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Summary

This thesis describes the results o f sedimentological and near-surface geophysical 

investigations of the internal structure of late Pleistocene permafrost and glacial ice- 

related 4 ramparted depressions’ in Wales. These data were used to evaluate the 

possible origins of these landforms, which have previously been interpreted as the 

remains of open system pingos or lithalsas (mineral paisas). Six sites were 

investigated: i) Hirwaun valley; ii) Llanio Fawr; iii) Crychell Moor; iv) Cledlyn 

valley; v) Cletwr valley; and vi) Llanpumsaint. Each site investigation is presented as 

an individual case study. The precise origins of these landforms remain uncertain. 

The density of landforms at all sites however is inconsistent with their interpretation 

as relict open system pingos. Some sites (Hirwaun valley and Llanio Fawr) are 

unequivocally glacial in origin, whilst others (e.g. Llanpumsaint) are most probably a 

type of relict periglacial ground-ice mound, although formation via the grounding of 

icebergs in a proglacial lake cannot be ruled out. Conversely, the ramparted 

depressions of the Cledlyn and Cletwr valleys probably formed as a result of the 

meltout of stagnating glacier ice, although permafrost-related origins are also 

possible. The investigations of relict landforms are complemented by geophysical 

investigations (ground penetrating radar and electrical resistivity) of active open 

system pingos from Svalbard. Data from both the relict and active landforms suggests 

that groundwater seepage through geological discontinuities is important for ground- 

ice mound formation, and that there is a continuum of ground-ice mounds, from 

features cored with lenses of segregation ice (e.g. paisas and lithalsas) to others cored 

with massive, injection ice (pingos). Transitional forms between these two extremes 

will contain a mixture of ground-ice types.
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Chapter 1: Introduction

1 Introduction

1.1 Context of the research
Permafrost is ground that remains at or below 0°C for at least two consecutive years 

(Harris et al. 1988). Arctic regions currently underlain by permafrost are often 

characterised by the localised formation of ground ice (Mackay 1972) within both 

superficial sediments and bedrock, and the subsequent heaving and blistering of the 

ground surface in response to the progressive growth of an ice lens. Large ice-cored 

hills termed ‘pingos’, up to 50 m high and 600 m wide may result, though pingos and 

related ground-ice features (paisas, lithalsas, and seasonal frost mounds) range in size 

from large features such as these, down to much smaller mounds a few metres in 

diameter. During the Devensian, permafrost conditions became widely established 

across much of the southern regions of the British Isles, and a series of relict 

landforms thought to have been generated by the thaw and collapse of massive 

ground-ice bodies during permafrost degradation have been identified in Wales, 

Ireland, England and the Isle of Man (Watson 1977; Bryant and Carpenter 1987; 

Coxon and O’ Callaghan 1987; Ballantyne and Harris 1994). These landforms, 

interpreted as the relict forms of periglacial ground-ice mounds, usually take the form 

of peat-filled basins enclosed by circular or complex debris-cored ridges, and are 

therefore referred to as ‘ramparted depressions’ or ‘ramparted ground-ice 

depressions’ (Sparks et al. 1972; Bryant and Carpenter 1987). They tend to occur in 

clusters, with tens to hundreds of individual landforms closely associated or 

superimposed across several square kilometres (Watson 1972; Bryant and Carpenter 

1987; Coxon and O’Callaghan 1987; Gurney 2000). Because potentially they are one 

of the few known diagnostic indicators of permafrost (Mackay 1979, 1986, 1988), 

landforms of this type have been used to infer the existence and the distribution of 

late Pleistocene permafrost in currently temperate environments (Flemal 1976; De 

Gans 1988) or even to reconstruct palaeo-temperature regimes, based on the current 

distribution of active ground-ice mounds (Watson 1977; Washburn 1979, 1980; Isarin 

1997; Pissart 2000, 2003). However, although enclosed circular depressions have 

been widely accepted by many as diagnostic of the former development of ground ice 

under permafrost conditions, there are a series of processes associated with the 

meltout of glacier ice that can also result in the development of a series of depressions
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surrounded by enclosing ring-ridges (e.g. Hoppe 1952; Gravenor and Kupsch 1959; 

Stalker 1960; Parizek 1969; Flemal 1976; Eyles et al. 1999; Mollard 2000).

In the British Isles, groups of ramparted depressions are particularly widespread 

across parts of mid and west Wales (Pissart 1963; Watson 1972, 1977; Watson and 

Watson 1974; Ballantyne and Harris 1994). Originally interpreted as the remains of 

late Pleistocene open system pingos (Pissart 1963; Watson 1971, 1972; Watson and 

Watson 1972, 1974), these landforms have since been re-interpreted as the relict 

forms of mineral paisas (lithalsas), smaller ground-ice mounds formed by localised 

preferential ice segregation (Pissart and Gangloff 1984; Gurney 1994, 1995; Gurney 

and Worsley 1996; Worsley et al. 1995; Matthews et al. 1997; Pissart 2000, 2003). 

As well as supporting a range of important wetland habitats, the poorly drained 

central basins of many ramparted depressions in Wales are frequently infilled with 

organic-rich sediments that contain detailed Holocene palaeo-environmental records 

(Handa and Moore 1976; Walker and James 2001).

Despite potentially constituting important periglacial phenomena, highly diagnostic 

of ancient ground-ice conditions, little is known about the internal structure and 

precise cryogenic origins of many ramparted depressions in Wales. Accurate 

interpretation of these relict landforms requires data on the internal structure of both 

late Pleistocene ramparted depressions and active periglacial ground-ice mounds 

(Pissart 1988).

1.2 Thesis objectives
The primary objective of this thesis was to establish the internal structure of 

ramparted depressions in Wales, as a means of evaluating their cryogenic origins. 

This was achieved through the application of an integrated suite of sedimentological 

tools (sedimentological logging, clast fabric and grain-size analysis of boreholes, trial 

pits and trenches), and near-surface geophysical methods (electrical resistivity 

tomography, seismic refraction, induced polarisation and ground penetrating radar). 

Field investigations were undertaken at six sites in mid and west Wales (Hirwaun 

valley, Llanio Fawr, Crychell Moor, Cledlyn valley, Cletwr valley, and 

Llanpumsaint) (Figure 1.1). Preliminary results from these investigations, and a 

conservation assessment of these, as well as many other groups of ramparted
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depressions in Wales have already been presented in a series of interim reports (Ross 

et a l 2005a; Harris et a l 2005).

Because contemporary studies in permafrost regions aimed at assessing the processes 

of pingo decay and collapse are critical for the correct identification and classification 

of ramparted depressions (Pissart 1988), the interpretation of the Welsh landforms 

was complemented by data from geophysical investigations (ground penetrating 

radar, electrical resistivity) of the internal structure (ground ice geometry and physical 

characteristics) of active open system pingos in Svalbard, designed to establish the 

likely mode of formation. Of all the types of periglacial ground-ice mounds (closed 

system pingos, open system pingos, paisas, lithalsas, and seasonal frost mounds), 

knowledge of the internal description of open system pingos is perhaps the most 

limited, due to the lack of suitable exposures (Mackay 1985), and because of the 

difficulties associated with the transportation and deployment of drilling equipment. 

Geophysical methods provide an ideal solution to these problems as near-surface 

geophysical equipment is relatively portable and cheap to transport to remote 

locations, and significant volumes of data can be collected in short time periods.

1.3 Thesis format
Chapter 2 presents a review of research investigating the mechanisms that result in 

the formation of active periglacial ground-ice mounds, and the processes that lead to 

their collapse and the development of ramparted depressions. A review of ramparted 

depressions in northwest Europe (mainly Belgium and the British Isles) is presented. 

Chapter 2 also provides an outline of the bedrock and superficial geology, Quaternary 

environmental history and hydrogeology of mid and west Wales. Particular reference 

is made to the Afon Teifi catchment, within which four of the six sites investigated in 

Wales are located. Chapter 3 outlines the near-surface geophysical and 

sedimentological methods, and geographical information systems, used for the 

investigation and mapping of landforms in both Wales and in Svalbard, describing the 

equipment used and how data was acquired, processed and presented. Chapters 4-9 

describe and interpret the geophysical and sedimentological data from a series of site 

investigations of ramparted depressions at six different localities in Wales (Chapter 4: 

Hirwaun valley; Chapter 5: Llanio Fawr; Chapter 6: Crychell Moor; Chapter 7: 

Cledlyn valley; Chapter 8: Cletwr valley; and Chapter 9: Llanpumsaint). Sections on
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the mechanisms of landform formation are presented in two of the six ‘Welsh’ 

chapters (Chapter 4: Hirwaun valley, and Chapter 5: Llanio Fawr). The origins of the 

other six sites (Chapter 6: Crychell Moor; Chapter 7: Cledlyn valley; Chapter 8: 

Cletwr valley; and Chapter 9: Llanpumsaint) are specifically discussed in detail in the 

Discussion (Chapter 11). Geophysical investigations (ground penetrating radar and 

electrical resistivity) of the internal structure of active open system pingos in Svalbard 

are described and interpreted in Chapter 10. Chapter 11 discusses and evaluates the 

possible mechanisms of formation of the ramparted depressions in Wales, assessing 

the importance of regional and local hydrogeology, as well as outlining data and 

evidence that undermines or contradicts previous interpretations of these landforms. 

The role that glacial rather than periglacial processes may have played in the 

formation of these landforms is also evaluated. A summary of the possible genetic 

origins of ramparted depressions at Llanpumsaint, Crychell Moor and in the Cledlyn 

and Cletwr valleys is presented, followed by a short section outlining the implications 

of the current study for the interpretation of other ramparted depressions in the British 

Isles and for diagnostic criteria used to discriminate between, and interpret, ramparted 

depressions. Chapter 12 presents a summary of the main conclusions of this study and 

provides recommendations for areas of future work.
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2 Literature Review

2.1 The nature and origins of pingos
Pingos are perennial, blister-like, intra-permafrost, ice-cored hills produced by the 

injection and subsequent freezing of water within superficial sediments or bedrock 

(Mackay 1979; Pissart 1988). They are circular to oval in plan, 30-600 m in diameter 

and generally less than 20 m in height (Pissart 1988), although some examples 

growing to elevations of 48 m (Mackay 1986) and 60 m (Ferrians 1988) have been 

reported. Formally classified as “a perennial frost mound consisting of a core of 

massive ice, produced primarily by injection of water, and covered with soil and 

vegetation” (Harris et al. 1988), the term ‘pingo’ originates from the Inuit language, 

and means ‘conical hill’ (Porsild 1938). Pingos develop in a variety of geological 

materials throughout the continuous and discontinuous permafrost zones, including 

till, slope deposits, alluvial silts, sands and gravels, and even in bedrock (e.g. Muller 

1959; Cruickshank and Colhoun 1965; van Autenboer and Loy 1966; Ahman 1973; 

Liestol 1977; Hamilton and Obi 1982; Pissart 1988; Seppala 1988a; St-Onge 1990). 

A prerequisite for pingo initiation and growth is the availability of water under 

sufficient pressure to enable the development of injection or segregation ice (Mackay 

1973, 1977, 1978a, 1983) and the upward displacement of overburden materials. Two 

mechanisms enable this, and on this basis, two types of pingo are recognised: i) 

closed (or hydrostatic) system; and ii) open (or hydraulic) system (Porsild 1938; 

Miiller 1959; Mackay 1979) (Figure 2.1).

2.1.1 Closed system pingos
Closed system pingos are found, with few exceptions, in former lake basins or river 

channels on the low-lying coastal plains of the continuous permafrost zone of 

northwest Canada, Alaska and Siberia (Stager 1956; Mackay 1962; Pewe 1975; 

Ferrians 1988). The majority of closed system pingos in Canada are located in the flat 

low-lying tundra areas along the western Arctic coast around the Mackenzie Delta, 

the Tuktoyaktuk Peninsula and Richards Island, where there are 1350-1450 such 

landforms (Stager 1956; Miiller 1959, 1962; Mackay 1962, 1963, 1966). In northern 

Alaska, more than 1000 closed system pingos have been described and mapped on the
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Figure 2.1: (a) Oblique aerial photograph of a closed system pingo, Mackenzie Delta, Canada (photo by C. Harris); (b) 
Open system pingo, Adventdalen, Svalbard.
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Arctic Coastal Plain and on the Seward Pensinsula (Leffmgwell 1919; Porsild 1938; 

Pewe 1975; Ferrians 1983, 1988).

The mechanism of closed system pingo growth is now well known (Mackay 1962, 

1973, 1977, 1978a, 1979, 1983, 1998) (Figure 2.2). On the Tuktoyaktuk Peninsula 

and surrounding lowlands, surface water accumulates in summer to form pools and 

lakes. Where the water depth of a lake exceeds the maximum thickness of winter ice, 

the bottom waters of the lake will remain above 0°C throughout the winter and a talik 

(a zone of unfrozen, water-saturated sediment) will develop in the underlying 

permafrost. In simplified models of closed system pingo development, these taliks are 

enclosed, laterally and at depth, by impermeable, perennially frozen ground, although 

this may not always be the case (Mackay 1979). Thaw lakes, however, are highly 

susceptible to rapid catastrophic drainage from thermal erosion along ice wedge 

networks or coastline retreat. Subaerial exposure of the lake floor through lake 

drainage leads to refreezing of the underlying talik, with permafrost aggrading 

downwards and inwards from the sides (Figure 2.2). Because pore water is free to 

migrate to zones of lower pressure within coarse-grained, unfrozen sediments, as the 

talik gradually freezes, the 9% expansion associated with the phase change acts like a 

piston, expelling the remaining unfrozen pore water ahead of the freezing front and 

increasing the pore water pressure. This water is unable to percolate through the 

surrounding permafrost however and, as the talik freezes, becomes concentrated as a 

pressurised water lens in zones of lower pressures below areas of thinner permafrost 

(e.g. beneath a small residual pond). Freezing of this water lens from the surface 

downwards will then result in the growth of a massive ice-core, with water freezing to 

the base of the icc lens. As the icc is derived from ‘internal’ sources, the term ‘closed 

system’ is used to classify this type of pingo. Many old (10-20,000 years old), large 

lakes (>600 m in length), however, may not be enclosed at depth but will instead be 

characterised by through-going taliks (Mackay 1979). Theoretically, these enable 

groundwater to enter, or be lost from the system. Pingos can still grow despite the 

presence of through-going taliks however, providing that the rate of water expulsion 

is greater than the rate of water loss from the system (Mackay 1979). As a result of 

the possibility of groundwater migration via through-going taliks, Mackay (1979) 

argued that the term ‘closed system’ was inappropriate when used to classify the 

pingos of the Tuktoyaktuk Pensinsula area. Instead, these pingos should be classified
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as ‘hydrostatic’ pingos (Mackay 1979, 1998). Although this recommendation, and the 

suggestion that open system pingos should be referred to as hydraulic pingos, have 

been adopted by some (e.g. Gurney 1998), many authors (e.g. Ballantyne and Harris 

1994) still use the original terminology (open and closed system pingos), and it is this 

approach that will be adopted throughout this thesis.

If the addition of expelled pore water to the bottom of the pingo ice exceeds the 

downward rate of freezing, a sub-pingo water lens will develop in which the 

hydrostatic pressure is sufficient to cause uplift and deformation of the overlying ice 

core and its frozen overburden (Mackay 1973, 1979, 1983, 1998). Direct evidence for 

sub-pingo water lenses under artesian pressure has been obtained by drilling through 

closed system pingos on the Tuktoyaktuk Peninsula (Mackay 1973, 1977, 1978a, 

1979, 1981, 1983, 1986) (Figure 2.3). Mackay argued that indirect, external evidence 

for the presence of pressurised water lenses takes the form of radial and concentric 

tension cracks, alternating periods of pingo uplift and subsidence, extensive 

peripheral failure and high-angle normal and reverse faulting, periodic spring 

discharge, and icing mound development (Mackay and Stager 1966; Mackay 1973, 

1977; Rampton and Mackay 1971; French et al. 1982). At least some of these 

characteristics, however (e.g. pingo uplift, radial extension cracks), could equally 

have been caused by frost heave of the overburden generated by ice segregation, 

which has been observed within many closed system pingos (Mackay 1973, 1979).

2.1.2 Open system pingos
Open system pingos have been recorded from areas of discontinuous permafrost in 

central Alaska (Holmes et al. 1968), the Yukon Territory (Hughes 1969), Siberia 

(Shumskii 1959; Soloviev 1973), the Tibetan Plateau (Wang and French 1995), and 

Mongolia (Babinski 1982). Although they are often been described as characteristic 

of, or even restricted to, the discontinuous permafrost zone (e.g. Brown and Pewe 

1973; Ballantyne and Harris 1994), this observation is at odds with their presence in 

the continuous permafrost of Greenland (Muller 1959; Cruickshank and Colhoun 

1965; O’ Brien 1971; Worsley and Gurney 1996), northern Alaska (Hamilton and Obi 

1982), and Svalbard (Orvin 1944; Svensson 1971; Ahman 1973; Liestol 1977; 

Yoshikawa 1993; Yoshikawa and Harada 1995). Muller (1959) believed that the 

distribution of pingos was concentrated in a belt where the permafrost was “...still

10



Chapter 2: Literature Review

more or less continuous, but is nevertheless beginning to thin out perceptibly” (pg. 

114). In truth however, open system pingos are most numerous in areas of thin 

permafrost (Holmes et al. 1968; Hughes 1969), and in the continuous permafrost 

zone where postglacial retreat of ice or a fall in relative sea level has allowed 

permafrost to aggrade in unfrozen sediments (e.g. in Svalbard and Greenland).

In the shallow discontinuous permafrost zone of central Alaska and the Yukon 

Territory, Canada, recharge of sub-permafrost groundwater aquifers occurs beneath 

upper slopes where permafrost is thin or absent (Holmes et al. 1968; Hughes 1969) 

(Figure 2.4). Downslope seepage of sub- or intra-permafrost groundwaters takes place 

through permeable, unfrozen, unconsolidated materials or bedrock discontinuities 

(Holmes et al. 1968). Beneath the lower valley-sides, where permafrost is thicker, the 

seepage of sub-permafrost groundwater is confined. This is highly conducive for the 

upward penetration and freezing of intruded groundwater under artesian pressure and, 

where the near-surface hydrogeology and permafrost regime are favourable, can lead 

to the formation of ice-cored, open system pingos (Holmes et al. 1968) (Figure 2.4). 

Groundwaters associated with open system pingo development can also originate 

from other sources however, including subglacial meltwaters from below polythermal 

glaciers (Liestol 1977, 1996) (Figure 2.5) or relatively deep-seated sub-permafrost 

groundwaters (Muller 1959; O’ Brien 1971; Allen et al. 1976; Worsley and Gurney 

1996; Scholz and Baumann 1997). Many studies of open system pingos in the 

continuous permafrost zone have recognised the importance of groundwater 

migration from deep aquifers through faults and other structural discontinuities. The 

close association of pingos and structural features has been recorded in Alaska 

(Holmes et al. 1968; Hamilton and Obi 1982), Greenland (Muller 1959; O’Brien 

1971; Worsley and Gurney 1996; Scholz and Baumann 1997), Svalbard (van 

Autenboer and Loy 1966; Liestol 1977; Yoshikawa and Harada 1995; P^kala and 

Repelewska-P^kalowa 2004), Mongolia (Babinski 1982), and on the Tibetan Plateau 

(Wang and French 1995). Perennial groundwater flows that feed open system pingos 

from intra- or sub-permafrost sources remain unfrozen even under conditions of 

continuous permafrost due to high dissolved salt contents, artesian pressures and high 

flow rates, which all lower the freezing point. Geothermal heating of sub-permafrost 

waters may also play an important role in maintaining groundwater circulation 

through geologically controlled seepage zones in areas of continuous permafrost such

11
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as in Svalbard and Greenland (Liest0l 1977; Worsley and Gurney 1996). 

Groundwater seepage associated with existing, partially collapsed, open system 

pingos commonly forms secondary satellite pingos or other smaller ground-ice 

mounds. This reactivation process has been used to explain the localised clusters of 

mutually interfering pingos in Alaska and eastern Greenland, which contain pingos at 

varying stages of their growth and decay cycle (Mtiller 1959; Holmes et al. 1968; 

Worsley and Gurney 1996).

For open system pingo development to occur, a very finely balanced selection of site- 

specific permafrost conditions and hydrogeological factors are necessary (Muller 

1959; Holmes et al. 1968; Liestol 1977, 1996). There are numerous examples of 

perennial groundwater springs in the permafrost zone (Figure 2.6), which form large 

surface icings in winter, because the artesian pressure is too high or the groundwater 

temperature too warm. Many are observed in close association with open system 

pingos (e.g. Orvin 1944; Muller 1959; Holmes et al. 1968; O’ Brien 1971; Liestol 

1977; Babinski 1982; Yoshikawa and Harada 1995; Worsley and Gurney 1996; 

Scholz and Baumann 1997). Although these pingos consistently discharge 

mineralised groundwater at temperatures above zero, most authors advocate a 

meteoric, rather than juvenile (thermal) origin for the groundwaters.

In contrast to the intensive long-term investigations that have been undertaken on 

closed system pingos (e.g. Mackay 1998), there remains a lack of research on open 

system pingos. This is despite their importance as potential indicators of groundwater 

migration within permafrost and the number of relict landforms that have been 

attributed to this model of formation. Although the locations and distributions of open 

system pingos have been documented throughout the Arctic, surprisingly little is 

known of the origins and internal structures of these landforms. As a result, although 

many ramparted ground-ice depressions in permafrost-free regions have been 

attributed to the open system model, a basic lack of systematic geological and 

hydrogeological investigations of active open system pingos makes such analogies 

tentative. To confidently assign relict landforms to the open system model significant 

future work on active landforms is necessary.
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Figure 2.6: (a) S eep a g e  of saline groundwaters at Innerhytte pingo, Adventdalen, 
Svalbard on the 20th April 2004 (Photo: C. Harris); (b) Surface icing on the south- 
facing flanks of Innerhytte pingo on the 20th April 2004, formed by the freezing of 
saline groundwaters. The point of seep a g e  in Figure 2.6a is located approximately 
at the feet of the person. Sheetflow of water w as observed beneath the icing 
surface however, indicating that the true location ofspringflow w as closer to the top 
of the icing visible in this photograph. The icing w as covered with a deposit of salt, 
which had been expelled from solution during the freezing process.
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2.1.3 Pingos of uncertain origins
Elongate pingo forms, not easily reconcilable with either the closed or open system 

models of pingo formation, have been reported from thick continuous permafrost in 

the Canadian Arctic (Pissart 1967; Pissart and French 1976; French and Dutkiewcz 

1976; French et al. 1982; Zoltai 1983; Gurney and Worsley 1997). Pissart (1967) 

described two types of pingos from Prince Patrick Island, Canada. Despite being 

found in plateau-top locations, the formation of the first type of pingo appeared to be 

determined by geological structures in a manner similar to certain open system 

pingos. A second, elongate type of pingo found in low-lying near-shore areas was 

thought to have formed through permafrost aggradation in superficial estuarine 

sediments exposed by falling relative sea levels. Such a process is partly analogous to 

closed system pingo development. Similar elongate ‘linear’ pingos have been 

observed in inland areas of Banks Island, where their development was thought to be 

the result of permafrost aggradation on taliks exposed by the lateral migration of river 

channels (Pissart and French 1976; French and Dutkiewcz 1976). Other studies, 

however, have suggested that at least some of these pingos, located at distance from 

lake or river channels, may instead be a type of open system pingo, resulting from 

groundwater flow through structurally controlled groundwater pathways (Gurney and 

Worsley 1997).

2.1.4 The internal structure of pingos
The internal structure (ground-ice geometry and physical properties) of pingos and 

other ground-ice mounds can provide key data informing interpretation of the origins 

and growth of these landforms. However, such data are uncommon as the internal 

structure of these landforms is rarely revealed in natural exposure. Despite thirty field 

seasons in the Canadian Arctic, J.R. Mackay only observed thirty collapsing pingos, 

of which only ten had exposures large enough to study (Mackay 1985). Descriptions 

of open system pingo ice have been particularly limited (Muller 1959; Holmes et a l 

1968; O’ Brien 1971; Yoshikawa 1993), most observations of pingo ice having been 

made on closed system pingos (e.g. Muller 1959; Pihlainen et al. 1956; Tamocai and 

Netterville 1976; Pissart and French 1976; Gell 1978; Mackay 1979, 1985, 1990, 

1998; Mackay and Stager 1966; Rampton and Mackay 1971; Walker et a l 1985) or 

pingos of uncertain origin (Pissart 1967; Pissart and French 1976). These studies have
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shown that the concept of the internal structure of pingos simply being composed of a 

clear plano-convex ice core is not always the most appropriate model (Mackay and 

Stager 1966). Many studies have emphasised the importance of segregation ice, as 

well as injection ice, for pingo development, even in medium-grained sands (Muller 

1959, 1962; Mackay and Stager 1966; Mackay 1973, 1977, 1978a, 1979, 1983, 1985, 

1998; Gell 1978; Rampton and Mackay 1971; Tamocai and Netterville 1976; Pissart 

and French 1976).

2.1.5 Pingo decay and collapse

Because the topographic form of a pingo depends mainly on the presence of an 

underlying ice core, melting of this core leads to landform collapse. During pingo 

collapse, processes such as mass wasting, surface wash and deflation result in a net 

transfer of overburden material to the pingo flanks, leading to the development of a 

water-filled depression, surrounded by an annular ring-like ridge or rampart (Figure 

2.7). The majority of work on the collapse of pingos has been conducted on closed 

system pingos (Mackay 1986, 1987, 1988). The basic processes associated with pingo 

decay are common to both types however (Mackay 1986), and information gained 

from the decay of closed system pingos can therefore be used to inform 

understanding of the collapse of open system pingos.

Pingo degradation is generally initiated by the development of radial dilation cracks 

and concentric cracking caused by tensional stresses arising from bending and 

extension of the frozen overburden during pingo growth (Figure 2.2, 2.4 and 2.8) 

(Muller 1959; Holmes et al. 1968; Babinski 1982; Mackay 1987, 1988). Sediment 

cover is also lost due to slumping and solifluction on the steep pingo sides, resulting 

in sediment accumulation around the base of the mound (Babinski 1982; Mackay 

1987, 1988). Rupturing and collapse of overburden at the summit exposes the pingo 

ice-core, which thaws during the summer to form a summit crater (Mackay 1987, 

1988). Meltwater collects within this crater to form a small pond, which further 

accelerates the rate of thaw (Mtiller 1959; Holmes et al. 1968; Babinski 1982). 

Thermal erosion of the surrounding frozen ridge causes lake expansion and the 

intermittent, sometimes seasonal breaching of the central pond, resulting in drainage 

outflow from the enclosed basin (Babinski 1982). Crater lakes (Figure 2.7a), many
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Figure 2.7: (a) Partially collapsed c losed  system  pingo (’Pingo 2 3 ’), M ackenzie 
Delta, Canada, with a central pond en closed  by an ice-cored rampart. External 
diam eter of landform approximately 250  m (Mackay 1986, 1988, 1998) (Photo: 
J.R. Mackay); (b) Open system  pingos in Reindalen, Svalbard, showing various 
sta g es  of decay. From the background to the foreground, th ese  features have  
heights of approximately 42 m, 28 m and 20  m (Photo: H.H. Christiansen).



Dilation cracks

Figure 2.8: Closed system  pingo in the Mackenzie Delta, Canada, showing 
developm ent of radial dilation cracks caused by tensional stresses generated by 
upward growth. The exposed ice core is highly susceptible to summer thaw, which 
is likely to initiate pingo collapse (Photo: C. Harris).
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with perennially flowing groundwater springs and outflow streams, have been 

reported from active pingos in Canada (Pihlainen et a l 1956; Hughes 1969; Mackay 

1988), Greenland (Muller 1959; Cruickshank and Colhoun 1965; O’ Brien 1971), 

Svalbard (Ahman 1973; Liestol 1977; 1996), Mongolia (Babinski 1982) and Alaska 

(Holmes et al. 1968; Hamilton and Obi 1982). Short-lived streamflow events result in 

the development of small-scale outlet channels, associated with small alluvial fans 

around the periphery of the collapsing landform (Mackay 1988). By exposing the ice 

core to thaw or by affecting water pressures in sub-pingo water lenses, peripheral 

normal faulting, diking and associated spring flow can also play important roles in 

closed system pingo decay (Mackay and Stager 1966; Mackay 1987). Outflow of 

groundwater and lateral erosion by adjacent rivers can contribute significantly to the 

degradation of open system pingos (Muller 1959; Babinski 1982), whilst in mid- to 

low-latitudes solar radiation on pingo slopes with southerly aspects, causing rapid 

spring thaw, active layer instability and slumping, is also seen as important (Babinski 

1982).

