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Abstract
The coast of South Africa is situated between the warm Indian and the cold Atlantic 
Oceans, resulting in an extreme intertidal temperature gradient and potentially strong 
opposing selection pressures between the east and west coasts. Several intertidal 
biogeographic divides have been identified, including one at Cape Point between the 
cold west coast and the temperate south coast provinces. However, few studies have 
investigated the effects of these opposing environments on phylogeography or gene 
flow in intertidal organisms. A small intertidal sea star, Parvulastra exigua, was 
chosen as a model organism to investigate these issues. Taxonomic confusion in this 
species and its systematic relationship with a related South African Parvulastra 
species, Parvulastra dyscrita, was resolved using nuclear (Actin intron sequences 
and AFLP) and mtDNA molecular markers. At least one cryptic species was identified 
within Parvulastra in South Africa, which occupied an extremely restricted geographic 
distribution and therefore may be a candidate for conservation. Molecular and 
morphological evidence confirmed that P. exigua and P. dyscrita are separate 
species.

An ecological survey was conducted on P. exigua at 19 locations in South Africa 
covering a distance of 2500 km. P. exigua samples from each location were 
sequenced for mtDNA and screened for 421 AFLP loci. AFLP was also used to 
identify outlier loci that were potentially under selection. An ‘unmottled’ colour morph 
was distributed from the Namibian border to Cape Point and a ‘mottled’ morph was 
distributed from Cape Point to the Mozambique border, with an area of sympatry 
around Cape Point. The unmottled morphs were positively influenced by under 
boulder and bare rock habitats, but negatively affected by canopy, coralline algae and 
sand. Mottled morphs were positively influenced by under boulder, protected habitats, 
encrusting algae and bare rock, and negatively affected by algal tufts and sand. 
MtDNA revealed two divergent, reciprocally monophyletic clades, one comprising the 
east coast samples and the other encompassing the west coast samples. Both clades 
showed evidence for a recent, rapid population expansion. The genetic break-point 
was located on the south coast, but did not coincide with the divergence in colour 
morphs, being approximately 500 km to the east. AFLP indicated a strong isolation by 
distance pattern of genetic structure among sampling locations and did not 
recapitulate the mtDNA genetic divide. Such incongruence among data sets might be 
caused by a vicarance event if sea level changes separated the east and west coast 
populations, which expanded in isolation, followed by secondary contact, restoring 
present day gene flow between the coasts. Population genomic analysis revealed 
approximately 7% of the genome to potentially be under divergent selection, and the 
phenotype frequencies of the ‘diverging outlier loci’ revealed high directionality 
(spatial correlation). This suggests strong selection pressures between the east and 
west coasts may be acting on these loci, which could have arisen when the 
populations were in allopatry. The habitat and colour morph differences of P. exigua 
between the two coasts are potentially also influenced by selection. However, the 
isolation by distance pattern indicates that divergent selection pressures are not 
strong enough to cause reproductive isolation, or disrupt gene flow between the east 
and west coast populations.
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Chapter 1 

General Introduction



Chapter 1: General Introduction

1.0. Introduction

Phylogeography is the study of the patterns and processes governing the 

geographic distributions of genealogical lineages, especially within and among 

closely related species. Phylogeography focuses explicitly on historical and 

phylogenetic components of population structure and how these are influenced 

by the processes of genetic drift, gene flow, natural selection and other 

evolutionary forces (Avise 2004). Throughout this study the phylogeography of 

Parvulastra species in South Africa will be examined using molecular approaches 

in the context of systematics, life history, global distribution, phenotype, past 

demography, ecology and adaptation. The intertidal coastline of South Africa is a 

dynamic arena within which to investigate these processes as it is the meeting 

point of two great ocean bodies, the Atlantic and the Indian, with their associated 

contrasting characteristics. In this Chapter, asterinid systematics will be explored, 

as well as the taxonomic confusion between the two study organisms Parvulastra 

exigua and Parvulastra dyscrita. This will be followed by a brief description of the 

two study species as well as an account of their habitat and geographical 

distribution in South Africa, and the life histories and what is currently known 

about the phylogeography of the asterinids. The molecular markers available to 

tackle gaps in our current knowledge of Parvulastra species will be described 

before the specific aims of the project are outlined.

1.1. Asterinid systematics

Within the Family Asterinidae (Grey 1840) there are 21 genera and 116 species 

worldwide (O’Loughlin and Waters 2004). The taxonomy of this family in the past 

has been confounded by morphological characters that are of dubious 

phylogenetic value, with some morphological characters being subject to strong 

selection, phenotypically plastic (O’Loughlin and Waters 2004) or

6



phylogenetically informative for some clades but homoplasious and unreliable for 

others (Mah 2000). Due to these problems with traditional taxonomy, researchers 

have turned to molecular data to reassess systematic relationships (Hart et al. 

1997; Dartnall et al. 2003; O’Loughlin and Waters 2004; Waters et al. 2004a). 

Several morphological and molecular systematic revisions of this family have 

been reported (reviewed in O’Loughlin and Waters 2004) and the most recent of 

these phylogenies, compiled from mtDNA sequence (Waters et al. 2004a) and 

morphological data (O’Loughlin and Waters 2004) erected several new genera 

and re-assigned several species to new genera (Fig. 1.1), including the genus 

Parvulastra.
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(Waters et al. 2004a). Support for particular clades is indicated by bootstrap 
values, and by decay indices (in italics). MtDNA clades I -  IV are identified on the 
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1.1.1 The genus Parvulastra

Following the taxonomic and systematic revision of O’Loughlin and Waters 

(2004), Patiriella exigua and P. dyscrita were re-assigned to a new genus 

Parvulastra, along with P. parvivipara, P  vivipara and P  calcarata, on the basis 

of their shared and consistent morphological and molecular characteristics 

(although no molecular work had been conducted on P. dyscrita). Some studies 

published since O’Loughlin and Waters’ (2004) study have referred to the 

previous name Patiriella exigua, or Parvulastra (=Patiriella) exigua, when 

discussing this species (Waters and Roy 2004; Colgan et al. 2005; Hart et al. 

2006). The Parvulastra genus is morphologically similar (but clearly 

differentiated) to the genera Patiriella and Cryptasterina (see Dartnall et al. 2003) 

but is not closely related on molecular grounds (O’Loughlin and Waters 2004). 

The latter authors suggest that the morphological characters have remained 

stable while divergence has occurred in characters not considered, there is 

strong morphological convergence among three unrelated genera, or that the 

molecular data are unreliable at levels more basal then inter-species.

Recently several new cryptic species within the Asterinidae have been identified 

(O’Loughlin 2002; O’Loughlin et al. 2002; Dartnall et al. 2003; Hart et al. 2003) 

with speculation that more species will be found as investigations proceed 

(Dartnall et al. 2003). As these genera contain the greatest diversity of larval 

types and life histories known among extant sea stars (see Section 1.4) (Hart et 

al. 1997), changes in larval development characters may also have driven 

speciation (Byrne etal. 1999).

1.1.2 Taxonomic confusion of P. exigua and P. dyscrita

In Southern Africa, two species of Parvulastra are currently recognised, P. exigua 

and P. dyscrita; however, it has been questioned several times whether these 

two taxa should be classed as the same species. Their taxonomic and 

systematic history was meticulously reviewed by Hart et al. (2006). To
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summarize, Asterias (Asterina) exigua was first described by Lamarck in 1816. 

Verrill (1913) assigned Asterina exigua and several other species to a new 

genus, Patirieila. Mortensen (1921) (cited in Hart et al. 2006) emphasized that P. 

exigua had oral (underside of sea star, where mouth is located) gonopores (a key 

taxonomic characteristic) and suggested that P. exigua actually included several 

species.

The first description of P. dyscrita was by H. L. Clark (1923) who described 

Asterina dyscrita, which had aboral (upper surface of sea star) gonopores, but 

was otherwise similar to P. exigua, co-occurring with P. exigua in South Africa. In 

1933, the two species were re-classified as synonyms (Mortensen 1933), but 

were then separated again into two species by Dartnall (1971) on the basis of 

gonopore position. Dartnall (1971) also raised a neotype for P. dyscrita as the 

original had been lost, from which A.M. Clark (1974) confirmed the aboral 

location of gonopores in H. L. Clarke’s P. dyscrita. Hart et al. (2006) noted that 

the existence of P. dyscrita was not widely recognised until the 1990’s. However, 

many South African workers, from the early 20th century differentiated P. exigua 

from P. dyscrita (C. Griffiths and K. Dunbar pers. observations), but within P. 

exigua striking phenotypic differences were noted (references cited in Hart et al. 

2006).

Recently several authors have suggested that P. exigua might contain cryptic 

species. Walenkamp (1990) suggested that South African collections might 

include P. dyscrita as well as P. exigua and another species ‘pentagona’, (which 

was subsequently placed in a new genus, Cryptasterina (see Dartnall et al. 2003) 

on the basis that the collections contained specimens with both oral and aboral 

gonopores). When the genus Patiriella was changed to Parvulastra (O’Loughlin 

and Waters 2004), several morphological (but not molecular) characteristics were 

noted that distinguished P. exigua from P. dyscrita. In 2004, Waters and Roy

(2004) controversially published a phylogeographic account of the global 

distribution of P. exigua and proposed that South Africa is the ancestral origin of
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P. exigua and that Australia was subsequently colonized via the west wind drift 

(see phylogeography Section 1.5). In 2005, the apparent mix of oral and aboral 

gonopores within P. exigua was again raised in the literature by Colgan et ai.

(2005) who confirmed that in South Africa and three Atlantic Ocean islands the 

presence of oral and aboral gonopores within the ‘P. exigua’ taxon had been 

observed by Dartnall and Byrne (unpublished observations cited in Colgan et al. 

2005). By re-opening the question of whether ‘P. exigua’ contained cryptic 

species, Colgan et al. (2005) had to describe Waters and Roy’s (2004) ‘Out of 

Africa’ hypothesis as ‘uncertain’.

Hart et al. (2006) also questioned Waters and Roy’s (2004) ‘Out of Africa’ 

hypothesis on the basis that samples used in the earlier study might have 

included cryptic species (based on gonopore and molecular divergence 

evidence) and therefore the assumptions behind the hypothesis would be wrong. 

Crucial to this argument, though, was the ability to link the ‘P. exigua’ specimens 

with aboral gonopores to the highly divergent genotypes presented in Waters and 

Roy’s (2004) study. This was not achieved by Hart et al. (2006) and so the 

debate remains unresolved. Hart et al. (2006) tentatively concluded that the 

Cape Town specimens from Waters and Roy’s (2004) study were in fact P. 

dyscrita and that P. exigua contains further cryptic species. They also suggested 

that the centre for haplotype diversity (and implied ancestral origin) is Australia 

rather than South Africa, with the implication being that colonisation occurred 

from Australia to South Africa, in the opposite direction to that predicted by 

Waters and Roy’s (2004). Hart et al. (2006) acknowledge, however, that 

sampling intensity was greater in Australia which may have biased the inference 

of the root haplotypes. Crucial to this ongoing debate is the fact that P. dyscrita 

has still not been genotyped or included in any phylogenies of asterinid taxa, 

despite much speculation over its taxonomic status.
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1.2. Parvulastra: The study species 

1.2.1. Parvulastra exigua

Parvulastra exigua (Lamarck 1816) is a small, abundant intertidal sea star found 

mainly in rocky shore habitats, but can occur in sandy lagoons and wave 

exposed cliffs (pers. obs). It is described as a scavenging omnivore and feeds by 

protruding its gut onto the substrate (Branch and Branch 1980). In South Africa 

P. exigua has a geographic distribution covering the whole coastal range, 

stretching from the Namibian to the Mozambique border (Fig 1.2). Parvulastra 

exigua’s range also extends across the southern hemisphere including Australia 

and several oceanic islands, but it does not occur in South America or New 

Zealand (Waters and Roy 2004). Parvulastra exigua is thought to have an 

entirely benthic life cycle, producing large eggs which hatch into benthic larvae 

which metamorphose into ‘crawl-away’ juveniles (Byrne 1995). Parvulastra 

exigua has a flattened pentagonal shape with short, stubby arms and its dorsal 

surface is made up of tile-like plates each with a cluster of knob-like spines 

(Branch et al. 1994). Most notably, in South Africa a strong phenotypic gradient 

exists with an unmottled, often greenish brown phenotype found in abundance on 

the cold water west coast and an irregular multicoloured mottled phenotype 

found in abundance on the warm east and south coasts (Fig. 1.3). There have 

been many studies on the ecology (Branch and Branch 1980; Arrontes and 

Underwood 1991; Byrne 1992; Stevenson 1992; Byrne and Anderson 1994; 

Byrne 1995; Anderson and Underwood 1997; Anderson 1999; Moreno and 

Hoegh-Guldberg 1999; Waters and Roy 2004) and genetics (Hunt 1993; Colgan 

et al. 2005; Hart et al. 2006) of P. exigua in Australia but no known ecological 

and genetic studies on this species in South Africa.
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Figure 1.2. Oceanic currents and biogeographic zones (Section 1.2.2.) around the coast of South Africa.
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Figure 1.3. Parvulastra exigua (aboral view) showing the phenotypic gradient (1: unmottled -  5: very mottled, see Chapter 
3) found on the west and east coasts of South Africa with a gradient of intermediate phenotypes distributed between the 
two coasts (photograph Ben Pizii).
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1.2.2 Parvulastra dyscrita

Parvulastra dyscrita (Clark 1923) is a common mainly subtidal to very low intertidal 

sea star endemic to South Africa, with a geographic range along the southern coast 

from Cape Point to approximately East London (Fig. 1.2). Parvulastra exigua and P. 

dyscrita differ in their life cycles since P. dyscrita is thought to have a planktonic 

phase (Branch and Griffiths 1994). Parvulastra dyscrita is larger than P. exigua and 

similar in shape, but can grow up to 5 cm diameter. Parvulastra dyscrita has an even 

granular surface texture rather than clusters of spines (Branch and Griffiths 1994). 

Parvulastra dyscrita has an irregular mottled pattern (Fig. 1.4) similar to the mottled 

phenotype of P. exigua. Nothing has been published on the life history, reproduction 

or ecology of P. dyscrita since the original species description by Clark (1923).

Figure 1.4. Parvulastra dyscrita phenotypes of the top-surface (aboral) and under
surface (oral), which shows the five lines of tube feet with the mouth location in the 
centre (photograph Ben Pizii).

1.3. South Africa: The study site

1.3.1 Intertidal environment and geological history

The intertidal environment is a unique habitat which is subject to extreme abiotic 

conditions and therefore the fauna and flora are dependent upon physiological and 

behavioural adaptations. The abiotic pressures include flooding with salt water twice a 

day, exposure to air, with possibly extreme temperatures which may cause
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desiccation, freshwater precipitation, long or short term fluctuations in pH, oxygen, 

salinity and carbon dioxide and physical attrition in the form of wave action that may 

cause dislodgement (Branch and Branch 1981). The biotic pressures include both 

terrestrial and marine predators and competition for resources. The South African 

coastal environment has two great ocean bodies meeting at its tip, which have major 

influences on the marine biogeography of the South African coast. To the west of 

Africa is the cold Atlantic Ocean and to the east is the warm Indian Ocean (Fig. 1.5).
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Figure 1.5. Satellite map of mean water temperatures around the coast of Southern 
Africa (taken from Branch and Griffiths 1994)

The temperature regime of the coastal zone and the associated flora and fauna are 

dependant on both the latitude and the two powerful prevailing ocean current systems 

(Fig. 1.2) (Brown and Jarman 1978; Emanuel et al. 1992). On the east coast of South 

Africa the fast, southward flowing, warm Agulhas current originates from the south 

west Indian Ocean sub gyre (Peschak 2005). At its northern end, this current can
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reach 28°C and at its southern edge 21°C in summer and 16°C in winter (Peschak 

2005), but it generally becomes cooler further south. The current flows along the 

continental shelf until deflected southwards, away from the coast between Port 

Elizabeth and Port Alfred. At the Agulhas Bank, it turns eastwards to form the Return 

Agulhas Current (Jackson 1976). Opposing this current is a weaker, cooler, surface 

current originating between Mossel Bay and Plettenberg Bay, which flows in a north

easterly direction inshore, extending up to 20 km offshore (Jackson 1976). Despite its 

low speed, this current is known to have a substantial ecological influence on the 

intertidal biota enabling temperate biota to spread further eastwards (Macnae 1961; 

Jackson 1976; Branch and Branch 1981). The Agulhas current, with flow paths 

broadly similar to those of today, was established five million years ago (MYA) (mid- 

Pliocene), although there is evidence of enhanced current activity dating back as far 

as the Oligocene (Hiller 1994).
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The currents become complex on the south coast and the temperature is affected by 

a number of factors such as wind direction and force (Brown and Jarman 1978). Mid 

way along the south coast the Agulhas Bank, a triangular extension of the continental 

shelf, drops steeply from the coast to 50 m then gradually deepens to 200 m, at a 

distance offshore of 250 km, where it then drops steeply to more than 1000 m 

(Hutchings 1994). The eastern edge of the bank, between Mossel Bay and 

Plettenberg Bay is subject to occasional upwelling events and surface cooling, and 

has interjections of warmer water from the Agulhas current (Hutchings 1994). In the 

centre of the Agulhas Bank, south of Mossel Bay, cyclonic circulation around a cool 

water ridge, with an eastward flow on the inner margin and westward flow offshore, 

may prevent offshore loss of plankton into the Agulhas itself. From Cape Agulhas to 

East London, the mean annual temperatures are 17-18°C (Bolton and Anderson 

1997). The western part of the Agulhas Bank, from Cape Agulhas to the Cape 

Peninsula is considered part of the upwelling regime of the Benguela system 

(Hutchings 1994) and has a westward convergence of currents towards Cape Point, 

with currents rounding the point and heading up the western side (Hutchings 1994). 

The area around the Cape Peninsula divides two bodies of water with very different 

temperatures. At the same latitude on either side of the peninsula the water 

temperature can differ by as much as 8°C on the same day. This is possibly the only 

ocean of this size in the world with such a drastic temperature gradient over such a 

small area (Brown and Jarman 1978).

In contrast, the west coast of Southern Africa is influenced by the slow northward 

flowing Benguela current which is reinforced by the Circum-Antarctic West Wind Drift 

current. This means that the west coast waters are considerably colder than those of 

the south and east coasts at the same latitude. The Benguela current is dominated by 

strong upwelling, bringing cold nutrient rich waters to the surface close inshore in 

sporadically distributed upwelling cells (Peschak 2005). Towards the end of the 

Pliocene, sea levels fluctuated and the seas gradually cooled, with a 10°C drop in the 

region (Marlow et al. 2000). During this time the Benguela system was established 

approximately 2-3 MYA (Shannon 1985; Bolton and Anderson 1997). The upwelling is 

wind-driven and so the sea surface temperature can fluctuate greatly from day to day.
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The average temperature is 8-17°C but changes from 17°C to 8°C can occur over a 7 

hour period (Branch and Branch 1981). False Bay can reach 23°C in the summer 

(Brown and Jarman 1978) but this is unusually high for a western location.

Over the past 300,000 years there have been four glacial periods (Branch and Branch 

1978), the most recent of which, 20,000 YA, caused the sea level to drop by 

approximately 120 m, exposing much of the Agulhas Bank and extending the 

coastline between 50 and 150 km out to sea. During inter-glacial periods, the sea 

level may have risen to 50 m above present, causing the Cape Peninsula to become 

an island (Branch and Branch 1978).

1.3.2 Biogeography

Southern Africa has an extreme intertidal water temperature gradient ranging from 

10-16°C on the west coast to 10-24°C for the east coast. Many authors have 

investigated the implications this has on the biogeography of the intertidal zone 

(Jackson 1976; Brown and Jarman 1978; Emanuel et al. 1992; Hiller 1994; 

Bustamante e t al. 1997; Neraudeau and Mathey 2000), but relatively few have 

investigated phylogeographic patterns and compared them to these well established 

biogeographic patterns (reviewed in Chapter 3). Emanuel etal. (1992) used presence 

/ absence distribution data from the literature for 2000 marine invertebrate species 

and concluded that the South African coastal region should be divided into four 

biogeographic intertidal zones (Fig. 1.2): (i) The cool temperate north west coast 

(Namibia -  not shown in Figure 1.2); (ii) the cool temperate south west coast; (iii) the 

warm temperate south coast; and (iv) the sub-tropical east coast which has a sub 

division at Durban, where north of this is the tropical east coast. Detailed studies by 

Stephenson (1944) indicate that the boundary between the cool temperate south west 

coast and the warm temperate south coast zones is actually at Kommetjie on the 

western side of the Cape Peninsula and not at Cape Point itself as other studies have 

concluded (Emanuel et al. 1992). The intertidal geology at Kommetjie also shows 

discontinuity (Brown and Jarman 1978). Although there has been much debate in the 

past over the number of biogeographic intertidal zones and their exact boundaries,

20



most studies have since adopted the view that the area between Cape Agulhas and 

Kommetjie is an overlap zone between the warm east and cold west biogeographic 

zones.

The intertidal biota on the west coast tends to be less diverse, but more abundant

than that of the south and east coast provinces (Brown and Jarman 1978). Mid way

up the west coast an almost landlocked lagoon (Langabaan Lagoon) has

uncharacteristically warm water and contains biota which is more diverse and

productive than the rest of the west coast. Many species occur here which have not 

been recorded in the rest of the west coast province and are characteristic of other 

provinces, notably the south coast warm temperate region (Brown and Jarman 1978). 

The algae and some invertebrate species (including P. exigua) on the west coast also 

occur in the cold water regions of Australia and New Zealand (Brown and Jarman 

1978). The topography and level of exposure may also cause some species to occur 

in areas outside their normal biogeographic boundaries, but overall the data show 

distinctly different species sets in each zone.

1.4. Asterinid life histories

Life history strategies of asterinids are among the most diverse in any marine 

invertebrate group (Byrne 1992), and it has been suggested that many parallel 

changes in larval form, habitat and dispersal potential have occurred in the evolution 

of this family (Byrne 1992, 1995, 1996; Chen and Chen 1992; Hunt 1993; Hart et al. 

1997; Hart 2000; Jeffery et al. 2003). Small genetic distances between lineages with 

different developmental modes suggest that some of these changes have been 

recent or rapid (Hart 2000). Table 1.1 shows the developmental patterns and larval 

types in the Family Asterinidae (Byrne 2006) and Figure 1.6 shows a maximum 

parsimony phylogenetic tree showing relationships of asterinid mtDNA sequences in 

relation to their developmental modes (Byrne 2006).

Patiriella regularis shows what is considered to be the ancestral form of development 

for asteroids, developing through planktotrophic bipinnaria and brachiolaria larvae
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(Byrne 1995). Benthic lecithotrophic development, as in Parvulastra exigua, and 

viviparity in P. vivipara and P. parvivipara are considered to be derived features 

(Byrne 1995). However, complex feeding planktonic larvae appear to have been lost 

at least four times during the evolution of these species. There does not appear to be 

an ordered transformation series from feeding planktonic development to viviparous 

brooding, instead life history traits of these sea stars appear to have evolved freely 

under no obvious constraints, contrary to the widely assumed evolutionary 

conservatism of early development (Hart etal. 1997).

Hart et al. (1997) discuss the evolution of hermaphroditism in Parvulastra species and 

suggest that it has evolved several times from dioecy. Byrne (1996) suggests that 

species which have life history traits conducive to inbreeding, such as 

hermaphrodites, are generally derived from outbreeding taxa, however due to the 

potential for inbreeding depression in species with limited dispersal, it is hypothesised 

that self fertilization is less common than sexual reproduction. Lawrence and Herrera 

(2000) propose that hermaphroditism in echinoderms is a derived, adaptive, 

reproductive characteristic and that it may have evolved in response to stress in 

environmental conditions to increase the probability of successful reproduction. Inter

specific cross-fertilisation to produce viable hybrids is not unusual in asteroids and 

hybrid zones are evident between some species (Byrne and Anderson 1994). Multi

species spawnings occur in several sympatric echinoderms, which may facilitate 

gamete fusion and therefore hybridization and gene flow (Byrne and Anderson 1994).
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Ganus/tpeciet Egg diam eter (pm ) Spawn! nftfertilbution Dev. type Larval type(s)
Asterina

A. gibbosa 500 Benth. eggs BL Bilobed Brach
A. phybctka 500 Broods benth eggs BL Biktbed Brach
A. stetUfena 150 Broadcasts Pt Bip and Brach.

Stegnaster

S. inflatus 1000 — L —
Paranepantha

P. ouddondenss 400 — L —
P. grants 800 — L —

Patiria

P. minlata 169 Broadcasts Pt Bip and Brach.
P. cNIensis 160 — Pt —
P. pea h i fern 170 Broadcasts Pt Bip. and Brach.

Meridastra
M. martenseni 240 Broadcasts Pt Brach
AL cokar 413 Broadcasts PL Brach
M. orient 400 Broadcasts PL Brach

M. Occident 400 Broadcasts PL Brach
A t gunnl 430 Broadcasts PL Brach
A t atyphcida 400 — L —

Parvulastra

P. exigua 390 Bendi. eggs BL Tripod brach
P. vMpara 150 I f IfL Reduced
P. panMpam 235 I f •«L Reduced

PatirieBa

P. regularis 150 Broadcasts Pt Bip and Brach.
Aqulonostra

A. batheri 433 Broadcasts PL Brach
A. burtoni 550 Broadcasts PL Brach

A. coronata japonica 422 Broadcasts PL Brach

A. minor 437 Benth. eggs BL Tripod brach
A. scobinata 450 — L —

Aqutonostna new sp (Q ld) 420^ — L —

Cryptasterina
C podfco 400 I f IfL Brach

C pentagona 413 Broadcasts PL Brach

C hystera 440 I f IfL Brach

Cryptasterina sp (Taiwan) 320 Broadcasts PL Brach

Cryptasterina new sp #1 (Q ld) 440b I f IfL Brach

Cryptasterina new sp#2 (Q ld) 380b — PL —
“Data from  MacBride (1896); James (1972); Komatsu (1975); Kano and Komatsu (1978); Komatsu and colleagues (1979); Marthy 
(1980); Emiet and colleagues (1987); Chen and Chen (1992); Chta and colleagues (1993); Byrne and C em  (1996); and Byrne and 
colleagues (2003); personal communications from Ml Barker, M. Fernandez, D. McCtary. and R. Ventura. 
bData from  un^awned eggs in gonad. BL, Benthic ledthotroph; Benth, benthiq B ip bipinnaria; Brach brachiolaria; Dev., 
development; Ig, intragonadal; IgL intragonadal lecithotroph; L, ledthotroph; Pt, planktotroph; PL, planktonic lecithotroph;
Dashed line, no data.

Table 1.1. Developmental patterns and larval types in the Family Asterinidae (from 
Byrne 2006). Definition of terms: Benthic: bottom dwelling; Lecithotroph: larvae that 
do not feed, but rather derive nutrition from the yolk; Bipinnaria: the complex, 
bilaterally symmetrical free swimming larval stage of most echinoderms; Brachiolaria: 
an early larval stage having bilateral structure and swimming by means of bands of 
vibrating cilia; Intragonadal: within the gonads; Planktotroph: larvae that feeds during 
the planktonic phase.
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Figure 1.6. Maximum parsimony phylogenetic tree showing relationships of asterinid mtDNA sequences and 
developmental modes (see Table 1.1 above). Bootstrap values > 50% are indicated. Abbreviations for developmental 
mode as in Table. 1.1 above (from Byrne 2006).
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The reproductive biology of Australian populations of P. exigua has been studied 

extensively (Byrne 1995; Hart et al. 1997; Waters and Roy 2004; Byrne 2006), but 

there are no comparable studies of South African populations, therefore the following 

description of the life history of P. exigua is based largely on the Australian 

populations. It is assumed that as the two populations are presently classed as a 

single species (but see Section 1.3.2) they have the same reproductive biology 

(Branch and Griffiths 1994; Waters and Roy 2004) despite differences in phenotype 

(A. Hewitt pers. comm. 2002) and mtDNA genotype (see phylogeography Section 

1.5) (Waters and Roy 2004). The only three lines of evidence on South African P. 

exigua reproductive mode come from (a) photographic evidence of an unmottled 

phenotype in South Africa lying close to an egg mass (Fig. 1.7) (C. Griffiths pers. 

comm. 2001), (b) gonopore position included in the original species description 

Lamarck (1916) (see discussion on taxonomic confusion over gonopore location in 

Section 1.3.2) and (c) a sea-shore identification book (Branch and Griffiths 1994), 

which states that P. exigua hatch directly into tiny juvenile starfish. The latter two 

comments may indicate that the South African populations have a different mode of 

development to the Australian population, but this will be investigated further during 

the course of this study. It is assumed that the mottled variety in South Africa has the 

same reproductive biology as the unmottled phenotype in Australia (and South 

Africa), however this has not been confirmed.

Figure 1.7. Parvulastra exigua (unmottled phenotype) possibly ovipositing eggs onto 
the substratum (photograph C. Griffiths)
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Parvulastra exigua releases large yolky (Byrne 1992) eggs (390 pm dia.) through 

orally directed gonopores. Gravid ovaries are large and yellow whereas spent ovaries 

are small and yellow or brown. The sperm ducts also open on the oral surface and, 

where fertilization occurs externally, males appear to fertilize the eggs soon after 

deposition (Byrne 1992). The eggs have a sticky jelly coat, which enables them to 

adhere to the substratum. Clutch sizes are generally small (102 -103) (Hart et al. 

1997). Such large eggs and lack of an exogenous food source are considered to be 

derived features (Byrne 1995), and development proceeds without parental care 

(Byrne 1995).

When first laid the fertilization membranes are transparent but after one day take on a 

red hue. Groups of P. exigua have been observed gathering round newly laid egg 

masses in what appear to be spawning groups. Egg masses at different stages of 

development have been observed together along with newly metamorphosed 

juveniles in microhabitats. The size of some egg masses also suggests that they were 

deposited by more than one female (Byrne 1992). Parvulastra exigua’s large red 

benthic egg masses are very conspicuous on the rocky shore, which is a consumer 

rich habitat where predation pressure is great. Moreover, the eggs appear to be very 

palatable because of their large size, yolky consistency and bright red colour and 

therefore high visibility, but they appear to lack structural or morphological defenses 

against predators. These features of P. exigua’s eggs may indicate that they may be 

unpalatable due to chemical defenses and therefore be protected from predation. 

Secondary metabolites and chemical defenses have been reported in asteroid eggs 

previously (Lucas et al. 1979; McClintock and Vernon 1990), as well as other marine 

invertebrates such as ascidians and nudibranchs (Pawlick et al. 1988; Young and 

Bingham 1997). Marine invertebrate larvae that are benthic or brooded have been 

shown to be more unpalatable than larvae of broadcast spawners as it is 

hypothesised that they need greater protection against predators (Lindquist and Hay 

1996). Additionally, the frequency of bright colouration in unpalatable larvae and eggs 

is high in comparison to palatable larvae and eggs, indicating potential aposematism 

(warning coluration), (Lindquist and Hay 1996). The Spanish Dancer nudibranch has
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bright pink egg masses which have been shown to be unpalatable and chemically 

defended against fish predators (Pawlick et al. 1988), as have the bright orange egg 

masses of Ectyoplasia, both of which derive their chemical defenses from their diets 

(Pawlick et al. 1988). Brightly coloured red, (as seen in P. exigua) orange or yellow 

pigments have been shown to be common in unpalatable marine larvae and eggs 

(Lindquist and Hay 1996).

The larvae of P. exigua develop into lecithotrophic (without feeding) modified 

brachiolaria larvae (similar to planktonic larvae) and remain benthic until 

metamorphosing into juveniles (Fig. 1.8). The larvae have a muscular stem with a 

central adhesive disk, which enables them to remain attached to the substratum. The 

transformation of the larval form to the juvenile takes six to seven days, about half the 

duration of larval life. This is much more gradual that in other Parvulastra species with 

planktonic development (Byrne 1995). The dominant stage of development in P. 

exigua is the brachiolaria stage which persists for about 15 days irrespective of 

temperature (Byrne 1995). There is no planktonic dispersal phase, but instead the 

juveniles are negatively geotactic and float to the surface attaching themselves to the 

surface waters. This behaviour may act as a dispersal mechanism by rafting. The 

length of time that P. exigua can raft is unknown, but the juveniles metamorphose 

after two - three weeks into adults (Byrne 1995; Waters and Roy 2004).
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Figure 1.8. The planktonic and lecithotrophic stages of some Parvulastra species life
cycles (Patiriella calcar, P. gunnii and P. bervispina now in the family Meridiastra), 
(from Byrne 1995).
Parvulastra exigua is a protandrous hermaphrodite (male gametes mature and are 

shed before female gametes mature). Some P. exigua are simultaneous 

hermaphrodites from the outset of gonad formation and become increasingly female 

with growth (Byrne 1992) with large females often having a minute amount of sperm 

in their gonads (Byrne and Anderson 1994). They therefore have the potential for self- 

fertilization and have been recorded laying self fertilised eggs (Byrne 1995). It has 

been suggested that the decreased male investment in P. exigua is associated with 

its non-planktonic development (Byrne 1992). Hunt (1993) suggested that there is no 

evidence indicating that asexual reproduction occurs in P. exigua (but see Byrne and 

Anderson 1994) as genotype frequencies from Australian populations are in Hardy- 

Weinberg equilibrium. Gametogenesis in P. exigua continues throughout the year, but 

with enhanced oviposition during the colder months of winter and spring in Australia. 

An abundance of mature females has also been observed in June, July and 

September, indicating that there are definite periods of increased spawning. 

Fertilizable gametes may be obtained from females for at least nine months of the 

year. Juveniles were located in the intertidal zone from August to October (Byrne

1992). It has been suggested that enhanced oviposition in winter coincides with 

cooler sea temperatures, shorter photoperiods and a higher oxygen level in the water. 

This breeding cycle may be in response to optimal conditions for egg development 

(Byrne 1992).

The prolonged breeding period of P. exigua disguises potential environmental factors 

that may stimulate reproduction (Byrne 1995). In another Parvulastra species, P. 

vivipara, Byrne and Cerra (1996) suggested that temperature does play a key role in 

spawning time and duration. Temperature effects on the temporal breeding pattern in 

P. exigua may be important as the South African population occurs along a steep 

coastal temperature gradient and so individuals at the peripheries of the range will be 

exposed to very different environmental temperatures and potentially populations at 

either end of the temperature range could have different breeding cycles. Other
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environmental factors, such as food availability, energy budgets (Moreno and Hoegh- 

Guldberg 1999; Lawrence and Herrera 2000) and habitat complexity for larval and 

juvenile settlement (Chen and Chen 1992) may also effect the reproductive cycles of 

Parvulastra species. In Australia, P. exigua occurs sympatrically with Meridiastra 

gunnii and M. calcar where they are found in close proximity in pools and under 

boulders (Byrne and Anderson 1994). Parvulastra exigua has a different spawning 

time and a different ontogeny to the other two species, which have the same 

spawning time and very similar ontogeny to each other. Hybridization between M. 

gunnii and M. calcar resulted in phenotypically intermediate viable hybrid juveniles in 

vitro. However, heterospecific crosses involving P. exigua resulted in low fertilisation 

rates and no viable hybrids in vitro (Byrne and Anderson 1994), but no information is 

available on the ability of P. exigua to hybridise with other species in the wild.

1.5. Parvulastra phylogeography

Parvulastra exigua has an entirely benthic life history except when juveniles float to 

the surface when rafting, which may be a dispersal mechanism. Yet it occurs 

throughout southern Africa, on two oceanic islands in the Southern Indian Ocean, on 

St. Helena in the South Atlantic, south eastern Australia and Lord Howe Island (Fig. 

1.9; Waters and Roy 2004) and in the Andaman Sea (Bussarawit and Hansen 1987, 

cited in Putchakarn and Sonchaeng 2004), but is absent from New Zealand and 

South America. Australian P. exigua populations occupy a cold water biogeographic 

zone, and are also an unmottled greenish brown phenotype, and the mottled P. 

exigua (as seen in South Africa) phenotype does not occur in Australia-

29



Africa
Andaman Sea

East
Australia
currentAustraliaDBBenguela

current Leeuwin
current

Agulhas
current

LHVF•  •

AM$ .
VO

West Wind Drift
1000 km

Figure 1.9: Geographic distribution of Parvulastra exigua in the Southern Hemisphere with known records indicated by 
grey dotted lines and Waters and Roy’s (2004) sampling sites marked by black dots (SH: St. Helena Island; CT: Cape 
Town; PJ: Port St. Johns; DB: Durban; AM: Amsterdam Island; VO: Victoria Cape Otway; VW: Victoria Williamstown; VF 
Victoria Flinders; TW: Tasmania Woodbridge; TT: Tasmania Taranna; TE: Tasmania Eaglehawk Neck; NB: New South 
Wales Bondi; NM: New South Wales Mona Vale; LH: Lord Howe Island). Also illustrated on the map are major ocean 
currents (adapted from Waters and Roy 2004).
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This distribution is unusually large for a species with limited or sporadic dispersal, 

which are generally hypothesised to have high inter-population genetic variation 

(Riginos and Victor 2001; Sponer and Roy 2002). Parvulastra exigua’s sister species, 

P. dyscrita is suspected to have a planktonic stage to its life cycle (Branch and 

Griffiths 1994), and is therefore hypothesised to have a larger geographic range and 

little genetic structure (Booth and Ovenden 2000). Yet this species has a smaller 

sympatric range within P. exigua’s South African distribution and is endemic to South 

Africa. It is not known how long the planktonic larval stage of P. dyscrita lasts, but the 

duration and distance potential this species has in the plankton may be limited by its 

metamorphosis into adulthood and the need to settle on substratum, sparse habitat 

suitability or current systems around the south coast, preventing P. dyscrita achieving 

the geographic range of P. exigua in Southern Africa.

Parvulastra exigua’s seemingly paradoxical southern hemisphere distribution has 

been investigated previously (Byrne 1995; Hart et al. 1997), as well as the distribution 

of P. exigua on a local (continental) scale (Hunt 1993; Colgan et al. 2005) to 

determine the genetic structure and limits to gene flow of this species. Adult and 

juvenile rafting on wood or macro algae is the main mechanism proposed for 

dispersal (Mortensen 1933; Fell 1962; Clark and Downey 1992; Hart et al. 1997; 

Waters and Roy 2004). However, the geographic distribution of a species is not 

defined by dispersal alone and Dartnall (1971) suggested that the distribution of P. 

exigua was “defined by thermal tolerance” (see Section 1.2.2 and Fig. 1.3). The 

distance covered by rafting P. exigua adults is unknown but it is thought that passive 

dispersal by rafting of both adults and juveniles can occur for many months in the 

open ocean (Waters and Roy 2004).

Waters and Roy (2004) investigated the possibility of long distance rafting in P. 

exigua by examining mitochondrial DNA Cytochrome Oxidase I and control region 

sequence variation. They found that the South African population had a paraphyletic 

assemblage, with South African haplotypes occurring in both the South African haplo- 

group and the Australian haplo-group, whereas Australian samples displayed a 

monophyletic group with Australian haplotypes occurring only in the Australian haplo-
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group (Fig. 1.10). Waters and Roy (2004) concluded that P. exigua originated in 

South Africa and colonisation of Australia was achieved by a single colonisation event 

via the west wind drift current, subsequent population expansion was then facilitated 

by self fertilisation. Colonisation of Amsterdam, Lord Howe and St. Helena Islands 

might have been achieved in the same way during the late Pleistocene (<0.5 MYA). 

