stack and jump there. Because function local variables (including arrays) 
are allocated from stack space, if a local variable “overflows” , the return address on the 
stack can be overwritten. When the function finishes, the processor tries to continue 
execution from the address on the stack, which has been overwritten. This type of 
buffer overflow is therefore termed a stack overflow [AlephOne, 1996].
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Generally the new value of the return address will not point to a valid memory location, 
so a crash occurs. If, however, the attacker can manage to overwrite the return address 
with the address of some executable code, she can get the processor to execute it. The 
reason why this is often possible is that C has no inbuilt string data type -  to get a 
string, it is necessary to use an array of characters (char[]), with the end of the string 
being indicated by a null (zero) value. If the terminating null is absent, there’s no 
way to tell how long the string is supposed to be. Furthermore, as strings arguments 
are passed to functions as a pointer, a string-handling function has no implicit way of 
telling how much memory has been allocated to a given string. Thus, functions which 
are designed to copy data into a string, or from one string to another (strcpyf), strcatf), 
gets()) are extremely liable to cause buffer overflows.

Once an attacker has discovered a vulnerable program (usually a network service, as 
these can be exploited remotely), she can design an attack to target it. The attack 
generally involves sending a specially-crafted string of data to the vulnerable program. 
The string is long enough to cause the overflow, and is set up in such a way that the 
overwritten return address (for a stack overflow) points back into the attack string 
itself, which the attacker has filled with the machine code bytes she wishes to execute 
(termed shellcode as most early examples were designed to open a command shell). 
Crafting shellcode is a skillful business -  it must be relocatable, as short as possible, 
and not contain any zero bytes, which sometimes means it must be self-modifying. 
However, both ready-written shellcode and attack scripts are easily available, allowing 
attackers with the minimum of technical skill to exploit these vulnerabilities.

The stack overflow is not the only way to inject code -  other methods which can 
be used for code injection include heap overflows [Conover, 1999] and format string 
vulnerabilities [Lhee and Chapin, 2003]. The attacker does not always have to inject 
any new code -  just changing the execution path of a program, or altering the value of 
key variables, may be enough for their purposes.

2.3 Malware Nam ing Conventions

According to Peter Szor, the most commonly-used malware naming scheme is the one 
proposed by the Computer Antivirus Researchers Organisation (CARO) in 1991 ([Szor,
2005] p36-46). However, Szor also points out that naming is a highly complicated 
area due to the speed with which new virus variants appear. Readers interested in 
the technical details are referred to Szor’s book and to the references he gives there.
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However, a brief overview of the naming conventions is helpful in understanding the 
names given by virus encyclopedias or antivirus products.

Szor gives the following definition for a malware name corresponding to the CARO 
scheme.

[<malware_type>://] [<platform>]/<family_name>[.<group_name>]
\ [.<infective_length>][.<variant>[<devolution]] [<modifiers>]

In the definition, ‘malware_type’ refers to the type (virus, Trojan, etc.). The ‘platform’ 
field is one of a list of accepted codes for target platforms, examples being ‘W32’ for 
32-bit Windows, ‘Linux’ for Linux, ‘OSX’ for Mac OS X, and so on. The ‘group_name’ 
field allows families of similar viruses to be grouped together, and the ‘infectiveiength’ 
field specifies the infective length for a file-infecting virus. The ‘variant’ field (generally 
a letter) distinguishes between minor variants with the same infective length. The 
remaining fields are less important, and their description is omitted for brevity.

The following are the names of some programs in the author’s malware collection, as 
well as viruses encountered by the author and not retained:

• Net-Worm://Win32.Welchia -  a Windows network worm.

• Backdoor://Win32.ciadoor.l21 -  a Windows backdoor Trojan.

• Virus://W in32.Parite.B -  a Windows memory-resident file-infecting virus.

However, the field of malware research is made vastly more complicated by the fact 
that the same piece of malware may be given different names by its creator and by 
different antivirus companies.

2.4 D etection  and Prevention Techniques

In Chapter 1 section 1.3, four separate approaches (Detection, Identification, Pre­
vention, and Recovery) are set out. It is possible to approach this differently -  in 
“Foundations of Computer Security” , David Salomon expresses the problem in terms 
of a set of four goals that an ideal anti-malware program should achieve (see [Salomon,
2006] p!47)
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David Salom on’s Goals for Ideal A ntivirus Software

1. To detect all known viruses and malware that currently exist in the computer, 
advise the user on each occurrence of rogue software discovered, and help the 
user to delete them.

2. To detect unknown viruses.

3. To scan incoming email, all downloaded files, and any removable storage devices 
inserted into the computer, and detect all known viruses and malware in them.

4. To record all activities in a log file.

Salomon then goes on to enumerate three types of anti-virus measures, which exactly 
parallel the ones that were described in Chapter 1, though Salomon’s discussion is 
more general, considering user-led activities (such as taking care when opening email 
attachments) as well as those carried out by programs:

1. Virus-specific detection methods (Identification).

2. Generic virus detection techniques (Detection).

3. Virus preventive techniques (Prevention).

Of course, a major problem with obtaining information about the workings of extant 
anti-malware software is that companies are extremely loath to publish details -  and 
not just for reasons of commercial confidentiality. As David Salomon writes,

■‘....the task of anti-virus software is complex. There are many hundreds of viruses and 

new ones appear all the time. Current computers have huge-capacity disk drives and it is 

common to have hundreds of thousands of files on a single disk. Anti-virus software must 

therefore contain large tables with information on many viruses and has to employ clever 

algorithms and shortcuts in order to scan and disinfect an entire disk in a reasonable period 

of time. It is therefore no wonder that the makers of such software keep the details of their 

programs secret. The secrets are kept not just from competitors (and from this author) but 

also from writers of future viruses...” -  [Salomon, 2006] pl47~T48

For this reason, the information in this section should be considered as plausible infer­
ence, although it is supported with published sources wherever these are available.
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Signature Scanning

Signature scanning is a process whereby a unique ‘signature’ is computed for a given 
virus or other malicious program. This is generally done by the manufacturers of 
antivirus products, who equip their software with a set of such signatures that is 
periodically updated. When the antivirus product scans a program it checks to see if 
the signature of a known malicious program is present. Of course, the disadvantage 
of this method is that it can only detect malware that have previously had signatures 
generated. However, signature scanning lends itself to detecting all types of malicious 
program and not just viruses, which is probably one of the reasons for its continued 
popularity.

Another commonly-used process based on signatures is the detection of changes to 
programs via checksumming. A cryptographic hash function such as MD5 is used to 
generate checksums for all the program files on a ‘clean’ system. These are stored 
in a secure location. Periodically the checksums for all programs are recalculated and 
compared with the stored values. If a virus infects a program, its checksum will change, 
allowing detection. However, this only works for file-infecting viruses, and assumes 
that the virus is unable to compromise the checksumming process or the stored values, 
which necessitates cumbersome measures to protect them. Checksums are therefore 
more commonly used as part of general integrity-checking processes (such as providing 
MD5 checksums for downloadable files) than specifically for detecting malware.

2 .4 .1  H eu ristic  Scanners

Although most commercial virus scanners rely on signatures, some also include an 
element of ‘heuristic’ scanning ability. Heuristic techniques involve being able to tell 
when a program is likely to be malicious based on extensive analysis of malware and 
‘legitimate’ programs. Heuristic technology may be passive (based on scanning program 
files only) or active (watching what a program does when it runs), but in current 
commercial virus scanners it is usually passive. Peter Szor lists a number of suspicious 
structural characteristics an executable file might have if it has been infected by a virus. 
Heuristic scanners look for these characteristics when determining if a file is infected. 
Note that this is not a foolproof means of detection as viruses may not have all these 
characteristics and may be able to conceal those they do have [Szor, 2005]. Some 
commercial virus scanners also monitor file execution attempts to determine whether a 
file which tries to execute is a known virus. If it is, infection is blocked and a warning
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Structural Anomalies in Win32 PE Executables
Code execution begins in last section
Suspicious section characteristics, names, or flags
Virtual size incorrect in PE header, or incorrect sizes in other headers
Suspicious gaps in sections
Abnormal jumps to  other sections
E ntry point in P E  header points somewhere other than the .text section
DLL imports by ordinal
Patched Import Address Table (IAT)
Multiple file headers
CALL to POP, or CALL to next instruction 
Bad checksums in DLLs

Table 2.2: Some of the structural anomalies common in infected program files given 
by Szor

is displayed to the user. This is probably not genuine behaviour recognition: it is more 
likely that running any program causes the resident portion of the virus scanner to 
initiate a structural scan on the program file.

2.4 .2  S tru ctu re -B a sed  D e te c tio n

Traditional virus scanners, whether signature-based or heuristic, generally use structure- 
based anomaly detection, as they rely on being able to identify anomalies in the struc­
ture of executable files (see [Szor, 2005] chapter 11). Structural anomalies cited by 
Szor are listed in Table 2.2 (and are further expanded on in Chapter 5).

Structural anomaly scanning is relatively easy to implement, both for real-time memory 
scanning and for offline file scanning (some structural anomalies may not show up in 
the mapped image). The disadvantage of this approach is that viruses are becoming 
increasingly good at hiding structural anomalies. Also, non-viral malicious programs 
(Trojans etc.) may not actually have any structural anomalies.

2 .4 .3  A c t iv ity  M on itors

David Salomon defines an ‘activity monitor’ as a software module which is designed 
to protect low-level system routines from being compromised by viruses ([Salomon,
2006] pl50). One way to do this is to maintain a clean copy of each protected function 
(or a checksum or secure hash of it) in ROM. Each time the function executes, it is
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checked against the clean copy, allowing any modifications a virus may have made to 
be detected. Unfortunately, as Salomon points out, it is impractical to require the 
user to perform a ROM upgrade whenever the operating system is updated. A more 
practical, but less secure method involves examining the internal state of the processor 
to determine whether the operating system or some other program has executed a 
protected function, and blocking execution attempts by non-trusted code. Of course, 
a virus writer could find ways around such an activity monitor, and thus a kind of 
“arms race” may result. Often at least some of the activity monitor is implemented in 
hardware to make it as hard as possible for malware to compromise it. Some of the 
new functionality invented by Microsoft as part of the NGSCB (see 2.7.4) could be 
considered to be activity monitors, though the motive for their development may have 
been Digital Rights Management rather than malware prevention.

2 .4 .4  B eh a v io u r-B a sed  A n o m a ly  D e te c tio n

A more promising method could be termed ‘behaviour-based anomaly detection’. This 
involves a detection system capable of monitoring the behaviour of all processes running 
on a computer and raising an alert if suspicious behaviour is detected. There are 
many ways to define what constitutes ‘suspicious behaviour’ -  for example, if a word- 
processing process writes to a document file, it is not behaving suspiciously, but if it 
writes to an executable file it is. Processes that attem pt to locate or write to executable 
files when they first load, if they are not specifically designed to do this, have probably 
been infected by a virus, as this is the behaviour pattern of many file-infecting viruses. 
Any write operations on an existing executable file are suspicious unless carried out 
by a debugger, process patcher, or similar tool. Any process which suddenly makes 
system calls that it has never previously made is suspicious (this assumes that a profile 
of the system calls made in normal use is available). Unfortunately, monitoring this 
kind of behaviour requires very low-level access to the operating system.

2.5 D etection  Countermeasures

As malware detection techniques have advanced, malware authors have found new ways 
to frustrate them. This section illustrates some of the more common ones.
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2.5 .1  H eu ristic  F rustration: C oncealm ent

Virus authors are well aware of the suspicious characteristics looked for by heuristic 
virus scanners (see above) and will often design their creations so that they avoid or 
conceal these characteristics.

2.5 .2  P o ly m o rp h ism  and  M etam orp h ism

Most successful executable infectors are ‘polymorphic’ because each time the viral code 
is copied to a new target it is altered. This is possible because for any given operation 
there are generally a large number of equivalent machine instructions. For an encrypted 
virus, the decryption code is probably the easiest to detect, so a polymorphic virus 
will change its decryptor for each new infection. The earliest polymorphic viruses 
contained a number of different decryptors and simply used a different one each time, 
but more sophisticated techniques are used -  random junk instructions can be inserted, 
equivalent instructions can be swapped and the order of execution (decryption) can be 
changed. Metamorphic viruses use polymorphism on the entire virus rather than just 
on the decryptor. Whereas polymorphic viruses generally decrypt to a constant virus 
body in memory, with metamorphic viruses each virus body is different.

The idea of this is to frustrate antivirus programs that work by signature scanning. 
The success of the virus depends on how good the altering algorithms are -  for the 
best polymorphic and metamorphic viruses, different infections have almost no code in 
common, and so are very hard to detect.

2 .5 .3  E n cry p tio n  and  P ack in g

If a virus is encrypted, it is all the more difficult for a virus scanner to learn any­
thing about it. Encryption which is trivial for a human to break (i.e. XOR) can 
nevertheless be very effective for frustrating virus scanning. However, with the advent 
of operating-system support for serious encryption, some viruses are using ‘real’ en­
cryption algorithms such as IDEA. Such encryption can never be totally secure since 
the virus must always carry the key somewhere, but if the virus implements an odd 
algorithm it can be very tiresome to analyse as the analyst must re-implement the 
algorithm. Decryptors are often polymorphic (see above) and will decrypt portions of 
virus code in a seemingly random order (via a mathematical pseudorandom permuta­
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tion function) to confuse heuristic decryption detectors (see Peter Szor’s description of 
the W32/Simile virus in [Szor, 2005] p282).

2 .5 .4  R etrov iru ses

Some viruses are designed specifically to attack antivirus or security products running 
on a target computer. Such viruses are known as retroviruses (the analogy being with 
biological retroviruses such as HIV which attack the immune system). Additionally, 
other types of malware may include retrovirus-like functionality (for instance, some 
spyware has been known to search for popular anti-spyware utilities and attempt to 
deactivate them).

2.6 Malware and the Law

Is the authorship and dissemination of malware illegal? Evidently this depends on the 
legal jurisdiction. In the UK, virus authors such as The Black Baron (Christopher Pile7) 
have successfully been prosecuted under the Computer Misuse Act 1990, even though 
this is more concerned with humans gaining unauthorised access to computer systems 
than with malware. According to Buzzard,8 Pile was charged with five violations 
of Section 1 of the Act (unauthorised access) and five counts of violating Section 3 
(unauthorised modification). He was also charged with inciting others to spread his 
viruses. He pleaded guilty to all charges and was sent to prison. More recently, 
the Computer Misuse Act was amended by sections 35-38 of the Police and Justice 
Act 2006. These amendments were necessary because technological changes since the 
original Act meant that some malicious actions (such as denial of service attacks) 
were not covered. Thus it is now an offence not only to gain unauthorised access to 
computer material, but also to “enable any such access to be secured” which would 
presumably cover using malware to gain access or to steal data. DoS and DDoS attacks 
are outlawed by Section 36, which amends Section 3 of the original Computer Misuse 
Act and makes it an offence to perform an unauthorised act which is intended “to 
prevent or hinder access to any program or data held in any computer” , even if the 
hindrance is only temporary. Section 37 adds a new offence to the Computer Misuse 
Act (creating a Section 3A) -  that of making, adapting, supplying or offering to supply

7R v Pile, 1995
8 “The Computer Misuse Act 1990 -  Loopholes and Anomalies” by Keith Lawrence Buzzard, 

reprinted in [Blyth and Kovacich, 2001]
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any article which is intended or believed to be for use in committing or assisting 
in the commission of a computer misuse offence. Furthermore, ‘article’ specifically 
includes “any program or data held in electronic form” . Thus, it appears that writing 
or disseminating malicious programs is now illegal in the UK.9 However, it is highly 
unlikely that legal redress will be possible for the average victim of a malware attack 
unless a specific, local perpetrator can be proven to have authored or introduced the 
malware.

2.7 Literature Review

2.7 .1  In tro d u ctio n

Malware is often by its nature self-replicating. The detection and classification of mal­
ware is therefore somewhat analogous to the tasks of detection and taxonomy of living 
systems in biology. Thus one might seek to classify programs by their phenotypical (or 
genotypical) characteristics, i.e. their structure, or by their behavioural characteristics. 
This thesis is not concerned with the taxonomy of malware (albeit that this is a very 
interesting topic in its owm right).

There is an interesting contrast betwreen research into malicious programs and other 
areas of computer security research. Whilst many conferences and journals exist for 
computer security-related topics, relatively fewT papers on malicious software are pub­
lished. There are several reasons for this, a fewr of wThich will now7 be given. Firstly, in all 
security-related research (but mahvare research particularly) it is necessary to ensure 
that potential attackers do not gain valuable information from disclosure. Secondly, 
a great deal of anti-malwTare research has been carried out by private AV companies 
rather than by academics, and such companies often consider their results ‘commer­
cially confidential’. It is not terribly easy to find reputable sources of information about 
malicious programs, and it is necessary to turn to the “underground” publications of 
malwTare authors themselves, as such authors are unlikely to publish their results in a 
peer-reviewred journal. 10

9Persons found guilty may receive up to 12 months imprisonment in England or Wales and up to 
six months in Scotland.

10A cynical possible third reason for the “cliqueyness” of the malware field is that the malware 
authors and anti-malware researchers fear the disruption of their comfortable symbiotic relationship....

Malware Detection using Structural and Behavioural Features and Machine Learning Joseph Rabaiotti



2.7 Literature R eview 46

2.7 .2  E arly  R esearch  and T h eory

According to Cohen [Cohen, 1987], the term ‘virus’ as applied to a replicating program 
which spreads by infecting other programs was coined by Leonard Adleman (who is 
also famous as one of the three designers of the RSA encryption algorithm) at a security 
conference in 1983. However, it has since emerged that the term was used eleven years 
earlier in a novel by David Gerrold (see [Salomon, 2006] p37), though the program 
described by Gerrold appears, at least from the brief excerpt given by Salomon, to 
have been closer to a worm than a modern virus. Various people have claimed to have 
developed virus-like programs before Cohen, but none are known to have survived. The 
term ‘virus’ had also been used by Gunn to denote a situation where an APL program 
modifies its interpreter [Gunn, 1974].

It is notable that, out of all the different types of malware, early research (e.g. prior 
to the mid 1990s) concentrated most heavily on viruses. Factors which might have in­
fluenced this are several, but the main one is certainly that until connectivity became 
universal, viruses (including boot-sector viruses) were the most prevalent type of mal­
ware and caused the greatest number of problems for users of personal computers. The 
situation today, where pure viruses are relatively uncommon compared to worms and 
data-stealing Trojans, occurred coincidentally with the rise of a large base of relatively 
insecure but highly connected hosts (usually home PCs) and the associated growth in 
transactions involving valuable private data taking place over the Internet. It is also 
arguable that viruses are the most interesting type of malware from a research point of 
view; in contrast to Trojans and worms, viruses are more elegant and more challenging 
to create and study.

The “Trojan horse” idea was first mentioned in R.R. Linde’s comprehensive paper 
Operating System Penetration[Linde, 1975]. While the idea of replicating programs 
was known, they were seen as an interesting academic idea rather than as a security 
threat. For example, Cohen cites experiments done at Xerox (described in [Shoch and 
Hupp, 1982]) which used primitive ‘worms’ for performing distributed computation -  
though at that time it was known that such worms could accidentally get out of control 
and cause denial of service. The first viruses for popular microcomputers such as the 
IBM PC and Amiga did not appear until about 1987. In 1988 Leonard Adleman wrote 
An abstract theory of computer viruses [Adleman, 1988 1990] in which he modelled 
viral infections using recursive functions instead of Cohen’s Turing machines.

Cohen’s 1984 paper Computer Viruses -  Theory and Experiments [Cohen, 1987] is a 
landmark in early virus research. In the paper Cohen describes how replicating viruses
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can be a threat to security, and neatly proves that the problem of detecting with 
certainty whether or not a given program is a virus is undecidable. Cohen’s proof -  a 
diagonal argument -  runs as follows: in order to determine whether a given program is 
a virus, it is necessary to determine whether it infects other programs. Cohen assumes 
the existence of some program V  which is a virus, and a hypothetical decision procedure 
D which, on being given some representation of a program as input, determines whether 
or not the input program infects other programs. D returns true if the input program 
is a virus and false if the input program is not a virus. So running D (V ) would return 
true. Cohen then modifies the virus V , creating a modified version denoted V '. V' 
is written in such a way that it only infects other programs if D(V') returns false (in 
other words, if the result of calling D  with V' as the input program is false). Assuming 
there is such a D, V' is easy to write. However, D{V') will only return false if V  is 
not a virus. Therefore V' will only behave as a virus if the procedure D decides that it 
is not one. If D  decides that V ' is a virus, it will not infect other programs and hence 
is not a virus. This is a contradiction: therefore, no such D  can exist.

Cohen’s paper also described practical virus experiments that were implemented on a 
VAX 11/250 during a computer security seminar in 1983. The virus was implanted 
(funnily enough) in the ‘vd’ utility, a graphical file display program. In each of the five 
attacks all system rights were granted to the attacker in under an hour. This perturbed 
the system administrators to the extent that shortly afterwards all further experiments 
were banned. In follow-up papers [Cohen, 1989] Cohen developed a model for viruses 
based on Turing machines. Leonard Adleman developed an alternative model based 
on recursive functions, which is described in his 1988 paper cited above. Recently, 
Adleman’s definitions have been improved upon by Zhihong Zuo and colleagues at 
the University of Electronic Science and Technology of China. A recent paper of 
theirs [Zuo et a/., 2006], following their earlier work [Zuo and Zhou, 2004], proposes 
a 3-type classification scheme for viruses depending on their “imitation behaviours” , 
where imitation is defined as “a property upon which computer viruses rely to behave 
like the original programs.” The authors then go on to prove that the sets of Type 0 
and Type 1 viruses are n 2-complete whereas the set of Type 3 viruses is n 3-complete.

Whilst these theoretical results are interesting, it is not clear that they have made any 
significant impact on practical detection methods.
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2 .7 .3  P ra ctica l D e te c tio n  S y stem s  

IB M ’s ‘Im m une S ystem ’

The first company to research ways to automate viral signature generation was IBM. 
Staff at their Thomas J Watson Research Center published a series of papers between 
1993 and 1997 which outlined their vision of a ‘computer immune system’. In Comput­
ers and Epidemiology [Kephart et a l, 1993] Jeffrey Kephart, David M Chess and Steve 
R White address the question of whether parallels may be drawn between biological 
virus epidemics and computer virus epidemics. The analogy between the biological 
immune system and computer security systems has also been pursued academically by 
a team led by Professor Stephanie Forrest at the University of New Mexico. In fact, 
academic interest in “artificial immune systems” is such that an international confer­
ence was set up on the subject in 2002. In 1999, however, IBM announced that it had 
developed “the first commercial-grade immune system that can find, analyse and cure 
previously unknown viruses faster than the viruses themselves can spread” [White et 
al, 1999]. The IBM “computer immune system” uses signature techniques, but makes 
signature generation automatic. It consists of an automated method for forwarding 
suspected viruses via a network to a central analysis centre, where they are automat­
ically analysed. This analysis is accomplished by allowing the suspected viruses to 
infect ‘goat’ programs, which are special programs whose characteristics are known 
exactly. By comparing the infected goat programs to the originals, the viral character­
istics -  and hence a signature -  can be found. The analysis system then generates a 
'vaccine’ which is sent out over the network to all the protected systems. It is not clear 
how this would work for malware types other than file-infecting viruses, however, and 
the IBM strategy of deliberate infection is generally only practical in a special secure 
environment (such as IBM uses in its automatic analysis centre). It also seems as if 
this approach would be vulnerable to the countermeasures already used by some virus 
writers, who take pains to detect the presence of obvious ‘goat’ programs or emulated 
environments in order to frustrate antivirus researchers -  and human researchers would 
be far less easy to fool than an automated system. This is perhaps why IBM do not 
seem to have proceeded much further with their system.

A lternative Strategies

Alternative strategies for analysing malware have been developed, using neural net­
works [Tesauro et al., 1996], data mining [Schultz et al., 2001], probabilistic detection
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[Forrest et a/., 1994] and system call sequencing [Forrest et al., 1996]. Lee, Kim and 
Hong [Lee et al., 2004] propose a hybrid approach: firstly, all new or changed programs 
are divided into ‘self’ or ‘nonself’ by means of a signature process. Then, behavioural 
(heuristic) analysis is applied to the ‘nonself’ programs to determine which are viruses. 
Another paper by some of the same authors describes the use of genetic algorithms 
to improve a randomly-generated “detector set” [Kim et al., 2004]. The detector set 
is an idea taken directly from the biological immune system. In the same way that 
antibodies identify ‘nonself’ cells by binding to certain protein sequences they contain, 
a computer immune system may identify ‘nonself’ programs by identifying bit-strings 
they contain. The detector set is the set of such bit-strings. It is highly probable that 
some of these ideas are used in modern antivirus programs, but owing to commercial 
confidentiality it is impossible to find out.

Some of the methods proposed in the literature will now be examined in more detail.

2.7 .4  S ta tic  and S em an tic  A n a ly sis

A common method by which human researchers analyse malicious program code is 
known as static analysis, presumably because the malicious code is not executing while 
it is being analysed. Many forms of static analysis are possible, and many tools have 
been developed (see [Christodorescu and Jha, 2003] and [Sabin, 2004]). Recently re­
searchers have been using static analysis in conjunction with taxonomic techniques to 
determine ‘family’ relationships between malicious programs (e.g. [Flake, 2006] and 
[Lemos, 2006]). For such purposes detailed code analysis is an essential requirement, 
since the goal is to determine wrhether a given malicious program has code or structure 
in common with existing known cases.

A slightly different approach is to perform semantic analysis on malicious code [Shin 
and Spears, 2006]. This starts by disassembling the malicious example using a com­
mercial disassembler. The assembly code is then converted to a graph that is a hybrid 
of control flow and data dependence graphs. The graph is then split into subgraphs 
for each program subgoal, and further each subgraph is converted into a FSM repre­
sentation. By performing inductive inference on output strings from the FSMs (which 
represent execution paths) they are able to develop a ‘semantic signature’ for all pos­
sible malicious code in a particular class.
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M icrosoft’s Behaviour-Based R ecognition

Very recently Microsoft have been looking at behaviour-based recognition. Their 2006 
EICAR conference paper on behavioural classification [Lee and Mody, 2006] lists pre­
vious approaches to behavioural classification, pointing out that mere system or API 
call sequencing is often inadequate. The novelty of this approach is that, as far as is 
known, most current virus scanners and other existing protection methods rely entirely 
on structural anomalies in programs rather than behavioural ones. In other words, ex­
isting methods ask “Does it look malicious?” whereas this method asks “Does it behave 
maliciously?” . The Microsoft researchers initially set out to automate static analysis 
techniques, but came to the conclusion that these were insufficient to deal with rapidly- 
evolving malware and so started looking at behavioural analysis as an adjunct to static 
analysis. They developed a method of generating vectors of behavioural data for pro­
grams, then applied a distance measure to these strings to allow classification. Some 
other researchers have cast doubt on the usefulness of such work, preferring improved 
methods of static analysis.