Once degradation is well advanced, inward movement of thawing sediment from the 

rim is likely, and this sediment may insulate the ice, slowing degradation of the core 

(Mackay 1986). Complete thaw often leaves a pond that is surrounded by a ridge of 

sediment that accumulated around the base of the former landform as a result of mass 

movement and the outward displacement of material (Figure 2.7) (Babinski 1982; 

Mackay 1988). Mature, collapsing or collapsed pingos with ramparts have been 

described from the current permafrost zone (Porsild 1938; Muller 1959; Holmes et a l 

1968; Likens and Johnson 1966; O’ Brien 1971; Mackay 1973, 1979, 1986, 1988; 

French 1975; Babinski 1982; Worsley and Gumey 1996; Gurney and Worsley 1997), 

but there have been few studies monitoring these landforms or investigating their 

internal structures. In relict Pleistocene ramparted depressions (Figure 2.9a), ramparts 

have been described with overturned, deformed, and tilted stratified sediments 

overlain by mass movement deposits showing crude, radially dipping stratification 

(Figures 2.9b, 2.9c). The presence of these structures often provides important 

evidence for an origin related to the decay of ground-ice mounds (e.g. Pissart 1963, 

2000; Bastin et a l 1974; Watson 1975; Pissart and Juvigne 1980; De Gans 1988; van 

der Meulen 1988).
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Figure 2.9: (a) A relict ramparted depression that may mark the former location of a periglacial ground-ice mound developed as a 
result of either groundwater migration (open system pingo) or ice segregation (lithalsa), near Llanpumsaint, Carmarthenshire, 
southwest Wales; (b) Section through the rampart of a landform thought to be the remains of a lithalsa, Konnerzvenn, Belgium. Two 
peat layers of Allerod (layer 9) and Holocene (layer 1) age are drawn in black. Note the deformation of layer 9 (from Pissart and 
Juvigne 1980; and Pissart 2003); (c) Reconstruction of the formation of the rampart in Figure 2.9b, demonstrating the uplift and 
deformation of existing sediments, and the m ass movement of sediments down the flanks of the landform (from Pissart and Juvigne 
1980; and Pissart 2003).
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2.2 Paisas and palsa-like mounds

2.2.1 Paisas, minerogenic paisas and lithalsas

Paisas are low, 1 -7 m high, circular to oval ground-ice mounds, up to several tens of 

metres in diameter, which are found in mires throughout the circumpolar 

discontinuous and sporadic permafrost zones, in areas where winter precipitation is 

low (Zoltai 1972; Zoltai and Tamocai 1975; Seppala 1982, 1988b; Sollid and Sorbel 

1974) (Figure 2.10). Their development is controlled by deeper winter frost 

penetration in areas with thinner snow cover, which leads to differential frost heave 

caused by ice segregation (Svensson 1964a; Wramner 1967; Ahman 1976; Seppala 

1982, 1988b, 1995; Allard et al. 1987). Where paisas develop in thick sequences of 

peat in the sporadic permafrost zone, the thermal conductivity properties of peat play 

an important role in paisa formation. In the autumn and winter, when the surface peat 

is wet and/or frozen, the peat acts as a good thermal conductor, promoting ice 

segregation. In contrast, during the summer when the peat is dry, it has a low thermal 

conductivity and instead acts as an important insulating layer, vital for protecting the 

frozen core from summer thaw (Seppala 1982, 1988b). The peat cover overlying 

paisas in the discontinuous zone however, can be quite thin (0-2.5 m) or may be 

entirely absent (Wramner 1972, 1973; Ahman 1976; Allard et al. 1987; Pissart

2002). The growth of segregation ice in these cases occurs not within peat, but instead 

within a zone of frozen mineral sediment at depth. The “paisa family” of ground-ice 

mounds therefore includes three categories which encompass a continuum of 

landforms (Figure 2.11): 1) paisas, which develop completely in peat (Seppala 1972a, 

1988b; Washburn 1983); 2) minerogenic paisas, the frozen core of which develops in 

mineral sediments but with a superficial cover of peat (e.g. Ahman 1976; Worsley et 

al. 1995; Matthews et al. 1997); and 3) lithalsas, which develop entirely in mineral 

material, and have no peat cover (Wramner 1972, 1973; Harris 1993; Pissart et al. 

1998). “True” paisas decay when erosion of the sides and loss of peat cover from the 

top cause the core to melt and collapse, often forming ponds (Figure 2.10a) that are 

occasionally surrounded by low rim-ridges 0.5-2 m high (Seppala 1988b). Such 

ponds are rapidly infilled by further peat growth however and their preservation 

potential is low (Seppala 1988b; Ballantyne and Harris 1994; Pissart 2002). Due to 

the disturbance and deformation associated with the development of segregation ice
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within mineral sediments however, the collapse of minerogenic paisas and lithalsas 

will more readily produce geomorphological and sedimentological features indicative 

of their former presence.

The distribution of minerogenic paisas and lithalsas is mainly restricted to northern 

Scandinavia (Lundqvist 1953; RuuhijSrvi 1960; Svensson 1964a; Wramner 1967; 

1972, 1973; Ahman 1976; Svensson 1976; LagerbSck and Rodhe 1985; Akerman and 

MalmstrOm 1986; Matthews et al. 1997) and northern Canada (Figure 2.10b) (e.g. 

Harris 1993, 1998; Pissart et al. 1998). A significant number are found in northern 

Quebec, where they occur in fine-grained marine sediments exposed by Late 

Holocene isostatic uplift (Dionne 1978; Payette et al. 1976; Payette and Seguin 1979; 

Lagarec 1976, 1982; Seguin and Allard 1984; Pissart and Gangloff 1984; Allard et al. 

1987, 1996; Worsley et al. 1995). This northern circum-Arctic distribution is a 

function of the requirement for a severe climate with very low summer temperatures 

to preserve the frozen core of the landform from year to year in the absence of a thick 

cover of insulating peat (Ahman 1976; Lagarec 1982; Allard et al. 1987; Pissart 2000, 

2002,2003).

Although the frozen core of minerogenic paisas and lithalsas is normally dominated 

by 1-10 mm thick ice lenses within a sedimentary matrix, thicker lenses and layers of 

massive injection ice up to 50 cm thick have also been recorded (Sollid and Sorbel 

1974; Zoltai and Tamocai 1975; Ahman 1976; Schunke 1983; Brown et al. 1983; 

Allard et al. 1987, 1996; Coultish and Lewkowicz 2003). Concentrations of ice lenses 

or units of massive ice are often found just below the permafrost table and at the base 

of permafrost (Ahman 1976; Lagerback and Rodhe 1986; Akerman and Malmstrom 

1986; Fortier et al. 1991; Sone and Takahashi 1993; An and Allard 1995; Allard et al. 

1996; Delisle et al. 2003). The enrichment of ice at the base of the active layer 

suggests that the heave of these landforms is generated not only by the growth of 

segregation ice at depth, but also by aggradation ice that forms below the active layer 

as a result of downward migration of water during active layer thaw (Allard et al. 

1996; Pissart 2002). Chaotic, faulted sequences of massive sub-horizontal to inclined 

ice lenses and veins, separated by highly distorted units of clay, have recently been 

observed in samples from boreholes drilled through lithalsas in Quebec (Allard and 

Rousseau 1999; Delisle et al. 2003). Although the majority of minerogenic paisas and
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lithalsas are developed within fine-grained, frost-susceptible sediments, originally 

deposited in glaciolacustrine, marine and glacio-marine environments, ice lens 

growth within coarse-grained soils such as marine sands, gravel, till and stony 

glaciomarine diamictons has also been identified (Seguin and Allard 1984; Lagerback 

and Rodhe 1986; Allard et al. 1987; Worsley et al. 1995).

A variety of active permafrost mounds in Scandinavia (Wramner 1973; Lagerback 

and Rodhe 1985, 1986; Akerman and Malmstrom 1986; Meier 1987) that were 

initially interpreted, tentatively, as open system pingos (Lagerback and Rodhe 1985) 

or as transitional forms between pingos and paisas (Lagerback and Rodhe 1986), have 

recently been re-interpreted as lithalsas (Pissart 2000). The internal structure of these 

landforms consists of massive ice cores, segregation ice and alternating layers of ice 

and sediment, (Lagerback and Rodhe 1985, 1986; Akerman and Malmstrom 1986). 

Similar, but actively collapsing, ring-ridged features in northernmost Norway, 

interpreted by Svensson (1969, 1976, 1986) as transitional landforms between paisas 

and pingos, may be a form of collapsing lithalsas, being morphologically very similar 

to collapsing lithalsas in the Hudson Bay area of Quebec.

2.2.2 The decay and collapse of minerogenic paisas and lithalsas

Comparable to observations made on pingos, the development of radial and 

concentric cracks, small-scale landsliding, and solifluction have all been reported 

from minerogenic paisas and lithalsas (Allard et al. 1987; Worsley et al. 1995; 

Matthews et al. 1997; Allard and Rousseau 1999). Their collapse also results in the 

development of thermokarst pools and depressions surrounded by fragmented, arcuate 

and irregular ring-ridge ramparts of mineral sediments (Figure 2.12) that accumulate 

by mass movement of material off the former flanks, and through lateral compression 

of sediment due to the growth of segregation ice (Lagarec 1973; Dionne 1978; Seguin 

and Allard 1984; Pissart and Gangloff 1984; Matthews et al. 1997; Worsley et al. 

1995; Gurney 2001; Pissart 2002). Because of the evidence suggesting lateral 

compression by ice segregation within minerogenic paisas and lithalsas, it has been 

argued that the ramparts of Pleistocene landforms should display very specific 

deformation structures. Theoretically, these can be used to distinguish between 

remnants of lithalsas and pingos (Pissart 2003), although arguably there is a shortage 

of suitable investigations on active pingos and lithalsas to validate this assertion. The
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preservation potential of minerogenic paisas and lithalsas may be reduced because 

younger features commonly disturb older ramparts and depressions when they occur 

in extensive contiguous fields. External processes such as enhanced thaw associated 

with thermokarst ponds and fluvial erosion can also significantly modify the form of 

rim-ridges, resulting in a complex array of ridges and depressions (Matthews et a l 

1997; Worsley et a l 1995).

24



Figure 2.10: (a) Paisa mire, northern Finland, with a number of low, abraded paisa 
mounds in the background and a pond, representing a collapsed paisa, in the 
foreground (Photo: M. Seppala); (b) Minerogenic paisas or lithalsas, M aguse River 
Delta, w est side of Hudson Bay, Nunavut, Canada. Mounds are 40-80 m in 
diameter and 1-2 m high. Developed in medium-grained sand, they are 
surrounded by seasonally flooded vegetation-free stony muds. Prominent radial 
cracks are visible on their surface from the tensional stresses associated with uplift 
and extension of the overburden (Photo: W. W. Shilts).



I Peat jjy'f.j Silt | ^  [ Segregation ice | | Permafrost boundary

Figure 2.11: Classification of paisas and palsa-like mounds: (a) ‘true’ paisa, with 
segregation  ice developm ent entirely in peat; (b) m inerogenic paisa with thin cover  
of peat, and segregation ice developm ent alm ost entirely within mineral 
sedim ents; (c) lithalsa, segregation ice developm ent entirely within mineral 
material (Ahman 1976).

Figure 2.12: Decaying mineral p a isas or lithalsas with central ponds and raised 
rims. T h ese  landforms are developed  in marine silts, and are located 20 km inland 
from the eastern coast of Hudson Bay, near Umiujaq, northern Q uebec, C anada  
(Photo: M. Allard).
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2.3 Ramparted ground-ice depressions of northwest Europe

2.3.1 Ramparted ground-ice depressions of the Hautes Fagnes 
Plateau, Belgium

Enclosed depressions surrounded by annular ring ridges or ramparts found throughout 

northwest Europe have been interpreted as remnant landforms marking the former 

locations of Late Pleistocene ground-ice mounds (De Gans 1988; Pissart 2000; 2003). 

The classic site on mainland Europe where these Pleistocene ramparted depressions 

were first described in detail is the Hautes Fagnes Plateau, Belgium, where enclosed, 

peat-filled depressions, surrounded by distinct ramparts, are widespread. The 

ramparts are commonly less than 1 m high, but some reach a height of 5 m (Pissart 

2000, 2003), and the thickness of the basin infill varies between 1 and 7.5 m, with 

diameters of up to several hundreds of metres. These features were first interpreted as 

the remains of Younger Dryas open system pingos (Pissart 1956, 1965), with the 

dating based on radiocarbon ages, tephra and pollen stratigraphy (Mullenders and 

Gullentops 1969; Bastin et al. 1974; Pissart and Juvigne 1980; Juvigne 1983; Pissart 

1983, 2000, 2003). The impermeable nature of the local geology and the absence of 

an obvious aquifer to supply groundwater later led Pissart to reconsider this 

interpretation however (Pissart 1965, 1974, 1976; Pissart et al. 1972, 1975). Pissart 

concluded that segregation ice rather than injection ice was responsible for the 

development of these landforms, and they were subsequently reinterpreted as the 

remains of lithalsas rather than open system pingos. This was consistent with the 

density of the ramparted depressions on the Plateau, which is much greater than the 

recognised density of closed or open system pingos, and with structural evidence 

from rampart sections which suggested that lateral displacement (as well as slumping) 

of material had occurred during rampart formation (Figures 2.9b, 2.9c) (Bastin et al 

1974; Pissart and Juvigne 1980; Pissart 1974, 1983, 2000). Investigations of active 

and collapsing lithalsas in Quebec provided further evidence supporting this 

reinterpretation (Gangloff and Pissart 1983; Pissart and Gangloff 1984; Pissart 1983, 

2000, 2003). Pissart later used similar lines of evidence to argue that ramparted 

depressions in Scandinavia (Rapp and Rudberg 1960; Svensson 1964b, 1976; Seppala 

1972b), and the British Isles (Pissart 1963; Watson 1971; Mitchell 1971, 1973; 

Sparks et al. 1972), previously interpreted as the remains of open system pingos, or as
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transitional forms between pingos and paisas (Svensson 1976), should be 

reinterpreted as relict lithalsas (Pissart and Gangloff 1984; Pissart 2000, 2003). This 

reinterpretation has received strong support from UK-based researchers (Worsley et 

al. 1995; Gurney 1994, 1995; Gurney and Worsley 1996; Matthews et al. 1997).

2.3.2 Ramparted ground-ice depressions in the British Isles

Ramparted ground-ice depressions of Pleistocene age have been identified at 

numerous localities throughout the British Isles (Figure 2.13). Several wide-ranging 

reviews describing the research history and distribution of these landforms have 

already been presented (Bryant and Carpenter 1987; Coxon and O’Callaghan 1987; 

Ballantyne and Harris 1994; Gurney 2000; Harris 2002; Ross et al. 2005a). To avoid 

repeating the content of these reviews, the following section will focus only on key 

sites that have been interpreted as relict lithalsas and which have direct relevance to 

the current research project. Detailed information on sites investigated during this 

research project (e.g. Cledlyn and Cletwr valley) can be found in the relevant site 

investigation chapters (Chapters 4-9).

The first ramparted depressions in the British Isles interpreted as the remnants of 

ground-ice mounds are those near Llangurig in mid-Wales (Figure 2.13) (Pissart 

1963). Here, peat-filled depressions, up to 5 m deep and 42-120 m wide, surrounded 

by distinct ramparts, are located at the bottom of a wide valley at 275-305 m OD 

(Pissart 1963; Gurney 1994). Based on their slope-foot locations and on pollen 

analysis of their basin-fill, these landforms were originally interpreted as open system 

pingos, which formed in shallow, discontinuous permafrost during the Younger 

Dryas (Pissart 1963; Trotman 1963a; Ballantyne and Harris 1994). Post-depositional 

deformation of sand and gravel in the rampart of one feature was attributed to the 

lateral thrust of expanding ground ice (Pissart 1963).

Groups of ramparted depressions morphologically similar to those near Llangurig 

were later documented throughout parts of southwest Wales, particularly between the 

Afon Teifi and the Cardigan Bay coast (Watson 1971, 1972; Watson and Watson 

1972, 1974) (Figure 2.14). Based on comparisons with active pingos in central Alaska 

and Canada (Holmes et al. 1968; Hughes 1969), these ramparted depressions were 

originally interpreted as relict open system pingos (Watson 1971, 1972; Watson and
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Figure 2.13: The distribution of groups of ramparted depressions, potentially representing the remains of permafrost ground-ice 
mounds, in Wales, England, the Isles of Man and Ireland: (a) Distribution of ramparted depressions in Wales, England and the Isles of 
Man (from Ballantyne and Harris 1994). (1) Maximum extent of Devensian glaciation; (2) Maximum extent of Pleistocene glaciation; (3) 
Ramparted depressions identified by surface relief; (4) Crop marks indicating possible locations of relict permafrost ground-ice mounds; 
(5) Sites of possible closed system  pingos. Note that the distribution of ramparted depressions in Pembrokeshire, as displayed on this 
map, is highly inaccurate (see  R oss etal. 2005a for details). There is also som e uncertainty regarding the interpretation of the landforms 
marked as closed system  pingos; (b) Distribution of ramparted depressions in Ireland (Coxon and O’ Callaghan 1987).
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Watson 1972, 1974). More recently however, the ramparted depressions of the 

Cledlyn and Cletwr valleys, along with those near Llangurig, have been reinterpreted 

as relict lithalsas (Pissart and Gangloff 1984; Gurney 1994, 1995; Gurney and 

Worsley 1996; Pissart 2000, 2003). Although numerous groups of ramparted 

depressions have also been mapped in the valleys surrounding the Cledlyn and Cletwr 

valleys (e.g. Ceri, Grannell and Hirwaun valleys) (Figure 2.14) (Watson 1972; 

Watson and Watson 1974; Bradley 1980; Taylor 1987; Ross et al. 2005a), due to a 

lack of evidence from detailed site investigations, Pissart (2003) was cautious about 

reinterpreting these landforms as lithalsas. Elsewhere in Wales, three groups of 

ramparted depressions marked on Watson and Watson’s (1974) distribution map 

(Figure 2.14) are located at Ffald-y-brennin, north of Llansadwm (Cors Farlais), and 

around Llanpumsaint and Pontarsais (Bowen 1974, 1999; Ross et al. 2005a). In north 

Wales, ramparted depressions have been reported from Bwlch Derwin and Clipau on 

Llyn (Figure 2.13a), where depressions enclosed by 0.1-2.75 m high ramparts are 

found (Watson 1977; Moore 1980; Rogers 1998a, 1998b; Ross et al. 2005a).

Ramparted depressions have also been documented from a variety of sites in England 

(Bryant and Carpenter 1987; Ballantyne and Harris 1994; Gurney 2000). The most 

important sites however are those at Owlbury in Shropshire (Gurney and Worsley 

1996), and at Walton Common in Norfolk (Sparks et al. 1972). In the Camlad valley 

near Owlbury, just east of the Wales-Shropshire border, eight circular hollows, with 

diameters ranging between 40 m and 105 m, enclosed by low ramparts, are developed 

in fine-grained, glacio-lacustrine deposits (Watson 1977; Gurney and Worsley 1996). 

These landforms have been interpreted as collapsed lithalsas, on the basis of the 

highly frost-susceptible host sediment (Gurney and Worsley 1996). The “strong 

morphological and sedimentological parallels” (Gurney and Worsley 1996) between 

the landforms at Owlbury and those in Wales has been used as supporting evidence 

for the reinterpretation of the ramparted depressions near Llangurig and in the 

Cledlyn and Cletwr valleys as lithalsas, rather than open system pingos (Gurney 

1995; Gurney and Worsley 1996).

Ramparted depressions at Walton Common, Norfolk, beyond the maximum limits of 

the Devensian glaciation, are developed along springlines determined by the structure 

of the underlying permeable chalk (Worssam and Taylor 1969; Sparks et al. 1972).
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Although they are restricted to footslope locations favourable for the seepage of 

subsurface groundwater under artesian pressure (and therefore open system pingo 

development under conditions of shallow discontinuous permafrost), Sparks et al. 

(1972) were not specific about their exact origins, describing them as the remains of 

“ground-ice features” or “ground-ice depressions”, that could be related to the 

transitional forms between pingos and paisas observed in northern Norway (Svensson

1969). It has been suggested that the ramparted depressions at Walton Common could 

represent collapsed frost blisters (French 1979), open system pingos (Worsley 1977), 

or lithalsas (Pissart 2000, 2003).

In Ireland, a large number of depressions attributed to the former presence of ground- 

ice mounds are found south of the glacial limits of the last glaciation (Mitchell 1971, 

1973; Coxon 1986; Coxon and O’ Callaghan 1987) (Figure 2.13b). Originally 

interpreted as the remains of open system pingos, these too have been reinterpreted as 

lithalsa remnants (Pissart 2000, 2003).
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2.4 Bedrock geology of west Wales

Lower Palaeozoic rocks of the Welsh Basin, dating to 400-450 million years ago, 

underlie all the Welsh field sites investigated during the course of this project 

(George 1970) (Figure 2.15). During the Cambrian and early Ordovician a thick 

succession of mudstones and sandstones accumulated in the Welsh Basin under 

shallow marine conditions on a passive continental margin. As the Basin subsided 

during the late Ordovician, the depositional environment changed, and low energy, 

deep-water black mudstones were deposited in water depths of at least several 

hundred metres (George 1970; Waters et al. 1997; Owen 2001). From the late 

Ordovician to the mid Silurian, turbidity currents flowing down submarine slopes 

deposited coarse clastic sediments across the basin floor (Wood and Smith 1959; 

Waters et a l  1997). Although these turbidites are the dominant rock facies, 

representing 90% of the rock succession of the Teifi catchment for example (Waters 

et al. 1997), fine-grained muds and poorly bedded slumped materials were also 

deposited by suspension and underwater landsliding (Waters et al. 1997). This 

depositional environment resulted in the characteristic sequences of interbedded 

mudstones and graded turbidite sandstones (e.g. Aberystwyth Grits) found throughout 

the region (Wood and Smith 1959; George 1970). The lower Teifi valley is 

characterised by late Ordovician sandstone and mudstones, (Dinas Island, Nantmel 

Mudstones, and Yr Allt Formations), that pass eastwards between Llandysul and 

Llanybydder into early Silurian mudstones (Cwmere Formation, the Claerwen Group 

and the Devils Bridge Formation) found northwards to Tregaron (Anketell 1987; 

Waters et al. 1997; Davies et al. 1997, 2003; British Geological Survey 2003; Owen 

2001). Sandstone-rich turbidites of the Rhuddnant Grits and Glanyrafon Formations 

are found further east in the Cambrian Mountains.

From the late Silurian to the mid Devonian, the late Caledonian Acadian Orogeny had 

a marked effect on the sediments within the Welsh Basin, which were pervasively 

deformed (folded, faulted and uplifted) and partially metamorphosed. The major 

geological structures that developed are the regional folds of the Teifi Anticline, the 

Central Wales Syncline and the Towy Anticline (Jones 1912, 1938; George 1970; 

Waters et al. 1997; Davies et al. 1997) (Figure 2.15), but innumerable intermediate- 

and small-scale asymmetrical folds, with steeply dipping fold limbs, are
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superimposed upon these major structures (Craig 1987; Anketell 1987). Regardless of 

scale, these folds are dominated by northeast to southwest and east-northeast to west- 

southwest trends (Figure 2.15) (George 1970; Craig 1987; Anketell 1987; Waters et 

al. 1997). The Ordovician and Silurian rocks are heavily faulted throughout the 

Welsh Basin (Anketell 1987; Craig 1987). The majority of these faults trend along 

two main orientations, northeast to southwest and north-northeast to south-southwest 

(Anketell 1987), but mapping along the coast has also revealed some minor faults 

between Aberporth and Newquay that are transverse to the regional northeast to 

southwest tectonic structure (Craig 1987). Although the Acadian Orogeny was mainly 

responsible for the majority of southwest-northeast trending faults and folds within 

the Lower Palaeozoic sequence (Craig 1987; Anketell 1987; Waters et a l 1997), 

tectonic movements associated with structures in the pre-Caledonian basement also 

caused faulting and folding that occurred contemporaneously with sedimentary 

accumulation (Cave and Hains 1986; Fitches and Woodcock 1987). Reactivation of 

major faults also occurred during post-Caledonian extension (Craig 1987).
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2.5 Quaternary Geology

2.5.1 The Devensian glaciation of south and west Wales
The aim of this section is to provide background information on the late Quaternary 

palaeoenvironments of south Wales. As well as briefly outlining the impact of 

glaciation during the last glacial period (Devensian) and the environmental changes 

that took place during the Lateglacial, detailed information on the glacial deposits and 

Devensian environments of the Teifi valley is also provided. The glacial and 

periglacial history of Wales has been extensively discussed elsewhere (e.g. Campbell 

and Bowen 1989; Ballantyne and Harris 1994; Bowen 2005), and readers looking for 

detailed information concerning these topics are referred to these publications.

2.5.1.1 Devensian ice limits
The South Wales End-Moraine of Charlesworth (1929) defined the maximum extent 

of Devensian ice (then known as the ‘Newer drift’ (Wright 1914)) across south Wales 

(Figure 2.16). From its inception however, the ‘South Wales End-Moraine’ has been 

subject to significant criticism (Jones 1929 in Charlesworth 1929, 1965; Gregory and 

Bowen 1966; Bowen and Gregory 1965; Bowen 1981) and the south Wales ice limit 

has been the most contentious part of the Devensian limit in southern Britain (Clark 

et al. 2004). Despite various attempts by some to propose a more limited glacial cover 

during the last glaciation (Figure 2.16) (e.g. Wirtz 1953; Mitchell 1960, 1972; Synge 

1963, 1964; Watson 1970, 1972), stratigraphical investigations in Gower (Bowen 

1973a, 1973b) and in Pembrokeshire (John 1970a, 1970b) demonstrated that the 

Devensian glacial limits, as defined by Charlesworth (1929) required extensive 

revision in the opposite direction. Inland, between coastal exposures, the interpolation 

of the maximum Devensian ice limits was based on the boundary between continuous 

and fragmentary glacial deposits (Bowen 1981, 2005), supported by stratigraphical 

evidence from open cast coalmines in south Wales (Donnelly 1988; Harris and 

Donnelly 1991). The southwards extension of the South Wales End-Moraine was 

particularly pronounced in Carmarthenshire, Cardiganshire and Pembrokeshire 

(Bowen 1970, 1973a, 1973b, 1974), where a continuous formation of glacial deposits 

exists south and west of Charlesworth’s limit (Bowen 1981).
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Based on coastal sections on Gower, Bowen (1970, 1973a, 1973b 1974, 1977) 

devised a lithostratigraphic framework for the glaciation of south Wales based on the 

relationships of glacial and periglacial sediments overlying raised beach deposits, 

dated to 8I80  stage 5.5 (Sutcliffe and Currant 1984; Currant et a l 1984). In coastal 

sequences along the western, northern and eastern parts of Gower (e.g. Rhosili Bay, 

Broughton Bay, Langland Bay), glacial tills of Welsh origins overlie the raised beach. 

This stratigraphic relationship is critical, as it clearly demonstrates that the last 

glaciation of the peninsula took place after the last interglacial (8,sO stage 5.5). The 

absence of glacial deposits overlying the raised beach in sequences along the south 

coast of Gower indicates that the southern limit of Devensian ice lay across the 

peninsula. A similar relationship between glacial tills and raised beach deposits was 

also recognised in Pembrokeshire, where sequences incorporating glacial deposits and 

periglacial sediments are found overlying last interglacial raised beaches (John 1970a, 

1970b; Bowen 1977). These sequences demonstrate that the southernmost margin of 

an Irish Sea ice sheet of Devensian age also reached southwest Wales. Minimum 

ages for the Devensian glacial deposits of the Welsh ice sheet are provided by a 

single cosmogenic age of 23.2±2 ka from Arthur’s Stone, Cefn Bryn (Phillips et a l 

1994; Bowen et al. 2002; Bowen 2005) and radiocarbon dating and/or pollen analysis 

of organic material from kettle holes at Llanilid (Walker et al. 2003) and near 

Swansea (Trotman 1963b).

The main accumulation centres of Welsh ice in mid- and south Wales during the 

Devensian glaciation were the Cambrian Mountains, the Brecon Beacons and the 

South Wales Coalfield (Figure 2.17). The ice caps that developed in these upland 

areas dispersed mainly through existing radial valleys (George 1970; Crimes et a l 

1992). Westward draining ice from the Cambrian Mountains flowed through the 

Teifi, Cothi and Towy valley systems, whilst ice from the Brecon Beacons flowed 

south-westward into the Towy, Swansea and Neath valleys, and south-eastwards and 

eastwards through the Usk, Wye, Cynon and Taf (Figure 2.17). Coalfield ice filled 

the southward running Coalfield valleys such as the Rhondda. The Irish Sea glacier, 

which deposited tills and fluvioglacial sediments in southwest Wales, was sourced 

from ice accumulation centres in Scotland and Ireland. Based on these four areas of 

ice accumulation, the glacial deposits of the Devensian period in south Wales have 

now been divided into four formations (Bowen 1999, 2005):
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1) Elenid Formation -glacial deposits of the middle and lower Teifi valley, 

across Carmarthenshire to Gower. These deposits overlie the raised beach at 

Broughton Bay (Campbell 1984; Davies 1988);

2) Brecknockshire Formation -  glacial deposits characterised by distinctive old 

red sandstone content derived from the Brecon Beacons (David 1883; Bowen

1970);

3) Glamorgan Formation - glacial and fluvioglacial deposits containing erratics 

from the South Wales Coalfield (David 1883; Woodland and Evans 1964; 

Bowen 1970; Harris and Wright 1980; Donnelly 1988; Harris and Donnelly 

1991);

4) St Asaph Formation -  Irish Sea glacial and fluvioglacial deposits 

characterised by erratics from Scotland and North Wales, and by marine 

shells (Jehu 1904; Williams 1927; John 1970a; Lear 1986; Davies et al. 

2003).

2.5.1.2 Periglacial and paraglacial conditions
Landforms and sediments in Wales indicative of periglacial conditions have been 

described by numerous studies (e.g. Pissart 1963; Watson 1968, 1970, 1972; 

Crampton and Taylor 1967; John 1973; Saunders 1973; Ballantyne and Harris 1994). 