However, Waters and Roy (2004) based their investigation on just 11 South African 

samples and 16 Australian samples and they found no shared haplotypes between 

the South African and Australian populations. More extensive sampling might reveal 

additional mtDNA lineages and could reduce the divergence estimates. The ‘Out of 

Africa’ hypothesis is considered controversial by some authors (Colgan et al. 2005; 

Hart et al. 2006) on grounds that it may be based on a cryptic species complex (see 

taxonomy section), or that the P. exigua distribution may be caused by vicariant 

events, e.g. the break up of Gondwanaland (Heads 2005a, b) and not dispersal 

(Waters and Roy 2004) (see Chapter 2).
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Figure 1.10: Phylogenetic relationships of Parvulastra exigua haplotypes indicated by location code on map (Fig. 1.9; SH: 
St. Helena Island; CT: Cape Town; PJ: Port St. Johns; DB: Durban; AM: Amsterdam Island; VO: Victoria Cape Otway; 
VW: Victoria Williamstown; VF Victoria Flinders; TW: Tasmania Woodbridge; TT: Tasmania Taranna; TE: Tasmania 
Eaglehawk Neck; NB: New South Wales Bondi; NM: New South Wales Mona Vale; LH: Lord Howe Island). Numbers in 
parentheses indicate the number of times a haplotype was recorded at a site. Bootstrap estimated to the left of nodes are 
derived from maximum likelihood analysis, and values to the right are from minimum evolution analysis (from Waters and 
Roy 2004).

33



The phylogeography, population structure and dispersal of P. exigua has also 

been investigated at a more local (continental) scale. Hunt (1993) used 

allozymes to investigate the population structure of P. exigua with its entirely 

benthic life cycle in comparison to a sympatric species Patiriella calcar (now 

Meridiastra calcar, see Fig. 1.1), which has planktonic larvae, which both occur in 

south east Australia. Hunt (1993) showed that over 230 km distance, P. exigua 

had a finer scale genetic structure than M. calcar, indicating that P. exigua has 

low inter-population immigration, as expected of a species with low dispersal 

ability. This pattern of genetic structure in the Australian populations of P. exigua 

was supported by Colgan et al. (2005) using mtDNA who suggested that there 

was very low migration between populations around the south eastern Australian 

and Tasmanian coasts, and that complete lineage sorting to regions had 

occurred. However, they also suggested that the evolutionary divergence 

between the regions was low, indicating that there has been a recent range 

expansion of the ancestor of the haplotypes currently observed in Australia. 

Subsequent gene flow was inferred to have been so restricted that there has 

been no sharing between regions of new haplotypes produced by mutation. 

Colgan et al. (2005) conclude that the range expansion could either be due to 

colonisation of Australia by a low number of animals with identical haplotypes 

(i.e. a founder event) as suggested by Waters and Roy (2004) or to a selective 

sweep through a pre-existing population by a favourable mutation. The 

population genetic structure and genetic demographic history of the South 

African P. exigua populations has never been investigated.

1.6. Molecular approaches

By measuring molecular genetic variation and by applying population genetic 

models, evolutionary ecologists can make inferences about the biology, 

phylogeography and demographic history of organisms (Sunnucks 2000). 

Previously single locus approaches have been widely used to investigate 

population genetics and locus specific effects (e.g. selection, mutation). Single
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locus techniques investigate specific genes or non-coding regions in either the 

mitochondrial (e.g. control region, Cytochrome Oxidase I gene) or the nuclear 

genome (e.g. ribosomal DNA internal transcribed spacer regions), or investigate 

allele frequencies of highly polymorphic loci (e.g. microsatellites). The single 

locus approach has several benefits: Low quantities of DNA can be used, data 

are comparable across taxa and it is relatively cheap and easy (Sunnucks 2000). 

Sequence data can detect both silent (i.e. synonymous changes that do not alter 

the amino acid) and non-silent changes (i.e. non-synonymous changes that 

result in a change in the amino acid) (Singh 2003). Markers giving both allele and 

haplotype frequency and sequence data can be informative over a range of 

timescales. However, analysing only a few loci can provide an incomplete or 

biased view of the genome and the population history. Recently, approaches 

looking at the whole genome have become more accessible. The genomic 

approach is an emerging discipline in non-model organisms and it combines 

genomic concepts and technologies with the population genetics objective of 

understanding evolution (Luikart et al. 2003).

1.6.1 Single Gene approaches

1.6.1.1 Mitochondrial sequence markers

Animal mitochondrial (mt) DNA is a small closed circular double stranded DNA 

molecule approximately 15 - 17 kb, but this varies among taxa (Ballard and 

Whitlock 2004; but see Burger et al. 2003). In most species it encodes 37 genes, 

24 of which encode the translation machinery of the mitochondrial DNA itself 

(Ballard and Whitlock 2004; Ballard and Rand 2005; but see Burger et al. 2003). 

The MtDNA gene content is considered conserved, and it contains no introns, 

intergenic sequences or interrupted genes (Moritz 1987) and its structure and 

organization have been well studied. Although in most mitochondrial genomes 

the gene content remains the same (but see Moritz 1987), there are several 

examples of large length variations in many phyla (reviewed by Burger et al. 

2003), resulting from insertions in the control region, duplication or deletion of 

sequences or replication slippage (Moritz 1987). Gene arrangement also varies
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in some taxa. There has been a major inversion in the mtDNA of sea stars 

compared to sea urchins of a 4.6 kb portion of the tRNA cluster, the 16S rRNA, 

and the ND1 and ND2 genes (Fig. 1.11). These two orders have been separated 

for at least 225 million years and so this rearrangement occurred after the 

separation as it does not occur in both orders. The sea urchin mtDNA gene 

arrangement is similar to that of the vertebrates with respect to gene order (Smith

1993).

T E

starfish

Figure 1.11. The sea star (starfish) mitochondrial genome showing the inversion 
of the gene arrangement between sea star and sea urchin (from Asakawa et al. 
1995).

The mitochondrial DNA molecule is haploid meaning that there is only one copy 

unlike nuclear DNA which has two copies of the genome. The major implication 

of the mitochondrial molecule being haploid is that because it is normally passed
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on only by half of the population through maternal inheritance (but see below) the 

effective population size when examining mitochondrial markers is only 0.25 the 

size of nuclear markers. This means that in most species, mitochondrial DNA 

would fix new alleles faster than nuclear DNA (summarized by Ballard and 

Whitlock 2004). Furthermore, most evolutionary rates for mtDNA are higher 

compared to nuclear genes (Birky et al. 1983), therefore making it possible to 

examine differentiation in populations or recently diverged species (Rokas et al.

2003). However, it is unsafe to assume that all evolutionary rates in the mtDNA 

genome are consistently higher than the nuclear genome. There are several 

factors that can affect the mtDNA evolutionary rate, including effective population 

size, mutational biases, availability of nucleotides in the cellular medium of the 

mitochondria and selection (Ballard and Whitlock 2004). Over or under

estimating the rate of evolution in mtDNA can lead to inaccurate phylogenetic 

inferences.

Within the mitochondrial genome itself, different rates of evolution of different 

mitochondrial genes and even parts of genes are observed, and this also varies 

across taxa. The ribosomal RNA genes (rRNA) within the mitochondrial genome 

are much simpler than the nuclear rRNA genes and have been used extensively 

because of their critical role in protein assembly, their universal occurrence and 

their sequences and secondary structure conservation. Their use in phylogenetic 

analysis can cover a wide range of divergence levels including the deepest levels 

of divergence. Due to the secondary structure of the ribosomal genes the rate of 

evolution of the rRNA genes varies considerably along the length of the 

molecule. Highly conserved nucleotide sites are associated with sites of 

ribosomal protein attachment, messenger RNA processing, tRNA attachment 

and core helices (Simon et al. 1994). Mitochondrial transfer RNA genes (tRNA) 

are also structurally and functionally constrained and therefore evolve more 

slowly than the mitochondrial protein coding genes. Again, like rRNA genes, 

different regions within the tRNA evolve at different rates, with the anticodon (AC) 

loop being most conserved and the ribothymidine pseudouridine cytosine (T)
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loop and T stem being the most variable regions. The rate of evolution varies 

among as well as within tRNA’s in different taxa (reviewed in Simon et al. 1994). 

These rate differences could result because tRNA’s that are adjacent to protein 

coding genes may play a punctuating role in protein processing.

The mitochondrial protein coding genes, including the Cytochrome Oxidase I 

gene, the gene under investigation in this study, are also used extensively in 

phylogenetic studies and in general are useful for examining divergence at the 

species or recently diverged species level. The main difference between 

mitochondrial protein and RNA genes is that protein genes possess a triplet code 

for the assembly of proteins. This function places strong constraints on 

nucleotide changes at first and second codon positions, but because of the 

degenerate nature of the amino acid code, many third, and some first codon 

positions are less constrained and have been observed to evolve at a higher 

rate. Substitutions at these positions are termed synonymous substitutions as 

they do not cause amino acid changes. Most mitochondrial genomes have a non

coding region called the control region (although the size and number of control 

regions can vary across taxa) which surrounds the origin of replication of the 

molecule (Simon et al. 1994). As these regions are non-coding they are more 

variable than other mitochondrial regions as they are not constrained by function. 

Due to this hyper-variability, the control region has been used in many 

phylogenetic studies and is useful for looking at the population or below species 

level in vertebrates (reviewed in Simon et al. 1994). However, in invertebrates 

this region can also be extremely variable in length, probably caused by the 

presence or absence of repeated sequence blocks.

Mitochondrial DNA occurs in every cell of the organism in multiple copies making 

it abundant and easy to amplify, even from small amounts of starting DNA. 

Pioneered by Avise et al. (1987) for the past three decades mtDNA has been 

used as a marker in thousands of population and evolutionary biology studies 

(reviewed by Ballard and Rand 2005). The reasons for its success as a
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phylogenetic marker are based on it being relatively easy to use in a wide variety 

of species, as well as the theoretical considerations outlined below. However, 

most, if not all of the theoretical assumptions about mitochondrial DNA have 

been questioned and in some cases disproved (outlined below).

1.6.1.1.1. Mitochondrial heteroplasmy

Although normally only one copy of the mitochondrial genome is present in all 

cells within an individual, heteroplasmy (where within a single cell there is a 

mixture of different mitochondrial haplotypes) (Bromham et al. 2003) has been 

detected for many animal and plant species (reviewed by Kmiec et al. 2006). 

Heteroplasmy can arise through paternal leakage, recombination or small scale 

mutations (Kmiec et al. 2006), and can lead to unreliable population or 

evolutionary inferences.

1.6.1.1.2. Paternal inheritance of the mitochondrial genome

In homogametic species, mtDNA normally is passed on only by the female, and 

as such it reflects matriarchal phylogenies in most species, providing an excellent 

marker for tracking patterns of colonization and founder events, which will not be 

influenced by male biased dispersal events (Harrison 1989). However, paternal 

inheritance (Bromham et al. 2003) has been shown to occur convincingly in 

mussels (Ladoukakis and Zouros 2001), some invertebrate species (Rokas et al.

2003), vertebrate cross species hybrids (Gyllensten et al. 1991; Kvist et al. 2002) 

and even humans (Kraytsberg et al. 2004). Mussels have ‘doubly uniparental 

inheritance’ (i.e. female offspring inheriting their mother’s mtDNA and male 

offspring inheriting both parents mtDNA) leading to heteroplasmic offspring 

(Rokas et al. 2003). The extent of this phenomenon across species is not known 

however it is thought to be restricted to a few exceptions (Bromham et al. 2003). 

However, the above discussion focuses on species which have separate sexes.
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In P. exigua the organism starts life as a male and turns into a female. Therefore 

the mitochondrial genome in the male and female part of the life cycle will be the 

same, negating the effects of maternal transmission in terms of population 

phylogenies.

1.6.1.1.3. Recombination in mitochondrial DNA

MtDNA lacks recombination and therefore is not affected by locus-specific effects 

(Luikart 2003; Rokas et al. 2003). However, in recent years recombination in 

animal mtDNA has become a hotly debated topic (Eyre-Walker et al. 1999; 

Macaulay et al. 1999, reviewed by Piganeau et al. 2004; Eyre-Walker 2000; 

Eyre-Walker and Awadalla 2001; Rokas et al. 2003). Some animal species do 

show evidence of mtDNA recombination which can cause serious problems 

when for example constructing phylogenies, inferring expansion events or dating 

most recent common ancestors (Rokas et al. 2003; Piganeau et al. 2004;). 

Furthermore, Rokas et al. (2003) suggest that the knowledge base of how 

common mtDNA recombination is in the animal kingdom is poor. The 

biochemical structures necessary for mtDNA recombination are present in the 

mitochondria (Ballard and Whitlock 2004). Since most approaches to 

phylogenetic analysis assume no recombination, mtDNA is an ideal phylogenetic 

marker. However, this lack of recombination means that when one part of the 

molecule is affected, it directly influences all other parts of the molecule, meaning 

that independent replication of data about a population history cannot be 

achieved using different sections of the mtDNA genome (Ballard and Whitlock

2004).

1.6.1.1.4. Mitochondrial DNA as a neutral marker

For many years mtDNA was considered a neutral marker and not affected by 

selection or mutation and therefore could be used to examine gene flow, 

biogeography, estimates of coalescence times and other stochastic effects 

(Ballard and Rand 2005). However, the assumption that mitochondrial DNA is 

neutral only reflects its ‘apparent’ neutrality. Non-synonymous base changes in
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the 1st or 2nd codon are often deleterious mutations which are disfavoured by 

selection. This results in mainly detecting only 3rd base mutations when 

screening populations (which do not change the amino acid), giving the false 

impression that mutations in the mitochondrial DNA are neutral and not affected 

by selection. The assumption that mtDNA is a neutral marker has been 

addressed in the context of hybrid zones (Moritz 1987) and for direct and indirect 

selection acting on the mtDNA itself (reviewed in Ballard and Rand 2005). Ballard 

and Whitlock (2004) reviewed the direct impact of mitochondrial haplotypes on 

fitness in copepods, mice, Drosophila and very extensively in humans. In the 

latter two taxa, there is evidence that environmental temperature could impact on 

mtDNA fitness (Nagata and Matsuura 1991; Mishmar et al. 2003). These authors 

suggest that mtDNA variants (particularly in the ATPase 6 gene) that reduce the 

coupling efficiency of oxidative phosphorylation would reduce ATP production but 

increase heat production. Somero (2002) also noted that mtDNA may be under 

selection for thermal tolerance as the external temperature in poikilotherms is 

experienced by the mitochondria and the relative fitness of the different 

genotypes is likely to change as a result. Given the potential for temperature 

variation across species ranges, including the South African Parvulastra species, 

temperature may play a role in selection acting on the mtDNA. Additionally, 

human mtDNA point mutations are often non-neutral and there is growing 

evidence that many diseases and phenotypes such as differences in sperm 

motility are caused by mtDNA mutations (Ballard and Whitlock 2004).

1.6.1.1.5. Mitochondrial gene genealogies not species genealogies

In the past it has been assumed that phylogenetic inference using mtDNA gives 

a true representation of a species or population demographic history, i.e. a 

mtDNA tree represents a phylogenetic tree and not a gene tree (Ballard and 

Whitlock 2004). However, the lack of recombination in mtDNA means that the 

entire molecule has the same history (or gene geneology), but this can give rise 

to errors in interpreting demographic histories since gene genealogies often differ 

from species genealogies (reviewed in Nichols 2001; Hudson and Turelli 2003).
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MtDNA may be unusual in the overall genealogy of the species as it may be 

affected by a number of processes including (i) sampling over possible 

coalescent processes, i.e. having incomplete lineage sorting due to the most 

recent common ancestor existing before the species split resulting in taxa being 

paraphyletic and some lineages of mtDNA occurring in more than one taxon 

(Ballard and Whitlock 2004); (ii) greater sensitivity to certain processes such as 

introgression from one species to another, which can cause signals from 

previous events to be erased and result in a significantly different genealogy than 

for most genes in the species (Ballard and Whitlock 2004); (iii) molecule-specific 

vicariant events such as selective sweeps (increase in the frequency of an allele 

caused by genomic selection, leading to a local excess of rare alleles) thus 

obscuring the typical mtDNA genealogy for that species (Ballard and Whitlock

2004). These problems can only be overcome by replicate sampling of 

independent gene trees (i.e. independent markers from the nuclear genome) 

which can represent different samples for the evolutionary process and therefore 

independent estimates of the species tree (Ballard and Whitlock 2004).

1.6.1.1.6. Nuclear copies of mitochondrial DNA (n u m t s )

Mitochondrial DNA is also known to insert into the nuclear genome (nuclear 

copies of mitochondrial DNA, num ts). Recently it has been hypothesized that 

many phylogenetic studies based on mitochondrial DNA may in fact be using 

num ts  instead of true mitochondrial DNA (reviewed in Bensasson e t al. 2001). If 

num ts  are sequenced instead of true mitochondrial DNA then no accurate 

phylogenetic inferences can be made about the evolution of the organism 

because num ts  have dissimilar constraints on substitution. As mtDNA primers 

may amplify both mtDNA and num ts  in the same organism, sequences which 

contain stop codons in coding genes indicate that nu m ts  are present and that 

sequences must be cloned prior to the data being used for phylogenetic 

inference.
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Despite the potential problems outlined above, the mtDNA molecule does 

provide an invaluable tool in phylogenetic studies and provides insights for some 

phylogenetic processes. However, the above discussion illustrates that mtDNA 

markers alone could prove misleading about population history and emphasizes 

the need to use several independent nuclear markers in conjunction with mtDNA 

to provide more accurate and reliable inferences about population history.

1.6.1.2 Nuclear sequence markers

Mitochondrial markers alone can provide an incomplete or biased view of a 

species demographic history therefore for many molecular ecology studies, the 

use of nuclear genes is advocated to give a more accurate representation of the 

overall structure (Lucchini 2003). Nuclear genes are thought to evolve more 

slowly than mitochondrial DNA and are therefore not as useful for intra-specific or 

recently diverged, closely related species (Hewitt 2004). Several neutral nuclear 

sequence markers have been used for population genetics, speciation or 

phylogeographic studies in marine invertebrates (Waters and Roy 2003; Waters 

et al. 2004b), including the cytoplasmic actin gene family introns, which have 

already been successfully used in a phylogenetic study of a Patiriella species 

complex (now the Meridiastra species complex, see Fig 1.1, Chapter 1), (Waters 

et al. 2004b). The cytoplasmic actin gene family play a role in cell structure and 

motility. As an intron, however, the actin intron is non-coding and is therefore 

assumed to be a neutral marker.

1.6.2 Genomic approaches

Population genomics exploit genome wide sampling to identify and to separate 

locus specific effects from genome wide effects such as drift, bottlenecks, gene- 

flow and inbreeding, to improve our understanding of microevolution (Luikart et 

al. 2003). Only genome wide effects inform us reliably about population 

demography and phylogenetic history, whereas locus specific effects help 

identify regions of the genome that are linked to traits involving fitness and
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adaptation. The two main principles of genomics are that neutral loci across the 

genome will be similarly affected by demography and the evolutionary history of 

populations, and that loci under selection will often behave differently and 

therefore reveal outlier patterns of variation (Luikart et al. 2003; Chapter 4 and 

references therein). The ideal molecular approach for population genomics would 

be to score hundreds of polymorphic markers that cover the entire genome in a 

single simple reliable experiment (Luikart et al. 2003). The technique that comes 

closest to matching these criteria, and is financially feasible within the timescale 

of the present project is Amplified Fragment Length Polymorphism (AFLP; Vos et 

al. 1995).

1.6.2.1 Amplified Fragment Length Polymorphisms (AFLP)

Amplified Fragment Length Polymorphism (AFLP) was developed in 1995 (Vos 

et al. 1995) and has since has become widely used in plant, fungi and bacterial 

genetics and is becoming increasingly used in population and evolution studies in 

the animal kingdom (Bensch and Akesson 2005 and references therein) 

including one phylogeographic study of sea stars (Baus et al. 2005). AFLP 

provides a cheap and relatively low cost method for the screening of a large 

number of markers across the genome to approximate genome wide variation 

(Lucchini 2003; Bensch and Akesson 2005). It requires comparatively short start 

up times and as such is a viable method for screening large numbers of loci. The 

technique can be used on DNA of any origin and complexity and because it relies 

on PCR very little starting DNA is required. No prior sequence knowledge is 

needed and the technique is robust, reliable and reproducible (Bensch and 

Akesson 2005). It can also be used to compare genetic diversity across taxa, 

which can prove difficult with microsatellites.

The major disadvantage with the AFLP technique is that the per-locus type of 

genetic information is relatively poor and cannot provide complete genotypic 

information for diploid organisms (Bensch and Akesson 2005). AFLP produces
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dominant data, meaning that presence or absence of a DNA fragment of a 

certain length can be detected at a given locus, but it is very difficult to separate 

between dominant homozygous (1/1, i.e. the allele being present in two copies) 

or dominant heterozygous (1/0, i.e. only one copy of the allele being present). In 

theory, dominant homozygous bands should be twice as strong as heterozygous 

bands, but in practice this is an unreliable method for detecting homozygosity or 

heterozygosity and therefore only presence or absence of a band can be 

recorded. A band can be absent from the data if there was a base substitution in 

the sequence corresponding to the restriction sites for the restriction enzyme, or 

in the sequence corresponding to the additional bases in the primers (see below) 

in the absent band but not the present band. However, several problems can 

arise in the interpretation of dominant data for population analyses. The 

assumption that the absent band really is absent from the data is used for most 

population analyses based on AFLP data, but this is not always the reason for 

the absence of the band. Other types of mutations e.g. indel variations or 

substitutions that create a new cut site for the restriction enzymes, may cause 

the DNA fragment to be a different length resulting in the bands being at a 

different position on the gel. If this occurs two alleles representing the same locus 

may be mistakenly scored as presence alleles at two different loci, thus violating 

the assumption in analyses of population structure and genetic diversity of 

independent replication (Bensch and Akesson 2005). This assumption can also 

be violated if size homplasy occurs i.e. bands of the same length are not 

homologous and therefore represent two or more different AFLP loci but appear 

on the gel to be one band.

The decision to use AFLP takes into account the trade off between poor per 

locus data and the integral biases when using dominant data (outlined above) 

with the ease with which numerous (>1000) loci can be generated. AFLP 

provides effectively the ability to screen the whole genome as opposed to the 

traditional and more common approaches of single locus techniques. AFLP can 

be used to screen hundreds of marker loci and address a variety of different
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problems such as DNA fingerprinting and parentage analysis; population or 

species level genetic structure and genetic diversity estimates; conservation and 

management of species; assignment of migratory individuals to populations; 

identifying hybridization or introgression; gene mapping and linkage; species 

phylogenies; population or species level genetic structure and genetic diversity 

estimates; and identifying loci affecting phenotypes or under selection (reviewed 

in Bensch and Akesson 2005). The latter three of these applications will be 

applied to the South African Parvulastra species in this study.

The AFLP method is based on the selective PCR amplification of restriction 

fragments from a total digest of genomic DNA (Vos et al. 1995). The technique 

follows three steps. Firstly, DNA digestion generally using two restriction 

enzymes, a rare cutter and a frequent cutter, which results in the predominant 

amplification of the restriction fragments which have a rare cutter on one end and 

a frequent cutter on the other. Two restriction enzymes are used in this way 

because the frequent cutter will generate small DNA fragments that will amplify 

well and are in the optimal size range for separation on denaturing gels. The rare 

cutter will reduce the number of fragments to be amplified as only the rare 

cutter/frequent cutter fragments are amplified (Vos et al. 1995). These restriction 

fragments then have double stranded ligated ends, which serve as binding sites 

for the PCR amplification. Secondly, selective amplification of sets of restriction 

fragments is performed, and finally the amplified fragments are analysed on a 

denaturing gel (Vos et al. 1995). As this method involves several steps, the 

potential to introduce error or contamination is high. However, as there are 

several steps, there are also several opportunities to check the accuracy of the 

results at different stages in the procedure. To monitor quality control, a portion 

of the preamplification product should be run on an agarose gel to check that the 

DNA has digested and amplified consistently, which should result in an even 

‘smear’ centred around the 200 bp intensity which is the same in all samples. 

Additionally both positive (using re-extracted DNA from the same individual) and 

negative (replacing the template DNA volume with sterile water) control samples
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should be included in each batch of samples processed. Using high quality DNA 

is also strongly advisable because degraded DNA may result in spurious bands 

which are not cut by the restriction site in a regular pattern and represent bands 

of differing lengths which are not comparable between samples (Bensch and 

Akesson 2005).

Another virtue of the AFLP technique is the ease by which the method can be 

adapted to address more specific questions, simply by changing the restriction 

enzymes, adaptors or primers. For example, the basic AFLP method has recently 

been adapted to identify simple single locus markers e.g. SNPs (Single 

Nucleotide Polymorphisms) (Meksem et al. 2001; Nicod and Largiader 2003) or 

sequence tagged sites (STSs) (Brugmans et al. 2003) which are both proving to 

be valuable markers. Microsatellites can also be isolated by using a primer which 

anchors to a simple sequence repeat (SSR) at the selective amplification stage, 

although the complex banding pattern makes it difficult to identify alleles. Further 

modifications of the method can be applied to compare gene expression using 

cDNA-AFLP (reviewed in Bensch and Akesson 2005).

1.7. Ph.D. Aims

This study assesses the systematic, taxonomic, phylogenetic and ecological 

issues surrounding the South African Parvulastra sea stars providing 

fundamental knowledge of population genetics, life history and selection. Using 

extensive ecological and genetic sampling, and a combination of phenotypic, 

genotypic and ecological data the overall aims are to:

1. Establish the number of distinct lineages within Parvulastra in South Africa 

using both morphological analysis and a variety of molecular markers to 

resolve evolutionary questions, specifically are (i) the different phenotypes 

of P. exigua genetically distinct? and (ii) P. exlgua and P. dyscrita 

separate taxonomic units? The ecology, distribution and phenotype of P. 

exigua will be investigated and compared to gonopore morphology and
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genotype. South African Parvulastra species will be discussed in the 

context of the global populations of P. exigua, the ‘Out of Africa’ 

hypothesis (Waters and Roy 2004), and the recent evidence of mixed 

gonopore position (Hart et al. 2006).

2. Estimate neutral phylogeographic structure within South African P. exigua, 

specifically addressing the question - Is geographic variation in colour 

polymorphism due to neutral factors such as genetic drift, founder effect or 

migration (as opposed to being the result of selective forces)? Neutral 

phylogeographic structure will be compared to the biogeographic 

provinces, phenotypic distribution and ecological differences among 

habitat types, and discussed with reference to past processes and 

phenotypic adaptation and plasticity.

3. Identify AFLP loci within P. exigua which may be linked to genomic 

regions subject to diversifying or stabilizing selection. The allele 

frequencies of such loci will be examined across populations and 

compared to the neutral phylogeographic and phenotypic structure to 

elucidate potential selective forces. The influence and strength of the 

effects of these loci on the population structure will be assessed.

Chapters two, three and four are written as stand-alone entities and will be 

condensed and reformatted with the intention of submission for publication.
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2.1. Abstract

The Family Asterinidae (Grey 1840) is one of the most speciose and 

reproductively diverse families of marine invertebrates. Two species of the genus 

Parvulastra are recognised in South Africa, Parvulastra exigua and Parvulastra 

dyscrita. However, taxonomic confusion, paradoxical geographic distributions, 

intra-specific colour variation, morphological diversity and variation in gonopore 

position, used as an indicator of reproductive mode, suggest that either P. exigua 

and P. dyscrita are synonymous, or there are cryptic Parvulastra species within 

South Africa. Using morphological observations of gonopore position, and both 

mitochondrial and nuclear sequence data, this study suggests that South African 

P. dyscrita and P. exigua are separate species; however both species contain 

several distinct reciprocally monophyletic groups. Genetic evidence indicates that 

P. exigua in South Africa encompasses at least one additional ‘cryptic’ species 

which has an extremely limited geographic distribution. Further morphological 

and genetic investigations into P. exigua and P. dyscrita are needed to ascertain 

whether there are further cryptic lineages within the genus Parvulastra in South 

Africa.
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2.2. Introduction

Largely as a result of the use of molecular markers, it has become evident that 

many marine taxa contain cryptic species (Knowlton 2000). Resolution of such 

species is particularly common amongst taxa showing phenotypic diversity 

(O’Loughlin et al. 2003), with extensive distributions (Spooner and Roy 2002; 

Hart et al. 2003), occurring across biogeographic divides (reviewed in Briggs 

2006), inhabiting heterogeneous environments where the potential for local 

adaptation is high (reviewed in Schluter 2001), or having poorly studied ecology 

or life histories. Establishing the phylogenetic structure of marine species and 

identifying cryptic species may provide insights into barriers to gene flow, 

reproductive isolating mechanisms, marine genetic biodiversity and may as a 

result aid conservation (Palumbi 2003, 2004). Moreover, taxonomic identity is an 

essential prerequisite prior to further population, ecological or genetic 

investigations (reviewed in Knowlton 1993; Palumbi 1994).

The Asterinidae is one of the most speciose and diverse families of marine 

invertebrates containing 21 genera and 116 species worldwide (O’Loughlin and 

Waters 2004). This family contains the greatest diversity of larval types and life 

histories known among extant sea stars (Hart et al. 1997). It has been suggested 

that parallel changes in life history, habitat and dispersal potential have occurred 

during the evolution of this family (Byrne 1992; Chen and Chen 1992; Hunt 1993; 

Byrne 1995; Byrne 1996; Hart et al. 1997; Hart 2000; Jeffery et al. 2003) and that 

changes in larval developmental strategies may have driven speciation (Byrne et 

al. 1999). Small genetic distances between lineages with different developmental 

modes suggest some of these changes have been recent or rapid (Hart 2000; 

Byrne 2006).

Historically, the systematics of the Asterinidae has been confounded by the use 

of unreliable morphological characteristics that may be subject to selection, 

phenotypic plasticity or homoplasy (O’Loughlin and Waters 2004), prompting
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researchers to develop molecular markers (Hart et al. 1997; Dartnall et al. 2003; 

Waters and Roy 2003, 2004a, b; O’Loughlin and Waters 2004; Waters et al. 

2004a, b). Morphological and molecular systematic revisions of this family 

(reviewed in O’Loughlin and Waters 2004) have resulted in several new genera, 

the re-assignment of several species to new genera and the identification of 

several cryptic species complexes (Campbell and Rowe 1997 cited in O’Loughlin 

et al. 2002; O’Loughlin 2002; Dartnall et al. 2003; Hart et al. 2003; Waters et al. 

2004a).

2.2.1. Parvulastra diversity

The newly described genus Parvulastra (O’Loughlin and Waters 2004) contains 

five species, and displays three different life history modes, including the most 

derived and rare form in sea stars, viviparity (intra-gonadal development and 

production of live young). Parvulastra vivipara and P. parvivipara have ‘crawl 

away’ juveniles, poor dispersal capabilities and very limited geographic 

distributions, being endemic to Australia (Dartnall 1969 cited in Dartnall et al. 

2003; Keough and Dartnall 1978). Parvulastra calcarata is thought to have 

planktonic larvae and is endemic to Juan Fernandez Island (O’Loughlin and 

Waters 2004). Parvulastra dyscrita (Clark 1923) is also considered to have 

planktonic larvae but is endemic to South Africa. Parvulastra exigua (Lamarck 

1816) has ‘crawl away’ juveniles and poor dispersal capabilities, but 

paradoxically has an extensive southern hemisphere distribution including 

Australia, South Africa and several oceanic islands. The distribution of the South 

African Parvulastra (P. exigua, distributed between Namibia and Mozambique, 

covering 3,000 km of coastline and P. dyscrita, distributed between Cape Point 

and Port Alfred in South Africa, covering 800 km of coastline) is surprising 

because marine invertebrate species with benthic life histories (such as P. 

exigua) are thought to have restricted geographic distributions, poor dispersal 

ability and high inter-population genetic differentiation (Riginos and Victor 2001; 

Sponer and Roy 2002). Species with planktonic dispersal abilities (such as P. 

dyscrita) are, in contrast, thought to be panmictic over large geographic areas
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(Booth and Ovenden 2000). Therefore, it is unknown how P. exigua has obtained 

such an extensive distribution, or why P. dyscrita has a more limited distribution 

than P. exigua when it has the potential to disperse widely.

The paradoxical global distribution of P. exigua led Waters and Roy (2004a) to 

investigate the phylogeography of this species and to propose their “Out of 

Africa” hypothesis. This hypothesis proposes that P. exigua has an African 

ancestral origin and subsequent founder events, followed by population 

expansion, gave rise to the Australian and oceanic island populations via the 

west wind drift. Despite large genetic distances between the P. exigua 

populations on different land masses, Waters and Roy (2004a) do not suggest 

that the populations of P. exigua are divergent enough to warrant separate 

species status. However, Colgan et al. (2005) and Hart et al. (2006) have 

seriously questioned the ‘Out of Africa’ hypothesis suggesting that cryptic 

species could be present within P. exigua, obscuring the true phylogeography 

and dispersal of P. exigua.

2.2.2. Parvulastra in South Africa

With two out of the five Parvulastra species occurring in South Africa, the 

postulated ancestral origin of P. exigua being South Africa and speculation that 

more species will be found within the asterinids as investigations proceed 

(Dartnall et al. 2003), there is a clear gap in our knowledge regarding the 

systematics, phylogeny and ecology of South African Parvulastra species. All 

current knowledge of P. exigua population genetics (Hunt 1993; Colgan et al. 

2005), life history traits (Hunt 1993; Byrne 1995; Hart et al. 1997) ecology 

(Branch and Branch 1980) and phylogeography (Waters and Roy 2004a; Colgan 

et al. 2005) is based on Australian populations.

In South Africa, P. exigua has an intertidal distribution stretching from the 

Namibian to the Mozambique border (Fig. 2.1) and displays striking phenotypic 

divergence. On the west coast this species is largely unmottled and greenish or
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dark in colour, whereas on the south and east coasts, populations exhibit a wide 

diversity of mottled patterns varying in colour (Branch et al. 1994; pers. obs. see 

Chapter 1). Only the unmottled morph occurs in Australia and the mottled 

phenotype is endemic to South Africa. Parvulastra dyscrita occurs sympatrically 

within P. exigua’s geographic distribution from Cape Point to Port Elizabeth 

(Branch et al. 1994) (Fig. 2.1) and is mainly subtidal, but in some locations can 

be found sympatrically in the low intertidal with P. exigua. Parvulastra dyscrita is 

about twice the size of P. exigua but otherwise similar in appearance to the 

mottled morph of P. exigua (see Branch et al. 1994). The phenotypic and 

ecological similarities between the two species have led to taxonomic confusion, 

which has never been resolved (reviewed by Dartnall 1971; Colgan et al. 2005; 

Hart et al. 2006), despite many South African workers and textbooks identifying 

them as separate species (Branch and Branch 1981; Branch et al. 1994; C. 

Griffiths pers. comm.)

Recently this taxonomic confusion has been confounded by the discovery of 

museum specimens of P. dyscrita and P. exigua with different gonopore 

morphology, a key species diagnostic character. Parvulastra exigua (in Australia) 

possesses oral gonopores and produces eggs which give rise to benthic larvae 

(Byrne 1995; Hart et al. 1997; Waters and Roy 2004a; Colgan et al. 2005). 

Parvulastra dyscrita possesses aboral gonopores and is thought to produce 

planktonic larvae (Dartnall 1971). The gonopore location and reproductive mode 

of the African P. exigua populations, although not examined, were assumed to be 

the same as the Australian populations. However, Hart et al. (2006) identified 

both oral and aboral gonopores from museum specimens of P. exigua collected 

in South African and Island populations, but not Australian populations. 

Unfortunately, no genetic data were obtained from the museum specimens of P. 

exigua with aboral gonopores, and it is unknown if some specimens were 

misclassified (and are possibly P. dyscrita or represent cryptic species).
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South Africa has a highly heterogeneous intertidal environment characterized by 

a steep temperature gradient. This, coupled with the continuous distribution and 

low dispersal ability relative to the geographic range of P. exigua, provides 

conditions in which local adaptation and speciation are likely (Schluter 2001). 

Preliminary observations of P. exigua indicate the colour morph divergence 

coincides with the Cape Peninsula biogeographic divide which separates the cold 

west coast province from the warm south and east coasts provinces (Jackson et 

al. 1976; Brown and Jarman 1978; Emanuel et al. 1992; Branch etal. 1994; Hiller 

1994; Bustamante and Branch 1996; Neraudeau and Mathey 2000). This 

phenotypic divergence may be the result of ecological adaptation, phenotypic 

plasticity or may be an indicator of cryptic species separated by a barrier to gene 

flow around Cape Point. Recent studies (Hunt 1993; Colgan et al. 2005) indicate 

that the P. exigua populations in Australia and Tasmania have marked inter

population variation, accompanied by high frequencies of patchily distributed 

alleles, which suggests an increase in the effects of genetic drift and a higher 

potential for localized selection (Hunt 1993). There have, however, been few 

studies addressing phylogeographic barriers to gene flow and cryptic speciation 

in intertidal marine invertebrates in South Africa, despite examples of phenotypic 

differentiation occurring across biogeographic divides (Ridgway et al. 1998; 

Ridgway etal. 2000; Laudien etal. 2003; Tolley etal. 2005).

2.3. Aims

Given the phenotypic (colour and gonopore) diversity and taxonomic confusion 

within and between P. exigua and P. dyscrita, further investigation into the 

phenotypic and genetic structure of the African Parvulastra is necessary in order 

to phylogenetically place them in the context of the global populations of P. 

exigua. Using molecular (partial mitochondrial Cytochrome Oxidase I sequences 

and partial intron 3 of the nuclear actin gene sequences) and gonopore data, this 

study addresses two questions.
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1. Are P. exigua and P. dyscrita really different taxa, and is there any genetic 

or phenotypic evidence to indicate cryptic molecular diversity and possibly 

additional Parvulastra taxa within South Africa?

2. Explore the phylogeography and systematic relationship between the 

African Parvulastra and the global populations of P. exigua in order to 

discuss the validity of the ‘Out of Africa’ hypothesis (Waters and Roy 

2004a) and the ambiguous ‘P. exigua’ gonopore data observed by Hart et 

al. (2006).

The region around the Cape Peninsula in the Western Cape of South Africa was 

chosen as the primary sampling location for this study because (i) the colour 

morph divergence within P. exigua is found in this region, occurring across this 

well characterized biogeographic divide and (ii) P. dyscrita occurs on the eastern 

side of the Peninsula but not the west.
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2.4. Materials and Methods

2.4.1. Sampling

Three colour morphs (unmottled, intermediate and mottled) for Parvulastra 

exigua (Fig. 1.3, Chapter 1) were identified apriori, and preliminary field 

observations revealed a colour morph geographic transition zone roughly 

coinciding with Cape Point. Therefore sampling locations either side of Cape 

Point were selected to collect samples for genetic analyses (Fig. 2.1, Table 2.1). 

The sampling was conducted on low spring tides between July and August 2001.

Mozambique
border

50 km
Green Point

Gordans BayNamibian border
Kommetjie

Wooleys Pdpl

Buffels Bayi 
Good H ope*^  Platbank (

Platboom

Bettys Bay

Western Cape' sampling locations

Port St. JohnsSouth Africa
Schappen Island 

Yzerfontein

Cape Peninsula Port Elizabeth
(no sampling at this location)Mossel Bay

Cape Agulhas 250 km

False Bay

Figure 2.1. Map of the Western Cape, showing sampling locations for Parvulastra 
exigua and P. dyscrita.
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Sampling location Samples collected for genetic analysis
P. exigua P. dyscrita

Schappen Island Yes No
Yzerfontein Yes No
Green Point Yes No
Kommetjie Yes No
Plat boom Yes No
Good Hope Yes No
Platbank Yes No
Buffels Bay Yes Yes
Wooleys Pool Yes Yes
Gordans Bay Yes Yes
Bettys Bay Yes No
Cape Agulhas No Yes
Mossel Bay No Yes
Port St. Johns Yes No

Table 2.1. Sampling locations for Parvulastra exigua and P. dyscrita.