Other M ethods

Other research has concentrated on mathematical modelling of virus propagation, using 
techniques developed by epidemiologists for biological viruses. In [Chang and Young, 
2005], Chang and Young use differential equation-based models to determine how the 
spread of viruses is affected by the nature of the Internet and how the latter might 
be changed to preferentially discourage the spread of viruses. Leaving the realm of 
viruses, Crosbie and Spafford have tried to apply intelligent agent technology to intru­
sion detection systems -  and their papers [Crosbie and Spafford, 1995b] and [Crosbie 
and Spafford, 1995a] show a high degree of foresight, because at that time intelligent 
agent technology was in its infancy. Andrew Watkins’ An Immunological Approach 
to Intrusion Detection [Watkins, 2000] brings together the agent-based approach of 
Crosbie and Spafford and the ” self-nonself discrimination” immune-system ideas of 
Stephanie Forrest and others. Watkins covers only network intrusion detection (e.g. 
detecting hackers)- the goal of this present work is to show that these techniques can 
also be applied to viruses, spywrare and other Malicious Programs. Spyware, indeed, 
is such a recent development that few if any papers cover the subject, and of the ones 
that do, most only mention it in passing. Most information on Spywrare comes from 
non-academic sources (see [Webb, 2005], [Gator, 2005]).
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Trusted C om puting

Finally, Microsoft and others have promoted what has been respectively known as 
Trusted Computing Platform Architecture (TCPA), Trusted/Trustworthy Computing 
(TC), or the Next Generation Secure Computing Base (NGSCB) as a solution to 
all computer security problems, including viruses. The NGSCB was developed by 
a consortium of hardware and software vendors, including major manufacturers of 
processor chips such as Intel and AMD. In its simplest form, as set out in [Safford, 
2002], TC hardware needs to perform three basic types of function:

1. Public key functions.

2. Trusted boot functions.

3. Initialisation and management functions.

In other words, a TC chip will contain facilities for doing public-key cryptography 
(generating key pairs, encryption, decryption and digital signing and verification), fa­
cilities for verifying the boot process and ‘sealing’ data so that it cannot be accessed 
if the boot process changes (wrhich can be used to protect data in the event that, for 
example, a hard drive is stolen), and facilities for managing the operation of the chip. 
All of these features will vary between different manufacturers of TC chips. Some 
manufacturers, or certification authorities, wrould retain copies of a special public key 
(called the 'endorsement key’ by IBM) associated writh each chip. This would bring 
certain advantages (such as allowing the system to function like a smart card and do 
secure e-commerce) as wTell as certain disadvantages (privacy concerns). Microsoft’s 
proposed implementation of TC in Windows, originally named Palladium but also re­
ferred to as the Next Generation Secure Computing Base (NGSCB), is considerably 
more involved, comprising wrhat is effectively a hardware-based authentication system 
wiiich wTould control most or all aspects of computer operation based on permissions 
obtained from wThat might be termed ‘higher authorities’ (software vendors and content 
owmers). Furthermore, Microsoft have proposed that all peripherals (memory, moni­
tors, keyboards, sound cards etc.) contain encryption facilities to allow totally secure 
communication between themselves and the main processor. Additional motives for 
developing such technology may have been to make unauthorised software and con­
tent copying impossible via “Digital Rights Management” (DRM) and at the same 
time make it easier for Microsoft and other large companies to utilise “vendor lock- 
in” against users wrho might otherwise wTant to switch operating systems or application

Malware Detection using Structural and Behavioural Features and Machine Learning Joseph Rabaiotti



2.7 Literature R eview 52

software (see [Stallman, 2002]). This has led to the technology being redubbed ‘Treach­
erous Computing’ by its detractors. In any case, there is much reason to be sceptical of 
Palladium or TC as a general solution to security problems, as Anderson shows when 
he points out the contradiction between Microsoft’s one claim that NGSCB will pre­
vent viruses and their other claim that existing programs will run on NGSCB-enabled 
systems without problems [Anderson, 2003]. Microsoft initially intended to implement 
NGSCB in Windows Vista, but eventually decided not to do so. However, many of the 
DRM-enabling features (such as secure channels between hardware devices) have been 
implemented by Vista in any case (see belowr).

In 2002 David Safford of IBM Research wrote [Safford, 2002], intended as a rebuttal 
to the claims of Anderson and other critics. In this, Safford argues that Trusted 
Computing itself is separate and distinct from DRM and from Microsoft’s suggested 
implementation of TC (Palladium), and that many commentators on the subject have 
confused all three technologies. Safford also points out the positive aspects of IBM’s 
TC chip: for instance, it makes it much harder for malicious software to steal your 
encryption keys. Certainly, IBM’s implementation as described by Safford in 2002 
appears far less sinister than Microsoft’s version. However, developments since 2002 
have shown that where TC chips have been deployed, the motive is usually DRM (for 
example, Apple’s new Intel Macintosh).

Though trusted computing technology is now extensively used, particularly in games 
consoles, as of 2006 no companies who produce or use it are representing it as any­
thing other than advanced copy protection, or claiming that it can prevent malware. 
As the hackers who managed to run the DRM-protected Intel version of Mac OS X 
on a standard PC (and, later, to run Windows on the Intel Macintosh) have shown, 
hardware-based copy protection is far from foolproof, and it has the further disadvan­
tage that protected ‘content’ is not usable on older hardware without the protection 
chip, which could be the reason it has not as yet caught on in desktop PCs.

W indows V ista

Prior to the launch of Windows Vista in January 2007, Microsoft had promised that it 
would be the most secure version of Windows yet seen. The Microsoft web site claims 
that
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“Windows Vista is also armed with enhanced protections designed specifically for Inter­

net use. Dynamic security protection in Windows Internet Explorer 7 helps guard your 

computer and your privacy against threats like malware, fraudulent websites, and online 

phishing scams, while new Windows Defender technology works to  minimise pop-ups, slow 

performance, and security threats posed by spyware and other invasive programs...And, in 

the event that your computer is lost or stolen, a feature available in Windows Vista Ultimate 

called Windows BitLocker Drive Encryption will help keep your data confidential through 

full-volume encryption and boot-integrity monitoring.”-  [Microsoft, 2007]

Detractors, however, point out that Microsoft’s priorities are skewed -  the majority of 
the new security features are not for protecting the user or their data, but for protecting 
so-called ‘premium content’ -  in other words, DRM.

“The entire operating system now seems to  have turned against the user. Zero tolerance 

drivers and regulation code will lock the system down if any type of deviance is detected. So 

called ‘tilt b its’ will signal an attack on the system if anything is found out of the ordinary. 

These changes won’t enhance user security unfortunately as they were designed to protect 

only premium content. Medical data, credit card numbers, and other private things that do 

deserve this level of protection are completly (sic) ignored.”— [Day, 2006]

Peter Gutmann of the University of Auckland has written a comprehensive techni­
cal critique of Vista’s content protection system. In it, he not only shows how the 
many content protection features will increase hardware costs, detract from the user 
experience, and prevent even legitimate activities, but may even pose a security risk if 
attackers can exploit them for their owm purposes:

“Another unforeseen consequence of the potential for a downgrade disguised as an upgrade 

(that is, a driver being revoked by Windows Update) is that the whole process of updating 

your machine is supposed to  provide benefits to the user in the form of enhanced func­

tionality or, more pragmatically, bugfixes and security patches. Since malware attacks are 

invisible but a loss of playback capability isn’t, if the only visible effect of an update is to 

reduce system functionality it incentivises users to disable updates in order to avoid this 

issue. The unfortunate hidden side-effect of this is that in the interests of protecting them­

selves from having their content-playback capabilities turned off, they’re now vulnerable to

all manner of malware, viruses, spyware, and so on.... Content protection features like ‘tilt

b its’ also have worrying denial-of-service (DoS) implications..With the number of easily- 

accessible grenade pins that V ista’s content protection provides, any piece of malware that 

decides to  pull a few of them  will cause considerable damage.” -  [Gutmann, 2007]
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Microsoft have attempted to rebut Gutmann’s critique, but have had difficulty, since 
the critique is extremely well-referenced -  in fact, most of the information is taken 
directly from Microsoft’s own specification documents and from those of hardware 
manufacturers such as ATI. At any rate, it is far from clear that any of the new 
security technology will prevent the spread of malware -  and since Microsoft has now 
greatly restricted the degree to which third-party manufacturers of anti-malware tools 
can gain access to the internals of the operating system [Evers, 2006], users will have 
to rely on Microsoft’s inbuilt tools.

2.8 Tools and Sources of Information

This section briefly lists some of the additional sources of information and tools used 
during this PhD but which were not covered in the review above owing to their general 
nature.

All programs developed during this PhD were written in C and C + +  and compiled 
using the MinGW implementation of the GNU Compiler Collection (GCC). The de­
velopment platform was Windows 2000, whereas the isolated malware test machine ran 
Windows XP. For information on C and C + +  the two classic references [Kernighan 
and Ritchie, 1988] and [Stroustrup, 1997] were used. Win32 API references included 
Charles Petzold’s “Programming Windows” [Petzold, 1999], Johnson M. Hart’s “Win­
dows System Programming” [Hart, 2005], and Rector & Newcomer’s “Win32 Pro­
gramming” [Rector and Newcomer, 1997]. Mark Russinovich’s “Windows Internals” is 
a useful and comprehensive overview of how Windows works, but, as it was not specif­
ically written as a programmer’s reference, it provided disappointingly few practical 
details as to how programs could access system information. Donald Knuth’s “The 
Art of Computer Programming” [Knuth, 1997] served as a useful standard algorithm 
reference on the few occasions one was needed.

Chapter 3 is a case study illustrating how malware could be used to assist in online 
banking fraud.
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Chapter

The law of unintended consequences: a case 
study

3.1 Introduction

The work described in this chapter is joint work wdth S. P. Goring and Antonia J. 
Jones [Goring et a l , 2007].

The potential consequences of successful malware penetrations have amplified as broad­
band technology has become ubiquitous, and progressively more commercial activities, 
such as shopping and banking, have become Internet based. This chapter provides an 
interesting illustration of how a weakness in a login procedure for an Online Banking 
system, combined with large scale application of keylogging malware, could have led 
to quite disproportionate consequences.

Traditional authentication systems used to protect access to online services (such as 
passwords) are vulnerable to compromise via the introduction of a keystroke logger to 
the service user’s computer. This has become a particular problem now that many 
malicious programs have keystroke logging capabilities. When banks first introduced 
online banking services they realised this, and added features to protect users against 
keystroke logging. In this chapter it is showm, using a real online banking system 
as an example, that if these features are incorrectly implemented they can allow an 
attacker to bypass them completely and gain access to a user’s bank account within 
a small number of attempts. The vulnerability wras initially noticed in a particular 
Online Banking Service, but any system implemented in the way described is equally 
vulnerable.

3
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3.2 Disclaimer

No illegal access took place during this research. It is generally assumed that to be in 
a position to prove that a gatekeeper system has a weakness one must have broken the 
law.1 However, the work of this chapter demonstrates that this is not the case. In this 
case it is shown that by perfectly proper use of a system, which has implemented login 
in a particular way, and by intelligent observation one can logically prove a weakness 
without even passing the gatekeeper or entering the system [Johnson and Cobain, 2006]. 
Whilst in this case this can be done because of a rather trivial and presumably easy- 
to-fix design flaw, it seems that an interesting point of principle has been established. 
It should be noted that the bank in question deny that these observations constitute a 
security risk to their Online Banking service (see Section 3.4).

3.3 Unintended consequences

Karl Popper once claimed that “the main task of the theoretical human sciences 
. . .  consists in identifying the non-intentional social repercussions of intentional hu­
man actions” ([Boudon, 1977], p i). Companies or organizations such as banks which 
offer internet-based access to services have had to develop a number of techniques to 
prevent compromise of user authentication codes, which are substantially more sen­
sitive than the average website access password. One popular technique which helps 
prevent access codes being recorded by keystroke loggers is to ask the user for a num­
ber of randomly-chosen characters (usually 3) from the authentication code(s). Whilst 
someone ‘watching’, either physically or via a hardware or software-based keystroke 
logger, would obtain the account ID (and extra information such as the user’s birth­
day), only a few characters from the authentication code would be harvested and their 
positions not be known. A keystroke logger would still eventually capture all pieces 
of the code, but without the positional information the attacker has no data to en­
able these pieces to be put together within the usual three login attempts. So far so 
good. However, sometimes, what may seem to be a useful additional security measure 
can have unforseen consequences. Here it is shown how an apparently minor detail of 
implementation can, if flawed, effectively entirely negate the anti-keylogging measures; 
thus providing an interesting example of the ‘lawT of unintended consequences’.

1 This has the effect of discouraging people who discover such flaws from reporting them because 
they fear (often correctly) legal reprisals. Popper might have called the topic of this chapter “an 
unintended consequence in a closed society” .
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The vulnerability herein described allows an attacker to know beforehand which char­
acter positions the victim will be asked for on his next login attempt. When the victim 
next logs in, the attacker can view the characters which correspond to these positions 
with the keystroke logger, and repeat the process to get more characters from the au­
thentication code. In general at each such move (see section 3.7) either the attacker 
gains entry or she learns at least one new digit (and its position). So it’s a win-win 
situation for the attacker in terms of information gain. In this particular case the max­
imum authentication code length is 10 digits. After the first move three digits (and 
their positions) are known, this inevitably means that in at most eight more moves the 
attacker is guaranteed to gain access. However, probabilistically the attacker will gain 
entry very much faster than this, typically within three to five moves. Keystroke log­
gers are not hard to obtain. Hardware loggers which are designed to look like various 
kinds of keyboard adapters may be purchased online relatively cheaply. These require 
physical access to the computer at least once, but they can be used on any computer, 
need no software, and are almost undetectable (other than by physical examination). 
Some of the more advanced types allow their data to be accessed remotely via a radio 
link and so require only a single physical penetration.

Software loggers, on the other hand, are available free (or can be written by a relatively 
competent programmer), in principle can be remotely queried over the Internet, and 
in fact form a component of many already-existing malicious programs.

3.4 The login procedure

The Online Banking service previously mentioned will be used as an example. This 
system requires a customer to select an authentication code which must consist of 
between six and ten numeric characters (0-9). On logging in to the service the customer 
must enter a banking ID number and their date of birth. These must be entered in full 
every time the user logs on. The customer is then prompted to enter three characters 
whose positions are chosen randomly from this code. It should be noted that the bank 
in question does not accept that these observations imply a security risk, see [Guardian, 
2006],
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3.5 The Vulnerability

Assume the user makes a mistake in entering the three authentication code characters. 
When this happens, he is presented with a failure message and must re-start the login 
process. However, at this point the system designer has a choice: the system can either 
ask for the same set of three digits, or ask for a new randomly generated set.2

• The situation analyzed here is when, under these circumstances, the user is asked 
for exactly the same characters he was asked for previously - in other words, if 
he is asked for the first, fifth and sixth characters and gets it wrong, he will be 
asked for the first, fifth and sixth characters when he tries again.

For such an implementation the requested character positions only change after a 
successful login, and this remains the case even if the next attempt is made from a 
different computer at a different time.

It is thus possible for an attacker, by making a login attem pt, to gain advance knowledge 
of which digits the user will be asked for the next time they log in. This allows the 
attacker to reconstruct the authentication code from the keystroke logger transcripts. 
The ID and date of birth will be captured by the keystroke logger the first time the 
victim logs in. The attacker must know these to proceed, and they also provide a 
convenient search string to allow her to locate the pertinent part of the logger’s captured 
data.

Obviously, if the logger is present on the victim’s machine for long enough it is certain 
to capture all the digits in the authentication code. However, the attacker has no access 
to positional data -  she will have sets of 3 digits, but no idea of their sequence in the 
authentication code, or even of their uniqueness (the same digit may occupy more than 
one position in the code). Even if an attack is feasible based on this idea, it is likely 
to be vastly slower and less certain of success than the attack described here.

It has been argued that this stratagem, of not requesting a different set of characters 
on each retry, acts as a defense against phishing sites (in this case a website that 
masquerades as the legitimate site and attempts to garner users login details, i.e. 
website forgery). It appears to the authors that this argument is flawed. It is only a 
defense if the user is aware of the fact that if they mistype their authentication code 
the genuine site will not request a different set of characters. The authors submit that

2Or, indeed, do something else entirely different.
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many users would not draw such a distinction in practice and act on it, even if they 
had once been told of it.

There are other technical measures against phishing websites (see [Wikipedia, 2007]). 
Moreover, granted sensible precautions (e.g. such as registering similar domain names 
so they cannot be used for phishing), in the final analysis, assuming customers have 
been warned, it does not seem (to the authors) reasonable to hold a company responsi­
ble because a customer has entered their authentication details on some other website. 
In any event this seems to be an increasing problem. Reports suggest that in the 
United Kingdom losses from web banking fraud, mostly from phishing, almost doubled 
to £23.2m in 2005, from £12.2m in 2004 [Finextra, 2006], while 1 in 20 users claimed 
to have lost out to phishing in 2005 [Richardson, 2005]. So phishing is undoubtedly a 
serious issue.

3.6 Attack M ethodology

The attacker must be able to introduce a keystroke logging device to the victim’s com­
puter. For hardware loggers, an initial physical access is required - though software 
loggers could be injected using a virus or various other non-physical methods. Methods 
based on ‘social engineering’ are often very successful -  see [Stasiukonis, 2006] for a par­
ticularly novel study in which several USB pen drives containing automatic-installing 
keylogging software were left lying around a company car park, and proceeded to in­
fect the entire company when curious employees picked them up and plugged them 
into their computers to see what they contained.

The attacker first waits until the keystroke logger has captured the ID number and 
date of birth (plus three authentication code digits whose position is not known which, 
although they do provide useful information, will be ignored in this context). Then she 
makes a login attem pt, noting the positions of the three requested digits. This attempt 
will in all probability fail (ignoring the extra ‘negative’ information gained here), but 
the attacker nowT knows that the victim will be entering his next three digits at those 
specific positions next time he logs on.

When the attacker sees from the logger transcript that the victim has logged on for 
the second time, she notes down the digits, pairing them with the position data she 
already has. She now makes a second login attempt, again noting the digit-positions 
requested. This cycle is repeated, either until the attacker is asked for a set of digit- 
positions she already has (and can thus access the account), or until the attacker has
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the entire authentication code. Of course, if the code is a recognizable number, such 
as a date, then the attacker may be able to deduce it without needing to recover all 
the digits.

The sequence of events is then as illustrated in the flow chart of Figure 3.1. Note 
that the process does not have to ‘END’ at the stage indicated in the flow chart 
(the first successful login), it could continue until (with high probability) the complete 
authentication code had been retrieved.

1. A ttacker in troduces keystroke logger to  victim 's com puter

2. V ictim  logs on to  O nline System  entering such details as ID code, 
D O B and  3 (say) dig its o f  the authentication  code.

. ±___________________________
3. A ttacker reads keystroke log and  now  has ID  code, DOB and  3 
d ig its, w hose positions are unknow n, o f  the authentication code.

~~L ___________
-► 4. A ttacker im m ediate ly  m akes log in  attem pt and  records the digit

positions w hich  are requested .

N  I 
 y

6. V ictim  again  logs on  to the  O nline System .

7. A ttacker aga in  reads keystroke log  and now  has 3 m ore digits o f  the 
au thentication  code (en tered  in step  6) and  know s their positions 
(from  step  4).

Figure 3.1: The sequence of attack steps described as a flow chart.

The time frame wdthin -which login can be accomplished, or the complete code recov­
ered, depends on how frequently the victim uses the service and the dedication of the 
attacker.

It has been argued that this is a complex attack which would be time consuming and 
dependent on frequent user logins. Whilst perhaps true for a single target the authors 
feel that this objection misses the essential point. The methodology is easily automated 
by the dissemination of key-logging Trojans. As these payloads are successfully inserted
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and report back via the Internet to their designer, a large database of victims could 
be automatically constructed and eventually exploited (perhaps simultaneously), all 
without any further work on the part of the attacker. It becomes a matter of statistics: 
some login credentials will be harvested and some will not, but with patience on the 
part of the attacker the scale of the eventual damage could easily be significant.

In case this seems far-fetched, it must be noted that at least one exploit with approx­
imately similar features has already taken place, see [Richardson, 2005] and [Leyden,
2005]. In the United States in 2005, a Miami businessman sued his bank after $90,000 
was lifted from his firm’s online banking account following a computer virus attack 
[Ley, 2005] in which it appears authentication details were compromised by a Trojan 
(CorelFlood).

3.7 Probabilistic Analysis

In the following, a ‘move’ consists of the following sub-steps:

1. Victim logs in to the Online Banking system.

2. Attacker notes newr digits.

3. Attacker makes login attem pt and notes which positions are requested.

N um ber Known
k

Overlap

1 i ^
 II ° d = 1 d = 2

CO**3

it =  3 0.2917 0.1525 0.175 0.0083

II-id 0.1667 0.5 0.3 0.0333
k =  5 0.0833 0.4167 0.4167 0.0833

II Ci 0.0333 0.3 0.5 0.1667
k = 7 0.0083 0.175 0.525 0.2917

00II-id 0 0.0667 0.4667 0.4667
k = 9 0 0 0.3 0.7

Table 3.1: Probabilities P(10, k,d) for the overlap

Suppose the authentication code length is n (6 < n < 10) and that the values (and 
positions) of k digits are known. P(n,k ,d)  denotes the probability that, at the next
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move, exactly d of the three positions requested are amongst the k already known, d is 
termed the overlap. So P(n,k ,d)  is the probability that at the next move the overlap 
will be d. P (n, k, d) may be calculated as follows:

( k) ( n~ k)
P(n,k,d)  =  (3.1)

This is because of the total (") ways of choosing 3 positions from n precisely (*) (J lj)  
have an overlap of d with the k known positions. Calculating P  for different values 
of d and k produces Table 3.1. Using this table the relevant probability tree can be 
constructed for the worst case in which n =  10. The first few nodes are shown in Figure 
3.2.

Figure 3.2: The first few nodes of the probability tree. Terminal nodes at which access 
has been gained are shaded (red). Only a few nodes beyond level three are shown.

Complete analysis shows that the full tree has maximum depth eight steps from the 
root node. Hence an attacker is guaranteed access within nine moves. However, the
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overiap=3 
5 known
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4 known
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probability of tracing this path through the tree is 0.0000879, and so needing eight 
steps is exceedingly unlikely. The most probable exact number of moves is five, with 
a probability of just over 0.5. This is the worst case, since it is assumed that the 
user has chosen an n =  10 digit random authentication code. If the user has chosen a 
shorter authentication code, or a code whose structure may be predicted (such as an 8 
or 6-digit date), then access could be gained in even fewer moves.

3.8 Conclusions

The vulnerability described here may easily be removed by ensuring that the system 
always asks for a new set of characters whether or not login is successful (many online 
banking systems already do this). Because the analysis depends on character positions 
and not on the specific types of character that are allowed in the authentication code, 
allowing codes to consist of a wider variety of characters (not just numbers) would 
not remove the vulnerability, although it might improve security in other respects. 
Increasing the permissible lengths of authentication codes would slow down this attack, 
but would not alter the basic situation. It wrould also be possible to add further stages 
of authentication - for instance, asking the user for extra authentication digits before 
operations such as transferring money can occur.

In summary, the key point is that anti-keylogging systems implemented in this partic­
ular way effectively negate their entire intent.

It should be possible to detect this attack using existing heuristic analysis systems that 
are trained to pick up patterns of suspicious login attempts. For example, a reasonably 
robust profile for this particular exploit might be to look for two or more single failed 
logins that are not followed within a short period of time by either another failed login 
or a successful attempt, although other possibilities spring to mind.

Assuming heuristics detect such an attack the interesting question is: how should a 
bank then react? This represents a commercial conundrum. If they temporarily lock 
the account, whilst contacting the customer, they are going to annoy customers, and 
so perhaps lose money. If they don’t react, but could have done, then they’ll take the 
liability.

Banks are not in the business of producing perfect security, what they want is security 
that is as low cost as possible yet still adequate. Like webhosts in regard to child 
pornography, the current state of the law might thus tempt banks, who seek to do the 
right thing by their shareholders, to adopt a ‘don’t look - so we don’t know’ approach.
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More generally, this is one example of the flaws emerging in single-factor authentica­
tion using end-points of unknown security. For others, one might look at the E-gold 
Trojan, see [LURHQ, 2004] and [Baseline, 2006]. This Trojan automates the burden 
of siphoning money from the accounts and does it from the victim’s own computer. 
Because it uses the victim’s established SSL session and does not connect out on its 
own, it can bypass personal and corporate firewalls and evade IDS/IPS devices:

In other words, the new Trojan programs do not have to trick victims out of revealing their 

password. Instead, they wait for the victim to  perform his normal banking business. While 

the victim checks his bank balance, the Trojan silently siphons money out of the account. 

-[Counterpane and Messagelabs, 2005]

Other, even more creative, approaches are the Blue Pill3 [Rutkowska, 2006] or Metas- 
ploit an Open Source project inspired by H. D. Moore of BreakingPoint Systems:

Meterpreter, short for The M eta-Interpreter is an advanced payload that is included in the 

Metasploit Framework. Its purpose is to provide complex and advanced features that would 

otherwise be tedious to implement purely in assembly. The way that it accomplishes this 

is by allowing developers to write their own extensions in the form of shared object (DLL) 

files that can be uploaded and injected into a running process on a target computer after 

exploitation has occurred. M eterpreter and all of the extensions that it loads are executed 

entirely from memory and never touch the disk, thus allowing them to execute under the 

radar of standard Anti-Virus detection. —[Scape, 2004]

The argument has come full circle. In contrast to a ‘closed worlds’ philosophy, that 
instinctively hides weakness, Moore exemplifies the ‘open worlds’ approach (which 
arguably is now inevitable) of the Internet driven information space now inhabited: 
vulnerabilities published are vulnerabilities more likely to be addressed.

Having no real assurances regarding the security of the user-point machine poses real 
problems for secure transactions which rely on purely software solutions. It is also the 
case that the time interval between when a vulnerability is published and when exploit 
code appears has shrunk, as criminals try to best take advantage of the ‘window of 
exposure’ before systems are patched or signature based Virus-checkers are updated, 
so that even knowledgeable and conscientious users cannot be confident regarding their 
system integrity.

3Presumably a reference to the blue pill which Morpheus offers Neo in “The M atrix”.
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This observation in part motivates the work of this thesis. How can computers or net­
works be defended against penetration and exploitation by hitherto unseen instances of 
malware? Perhaps by using machine learning to determine those structural or behav­
ioural generic characteristics which might be used to identify malware, even though 
the system has not previously seen this particular instance? The next chapter will 
examine some machine learning techniques which might be applicable to this problem.

In any event these examples, together with the particular login issue discussed in this 
chapter, raise doubts about the wisdom of having any sensitive system online with 
purely software access, and perhaps about online banking in general. One cannot al­
ways foresee the consequences of new technical developments. As bandwidth increases, 
and hardware memory chips becomes smaller and incredibly capacious, today’s key­
stroke loggers might easily, for example, become tomorrow’s ‘keystroke plus screen’ 
loggers.

It is, of course, possible that technology has outstripped the need for malware to exploit 
the vulnerability described here. The E-Gold Trojan referenced above, which siphons 
money out of a user’s account by hijacking an existing session, is both easier to write, 
and would possibly yield a greater return, than an attack based on the above method. 
The main value of the above method is that it can be targeted with great precision (this 
was used as an argument against it, but in fact it could be construed as an advantage).

The exploit described in this chapter is merely one example of the damage that can 
be done by malware. The next chapter begins the investigation of automating the 
recognition process for malware by giving an overview of the classification methods 
and machine learning systems used in this work.
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Chapter

Machine learning classification methods and 
systems

4.1 Introduction

This chapter will discuss various classification methods used in machine learning, spe­
cific implementations in learning systems, the eventual methods and implementation 
chosen, and the reasons for this choice.

In [Tan et al., 2006], four core tasks in data  mining/machine learning are identified: 
cluster analysis, predictive modelling, association analysis and anomaly detection. It 
was decided early on to use a methodology based on predictive modelling (in particular 
classification) as opposed to one based on anomaly detection. This is because the task is 
not simply to identify that a given program/process differs from others, but to identify 
any such differences as specific to a given class of malicious software. It is possible that 
an approach based on anomaly detection might be useful as a preliminary screening 
process, but it is not necessarily true that, assessed against an arbitrary scale, the 
set of ‘anomalous’ programs/processes exactly corresponds with the set of malicious 
processes.