Although the influence of processes associated with extensive permafrost has not 

been disputed, the belief that prolonged periglacial processes (e.g. solifluction or 

pingo formation) operated throughout the Devensian period under ice-free conditions 

(e.g. Watson 1968, 1970, 1972; Watson and Watson 1967) has been criticised. It is 

now widely accepted that whilst significant modification of the landscape did occur, 

this took place during and after deglaciation, as a result of both periglacial and 

paraglacial processes (Potts 1971; Bowen 1973a, 1973b, 1974, 1977; Cave and Hains 

1986; Campbell and Bowen 1989; Davies et al. 1997; Harris 1998).

2.5.1.3 The Lateglacial period in south Wales
Palaeoenvironmental evidence for the Lateglacial in Wales (Coope and Brophy 1972; 

Campbell and Bowen 1989; Lowe and Lowe 2001; Walker et al. 2001; Walker et al.

2003) suggests that the environmental changes that took place during this period 

broadly follow the rapid and abrupt changes in climate established elsewhere in the 

British Isles following the Last Glacial Maximum (LGM) (Coope 1977; Watson
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1977; Sissons 1979; Atkinson et al. 1987; Gray and Coxon 1991; Ballantyne and 

Harris 1994; Lowe et a l 1995, 1999). By the onset of the Lateglacial Interstadial at 

14,500 cal yrs BP, mean July air temperatures in south Wales were around 20°C 

(Figure 2.18) with winter temperatures between 0°C to -4°C (Walker et al. 2003). 

South Wales would probably have been ice-free at this time (Bowen 2005), although 

buried ice may have persisted under favourable local conditions where it was 

insulated by fine-grained sediments. By 13,100 cal yr BP however, mean July air 

temperatures had declined to 11-12°C, with average winter temperatures of -6.6°C. 

The stepped cooling that occurred during the second half of the Lateglacial 

Interstadial (14,000-12,600 cal yr BP) (Coope 1977; Atkinson et al. 1987; Lowe et al. 

1995; Walker et al. 2003), was followed by a period of very severe climate during the 

Younger Dry as (12,600-11,400 cal yr BP) with mean July air temperatures of 10- 

12°C and winter temperatures ranging between -3°C to -10°C (Walker et al. 2003). 

At this time cirque glaciers returned to the Brecon Beacons, Cadair Idris and 

Snowdonia (Campbell and Bowen 1989), and discontinuous permafrost became 

established even at very low elevations (Watson 1965, 1977; Potts 1971; John 1970a, 

1973; Bowen 1970). At the beginning of the Holocene, at 11,400 cal yr BP, an abrupt 

9°C rise in July temperatures to ca. 20°C, with winter temperatures of between 0°C 

and —1 °C occurred (Walker et al. 2003), and would have resulted in the melting of 

any remaining ice masses and the thaw of permafrost.

2.5.2 The Quaternary geology of the Afon Teifi catchment
Four of the six site investigations in Wales described in this thesis (Cledlyn, Cletwr, 

and Hirwaun valleys, Llanio Fawr) are located within the tributary valleys of the 

Afon Teifi (Figure 2.19). As a result, this section describes the Quaternary geology of 

the Afon Teifi catchment (Figure 2.19) in some detail. However, because there is only 

limited information available on the Quaternary history and superficial geology of the 

areas surrounding the sites at Crychell Moor and Llanpumsaint, this information will 

be described in the introduction to their site investigations (Chapters 6 and 9).

Early descriptions of the glacial geology and geomorphology of the area around 

Cardigan Bay presented significant evidence that the Teifi valley and its surrounding 

areas were glaciated both by ice flowing down the Irish Sea and by Welsh sourced ice 

(Keeping 1882; Reade 1896; Jehu 1904; Williams 1927; Charlesworth 1929; Jones
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1965). Despite systematic mapping of the Teifi valley by D. Q. Bowen and his 

research students (Price 1976; M.S. Parry unpublished 1972-1975; Bowen and Lear 

1982; Lear and Bowen 1984; Lear 1986), the Soil Survey (Bradley 1980) and the 

University of Liverpool (Crimes et al. 1992), the exact relationship between the Late 

Devensian Welsh and Irish Sea glaciers in this area remained very uncertain. 

Although recent mapping by the British Geological Survey, complemented by a 

series of deep boreholes and geophysical investigations, has revealed important new 

information regarding the glaciation of the Teifi valley, precise ice limits for the two 

ice masses still remain difficult to define. (Waters et al. 1997; British Geological 

Survey 1997, 2003; Heaven et al. 1999; Fletcher and Siddle 1998; Carruthers et al. 

1997; Hambrey et al. 2001; Davies et al. 2003; Sheppard 2003; Etienne et al. 2006).

2.5.2.1 Glacial deposits and landforms of the Irish Sea glacier
The distribution and characteristics of Irish Sea till in the Cardigan area have long 

been a source of debate (Keeping 1882; Jehu 1904; Williams 1927; Jones 1965; Lear 

1986; Eyles and McCabe 1989; Waters et al. 1997; Hambrey et al. 2001; Davies et 

al. 2003). Irish Sea till, distinguished from Welsh tills by its erratic content (sourced 

from Scotland and North Wales), calcareous character, abundant derived marine 

microfaunas and shell debris (Jehu 1904; Williams 1927; Hope MacDonald 1961; 

John 1970a; Davies et al. 2003), is found in coastal sections from Llanrhystud, 

Ceredigion, southward to Pembrokeshire. Although Eyles and McCabe (1989) 

interpreted the deposits on the Cardigan Bay coast (e.g. at Abermawr and Aberaeron) 

as subaquaeous debris flow facies and glaciomarine muds, it is now widely believed 

that these sediments are subglacially deposited tills that entrained and reworked 

marine sediments from the floor of the Irish Sea (McCarroll 2001; Hambrey et al. 

2001; McCarroll and Rijsdijk 2003; Etienne et al. 2005). Striations indicate that the 

Irish Sea glacier overrode what is now the present coastline from northwest to 

southeast (Jehu 1904; Hicks 1885; Watson 1968; John 1970a; Hambrey et al. 2001). 

The age of this advance is constrained by Irish Sea till overlying the raised beach 

(6I80  Stage 5.5) at Poppit Sands (Jones 1965; John 1970a; Bowen 1973b, 1977; 

Bowen and Lear 1982; Lear 1986; Campbell and Bowen 1989).

Charlesworth (1929) postulated that as the Irish Sea glacier advanced onshore it 

impounded the drainage of the Cardigan Bay coast, leading to the development of
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pro-glacial ice-dammed lakes in several of the catchments (Lake Teifi, Lake 

Manorwen, Lake Nevem, Lake Aeron, plus numerous smaller lakes including Lake 

Moylgrove and Lake Mydroilyn). Whilst no geological evidence (e.g. shorelines, 

deltas or lake deposits) has been found to support the existence of Lakes Newquay, 

Aberporth, Nevem, Moylgrove, Gwaun, Mydroilyn or Manorwen (Bowen and 

Gregory 1965; Gregory and Bowen 1966; Bowen 1967; John 1970a; Watson 1970), 

abundant evidence for Lake Teifi, originally proposed by O.T. Jones in a series of 

lectures in Aberystwyth in 1928, has been recorded. Laminated clays, first identified 

in a small gravel pit near Llechryd (Jones 1965; Bowen 1967; Lear 1986), are 

widespread throughout the Teifi valley and have been mapped upvalley to Mackwith, 

2 km east of Llandysul, and up to elevations of 130 m OD (Price 1976; Lear 1986; 

British Geological Survey 1997; Waters et al. 1997). Several of the Teifi’s drift- 

plugged pre-glacial meanders have been the subject of geophysical investigations, 

which suggested thick fills of unconsolidated materials (Allen 1960; Francis 1964; 

Nunn and Boztas 1977; Carruthers et al. 1997; Heaven et al. 1999). Recent borehole 

investigations have proved that sequences of structureless and silt-laminated (varved) 

clay and laminated silt up to 75 m thick extend to depths of -37 m OD beneath these 

abandoned meanders and buried valleys (Fletcher and Siddle 1998; Hambrey et al. 

2001; Davies et al. 2003; Etienne et al. 2006). Sand and gravel deposits interpreted as 

possible deltas, with upper surfaces or prominent benches between 120-130 m OD, 

have been identified at Rhuddlan, Llanybydder, Llanwnnen, Pencarreg and Lampeter 

(Charlesworth 1929; Watson 1965, 1970; M.S. Parry unpublished in Bowen 2005; 

Lear 2003), Pentrecwrt (Jones 1965; Lear 2003), Craig Gwtherym (Jones 1965) and 

at Llanllwni (Price 1976) (Figure 2.19). The ‘delta’ at Banc-y-warren, however (Jones 

1965; Helm and Roberts 1975; Fletcher and Siddle 1998), is now widely recognised 

as fluvioglacial outwash or dead-ice deposits (Williams 1927; Mitchell 1960; 

Gregory and Bowen 1966; Allen 1982; Worsley 1984; Lear 1986; Hambrey et al. 

2001; Etienne et al. 2006).

Prior to recent work, the lack of modem systematic mapping by the British 

Geological Survey (BGS) in the area to the north of Carmarthen had prohibited the 

use of the spatial extent of near continuous glacial and fluvioglacial deposits to define 

the extent of Devensian ice. As a result, despite observations of Irish Sea till near 

Llwynduris, in the Teifi valley 4 km northwest of Cenarth (Jones 1965) and in a
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borehole at Henllan (Lear 1986), the extent to which the Irish Sea glacier extended 

into the Teifi valley has not yet been determined accurately. Jones (1965) believed 

that the likely ice margin (Irish Sea and Welsh ice) at the time of the development of 

Lake Teifi ran between Cardigan and Llanybydder, within the northern tributaries of 

the Teifi. This view is supported by recent BGS mapping (British Geological Survey 

1997), which suggests that it is highly unlikely that the northern tributaries of the 

Teifi were ice-free during the existence of Lake Teifi.

Although Irish Sea till is seen to overlie Welsh glacial deposits on the coast at Llan- 

non (Watson 1976; Campbell and Bowen 1989; Harris 2001a), the stratigraphical 

relationship between Irish Sea till and Welsh glacial deposits inland has remained 

obscure. Boreholes drilled by the BGS, however, have demonstrated that Irish Sea till 

overlies the thick sequences of glaciolacustrine sediments in the lower Teifi valley 

(Waters et al. 1997; Fletcher and Siddle 1998; Hambrey et a l 2001; Davies et al. 

2003; Etienne et al. 2005), confirming Charlesworth’s (1929) and Bowen’s (1967) 

suggestions that proglacial deposition in Lake Teifi occurred in front of an advancing 

Irish Sea ice margin. This further complicates mapping of glacial limits as a calving 

margin means that till and erratics could be deposited at localities beyond the ice 

margin from debris within icebergs.

2.5.2.2 Glacial deposits and landforms of the Teifi glacier
Charlesworth (1929) placed the limit of Welsh ice in the Teifi valley at the Tregaron 

moraine (Figure 2.19), based on the absence of any clear evidence for end-moraines 

further downvalley. Jones (1929 in Charlesworth 1929, 1965) however criticised 

Charlesworth’s limit in the upper Teifi valley, referring to the kettle-holes and 

extensive glacial deposits between Llanybydder and the moraine at Tregaron. 

Although Charlesworth (1929) had described extensive sand and gravel deposits 

between Tregaron and Lampeter, these were attributed either to an earlier glaciation, 

or to glacial meltwater streams draining from the ice margin at Tregaron. Although 

Griffiths (1940) described halt stage moraines throughout the Teifi valley from 

Tregaron to Newcastle Emlyn, inferring a more extensive ice limit than Charlesworth, 

these ‘end-moraines’ were later reinterpreted as ice-marginal accumulations against 

downwasting ice (Watson 1970). Glaciofluvial sediments derived from Welsh ice 

dominate the superficial deposits of the middle Teifi valley, particularly between
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Lampeter and Llandysul (Watson 1970; Price 1976; M.S. Parry unpublished in 

Bowen 2005; Waters et al. 1997; British Geological Survey 1997). It is believed that 

significant thicknesses of Welsh tills underlie these sand and gravel sequences 

(Waters et a l 1997). Upstream, the upper Teifi and Dulais valleys between Lampeter 

and Tregaron contain a landsystem of ice-contact landforms and sediments providing 

key evidence for the nature of late Devensian deglaciation (Sheppard 2003). This 

area, briefly described by Charlesworth (1929) and identified as an area with 

significant potential sand and gravel resource (Crimes et a l 1992), is characterised by 

kame terraces, glacio-fluvial outwash sheets, kettle holes and numerous moraine 

complexes (Sheppard 2003).

Based on borehole evidence for till and outwash material at Llangeler (Lear 1986), 

and abundant evidence for Welsh tills throughout the middle Teifi valley between 

Pentrecwrt and Llanybydder (Jones 1965; Price 1976; Bowen 1999), a westward limit 

of Welsh ice has been suggested between Llangeler and Henllan (Figure 2.19) (Lear 

1986). Recent BGS mapping has shown that Welsh ice of Devensian age spread 

across the high ground both to the north and south of the Teifi valley (Waters et a l 

1997). In the Teifi valley, Welsh tills and ice-contact glaciofluvial sands and gravels 

deposited at this time extend as far west as Llandysul, but more extensive spreads of 

tills are found east of Maesycrugiau (Figure 2.19) (Waters et al 1997). Glaciofluvial 

ice-contact deposits suggest that this westward flowing ice extended to the area 

between Henllan and Llandysul, where it overrode and displaced Lake Teifi (Waters 

et a l 1997). This ice is believed to have receded only after drainage of Lake Teifi, 

suggesting that the barrier of Irish Sea ice in the Lower Teifi valley retreated more 

rapidly than the Welsh ice (Waters et a l 1997). It has been suggested that during ice 

wastage temporary dams made of glacial debris and/or stagnating ice may have 

ponded several smaller, temporary lakes upstream of Llandysul (Price 1976; Waters 

et a l 1997; Bowen 2005). If this model is correct, then logically the deltas at 

Llanllwni, Rhuddlan, Llanybydder, Llanwnnen, Pencarreg, and Lampeter (Figure 

2.19) may not have been deposited in Lake Teifi, but may instead be related to the 

development of smaller lakes developed during deglaciation (Waters et al 1997). 

Lake Teifi was perhaps not therefore as extensive as has been suggested by some 

(Charlesworth 1929; Lear 1986; Etienne et a l 2006). A thickness of at least 12 m of 

glaciolacustrine silts and clays has been proved beneath 8 m of glaciofluvial deposits
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in a 20 m deep borehole located on the alluvial plain north of the river at Lampeter 

however (Heaven et al. 1999).
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2.6 Hydrogeology of the Welsh Basin area
Because of the low permeability of the mudstones and fine sandstones of the Silurian 

and Ordovician bedrock, and the fine-grained nature of most of the superficial 

deposits, groundwater potential in the areas underlain by rocks of the Welsh Basin 

(e.g. Ceredigion and northern Carmarthenshire) is limited (Robins et al. 2000; 

Hiscock and Paci 2000). Currently, groundwater throughflow in bedrock is small; the 

baseflow component in the Afon Teifi is mainly derived from local recharge and 

lateral flow direct to the river (Robins et al. 2000). This is because, although 

subordinate units of siltstone and sandstone through which groundwater flow might 

occur are present, these units are thin and the bedrock succession is dominated by 

thick sequences of marine mudstones.

Groundwater flow in the Teifi catchment currently occurs through four main 

pathways. These are: i) within granular superficial deposits (e.g. fluvioglacial 

sediments); ii) through minor, dilated cracks and joints within the shallow, weathered 

and highly permeable upper zone of bedrock (10-20 m thick in many areas); iii) in 

interconnected deep-seated fractures and faults in ‘fresh’ bedrock; and iv) seepage 

along geological boundaries (both at the contact between the Quaternary sediments 

and bedrock, and at boundaries between bedrock formations) (Robins et al. 2000; 

Hiscock and Paci 2000). Unlike areas with similar geological terrains in Ireland and 

southern Scotland, where groundwater is found mainly within Quaternary deposits, in 

west Wales the bedrock is also an important aquifer. This may be because of a thicker 

weathered zone caused either by a longer period of periglacial weathering or as a 

result of less glacial erosion in this area (Robins et al. 2000). Whilst the complexity 

of the Quaternary sequences may inhibit vertical connectivity, it also increases the 

likelihood of confined seepage along contacts between granular and clay-rich 

sediments. There is little reason to believe that during the Late Pleistocene the 

hydrogeology of the area was very much different, although higher groundwater 

pressures would be expected as a result of glacial meltwaters and the presence of 

permafrost.
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3 Research Methods

3.1 Introduction to near-surface geophysics
High-resolution near-surface geophysical techniques are highly effective tools for 

characterising lateral and vertical changes in the physical properties of the terrestrial 

subsurface. Shallow geophysical techniques are widely utilised in engineering, 

environmental and archaeological surveys and for offshore marine studies, but have 

so far had limited use in investigations of terrestrial Quaternary deposits in the British 

Isles, although notable exceptions occur (e.g. Harris et al. 1997; Brabham et al 

1999). Geophysical surveys provide important geological information that would not 

be available using only boreholes and outcrop. As well as being cost-effective and 

rapid techniques to use, a significant advantage of geophysical methods is that most 

techniques are non-invasive and therefore have a low environmental impact, ideal for 

vulnerable sites or sites with conservation designations. Geophysics should be 

perceived as a complementary tool and should be used in conjunction with borehole 

and exposure data. It can also be used to target boreholes and trial pits as well as to 

correlate between them. Ideally, geophysical surveys should integrate a suite of 

complementary methods (e.g. Slater and Reeve 2002; Aaltonen 2003; Comas et al. 

2004; Turesson and Lind 2005).

Geophysical techniques are divided into two categories, those which make passive 

measurements of naturally occurring fields (e.g. gravity, magnetics, self potential 

(SP)) and those which make active physical measurements (e.g. seismics, electrical 

resistivity, electromagnetics, ground penetrating radar (GPR)). No passive 

geophysical techniques were used in surveys undertaken as part of this project. This 

section will briefly outline the techniques and methods used for site investigations in 

Wales (electrical resistivity tomography, seismic refraction, induced polarisation, 

GPR) and in Svalbard (GPR, electrical resistivity tomography).
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3.2 Electrical resistivity tomography

3.2.1 Introduction
Resistivity is a fundamental parameter of materials that describes how effectively a 

material can transmit an electrical current (the flow of free electrons between atoms 

in a material). The difference in electrical energy between two points in a circuit is 

called the potential difference and is measured in volts. By measuring the current and 

the voltage, the resistance (R) of a material can be calculated using Ohm’s law by 

dividing the potential (AV) by the current (I).

* = —  (1)

Resistivity measurements can provide information on the electrical properties of the 

subsurface. In electrical resistivity surveys an electrical current is induced into the 

ground through a pair of metal electrodes (current electrodes) by connection to a DC 

power source (battery). Measurements of the electrical potential (voltage) are then 

made across a second pair of electrodes (potential electrodes) (Figure 3.1a). However, 

as resistivity is the resistance per unit of volume, the resistance must be multiplied by 

an appropriate geometrical factor, dependent on the measurement geometry, to

calculate the apparent resistivity (pa) (Reynolds 1997) (Figure 3.1b).

Current typically flows along arc-shaped paths between two current electrodes. 

Therefore, by increasing the spacing between the electrodes, the depth of 

investigation can also be increased, as the injected current will flow to greater depths. 

However, the increase of electrode spacing results in a loss of near surface 

information, a decrease in resolution with depth (Griffiths and Turnbull 1985) and a 

loss of lateral resolution (Scott et al. 1990). The conductivity (1/p) of the ground also 

modifies the current paths so a standard relationship between path depth and electrode 

spacing cannot be assumed. As the measured potential difference will fall as the 

electrode spacing is increased, there is also a requirement for a larger electrical 

current to get a measurable voltage. The maximum depth is therefore partly 

determined by the size of the current source (battery).
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Traditionally, resistivity surveys have been separated into resistivity sounding and 

resistivity profiling. Vertical electrical soundings (VES) are used to detect changes in 

resistivity with depth. Measurements of apparent resistivity are made by 

progressively increasing the array spacing about a constant centre point and can be 

used to determine resistivity variations with depth below a fixed surface location. A 

significant problem of VES is that of equivalence, where different arrangements of 

layer resistivity and thickness will yield identical sounding curves (Ward 1990; 

Reynolds 1997). Resistivity profiling provides a graph of resistivity versus the 

distance along a profile. By maintaining constant array spacing and moving the whole 

array laterally along a profile, lateral variations in resistivity can be detected and 

measured. The depth of interest determines the array spacing used. There are several 

different configurations of electrodes that can be used for resistivity surveys (e.g. 

Wenner, Schlumberger, Dipole-Dipole, Wenner-Schlumberger) (Figure 3.2). Details 

of the advantages and disadvantages of different array geometries are discussed in 

Ward (1990), Loke (2004b) and Milsom (2002).

Recent advances in data acquisition and geophysical inversion techniques have 

enabled the integration of the sounding and profiling techniques, leading to the 

development of electrical resistivity tomography (Figure 3.3). This has been driven 

by the use of multi-electrode array resistivity systems using multicore cables 

controlled by PC-software controlled switching devices to connect any four 

electrodes to the measuring circuit at one time (Griffiths and Turnbull 1985; van 

Overmeeren and Ritsema 1988), and commercially available two-dimensional 

inversion schemes for data processing (Loke and Barker 1995, 1996a). Because of the 

numerous possible electrode configurations and the automated nature of the 

measurements, many different combinations of current and potential electrodes can 

be used to take measurements. Using roll-up techniques, continuous vertical electrical 

soundings (CVES) are possible (Griffiths and Turnbull 1985; van Overmeeren and 

Ritsema 1988; Dahlin 1996; Aaltonen 2003; Wisen et al. 2005; Turesson and Lind 

2005). These developments have enabled the rapid collection of resistivity 

measurements, using a combination of sounding and profiling techniques, to produce 

contoured “images” (pseudo-sections) of the electrical characteristics of the 

subsurface (Figure 3.4). As these images are distorted by the electrode geometry and 

resistivity variations in the ground it is necessary to process such data using inversion
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modelling packages to create a more geometrically and quantitatively true 

representation of the subsurface (Loke and Barker 1995, 1996a). Processing 

techniques for 3D electrical resistivity surveys have also been developed (Loke and 

Barker 1996b). Tomography surveys have wide ranging applications and can be used 

to map areas of complex geology (Griffiths and Barker 1993). All the electrical 

resistivity surveys for this project were undertaken using tomographic techniques.

3.2.2 Applications

Electrical resistivity was originally used widely for mineral and groundwater 

exploration. Although its use for mapping sand and gravel resources has also been 

documented (Crimes et al. 1994; Auton 1992), the application of the technique in 

Quaternary research has been rather limited. Resistivity has been used to determine 

the internal structure of kettle holes (Thompson 1978), relict pingos (Harris 2001b) 

and the presence of ice wedge casts (Greenhouse and Morgan 1977). Recent 

environmental applications of electrical resistivity tomography are presented by 

Slater and Reeve (2002), Comas et al. (2004) and Turesson and Lind (2005). 

Electrical resistivity techniques have been widely applied for the mapping and 

monitoring of permafrost (Scott et al. 1990), particularly during the ‘Geophysical 

Survey’ work package of the Permafrost and Climate in Europe (PACE) project 

(Vonder Mtihll et al. 2000, 2001, 2002; Hauck and Vonder Mtihll 2003a, 2003b, 

2003c; Hauck 2002; Hauck et al. 2001,2003,2004).

3.2.3 Equipment and data acquisition
The survey details (number of electrodes, electrode spacing, length of line etc.) varied 

at each fieldsite. As a consequence, this section will simply outline the type and 

operational features of the equipment used and the processing techniques applied to 

the field data. More detailed, site-specific information (e.g. electrode spacing, date of 

survey etc.) will be given in the relevant section for each site investigation.

3.2.3.1 Fieldsites in Wales
Electrical resistivity measurements for almost all surveys conducted at field sites in 

Wales were conducted using an IRIS Instruments SYSCAL Junior Switch 72 (Figure 

3.5). The only exception was the original profile at ‘Pingo L’ in the Cledlyn valley for 

which an ABEM SAS 4000 with an ES464 electrode selector was used (Section 7.2).
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Figure 3.5: Electrical resistivity tomography system: (a) IRIS System s SYSCAL Junior Switch 72 resistivity meter; (b) 
Multicore cable, steel electrodes and copper electrode jumpers. This equipment was used for the majority of surveys 
undertaken at field sites in Wales. Photo (b) by P. J. Brabham.
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For surveys conducted in 2004, the IRIS resistivity meter was borrowed from 

Terradat UK, but following the purchase of identical equipment by Cardiff University 

in early 2005, all surveys after this date were conducted using this system. The 

SYSCAL Junior Switch 72 system uses a multi-channel switching unit and data 

logger to control the selection of steel electrodes (up to 72 not using roll-up methods) 

and to record voltage measurements. Current is induced by a 12V DC power supply. 

Electrodes were inserted into the ground at regular spacings, varying between 1 and 5 

m, depending on the resolution and depth of survey required. The multi-core cable 

was connected to the steel electrodes with copper electrode jump leads. 

Measurements were made using Wenner-Schlumberger arrays (Figure 3.3c), with 

multi-combinations of pairs of current and potential electrodes used to take as many 

measurements along as many different paths as possible. Although it has a slightly 

lower signal to noise ratio than a standard Wenner array, the Wenner-Schlumberger 

array provides better horizontal coverage, enhanced sensitivity to vertical and 

horizontal structures, and a greater maximum depth of survey (Loke 2004a, 2004b). 

The protocol file for the Wenner-Schlumberger array was uploaded from a PC to the 

SYSCAL Junior Switch using the Electre II program.

To minimise the effects of electrical noise or poor electrical contact, prior to 

measurement the SYSCAL Junior Switch undertakes a resistance (RS) check to 

assess the quality of ground contact for each electrode. Poor ground contact can occur 

in dry, stony conditions or in areas with a highly resistive substrate (e.g. aeolian 

sands). However, this was not considered a significant problem for the field sites in 

Wales due to the typically saturated, clay- and silt-rich nature of the superficial 

deposits. Where RS check values were above 2 kQm, normally due to direct contact 

with large clasts, attempts were made to improve ground contact by repositioning 

electrodes.

3.2.3.2 Fieldsites in Svalbard
Electrical measurements conducted for investigations in Svalbard used an ABEM 

SAS 300C Terrameter instrument with an ES464 electrode selector (Figure 3.6) 

supplied by the Institute for Geography, University of Oslo. The SAS 300C uses a 

PC-controlled (via the program ERIC) 4 x 64 channel relay-matrix electrode selector 

between the multicore cable and the resistivity meter. All survey lines used 2 cables
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with 20 electrodes takeouts each and electrode spacing of between 4 m and 5 m 

(cable length of 156 m or 195 m), with measurements on the multi-electrode array 

made using the Wenner fast array. This array was used to optimise battery life under 

cold conditions. To avoid the costs of transporting heavy electrodes to Svalbard, steel 

electrodes were custom built on-site in Longyearbyen, Svalbard.

There were surprisingly few practical problems in achieving good ground contact 

with the electrodes in the frozen ground. Warm air temperatures during the period of
tH rrfsurvey (19 to 23 April 2005) and the fine-grained nature of the substrate at all three 

field sites allowed electrodes to be inserted into the ground quite easily. However, 

problems were experienced achieving ground contact where deep snow had drifted on 

the leeward side of pingos and snowpits had to be dug to reach ground level (Figure 

3.7). In some cases electrode contact was not possible where snow depths were in 

excess of 2 m. Unlike the SYSCAL Junior Switch 72 used for surveys in Wales, the 

current induced into the ground with the SAS 300 can be manually altered during the 

course of the surveys. Due to the limited problems with ground contact, the current 

used in the surveys was generally between 10-100 mA. On average three 

measurements of the voltage between electrode pairs were used to calculate the 

average ground resistivity value during surveys.

3.2.4 Processing
The raw data from the surveys in Wales were uploaded from the IRIS SYSCAL 

Junior Switch 72 using the PROSYS program. In PROSYS, the correct array type, 

electrode spacings and topography were assigned to the raw data. The quality of the 

data was assessed using the filtering option before exporting the data as a .dat file for 

processing. Resistivity data collected in Svalbard was imported directly into 

Res2DINV for processing. Processing of the resistivity measurements used 

Res2DINV (Loke and Barker 1995, 1996a; Loke 2004a, 2004b). This program uses a 

2D smoothness constrained inversion algorithm to produce 2D vertical subsurface 

models displaying contoured resistivity values of apparent resistivity. The inversion 

divides the subsurface into a cell-based model of fixed rectangular blocks. During the 

inversion process the resistivity of each cell is varied until the modelled resistivity of 

the blocks that best reproduces the measured apparent resistivity values is determined.
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Figure 3.6: ABEM SAS 300C terrameter resistivity meter with ES464 electrode 
selector used for resistivity surveys in Svalbard. Photo (a) by H.H. Christiansen.

Snow cover > 1 m

Figure 3.7: Examples of ground contact locations for electrodes at Longyear and 
Hytte pingos, Adventdalen. Problems were experienced with placing electrodes on 
the lee side of pingos, where deep snowdrifts had accumulated (b), where snow  
depth w as greater than 1.5 m. Photo (b) by L. Kristensen. Photo (c) by H.H. 
Christiansen.
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The root mean square (RMS) error between the observed resistivity and modelled 

resistivity is used to evaluate the quality of the inversion model.