Parvulastra exigua samples of each phenotype (unmottled, intermediate and mottled) 

were collected for genetic and morphological analyses from tide pools at all 12 

sampling locations. Photographs were taken of all P. exigua samples collected for 

genetic analyses. Parvulastra dyscrita samples were collected from the subtidal and 

intertidal zones by snorkel and SCUBA from Buffels Bay, Mossel Bay, Cape Agulhas, 

Gordans Bay and Wooleys Pool. All samples were saturated in 100% ethanol and 

stored at-80°C prior to DNA extraction.

2.4.2. Gonopore Analyses

A subset of P. exigua samples (7 individuals from Western Cape sampling locations; 

nine individuals from east coast Port St. Johns, seven individuals from Kommetjie) 

and P. dyscrita samples (8 individuals) were examined for gonopore location using a 

stereo-microscope. The number of gonopores visible on the oral surfaces of the sea 

stars was recorded by two independent observers. The aboral surface of the animals 

was not examined as the gonopores on this surface are difficult to identify reliably 

without dissection (A. Dartnall pers. comm. 2005).
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2.4.3. DNA extraction, Cytochrome Oxidase I (COI) and Actin Intron 
amplification and sequencing

DNA extractions were performed using either a Qiagen DNeasy tissue purification kit 

(Qiagen) according to the manufacturer’s instructions, or by phenol-chloroform and 

CTAB purification (Arndt et al. 1996). The DNA was re-suspended in 100 pi TE buffer 

and treated with RNAase (20pg/pl) at 55°C for 1 h. Novel primers (P.ex.COI.29F (5’ 

CCA AAC ACA AGG ACA TAG GAA 3’) and P.ex.COI.575B (GCG GTA ACG AAT 

ACG GAT CA) were designed to amplify approximately the first 500 bases of the COI 

gene sequence from an Australian specimen of P. exigua (Accession number 

U50053: Hart et al. 1997) using p r im e r  v s . 3 (Rozen and Skaletsky 2000) and the 

web software Oligonucleotide Properties Calculator (www. basic, northwestern 

.edu/biotools/oligocalc.html). Introns of the cytoplasmic actin gene have previously 

been used to study a Parvulastra species complex in southern Australia (Waters et al. 

2004b), and therefore this nuclear marker was selected for the present study. A 427 

bp region of intron 3 of the gene was sequenced using primers Actin Intron 3 2FB (5’- 

CTTT C ACC AC C AC Y G GT GAGA -3’) and Actin 3R (5 -  TTGSWGATCCACATCTG - 

3’) (Waters et al. 2004b).

All PCRs were performed in a PE 9700 thermal cycler. COI amplification was 

performed using the following program: 94°C for 5 min; followed by 94°C for 30 

seconds, 50°C for 30 seconds, 72°C for 1 min for 35 cycles with a final extension of 

72°C for 10 min. The reaction conditions were 1x PCR buffer, 1.5 mM MgC^, 0.2 mM 

dNTPs; 1 pM of each primer; 0.1U Taq (Invitrogen); and 1 pi DNA template (diluted 

between 1/10 and 1/1000) in a final volume of 15 pi. Actin Intron amplification was 

obtained using the following program: 94°C for 5 min; followed by 94°C for 1 min, 

53°C for 30 seconds, 72°C for 30 seconds for 35 cycles with a final extension of 72°C 

for 10 min. The reaction conditions used were 1x PCR buffer, 1.5 mM MgCh; 0.2 mM 

dNTPs; 0.5 pM of each primer; 1 U Taq; 1 pi DNA template (diluted between 0 and 

1/100) in a final volume of 15 pi.
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PCR products were purified using a BIO 101 Geneclean Turbo For PCR Kit (Q- 

BlOgene) or using the enzymes Exonuclease I and shrimp alkaline phosphatase 

(Amersham Biosciences) according to the manufacturer’s instructions. Sequencing 

PCRs were performed in 7.5 pi reactions. The PCR program involved an initial 

denaturation at 96°C for 1 min 30 seconds for 1 cycle, followed by denaturation at 

96°C for 10 seconds; annealing at 50°C for 5 seconds; extension at 60°C for 4 

minutes for 25 cycles. Both forward primer and reverse primer reactions were 

performed. The reaction conditions were as follows: PCR H2O and template 

combined 3 pi; Better Buffer (Web Scientific Ltd) 2.5 pi; Big Dye 0.5 pi (ABI PRISM® 

Big Dye ™ Terminator dye vs. 3.1); 1.5 pi of either the forward or reverse primer (1.6 

pM). An ABI Prism 3100 Genetic Analyzer (Applied Biosystems) was used for the 

sequencing according to the manufacturer’s instructions. Both the COI and Actin 

Intron forward and reverse sequences were separately aligned in S e q u e n c h e r  v s . 

3.1.2 (GeneCode Corp.) and verified by eye.

2.4.4. COI haplotype identification

The COI alignment chromatograms were examined for ambiguous nucleotide 

positions. Where ambiguous positions were evident, products were cloned using the 

TA Cloning kit for PCR (Invitrogen), with One Shot TOP 10 chemically competent 

cells (Invitrogen) following manufacturer’s instructions and the forward sequence of 

the colony insert was sequenced for six colonies within each sample. Identification of 

COI haplotypes, polymorphic loci and amino acid reading frame was limited to 

confidently aligned fragments that contained no ambiguous nucleotide positions 

(except for the cloned samples, see results). This meant that the COI fragment length 

used in the phylogenetic analyses was 358 bp. The amino acid reading frame was 

identified by aligning the full COI gene (Accession no. U50053) to the COI sequences 

identified in the present study in S e q u e n c h e r  v s . 4.12 (GeneCode Corp.) and 

checking the echinoderm mitochondrial genetic code for stop codons and amino acid 

changes.
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2.4.5. Actin intron allele identification

The actin intron sequences were produced in genotype format displaying double 

peaks on the chromatograms where single nucleotide polymorphisms (SNP) were 

present between the alleles. To infer the allelelic phase of the genotype data, the web 

based software h a p  (Halperin and Eskin 2004) was used. Indels were excluded from 

the allele inference as the program was unable to process indels, instead they were 

treated as informative presence/absence markers.

2.4.6. Phylogenetic Analyses

Three datasets were used for the phylogenetic analyses. The first dataset used the 

358 bp COI sequences obtained in the present study. The second dataset consists of 

a 244 bp COI alignment of African Parvulastra sequences (obtained in this study) with 

previously published sequences from the global P. exigua distribution (Waters and 

Roy 2004a: Accession No’s. AY396051 - AY396074 and AY397622 - AY397643). 

The third dataset consisted of an alignment of 427 bp of the actin intron sequences. 

The three datasets will be referred to hereafter as the 358 bp COI, 244 bp COI and Al 

datasets.

To assess the genetic structure of P. exigua and P. dyscrita and identify haplogroups, 

minimum spanning networks and median joining networks were constructed. The 

former were produced for all three datasets using the software TCS vs. 1.13 (Clement 

et al. 2000). This method identifies haplotypes that cannot be reliably connected to 

each other at the 95% plausibility level, a measure often interpreted as evidence of 

separate species (Tarjuelo et al. 2004; Uthicke et al. 2004; Hart et al. 2006) and also 

assigns an ‘out-group weighting’ to each haplotype, which is an indicator of 

divergence. Four other Parvulastra species COI sequences (P. vivipara, Accession 

no. U50054, Hart et al. 1997; P. parvivipara, Accession no. U50055, Hart et al. 1997; 

P. regularis, Accession no. U50045, Hart et al. 1997; and Meridiastra mortenseni, 

Accession no. AY370750, Waters et al. 2004a) were included as outgroups in the 

minimum spanning network. Secondly, median joining networks (Bandelt et al. 1999)
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were constructed using the two COI datasets using the software n e t w o r k  v s . 4.1.1.2. 

(www.fluxus-engineering.com). This method shows the relationship between the 

haplotypes and the number of individuals possessing each haplotype.

To more rigorously explore the phylogenetic relationships among the haplotypes 

detected, a maximum likelihood phylogeny was constructed to assess both genetic 

structure and the level of bootstrap support for the haplogroups identified by the 

networks. The Akaike Information Criterion (AIC) in Model test 3.06 (Posada and 

Crandall 1998) was used to select the GTR+I+G model of sequence evolution with 

base frequencies: A=0.28; G=0.18; T=0.28; c=0.26; Proportion of invariable sites (I) = 

0.5691; and Gamma shape distribution parameter = 2.3385. Six outgroups were 

included in the model selection and Maximum Likelihood analysis. Parvulastra 

parvivipara and P. vivipara were included to represent the most closely related 

species to P. exigua and P. dyscrita (see O’Loughlin and Waters 2004). Asterina 

gibbosa (Accession No. U50053, Hart et al. 1997) was included as a distant outgroup 

to root the tree and P. regularis (Accession No. U50045, Hart et al. 1997), M. 

mortenseni (Accession No. AY370750, Waters et al. 2004a) and Stegmaster inflatus 

(Accession No. AY370743, Waters et al. 2004a) were included as species with an 

intermediate level of phylogenetic similarity, to give the tree structure on three levels. 

The tree was constructed for the 244 bp COI dataset only, using the heuristic option 

with 10 replicates of random sequence addition in PAUP*4.0b10 (Swofford 1998). 

Phylogenetic confidence in the topology was assessed by bootstrapping (Felsenstein 

1985) using the software PAUP DOS (Swofford 1998) with heuristic analysis of 100 

maximum likelihood replicate datasets.

An analysis of molecular variance (AMOVA: Excoffier et al. 1992) was carried out to 

assess the partitioning of variation within and among apriori defined groups and was 

calculated using a r l e q u in  v s . 3. (Excoffier et al. 2005: 

http://cmpg.unibe.ch/software/arlequin3) using 1000 permutations. To assess 

indicative inter-haplogroup and inter-specific genetic divergence, Tamura-Nei 

pairwise distances (Tamura and Nei 1993) between haplogroups were calculated in
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MEGA3 (Kumar et al. 2004). The Tamura-Nei model corrects for multiple hits, taking 

into account the differences in substitution rate between nucleotides and the 

inequality of nucleotide frequencies. It distinguishes between transitional substitution 

rates between purines and transversional substitution rates between pyrimidines. It 

also assumes equality of substitution rates among sites (Kumar et al. 2004). The inter 

haplogroup distances were calculated for both COI datasets (358 and 244 bp). Three 

outgroups were included for inter-specific comparisons, Parvulastra vivipara, P. 

parvivipara and Patiriella regularis.
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2.5. Results

2.5.1. Gonopore Analyses

All 23 Parvulastra exigua specimens examined had visible gonopores on their oral 

surface, but there was considerable variation in the number of gonopores detected 

per specimen (ranging from 2-10). Four of the nine specimens from the east coast of 

South Africa; four out of the seven Kommetjie P. exigua specimens and three out of 

the seven Western Cape P. exigua specimens had £8 gonopores visible. Of the eight 

P. dyscrita samples examined, seven had no visible gonopores on their oral surfaces, 

and one had gonopore like structures in the same location that the gonopores were 

found in the P. exigua specimens. This P. dyscrita specimen was much smaller than 

the other P. dyscrita specimens, but possessed a P. dyscrita COI genotype.

2.5.2. Ambiguous nucleotide positions within the COI 
chromatograms

Ambiguous nucleotides were evident from the COI chromatograms of 12 individuals 

from the sampling location Kommetjie only, and were not observed in individuals from 

any other location. A subset consisting of six of the individuals with ambiguous 

nucleotide positions was cloned and the forward sequence of the colony insert was 

sequenced for six colonies within each individual, yielding 27 sequences of readable 

quality from the 36 colonies sequenced. Only one of the six individuals cloned yielded 

all colonies with an identical sequence. The other five individuals yielded between two 

and five different sequences from the colonies. Within the six colonies sequenced per 

individual, one sequence was common to all individuals and appeared between one 

and four times in the colonies sequenced (Table 2.2).

The ambiguous peaks could indicate either (i), mitochondrial DNA that has been 

transposed into the nuclear genome (n u m t s ), (ii) paternal leakage, or (iii) 

heteroplasmy.
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No. colonies 
sequenced

No. of 
‘readable’ 
sequences 
obtained

No. of 
unique 

sequences 
within 
each 

individual

No. of colonies 
yielding most 

common 
sequence

Individual 1 6 5 3 3
Individual 2 6 5 5 1
Individual 3 6 6 4 3
Individual 4 6 4 1 4
Individual 5 6 5 2 4
Individual 6 6 2 2 1

Total 36 27 18 16

Table 2.2. Sequence results from the cloning of a subset of six Parvulastra exigua 
Kommetjie individuals which displayed ambiguous nucleotide positions on the COI 
chromatograms.

To test for the presence of n u m t s , the colony sequences were aligned with the amino 

acid reading frame and checked for stop codons, non-synonymous substitutions and 

unusual amino acid substitutions. The most common sequence was aligned with the 

most common haplotype present in the remaining P. exigua samples. These two 

sequences differed by 34 out of 363 bp. However, all the substitutions were 

synonymous (and at the 3rd codon position) and the amino acid sequence was 

conserved, despite the large sequence divergence. Eight of the remaining 11 colony 

sequences contained between one and 14 non-synonymous substitutions, and one of 

these contained a stop codon. Three remaining colony sequences contained only 

synonymous substitutions, appeared only once and were present in separate 

individuals. On the basis of this sequencing evidence, it was concluded that the most 

common haplotype found in 16 out of the 27 colony sequences obtained was most 

likely the ‘correct’ mitochondrial haplotype, and this was then assigned to the 12 

individuals from Kommetjie for the remainder of the analyses. The additional 

sequences obtained from the colonies were considered to be n u m t s  or heteroplasmic 

sequences and were discarded from further analysis.
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2.5.3. Cytochrome Oxidase I (COI) Sequence variation

One hundred and fifty seven Parvulastra exigua individuals were sequenced for a 358 

bp region of Cytochrome Oxidase I yielding 28 haplotypes (Table 2.3), and 35 P. 

dyscrita individuals yielded eight haplotypes (Table 2.4). All polymorphic sites for both 

species were synonymous substitutions. An alignment of the sequence ambiguities 

between the 358 bp dataset haplotypes is shown in 2.9. Appendices 2 and 3.
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Table 2.3. Haplotype identification and sampling location for Parvulas 
partial Cytochrome Oxidase I subunit sequences.
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Table 2.4. Haplotype identification and sampling location for Parvulastra dyscrita 
partial Cytochrome Oxidase I subunit sequences.

A further 11 P. exigua sequences (and six additional haplotypes) from Waters and 

Roy’s (2004a) study were aligned with the sequences from this study and the 

overlapping portion of the two sequence sets comprises the 244 bp COI dataset. The 

shorter length of the 244 bp dataset resulted in the re-grouping of ten of the 358 bp 

haplotypes into just two 244 bp haplotypes because the polymorphic nucleotides 

were in the portion of the fragment that was trimmed (Table 2.5). Eight haplotypes 

identified from the 358 bp dataset (which differed from haplotype 1 by only one 

substitution) were re-grouped into a new haplotype, named SA Main. Haplotypes 25 

and 26, which differed from each other by only one substitution were also re-grouped, 

along with two haplotypes (VICVO, SAFPJ) from Waters and Roy (2004a). An 

alignment of the sequence ambiguities between the 358 bp dataset haplotypes and 

the 244 bp dataset is shown in 2.9. Appendix 2 and Appendix 3.
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244 bp
haplotype
names

Samples represented in the new and re-grouped Parvulastra
exigua haplotypes

n Geographic locations 
represented in the haplotypes

SA Main Haplotypes 1, 7, 8, 11, 15, 16, 21, 24 (all from the 358 bp dataset) 98 Western Cape South Africa
25/26 Haplotypes 25 and 26 (from the 358 bp dataset) 

VICVO, SAFPJ (from Waters and Roy 2004)
7 Port St. Johns (east coast South 

Africa), Victoria (Australia)
TASTW TASTW1, TASTW3 (from Waters and Roy 2004) 2 Tasmania (Australia)
LH LH1, LH3 (from Waters and Roy 2004) 2 Lord Howe Island
SAFDB SAFDB1, SAFDB2 (from Waters and Roy 2004) 2 Upper east coast South Africa
SH1 SH1 (from Waters and Roy 2004) 1 St Helena Island
AM1 AM1 (from Waters and Roy 2004) 1 Amsterdam Island
AM2 AM2 (from Waters and Roy 2004) 1 Amsterdam Island

Table 2.5. Parvulastra exigua haplotype identities using 244 bp of COI sequences from the present study and from Waters 
and Roy (2004a).
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2.5.4. Actin Intron (Al) sequence variation

A 427 bp region of the Al was sequenced from 57 P. exigua individuals and 29 

genotypes were identified. Twenty-five individuals were homozygotes for six different 

alleles. Thirty-two individuals were heterozygotes and the h a p  software identified a 

further 16 alleles within the heterozygotes, making a total of 22 P. exigua alleles. The 

heterozygotes contained between one and five polymorphic loci. A four bp indel was 

present in six of the individuals which shared one very divergent homozygote Al 

genotype. These six individuals were also found to contain the COI n u m ts  or 

heteroplasmy (see above) and were all recorded as intermediate phenotypes from the 

sampling location Kommetjie.

Within the five P. dyscrita individuals sequenced, five genotypes were present, all 

individuals were heterozygotes and from these the h a p  software identified seven 

alleles. All further analyses for the Al marker for both P. exigua and P. dyscrita were 

conducted using the allelic data.

2.5.5. Phylogenetic Analysis

2.5.5.1. COI Networks

The haplogroups identified by the minimum spanning and median joining networks 

(using the 244 bp dataset were labelled (Table 2.6) and will be referred to by these 

labels hereafter).
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Haplogroup
name

Abbrv n sampling locations represented 
in haplogroup

Source of data

P. exigua 
western Cape

PeWC 138 Yzerfontein, Green Point, 
Kommetjie, Platboom, Good Hope 
Platbank, Buffels Bay,
Wooleys Pool, Gordans Bay, 
Bettys Bay, Schappen Island

358 bp COI data

P. exigua 
Global

PeG 16 Port St. Johns, South Africa 
Durban, South Africa 
All samples from Australia, 
All samples from Tasmania, 
St Helena Island,
Lord Howe Island

358 bp COI data 
Waters and Roy 

2004a
u
u
u
tf

P. exigua 
Kommetjie

PeK 12 Haplotype 6 identified in 12 / 26 
samples from Kommetjie

358 bp COI data

P. exigua
Amsterdam
Island

PeAl 2 All samples from Amsterdam 
Island

Waters and Roy 
2004a

P. dyscrita 
West

PdW 31 Buffels Bay, Gordans Bay, 
Cape Agulhas

358 bp COI data

P. dyscrita 
East

PdE 4 Cape Agulhas, Mossel Bay 358 bp COI data

Table 2.6. Parvulastra haplogroups identified from the Minimum Spanning Network 
and the Median Joining Network for the 244 bp COI dataset, with the sample size (n) 
and group name abbreviation (Abbrv).

The Minimum spanning network (MSN) and Median Joining Network (MJN) using 

both the COI datasets (244 bp dataset, MJN shown in Fig. 2.2; 244 bp dataset MSN 

shown in Fig. 2.5 Appendix 2.9; 1; 358 bp dataset networks not shown) showed a 

similar overall structure. The MSN based on the 244 bp dataset indicated five 

networks at the 95% plausibility level (>6 substitutions). One of these networks was 

subdivided into two groups, making a total of six haplogroups. The network containing 

the two sub-groups, contained both P. exigua individuals from geographically 

widespread locations and P. dyscrita individuals. Although connected at the 95% level 

in the MSN, these sub-groups will be treated as separate haplogroups (PeG and 

PdW) because of the difference in gonopore position (see Discussion). The MJN for 

the 244 bp dataset showed the relationship between the six haplogroups.
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The MSN using the 358 bp dataset indicated the same haplogroups identified using 

the 244 bp dataset (except the Amsterdam Island samples, from Waters and Roy 

2004a, which were not included in this dataset). The haplogroup pattern for the 358 

bp dataset was slightly different from that of the 244 bp dataset (the number of 

substitutions separating sub-groups PeG and PdW increased from three to four; 95% 

plausibility level increased from >6 to >8 substitutions; only haplotypes from the east 

coast of South Africa were represented in PeG) as a result of the longer haplotype 

sequences which formed the 358 bp dataset.
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OPort St. Johns, Upper east
Q o i  i t h  A f r i r ocoast, South Africa

^V ic to ria , South Australia 

Q P - dyscrita East 

Q P . dyscrita West

^ P .  exigua Western Cape 

QAmsterdam Island

Figure 2.2. Median Joining Network for Parvulastra exigua and P. dyscrita 244 bp 
dataset COI haplotypes. Circles represent haplotypes, circle area represents number 
of individuals within that haplotype (except where ‘n’ is stated in or next to the circle). 
Small grey circles indicate number of nucleotide differences between haplotypes, 
lines without small grey circles indicate one nucleotide difference between 
haplotypes. No outgroups included.



The MJN indicated that the P. dyscrita samples within the haplogroups PdE and PdW 

were separated by 11 nucleotide substitutions. Out of the seven P. dyscrita 

individuals sequenced from Cape Agulhas, six grouped into PdW and one grouped 

within PdE. The numbers of P. dyscrita haplotypes within PdE were limited mainly by 

small sample size, as only a few P. dyscrita individuals were found and therefore 

sampled at the locations Cape Agulhas and Mossel Bay. Only three individuals were 

sampled at Mossel Bay, and all grouped into PdE, which comprised only two 

haplotypes.

Group PeWC shows a broadly star-shaped phylogeny, having one main haplotype 

(SA main, Table 2.5) which contains P. exigua samples from 11 sampling locations in 

the Western Cape. This haplotype had the highest outgroup weighting, indicating it is 

most likely the ancestral haplotype within this group. There were a further three 

haplotypes which comprised individuals from more than one sampling location. These 

haplotypes differed from the main haplotype by only one substitution. With the 

exception of Platboom (which had a very low sample size) and Gordans Bay, each 

sampling location contained between one and four private haplotypes, which differed 

from the main haplotype by only one or two substitutions. This haplogroup contains 

individuals from sites distributed over 400 km of coastline.

The most surprising result indicated by both the MSN and MJN was the highly 

divergent P. exigua haplogroup PeK. This haplogroup contained only one haplotype 

(Haplotype 6, Table 2.6) which was made up of 12 out of the 26 individuals 

sequenced from Kommetjie on the west coast of the Cape Peninsula, South Africa. 

Furthermore, the individuals within this haplogroup were the only ones to show the 4 

bp indel in their homozygote Al sequences and were the only samples showing 

evidence of COI NUMTS/heteroplasmy. The MSN separated this haplogroup at the 

95% plausibility level (<6 substitutions, 244 bp dataset) and the MJN indicated that 

this haplogroup was connected to the P. exigua individuals within PeG by 17 or 18 

substitutions (depending on the alternative connections within PeG). On the discovery 

of this divergent Kommetjie haplogroup, photographs of these individuals (which were
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initially recorded as ‘intermediate’ phenotypes when sampled) were re-examined 

revealing subtle phenotypic differences, with these individuals displaying a reddish 

green colouration, which was not detected in any other individuals of the intermediate 

phenotype, or from any other location.

Group PeAl contained only two individuals, both P. exigua with unique haplotypes 

and both from Amsterdam Island, which is located almost mid-way between South 

Africa and Australia, in the South Indian Ocean. This group was joined by eight 

nucleotide substitutions to the P. exigua individuals within the main haplotype in 

group PeWC.

2.5.5.2. COI Maximum Likelihood tree (244 bp dataset) and average COI 
Tamura-Nei genetic distances

Support for the COI groupings was also provided by the Maximum Likelihood 

phylogenetic analysis (Fig. 2.3), AMOVA and average Tamura-Nei pairwise 

divergences between the groups (Table 2.7). Generally, there was high comparability 

between all the analyses, however the divergence estimates were dramatically 

different between some groups when using the 244 bp dataset as opposed to the 358 

bp dataset. Excluding outgroups, five distinct phylogenetic groups were evident in the 

maximum likelihood tree. Groups PeWC and PeAl were in the same clade (bootstrap 

support 65%), but PeAl formed a separate internal clade branching from group PeWC 

which had higher support (87%). The divergence estimates between these two 

groups was 3.3% (Table 2.7).

The P. dyscrita individuals within PdE formed a single well supported clade (91%) 

and the genetic distance between PdE and PdW, the most closely related group, was 

7.7% (4.7% for the 358 bp dataset). Group PdW was separated from group PeG, but 

with low bootstrap support (59%), which also reflected the MSN and MJN structures 

for these two groups. Haplogroups PdW and PeG were the least divergent from each 

other with a distance estimate of 2.49% (2.07%, for the 358 bp dataset). Group PeK 

had the highest pairwise divergence estimates overall ranging from 11.66% (PeAl) to 

7.07% (PeG). This haplogroup formed a loosely supported clade with the two
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outgroups P. parvivipara and P. vivipara, (bootstrap support 60%). This grouping was 

reflected in the pairwise divergences only 7.91% (8.42 for the 358 bp dataset) 

between PeK and P. parvivipara, and the smallest divergence estimate between PeK 

and any other P. exigua group was 7.07 (PeG).
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P. dyscrita, Cape Peninsula, to Cape Agulhas, South Africa 
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P. exigua, Port St. Johns, upper east coast South Africa (this study)
P. exigua, Durban, upper east coast South Africa (Waters & Roy, 2004a) 
P. exigua, St. Helena Island, South Atlantic (Waters & Roy, 2004a)
P. exigua, Victoria, Australia (Waters & Roy, 2004a)
P. exigua, Lord Howe Island, South Pacific Ocean (Waters & Roy, 2004a)

60

5 changes

HAP06 I PeK P. exigua, haplotype 6, Kommetjie, South Africa (this study)
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Outgroups:
Parvulastra parvivipara 
Parvulastra vivipara 
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Patiriella regularis 
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Asterina gibbosa

Figure 2.3. Maximum Likelihood tree of all South African Parvulastra sequences (and 
outgroups) sequenced for a portion of the COI gene with 100 bootstraps. Numbers on 
branches indicate bootstrap probability.
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PeWC PeG PdW PdE PeK PeAl P. vivipara P. parvivipara
PeWC -

PeG 6.03
(3.97)

-

PdW 4.31
(3.48)

2.49
(2.07)

-

PdE 7.13
(6.33)

6.57
(5.75)

7.70
(4.76)

-

PeK 11.17
(10.07)

7.07
(7.27)

7.48
(7.21)

9.57
(8.26)

-

PeAl 3.30 6.64 4.12 8.19 11.66 -

P. vivipara 12.72
(10.63)

11.49
(9.80)

10.01
(8.19)

13.90
(10.39)

10.36
(9.05)

14.61 -

P. parvivipara 10.14
(9.97)

9.95
(9.87)

8.38 
_ (8.16)

11.05
(9.56)

7.91
(8.42)

12.88 9.40
(7.17)

-

P. regularis 23.45
(21.44)

23.83
(21.87)

22.00
(19.81)

25.50
(23.37)

21.66
(20.76)

21.85 25.86
(22.61)

22.07
(19.74)

Table 2.7. Average Tamura-Nei genetic distances of all pairwise distances between groups, calculated in MEGA3, for 
partial (244 bp) Cytochrome Oxidase I in Parvulastra exigua and P. dyscrita samples (current study; Waters and Roy 
2004a). The TrN inter-group distances for all haplogroups (except Amsterdam Island) using the 358 bp COI dataset were 
also calculated and are shown in parentheses. Outgroups were included for comparison.
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2.5.5.3. Analysis of molecular variance (AMOVA)

The AMOVA results (Table 2.8) support the network with >95% of the genetic 

variation accounted for among groups, <1% accounted for among populations 

within groups and <4% accounted for within populations. Although groups PeG 

and PdW are connected at the 95% plausibility level (as indicated by the MSN, 

Fig. 2.5 Appendix 2.9; 1) the gonopore results indicate that they are likely to be 

two separate taxa and therefore should be classed as separate. The AMOVA 

results support this separation showing 84-90% (depending on dataset) of the 

genetic variation is accounted for between the groups. These two groups 

however, also showed a higher level of intra-population genetic variation, 

probably a reflection of the large geographic area that the samples represent. 

AMOVA does not support the hypotheses that the different phenotypes are 

divergent (0.44% among groups) or that the Cape Peninsula represents a barrier 

to gene flow between P. exigua individuals from east and west of the peninsula 

(1.78% among groups).
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Source of 
variation (group 

partitioning)

Reason for choosing groups Genetic
variation

accounted
for:

%
variation

Fixation 
Indices 
(2 d.p.)

P values 
(3 d.p.)

244 bp dataset 
[PeWC][PeK] 
[PeAIJPeG] 
[PdE][PeW]

To test the validity of the 
groups defined by the MJN 
using both datasets (Fig. 2.2) 
and (358 bp dataset MJN not 
shown)

AG
APWG
WP

95.26
0.97
3.77

FSC : 0.21 
F S T : 0.96 
FC T : 0.95

0.000
0.000
0.000

358 bp dataset 
[PeWC][PeK] 
[Port St. Johns] 
[PdE][PeW]

AG
APWG
WP

95.90
0.38
3.72

FSC : 0.09 
FST : 0.96 
FC T : 0.96

0.000 
0.001+-0.001 
0.000

244 bp dataset 
[PeG][PdW]

To test the rationale for 
classing PdW and PeG as 
separate taxa, despite the 
MSN joining them at the 95 % 
plausibility level (Fig. 2.5. 
Appendix 2.9; 1)

AG
APWG
WP

84.51
6.97
8.52

FSC : 0.45 
F S T : 0.92 
FC T : 0.85

0.000
0.000
0.011+-0.003

358 bp dataset 
[Port St. Johns] 
[PdW]

AG
APWG
WP

89.79
-0.33
10.54

FSC: -0.03 
F S T : 0.90 
F C T : 0.90

0.000
0.556+-0.015
0.202+-0.013

358 bp dataset 
[Green] 
[Intermediate] 
[Unmottled]

To test the hypothesis that the 
different phenotypes are 
divergent

AG
APWG
WP

-0.44
10.34
90.10

FSC : 0.10 
FST: 0.10 
F C T : -0.00

0.000
0.000
0.634+-0.014

358 bp dataset 
[P. exigua east 
of Cape 
Peninsula] [P. 
exigua west of 
Cape Peninsula 
(excluding 
PeK)]

To test the hypothesis that the 
Cape Peninsula represents a 
barrier to gene flow between P. 
exigua individuals from east 
and west of the peninsula

AG
APWG
WP

1.78
9.09
89.13

FSC : 0.09 
FST: 0.11 
FCT: 0.018

0.000
0.000
0.183+-0.014

Table 2.8. Analysis of Molecular Variance (AMOVA) results for all Parvulastra 
samples for the cytochrome oxidase I partial gene sequence for the 244 and 358 
bp datasets indicating the apriori groups tested and the reason for testing them. 
AG: Among Groups; APWG: Among Populations Within Groups; WP: Within 
Populations.
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2.5.5.4. Actin Intron network

The actin intron (Al) minimum spanning network, calculated using a sub-sample 

of P. exigua and P. dyscrita individuals from South Africa (Fig. 2.4) supports PeK 

as a separate lineage which separates into an independent minimum spanning 

network at the 95% plausibility level (8 substitutions). The Al minimum spanning 

network did not divide the other haplogroups at the 95% level. However, all the 

P. exigua alleles clustered together but were separated from the P. dyscrita 

alleles by only one inferred allele. The P. dyscrita alleles were much more 

divergent, separating from each other by between three and six inferred alleles. 

No individuals from groups PeG, PdE, PeAl were sequenced for Al due to 

sample degradation.
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Figure 2.4. Minimum spanning network for the South African Parvulastra alleles 
for partial sequence of actin intron 3. Black ovals and rectangles represent P. 
exigua alleles. Rectangles represent alleles with a high outgroup weighting 
(indicating probable root haplotypes or outgroups). Grey ovals represent P. 
dyscrita alleles. Small white circles represent nucleotide differences between 
alleles. There are two separate allele networks (95% plausible connection limit; < 
8 substitutions). The large network contains all the alleles from P. exigua and P. 
dyscrita, except the six divergent P. exigua alleles from the location Kommetjie, 
which are represented in the small network (outlined by a dashed orange line) 
which contains only one homozygote allele.
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2.6. Discussion

All Parvulastra exigua specimens examined had oral gonopores, and all of the P. 

dyscrita samples examined (except one, see below) lacked oral gonopores, 

strongly suggesting that P. exigua and P. dyscrita are not synonymous species. 

The mitochondrial data revealed three monophyletic haplogroups within P. 

exigua in South Africa: (1) PeWC Western Cape, (2) PeG Global: South African 

east coast, Australia, Tasmania, St. Helena Island, Lord Howe Island, and (3) 

PeK (Kommetjie), and one non-South African monophyletic haplogroup from 

Amsterdam Island (PeAl). The mitochondrial results indicated there were two 

reciprocally monophyletic haplogroups within P. dyscrita in South Africa (PdE 

and PdW). The nuclear actin intron (Al) sequence data confirmed that the 

haplogroup PeK comprises a separate lineage (at the 95% plausibility level) from 

all the other P. exigua and P. dyscrita haplogroups, but did not confirm that P  

exigua and P. dyscrita were distinct from one another at the 95% level. No 

specimens of PeG, PeAl and PdE were sequenced for Al due to sample 

degradation or unavailability, and therefore these mitochondrial groups cannot be 

supported or disproved. A clear phenotypic divergence between the colour 

morphs (unmottled and mottled) of P. exigua was observed either side of the 

Cape Peninsula, but neither the mitochondrial nor nuclear data indicated that the 

colour morphs were genetically distinct from one another, and both colour 

morphs were represented in the mitochondrial haplogroup PeWC.

2.6.1. Parvulastra exigua and P. dyscrita are distinct lineages

The relationship between these two lineages is complicated by the presence of 

more than one haplogroup within both P. dyscrita and P. exigua. However, 

evidence that the P. exigua and P. dyscrita lineages represent separate taxa 

comes from the gonopore location, as all P. exigua haplogroups had oral 

gonopores and all P. dyscrita haplogroups (except one individual) lacked them. 

One small specimen genetically identified as P. dyscrita, and therefore assumed
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to be a juvenile, had oral gonopores. It was concluded that it was either 

mislabelled during collection or represents a hybrid. Hybridization does occur in 

asterinids (Byrne and Anderson 1994), but has not been investigated in South 

African Parvulastra species.

Although the mitochondrial DNA indicates that P. exigua and P. dyscrita are 

genetically distinct from one another, the nuclear sequence data did not confirm 

this, probably because the actin intron is not sensitive enough to detect 

divergence between closely related taxa. Waters et al. (2004b) used actin intron 

sequences to investigate another Australian six rayed asterinid species complex 

of the genus Patiriella (now Meridastra, see Fig. 1.1 Chapter 1). These authors 

found that the actin intron sequences only partially confirmed the COI structure 

between closely related species (Waters etal. 2004b).

Hart et al. (2006) found aboral gonopores in P. exigua museum specimens from 

the Cape of Good Hope, Table Bay (Green Point) and Port Elizabeth in South 

Africa. Although no samples were collected from Port Elizabeth during the 

current study, no P. exigua samples were detected with aboral gonopores. Due 

to the extensive sampling regime, it is unlikely that any groups with aboral 

gonopores (which would also presumably be genetically divergent) were not 

sampled unless they were (i) niche specialists and overlooked due to sampling 

bias, (ii) have become extinct or rare since the time of the museum collections, or 

(iii) are cryptic taxa with restricted distributions, such as at Kommetjie.

Parvulastra dyscrita is not known to occur west of the Cape Peninsula and 

therefore the suggestion that the museum ‘P. exigua' specimens with aboral 

gonopores found at Table Bay (Green Point) and Good Hope (both west of the 

Cape Peninsula) were misidentified P. dyscrita samples (Hart et al. 2006) seems 

unlikely unless the geographic distribution of P. dyscrita extended to the west 

coast in the past. The museum ‘P. exigua' with aboral gonopores found at Port 

Elizabeth (Hart et al. 2006) could have been misidentified P. dyscrita as P
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dyscrita is known to occur at Port Elizabeth (Branch et al. 1994). Until genetic 

materiel can be obtained from the ‘P. exigua’ museum specimens with aboral 

gonopores, or live specimens of ‘P. exigua' with aboral gonopores can be found 

and genotyped, the identity of these anomalous museum specimens remains 

unknown.

2.6.2. Cryptic species within South African Parvulastra

Having established that the P. exigua and the P. dyscrita lineages are probably 

distinct from one another, this study also provides compelling evidence for a 

separate South African Parvulastra taxon (found only at Kommetjie to date) 

which is distinct from the other P. exigua and P. dyscrita haplogroups.

2.6.2.1. The divergent Kommetjie haplogroup

Twenty-six samples were sequenced for COI from Kommetjie. Thirteen of these 

samples were represented in the PeWC haplogroup and the remaining 12 

samples formed a separate monophyletic and divergent haplogroup (PeK). 

These latter samples were also the only samples from South Africa which formed 

a separate minimum spanning network (at the 95 % plausibility level) using the Al 

nuclear marker. The divergence estimates between PeK and other South African 

Parvulastra lineages ranged between 7.0 and 11.7%, values much higher than 

other asterinid intra-specific divergence estimates (typically < 1% Waters et al. 

2004b; reviewed by Hart et al. 2006; but see Waters and Roy 2004a) and as high 

as inter-specific estimates (6 - 26%, Hart et al. 1997; Hart et al. 2003; 2.4% - 

>10% (mean 26.2%); 7.5 - 12.8%; 1.1 - 4.3% Waters et al. 2004a; Waters et al. 

2004b;). Genetic evidence of reproductive isolation in this lineage further comes 

from the presence of n u m t s  or heteroplasmic variants in the COI sequences and 

a four base pair indel in the Al sequences, only evident in the individuals in the 

PeK haplogroup. This evidence implies little or no genetic exchange between this 

group and the other Parvulastra lineages as the n u m t s  or heteroplasmic variants
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and the indel have not been integrated into the other Parvulastra lineages, and 

they would be evident if genetic exchange was occurring.

Assigning species status can be problematic, especially as the underlying 

concepts are hotly debated (Turelli et al. 2001; Orr 2001). Defining species 

based on the ‘Biological Species Concept’ (Mayr 1942) which states that taxa 

must be reproductively isolated, is difficult to confirm without breeding 

experiments. Furthermore, other than a subjective difference in colour morph, no 

other diagnostic morphological characteristics were identified between PeK and 

the other P. exigua haplogroups. Therefore other methods were employed to 

investigate if the haplogroup PeK deserved separate taxon status. Monophyly at 

mitochondrial sequences and significant differences at nuclear loci are taken as 

practical guidelines for defining evolutionary significant units (ESUs; Moritz 

1994). Moreover, the Phylogenetic Species Concept (PSC; Rosen 1978; Nixon 

and Wheeler 1990; Cracraft 1992) indicates that species can be defined on the 

basis of reciprocal monophyly of mitochondrial DNA alone. Hart et al. (2006) 

state that in the absence of observed phenotypic differences, mitochondrial 

sequence divergence of 5-7% among echinoderms is often interpreted as 

evidence for cryptic speciation (Lessios et al. 2001; O’Loughlin et al. 2003). Hart 

et al. (2006) also states that marine phylogeographers have interpreted 

haplotype samples that break down into separate 95% plausible networks (as 

seen in both the Al and COI data in this study) as evidence of multiple biological 

species (Tarjuelo et al. 2004; Uthicke et al. 2004). Therefore on the basis of the 

genetic evidence presented here, the PeK lineage should be classified (at least) 

as an ESU, and is probably worthy of classification as a new Parvulastra species. 

However, until further genetic, morphological or reproductive investigation 

occurs, this remains to be confirmed.