4.2 Classification m ethods

Tan defines a classifier (or classification method) as “a systematic approach to build­
ing classification models from an input data set.” ([Tan et al., 2006] p!48 -  “General

4
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Approach to Solving a Classification Problem”) This section will discuss three clas­
sification methods commonly used in machine learning, and explain why only two of 
them were eventually chosen. The reason for limiting the discussion to these three is 
that, given the number of classification methods and variants in existence (for instance 
WEKA Explorer lists 70 different classifiers), it was necessary to decide at the start 
that certain classifiers would be used to avoid spending too much time evaluating the 
merits of different classifiers.1

4 .2 .1  D ecision  T rees

Decision theory defines a decision tree as “...a graph of decisions and their possible 
consequences (including resource costs and risks) used to create a plan to reach a 
goal” . Automated decision trees are used in machine learning systems. Here, the tree 
represents a mapping of observations about an item to conclusions about the item’s 
target value. The process of inducing a decision tree from data are called ‘decision tree 
learning’. Decision trees are divided into two types: classification trees and regression 
trees. Classification trees are used wdiere the decision output is binary (either/or), 
whereas regression trees can provide a real number output.

Computer-based decision tree learning systems can be described as a mechanised ver­
sion of ‘20 Questions’ or similar children’s game. Players must discover the name of 
some object by asking a series of questions. The idea is to minimise the number of 
questions. Therefore questions should be selected carefully, so as to maximise the in­
formation gain at each step. One can visualise the process as a tree in which a question 
is asked at each node. The root node represents the universe of all possible answers 
and each question splits the answrer set into subsets -  each subset represented by a 
child node.

Having decided on a ‘splitting criterion’ at each node of the tree most implementations 
of such systems are ‘trained’ with a list of known cases and the associated ‘answers’ 
for each. Once the trees are built, they can be used to classify unknown cases. The 
standard method, as described in [Quinlan, 1989], and in somewdiat more detail in 
[Quinlan, 1993a], of constructing a decision tree classifier from training data are as 
follows. It is assumed that the cases in the training data set are of known classes with 
fixed attributes.

1 Even [Tan et al., 2006], a textbook devoted to data  mining, requires just under 200 pages to cover 
only six types of classifier: decision trees, rule-based classifiers, nearest-neighbour classifiers, Bayesian 
classifiers, Artificial Neural Networks, and Support Vector Machines.
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• If all training cases belong to a single class, the tree is a leaf labelled with that 
class.

• Otherwise,

-  select a test (i.e. a splitting criterion), based on one attribute, with mutually 
exclusive outcomes

-  divide the training set into subsets, each corresponding to one outcome

-  apply the same procedure to each subset

Whilst it is true that any test will eventually result in a complete partition of the data 
into single-class subsets, not all such trees will reveal information about the domain 
structure. The ideal tree has many cases at each leaf, or as few partitions as possible 
-  so the ideal would be to choose tests at each size such that the final tree is as small 
as possible. Since there is generally a very large number of possible trees, exhaustive 
search for the best one is not a viable solution. Indeed it is well known that the 
problem of finding the smallest decision tree consistent with a given training set is NP- 
complete [Hyafil and Rivest, 1976]. It is therefore necessary to employ some criterion 
for splitting each node when constructing the tree. The criterion commonly used is to 
split so as to maximise ‘information gain’ (see Quinlan’s books and papers for more 
information on the criteria used by C4.5). WEKA implements several different decision- 
tree algorithms, including some that are functionally identical to ID3 and C4.5.

4 .2 .2  N a ive  B ayes

Bayesian classifiers are probabilistic classifiers based on Bayes’ Theorem [Bayes, 1763]. 
There are two main types: Naive Bayesian Classifiers and Bayesian Belief Networks. 
For this work only simple Bayesian classifiers will be used. Following is a brief descrip­
tion of the use of Bayes’ theorem in classification. The treatment in ([Tan et al., 2006] 
pages 229-240) will be followed.

Assume that the attribute set is denoted by X  and the class (descriptor) variable by 
Y. If the evidence X  and the descriptor Y  are treated as random variables, it is then 
possible to denote the prior probability of Y  as P(Y) ,  and the posterior probability of 
a Y  that has attribute X  as P( Y\ X) .  This is just the conditional probability of Y  on 
evidence, or hypothesis, X.

A Bayesian Classifier then works as follows: during the training stage the classifier 
learns the posterior probabilities P ( Y \ X )  for each combination of X  and Y  based on
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information gathered from the training data. Knowing these allows a test record X '  to 
be classified by finding the class Y'  that maximises the posterior property P ( Y ,\X/).

Naively, it would be very difficult to accurately estimate the posterior probabilities 
for every combination of class label Y  and attribute value, as a very large training 
set would be required even where the number of attributes is fairly small. However, 
the posterior probability can be expressed in terms of the prior probability P(Y) ,  the 
class-conditional probability P ( X \Y ) ,  and the evidence P(X) ,  via Bayes’ Theorem viz.

-  w p  (4.D

When comparing posterior probabilities for different values of Y,  the denominator, 
being constant, can be ignored, and P(Y)  can be estimated from the training set by 
calculating wdiat fraction of records belong to each class. It then remains to estimate 
P(X\Y) .  This classifier is called ‘naive’ because it assumes that all the attributes 
are conditionally independent Given this assumption, instead of computing the class- 
conditional probability for every combination of X ,  it is only necessary to estimate the 
conditional probability of each X t E X  given Y  -  a task which does not require so large 
a training set. The classification process is performed by calculating

p ( Y m  = P(V) ( t2 )

and then choosing the class Y  which maximises the LHS, i.e. numerator of the RHS.

Naive Bayesian classifiers are good at handling isolated noise points, missing values, 
and irrelevant attributes, but their performance can be degraded by any correlations 
existing between attributes (since the independence assumption would not hold for 
such attributes -  [Tan et al., 2006] p237).

4 .2 .3  A rtific ia l N eu ra l N etw ork s

“Neurologists have discovered th a t the human brain learns by changing the strength of 

the synaptic connection between neurons upon repeated stimulation by the same impulse. 

Analogous to human brain structure, an ANN is composed of an interconnected assembly 

of nodes and direct links.” -  excerpt from [Tan et al ,  2006] on neural networks, p246
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Feed-forward neural networks trained by some variation of back-propagation have been 
used successfully in many pattern recognition problems. Essentially such a network 
provides a smooth function with bounded partial derivatives from input to output. 
It was shown by [Hornik et al., 1989] and independently by [Cybenko, 1989] that by 
an appropriate choice of weights and thresholds, over a closed-bounded input set, a 
neural network can approximate with arbitrary precision any continuous function, i.e. 
neural networks are universal approximators. When used for pattern classifications 
the ability of neural networks to employ hidden units as a mechanism for constructing 
non-linear boundaries in pattern space is what makes them effective. However, as 
the continuous function approximation results might suggest, mapping pattern space 
into discrete regions is not truly the natural task of a neural network. In particular 
discrimination of inputs consisting of many discrete attributes into a small number of 
categories is a task more perhaps more naturally suited to decision-tree classifiers.

Of course, this is not to say that neural networks cannot perform such tasks, but 
rather that in such cases the pre-processing of the data so that relevant information is 
extracted and presented to the neural network inputs in a compact form becomes the 
critical aspect of the whole endeavour. This is even more the case when attempting to 
classify behaviours which are evolving over time. Here the best approach to encoding 
data for a fixed (hopefully relatively small) number of inputs is far from clear. Nor 
is it clear that a direct approach using feed-forward neural networks is necessarily 
appropriate.

Thus it wrould appear that in an attem pt to use neural networks for this type of problem 
most of the work would go into determining an appropriate encoding. Indeed, so much 
so that one might suspect that one would have to essentially solve the problem before 
deciding on an appropriate encoding into input data suitable for a neural network 
discriminator.

For these reasons it was decided not to use neural networks as a classification method.

4.3 Classifier Implementations: Machine Learning 
System s

It was decided, again at an early stage, that the aim should be to use a pre-existing 
machine learning system rather than develop a new one, winch would have been a
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difficult wheel to re-invent within the confines of a 3-year PhD. This section lists the 
machine learning systems used.

4.3 .1  C 4.5

C4.5 is a decision tree-based learning system written by J. Ross Quinlan [Quinlan, 
1993a] in the early 1990s. Quinlan based C4.5 on ID3, a similar system he had devel­
oped previously. He has since developed various other machine learning systems such 
as FOIL and C5.0, and now runs a company called RuleQuest2 which sells data mining 
software. The source code of C4.5 is still made available for download, albeit with a 
rather onerous set of restrictions on distribution. It was originally designed for use on a 
UNIX environment, but with the help of MINGW3 and CYGWIN,4 a native Windows 
port was quite easy to produce.

C4.5 takes its input from a series of files, all of which must have the same ‘filestem’ 
(the part of the filename before the dot). Assume for the sake of this example that 
the filestem is ‘ExperimentOne’. The attributes are defined in a file called ‘Experimen- 
tOne.names’, whereas the training data must be stored in ‘ExperimentOne.data’ and 
the test data in ‘ExperimentOne.test’. The data and test files contain only the data 
values in comma-separated format.

The output files produced by C4.5 have the same filestem, using different extensions 
to distinguish between them. Running C4.5 on ‘ExperimentOne’ would produce a 
decision tree output file called ‘ExperimentOne.tree’ and an unpruned tree output file 
called ‘ExperimentOne.unpruned’. If the ruleset generator (C4.5Rules) was then run, 
it would produce an output file called ‘ExperimentOne.rules’.

The table below shows an example of a names file. The first line indicates the classes. 
Then, individual attributes are defined in the form ‘attribute-name: type.’ where 
attribute-name is a string naming the attribute and type is a C4.5 keyword indicating 
the attribute type. A ttribute types may be as follows:

1. ignore -  an attribute not to be used for classification. Useful for naming cases.

2. continuous -  a continuous quantity.

2http://www .rulequest .com
3http ://w w w . mingw.org
4h ttp :// www.cygwin.org
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3. discrete N  -  specifies that attribute has N discrete values, N being a positive 
integer.

4. comma-separated list -  like “discrete” , but specifies the items explicitly.

Table 4.1 shows an example names and data files for a data set which might be used 
to see whether it is possible to determine which of three political parties an individ­
ual is likely to vote for in an election based on various attributes such as their age, 
marital status and income (of course, the data given here was invented at random and 
no inferences should be drawn from it). In practice, such data would never include 
personally identifiable attributes such as a voter’s name -  this would be replaced by a 
neutral identifier.

N A M ES FIL E
Conservative, Labour, Liberal Democrat.

Name: ignore.
Age: continuous.
Gender: Male,Female.
Annuallncome: continuous.
M aritalStatus: Single,Cohabiting,Married,CivilPartnered,Divorced,W idowed,Other.
NumberOfChildren: continuous.
Religion: N one,Christian,Jewish,M uslim ,Hindu,Buddhist,Other.

DATA FIL E
Voter 1, 35, Male, 15000, Married, 2, None, Conservative 
Voter 2, 28, Female, 25000, Single, 0, Christian, Labour 
Voter 3, 45, Male, 75000, Divorced, 2, Christian, Conservative 
Voter 4, 30, Female, 30000, Married, 2, Muslim, Conservative 
Voter 5, 50, Male, 40000, CivilPartnered, 1, Jewish, Labour 
Voter 6, 78, Female, 2000, Widowed, ?, Buddhist, Liberal Democrat

Table 4.1: Example C4.5 Input Data Files

In the data file, question marks may be used to indicate unknown attributes (this is 
also true of WEKA). This can be seen in the case of Voter 6 in Table 4.1. This allows 
cases to be classified where not all the attributes are necessarily known.

The C4.5 distribution includes various tools beside the basic decision tree generation 
program (C4-5). There is also a ruleset generator (C4-5rules), a program for interac­
tively classifying cases against an existing model (consult and consultr, and a script 
for performing cross-validation. Cross-validation works by dividing the input data into 
n blocks. This is done in such a way that the number of cases in each block and the 
class distribution within it is uniform. Then, n different models are built by omitting
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one block at a time, building a model on the remaining data and testing it against the 
omitted block (thus, each case appears in exactly one test set). If n is not too small, 
the average error rate over the n blocks is a good predictor of a model built from all 
the data ([Quinlan, 1993b] p89-90 and [Tan et a/., 2006] pl87). WEKA also supports 
cross-validation.

C4.5 only supports one classification method, and the range of output statistics it gives 
is neither as extensive nor as well-documented as WEKA. For this reason, and because 
WEKA supports J4.8 (essentially the same classification algorithm as C4.5), it was 
eventually decided to use WEKA as the main learning system. However, C4.5 was used 
in the early structural experiments before replicating the results with WEKA, which 
provided a means of verifying that the Windows port of C4.5 was working correctly.

4 .3 .2  W E K A

The WEKA machine learning toolkit was developed at the University of Waikato in 
New Zealand and described in [Witten and Frank, 2005]. This provides not only a num­
ber of decision tree classifiers (including J4.8 which is functionally equivalent to C4.5), 
but also a vast number of other classification methods, including Naive Bayes.WEKA 
is written in Java, making it cross-platform, and is free software licensed under the 
GNU General Public License -  the version used here is 3.4.10.

Data are input to WEKA in the form of ‘ARFF’ files. Unlike C4.5, the attribute 
information and the data are stored in the same file. Data are comma-separated and 
terminated with a newline character. Asterisks are used to indicate keywords, and 
comments are indicated by the percent sign. The ARFF format includes support for 
string attributes, but the classifiers used in this work do not support using strings 
for classification. This, combined with the fact that there is no provision to specify 
an attribute as ‘ignored’ (which C4.5 can do), means that the identifiers for individual 
cases must either be removed completely (an annoyance, since it is no longer possible to 
identify individual cases in the data file) or put in as comments. The latter workaround 
is illustrated in Table 4.2, which gives a sample WEKA input file for the same data set 
as was used to illustrate C4.5 in Table 4.1 above.

The only disadvantage WEKA has is that it does not support “ignoring” attributes as 
did C4.5 -  each attribute must be used for classification. Thus, individual instances 
cannot in practice be named as in Table 4.2. The work-around for this is to use 
comments to name the individual instances.
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AN E X A M PL E  W E K A  A R F F  FIL E_____________________________________
% lines beginning with a  percent are comments

% name of relation ©relation Voters

% attribu te  definitions s ta r t here 
© attribute Age integer 
© attribute Gender {Male, Female}
© attribute Annuallncome integer
© attribute M aritalStatus (Single,Cohabiting,M arried,CivilPartnered,Divorced,Other} 
© attribute NumberOfChildren integer
© attribute Religion {None,Christian,Jewish,M uslim,Hindu,Buddhist,Other}

% the last a ttribu te  gives the class
© attribute PartyVotedFor {Conservative,Labour,Liberal Democrat}
% the data  starts  here

@data 
% Voter 1
35, Male, 15000, Married, 2, None, Conservative 
%Voter 2
28, Female, 25000, Single, 0, Christian, Labour 
%Voter 3
45, Male, 75000, Divorced, 2, Christian, Conservative 
%Voter 4
30, Female, 30000, Married, 2, Muslim, Conservative 
%Voter 5
50, Male, 40000, CivilPartnered, 1, Jewish, Labour 
%Voter 6
78, Female, 2000, Widowed, 4, Buddhist, Liberal Democrat

Table 4.2: Example WEKA ARFF File

WEKA classifiers can be invoked from the command line, but there is also various 
GUI-based interfaces (in order of complexity these are Weka Experimenter, Weka Ex­
plorer and Weka KnowledgeFlow) which provide greater ease of use and a considerable 
amount of extra functionality. However, it is arguable that the capabilities of WEKA 
were severely under-utilised in this PhD, as little of the extra functionality was used. 
In practice, the command-line was used for the structural classification experiments de­
scribed in Chapter 6 but the Weka Explorer was used for the behavioural classification 
experiments described in Chapter 7.

4.4 Conclusion

To sum up, it was decided to use only the decision tree and Naive Bayes classifiers. 
As to implementation, the original intent for the structural experiments was to use
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C4.5 as the decision tree classification system and WEKA for Naive Bayes, but it was 
eventually decided to use WEKA only since it supports both classifiers, retaining the 
C4.5 results for comparison purposes but not actually using them. The behavioural 
experiments used WEKA only.

Of course, having chosen the classification system, it is necessary to collect data in a 
format appropriate to it. Chapter 5 will describe the methods used to collect this data.

Malware Detection using Structural and Behavioural Features and Machine Learning Joseph Rabaiotti



76

Chapter

Gathering structural and behavioural data in 
Windows

5.1 Introduction

This chapter provides an explanation of the techniques used to gather both structural 
and behavioural data. Throughout this thesis, “structural data” refers to data derived 
from the structure of an executable disk file,1 whereas “behavioural data” refers broadly 
to data collected from a running process which may change depending on the operations 
which the process is carrying out.

To classify malware it is necessary to collect both structural and behavioural data from 
static analysis and real-time monitoring. When considering the types of data which 
it is feasible to collect it is important to recognise that there are several constraints 
on the freedom of choice. These are primarily what can be done within the operating 
system, but also relate to the processor overhead; the monitoring process should not 
be so demanding that it significantly degrades the performance of the overall system 
from a user perspective.

Under Windows, when a program is running (loaded into memory and executing) it is 
referred to as a 'process’. Since a program must be running to be ‘behaving’ then it 
is only appropriate to speak of ‘gathering behavioural data’ from a running process. 
Structural data can be gathered either from a running process or from a program 
file on disk. However, for these purposes structural data is always obtained from a 
disk file and not from a program in memory. Leaving aside the abstractions (such as

^ h i s  use of the term  “structural” should not be confused with the definition used in the field of 
software structure metrics
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process and thread objects) which Windows uses, the structure of the memory image 
for a normal program does not usually differ much from the structure of its associated 
disk file. However, a virus is not a normal program, and as such can have a very 
different structure when it is executing in memory to when it is stored as a program 
file (particularly if it is encrypted or poly/metamorphic).

5.2 Structural D ata

For structural classification, it should be possible to predict what sort of data the 
learning system ought to select, based on ideas already developed by virus researchers. 
If the attributes picked out by the learning system, particularly for viruses, were to 
tally with those given by Szor (see Table 5.1) or other researchers, this would be good 
evidence that the learning system is working as intended. It would also subsequently 
be possible to think up hypothetical significant factors and see if the learning system 
confirms or disconfirms their significance.

5.2 .1  W h a t sort o f  d a ta  to  use?

In the case of a file-infecting virus, there are a number of structural features which 
an expert would expect to occur more commonly in infected programs than in unin­
fected programs. In [Szor, 2005] a list of such features is given, and some of these are 
reproduced in Table 5.1.

It would be very simple to add facilities to a scanner program to detect these anomalous 
features, and indeed many virus scanners do use some form of heuristic detection in 
addition to the signature process. However, it is not possible to rely on Szor’s list (or 
any such list) as definitive given the high rate of malicious code evolution. Therefore, 
data must be collected that would allow a learning system to pick out the features that 
it finds are significant, which may or may not correspond to lists produced by human 
experts.

5.2 .2  T h e P o rta b le  E x ecu ta b le  (P E ) file form at

The format Windows uses for executable files is known as the Portable Executable 
format. The PE format is used for programs (*.exe or *.scr), DLLs (*.dll) and device
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drivers (*.sys), and also for object files produced by Microsoft compilers. It is based 
on the older Common Object File Format, and retains a degree of similarity to COFF. 
Microsoft’s documentation for the PE format has been extensively updated since the 
format was first introduced (it replaced the NE format used by 16-bit Windows, which 
in turn was a replacement for the MS-DOS EXE format). Microsoft’s current (August
2006) official documentation for the PE format [Microsoft, 2006] runs to 73 pages, but 
for those who do not need to know about the latest features a highly accessible guide 
is given by Matt Pietrek in the February and March 2002 issues of MSDN Magazine 
[Pietrek, 2002]. These articles were based on Pietrek’s earlier article ‘Peering inside 
the PE’ [Pietrek, 1994 updated 2002], originally published in the Microsoft Systems 
Journal.

Table 5.2 shows the structure of a PE file. As with every other executable file since 
the days of MS-DOS, a PE file begins with a MZ header. Assuming MS-DOS is not 
in use, only one field in the MZ header ‘m atters’ -  the field at address 0x3C -  called 
‘eJfanew’ by Microsoft. This is a pointer to the PE file header. The ‘DOS stub’ is 
a tiny MS-DOS program which simply prints out the message “This program cannot 
be run in DOS mode.” and then exits. The idea of this is to provide a sensible error 
message if someone tried to run the program in a pure DOS environment -  since DOS 
would ignore the eJfanewT field, the stub would be executed instead.

Structural features characteristic of an infected program file
Code execution begins in last section 
Suspicious section characteristics, names, or flags
Virtual size incorrect in Portable Executable (PE) header, or incorrect sizes in other headers 
Suspicious gaps in sections 
Abnormal jumps to other sections
Entry point in PE  header points somewhere other than  the .text section
DLL imports by ordinal
Patched Import Address Table (IAT)
Multiple file headers
CALL to POP, or CALL to  next instruction 
Bad checksums in DLLs

Table 5.1: Some of the structural anomalies common in virus-infected program files as 
described by Szor

Malware Detection using Structural and Behavioural Features and Machine Learning Joseph Rabaiotti



5.2 Structural D ata 79

DOS MZ Header 
DOS Stub 
PE  Header 

Section Table 
Section 1 
Section 2 
Section ..
Section N

Table 5.2: Diagram of PE File Structure

5 .2 .3  T h e P E  H ead er

After the DOS stub comes the PE file header, identifiable by its Tbyte signature 
consisting of the characters ‘P ’ and ‘E ’ followed by two null bytes. The PE file header 
contains two parts: a COFF file header containing 7 fields, and an optional header 
whose length may vary. The optional header contains 9 standard COFF fields (or 
8 in PE32+), 21 further Windows-specific fields and a data ‘directory’. The data 
directory consists of a set of structures containing a 32-bit address field and a 32-bit 
size field. The number of such structures is specified in the last Windows-specific field 
(NumberOfRvaAndSizes). The data directory is used to store addresses of various 
important parts of the program file (such as the import and export tables).

5 .2 .4  S ection s and  th e  S ec tio n  T able

After the optional header comes the section table. An interesting point about the 
section table is that its address is not stored in any of the headers. Instead, it must 
be calculated by working out where the optional header ends (using the SizeOfOption- 
alHeader field in the COFF file header). Each entry in the section table contains 10 
fields describing a particular section, covering such information as the section’s name, 
its virtual address and size, and whether it contains any relocations.

Sections are the basic ‘building block’ used when the PE file is being created by the 
linker. They are roughly analogous to ‘segments’ in older executable formats. Normal 
programs have one section -  usually called ‘.text’ or ‘.code’ -  which contains all the 
code. Other sections contain various types of data, resources, or the addresses of 
imported or exported functions. The Windows loader limits a program to 96 sections. 
Sections have flags (the ‘Characteristics’ field of the section table entry) which mark
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whether they are readable, writable, or executable. Attempting to write to a read­
only section results in a page fault. Some sections are mapped into memory from 
the program file by the loader, whereas others are created by the loader and do not 
physically exist in the program file until it is mapped into memory prior to execution.

5.2 .5  V iru ses and  th e  P E  form at

PE-infecting viruses must clearly be able to process all the above information in order 
to infect successfully. Viruses must read the headers and section tables of the file they 
wish to infect in order to gather information. Furthermore, they must modify these 
headers as well. Since the modifications made by a virus are unlikely to exist in an 
uninfected file, they can be said to be ‘characteristic’. For example, Peter Szor’s list of 
anomalies (see Table 2.2), which will nowT be explained in the context of PE infecting 
viruses. It should be noted that these anomalies apply mainly to viruses only, though 
any that apply to other types of malware will be noted.

Code execution begins in last section

One common infection strategy is to add the virus code as an extra section. The easiest 
place to add an extra section is at the end of the host file. In some cases, there is enough 
empty space in the current last section to insert the virus code without needing to add 
a new section. But whichever of these strategies is used, the virus code must be made 
to execute before that of the main program. The easiest way of doing this is to modify 
the entry point in the host file’s PE header, but to make detection more difficult, a 
trick known as Entry Point Obscuring can be used. The simplest method is to modify 
the first few instructions at the existing entry point instead of modifying the header 
(of course, if this is done it is then necessary to save the instructions that have been 
modified and append them to the end of the virus code so that the program still works). 
If properly done, this can mean that it is more difficult to detect that execution begins 
in the last section, though the fact that there is a jump to the last section shortly after 
the beginning of the program ought to be suspicious in itself (see below).

Suspicious section  characteristics, nam es, or flags

Although theoretically sections can have any name, the majority of noninfected pro­
grams have a small set of common section names, such as ‘.text’, ‘.code’, ‘.bss’, ‘.rsrc’,
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‘.reloc’, ‘.edata’, or ‘.idata’. These reflect conventions used by the majority of linkers. 
Therefore, the presence of sections with unusual names can be cause for suspicion. Nor­
mal programs that have unusual sections include programs protected by some types 
of copy protection as well as programs that have been compressed with executable 
“packers” such as UPX (see Section 5.3.1), and these may generate false positives, 
particularly as many malicious programs are UPX-compressed in an attempt to make 
them smaller and more difficult to detect. If a virus inserts its code into a section 
which does not already have its execute flag set, the virus must modify the section 
flag in order to allow execution. Thus, a section which should not need to be exe­
cutable but which has the execute flag set is suspicious. However, not all viruses need 
to do this since in many environments code may be executed in any section marked as 
writable even if the executable flag is not specifically set. Both hardware and software 
technologies are currently in use to prevent execution in non-code memory pages (an 
example being Microsoft’s D ata Execution Prevention system), but these are designed 
to prevent buffer overflow exploits and are more useful as a weapon against attack from 
outside by wrorms than against malware already present on a system.

Virtual size incorrect in P E  header, or incorrect sizes in other headers

A virus will generally make the minimum number of modifications to a new host it can 
get away with to allow its code to run. The Windows loader is known to depend on 
certain values in the header of a program and to ignore others, meaning that viruses do 
not always change them to reflect the modifications they have made to the host file (see 
[Szor, 2005] pl64). Thus, a discrepancy between what these values are and what they 
should be can indicate infection. Two examples given by Szor are the SizeOfCode and 
the SizeOflmage fields from the optional header. The SizeOfCode field should contain 
the (rounded) sum of the sizes of all the executable sections in the program file. Many 
viruses, according to Szor, do not fix this value after adding more code to the host, 
so a discrepancy between the header value and the actual sizes of the sections could 
indicate infection. The SizeOflmage field was not checked by the Windows 95 loader, 
so many Windows 95 PE  viruses did not bother to alter this field. The NT loader, 
however, did and does check this value, meaning that modern viruses must recalculate 
it properly in order to spread on modern Windows systems.
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Suspicious gaps betw een sections

These can occur where a virus which adds a new section realigns the file before adding 
the new section, but fails to alter the section table for the former last section to take 
this into account.

Abnorm al jum ps to other sections

The only jumps from the main code section to other sections that a normal program 
should possess are the jumps to the table of imported functions (see below). Any other 
jumps to other sections are possible indicators that code has been inserted.

Entry point in PE  header points som ew here other than the ‘.te x t’ section

As has been previously mentioned, when the linker builds a PE executable, all the code 
is put in one section, called ‘.text’ or ‘.code’. The AddressOfEntryPoint field in the 
PE header is a pointer to the place where execution begins, e.g. to the first machine 
instruction of the program. There are very few occasions where the entry point should 
be outside the ‘.text’ section, and a program file having an entry point in the last 
section is extremely suspect (see Section 5.2.5, but also see Section 5.3.1).

DLL im ports by ordinal

Imported functions are functions (such as the Win32 API functions) which reside exter­
nally to the program. They are usually located in dynamically-linked libraries (DLLs). 
The most common method by which a program uses functions in DLLs is called ‘implicit 
linking’. The ‘.idata’ section of a program file contains various tables of information 
about the functions it imports. When preparing a program for execution, the loader, 
having mapped all the necessary DLLs into the address space of the program (which 
has now become a process), replaces some of the .idata information with the actual 
addresses of each function.

Without going into details of howT this is achieved (for these see [Pietrek, 2002]), each 
imported function has associated with it a value known as the ordinal, which is used by 
the loader to quickly find the function in the DLL. The table of functions imported from 
a particular DLL contains, in each entry, the name of the function (e.g. MessageBoxA) 
and its likely ordinal value. This ordinal value is only to help the loader find the
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function and need not actually be correct (which is why the ordinal field is called 
“Hint” in the Microsoft documentation). However, it is possible (but rare) to import 
a function ‘by ordinal’ rather than using the function name.