Prior to the inversion of resistivity data, datasets were evaluated for noisy data points 

caused by random or systematic noise (e.g. the result of bad electrode contacts). Any 

obviously noisy data was removed using the ‘exterminate bad datum points’ function 

in Res2DINV (Loke 2004a). Because of the ‘clean’ nature of the majority of the data 

from surveys in Wales (high signal to noise ratio) a low damping factor was used for 

each inversion (normally the default value of 0.16). Where there was significant 

variability in the near-surface resistivity, the inversion model mesh was refined by 

assigning a finer mesh (half the electrode spacing), creating apparent resistivity 

measurements that were more reliable (Loke 2004a).

The primary problem with the tomographic modelling of electrical resistivity data is 

that the smoothing algorithm results in gradual layer interfaces even if geological 

boundaries are sharp and distinct (Dahlin 1996; Wisen et a l 2005). Because one of 

the principal aims of the resistivity surveys in Wales was to determine the thickness 

of superficial deposits by identifying rockhead, the robust inversion option was 

selected. This method is used where sharp boundaries are expected in the datasets, to 

minimise the smearing effect of the smoothness-constrained least-squares inversion 

method and produce sharp boundary interfaces between geological materials (Loke 

2004a).

All data were adjusted for topographic effects by inputting data derived from EDM 

surveying or from LiDAR datasets supplied by the Environment Agency. The 

topography was incorporated directly into the inversion model using a uniformly 

distorted finite element grid with no damping. This method shifts all the subsurface 

nodes vertically by the same amount as the surface node and is acceptable for 

moderate topographic variation (Loke 2000, 2004a, 2004b).

Because the model with the lowest RMS error is not necessarily the most accurate 

resistivity model, the model at the iteration after which the RMS error did not change 

significantly was chosen, as recommended by Loke (2004a). To enable comparison 

between surveys, all electrical resistivity survey lines from sites in Wales are
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presented using a common contouring scale (user defined logarithmic contour 

intervals: minimum contour value 36.2, user defined contour increase factor 1.23).
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3.3 Induced polarisation

Where geological materials are capable of storing electrical charge they are described 

as capacitors. The induced polarisation (IP) method is used to measure the 

capacitance effect of a given geological material. Measurements of capacitance are 

undertaken with time domain IP instruments, which measure the decay of a voltage 

for a short period after an applied current is switched off (Figure 3.8). The degree to 

which a material is able to store charge by capacitance is known as its chargeability, 

measured in millivolt per volt (mV/V). Mineral deposits (e.g. metal sulphides), 

volcanic tuffs and clays are characterised by high chargeability values. The IRIS 

SYSCAL Junior Switch 72 is able to make IP measurements whilst undertaking 

resistivity measurements. IP is not routinely used in commercial surveys for 

geological surveys (Turesson and Lind 2005). However, because of the clay-rich 

substrate at many of the sites surveyed, time domain chargeability surveys were 

undertaken in addition to the electrical resistivity tomography surveys at fieldsites in 

Wales to assess whether the values of chargeability could be used to distinguish 

between superficial sediments of differing character. Inversion of the IP data was 

undertaken simultaneously with the inversion of the resistivity data in Res2DINV. 

Due to a lower signal to noise ratio, the IP data normally required a greater level of 

editing to remove noisy data points prior to inversion. To enable comparison between 

surveys, all IP survey lines from sites in Wales are presented using a common 

contouring scale (user defined contour intervals: minimum contour value 0, contour 

spacing value 0.6).
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3.4 Seismic refraction

3.4.1 Introduction

Seismic energy is transported by acoustic waves that are refracted and reflected at 

geological interfaces of differing velocity and density in the subsurface. Shallow 

seismic surveys can be divided into refraction and reflection techniques. Seismic 

refraction surveys utilise the refracted waves to determine the seismic velocities 

within geological layers and identify and measure the depth of the top or bottom of a 

layer (refractor), where the velocity of each successive layer increases with depth. As 

a result, the main application of the seismic refraction method in Quaternary research 

has been to calculate the thickness of superficial deposits by establishing the depth to 

rockhead. Seismic reflection surveys can provide more detailed information from 

superficial unconsolidated deposits, but these tend to require more expensive 

equipment, increased survey time and manpower, and complex data processing 

techniques. As a consequence they have not been so widely used in Quaternary 

research. Seismic reflection techniques have not been undertaken during the course of 

the current project and as a result the technique will not be reviewed here. Reviews of 

shallow seismic reflection methods and examples of their application to shallow 

sedimentary environments can be found in Roberts et a l (1992) and Brabham et a l 

(2005).

Seismic waves are often referred to as ‘elastic waves’ because they cause the 

deformation of the material in which they propagate. P-waves (primary or pressure 

waves) are compressional waves that result in dilation and shear of the material. As 

the wave travels through a material, particles oscillate backwards and forwards linear 

to the direction of wave propagation. S-waves (secondary or shear waves) cause shear 

of the material where particles vibrate at right angles to the direction the wave is 

travelling. Energy from a seismic source can also generate surface waves (ground 

roll) known as Rayleigh waves (P-wave ground roll) and Love waves (S-wave ground 

roll). These travel at much slower rates to standard P- and S- waves.

The seismic refraction method conventionally uses compressional (P-) waves, 

although S-wave offer theoretical advantages in shallow Quaternary sediments. The
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internal structures of unconsolidated superficial deposits tend not to be detected using 

seismic refraction as the P-wave velocities of different units are not contrasting 

enough to produce observable refraction events. Because of the usual significant P- 

wave contrast between superficial sediments and rockhead however, this boundary is 

usually recognisable using seismic refraction. Where the bedrock is a weathered 

sedimentary rock, the contrast between the compressional waves of some superficial 

deposits (e.g. till) and bedrock can be small. Velocity contrasts are greater using shear 

waves (S-waves) making it theoretically easier to obtain first arrivals from rockhead 

(Brabham and Goulty 1988). Additionally, S-waves are not affected by water in pore 

spaces and are therefore not affected by the presence of the water table. The 

production, recording and processing of S-waves is however more complex because 

they arrive later than P-waves and for these reasons are not regularly employed.

Seismic refraction is based on the principle that seismic ray paths behave in 

accordance with Snell’s Law. Refraction of a wave occurs at the interface of two 

layers of different velocities. Where a low velocity layer overlies one of higher 

velocity (Figure 3.9a), the wave is refracted along the interface between the two 

layers. This critically refracted wave travels along the boundary of the two layers, at 

the higher propagation velocity of the lower layer, causing oscillating stress which 

results in the production of a wavefront (head wave), which is refracted back towards 

the ground surface through the overlying layer (Figure 3.9a). At a given distance 

along the ground surface, offset from the seismic source, the refracted raypaths that 

travelled at greater velocities through deeper layers (refracted waves) will reach the 

surface faster than the direct wave, which has travelled a shorter distance through 

shallower, lower velocity materials. By measuring, offset from the seismic source, the 

arrival time of the return of energy from the direct and refracted raypaths, the point at 

which the arrival of the refracted wave overtakes the direct wave (cross-over) can be 

measured. By plotting the first breaks on an offset distance vs. time graph, the 

distance from the shot point to the break in the gradient of the velocity graph can be 

defined (Figure 3.9b). By calculating the gradient of the two lineations in the graph 

on either side of the crossover distance, the velocities of the two layers can be 

determined from the direct and refracted waves respectively.
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The refraction method assumes that there is an increase in velocity with depth. If a 

low velocity layer underlies a high velocity layer (velocity inversion) then the wave 

will not be refracted back to the ground surface at the interface of the two layers 

(blind zone problem) (Figure 3.10a). The method also assumes that there is a 

significant velocity contrast between layers, that each successive layer is as thick as, 

or is thicker than the one lying above it, and that the thickness of each layer is greater 

than the wavelength of the seismic wave. If a layer is thinner than the layer above 

then a refraction first arrival will not be observable (hidden layer problem) (Kearey 

and Brooks 1991; Palmer 1981; Lankston 1989) (Figure 3.10b).

The high frequency acoustic energy (>30 Hz) required for seismic surveys at, or near 

the ground-surface, can be generated by explosives, shotgun sources or weight drops 

(sledge hammers, large weights dropped from several metres or an accelerated mass) 

(Brabham et al. 2005). Weight drops tend to be the most rapid and cheapest 

techniques to utilise providing that good quality data with a high signal to noise ratio 

can be collected (Brabham et a l 2005). Seismic records from weight drop sources 

can be stacked to improve the signal to noise ratio. However, as weight drop sources 

are applied on the ground surface, rather than buried like explosive or shotgun 

sources, high frequency seismic energy can be greatly attenuated by soft peat or sand 

using these methods. To provide accurate data of the travel time of the refracted 

waves, the instant of the source shot triggers the seismograph to start recording (± 0.5 

milliseconds).

In terrestrial environments, measurements of the P-wave refracted energy are made 

using vertical geophones, planted into the ground with a long spike. These spikes 

couple with the ground, producing an electrical signal proportional to the velocity, or 

rate of displacement, of ground movement. This electrical signal is recorded by a 

seismograph, which measures the geophone output as a function of time. The data is 

presented as a seismic trace (amplitude vs. time). The number of signals that can be 

recorded by a seismograph is dependent on its number of recording channels 

(normally 24- or 48-channel).
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3.4.2 Equipment and data acquisition

The acquisition of seismic refraction data at all sites utilised a Bison 9000, 24-channel 

seismograph (Figure 3.11). A spread of 24 Geosource 100 Hz geophones were used 

to record the data, at a spacing of 2 m, resulting in refraction lines 46 m in length. The 

seismic source was generated by between five to eight stacked sledgehammer blows 

on a metal plate. Depending on site-specific factors, shot points were located at 

various distances on and off the geophone spread. To determine the depth and dip of 

the refractors, multiple offset shot points were positioned in both forward and reverse 

directions (reversed profile refraction technique) so that multiple shots were recorded 

for each spread. Descriptions of the shot points and site-specific details will be 

presented in the appropriate sections describing the site investigations (e.g. Section 

5.2). Bandpass frequency filters were used whilst recording the data to minimise low 

frequency ground roll and cut out high frequency electrical noise. Some difficulties 

experienced in the recording of data using certain channels (particularly at 

Llanpumsaint and Llanio Fawr) may have been the result of broken geophones or 

problems with the seismograph. However single channels where data was not 

recorded were easily identifiable on the seismograms as noise (Figure 3.12) and did 

not impact significantly on the quality of the data recorded.

3.4.3 Processing

The first arrival times (first negative deflection on the seismogram) for each 

geophone were picked from the seismic field data (Figure 3.12) using the software 

REFLEX (Version 3). The data quality at all the sites was generally very good, with 

sharp, large amplitude arrivals. However, on certain seismograms, where noise made 

the picking of first breaks difficult, the troughs following the first breaks were used to 

estimate the first break. Because the troughs follow the first breaks by a fixed amount 

of time then the values could be corrected to represent first breaks (Lankston 1990). 

First break data were imported into EXCEL and travel-time graphs were produced 

(Figure 3.13a). Direct and refracted events were identified from the travel-time 

graphs and arrivals were assigned to the direct wave and specific refracting horizons. 

Distinct linear segments of differing velocities were recognised from the graphs and 

best-fit lines were produced for each velocity segment by linear regression (Figure 

3.13b).
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Hammer blows on metal plate provide seismic source

Figure 3.11: (a) Seism ic survey setup for seism ic refraction surveys in W ales. The 
seism ic source w as provided by between five to eight stacked sledgeham m er  
blows on a metal plate; (b) Example of geophone used for recording ground 
movement; (c) Bison 9000 24-channel seism ograph. Photo (c) by C. Harris.
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3.4.3.1 Common Receiver Point method
The Common Receiver Point method (Hagedoom 1959) uses the measured time 

taken for the seismic wave to travel from two reversed shot points (A, B) to a given 

geophone (G) and the time taken for the wave to travel from one shot point to the 

other via a refractor (reciprocal time (T a b ))  (Figure 3 .1 4 ) .  Where sufficient coverage 

of overlapping data was recorded and the reciprocal time measured, the Common 

Receiver Point method was used (e.g. Cletwr Shots 1&2, 8&9). Using the calculated 

velocities and the minus and plus times, the depth and morphology of individual 

refractors were calculated using this method. The propagation velocity of each layer 

was calculated using the reciprocal of the gradient of the best-fit line, produced by 

linear regression, of a graph plotting minus time versus distance (Figure 3 .1 5 ) .  The 

velocities that were produced from different pairs of reversed shots were then 

averaged to calculate a value for the given layer. The use of minus time values to 

determine layer velocities is preferred over velocities from linear segments of the 

travel-time graphs as the averaging technique of the minus time calculation takes into 

account the problems caused by a dipping refractor.

Where the reciprocal time (T ab) was not measured directly in the field due to the 

narrow spread of the geophones (e.g. Cletwr 4&5, 6&7), the plus time could not be 

calculated using the standard Common Receiver Point method. In these cases an 

estimated value for the reciprocal time was calculated from the intercept time (T j)  

(Figure 3.16). The intercept time was estimated by extrapolating the best fit line for a 

segment of a travel-time graph, corresponding to the appropriate refractor arrivals, 

back to the point on the time axis that corresponds with the shot point. An estimated 

value of Tab calculated using the intercept time was then used to calculate values of 

the plus time for each geophone, and these estimated plus time values could then be 

used as a substitute, in association with the minus time, to calculate the depth and 

morphology of the refractor (Z) (Figure 3.16).

Because the calculated reciprocal time is an approximation rather than a direct field 

measurement then this method is not as accurate a method to calculate the plus time 

as the standard Common Receiver Point method. Using the intercept time to calculate 

a substitute for a direct measurement of the reciprocal time was therefore used only
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Figure 3.14: Common Receiver Point Method, used to calculate the depth of a 
refractor (G = geophone; V = velocity; T^ = reciprocal time).
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refraction survey, Rhos Llawr Cwrt, Cletwr Fawr valley. This method of calculating 
velocity is more accurate than that calculated in Figure 3.13 where velocity is 
derived from the gradient of the best fit line for each shot.
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The intercept time is the travel-time of the wave from the shotpoint to the refractor and 
back to the shotpoint. Therefore, in the case of the above example, the intercept time 
(TJ can be used as a substitute for the arms of the shaded triangle (1+2).

If:
T “ tag + t bg - t ab

Then:

Tab ~ Tag + Tbg -Tj
Once T*, is estimated using this equation, the plus time and therefore depth of the 
refractor below each geophone can then be calculated (see Figure 3.14).

Figure 3.16: (a) Traveltime graph with best fit lines for Shots 6 and 7 extrapolated 
back to the shotpoints to demonstrate the intercept time for each shot. Data from 
Rhos Llawr Cwrt, Cletwr Fawr valley, (b) Flow the intercept time can be used to 
calculate the reciprocal time (T^) for use  in the Common Receiver Point method.
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when direct measurements of the reciprocal time could not be made in the field (e.g. 

Cletwr Shots 4&5, 6&7).

3.4.3.2 Intercept Time method
Where there was no reversed overlapping coverage to derive the morphology of the 

refractor (e.g. bedrock refractors at Llanio Fawr and Llanpumsaint) and where the 

reciprocal time (critical for the calculation of the plus time) was not measured 

directly, nor could be calculated using the intercept time, the approximate depth to a 

refractor could not be derived using the Common Receiver Point method. As a result, 

the depth of the refractors) was calculated using the intercept time as an approximate 

substitute for the plus time. This method, known as the Intercept Time method 

(Lankston 1989, 1990), requires only the intercept time of the refractor (Ti) and the 

velocities (V) of each layer (Figure 3.17).

Where no overlapping coverage of refractors existed (e.g. Llanio Fawr) the velocity 

of these refractors could not be calculated from the minus time of two reversed shots. 

In these cases the velocity of these layers was derived simply from the average 

velocities of several single shots derived from the reciprocal of the gradient of the 

best-fit lines (from linear regression) for the segment of the traveltime graph for the 

given refractor.

Whilst the Common Receiver Point method can define the morphology of the 

refractor, the Intercept Time method can only produce a single depth for the refractor. 

The Intercept Time method assumes planar and horizontal boundaries, increasing 

velocity with depth and that each layer is sufficiently thick (Lankston 1989). By 

shooting reversed refraction data and averaging the velocities, a dipping refractor 

model can be identified from the two intercept times. However, even with reversed 

data all that can be achieved is a straight line between the two calculated depths 

(Lankston 1989). If the refractor is undulating or its lateral velocity varies then the 

intercept time method will produce a model that oversimplifies the true geology. 

However, as the aim of the seismic refraction investigations undertaken in this project 

was simply to estimate the thickness of superficial geology to calibrate the 

interpretation of the resistivity data, rather than characterise the morphology of 

rockhead, then the use of the Intercept Time method is still valid.
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3.5 Ground penetrating radar

3.5.1 Introduction

Ground penetrating radar (GPR) uses high frequency electro-magnetic pulses (1-1000 

MHz) to detect variations in the dielectric properties of subsurface materials, with the 

potential to provide high-resolution images of the shallow subsurface (0-40 m) (Davis 

and Annan 1989). GPR is based on the measurement of the travel time of a 

transmitted electromagnetic (EM) wave (generated by a transmitter antenna), which is 

reflected from various subsurface interfaces and detected by a receiver antenna, 

producing a reflection (Figure 3.18). Where transmitter antennae are unshielded, 

direct EM waves are transmitted both through the air and through the ground (air and 

ground waves). In the ground the signal is either reflected or scattered by changes in 

the electrical properties (electric permittivity, conductivity and magnetic 

permeability) or absorbed (Davis and Annan 1989). Where significant changes in the 

dielectric properties and velocity occur, as a result of changes in material, 

temperature, moisture and density, part of the wave is reflected back to the surface 

from boundaries between materials of varying electrical properties. The electrical 

properties of unconsolidated Quaternary geological materials are mainly controlled 

by the fresh water content. Changes in water content are important for producing 

radar reflections because the dielectric permittivity (er) of water is much greater than 

most dry geological materials (Davis and Annan 1989). Ideal conditions for GPR 

surveys are resistive sediments and materials such as sands, gravels, peat, limestone 

and ice (Scott et al 1990; Jol and Bristow 2003). These materials are characterised by 

low permittivity, which causes high velocities, and/or low conductivity (high 

resistivity), which results in lower attenuation (Table 3.1). GPR surveys typically 

work poorly in areas of fine-grained sediments (silts and clays) of low resistivity and 

in areas of saline or contaminated groundwater where the radar signal is rapidly 

attenuated, causing limited penetration depths (Table 3.1). As higher frequencies are 

preferentially attenuated to some degree as waves propagate through the earth 

regardless of the material, the return centre frequency of the waves at the receiver is 

always lower than the frequency of the transmitted wave.

78



Direction of survey

Ground
surface

Planar
reflector

Air wave

Ground wave

T =  tra n sm itter  a n te n n a  

R - r e c e iv e r  a n te n n a

Reflected wave

Ground
surface

Planar
reflector

</)c
Q)
E

Arrival of air wave
Arrival of direct wave 
(ground wave)

Arrival of reflected wave

Figure 3.18: Ground penetrating radar data acquisition using the common offset 
profiling setup (adapted from Jol and Bristow 2003, Neal 2004).
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There is a trade off between the range and resolution of GPR surveys (Davis and 

Annan 1989). Attenuation decreases as the frequency is lowered, but at the same time 

vertical resolution also decreases (Davis and Annan 1989; Jol 1995; Smith and Jol 

1995) (Table 3.2). Low frequency antennae (10-50 MHz) have longer wavelengths 

that yield greater penetration depths (Smith and Jol 1995). High frequency antennae 

(400-1000 MHz) have shorter wavelengths that yield high-resolution data but 

shallower penetration depths. Radar systems with centre frequencies of around 100 

MHz provide the best compromise between the depth of penetration, the vertical 

resolution and the portability of the equipment (Davis and Annan 1989). The 

transmitter power is also important, greater output resulting in a greater depth of 

penetration (Jol 1995; Smith and Jol 1995). Where possible, all antennae frequencies 

and transmitter powers should be tested at a site prior to extensive surveys being 

undertaken (Jol 1995; Jol and Bristow 2003).

Reflections are only generated by reflectors where the thickness of the vertical change 

in physical properties is greater than or equal to the wavelength of the radar signal. If 

the wavelength is greater than the thickness of individual beds then individual 

reflections may represent composites of interference from several layers (Vaughan et 

al 1999; van Dam et a l 2003). The greatest vertical resolution that can be 

theoretically expected is lA of the wavelength (Jol and Bristow 2003) although in 

most surveys the vertical resolution is found to be two to three times the theoretical 

value (Schwambom et a l 2002).

If the dielectric permittivity of the materials above a reflector is known, then the two- 

way travel time (TWT) to that reflector can be converted to depth estimates (Scott et 

al 1990; Annan and Cosway 1992). Measurements of the signal velocity in the 

ground can be determined using common midpoint (CMP) surveys or wide-angle 

reflection and refraction (WARR) sounding. Once average velocities have been 

obtained then the TWT can be converted to depth estimates. In CMP surveys the 

transmitter and receiver antennae are first placed at the minimum spacing separation. 

The antennae spacing is gradually increased by moving them apart along a line at 

intervals of 5-10 cm (total separation 10-20 cm) around a centre point (Figure 3.19). 

The direct airwave and ground wave can be observed from this data, followed by 

other reflected and refracted waves (Figure 3.19). By measuring the time move out
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versus the antennae separation for the various wavefronts, the radar propagation 

velocity versus depth can be estimated. The groundwave can be used to calculate the 

velocity of the material.

Table 3.1: Electrical properties of common geologic materials at 80-120 MHz (Davis 
and Annan 1989; Reynolds 1997; Need 2004)

Medium Relative 
dielectric 
permittivity (er)

Electromagnetic 
-wave velocity 
( V) (m/ns)

Conductivity 
(a) (mS/m)

Attenuation 
(a) (dB/m)

Air 1 0.3 0 0
Fresh water 80 0.033 0.5 0.01-0.1
Distilled water 80 0.033 0.01 0.002
Seawater 80 0.01 30,000 1000
Unsaturated sand 2.55-7.5 0.1-0.2 0.01 0.01-0.14
Saturated sand 20-31.6 0.05-0.08 0.1-1 0.03-0.5
Unsaturated sand 
and gravel 3.5-6.5 0.09-0.13 0.007-0.06 0.01-0.1

Saturated sand and 
gravel 15.5-17.5 0.06 0.7-9 0.03-0.5

Unsaturated silt 2.5-5 0.09-0.12 1-100 1-300
Saturated silt 22-30 0.05-0.07 100 1-300
Unsaturated clay 2.5-5 0.09-0.12 2-20 0.28-300
Saturated clay 15-40 0.05-0.07 20-1000 0.28-300
Unsaturated till 7.4-21.1 0.1-0.12 2.5-10 -
Saturated till 24-34 0.1-0.12 2-5 -
Freshwater peat 57-80 0.03-0.06 <40 0.3
Limestone 4-8 0.12 0.5-2 0.4-1
Shales 5-15 0.09 1-100 1-100
Silts 5-30 0.07 1-100 1-100
Clays 5-40 0.06 2-1000 1-300
Granite 4-6 0.13 0.01-1 0.01-1
Dry salt 5-6 0.13 0.01-1 0.01-1
Ice 3-4 0.16 0.01 0.01
Permafrost 1-8 0.106-0.3 - -
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Table 3.2: Theoretical resolutions of GPR surveys for particular sediments and 
antennae frequencies (from Jol and Bristow 2003):

Antenna frequency Lithology
Saturated sand 
(V=  0.06 m/ns)

Damp sand 
(V= 0.1 m/ns)

Dry sand 
(V= 0.15 m/ns)

50 MHz 0.3-0.6 m 0.5-1.0 m 0.75-1.5 m
100 MHz 0.15-0.3 m 0.25-0.50 m 0.375-0.75 m
200 MHz 0.075-0.15 m 0.125-0.25 m 0.1875-0.375

3.5.2 Applications
GPR is now a commonly utilised tool for modem stratigraphic and sedimentary 

investigations, particularly of aeolian sands and fluvioglacial sand and gravel deposits 

(Bristow and Jol 2003a, 2003b; Neal 2004). The method has also had wide 

application in studies of peatland thicknesses and stratigraphy (Warner et al. 1990; 

Theimer et al. 1994; Jol and Smith 1995; Volkel et al. 2001; Slater and Reeve 2002; 

Leopold and Volkel 2003; Comas et al. 2004, 2005) and for glaciological 

investigations (Plewes and Hubbard 2001). GPR is a particularly suitable technique 

for the investigation of frozen ground (Annan and Davis 1976; Davis et al. 1976; 

Dallimore and Davis 1987, 1992). This is because frozen soils are highly resistive as 

porewaters are frozen, minimising signal attenuation. The electrical properties of 

frozen soils indicate that radar signals should be capable of penetrating to depths of 3- 

30 m with more resolution than other techniques (Annan and Davis 1976). Dallimore 

and Davis (1987) demonstrate that under favourable site conditions (ice-rich 

permafrost with high impedances) reflectors at 60 m depth can be detected with 30 

MHz antennae. The resolution of GPR surveys is also enhanced in permafrost. For 

example, a 500 MHz antenna will have a resolution of 24 cm in dense snow, 20 cm in 

ice and less in permafrost (Arcone et al. 1995).

The application of GPR to permafrost research was pioneered by the Geological 

Survey of Canada (Scott et al. 1974; Annan et al. 1975; Davis et al. 1976; Annan and 

Davis 1976; Dallimore and Davis 1987). Since then it has been utilised for a wide 

variety of frozen ground investigations (Vonder Mlihll et al. 2001; Moorman et al. 

2003), including the thickness of the active layer, groundwater and bedrock profiling 

(Arcone et al. 1998), the position of the permafrost table and ice wedges (Hinkel et 

al. 2001), mapping contamination (Pettersson and Nobes 2003), the internal structure
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of rock glaciers (Berthling et al. 2000; Isaksen et al. 2000), paisas and lithalsas 

(Seguin 1986; Doolittle et al. 1992; Horvath 1998; Delisle et a l 2003) and 

thermokarst features (Schwambom et al. 2002). Because of the low electrical 

conductivity of ice, GPR is a particularly useful tool for locating the geological 

contacts between surficial materials and massive, near surface ground-ice bodies 

(Annan and Davis 1976; Davis et al. 1976; Dallimore and Davis 1987, 1992; 

Moorman et al. 2003). The internal structure of closed system pingo-ice has also been 

revealed using GPR (Kovacs and Morey 1985).

GPR surveys in permafrost should always be undertaken when the active layer is 

frozen (Arcone et al. 1998; Hinkel et al. 2001), as near-surface thawed and partially 

thawed layers cause attenuation as a result of high moisture contents (Doolittle et al. 

1992; Horvath 1998). Several surveys in permafrost settings have described problems 

with a highly attenuating surface layer such as clay-rich till (e.g. Davis et al. 1976; 

Annan and Davis 1976; Arcone et al. 1998). However, where these layers are thin, 

reflectors at depths of ca. 30 m have been recorded.

Although frozen materials are generally perceived as beneficial for conducting GPR 

surveys, the presence of small ice lenses can be problematic. These can cause 

scattering of the EM signal and the production of chaotic reflectors and steep sided 

diffractions (Doolittle et al. 1992; Horvath 1998; Hinkel et al. 2001; Moorman et al. 

2003), causing propagation attenuation through scattering losses. Arcone et al. (1998) 

demonstrate that by lowering the frequency of the antennae and thereby increasing 

the signal wavelength, the impact of these intrapermafrost diffractions can be 

minimised and penetration can be improved. Hinkel et al. (2001) and Moorman et al. 

(2003) suggest that the characteristic radar returns from ice lenses provide a radar 

stratigraphic signature that can be used to infer permafrost rich in segregation ice. Ice 

wedges are easily identified from GPR profiles as they produce high-amplitude 

hyperbolic reflections (Hinkel et al. 2001). Despite the advantages that the ice- 

content of permafrost has for the GPR method, GPR signals still attenuate 

significantly in frozen clays and silts (Hoekstra and Delaney 1974; Davis et al. 1976; 

Delaney and Arcone 1984; Arcone and Delaney 1989). Despite being below zero, 

these materials contain unfrozen absorbed water that significantly affects relative 

permittivity (er) (Delaney and Arcone 1984).
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3.5.3 Equipment and data acquisition
GPR was chosen as a suitable geophysical technique for the investigation of the 

internal structures of active open system pingos in Svalbard. The target depths of 

pingo ice-cores are within the potential depth of investigation of GPR and the 

electrical properties (permittivity, conductivity) of the pingo ice would be expected to 

have strongly contrasting electrical properties to the host geological materials, 

thereby enabling the geometry of the pingo ice to be defined.

A Sensors and Software, Pulse EKKO 100 GPR system was utilised for the 

investigations (Figure 3.20). To optimise the conditions for the surveys, fieldwork 

was conducted during April 2004, before thaw of the active layer (Arcone et a l 1998; 

Hinkel et al. 2001). Survey lines were conducted in common-offset reflection 

profiling step mode using unshielded 50 or 100 MHz antennae in a perpendicular 

broadside setup. The use of the step-mode should have resulted in more coherent and 

higher amplitude reflections than would be achieved in a continuous profiling mode, 

as the antennae are stationary, therefore enabling better antennae-ground coupling 

and trace stacking (Neal 2004). Antennae separations of 2 m and 1 m and step sizes 

of 0.5 m and 0.25 m were used in combination with the 50 and 100 MHz antennae 

respectively. These are in accordance with recommendations (Annan and Cosway 

1992; Jol and Bristow 2003), and do not exceed Nyquist sampling intervals. The 

pulser voltage was 400 volts and the time window was 600 ns (100 MHz antennae) or 

860 ns (50 MHz antennae). The traces were stacked 32 times to reduce the signal-to- 

noise ratio. The sampling rate was 1600 ps for surveys conducted at 50 MHz and 800 

ps at 100 MHz. Preliminary CMP surveys were also undertaken using the 100 MHz 

antennae with antennae separations of 10 cm and 20 cm. However, due to operational 

problems with the GPR system no CMP surveys with total separations of greater than 

5.9 m could be performed.