The ML analysis clustered PeK with the outgroup taxa, P. parvivipara and P. 

vivipara, in a sister clade to the P. exigua / P. dyscrita complex. The PeK 

haplogroup appears to share several similarities with these species. Firstly, like
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PeK, both P. parvivipara and P. vivipara occur sympatrically within P. exigua's 

range in Australia (Byrne and Cerra 1996). Secondly, a characteristic of P. 

parvivipara and P. vivipara is an extremely restricted geographic distribution. 

Parvulastra parvivipara is found only on west side of the Eyre Peninsula where it 

is recorded from five locations (Keough and Dartnall 1978) and P. vivipara is 

endemic to south east Tasmania where it is recorded from only four locations on 

the island (Dartnall 1969 cited in Dartnall et al. 2003; Byrne 1996). Both species 

are intertidal, inhabit about 100 m of the shoreline at each location where they 

occur and have a geographic distributions spanning only 150 - 300 km. These 

are the most restricted distributions known in echinoderms (Byrne and Cerra 

1996). Although rocky shore locations directly either side of Kommetjie were not 

searched, no members of the PeK haplogroup were detected at the sampling 

locations either side of Kommetjie indicating this group also has a very restricted 

distribution. Thirdly, both P. parvivipara and P. vivipara species are 

morphologically very similar to P. exigua and were originally classified as P. 

exigua and have only recently been recognized as separate species (Dartnall 

1969 cited in Dartnall et al. 2003; Dartnall 1971; Keough and Dartnall 1978; 

Byrne 1996; Byrne and Cerra 1996). In museum P. parvivipara and P. vivipara 

collections, examination of the gonads and the presence of juveniles is often 

necessary for species identification (Byrne 1996). However, living P. parvivipara 

and P. vivipara specimens are easily distinguished from P. exigua by their 

distinct yellow orange colour (Byrne and Cerra 1996). All of the PeK group were 

recorded as the intermediate colour morph, and on subsequent examination of 

photographs taken at the time of sampling it was noted that all of these animals 

appeared to have a blotchy red-orange colour in comparison to the other P. 

exigua intermediate colour morphs. However, other than this subjective 

difference, PeK appears very similar to P. exigua.

Speculation over how PeK might fit into the evolutionary sequence of 

reproductive modes in this family is intriguing. It has been suggested that P. 

parvivipara and P. vivipara were derived from an ‘exigua’ like ancestor,
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supported by molecular data, approximately three million years ago (Dartnall 

1971; Keough and Dartnall 1978; Byrne and Cerra 1996; Byrne 1996; Hart et al. 

2003; Byrne 2006). Parvulastra parvivipara and P. vivipara are both 

hermaphroditic and viviparous species (Byrne and Cerra 1996), releasing 

newborn juveniles from aboral gonopores. The PeK lineage has oral gonopores 

and is therefore unlikely to be viviparous, however it is unknown if PeK is 

hermaphroditic. Other asterinid species with oral gonopores where the method of 

reproduction has been investigated are P. exigua, Asterina gibossa, Asterina 

phylactica, Aquilonastra minor and Aquilonastra scobinata (see Byrne 2006). All 

of these species, except A. phylactica, produce large yolky eggs from oral 

gonopores which develop into benthic larvae without parental care (Byrne 2006). 

However, A. phylactica produces large yolky eggs from oral gonopores but 

broods its eggs until they develop into benthic larvae (Emson and Crump 1984). 

Furthermore, Strathmann et al. (1984) observed occasional development of 

embryos and larvae in the gonad of A. phylactica indicating that internal brooding 

is possible, and that brooding may be subject to plasticity (Hart et al. 2003). A. 

phylactica is also characterized by a somewhat restricted geographic distribution. 

Morphological evidence suggests that the benthic life history of P. exigua, which 

abandons its eggs, gave rise to the evolution of external brooding of eggs 

produced from oral gonopores, with occasional retention of eggs in the gonads, 

as seen in A. phylactica (see Strathmann et al. 1984) and ultimately to 

intragonadal brooding, as seen in P. parvivipara and P. vivipara (see Byrne 1996; 

Byrne and Cerra 1996; Byrne 2006). This sequence of reproductive evolution, as 

well as the other similarities that PeK has to A. phylactica (oral gonopores, 

restricted dispersal) and P. parvivipara and P. vivipara suggests that PeK may 

represent the ‘reproductive transition step’ (with a life cycle similar to A. 

phylactica) between the benthic life cycle of P. exigua and the viviparous life 

cycle of P. parvivipara and P. vivipara.

The distribution of P. parvivipara in two small populations on either side of a 60 

km long peninsula suggests that this species is a remnant of a previously wider
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range and its population size may be diminishing. Therefore it has been 

suggested that this species may be a good candidate for conservation (Byrne 

and Cerra 1996). In light of the similarities between P. parvivipara and the PeK 

lineage, conservation status for the PeK haplogroup may also be a consideration. 

Clearly PeK warrants further investigation to clarify the taxonomic status, 

distribution, reproductive mode and evolution of this lineage.

2.6.2.2. Parvulastra exigua haplogroups

The South African P. exigua mitochondrial haplogroups (PeWC and PeG) are 

divergent from one another by approximately 6% (244 bp COI data) and 4% (358 

bp COI data), and comprise independent networks at the 95% plausibility level. 

Waters and Roy (2004a) reported large intraspecific divergences between P. 

exigua populations Cape Town and Australia (6 - 7.4%) and Cape Town and 

eastern South Africa (5.9 - 7.2%), whereas divergences within sites here were 

always < 1%. Using the same reasoning applied to the haplogroup PeK above 

(separate networks at the 95% plausibility level; large divergence estimates 

between haplogroups; reciprocal monophyly of mitochondrial DNA indicating 

separate species under the PSC), haplogroups PeWC and PeG could be classed 

as separate species. However, without either morphological or nuclear (no 

samples from the haplogroup PeG were sequenced for Al) evidence of distinction 

between them, this classification may be premature. Mitochondrial DNA can 

define the pattern of reciprocal monophyly more clearly than nuclear markers 

because of its smaller effective population size: divided populations will drift to 

reciprocal monophyly more quickly (Hudson 1992; Hellberg et al. 2002; Waters et 

al. 2004b). Therefore reciprocal monophyly in the haplogroups PeWC and PeG 

may merely represent a period of allopatry in the past and not represent lack of 

present day gene flow or reproductive isolation.

2.6.2.3. Parvulastra dyscrita haplogroups
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The two P. dyscrita haplotypes were divergent from one another by 7.7% (244 bp 

COI data) and 4.7% (358 bp COI data), and separated into different networks at 

the 95% plausibility level. Therefore the same line of reasoning applied to the P. 

exigua haplogroups PeWC and PeG applies to the P. dyscrita haplogroups.

2.7. Conclusions

Parvulastra exigua, P. dyscrita and the divergent group found at Kommetjie 

(PeK) seem to fall within currently accepted parameters for distinct species. 

Within both P. exigua and P. dyscrita in South Africa two lineages were identified. 

These are not thought to represent further cryptic species, but additional genetic 

and morphological investigation is required to confirm their taxonomic status. 

This study cannot confirm the existence of ‘P. exigua’ samples with aboral 

gonopores from South Africa, nor confirm that the anomalous ‘P. exigua' 

museum specimens with aboral gonopores were misclassified as P. dyscrita. As 

this study provides no evidence to indicate that the wide distribution of P. exigua 

can be explained by the presence of cryptic lineages (see Hart et al. 2006), the 

dispersal mode by which benthic P. exigua in the haplogroup PeG achieved such 

a widespread distribution remains a paradox. The suggestion that Africa is the 

ancestral origin of P. exigua (see Waters and Roy 2004a) is premature. Waters 

et al. hypothesize that if identical haplotypes on different landmasses are 

observed (as seen in this study) that the most likely explanation for the 

distributions would be human translocation associated with early shipping 

activities. However, as none of the seastar species are commercially important, 

and neither P. exigua nor the new Kommetjie lineage has planktonic larvae that 

may be caught in ballast water, this explanation seems unlikely. The method of 

dispersal responsible for the observed haplotypic distribution remains unclear. 

The results of this study concur with the conclusions of Hart et al. (2006) in that 

further population genetic analyses within identified Parvulastra species are 

required before the origin and direction of gene flow between the global 

populations of P. exigua can be ascertained with certainty.
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2.9. Appendix 1

P. exigua Amsterdam 
Island (PeAM)

P. exigua Western 
Cape (PeWC)

P. dyscrita West 
(PdW)

P. exigua Global 
(PeG)

P. exigua Kommetjie 
(PeK)

Outgroups

P. dyscrita East 
(PdE)

Minimum Spanning Network

Figure 2.5. Minimum spanning network: Ovals represent haplotypes, rectangles 
represent haplotypes with a high outgroup weighting (indicating probable root 
haplotypes or outgroups). Smaller circles represent nucleotide differences 
between haplotypes. There are four separate haplotype networks (95% plausible 
connection limit; < 6 substitutions), with one network separated into two sub
groups. Outgroups included: Parvulastra vivipara, P. parvivipara, Patiriella 
regularis, M. mortenseni.
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6 3 44 4 5
3 23 8 4

caaga|gaccaaatatacaaagtaatagttac|gcacacgc^ t agt|a tg a t|ttttt
6 6 7 8 8  9 9 9 1
0 6  5 1 4 0 3 6  1
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TATGGT|ATGCCAAT|ATGATiGG§GGATT|GG|AA8TGACTAATTCCCCTTATGAT|G 

1 1  1 1  1 1  1 1 1 1 1
2 2  3 4  5 5  5 6 6 7  7
6 9  8 1  0 3  9 5 9 1  7

GAGCCCCgGAf§ATGGCTTT|CC§CGAATGAAj§AAj|ATGAG|TTTTGiCTA||T§CCCCCff 
1 1 1  1 1 2  2 2  2 2 2 2  2 2
8 8 8 9 9  0 0 1 1 1 1 2  2 3
0 6 9 3 5  1 7 0 3 6 9 2  8 4

TCTTTCCTiCTiCTT§T|GCCTC§GCAGG|GTgGA||AG|GGiGCjfGGAACfGGCTGgAC 
2 2 2 2 2 2 2 2 2 2
4 5 5 5 6  6 7 7  8 8
9 2 5 8 1  7 0 3  2 8

AATATACCCCCC|CT|TCjAGiGGgCTAGCiCA|GC|GGAGGCTCiGTAGA§CTTGCAA 
3 3 3 3 * 3 3 3 3  3 3 3
0 0 0 0  1 2 2 2  3 4  4
0 3 6 9  8 1 4 7  9 2  8

TATTSfTCgCT|CA|TTAGCAGGfGC?TC8TCiATACTTGCCTC|ATgAAATTCATTACA
ACAG

Figure 2.6. Position of sequence ambiguities for the Parvulastra Cytochrome 
Oxidase I partial gene sequence for Haplotype 1 (358 bp dataset).
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Figure 2.7. Alignment of the sequence ambiguities for the Parvulastra 
Cytochrome Oxidase I partial gene for all haplotypes from chapter 2 indicating 
the 358 bp (all haplotypes up to and including Hap36) and 244 bp datasets (next 
page: all haplotypes including and below ‘SAMAIN’, with first 14 ambiguous 
bases marked as a dash, as they are not included in the 244 bp dataset).
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3.1. Abstract
The processes which have led to present day patterns of phenotypic and 

phylogeographic structure in the intertidal fauna of South Africa are poorly 

understood. Furthermore, the processes maintaining assemblages of intertidal 

fauna in biogeographic provinces have never been investigated in terms of gene 

flow or phylogeographic structure. South Africa is an ideal location to investigate 

such processes as the intertidal zone is divided into biogeographic provinces 

defined by temperature. Using a large scale sampling regime, habitat survey, 

phenotypic and neutral genetic diversity analyses, the impact of these processes 

was investigated in a continuously distributed intertidal sea star, Parvulastra 

exigua. This species displays phenotypic structure with an ‘unmottled’ morph 

inhabiting the cold west coast and a ‘mottled’ morph inhabiting the warm east 

coast. It also consists of two deeply divergent monophyletic clades 

corresponding to populations on the east and west coasts, with the west showing 

a rapid population expansion. However, the phenotypic and genotypic divides do 

not occur in the same geographic location. Furthermore, the different phenotypes 

showed different habitat preferences indicating that particular habitats might incur 

a selective advantage. These combined results suggest that colour 

polymorphism in this species is not a product of neutral genetic structure, but is 

more likely caused by selective forces or phenotypic plasticity corresponding to 

the different temperature regimes on the east and west coasts of South Africa.
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3.2. Introduction

Genetic variation has long been supposed to enable the evolution, adaptability 

and survival of organisms living in heterogeneous habitats, but with the general 

prediction that the evolution of such populations and species in heterogeneous 

habitats is often tightly linked to their ecology (Hedrick 1986). Rocky shores are 

one of the most extreme environments with respect to physical heterogeneity, 

with variable substratum and sharp gradients in abiotic variables, such as 

temperature, salinity and wave action (Johannesson 2003). Population survival 

depends on phenotypic (e.g. colour morphs or shell shape), behavioural (e.g. 

habitat choice or diurnal / nocturnal feeding patterns) and physiological 

adaptations (e.g. salinity, humidity or temperature tolerance) which may lead to 

different ecotypes evolving in response to local selection pressures, differing in 

one or several adaptive traits. Spatial and temporal variation overlying the 

physical heterogeneity and selection pressures combine to mould the genetic 

structure of organisms. Neutral molecular markers can be employed to determine 

the demographic structure of species. Demographic patterns and processes can 

then be compared to phenotypic structure and habitat preferences to provide 

baseline ecological knowledge with which inferences can be made about how 

historical and present day environmental conditions affect the genetic, 

phenotypic and phylogeographic structure of species (Brisson etal. 2005).

3.2.1. Phenotypic diversity

Colour variation is common in marine invertebrates (Haylor 1984; Williams and 

Benzie 1998; Merilaita 2001; Sokolova and Berger 2000; Sponer et at. 2001; 

Johannesson and Ekendahl 2002; Mackenzie etal. 2004; Tarjuelo etal. 2004; Le 

Gac et at. 2004; Stoletzki and Schierwater 2005) but its significance is usually 

unknown (reviewed in Gray and McKinnon in press). Colour polymorphism could 

be the result of three major processes. Firstly, neutral processes or population 

structure may be responsible for colour morph frequencies (Oxford 2005; 

Hoffmann et al. 2006), and colour polymorphisms which coincide with neutral

121



genetic variation may represent cryptic species (Haylor 1984; Tarjuelo et al. 

2004) or founder events (Le Gac et al. 2004). Secondly, colour variation could be 

controlled by phenotypic plasticity. This is defined as the production of multiple 

phenotypes from a single genotype, depending on environmental conditions, and 

can be expressed either within the lifespan of an individual or across generations 

(Miner et al. 2005). For example, Hull et al. (2001) reported that the base colour 

frequency of species in the genus Idotea was derived from the algal pigments in 

the diet, and if reared on different substrates, base colour could change within 

weeks (Lee 1966, cited in Hull et al. 2001). Thirdly, colour variation could be an 

adaptation in response to selective forces (i.e. reflecting a genetically based 

response to selection). In marine invertebrates the selective pressure(s) 

responsible for colour variation can be difficult to identify. The evolution of cryptic 

colouration is thought to be closely linked with the evolution of habitat selection 

(de Meeus et al. 1993) and may reduce the risk of detection by predators (Hull et 

al. 2001). A clear link is often shown between colour variants and selective 

advantage (Haylor 1984; Merilaita 2001; Johannesson and Ekendhal 2002; 

Stoletzki and Schierwater 2005). Distinguishing between these three processes 

when trying to identify the cause of colour variation can be challenging and 

requires knowledge of the species ecology and genetics. For example, Gillespie 

and Oxford (1998) reported that colour morph frequencies in one of the most 

intensively studied animals (Cepea land snails) appears to be influenced by a 

number of factors, including predation (Cain and Sheppard 1954 cited in 

Gillespie and Oxford 1998) climate (Jones et al. 1977) and neutral processes, 

such as sampling drift (Wright 1978, cited in Gillespie and Oxford 1998) or 

founder / bottleneck effects (Cameron and Dillon 1984).

3.2.2. South African intertidal environment

Within South Africa, temperature variation and the presence of distinct 

biogeographic provinces provides an ideal arena for investigating the effects of 

environmental conditions on phenotypic and phylogeographic structure. The 

intertidal environment in South Africa has an extreme temperature gradient
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between the east and west coasts, mediated by two powerful ocean currents. On 

the east coast, the fast warm Agulhas current (16-28°C), established in the mid- 

Pleistocene, flows southwards, and a significant but weaker, colder, surface 

current, flows northerly inshore up the east coast (Jackson 1976). This influences 

the intertidal biota enabling temperate biota to spread further eastwards (Macnae 

1962; Jackson 1976; Branch and Branch 1981). On the west coast, the slow, 

cold (8-17°C) northerly, Benguela current, formed around the Neocene / 

Holocene transition (Shannon 1985; Bolton and Anderson 1997; Marlow et al. 

2000), is dominated by strong wind driven upwelling which brings cold nutrient 

rich waters to the surface inshore (Peschak 2006) and can cause the sea surface 

temperature to fluctuate greatly (Brown and Jarman 1978; Branch and Branch 

1981). The south coast has a shallow triangular extension of the continental shelf 

called the Agulhas Bank (Hutchings 1994). The eastern edge of the bank has 

upwelling events and interjections of warmer water from the Agulhas current and 

the western edge is considered part of the Benguela system (Hutchings 1994). In 

the centre of the Agulhas Bank, cyclonic circulation prevents offshore loss of 

plankton into the Agulhas current itself. The most recent glacial period 20,000 

years ago, caused a drop in sea level exposing much of the Agulhas Bank and 

extending the coastline up to 150 km out to sea. During inter-glacial periods, the 

sea level may have risen to 50 m above present, causing the Cape Peninsula to 

become an island (Branch and Branch 1981).

3.2.3. South African biogeography and phylogeography

Based on studies from diverse taxonomic groups, extant intertidal biota in South 

Africa is divided into three biogeographic regions (Stephenson and Stephenson 

1972; Day 1974; Brown and Jarman 1978; Emanuel et al. 1992; Stegenga and 

Bolton 1992; Bustamante et al. 1996; Bolton and Anderson 1997; Turpie et al. 

2000), the boundaries of which are disputed depending on the taxa considered 

(Brown and Jarman 1978; Hockey etal. 1983; Bolton 1986; Stegenga and Bolton 

1992; Turpie et al. 2000; Harrison 2002; Sink et al. 2004). However, most 

authors agree that a cool temperate west coast region stretches from Namibia to
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a region between Kommetjie and Cape Agulhas (Turpie et al. 2000); a warm 

temperate south coast region stretches from Cape Point to between Port Alfred 

and Durban (Turpie et al. 2000; Peschak 2006) and the sub-tropical east coast 

extends from around Port St. Johns to Mozambique (Emanuel et al. 1992). 

Subtidally, to a depth < 30 m, the temperature around the coast from Namibia to 

Port Elizabeth is fairly uniform throughout the year (12-14°C), which can mask 

and shift the biogeographic boundaries depending on the depth of an organism’s 

distribution (Brown and Jarman 1978; Turpie etal. 2000).

To our knowledge only 12 studies have assessed the genetic structure of 

intertidal marine organisms in South Africa, none of which investigated 

continuously distributed species occurring around the entire coastline, and 

therefore previous studies could make only isolated phylogeographic predictions. 

Of these studies most only investigated phenotypic structure, but one (Ridgway 

et al. 1998 studying Patella granulans, the patellid limpet) of these concurrently 

examined the species ecology. Seven of these studies used allozymes (Lombard 

and Grant 1986 using Choromytilus meridionalis (black mussel); Grant et al. 

1992 using Pema pema (brown mussel); Grant and daSilva-Tatley 1997 using 

Bullia digitalis (gastropod, whelk); Ridgway et al. 1998; Ridgway et al. 2000 using 

Patella miniata (gastropod); Laudien et al. 2003 using Donax serra (surf clam)) 

and five collected mtDNA sequence data (Teske et al. 2003 using Hippocampus 

capensis (Knysna seahorse); Evans et al. 2004 using Haliotis midae (abalone); 

Oosthuizen et al. 2004 using Octopus vulgaris (octopus); Tolley et al. 2005 using 

Palinurus gilchristi (spiny lobster); Teske et al. 2006 using Upogebia Africana 

(mudprawn), Exosphaeroma hylecoetes (isopod), Iphinoe truncate (cumacean)). 

For four species, phenotypic differences were identified between biogeographic 

provinces (Ridgway et al. 1998; Ridgway et al. 2000; Laudien et al. 2003, Tolley 

et al. 2005), with only one indicating phenotypic divergence either side of the 

Cape Peninsula (Ridgway et al. 2000). Only Ridgway et al. (2000) found genetic 

differences corresponding to phenotype, whereas the other studies concluded 

that phenotypic plasticity resulting from different selection pressures in different
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biogeographic provinces was responsible for phenotypic differences. Several of 

these studies found genetically divergent lineages within species (Grant et al. 

1992; Ridgway et al. 1998; Evans et al. 2004; Teske et al. 2006 within all three 

species) which may indicate barriers to gene flow. Phylogeographic breaks have 

been identified near Port St. Johns (Coffee Bay), on the east coast (Ridgway et 

al. 1998; Ridgway et al. 2000); around False Bay and the Cape Peninsula (Grant 

et al. 1992; Teske et al. 2006) and around Cape Agulhas (Evans et al. 2004; 

Teske et al. 2006). Teske et al. (2006) concluded that phylogeographic breaks in 

estuarine crustaceans roughly coincide with the biogeographic boundaries. 

Mitochondrial DNA provides an ideal tool for establishing phylogeographic breaks 

(Reeb and Avise 1990; Waters and Roy 2003).

3.2.4. Parvulastra exigua, the study organism

In South Africa, the small seastar, Parvulastra exigua provides a potentially 

interesting model to study how phylogeographic and phenotypic structure is 

affected by environmental conditions. In South Africa P. exigua is continuously 

distributed over approximately 2500 km of coastline from Mozambique to 

Namibia (Branch and Griffiths 1994). It reportedly occupies the mid to low tidal 

zones (although appears sub-tidal in some areas; C. Griffiths pers. obs.) in both 

South Africa and Australia (Byrne 1992; Stevenson 1992). It can reach densities 

of 150 m2 (Branch and Branch 1980) and is found in a wide range of 

microhabitats including exposed rocky outcrops, sheltered still pools and cryptic 

habitats e.g. crevices or under boulders (Arrontes and Underwood 1991). 

Although the exact diet of P. exigua is unknown (Arrontes and Underwood 1991), 

it is reportedly a scavenging omnivore (Branch and Branch 1980) with the ability 

to exploit a variety of resources (such as macro algae), but shows a preference 

for bare rock surfaces (Arrontes and Underwood 1991). Its distribution may be 

affected by other grazing species (Branch and Branch 1980; Stevenson 1992), 

but it has no known predators in South Africa (Griffiths unpublished).
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Previous work has identified phenotypic divergence in P. exigua, with an 

unmottled morph occurring in the cold biogeographic province west of the Cape 

Peninsula and a mottled morph occurring in the warm and subtropical provinces 

east of the Cape Peninsula, with a gradient of intermediate morphs occurring 

between these (see Chapter 2). The evolutionary significance of the colour 

morph differences, and the extent and distribution of this phenotypic divergence 

in South Africa is unknown. Moreover, colour morph frequencies and 

associations between habitat heterogeneity, biogeography and neutral genetic 

variation have not previously been investigated. MtDNA sequencing (Chapter 2) 

revealed that P. exigua phenotypes are not reciprocally monophyletic, indicating 

that they are not different species, and there is no apparent geographical 

structuring of P. exigua haplotypes in a 400 km stretch of coastline from west of 

the Cape Peninsula to east of False Bay. This suggests that there is no 

impediment to gene flow around Cape Point. However, P. exigua samples from 

Port St. Johns on the east coast are genetically divergent from the Cape 

Peninsula samples (Chapter 2) indicating that P. exigua contains unsampled 

genetic structure somewhere on the south or east coasts.

3.3. Aims

Ecological and phenotypic surveys of P. exigua populations across 

approximately 2500 km of South African coastline and neutral genetic analyses 

were conducted to:

1. Compare the colour morph frequency distributions and neutral 

phylogeographic structure of P. exigua (Hypothesis: sea star phenotype 

does not correspond to neutral phylogeographic structure).

2. Examine the neutral phylogeographic structure within P. exigua and 

compare this to biogeographic provinces and current systems 

(Hypothesis: Biogeographic divides represent barriers to gene flow in P. 

exigua.)
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3. Determine whether colour morph frequency distributions are related to 

ecological differences between habitat types. Hypotheses: a) some or all 

of the measured environmental variables are associated with changes in 

the abundance of each sea star phenotype; b) the predicted effects of the 

environmental variables will differ between the phenotypes.

The findings from this study are discussed in the context of general predictions 

about intertidal phylogeography in South Africa.
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3.4. Materials and Methods

3.4.1. Ecological survey and sampling

This study was conducted in South Africa between February and April 2005. The 

sampling locations (Fig. 3.1) were approximately equally spaced (approx 200 km 

between sampling locations) along each coast covering the entire coastal 

temperature gradient, with a more intensive sampling regime around the Cape 

Peninsula and False Bay where the phenotypic overlap occurs (Fig. 3.1). At each 

of the 19 sampling locations, suitable intertidal rocky shore habitat for Parvulastra 

exigua was selected for habitat survey and sampling. The sampling location 

Kommetjie was included in the ecological survey and samples from here were 

collected for genetic analysis. However, the divergent lineage identified in 

Chapter 2 from Kommetjie (PeK) was excluded from both the ecological survey 

and genetic analysis, and only the P. exigua lineage was included. Sampling was 

conducted during low spring tides. At each sampling location the rocky shore was 

vertically divided into low, mid and high tidal zones. Within each tidal zone, 10 

tide pools were identified as suitable habitats for P. exigua, and sampled using a 

32 x 32 cm quadrat. Tidal pools deeper than 40 cm were excluded as 

observations at this depth were inaccurate.
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Figure 3.1. Map of South Africa showing the sampling locations, biogeographic provinces, major currents and upwelling 
cells.

129



3.4.1.1. Ecological survey

The habitat was measured in a three step procedure. Firstly, the three 

dimensional habitat was measured using the variables, floating algal canopy and 

protected habitat. The percentage of primary substratum in the quadrat that was 

obscured by floating algal canopy was recorded, before this was removed and 

placed aside to be examined later. The percentage of the quadrat taken up by 

protected habitat (i.e. any habitat obscured from view and protected from wave 

action, visual predation or desiccation, including crevices, sides of boulders, 

within shell or rock rubble and within algae tufts or under algal canopy) was also 

estimated. Secondly, primary substratum availability was recorded by estimating 

the percentage of quadrat covered (including the upper surface of any boulders) 

by encrusting algae, coralline algae, algal tufts, shell rubble, sand, bare rock and 

fauna (including anemones, sponges, zooanthids, limpets, whelks, mussels, 

barnacles and oysters). Thirdly, the percent coverage by movable boulders (> 

7cm dia.) was estimated and undersides of these boulders examined for sea 

stars.

The abundance and distribution of P. exigua in each quadrat was recorded, with 

each individual being phenotypically graded between one and five (ranging from 

uniform in colour to highly multicoloured and mottled). The primary substratum 

and 3D habitat of each specimen was recorded. The removed algal canopy and 

boulders were also searched for sea stars and each individual found was 

recorded as being on “canopy” or “under boulder” and given a phenotypic grade.

3.4.1.2. Ecological survey analysis

Histograms were plotted showing mean sea star density per quadrat across all 

phenotypes at each sampling location and mean sea star density per quadrat for 

each phenotype (1 -  5) at each sampling location using Microsoft Excel. 

Phenotypes 1 and 5 had the highest sample sizes (886 and 946, respectively) 

and a good residual spread and therefore have the most statistical power. The
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results for the other phenotypes, particularly phenotype 4, may be less reliable 

due to smaller samples sizes (of 456, 361 and 177 for phenotypes 2, 3 and 4, 

respectively).

Sea star abundance was analysed using Generalized Linear Mixed Modelling 

(GLMM). The data was divided into five data sets corresponding to sea star 

phenotypes 1 - 5 ,  which represented the dependant variable in the models (Fig 

3.2). The dataset for each phenotype included all sampling sites where more 

than two individuals of that phenotype were present. However, sites with zero or 

less than 2 specimens of a particular phenotype were still included if adjacent 

sites contained two or more sea stars of that phenotype. This method of defining 

a phenotypic dataset removed zero counts which were simply a result of the 

phenotype being outside its natural geographical range as opposed to being a 

zero count for a valid biological reason. Each dataset also contained all the 

ecological variables: coast, tidal zone (low, mid and high), canopy, under 

boulder, protected habitat, encrusting algae, coralline algae, sessile fauna, 

mobile fauna, shell rubble, sand, bare rock. Therefore, while certain sites were 

excluded from an individual phenotype’s analysis, all sites contained each of the 

measured environmental variables and so a comparison, of the effects of each 

environmental variable upon sea star abundance, was still possible between 

phenotypes.
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Figure 3.2. Sites included in each phenotype dataset (shaded grey) with the 
corresponding coastal zones in which they occur in South Africa.

All analyses were undertaken using ASReml2, a dedicated mixed modelling 

statistical package. In all models sample site was included as a random term to 

control for any variation due to location that could not explained by the measured 

environmental variables. The maximal model included all habitat types as fixed 

terms (independent variables) (Table 3.1).Total sea star abundance was initially 

considered as a dependent variable. However, in order for this analysis to be 

meaningful, given the changing environment and varying phenotypic distribution 

at each sampling site, phenotypic proportions were included as independent 

variables. These preliminary models had very poor residual distributions showing 

heteroskedacity, which could not be overcome by transformation. Sea star 

abundance was then considered by phenotype, with each of the five phenotypes 

used as the dependent variable, resulting in five final models, one for each 

phenotype. Initially total sea star abundance was included in the phenotype
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models as an independent variable, however inclusion of this term produced 

poorly fitting models with heteroskedastic residuals and so it was removed from 

the models for subsequent analysis.

Dependant Variables Random term 
(independent variable)

Fixed terms
(Independent Variables)

Sea star counts for each 
phenotype (1 -  5).

Sampling site tidal zone (low, mid and
high)
canopy
under boulder
protected habitat
encrusting algae
coralline algae
sessile fauna
mobile fauna
shell rubble
sand
bare rock
coast

Table 3.1. Terms initially included in the maximal Generalised Linear Mixed 
Models for each phenotype (1 -  5).

The histograms of the raw data for all the phenotypes (dependant variables) and 

all the independent variables showed an overdispersed (aggregated) distribution. 

A natural log link function was used in the model to transform the dependent 

variables. All independent variables were normalised by base 10 log 

transformation (log x + 1) prior to analysis. Non-significant terms were removed 

from the model in a stepwise manner until a minimal model was reached. The 

estimates for each fixed and random term were used to plot graphical predictions 

(Appendix 3.9) of the effects of each of the environmental variables upon the 

abundance of each phenotype. All graphical predictions from the models were 

presented as back transformed values of the dependent variable and the 

proportional effect of each habitat type on the predicted effect of that habitat type 

between the phenotypes was estimated by examining the comparative changes 

in predicted effect over the same range of values. Interactions between the 

independent variables were not calculated because of the large number of
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habitats recorded resulting in too many potential interactions between these 

variables for all of them to be considered. However, the current analyses should 

highlight those habitat features which have a dominant effect upon the sea star 

phenotype numbers.

3.4.2. Molecular methods

3.4.2.1. DNA extraction, Cytochrome Oxidase I (COI) amplification and 
sequencing

DNA extractions were performed using either a Qiagen DNeasy tissue 

purification kit (Qiagen) with RNAase A treatment according to the 

manufacturer’s instructions, or by phenol-chloroform and CTAB purification 

(Arndt et al. 1996) where the DNA was re-suspended in 100 pi TE buffer and 

treated with RNAase A (20pg/pl) at 55°C for 1 hour. The samples were 

subsequently stored at -20°C. Mitochondrial cytochrome oxidase I (COI) primers 

(P.ex.COII.29F (5’ CCA AAC ACA AGG ACA TAG GAA 3’) and P.ex.COI.575B 

(GCG GTA ACG AAT ACG GAT CA) were designed from a COI sequence from 

an Australian specimen of P. exigua (Accession number U50053: Hart et al. 

1997) using p r im e r  3 (Rozen and Skaletsky 2000) and the free web based 

software: o l ig o n u c l e o t id e  p r o p e r t ie s  c a lc u l a to r : (http ://www. basic.

northwestern.edu/biotools/oligocalc.html).

All PCRs were performed in a PE 9700 thermal cycler. COI amplification was 

performed using the following program: 94°C for 5 minutes; followed by 94°C for 

30 seconds, 50°C for 30 seconds, 72°C for 1 minutes for 35 cycles with a final 

extension of 72°C for 10 minutes. The reaction conditions used were 1x PCR 

buffer, 1.5 mM MgCfe; 0.2 mM dNTPs; 1 pM of each primer; 0.1 U Taq 

(Invitrogen); and 1 pi DNA template (diluted between 1/10 and 1/1000) in a final 

volume of 15 pi.

PCR products were purified using a BIO 101 Geneclean Turbo PCR Kit (Q- 

BlOgene) or ExoSap (Amersham Biosciences) according to the manufacturer’s
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instructions. Sequencing PCR reactions were performed in 7.5 pi reactions. The 

PCR program involved an initial denaturation at 96°C for 1 minute 30 seconds for 

1 cycle; denaturation at 96°C for 10 seconds; annealing at 50°C for 5 seconds; 

extension at 60°C for 4 minutes for 25 cycles. Both forward primer and reverse 

primer reactions were performed. The reaction conditions were as follows: PCR 

H20  and template combined 3 pi; Better Buffer (Web Scientific Ltd) 2.5 pi; Big 

Dye 0.5 pi (ABI PRISM® Big Dye TM Terminator dye vs. 3.1); either forward or 

reverse primer (1.6 pM) 1.5 pi. An ABI Prism 3100 semi-automated genetic 

analyser (Applied Biosystems) was used for the sequencing according to the 

manufacturer’s instructions.

3.4.2.2. Genetic structure analyses

The COI forward and reverse sequences were aligned in s e q u e n c h e r  v s . 4.12 

(GeneCode Corp.) and verified by eye. The amino acid reading frame was 

identified by aligning the full COI gene (Accession no. U500053, Hart et al. 1997) 

with the haplotypes identified and checking the echinoderm mitochondrial genetic 

code for stop codons and amino acid changes. To visualize the relationship 

between the haplotypes and the sample sizes in each haplotype a median joining 

network (Bandelt et al. 1999) was constructed in n e t w o r k  v s . 4.1.1.2. 

(www.fluxus-engineering.com). Pairwise divergences between populations 

(sampling locations) and within and between haplogroups (east and west) were 

calculated in m e g a  3 (Kumar et al. 2004) using the Tamura Nei model of evolution 

(Tamura and Nei 1993). The Tamura-Nei model corrects for multiple hits, taking 

into account the differences in substitution rate between nucleotides and the 

inequality of nucleotide frequencies. It distinguishes between transitional 

substitution rates between purines and transversional substitution rates between 

pyrimidines. It also assumes equality of substitution rates among sites (Kumar et 

al. 2004).

Divergence time between haplogroups was estimated based on molecular 

calibration using a ‘clock-like’ evolution approach. However, this method of
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estimating divergence times relies on a constant rate of evolution for both the 

gene and the lineage and therefore must be treated with caution (Waters and 

Roy 2004; Heads 2005). As no definitive geological events are known that can 

provide a calibration for P. exigua, published Kimura two-parameter (K2P; 

Kimura 1980) calibrations for a variety of echinoderm COI sequences of 3.1 - 3.5 

% / million years ago (MYA) were applied (Lessios et al. 1999; McCartney et al. 

2003; Waters and Roy 2004). The % sequence divergence estimate was re

calculated in m e g a  3 (Kumar et al. 2004) using the K2P model to compare with 

the Tamura Nei to estimate the level of accuracy when using a K2P calibration 

estimate for the time since divergence. The Kimura’s two parameter model 

corrects for multiple hits, taking into account transitional and transversional 

substitution rates, while assuming that the four nucleotide frequencies are the 

same and that rates of substitution do not vary among sites (Kumar et al. 2004).

3.4.2.3. Nucleotide variation, tests for neutrality and population 
expansion

Nucleotide diversity, haplotype diversity and mean number of pairwise 

differences were calculated in a r le q u in  v s . 3. (Excoffier et al. 2005: 

http://cmpg.unibe.ch/software/arlequin3). Comparing haplotype diversity and 

nucleotide diversity can reveal information about patterns of historical 

demography. High haplotype diversity in conjunction with low nucleotide diversity 

can suggest recent population growth while high haplotype diversity with high 

nucleotide diversity is indicative of a stable population (Mila etal. 2000).

Historical demography was inferred by testing for population expansion and 

neutrality. Mismatch distributions calculated for the sudden expansion model in 

a r le q u in  vs. 2 were plotted using e x c e l . However, one of the assumptions of the 

mismatch distribution is that there must be random mating within the population 

being tested. Therefore, to establish if there was any population structure, which 

reflects the any degree of random mating, and Analysis of Molecular Variance 

(AMOVA) was conducted both using both a distance based analysis and OST, as
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well as a frequency based analysis and Fst. The P values were examined and if 

significant population structure was observed, the assumption of random mating 

required by the mismatch distribution was broken. Therefore a mismatch 

distribution analysis was not performed.

If a population has undergone rapid expansion, a unimodal mismatch distribution 

approximating a Poisson curve is expected, and the P value is expected to be 

not significantly different from the model of sudden expansion (i.e. P>0.05) 

(Rogers and Harpending 1992), whereas populations approaching mutation drift 

equilibrium are expected to produce a multimodal or ‘ragged’ mismatch 

distribution and a significantly different P value. The raggedness statistic 

quantifies the smoothness of the observed pain/vise differences distribution. 

However, as this statistic has low power for detecting population expansion, 

more powerful combined statistics, namely Tajima’s D (Tajima 1989), Fu’s Fs (Fu 

1997) and Fu and Li’s F* and D* (Fu and Li 1997), were conducted.

Tajima’s D and Fu’s Fs (10000 simulated samples) were calculated in a r le q u in  

and Fu and Li’s F* and D* statistics were calculated in d n a s p  v s . 4.0 (Rozaz et al.

2003). A negative Tajima’s D statistic and significance value indicates either 

population expansion or background selection. P is the probability of obtaining 

the observed D value under the neutral mutation hypothesis (P< 0.05 = the data 

differs significantly from neutral mutation, P> 0.05 the data does not differ 

significantly from zero).

The effects of background selection can be distinguished from population growth 

or range expansion by examining the pattern of significance between Fu’s Fs and 

Fu and Li’s F*, and D*. Fu's Fs can be used to test specifically for population 

growth while Fu and Li’s F* and D* are sensitive to background selection and test 

the hypothesis that all mutations are selectively neutral (Kimura 1983). 