One of the problems a virus has is getting the addresses of API functions it needs. 
The virus does not know where in the host program its code will end up, nor what 
functions the host program wTill import. Some viruses will be capable of reading the 
host’s import tables and getting the addresses of its functions from there -  but if the 
virus needs a function which the host doesn’t already import, it will have to either patch 
the host’s import table or explicitly import the function using GetProcAddressQ, an 
API function for finding the address of a function in a DLL. GetProcAddress() can 
take either a function name or its ordinal as an argument.2 Whichever approach is 
taken, it is much easier and more compact to store an ordinal (being an integer) than 
to store a function name (which is a string) in virus code, and furthermore strings of 
function names are easily detectable. Hence the incentive to use imports by ordinal. 
Unfortunately, ordinals are not constant between versions of a DLL -  they may change 
if new functions are added. Thus, if only the ordinal is provided to GetProcAddress() 
it might just return the address of the wrong function. This meant that viruses which 
made use of imports by ordinal would often ‘break’ when introduced to new builds or 
versions of Windows.

Patched Im port A ddress Table (IAT)

Some viruses will go ahead and patch the import table (or explicitly import functions) 
without checking to see if the functions are there already. Thus, if a set of functions 
is imported twice (once by name and once by ordinal) or if a set of functions already 
in the IAT is imported explicitly somewhere else using Get Proc Address (), i t ’s a good 
sign that something untoward is going on.

M ultiple file headers

Many of the items in this list, whilst characteristic of infected files, are not unique 
to them and could also be found in a small number of uninfected files (for example, 
programs which use certain forms of copy-protect ion or compression). It is almost 
impossible to conceive of a normal reason for having multiple file headers in a file, but

2But how to find Get Proc Address()? In early days its address was hard-coded, resulting in viruses 
which would only work on specific versions and builds of Windows.
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this is in fact characteristic of very basic prepending viruses. These viruses do not 
‘infect’ the host in the usual sense, but rather ‘engulf’ it. This is done by creating a 
new program file containing the virus code, and copying the host program to the end of 
this file, complete with all headers. The original host file is then deleted, and the new 
file given the same name. When run, the virus code executes. When it has finished, it 
copies the old host program into a temporary file and executes it. The host program’s 
code is never actually modified.

This trivial infection method is relatively simple to program (thus most such viruses 
are written by beginners and in high-level languages) but is also relatively simple to 
detect, so refinements have been developed ([Szor, 2005] p 133).

R elative CALLs w ith zero offset, or CALLs into the middle of another 
instruction

There are a number of tricks which allow a piece of relocatable code to get its own 
address, a particular concern for viruses and shellcode. The simplest version is known as 
‘CALL-to-POP’. The trick exploits the fact that when a CALL instruction is executed 
the address of the next instruction is pushed onto the stack, which allows the processor 
to return control to that location after executing a RET instruction.

Machine Code Assembly
E8 00 00 00 00
58

CALL next 
next: PO P EAX

Table 5.3: Call-to-Pop: Simplest form

Table 5.3 shows the simplest form of the CALL-to-POP trick -  and the easiest to 
detect, since there is no conceivable need to have this combination of instructions in 
a normal program. Most shellcode uses a slightly different method, first popularised 
in [AlephOne, 1996], where the first instruction is a JMP pointing to the beginning 
of the string data area, where there is a CALL instruction pointing back up to the 
next instruction after the JMP. The address of the first character of the string will be 
pushed onto the stack before the CALL is executed, and can be POPed off and stored.

Table 5.4 gives AlephOne’s shellcode. This is not Win32 code (it makes Linux system 
calls using Interrupt 80) but it uses the same principle. Some of this code appears 
rather tortuous, but this is only because no instructions containing zero bytes are 
allowed, as shellcode has to look like a standard character string, which uses zero as a
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M achine C ode A ssem bly C om m ent
EB IF JM P string-area Go to CALL
5E first: P O P  ESI Get string address off stack
89 76 08 MOV DW ORD PTR[ESI+08] ,ESI Store it in memory
31 CO XOR EAX,EAX Clear EAX
88 46 07 MOV BYTE PTR[ESI+07],AL Store a null byte in memory
89 46 0C MOV DW ORD PTR[ESI+0C],EAX Store a null DWORD
BO OB MOV AL, 0B P ut value 0B in AL
89 F3 MOV EBX, ESI The address of the structure
8D 4E 08 LEA ECX, DWORD PTR[ESI+08] Address of address
8D 56 0C LEA EDX, DWORD PTR[ESI+0C] Address of null DWORD
CD 80 INT 80H Call the kernel
31 DB XOR EBX, EBX Zero out EBX
89 D8 MOV EAX, EBX Zero out EAX
40 INC EAX P ut 1 in EAX (system exit)
CD 80 INT 80H Call the kernel
E8 DC FF FF FF string-area: CALL first 

(s tart of string data)

Table 5.4: Call-to-Pop in AlephOne’s Shellcode

terminator. It is thus necessary to use only those instructions for which the machine 
code contains no zero bytes.

There are a number of more advanced variations on the theme, most of which aim to 
make detection more difficult. One particularly ingenious method involves a CALL to 
a location in the middle of a block of garbage instructions which happens to contain 
the correct value for the POP opcode (or somehow obtains the address on the stack). 
The garbage instructions can be made to look realistic, but they are never executed 
and can therefore be complete rubbish if necessary.

Machine Code Assembly
E8 0A 00 00 00 
FF 08 
33 CO 
55
89 E5
FF 15 20 58 C3 00 
XX XX XX XX XX

CALL ip+OxOA
DEC DWORD PTR[EAX]
XOR EAX,EAX 
PUSH EBP 
MOV EBP,ESP
CALL DWORD PTR[0x00C35820] 
(data bytes)

Table 5.5: Call-to-Pop: Covert

The code shown in Table 5.5 appears to be a call instruction followed by what looks like 
a ‘function prologue’ -  the set of instructions which generally occur before a function 
call -  and the function call itself. In fact, the first CALL instruction is pointing into the 
middle of the second CALL instruction, wdiich just happens to contain the bytes 0x58
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and OxCO -  in other words, the instructions POP EAX and RET! The instructions 
after the first CALL are never executed and just serve as a diversion. This trivial 
example is still fairly easy to spot, but in practice there might be an indefinite number 
of dummy instructions between the CALL and the hidden POP instruction (of course, 
the code needs to know how many dummy bytes there are and add that number onto 
the value in EAX to get the address of the data area, but that is easy enough.

The reason for needing to know an absolute address is because injected code must often 
contain tables of string data of some sort (such as API function names) and these need 
to be referenced by address (unlike numerical values which may be hard-coded). Thus, 
some way of getting the address of the string data are necessary. One method would 
be to use relocations -  recalculate and patch all the references to the string data when 
copying the virus code to a new host -  but it is often simpler to write the code in such 
a way that it is fully relocatable and can obtain its own address.

Table 5.6 is a small patch which illustrates this process (note that this patch does 
require the API address).

M achine C ode A ssem bly C om m ent
50 PUSH EAX Save any value originally in EAX
33 CO XOR EAX,EAX G et 0 in EAX
50 PUSH EAX First argum ent (hWnd =  NULL)
E8 IB 00 00 00 CALL ip+OxlB G et address of string area
05 02 00 00 00 ADD EAX,0x02 G et address of message string
50 PUSH EAX Second argument (message string)
05 11 00 00 00 ADD EAX,0x11 G et address of caption string
50 PUSH EAX Third argument (caption string)
33 CO XOR EAX, EAX G et 0 in EAX
50 PUSH EAX Fourth argum ent (MB_OK)
FF 15 XX XX XX XX CALL MessageBoxA (address must be substituted for XXs)
58 PO P EAX Restore original value in EAX
E9 XX XX XX XX JM P O riginalEntryPoint (address must be substituted for XXs)
E8 00 00 00 00 CALL ip+0 Do Call-to-Pop trick
58 PO P EAX G et address in EAX
C3 RET R eturn to  caller
54 68 69 73 .... “This ..” Beginning of string area

Table 5.6: Call-to-Pop in use

The patch code in Table 5.6 is from a small program which adds a patch to an existing 
program to display a message box with the text “This is a patch.” . Like many viruses, 
the program inserts this patch into existing space in the program and alters the Ad- 
dressOfEntryPoint field of the header to point to the patch code. When the patch code 
finishes it jumps back to the original entry point address, so that after the patch code 
is executed the original program runs as normal. The program which inserts the patch
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searches the host program’s import table for the MessageBox function and adds this to 
the patch in the correct place before insertion. The patch makes use of the Call-to-Pop 
trick to get the address of the strings to be displayed in the message box.

Bad checksums in DLLs

This is somewhat obsolete as a suspicious feature, since all current versions of Windows 
require DLLs and system programs to have a valid checksum, and modern viruses are 
in any case quite capable of recalculating the checksum. However, older versions of 
Windows ignored the checksum completely, with the result that viruses which infected 
DLLs rarely bothered to recalculate the checksum. DLL infection in current versions of 
Windows is made more difficult again, at least for any files Microsoft deems critical, by 
the System File Protection feature. This maintains a cache of backup copies for all these 
files, detects any attem pt to delete or modify them, and promptly restores the backup 
copy when this happens. More recent versions of Windows support cryptographic 
signatures instead of checksums.

That being said, bad checksums in program files are still a potential sign of infection. 
Historically, most programs that are not ‘system programs’ have had their checksum set 
to zero by the linker, which is fine as the Windows loader did not make use of this field 
(only ‘system programs’ and DLLs need valid checksums). Until very recently, viruses 
could therefore use the Checksum field as an ‘infection marker’. Infection markers are 
used by viruses to identify already-infected files and thus avoid both wasted effort and 
any problems which may be caused by infecting the same file twice. Thus, a program 
file with a Checksum value which is nonzero and is not a correct checksum of the file 
is automatically suspect.3 It should be noted that current versions of Windows (XP, 
Vista) are much more stringent about executable verification.

5.2 .6  C o llectin g  S tru c tu ra l D a ta

Having seen what types of structural data  might be indicative of infection, the question 
arises as to how such data can be collected. Most of the data discussed above may 
be collected by simply mapping a program file into memory and accessing its headers. 
Some data (such as the number of imported functions) may require accesses to the

3It is also conceivable, but unlikely, th a t a covert virus might set a correct checksum as an infection 
marker, making detection more difficult and giving the beneficial side-effect of stopping the virus 
making its presence too obvious by infecting system files.
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section data and a certain amount of calculation, and finding suspicious redirections or 
tricks like CALL-to-POP requires in-depth code analysis, the automation of which is 
beyond the scope of this project. The items of structural data which were eventually 
chosen and the method used to collect them are set out in Chapter 6.

5.3 Behavioural M onitoring

‘Behavioural Monitoring’ is defined to be monitoring a process during execution, look­
ing at how it uses memory, the CPU, and other resources, whether it opens files, starts 
child processes, and any similar ‘behaviour’. Rather than define a list of ‘behaviours’, 
the aforementioned measurements are ‘sampled’ at specified intervals over a given time 
period.

5.3 .1  T h e co llec tio n  o f  rea l-tim e p rocess d ata

The range and type of data to be used for the characterisation of processes will obviously 
be operating system dependent. Process behaviour is essentially the evolution of the 
descriptive statistics over time. For structural data mentioned in Table 5.1, originally 
published in [Szor, 2005] mostly in relation to viruses, a list of characteristics which 
might be expected to help discriminate malware.

For behavioural characteristics as far as can be determined no-one has ventured to 
publish an equivalent list. So in Table 5.7 some initial suggestions are given.

Each item in Table 5.7 will now be explained, using examples from real malicious pro­
grams where possible. The first example program is Backdoor.Win32.Asylum, a typical 
remote-control program. Although Asylum is quite an old example (circa 2000) it con­
tains enough pertinent features to be a useful example. The variant used here -  denoted 
012 -  is credited to ‘slim’, though since this backdoor was made ‘open-source’ it is evi­
dent that other authors have contributed to the many variant versions.4 However, the 
binary file server variant examined had clearly been modified, as it contained features 
not present in the source code (assembly) version. Like most such programs, Asylum 
consists of a small ‘server’ program, written in Assembler, which, when executed, copies 
itself to the Windows system directory and writes itself into the Registry so that it is

4After spending a day disassembling the server program and reverse-engineering it, it was discovered 
that the full source code was only a web-search away...
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‘S usp ic ious’ b eh av io u rs
Opening outward internet connections 
Writing to executable files 
Self-modification
Writing to files normally created by other standard programs 
Spawning multiple processes (in particular functional replication) 
Disinclination to  be terminated 
Altering permissions 
Writing to system areas
Attem pting to  capture data from other programs 
Writing to  specific Registry keys 
Suspiciously high resource usage

Table 5.7: Some of the behavioural properties that might be expected to help detect 
malware.

executed whenever Windows starts up. It then listens on a port (default 23432) for 
incoming connections, and may also start a separate thread which attempts to post a 
notification message via ICQ. The message says “hey there, ive(sic) been committed” 
and gives details of the infected computer’s hostname, IP address, the port number of 
the Asylum server, and various other information. Whether or not it does this depends 
on how the server program has been configured.

An attacker can now point the ‘client’ program (see screenshot below) at the infected 
computer and connect to the server. There are ten different commands the client 
can send to the server, though six of these are for connection-control purposes only. 
Once connected via the client, an attacker can do four different things: upload an 
arbitrary file, execute an arbitrary program, reboot the computer, and remove the 
server program. The client program is written in Borland Delphi, and the example 
seen here was also compressed using UPX.

Asyhjsm  P..A.T. S u i te  CSter* v O .l — b y

Port 23432 Connect

L oca l

About

O ptions.

M essage Log...

-Remote

U pload... Open File... j

R eboot

R em ove Server

sfak. ora/^sftm/ajsyfurrr/
Not connected.

Figure 5.1: The Asylum backdoor client program by ‘Slim’
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As well as the client program, there is also a configuration program which allows the 
server binary to be customised, allowing the attacker to select the manner in which the 
server stays resident on the infected computer, and whether or not the server should 
announce its presence via ICQ. The configuration program, which is also written in 
Borland Delphi, configures the server by modifying the binary directly, writing to 
locations which are then checked in the server code. To illustrate features not found 
in Asylum, a second example will be used: the Win32.Welchia worm. This worm, 
which spread by exploiting a buffer overflow vulnerability in the Windows RPC service 
(though it could also use a different exploit), is interesting as an example of ‘helpful 
malware’ because, once it infected a system, it would attempt to download and install 
Microsoft security patches to block the vulnerability by which it had entered the system. 
If it found an instance of another worm (Win32.Lovsan/Win32.Blaster) on the system, 
it would attem pt to remove it. It would also automatically remove itself after 190 days 
or 1st January 2004, whichever occurred sooner. However, not all features of Welchia 
are benign [Perriot, 2007].

These examples will now be used to illustrate the list of suspicious behaviours given 
earlier.

Opening outward internet connections

Nearly all malware apart from ‘pure’ file-infecting viruses will need some sort of com­
munication facility. In some cases this is to allow them to ‘call home’ and let attackers 
know of their presence, or to allow attackers to communicate with them, or to send 
stolen data. Generally, therefore, they will need to gain access to the network somehow. 
Asylum, like many malicious programs, uses the Winsock API functions to gain access 
to the Windows T C P /IP  stack. When the server starts, it attempts to bind to and 
listen on (by default) port 23432. If it is unable to perform any of these steps, it puts its 
main thread to sleep for 512 ms and tries again. As TCP is a transport-layer protocol, 
it is necessary to define a higher-level communications protocol on top. Asylum uses a 
simple protocol consisting of mostly trigram commands: RQS, PAS, GNT, DNY, DIE, 
UPL, RBT, WDR, SDR, RUNCMD, and INV to denote an invalid or unrecognised 
command.

However, Winsock is not the only communication option open to a malicious program. 
Microsoft has helpfully provided a number of API wrappers for higher-level commu­
nications protocols. In particular, the Windows Internet functions in WININET.DLL 
can handle HTTP, FTP and GOPHER transactions with a remote site, and thus a
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Asylum Commands
RQS
PAS
GNT
DNY
DIE
UPL
RBT
WDR
SDR

Request connection 
Password 
Granted 
Denied 

Terminate server app 
Upload file 

Reboot machine 
Windows directory 
System directory 

Run file 
Invalid command

RUNCMD
INV

Table 5.8: The commands used by Asylum’s communication protocol

malicious program which restricts itself to these protocols can communicate without 
the hassle of implementing a protocol on top of TCP or UDP.

Certain types of malware, such as worms, are known to exhibit characteristic patterns 
in network traffic (see graphs in [Szor, 2005] p317) which may aid their detection. 
However, detecting such patterns is somewhat beyond the scope of this PhD and would 
be a more appropriate task for a firewall or Intrusion Detection System (but see the 
section on suspicious resource usage below).

W riting to executable files, or files norm ally created by other standard

Very few programs need to write to pre-existing executable files. Even programs which 
create executable files (compilers and assemblers) usually create a new one every time. 
Thus, writing to an already-existing executable file is a suspicious activity So is at­
tempting to replace an executable file which is part of the operating system, though 
Windows now has built-in (but not foolproof) protections against this.

The Asylum customiser program writes directly to the server binary in order to do 
its customisation, modifying locations which are then checked when the server runs 
to determine its behaviour. In a nonmalicious context, software vendors sometimes 
release binary update patches which modify executable files, though due to increases 
in bandwidth and storage space it is now more common to replace the entire file with 
the upgraded version. The only other programs which might legitimately write to 
existing binaries are programs such as hex editors which the majority of users would

programs
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probably never have to deal with.

Self-m odification, or a program which accesses its own executable file

‘Self-modification’ refers to a process performing manipulations on its own image 
in memory. This commonly indicates a copy-protection scheme, a polymorphic or 
metamorphic virus, or a program that has been packed with a program compres­
sion/encryption utility. Malicious programs are often so treated, as the process has 
two advantages -  it makes the malware executable smaller and easier to transmit (and 
hide), and it also obfuscates the code to a greater or lesser extent, making it some­
what more difficult for anti-malware researchers or programs to analyse. The packing 
program compresses and sometimes encrypts the target’s code. When the compressed 
program is run, a stub decompresses/decrypts the data, writes it to memory, and passes 
execution to it. Many commercial packers are available, as is an open-source one called 
UPX.5 A notable feature of UPX is that its authors sensibly refuse to add a feature to 
prevent unpacking, arguing that such features are trivial to bypass and provide a false 
sense of security. The commercial packers, on the other hand, often use encryption and 
anti-reverse-engineering features as selling points. Some packers also polymorph their 
unpacking code, making different generations of the same malicious program appear 
dissimilar.

The Asylum client and configuration programs are distributed as UPX packed executa­
bles, but the Asylum server is not. As anyone who possesses the UPX program can 
unpack these files, the motive for packing appears to be purely to make the executables 
smaller. The Welchia worm is distributed as a packed executable. Some sources sug­
gest that UPX was used -  however, the standard version of UPX is not able to unpack 
Welchia. is not difficult to trace the unpacking routine in a debugger, and by setting 
a breakpoint in the appropriate location it is possible to view the unpacked code in 
memory. Table 5.9 shows the first and last instructions of Welchia’s unpack stub.

The packed executable, when mapped into memory, contains three sections. One 
contains the packed code, together with the unpacking stub, and starts at address 
0x00407000. The loader creates an identically-sized section at 0x00401000 which will 
eventually contain the unpacked program. The ESI and EDI registers are loaded with 
the address of the source and destination areas respectively, and the unpacking process 
commences. After the process is finished the registers are restored and control is 
transferred to the entry point of the unpacked program (0x00402FCC). More advanced

5http://upx.sourceforge.net
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Machine Code Assembly Comment
60
BE 00 70 40 00 
8D BE 00 A0 FF FF 
57
83 CD FF 
EB 10 
(...)
61
E9 OF 9E FF  FF

PUSHAD
MOV ESI, 00407000
LEA EDI, DWORD PTR[ESI+FFFFA000] 
PUSH EDI 
OR EBP, FFF F FF F F  
JM P 00409082 
(...)
POPAD 
JM P 00402FCC

Save registers on stack 
Address of packed data 
Address of unpacking area 
EDI saved onto stack 
Set EBP to FFFFFFFF 
Go to next part of unpack fn 
(...)
Restore registers 
Jump to unpacked code

Table 5.9: Excerpt from Welchia’s unpacking code

packers may only ever decrypt a small portion of the entire program at a time, decrypt­
ing the rest only as needed. This obviously has a performance penalty, and is more 
likely to be found in legitimate applications such as copy-protection than in malicious 
programs.

Spawning m ultiple processes and disinclination to be term inated

In general, it is not normal for a user-mode program to spawn child processes. In 
Windows, system processes run as ‘children’ of the main System process (and Services 
run in turn as child processes under Services.exe). User-mode processes run either 
under explorer.exe or under CMD.EXE if started at the command line. Thus, a process 
other than those named above which has many ‘children’ may be suspicious.

This could potentially be used to detect the many malicious programs which take 
countermeasures against a user who terminates their main process. It is common for 
programs which display pop-up advertisements to do this, because they need to be 
visible to the user, yet not be easy for the user to terminate. If a pop-up advertisement 
window has appeared on the screen, it is not difficult to locate the process which 
displayed the window and kill it. However, most such programs have a second process 
wdiose job it is to restart the first process whenever it gets terminated -  and finding the 
second process is often very difficult, because it only runs for a fraction of a second. In 
a similar wray, malicious programs can ‘fight back’ against attempts to remove files or 
registry entries associated with them.
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A ltering perm issions and writing to system  areas

Many types of malware copy themselves to system folders in order to hide among the 
many legitimate executables that are found there. The new executable will be given an 
innocuous-sounding name, so that even if the user is in the habit of looking in system 
folders she is still unlikely to notice.

When it first runs, the Asylum server copies itself to the Windows folder of the target 
computer, giving the new file the name ‘wincmp32.exe’ (though this can be changed 
via configuration). This name is clearly designed to mislead the user by appearing to 
be a system program.

It should be clear that the Asylum server will fail if the current user does not possess 
write access to the Windows folder. Many versions of Windows extant at the time 
Asylum was written (e.g. Win95/98/Me) still did not have a proper system of permis­
sions, and allowed any user full write access to everything. Windows NT, 2000 and 
XP have stronger file permissions, but they are often effectively disabled by default (as 
in the case where users are permanently logged on as Administrator), so Asylum can 
still infect such systems. Other types of malware may use ‘privilege escalation’ exploits 
to get around this problem. A typical privilege escalation exploit is described in the 
article [Hiickmann, 2006] wrhich shows how to use the ‘a t’ task scheduler to escalate 
privileges on some versions of Windows XP. Essentially, the problem occurs because 
the at command runs with system privileges and any processes it starts also have sys­
tem privileges. Thus, it is possible to get access to Windows at an even lower level 
than an Administrator can. It has been reported that on some versions of Windows 
XP even the ‘Guest’ account (the lowest-privileged user) can use this vulnerability.

A ttem pting to capture data from other programs

Some sorts of malware are designed to ‘steal’ data such as passwords from other pro­
grams. Windows has a number of (legitimate) mechanisms which make it possible for 
one program to access objects (such as windows) belonging to another program and 
capture the data they contain. These mechanisms are used legitimately by programs 
such as pop-up blockers (which need to find advertisement windows and close them) 
and programs for revealing ‘asterisked’ passwords in edit fields. Of course, such mech­
anisms can also be used by malware to steal passwords from web browsers and FTP 
clients. Malware may also hijack windows of other programs (usually web browsers), 
display their own content (such as a fake password entry page), and capture data in
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that way. Possibly the cleverest example of data capture is illustrated by the E-Gold 
Trojan referred to in Chapter 3, which can actually siphon funds out of a target user’s 
account during legitimate use of that account [LURHQ, 2004].

W riting to  specific R egistry keys

The Asylum backdoor is capable of writing to various different parts of the Registry. 
The specific area it writes to is determined by the configuration process and by the 
version of Windows it is running on. The version of the Asylum server tested here 
added a key:

HKEY_LOCAL_MACHINE\Software\MicrosoftXWindows 
NT\CurrentVersion\Winlogon\Shell

having value ‘explorer.exe wincmp32.exe’. This had the effect of making Windows 
execute the file ‘wincmp32.exe’ whenever the system was started. There are other 
registry areas commonly used by malware, including the keys ‘Run’ and ‘RunServices’ 
which are used by legitimate programs that need to run on startup. Asylum may also 
use these areas, depending on how the server was configured.

Earlier versions of Windows used configuration files (‘WIN.INI’ and ‘SYSTEM.INI’) 
instead of or concurrently with the Registry. Since Asylum was written in 2000 when 
such versions of Windows were still in use, it is also capable of writing to these files 
if they are present. Table 5.10 is an excerpt from the disassembled source code of the 
Asylum server, illustrating how the server writes to different registry keys depending 
on the value of preset configuration option variables.

The code given in Table 5.10 will now be explained. If the first call to the decision 
function does not return 1, the function designated ‘RegwriteQ’ is called with the 
second argument being the address of the string ‘Run’, whereas if the second call to 
the decision function does not return 1, the Regwrite() function is called with the 
second argument being the address of the string ‘RunServices’. This indicates how the 
configuration system is used to decide which registry keys are modified by the Asylum 
server. The RegwriteQ function does the actual work of writing to the registry using 
the API functions RegOpenKeyExQ and RegSetValueExQ.
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Machine Code Assembly Comment
68 0C 32 40 00 PUSH 0040320C Address of decision variable
E8 53 OB 00 00 CALL 00401CD C Call decision routine
83 F8 01 CMP EAX,1 Was the result 1?
75 16 JNE 004011A4 If not, jump over next five instructions
6A 01 PUSH 1 Arg of Regwrite(?)
68 BA 31 40 00 PUSH 004031BA Arg of Regwrite() “SystemAdministration”
68 A8 31 40 00 PUSH 004031A8 Arg of Regwrite() “Run”
68 02 00 00 80 PUSH 80000002 Arg of RegwriteQ)
E8 C2 08 00 00 CALL Regwrite()
68 0E 32 40 00 PUSH 0040320E Address of decision variable
E8 2E 0B 00 00 CALL 00401CD C Call decision routine
83 F8 01 CMP EAX,1 Was the result 1?
75 16 JNE 004011C9 If not, jump over next five instructions
6A 01 PUSH 1 Arg of RegwriteQ)
68 D4 31 40 00 PUSH 004031D4 Arg of Regwrite() “SystemAdministration”
68 AD 31 40 00 PUSH 004031AD Arg of Regwrite() “RunServices”
68 02 00 00 80 PUSH 80000002 Arg of RegwriteQ)
E8 9D 08 00 00 CALL RegwriteQ

Table 5.10: Registry Access Code from Backdoor.Win32.Asylum 

Suspicious resource usage

On one hand it might be thought that a successful malicious program should use as 
few system resources as possible. Whilst this is certainly a goal which might help 
malicious programs stay undetected for longer, in practice many malicious programs 
are resource-hogs (indeed, often the first thing that alerts a user to the possibility of 
a malware infection is that their computer or their network connection mysteriously 
slows down). There are three main reasons for this. The first and most trivial reason 
is that the malicious software might have explicitly been designed to hog resources -  
in effect, a denial of service attack against the local user.

The second reason is that a lot of malware is very badly written; either the malware 
authors are bad or inexperienced programmers, or they are more concerned with get­
ting their malware out into the wild than with debugging it properly. Malware authors 
must necessarily remain anonymous, and there is little incentive for ‘quality control’; 
furthermore, it has been known for new malware variants to be released containing 
bugs which were not present in the original version ([Szor, 2005] p354-355 cites some 
examples), which is generally due to deliberate mutation (e.g. a polymorphic or meta- 
morphic virus, or a file infector which ‘hitches a ride’ on a worm) or to the ‘script
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kiddies’ of the malware-writing community building on the work of more experienced 
authors. Sometimes bugs cause a particular piece of malware to be far more destructive 
than its author intended. The classic example here is the Morris Worm, which was 
covered in chapter 2.