3.5.4 Processing
Following data editing (correction and merging of lines, deletion of traces etc.), the 

GPR survey lines were processed using the REFLEX (Version 3) processing package. 

Processing involved application of the following steps a) move start time (time 

zeroed), b) subtract mean (dewow), c) gain function, d) time cut, e) bandpass 

frequency, f) static correction (topographic adjustment) (Figure 3.21).
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1. Transmitter antenna sends EM waves into the ground

Figure 3.20: Pulse Ekko 100 GPR system used for field surveys in Svalbard (Photo: H. H. Christiansen).
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Figure 3.21: Flow diagram of processing sequence applied to GPR surveys 
conducted for this project.
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The dewow filter applied removed very low-frequency components (‘wow’) of the 

data which were superimposed on higher frequency reflections. The very low 

frequency components are caused by the short period between repeated shots causing 

signal saturation of the receiver from energy input from airwave, groundwave and 

near-surface reflectors. The low frequency signals are caused by inductive 

phenomena or possible instrumentation dynamic range limitations (Annan 1999).

The time gain function was applied to the GPR sections to amplify the radar signal 

amplitude at depth, which falls off with time. In materials of high attenuation, depths 

of only 1 or 2 metres can be penetrated, even with low frequency antennae, due to 

conductivity losses in the sediment (Jol and Bristow 2003). A spherical and 

exponential gain compensation (SEC) was applied to the data to correct for the 

decrease in the signal amplitude at depth/with time. This was preferred over 

automatic gain control (AGC), which calculates the average signal over a time 

window and then amplifies or attenuates the radar signal to equalise all signals. 

Where signals are weak the gain is large and where the signal is strong the gain is 

small or attenuated. Therefore AGC can destroy any information on reflection 

amplitude and amplify both reflections and noise. However, this is not important for 

many sedimentological studies where continuity of reflections is the main aim of the 

surveys. The SEC gain instead attempts to maintain the variation of signal amplitude 

as it propagates downwards, preserving the amplitude fidelity (Annan 1999). This is a 

linearly increasing time gain combined with an exponential increase to compensate 

for spherical spreading losses and exponential dissipation of energy.

A timecut was used to truncate the lower parts of the GPR profiles that contained no 

data as they were below the depth of maximum penetration of the radar signal. To 

reduce random and high frequency noise, a bandpass frequency filter was applied to 

remove low and high frequency bands from the data set. This should improve the 

signal-to-noise ratio and enhance the visibility and lateral continuity of the primary 

reflections. Bandpass frequency filters are deemed better than horizontal running- 

average filters, which emphasise horizontal or gently dipping reflections and remove 

more steeply dipping ones (Neal 2004). Running averages reduce horizontal and 

vertical resolution and can distort or remove important reflections.
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The final step applied to the data was a topographic correction. The topographic data 

were collected using an EDM survey. The static corrections applied to the TWT of 

the GPR profiles were based on this data and on the published velocities of EM 

waves through permafrost and the preliminary velocities estimated from the CMP 

surveys.
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3.6 Sedimentological techniques

3.6.1 Vibro-coring

An Atlas Copco Cobra vibro-coring system was utilised to drill boreholes for 

sedimentological analysis (Figure 3.22). The system uses a two-stroke percussion 

drill that drives an open-window core-barrel, connected via extension rods, into the 

ground. Once the 1 m long core barrel is filled with sediments, the barrel is jacked out 

of the ground by hand using a leverage jacking system. The depth of penetration 

depends on the nature of the substrate, but in silts and clays is generally up to around 

10 m. The vibrocorer technique is normally relatively ineffective in sands and 

gravels. Use of progressively smaller diameter core barrels with increasing depth 

increases the range of the equipment. A 0.5 m long, 95 mm diameter barrel was used 

for the uppermost metre of sediments. At greater depths, 1 m long barrels with 

diameters of either 65 mm or 40 mm were utilised depending on ground conditions. 

The cores were logged in the field through the open windows of the core barrels 

following British Standard 5930 (1999), using a Munsell chart to describe the colour 

of the sediments. Representative disturbed samples were collected in sealable airtight 

plastic sample bags for later laboratory analysis.

3.6.2 Clast fabric analysis
Clast fabric measurements from sections exposed by trenching and trial pitting of 

ramparts of landforms in the Hirwaun and Cledlyn valleys were collected using a 

compass clinometer. Measurements of the dip and orientation of at least 25 clasts 

were measured from each trial pit, whilst trenches were divided into subsamples (e.g. 

2 m wide sections) from which at least 25 clasts could also be measured. The 

presentation and eigenvalue analysis of clast fabric data was undertaken using 

Stereo Win vl.2. The data was plotted (scatter plots and contour diagrams of linear 

data) as lower hemisphere equal area stereonets and contoured using the 1% area 

contour method. The eigenvalues (normalised to 1) and corresponding eigenvectors 

were calculated using a Bingham Axial Distribution statistical analysis and were 

summarised on standard graphs (Dowdeswell and Sharp 1986) and triangular fabric 

shape diagrams (Benn 1994a).
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Figure 3.22: Atlas Copco Cobra vibro-coring system  used to drill boreholes at sites 
in Wales, (a) two-stroke percussion drill in operation; (b) 0.5 m long, 95 mm 
diameter open window core barrel used for the upper 1 m of sediment; (c) 1 m 
long, 40 mm diameter open window core barrel used for drilling to depth. Photo (a) 
by P.J. Brabham.
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3.6.3 Grain-size analysis
Samples were analysed for grain-size properties in the laboratory following British 

Standard 1377 (1990) for dry and wet sieving, using a Sedigraph to analyse the 

fraction <63 pm. The minimum sample size analysed was, where possible, >100 g for 

sand or smaller and >200 g for fine gravel. Samples were oven dried at 60°C for 24 

hours, unless they had a significant clay content, in which case they were air dried for 

1 week. Dried samples were disaggregated using a rubber bung and mortar.

500 ml of water and 25 ml of Calgon dispersant were added to a large sub-sample 

(where possible at least >100 grams) of sediment. This mixture was allowed to stand 

for at least 1 hour before being washed through a 2 mm and 63 pm sieve. Material 

from both sieves was collected into an evaporating dish and dried in the oven 

overnight at 100°C before being sieved through a standard nest of sieves on a 

mechanical sieve shaker. The fraction retained on each sieve was weighed and 

cumulative percentage passing curves were plotted in EXCEL for the fraction > 63 

pm.

A small subsample (<20 grams) of the original dried and disaggregated material was 

dispersed in Calgon and washed through a 63 pm sieve. The washings were collected 

in a tray and then dried in an oven at 100°C. This dried fraction was disaggregated 

using a rubber bung and mortar. Two grams of this disaggregated sediment was added 

to 40 ml of Calgon and passed through a sedigraph. This data was then combined 

with the analysis of the fraction >63 pm to plot a cumulative percentage passing 

curve for the entire sample in EXCEL.
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3.7 Topographical surveying

At sites where high-resolution LiDAR data were not available, site surveys, utilising 

a Topcon EDM theodolite, target prism and the triangulation of ground stations 

(including borehole locations), were undertaken to produce digital terrain models of 

the landforms under investigation and the surrounding topography. Accuracy is 

estimated to within ± 50 mm, limited by repeatability in target location rather than 

instrument error. The EDM surveys and the locations of boreholes, trenches, trial pits 

and geophysical surveys were georeferenced using a handheld Garmin GPS system 

(nominal accuracy ± 10 m).
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3.8 Geographical information systems (GIS) techniques
Identification of sites in Wales was performed throughout the research period using a 

wide array of literature resources in association with the application of several GIS 

techniques (see Ross et al. 2005a for more details). The most important for remote 

confirmation of sites identified from the literature was the Countryside Council for 

Wales Getmapping© aerial photographic resource for Wales. The entire resource, 

north of a west-east line between 169000.200000 and 305000.200000, was examined 

through the ERMapper interface software. As well as confirming the positions of 

several sites recorded in the published literature, new sites were also discovered (e.g. 

near Bodowen). The selection of sites for geological investigation was undertaken 

through a programme of preliminary field surveys during summer 2003 (Ross et al. 

2005a).

Geomorphological mapping of sites was performed using Getmapping© aerial 

photography in Arc View Version 3.2, supplemented by stereoscopic aerial 

photography resources provided by the Central Register of Air Photography for 

Wales (National Assembly for Wales) and by LiDAR digital terrain data provided to 

the project by the Environment Agency. Field mapping of landforms was not possible 

over such a large area due to financial constraints and access difficulties, so remotely 

sensed mapping was not ground truthed, as recommended even for sites with LiDAR 

coverage (Smith et al. 2006). Nevertheless, confidence in the mapping of those sites 

with LiDAR data is high given the high-resolution nature of this datasets, the use of 

which has been recommended as a base map for high-resolution geomorphological 

mapping and for evaluating the accuracy of field mapping (Smith et al. 2006).

Mapping was also supported by lower-resolution digital terrain model datasets. 

NEXTMap digital terrain data was supplied from the British Geological Survey 

(BGS) for areas within the Cardiff University-BGS collaborative project 2K03E024. 

Where sites were beyond the boundaries o f interest for this project (e.g Crychell 

Moor), Ordnance Survey products (OS Panorama® and OS Profile®) were used to 

provide coarse-resolution digital terrain model data (Table 3.3). The Ordnance Survey 

historical map derived datasets perform extremely poorly for the visualisation of even 

large-scale glacial landforms (Smith et al. 2006), but do provide a representation of
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the general context of the large-scale geomorphology. Geomorphological maps were 

produced in ArcView Version 3.2 using the Ordnance Survey LANDLINE 1:10,000 

dataset as a base layer. ‘Raw’ digital terrain model data were presented as shaded 

relief images in SURFER©.

Table 3.3: Horizontal and vertical resolution of digital terrain model (DTM) datasets 
used in this project (From Smith et a l 2006).

Digital Terrain Model Nominal horizontal 
resolution (m)

Relative vertical 
accuracy (m)

LiDAR 2 0.25
NEXTMap 5 1
OS Panorama ® 50 5
OS Profile <D 10 5
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4 Hirwaun Valley 

4.1 Introduction
Numerous linear ridges, interspersed with occasional enclosed circular forms, are 

located across the upper Afon Hirwaun valley at altitudes of 110-130 m OD (Figures 

4.1, 4.2 and 4.3). Originally interpreted as relict open system pingos by Watson 

(1972), these landforms were first mapped by Bradley (1980). The site is located 4.5 

km inland of the village of Aberporth and 7 km east of the extensive glaciofluvial 

sand and gravel deposits at Banc-y-warren and Penparc (Williams 1927; Helm and 

Roberts 1975; Allen 1982; Etienne et al. 2006).

Calcareous Irish Sea till of the St Asaph Formation (Bowen 1999, 2005), deposited 

by the Irish Sea glacier and containing erratic clasts from Scotland and Llyn, north 

Wales, is found along the Cardigan Bay coast southwards from Llanrhystud into 

Pembrokeshire, and inland within the upper reaches of the northern tributary valleys 

of the Lower Teifi (e.g. Hirwaun and Ceri valleys) (Williams 1927; Waters et al. 

1997; British Geological Survey 1997). Although primary fabrics within this deposit 

are frequently disturbed by post-depositional modification by periglacial processes, 

where undisturbed clast fabrics do occur they indicate an orientation of ice flow from 

north-northwest (315° to 355°N) (Jehu 1904; Watson 1968; John 1970a; Lear 1986; 

Hambrey et al. 2001). At its maximum extent, the Irish Sea glacier obstructed the 

drainage of the lower Teifi valley causing the development of a large ice-dammed 

lake known as Lake Teifi (Charlesworth 1929; Jones 1965; Bowen 1967; Price 1976; 

Bowen and Lear 1982; Lear 1986; Fletcher and Siddle 1998; Hambrey et al. 2001; 

Davies et al. 2003; Etienne et al. 2006). Glaciolacustrine deposits associated with 

Lake Teifi have been mapped in the lower reaches of all the north bank tributaries of 

the lower Teifi, including the Hirwaun valley (Lear 1986), eastwards as far as 

Llandysul (Waters et al. 1997; British Geological Survey 1997). The upper altitudinal 

limit of this proglacial lake is estimated at 120-125 m OD, based on the presence of 

deltas at Llanllwni, Rhuddlan, Pentrecwrt, Llanwnnen, Llanybydder, Pencarreg and 

Lampeter, (Charlesworth 1929; Jones 1965; Watson 1965, 1970; M.S. Parry 

unpublished in Bowen 2005). The landforms in the Hirwaun valley, and less well- 

defined features in the adjacent Ceri valley (Watson 1972), are located at altitudes of
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90-130 m OD. Although originally interpreted as open system pingos (Watson 1972; 

Bradley 1980), it has been alternatively suggested that the Hirwaun valley landforms 

may have formed as a consequence of downwasting of the Irish Sea glacier rather 

than as a result of periglacial processes (Hambrey et al. 2001). If it is the case that 

these landforms have glacial origins then they may have the potential to provide key 

information on the nature of the Irish Sea glacier at the time of its maximum extent 

and during the initial stages of its retreat. Given the altitude of the landforms and the 

distribution of glaciolacustrine deposits in the Hirwaun and adjacent Ceri valley 

(Waters et al. 1997; British Geological Survey 1997), a possible link with Lake Teifi 

must also be considered.

The bedrock geology of the Hirwaun valley is dominated entirely by mudstones of 

the Nantmel Mudstones Formation of Ashgill Series (Ordovician) age (Figure 4.4). A 

prominent west-southwest to east-northeast trending fault has been mapped just to the 

south of the majority of the landforms at the site (Figure 4.4; BGS Sheet 194: 

Llangrannog, unpublished map). A bedrock exposure in small quarries at SN 

28117.48003 and at Fronlas shows that bedrock is at, or near, the surface on the 

valley sides above an altitude of about 135-140 m OD. This is confirmed by the 

distribution of superficial deposits in the valley mapped by the BGS (British 

Geological Survey 1997; Hambrey et al. 2001; BGS Sheet 194: Llangrannog, 

unpublished map).
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Figure 4.1: NEXTMAP digital terrain model (DTM) of the Hirwaun, Ceri and Teifi valleys (© Intermap Technologies 
Area of Figure 4.2 indicated.
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Figure 4.2: Aerial photograph of the Hirwaun valley with the locations of specific landforms and key farms labelled (© 
Getmapping Pic 2006). The Trench and Trial Pit 1 are located at Site A, and Trial Pit 2 at Site B.
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4.2 Site description and survey
The Hirwaun valley site is dominated by elongate, esker-like, sinuous ridges, which 

have a pronounced east-northeast to west-southwest trend (Figures 4.2 and 4.3). Only 

to the northwest of Penlon are circular ridges (diameter 40-75 m) that enclose what 

may have once been peat-filled depressions found. The linear ridges are between 20 

m and 45 m in width, 50-500 m in length, and between 1-4 m in height, whilst the 

spacing between the ridges varies from as little as a few metres to approximately 150 

m. The profile of most of the ridges shows a marked asymmetrical form, with gently 

sloping north-northwest facing sides contrasting with steeply sloping south-southeast 

facing sides. All the landforms are found on the wide, low-lying floor of the Hirwaun 

valley, which appears to be infilled with a thick sequence of superficial sediments. 

None of the ridges extends onto the valley sides, where there is little or no superficial 

cover (British Geological Survey 1997).

A series o f excavations of landforms at two locations in the Hirwaun valley were 

undertaken between the 5th and 7th July 2004. At Site A, one 34 m long, north- 

northwest to south-southeast orientated trench (SN 27618.47384 to SN 27634.47351) 

and one trial pit (SN 27654.47420) were excavated, to a depth of 2 m, through the 

rampart o f a linear landform (Figures 4.5a and 4.6). At Site B, one trial pit (SN 

26976.47485) was excavated, to a depth of 2.3 m, through the crest of an enclosed, 

circular ridge (Figures 4.5b and 4.6c). The sedimentology and internal structure of the 

trench and trial pits were described and logged in the field, with representative 

samples recovered for grain-size analysis. Clast fabrics were determined by 

measuring the plunge and azimuth of >25 large clasts at 2 m intervals along the 

trench. One series of clast fabric measurements was made in trial pit 1, Site A. No 

EDM survey or geophysical investigations were undertaken at this site.

Eigenvectors and eigenvalues (Mark 1973, 1974; Woodcock 1977) were calculated 

for comparison with till fabric data published in the literature (Dowdeswell and Sharp 

1986; Harris 1991a, 1991b; McCarroll 1991; McCarroll and Harris 1992; Hart 1994, 

1995; Campbell and Shakesby 1994; Benn 1994a, 1994b, 1995; Benn and Evans 

1996; Evans et al. 1995; Bennett et al. 1999). Although this technique has been 

criticised (Bennett et al. 1999; Kjaer and Kruger 1997), careful design of clast fabric
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data collection can ensure that results provide useful information on stress history and 

depositional process (Benn 2004). Presentation and eigenvalue analysis of clast fabric 

data was undertaken using StereoWin vl.2 (see Section 3.6.2). Data are presented as 

contoured, equal area projection stereonets (Figure 4.7).
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Figure 4.5: Locations of sedim entological investigations in the Hirwaun valley (a) 
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Figure 4.6: Photographs of landforms in the Hirwaun valley: (a) Distal slope of ridge 
at Site A; Note the asymmetry of the ‘rampart’, with steep , south-facing slopes; (b) 
Trench at Site A, Hirwaun valley; (c) Overview of circular, ramparted landform 
investigated at Fronlas (Site B) in the Hirwaun valley. The peat-filled basin that is 
visible in earlier aerial photographs of the site has been removed as a result of 
agricultural improvement. Location of trial pit apparent to right of photograph; (d) 
View looking w est along a linear ridge at Hirwaun to the w est of Site A.
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4.3 Results of sedimentological investigation

4.3.1 Trench
The trench at Site A was almost entirely dominated by a homogenous, matrix- 

supported, silty clayey diamict containing occasional large (up to cobble size), 

striated, subangular to subrounded clasts o f mudstone and sandstone (Figures 4.7 and 

4.8). This diamict was consolidated and calcareous at depths below the current soil 

profile, reacting strongly with 10% HC1 acid. Evidence for re-precipitation of 

carbonate was apparent at 28.1 m along the trench, where small pedogenic nodules 

were developed. Fragments of shell debris were evident in samples collected from 

17.5 m and 22.8 m along the trench. A >20 cm thick unit of silty, sandy, fine-gravel 

was seen to underlie the diamict at the proximal side of the rampart (30-31 m) but due 

to the limitations o f the excavating equipment the total thickness of this unit could not 

be established. No evidence for glaciotectonism was observed in the section.

The grain-size data highlight the low clast content and homogenous properties of the 

diamicton (Figure 4.9). The diamicton is dominated by fine-grained sediments, with 

clays and silts comprising 55-80% of the total weight. There is little variation 

between the diamict samples analysed for grain-size, the variations in the gravel-sized 

content mainly reflecting the size of the occasional gravel-sized clasts measured. The 

sample from 30.4 m along the trench was taken from the thin unit of poorly sorted, 

silty, sandy, fine-gravel recorded at the base of the trench (Figure 4.7).

Although measurements of clast plunge and azimuth were made at sixteen 2 m 

intervals along the trench (e.g. 0-2 m, 2-4 m, 4-6 m etc.), for simplicity the data have 

been collated into three zones with distinct fabric signatures (0-18 m, 18-24 m and 

24-32 m) (Figures 4.7 and 4.10). The eigenvalues of the summary zones are tabulated 

(Table 4.1), whilst the eigenvalues of the original 2 m spacing data are presented on a 

standard graph (Dowdeswell and Sharp 1986) and as a fabric shape diagram (Benn 

1994a) to display the range of eigenvalues within each summary zone (Figure 4.11).

The first 18 m of the trench (0-18 m) was characterised by a strong unimodal and 

clustered clast fabric (SI = 0.71, S3 = 0.12), with a NNW trend, perpendicular to the
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axis o f the ridge (Figure 4.7, Table 4.1). The fabric shape (the 3D distribution of the 

orientations o f the sampled clasts) (Benn 1994a, Benn 2004) was characterised by 

low isotropy and high elongation (Figure 4.1 lb). The dip of the clasts was relatively 

shallow (78% of clasts dipping less than 40°) (Figure 4.10). The clast fabric 

measurements made beneath the crest of the ridge (18-24 m) differed markedly from 

those between 0-18 m. They had a weaker, more random fabric (SI = 0.49, S3 = 

0.14), with a greater proportion of clasts dipping at greater angles (38% of clasts 

dipping at greater than 40°) (Figure 4.10). However, the principal eigenvector was 

still orientated NNW, perpendicular to the ridge axis (Figure 4.7, Table 4.1). The 

fabric shape showed higher isotropy and lower elongation for clasts between 18-24 m 

(Figure 4.11b). Clast fabrics on the southeast facing side of the ridge were again 

characterised by greater fabric strength (SI = 0.6, S3 = 0.18), shallow dip angles 

(73% dipping at angles less than 30°) and a strong NNW trend, perpendicular to the 

ridge axis (Figure 4.7, Table 4.1). A significant proportion of the clasts between 24- 

32 m do not therefore lie parallel to the southeastwardly dipping slope of the ridge, 

but instead dip to the north-northwest. Clasts measured between 18-24 m showed a 

similar fabric shape to those between 0-18 m, but with a slightly higher degree of 

isotropy and lower degree of elongation (Figure 4.11 b)

Table 4.1: Eigenvalues, eigenvectors and plunge o f clasts from Site A in the Hirwaun 

valley.

SI S3 VI (trend) (°) Plunge (°)

Trench 0-18 m 0.71 0.12 338.2 22.5

Trench 18-24 m 0.49 0.14 333.5 11.2

Trench 24-32 m 0.6 0.18 331.2 0.7

Trial Pit 1 0.66 0.11 316.6 5.3

4.3.2 Trial pits
Trial pit 1 was excavated into the crest of the linear rampart at Site A (Figure 4.5), 

perpendicular to the trench. The trial pit was dominated by the same homogenous 

matrix-supported diamict observed throughout the trench. Clast fabric measurements 

of the matrix-supported diamiction were undertaken and showed a similar fabric to 

those within the trench (Figure 4.12). The clasts had a slightly more northwesterly
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trend (316.6°) compared to the orientation of clasts measured in the trench, but were 

still perpendicular to the ridge axis (Figure 4.12a). The diamicton was characterised 

by high fabric strength (SI = 0.66, S3 = 0.11) and very shallow dip angles (100% less 

than 40°) (Table 4.1, Figures 4.1 la  and 4.12b). The fabric shape was characterised by 

low isotropy and high elongation (Figure 4.1 lb).

A second trial pit, excavated into the rampart of the circular feature at Site B (Fronlas, 

Figure 4.5), again revealed a thick sequence of consolidated, calcareous, matrix- 

supported diamicton (Figure 4.13). Between 48 and 64 cm a thin lens of poorly sorted 

clayey, sandy, rounded gravel was apparent, similar to that found at the base of the 

trench at Site A. No clast fabric measurements were made in this trial pit due a 

scarcity of clasts within the diamict.
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Figure 4.7: Trench section, Hirwaun valley, Site A, with summary of clast fabric data from the Hirwaun valley trench 
section. Results displayed as equal-area projection stereonets.



Figure 4.8: Photographs of sedim ents from the trench section (Site A) in the Hirwaun 
valley: (a&b) Northwards (up-glacier) dipping clasts within calcareous clayey silt 
matrix, near the proximal end of the trench; (c) H om ogenous clayey silt matrix 
typical of trench section (Photo: C. Harris); (d&e) Examples of heavily striated clasts 
sampled from within the clayey silt matrix (black bar is 5 cm long).
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4.4 Interpretation

4.4.1 Plan form and topography

The morphology of most of the linear, parallel ridges in the Hirwaun valley are very 

atypical of the circular, enclosed rim ridges generally believed to be the product of 

the collapse of periglacial ground-ice mounds such as pingos or lithalsas. Although 

linear pingos have been described from the current permafrost zone (e.g. Pissart 1967; 

Pissart and French 1976), the formation of these landforms is usually controlled by 

the refreezing of linear taliks due to the migration of river channels. However, as the 

linear ridges in the Hirwaun valley show a strong preferred alignment transverse to 

the river valley, and pairs of ridges do not enclose linear basins, these landforms 

cannot be the remains of these linear ground-ice mounds. In fact, the ‘washboard’ 

appearance of most o f the closely spaced ridges (Figures 4.2 and 4.3) is clearly 

inconsistent with any landforms produced by the growth of ground-ice in current 

permafrost environments.

The only circular ridges in the Hirwaun valley that have morphological similarities to 

the ramparted depressions characteristic of ground-ice mound collapse are the 

landforms to the northwest of Penlon (Site B) (Figure 4.2). However, even these 

circular landforms do not enclose deep central hollows indicative of ground-ice 

development. Although different in plan form, the circular forms have morphological 

characteristics (ridge height and width) that are directly comparable to the adjacent 

linear landforms. As a result, it is likely that all the ridges in the Hirwaun valley are 

the result of a common mechanism of formation.

4.4.2 Sedimentology
The calcareous, fine-grained diamict recorded from all excavations in the Hirwaun 

valley is interpreted as Irish Sea till. This till was deposited by the Late Devensian 

Irish Sea glacier that in this area flowed southwards over the current coastline into the 

upper reaches of the Hirwaun valley. The strong clast fabric and highly consolidated 

nature of the diamicton, as well as the presence of heavily striated clasts, suggest that 

this deposit was transported subglacially before deposition at the ice-bed interface. 

The eigenvalues of the majority of the trench (high SI, low S3) are characteristic of
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meltout tills, undeformed lodgement tills, or deformation tills (Dowdeswell and Sharp 

1986; Bennett et a l  1999). The low angle dips of the clasts and the strong clustering 

are not consistent with a glaciomarine model of deposition, as ice-rafted diamictons 

have elongate clasts with dips in excess of 45° and isotropic fabrics with no 

relationship to the direction of ice flow (Domack and Lawson 1985). Furthermore, the 

altitude of the till (ca. 130 m OD) is inconsistent with deposition in a glaciomarine 

setting. The evidence from the Hirwaun valley is therefore consistent with the 

prevailing model o f terrestrial subglacial deposition in southwest Wales (McCarroll 

2001; Hambrey et a l  2001; McCarroll and Rijsdijk 2003). In the artificial exposures 

created in this investigation, the till displays no evidence of post-depositional 

disturbance. There is no evidence for reworking through periglacial or paraglacial 

slope processes or ground-ice development. As a result, it is believed that the ridges 

in the Hirwaun valley are primary landforms that developed contemporaneously with 

till deposition. These landforms therefore have subglacial, rather than periglacial (e.g. 

from the collapse o f open system pingos), origins.

Tills, deposited by the Irish Sea glacier are found at various sites along the Cardigan 

Bay coast from Pembrokeshire to Llanrhystud (e.g. Traeth-y-Mwnt, Newquay, 

Aberaeron, Llan-non) (Jehu 1904; Williams 1927; John 1970a; Watson 1970; Bowen 

1974; Campbell and Bowen 1989). The clast fabric data from the Hirwaun valley 

demonstrates a strong consistent fabric with a marked north-northwesterly (upglacier) 

dip, characteristic o f basal tills (Dowdeswell and Sharp 1986; Bennett et al. 1999). 

This orientation is consistent with clast fabric measurements made from Irish Sea till 

and with striae recordings in the vicinity of Cardigan and from coastal sites around 

Cardigan Bay that indicate that the Irish Sea ice mass flowed onshore from a north to 

northwesterly direction (Jehu 1904; Watson 1968; John 1970a; Lear 1986; Hambrey 

et a l 2001; Hiemstra et a l  2005). The clast fabrics reported by Hambrey et a l (2001) 

from massive diamictons near Cardigan and at Gwbert display weak or girdle fabrics 

(SI eigenvalues between 0.507 to 0.661), compared to the stronger range of fabrics 

recorded from 0-18 m and 24-32 m in the trench in the Hirwaun valley (Figure 

4.1 la). Based on the evidence for foreign erratics and broken shells, these diamictons 

were interpreted as subglacial tills derived from the Irish Sea. Hambrey et a l (2001) 

argue that the primary fabric has been modified by cryoturbation, resulting in the 

absence of a strong fabric, but that there is a weakly developed northwest to southeast
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orientation (VI = 315-343°). This is consistent with the orientation of the clasts in the 

Hirwaun valley and with striae at Gwbert (Hambrey et a l  2001). In the western end 

of the buried Nawmor meander o f the Teifi at Cenarth, east of the mouth of the Afon 

Hirwaun, Lear (1986) recorded a NNW trending (355°) clast fabric from a fine

grained (63% clay), highly calcareous, Irish Sea till, indicating ice flow from north to 

south. Lear (1986) also identified a second ice flow direction however, with ice 

flowing west to east up the Teifi valley.