Expansion is indicated if Fu’s Fs is significant but Fu and Li’s F* and D* are not,
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whereas background selection is indicated if Fu and Li’s F* and D* are significant 

and Fu’s Fs is not (Russell et al. 2005)

An approximate estimation of time since expansion was calculated using x = 2ut 

(Rogers and Harpending 1992), where x (tau) is the mode of the mismatch 

distribution, i.e. the estimation of the age of expansion (obtained from a r le q u in  

vs. 3), u = the mutation rate per sequence per generation and t = time in 

generations since expansion. The value of t was calculated using the equation t = 

x /2u, and the value of u was calculated using the equation u = 2pk, where 2p = 

the nucleotide divergence rate (twice the mutation rate per nucleotide) per million 

years (3.1 - 3.5%, Lessios et al. 1999; McCartney et al. 2003; Waters and Roy

2004) and k = sequence length. Time in generations since expansion (t) was 

then multiplied by the generation time (estimated at four years, based on the 

generation time of Asterina gibossa, another asterinid of similar size and with a 

similar life history, Emson and Crump 1978, cited in Emson and Crump 1979) 

which gave an estimated time in years since expansion.
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3.5. R esu lts

3.5.1. Ecology

Sea star mean density across all phenotypes was generally high on the upper 

west coast but declines southwards (Figure 3.3). However, at the tip of the Cape 

Peninsula at Good Hope, the density increases dramatically again. False Bay 

(Platbank, Wooleys Pool and Gordans Bay) has high densities, which decline 

eastwards along the south coast (with the exception of high numbers at Cape 

Agulhas). The east coast (from Port Alfred to Salt Rock) has the lowest numbers 

of sea stars.
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Figure 3.3. Mean sea star density per quadrat across all phenotypes at each 
sampling location (from west to east). Error bars show standard deviations from 
the mean.

Figure 3.4, showing mean sea star density / quadrat (32 cm2) for each phenotype 

at each sampling location, reveals a clear gradient of phenotypic density around 

the coast. Unmottled phenotype 1 is present only on the west coast with lowest 

densities in False Bay. Phenotype 2 is present sporadically along the entire 

coast, but concentrated on the west coast and in False Bay. Intermediate 

phenotype 3 has a more consistent distribution around the coast, but is found in 

high densities in False Bay and the upper west coast only. Phenotype 4 is found
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only in False Bay and on the south and east coasts, with high densities in False 

Bay. Mottled phenotype 5 is again found only in False Bay and on the south and 

east coasts, but its densities peak around Cape Agulhas, the central sampling 

location on the south coast.
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Figure 3.4. Mean sea star density per quadrat (32 cm2) for each phenotype at 
each sampling location (from west to east). Error bars show standard deviations 
from the mean.

140



3.5.1.2. General Linear Mixed Models

The general linear mixed model (GLMM) revealed that ‘coastal zone’ (which 

corresponded to biogeographic provinces Fig. 3.2), and the habitat types ‘sessile 

fauna’ and ‘shell rubble’ had no effect upon sea star abundance or distribution 

and these terms were therefore not included in any of the minimum models. All 

other habitat variables had a positive or negative significant effect on at least one 

of the phenotypes (comparative summary between phenotypes shown in Table

3.2, with the proportional strength of the effects displayed in the plots of the 

predicted effects (Figs 3.9 -  3.14 Appendix 3.9; 3.). The variables included in the 

minimal models for each phenotype are shown in Table 3.3.

Phenotype models
Habitat type 1 2 3 4 5
Tide Mid = most 

Low =
intermediate 
High = least

As for
Phenotype 1

Mid = most 
Low and High 
at similar levels

High = most 
Mid =
intermediate 
Low = least

Mid =most but 
not significantly 
higher than 
High so similar 
to Pheno4 
Low = least

Under Boulder +++ + NIIM ++ +
Protected NIIM NIIM NIIM NIIM +
Sand ---- - ------
Bare rock +++++ ++ + NIIM +
Canopy cover - ---- ------ NIIM
Algal tufts NIIM NIIM ---- -

Coralline algae - NIIM NIIM
Encrusting algae NIIM NIIM NIIM NIIM +
Mobile fauna NIIM NIIM - NIIM NIIM

Table 3.2. General Linear Mixed Model summary table showing comparative 
predicted effects of each habitat type on each phenotype. Dashes and crosses 
indicate the comparative strength of the negative and positive effects, 
respectively. NIIM indicates habitat variables that had no effect on the phenotype 
and therefore were not included in the model.

The models indicate statistically significant differences in the response of mottled 

and unmottled phenotypes to tidal zone. The unmottled phenotypes (1 and 2) 

had higher abundances in the mid zone, with intermediate abundances in the low 

zone and the lowest abundances in the high zone. Conversely, the mottled
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phenotypes (4 and 5) had the highest abundances in the high zone and the 

lowest abundances in the low zone, with the mid zone being intermediate. 

Phenotype 3 was more similar to the unmottled phenotypes, with the highest 

abundances in the mid zone and the low and high zones at similar levels.

As well as tide zone differences, the ecological survey revealed some habitat 

differences between the phenotypes. The presence of boulders unsurprisingly 

had a positive effect on all phenotypes (except phenotype 3 where small sample 

sizes may have caused an unrepresentative significance value) with the largest 

proportional effect on phenotype 1. Under boulder had a weak proportional 

positive effect on phenotypes 2 (but again this may be an artefact of small 

sample size) and 5. This habitat type also had a quite large proportional positive 

effect on phenotype 4, however, again this may be affected by small sample 

sizes. The ‘protected’ habitat type was, surprisingly, only significant for 

phenotype 5, where it had a reasonably strong positive effect.

The habitat type sand had a significant negative effect on all phenotypes, with 

the largest proportional negative effect on phenotype 5, followed by phenotypes 

4, 2 and 1, with a very small proportional negative (but very large confidence 

intervals) effect on phenotype 3 (Fig 3.9 Appendix 3.9;3). Bare rock had a 

significant positive effect on all phenotypes except phenotype 4. Bare rock had 

by far the largest proportional positive effect on phenotype 1, the unmottled 

phenotype, and had intermediate proportional positive effect on phenotype 2. It 

had a weak proportional positive effect on phenotypes 3 and 5.

Canopy had a significant negative effect on the unmottled phenotypes 1-4, but no 

effect on phenotype 5, with the largest proportional negative effect on phenotype 

4, followed in order by phenotypes 2, 3 and 1 (Fig 3.10 Appendix 3.9;3). 

However, algal tufts also had a negative effect but on the mottled phenotypes 

instead, with the largest proportional negative effect on phenotype 4, followed by 

3 and then 5 (Figs 3.11 Appendix 3.9;3), and no effect on phenotypes 1 and 2.
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Coralline algae had a negative effect on the unmottled phenotypes 1-3 (Fig 3.12 

Appendix 3.9;3), with proportionally similar negative effects on phenotypes 1 and 

2 compared to on phenotype 3 where it had a slightly smaller proportional 

negative effect, but no effect on phenotypes 4 and 5. Conversely, encrusting 

algae only had a significant (highly positive) effect on phenotype 5.

The presence of mobile fauna had no effect on any phenotypes except 

phenotype 3, where it had a weak negative effect.
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Significant Terms d.f. F value P value Estimate Estimate standard error
Phenotype 1
Mu 1 38.80 <0.001 0.03423 0.27075
Tide 2 12.75 <0.001 Low 0.29659 Low 0.15685

Mid 0.58950 Mid 0.13101
High 0.0000 High 0.0000

Canopy 1 8.96 0.003 -0.05802 0.08170
Under boulder 1 31.44 <0.001 0.43637 0.09910
Coralline algae 1 7.54 0.007 -0.51730 0.19357
Sand 1 4.49 0.036 -0.09519 0.09570
Bare Rock 1 15.47 <0.001 0.46133 0.11730
Phenotype 2
Mu 1 24.60 <0.001 0.28630 0.19547
Tide 2 16.73 <0.001 Low 0.09650 Low 0.10725

Mid 0.34770 Mid 0.09021
High 0.0000 High 0.0000

Canopy 1 23.15 <0.001 -0.16392 0.05735
Under boulder 1 5.96 0.016 0.09689 0.06548
Coralline algae 1 6.79 0.010 -0.34623 0.13457
Sand 1 6.12 0.015 -0.10440 0.06639
Bare Rock 1 8.45 0.004 0.24151 0.08308
Phenotype 3
Mu 1 17.98 <0.001 0.43410 0.1222
Tide 2 13.00 <0.001 Low 0.05410 Low 0.06435

Mid 0.16780 Mid 0.05539
High 0.0000 High 0.0000

Canopy 1 8.94 0.003 -0.05701 0.03736
Coralline algae 1 13.14 <0.001 -0.15650 0.05090
Algal tufts 1 19.99 <0.001 -0.16000 0.04149
Mobile fauna 1 4.95 0.027 -0.18460 0.05744
Sand 1 10.82 0.001 -0.09829 0.03843
Bare Rock 1 5.67 0.018 0.11580 0.04862
Phenotype 4
Mu 1 15.45 0.003 0.48210 0.0842586
Tide 2 14.70 <0.001 Low-0.19906 Low 0.06992

M id -0 .14824 Mid 0.06035
High 0.0000 High 0.0000

Canopy 1 5.73 0.018 -0.09205 0.0525446
Under boulder 1 21.54 <0.001 0.15310 0.0430823
Algal tufts 1 12.74 <0.001 -0.14440 0.0477346
Sand 1 8.08 0.005 -0.13155 0.0462783
Phenotype 5
Mu 1 30.40 <0.001 0.2308 0.25390
Tide 2 11.61 <0.001 Low -0.1536 Low 0.1188

Mid 0.09551 Mid 0.1074
High 0.000 High 0.000

Under boulder 1 29.44 <0.001 0.1547 0.08431
Protected 1 6.15 0.014 0.2070 0.10470
Encrusting algae 1 12.71 <0.001 0.1882 0.09156
Algal tufts 1 15.21 <0.001 -0.2693 0.08114
Sand 1 8.58 0.004 -0.1867 0.08532
Bare Rock 1 6.03 0.015 0.2261 0.09209

Table 3.3. Analysis of Variance table for the minimal generalised linear mixed 
models for each phenotype of Parvulastra exigua showing d.f. = degrees of 
freedom, F value, P value, estimates for the logged dependent variables and the 
standard error of the estimate.
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3.5.2. Molecular data

A 358 bp sequence of the mitochondrial cytochrome oxidase I (COI) gene was 

sequenced from 170 individuals, comprising between 5 and 17 individuals from 

19 sampling locations. This resulted in 36 haplotypes (Table 3.4) and 39 

polymorphic sites, of which 29 were parsimony informative. All polymorphic sites 

were synonymous substitutions (resulting in no amino acid changes).
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1 2 4 7 6 6 14 4 9 7 12 2 3 76
2 3 5 8
3 3 1 1 5
4 1 1
5 3 3
6 2 2
7 2 2
8 1 1
9 1 1
10 1 1
11 1 1
12 1 1
13 1 1
14 1 1
15 1 1
16 1 1
17 1 1
18 1 1
19 1 1
20 2 3 5
21 2 2
22 1 1
23 2 1 3
24 7 5 12
25 1 6 7
26 5 1 6
27 6 6
28 6 6
29 4 4
30 2 2
31 2 2
32 1 1
33 1 1
34 1 1
35 1 1
36 1 1

Total 7 7 7 10 8 15 6 15 17 17 5 7 7 7 7 7 7 7 7 170

Table 3.4. Cytochrome oxidase I haplotypes of Parvulastra exigua in South 
Africa. Data comprise: total number of haplotypes identified in each sampling 
location, number of individuals found with each haplotype in each sampling 
location and total number of individuals sampled from each sampling location.

146



3.5.2.1. Genetic structure

The median joining network (Fig. 3.5) indicated two deeply divergent reciprocally 

monophyletic clades (haplogroups) to the west and east coasts separated by 11 

nucleotide substitutions, with complete lineage sorting between them and an 

average Tamura Nei pairwise divergence of 4.38% (Table 3.5), (4.38% Kimura 2 

Parameter). The time since divergence between the east and west haplogroups 

was estimated at between 1.4 - 1.25 MYA. The west haplogroup contained all 

individuals from all 13 sites located from Mcdougals Bay to Mossel Bay, a total of 

128 individuals within 25 haplotypes. The east haplogroup contained all 

individuals from all six sites from Plettenberg Bay to Salt Rock. This radical 

genetic split between these two haplogroups lay somewhere between Mossel 

Bay and Plettenberg Bay (Fig. 3.5), a distance of only 140 km, but the exact 

location was not identified, and it is unknown whether there is an area of 

sympatry. This genetic divide lies approximately 460 - 680 km west of False Bay, 

the site of the main area of phenotypic sympatry where the unmottled and the 

mottled phenotypes appear to diverge.
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South Africa

O  1 McDougals Bay 

©  2. Hondeklip Bay 

O  3. Lamberts Bay 

O  4. Yzerfontein 

O  5. Green Point 

O  6. Kommetjie 

O  7. Good Hope 

O  8. Platbank 

©  9. Wooleys Pool 

O  10. Gordans Bay 

O  11 Bettys bay 

#  12. Cape Agulhas 

©  13. Mossel Bay

 M  m n  W M»—  W  W   H * —  M

Genetic divide between sites 13 and 14

Agulhas Bank

50 km 5 

6
Cape
Peninsula 7

False

O  14. Plettenberg Bay 

0  15. Port Elizabeth 

#  16. Port Alfred 

O  17. Haga Haga 

O  18. Port St. Johns 

O  19- Salt Rock

Figure 3.5. Median Joining Network (MJN) for Parvulastra exigua COI 
haplotypes, indicating the haplotype relationships. Circles represent haplotypes, 
circle area represents number of individuals within that haplotype. Lines with 
numbers indicate number of nucleotide differences, and position of nucleotide 
differences in the sequence between the haplotypes, lines without numbers 
indicate one nucleotide difference between haplotypes. Coloured circles 
represent proportion of individuals within that haplotype from each sampling 
location. Each sampling location represented by an individual colour, indicated by 
coloured circle next to the sample location name. Sampling location names 
arranged so that the west coast haplogroup sampling locations are on the left, 
and the east coast haplogroup sampling locations are on the right. This figure 
indicates the genetic divide is between sampling locations 13 and 14.lnset 
enlarged map of False Bay area between sampling locations 5 and 11.
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McDougals Bay - 122 352 592 694 719 752 754 789 829 864 1039 1291 1432 1702 1861 2034 2238 2551
Hondeklip Bay 0.26 - 229 469 571 597 629 631 666 706 741 916 1168 1310 1580 1739 1912 2116 2429
Lamberts Bay 0.20 0.12 - 240 342 367 400 402 437 477 512 687 939 1080 1350 1509 1682 1886 2199
Yzerfontein 0.31 0.23 0.11 - 102 127 160 162 197 237 272 447 699 840 1110 1269 1442 1646 1959
Green Point 0.27 0.19 0.07 0.18 - 25 262 364 669 339 374 549 801 942 1212 1371 1544 1748 2061
Kommetjie 0.22 0.14 0.02 0.13 0.09 - 32.5 34 69 109 144 319 571 713 983 1142 1315 1519 1832
Good Hope 0.29 0.21 0.09 0.21 0.16 0.11 - 2 35 77 112 287 539 680 950 1109 1282 1486 1799
Platbank 0.31 0.23 0.11 0.22 0.18 0.13 0.21 - 35 75 110 285 537 678 948 1107 1280 1484 1797
Wooleys Pool 0.43 0.35 0.23 0.34 0.30 0.25 0.33 0.34 - 40 72 325 577 718 988 1147 1320 1524 1837
Gordans Bay 0.28 0.20 0.08 0.20 0.15 0.10 0.18 0.19 0.29 - 35 210 462 603 873 1032 1205 1409 1722
Bettys Bay 0.43 0.35 0.22 0.34 0.29 0.24 0.32 0.31 0.43 0.31 - 175 637 778 1048 1207 1380 1584 1897
Cape Agulhas 0.36 0.28 0.16 0.27 0.23 0.18 0.25 0.27 0.39 0.24 0.37 - 252 393 663 822 995 1199 1512
Mossel Bay 0.52 0.44 0.32 0.43 0.36 0.34 0.41 0.43 0.55 0.40 0.43 0.40 - 141 411 570 743 947 1260

Plettenberg Bay 4.61 4.52 4.39 4.51 4.47 4.41 4.49 4.39 4.46 4.48 4.39 4.56 4.64 - 270 429 602 806 1119
Port Elizabeth 4.52 4.40 4.30 4.42 4.37 4.32 4.40 4.30 4.37 4.39 4.30 4.47 4.55 0.56 - 159 332 363 676
Port Alfred 4.56 4.48 4.35 4.47 4.42 4.37 4.45 4.38 4.42 4.44 4.35 4.52 4.60 0.61 0.52 - 173 377 690
Haga Haga 4.40 4.31 4.18 4.30 4.25 4.20 4.28 4.18 4.25 4.27 4.18 4.35 4.43 0.61 0.52 0.16 - 204 517
Port St. Johns 4.14 4.05 3.92 4.04 4.00 3.94 4.02 3.92 3.99 4.01 3.92 4.10 4.17 0.69 0.60 0.65 0.51 - 313
Salt Rock 4.91 4.82 4.69 4.81 4.69 4.71 4.80 4.69 4.76 4.78 4.63 4.82 4.64 0.91 0.84 0.88 0.88 0.97 -

Table 3.5. Below diagonal, average Tamura Nei pairwise divergences (%) between sampling locations for Parvulastra 
exigua COI sequences (calculated in mega 3). Values in box indicate pairwise divergences between east haplogroup and 
west haplogroup sampling locations, values above box indicate pairwise divergences between populations within the west 
coast haplogroup and values to the left of the box indicate pairwise divergences between populations within the east coast 
haplogroup. Above diagonal, approximate coastal distances (km) between sampling locations.
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An analysis of molecular variance (AMOVA) was performed to test for population 

structure between the east and the west coast haplogroups, as well as to test for 

population structure within the east and west halpogroups separately (Table 3.6).

Source of variation Reason Genetic variation % Fixation P values
(group partitioning) for accounted for: variation Indices (3 d.p.)

choosing (2 d.p.)
groups

West populations: To test for Distance AG 91.69 OSC: 0.47 0.000+-0.000
[McDougals Bay, Hondeklip population based APWG 3.93 OST: 0.96 0.000+-0.000
Bay, Lamberts Bay, structure in OST WP 4.39 OCT: 0.92 0.000+-0.000
Yzerfontein, Green Point, order to
Kommetjie, Good Hope, determine Frequency AG 23.79 FSC: 0.31 0.000+-0.000
Platbank, Wooleys Pool, if there is based APWG 23.80 FST: 0.48 0.000+-0.000
Gordans Bay, Bettys Bay, random FST WP 52.41 FCT: 0.24 0.000+-0.000
Cape Agulhas, Mossel Bay] mating
East populations: between
[Plettenberg Bay, Port the
Elizabeth, Port Alfred, Haga populations
Haga, Port St. Johns, Salt and
Rock] therefore if
East populations: the Distance APWG 76.31 OST: 0.000+-0.000
[Plettenberg Bay, Port datasets based WP 23.69 0.76315
Elizabeth, Port Alfred, Haga comply OST
Haga, Port St. Johns, Salt with the Frequency APWG 55.32 FST: 0.000+-0.000
Rock] assumption 

of random
based
FST

WP 44.68 0.55323

West populations: mating Distance APWG 24.37 OST: 0.000+-0.000
[McDougals Bay, Hondeklip necessary based WP 75.63 0.24374
Bay, Lamberts Bay, for analysis OST
Yzerfontein, Green Point, using a
Kommetjie, Good Hope, mismatch Frequency APWG 20.77 FST: 0.000+-0.000
Platbank, Wooleys Pool, distribution. based WP 79.23 0.20773
Gordans Bay, Bettys Bay, FST
Cape Agulhas, Mossel Bay]

Table 3.6. Analysis of Molecular Variance (AMOVA) results for all Parvulastra 
exigua samples indicating the apriori groups tested and the reason for testing 
them, and showing the percentage of genetic variation accounted for when the 
data is divided up into different groups. AG: Among Groups; APWG: Among 
Populations Within Groups; WP: Within Populations

AMOVA indicated a significant genetic structure was detected between the east 

and the west groups (P<0.001), and therefore these were subsequently treated 

as separate populations. The AMOVA also indicated significant population 

structure in both the east and west coast haplogroups, suggesting that the 

assumption of random mating required for the Mismatch distribution (to test for
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population expansion) is violated, and that the mismatch distribution should not 

be performed on either of the groups (Rogers and Harpending 1992). However, 

Rogers (1995, 1997) explored if, and if so, how much, structure within a 

population affects the statistical inferences of the mismatch distribution in 

predicting population expansions. He concluded that population structure tends 

to make mismatch distributions ragged and so acts against the inference of 

expansion, but that his results provided no support for the view that population 

structure reduces the value of mismatch distributions for statistical inference 

(Rogers 1995, 1997). Therefore the topology of the MJN’s and the associated 

neutrality statistics were examined to see if it was justified to perform a mismatch 

distribution on either the east or the west group despite the violated assumption 

of random mating.

The MJN’s for both the east and the west haplogroups was star-shaped (central 

haplotype with divergent haplotypes radiating from it) and both haplogroups also 

had high haplotype diversity and low nucleotide diversity (Table 3.7), possibly 

suggesting either a population expansion event or a selective sweep has 

occurred in both haplogroups.

West coast haplogroup East coast haplogroup
Sample Size (N) 128 48
No. of haplotypes 25 11
Nucleotide diversity 0.002458 +/-0.001920 0.005820 +/- 0.003687
Haplotype (gene) diversity 0.6394 +/- 0.0489 0.8653 +/- 0.0301
Mean no. pairwise differences 0.879798 +/- 0.620954 2.083624 +/- 1.188381
Fu’s Fs statistic -30.44523 (P< 0.01) -3.01766 (P= 0.09)
Fu and Li’s F* -3.66786 (P<0.02) 0.06313 (P>0.10)
Fu and Li’s D* -3.54154 (P<0.02) 0.22413 (P>0.10)
Tajimas D -2.30904 (P<0.01) 0.30555 (P>0.10)

Table 3.7. Neutrality statistics, and either standard deviations or P values, for 
Parvulastra exigua COI sequences showing the whole dataset and east and west 
haplogroups.
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3.5.2.1.1. East coast haplogroup

The structure of the east coast haplogroup shows a central (ancestral) haplotype 

which contains far fewer individuals than the west coast haplogroup. This 

haplogroup also has a star-shape but the haplotypes diverging from the central 

haplotype are typically more than one base divergent and comprise more 

samples than the divergent haplotypes in the west coast haplogroup. This shape 

suggests that a population expansion may have occurred earlier in the east coast 

haplogroup than the shape of the MJN in the west coast haplogroup suggests. 

The intra-haplogroup average pairwise divergences estimate is 0.58%. The 

sampling sites at both ends of the east haplogroup geographic range 

(Plettenberg Bay and Salt Rock) have no individuals that share the central 

haplotype. The sampling locations in the middle of the haplogroups geographic 

distribution share haplotypes, but not always with adjacent sampling sites. These 

combined results suggest some degree of population structure in the east coast 

haplogroup.

The Tajima D statistic was positive and did not differ significantly from the 

neutrality model, indicating neither population expansion or background 

selection. Fu’s Fs was negative but not significant whereas Fu and Li’s F* and D* 

were both positive but not significant. These results suggest that the east coast 

haplogroup is not expanding and therefore no mismatch distribution was 

performed on this haplogroup. However, the network structure, high haplotype 

diversity and low nucleotide diversity may indicate that at some time in the past, 

this haplogroup did experience a population expansion or mitochondrial selective 

sweep event.
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3.5.2.1.2. West Coast haplogroup

The west coast haplogroup had high haplotype diversity and low nucleotide 

diversity (Table 3.7), possibly suggesting either a population expansion event or 

selective sweep event. The star-shaped MJN pattern of the west coast 

haplogroup shows one dominant (probably ancestral) central haplotype, with 

several haplotypes containing only one or two individuals diverging from this, 

suggesting recent or ongoing population expansion. This pattern is reflected in 

the low average intra-haplogroup pairwise divergence estimate (0.24%) (Table

3.5). The ‘divergent’ haplotypes occur at most locations. Notably, no individuals 

from Mossel Bay are represented in the central (ancestral) haplotype circle, but 

this site does share haplotypes with Cape Agulhas, and has a haplotype from 

Betty’s Bay diverging from it.

The negative Tajima’s D test statistic for the west haplogroup was highly 

significant for deviations from the model of neutrality, indicating either range 

expansion or background selection. Fu’s Fs for the west haplogroup was highly 

negative and highly significant and Fu and Li’s F* and D* were both negative and 

significant, often indicating background selection. This suggests that the west 

coast haplogroup is either expanding or has undergone a mitochondrial selective 

sweep (Rogers 1995). Therefore a mismatch distribution was performed on this 

haplogroup (Fig. 3.6), but the inferences made were treated with caution 

because the random mating assumption is violated.
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Figure 3.6. Pairwise mismatch distribution plot for the west coast haplogroup for 
the Parvulastra exigua aligned COI sequences; the green line represents the 
expected mismatch distribution of a population under the sudden expansion 
model. The red bars represent the observed mismatch distribution for the data. 
The pink dashed lines represent the confidence intervals at 0.05%, and the blue 
dashed lines represent the confidence intervals at 0.01%. The mismatch 
observed mean: 0.88, mismatch observed varience: 0.685, Sum of Squared 
deviation: 0.005494, P(Sim. Ssd >= Obs. Ssd): 0.0867, Harpending's 
Raggedness index: 0.093821, P(Sim. Rag. >= Obs. Rag.): 0.0298.

The Mismatch analysis indicated that the west coast population has undergone a 

sudden expansion (P>0.08) or there has been a mitochondrial selective sweep, 
as the same shape of the mismatch graph is produced by both processes 

(Harpending et al. 1998). However, considering the associated statistics and the 
shape of the MJN, a sudden expansion seems more likely. The mismatch 

distribution (Fig. 3.6) shows a uni-modal distribution, and the close proximity of 
the curve to the left axis also suggests a very recent or ongoing expansion, thus 

supporting the results of the network structure. The time since expansion was 

estimated at approximately 39,000 years ago (Tau = 0.971 confidence intervals 

at 0.05%: up-bound tau = 0.705 (28,000 years ago), low bound tau = 1.449 

(58,671 years ago). Due to the shape of the mismatch distribution, negative 

Tajima’s D and Fu’s Fs statistics, high haplotype and low nucleotide diversity and 
star shape of the network, population expansion is a more plausible explanation 

than background selection, although the latter cannot be ruled out.
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3.6. Discussion

In South Africa there is a phenotypic distinction between the western ‘unmottled’ 

and eastern ‘mottled’ phenotypes of Parvulastra exigua. This phenotypic divide 

around False Bay Point lies on the biogeographic boundary in fauna and flora 

associated with the cool west coast and the warm temperate south coast 

(Emanuel et al. 1992). Ecological differences were also noted between the 

phenotypes. The abundance of ‘unmottled’ phenotypes was positively influenced 

by under boulder and bare rock habitats, but negatively affected by canopy and 

coralline algae. In contrast, ‘mottled’ phenotypes were positively influenced by 

protected and encrusting algae, as well as under boulder and bare rocks, and 

negatively affected by algal tufts. Both the mottled and unmottled phenotypes 

were negatively affected by sand. Genetic analysis revealed a deep divide 

between reciprocally monophyletic ‘east’ and ‘west’ haplogroups, near the 

Agulhas Bank on the south coast. However, the genetic divide does not coincide 

with this phenotypic divide, but instead is situated approximately 500 km to the 

east.

3.6.1. Phenotypic diversity

If colour variation was the result of neutral demographic processes, it would be 

expected that the colour morphs would be distributed randomly, or that 

divergence in colour morphs would coincide with neutral genetic divergence 

(Hoffmann et al. 2006). As neither of these predictions were realized, neutral 

processes or population structure are unlikely to explain the colour morph 

frequencies. Instead, colour variation coincided more closely with environmental 

variables and therefore either phenotypic plasticity or adaptations in response to 

ecological selective forces are more likely explanations (Growns and Ritz 1994; 

Hoekstra et al. 2004; Brisson et al. 2005; reviewed in Gray and McKinnon 2007).
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Distinguishing between phenotypic plasticity and natural selection as the causal 

mechanism for phenotypic variation can be difficult and usually requires breeding 

(reviewed in Scheiner 2002), physiological (Sokolova and Berger 2000) and/or 

translocation experiments (Trussell 2000; Johannesson and Ekendahl 2002). In 

the case of P. exigua it is unknown whether individuals change colour if 

transferred to different environments or if phenotype is inherited. For example, 

colour may be the result of diet (Hull et al. 2001; Jordaens et al. 2001), or the 

association between morphotypes and habitat may be a behavioural response to 

increased crypsis, indicating that both colour and behaviour are plastic traits, and 

that selection is acting on behaviour and is not the causative agent responsible 

for the colour morphs. However, phenotypic plasticity does not account for the 

distinct phenotypic divide around False Bay as broadly similar habitats exist on 

the east and west coasts. Therefore although phenotypic plasticity cannot be 

ruled out, it is more likely that selection is responsible for the colour morph 

divergence of P. exigua.

A mottled morph is also seen in the sister species of P. exigua, P. dyscrita (H. L. 

Clark 1923), indicating that phenotype may be under such strong selection 

pressure that it transcends species, indicating convergent evolution. 

Polymorphisms that transcend species boundaries are most likely retained from 

a common ancestor and are unlikely to be selectively neutral (Golding 1992; 

Oxford 2005). If the mottled phenotype is ancestral, the rapid population 

expansion seen in the west coast haplogroup of P. exigua may indicate that the 

‘unmottled’ phenotypes have colonized the west coast relatively recently. In this 

case, the unmottled phenotype may have evolved very rapidly in response to 

strong environmental selection. If selection (as opposed to phenotypic plasticity) 

is assumed to be the causative mechanism responsible for colour, then habitat 

differences of the colour morphs might identify the selective forces underlying the 

colour variation.
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3.6.2. Ecology

Phenotypic variation as a selective response to predation is a common cause for 

colour variation in marine invertebrates (Palma and Steneck 2001; Johannesson 

and Ekendahl 2002). The unmottled (phenotypes 1 - 3 )  and the mottled morphs 

(phenotypes 3 - 5) of P. exigua may increase crypsis from different types of 

visual predators in different habitats.

Tidal zone significantly influenced the abundance of mottled and unmottled sea 

stars. Phenotypes 1 - 3  were most abundant in the mid tide level, and least 

abundant in the high zone (phenotype 3 had similar levels in the low and high 

zones), whereas phenotypes 4 and 5 were more common at the high tide level 

and least abundant in the low zone. This may indicate that the mottled and 

unmottled morphs are susceptible to different types of predation, with the 

unmottled sea stars being more at risk from aerial predators and the mottled sea 

stars being more at risk from marine predators. This may be a result of the 

colouring of the morphs, with the reds and light colours of the mottled sea stars 

being more visible than darker colours of the unmottled morphs underwater. 

However, this distribution could also be the result of other abiotic factors (such as 

dissolved oxygen, nitrogen), and other biotic differences (competition) between 

the tidal zones or the level of susceptible to desiccation of the different morphs.

The abundance of all phenotypes was negatively affected by the presence of 

sand. This may reflect the fact that all phenotypes are conspicuous against the 

uniform colour of sand, which possibly results in a high level of predation on this 

substrate. Alternatively, this correlation could reflect the lack of food sources 

present in this habitat. The ‘encrusting’ habitat only had a positive effect on the 

most mottled phenotype 5. Mottled sea stars may appear more cryptic on 

heterogeneous backgrounds (e.g. bare rock / encrusting algae mixtures) due to 

background matching or breaking up the outline of the sea star, (Merilaita 2002;
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Rosenblum 2006; Todd et al. 2006). The lack of effect between encrusting algae 

and phenotype 4, the next most mottled phenotype, which should also benefit 

from crypsis, may be an artefact of a smaller sample size.

Algal tufts had a negative effect on phenotypes 3 - 5 but no effect on phenotypes 

1 - 2; conversely, coralline algae had a significant negative effect on phenotypes 

1, 2 and 3 and no effect on phenotypes 4 and 5. As Algal tufts are mostly green 

or brown and coralline algae is mainly pink or white, these effects could be 

explained by the unmottled sea stars being more cryptic on algal tuft 

backgrounds and the mottled sea stars being more conspicuous on this 

background, and vice versa for the coralline algae.

All phenotypes, except phenotype 4, were positively associated with bare rock 

with by far the strongest effect exhibited by the unmottled sea stars. Parvulastra 

sea stars feed on microalgal film on the surfaces of the bare rock (Branch and 

Griffiths 1994), but this habitat could also incur a cryptic advantage as the rock 

surfaces tend to be fairly homogenous in colour (although this was not quantified) 

providing a uniform background for the unmottled phenotypes. Alternatively, this 

positive association may reflect lack of competition from other grazers.

With the exception of phenotype 5, algal canopy had a significant negative effect 

on all phenotypes possibly as the canopy attracted other predators, thereby 

increasing the risk of predation for the sea stars. The mottled appearance of 

phenotype 5 may have provided this phenotype with some level of protection 

from predation due to breaking up the sea star outline, thus causing a lack of 

negative effect. Alternatively, the algal canopy could be changing the physical 

environment in the pools by either decreasing the amount of oxygen and nitrogen 

in the water, or providing protection from desiccation. The unmottled morphs may 

be more negatively susceptible to the effects of these changes that the mottled 

morphs.
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With the exception of phenotype 3, all other phenotypes showed a weak positive 

association with under boulder habitats, potentially indicating that cover is 

important for all sea stars and may a play a role in preventing terrestrial and / or 

aerial predation (Johannesson and Ekendahl 2002), desiccation (Etter 1988) or 

even physical damage from wave action. Surprisingly however, the habitat type 

protection was only positively associated with phenotype 5. This could be due to 

the effect of protective cover being masked by the stronger effects of ‘under 

boulder’.

Only two of the habitat types recorded, sessile fauna and shell rubble, had no 

effect on the abundances of any of the phenotypes. Whilst some of the sessile 

organisms may provide protective cover in the form of crevices for small sea 

stars (e.g. mussels, oysters or barnacles) this protective effect may be masked 

by stronger associations between sea stars and other habitat types (such as 

under boulder and protection). The level of shell rubble may be linked to the 

degree of wave action or abrasion (although this was not tested), however, 

again, any influence that this habitat category may have on the sea star numbers 

in each phenotype may be obscured by other stronger effects.

As highlighted by the ecology survey, the interactions between phenotype and 

habitat type are complex and there may be many selective forces or secondary 

selective forces that cannot be identified from these data. These results indicate 

only general trends and should be treated with caution because the generic 

terms used in this survey encompass many different species within them (e.g. 

many different species of algae, and lots of different groups of mobile and sessile 

fauna, including mussels, gastropods, zooanthids, oysters etc.) and all of these 

species may have different effects on the phenotypes and their interactions in the 

environment. However, the potential selective forces acting upon the phenotypes 

could be influenced by predation and the level of crypsis each habitat type 

provides. The different colour morphs of P. exigua may have evolved in response 

to different levels and forms of predation in different areas. If some morphs are
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more conspicuous in different habitats, this may indicate that they have different 

levels of chemical toxins and the colour morphs may have evolved as warning 

colouration, advertising the colour morphs unpalatability to protect them against 

physical attacks. The red colouration of some adult morphs may indicate 

chemical defences. Red colouration in other organisms often indicates 

antifeedant carotinoids (reviewed in Bandaranayake 2005). Some asteroids and 

holothurians are known to produce saponins as chemical defences in both the 

larval and adult stages (Lucas et al. 1979; Bingham and Braithwaite 1986; 

McClintock and Vernon 1990).

Additional to the ecological survey data, two lines of evidence indicate that 

phenotype in P. exigua may also be linked with water temperature, either directly 

or indirectly. Firstly, there was a pronounced phenotypic overlap zone in False 

Bay which corresponds to the biogeographic divide between the cold west coast 

and the cool temperate south coast. Secondly, P. exigua in Australia occurs in 

the cold water provinces but only the ‘unmottled’ phenotype has been observed, 

and P. exigua does not occur in the warm water provinces. In South Africa, the 

unmottled phenotype also occurs in the cold water biogeographic province. 

Additionally, P. dyscrita also has a mottled phenotype and is distributed on the 

south coast where the water is warmer, but is absent from the cold west coast. 

This distributional evidence may indicate a selective advantage for the ‘mottled’ 

phenotype in warmer waters (Etter 1998). Colour in other asterinids may be 

affected by light intensity or water temperature. For example, Strong (1975 cited 

in Williams 1999) showed that brown morphs of the starfish genus Linckia occur 

at greater depths than the royal-blue morph and are less tolerant of higher water 

temperatures. On the other hand, royal-blue morphs are more common in very 

shallow waters, where water temperatures and exposure to direct sunlight are 

beyond the tolerance limits of many species. Thermal tolerance in other species 

has been suggested as a driving selective force in maintaining colour 

polymorphisms (Forsman 1999). The role of selection in maintaining colour 

polymorphisms in P. exigua remains unclear, and will almost certainly be the
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result of several selective forces acting simultaneously on different aspects of 

survival in the heterogeneous intertidal environment.

3.6.3. Biogeography and phylogeography

Two divergent haplogroups of P. exigua were identified corresponding to the 

west and east coasts, separated between Mossel Bay and Plettenberg Bay on 

the south coast. The star-shaped pattern of the west coast haplogroup indicated 

that the population expansion is recent or ongoing since the number of 

individuals sharing the central haplotype appears to have increased more rapidly 

than the evolution of mutations resulting in new divergent haplotypes. The 

divergent haplotypes occur at most locations indicating some incomplete lineage 

assortment and/or that gene flow between the sampling locations may be 

restricted. Lineage assortment has occurred towards the eastern end of this 

haplogroup’s geographic distribution, indicated by no individuals from Mossel 

Bay represented in the ancestral haplotype, but shared haplotypes between 

Mossel Bay, Cape Agulhas and Betty’s Bay, suggesting some gene flow between 

these three locations, but low or absent gene flow between these locations and 

the rest of the geographic range. The structure of the east coast haplogroup 

suggests that gene flow has been low at the extreme ends of the geographic 

range (i.e. between Plettenberg Bay and Salt Rock and the rest of the sampling 

locations), and that complete lineage sorting of haplotypes has occurred at these 

locations. The sampling locations in the middle of the haplogroup’s geographic 

distribution share haplotypes indicating that there is potentially more gene flow 

between sampling sites on this stretch of coast, possibly due to the northerly 

inshore current flowing closer to the coast between these locations. The west 

coast population expansion prediction was supported by the mismatch 

distribution, associated statistics and time since expansion estimates which 

placed the west coast expansion at approximately 40,000 years ago. The west 

coast expansion appears to coincide with the period of strongest upwelling in the 

Benguela system which occurred between 42 and 20,000 years ago (Lindesay
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1998; Partridge 2001), suggesting that the colder water temperature, or the 

associated increase in phytoplankton caused by upwelling, resulted in favourable 

conditions for the unmottled morph of P. exigua.

It is unknown whether the east and west haplogroups are reproductively isolated. 

The genetic structure and demographic history of P. exigua observed in South 

Africa has some similarities with that observed in Australia for the same species 

(Hunt 1993; Colgan et al. 2005). Colgan etal. (2005) found no shared haplotypes 

between populations of P. exigua in New South Wales, Tasmania and South 

Australia (approximate distances of 1100, 2250 and 1650 km, respectively), 

implying complete lineage assortment between these regions. Haplotypes were 

shared between the two populations within New South Wales implying some 

gene flow between these populations. However, the evolutionary distance 

between the haplotypes and therefore regions of their study was surprisingly low, 

at most only 0.006%. Colgan et al. (2005) also suggested that range expansion 

has occurred in the Australian populations of P. exigua, with subsequent low 

gene flow between regions. Similarly, Hunt (1993) showed that over a 230 km 

distance, P. exigua populations were strongly genetically partitioned, and gene 

flow was rare between widely separated populations, but some gene flow 

occurred between nearby populations.