The third reason could be considered deliberate strategy where specific types of mal­
ware are concerned. Intelligent malware authors know that their creations are in­
evitably going to be detected at some point. Thus, they might reason, it is best to 
make them do the maximum amount of work as soon as possible after infection, even 
if that carries a greater risk of detection. One type of malware which would benefit 
from this strategy would be a botnet for spamming. The longer each bot is on a user’s 
computer the greater the risk of detection. Thus, it might be better to send several 
thousand spams immediately, even though this will almost certainly alert the user to 
a problem, since the chances are that by the time the user has taken steps to identify 
and remove the bot the majority of messages will have been sent (and of course, tying 
up the system makes it much harder for the user to do anything short of pulling the 
plug). The alternative would be to send only a small number of spams per day and 
risk having the bot caught by a routine virus scan before it has been able to send more 
than a few hundred messages. Similarly, a worm might be written to send out the 
maximum possible number of copies of itself, thus ensuring the greatest probability of 
passing on the infection. Obviously this “lightning strike” strategy would not be ideal 
for all types of malwrare, but could definitely benefit some.

According to many anti-malware databases, the Asylum server is known to cause re­
source problems, though none were encountered whilst running the Asylum server in 
the test environment. It is possible that different Asylum variants cause different prob­
lems.

List o f Behaviours: A Sum m ary

Of course, providing a list of behaviours is not the same as extracting real time in­
formation pertinent to the list. So it is necessary to consider what information can 
realistically be obtained and the methods that might be used to obtain it.

5.3 .2  B eh av iou ra l D a ta  G atherin g  M eth od s

As has been seen, gathering structural data are relatively easy: it is simply necessary 
to read each program file and write out data about it. Unfortunately, behavioural
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monitoring is a much harder problem, as data must be collected in real time while 
the target process is running. There are three data-collection approaches that can be 
taken, each of which has its advantages and disadvantages.

1. Simulate processes ‘offline’.

2. Run processes on an emulator.

3. Collect data from a live system.

Sim ulation

Many forms of simulation applicable to process behaviour are possible, from theoretical 
models based on cellular autom ata through to ‘virtual processors’ which model program 
execution. Simulators have the advantage that as only simulated operations are being 
performed, malicious code can be simulated without harm. Their main disadvantage 
is that it is almost impossible to create a simulator complicated enough to accurately 
reflect real-world behaviour without it basically becoming an emulator (see below). The 
essential difference between simulators and emulators is that a simulator is essentially 
an abstract model of a system, often giving details of internal states etc., whereas 
an emulator aims to seamlessly reproduce the system. Simulators such as the Servile 
Software Decoder [Probert, 1994] were used in early virus research in order to study 
the operation of viruses without running them on a real processor.

Em ulation

Emulators and Virtualisers are essentially near-perfect simulators which usually also 
provide a realistic user interface clone for the target system. Whereas a simulator may 
only simulate processor operations an emulator will generally recreate memory, graph­
ics and other aspects of the target system, sometimes to such a degree that casual 
examination is insufficient to determine whether a system is running natively or being 
emulated. The difference between an emulator and a virtualiser is that an emulator 
recreates the entire system from the ground up (including the processor) which allows 
software wTritten for the emulated processor to be run on any other processor. Virtu­
alisers, though, are usually designed to provide isolated access to the ‘host’ processor 
for a ‘guest’ operating system or program, and so can only run ‘guests’ written for the 
same processor.
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One of the best-known commercial virtualisers is VMWare, which will emulate an Intel- 
based PC and run practically any PC operating system, including Microsoft Windows 
and GNU/Linux. Furthermore, the VMWare emulator will run on any of these sys­
tems. Thus, one can have Windows inside Windows, Windows inside Linux, Linux 
inside Windows or any other combination. Microsoft have also produced various vir­
tualisation products including Virtual Server, drawing criticism from VMWare that 
they were limiting market choice [VMWare, 2007].6 A large number of other virtuali­
sation technologies and products exist, including Xen, an open-source virtual machine 
monitor originally developed at the University of Cambridge [Barham et a/., 2003]. 
Emulators and virtualisation environments are indispensable tools for human antivirus 
researchers. However, sufficiently advanced malware may refuse to execute in a virtual 
environment.7

Running Live V irus C ode

This must of course be done on a protected and isolated computer or network to avoid 
the risk of passing on infections. However, if an isolated environment can be set up 
this offers the best and most practical means of analysis. Such an approach will be 
used here.

5.3 .3  T w o M ea n s o f  M o n ito r in g

There are effectively two approaches to monitoring activity on a system, which could 
be described as ‘top-dowm’ and ‘bottom -up’. The top-down approach looks at the 
system activity as a whole, comparing memory and disk usage statistics, numbers 
of open files, and other metrics. Theoretically the presence of an unknown program 
ought to generate a ‘ripple’ of some sort in the overall system activity. The bottom-up 
approach, on the other hand, involves examining processes in memory as they run, and 
determining if they have changed or are acting suspiciously.

6But since VMWare is currently the market leader in virtualisation software, many commentators 
have taken their criticisms w ith a pinch of salt.

7This ought to be impossible in a pure emulated environment, but in practice depends on how the 
em ulator/virtualiser is implemented.
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5 .3 .4  W in d o w s P erform an ce D a ta

Most UNIX-like operating systems include a number of tools for enumerating running 
processes and gathering statistics about them (e.g. ‘ps’ and ‘top’), whereas Windows 
has only the Task Manager. However, Windows keeps lists of performance data for 
every process which is executing. This data may be accessed in a number of ways, 
either through a special registry key (HKEY_PERFORMANCE_DATA) or via special 
API functions. The API functions will obtain the data for a process for which the 
application has a valid process handle. Whilst it is possible to access this data using 
the standard registry access API functions, this is an involved and complicated process.

The P S A P I Functions

However, Microsoft have provided two separate suites of functions which provide a sim­
pler interface for accessing this data (EnumProcessModules() etc. in the PSAPI.DLL 
library and CreateToolhelp32Snapshot()/Process32First() in the ‘TOOLHELP.DLL’ 
library, though only the PSAPI functions will be considered for the purpose of this 
discussion). Thus, it is relatively easy to produce a background process which runs on 
a machine for a given period of time while the machine is in normal use, which can 
scan the process list and retrieve data for analysis. Such tools will give an idea of how 
processes are behaving, but only at a relatively high level. This is more akin to the top- 
down approach mentioned above. The PSAPI function EnumProcessModulesQ returns 
a list of ID values for each currently running process. Each process may then be opened 
using the standard API function OpenProcess(). If necessary, access may be gained to 
the memory mapped process hie, and it may be examined in the same way as the pro­
gram hie above. However, since structural monitoring is not a concern here, functions 
such as GetProcessMemorylnfoQ are more useful. This is a function which queries the 
performance data from the registry and returns a PROCESS-MEMORY.COUNTERS 
structure which contains a set of values concerned with the virtual memory usage of 
the process. The values returned are shown in Table 5.11.

Other information about a process such as the number of ‘modules’ it has mapped into 
its address space, the ‘Owmer’ of the process, the number of threads it has, and so on, 
may also be obtained.
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Value Type
Page Fault Count 
Peak Working Set Size 
Working Set Size 
Peak Paged Pool Usage 
Paged Pool Usage 
Peak Non Paged Pool Usage 
Non Paged Pool Usage 
Page File Usage 
Peak Page File Usage

number
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

Table 5.11: Contents of a PROCESS_MEMORY_COUNTERS structure 

The U ndocum ented  N tSystem Q uerylnform ationQ  Function

Another very promising method involves the use of an undocumented8 function in nt- 
dll.dll called ‘NtQuerySystemlnformation’. This is the function which the Windows 
Task Manager uses to get its data on running processes. This function allows the ob­
taining of a list of all the running processes on a system, writh details on each, including 
the process ID, the process name, the ID of the parent process, the number of threads 
and handles the process has, and the time the process has spent in user mode and 
kernel mode. Memory usage statistics for the process can also be obtained. Microsoft 
cautions against using NtQuerySystemInformation() because it is undocumented and 
may not be supported by future versions of Windows, though this is not a problem 
for the present purpose. It provides more information than the PSAPI or the Tool- 
Help functions, and moreover provides it in a single function call, whereas the previous 
methods generally require an API call per data item.

A list of most of the specific data provided by NtQuerySystemlnformationQ is given 
here. When called with an information class parameter of ‘SystemProcessInformation’, 
the function returns an array of structures of which not all the members are documented 
by Microsoft.

1. Process name

2. Process ID

3. ID of parent process

8Microsoft do actually document this function in MSDN, but advise against its use and do not give 
full details of the structures it returns, which others have had to reverse-engineer.
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4. Handle count

5. Thread count

6. Virtual Memory statistics (pointer to a VM_COUNTERS structure giving same 
data as GetProcessMemoryInfo())

7. Creation time

8. Time spent in user mode

9. Time spent in kernel mode

A more detailed description of various fields useful for behavioural data collection is 
given in Chapter 7.

5.3 .5  L ow er-L evel M eth o d s

In order to spread in a Windows environment, a file-infecting virus must call API func­
tions such as FindFirstFileQ and FindNextFileQ to discover new executable targets 
to infect, and must then call WriteFileQ to infect them. If the monitoring tools can 
intercept or somehow observe this sequence of API calls coming from a program, it is 
pretty certain that it is exhibiting malicious behaviour, since very few ‘normal’ pro­
grams would have need to repeatedly search for executable files and write to them. 
Such observation is usually quite difficult to achieve for all API calls, and would re­
quire either off-line emulation or debugger-like attachment to each process. Off-line
emulation (see below) is computationally expensive and does not amount to observing 
process behaviour ‘in the wild’. Debugging, on the other hand, has its own special 
disadvantages, not least of which is that a debugger can never detach itself from a 
‘debuggee’ without terminating it.

A PI Call M onitoring

Monitoring API calls is a little more difficult, but could certainly be done (for specific 
APIs) via mechanisms such as DLL injection. Windows provides functions that allow 
a programmer to force all processes running on a given computer to map a given DLL 
into their address spaces. A function in the DLL then has access to the program’s 
address space. Getting the appropriate function called is sometimes difficult, but there
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are various ways to achieve this, as documented in [Richter, 1995] and [Kuster, 2003]. 
Curiously, malware also uses these mechanisms, and one of the best ways to find out 
about them is to research so-called user-land rootkits -  much of the information in this 
section was taken from a document which described such a rootkit [Kdm, 2005]. Once 
a DLL is mapped into the address space of a target process, API functions called by 
the DLL will refer to the target process, so any API function which allows a process 
to get information about itself can be called in order to get this information for the 
target process. It is possible to go even further and actually redirect API calls made 
by a target process, which is a method many userland rootkits use to hide files. API 
redirection is not only used for nefarious purposes, however -  Microsoft have developed 
a method of using API redirection to implement ‘instrumentation’ of a program without 
needing to recompile its source code [Hunt and Brubacher, 1999].

Using a D evice Driver for D etectin g  N ew  Processes

A device driver can be used to trigger an event when a new process is started. It is 
thus possible to monitor every process. This technique is commonly used by personal 
firewall software such as ZoneAlarm. However, implementation of a device driver is a 
complex process and outside the scope of this PhD, and no suitable pre-written device 
driver was available for use.

5.3 .6  C o llec tin g  O th er R elevan t B ehavioural D ata

Aside from performance data, there are a number of other things that it would be 
useful to know about a given process. This section details some of them.

Process Trees

The system performance data for a given process includes details of the ‘parent’ process, 
which is defined as the process which started it running. If the given process is a system 
process (a device driver or system service) its parent will generally be the main System 
process. Services are generally children of the process ‘services.exe’ which is in turn a 
child of the System process. User programs are generally children of ‘explorer.exe’ if 
the user starts them by clicking an icon. If invoked from the command line, processes 
become children of the command prompt process ‘CMD.exe’. By doing some simple 
calculations it is possible to determine how many child processes have been invoked by
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a given process. This could potentially be useful for classification, though there was 
insufficient time to devise a way to exploit it in this work.

N etw ork Endpoints

Certain types of malware, such as bots, backdoors and worms, require the ability to 
initiate or receive connections over a network. Thus, in the monitoring process it 
would be helpful to be able to capture data on this. Luckily, Microsoft provide a 
set of functions allowing the TCP and UDP connection tables to be retrieved. These 
tables give details of wdiich processes ‘own’ a given endpoint, allowing the number of 
endpoints per process per ‘sample’ to be retrieved.

5 .3 .7  B eh a v io u ra l M on itorin g: C onclu sion

The final method chosen for the behavioural monitoring program used a loop which 
called NtSystemQueryInformation() a given number of times at specified time intervals. 
The results were fed into a special data structure which automatically collated together 
different ‘samples’ for each attribute of each process. A form of ‘run-length encoding’ 
was used to convert the list of samples for each attribute into a single number for 
classification purposes. For full details of this process and the exact data attributes 
used, see Chapter 7.

As always, there are constraints that should be noted. Firstly, the way in which the 
data are stored (a nest of linked list structures) assumes that the process ID is unique 
and does not get reused for another process during the period of monitoring. If this 
does happen, data for the new process will continue to be added to the record for the 
old process which used the same ID.

Another difference between the method of collecting structural and behavioural data 
are that, because structural data was collected from program files on disk, it was 
possible to collect all the data for each category of malware separately by organizing 
the malware files by category. However, since behavioural data must be collected from 
running processes, the data that ends up being collected will be mixed (depending 
on what malicious processes are running), and will have to be separated out. Thus, 
the pre-processing ‘burden’ is greater for behavioural data than for structural data. 
Furthermore, the behavioural data sets will be an order of magnitude smaller than 
the structural data sets for the simple reason that it is impractical to run tens of
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thousands of malicious programs. Chapter 7 will discuss how these constraints may 
affect the results.
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Chapter

Structural identification experiments

6.1 Introduction

This chapter is an investigation of whether or not, based on a library of known mal­
ware, using existing machine learning techniques, it is possible to automatically detect 
significant structural features and therefore to classify hitherto unseen programs as be­
nign or malicious. Essentially, according to section 1.4.1, it is necessary to determine 
if simple attributes, not requiring extensive static analysis or other computation to 
obtain, can be used for classification. In order to test the hypotheses, experiments will 
be run classifying every category of malicious software against every other category of 
malicious software and against nonmalicious software.

6.2 M ethodology

A large library of malicious software was obtained from an online source [VX, 2006]. 
The malicious software in the library was pre-classified into four categories: backdoors, 
Trojans, viruses and wrorms. A specially written data-collecting program was used to 
glean simple structural data, as described in Table 6.1, from the library. The data was 
output in a suitable format to be fed to the decision tree tools.

It was decided for reasons of practicality to restrict testing to Win32 PE (Portable 
Executable) format files only (detecting malicious scripts is a much more complex 
problem which would require different techniques). Thus, any code which was not 
in this format was ignored. This did not present a problem as the malware library 
contained sufficient samples of each category in the correct format.
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Nonmalicious code samples for comparison were obtained later via a similar process 
(see below). The J4.8 WEKA decision tree classifier was used. In practice, the re­
sults produced by this classifier were mostly identical to those produced by C4.5,1 
but WEKA produces a more comprehensive set of output statistics than does C4.5. 
The other WEKA classifier was the Naive Bayes classifier. Figure 6.1 outlines the 
data-gathering process.

Troyans DAT ASET.TPOJAM

DATASET. WORM

DATA SET .BAG kDOOR

Dana Gathering Ftogiam

DATASET J  K* B-V4JCIOUS

DATASET./1 PUS

DATASET_TOD|AN

DATASETJWOfiM
S f M a g  a n i •Icmhnin]

DATASETJSACKDGCff'

----------------------- 1__^| training
e - p e i tm e n t l  --------------

  test

training" 
■s- p r̂imentl' —

experiment 3 ~~~H  tinning

ex p e rim e n t^  |—

e-peument! I

Figure 6.1: Data Gathering Process

6.2.1 T h e d a ta -ga th er in g  program

This was a specially written program wrhich would open each file, read in the headers 
and other information and log this to a file in a format appropriate for direct reading by 
the classification systems. Both C4.5 and WEKA use comma-separated value (CSV) 
format for input data, but class and attribute information is provided in different ways 
-  for full details see Chapter 4.

1 As they should be since the same algorithm is used. However, in practice the two systems 
sometimes produced slightly differing results when classifying identical datasets, possibly due to the 
way each system handles different number bases.
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Identification Data
Attribute Type
Name String, for ID, ignored by C4.5 and deleted by WEKA

Data from File Header
Attribute Type
ImageBase
SizeOfCode
BaseOfCode
BaseOfData
SizeOflmage
SizeOfHeaders
CheckSum
EntryPoint
N umberOfSections
NumberOfExecutableSections

Memory location where loader maps program file 
Total size of code section(s)
Offset (RVA) of code section
Offset (RVA) of data section
Size of mapped file
Total size of all file headers
Sum of all WORDS in file plus file size
Place (RVA) where execution starts
How many entries in the COFF section table?
How many sections are flagged as executable?

Data from COFF Section Table of First Executable Section
Attribute Type
Name
VirtualSize
VirtualAddress
SizeOfRawData
PointerToRawData
PointerToRelocations
PointerToLineNumbers data
NumberOfRelocations
N umb er 0  fL ineN umb ers
Charact erist icsHBH W
CharacteristicsLBHW
C haract erist icsHB LW
Charact erist icsLBLW

String, for ID, ignored by C4.5 and deleted for WEKA
Final size of section when mapped
Address of first section byte when mapped (RVA)
Size of section data in file
Pointer to first page of section data in file
Pointer to any relocation entries in file
Pointer to any line number data in file
Number of relocation entries
Number of line numbers
High byte of high word of section flags
Low byte of high word of section flags
High byte of low word of section flags
Low byte of low word of section flags

Calculated Data for File
Attribute Type
NumberOflmported Functions How many entries in the IAT?

Table 6.1: Structural Attributes Used for Classification

Table 6.1 shows the structural data collected from the datasets. In keeping with the 
goal of simplicity, much of this can simply be read from the PE/COFF file headers, 
but some of it (such as the number of imported functions) must be calculated, though 
this is not an onerous calculation. To simplify data gathering, not all the fields of the 
file header were used, though it would be relatively simple to extend the process to 
include them. The term RVA means “relative virtual address” and usually refers to an 
address relative to the Image Base within a mapped executable file.
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For a detailed description of the meanings of each of these fields, refer to [Microsoft, 
2006]. Since WEKA does not allow any string data to be used (and has no ‘ignore’ 
attribute like C4.5), the two Name fields in the data were removed when WEKA was 
used, which was possible since they were being ignored by C4.5 anyway and were only 
there to aid identification of particular samples. Also, it should be noted that in initial 
tests the source datasets were purged of items which obviously referred to compressed 
(packed) executables (i.e. those with a first executable section called ‘.UPXO’) in case 
the results were unduly influenced. However, after further consideration it was decided 
to abandon this practice, as even though it is possible for nonmalicious executables to 
be compressed or packed, it is significantly more common for malware to be so treated.

It is wTorth noting that different compilers, assemblers and other programs which create 
executable files may lay them out in different ways, and that this may affect some of 
the structural data. However, because malware authors are presumably equally as 
likely to use a specific compiler than other software authors, it is anticipated that 
such differences will occur with equal frequency in the malicious examples as in the 
nonmalicious examples, and can thus be considered as “background noise” which can be 
discounted. Certainly it is anticipated that the structural differences between malicious 
and nonmalicious software will be greater than the structural differences between two 
pieces of software produced using different compilers.

C ollecting the nonm alicious sam ples

Nonmalicious samples were collected from a computer which had previously been 
scanned by a fully-updated signature scanner. Unfortunately, it is very common for 
duplicate copies of the same executable to be kept in different directories, so many 
duplicates tended to appear in the dataset, and these had to be purged out before it 
could be used.

6.2 .2  T h e  sou rce d a ta se ts

Each source dataset wTas named as follows:

• DATASET-VIRUS: 1658 virus data samples from the malware library.

• DATASET-TROJAN: 1644 Trojan data samples from the malware library.

• DATASET-BACKDOOR: 1614 backdoor data samples from the malware library.
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• DATASET-WORM: 592 worm data samples from the malware library.

• DATASET-NONMALICIOUS: 2062 program data samples selected from a scanned 
PC.

6 .2 .3  C rea tin g  ex p er im en ta l d a ta se ts

It was desired throughout to match an equivalent number of malicious and nonmali­
cious samples in each experimental dataset. This was done by determining the number 
of samples in each malicious source dataset and then randomly selecting an equivalent 
number of samples from DATASET-NONMALICIOUS. Ideally, the size of the experi­
ment datasets should be divisible by two, if this was not the case a subset of the closest 
value divisible by two was selected.

The following process was used. In this description it will be assumed that two cat­
egories are being compared, denoted A  and B. Datasets associated with a category 
will be denoted D[A\ and D[B). For random selection, a program was written using an 
implementation of the Mersenne Twister PRNG [Matsumoto and Nishimura, 1998].

6 .2 .4  S p litt in g  in to  T rain ing  and  T est se ts

• Split D[A] and D[B) into equal parts DTrain[A], DTest[A] and DTrain[B], DTest[B]•

• Combine opposite parts, creating DTrain[A] U DTrain[B] (the training set) and 
DTest[A] U DTest[B] (the test set).

• Add the appropriate data for C4.5 (a .names file) or WEKA (attribute informa­
tion).

6.3 Results

For full results see Appendix A. Due to the volume of results produced only summaries 
will be given here.

Although all experiments were performed using C4.5 and WEKA, only the full outputs 
from WEKA are reported in the relevant tables. WEKA produces a larger range of 
output statistics than C4.5, one of which, the Kappa Statistic, requires some explana­
tion.
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6 .3 .1  T h e  kappa s ta tis t ic  k,

The kappa statistic, also known as Cohen’s kappa, [Cohen, I960] can be used as an index 
which compares classification performance of the system against that which might be 
expected by chance. For two categories it is necessary to compute the proportion pc of 
instances which have been correctly classified, and the proportion pe which might be 
expected to be correctly classified by chance. These quantities are readily obtained from 
a confusion matrix. If the classifier performs perfectly then pc =  I, so the maximum 
value of pc — pe is 1 — pe. Therefore the kappa statistic is defined so as to normalise 
with respect to this maximum, viz.

Kappa values range from 1 (complete agreement) through 0 (agreement equivalent to 
chance) to -1 (complete disagreement). There is a simple generalization to more than 
two categories [Fleiss, 1981].

6 .3 .2  B a se lin e

It can be argued that since the uninfected sources for the infected files in the virus 
library are (presumably) not known, then it is likely to be very difficult to separate their 
characteristics from the characteristics of the viruses which are using them as ‘hosts’. 
A counter to this is provided by cross-validating DATASET-NONMALICIOUS against 
itself: the dataset is divided in half and each half is assigned an arbitrary category. If 
the hypotheses hold, the classification system ought to perform no better than chance 
(50%) when classifying this data. The results in Table 6.2 illustrate this hypothesis 
rather convincingly.

6.3 .3  L earn ing  cu rves

Before presenting the experimental results in detail, in order to provide an overview, 
a comparison of the learning curves for discrimination between the categories Mal- 
NonMal and also between Virus-NonMal is given here.

In Figures 6.2 and 6.3 both training and the unseen test set size were 1264 and 1260 
instances respectively. For example, for the Mal-NonMal experiment the training and
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T ra in in g  D a ta
J4 .8 N aive B ayes

Correctly Classified Instances 
Incorrectly Classified Instances 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

340 (53.7975%)
292 (46.2025%)
0.0759
0.4834
0.4917
96.6892%
98.3306%
632

316(50.0000%)
316(50.0000%)
0.0000
0.5015
0.6232
100.2963%
124.6420%
632

T est D a ta
J4 .8 N aive B ayes

Correctly Classified Instances 
Incorrectly Classified Instances 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

306 (48.4177%)
326 (51.5823%)
-0.0316
0.5074
0.5153
101.4742%
103.0536%
632

306 (48.4177%) 
326 (51.5823%) 
-0.0316 
0.5090 
0.6289 
101.8001% 
125.7817%
632

Table 6.2: Baseline

test sets were constructed as follows. First 1264 examples were randomly selected from 
the complete Malware set (Backdoor-Trojan-Virus-Worm), and then split this into two 
disjoint sets, each of 632 Malware examples. The same procedure was repeated for 
the Non-Malware set. Finally, these four sets were combined to produce training and 
test sets each containing 632 examples of Malware and NonMalware respectively. The

20  40 60 80 100
k Train

80 100
k Train

Figure 6.2: Learning curves for Mai- Figure 6.3: Learning curves for Virus-
NonMal (Top: J48; Bottom: Naive NonMal (Top: J48; Bottom: Naive
Bayes). Experiment 5(2), section A.5.2. Bayes). Experiment 1, section A. 1.1.

rrectCorrect
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two sets of size 1264 were then order-randomised. A similar process was used for the 
Virus-NonMal experiment.

In each figure the horizontal axis represents the percentage of the training set so far 
used, and the vertical axis represents the percentage of correctly categorised instances 
in the test set.

From these figures it is clear that the Bayesian classifier is having difficulty, whereas 
the decision-tree approach is performing well.2 Whilst the J4.8 curves provide clear 
evidence of learning, the Naive-Bayesian classifier eventually performs no better than 
random with a final kappa of 0.1854. It looks as if the dependencies within the input 
attributes may be sufficient to effectively undermine the utility of the Naive-Bayes clas­
sifier. It is also interesting to note that J4.8 consistently manages to get discrimination 
at the 70%+ level on as few as 15 or so training instances.

6 .3 .4  E x p er im en t O ne

In Experiment One, each malware dataset in turn was compared to the nonmalicious 
data set. The results showed that the J4.8 classifier was able to distinguish between the 
classes with a high degree of accuracy. The performance of the Naive Bayes classifier 
was much worse, though it still managed to correctly classify the majority of cases.

The following graph shows the percentage of cases correctly classified by each classifier 
in Experiment One.

It can be seen that the J4.8 classifier performed fairly consistently in each case, main­
taining a very high degree of classification accuracy (exceeding 90%) even on the pre­
viously unseen test data. The accuracy of Naive Bayes classifier, on the other hand, 
varied widely between different comparisons, ranging from around 60% in the worst 
case (Virus-Nonmal) to over 70% in the best case (Worm-Nonmal). Overall the Naive 
Bayes classifier exhibited less divergence in accuracy between the training and test sets 
than did the J4.8 classifier. It is also interesting to note that the ‘difficulty of classifica­
tion’ of a given dataset differed widely between the two classifiers: for instance, when 
classifying the unseen test set, the J4.8 classifier performed best on Virus-Nonmal, 
whereas the Naive Bayes classifier performed worst on the same dataset.

2Clearly, the performance of a classifier is substantially dependent on the type of data with which 
it is presented.
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Figure 6.4: Structural Experiment One

6.3.5 E xp er im en t T w o

Experiment Two was a pairwise comparison of the malicious categories. Each possible 
pair of malicious categories was compared, so as there are 4 malicious categories, the

'  4 X
total number of necessary comparisons is given by =  6.

The following graph shows the percentage of cases correctly classified by each classifier 
in all six comparisons in Experiment Two.
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Figure 6.5: Structural Experiment Two

As in Experiment One, the J4.8 classifier is performing consistently better than the 
Naive Bayes classifier. But now there is much less consistency between different
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datasets. Furthermore, whilst J4.8 consistently performs better on the training set 
than the test set (which is to be expected), this is not the case for Naive Bayes, where 
on occasion (such as Trojan-Backdoor) the test set outperforms the training set.

In contrast to Experiment One, it can be seen that the classification difficulty is the 
same here for both classifiers -  both J4.8 and Naive Bayes perform worst on the Trojan- 
Backdoor set. This could be because the definitions for Trojan and Backdoor overlap 
-  there are some pieces of malware which are defined by some anti-malware companies 
as Backdoors and by others as Trojans.