At Traeth-y-Mwnt on the Cardigan Bay coast, 8 km northwest of the Hirwaun valley 

site (Figure 4.1), a matrix-supported, clast-poor, grey, clayey, Irish Sea till, rich in 

shell debris and with a low clast content is found (Williams 1927; Campbell and 

Bowen 1989; Rijsdijk 2001). Deformation structures at Mwnt, previously interpreted 

as the result of glaciotectonic deformation (Campbell and Bowen 1989) or 

glaciomarine subaqueous deposition (Eyles and McCabe 1989), have now been re

interpreted as the result of post-depositional density-driven vertical deformation of 

flow tills originally deposited by stagnant, debris-rich ice or in a small proglacially 

ponded lake (Rijsdijk 2001; Hambrey et a l 2001; McCarroll and Rijsdijk 2003; 

Hiemstra et a l  2005). Clast fabric data collected from this site is randomly 

distributed, reflecting post-depositional modification of clast fabric. As a result, the 

dataset from Mwnt cannot be utilised for regional studies of the direction of ice flow 

and to inform the interpretation of the Hirwaun site as they represent a complex, 

highly localised depositional environment possibly controlled by palaeoslopes and 

sediment density. The physical properties of the till at Mwnt therefore differ 

significantly from the till in the Hirwaun valley. In contrast to the low density till at 

Mwnt, the Hirwaun valley till was not subject to any post depositional modification, 

its sedimentary properties reflecting subglacial deposition beneath an actively moving 

warm-based glacier.

Although the structures at Traeth-y-Mwnt are no longer believed to represent 

glaciotectonic deformation, it is widely acknowledged that subglacial deformation of 

Irish Sea till is common at other sites in the southern sector of the Irish Sea basin 

(McCarroll 2001; McCarroll and Rijsdijk 2003). Thrust faults, fractures and shear 

planes within Irish Sea till, interpreted as regional evidence for intensive subglacial 

deformation in the direction of ice flow (Rijsdijk and McCarroll 2001; McCarroll and
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Rijsdijk 2003), have been observed in southwest Wales at Gilfach-yr-Halen, Gwbert, 

Abermawr and Druidston (John 1970a; Campbell and Bowen 1989; Rijsdijk 2000; 

Hambrey et al. 2001; McCarroll and Rijsdijk 2003; Hiemstra et al. 2005; Etienne et 

al. 2005) and on the southeastern coast of Ireland (Rijsdijk et al. 1999; O Cofaigh and 

Evans 2001). Structures associated with glaciotectonic deformation in North Wales 

(Harris 1991a; McCarroll and Harris 1992; McCarroll 1995; Harris et al. 1997; 

Thomas et al. 1998) suggest that terrestrial subglacial conditions were also common 

throughout the southern half of the Irish Sea basin during deglaciation. This is in 

direct contrast to the basin-wide model of deep glaciomarine conditions proposed by 

Eyles and McCabe (1989). Several authors have recently suggested that because of its 

deformable bed of saturated fine-grained marine sediments, the Irish Sea ice mass 

was unstable and highly dynamic, reaching far south into the Celtic Sea during the 

Late Devensian (Scourse and Furze 2001; O Cofaigh and Evans 2001; Hiemstra et al. 

2006).

Deformation of subglacial sediment occurs in response to ice overriding weak, water- 

saturated sediment. High pore-water pressures in unconsolidated sediments 

(determined by the matrix characteristics and water availability) reduce the effective 

normal pressure at the glacier sole, reducing the frictionally-derived resistance of the 

material to the shear stress applied by the ice, enabling flow by ductile shear 

deformation of the water-saturated sediment layer (Boulton and Jones 1979; Boulton 

and Hindmarsh 1987). Because of low basal shear stresses, glaciers on soft deforming 

beds are characterised by low-angled surface profiles (Boulton and Jones 1979; 

Boulton and Hindmarsh 1987). A deformation till (the product of deforming bed 

conditions) implies that at the time of its deposition the base of the glacier was at the 

pressure melting point and underlain by an unfrozen, saturated, soft, easily 

deformable material. The sedimentary end product of pervasive deformation of soft 

sediment is a completely homogenised, usually diamictic, material (Hart and Boulton 

1991; Benn and Evans 1998; Piotrowski et al. 2002). Based on this definition, the 

evidence presented from the Hirwaun valley is entirely consistent with an 

interpretation of the Hirwaun sediments as a homogenised deformation till. However, 

entirely undeformed lodgement tills also share many of the characteristics of highly 

deformed tills and may therefore appear no different (Hart 1994, 1995). Therefore, 

whilst it is easy to identify glaciotectonites, where deformation has not been
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pervasive and which therefore display tectonic structures, the interpretation of 

massive homogenised tills is more difficult, in that may have either undergone 

pervasive deformation, or alternatively no deformation whatsoever.

The clast fabric analysis from the Hirwaun valley cannot be used to assist in the 

identification of the depositional setting of the till (deformation or lodgement). This is 

because although it was originally believed that deformation tills were characterised 

by relatively weak isotropic clast fabrics and that basal meltout, lodgement and 

ploughed tills had strong clustering fabrics with low isotropy (Dowdeswell and Sharp 

1986; Hart 1994, 1995; Benn 1994b, 1995), this has since been shown not to be the 

case (Bennett et al. 1999). The eigenvalue envelopes derived for diffent types of 

glacial deposits overlap significantly and cannot therefore provide a means of 

unambiguous discrimination for sediments o f unknown origins (Bennett et al. 1999). 

Laboratory experiments have suggested that highly strained deformation tills have 

strong fabrics orientated parallel to the flow direction (Hooyer and Iverson 2000). It is 

now suggested that unremoulded basal melt-out tills are actually quite rare and that 

tills with weak fabrics are not deformation tills. As a result there are significant 

problems associated with the use of clast fabric analysis as a technique to help 

discriminate the depositional setting of individual till units.

Many of the physical properties and characteristics (e.g. grain-size, texture, strength) 

of Irish Sea tills in west Wales were determined during primary deposition by marine 

sedimentation prior to cannibalisation by the Irish Sea glacier (McCarroll and Rijsdijk 

2003). This further complicates the interpretation of the Hirwaun valley till, as the 

original sequence of marine muds from which the till was generated was presumably 

rather homogenous making it difficult to recognise evidence for deformation in the 

reworked deposit. Therefore, although the Hirwaun valley till does share many 

physical properties (high strength, subglacially compacted) with Irish Sea till at other 

sites along the Cardigan Bay coast, it does not display any structural evidence for 

glaciotectonism. Elsewhere in Wales, strong clast fabrics with low angle dips similar 

to those in the Hirwaun valley have been reported from other sites where ice masses 

have advanced over fine-grained marine sediments, cannibalising them and 

redepositing them onshore (Harris 1991a, 1991b; McCarroll and Harris 1992;

119



Chapter 4: Hirwaun Valiev

Campbell and Shakesby 1994; McCarroll and Rijsdijk 2003). These have been 

variously interpreted as deformation, basal meltout or lodgement tills.

One of the most important characteristics of the onshore area between the Afon Teifi 

and Cardigan Bay is the juxtaposition between drift-filled valleys, and low hills with 

very little or no superficial cover. Such a setting, compounded by the influence of the 

steep bedrock cliffs, would have had a significant impact on the glaciological and 

hydrological systems of the Irish Sea glacier as it advanced. It is no coincidence that 

the Irish Sea ice advanced further inland where high cliffs are absent (e.g. the mouth 

of the Afon Teifi and the relatively low relief inland of Aberporth). In North America, 

fast flow of the Laurentide Ice Sheet appears to have occurred where the margin 

overrode fine-grained beds such as proglacial lake sediments, but flow was inhibited 

by permeable bedrock (sticky spots) in areas o f discontinuous till (Hicock and 

Dreimanis 1992; Clark 1994). If the Irish Sea ice mass was characterised by rapid 

flow in the current offshore zone, then the discontinuous superficial drift cover of 

southwest Wales, in combination with the influence of the rapidly rising topography, 

would have severely inhibited flow. This may have resulted in a shift from deposition 

primarily by deformation of basal till to deposition by lodgement processes. At Wylfa 

Head, Anglesey, basal till derived from reworking of marine sediments from the Irish 

Sea Basin had very high values of SI (0.79-0.869, average 0.81). The exposures of 

inland deposits on Anglesey may provide a better analogue than the coastal sites 

along the Cardigan Bay coast, as Anglesey provided a significant bedrock obstruction 

to the southward flow of the Irish Sea glacier leading to compressional deformation 

of the ice, increased basal stress and till deposition by lodgement (Harris 1991a, 

1991b).

4.4.3 Model of landform formation
The predominantly unidirectional, shallowly dipping clast fabrics observed in this 

study are entirely inconsistent with the interpretation of these landforms as relict 

ground-ice mounds. The orientation of clast fabrics displays no evidence of 

reworking by mass movement processes or by deformation as a result of ground-ice 

development. Instead, clast fabrics are consistent with regional orientation data from 

glacial deposits and striae, indicating that these fabrics were developed during 

primary deposition at the bed of the Irish Sea glacier as it advanced onshore from

1 2 0



Chapter 4: Hirwaun Valiev

Cardigan Bay. The ridges in the Hirwaun valley must therefore have developed at the 

glacier bed contemporaneously with the deposition of sediments. The sedimentary 

evidence from the Hirwaun valley therefore strongly indicates that these landforms 

are glacially derived, representing a subglacially derived or ice-contact landform.

A complex diversity of landforms has been attributed to development at the 

subglacial bed (Menzies and Shilts 2002). Many can be viewed as part of a subglacial 

landform continuum, with very different landforms having clear spatial relationships 

to each other. Transitions between such bedforms, dependent on sub-ice terrain, ice 

thickness and the rate of ice movement are well documented. Rogen or ribbed 

moraine (Hoppe 1959; Lundqvist 1981, 1989a) are large-scale subglacial diamict 

ridges orientated transverse to the direction of ice flow. They are frequently 

associated with drumlin fields, and tend to be located in the core areas of former ice 

sheets, rarely being found within 200-300 km of the ice margin (Menzies and Shilts 

2002). They are common in areas glaciated by the Laurentide and Fennoscandinavian 

ice sheets during the last Glaciation and are thought to be the result of brittle fracture 

of superficial deposits under an extensional flow regime during the transition from a 

frozen to unfrozen bed during deglaciation (HSttestrand and Kleman 1999). Rogen 

moraines have been identified as an integral component of Irish geomorphology 

(Knight and McCabe 1997; McCabe et a l 1999; Clark and Meehan 2001). Although 

these moraines develop transverse to ice flow they are much larger in scale and less 

elongate (lower length/width ratio) than the landforms in the Hirwaun valley. The 

main line of evidence against a Rogen moraine interpretation however is the 

proximity o f the landforms in the Hirwaun valley to the maximum extent of late 

Devensian ice in west Wales. Rogen moraines are not found in ice-marginal zones 

and must therefore be rejected as a possible analogue for the landforms in the 

Hirwaun valley.

In terms of marginal moraines, however, the ridges in the Hirwaun valley are not 

significant landforms. They are narrow, relatively small in scale (<5 m high) and are 

not visible on digital terrain models derived from NEXTmap datasets. The suggestion 

by Hambrey et al. (2001) that the Hirwaun ridges represent the results of ice wastage 

processes is deemed unlikely given the strong evidence for subglacially formed clast 

fabrics. An ice wastage model for the development of these landforms would require
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an inexplicably high level of englacial debris within the Irish Sea ice mass. Rather, it 

appears that the Irish Sea glacier appears to have deposited fine-grained tills 

cannibalised from shallow marine sediments. The dominance of these tills suggests 

relatively low englacial debris contents, which may be the reason for the subdued 

nature of the ice-marginal landforms in the north-bank tributaries of the Teifi valley. 

The paucity of englacial debris has previously been attributed to the steepness of the 

coastal cliffs, which prevented debris-rich basal ice ffom penetrating inland 

(Charlesworth 1929; Bowen 1981). Given the clear evidence for reworked marine 

sediments in the Hirwaun valley however, this argument is clearly invalid.

The morphology and sedimentological composition of the ridges and their association 

with glaciolacustrine deposits down valley (British Geological Survey 1997) suggests 

that De Geer moraines (also known as “washboard or cross-valley moraines”) might 

be appropriate analogues for the Hirwaun valley ridges. De Geer moraines form at the 

interface between the subglacial and subaquatic environments, close to local 

grounding lines. Sedimentological evidence indicates that De Geer moraines are ice- 

marginal landforms associated with the deformation of sediment at the grounding-line 

and the calving of ice blocks into proglacial water bodies (De Geer 1940; Sollid and 

Carlsson 1984; Larsen et al. 1991; Blake 2000; Linden and Moller 2005). 

Alternatively however, some authors have suggested that they are sub-marginal 

crevasse-fill ridges associated with extensional flow (Hoppe 1957, 1959; Stromberg 

1965; Mickelson and Berkson 1974; Zilliacus 1989; Beaudry and Prichonnet 1991; 

Lundqvist 1981, 1989b, 2000), perhaps associated with fracturing of the ice due to 

seismic activity (De Geer 1940; Lundqvist 2000). De Geer moraines are hundreds of 

metres in length, 10-20 m broad and less than 5 metres high, occurring in swarms or 

clusters perpendicular to ice flow, although they may be winding or anastomosing 

(Lundqvist 1981, 2000; Zilliacus 1989; Blake 2000; Linden and Mdller 2005). They 

usually occupy a low point in the terrain and “ ...commonly occur in fields of closely 

spaced ridges in association with subaqueous sediments, and mark the intermittent 

retreat of water terminating glaciers.” (Benn and Evans 1998, pg 512). They are 

deposited transverse to the direction of ice flow with a slightly arcuate down-ice plan 

form and are asymmetrical in profile, with a steep distal and a lower gradient 

proximal slope (Zilliacus 1989; Menzies and Shilts 2002; Linden and Mdller 2005). 

Although generally associated with former tidewater conditions, De Geer moraines
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associated with ice-dammed lakes have also been reported (Borgstrom 1979). As they 

develop at the interface between the subglacial and subaqueous environment, De Geer 

moraines are characterised by a wide variety of sediments (Mickelson and Berkson 

1974; Zilliacus 1989; Larsen et al. 1991; Beaudry and Prichonnet 1991; Blake 2000; 

Linden and MOller 2005). Extensive evidence for shearing and deformation has been 

reported from some De Geer moraines (Larsen et al. 1991; Blake 2000; Linden and 

MOller 2005).

Clast fabrics within De Geer moraines display strong preferred orientations 

perpendicular to the ridge crest, with the proximal sediments characterised by up-ice 

dips and the distal fabrics dipping down-glacier (Hoppe 1957; Zilliacus 1989; Larsen 

et al. 1991; Blake 2000; Menzies and Shilts 2002; Linden and MOller 2005). This is 

explained by subglacial deposition of sediments on the proximal side of the ridge, up- 

glacier from the grounding-line, and subaqueous sedimentation by sediment gravity 

flows on the distal side, beyond the grounding-line (Blake 2000; Linden and Moller 

2005). Glaciofluvial deposits found within some De Geer moraines (Larsen et al. 

1991; Blake 2000; Linden and M6ller 2005) represent localised outwash fans. Many 

of the characteristics of De Geer moraines listed above are also common to the ridges 

in the Hirwaun valley (ridge dimensions and asymmetry; arcuate down-glacier plan 

form; strong clast fabrics perpendicular to the ridge axis and dipping up-glacier; 

glaciofluvial deposits). As well as explaining the strong NNW orientated clast fabrics 

between 0-18 m and 24-32 m in the trench at Site A (subglacial deposition), the 

interpretation of these landforms as De Geer moraines is consistent with the random 

clast fabrics recorded between 18-24 m. Deposition at a subaquaeous margin is 

characterised by a complex array of processes, including sediment gravity flows and 

glaciofluvial deposition. The random fabric distribution between 18-24 m is therefore 

interpreted as the result o f subquaeous deposition at the ice-margin during northwards 

recession.

The Hirwaun valley landforms, and possibly other ridges present in the adjacent Ceri 

valley (Watson 1972), may therefore represent the geomorphological response of a 

lobe of Irish Sea ice that terminated in Lake Teifi. Their distribution is consistent with 

this hypothesis, as they are found altitudes of 90-130 m OD (Figure 4.14), below the
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Subglacially derived ridges

Figure 4.14: Digital terrain model (DTM) of the Hirwaun valley displaying the relationship of the landforms to the upper limits of 
Lake Teifi (ca. 126 m), and to its associated deposits. Contours at 10 m intervals. Terrain data © Intermap Technologies Inc. 
Distribution of glaciolacustrine deposits after British Geological Survey (1997).
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upper limit of between 125-130 m established for Lake Teifi from the upper surface 

of deltas in the Teifi valley at Llanllwni, Rhuddlan, Pentrecwrt, Llanwnnen, 

Llanybydder, Pencarreg and Lampeter, (Charlesworth 1929; Jones 1965; Watson 

1970; M.S. Parry unpublished in Bowen 2005). The glaciological impacts that the 

development of a large proglacial body of water such as Lake Teifi would have had 

on the advancing Irish Sea glacier have been the subject of little or no previous 

discussion. A water depth of >125 m (accounting for the depth to the base of the 

known glaciolacustrine deposits, Fletcher and Siddle 1998; Hambrey et a l 2001; 

Etienne et al. 2006) probably resulted in the decoupling of the ice mass from its bed 

in the mouth of the Teifi, resulting in significant ablation through calving. De Geer 

moraines however, cannot develop where ice is too thick, or where it is floating, so it 

is likely that the ice thickness in the upper Hirwaun valley was relatively thin and 

water depths relatively shallow (<30 m). Some authors have suggested that De Geer 

moraines form in water depths in excess o f 70-100 m (Lundqvist 2000; Linden and 

Moller 2005). However, moraines with morphological similarities to De Geer 

moraines, and which formed in shallow water depths (25-30 m) have been reported, 

particularly from more mountainous areas in northern Sweden and northern and 

western Norway (e.g. BorgstrOm 1979; Sollid and Carlson 1984; Larsen et a l 1991; 

Blake 2000).

Although the stratigraphic relationship between the Irish Sea till and the deposits 

associated with Lake Teifi has been discovered from boreholes elsewhere in the Teifi 

catchment (Fletcher and Siddle 1998; Hambrey et a l  2001; Etienne et a l 2006), it is 

acknowledged that the stratigraphic contact between the Irish Sea till and the glacio

lacustrine clays has not yet been recognised in the Hirwaun or Ceri valleys. In the 

absence of this relationship, there is as yet no direct evidence that the deposition of 

these ramparted landforms occurred synchronously with the maximum extent of Lake 

Teifi. However, it is believed unlikely that these landforms could have developed in a 

smaller glacially dammed lake in the Hirwaun valley alone, as the distribution of 

continuous (as opposed to fragmentary) glacial deposits does not appear to extend far 

enough east along the Teifi valley (British Geological Survey 1997) to support the 

argument for the Irish Sea glacier having dammed the mouth of the Hirwaun, 

inhibiting drainage. Therefore, if these landforms are De Geer moraines, then they 

probably developed in Lake Teifi. Given the evidence for southward-orientated ice
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flow at Nawmor, near Cenarth (Lear 1986), the Hirwaun valley landforms probably 

developed during the recession of this southward flowing component of the Irish Sea 

glacier. The circular ridges at Fronlas, which have morphologies uncharacteristic of 

the majority of the landforms in the Hirwaun valley, may have formed by the 

downwasting of blocks of ice that became stranded as the ice margin retreated into 

increasingly shallower water conditions in the upper parts of the valley.

If the linear ridges of the Hirwaun valley are not De Geer moraines, then they could 

alternatively represent the arcuate belts o f hummocky topography that can develop at 

the margins o f surging glaciers, particularly where they have advanced over fine

grained marine sediments (Boulton and Paul 1976; Solheim 1986; Boulton et a l 

1996). Terrestrial ice-marginal ridges associated with proglacial squeezing of dilatant 

tills and networks of sub-marginal crevasse-fill ridges are widely associated with the 

stagnation and in situ downwasting of dead ice following glacier surges (Lamplugh 

1911; Sharp 1985, Eyles et al. 1994; Boulton et a l 1996; Evans and Twigg 2002). 

Although an interpretation of the ridges in the Hirwaun valley as crevasse-fill ridges 

is consistent with the model o f a thin surging lobe of ice, with a low-gradient surface 

profile, in the Irish Sea Basin (Boulton and Jones 1979; O Cofaigh and Evans 2001), 

the shallowly dipping, northwards dominated trend of the clast fabrics within the 

Hirwaun valley ridges are not indicative of such landforms (Sharp 1985).
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5 Llanio Fawr

5.1 Introduction
Linear to chaotically orientated ridges, in places enclosing occasional shallow 

depressions, are found near Llanio Fawr in the upper Teifi valley, at a site 2.5 km 

northwest of Llandewi-Brefi, just north o f the rock gorge at the head of the Afon 

Dulais at Cockshead (Figure 5.1). The landforms are developed on a terrace of the 

upper Afon Teifi, where a tributary stream called the Nant Brynmaen joins the main 

channel. The majority of features at this locality have elongate ridges and are almost 

esker-like, with a northeast-southwest orientation (Figures 5.2, 5.3 and 5.4). Although 

most landforms at this site are not characterised by circular ramparts, and deep peat- 

filled depressions have not been identified, these features have been interpreted as the 

remains of open system pingos (Watson and Watson 1974; Sheppard 2003; Etienne et 

al. 2005).

The bedrock geology around the site is dominated by the Devils Bridge Formation, 

which comprises interbedded mudstones and sandstones of mid Llandovery Series 

(early Silurian) age (Figure 5.5). These rocks dominate the upper Teifi valley west of 

the Teifi Escarpment (Davies et al. 1997; British Geological Survey 1994a; BGS 

Sheet 195: Lampeter, unpublished map). North of the majority of the landforms at 

Llanio Fawr (Figure 5.3), rocks belonging to the Cwmystwyth Grits Group 

(Rhuddnant Grits Formation and Blaen Myherin Mudstones Formation) have been 

mapped (Figure 5.5). The rocks of the Cwmystwyth Grits Group are roughly the same 

age as the Devils Bridge Formation (late Llandovery Series, Silurian), and are 

lithologically similar (interbedded mudstones and sandstones). Preliminary mapping 

by the British Geological Survey has not identified any faults or major discontinuities 

near the site (Figure 5.5) (BGS Sheet 195: Lampeter, unpublished map), but this 

could be a result of the poor level of bedrock exposure in the area.

The site is within the late-Devensian limit of the Welsh ice mass (Jones 1965; Lear 

1986, Waters et al. 1997), and the Teifi and Dulais valleys between Tregaron and 

Lampeter are dominated by landforms and sediments deposited by a northeastward 

retreating ice margin. Recessional moraine complexes, large kettle holes (e.g. Pant
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Farm SN 66055.56342, Llyn Pencarreg SN 53729.45599), ice-contact gravels, 

kamiform benches, glaciofluvial outwash sheets and glaciolacustrine basins are 

common (Charlesworth 1929; Jones 1965; Crimes et a l 1992; Sheppard 2003). 

Oscillations of the retreating ice-margin are suggested by evidence for glaciotectonic 

structures, exposed in sand and gravel deposits south of Tregaron (SN 66740.58040) 

(Davies et a l 1997; Sheppard 2003).
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5.2 Site description and survey
The site investigations at Llanio Fawr consisted of two boreholes, one east-west 

resistivity line (265 m in length, 3 x 1 8  electrode cables, 5 m spacing of electrodes) 

and a short reversed P-wave seismic refraction survey (Figure 5.3). Borehole NB1 

(SN 63866.56604, beginning at 140 m from the east end of the resistivity line) was 

drilled through an elongate ridge, whilst Borehole NB2 (SN 63879.56598, at 120 m 

from the east end of the resistivity line), was located in an adjacent depression, at a 

height 1.13 m below, and 14.3 m east of Borehole NB1 (Figure 5.3 and 5.6). 

Problems with the recovery of the drilling equipment prohibited the recording of 

detailed sedimentological information on the superficial sequence beneath depths of 3 

m. Cores were logged in the field through the open windows of the core barrels 

following British Standard 5930 (1999), using a Munsell chart to describe the colour 

of the sediments. Grain-size analysis o f representative disturbed samples was 

undertaken in accordance with British Standard 1377 (1990), using a Sedigraph to 

analyse the fraction <63 pm.

Topographical data necessary to process the resistivity profile were not collected in 

the field, but were instead derived from a LiDAR dataset provided by the 

Environment Agency (Figure 5.3). The locations of the boreholes and the resistivity 

profiles were georeferenced using a handheld GPS system (nominal accuracy ± 1 0  

m). The geophone spread (24 geophones at a spacing of 2 m) for the seismic 

refraction survey corresponded to 140-186 m from the east end of the resistivity line, 

beginning at the western foot of the ridge drilled by Borehole NB1 (Figure 5.3 and

5.6).
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(a)

Figure 5.6: Overview of the Llanio Fawr site demonstrating gently undulating elongate ridges and shallow 
depressions: (a) ridge extending southward from borehole 1; (b) view west from borehole 1 along the resistivity 
and seism ic refraction lines.
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5.3 Results

5.3.1 Sedimentology

The upper 2.5 m of Borehole NB1 was dominated by a sequence of relatively poorly 

sorted, massive sandy fine-gravels with subangular to rounded, platy, elongate and 

disc-shaped clasts up to 6 cm in length (Figures 5.7a, 5.8a and 5.9a). The unit of silty, 

sandy gravel between 1.25-1.6 m was particularly poorly sorted and could be defined 

as a thin unit of diamict (Figure 5.9a). The lower 1.6-3 m of Borehole NB1 was 

characterised by a fining downward sequence, with a thin unit of well-sorted, clast- 

free, gravelly silty sand between 1.9-2 m and a unit of fine sand between 2.55-2.9 m, 

which graded into a thin (0.1 m) unit of laminated sandy silt at the base of the 

borehole (2.9-3 m) (Figures 5.8a and 5.9a). Core retrieval problems terminated the 

borehole at 3 m depth so the thickness of the laminated unit could not be established.

A fining downward sequence was also recovered from Borehole NB2, with 1.4 m of 

poorly sorted, silty, sandy gravel overlying 1.2 m of well-sorted gravelly sand 

(Figures 5.7b and 5.8b, 5.9b). Unfortunately the bottom 0.4 m of the core (2.6-3 m) 

was lost during drilling. The grain-size distribution of the upper 1.4 m of Borehole 

NB2 overlaps the distribution of the diamict unit found between 1.25-1.6 m in 

Borehole NB1 (Figure 5.9). When the boreholes are presented on a common scale, 

adjusted for the height difference between the two boreholes (ca. 1.13 m) (Figure 

5.7c), there is good correlation between the upper contacts of both diamict units in the 

two boreholes. In addition, the contact between the gravel and the underlying sand at 

2.55 m in NB1 correlates with the contact between the diamict unit and the 

underlying gravelly sand at 1.4 m in NB2, although the basal sand in NB1 is much 

finer in grain-size than the respective unit in NB2 (Figure 5.7c and 5.9).

5.3.2 Electrical resistivity tomography
The resistivity profile (Figure 5.10) is characterised by three zones with different 

electrical properties. The near surface has a laterally continuous, highly resistive layer 

(230-2300 Qm) (NB Zone 1) that varies between 2-7.5 m in thickness. A marked and 

relatively abrupt decrease in resistivity with depth is apparent right across the profile 

beneath this upper zone, with a thick, homogenous layer of low resistivity (90-230
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Figure 5.8: Core photographs, Llanio Fawr: (a) Borehole NB1: (i) poorly sorted 
sandy gravels and diamict units (1 -2 m) (left hand core) grading downwards to well 
sorted fine sand (2-2.9 m) (right hand core); (ii) poorly sorted sandy gravel (2- 
2.5m); (iii) well-sorted sand and sandy silt (2.7-3 m); (b) Borehole NB2: (i) poorly 
sorted sandy gravel/diamict (1-2 m) (left hand core) grading downwards into a 
gravelly sand (2-2.6 m) (right hand core); (ii) well sorted gravelly sand (1.5-2 m); 
(iii) well sorted gravelly sand (2-2.6 m).
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12m) from 5-30 m depth (NB Zone 2). A gradually increasing zone of resistivity is 

found below a depth of 30 m, with values >400 Qm below 35 m depth (NB Zone 3). 

The contact between Zones 2 and 3 is gradational, with resistivity increasing (190- 

500 Qm) over a vertical distance of ca. 10 m (30-40 m).

5.3.3 Seismic refraction

Three P-wave first break velocity segments are apparent in both the forward and 

reverse directions of the traveltime graph (Figure 5.11). Shots 1, 8 and 9 have two 

velocity segments representing the direct and refracted waves. The crossover point of 

the refracted wave occurs at 6 m (geophone 4) on Shot 1,18 m (geophone 10) and 28 

m (geophone 15) on Shot 8 and 40 m (geophone 21) on Shot 9 (Figure 5.11). The first 

refracted wave is recorded by Shots 1, 2, 3, 4, 5, 8, 9, 10, 11 and 12, which all show 

strong parallelism. A second faster refracted wave is recorded by Shots 5, 6, 7, and 

12, the crossover being apparent at 28 m (geophone 15) on Shot 5 and 16 m 

(geophone 9) on Shot 12. Shots 6 and 7, and the second segment of Shot 5 display 

strong parallelism. The direct wave and two refracted waves can therefore be 

identified from the traveltime graph.

The minus times of twelve reversed shots (1&9, 1&10, l& l l ,  2&9, 2&10, 2&11, 

3&9, 3&10, 3&11 ,4&9, 4&10,4&11) were used to determine the velocity of the first 

refracted wave (1437 msec'1). Because of a lack of reversed coverage, the velocity of 

both the direct wave and the second refracted wave could not be calculated using the 

Common Receiver Point method and therefore had to be calculated from the average 

velocity o f the reciprocal of the gradient of the best fit lines (from linear regression) 

of several single shots. The velocity of the direct wave was 791 msec'1 derived from 

the average velocity of the appropriate segments of Shots 1, 8 and 9. The velocity of 

the second refracted wave was 4151 msec*1 calculated from the average of Shots 5, 6 

and 7. The velocity of Shot 12 was not used for the calculation of the second refracted 

wave due to the short measured length of the segment relating to the second refracted 

wave on this shot (Figure 5.11).