Colgan et al. (2005) suggested that geographically limited haplotype distributions 

are characteristic of P. exigua, but Waters and Roy (2004) recorded one 

haplotype shared between Tasmania and Victoria (Australia). This pattern of 

limited haplotype distribution is not seen in either of the haplogroups in South 

Africa, with haplotypes shared between populations separated by 360 km (Table

3.5) on the east coast and haplotypes shared between almost all populations 

over a distance of 1040 km on the west coast. Additionally, the divergences 

estimated between populations are much higher (Table 3.5) than those estimated 

between Australian populations (Colgan et al. 2005). This discrepancy in genetic 

structure between South Africa and Australia could indicate either (i) more recent
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or ongoing gene flow between the South African populations in comparison to 

low gene flow between the Australian populations, or (ii) more recent population 

expansion in both haplogroups in South Africa, indicated by the ancestral 

haplotype still being evident in most populations. An earlier investigation 

(Chapter 2) revealed that both the east and west South African haplogroups had 

oral gonopores, therefore it is assumed that the South African and Australian 

populations have the same reproductive mode and dispersal ability. As species 

with entirely benthic life cycles are assumed to have high genetic structure and 

restricted dispersal capability (Hunt 1993; Arndt and Smith 1998; Gaylord and 

Gaines 2000; Colgan et al. 2005), the latter explanation of the genetic structure 

in South Africa is more likely.

The history of population expansion in the west coast haplogroup does not 

explain the reciprocal monophyly and lack of introgression between the east and 

west haplogroups or how this genetic structure was formed. Previous studies 

have suggested upwelling can cause a barrier to gene flow (Bowen et al. 2001; 

Lessios et al. 2001; Waters and Roy 2004). Although there is some upwelling on 

the Agulhas Bank which may have contributed to the marked phylogeographic 

divide, the strong upwelling (Fig. 3.1) on the west coast did not appear to disrupt 

gene flow. The most plausible past demographic process that may have given 

rise to the reciprocally monophyletic haplogroup structure between the east and 

west coasts is allopatric divergence caused by a vicariance event. The time since 

divergence between the east and west haplogroups was estimated at between 

1.4 - 1.25 MYA, near the beginning of the Pleistocene epoch. However, there 

have been no major geological changes along the South African coastline since 

the formation of the present continental shelf during the early Cretaceous 

(Heydorn et al. 1978), and there are no geological features that could have acted 

as an absolute barrier to the dispersal of benthic intertidal species during this 

time (Teske et al. 2006). Sea level or temperature changes during the 

Pleistocene (Branch and Branch 1981) may have exposed the continental shelf, 

creating a physical barrier to gene flow over the Agulhas Bank, separating the
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east and west populations. Local adaptation, neutral genetic divergence and 

range expansion may have ensued in allopatry on both sides of the barrier, 

followed by further sea level or temperature changes causing the 

phylogeographic divide to break down and secondary contact to occur. The 

present inshore currents diverge northwards up either sides of the coast which 

may reduce or prevent present day gene flow between the two coasts, 

accounting for the lack of introgression between the haplogroups. As 

phylogeographic divides are seen in other species around the Agulhas Bank 

region (Teske etal. 2006), this is a plausible explanation. Teske etal. (2006) also 

found that the strength of the Agulhas Bank barrier to gene flow increases as the 

dispersal ability of the organism decreases. Vicariance events have been 

invoked as an explanation to account for other major genetic divergences in 

continuously distributed intertidal species (Reeb and Avise 1990).

The findings of this study have four general phylogeographic implications for the 

South Africa intertidal zone. Firstly, this study supports the presence of a 

phylogeographic divide on the south coast by the Agulhas Bank (Evans et al. 

2004; Teske et al. 2006). Secondly, phylogeographic structure in P. exigua does 

not correspond to the four intertidal biogeographic provinces identified by 

Emanuel et al. (1992), indicating that biogeographic divides do not necessarily 

represent genetic divides, at least in this species. Thirdly, previous biogeographic 

investigations have suggested that the temperature regimes of the Benguela and 

Agulhas currents are the primary factors responsible for the distributions of 

intertidal organisms in South Africa (Stephenson and Stephenson 1972; Brown 

and Jarman 1978; Emanuel et al. 1992). However, the temperature gradient 

around the coast appears to have little influence on the genetic structure of P. 

exigua. This study indicates that past geography and the weaker inshore counter 

currents, especially on the east coast, may be more important for maintaining 

genetic structure than previously recognized. The east coast northerly inshore 

current may be reducing or preventing present day gene flow between the east 

and the west coast across the Agulhas Bank. Finally, genetic structure and
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phylogeographic divides are not considered in the formation of marine reserves 

at present in South Africa, despite an awareness of the need to protect genetic 

as well as species diversity (Branch and Odendaal 2003; Palumbi 2003; Palumbi 

2004). As the existence of a phylogeographic boundary across species in 

intertidal fauna around the Agulhas Bank will have implications for reproductive 

stocks, larval and juvenile dispersal, it should be considered when designating 

biogeographic provinces and marine reserves (Branch and Odendaal 2003).

3.7. Conclusions

The discontinuity between the neutral genetic structure and the colour morph 

frequency distribution of P. exigua leads us to conclude that phenotypic variation 

is not the result of population structure and neutral demographic processes. The 

concordance between the colour morph frequency distribution and the 

environmental biogeographic temperature provinces and habitat preferences 

suggest that colour is either under ecological selection directly, or linked to part 

of the genome that is under selection. These results suggest that the selective 

force maintaining the colour variation is related to predation and / or water 

temperature. However, the causative selective mechanisms maintaining colour 

polymorphisms in P. exigua remain unclear, and will almost certainly be the 

result of several selective forces acting simultaneously on different aspects of 

survival in the heterogeneous intertidal environment.

This study of neutral genetic variation indicates no correlation between the 

phylogeographic structure of P. exigua in South Africa and the presently 

recognized biogeographic provinces, but there is a major genetic divide in these 

organisms around the Agulhas Bank, which corresponds to genetic divides seen 

in other intertidal species, possibly created by a past vicariance event mediated 

by sea level or temperature changes. Furthermore, it appears that inshore 

currents on the east coast and upwelling events on the west coast may play a 

more important role in maintaining the genetic structure of near shore
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invertebrates than the temperature regimes created by the large powerful 

offshore currents of the Benguela and Agulhas.

The next chapter will use a population genomics approach to identify potential 

loci under selection, and compare the distribution of these within populations to 

environmental variables to infer the potential selective forces shaping phenotype. 

Additionally, this approach will enable us to assess levels of present day gene 

flow in P. exigua and test whether the two genetic haplogroups are reproductively 

isolated.
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Figure 3.7. Position of sequence ambiguities for the Parvulastra exigua 
Cytochrome Oxidase I partial gene sequence for Haplotype 1 from Chapter 3.
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Figure 3.8. Alignment of the sequence ambiguities for the Parvulastra exigua 
Cytochrome Oxidase I partial gene for all haplotypes from Chapter 3.
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3.9. Appendix 3.
Graphical predictions (with 95% confidence intervals) of the GLMM for the habitat 
variables of Parvalustra exigua presented as back transformed values of the 
dependent variable.
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Figure 3.9 Graphical
predictions of the GLMM for the 
variable sand, showing
phenotypes 1, 2, 3, 4 and 5.

183



pr
i
d

c
t
«
d

P
2

P
I

d

ic
t

d

P
1

P
r
e
d
ic
t
<
d

P
*

P
i

c
t
«

d

P
3

Figure 3.10. Graphical prediction of the GLMM for the variable Canopy, showing 
phenotypes 1, 2, 3 and 4.
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Figure 3.12. Graphical prediction of the GLMM for the variable Coralline algae, 
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Figure 3.13. Graphical prediction of the GLMM for the variable under boulder, 
showing phenotypes 1, 2, 4, and 5.
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Chapter 4: Spatial genetic structure and directional 
selection along an environmental gradient in an 

intertidal sea star
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1 School of Biosciences, Cardiff University, Cardiff CF10 3TL, U.K.

2Marine Biology Research Institute, University of Cape Town, Rondebosch,
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4.1. Abstract

Diversifying selection and local adaptation can potentially occur in populations 

distributed across environmental gradients, or inhabiting geographic ranges 

where habitat heterogeneity exists over a larger spatial scale than the dispersal 

potential of the populations. To identify diversifying selection, neutral patterns of 

genetic structure need to be established in order to detect deviations from 

neutrality. A genome scan approach, using 307 AFLP loci was applied to 

establish the population genetic structure among 16 populations of a South 

African intertidal sea star species, Parvulastra exigua, which displays phenotypic 

differentiation across a temperature gradient between the Indian and Atlantic 

oceans. Coalescent-based simulation was used to establish neutral expectations 

of genetic structure and loci were identified and analysed where they deviated 

from neutral expectations. We found a strong pattern of isolation by distance 

around the coast, but approximately 6.8% of the genome displayed a higher than 

expected differentiation from this neutral model, potentially identifying genomic 

regions under diverging selection. Phenotype frequencies of divergent outlier loci 

within populations showed evidence for directional selection, broadly 

corresponding to temperature and phenotypic gradients between the east and 

west coasts of South Africa. This pattern could be the result of local adaptation 

linked to the temperature gradient or the phenotypic differentiation, although a
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genetic signature of secondary contact and introgression following a period of 

allopatry cannot be ruled out.

4.2. Introduction

Four major evolutionary processes shape genetic diversity in wild populations; 

genetic drift and selection reduce genetic diversity, whereas mutation and gene 

flow increase it (Luikart et al. 2003). Selection and mutation tend to be locus 

specific, whereas genetic drift and gene flow tend to be genome-wide effects. 

Genetic drift involves random changes in allele frequencies that occur over 

generations due to chance events alone. Natural selection, the process 

highlighted by Darwin, relies on the fact that within every population there is 

random variation that is of different fitness value. Variations which aid fitness are 

'selected' by being preferentially inherited in succeeding generations. Mutation 

involves changes in the genome which result in new or rearranged gene 

combinations. Gene flow is defined as the proportion of individuals within a 

population of each generation that successfully breed after migration (Hellberg et 

al. 2002). This chapter focuses on detecting spatial patterns of gene flow and 

selection, and investigating the interplay between these two forces in a 

continuously distributed intertidal population of sea stars occurring along a 

substantial environmental gradient. Using a genome wide sampling framework, a 

coalescent based simulation model was used to determine the genome-wide 

effects of population demography and phylogenetic history, in order to identify 

loci by contrast that may be under divergent selection (Luikart et al. 2003).

4.2.1. Determinants of gene flow in marine species

Examining what determines gene flow in the marine environment can provide 

insights into neutral genetic structure of populations and potential selective forces 

(Palumbi 1994; Hilbish 1996; Grosberg and Cunningham 2001; Hellberg et al. 

2002). Gene flow can be shaped by both past and present abiotic conditions, 

such as plate tectonics, natural barriers or current systems, as well as the biology
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of the species (Hilbish 1996; Grosberg and Cunningham 2001; Hellberg et al. 

2002). The dispersal potential of different life history stages (e.g. gametes, 

larvae, adults) can greatly influence the level of gene flow (Holt and Gaines 

1992). Species with high dispersal potential tend to show low genetic 

differentiation over large spatial scales (Booth and Ovenden 2000), whereas 

those with poor dispersal tend to be more genetically structured (Riginos and 

Victor 2001; Sponer and Roy 2002 but see Hilbish 1996), but often dispersal 

potential does not correlate with actual gene flow. For example, on the east coast 

of North America biogeographic boundaries are set by steep temperature 

gradients and near shore currents, but gene flow estimates based on larval 

biology indicate that genetic variation is structured over a much shorter 

geographic scale than predicted (Palumbi 1994 and references therein). 

Conversely, sea stars with low dispersal potential which have an entirely benthic 

life history and ‘crawl away’ juveniles have global geographic distributions that far 

exceed their predicted dispersal potential (Hart et al. 2006). Therefore gene flow 

alone cannot account for the different patterns of geographic and genetic 

structure in populations, and selection may be a contributing factor. There is 

potential for diversifying selection and local adaptation, e.g. phenotypic 

adaptations, or speciation to occur where habitat heterogeneity exists within a 

species’ geographic range (Kreitman and Akashi 1995; Hilbish 1996; Schluter 

2001; Veliz et al. 2006). Over large spatial scales habitat heterogeneity often 

exists in the marine environment as different circulation patterns and currents 

provide different ecological niches (Grosberg and Cunningham 2001). Before 

diversifying selection can be investigated, it is important to understand the 

patterns of gene flow among populations. If no gene flow is occurring between 

populations under different selective pressures, then there is no homogenising 

effect counteracting adaptation, and divergence can occur in allopatry to different 

environmental conditions. However, if there is gene flow, then diversifying 

selection may occur despite the homogenising effects of gene flow (Smith et al. 

1997).
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4.2.2. Selection

Investigating the genetic basis of adaptation and population divergence may help 

us to understand natural selection and adaptive evolution in changing 

environments, and ultimately protect genetic biodiversity. Ecological theories of 

adaptive radiation (e.g. Schluter 1996), suggest that phenotypic divergence and 

speciation are the ultimate consequences of divergent natural selection in 

contrasting environments (Storz 2005). Selection is the principal force shaping 

phenotypic variation (Rieseberg et al. 2002), the direction and strength of which 

may vary considerably in space (Steinger et al. 2002). Furthermore, selection 

may shape phenotypic differences between populations even when there is gene 

flow between differing phenotypes (Smith et al. 1997; Bensch and Akesson 

2005). Several studies have suggested that selection is responsible for 

maintaining divergent phenotypes within sympatric or parapatric populations and 

that gene flow among the divergent phenotypes is evident (Wilding et al. 2001; 

Storz and Dubach 2004). Where phenotypic polymorphisms occur over steep 

environmental gradients, diversifying selection may be responsible for driving 

adaptive differentiation in the face of gene flow, which may lead to the acquisition 

of reproductive isolation and eventual speciation. Alternatively, phenotypic 

polymorphisms may be maintained by non-selective mechanisms and governed 

only by quasi-neutral processes such as mutation or drift (Hoffman et al. 2006). 

Neutral demographic processes are predicted to have relatively uniform effects 

across the entire genome, whereas natural selection will generally be more 

locus-specific, affecting only regions of the genome under selection or those 

linked to loci under selection (Beaumont and Nichols 1996; Luikart et al. 2003; 

Beaumont and Balding 2004).

An approach to investigate selective versus neutral genetic processes and to 

identify local adaptation or selection at genes with key functional roles was first 

proposed by Lewontin and Krakauer (1973). Since then several modified 

statistical methods have been developed (Bowcock et al. 1991; Beaumont and 

Nichols, 1996; Vitalis et al. 2001; Schlotterer 2002; Porter 2003; Beaumont and
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Balding 2004) using a variety of different genetic markers (Andres et 2000; 

Akey et al. 2002; Kayser et al. 2003; Hoffman et al. 2006) to identify areas of the 

genome that are potentially under diversifying or stabilising selection- Similar 

approaches have also been used to investigate selection on specific candidate 

loci linked to colour pattern polymorphism (Gillespie and Oxford 1998; Andres et 

al. 2000, 2002; Hoffman et al. 2006), selection on divergent phenotypes 

(Campbell and Bernatchez 2004), speciation (Savolainen et al. 2096) and 

selection in populations distributed across environmental gradients (Wildin9 et a/. 

2001; Storz and Dubach 2004). Several authors have implemented these 

approaches at a genome-wide scale, termed ‘genome scans’ (Storz 2095) or a 

population genomics approach (reviewed in Luikart et al. 2003) using Amplified 

Fragment Length Polymorphism (AFLP; Wilding et al. 2001; Campbell and 

Bernatchez 2004; Achere et al. 2005; Mealor and Hild 2006; Murray and Here 

2006; Savolainen et al. 2006). AFLP analysis is ideal for rapidly screening many 

loci that are randomly distributed throughout the genome, allowing an accurate 

estimate of the genomic differentiation among populations and a thorough Screen 

for regions of the genome under divergent selection (Murray and Hare 2096).

These methods for detecting selection use simulations to generate a null 

distribution of a particular summary statistic (such as Fst) under a neutral model 

of population structure. The majority of loci will conform to the neutral model but 

outlying loci may exhibit lower than expected levels of differentiation, suggesting 

some form of balancing selection, and some loci may exhibit higher then 

expected differentiation, suggesting diversifying selection (Storz 2905). These 

differences will occur at a small number of DNA sites but are potentially 

identifiable because linkage will lead to ‘islands’ of differentiation around the 

selected sites and any markers sampled within an ‘island’ should also show 

differentiation (Beaumont and Balding 2004). Phenotype frequencies of such 

‘outlier loci’ can then be examined across populations. Large inter-population 

allele frequency differences or clines in allele frequencies may be evident at loci 

that control traits under differential adaptation or selection (Beaumont and
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Balding 2004). The identified outlier loci phenotype frequencies may reflect 

diversifying or stabilising selection that correspond to a phenotypic gradient or to 

suspected selective agents within or among populations, such as environmental 

gradients.

In the absence of barriers to dispersal steep clines in allele frequencies may 

reflect a history of diversifying selection. However, they can also reflect the 

interplay between drift and spatially restricted gene flow (isolation by distance) or 

by admixture between previously isolated populations that have come into 

secondary contact (Wilding et al. 2001; Storz and Dubach 2004; Murray and 

Hare 2006). These two correlates of clinal variation in allele frequencies are very 

difficult to distinguish, since introgression of neutral markers and recombination 

are expected to break down the signal of past separation, unless the cline is 

stabilized by biotic or abiotic factors (Barton and Hewitt 1985; Wilding et al. 2001; 

Grahame et al. 2006; Murray and Hare 2006).

4.2.3. The intertidal sea star Parvulastra exigua

Due to its continuous distribution over a geographically heterogeneous habitat, 

the small South African intertidal sea star, Parvulastra exigua (see previous 

Chapters for intertidal environment of southern Africa, Parvulastra taxonomy, 

ecology, geographic range, life history, phenotypic variation of P. exigua and 

neutral P. exigua population structure) is a useful model system for exploring 

evidence of adaptive divergence. Several features of P. exigua are comparable 

to other biological systems in which diversifying selection may be driving 

adaptive differentiation (Savolainen et al. 2006). Firstly, there is phenotypic 

divergence in P. exigua coupled with low dispersal ability over a well 

characterised intertidal temperature gradient (Chapters 1, 2 and 3). In 

populations that are distributed across steep environmental gradients the 

potential for local adaptation is determined by the spatial scale of fitness variation 

relative to the dispersal ability of the species (Storz and Dubach 2004). The lack 

of a planktonic larval stage in P. exigua and its continuous distribution around the
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South African coast suggests that its dispersal ability and gene flow may be 

restricted to adjacent populations, and therefore an isolation by distance pattern 

of genetic structure is predicted. Previous authors have found evidence of 

adaptive divergence within populations that show phenotypic differentiation over 

environmental gradients (Wilding et al. 2001; Storz and Dubach 2004). However, 

these studies tested gradients which span relatively small geographical 

distances, such as latitudinal clines (Storz and Dubach 2004) or vertical clines on 

a rocky shore (Wilding et al. 2001) and therefore stable maintenance of adaptive 

divergence would require strong selection to counterbalance the homogenizing 

effects of gene flow (Storz and Dubach 2004).

Secondly, the mottled polymorphism is evident in both P. exigua and its sister 

species P. dyscrita, over the same geographical locations. The presence of 

colour polymorphisms that transcend species boundaries suggests that they 

have been retained from a common ancestor and are therefore unlikely to be 

selectively neutral (Golding 1992; Richman 2000; Oxford 2005). Thirdly, the 

unmottled and mottled phenotypes of P. exigua show a different habitat usage 

(Chapter 3). Ecological shifts in habitat usage, accompanied by phenotypic 

differentiation represent a specific case of divergence where deterministic forces, 

rather than random processes, are likely to be implicated (Orr and Smith 1998). 

Other studies have tentatively suggested that some loci display divergent 

selection which may be operating on the phenotype and that phenotype is 

influenced by habitat use (Wilding et al. 2001; Campbell and Bernatchez 2004, 

but see Hoffman et al. 2006). Grahame et al. (2006) briefly discussed whether 

habitat choice by different Littorina saxatilis phenotypes acted to maintain shell 

polymorphism, or if habitat choice was evolving as a result of habitat related 

fitness differences of different phenotypes. They concluded that strong selection 

and habitat choice are responsible for maintaining a cline in allele frequency at 

some loci and that habitat choice would reduce the opportunities for mating 

between morphs and so increase the barrier to gene exchange. In the P. exigua 

system, the colour morphs are partially geographically separated (Chapter 3) as
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well as displaying some habitat preference, and therefore the potential for 

restricted mating also exists.

However, prior to using P. exigua as a model for exploring evidence of adaptive 

divergence and selection, a taxonomic issue has to be resolved. Parvulastra 

exigua has two divergent monophyletic mtDNA clades geographically separated 

on the south coast, but this genetic divide does not coincide with the phenotypic 

divergence (Chapter 3). Thus, P. exigua might not represent a cohesive 

interbreeding taxonomic unit (‘species’). Moreover, the taxonomic history of the 

genus Parvulastra in South Africa is complex, with recent speculation questioning 

the species status of both P. exigua and P. dyscrita (see Hart et al. 2006; 

Chapters 1 and 2). Recent mitochondrial data (Chapter 2) suggest that P. exigua 

and P. dyscrita are separate taxa, each containing two distinct parapatric 

lineages. Therefore, before inferences on loci under selection within P. exigua 

can be investigated, a genomic approach (Luikart et al. 2003) is needed to 

ascertain genetic structure within and between the Parvulastra species in South 

Africa.

Defining lineages using mitochondrial DNA alone can be misleading (Kai et al. 

2002; Bensch et ai. 2006; Gompert et al. 2006) as mtDNA may behave quite 

stochastically in terms of differentiation between sites, even if gene flow is 

constant and continuous (Irwin 2002). Mitochondrial genomes are not 

independent estimates of phylogenies but instead represent a gene tree which 

may not be congruent with a species tree because signals of a species’ 

evolutionary history may be obscured by selective sweeps, demographic history 

or hybridization (Moore 1995; Barton 2001; Mishmar et al. 2003). The AFLP 

method has been used effectively to distinguish between species and 

subspecies, and between recently diverged taxa (Douek et al. 2002; Ogden and 

Thorpe 2002; Salvato et al. 2002; Carisio et al. 2004; but see Despres et al. 

2003; Sullivan et al. 2004; Gompert et al. 2006), as well as in phylogeographic 

studies of marine invertebrates and other taxa (Darling et al. 2004; Baus et al.
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2005; Timmermans et al. 2005), and in distinguishing between colour morphs 

within species (Kai et al. 2002). Once distribution of Parvulastra lineages is 

established, the neutral genetic structure of P. exigua can be elucidated without 

biasing the genetic signal.

4.3. Aims

There were three main aims of this study.

Firstly, we aimed to establish the number of distinct lineages within Parvulastra in 

South Africa using a genomic approach to compare to the mitochondrial structure 

evident in Chapter 3.

Secondly, we aimed to identify the AFLP (nuclear genomic) structure of P. exigua 

around the coast, and compare it to (i) the mitochondrial sequence structure, (ii) 

the phenotypic cline, or (iii) the expected pattern of isolation by distance for a 

benthic species with poor dispersal.

Thirdly, we aimed to identify outlier AFLP loci which may be subject to 

diversifying or stabilising selection within P. exigua using Beaumont and Nichols’ 

(1996) approach. The outlier loci phenotype frequencies across populations will 

be compared to the phylogeographic and phenotypic structure and the influence 

and strength of these loci on the population structure will be assessed.
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4.4. Methods

4.4.1. Sampling and DNA extraction

Parvulastra exigua and P. dyscrita samples were collected from 16 sites (Fig. 

4.1) around the South African coastline between January and May 2005 as 

described in Chapter 3.

McDougals Bay 

Hondeklip Bay 

Lamberts Bay*

Yzerfontein

Gordans Bay

Kommetji
J Platbank)
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50k

South Africa
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Salt Rock
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Port St. Johns 
aga Haga 
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Mpss£l*‘ Plettenberg Bay 
.*B*ay
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Figure 4.1. Map of Parvulastra exigua and P. dyscrita sampling sites within South 
Africa.

DNA samples were extracted between June and August 2005 using the Qiagen 

DNeasy tissue purification kit (Qiagen), according to the manufacturer’s 

instructions. The extracted DNA was checked for quality and quantity before
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starting the AFLP procedure using agarose gel electrophoresis and 

spectrophotometry. Only high quality DNA was used for the AFLP procedure as 

the method relies on digestion of the DNA at specific sites reliably producing 

fragments of consistent length. Degraded DNA was discarded as the fragment 

sizes would be unreliable.

4.4.2. AFLP

The AFLP procedure was based on Ajmone-Marsan et al. (1997) using one pre- 

selective primer combination and four selective primer combinations, but with the 

following adaptations to maximise reproducibility (recommended by Baus et al. 

2005). Firstly, 200 ng of DNA was restricted to ensure complete digestion, 

instead of 400 ng (Ajmone-Marsan et al. 1997). Secondly, three independent pre- 

selective PCR reactions were performed on the same digested DNA. The 

products from one of these reactions were visualised on agarose gel to check 

that the digestion had proceeded efficiently and produced a consistent smear 

with no banding present. If bands were present in the smear, the sample was 

discarded. To maximise the probability of amplifying all restriction fragments 

produced by the digestion reaction, the PCR products of the three pre-selective 

PCRs were combined, diluted and used in the selective PCR reactions. To check 

and maintain consistent results, positive and negative control samples were 

incorporated into every procedure from the selective PCR stage onwards and 

comparisons between plates were made to assess repeatability.

4.4.2.1. Digestion of genomic DNA and ligation of adaptors

The digestion reaction contained 2.5 pi of One-Phor-AII Buffer PLUS; 1.25 pi of 

DTT (100 mM); 3.1 pi of BSA (0.4 mg/ml); 0.5 pi of Taq\ (10 U/pl); 200 ng of DNA 

and adjusted to 25 pi final volume with ddH20. This was incubated for 1 h at 

65°C before the following solution was added: 10.52 pi ddH20; 1.5 pi of One- 

Phor-AII Buffer PLUS; 0.75 pi of DTT (100 mM); 1.88 pi of BSA (0.4 mg/ml); 0.34
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pi of EcoR1 at 15 U/pl. This 40 pi reaction volume was incubated for a further 1 h 

at 37°C immediately prior to ligation of adaptors. The ligation reaction contained: 

4.15 pi of ddH20; 1 pi of EcoRI adaptors stock (5 pmol/pl; 2.5 pmol/pl of each 

EcoRI adaptor); 1 pi of Taq\ adaptors stock (50 pmol/pl) 25 pmol/pl of each 7aqrl 

adaptor; 0.1 pi of ATP (100 mM); 1 pi of One-Phor-AII Buffer PLUS; 0.5 pi of DTT 

(100 mM); 1.25 pi of BSA (0.4 mg/pl) and 1 pi of DNA ligase (1 /pi) total volume 

10 pi. This mix was added to the 40 pi of digested DNA and incubated at 37°C for 

3 h. This mix was then diluted 1:10 with a low TE buffer (1 ml Tris-HCL 1M pH 

7.5, 20 ml 0.5 EDTA pH 8.0, up to 100 ml with ddH20) 1:100.

4.4.2.2. Pre-selective PCR

The reactions contained: 19.3 pi of ddH20; 5 pi of Invitrogen Taq polymerase 

buffer; 1.5 pi MgCI2 (50 mM); 4 pi dNTPs (10 mM); 7.5 pi of E01 (10 ng/pl) (Pre- 

selective EcoRI primer E01 5\..GAC TGC GTA CCA ATT CA...3’); 7.5 pi of T01 

or T02 (10 ng/pl) (Pre-selective Taq\ primer T02 5’...GAT GAG TCC TGA CCG 

AC...3’); 0.2 pi of Invitrogen Taq polymerase 5 u/pl) and 5 pi of diluted template 

DNA in a total volume of 50 pi (Ajmone-Marsan et al. 1997). PCRs were 

performed in a Perkin Elmer thermal cycler at 72°C for 1 - 2 min for 1 cycle; 94°C 

for 30 s, 56°C for 1 min and 72°C for 1 min for 30 cycles; 72°C for 10 min for 1 

cycle. The PCR products were then checked on a 1.25% agarose gel to see a 

smear between 100 and 1000 bp. The pre-amplified template was then diluted 20 

fold with a low TE buffer.

4.4.2.3. Selective PCR and Primer combinations

Reactions contained: 7.3 pi of ddH20; 2 pi of Invitrogen Taq polymerase Buffer; 

0.6 pi MgCI2 (50 mM); 1.6 pi dNTPs (10 mM); 0.5 pi of EcoRI primer (labelled 

with 6 FAM), (10 ng/pl); 3 pi of unlabelled Taq\ primer (10 ng/pl); 0.08 pi of
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Invitrogen Taq 5 U/jnl); 5 pi of the diluted pre-amplified template in a total volume 

of 20 pi (Ajmone-Marsan et al. 1997). The PCR conditions were as follows: Initial 

denaturation at 94°C for 2 min for 1 Cycle. The PCR cycle was repeated 36 times 

using the following conditions: denaturation at 94°C for 30 s; annealing at 65°C 

for 30 s (this annealing temperature was then reduced by 0.7°C each cycle to 

56°C (13 cycles) and thereafter kept constant until the completion of the PCR run 

(a remaining 23 cycles)); extension at 72°C for 1 min. After the cycle completion, 

the final extension was at 72°C for 10 min for 1 cycle. Four primer combinations 

were used for the selective PCRs (Table 4.1, (Ajmone-Marsan et al. 1997).

Primer
Pair

EcoRI primers (labelled) Taq1 primers (unlabelled)

1 E32 (5’ GAC TGC GTA CCA ATT CAA C 3’) T51 (5’ GAT GAG TCC TGA CCG ACC A 3’)
2 E33 (5’ GAC TGC GTA CCA ATT CAA G 3’) T51
3 E38 (5’ GAC TGC GTA CCA ATT CAC T 3’) T51
4 E38 T48 (5’ GAT GAC TCC TGA CCG ACA C 3’)

Table 4.1. Primer combinations for the selective PCR amplifications in the AFLP 
procedure.

4.4.2.4. Detection of AFLP bands

One pi of the labelled amplification product was mixed with 0.5 pi of ROX 500 

size standard (Applied Biosystems) and 10 pi of formamide (Applied 

Biosystems). The products were denatured at 94°C for 2 min and then the 

fragments were separated using an ABI prism 3100 genetic analyzer. The 

samples were analyzed using GeneScan vs . 2.0 (Applied Biosystems) and the 

size standard peaks were checked for accuracy. The fragments were visualised 

with Genotyper v s . 3.6 (Applied Biosystems). The fragments for each sample 

were scored automatically by using a function in G enotyper which scores all 

fragments between specified size and intensity ranges. The size and intensity 

parameters were set according to the maximum accuracy and repeatability of the 

control samples, and were adjusted for each primer pair. The accuracy of the 

AFLP method and the repeatability was assessed using the positive and negative
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controls on each plate. Primer pair three, which was inconsistent in its 

repeatability, was discarded.

4.4.3. Data analysis

4.4.3.1. Evolutionary lineage identification of Parvulastra in South 
Africa

Genetic diversity was calculated as the percentage of polymorphic loci in each 

primer pair, and in the whole dataset, for all lineages. Average gene diversity 

over loci (He) and the standard deviations were calculated in A r le q u in  Vs. 3.11. 

Principal Coordinates Analysis (PCA) was conducted on the whole dataset to 

visualise how the AFLP data clustered, and to ascertain if the mitochondrial 

lineages identified in Chapters 2 and 3 (P. exigua east and P. exigua west, P. 

dyscrita and Kommetjie) were also distinguishable using AFLP data. Firstly, a 

Jaccard’s similarity matrix was computed using the software m v s p  v s . 3.1 

(Kovach Computing Services 1999, http://www.kovcomp.com/msvp/index.html). 

This was converted into a distance matrix in ex c el  using the equation: *1 - 

similarity indices’, resulting in the distance matrix, which was used to compute 

the PCA using the e x c e l  ‘add in’ software g e n a lex  (Peakall and Smouse 2006). 

A Jaccard’s matrix was used since it is most suitable for analysing dominant 

markers because it takes into account shared presence of bands only, and not 

shared absence of bands between individuals (Lowe et al. 2000). Generally the 

only reason that two individuals share a band is because they both have the 

correct restriction sites to create the band, and therefore contain the same 

genetic information at that locus. There are however many potential reasons why 

individuals may share the absence of a band. For example, one individual may 

lack the Taq^ restriction site and the other individual may lack the EcoRI 

restriction site due to an Indel, or recombination etc. This means that these 

individuals do not possess the same genetic information, and therefore 

accounting for shared presence of bands only makes the analyses more 

accurate (Lowe et at. 2000).
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Analyses of molecular variance (Excoffier et al. 1992: AMOVA, conducted in 

a r le q u in  vs. 3, Excoffier et al. 2005: http://cmpg.unibe.ch/software/arlequin3 

using 1000 permutations) were used to infer how the genetic variation was 

apportioned using different combinations of pre-defined lineage groupings. Three 

groups were identified from the PCA and AMOVA analyses, P. dyscrita, P. 

exigua Kommetjie and P. exigua. The three separate group datasets were 

divided up and each lineage was treated as a separate entity. A further PCA was 

conducted on the P. dyscrita populations to assess if there was any genetic 

clustering within the P. dyscrita group. No further PCAs were performed using 

the Kommetjie lineage as this group contained a small sample size, had very low 

genetic diversity (as calculated from the percentage polymorphism and gene 

diversity) and was collected from only one sampling location. Once the groups 

had been defined within Parvulastra in South Africa, no further analyses was 

conducted using the P. dyscrita and Kommetjie samples.

4.4.3.2. Parvulastra exigua population genetic structure

Pairwise genetic differentiation was assessed between populations and across 

all populations by calculating 0 B (a Bayesian analogue of Fst) using the software 

h ic k o r y  vs. 1.0.4. (Holsinger et al. 2002). h ic k o r y  uses a hierarchical Bayesian 

approach that does not assume any prior knowledge of the degree of inbreeding 

or other genetic structure within populations and is therefore useful for assessing 

genetic variation for dominant markers. The f free model option in h ic k o r y  was 

selected for the calculation of ©B because it does not attempt to estimate Fis, as 

this has been shown to be unreliable if using dominant marker data (Holsinger 

and Wallace 2004). To identify any genetic differentiation between groups of 

populations, the genetic variation accounted for when the data were divided up 

into different geographical groups was assessed using AMOVA. A Mantel test, 

conducted in a r le q u in  v s . 3.01 and plotted in e x c e l , and a Partial Mantel test, 

conducted in A r le q u in  v s . 3.11 (both with 1000 permutations), were performed to
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determine whether the genetic structure among populations could be accounted 

for by geographic distance. The 0 B pairwise genetic distance matrix, generated 

in h ic k o r y , and a matrix of geographic coastal distances were used to compute 

the Mantel correlation coefficient.

4.4.3.3. Identification of outlier loci, potentially under selection within 
Parvulastra exigua

To identify loci that may be under divergent (or stabilising) selection, the 

approach of Beaumont and Nichols (1996) was implemented using the program 

DFdist (© 2005 Beaumont; program distributed by the author

http://www.rubic.rdg.ac.uk/cgi-bin/MarkBeaumont/dirlist1 .cgi modified from 

Beaumont and Nichols 1996). Similar approaches to identifying loci under 

selection have previously been explored (Lewontin and Krakauer 1973; Nei and 

Maruyama 1975; Bowcock et al. 1991) but the approach taken by Beaumont and 

Nichols (1996) differs since it considers the relationship of Fst to heterozygosity, 

rather than gene frequency (Bowcock et al. 1991). This enables unlinked or 

loosely linked loci to be treated as independent units and therefore Beaumont 

and Nichols’ (1996) approach can be applied to markers such as microsatellites, 

AFLP, RFLP or allozymes. The Beaumont and Nichols’ (1996) approach also 

generates a null distribution of the relationship using the coalescent, which allows 

genealogical variance to be accounted for, and therefore reduces the likelihood 

of ‘false positives’ -  the major criticism levelled at Lewontin and Krakauer’s 

(1973) original method. The DFdist program was adapted for dominant markers 

from the programs FDist (Beaumont and Nichols 1996) and Fdist2 (Beaumont 

and Balding 2004) and uses Zhivotovsky’s (1999) approach to calculate the 

simulated values for heterozygosity and Fst, and it uses the overall 

heterozygosity of the pooled sample (Mealor and Hild 2006).
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The general approach works by identifying loci that show unusually low or high 

levels of genetic differentiation, which are often assumed to be under selection. 

Differentiation at these loci can be quantified using the statistic Fst, which is 

strongly related to the heterozygosity at a locus for a range of population 

structures and demographic histories (Beaumont and Nichols 1996). A null 

distribution close to the empirical distribution (Mealor and Hild 2006) for the 

dataset of Fst versus heterozygosity is generated by coalescent simulations 

using a simple model of a subdivided population (the symmetrical Island Model, 

Wright 1951, Beaumont and Nichols 1996), and then upper and lower quantiles 

of the distribution are estimated in which 95% of the data points are expected to 

lie (Beaumont and Nichols 1996). The Fst and heterozygosity for each locus in 

the actual dataset is then plotted onto the simulated distribution. Loci that fall 

above the 97.5% quantile, which have atypically high levels of differentiation 

(high Fst’s) are interpreted as being under disruptive or diversifying selection. 

Loci that fall below the 2.5% quantile, which have atypically low levels of 

differentiation (low Fst) could arise from balancing or stabilising selection which 

keeps alleles at similar frequencies in different populations (Beaumont and 

Nichols 1996).

A range of model parameters were tested to explore the effect of the model 

parameters on the shape of the data distribution and the fit to the data of the 

simulation of the 95% quantiles. Theta values (the scaled mutation rate theta (0) 

= N/y where N is the size of each subpopulation and fj is the mutation rate, 

assuming an infinite allele mutation process (Beaumont and Nichols 1996)) 0.01, 

0.1 and 1.0 were tested as well as deme sizes 16 (the same number as the 

number of populations), 30 and 100 demes (which accounted for many 

unsampled demes which are known to exist). The number of realizations (50,000 

and 100,000) was also tested to explore the effect on the simulations and data 

distribution. The target average Weir and Cockerham’s (1984) Fst required by 

the DFdist program was generated in two different ways to explore the effect of 

this value on the fit simulated distribution to the data. Firstly, this value was
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calculated as the average theta B (0.2661) across all populations (calculated 

using h ic k o r y ). Secondly, the trimmed weighted mean F 0.167910 based on the 

number of actual observations (loci in used in the simulations after loci with a 

frequency of above 0.98 and below 0.02 were removed), calculated by the 

Ddatacal program in the DFdist package was used as the target Fst for the 

DFdist program. However, an average theta B of 0.1 and 0.4 were also tested to 

observe the effect on the simulations and data distribution.

All bands which appeared only once were removed from the dataset, leaving 307 

loci on which the DFdist analyses were performed. The maximum allele 

frequency allowed by the program was used (0.98), meaning that the DFdist 

program also excluded all loci with allele frequencies over 0.98 and under 0.02. 

The final parameters used for the simulations were as follows: 100 demes and 16 

populations; theta 0.1; and as recommended by Beaumont and Nichols (1996) 

50,000 realizations and ‘0.25 / 0.25’ beta prior. A P-value of 0.95 was used and a 

smoothing value of 0.04 was used for plotting the graph. Several target average 

Weir and Cockerham’s (1984) Fst, values were tested to explore the fit of the 

data to the simulated model.