It also appears that, for both classifiers, the greatest classification accuracy is achieved 
when comparing Viruses. This is explainable because, as stated before, viruses are 
more likely to exhibit the sort of structural anomalies that the classifier will pick up.

6.3.6 E xp er im en t T hree

Experiment Three compares all possible triplets of malicious categories, the total num-
7 4 '

ber of necessary comparisons is given by =  4.

The following graph shows the percentage of cases correctly classified by each in Ex­
periment Three.
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Figure 6.6: Structural Experiment Three

There appears to be a trend of decreasing accuracy -  it has been falling since Experi­
ment One. Here the worst results (for the Naive Bayes classifier on Backdoor-Trojan-
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Worm) dip below 50% for the first time. The best that J4.8 manages on the test set is 
just over 70%.

There is also greater divergence between J4.8 training and test. In Experiments One 
and Two, J4.8 performed overall about 10% worse on the test set than on the training 
set. In this experiment, the divergence is closer to 20%. By contrast, the Naive Bayes 
classifier exhibits almost no divergence -  the results for training and test sets are 
virtually identical.

6.3 .7  E x p er im en t Four

Experiment Four compared all four malware categories with each other. Thus, only 
one set of results was produced, which are given in Figure 6.7 below.

%Correct

J 4 .8Train f f BayesTest 
J4.8Test BayesTrain

Figure 6.7: Structural Experiment Four

As can be seen, the trend of decreasing accuracy continues: now have under 60% 
accuracy from J4.8 on the test set. Naive Bayes is now misclassifying more cases 
than it is classifying correctly on both the training and test sets. However, since bare 
percentages are not terribly informative, it is necessary to turn to the confusion matrix 
in the hope that it can provide more information.

Table 6.3 shows the ‘Confusion Matrix’ produced by J4.8. This shows how many cases 
from each class were correctly classified and how many were misclassified as belonging 
to other classes. Each row corresponds to an actual malicious class, and the columns 
show how many were classified as belonging to each class.
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Actual/Classified As Backdoor Trojan Virus Worm
Backdoor 390 145 25 72

Trojan 194 302 79 57
Virus 32 68 510 22
Worm 69 72 57 103

Table 6.3: Structural Experiment Four: J4.8 Confusion Matrix

For instance, it can be seen that that 390 cases whose actual classes was ‘Backdoor’ 
were correctly classified, but 145 further Backdoor cases were mistakenly classified as 
TYojans, 25 as Viruses and 72 as Worms. Similarly, in the case of Trojans, 194 were 
mistakenly classified as Backdoors. Of the four malware classes, the Virus class had 
the highest proportion of correct classification (510 cases correctly classified versus 122 
incorrectly classified, amounting to 80% accuracy for the Virus class alone). The next 
best was the Backdoor class, at 390 correct versus 242 incorrectly classified cases, or 
61% accuracy. The Worm and Trojan classes were the worst performers, both having 
a greater proportion of cases misclassified than classified correctly.

6.3.8 E xp er im en t F ive

The first part of Experiment Five compared all four malware categories plus the non­
malicious category. The second part combined all the malicious categories (Virus, 
Worm, Trojan, Backdoor) into one big category called ‘Mai’ and compared it with the 
nonmalicious category. Results for both parts are shown in Figure 6.8.
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Figure 6.8: Structural Experiment Five

Considering the results for Part One, as might have been expected, the accuracy drops 
further. As in Experiment Four,the J4.8 confusion matrix, given in Table 6.4, will be
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used to examine the individual accuracy rates for each class.

Actual/Classified As Backdoor Trojan Virus Worm Nonmal
Backdoor 347 182 24 61 18

Trojan 172 326 67 46 21
Virus 26 66 485 27 28
Worm 62 100 55 75 9

Nonmal 29 27 8 8 560

Table 6.4: Structural Experiment Five (Part One): J4.8 Confusion Matrix

Comparing this confusion matrix (Table 6.4) with that of Experiment Four (Table 6.3) 
shows that adding the extra Nonmal class has had a significant impact on the individual 
classification accuracies of the already-existing classes. Simple calculation shows that 
the class with the greatest proportion of correctly-classified instances is Nonmal, with 
89% correct. Next is Virus, with 77% correct. Backdoor and Trojan have 55% and 
51% respectively. For Worms only 25% of cases were correctly classified, the majority 
apparently classified as Trojan. On the subject of false negatives, it is interesting to 
note that about 2% of Backdoors, 3% of Worms and Trojans, and 4% of Viruses were 
misclassified as Nonmal. Classes Trojan and Virus seemed to generate the most false 
positives (4%).

Looking at the Part Two results, it appears that on amalgamating all the malicious 
categories, the accuracy of J4.8 returns to levels not previously seen since Experiment 
One. Naive Bayes, on the other hand, is still unable to classify the majority of instances 
correctly.

6.4 Analysis

6.4 .1  G en era l T rends

A general trend is observable from the results: as the number of categories (classes) 
increases, the classification accuracy decreases. Thus the three-class classifiers of Ex­
periment 3 were less accurate than the two-class classifiers of Experiments 1 and 2. 
This is in accordance with the so-called ‘curse of dimensionality’ (described in [Tan 
et al., 2006]), which states that the classification accuracy of a classifier is inversely 
proportional to the number of classes.
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In the baseline test, it was seen that J4.8 tended to outperform Naive Bayes -  this 
trend continued in all experiments, with Naive Bayes on average making 20% fewer 
correct classifications than J4.8. J4.8 always managed to correctly classify the majority 
of cases, whereas Naive Bayes did not. However, the Naive Bayes classifier showed a 
much smaller difference in accuracy between training and test data than did J4.8, the 
accuracy of which tended to drop between 6% and 20% when classifying the test data. 
Naive Bayes, though it performed worse overall, showed a much smaller drop-off and 
sometimes was better able to classify the test data than the training data.

6.4 .2  S pecifics

Experiment 1 showed that all four classes of malware were easy to distinguish from the 
nonmalicious dataset, if taken individually. However, it was clear from Experiments 2 
to 5 that distinguishing the four classes from each other was by no means as easy.

In all cases, the J4.8 classifier outperformed the Naive Bayes classifier, especially as the 
number of classes increased. For the largest datasets (Experiments 4 and 5 part 1) the 
Naive Bayes classifier actually misclassified the greater proportion of both the training 
and test data. It is also notable that, in accordance with the hypotheses (Section 1.4.1), 
the class of malware most likely to contain structural anomalies (viruses) is also the 
easiest to classify.

For certain datasets, it was possible to identify reasons for the significance of certain 
factors in the classification process. For example, experiments with the virus dataset 
indicated that samples with a lower ImageBase attribute were more likely to be viruses 
than nonviruses. The simplest explanation for this is that standard Windows appli­
cation programs have a default ImageBase of 0x00400000. System programs, built-in 
Windows applications, and device drivers all have higher default ImageBase values, and 
these files are less likely to be infected by viruses because Windows has features which 
protect them from arbitrary modification. Thus, a sample of virus-infected programs 
will likely consist of a higher proportion of user programs than system ones. Section 
flags were also a significant factor in classification -  which is likely to be because viruses 
which infect existing sections must often alter these. Results which show that smaller 
files are more likely to be malicious than larger ones are fairly self-evident, since any 
malicious program will be able to spread and evade detection more easily if it is small 
and compact (e.g. a Trojan travelling as an email attachment). However, many of the 
identified significant factors did not appear to have such explanations.
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6.5 Conclusion

A practical system would benefit from the use of an incremental induction method of 
deducing a classifier, thus allowing continuous updating of classifiers with new malicious 
program data without the need to deduce a new classifier (although building a new 
classifier is not a particularly computationally expensive undertaking), see [Quinlan, 
1993a] pl06.

The baseline experiment of section 6.2 shows that the Mal/Nonmal classifiers con­
structed using randomly selected examples from the Nonmal data performed at a level 
indicative of a random classification, whereas the classifiers constructed using known 
identified examples from each category showed clear evidence of correct identification. 
In this way the hope expressed in the basic hypotheses of section 1.4.1 can reasonably 
be claimed to have been vindicated.

In pract ice normal users will not have a continually updated library of malware available 
for classifier/detector update. This process is in any event more easily carried out by 
existing Anti-Virus software, which could periodically download updated classifiers. 
Unlike signature based systems these malware-detectors would act as a first line of 
defense against hitherto unseen malware. The use of such systems could help bridge 
the vital time-gap, which exists at present, between the central detection of a new 
outbreak and the manual creation of a new signature file for download to subscribers 
computers. W hat the results of this chapter demonstrate is that the approach is 
perfectly feasible and offers a relatively high degree of protection.
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Chapter

Behavioural identification experiments

7.1 Introduction

This chapter discusses the experiments that were performed on behavioural data cap­
tured from running processes on an isolated computer. Continuing the discussion from 
Chapter 5, the experimental set-up, the methods used to capture the data, and the 
results obtained are described.

According to the hypothesis (Section 1.4.1), behavioural classification, if it works, 
ought to be equally good at classifying all types of malware (in contrast to structural 
classification, which, as previously shown, does in fact favour malware classes which 
have more structural anomalies). Thus, and also in order to be better able to make 
comparisons, the methodology used will be as similar as possible to that used in the 
structural experiments.

7.2 M ethodology

Owing to the requirements for capturing data in real time, it was necessary to restrict 
testing to a much smaller set of programs than was used for the structural experiments. 
This was because, whereas hundreds or thousands of executable files can be structurally 
analysed in a reasonable amount of time, attempting to execute that number of files 
and analyse their behaviour is a much more intensive process which can easily slip 
beyond the bounds of what is reasonable (thus it might be said that this approach is 
less scalable). Furthermore, for these experiments at least it was necessary to choose 
malicious programs which were not known to interact with each other or to interfere

7
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with other programs. This was to minimise the possibility of the monitoring software 
itself becoming infected, and to make the behavioural results as ‘clean’ as possible.

A set of specially selected malicious software examples from the malicious software 
library referred to in Chapter 6 were used. The test environment was a network- 
isolated computer running Windows XP. To prevent the possibility of infections leaving 
the computer, a one-way binary file policy was used as follows: the data gathering 
program was transferred to the isolated PC on a floppy disk, and was then deleted 
from the floppy disk. No binary files were allowed to remain on the floppy disk when 
transferred back to the work PC, and the floppy disk was scanned using an updated 
virus scanner at regular intervals to prevent any potential transfer of malware.

Difficulties encountered during the process of collecting the data included the fact that 
many examples from the malware library refused to run on the test environment. A 
further challenge was tracking down and removing traces of each piece of malware after 
data had been gathered. For this purpose a commercial virus scanner, previously tested 
to ensure that it recognised each piece of malware, was used.

7.3 The D ata-G athering Program

The behavioural data was collected by a specially-written program which used the un­
documented Win32 API function NtQuerySystemlnformationQ, used by the Windows 
Task Manager. This function was called several times in succession to obtain a series 
of results for each process currently executing. As explained in Chapter 5, the choice 
to use this undocumented function was made because all the officially-documented 
methods of obtaining the same information required one function call per data item 
whereas NtSystemQueryInformation() returns a structure containing all the data at 
once, thus reducing overhead. As behavioural data are being captured in real time, 
this is important.

The program was also given the ability to start up a given process immediately prior 
to monitoring, and terminate it when monitoring had finished. Later, the data row 
corresponding to the process which was started up could be extracted from the output 
(which showred the data for all running processes).
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7.3 .1  R ea l-t im e  D a ta

As a number of samples are being taken n over a period of time £, it would be ideal if 
there was some way of encoding these into a single value, or definite set of values, for 
input to the classification system (which is much more convenient than trying to feed 
every value in, especially if n is large). However, finding a suitable encoding process is 
not easy. Possibilities explored included runlength encoding, geometric (array) encod­
ing and averaging groups of values. However, all except the averaging method proved 
to be either too difficult to implement satisfactorily or flawed in that they lost infor­
mation. The chosen method was to average the n samples into small groups of size 
r where n\r. Setting n  =  1000 and r =  10 meant that each group of 10 values was 
averaged, resulting in 100 averages.

The following table shows the data collected by the monitoring program.

Iden tification  D a ta
A ttr ib u te T y p e
ThreadCount
HandleCount
PeakVirtualSize
VirtualSize
PageFaultCount
Peak Wor ki ngSet S i ze
WorkingSetSize
Q uotaPeakPagedPool Usage
QuotaPagedPoolUsage
QuotaPeakNonPagedPoolUsage
QuotaNonPagedPoolUsage
PageFileUsage
PeakPageFileUsage
NumTCPEndpoints
NumUDPEndpoints
ReadOperationCount
W riteOperationCount
OtherO perationCount
ReadTransferCount
W riteTransferCount

Number of threads owned by the process
Number of open handles (files, communication resources)
Maximum virtual size 
Size of address space
Number of page faults (pages swapped in from virtual memory)
Peak working set size (see below)
Size of the process working s e t1 
Peak usage of the Paged Pool
Usage of the Paged pool (see [Russinovich and Solomon, 2005] p401) 
Peak usage of the Nonpaged Pool
Usage of the Nonpaged pool (see [Russinovich and Solomon, 2005] p401)
Usage of the page file
Peak usage of the page file
Number of T C P ports owned by the process
Number of UDP ports owned by the process
Number of read operations performed
Number of write operations performed
Number of other operations performed
N umber of bytes read
Number of bytes w ritten

Table 7.1: Process Attributes Sampled Over Time

7.3 .2  C h o ice  o f  M alic iou s E xam p les

To prevent the possibility of cross-infection or infection of the monitoring software, the 
decision was made to exclude Viruses from the categories of malware examined in the 
experiments, thus leaving only the categories Backdoor, Trojan, and Worm. Owing
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Backdoor Trojan Worm
Asylum ZoneKiller Deborm
Blade Starfield Sasser
Brainspy Gnome SdBoter
AckCmd Wintec Welchia
AF Zum Lovesan
Daniel Micron Bymer
B 02K Gnot.II Donk
Oblivion. 01 ICQ2k Poo
Breplibot ICQPager Qaz
Joiner M utapager Zan

Table 7.2: Malware used for behavioural data capture

to time constraints and the aforementioned limitation that only examples that would 
run on the test machine could be used, it was not feasible to employ random selection 
methods. Table 7.2 shows the malware that was used (names shortened for brevity). 
As there were too few cases to create separate training and test sets, it was decided to 
use 10-fold cross-validation instead (this procedure is explained in Chapter 4).

7.3 .3  F in a l D a ta se ts

1. Backdoor: a set of behavioural data for 10 backdoors.

2. Trojan: a set of behavioural data for 10 Trojans.

3. Worm: a set of behavioural data for 10 worms.

4. Nonmal: a set of data for 10 nonmalicious programs.

These datasets will be compared in the experiments that follow.

7.4 R esults

Full tables of results are given in Appendix B. Here the most relevant results are 
presented in graph form.
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7.4.1 E xp erim en t O ne

Experiment One compared data from each malicious dataset against the Nonmal 
dataset. Figure 7.1 shows the results.
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Figure 7.1: Behavioural Experiment One

It can be seen that for Backdoor-Nonmal, Naive Bayes is outperforming J4.8 signifi­
cantly, correctly classifying 10% more instances. For Trojan-Nonmal J4.8 is achieving 
the highest proportion of correct classifications, though the percentage difference be­
tween the classifiers is about the same, though (here J4.8 achieves 20% more correct 
classifications than Naive Bayes whereas on Backdoor-Nonmal J4.8 achieved 20% fewer 
correct classifications). W ith Worm-Nonmal, the difference in percentage of correctly 
classified instances is much closer (5% as opposed to 20%). J4.8 still outperforms Naive 
Bayes, though less so than in Trojan-Nonmal, since J4.8 is performing about 5% worse 
in this comparison and Naive Bayes is performing about 10% better.

7.4.2 E xp er im en t T w o

Experiment Two compared each pair of malicious datasets. Figure 7.2 shows the 
results.

On Backdoor-Worm J4.8 performs poorly, achieving results identical to chance. Naive 
Bayes performs slightly better, but still worse than on any of the previously-seen 
datasets. Trojan-Backdoor is another case of Naive Bayes outperforming J4.8, though
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Figure 7.2: Behavioural Experiment Two

both do somewhat better. On Trojan-Worm, J4.8 performs identically to Trojan- 
Backdoor (65% in both cases, though the error values -  see Appendix B -  are slightly 
lower). Strangely, Naive Bayes performs 20% worse than it did on Trojan-Backdoor.

7.4.3 E xperim en t T h ree

Experiment Three compared each pair of malicious datasets plus the Nonmal dataset, 
and also all three malicious datasets together. The results are shown in Figure 7.3
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Figure 7.3: Behavioural Experiment Three 

For Backdoor-Trojan-Worm, J4.8 manages to classify only 33% of cases correctly,
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whereas Naive Bayes -  outperforming it -  performs no better than chance. Perfor­
mance on Backdoor-Worm-Nonmal is virtually identical to Backdoor-Trojan-Worm (in 
the case of Naive Bayes the full results are identical, whereas some of the error values 
differ in J4.8). Neither classifier can achieve better than chance, and J4.8 achieves sig­
nificantly less well. Paradoxically though, in Trojan-Backdoor-Nonmal, both classifiers 
perform better than chance, and J4.8 once again beating Naive Bayes. For Trojan- 
Worm-Nonmal, the losing trend resumes: classification rates for both types of classifier 
are extremely low -  neither J4.8 nor Naive Bayes is able to correctly classify the ma­
jority of cases. It is interesting that out of the four comparisons in Experiment Three, 
only in Backdoor-Trojan-Nonmal were either of the classifiers able to achieve better 
results than chance.

7.4.4 E xp er im en t Four

The first part of Experiment Four compared all four datasets. The second part com­
bined all three malicious datasets into one class called “Mai”, and compared it against 
the Nonmal dataset. Figure 7.4 shows the percentage of cases correctly classified in 
each part.

K e y

E x p  4 P a r t  1

E x p  4 P a r t  2

J 4  . 8 B a y e s

Figure 7.4: Behavioural Experiment Four

Given the trends seen in Experiment Three, and the general effect of the ‘Curse of 
Dimensionality’ on the results, it is perhaps not surprising that the results for Part 
One are so bad -  here, neither classifier can even achieve chance accuracy. Even so, 
J4.8 outperforms Naive Bayes, though only by 5%.

In Part Two, on dispensing with the distinctions between different types of malware, 
and thus ‘lifting’ the Curse of Dimensionality, accuracy shoots back up again. However, 
referring to Appendix B, the Kappa statistics still do not look too healthy, even J4.8,
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as it achieves 72.5% correct classification, can only manage 0.2903, little better than 
Naive Bayes’ 0.2381. Thus agreement may still not be very good.

7.5 Conclusions

In general, it appears that it is feasible to distinguish each type of malware in turn from 
nonmalicious software based on the behavioural data used here. However, based on the 
behavioural characteristics that were easily collectable, accuracy is much less than when 
structural characteristics are used. Thus in distinction to the results of the previous 
chapter, it is not possible to claim with any great confidence that the hypotheses of 
section 1.4.1 have been clearly vindicated. Furthermore, when the classification system 
tries to distinguish between malware, or between multiple classes of malware and non­
malware, accuracy nose-dives. This could be for many reasons. Firstly, it could be 
that sufficient data is not being captured to allow classification. Secondly, the encoding 
process used may be suboptimal. Thirdly, of course, it may be that it is genuinely much 
harder to classify based on behaviour than on structure, and possibly not feasible at 
all using only simple data. Given the constraints imposed by time and feasibility, it 
may be that the results in this chapter must be considered proof-of-concept rather than 
definitive evidence for behavioural classification.
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Chapter

Conclusions and Future Work

8.1 Evaluation

It is clear from Chapter 6 that classifying based on simple structural attributes can 
give a high degree of accuracy, almost certainly comparable to the accuracy obtained 
by complex structural methods such as static analysis. However, the behavioural re­
sults given in Chapter 7 are by no means as good. Of course, behavioural classification 
is a much harder problem, and it is possible that truly good results cannot be ob­
tained without the use of much lower-level and more comprehensive data capturing 
(for instance, that used by Microsoft in [Lee and Mody, 2006]). Certainly to collect 
behavioural data it is highly advantageous to be running in kernel mode, but writing 
the necessary drivers was beyond the scope and time allocation of this PhD project.

Accuracy notwithstanding, it is not the case that the methods employed in Chapter 
6, if implemented as a complete system, could completely replace existing malware 
scanners -  this was never the intention. However, it could provide a useful supplement 
to the existing systems which wrould have the ability to provide a degree of ‘zero-day 
protection’ from a newT threat. It is arguable that a practical system would need to 
use some form of incremental induction, since unless the classification models have the 
capability to update themselves in response to new data (since it is possible that the 
structural or behavioural characteristics of new malware may change over time), the 
system would require regular classifier updates (just like a signature scanner) and could 
not be termed intelligent or flexible.

Any generalisations about the relative difficulty of discriminating malware using struc­
tural versus behavioural characteristics, must factor into consideration the practicality

8
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of collecting the relevant characteristics in real time. To a significant degree what can 
be collected will be a function of the operating system. For behavioural charactistics 
the difficulty of generating low-level data collection software will be significantly deter­
mined by whether the OS is Open Source, or at least by the availability of information 
concerning the internal workings of the OS. At a meta-level it is fairly clear that in 
some sense malware must be determinable by behaviour, but is a far cry from this 
observation to a practical piece of software that can do this in realtime. Still, bearing 
these caveats in mind, overall, it seems that structural factors are not only easier to 
detect but result in higher classification accuracy than behavioural ones.

However, it is also possible that the high degree of structural difference between the non- 
malicious samples and the malware was caused by factors other than their maliciousness 
or lack thereof, though the fact that the structural baseline test (where a group of non- 
malicious samples was randomly assigned a category, divided in two and classified) 
performed poorly would seem to refute this. Certainly it was clear in both the structural 
and behavioural experiments that classifiers tended to pick up on general factors (e.g. 
malicious executables are usually much smaller than non-malicious ones) which were 
not by themselves necessarily good indicators of whether or not a given example was 
malicious or not.

8.2 The Original hypotheses and the final contri­
bution

Were the hypotheses of section 1.4.1 vindicated?

In Chapter 6 it was showm that decision tree classifiers were indeed capable of discrim­
inating malware on the basis of simple features elicited from executable files, whereas 
the performance of Naive Bayesian classifiers was less convincing. In addition, but 
with less accuracy, such classifiers were capable to some degree of classifying the type 
of malware.

As regards detection and classification on the basis of readily elicited behavioural fea­
tures, partly as a result of the sheer time required to collect the necessary data, the 
results given in Chapter 7, although encouraging, were far less clear cut or convincing. 
More work wrould be needed to determine how realistic and/or how effective such an 
approach wrould be in practice.

In reality normal users will not have a continually updated library of malware available
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for classifier/detector update. This process is in any event more easily carried out by 
existing anti-malware software, which could periodically download updated classifiers.

Unlike signature based systems the malware-detectors proposed herein would act as a 
first line of defense against hitherto unseen malware. The use of such systems could 
help bridge the vital time-gap, which exists at present, between the central detection 
of a new outbreak and the manual creation of a new signature file for download to 
subscribers’ computers.

• The principal contribution of this thesis is to demonstrate that the decision-tree 
classifier approach, using easily collected structural data, is perfectly feasible and 
offers a relatively high degree of protection.

8.3 The PhD: A retrospective review

Looking back over the 3 years of this PhD, there are many things which could have 
been done differently or better. It would have been ideal to have obtained the library of 
malware examples earlier on, and to have set up an entire isolated network (see below) 
instead of just one machine. This would have provided a better environment for testing 
the behaviour of many types of malware which propagate across networks. It would 
also have been nice to explore the possibility of combining structural and behavioural 
detection. Some of these topics are covered in the Future Work section below.

At first, it was envisaged that this PhD would result in the development of a complete 
malware detection system. As the PhD progressed it soon became clear that such a 
goal was far beyond the scope of a 3-year PhD project.

The general impression received of the malware research field is that it is extremely 
‘cliquey”, being dominated by commercial interests who are loath to provide informa­
tion to outsiders. Attempts to contact researchers working in the field received polite 
but discouraging replies suggesting, in effect, that rather than “meddling in things we 
didn’t understand” malware research should be left to the professionals. It is telling 
that, with a few exceptions such as Peter Szor’s book [Szor, 2005], the only way to 
obtain accurate technical information about malware was to rely on ‘underground’ 
materials produced by groups of malware authors, who seem to exchange information 
freely with the anti-malware researchers, but who have less of a problem with sharing 
it with the wider community. There are of course good reasons for not providing just
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anyone with potentially dangerous information, but the malware field is secretive even 
compared with other fields of computer security research, including some where the 
sensitivity of the information is perhaps greater.

8.4 Future Work

As there was a hard three-year deadline in place for this PhD, there was much that 
could have been done but which had to be put aside owing to insufficient time. This 
section lists some of these, as well as other ideas that were rejected owing to difficulty 
or which proved to be blind alleys.

Other possible approaches for behavioural classification

There are some alternative paradigms for behavioural feature detection and classifica­
tion which may well be worth investigating. A couple are mentioned here.

One possibility is FSM induction. Whilst malware in general need by no means belong 
to the restricted class of Finite State Machines, the fact remains that the input/output 
(I/O) behaviour of most malware is rather trivial and might in practical terms easily 
fall into the category of a FSM. If such I/O  behaviour could be collected for a process, 
and an FSM constructed by induction on the I/O  strings then it might be possible to 
identify and classify the malware by the FSM. Following the original paper of [Biermann 
and Feldman, 1972] numerous FSM induction algorithms have been proposed -  so this 
approach, if it proved practical to collect such I/O  data, would be based on a well 
understood methodology.

Another, more speculative, alternative would be to look at the resource usage and 
allocation within the machine (or network) as a whole. This gestalt provides an insight 
into the overall ‘health’ of the machine. Such monitoring could act as a ‘tripwire’ to 
sound the alarm when a change from ‘healthy’ to ‘unhealthy’ was detected.

Authentication, or Identification o f Friend or Foe

Assuming that the anomaly detection system has identified a program which is behav­
ing abnormally. What should happen then? Should the offending program be deleted 
or terminated? The danger here is that a genuine program may trigger a ‘false positive’ 
in the detection system. One way of avoiding this is to use program authentication.
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Program authentication involves a method by which a program can be examined and 
identified as possessing the right ‘credentials’. Ideal authentication methods should 
be resistant to such tricks as stealing credentials from a valid program, replaying the 
credentials of a valid program, or infecting or subverting a valid program without 
changing its credentials. Unfortunately, most practical authentication methods fall 
short of these requirements.

Fairly basic authentication already exists in many operating systems, one example 
being the use of checksums. Under Windows,1 program file headers contain a checksum 
field, where the linker or program which created the file can store a checksum value 
for the file. When the program runs, the program loader in the operating system 
recalculates its checksum and compares the new value with the one in the file header.
If the checksums do not match, the loader can in theory refuse to run the program.
In versions of Windows prior to Windows XP, checksums are generally set to zero and 
not checked at all, except for DLLs and critical system files [Pietrek, 1994 updated 
2002]. Later versions of Windows are much more stringent, and insist that all critical 
files have an intact cryptographic signature.

Checksums were originally designed to detect accidental corruption, and for this they 
are perfectly adequate. They are not an adequate defence against viruses, however, as 
viruses are capable of calculating valid checksums for infected files. A better method 
involves generating checksums for all programs at installation using a cryptographic 
checksum algorithm such as MD5 or SHA, then storing them in a secure location 
accessible only to the authentication system. Programs can then be authenticated by 
recalculating the checksum and comparing it with the stored value. Systems to do 
this are available, but they all depend on the security of the stored checksum list. If a 
virus or Malicious Program can get write access to the list, it can change credentials 
at leisure. Thus, authentication methods have become more advanced. For instance, 
current versions of Windows support policies which restrict which executable files users 
can run, based on four factors. Software can be restricted by cryptographic hash, by 
certificate, by path or by internet zone.2 HowTever, like all authentication-alone systems, 
this relies on a system administrator imposing a central policy on all users. An even 
more advanced authentication procedure can be conceived, in two parts. The first part 
would take the form of a program responsible for patching all authorised executable 
files at installation with a small function wdiich computes a response to a challenge.

lrrh e  Portable Executable format has a checksum field. The UNIX ELF format does not appear 
to have one.