The direct wave and two refracted waves recorded by the seismic survey indicate a 

three-tier model, with an upper low velocity layer (791 msec'1) overlying an 

intermediate layer (1437 msec'1) and a basal high velocity layer (4151 msec'1) (Figure
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5.12). Using the Common Receiver Point method the depth and morphology of the 

first (upper) refractor was defined. The morphology of the first refractor was derived 

from Shots 1&9, 2&10 and 3&11. Whilst the plus time could be calculated for Shots 

1 &9 as the reciprocal time was directly measured, to calculate the plus time for Shots 

2&10 and 3&11 the reciprocal time had to be estimated using the intercept time (see 

Section 3.4.3.1). Given the close correspondence of the depth and morphology of the 

refractor (Figure 5.12), the use of this estimated value was appropriate to extend the 

refractor laterally from that derived from Shots 1&9 alone, thereby enabling 

comparison with the electrical resistivity data over a longer section. Based on the 

depth of the refractor derived from Shots 1&9 the average depth of the first refracted 

horizon is 4.88 m, but the morphology of the refractor varies from 5.72 m to 4.24 m, 

generally dipping eastward. This observation is also supported by the morphology of 

the refractors derived from Shots 2&10 and 3&11 (Figure 5.12).

Due to the lack of reversed coverage and the absence of a direct reciprocal time 

measurement, the depth and morphology of the second (lower) refractor could not be 

calculated using the Common Receiver Point method. Instead, the depth to the 

refractor was calculated using the Intercept Time method (see Section 3.4.3.2). The 

calculated depths for the second refractor varied between 41-50 m (ca. 90-100 m OD) 

but with an average of 44 m. This may represent variation in the morphology of the 

refractor, but could also reflect lateral or vertical changes in velocity or the increased 

errors margins associated with the use of the intercept time as a substitute for the plus 

time.
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5.4 Interpretation

5.4.1 Sedimentology

The sequence of sands, gravels and diamict in Boreholes NB1 and NB2 are 

interpreted as proglacial outwash sediments deposited during the recessional phase of 

the Teifi glacier during the late Devensian. The coarsening upward nature of the 

sequence may represent a temporary readvance of the ice margin. Glaciotectonic 

structures within proglacial deposits elsewhere in the valley support a model of an 

oscillating margin (Davies et al. 1997; Sheppard 2003). Although a poorly sorted, 

coarse-grained diamict was observed in both boreholes, the interpretation of this unit 

is uncertain. Whilst it could represent a glacial till that cannibalised glaciofluvial 

sands and gravels during a temporary readvance o f the glacier margin, this unit could 

also represent a very poorly sorted gravel sheet, deposited during an episodic flood 

event.

Deposition of the glaciofluvial sediments at Llanio Fawr appears to have taken place 

just upstream of a small proglacial lake or on the exposed floor of a drained lake 

basin. Fine-grained sediments have been described from shallow boreholes and trial 

pits undertaken by Holst Soil Engineering Ltd for Dyfed County Council in 1974. 

These were sited along the embankment of the Milford-Manchester railway, 500- 

1000 m downvalley from the Llanio Fawr site (Figure 5.1). Thicknesses of more than

2.5 m of clayey silts were recorded at depths greater than 2.5 m. These silts have been 

interpreted as glaciolacustrine deposits by the British Geological Survey and their 

lateral extent mapped (Sheppard 2003; BGS Sheet 195: Lampeter, unpublished map). 

The fine sands and sandy silts below 2.5 m in Borehole NB1 may correlate with these 

glaciolacustrine deposits, or they may represent a short-lived, localised quiescent 

depositional environment within a proglacial subaerial outwash plain.

5.4.2 Electrical resistivity tomography
The resistivity values of the superficial deposits (predominantly >125 Qm) suggest 

that sand, gravel and glacial tills dominate the sub-surface. Based on the 

sedimentology of the boreholes, the high resistivity zone in the near surface (NB 

Zone 1) is interpreted as a layer of unsaturated superficial deposits above the water
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table. The lower resistivity zone at depths below 5 m (NB Zone 2) is unlikely to 

represent an extensive thickness of glaciolacustrine clays or silts. The resistivity of 

this zone (predominantly 125-190 Qm) is not consistent with very fine-grained 

sediments, but is within the range of measured values for saturated sands and gravels, 

or tills. The high resistivity zone at depth (NB Zone 3) is interpreted as bedrock. On 

the basis of the resistivity data, the depth to bedrock at Llanio Fawr is therefore 

estimated to be between 30-40 m.

Complex variations in the superficial geology, including localised lenses of fine

grained clays or silts, may exist. However, due to the coarse resolution of the 

resistivity survey and the averaging and smoothing processes required during 

tomographic processing, they would not be identified using this technique unless they 

were of a significant lateral and vertical thickness. Given the very high resistivity 

values of NB Zone 1, and the absence of similar deposits in Borehole NB2, the thin 

unit of sandy silt at the base of Borehole NB1 (2.9-3 m) is unlikely to be of 

considerable vertical thickness or lateral extent. Although the depth to bedrock 

indicates a significant thickness of superficial deposits, the resistivity profile provides 

little unequivocal evidence for a thick glaciolacustrine succession at Llanio Fawr.

5.4.3 Seismic refraction
The two seismic refractors identified in this survey are interpreted as a) the boundary 

between unsaturated and saturated superficial sediments (water table) (upper 

refractor); and b) the superficial-bedrock boundary (lower refractor). The three layers 

defined by the P-wave velocities are therefore interpreted as Silurian mudstones and 

sandstones (Devils Bridge Formation or the Cwmystwyth Grits Groups), overlain by 

a thick succession of sand and gravels, and till, that can be divided into saturated and 

unsaturated zones. The calculated depth of rockhead is 44 m.

The velocity of the uppermost layer above the first refractor (791 msec*1) is consistent 

with P-wave velocities for dry unsaturated sands and gravel (Reynolds 1997). This is 

supported by the high resistivity of NB Zone 1 (400-2300 Dm). This near-surface 

layer is not interpreted as a weathered zone due to its thickness (>5 m), and the 

sedimentological evidence from the two boreholes, which indicate a thin zone of 

weathering (< lm). Both the depth and morphology of the first refractor identified in
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the seismic survey correlate well with the lower boundary of the high resistivity near

surface zone (NB Zone 1). The seismic velocity (1437 msec'1) and the resistivity (90- 

230 Qm) of the materials below the first refractor (NB Zone 2) are consistent with 

saturated unconsolidated sands and gravels or till (Reynolds 1997). This boundary, 

between materials o f contrasting physical properties, is therefore believed to represent 

the water table rather than a true geological boundary. However, saturated sediments 

were encountered at very shallow depths in the boreholes (<1 m) indicating a high, or 

perched water table. This apparent contradiction is probably because the geophysical 

surveys were undertaken on the 26th July 2005, following an extended period of very 

dry weather, whilst the boreholes were drilled on the 13th October 2005, following a 

day of exceptionally high levels of rainfall in the upper Teifi valley, when a raised 

water table would be expected. As a result, the apparent boundary within the 

superficial deposits defined by the geophysical surveys may represent a lowered 

water table during the dry summer months. Given the highly resistive near-surface 

layer at Llanio Fawr, the application of ground penetrating radar (GPR) could be a 

very useful geophysical tool to use at this site to identify both the depth of the water 

table and to investigate the internal structure o f the glaciofluvial sediments.

The velocity of the layer below the second P-wave refractor in the seismic survey 

(4151 msec*1) is well in excess of the velocities of unconsolidated superficial deposits 

(normally <2000 msec*1). The second refractor is therefore interpreted as representing 

the contact between the superficial geology and unweathered Silurian bedrock. 

Depending on the thickness of bedrock weathering however, the second P-wave 

refractor could alternatively represent a boundary between weathered and 

unweathered bedrock. The high velocity of the refractor is within the range 

established for unweathered shales, and is comparable to measured values from 

Lower Palaeozoic mudstones and sandstones elsewhere in the Teifi valley (Allen 

1960; Francis 1964). Rockhead, based on the seismic survey, is therefore estimated at 

approximately 44 m (ca. 90-100 m OD). The depth to bedrock established from the 

seismic survey is therefore slightly more than the depth inferred from the resistivity 

profile (30-40 m). However, this may be the result of experimental errors associated 

with calculating P-wave velocities (ca. 10 % error margin), or because the resistivity 

survey is mapping a contact between superficial sediments and weathered bedrock, 

rather than a deeper boundary of unweathered bedrock below a thick layer of
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weathered bedrock, which the seismic survey could be mapping. The smoothness 

algorithms used in 2D resistivity inversion models can also cause problems for 

accurately detecting the depth of sharp boundary interfaces (Wisen et al. 2005). 

Changes in seismic velocity associated with a lower velocity layer (blind zone) in the 

superficial geology could also affect the calculations of depth derived from the 

seismic refraction survey however, resulting in an overestimation of depth. 

Regardless, the geophysical surveys indicate a significant thickness of superficial 

deposits at this site (>30 m).

The geophysical methods applied in this study have, in comparison to previous 

studies (Harris 2001b), provided rather limited data regarding the internal structure 

and possible origins of these landforms. However, they have provided key 

information regarding both the physical properties o f the sediments below the limited 

depth of investigation provided by drilling methods at this site, which can be used to 

infer lithology, and the depth to bedrock. When combined with the large-scale 

geomorphology of the area, the geophysical evidence is consistent with the 

suggestion that this part of the valley represents a meander loop formed during pre- or 

early-Quatemary incision of the Teifi valley that may later have been modified by 

glacial erosion (Sheppard 2003). Significant thicknesses of superficial deposits have 

also been recognised in similar buried meander loops in the lower reaches of the Afon 

Teifi (Allen 1960; Francis 1964; Jones 1965; Nunn and Boztas 1977; Hambrey et al. 

2001; Etienne et al. 2006). Elsewhere in the upper Teifi, a borehole at Olwen in the 

Dulais valley just north of Lampeter recorded a thickness of sand and gravel greater 

than 27 m (Crimes et al. 1992; Robins et al. 2000). Depth to rockhead in the upper- to 

mid-Teifi valley, estimated from resistivity soundings, gravity surveys and a single 

borehole, is up to 45 m (70 m OD) near Lampeter, and approximately 50 m (45 m 

OD) near the mouth of the Cledlyn valley at Rhuddlan (Heaven et al. 1999). The 

upper Teifi valley therefore represents a significant sedimentary sink of the western 

sector o f the Welsh ice mass during the late Quaternary and represents a potentially 

important palaeoenvironmental record of the glaciation and deglaciation of this area. 

These observations may contradict the view that the intensity of glacial erosion 

associated with the Welsh ice mass was limited and was unable to erode deep valley 

basins (Watson 1968).
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5.4.4 Model of landform formation

The linear, orientated morphology of the ridges at Llanio Fawr (Figure 5.3) is 

puzzling. Although there is clear evidence that the mid Wales uplands were subject to 

significant periglacial activity after deglaciation (Watson 1965, 1981; Potts 1971) the 

morphology and sedimentology of the landforms described in this article are not 

consistent with a model that interprets them as the remains of periglacial ground-ice 

mounds. Because the surface ridges at this site formed through glaciofluvial 

deposition rather than through post-depositional ground-ice disturbance, they are 

superficial landforms that have no genetic relationship with the sediments below the 

very near surface. Neither the sedimentological or geophysical data provides any 

evidence for deep silt- or clay-filled basins beneath these landforms, such as those 

found in association with ramparted depressions in the Cledlyn valley (Watson and 

Watson 1972), nor any evidence for the extensive glaciolacustrine deposits necessary 

for lithalsa development (Gurney 1995). These are almost certainly not therefore the 

remains of open system pingos, and are considered unlikely to be lithalsa remnants. 

The geomorphology and sedimentology of these landforms instead suggests that their 

formation is the result of proglacial outwash deposition. However, although they are 

orientated downstream, presumably in the direction of downvalley flow, the linear 

ridges do not appear to be longitudinal bars associated with the braided channel 

systems of an outwash plain (Miall 1983). Possible alternative processes for the 

development of these landforms could be i) glaciofluvial sedimentation around and 

above melting blocks of buried glacier ice (Price 1973; Maizels 1992); or ii) 

glaciofluvial deposition on the surface of proglacial icings (also known as naledi or 

aufeis) (Akerman 1982).

The melting of masses of glacier ice buried by glaciofluvial deposition (Price 1973) 

could explain the formation of the landforms at Llanio Fawr. Glaciofluvial sediments 

dominate the superficial geology of the mid- to upper-Teifi valley between 

Llanybydder and Tregaron (Waters et a l 1997). Under rapid rates of sedimentation 

during the Late-Devensian, burial of stagnant parts of the ice margin by glaciofluvial 

sedimentation clearly took place, as evidenced by the large kettle hole at Pant Farm, 

only 2 km due east of Llanio Fawr (Figure 5.1). As well as kettle hole development, 

the melt out of extensive bodies of stagnant ice can also cause kettled-outwash, with a

148



Chapter 5: Llanio Fawr

complex, chaotic assemblage of ridges, mounds and hollows, when buried by rapidly 

deposited sands and gravels (Price 1973). Ramparted depressions can also occur at 

significant distances from the ice margin due to the burial of ice blocks transported by 

jokulhaup events (Price 1973; Maizels 1992). Whilst the more circular enclosed 

depressions within the complex of landforms at Llanio Fawr could represent the 

deposition of proglacial outwash above blocks of buried glacier ice deposited by 

catastrophic drainage, the elongate morphology of the majority of ridges at Llanio 

Fawr is clearly distinct from the circular examples described from Iceland (Maizels 

1992), and the evidence presented here from this site cannot be used to justify such an 

analogy. Although catastrophic drainage of the Lateglacial moraine-dammed lake at 

the current site of Tregaron Bog (northeast o f Tregaron) could potentially have 

transported ice blocks downvalley to Llanio Fawr, there is currently no evidence that 

this lake drained catastrophically.

In Svalbard, esker-like landforms (<2 m in height, up to several tens of metres in 

length) form as a result of glaciofluvial sedimentation in the meandering drainage 

channels incised into the surface of ephemeral proglacial icings (Akerman 1982). 

Because of favourable localised hydrogeological conditions, icings frequently 

develop in the same place each winter. As icings tend to aggrade passively on top of 

the ground surface (Worsley 1997), a series o f superimposed, crosscutting ridges 

could develop as glaciofluvial sediments, annually deposited in meltwater channels 

incised into the surface of the icing, collapse when the icing melts during late spring 

or early summer. Over a period of several years this could result in a complex 

assemblage of superimposed, chaotic to linear, esker-like landforms composed of 

glaciofluvial sediments developing, such as observed at Llanio Fawr. During the early 

summer melt season, proglacial icings commonly disintegrate into a chaotic series of 

ice blocks and sheets dissected by meltwater channels (Akerman 1982) and 

sedimentation around such bodies of ice could explain the more circular depressions 

at Llanio Fawr. The long-term preservation potential of aggradational landforms 

associated with icing development is rather limited however (Coxon 1978; Worsley 

1997). Furthermore, as the evidence for these landforms is ambiguous, we follow 

Worsley’s (1997) advice that a cautious approach to the interpretation of these 

landforms should be exercised. Nevertheless, proglacial icing development is a 

possible mechanism for the development o f the ramparted depressions at Llanio
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Fawr, although the current evidence does not enable a more specific interpretation 

regarding the origins of these landforms to be made.

It is quite clear that the morphology and sedimentological composition of the ridges 

at Llanio Fawr indicate that these landforms are probably not the remains of 

periglacial ground-ice mounds. This conclusion has implications for the interpretation 

of ramparted depressions elsewhere in the British Isles. Many landforms, particularly 

those within the Devensian glacial limits, which have previously been interpreted as 

the remains o f open-system pingos or lithalsas, may also have alternative origins, 

kettled outwash or esker-like landforms associated with proglacial icings being only 

two of several possible mechanisms for their development.

150



Chapter 6: Crvchell Moor

6 Crychell Moor

6.1 Introduction
A high-density concentration of small, enclosed, shallow, circular peat-filled 

depressions is located at Crychell Moor, 4 km west of Llanbister, Powys (Figures 6.1, 

6.2, 6.3 and 6.4). First identified by the Soil Survey, these landforms were interpreted 

as the remains of open system pingos (Rudeforth et al. 1984). The nearest known 

sites where ramparted depressions, interpreted as relict ground-ice mounds, have been 

identified are at Llangurig 20 km to the west (Pissart 1963) and at Owlbury, 

Shropshire 30 km to the northeast (Gurney and Worsley 1996). The Crychell Moor 

site is situated in the catchment of the River Ithon, in the valleys of the Crychell 

Brook and Ffrwd Wen (Figures 6.1 and 6.3). Glaciers in this area, east of the 

watershed of the Cambrian Mountains of mid-Wales, fed the south and eastward 

flowing Wye glacier during the last glaciation (Dwerryhouse and Miller 1930; Lewis 

1970; Luckman 1970; Richards 2005; Lewis and Thomas 2005). Ice flowed into the 

Wye and the Ithon-Irfon Depression through the Ithon valley and eastwards into 

Herefordshire through the Teme, Lugg, Hindwell and Arrow valleys.

During late Devensian deglaciation of the mid-Wales uplands and the Cambrian 

Mountains, downwasting of debris-rich ice took place in the main valley systems. 

The Wye valley north of Builth Wells and the Irfon-Ithon depression (e.g. around 

Llandrindod Wells) are dominated by hummocky glacial sediments and landforms 

deposited during this phase (Lewis 1966, 1970). Stagnation of in situ ice also 

occurred in the smaller Lugg, Arrow and Hindwell valleys (Luckman 1970). More 

recent mapping of the Wye, Ithon and Severn valleys has identified broad tracts of 

hummocky glacial sediments and ice-contact glaciofluvial deposits (Crimes et al. 

1992; British Geological Survey 1993, 1994b, 2005; Davies et al. 1997; Cave and 

Hains 2001; Schofield et al. 2004), supporting this model of deglaciation.

The bedrock geology of the area around the Crychell Moor site is characterised by 

sandstones and mudstones of Ordovician and Silurian age (Figure 6.5; British 

Geological Survey 1993). The site is underlain by mudstones of the Dolgau 

Mudstones Formation of Llandovery Series (Ordovician) age. The area is structurally
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complex, but the feature of most significance is the north-south trending fault that 

directly underlies the site (Figure 6.5).
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Figure 6.1: OS Profile® digital terrain model (DTM) of the Ithon and Crychell Brook 
valleys (OS Profile® data © Crown Copyright/database right 2006. An Ordnance 
Survey/(Datacentre) supplied service.
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Figure 6.2: Aerial photograph of Crychell Moor, near Llanbister, Powys, taken in 2000 (©Getmapping Pic 2006).
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Figure 6.4: Ramparted depressions, Crychell Moor, near Llanbister, Powys: (a) overview of site looking 
to the south with the investigated basin indicated; (b) example of small peat-filled depression lacking a 
pronounced rampart. Location of landform indicated in Figure 6.4a (Photo: C. Harris).
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Figure 6.5: Drift and bedrock geology of the area around the Crychell Moor site (British Geological Survey 1993).
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6.2 Site description and survey

One small, peat-filled, ramparted depression was investigated at Crychell Moor on 

the 29th June 2005 (Figures 6.4a and 6.6). The survey consisted of two shallow 

boreholes, which reached depths of <4 m, and two, perpendicular, electrical 

resistivity tomography survey lines. Borehole 1 (SO 07905.73930) was drilled 

through the ridge o f the landform, whilst Borehole 2 (SO 07901.73953) was 

positioned in the central basin, 1.32 m below and 19.8 m to the north of Borehole 1 

(Figure 6.6). The resistivity profiles (both 175 m in length, 2 x 1 8  electrode cables, 5 

m electrode spacing o f electrodes) ran from south-north (Line CM-1) and from west- 

east (Line CM-2). Borehole 2 marked the intersection point o f the two cables (Figure

6.6). Topographical data necessary to process the resistivity profiles was collected 

using an EDM system. The locations of the boreholes and the resistivity lines were 

georeferenced using a handheld GPS system. No seismic refraction survey was 

undertaken at this site.

The majority o f the landforms at the Crychell Moor site are not characterised by 

easily defined ramparts. Although the topography appears rather uneven and 

undulating, the general impression is of a relatively level ground surface that is pitted 

with depressions (a few metres to 50 m in diameter) (Figure 6.4a), rather than being a 

series of ridges that stand proud of the general ground surface. Therefore, although 

subdued ridges up to 1-2 m high are present, generally the area has a ‘negative’ relief, 

rather than the ‘positive’ relief normally characteristic o f other sites where ramparted 

depressions are found in Wales (Watson 1971; Watson and Watson 1972, 1974). The 

depressions at Crychell Moor are generally very closely spaced, particularly in the 

area to the south of the road that runs parallel to the Ffrwd Wen, where there is little 

or no clear evidence for well defined, wide ramparts (Figures 6.2 and 6.3). In places, 

the ramparts are very narrow (ca. 10 m across). There are a few, more defined, 

circular features however, some with more substantial enclosing ridges (2-3 m high) 

(e.g. at 307789.273744, 307726.273711 and 307760.273636).

158



N
or

th
in

gs

274050

274000

273950

273900

273850

307700 307750 307800 307850 307900 307950 308000 308050

Eastings

Figure 6.6: Locations of sedim entological and geophysical surveys at Crychell Moor, near Llanbister, Powys 
(aerial photograph © Getmapping Pic 2006).

•  Borehole locations 
— Resistivity lines



Chapter 6: Crvchell Moor

6.3 Results

6.3.1 Sedimentology

The upper 0.3-2.1 m of Borehole 1 was composed of a clast-supported, sandy 

gravelly diamicton with subrounded to subangular platy to rod-shaped mudstone and 

sandstone clasts, up to 5 cm in length (Figures 6.7a, 6.8a and 6.9a). A unit of very 

poorly sorted, well-graded, silty gravelly clayey sand, with possible laminations, was 

incorporated within the diamicton between 1.3-1.65 m. Between 2.1 and 4 m the 

borehole was dominated by a firm, matrix-supported, poorly sorted, silty sandy fine 

gravelly diamicton (Figures 6.7a and 6.8b). Borehole 2 revealed 0.8 m of peat, 

overlying 0.1 m of gravelly clayey silt, 1.6 m of sandy fine gravelly diamicton and

1.5 m of stoneless, in parts laminated, clayey silt (Figures 6.7b, 6.8c and 6.9b). The 

sandy gravelly diamicton found between 0.3-4 m in Borehole 1 and between 0.9-2.5 

m in Borehole 2 have similar grain-size distributions (Figure 6.9), although there is a 

slightly higher matrix component to those between 2.1-4 m in Borehole 1. The depth 

reached in both boreholes was restricted by the limits for the safe recovery of the 

coring equipment. As a consequence, the total thickness of the lowermost units in 

both boreholes is unknown.

6.3.2 Electrical resistivity tomography

The two resistivity profiles are characterised by three resistivity zones. A 

discontinuous, thin (0-5 m), near-surface zone of intermediate to high resistivity (190- 

500 Qm) (Zone CM-1) overlies a laterally continuous zone of intermediate to low 

resistivity (50-190 Qm), which is 5-10 m thick (Zone CM-2) (Figure 6.10). The 

contact between the two zones is sharp, with an abrupt change in resistivity within a 

vertical distance of ca. 2 m. Where the near-surface is not characterised by high 

resistivity, Zone CM-2 continues upwards to the ground surface (e.g. 110-135 m Line 

CM-1). At depths below 10 m across both resistivity profiles there is a zone 

characterised by intermediate to high resistivity (190-350 Qm) (Zone CM-3). The 

contact between Zones CM-2 and CM-3 is relatively sharp. In a north-south 

orientation (Line CM-1) this boundary is roughly horizontal with slight undulations 

(Figure 6.10a). However, in an east-west orientation (Line CM-2), this contact dips 

eastwards between 80-125 m along the line, and appears to dip westward between 0-
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80 m along Line CM-2, marking an apparent boundary between a lower resistivity 

zone upslope and the high resistivity zone at the east end of Line CM-2 (Figure 

6.10b).
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Figure 6.8: Photographs of sedim ents from Borehole 1 and Borehole 2, Crychell Moor: (a) Sandy fine gravel (diamict), with 
gravelly silty sand (1.3-1.65 m), 1-2 m, Borehole 1; (b) Silty sandy gravel (diamict), 3-4 m, Borehole 1; (c) Clayey silt, 3-4 m, 
Borehole 2.
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6.4 Interpretation

6.4.1 Sedimentology

The gravelly diamict observed at Crychell Moor throughout Borehole 1 and between 

0.9-2.5 m in Borehole 2 is interpreted as a glacial till. Although on the basis of the 

limited evidence from the two boreholes it is difficult to assess its precise origins, the 

coarse grain-size of the gravelly diamict between 0.3-2.1 in Borehole 1 (Figure 6.9a) 

and the incorporation of a thin unit of poorly-sorted silty sand between 1.3-1.6 m, 

does suggest that this unit may have been affected by gravitational mass movement. 

This could have been the result o f two processes: (i) post-depositional reworking on 

the steep-sided flanks of a periglacial ground-ice mound (pingo, lithalsa, or even a 

seasonal frost mound); (ii) supraglacial deposition on the surface of stagnating glacier 

ice.

Although the site at Crychell Moor fulfils many of the criteria for open system pingo 

development, including high adjacent relief; slope-foot location; and an underlying 

fault zone (Figure 6.5), the density of ramparted depressions in this valley is much 

greater than that of active open system pingos in contemporary Arctic environments. 

The density of the landforms at Crychell Moor is more consistent with lithalsa 

formation, but the gravels and gravelly diamicts that appear characteristic of the 

superficial geology are not sediments conducive to the development of segregation 

ice. If however, the fine-grained, laminated clayey silts recorded in Borehole 2 

(Figure 6.7b) are laterally extensive, then this unit could have provided a frost- 

susceptible medium suitable for the growth of segregation ice. Unfortunately 

however, the depth of Borehole 1 (4 m) (Figure 6.7a) was insufficient to establish the 

lateral extent of this unit beneath the gravelly diamict of the rampart. This unit could 

therefore be either i) laterally and vertically constrained by diamicton, in which case 

the deposition of this fine-grained unit occurred through suspension within a small 

basin impounded by diamicton (Borehole 1: 0.3-4 m); or ii) laterally extensive, 

extending beyond the boundaries of the landforms basin, in which case development 

must have occurred in a larger body of water prior to the deposition of the diamicton. 

If the latter were the case, then this would strengthen any argument that these
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landforms might be the remains of lithalsa-like periglacial ground-ice mounds, as it 

would provide a frost-susceptible medium suitable for their development.

Supraglacial deposition onto the surface of a debris-covered glacier pitted with small 

thaw lakes probably best explains the current sedimentological evidence however. 

The diamict recorded in Borehole 2 (0.9-2.5 m) and in Borehole 1 (0.3-2.1 m) (Figure 

6.7) could be interpreted as supraglacial till deposited by the flow and mass 

movement of saturated supraglacial sediment and the meltout of glacier ice (Boulton 

1972; Paul 1983). An alternative possibility however is that the diamict-cored rampart 

was formed by the slumping of overburden material down the steep flanks of a 

ground-ice mound, whilst the 1.6 m thick unit of diamict in Borehole 2 was later 

deposited by the slumping of the walls of the enclosing rampart into the central basin 

during the final stages of ground-ice mound collapse. However, given the thickness of 

this unit (1.6 m) and the apparent absence of bedding within the unit this possibility is 

thought unlikely. Rather than being the result of the slopewash and mass wasting of 

the sandy, gravelly diamict within the ramparts from the collapse of a ground-ice 

mound (which would probably produce a less homogenous, fine-grained grain-size 

distribution), the laminated clayey silts in Borehole 2 (2.5-4 m) are more easily 

explained by deposition from meltwater accumulating in a depression on the surface 

of debris-covered stagnant ice. The deposition of the overlying unit of diamicton that 

is found between 0.3-2.1 m in Borehole 2 could be explained by the flow of water- 

saturated diamict in the later stages of the meltout of the buried ice. The presence of 

the 1.6 m thick unit of coarse-grained diamict resting upon the >1.5 m thick unit of 

clayey silt in Borehole 2 makes this landform unique in Wales, as the fine-grained 

minerogenic-fill of all the other ramparted depressions so far investigated is directly 

overlain by peat.

Differential melting of a buried, stagnating ice mass, resulting in the slumping and 

deposition of supraglacial diamict into topographical lows, is widely recognised in 

supraglacial environments, and commonly leads to the development of a complex 

geomorphology characterised by hummocks and depressions (Price 1973), similar to 

that recognised at Crychell Moor. Supraglacial sedimentation may not explain the 

complete sequence of sediments observed at Crychell Moor however. The increased 

proportion of fine-grained material within the matrix of the diamict between 2.1-4 m
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in Borehole 1, and its more compact nature compared to the overlying unit, could 

reflect deposition under subglacial conditions.

The chaotic, complex nature of supraglacial environments makes interpretation of 

their sedimentary product exceptionally difficult, particularly when such 

interpretation is restricted by a limited number of shallow boreholes and exposures. 