Using Beaumont and Nichols’ (1996) method, a few loci are expected to lie 

outside the 97.5% quantile and below the 2.5% quantile by chance (Mealor and 

Hild 2006), so identified outlier loci were removed and the phenotype frequency 

of each of these loci in the 16 populations was plotted in a histogram to detect 

the presence of any geographic patterns evident in the phenotype frequency of 

these loci. Mantel tests, conducted in a r le q u in  v s . 3.01 with 100000 

permutations, were performed to determine whether the phenotype frequencies 

of the outlier loci among populations could be accounted for by geographic 

structure.
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In order to asses the strength of the outlier loci, the remaining loci in the dataset 

were plotted in a PCA to ascertain if the removal of the outlier loci affected the 

geographic population structure of P. exigua around the coast. PCA analyses 

were based on Jaccard’s distance matrices. Additionally, several AMOVA 

analyses were conducted to test the apportioning of genetic variation in different 

geographical groupings with the outlier loci removed.
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4.5. Results

4.5.1. Accuracy of AFLP methodology

Primer pair three was found to have consistent contamination in the negative 

controls and inconsistent band amplification, making its repeatability and 

accuracy low. Therefore, this primer pair was discarded from further analysis. 

The three remaining primer pairs differed in the number of bands they amplified, 

and the fragment size and intensity at which they reliably amplified bands (Table 

4.2).

Primer
pair

Fragment length 
scoring parameters

Intensity of bands scored % Average 
Repeatability

PP1 > 40 - < 301 76 and over 88.5
PP2 > 60 - < 200 80 and over for one sample set of 96 

75 and over for two sample sets of 96
90.5

PP4 > 49 - < 300 91 and over 91
Total across all three primer pairs 90

Table 4.2. Assessment of the accuracy and repeatability of each primer pair, and 
the whole dataset using Amplified Fragment Length Polymorphism (AFLP).

The factors potentially affecting AFLP repeatability are: (1) Differences in peak 

intensity due to irregular PCR efficiencies. (2) Slight shifts between two 

homologous peaks occurring during migration on the gel. (3) The selective 

primers having more than two selective bases compared to the pre-selective 

primers because of possible non-specific annealing during amplification. (4) PCR 

inhibition. (5) Restriction anomalies. (6) Non-target or parasite peaks caused by 

contamination as the protocol is known to be sensitive to contamination from 

exogenous DNA (e.g. bacterial) as the amplification is non taxon specific. (7) 

Using a manual scoring method generates the most errors as it relies on 

experience and subjective decisions by the scorer (reviewed in Bonin et al. 

2004). Overall, the average repeatability for the current dataset was 90%. 

Although lower than previously reported (reviewed in Bonin et al. 2004), this 

accuracy level was deemed an acceptable trade-off between accuracy and data 

generation for three reasons: (i) the automated scoring method used in
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g e n o ty p e r  is more time efficient than manual scoring, enabling a larger number 

of bands to be generated compared to previous studies (Dodd et al. 2002; Douek 

et al. 2002; Giannasi et al. 2001; Gompert et al. 2006; Parchman et al. 2006); (ii) 

the automated scoring method introduced consistency and removed human error 

caused by subjectivity when scoring, which previous studies have shown to be 

the main source of inaccuracies in AFLP, especially when marker specific 

approaches, such as outlier loci detection are used (reviewed in Bonin et al. 

2004); and (iii) identification of outlier loci removes all bands with a frequency of 

more than 0.98 and less than 0.02 in the dataset, which will remove erroneous 

single bands and monomorphic bands which may have some bands missing. 

The lower repeatability percentage seen in this dataset was probably caused by 

(1) some bands being inconsistently amplified at the intensity threshold set due 

to irregular PCR efficiencies, but due to the automated scoring system, these 

were not identified. (2) Scoring all the markers instead of selecting markers to be 

scored. Choosing only bands which were consistently and reliably amplified 

during the repeatability tests, and removing from the dataset altogether, bands 

which were consistently unreliably amplified may have improved the repeatability 

percentage. However, to do this the bands would have to be scored manually, 

therefore negating the advantages gained by scoring automatically (reasons 1, 2 

above). Due to the scoring method used, the low repeatability was unlikely to be 

caused by (i) slight shifts between homologous peaks occurring during migration, 

(ii) non-target or parasite peaks caused by contamination, as negative controls 

for contamination were also examined, (iii) or subjectivity in scoring methods. 

Bonin et al. (2004) report that even if the data is not perfectly repeatable, the 

extracted biological inferences can be unaffected, and the genotyping errors do 

not bias the results but just add some noise to the biological signal. As the 

results of this study are as expected from the apriori knowledge know of the 

system, it is suspected that the lower repeatability score seen in this study will 

not affect the biological inference.
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4.5.2. Genetic diversity within Parvulastra

In total, 205 P. exigua, 39 P. dyscrita and 10 Kommetjie samples were analysed. 

For the purposes of this study, the term ‘population’ will refer to sampling 

location. Primer pair one produced on average the highest number of bands per 

population and primer pair two the lowest (Table 4.3). There were large 

differences in the average percentage polymorphism between the three groups 

which were also reflected in the average gene diversity results. Parvulastra 

exigua showed an average percent polymorphism across populations of 78%, 

ranging from 63% in Salt Rock to 84% in Yzerfontein. The degree of 

polymorphism did not appear to be related to any geographic trends, with the 

exception of Salt Rock. This population consistently had a lower percentage 

polymorphism in all three primer pairs, which may have been a reflection of a 

smaller population size at this location (Chapter 3, Fig. 3.3). Parvulastra dyscrita 

had a much higher level of polymorphism (average 97%) than the other two 

groups. Additionally, the number of single bands appearing only once in only one 

individual was much higher in P. dyscrita. The Kommetjie samples had a very 

low percentage polymorphism (average 33%) with only 72 bands present from all 

primer pairs combined.
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Sampling location N Total No. scored loci / 
primer pair

% polymorphic loci / 
primer pair

Average Gene 
Diversity over loci 
(He) +/- standard 
deviation (4.d.p)

1 2 4 All 1 2 4 All
P. exigua

McDougal’s Bay 12 61 38 49 148 74 71 78 74 0.051745 + /-0 .0273
Hondeklip Bay 14 64 47 58 169 78 79 72 76 0.062042 +/- 0.0322
Lamberts Bay 13 55 42 52 149 82 76 79 79 0.058379 +/- 0.0305

Yzerfontein 13 56 47 66 169 84 79 88 84 0.066735 +/- 0.0348
Kommetjie 9 66 43 51 160 71 72 67 70 0.058862 +/- 0.0321

Good Hope 15 57 49 55 161 82 86 73 80 0.059892 +/- 0.0309
Platbank 11 62 46 54 162 81 78 78 79 0.064881 +/- 0.0344

Gordans Bay 15 60 42 55 157 80 83 76 80 0.056973 +/- 0.0294
Cape Agulhas 15 67 41 61 169 81 76 84 80 0.060346 +/- 0.0312

Mossel Bay 14 66 41 59 166 76 80 90 82 0.063023 +/- 0.0327
Plettenberg Bay 13 71 46 63 180 80 87 84 83 0.068834 +/- 0.0359

Port Elizabeth 13 66 47 59 172 80 87 81 83 0.069750 +/- 0.0364
Port Alfred 14 74 51 55 180 82 92 76 83 0.065525 +/- 0.0340

Haga Haga 13 60 40 51 151 78 75 82 79 0.055327 +/- 0.0290
Port St. Johns 12 57 33 45 135 81 73 69 75 0.049603 +/- 0.0262

Salt Rock 9 45 27 38 110 64 63 61 63 0.038277 +/-0.0211
P. exigua all pops 205 172 98 151 421 99 98 99 99
P. exigua mean pops 78 79 77 78 0.079427 +/- 0.0382
P. dyscrita

Buffels Bay 12 136 74 116 326 96 97 96 96 0.141437 + /-0 .0737
Gordans Bay 13 131 76 101 308 99 95 98 98 0.133127 + /-0 .0689

Cape Agulhas 14 145 73 110 328 99 96 95 97 0.134059 + /-0 .0689
P. dyscrita All pops 39 204 106 170 480 100 99 99 99
P. dyscrita mean pops 98 96 96 97 0.137511 +/-0.0671
Kommetjie

10 18 20 34 72 22 30 41 33 0.012731 + /-0 .0073
Total all taxa 254 272 149 251 672 100 99 100 100

Table 4.3. Amplified Fragment Length Polymorphism (AFLP) number of scored loci, 
percentage polymorphic loci and average gene diversity over loci (He) +/- standard 
deviation for each primer pair all sampling locations (population) and lineages of 
Parvulastra in South Africa.

4.5.3. AFLP differentiation among Parvulastra sea star groups in 
South Africa

The PCA plot for the whole dataset (Fig. 4.2) indicated the existence of three distinct 

clusters within Parvulastra species in South Africa, precisely corresponding to P. 

exigua, P. dyscrita and the Kommetjie samples. The PCA confirmed the low genetic 

diversity in the Kommetjie lineage as this group was very tightly clustered. Neither P.
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exigua (Chapter 3) nor P. dyscrita (Chapter 2) consisted of two separate groups which 

corresponded to previously identified mitochondrial clades. On inspection, the P. 

exigua cluster appeared to show some evidence of two groups (coloured green and 

pink in Fig 4.2), but, in a simple AMOVA test, these were not supported (Table 4.4) 

However, the AMOVA test for the partitioning of the genetic variation within P. exigua 

into the previously identified mitochondrial clades may have been confounded by the 

inclusion of the other taxa, and therefore, the partition of the genetic data within P. 

exigua will be explored further in Section 4.5.4 below.

cr>T~
CM
(/)
X
<

Axis 1 (37.15%)

•  P. exigua West • P. dyscrita •  Kommetjie •  P . exigua East

Figure 4.2. Principal Coordinate analysis (PCA) for the AFLP data from all samples of 
Parvulastra in South Africa, with the percentage of genetic variation accounted for in 
parenthesis after the axis label.

AMOVA indicated that the highest component of genetic variation was explained within 

populations, irrespective of whether regional groups were, or were not defined. The 

highest ‘among group’ variance component was indicated when the groups were 
defined as separate populations (sampling sites) within each Parvulastra group,
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including Kommetjie, suggesting that this partitioning of the genetic variation was the 

most plausible for the data.

Source of 
variation 
(group 

partitioning, 
Whole dataset: 

672 loci)

Reason for choosing groups Genetic
variation

accounted
for:

%
variation

Fixation 
Indices 
(2 d.p.)

P values 
(3 d.p.)

No regional 
groups

To test the validity of clusters 
defined by the PCA (Fig. 4.2)

AG
APWG

35.06
64.94

FST: 0.35 0.000

[All sampling sites 
16 x P. exigua]
[All sampling sites 
3 x P. dyscrita] 
[Kommetjie 
sample]

To test the validity of partitioning 
the genetic variation by 
separating each sampling 
location within P. exigua into 
populations and each sampling 
location within P. dyscrita into 
populations.

AG
APWG
WP

39.02
12.74
48.24

FSC: 0.21 
FST: 0.52 
FCT: 0.39

0.000
0.000
0.000

[All sampling sites 
16 x P. exigua]
[P. dyscrita] 
[Kommetjie 
sample]

To test the validity of partitioning 
the genetic variation by 
separating each sampling 
location within P. exigua into 
populations but not separating 
and each sampling location 
within P. dyscrita into 
populations.

AG
APWG
WP

35.92
14.08
50.01

FSC: 0.22 
FST: 0.50 
FCT: 0.36

0.000
0.000
0 .014+ -0 .004

[P. exigua west 
coast mtDNA 
sampling sites] 
[P. exigua east 
coast mtDNA 
sampling sites] 
[P. dyscrita] 
[Kommetjie 
sample]

To test the validity of splitting the 
P. exigua cluster, defined by the 
PCA (Fig. 4.2), into the 
haplogroups defined in Chapter 
3 (Fig. 3.5)

AG
APWG
WP

28.31
12.48
59.21

FSC: 0.17 
FST: 0.41 
FCT: 0.28

0.000
0.000
0.000

Table 4.4. Analysis of Molecular Variance (AMOVA) results for all Parvulastra samples 
indicating the apriori groups tested and the reason for testing them, and showing the 
percentage of genetic variation accounted for when the Parvulastra species data is 
divided up into different regional groups. AG: Among Groups; APWG: Among 
Populations Within Groups; WP: Within Populations.

Despite the AMOVA results indicating that there was a higher percentage of genetic 

variation accounted for ‘among groups’ when the P. dyscrita samples were separated 

into the three separate sampling locations, the PCA conducted only on the P. dyscrita 

samples (Fig. 4.3) indicated that the three P. dyscrita populations were mixed, with no 

obvious geographic structure.
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Axis 2 (17.64%)

• Buffels Bay • Gordans Bay Cape Aghulas

Figure 4.3. Principal Coordinate analysis (PCA) for the AFLP data from the Parvulastra 
dyscrita samples from three sampling locations in South Africa, with the percentage of 
genetic variation accounted for indicated in parenthesis after the axis label.

AMOVA and PCA strongly suggested that P. exigua, P. dyscrita and Kommetjie should 

be classed as separate taxa, therefore for the remainder of this study, no further 
analyses was performed on P. dyscrita and Kommetjie.

4.5.4. Parvulastra exigua population genetic structure

The PCA plot of all P. exigua samples (Fig. 4.4) indicated that all individuals within a 

sampling location clustered together, and that the sampling locations were positioned 

in relation to each other in accordance with their geographic distances, suggesting an 

isolation by distance pattern of genetic structure. The PCA plot, by coincidence 

reflected the shape of the coastline in South Africa, showing clearly that sampling 
location influenced genetic separation.
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Figure 4.4. Principal Coordinate analysis (PCA) for the AFLP data from the Parvulastra 
exigua samples from 16 sampling locations in South Africa, with the percentage of 
genetic variation accounted for indicated in parenthesis after the axis label.
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The isolation by distance pattern is reflected in the pairwise theta B comparisons 

(Table 4.5). The Mantel test plot between the geographic distance matrix and the 

genetic distance matrix (theta B) (Fig 4.5), also indicated an isolation by distance 

pattern, indicating that 72% of the genetic structure is accounted for by geographic 

structure (P < 0.01, Mean value Y: 0.26, Sums of squares Y: 1.033, Mean value X1: 

895.6, Sums of squares X1: 43870532.8, ZY1: 33863.279, Sum of products 

(SP(Y,X1)): 5736.424, Regression coefficient (bY1): 0.000131, Correlation coefficient 

(rY1): 0.852). The PCA (Fig. 4.4), distance matrices (Table 4.5) and the genetic verses 

geographic distance plot (Fig. 4.5) indicated that P. exigua dispersal occurred over 

distances of 10s (between Platbank, Good Hope and Gordans Bay) to 100s (between 

other locations) of kilometers.
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Mcdoug - 122.5 352 592 719.5 752 754 829 1039 1291 1432.5 1702.5 1861.5 2034.5 2238.5 2551.5
Honde 0.06 - 229.5 469.5 597 629.5 631.5 706.5 916.5 1168.5 1310 1580 1739 1912 2116 2429

Lam 0.20 0.17 - 240 367.5 400 402 477 687 939 1080.5 1350.5 1509.5 1682.5 1886.5 2199.5
Yzer 0.24 0.21 0.16 - 127.5 160 162 237 447 699 840.5 1110.5 1269.5 1442.5 1646.5 1959.5

Komm 0.27 0.23 0.19 0.14 - 32.5 34.5 109.5 319.5 571.5 713 983 1142 1315 1519 1832
GoodHo 0.26 0.25 0.17 0.14 0.11 _ 2 77 287 539 680.5 950.5 1109.5 1282.5 1486.5 1799.5

PltBK 0.25 0.22 0.17 0.09 0.11 0.08 _ 75 285 537 678.5 948.5 1107.5 1280.5 1484.5 1797.5
Gord 0.31 0.29 0.24 0.20 0.22 0.17 0.13 _ 210 462 603.5 873.5 1032.5 1205.5 1409.5 1722.5
Agul 0.27 0.25 0.20 0.15 0.18 0.11 0.09 0.14 - 252 393.5 663.5 822.5 995.5 1199.5 1512.5

Mossel 0.37 0.36 0.30 0.24 0.26 0.23 0.18 0.27 0.21 - 141.5 411.5 570.5 743.5 947.5 1260.5
Plett 0.36 0.35 0.29 0.24 0.26 0.21 0.20 0.27 0.20 0.19 - 270 429 602 806 1119

PtEliz 0.33 0.32 0.27 0.25 0.26 0.21 0.20 0.27 0.21 0.19 0.16 - 159 332 363 676
Alfred 0.36 0.34 0.30 0.28 0.30 0.23 0.23 0.28 0.21 0.22 0.17 0.07 - 173 377 690
Haga 0.37 0.36 0.33 0.30 0.31 0.24 0.25 0.29 0.24 0.20 0.19 0.11 0.14 - 204 517

PtJohn 0.40 0.41 0.37 0.37 0.39 0.35 0.34 0.38 0.36 0.36 0.35 0.27 0.29 0.31 - 313
Salt 0.46 0.44 0.41 0.41 0.44 0.41 0.38 0.43 0.40 0.41 0.40 0.32 0.34 0.32 0.25 -

Table 4.5. Below diagonal are the pairwise genetic differentiations (estimated as eB values in Hickory (Holsinger et al. 
2002)) between 16 sampling locations of Parvulastra exigua in South Africa. Above the diagonal are the approximate 
geographic distances between sampling locations in kilometres.
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Figure 4.5. Mantel test plot for Parvulastra exigua AFLP data indicating an isolation by 
distance pattern of genetic structure.

To determine if the east and west mtDNA groups (see Chapter 3) differ at nuclear loci, 

independent of distance, a partial Mantel test was performed using three matrices. A 

matrix indicating whether samples came from the same or different mtDNA groups 

(with 0 and 1, respectively) was constructed and this matrix was tested to see if it 

significantly correlated with AFLP genetic distance, after controlling for geographic 

distance. This matrix was not significantly correlated with AFLP genetic distance, when 

accounting for geographic distance (P = 0.956) therefore it was concluded that the 

mtDNA groups did not differ at nuclear loci, suggesting mitochondrial divergence but 

not nuclear divergence. This result was supported by AMOVA, which indicated that 

only 11.81 % of the nuclear genetic variation was accounted for among groups when 

the mtDNA groups were defined (Table 4.6).

Several AMOVA analyses were performed to further examine hierarchical spatial 

elements of genetic variation within the overall isolation by distance structure, and 

detect any genetic breaks that may exist within P. exigua (Table 4.6).
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Source of variation (group 
partitioning, Whole dataset: 672 

loci)

Reason for choosing groups Genetic
variation

accounted
for:

%
variation

Fixation 
Indices 
(2 d.p.)

P values 
(3 d.p.)

No regional groups: To test validity of assuming 
any partitions in the genetic 
data

AG
APWG

25.69
74.31

FST: 0.26 0.000

MtDNA groups:
West coast mtDNA sites] 
East coast mtDNA sites]

To test validity of partitioning 
the genetic data according to 
mitochondrial groups identified 
in Chapter 3

AG
APWG
WP

11.81
18.33
69.86

FSC: 0.21 
FST: 0.30 
FCT: 0.12

0.000 
0.000 
0 .001+-0.001

Genotypic distribution: 
West of Cape Point sites] 
East of Cape Point sites]

To test validity of partitioning 
the genetic data according to 
east of False Bay (mottled) /  
west of False Bay (unmottled) 
phenotype divide

AG
APWG
WP

9.11
19.97
70.92

FSC: 0.22 
FST: 0.29 
FCT: 0.09

0.000
0.000
0.003+-0.002

Genotypic distribution: 
West of Cape Point sites] 
False Bay sites]
East of False Bay sites]

To test validity of partitioning 
the genetic data according to 
east of False Bay (mottled) / 
False Bay (Intermediate) / 
west of False Bay (unmottled) 
phenotype divide

AG
APWG
WP

9.88
18.49
71.63

FSC: 0.21 
FST: 0.28 
FCT: 0.10

0.000
0.000
0.000

iogeographic provinces:
West of Cape Point sites]
East of Cape Point incl. Port
Ifred]
East coast sites: Haga Haga - Salt
ock]

To test validity or partitioning 
the genetic data according to 
biogeographic provinces (Fig 
1.2)

AG
APWG
WP

10.89
17.53
71.58

FSC: 0.20 
FST: 0.29 
FCT :0.11

0.000
0.000
0.000

CA groups:
McDougals Bay - Haga Haga] 
Dort St. johns - Salt Rock]

To test validity of partitioning 
the genetic data to identify any 
further geographic sub
structuring within the isolation 
by distance pattern identified 
by the PCA plot (Fig 4.4)

AG
APWG
WP

17.46
18.65
63.88

FSC: 0.23 
FST: 0.36 
FCT: 0.17

0.000
0.000
0.009+-0.003

McDougal’s Bay - Cape Agulhas] 
ossel Bay - Haga Haga]
’ort St. johns - Salt Rock]

AG
APWG
WP

16.19
14.37
69.44

FSC: 0.17 
FST: 0.31 
FCT: 0.16

0.000
0.000
0.000

McDougal’s Bay - Cape Agulhas] 
Mossel Bay - Plettenberg Bay]
’ort Elizabeth - Haga Haga]
5ort St. johns - Salt Rock]

AG
APWG
WP

16.27
13.66
70.08

FSC: 0.16 
FST: 0.30 
FCT: 0.16

0.000
0.000
0.000

McDougal’s Bay - Lamberts Bay 
'zerfontein - Cape Agulhas]
Mossel Bay - Plettenberg Bay] 
ort Elizabeth - Haga Haga] 
ort St. johns - Salt Rock]

AG
APWG
WP

17.17
11.01
71.82

FSC: 0.13 
FST: 0.28 
FCT: 0.17

0.000
0.000
0.000

McDougal’s Bay - Hondeklip Bay] 
amberts Bay]
zerfontein - Cape Agulhas] 
lossel Bay - Plettenberg Bay] 
ort Elizabeth - Haga Haga] 
ort St. johns - Salt Rock]

AG
APWG
WP

17.62
10.41
71.98

FSC: 0.13 
FST: 0.28 
FCT: 0.18

0.000
0.000
0.000

Table 4.6. Analysis of molecular variance (AMOVA) results for Parvulastra exigua 
samples only, indicating the apriori groups tested and the reason for testing them, and 
showing the percentage of genetic variation accounted for when the samples are 
divided up into different regional groups. AG: Among Groups; APWG: Among 
Populations Within Groups; WP: Within Populations.
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The majority of genetic variance was explained within populations regardless of 

grouping. Other than the clear pattern of isolation by distance among all populations 

(as indicated by 25.69% among populations when no regional groups were specified), 

there was only one genetic break-point present, between the most easterly samples 

(Port St. Johns and Salt Rock) and the remaining populations (17.46% among 

groups). This suggests that in general there are no strong barriers to gene flow around 

the coast.

4.5.5. Identification of AFLP outlier loci within Parvulastra exigua

DFdist performs coalescent simulations using an island model with 100 islands and 

assumes an infinite alleles mutational model. To generate the expected distribution, 

samples of the same size and number as the data are simulated, where each sample 

is taken from a different island (Beaumont and Nichols 1996). However, the Mantel 

test indicates that the P. exigua AFLP data displays a geographic isolation by distance 

distribution, and therefore violates the assumption of the Island model simulations. 

Beaumont and Nichols (1996) investigated the effects of this violation on the expected 

distributions by investigating the effects of Fst against heterozygosity for three 

stepping stone models which all represent different patterns of observed isolation by 

distance. They found that even when there is quite a high level of isolation by distance 

observed in the models, this does not have a marked effect on the expected 

distribution. They concluded that weak isolation by distance does not affect the 

method strongly, especially when the number of sampled populations is large. 

Additionally, they comment that larger numbers of samples reduce the variability in Fst 

among loci, and if taken over a wide geographic area, the effects of selection may be 

more easily detected (Beaumont and Nichols 1996).

No parameter changes greatly affected the distribution of the observed Fst versus 

heterozygosity data distribution. However, some parameters affected the simulated 

distribution and the shape and position of the 95% quantiles, which in turn affected the 

number and selection of data points which were identified as outlier loci. Initial 

simulations indicated that the results remained robust across the range of theta values
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tested (0.01, 0.1 and 1.0 tested) as previously reported (Beaumont and Nichols 1996; 

Beaumont and Balding 2004; Savolainen et al. 2006). The simulation results also 

remained robust using deme sizes 16, 30 and 100 and using 50,000 and 100,000 

realizations.

Using 100 demes and the average theta B of 0.2661 (used as the target average Weir 

and Cockerham’s (1984) Fst), produced a simulated data distribution (Fig. 4.6) which 

showed a poor fit of the lower quantile of the simulated model to the data and many 

loci (approx 46 loci out of 220 observations = 21%) fell below the 2.5% quantile, with 

some falling below zero Fst. Eight loci (approx 3.6%) fell above the 97.5% quantile 

indicating a better fit to the data, and in total 24% of the loci fell outside the 95% 

quantiles.

Additionally the graph displayed an unusual shape of the lower quantile and mode 

(middle line), with a ‘step’ indicated on the simulated distribution at around a 

heterozygosity of 0.25. The simulated data reflects the distribution of the actual loci, 

and the loci responsible for the ‘step’ and the loci on both sides of the ‘step’ in the 

graph (Fig. 4.6) are spread throughout the dataset and are not clustered in any one 

primer pair. The raw data for these loci was checked and no errors in the data 

generation or simulation process were detected, indicating that this distribution is 

genuine. However, the shape of the simulated distribution is affected by the average 

target W&C Fst parameter of the model entered into DFdist (see below).
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Figure 4.6. DFdist results of Fst for simulated AFLP markers as a function of 
heterozygosity using the recalculated theta B (0.2661), as calculated by Hickory, as 
the target average W&C Fst. The upper and lower lines indicate the simulated 97.5% 
and 2.5% quantiles, the middle dashed line indicates the median Fst. The scatter 
points indicate the observed distribution for the values of Fst and heterozygosity for 
each AFLP locus in Parvulastra exigua in South Africa from 16 sampling sites. The 
scatter points above and below the 97.5% and 2.5% quantiles are outlier loci.

Using 100 demes and the trimmed weighted mean F of 0.167910 (based on the 

number of actual observations, generated by Ddatacal and following the 

recommendation of Beaumont in the DFdist manual) produced a simulated distribution 

(Fig. 4.7) which indicated that a total of approx 18% (20 loci above the 97.5% quantile 

out of 220 observations, 9%, and 19 loci below the 2.5% quantile out of 220 

observations, 8%) of the loci fell outside of the 95% quantiles. This produced a better 

‘fit’ of the lower quantile of the simulated distribution to the data, however this did not 

entirely remove the unusual ‘step’ in the shape of the simulated 2.5% quantile and the 

mode. The upper quantile is lower, indicating that there are more outlying loci above 

this quantile.
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Figure 4.7. DFdist results of Fst for simulated AFLP markers as a function of 
heterozygosity using the recalculated trimmed weighted mean F (0.167910), as 
calculated by Ddatacal, as the target average W&C Fst. The upper and lower lines 
indicate the simulated 97.5% and 2.5% quantiles, the middle dashed line indicates the 
median Fst. The scatter points indicate the observed distribution for the values of Fst 
and heterozygosity for each AFLP locus in Parvulastra exigua in South Africa from 16 
sampling sites. The scatter points above and below the 97.5% and 2.5% quantiles are 
outlier loci.

The above simulations demonstrate that the average target W&C Fst dictates the 

shape of the 95% quantiles, and therefore which, and how many loci fall outside 95% 

limits. This has been previously noted by Beaumont and Balding (2004) and is further 

confirmed here when simulations were run with 0.1 as the average target W&C Fst 

(Fig 4.8) which shows ‘flatter’ quantiles with a bias towards more high outliers and a 

less pronounced ‘step’ as opposed to a target value of 0.4 (Fig 4.9) which shows the 

reverse.
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Figure 4.8. DFdist results of Fst for simulated AFLP markers as a function of 
heterozygosity using an average target W&C Fst of 0.1. The upper and lower lines 
indicate the simulated 97.5% and 2.5% quantiles, the middle dashed line indicates the 
median Fst. The scatter points indicate the observed distribution for the values of Fst 
and heterozygosity for each AFLP locus in Parvulastra exigua in South Africa from 16 
sampling sites. The scatter points above and below the 97.5% and 2.5% quantiles are 
outlier loci.
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Figure 4.9. DFdist results of Fst for simulated AFLP markers as a function of 
heterozygosity using an average target W&C Fst of 0.4. The upper and lower lines 
indicate the simulated 97.5% and 2.5% quantiles, the middle dashed line indicates the 
median Fst. The scatter points indicate the observed distribution for the values of Fst 
and heterozygosity for each AFLP locus in Parvulastra exigua in South Africa from 16 
sampling sites. The scatter points above and below the 97.5% and 2.5% quantiles are 
outlier loci.

Beaumont and Nichols (1996) recommend that the DFdist analysis is better viewed as 

a guide to exploration of the data, with the aim of identifying outlier loci that may be 

subject to selection. This method has been reported to be reliable, under reasonably 

realistic conditions, at identifying the majority of loci under adaptive selection 

(Beaumont and Balding 2004). However, several authors have reported that this 

method cannot reliably identify loci that are potentially under balancing selection 

because the lower confidence limit (the 2.5% quantile) often falls close to or lower than 

zero (Beaumont and Nichols 1996; Beaumont and Balding 2004). However, Hoffmann 

et al. (2006) did report that loci under balancing selection can be detected (at least in 

one of the regions they investigated) because the lower 95% confidence interval lies
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well above zero. The lower 95% confidence interval in this study also fell close to zero 

when using lower target average W&C Fst values, and did not fall far above zero even 

at very high target average W&C Fst values. The ‘step’ shape of the lower quantile, 

apparent in all simulated distributions to a greater or lesser extent regardless of target 

average W&C Fst, also caused a portion of the lower quantile to fall below zero. Most 

studies of this nature did not report proportions of the genome which fell below the 

2.5% quantile, potentially representing loci under balancing selection as it is 

considered an unreliable method (Beaumont and Nichols 1996; Beaumont and Balding 

2004). For this reason it was considered more conservative to not interpret the loci 

below the 2.5% quantile as being potentially under balancing selection, and they were 

left in the data set for further simulations.

The outlier loci that fell above the 97.5% quantile were removed and the DFdist 

analysis was repeated to investigate the effect of the removal of these loci on the 

simulated distribution. This was done using both the recalculated trimmed weighted 

mean F (0.134198), as calculated by Ddatacal as the target average W&C Fst (Fig. 

10), and using the recalculated theta B (0.2183), as calculated by Hickory, as the 

target average W&C Fst (Fig. 11) with 100 demes in both analyses.
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Figure 4.10. Second round DFdist results of Fst for simulated AFLP markers as a 
function of heterozygosity using the recalculated trimmed weighted mean F 
(0.134198), as calculated by Ddatacal, as the target average W&C Fst. The upper and 
lower lines indicate the simulated 97.5% and 2.5% quantiles, the middle line indicates 
the median Fst. The scatter points indicate the observed distribution for the values of 
Fst and heterozygosity for each AFLP locus in Parvulastra exigua in South Africa from 
16 sampling sites.

A further eight loci out of 199 observations fell above the 97.5% quantile in the 2nd 

round of DFdist simulations using the recalculated trimmed weighted mean F 

(0.134198), (calculated by Ddatacal), as the target average W&C Fst, approximately 

4%. Between the two round of DFdist simulations using the trimmed weighted mean F 

as the target average W&C Fst, a total of 26 loci fell above the 97.5% quantile (20 loci, 

9% in the 1st round, and eight loci, 4% in the second round) indicating approximately 

11.8% (out of 220 observations) of the genome fell above the 97.5% quantile.
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Figure 4.11. Second round DFdist results of Fst for simulated AFLP markers (290 loci) 
as a function of heterozygosity, using the recalculated theta B (0.2183), as calculated 
by Hickory, as the target average W&C Fst. The upper and lower lines indicate the 
simulated 97.5% and 2.5% quantiles, the middle line indicates the median Fst. The 
scatter points indicate the observed distribution for the values of Fst and 
heterozygosity for each AFLP locus in Parvulastra exigua in South Africa from 16 
sampling sites.

Seven loci out of 212 observations fell above the 97.5% quantile in the second round 

of DFdist simulations using the recalculated trimmed weighted mean F (0.134198), as 

calculated by Ddatacal, as the target average W&C Fst, approximately 3.3%. Between 

the two rounds of DFdist simulations using average theta B as the target average 

W&C Fst, a totals of 15 loci fell above the 97.5% quantile (8 loci, 3.6% in the first 

round, and 7 loci, 3.3 % in the second round) indicating approximately 6.8 % (out of 

220 observations) of the genome fell above the 97.5 % quantile

Loci that fall above the 97.5% quantile could be interpreted as loci (or loci linked to 

parts of the genome) which are subject to diverging selection. However, some loci are 

suspected to fall outside the 95% simulated envelope by chance. Therefore it is 

difficult to determine which of the outlier loci are subject to diverging selection, and 

which would fall outside the 95% distribution by chance. To examine this, the 

phenotype frequencies of the outlier loci which fell above the 97.5% quantile in both
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rounds of the DFdist analyses for both the trimmed mean F (Fig. 12) and the theta b 

mean (Fig. 13) as the target average W&C Fst values were plotted in histograms for 

each of the 16 sampling locations around the coast.
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Figure 4.12. DFdist 1st (A and B) and 2nd round (C) outlier loci phenotype frequency histograms for each sampling site, 
using the trimmed weighted mean F as the target average W&C Fst.
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Figure 4.13. DFdist 1st (A) and 2nd round (B) outlier loci phenotype frequency histograms for each sampling site, using the 
average Theta B as the target average W&C Fst. Outlier locus numbers in brackets on the DFdist second round 
simulation histogram (B) represent outlier locus numbers that have been re-numbered for the calculations of the 2nd round, 
and numbers next to these (without brackets) correspond to the numbers of the outlier locus in the histograms when using 
the trimmed weighted mean F as the target average W&C Fst for comparison.
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The trimmed mean F analyses identified more outlier loci which fell above the 97.5% 

quantile than the DFdist analyses when using the theta B mean. All of the theta B loci 

which were identified were also identified using the trimmed mean F, indicating that 

using the theta B mean may provide a more conservative estimate of outlier loci, and 

that the loci which fell above the quantile with both methods can be cautiously 

interpreted as outlier loci which may be subject to diverging selection (or linked to parts 

of the genome that may be under diverging selection).

Eight outlier loci were identified in the 1st round of the DFdist simulations using the 

theta B mean and seven loci identified in the 2nd round. The phenotype frequencies for 

each outlier loci identified above the 97.5% quantile, in each sampling location are 

shown in Fig. 4.13 and the outlier loci details are shown in Table 4.7. To examine the 

geographic distribution of these outlier loci, mantels test were conducted on the 

pairwise difference in phenotype frequency between the sampling locations versus the 

geographic distance between the locations (results shown in Table 4.7).

231



Outlier loci above the 97.5% quantile Mantels test

Outlier 
locus No.

Primer
Pair

Size Heterozygosity Fst % of pairwise difference in 
phenotype frequency 

determined by geographic 
distance

P
value 
(3 d.p)

3 1 46.5 0.46 0.44 40 0.000

29 1 113 0.41 0.47 33 0.000

67 1 164 0.46 0.46 18 0.005

72 1 174 0.48 0.45 9 0.012

89 1 199 0.19 0.54 14 0.010

203 2 199 0.18 0.63 13 0.013

222 4 78.4 0.35 0.49 30 0.000

268 4 168 0.49 0.55 56 0.000

42 (40) 1 127.5 0.22 0.45 51 0.000

65 (62) 1 159 0.05 0.46 18 0.004

84 (79) 1 193.6 0.36 0.41 49 0.000

105 (99) 1 231.7 0.36 0.37 56 0.000

141 (133) 2 77.56 0.07 0.63 22 0.000

214(201) 4 65.37 0.35 0.41 7 0.017

244 (229) 4 119.4 0.50 0.41 12 0.008

Table 4.7. Outlier loci which fell above the 97.5% quantile in the DFdist simulations for 
Parvulastra exigua in South Africa and are potentially under diverging selection.

All the outlier loci had phenotype frequencies which were significantly correlated with 

geographic distance. Six out of the eight diverging loci identified in the 1st round of 

DFdist simulations indicated directionally selective phenotype frequencies, with most 

displaying high, or fixed frequencies in the west coast populations, with the phenotype 

frequencies decreasing in more easterly samples. A further seven outlier loci were 

identified above the 97.5% quantile in the 2nd round of DFdist simulations. The 

phenotype frequencies in each sampling location for six of the seven loci identified 

above the 97.5% quantile in the 2nd round also indicated a strong pattern of directional 

selection with high phenotype frequencies in the east coast populations decreasing in 
the west coast populations.
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There is no specific sampling location where there is an abrupt change in phenotype 

frequency between the west and the east coast for all identified loci. Instead, the 

largest change in phenotype frequency is between Lamberts Bay and Kommetjie for 

loci 89 and 203, and between Platbank and Mossel Bay for the remaining loci with a 

west to east trend (29, 222, 268). Most of the loci displaying an east to west trend 

indicated the largest phenotype frequency change between Mossel Bay and Gordans 

Bay (loci 40, 79, 99, 201). Locus 72 had high frequencies in the east (except for Port 

St. Johns) decreasing in a westerly direction with the largest change in phenotype 

frequency between Platbank and Kommetjie. Loci 62 and 133 have an almost fixed 

phenotype frequency in Salt Rock, a small population, and lower frequencies in Port 

St. Johns, then very low or absent frequencies in all other populations. Locus 229 

displays a bi-modal pattern of phenotype frequency, with high frequencies from Salt 

Rock to Plettenberg Bay, then lower frequencies at Mossel Bay and Cape Agulhas, 

then again rising to high frequencies at Good Hope and Kommetjie, before tailing off 

westwards. These results indicate a change the selective forces between the east and 

west coasts, with the change occurring somewhere on the south coast approximately 

between Mossel Bay and Cape Agulhas.
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4.5.6. Parvulastra exigua population genetic structure and 
phylogeography with outlier loci removed

A PCA plot (Fig 4.14) was constructed using a dataset after the removal of all of the 

outlier loci which fell above 97.5% quantile (Table 4.7) which are potentially under 

diverging selection. The removal of the outlier loci had no major effect on the isolation 

by distance pattern.

Axis 1 (37.71%)

Figure 4.14. Principal Coordinate analysis (PCA) for the AFLP data from the 
Parvulastra exigua samples from 16 separate sampling locations in South Africa, with 
all diverging loci removed from the dataset, showing axis 1 and 2, with the percentage 
of genetic variation accounted for indicated in parenthesis after the axis label.