2A guide is found at http://w ww .m icrosoft.com /technet/prodtechnol/w inxppro/m aintain/rstrplcy.m spx 
-  accessed 22/05/2007
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The function will be exported, and the process can then be identified as authorised on 
calling its authentication function and receiving the correct response. The response will 
be based on checksums in such a way that if a process has been patched or infected by a 
virus, its response will no longer be valid. The functions used must be computationally 
cheap, but very difficult for an unauthorised process or third party to duplicate or 
forge.

For the second part, another program, which can be termed the ‘verifier’, is needed. 
The verifier sends a ‘challenge’ to the process as described above, and checks the 
response it receives. If the response is correct the process is allowed to ‘pass’ whereas 
if it is incorrect further action may be taken. This component may be implemented 
as a single program, or as a system of autonomous verification agents which roam the 
system or network at random eradicating unauthorised processes.

8.4 .1  A n om aly  D e te c tio n

The data mining/machine learning techniques used in this thesis concentrated on clas­
sification of programs into various categories of malware. An alternative method would 
be to use anomaly detection to detect which programs are most ‘anomalous’, on the as­
sumption that anomalous programs are more likely to be malicious. This is a technique 
currently used for detecting fraudulent credit card transactions and network intrusions 
[Tan et a/., 2006]. Anomaly detection is likely to be an easier problem than classifica­
tion, but in practice this technique might well be limited by the scale of ‘anomalousness’ 
used. Anomaly detection is likely to be most useful as a pre-screening technique. Ei­
ther a classification method or an authentication method (see below) could then be 
applied as the second stage.

8.4 .2  C om bin ing  A n o m a ly  D e te c tio n  and  A u th en tica tio n

Anomaly detection on its own has limited use due to the fact that false positives can 
never be entirely eliminated. Authentication on its own would require some strategy 
as to when to authenticate -  and too much authentication could result in resource 
wastage. The ideal combination of anomaly detection and authentication would work 
by finding anomalies, then authenticating the programs detected by the anomaly de­
tector. Assuming the authentication process is reasonably difficult to foil, this would 
allow the system to be reasonably sure that a program that is behaving anomalously 
and fails authentication is rogue and should be terminated (though see below). If
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a program behaves anomalously but passes authentication, the response might vary 
depending on the needs of the system administrator.

If a process that is behaving suspiciously has been challenged by the verifier and has 
not given the correct response, one possibility would be to kill and delete the process. 
However, to guard against destroying a legitimate process which has produced a ‘false 
positive’ it might be safer to ‘freeze’ it and prompt the user for some action. If the user 
or administrator, for example, has installed a new program and forgotten to authorise 
it with the authentication engine, they may choose to let the program run. However, 
if the program is genuinely unauthorised it can be terminated.

8.4.3 A  N etw ork  for M alw are R esearch

“OVERSEER”
SUN WORKSTATION 

RUNNING C4.5

The “Virus Net” LAN

Figure 8.1: Example Network for Malware Research

As mentioned above, all the malware tests in this project were run on a single computer. 
This is not an ideal environment for testing certain types of malware which require a 
network to propagate. Furthermore, protecting a network is a different challenge from 
protecting a single computer. This section is a speculative design for a research network 
which could be used for the further development of the ideas developed in this PhD. 
Such a network is shown in Figure 8.1.

The research network would consist of an isolated network of Intel-compatible com­
puters running the Microsoft Windows operating system. This architecture-operating 
system combination has been chosen because the vast majority of viruses are written 
for it. The network computers may be physical computers or virtual machines on 
VMWare or Microsoft Virtual Server -  the advantage of using virtual machines is that
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it is possible to create several machines from one image, thus ensuring that all the 
machines are identical.

One or more monitoring computers, preferably of a different architecture and running 
a different operating system to avoid the possibility of infection, will also be connected 
to the network. These will run network traffic analysis programs to allow all the 
network traffic to be logged. Each Windows PC will also run a variety of monitoring 
tools, and will submit results over the network to the monitoring machines. These 
monitoring tools will continually monitor the memory usage, disk usage and other 
pertinent statistics about each machine, together with a profile of each program running 
on them. The monitoring tools will constantly feed data back to a central location (for 
example, the host used by the system administrator). This host will run the analysis 
programs and can alert the administrator of potential threats.

V irus N et m ach in e  O verseer

L ow  level data  
co llec to r

Prog #1 
Prog #2 
Prog #3 A ssem ble  data  

in to  C 4.5  “input 
p ack ets”

P rog  #1 packet 
P rog #2 packet 
P rog  #3 packet

C 4.5  o r o ther 
A dap tive  Pattern  
R ecogn ition  
L earn ing  System

Prog #1 = Infected/Not infected 
Prog #2 = Infected/Not infected 
Prog #3 = Infected/Not infected

Further A ction?

Figure 8.2: Data collection and detection of infection. Here any appropriate adaptive pattern 
recognition program could be used. (Process boxes blue, Data boxes green.)

Figure 8.2 shows how data flows around the research network.

8.4.4 A  C om plete  P ro tec t io n  S ystem

The following diagram (Figure 8.3) shows one way in which a complete protection 
system could be developed by combining the research network from the previous section 
with a ‘Friend-or-Foe’ identification scheme.

The scheme shown in Figure 8.3 will now be described. The monitoring process works
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Figure 8.3: System Block Diagram

as described in the research network section above. However, when a potential threat 
is discovered on one of the protected computers, the overseer computer can release 
autonomous authentication agents (‘soldiers’). These soldiers can propagate themselves 
over the network and will be programmed with information about the potential threat 
process. When a soldier encounters an instance of the potential enemy process on a 
protected network computer, it will issue a challenge to it. On receiving a correct 
response, the soldier will terminate itself and send signals to other soldiers and to the 
overseer that the process is not a threat. If an incorrect response is received, the soldier 
will terminate the enemy process. Depending on the overall strategy, it could then be 
programmed to issue ‘terminate on sight’ orders to other soldiers, meaning that the 
others could then dispense with the challenge and simply terminate any instance of the 
process they encounter.

The advantages of a system of this nature are several. Firstly, the Friend-or-Foe iden­
tification process minimises the chance of a benign process being targeted due to a 
false positive result from the detection scheme. Secondly, the agent-based design of the
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‘soldiers’ means that the overseer or master monitoring program can swiftly respond 
to a potential threat discovered anywhere on the protected network, and can be sure 
of eradicating it even if it has spread to other computers. However, there would be 
difficulties in implementing a practical scheme of this nature. Firstly, it would be nec­
essary to use as foolproof an authentication scheme for the Friend-or-Foe as possible, to 
ensure that malicious software cannot simply fake or steal authentication signatures.3 
This would almost certainly imply that every binary on every machine on the protected 
network would need to be individually granted a signature at the installation stage, 
though this may not be too onerous given tha t many corporate networks are based on 
master image files anyway. Secondly, the monitoring software and the software for sup­
porting the soldier agents would add a significant amount of overhead to  the network. 
But if these difficulties could be overcome, such a system would almost certainly be 
useful.

8.5 Final Thoughts

This PhD has been an interesting and challenging project in many ways. It has re­
quired combining information gathered from ‘respectable’ academic journals with that 
from underground ‘zines’, and to cite the work of both highly-regarded academics and 
notorious cyber-criminals.

Certainly at the beginning three years ago it was almost impossible to foresee what 
would “come out at the end” -  whether the PhD would result in a revolutionary new 
malwrare protection system or no results of any value. In the circumstances, it has been 
demonstrated that classification of malware by structure using an automated classifi­
cation system is feasible, and th a t classification by behaviour is at least possible. It 
has been demonstrated tha t decision tree classifiers tend to perform better on struc­
tural data than probabilistic classifiers such as Naive Bayes. On the broader question 
of whether this information will be of benefit to the fight against malware, the jury 
is still out. It is arguable that this particular war, like many others, will never be 
won; whatever innovations are made by one side will soon be countered by the other 
side. Sadly, in the digital as well as the physical world, human nature dictates that for 
every weakness there will always be someone ready to exploit it. Likewise, when faced 
with threats digital or physical, there is the temptation to retreat into a  locked-down, 
restricted sandbox world, hoping that Big Brothers such as Trusted Computing, Mi­
crosoft, or Symantec will protect us, and accepting any restrictions they may place on

3Not considering here the question of whether or not such an authentication scheme is even feasible.
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knowledge or freedom. For many people such short-term thinking may work, but in 
the long term it is unlikely to work so well.

“Those who would give up Essential Liberty to purchase a little Temporary 
Safety, deserve neither Liberty nor Safety.”
-  Benjamin Franklin (a ttr.),

“An Historical Review of the Constitution and Government of Pennsylvania.” (1759)
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Appendix A
Detailed Structural Results

Given here are the detailed results from each experiment.
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A .l Experiment One: detecting specific categories 
of malware

This first set of experiments compared malware of each class with nonmalicious data. 

A. 1.1 V iru s-N o n M a l

This experiment compared 1264 virus data samples with 1264 nonmalicious data sam­
ples, split equally into groups of 632 and divided into training and test sets using the 
procedure given above.

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

1212 (95.8861%)
52 (4.1139%)
0.9177
0.0743
0.1923
14.8653%
38.4507%
1264

770 (60.9177%)
494 (39.0823%)
0.2184
0.3842
0.551
76.8483%
110.2052%
1264

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

1184 (93.6709%)
80 (6.3291%)
0.8734
0.0961
0.241
19.2143%
48.1922%
1264

770 (60.9177%) 
494 (39.0823%) 
0.2184 
0.3809 
0.5504 
76.1808% 
110.086%
1264

Table A.l: Results from WEKA Classifiers Applied to Virus-NonMal

From these results it is seen that the J4.8 classifier maintains a high level of classification 
accuracy on both the training and test sets (95% and 94% respectively). The results 
for the Bayes classifier are paradoxical, since the numbers are mostly identical for the 
training and test sets.
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A . 1.2 T rojan -N on M al

This experiment compared 1264 Trojan data  samples and 1264 nonmalicious data 
samples.

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

1237 (97.8639%) 
27 (2.1361%) 
0.9573 
0.0394 
0.1404 
7.8855% 
28.0811%
1264

853 (67.4842%)
411 (32.5158%)
0.3497
0.3335
0.5437
66.7006%
108.7461%
1264

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

1165 (92.1677%)
99 (7.8323%)
0.8434
0.0914
0.2696
18.2762%
53.9183%
1264

853 (67.4842%)
411 (32.5158%)
0.3497
0.3331
0.5435
66.6155%
108.7046%
1264

Table A.2: Results from WEKA Classifiers Applied to Trojan-Non Mai

Again, the J4.8 classifier maintains high accuracy, though slightly lower now than for 
the previous data set. The Bayes classifier again seems to give an identical performance 
classifying training and test data, though the error figures differ very slightly.
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A . 1.3 B ack d oor-N on M al

This experiment compared 1264 backdoor data samples and 1264 nonmalicious data 
samples.

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

1222 (96.6772%)
42 (3.3228%)
0.9335
0.0581
0.1695
11.6272%
33.9011%
1264

886 (70.0949%)
378 (29.9051%)
0.4019
0.2913
0.4934
58.2599%
98.6762%
1264

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

1153 (91.2184%)
111 (8.7816%)
0.8244
0.1078
0.2797
21.569%
55.9366%
1264

924 (73.1013%)
340 (26.8987%)
0.462
0.2644
0.4699
52.8793%
93.971%
1264

Table A.3: Results from WEKA Classifiers Applied to Backdoor-NonMal

The J4.8 classifier is still performing well, though the accuracy is decreasing compared 
to the previous two data sets. Oddly, the Bayes classifier does a better job of classifying 
the test data than the training data, and it is still not performing anywhere near as 
well as the J4.8 classifier.
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A . 1.4 W o rm -N o n M a l

Unfortunately only a relatively small number of worm data samples were available in 
the source dataset. The experiment therefore compared 602 worm data samples and 
602 nonmalicious data samples, with training and test sets containing 301 of each.

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

583 (96.8439%)
19 (3.1561%)
0.9369
0.0569
0.1687
11.3857%
33.7427%
602

438 (72.7575%)
164 (27.2425%)
0.4551
0.2651
0.5036
53.0191%
100.7189%
602

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

551 (91.5282%)
51 (8.4718%)
0.8306
0.1042
0.278
20.8387%
55.5904%
602

443 (73.588%)
159 (26.412%)
0.4718
0.261
0.504
52.2051%
100.8038%
602

Table A.4: Results from WEKA Classifiers Applied to Worm-NonMal

Again, it is notable that the Bayes classifier performed better on the test set than 
the training set. However, whereas in classifying the Backdoor-Nonmal dataset the 
proportion of items correctly classified was about 3% higher for the test set than the 
training set, here it is only about 1% higher. This could be because the data set is 
smaller.
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A .2 Experim ent Two: pairwise malware compar­
isons

This experiment compared every combination of two malicious classes, resulting in six 
sets of results:

1. Backdoor-Worm 4. Virus-Backdoor
2. Trojan-Backdoor 5. Virus-Trojan
3. Trojan-Worm 6. Virus-Worm

A . 2.1 B ack d oor-W orm

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

806 (86.388%)
127 (13.612%)
0.6839
0.2147
0.3267
49.1164%
69.8818%
933

612 (65.5949%)
321 (34.4051%)
0.3455
0.3475
0.5298
79.4738%
113.3384%
933

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

710 (76.0986%)
223 (23.9014%)
0.463
0.3012
0.4308
68.8887%
92.1451%
933

594 (63.6656%)
339 (36.3344%)
0.3206
0.3589
0.5429
82.0956%
116.1383%
933

Table A.5: Results from WEKA Classifiers Applied to Backdoor-Worm

Both types of classifier are able to classify the majority of cases correctly, though 
there is an intriguing drop-off in accuracy of the J4.8 classifier - for the test data the 
proportion of cases classified correctly falls by about 10%, whereas for the Naive Bayes
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classifier it only falls by about 2%. The greatest difference between the correctly- 
classified proportion of training and test data for J4.8 in Experiment One was around 
5%.
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A .2 .2  T ro ja n -B a ck d o o r

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa sta tis tic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

953 (75.4553%)
310 (24.5447%)
0.5091
0.3403
0.412
68.0598%
82.4045%
1263

659 (52.1774%)
604 (47.8226%)
0.0442
0.4741
0.678
94.8117%
131.5521%
1263

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa sta tistic  
Mean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

821 (64.9525%)
443 (35.0475%)
0.2991
0.4104
0.491
82.0827%
98.2054%
1264

683 (54.0348%)
581 (45.9652%)
0.0807
0.4598
0.645
91.9554%
128.9992%
1264

Table A.6: Results from WEKA Classifiers Applied to Trojan-Backdoor

The trend of J4.8 outperforming Naive Bayes continues, as does the 10% drop-off 
between the training and test data  for J4.8. Here also is another example of the Naive 
Bayes classifier achieving greater success with the test data than the training data (as 
was seen in several cases in Experiment One).
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A .2.3  TV o j a n -W orm

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

756 (81.1159%)
176 (18.8841%)
0.5394
0.2762
0.3712
63.1442%
79.3794%
932

621 (66.6309%)
311 (33.3691%)
0.173
0.359
0.4821
82.0766%
103.0925%
932

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

683 (73.2047%)
250 (26.7953%)
0.3508
0.3423
0.4485
78.2809%
95.933%
933

625 (66.9882%)
308 (33.0118%)
0.1867
0.3569
0.4812
81.6127%
102.927%
933

Table A.7: Results from WEKA Classifiers Applied to Trojan-Worm

Here, as in the previous results, a bug in the dataset-generation has resulted in the 
test set containing one more case than the training set, though owing to the number of 
cases it is unlikely this has affected the results. All previously noted trends continue, 
though the increase in accuracy for the Naive Bayes test set is much smaller.
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A .2 .4  V iru s-B a ck d o o r

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
M ean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

1179 (93.3492%)
87 (6.6508%)
0.867
0.1184
0.2429
23.6708%
48.5706%
1263

1006 (79.6516%)
257 (20.3484%)
0.5931
0.2029
0.4256
40.5735%
85.1287%
1263

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

1113 (88.0538%)
151 (11.9462%)
0.7611
0.1624
0.3197
32.4723%
63.9394%
1264

1015 (80.3006%)
249 (19.9664%)
0.606
0.1979
0.4216
39.578%
84.3253%
1264

Table A.8: Results from W EKA Classifiers Applied to Virus-Backdoor

Again, noted trends continue, though the drop in accuracy between the J4.8 training 
and test sets is only around 5% here, and the increase in Naive Bayes accuracy is also 
very small (less than 1%).
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A .2 .5  V iru s-T rojan

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

1167 (92.4723%)
95 (7.5277%)
0.8494
0.1285
0.2528
25.6994%
50.5593%
1262

988 (78.2884%)
274 (21.7116%)
0.5658
0.2462
0.4215
49.235%
84.3066%
1262

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
M ean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

1084 (85.7595%)
180 (14.2405%)
0.7152
0.1923
0.3521
38.4598%
70.4225%
1264

976 (77.2152%)
288 (22.7848%)
0.5443
0.2516
0.4283
50.3131%
85.6524%
1264

Table A.9: Results from WEKA Classifiers Applied to Virus-Trojan

It seems that the virus data  set is more distinctive than the others, as all the compar­
isons involving it seen so far in Experiments One and Two have produced consistently 
more correctly-classified instances in both J4.8 and Naive Bayes. In this case there is 
a 6% drop in the proportion of correctly-classified instances for J4.8 and a much lesser 
drop for Naive Bayes, which conforms to previous observations.
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A .2.6  V iru s-W orm

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

806 (86.4807%) 
126 (13.5193%) 
0.6892 
0.2102 
0.3239 
48.0568% 
69.2568%
932

715 (76.7167%)
217 (23.2833%)
0.4073
0.2329
0.468
53.2458%
100.0869%
932

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

758 (81.2433%)
175 (18.7567%)
0.5705
0.2553
0.3857
58.3881%
82.5054%
933

708 (75.8842%)
225 (24.1158%)
0.3857
0.2438
0.4818
55.7545%
103.054%
933

Table A. 10: Results from WEKA Classifiers Applied to Virus-Worm

The observations which applied to the previous set of results also apply here - it does 
seem that, for this experiment at least, the comparisons involving the virus dataset 
show less of a decrease in accuracy between classifying the training and test data than 
the comparisons involving the other datasets only.
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A .3 Experim ent Three: three-way comparisons of 
malware

This experiment compared every combination of three malicious classes, resulting in 
four sets of results:

1. Backdoor-Trojan-W orm 3. Backdoor-Virus-Worm
2. Backdoor-Virus-Trojan 4. Trojan-Virus-Worm

A . 3 .1  B ack d o o r-T ro ja n -W o rm

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

1204 (76.9821%)
360 (23.0179%)
0.6335
0.2234
0.3333
52.6096%
72.3449%
1564

678 (43.3504%)
886 (56.6496%)
0.093
0.3869
0.5611
91.116%
121.7678%
1564

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

903 (57.6997%)
662 (42.3003%)
0.3297
0.3278
0.4642
77.1951%
100.7513%
1565

704 (44.984%)
861 (55.016%)
0.1248
0.3817
0.5536
89.903%
120.1532%
1565

Table A .ll: Results from WEKA Classifiers Applied to Backdoor-Trojan-Worm

Here is particularly bad performance from J4.8 on the test data - the proportion of 
correctly-classified instances decreases by nearly 20%. The performance of Naive Bayes 
is even worse, with the greater proportion of cases being incorrectly classified in both 
the training and test sets, though paradoxically there is a slight improvement (around 
1%) in the result for the test set!
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A . 3 .2  B a ck d o o r-V iru s-T ro ja n

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa sta tistic  
Mean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

1554 (82.0486%)
340 (17.9514%)
0.7307
0.1707
0.2916
38.4053%
61.8562%
1894

1015 (53.5903%)
879 (46.4097%)
0.304
0.3294
0.5165
74.1057%
109.5685%
1894

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

1285 (67.7743%)
611 (32.2257%)
0.5166
0.2506
0.4055
56.389%
86.013%
1896

1014 (53.481%)
882 (46.519%)
0.3022
0.3289
0.5148
74.0032%
109.2065%
1896

Table A. 12: Results from WEKA Classifiers Applied to Backdoor-Virus-Trojan

A slight improvement for J4.8 here with only around 14% decrease in the proportion of 
correctly classified instances, but still far worse performance than seen in the previous 
two experiments. Naive Bayes managed to correctly classify the majority of instances 
in both the training and test sets - the only variation being about 0.1%.
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A .3 .3  B a ck d o o r-V iru s-W o rm

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

1344 (85.9335%)
220 (14.0665%)
0.7752
0.1531
0.2748
36.0447%
59.6465%
1564

970 (62.0205%)
594 (37.9795%)
0.3967
0.2501
0.4614
58.9014%
100.1459%
1564

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

1154 (73.7852%)
410 (26.2148%)
0.586
0.2209
0.379
52.021%
82.2579%
1564

980 (62.6598%)
584 (37.3402%)
0.4092
0.2494
0.4612
58.7294%
100.0915%
1564

Table A. 13: Results from WEKA Classifiers Applied to Backdoor-Virus-Worm

J4.8 improves again here, with 12% difference, and Naive Bayes somehow manages 
to achieve a 0.6% improvement on the test set (representing exactly ten more cases 
correctly classified).
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A .3 .4  T ro ja n -V iru s-W o rm

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
Mean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

1319 (84.389%)
244 (15.611%)
0.7489
0.1693
0.2895
39.8594%
62.829%
1563

924 (59.1171%)
639 (40.8829%)
0.3213
0.2795
0.4653
65.8072%
100.9856%
1563

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
M ean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

1097 ( 70.0958%)
468 (29.9042%)
0.5199
0.2494
0.4014
58.7228%
87.1138%
1565

915 (58.4665%)
650 (41.5335%)
0.3108
0.2823
0.4678
66.4727%
101.5367%
1565

Table A. 14: Results from WEKA Classifiers Applied to Trojan-Virus-Worm

Here J4.8 gets about 14% difference again, and Naive Bayes around 1%. As a general 
rule it seems that Naive Bayes performs about 20% worse than J4.8 in all experiments, 
though there is far less difference between performance on training and test sets for 
Naive Bayes than for J4.8.

Malware Detection using Structural and Behavioural Features and Machine Learning Joseph Rabaiotti



A .4 E xperim ent Four: four-way com parison of malware 156

A .4 Experim ent Four: four-way comparison of mal­
ware

This experiment compared all four malicious classes

A .4 .1  B ack d oor-T rojan -V iru s-W orm

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

1730 (78.8155%)
465 (21.1845%)
0.7089
0.1579
0.2794
43.0822%
65.2653%
2195

1017 (46.3326%)
1178 (53.6674%)
0.252
0.2832
0.479
77.2659%
111.8597%
2195

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
Kappa statistic  
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total number of instances

1305 (59.3992%)
892 (40.6008%)
0.4436
0.2376
0.3924
64.826%
91.6665%
2197

1012 (46.0628%)
1185 (53.9372%)
0.2487
0.2839
0.479
77.45%
111.9046%
2197

Table A. 15: Results from W EKA Classifiers Applied to Backdoor-Trojan-Virus-Worm

Strangely, the introduction of the fourth category has not continued the decrease in 
performance (owing to the “curse of dimensionality”- it is still around 20% for J4.8. 
Naive Bayes misclassifies the greatest proportion of cases in both the training and test 
sets, with a decrease in accuracy of about 0.3% between them.
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A .5 Experim ent Five: non-malware versus malware

In P art 1, all four malicious classes plus the nonmalicious class were compared (Backdoor- 
Trojan-Virus-Worm-NonMal). In Part 2, all four malicious class names were replaced 
with a single “Malicious” class and compared with the Nonmalicious dataset.

A .5 .1  P a r t  1: B ack d o o r-T ro ja n -V iru s-W o rm -N o n M a l

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

2284 (80.7924%)
543 (19.2076%)
0.7553
0.1115
0.236
35.3143%
59.4065%
2827

1033 (36.5405%)
1794 (63.4595%)
0.1852
0.2684
0.4547
85.0303%
114.4698%
2827

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
M ean absolute error 
Root m ean squared error 
R elative absolute error 
Root relative squared error 
T otal num ber of instances

1793 (63.3793%)
1036 (36.6207%)
0.5338
0.1677
0.3353
53.1437%
84.3961%
2829

1030 (36.4086%)
1799 (63.5914%)
0.1836
0.268
0.4556
84.923%
114.6757%
2829

Table A. 16: Results from WEKA Classifiers Applied to Experiment 5 (part 1)

Although the overall accuracy has decreased as the number of categories has increased 
since Experiment One (owing to the “curse of dimensionality” ), the maximum differ­
ence between the training and test sets for J4.8 has yet to exceed 20% (it being around 
18% here). The Naive Bayes classifier is now hopelessly misclassifying 63% of cases in 
both the training and test sets.
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A .5 .2  P a r t  2: M a l-N o n M a l

Training Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa statistic  
M ean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

2742 (96.9933%)
85 (3.0067%)
0.9112
0.0524
0.1617
15.1002%
38.805%
2827

1330 (47.0463%)
1497 (52.9537%)
0.1679
0.5287
0.7259
152.2548%
174.2268%
2827

Test Data
J4.8 Naive Bayes

Correct 
Incorrect 
K appa sta tistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
T otal num ber of instances

2677 (94.6271%)
152 (5.3729%)
0.8407
0.073
0.2187
21.0345%
52.5173%
2829

1380 (48.7805%)
1449 (51.2195%)
0.1854
0.5109
0.7132
147.1465%
171.2266%
2829

Table A. 17: Results from WEKA Classifiers Applied to Experiment 5 (part 2)

As predicted by the i;curse of dimensionality” , once the number of categories is again 
reduced to two, overall accuracy shoots up to greater than 90% for J4.8. The drop-off 
between the training and test sets is now only around 2%. However, the Naive Bayes 
classifier is still hopelessly off the mark, the reduction of the number of categories not 
preventing it from misclassifying over 50% of cases.
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A .6 Sum m ary

V irus-N onM al
Result Accuracy TruePositive FalsePositive TrueNegative FalseNegative Precision
C4.5 0.94 0.94 0.06 0.94 0.06 0.94
C4.5rules 0.92 0.95 0.11 0.89 0.05 0.9
J4.8 0.94 0.94 0.06 0.94 0.06 0.94
Naive Bayes 0.7 0.99 0.58 0.42 0.01 0.63

Result Accuracy TruePositive FalsePositive TrueNegative FalseNegative Precision
C4.5 0.94 0.93 0.04 0.96 0.07 0.96
C4.5rules 0.93 0.91 0.04 0.96 0.09 0.96
J4.8 0.94 0.93 0.04 0.96 0.07 0.96
NaiveBayes 0.64 0.99 0.71 0.29 0.01 0.58

B ackdoor-N onM al
Result Accuracy TruePositive FalsePositive TrueNegative FalseNegative Precision
C4.5 0.94 0.92 0.05 0.95 0.08 0.95
C4.5rules 0.94 0.91 0.04 0.96 0.09 0.96
J4.8 0.94 0.92 0.05 0.95 0.08 0.95
NaiveBayes 0.72 0.99 0.55 0.45 0.01 0.64

W orm -N onM al
Result Accuracy TruePositive FalsePositive TrueNegative FalseNegative Precision
C4.5 0.9 0.92 0.11 0.89 0.08 0.89
C4.5rules 0.92 0.95 0.1 0.9 0.05 0.91
J4.8 0.9 0.92 0.11 0.89 0.08 0.89
NaiveBayes 0.73 0.99 0.53 0.47 0.01 0.65

Table A. 18: Summary: Classifier Accuracy on Test Data
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Appendix B
Detailed Behavioural Results

Given here are the detailed results from each experiment described in Chapter 7. Unlike 
the structural experiments described in Chapter 6 and Appendix A, separate training 
and test sets were not used. Instead, 10 fold cross-validation was used (see Chapter 4 
for details).

Stratified cross-validation in W EKA produces a different set of output statistics which 
have not been encountered before. Definitions will be given for them here.

•  T P  R a te  is the true positive rate, or the proportion of examples which were 
classified as class C, among all examples which are really in C.

•  R ecall is the same as T P  Rate, but is given separately here because WEKA
outputs it separately.

•  F P  R a te  is the false positive rate, or proportion of examples which were classified
as belonging to other classes than C but which in reality belong to C.

•  P recision  is the proportion of items which really belong to C out of all the items 
classified as belonging to C,

•  F -M easu re is a way of measuring precision and recall in one, calculated accord­
ing to the equation given below.

2 x Precision  x Recall
(B.l)

Precision + Recall
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B .l  E xperim ent One

B . l . l  B a c k d o o r -N o n m a l

Table B .l gives the results from running the J4.8 and Naive Bayes classifiers on 
Backdoor-Nonmal.

B a c k d o o r-N o n m a l
I te m J 4 .8 N a iv e  B ayes
C orrectly Classified Instances 
Incorrectly Classified Instances 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
T otal num ber of instances

12 (60.0000%) 
8 (40.0000%) 
0.2000 
0.4000 
0.5852 
80.0000% 
117.0466%
20

14 (70.0000%)
6 (30.0000%)
0.4000
0.3000
0.5477
60.0000%
109.5445%
20

Table B .l: Backdoor-Nonmal

It can be seen th a t Naive Bayes is outperforming J4.8 significantly here, correctly 
classifying lO/'c more instances. The Kappa Statistic also indicates better agreement 
for Naive Bayes than  for J4.8, though in neither case is the agreement outstanding.

J 4 .8
T P  R a te F P  R a te P re c is io n R eca ll F -M e a su re C lass

0.4000 0.2000 0.6670 0.4000 0.5000 Backdoor

0.8000 0.6000 0.5710 0.8000 0.6670 Nonmal
N a iv e  B ay es

T P  R a te F P  R a te P re c is io n R eca ll F -M e a su re C lass

0.9000 0.5000 0.6430 0.9000 0.7500 Backdoor

0.5000 0.1000 0.8330 0.5000 0.6250 Nonmal

Table B.2: Backdoor-Nonmal: Results by Class

The results by class shown in Table B.2 are interesting, because it appears from the 
Precision values tha t J4.8 is better at classifying class Backdoor, whereas Naive Bayes 
(which is a better classifier overall) is better at classifying Nonmal, though the F- 
measure would tend to suggest that both classifiers are in fact better at classifying 

Nonmal.
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B .1 .2  T r o ja n -N o n m a l

Table B.3 gives the results from running the J4.8 and Naive Bayes classifiers on Trojan- 
Nonmal.

T ro ja n -N o n m a l
I te m J 4 .8 N a iv e  B ayes
C orrectly Classified Instances 
Incorrectly Classified Instances 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

15 (75.0000%)
5 (25.0000%)
0.5000
0.2375
0.4538
47.5000%
90.7530%
20

11 (55.0000%) 
9 (45.0000%) 
0.1000 
0.4500 
0.6708 
90.0000% 
134.1641%
20

Table B.3: Trojan-Nonmal

Here it is seen that, in contrast to Backdoor-Nonmal, J4.8 is achieving the highest 
proportion of correct classifications. The percentage difference between the classifiers is 
about the same, though (here J4.8 achieves 20% more correct classifications than Naive 
Bayes whereas on Backdoor-Nonmal J4.8 achieved 20% fewer correct classifications). 
Agreement as measured by the Kappa statistic is higher for J4.8 (0.5) than it was for 
Naive Bayes in Backdoor-Nonmal, whereas the Kappa for Naive Bayes here is lower 
than that for J4.8 on Backdoor-Nonmal (0.3).

J 4 .8

T P  R a te F P  R a te P re c is io n R eca ll F -M e a su re C lass

0.8000
0.7000

0.3000
0.2000

0.7270
0.7780

0.8000
0.7000

0.7620
0.7370

Trojan
Nonmal

N a iv e  B ay es

T P  R a te F P  R a te P re c is io n R eca ll F -M e a su re C lass

0.8000
0.3000

0.7000
0.2000

0.5330
0.6000

0.8000
0.3000

0.6400
0.4000

Trojan
Nonmal

Table B.4: Trojan-Nonmal: Results by Class

From Table B.4 it can be seen that the Precision and F-Measure for both classes in J4.8 
is very close, whereas Naive Bayes seems to show a decided bias towards the Trojan 

class.
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B .1 .3  W o rm -N o n m a l

Table B.5 gives the results from running the J4.8 and Naive Bayes classifiers on Worm- 
Nonmal.

W o r m -N  o n m a l
I te m J 4 .8 N a iv e  B ayes
C orrectly Classified Instances 
Incorrectly Classified Instances 
K appa s ta t istic 
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

14 (70.0000%) 
6 (30.0000%) 
0.4000 
0.3300 
0.5395 
66.0000 
107.9094 
20

13 (65.0000%) 
7 (35.0000%) 
0.3000 
0.3500 
0.5916 
70.0028%% 
118.3216%% 
20

Table B.5: Worm-Nonmal

In contrast with Trojan-Nonmal, here the difference in percentage of correctly classified 
instances is much closer (5% as opposed to 20%). J4.8 still outperforms Naive Bayes, 
though less so than  in Trojan-Nonmal, since J4.8 is performing about 5% worse in this 
comparison and Naive Bayes is performing about 10% better.

J 4 .8
T P  R a te F P  R a te P re c is io n R eca ll F -M e a su re C lass

0.8000 0.4000 0.6670 0.8000 0.7270 Worm

0.6000 0.2000 0.7500 0.6000 0.6670 Nonmal
N a iv e  B ay es

T P  R a te F P  R a te P re c is io n R eca ll F -M e a su re C lass

0.4000 0.1000 0.8000 0.4000 0.5330 Worm

0.9000 0.6000 0.6000 0.9000 0.7200 Nonmal

Table B.6: Worm-Nonmal: Results by Class

Looking at Table B.G, it is interesting to note that J4.8 seems to favour class Worm, 
though not as much (0.72 to 0.66) as Naive Bayes favours Nonmal (0.72 to 0.53).
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B .2 Experim ent Two

B .2 .1  B a ck d o o r-W o rm

Table B.7 gives the results from running the J4.8 and Naive Bayes classifiers on 
Baekdoor-Worm.

B a c k d o o r-W o rm
I te m J 4 .8 N a iv e  B ayes
Correctly Classified Instances 
Incorrectly Classified Instances 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
T otal num ber of instances

10 (50.0000%) 
10 (50.0000%) 
0.0000 
0.4972 
0.6661 
99.4444% 
133.2175%
20

12 (60.0000%) 
8 (40.0000%) 
0.2000 
0.4000 
0.6325 
80.0000% 
126.4911%
20

Table B.7: Backdoor-Worm

It is immediately apparent that J4.8 has completely failed here, achieving results iden­
tical to chance (which is why the Kappa statistic is 0). Naive Bayes performs slightly 
better, but still worse than on any of the previously-seen datasets.

J 4 .8
T P  R a te F P  R a te P re c is io n R eca ll F -M e a su re C lass

0.2000
0.8000

0.2000
0.8000

0.5000
0.5000

0.2000
0.8000

0.2860
0.6150

Backdoor
Worm

N a iv e  B ay es

T P  R a te F P  R a te P re c is io n R eca ll F -M e a su re C lass

0.9000
0.3000

0.7000
0.1000

0.5630
0.7500

0.9000
0.3000

0.6920
0.4290

Backdoor
Worm

Table B.8: Backdoor-Worm: Results by Class

It almost seems superfluous to comment on the J4.8 results in Table B.8, but there 
seems to be a bias in favour of Worm (Recall 0.8 to 0.2), whereas Naive Bayes prefers 
Backdoor (Recall 0.9 to 0.3).
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B .2 .2 T ro ja n -B a ck d o o r

Table B.9 gives the results from running the J4.8 and Naive Bayes classifiers on Trojan- 
Backdoor.

T ro ja n -B a c k d o o r
I te m J 4 .8 N a iv e  B ayes
C orrectly Classified Instances 
Incorrectly Classified Instances 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
T otal num ber of instances

13 (65.0000%)
7 (35.0000%)
0.3000
0.3940
0.5793
78.7929%
115.8597%
20

15 (75.0000%) 
5 (25.0000%) 
0.5000 
0.2500 
0.5000 
50.0000% 
100.0000%
20

Table B.9: Trojan-Backdoor

Here is another case of Naive Bayes outperforming J4.8, though here the difference 
is only 109c. J4.8 still does adequately, though the Kappa statistic is down at 0.3 
compared to Naive Bayes’ 0.5.

J 4 .8
T P  R a te F P  R a te P re c is io n R eca ll F -M e a su re C lass

0.6000 0.3000 0.6670 0.6000 0.6320 Backdoor

0.7000 0.4000 0.6360 0.7000 0.6670 Trojan
N a iv e  B ay es

T P  R a te F P  R a te P re c is io n R eca ll F -M e a su re C lass

0.6000 0.1000 0.8570 0.6000 0.7060 Backdoor

0.9000 0.4000 0.6920 0.9000 0.7830 Trojan

Table B.10: Trojan-Backdoor: Results by Class

If the F-measure is any indication, both classes seem to be relatively similar (in both 
J4.8 and Naive Bayes the difference is in the second decimal place, though the F- 
measures for Naive Bayes are higher by at least 0.1).
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B .2 .3 T rojan -W orm

Table B .l l  gives the results from running the J4.8 and Naive Bayes classifiers on 
Trojan-Worm.

Trojan-Worm
Item J 4 .8 Naive Bayes
Correctly Classified Instances 
Incorrectly Classified Instances 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

13 (65.0000%)
7 (35.0000%)
0.3000
0.3500
0.5373
70.0000%
107.4609%
20

11 (55.0000%) 
9 (45.0000%) 
0.1000 
0.4500 
0.6708 
90.0000% 
134.1641%
20

Table B .ll:  Trojan-Worm

Here. J4.8 performs identically to Trojan-Backdoor (65% in both cases and with identi­
cal Kappa statistic, though the error values are slightly lower). Strangely, Naive Bayes 
performs 20% worse than it did on Trojan-Backdoor.

J 4 .8
T P R ate FP R ate Precision Recall F-Measure Class
0.8000 0.5000 0.6150 0.8000 0.6960 Trojan

0.5000 0.2000 0.7140 0.5000 0.5880 Worm
Naive Bayes

TP R ate FP R ate Precision Recall F-Measure Class
0.9000 0.8000 0.5290 0.9000 0.6670 Trojan
0.2000 0.1000 0.6670 0.2000 0.3080 Worm

Table B.12: Trojan-Worm: Results by Class

Table B.12 indicates that for J4.8, although the Worm class has greater Precision, the 
F-measure is greater for the Trojan class. This is also true of Naive Bayes, though 
the F-measure for Worm is much less here than for J4.8, that for Trojan being equal 

within 1 decimal place.
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B .3 Experim ent Three

B .3 .1  B a ck d o o r-T ro ja n -W o rm

Table B.13 gives the results from running the J4.8 and Naive Bayes classifiers on 
Backdoor- TYo j an-Worm.

Backdoor-Trojan-Worm
Item J4.8 Naive Bayes
C orrectly Classified Instances 
Incorrectly Classified Instances 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

10 (33.3333%)
20 (66.6667%)
0.0000
0.4607
0.6447
103.6667%
136.7599%
30

15 (50.0000%)
15 (50.0000%)
0.2500
0.3333
0.5774
75.0000%
122.4745%
30

Table B.13: Backdoor-TYojan-Worm

In the worst results yet. J4.8 manages to classify only 33% of cases correctly, whereas 
Naive Bayes - outperforming it - performs no better than chance (though the Kappa 
statistic for Naive Bayes may indicate that the accuracy of the model is in fact slightly 
greater than these results suggest).

J4.8
TP Rate FP Rate Precision Recall F-Measure Class
0.5000 0.3000 0.4550 0.5000 0.4760 Backdoor

0.3000 0.3500 0.3000 0.3000 0.3000 Trojan

0.2000 0.3500 0.2220 0.2000 0.2110 Worm
Naive Bayes

TP Rate FP Rate Precision Recall F-Measure Class
0.5000 0.2500 0.5000 0.5000 0.5000 Backdoor

0.8000 0.4000 0.5000 0.8000 0.6150 Trojan

0.2000 0.1000 0.5000 0.2000 0.2860 Worm

Table B.14: Backdoor-Trojan-Worm: Results by Class

Table B.14 would seem to show that for J4.8 the Precision and Recall values follow each 
other, being highest for Backdoor and lowest for Worm. For Naive Bayes the Precision 
values are of course the same for each class, but the Recall is higher for Trojan, which 
influences the F-measure.
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B .3 .2 B a ck d o o r-W o rm -N o n m a l

Table B.15 gives the results from running the J4.8 and Naive Bayes classifiers on 
Backdoor-Worm-Nonmal.

Backdoor-Worm-Nonmal
Item J 4 .8 Naive Bayes
C orrectly Classified Instances 
Incorrectly Classified Instances 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
T otal num ber of instances

10 (33.3333%) 
20 (66.6667%) 
0.0000 
0.4281 
0.6131 
96.3254% 
130.0683%
30

15 (50.0000%)
15 (50.0000%)
0.2500
0.3333
0.5774
75.0000%
122.4745%
30

Table B.15: Backdoor-Worm-Nonmal

These results are virtually identical to those for Backdoor-Trojan-Worm (in the case 
of Naive Bayes they are exactly identical, whereas some of the error values differ in 
J4.8). Neither classifier can achieve better than chance, and J4.8 achieves significantly 
less well.

J 4 .8
T P Rate FP Rate Precision Recall F-Measure Class
0.3000 0.4000 0.2730 0.3000 0.2860 Backdoor

0.5000 0.2500 0.5000 0.5000 0.5000 Worm

0.2000 0.3500 0.2220 0.2000 0.2110 Nonmal

Naive Bayes
TP Rate FP Rate Precision Recall F-Measure Class
0.9000 0.5500 0.4500 0.9000 0.6000 Backdoor

0.2000 0.0500 0.6670 0.2000 0.3080 Worm

0.4000 0.1500 0.5710 0.4000 0.4710 Nonmal

Table B.16: Backdoor-Worm-Nonmal: Results by Class

Unlike Table B.15, the results in Table B.16 are not identical to those from the previous 
page (Backdoor-Trojan-Worm). In J4.8 the Precision, Recall, and F-Measure for class 
Worm are all equal, and for the other two classes these three measurements are very 
close. Naive Bayes has highest Precision for class Worm, but highest F-Measure for 

class Backdoor.
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B .3 .3 T ro ja n -B a ck d o o r-N o n m a l

Table B.17 gives the results from running the J4.8 and Naive Bayes classifiers on 
Tr o j an-B ackdo or- N onmal.

Trojan-Backdoor-Nonmal
Item J 4 .8 Naive Bayes
Correctly Classified Instances 
Incorrectly Classified Instances 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

18 (60.0000%)
12 (40.0000%)
0.4000
0.2986
0.4889
67.1944%
103.7145%
30

16 (53.3333%)
14 (46.6667%)
0.3000
0.3111
0.5578
70.0000%
118.3216%
30

Table B.17: Trojan-Backdoor-Nonmal

Unlike the previous two comparisons in Experiment Three, both classifiers are now 
performing better than chance, and J4.8 once again beating Naive Bayes. However, 
the Kappa values do not indicate particularly good agreement.

J 4 .8
TP Rate FP Rate Precision Recall F-Measure Class
0.4000 0.0000 1.0000 0.4000 0.5710 Backdoor

0.7000 0.3000 0.5380 0.7000 0.6090 Trojan

0.7000 0.3000 0.5380 0.7000 0.6090 Nonmal

Naive Bayes
TP Rate FP Rate Precision Recall F-Measure Class
0.5000 0.1500 0.6250 0.5000 0.5560 Backdoor

0.7000 0.4000 0.4670 0.7000 0.5600 Trojan

0.4000 0.1500 0.5710 0.4000 0.4710 Nonmal

Table B.18: Trojan-Backdoor-Nonmal: Results by Class

The J4.8 section of Table B.18 indicates that the precision and recall for Trojan and 
Nonmal is identical. Furthermore, class Backdoor had no false positives, hence the 
Precision was 1, though since the Recall or True Positive rate was quite low, the F- 
measure for Backdoor was lower than that for the other classes. Naive Bayes showed 
similar F-Measures for Backdoor and Trojan, and a lower one for Nonmal.
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B .3 .4  T ro ja n -W o rm -N o n m a l

Table B.19 gives the results from running the J4.8 and Naive Bayes classifiers on 
Trojan-Worm-Nonmal.

Trojan-Worm-Nonmal
Item J 4 .8 Naive Bayes
C orrectly Classified Instances 
Incorrectly Classified Instances 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

15 (50.0000%)
15 (50.0000%)
0.2500
0.3330
0.5531
74.9167%
117.3350%
30

13 (43.3333%)
17 (56.6667%)
0.1500
0.3778
0.6146
85.0000%
130.3840%
30

Table B.19: Trojan-Worm-Nonmal

It is interesting th a t out of the four comparisons in Experiment Three, only in Backdoor- 
Trojan-Nonmal were either of the classifiers able to achieve better results than chance. 
Unfortunately in this case the losing trend has resumed, with J4.8 performing at chance 
and Naive Bayes performing just less. Kappa statistics of 0.25 and 0.15 might indicate 
that there is slightly more agreement than these disappointing results would suggest, 
but even this is not much.

J 4 .8

TP Rate FP Rate Precision Recall F-Measure Class
0.5000 0.3000 0.4550 0.5000 0.4760 Trojan

0.4000 0.3000 0.4000 0.4000 0.4000 Worm

0.6000 0.1500 0.6670 0.6000 0.6320 Nonmal

Naive Bayes
TP Rate FP Rate Precision Recall F-Measure Class
0.8000 0.6500 0.3810 0.8000 0.5160 Trojan

0.2000 0.0500 0.6670 0.2000 0.3080 Worm

0.3000 0.1500 0.5000 0.3000 0.3750 Nonmal

Table B.20: Trojan-Worm-Nonmal: Results by Class

Table B.20 shows F-Measure values for Trojan and Worm as fairly close, with Nonmal 
significantly higher. Naive Bayes has close F-Measures for Worm and Nonmal (around 

0.3-0.4) with Trojan higher (0.5160).
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B .4  Experim ent Four

B .4 .1  P a r t  O ne: B a ck d o o r-T ro ja n -W o rm -N o n m a l

Table B.21 gives the results from running the J4.8 and Naive Bayes classifiers on all 
four classes at once.

Backdoor-TVojan-Worm-Nonmal
Item J 4 .8 Naive Bayes
Correctly Classified Instances 
Incorrectly Classified Instances 
K appa statistic  
M ean absolute error 
Root m ean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

19 (47.5000%) 
21 (52.5000%) 
0.3000 
0.2828 
0.4978 
75.4167% 
114.9733%
40

17 (42.5000%)
23 (57.5000%)
0.2333
0.2875
0.5358
76.6667%
123.7288%
40

Table B.21: Backdoor-Trojan-Worm-Nonmal

Given the trends seen in Experiment Three, and the general effect of the “Curse of 
Dimensionality" on the results, it is perhaps not surprising that these results are so bad 

here, neither classifier can even achieve chance accuracy. Even so, J4.8 outperforms 
Naive Bayes, though only by 5%.

J 4 .8

T P Rate FP Rate Precision Recall F-Measure Class
0.5000 0.2330 0.4170 0.5000 0.4550 Backdoor

0.6000 0.1330 0.6000 0.6000 0.6000 Trojan

0.4000 0.2330 0.3640 0.4000 0.3810 Worm

0.4000 0.1000 0.5710 0.4000 0.4710 Nonmal
Naive Bayes

T P Rate FP Rate Precision Recall F-Measure Class
0.5000 0.2000 0.4550 0.5000 0.4760 Backdoor

0.7000 0.4330 0.3500 0.7000 0.4670 Trojan

0.2000 0.0330 0.6670 0.2000 0.3080 Worm

0.3000 0.1000 0.5000 0.3000 0.3750 Nonmal

Table B.22: Backdoor-Trojan-Worm-Nonmal: Results by Class

Table B.22 shows that for J4.8 the classes in order of decreasing F-Measure are Tro­
jan. Nonmal. Backdoor, Worm, whereas for Naive Bayes they are Worm, Nonmal, 

Tro j an .Backdoor.
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B .4 .2 P a r t  Tw o: M a l-N o n m a l

Mal-Nonmal
Item J 4 .8 Naive Bayes
Correctly Classified Instances 
Incorrectly Classified Instances 
K appa statistic 
M ean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Total num ber of instances

29 (72.5000%)
11 (27.5000%)
0.2903
0.2725
0.5022
71.4138%
115.9301%
40

24 (60.0000%)
16 (40.0000%)
0.2381
0.4000
0.6325
104.8274%
145.9917%
40

Table B.23: Mal-Nonmal

On dispensing with the distinctions between different types of malware, and thus lifting 
the Curse of Dimensionality, accuracy shoots back up again. However, the Kappa sta­
tistics still do not look too healthy, even J4.8, as it achieves 72.5% correct classification, 
can only manage 0.2903, little better than Naive Bayes’ 0.2381.

J 4 .8
T P Rate FP Rate Precision Recall F-Measure Class
0.8000 0.5000 0.8280 0.8000 0.8140 Mai

0.5000 0.2000 0.4550 0.5000 0.4760 Nonmal

Naive Bayes
T P Rate FP Rate Precision Recall F-Measure Class
0.5330 0.2000 0.8890 0.5330 0.6670 Mai

0.8000 0.4670 0.3640 0.8000 0.5000 Nonmal

Table B.24: Mal-Nonmal: Results by Class

From Table B.24 it is seen that both J4.8 and Naive Bayes tend to favour Mai. This is 
not a surprise, as the result of amalgamating all the Malicious categories means that 
there are three times as many Mai cases as Nonmal ones.

B.5 G eneral Trends

On a class basis J4.8 tends to favour opposite or different classes from Naive Bayes. 
J4.8 outperforms Naive Bayes on all but a few occasions. In Experiment Three only 
one comparison achieved results better than chance.
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Appendix

The Data Gathering Program

C .l  In tro d u ctio n

This appendix gives a brief description of the program that was developed to collect 
data on structural and behavioural attributes of programs and processes running under 
Windows.

Figure C.l: The initial VMON program window

C.2 G en era l D esign  and U ser Interface

The program, called VMON, was written in C + +  and was designed using full object 
orientation. Each individual element of functionality was implemented as a class. 
Figure C.2 shows the essential relationship between the most important classes.
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Figure C.2: Diagram of Key Classes in the VMON Program

The Window class manages the main program window, which is laid out following 
standard practice. The data collection and processing tasks are handled by individual 
classes, and there are also ancillary classes not shown in the diagram that act as 
wrappers for files, common open and save dialog boxes, status bars, etc.

C .3 C o llectin g  S tru ctu ra l D ata

Structural data on program files was collected by the ProgramDataCapture class. This 
class displays a dialog box which gives the user the option to select which data items 
to capture, as well as various other options to do with the capture process. The dialog 
box is shown in Figure C.3 below.

Once the user has selected the desired options, the ProgramDataCapture object will 
use a ProgramList object to collect the data. The ProgramList object can recursively 
search through a directory structure, find all the program files it contains, and capture 
data on each one using a storage class called Program. Data can be output to a file or 
to a status window in the main program, and attribute data can be printed as well, in 
C4.5 or ARFF (WEKA) format.

The Program class works by mapping a program file into memory, then reading the 
headers and other file structures and outputting the relevant data. It is also capable 
of walking the import table to calculate how many functions a program imports.
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Figure C.3: The ProgramDataCapture dialog box

C ollectin g  B ehavioural D ata

Behavioural data can be collected in two ways. The ProcessDataCapture class provides 
a method for collecting data on individual processes in a similar manner to Program­
DataCapture. The difference is that an individual program needs to be running, and 
the data must be captured using the PS API functions. Figure C.4 illustrates the 
ProgramDataCapture dialog box.

Behavioural Param eter Chooser

Please select the data you wish to colecf. the time interval between 
san d in g  and the number of samples

D ata to Colect Sampling P a a n e ters

Page Fault Count Time Interval j l
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J Peak  Raged Pool U sage
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I Non P aged  Pool U sage
I Rage Fde U sage
I P eak  P age F ie U sage

Number of 
Samples IT

Until Process Termirvates

OK Cancel

Figure C.4: The ProcessDataCapture Dialog Box

The data for the behavioural experiments was not collected in the above manner, as 
the amount of data  provided by the PSAPI functions is quite limited. Instead, the 
undocumented NtSystemQuerylnformationQ API was used (for details, see Chapter 
5). Wrapper classes called NtSystemQuerylnformation and ProcessSystemQuery were
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created. The outermost wrapper class is similar to ProcessDataCapture in that it 
displays a dialog box (see Figure C.5) allowing the user to choose which data are 
captured, how many samples to take, which program to run, and where the data 
should end up.

Select parameters for monitoring process fT lfX

Please select the desired parameters and cfick OK to begin the sanpfing
process.

Basic Parameters Sampfcrg Parameters
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r Pag«A>| Lii rf r
r

OK Caned

Figure C.5: The ProcessSystemQuery Dialog Box

Because samples were being taken at regular intervals, it was necessary to call the 
NtSystemQueryInformation() function several times. This created an interesting chal­
lenge. The API function returned a set of results for every process running on the 
system in sequential order each time it was called, so it was necessary to provide a 
way of storing the data  samples for each attribute for each process in such a way that 
storage was organised by process rather than by sample stage. This was done using a 
data storage object, shown in Figure C.6.

The storage object consists of a set of nested linked lists. The SystemProcessList 
object contains one AttributeList object per process. The AttributeList object in turn 
contains a set of lists corresponding to each attribute. These internal lists hold the 
actual data.
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Sample storage list

Figure C.6: Diagram of Behavioural Data Storage Object

C .5 D a ta  P rocessin g

VMON also has the capability to shuffle the lines in a data file into pseudorandom 
order.

C .6 A ck n ow led gem en ts

Pseudorandom number generation was accomplished using an implementation of the 
Mersenne Twister algorithm by Makoto Matsumoto and Takuji Nishimura of Hi­
roshima University, who have made their source code available for use [Matsumoto 
and Nishimura, 1998]. Their copyright notice is reproduced in the about box figure 

shown below.
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U S E , D A T A , O R  P R O F IT S ; O R  B U S IN E S S  IN T E R R U P T IO N ) H O W E V E R  C A U SE D  
A N D  O N  A N Y  T H E O R Y  O F  LIABILITY, W H E T H E R  IN C O N T FtA C T , S T R IC T  
LIABILITY, O R  T O R T  (IN C LU D IN G  N E G L IG E N C E  O R  O T H E R W IS E ) A R ISIN G  IN 
A N Y W A Y  O U T  O F  T H E  U S E  O F T H IS  S O F T W A R E , EVEN  IF A D V ISE D  O F  TH E 
P O S S IB IL IT Y  O F  S U C H  D AM A GE.

A n y  f e e d b a c k  is v e ry  w e lc o m e .
h ttp : / /w w w . m ath , s c i  h r o s h m a  u  a c . jp /~ m  m a t/M  T /e m t. html 
em ail: m -m at @  m a th .s c ih iro s h im a -u .a c .jp  (re m o v e  s p a c e )

E N D  O F  C O F Y R IG H T  N O T IC E  F O R  M E R S E N N E  T W IS T E R  F*RNG C O D E

I I

Figure C.7: The About Box, containing the Mersenne Twister copyright notice
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