With the diverging outlier loci removed, several AMOVAs were carried out to assess 

the strength of the outlier loci and measure the effect of their removal on the 

apportioning of genetic variation when the data were divided into different 

geographical groups (Table 4.8). The similar values for the AMOVA conducted with 

(Table 4.6) and without (Table 4.8) the outlier loci, indicated no apparent effect on the 

apportioning of the genetic variation or genetic structure. The largest amount of 

genetic variation was still accounted for ‘within populations’ regardless of 

geographical grouping.
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Source of variation 
(A exigua dataset)

Genetic variation accounted 
for:

% variation 
Diverging 

loci 
removed

No regional groups: Among populations 
Within populations

22.20**
77.80

MtDNA groups:
[West coast MtDNA sampling sites] 
[East coast MtDNA sampling sites]

Among groups
Among populations within groups 
Within populations

7.79**
17.48**
74.73**

Phenotypic distribution:
[West of Cape Point sampling sites] 
[East of Cape Point sampling sites]

Among groups
Among populations within groups 
Within populations

5.23**
19.01**
75.76**

Phenotypic distribution:
[West of Cape Point sampling sites] 
[False bay sampling sites]
[East of False Bay sampling sites]

Among groups
Among populations within groups 
Within populations

6.40**
17.61**
75.98**

Biogeographic provinces:
[West of Cape Point sampling sites]
[East of Cape Point sampling sites incl. Port 
Alfred]
[East coast sampling sites: Haga Haga - Salt 
Rock]

Among groups
Among populations within groups 
Within populations

7.33**
16.79**
75.88**

Table 4.8. Analysis of Molecular Variance (AMOVA) for the percentage of genetic 
variation accounted in the dataset with the diverging outlier loci from both rounds of 
DFdist simulations removed for the Parvulastra exigua data when it is divided up into 
different regional groups. Fixation indices not shown. Significance of the % variation 
indicated using * for significant (P <0.05) and ** for highly significant (P<0.005).
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4.6. Discussion

4.6.1. Phylogenetic structure within Parvulastra in South Africa

Three distinct genetic groupings within the genus Parvulastra were identified with the 

AFLP data, corresponding to P. exigua and P. dyscrita and the population sampled 

only from Kommetjie (Chapter 2). The AFLP data did not recapitulate the 

mitochondrial paraphyletic structure seen in both P. dyscrita and P. exigua. The 

former species displayed exceptionally high levels of polymorphism (97%) in 

comparison to AFLP studies in other marine invertebrates (Barki etal. 2000; Douek et 

al. 2002; Baus et at. 2005). This, coupled with the apparently panmictic population 

structure between the three locations where it was sampled (Buffels Bay, Gordans 

Bay and Cape Agulhas), indicates that a high level of gene flow is maintained within 

this species, consistent with its planktonic dispersal mechanism (reviewed by Hilbish 

1996). In sharp contrast, the separate evolutionary entity evident at Kommetjie 

features a low level of polymorphism (33%). This confirms the very low level of 

genetic diversity suggested by the monomorphic mitochondrial DNA haplotype in this 

lineage (Chapter 3). It is predicted that this is a small, reproductively isolated 

population, and probably represents a cryptic species, confirming previous nuclear 

and mtDNA data (see Chapter 2). The low level of polymorphism could indicate that 

this lineage evolved from a founder event with population expansion from one or a 

few gravid females. Alternatively, the Kommetjie population could be the remnant of a 

larger population which experienced a bottleneck caused, for example, by competition 

or habitat loss. The evolution and phylogeography of the P. dyscrita and Kommetjie 

lineages, and the disparity between the mtDNA and AFLP population genetic 

structure observed in P. dyscrita will be discussed further in Chapter 5. The inclusion 

of these ‘taxa’ in this chapter was to (i) elucidate the evolutionary structure of 

Parvulastra in South Africa using a genomics approach, and (ii) to exclude separate 

evolutionary lineages from further P. exigua population analyses.
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4.6.2. Gene flow and population structure within Parvulastra exigua

Parvulastra exigua showed polymorphism levels (63 - 84%, mean 78%) at the top 

end of the range seen in other sea stars (48% to 78%, Baus et at. 2005), and mid way 

between other marine invertebrates, which ranged from 56 to 89% in soft corals 

(Barki et al. 2000) and 36 to 47% in sea anemones (Douek et al. 2002). The AFLP 

data showed clear evidence for isolation by distance around the coast of South Africa, 

with 72% of the genetic variation (Mantel test) accounted for by geographic distance. 

These data contrast with the mtDNA structure (see Chapter 3), which showed two 

divergent reciprocally monophyletic haplogroups separated on the south coast. 

Further discussion of the incongruity of these datasets is detailed in Chapter 5, 

whereas this chapter focuses on the AFLP genetic structure.

Many authors have investigated the population genetic structure and geographic 

distribution of P. exigua worldwide (Chapters 2 and 3 and references therein) but 

those studies used mtDNA alone to infer genetic structure, population demography 

and dispersal. MtDNA is useful when inferring past processes, but the genomic 

approach using AFLP reflects present day gene flow and as such can highlight very 

different demographic processes. The current study provides evidence of dispersal 

distances of P. exigua up to a few hundred kilometres around the coasts of southern 

Africa, with sea stars remaining close to their natal populations and those adjacent to 

them. This dispersal capability is reflected in the isolation by distance genetic 

structure evident but does not indicate that long distance dispersal (above a few 

hundred kilometres) regularly occurs. However, in previous studies long distance 

rafting has been invoked to explain the very large anomalous global distribution of P. 

exigua (Waters and Roy 2004; Hart et al. 2006), despite this species’ entirely benthic 

life cycle.

This study shows that rafting up to a few hundred kilometres on inshore currents may 

occur in P. exigua, and that its benthic life history and dispersal mechanisms may be 

important determinants of present day gene flow and genetic structure. The genetic
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structure does not indicate that biogeographic provinces designated according to 

temperature gradients around the coast have an affect on dispersal of P. exigua as 

the isolation by distance pattern appears continuous around the coast and does not 

reflect biogeography boundaries. However, the degree of rafting and the dispersal 

distances may be correlated with inshore currents patterns, and concurs with the 

dispersal distance estimates of P. exigua within Australia. This study sheds doubt on 

the validity of rafting as a regular inter-continental dispersal mechanism (Waters and 

Roy 2004), therefore the wide global geographic distribution of P. exigua remains 

intriguing. The isolation by distance model of gene flow seems to reflect the 

organization of many coastal marine species (Hellberg et ai. 2002; Palumbi 2003). In 

species, such as P. exigua, with large continuous distributions relative to their 

dispersal capability, which inhabit heterogeneous environments (Johnson and Black 

1998) an isolation by distance pattern can indicate small scale localized gene flow, 

and open up the possibility for local adaptation in response to selection pressures 

(Maier et ai. 2005).

4.6.3. Selection in Parvulastra exigua

Using a genome scan with a total of 307 loci (but 220 loci after the loci with 

frequencies of above 0.98 had been removed) and a null distribution Fst framework 

approach, outlier loci were identified of which 6.8% had higher than expected Fst 

values. The loci themselves are very unlikely to be under divergent selection, 

however they may be potentially linked to genomic regions that are. The phenotype 

frequencies for the high Fst outlier loci (or genomic regions that are linked to these) 

appear to indicate divergent selection between the east and the west coasts (i.e. 

phenotype frequency decreasing or increasing with an easterly or westerly direction). 

Similar proportions of high Fst outlier loci, interpreted as being under divergent 

selection (or linked to loci under selection), have been identified in other intraspecific 

studies using the same (or similar) methods. Wilding et al. (2001) found 5% of the 

genome in Littorina to be outlier loci, Mealor and Hild (2006) identified 2.6% and 8.7%
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in two species of grass, Achere et al. (2005) found 2.5 to 3.3% in Norway Spruce, and 

Campbell and Bernatchez (2004) found 1.4 to 3.2% in lake whitefish ecotypes.

4.6.4. Divergent selection between the east and the west coasts

The outlier loci with values above the 97.5% quantile displayed phenotype 

frequencies which reflected the east - west divergence in phenotype and 

mitochondrial haplogroups, as well as the environmental temperature differences 

between the ocean basins. Although there is no clear geographic divide in phenotype 

frequencies between the east and west coasts, and the causative selective agents 

(e.g. temperature) or the likelihood that the selective agents are linked to phenotype 

cannot be ascertained from the generality of the phenotype frequencies, the general 

east / west (or vice versa) decline in phenotype frequencies implies that local 

adaptation is occurring, or has occurred in the past. It is interesting to note that in the 

first round of DFdist simulations, the divergent loci identified had a west to east 

frequency trend and the loci from the second round had an east to west frequency 

trend. This pattern may indicate that selection is acting more strongly in the west 

coast populations than the east coast populations.

Despite the apparent directionality of the outlier loci phenotype frequencies, the 

influence of these outlier loci on the genetic structure of the South African P. exigua 

populations does not appear to be strong enough to promote divergence at all loci 

throughout the genome between the east and the west coasts as the isolation by 

distance gene flow model is not disrupted by their removal. This result is not 

surprising, as selective forces acting on this small number of loci would have to be 

extremely strong to disrupt the population structure and cause divergence. 

Remarkably, this situation has been observed in two morphs of the intertidal snail 

Littorina saxatilis, which occur across an environmental gradient (Grahame et al. 

2006). When all loci were included, the two morphs were divergent from one another 

and grouped separately in a population structure analysis. However, when the 

divergent outlier loci were removed the analysis merely implicated spatially-mediated
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genetic differentiation, implying strong selective pressure acting on the phenotypes 

(Grahame et al. 2006).

Gene flow (indicated by the isolation by distance pattern) and divergent selection, 

(indicated by the phenotype frequency patterns) both appear to be operating within P. 

exigua between the east and the west coasts, however, the balance between these 

two processes is unclear. Wilding et al. (2000) considered it probable that the 

distribution of mitochondrial haplotypes in L. saxatilis indicated expansion from 

different glacial refugia, but haplotype distribution was unrelated to shell phenotype 

distribution (Wilding et al. 2001). The same authors concluded that it was impossible 

to tell if the small proportion of the genome which appeared to show selection was the 

result of adaptive phenotypic divergence and active non-allopatric speciation, or 

differential introgression following secondary contact resulting in homogenization of 

allele frequencies at all loci except those under selection (Wilding et al. 2001; 

Grahame et al. 2006).

The divergence in phenotype frequencies in P. exigua could have been caused by 'in 

situ’ selection driving adaptive differentiation (and potentially phenotypic divergence) 

despite the homogenizing effect of gene flow (potentially laying the ground for 

sympatric speciation). The possibility of divergence occurring in the face of gene flow 

has achieved much attention and many authors suggest that reproductive isolation 

can develop via pleiotropy when populations experience strong diversifying selection 

on multiple characters, and sympatric speciation can be the result (Rice and Hostert 

1993; Danley et al. 2000; Irwin 2002; Jordan et al. 2005). Alternatively, the 

divergence in the outlier phenotype frequencies may have evolved during a period of 

allopatry between the east and west coasts, during which time ecological 

specialization may have occurred in the absence of gene flow, followed by secondary 

contact and the establishment of the isolation by distance model of gene flow (Wilding 

et al. 2001; Grahame et al. 2006). The same selective forces that caused the local 

adaptation and divergence in the outlier loci phenotype frequencies could still be 

present in the geographic regions that they originally evolved in, therefore these loci
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may still be under selection, resulting in the outlier Fst values, and these selective 

forces have not yet been disrupted by gene flow.

Murray and Hare (2006) investigated whether a ‘genome scan’ is able to detect locus 

specific selection in secondary contact zones, using a continuously distributed oyster 

species in Florida which has a secondary contact zone between the Atlantic and Gulf 

of Mexico and displays reciprocal monophyly for mtDNA either side of the contact 

zone (Reeb and Avise 1990). They suggested that genome scans may be unreliable 

in identifying outlier loci if populations are in secondary contact because a 

combination of pre-contact differentiation variance and post-contact differential 

introgression could inflate the Fst variance over neutral expectations, causing the null 

Fst distribution to not be as robust, therefore making outlier identification unreliable 

(Bierne et al. 2003). However, Murray and Hare (2006) concluded that they found no 

statistically significant distinction between the Fst distributions simulated under the 

contrasting models of secondary contact after allopatry, and in situ divergence. 

Therefore, despite the theoretical expectation that secondary contact in clinal 

populations would distort the Fst neutral model, outlier loci can still be identified under 

conditions of secondary contact. It therefore seems possible to detect locus specific 

selection using a genome scan, but it may be difficult to distinguish between selection 

caused during allopatry, or ‘in situ’ selection resulting in divergence at the outlier loci. 

The isolation by distance pattern seen in the AFLP data could reflect the present 

introgression of the neutral portion of the genome after secondary contact, but gene 

flow between the east and west coasts is not extensive enough to dilute the effects of 

selection, or that selection is strong enough to resist the homogenising effects of 

gene flow. Considering the reciprocally monophyletic mitochondrial structure in P. 

exigua, secondary contact after a period of allopatry seems a more plausible 

explanation than selection causing divergence in situ resulting in reciprocally 

monophyletic mitochondrial haplogroups.
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4.7. Conclusions
The data presented here confirmed the genetic distinction of P. exigua and P. dyscrita 

as separate taxa, and provided further evidence that there is a cryptic species of 

Parvulastra at Kommetjie on the west coast of the Cape Peninsula. Furthermore, the 

AFLP data indicated that P. dyscrita has an exceptionally high level of polymorphism, 

the Kommetjie lineage has a low level of polymorphism, possibly reflecting a founder 

event origin, and the polymorphism level in P. exigua is at the high end of the range 

seen in other sea stars (Baus et al. 2005). The current study has confirmed that AFLP 

is a useful tool in population genetic studies of closely related species (Giannasi et al. 

2001; Ogden and Thorpe 2002). The AFLP data strongly indicated a pattern of 

isolation by distance between the P. exigua populations around the coast, reflecting 

the benthic life cycle of this species and possible rafting over short to medium 

distances. The AFLP results suggest that the dispersal ability of P. exigua is limited to 

adjacent sampling locations and provides no evidence for long distance (over a few 

hundred kilometres) rafting being an important dispersal mechanism. The AFLP 

structure contrasted with previously identified mtDNA structure which indicated two 

reciprocally monophyletic groups separated on the south coast, highlighting the 

importance of using a genomic approach to infer genetic connectivity and separate 

past processes from present day gene flow patterns. The genome scan approach 

combined with Beaumont and Nichols’ (1996) approach to identify outlier loci 

potentially under selection revealed that some loci were found to differ from the 

neutral model of genetic variation, and the phenotype frequencies of these loci were 

found to display strongly directional trends which corresponded to the divergence 

seen in phenotype, mitochondrial haplogroups and abiotic variables between the east 

and the west coast. It is concluded that these loci may have become locally adapted 

during a period of allopatry between the east and west coasts, and that upon 

secondary contact, the divergence has persisted due the balance between gene flow 

and strong selection pressures. Future investigation into the outlier loci would include 

isolating these loci and sequencing for b la s t  identification to investigate gene function 

and expression.
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Chapter 5: Discussion

As the first genetic analysis of South African populations of the genus Parvulastra, 

this study has both resolved a number of key problems and identified new questions 

about the phylogeny and phylogeography of this well studied sea star taxon. For 

example, this is the first study to address the genetic distinction of Parvulastra exigua 

and P. dyscrita, resolving the longstanding controversy surrounding these two taxa. 

Furthermore, a new highly localised, divergent, and potentially ‘at risk’ lineage within 

the Parvulastra genus is identified. In terms of South African intertidal biogeography, 

this is one of only a few studies examining phylogeography and population genetic 

structure on a large spatial scale in a continuously distributed species. These data 

were also related to historical abiotic processes and present day biogeographic 

provinces. This is also the first study to use Amplified Fragment Length Polymorphism 

(AFLP) and a coalescent simulation approach to identify markers under selection for 

an echinoderm species. The following sections aim to synthesise the data from 

Chapters 2 -4  and highlight gaps in our knowledge and key questions that remain to 

be answered.

5.1. Kommetjie

Three different genetic approaches (mtDNA and nuclear DNA sequences, and AFLP) 

all showed divergence between the Kommetjie population and the P. exigua and P. 

dyscrita lineages. The presence of a unique four base pair indel in the actin intron and 

nuclear copies/heteroplasmy in mtDNA sequences suggests that this group is 

reproductively isolated from other Parvulastra lineages. MtDNA and AFLP showed 

low levels (or an absence of) genetic variation within the divergent Kommetjie group. 

Maximum likelihood analysis of mtDNA, grouped the Kommetjie lineage within a 

clade of the genus Parvulastra containing P. vivipara and P. parvivipara (Fig. 5.1) not 

with P. exigua or P. dyscrita. The Kommetjie samples had oral gonopores and could 

be distinguished by their reddish orange irregular colour (1 and 2 in Fig. 5.1), in 

contrast to morphs of P. exigua (3 and 4 in Fig. 5.1). The divergent Kommetjie group 

has a sympatric distribution to P. exigua and appears to have an extremely restricted
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geographic range which may indicate that it should receive conservation status, as 

has been suggested for the relatively recently discovered P. vivipara (see Dartnall 

1969, cited in Keough and Dartnall 1978) and P. parvivipara (see Keough and 

Dartnall 1978) species in Australasia (Dartnall et al. 2003). The current genetic data 

provide compelling evidence that the Kommetjie lineage should be classed as a new 

species, Parvulastra kommetjia sp. nov. Holotype and paratypes will be submitted to 

the Natural History Museum, London, and a full species description prepared.

Figure 5.1. Photographs of the three South African Parvulastra samples. 1 & 2: P. 
kommetjia sp. nov., 3: intermediate phenotype of P. exigua, and 4: unmottled 
phenotype of P. exigua.

Four explanations are proposed for the existence and distribution of this new species: 

the first and second, based on demography, and the third and fourth, on a speciation 

(either sympatric or allopatric) event between P. exigua and P. kommetjia sp. nov. 

(see below).

5.1.1. Remnant of an ancient lineage

The current distribution of P. kommetjia sp. nov. represents a remnant population of 

an ancient lineage which previously occupied a much wider range. Due to competition 

for resources, disease, changing habitats etc., this species may have undergone a 

dramatic reduction in size and genetic bottlenecking resulting in low genetic 

variability. Such an explanation has been suggested for other marine intertidal taxa 

occupying ‘island-like’ habitats (Bucklin and Wiebe 1998; Espinosa and Ozawa 2006) 

it has also been proposed to explain the restricted distribution of P. vivipara, which 

occupies only two locations either side of the Eyre Peninsula in Australia (Byrne and 

Cerra 1996). If this proves to be the cause of the restricted distribution in this P.
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kommetjia sp. nov it might be expected that other isolated pockets of this species 

may exist, but these remain currently undetected. Further analysis of the geographic 

distribution of this taxon is now an urgent priority to address this question.

5.1.2. Founder effect speciation
Parvulastra kommetjia sp. nov. may have arisen from a founder event at Kommetjie. 

According to the founder effect model (Mayr 1963), speciation can occur when a few 

migrant individuals colonise a new habitat and genetic structuring ensues under the 

conditions of low genetic variation caused by the founder event (Templeton 1980 

1981). This theoretical model has not been corroborated using laboratory 

experiments (Ringo et al. 1985; Moya et al. 1995; Templeton 1999) and has been 

criticized by several authors in the past (Lande 1980; Barton and Charlesworth 1984; 

Rice and Hostert 1993; Coyne 1994). However, Paulay and Meyer (2002) argue that 

founder speciation in marine environments is more important than previously 

considered, and this method of speciation has been suggested for a number of South 

African intertidal taxa (Evans et al. 2004; Teske et al. 2005). If this scenario was 

responsible for the presence and limited distribution of P. kommetjia sp. nov., this 

poses the problem of identifying the ‘parental’ species. Parvulastra kommetjia sp. 

nov. appears to be closely related to (according to mtDNA) P. parvivipara and P. 

vivipara. However, their viviparous life cycle and extremely restricted dispersal ability 

(see Dartnall 1969; Keough and Dartnall 1978; Chia and Walker 1991; Byrne and 

Cerra 1996) make it unlikely that P. parvivipara and P. vivipara are parental lineages. 

The possibility that P. dyscrita or another asterinid species are the parental species 

can not be excluded. Finally, the parental species could be P. exigua from another 

global location, or from the east coast of South Africa. However, this explanation is 

unlikely for P. kommetjia sp. nov. because it is more difficult to imagine reproductive 

isolation evolving and speciation occurring, unless there were no existing populations 

of P. exigua at Kommetjie at the time of arrival of the founding individuals of P. 

kommetjia sp. nov. Moreover, if there was an existing population of P. exigua at 

Kommetjie at the time of the founder event, sympatric speciation would be the most 

appropriate model for the divergence of the two species.
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5.1.3. Ecological or adaptive (sympatric) speciation
Adaptive speciation which occurs sympatrically is considered a more controversial 

phenomenon than allopatric speciation, but nevertheless many authors advocate its 

existence (Knowlton 1993; Danley et al. 2000; Briggs 2006 Savolainen et al. 2006). 

Sympatric adaptive speciation implies that disruptive selective forces drive adaptive 

differentiation and assortative mating resulting in reproductive isolation, despite gene 

flow (Rice and Hostert 1993) occurring between the diverging taxa (reviewed in 

Doebeli et al. 2005). According to Doebeli et al. (2005) adaptive speciation is a 

plausible evolutionary process in many different evolutionary scenarios. Doebeli and 

colleagues (2005) argue that adaptive speciation is likely to occur in response to 

many different selection scenarios including competitive speciation or frequency 

dependent disruptive selection on the phenotype. Knowlton (1993) in a review of 

marine sibling species, suggests that sexual selection on reproductive recognition 

systems on the adults or gametes (using chemical cues) may play a role in driving 

divergence. Knowlton (1993) also suggests that sibling species which occur at 

different depth or salinity distributions, which may partially disrupt gene flow, could 

reflect clinal speciation. Kommetjie shows geological discontinuity (Brown and 

Jarman 1978) and has been suggested to be the boundary between the Namaqua 

and Agulhas biogeographic provinces (Stephenson 1944), although the location of 

this boundary is disputed (Jackson 1976; Brown and Jarman 1978; Emanuel et al. 

1992; Hiller 1994; Bustamante et al. 1997; Neraudeau and Mathey 2000). However, if 

the boundary does occur at Kommetjie, this may suggest unusual or intense 

environmental selection pressures at this location -  another issue requiring further 

investigation. It seems a remarkable coincidence that this species occurs on a 

biogeographic boundary, suggesting that this may provide the ecological selection 

pressures driving adaptive speciation.

5.1.4. Allopatric speciation

The same geological and theoretical arguments outlined in Section 5.1.3. could be 

suggested for allopatric speciation, except without gene flow occurring between the

258



diverging taxa. A vicariant event may have caused some P. exigua individuals to be 

isolated, causing a genetic bottleneck resulting in low genetic variation in the isolated 

population, which then diverged in allopatry, accruing genetic differences and 

reproductive isolation. Secondary contact could have ensued causing geographic 

introgression but not genetic introgression. The Cape Peninsula is a hotspot for 

species endemism (Branch and Branch 1981) and sea level rises in interglacial 

periods over the past 300,000 years would have repeatedly caused the Cape 

Peninsula to form an island (Branch and Branch 1981). This does not explain why P. 

kommetjia sp. nov. is found only at Kommetjie, and not on the rest of the Peninsula. 

However, Kommetjie may have been repeatedly exposed and submerged, potentially 

creating the vicariant event necessary for allopatry.

Due to the location and geographic distribution of P. kommetjia sp. nov. a speciation 

event is more likely than a demographic explanation, however, whether P. kommetjia 

sp. nov. diverged in sympatry or allopatry is open to debate. Sympatric speciation is 

thought to occur much more quickly than allopatric speciation (Briggs 2006). As there 

are no known geological events in the area that could have caused a population to be 

isolated for a long time period, then sympatric speciation seems the most plausible 

explanation for the evolution of P. kommetjia sp. nov. However, currently there is no 

compelling evidence for or against any of the four explanations, and further intensive 

surveys and study will be required to resolve the origin of this enigmatic taxon.

5.2. Parvulastra dyscrita

Although it was not a primary aim of this study to investigate the population genetics 

of P. dyscrita, molecular investigation was necessary in order to clarify its relationship 

with P. exigua. Morphological examination of gonopore location revealed that P. 

dyscrita lacked oral gonopores, confirming that it is a distinct species from both P. 

exigua and P. kommetjia sp. nov. which both have oral gonopores. AFLP data 

indicated that P. dyscrita is a cohesive species, genetically divergent from the other 

South African Parvulastra. The actin intron data did not separate P. exigua from P. 

dyscrita into two monophyletic clades, however this marker is probably not sensitive
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enough to distinguish between closely related species. The mitochondrial data for P. 

dyscrita indicated two parapatric reciprocally monophyletic mitochondrial clades. The 

same mitochondrial structure was observed in P. exigua. The inferred contact zone 

between these two clades of P. dyscrita is on the Agulhas Bank, approximately 200 

km west of the contact zone between the two P. exigua clades observed. The 

formation of these clades may be explained by a vicariant event, as discussed in 

Section 5.3.3, in relation to the two P. exigua mitochondrial clades. Although a 

planktonic life history (suspected in P. dyscrita; see Branch et al. 1994) is considered 

ancestral to P. exigua’s benthic life history (Byrne 1995; Hart et at. 1997; Hart 2000; 

Byrne 2006), the divergence event between these two species was not investigated, 

and therefore it remains unclear which is the ancestral species in South Africa, and by 

what speciation mechanism (e.g. sympatric, allopatric or founder) they diverged. 

However, this is the first time P. dyscrita has been genetically analysed and this 

species can now be included in the family phylogenetic tree with confidence (Fig.

5.2).
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Figure 5.2. Maximum parsimony tree of asterinid mtDNA sequences. Geographic 
origin is indicated to the right of the taxa. Values in bold above nodes indicate 
bootstrap support (>50%), and values in italics (below nodes) are decay indices. 
MtDNA clades I -  VI and genus names to the right of the numerals are newly 
classified genera (O’Loughlin and Waters 2004). Tree taken from Waters et al. 2004. 
Red arrows represent position of Parvulastra dyscrita and P. kommetjia sp. nov. 
identified from mtDNA during this study.

5.3. Parvulastra exigua

The remarkable P. exigua colour morph polymorphism appears to be decoupled from 
both mtDNA and AFLP neutral genetic structure indicating demographic or neutral 
processes are not the driving mechanisms behind its polyphenism. Phenotypic 
plasticity in response to ecological specialization (diet or water temperature) could be 
responsible for the colour morphs. However, there is more compelling evidence for 
selection being the driving force behind the phenotypic polymorphism, namely (a)
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diverging outlier loci, corresponding to the east / west colour morph distribution, and 

(b) both P. exigua and P. dyscrita displaying the mottled morph in the area of 

sympatry. Moreover, selection appears to be causing divergence despite the 

homogenising effect of gene flow between the two colour morphs. This idea has 

generated considerable controversy in the past (Jordan et al. 2005) because theory 

predicts that while natural selection may favour phenotypes particular to certain 

habitats, gene flow should act to homogenise such differences (reviewed in Slatkin 

1985, 1987), potentially resulting in individuals displaying characteristics detrimental 

to their fitness (Storfer and Sih 1998; Hendry et al. 2002; Hoekstra et al. 2005). 

Nevertheless, phenotypic divergence despite gene flow has been demonstrated in 

several taxa, but most show evidence that gene flow modulates phenotypic adaptive 

divergence (e.g. Saint-Laurent et al. 2003; Jordan et al. 2005; Guillaumet et al. 2005; 

Petren et al. 2005; Hoekstra et al. 2005; Rosenblum 2006). In the P. exigua system, 

gene flow may play a role in modulating colour morph divergence at the colour 

contact zone (False Bay) because there is a higher proportion of the ‘intermediate’ 

colour morph here. Therefore, the ‘intermediate’ colour morph phenotypes may have 

reduced fitness. The limited dispersal ability and the isolation by distance pattern of 

genetic structure (AFLP) may indicate that this modulating effect of gene flow is 

obscured further from the contact zone, because the proportion of ‘unmottled’ or 

‘mottled’ sea stars increases.

Three genetic approaches (mtDNA and Actin intron sequencing, and AFLP) showed 

different patterns of population structure in P. exigua on the South Africa coast. The 

mtDNA data revealed two monophyletic allopatric east and west clades, and indicated 

a population expansion event within the west coast clade. The Actin intron sequences 

data showed a single P. exigua group, but was not sensitive enough to differentiate 

the east and west coast mtDNA haplogroups. The AFLP data showed a strong 

pattern of isolation by distance, with dispersal distances in the region of 10’s to 100’s 

of kilometers. Approximately 6.8 % of the genome was potentially subject to 

diversifying selection, indicated by the AFLP ‘outlier’ alleles which show a pattern of 

directionality with phenotype frequencies declining from east to west (or vice versa,
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see loci phenotype frequency histograms in Chapter 4) along the coast, possibly 

coinciding with the phenotypic patterns / biogeographic provinces or mitochondrial 

structure. Three hypotheses are suggested to explain the genetic structure evident in 

P. exigua in South Africa. Although a combination of any of the forces associated with 

the three hypotheses could have contributed to evolution of the P. exigua genetic 

structure, a vicariance event, followed by secondary contact is the most plausible.

5.3.1. Founder events
The two reciprocally monophyletic haplogroups could have resulted from two 

separate founder events, on the east and west coasts of South Africa. The founders 

could have come from (i) different localities (e.g. Australia seeded the east coast and 

Amsterdam Island, the west coast), (ii) the same locality (possibly Australia) but at 

different times, or (iii) one founder event that seeded a population on the east coast 

(which may have undergone a more ancient expansion event) then seeded a west 

coast population in a second founder event. Scenario (iii) was recently proposed as 

an explanation for two separate reproductive stocks of the abalone Haliotis midae 

which occur on either side of Cape Agulhas (Evans et al. 2004). Evidence from three 

different genetic markers indicated an isolated introduction event to the east of Cape 

Agulhas, and subsequent range expansion in an easterly direction (Evans et al.

2004). These authors also noted that the area of transition between the stocks 

coincides with oceanographic features of the region. It is plausible that if a small 

number of P. exigua individuals from the east coast were caught up in the Agulhas 

current, they could travel southwards, reaching the Benguela current which may have 

deposited them on the west coast.

Following the putative founder events, population expansion could have ensued on 

the west coast. Ancestral monophyly (the presence of a single basal haplotype which 

gives rise to several derived haplotypes, as seen in both the east and west clade of P. 

exigua) implies that the populations were founded by a few individuals which then 

rapidly multiplied (Teske et al. 2005; Park and Foighil 2000). Partial introgression may 

have occurred when the P. exigua populations reached the contact zone at the
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Agulhas Bank. Introgression between the two populations may explain the nuclear 

isolation by distance patterns of genetic structure. However, persistence of the 

reciprocal monophyly in the mtDNA is expected to have been eroded without some 

partial reproductive isolation, hybrid breakdown or strong selection on the 

mitochondrial genome (Wilson and Bernatchez 1998; Bensch et al. 2002; Helbig et al. 

2005; Bensch et al. 2006; Ellison and Burton 2006; Secondi et al. 2006). The 

sporadic nature of founder events may explain why P. exigua does not occur in South 

America or New Zealand. If the P. exigua haplogroups in South Africa were the result 

of founder events, this would directly contradict the Out of Africa hypothesis proposed 

by Waters and Roy (2004) which suggests that Africa is the ancestral origin and a 

founder event was responsible for the establishment of a P. exigua population in 

Australia.

5.3.2. Phylogeographic break without barriers to gene flow

In continuously distributed species, intraspecific mitochondrial monophyletic groups 

separated by large genealogical gaps, can potentially develop as a result of low 

individual dispersal distances and small population sizes (Neigel and Avise 1993; 

Irwin 2002; Kuo and Avise 2005). This pattern can arise because mtDNA is inherited 

from only one parent (although not necessarily matriarchally; Gyllensten et al. 1991; 

Bromham et at. 2003; Kvist et al. 2003; Rokas et al. 2003) and evolves through 

bifurcating genealogies (individuals belong to one genealogical clade, but cannot be 

genealogically intermediate; Irwin 2002). These conditions lead to phylogeographic 

structure and under extreme conditions of low dispersal or isolation by distance, one 

pair of adjacent sampling locations can have individuals that belong to different 

genealogical clades but other pairs of adjacent locations may belong to the same 

genealogical clade (Irwin 2002). This divergent mtDNA pattern is theoretically not 

mirrored in nuclear DNA because unlike mtDNA, which is descended from a single 

ancestral individual, different sections of the recombining nuclear genome can be 

inherited from different ancestral individuals (Irwin 2002). Disruptive selection (Kuo 

and Avise 2005) could cause the phylogeographic structure of mtDNA to persist 

despite gene flow if different mtDNA haplotypes are favoured in different ecological
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conditions, or across ecological gradients (Inwin 2002). Kuo and Avise (2005) suggest 

that this model of mtDNA divergence may not hold (or may do so with less force) if 

strong balancing selection has acted on the loci. However, these authors conclude 

that it is unlikely that such strong balancing (or disruptive) selection would 

characterize mitochondrial genomes.

The conditions of this model of mtDNA divergence with gene flow lend themselves to 

the phylogeographic structure observed in the South African P. exigua populations, 

which have restricted dispersal of up to a few hundred kilometres, show an isolation 

by distance structure and occur over an environmental temperature gradient. Past P. 

exigua populations may have been smaller and mtDNA divergence could have 

occurred via the above processes around the contact zone. This may have been 

reinforced by selection favouring particular genotypes on either side of the contact 

zone. This would mean that the two mtDNA groups diverged in parapatry and that the 

divergence occurred along a cline without a physical barrier to gene flow. However, 

two lines of evidence suggest that this is not the most likely explanation for the 

observed mtDNA divergence and the nuclear isolation by distance pattern in P. 

exigua. Firstly, in contrast to other systems showing divergence with gene flow (Smith 

et al. 2005; Grahame et al. 2006;), the mtDNA divergence does not coincide with the 

phenotypic divide. Secondly, genetic divides in other intertidal species over the 

Agulhas Bank have been reported (Evans et al. 2004; Teske et al. 2006; P. dyscrita, 

this study), which suggests that the phylogeographic divide evident in P. exigua has 

not arisen in this location by chance, and it is more likely to be the result of a 

geographic barrier to gene flow (Avise 1992; Neigel and Avise 1993; Kuo and Avise

2005). However, the same characteristics of mtDNA that make this model of 

divergence plausible, also pre-dispose it to evolving reciprocal monophyly and 

showing phylogeographic breaks caused by barriers to gene flow. Therefore, 

inferences of the origin of phylogeographic structure in mtDNA must be made with 

caution (Irwin 2002; Grahame etal. 2006).
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5.3.3. Vicariance (allopatry)

Geographic patterns of genetic differentiation often reflect events in the past more 

accurately than current patterns of gene flow (Hellberg et al. 2002). Significant 

genetic structure can result when an historical vicariance event interrupts gene flow 

between populations, followed by a combination of mutation, adaptation and lineage 

sorting (drift) eventually resulting in reciprocal monophyly (Grosberg and Cunningham 

2001). A vicariance event caused by sea level changes and exposure of the Agulhas 

Bank continental shelf may have caused allopatry between the east and west P. 

exigua populations. During the allopatric period, mtDNA reciprocal monophyly and 

adaptive divergence in some parts of the nuclear genome could have evolved in 

response to the different temperature regimes on the coasts. Subsequent sea level 

changes may have resulted in secondary contact and the formation of the isolation by 

distance pattern evident from the AFLP data. Population expansion in the west could 

have occurred either during the allopatric period, when the east and west populations 

were adapting to the ecological conditions or after secondary contact.

MtDNA drifts to reciprocal monophyly more quickly than nuclear DNA because of its 

smaller effective population size (Birky et al. 1989, cited in Hellberg et al. 2002; 

summarized by Ballard and Whitlock 2004), therefore the period of allopatry may 

have been only long enough for some adaptive divergence to occur, but not long 

enough for complete reproductive isolation between the east and west populations. 

However, the mtDNA reciprocal monophyly implies a lack of mitochondrial 

introgression (Grosberg and Cunningham 2001), despite evidence of nuclear 

introgression. Nuclear but not mitochondrial introgression has been observed in other 

hybrid zones (Bensch et al. 2002; Haig et al. 2004; Helbig et al. 2005; Secondi et al. 

2006), and could potentially be the result of three different processes. (1) P. exigua’s 

benthic life cycle, limited dispersal ability, the opposing inshore current directions and 

the isolation by distance AFLP structure indicate that gene flow occurs only between 

adjacent locations. Therefore, if secondary contact was very recent, the mtDNA may
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not have had time to introgress (except at the contact zone) throughout the 

population, and may not have been evident at the contact zone due to limited 

sampling. (2) Selection on mtDNA itself, either directly (nucleo-cytoplasmic 

incompatibility (Secondi et al. 2006) e.g. co-adaptation between mitochondrial and 

nuclear genomes causing functional incompatibilities resulting in hybrid breakdown 

(Ellison and Burton 2006)), or indirectly (e.g. differential survival of the heterogametic 

sex (Haldane’s Rule), hybrid reduced fitness or different spawning times) causing a 

partial reproductive barrier therefore preventing mitochondrial introgression (Bensch 

et al. 2002; Helbig et al. 2005; Secondi et al. 2006). (3) As the effective population 

size of mtDNA is only approximately % of the size of nuclear autosomal genes, 

mtDNA haplotypes may disappear rapidly from secondary contact populations by drift 

(Secondi et al. 2006). Therefore, using only mitochondrial markers to detect 

introgression has been criticized (Dasmahapatra et al. 2002; Mishmar et al. 2003; 

Ellison and Burton 2006; Secondi et al. 2006). Furthermore, the directionality of the 

phenotype frequencies of the nuclear ‘divergent outlier loci’ indicate a lack of 

introgression between the east and west coast. This is consistent with the suggestion 

that selectively neutral sections of the genome are more likely to introgress (Secondi 

et al. 2006). This also adds weight to the suggestion that the divergent outlier loci 

(and possibly the mtDNA) are under directional selection.

The allopatric explanation for this deep phylogenetic break is more plausible than an 

explanation of the phylogeographic break without a barrier to gene flow (Section

5.3.2) because of the location of the divide. If selective adaptation was responsible, it 

would be expected that the divide would coincide with a biogeographic boundary 

(Dawson 2001). However, the effects of sea level changes in the Agulhas Bank area, 

as well as the phylogenetic divide evident only in the mtDNA, and not the nuclear 

DNA, make a historical vicariance event followed by secondary contact more 

plausible (Dawson 2001). Further, support for the vicariance hypothesis comes from 

P. dyscrita and other estuarine and marine species (Evans et al. 2004; Teske et al.

2006), which also shows phylogeographic divides over the Agulhas Bank area. This 

may indicate that the whole Agulhas Bank region is a phylogeographic (but not
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biogeographic) ‘transition zone’ (Dawson 2001) where many marine taxa with 

different life histories may show adjacent phylogeographic structure, similar to the 

phylogeographic structure attributed to vicariance events seen in many coastal 

marine taxa within the Californian transition zone and around Point Conception 

(Burton 1998; Bernardi 2000; Dawson et al. 2001; Sotka et al. 2004). Several marine 

invertebrates and fish show genetic divergence across an intertidal phylogeographic 

break at Cape Canaveral, Florida (Reeb and Avise 1990; reviewed in Avise 1992; 

Grosberg and Cunningham 2001; Hellberg et al. 2002; Palumbi 2003). It is not certain 

whether local adaptation or oceanographic barriers maintain the genetic divisions 

between the divergent populations within these species (see Hare and Avise 1996). 

However, it is clear that a major vicariance event interrupted gene flow for many taxa, 

and that larval dispersal has yet to restore genetic homogeneity between the 

populations (Grosberg and Cunningham 2001).

5.4. Additional work and future directions

Research, especially where there is limited prior knowledge of the system, often 

raises more questions than answers and this study is no exception. Further 

investigations are recommended into the ancestral origins; the global genetic 

structure; dispersal; mechanisms responsible for the P. exigua colour morphs; effects 

of the intertidal temperature gradient on selection and on the phylogeography of 

Parvulastra species in South Africa. The current study highlights the necessity of 

utilising both nuclear genomic and mtDNA markers, as well as the need for extensive 

sampling in order to identify cryptic taxa. Additional to the work reported in Chapters 2 

- 4, the following methods were developed but are not reported in this thesis as they 

were not pursued in detail and are not central to the main theme of the project. 

However, to our knowledge, this was the first study to show that the ribosomal 

Internal Transcribed Spacer regions (ITS) are problematic markers for Parvulastra as 

they reveal divergent sequences from multiple copies within individuals. Furthermore, 

30 anonymous P. exigua nuclear sequences were generated which can be used in 

the future for single nucleotide polymorphism (SNP) identification. Finally, to our
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knowledge, this was the first study to isolate DNA sequence containing microsatellites 

using a non-enriched library method in a related species, Asterina gibbosa, despite 

several previous attempts using enriched microsatellite library methods.
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