Nevertheless, although by no means entirely diagnostic, the association of sediments 

recorded at Crychell Moor (coarse-grained tills and stoneless clayey silts) appears 

characteristic of deposition within a predominantly supraglacial environment (Paul 

1983; Johnson and Menzies 2002). Additional boreholes between Boreholes 1 and 2, 

near to the edges of the central basin, would clarify the relationship between the 

diamicton in both boreholes and the lateral extent of the clayey silt, thereby testing 

whether the correlation of units between the boreholes, which is key to the 

interpretation of these landforms, is valid.

On the basis of the current sedimentological evidence and the density and 

morphology of the ramparted depressions at Crychell Moor, a model of glacigenic 

sedimentation (widespread burial and meltout of downwasting glacier ice) is favoured 

over one of periglacial ground-ice development as a result of permafrost aggradation 

after deglaciation. The most likely explanation for the entire sequence of minerogenic 

deposits in Boreholes 1 and 2 is their deposition in a complex supraglacial 

environment characterised by the slumping and flow of saturated till, the meltout of 

buried ice and the development of thaw lakes on the glacier surface. As the meltout of 

the buried ice took place, the overlying sediments collapsed, resulting in the 

formation of the ramparted depressions. This interpretation is consistent with the 

regional evidence for the downwasting of debris-rich stagnant ice in mid Wales 

(Lewis 1966, 1970; Luckman 1970; Crimes et al. 1992; British Geological Survey 

1993, 1994b, 2005; Davies et al. 1997; Cave and Hains 2001; Schofield et al. 2004).

6.4.2 Electrical resistivity tomography
The high resistivity of the rampart (Zone CM-1) is consistent with the gravel and 

clast-rich diamicton in Borehole 1. Resistivity Line CM-1 suggests that this zone is 

no more than 5 m thick and that there is an abrupt and marked decrease in resistivity 

below this (Zone CM-2). In contrast, the central basin of the landform is not
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characterised by a thick (>2 m) near-surface high resistivity zone. Instead the low 

resistivity Zone CM-2 approaches the ground surface. As the resistivity o f a material 

is strongly influenced by the porewater content of the material, the marked boundary 

in resistivity between Zone CM-1 and Zone CM-2 probably represents the change 

from saturated and unsaturated sediments, marking the location of the water table, 

rather than a geological contact. The difference in water saturation can be seen from 

the photographs of the boreholes (Figure 6.8), which show unsaturated sediments 

between 1-2 m underlain by saturated sediments between 3-4 m in Borehole 1.

Alternatively, Zone CM-2 could be interpreted as representing the extent of fine

grained materials. If this was the case then the near-surface resistivity data suggests 

that the clayey silts in Borehole 2 are laterally extensive, and that Zone CM-2 

extended beneath the gravels in Borehole 1 at depths below 5 m. However, the 

electrical properties o f the sediments (predominantly 100-190 Qm) suggest that sand 

and gravel and/or clast-rich till, rather than silts or clays are likely to dominate the 

near-surface zone (<10 m). This supports the theory that the clayey silts found in 

Borehole 2 are not laterally or vertically extensive. However, without better 

geological control from additional, deeper boreholes, the resistivity data cannot be 

used to characterise individual units within the superficial geology at this site.

The apparent absence of a marked high resistivity zone at the base of both resistivity 

lines means that defining rockhead is difficult at this site based on the resistivity data. 

It may be that the depth to bedrock exceeds the vertical limits of the survey (>30 m). 

However, it is thought more likely that electrical definition of this boundary is 

difficult because of only a small contrast in resistivity between the superficial 

deposits and bedrock. If this is the case, the higher resistivity zone (>190 Qm) below 

a depth of 10 m (Zone CM-3) may be interpreted as representing bedrock, with the 

upper boundary of this zone (Figure 6.10) representing a minimal rockhead depth. If 

this is correct, then Line CM-2 suggests that there may be evidence for rather abrupt 

undulations in rockhead morphology at this site (Figure 6.10b). However, if the depth 

to bedrock does exceed the vertical limits of the resistivity survey then Zone CM-3 

may represent a very thick unit of sand and gravel rather than bedrock. A deep 

borehole and/or seismic refraction survey would be required to test these hypotheses.
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7 Cledlyn valley

7.1 Introduction

The most remarkable landforms interpreted as open system pingos by E. Watson are 

those found in the upper part of the Cledlyn valley, 0.5 to 2 km west of Cwrt Newydd 

at 165-215 m OD (Watson 1971, 1972, 1975; Watson and Watson 1972) (Figures 7.1 

and 7.2). Ramparts, 6.5 m high and composed of till, have been recognised (Watson 

1971). The majority are oval or elongate rather than circular in form, rarely 

surrounding their depression entirely (Figures 7.3 and 7.4). Complete ramparts form 

the minority and tend to be located only on the valley bottoms where slopes are less 

than 2°. Upslope ramparts are frequently absent. The ramparts generally suggest that 

the original ground-ice mound morphologies were round to oval, with the latter 

generally elongated perpendicular to the slopes. An often-quoted characteristic of 

open system pingos is that they cluster in geologically and hydrogeologically 

favourable localities. This certainly appears true of the landforms of the Cledlyn 

valley (Figures 7.3 and 7.4), which appear to have many generations of features, and 

have been described as ‘mutually interfering’ (Watson 1971). This characteristic 

makes identification of individual forms extremely difficult due to their topographical 

setting and gregarious nature (Watson and Watson 1974). Watson argued that some 

rampart-basin complexes suggest compound development, attributed to the 

simultaneous development of more than one ice core. Commonly, the upslope section 

of many ramparts appears to be cut by the rampart of a landform that developed later 

on the upslope side, a characteristic that has been attributed to upslope migration of 

the point of water injection (Watson 1971).

Extensive mapping, levelling and augering of six of the Cledlyn valley depressions 

(‘Pingos’: W, U, M, R, A and X) (Figure 7.3) revealed a remarkable variation in their 

depth and basal profile (Watson 1972; Watson and Watson 1972). All basins show 

some degree of asymmetry, with the deepest point near to the downslope rampart. 

This has been attributed to the collapse of the upslope rampart and overburden 

material into the basin following ground-ice decay (Watson and Watson 1972) and is 

more pronounced where the valley slope exceeds 3-4° (‘Pingos’: U, M, and R). No 

rampart exists upslope of ‘Pingo’ A, located on a slope of 5-6°. Those on slopes of 1-
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2° (e.g. ‘Pingos’ X and W) tend to have more symmetrical basins, with near- 

complete, or entire, rampart enclosure (Figure 7.3).

Large variation is recognised in the depth of the basins, a characteristic that appears 

unrelated to the external form of the landforms. The depth of basin infill sediments 

varies between <2.5 m to >11 m. Augering of ‘Pingos’ W and U reached depths of 

10.13 m and 11.77 m below the surface without reaching the base of each depression 

(Watson and Watson 1972). In all basins augered, three types of deposit occur, with 

the uppermost peat and organic units overlying a smooth, structureless grey silty clay 

unit, which in turn overlies unsorted gravelly clay (Watson and Watson 1972). Within 

U, 2.54 m of peat overlies at least 9.23 m of blue-grey, structureless, clayey silt. This 

is in contrast to ‘Pingo’ M, where the thickness of clayey silt did not exceed 18 cm 

(Watson and Watson 1972). The grain-size distribution of the silt analysed at various 

depths in ‘Pingo’ U showed consistently more than 90% less than 65 pm (Watson 

1975). Two groups of ramparted ground-ice depressions can therefore be recognised 

from the Cledlyn valley. Those that are relatively shallow, with basal gravelly silt 

found 3-4 m below the surface (e.g. ‘Pingos’ A and M), and those where the bottom 

is much deeper, (e.g. ‘Pingos’ U, W and R). Watson and Watson (1972) suggested 

that this reflects the amount of mineral material within the ground-ice mound, with 

shallower forms originally having a higher segregated ice content, and the deeper 

types comprising largely clear injection ice.

Radiocarbon dating of the basal peat in ‘Pingo’ U provided uncalibrated ages of 

10,080± 320 yrs BP and 10,060±380 yrs BP (Shotton et al. 1975), which have been 

supported by pollen analysis of the basin infill (Handa and Moore 1976; Walker and 

James 2001). Comparable radiocarbon ages were also derived from the base of the 

peat infill within ‘Pingos’ M and W (Shotton and Williams 1973; Shotton et al.

1975). Watson (1975, 1982) argued that the regular boundary between the base of this 

organic deposit and the underlying grey clay indicated that the ground ice had melted 

out before the end of the Younger Dryas (12,500-11,000 cal yrs BP).

Based on surface mapping of the distribution and nature of the superficial geology in 

the Cledlyn valley, Gurney (1994, 1995) proposed a local stratigraphy. This
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comprised a sequence of till, resting on bedrock, overlain by glaciolacustrine clays 

and then head. The clays were interpreted as being deposited prior to ground-ice 

formation, and Gurney (1994, 1995) suggested that the frost-susceptible nature of 

these clays promoted the development of segregation ice. As a result, the landforms 

in the Cledlyn valley were reinterpreted as the remains of collapsed lithalsas, rather 

than open system pingos. In this model, the thick sequences of fine-grained sediments 

within the basin-fill o f some landforms were also interpreted as being deposited 

during extensive glacio-lacustrine sedimentation prior to ground-ice formation, rather 

than during collapse o f the landforms (Gumey 1994, 1995, 2000). The inference from 

this model is that similar thicknesses of silt are present between the basins of the 

ramparted depressions, as well as within them. However, it remains unclear how 

laterally or vertically extensive these fine-grained sediments within the Cledlyn valley 

actually are. Recorded observations outside the confines of the landforms were only 

made at a few locations in stream sections within a very localised area. Furthermore, 

with the exception of the thin unit of clay in the section through the rampart of 

‘Pingo’ R (Watson 1971), the proposed stratigraphy was not observed in section, and 

nowhere was the clay seen to stratigraphically overlie the till.

Mudstones of Ordovician age characterise the bedrock geology of the Cledlyn valley 

(Figure 7.5) (BGS Sheet 194: Llangrannog, unpublished map). The section of the 

valley where all the ramparted depressions are found is underlain by silty mudstones 

of the Yr Allt Formation of Ashgill Series (Ordovician) age. Two northeast to 

southwest trending faults have been mapped just downvalley, but these are not 

directly associated with the distribution of ramparted depressions (Figure 7.5). It is 

possible however that thin units of sandstone, as well as minor faults and other 

discontinuities underlie the ramparted depressions in the Cledlyn valley. Because of 

the poor level of exposure in the valley however, this cannot currently be established 

with any degree of confidence.
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7.2 Site description and survey: ‘Pingos’ U and L

The data from ‘Pingos’ U and L, described in this section, were collected by 

Professor C. Harris and Dr P. Brabham between 1996-1998 in association with staff 

from Terradat UK. This processed data has not been published previously, with the 

exception of a resistivity profile from ‘Pingo’ U reported and discussed in Harris 

(2001b). All data, with the exception of the resistivity profile from ‘Pingo’ U, have 

been re-processed by the author prior to incorporation in this study and the majority 

of sample grain-size distributions reported here were also analysed by the author.

Five boreholes were drilled at ‘Pingo’ U on the 31st October 1997 and the 17th 

September 1998. Two were drilled at the southern base of the rampart (BH1-1997 and 

BH1-1998), two into the rampart crest (BH2-1997, BH2-1998) and finally one 

through the central basin (BH3-1997) (Figures 7.6 and 7.7). The two boreholes drilled 

in 1998 penetrated to greater depths than the equivalent boreholes drilled outside the 

rampart and through the rampart in 1997. The two boreholes outside the rampart 

reached depths of 5 m (BH 1-1998) and 2 m (BH1-1997), whilst the two through the 

rampart crest reached depths of 4 m (BH2-1998) and 2.6 m (BH2-1997). Borehole 

BH3-1997 reached a depth of 7 m in the centre of the basin. Disturbed samples, 

representative of all units, were taken from all boreholes and analysed for grain-size 

properties.

Two ground penetrating radar (GPR) lines were undertaken across ‘Pingo’ U running 

southeast-northwest (GPR Line 1) and southwest-northeast (GPR Line 2) on the 31st 

October 1997 using a Mala RAMAC GPR system with a 200 Mhz antennae (Figure

7.6). A step size of 0.1 m, with an antennae separation of 0.6 m was used. The 

velocity was not measured in the field using a common midpoint survey (CMP) 

survey but was estimated on the basis of previous coring (Watson and Watson 1972; 

Gurney 1994) and on the basis of the depth of the interface between peat and mineral 

sediment in BH3-1997. A velocity of 0.038 m ns1 was found to best fit the geological 

data, and this is in accordance with measurements made for peat elsewhere (Theimer 

et al. 1994; Jol and Smith 1995; Slater and Reeve 2002; Comas et al. 2004, 2005). 

The following processing steps were used: 1) subtract mean (dewow); 2) gain 

function; 3) static correction; 4) time cut. Elevation corrections, based on EDM

178



Chapter 7: Cledlvn Valiev

survey data, were applied to compensate for the significant topographic variation 

along the length of both survey lines. GPR Line 1 was 138 m long and GPR Line 2 

was 72 m long. The maximum investigation depth did not exceed 3 m.

A short reversed seismic refraction line (24 geophones, 2 m spacing, 46 m in length), 

running northeast to southwest was undertaken to the south of the enclosing rampart 

of ‘Pingo’ U on the 17th September 1998 (Figure 7.6). A second very high-resolution 

(24 geophones 0.25 m spacing, 5.75 m in length) reversed line was also undertaken at 

the centre of the first geophone spread (19.25-25 m) to establish the properties and 

depth of any near-surface layers.

A 300 m long electrical resistivity tomography line, collected using an ABEM LUND 

SAS 4000 resistivity meter with an ES464 electrode selector on the 19th September 

1996, was aligned northwest-southeast across ‘Pingo’ L (Figure 7.6). These resistivity 

data (Line CL-L1) therefore represent the only survey line from Wales presented in 

this thesis that was collected with equipment other than the IRIS Instruments Junior 

Switch 72 resistivity meter (see Section 3.2.3.1). A second resistivity profile (150 m 

long) was also undertaken at ‘Pingo’ U on the 31st October 1997 also using the same 

ABEM system (Figure 7.6), but unfortunately the raw data for this survey have now 

been lost. However, the results of the survey at ‘Pingo’ U are presented in Harris 

(2001b), where they are mislabelled as ‘Pingo’ L. The actual data from ‘Pingo’ L has 

been reprocessed using the common scale chosen for sites in Wales (see Section 

3.2.4), to enable comparison with other resistivity data collected in the Cledlyn valley 

and at other sites.
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7.3 Results: ‘Pingos’ U and L

7.3.1 Sedimentology

The two boreholes drilled outside the rampart of ‘Pingo’ U (BH1-1997, BH1-1998) 

were both dominated by a 2.5Y 5/2 greyish brown, poorly sorted, well-graded silty 

sandy gravel (diamict) with subangular to subrounded clasts (Figures 7.8a and 7.9). 

The upper 50 cm of both boreholes were composed of a dark brown to yellowish 

brown (10YR 3/4 to 10YR 5/4) silt with occasional clasts and greyish brown (2.5Y 

5/2) mottling. In BH 1-1998 the silty sandy gravel was matrix-supported between 0.5-

2.5 m and at depths between 4.2-5 m, but between 2.5-4.2 m the gravel content 

increased (Figures 7.8a and 7.9). However, it was generally difficult to subdivide the 

deposit and it should be viewed as a single homogenous unit with a varying content 

of gravel-sized material (Figure 7.9).

The two boreholes drilled from the crest of the rampart (BH2-1997, BH2-1998) were 

also characterised by a matrix-supported silty sandy clayey gravel (diamict) that was 

very similar in grain-size to the materials sampled throughout the boreholes outside 

the landform (Figures 7.8b and 7.9). The upper 30 to 50 cm of both boreholes was 

darker in colour compared to the sediments at depth (10YR 4/4 compared to 2.5Y 

6/2), and had fewer clasts. In comparison to the majority of samples analysed from 

BH 1-1998 and BH1-1997, the grain-size of the rampart sediments (Figures 7.8 and 

7.9) was characterised by a reduction in the gravel-sized component. This may not be 

significant however, and is likely to simply be a function of localised variations in the 

amount of gravel-sized materials in the sediment. Only one sample (at 3 m) was 

recovered and analysed from BH2-1998 and this may not be representative of the 

entire borehole. The sediments that comprised the entirety of BH2-1997 and BH2- 

1998 should be viewed as part of the same unit as the sediments beyond the ramparts. 

None of the boreholes displayed clear evidence for stratification or sorted layers 

within the diamict.

The sole borehole within the central basin of the landform (BH3-1997) was 

characterised by 3 m of peat overlying at least 4 m of homogenous clayey silt to silty 

clay with occasional gravel-sized clasts (Figure 7.8c), extending to a depth greater
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CLAY SILT SAND GRAVEL I I ■ » <
Dark brown organic SILT 10YR3/4. Dark yellowish brown. Soft friable slightly platy structure. 
Firm moist, blocky mottled 10YR4/4 dark yellowish brown SILT.
M oist strong 10YR 5/4 yellow ish  brown SILT with subangular fine san d sto n e  c lasts. 
G rey mottling 2.5Y 5/2 greyish brown

g  2.5Y 5/2 greyish brown moist firm silty sandy GRAVEL. Subangular to subrounded clasts.
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Borehole 1-1998
CLAY SILT SAND GRAVEL I 1 I I I

A  A

NCR

NCR

Brown silty DIAMICT, crumb structure.

B ecom es slightly more strong at depth. Sub-rounded clasts. Very fine dark grey blue 
sandstones Gravelly sandy SILT.
Brownish orange becoming light yellow silty sandy GRAVEL. Very firm non plastic. 

Reddish brown-mottled gravelly sandy SILT. Hard dry.

Hard dry-slightty moist gravelly sandy dayey SILT. Sub-rounded to rounded d a sts  
smooth polished surfaces.

J S Damp grey silty sandy GRAVEL slightly plastic firm.

Very wet grey strong silty sandy GRAVEL. Sticky plastic firm. Rounded-subrounded 
siltstone, grey Som e angular broken dasts. Clasts mainly 2-3cm diameter, but smaller 
and larger present.

Very wet silty sandy GRAVEL. Gravel rounded-subrounded som e large stones. Clasts 
mainly 0.5-3 cm diameter Sample of bluish grey silty dayey gravel taken

Dark grey very wet sandy GRAVEL containing large clasts Rounded to subrounded 
with interstitial silty fines

S Blue grey coarse sandy GRAVEL.

Blue grey silty sandy GRAVEL. Wet soft. Flakey subangular mudstone also very well 
rounded and striated mudstone clasts.

Very dense hard moist but not wet very plastic brown silty sandy GRAVEL with rounded 
d a sts

Figure 7.8a: Borehole logs from ‘Pingo’ U, Cledlyn valley: (i) Sedimentological log 
of Borehole 1-1997; (ii) Sedimentological log of Borehole 1-1998 (’S ’ marks the 
locations of sampling for grain-size analysis, NCR = no core recovery); (iii) 
Example of the hom ogenous, m assive silty/gravelly diamict that dominates 
boreholes 1 -97 ,1 -98 ,2 -97  and 2-98.
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(i) Borehole 2-1997
CLAY SILT SAND GRAVEL
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10YR 4/4 dark yellowish brown, firm moist stony sandy SILT Organic rich top to merging

2.5Y 6/2 light brownish grey firm moist grey-brown mottled gravelly sandy clayey SILT to 
silty sandy clayey GRAVEL (180-200 cm). Subrounded to subangular clasts up to 4 cm.

2.5 Y 6/4 light yellowish brown dry firm silty sandy GRAVEL. Hit boulder. 5Y 7/1 light grey 
] S to2.5Y 6/4 light yellowish brown mottling.

(ii) Borehole 2-1998 

o
CLAY SILT SAND GRAVEL

In— .. i t ........... 1 -  I  ..... . . I

2

4

Silty brown TOPSOIL, organic brown earth, moist.

Grey silty GRAVEL. Subrounded to subangular stones up to 3cm wet

Brown/grey mottled gravelly sandy clayey SILT to silty GRAVEL.

Figure 7.8b: Borehole logs from ‘Pingo’ U, Cledlyn valley: (i) Borehole 2-1997; 
and (ii) Borehole 2-1998 (‘S’ marks sampling locations for grain-size analysis).
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silty clay.

2.5Y 6/2, light brownish grey, very wet, very soft clayey SILT to silty CLAY 
with occasional gravel sized clasts and granules.

(ii)

Figure 7.8c: Borehole logs from ‘Pingo’ U, Cledlyn valley: (i) Sedimentological log 
for Borehole 3-1997 (’S ’ marks sampling locations for grain-size analysis; (ii) Core 
photograph of clayey silt (Borehole 3-1997:3-4  m) (Photo: C. Harris).
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than 7 m. The grain-size samples from BH3-1997 (360-400 cm and 660-700 cm) 

suggested that there may be an increase in the amount of gravel-sized material with 

depth in the minerogenic sediments (Figure 7.9). Sample 360-400 cm had little 

material of this grain-size (<5%) whilst sample 660-700 cm has <30%. However, it 

may be that the lower sample simply represents a snapshot of a depositional event and 

that there is no downcore trend.

7.3.2 Ground penetrating radar

Line 1 of the GPR data from ‘Pingo’ U (Figure 7.10a) is characterised by excellent 

propagation of EM waves where the line ran over the peat-filled central basin of the 

landform (62-112 m), with maximum penetration of the signal to depths of ca. 2.75 m 

below the ground surface. In contrast, over the ramparts and other non-peat covered 

areas (e.g. 0-62 m GPR Line 1) the GPR data are characterised by high signal 

attenuation with no reflections received from depths greater than 0.5-1 m (GPR unit 

1). The most prominent feature of Line 1 is the strong, continuous high-amplitude 

undulating reflection that extends from 62-112 m. This marks the boundary between a 

basal zone of little or no penetration (GPR unit 1), which is overlain by a thin zone 

(0-0.6 m) of low-amplitude reflections between 65-84 m (GPR unit 2). The prominent 

reflection at the base of GPR unit 2 is highly asymmetrical, with a very steep 

northwestward dipping segment (16°) between 62-72 m contrasting with the more 

shallowly angled southeastward dipping segment (6°) between 85-112 m. The 

maximum depth (2.75 m) of this reflector occurs at 72 m on the profile line, with a 

roughly horizontal base between 72-85 m. Overlying GPR unit 2 is a zone of laterally 

discontinuous, wavy, horizontal to sub-horizontal, thin, yet pronounced, reflections 

(GPR unit 3), that continues upwards to the ground surface.

GPR Line 2 has many similarities with Line 1 (Figure 7.10b). The profile also has a 

prominent and laterally continuous reflection at a depth of 2.8 m from 18-57 m along 

the line. A zone with few high amplitude reflections (GPR unit 2) directly overlies the 

marked reflection, above which lies an upper zone of laterally discontinuous, wavy, 

horizontal to sub-horizontal, thin yet pronounced reflections (GPR unit 3). The 

prominent reflection in GPR Line 2 is not characterised by the asymmetry apparent in 

GPR Line 1, and is roughly horizontal between 28-48 m.
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7.3.3 Seismic refraction

The seismic traveltime vs distance graph for the line shot outside the rampart of 

‘Pingo’ U has two clear P-wave, first break velocity segments (Figure 7.11). Shots 1, 

2 and 3 are dominated by a refracted wave, but the initial few geophones of each of 

these shots picks up the direct wave. To improve the error margins in the 

measurement of the direct wave a second, very short spread of geophones was laid 

out and two reversed shots (6 and 8) were undertaken. A change in the inflection of 

the best-fit lines for Shot 1 at 4 m (geophone 3), Shot 3 at 44 m (geophone 23), Shot 6 

at 20.5 m (geophone 6) and Shot 8 at 23.75 m (geophone 19) mark the crossover 

distance of the first arrivals of the first refracted wave. Although no second refractor 

is apparent from the data, this is likely to be a result of the limited number of shots 

associated with this survey, in particular the lack of shotpoints offset from the seismic 

spread.

The average velocity of the direct wave, based on the reciprocal of the gradient of the 

traveltime graphs for Shots 6 and 8 was 140 msec'1. Based on the minus time of Shots 

1 and 3, Shots 1 and 2 and Shots 2 and 3, the velocity of the refracted wave was 1886 

msec'1, varying between 1814 to 1945 msec-1. Using the Common Receiver Point 

method, the depth and morphology of the refractor was established from Shots 1 and 

3, Shots 1 and 2, and Shots 2 and 3 (Figure 7.12). The reciprocal time was established 

from direct field measurements for Shots 1, 2 and 3. There was excellent agreement 

between the refractor morphology from all pairs o f reversed shots. Based on the 

profile of the refractor established from Shots 1 and 3, the average depth of the 

refractor is 1.08 m, varying between 0.81 to 1.47 m (Figure 7.12). This refractor 

defines a boundary between a near-surface low velocity layer (140 msec-1) and an 

underlying higher velocity layer (1886 msec-1).

7.3.4 Electrical resistivity tomography
Resistivity Line CL-L1 (Figure 7.13), from ‘Pingo’ L in the Cledlyn valley displays 

three main zones of resistivity values. A thin (<5 m) zone of intermediate to high 

resistivity (125-700 Qm) (Zone CL-L1) is apparent between 0-100 m. The outside 

slope of the rampart at 75-90 m is characterised by particularly high resistivity (>400 

Om). This thin near-surface zone may extend across the profile, intermediate values

189



Chapter 7: Cledlvn Valiev

are observed between 110-210 m. A laterally and vertically continuous zone of low 

resistivity (mainly 40-100 Qm) extends throughout the profile (Zone CL-L2), beneath 

and through the rampart and the central basin of the feature. The upper contact of 

Zone CL-L2, with Zone CL-L1, is abrupt. This is particularly marked beneath the 

rampart. A zone of high resistivity (Zone CL-L3) underlies Zone CL-L2 with values 

increasing gradually with depth to values exceeding 230 Qm (green/yellow boundary 

on scale) at 25 m depth at the southeastern end of the profile and 5-10 m depth at the 

northwestern end. The contact between Zones CL-L2 and CL-L3 (taken as the 230 

Qm contour) appears to be undulating and displays a clear northwestward dip. Zone 

CL-L2 is relatively thin upslope from the landform, its maximum thickness being 

found at approximately 160 m along the resistivity profile.
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7.4 Interpretation: ‘Pingos’ U and L

7.4.1 Sedimentology

The shallow boreholes drilled into the rampart crest of ‘Pingo’ U and around the edge 

of the rampart of this landform (Figures 7.8a and 7.8b) reveal that the upper 4-5 m of 

superficial geology is dominated by a homogenous, matrix-supported, silty sandy 

gravel (diamict) (Figures 7.9a and 7.9b). Given its massive, structureless and compact 

characteristics, and the wide range of subangular to subrounded clasts, this diamict is 

interpreted as till. Matrix-supported, but clast-rich, tills of this type are common in 

deposits associated with the Teifi valley glacier of Welsh origins (Waters et al. 1997). 

In the context of the current view of the extent of the Welsh and Irish Sea ice masses 

in the area (Section 2.5.2) and the absence of a calcareous matrix or erratics of Irish 

Sea origin, the Cledlyn valley till is believed to be of Welsh origins. It is difficult, on 

the basis of shallow borehole data, to determine the environment of deposition of this 

till. Its compact nature suggests that it may have been deposited subglacially. On the 

basis of the evidence collected here however, it is possible that this till could have 

been deposited supraglacially or reworked in a paraglacial setting. However, the 

absence of stratification or layering within the exposures of till observed is not 

indicative of such environments of deposition. The diamict is not head however, as 

the volume of sediment involved is unlikely to be produced by periglacial slope 

processes operating in an area of such subdued topography. The grain-size analysis of 

the deposit (Figures 7.9a and 7.9b) closely matches the grain-size distribution of both 

basal and rampart material from ‘Pingos’ U, R, A and W (Watson and Watson 1972). 

This deposit can therefore be interpreted as a laterally extensive till within the 

Cledlyn valley. The rampart sediments therefore reflect the general superficial cover, 

as suggested by Gurney (1995).

In a stream cutting adjacent to ‘Pingo’ U, Watson (1971) described a section that 

intersected the rampart o f ‘Pingo’ R. A 2.25 m thick gravelly diamict, interpreted as 

head, overlay a thin (0.3 m) clay-silt with scattered fine gravel. The base of the 

sequence comprised 0.75 m of silty angular to rounded gravel, interpreted as fluvially 

deposited. This section was re-examined by Gurney (1994) who emphasised a greater 

thickness of clay-silt than that recorded by Watson (1971), and he also noted similar
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deposits in stream sections near ‘Pingos’ R, T and F and the site of the former 

footbridge at SN 476483. Gurney (1994, 1995) believed that the presence of these 

fine-grained sediments provided proof of the presence of a glacially dammed lake. 

Whilst localised pockets of lacustrine deposits clearly exist, it is clear from the 

borehole data and shallow sections within the Cledlyn valley (e.g. in the rampart of 

‘Pingo’ M), that at least the upper few metres of superficial deposits are dominated by 

a matrix-supported diamict that has been interpreted as head (Watson 1971) and 

glacial till (Gurney 1994, 1995). The latter interpretation is favoured, although 

localised reworking of this diamict was likely to have occurred. The highly 

consolidated and matrix-dominated nature o f the deposit and the frequent striated 

subangular to subrounded clasts are not consistent with the interpretation of this 

diamict as head, derived from the solifluction of frost shattered waterlain gravels and 

bedrock (Watson 1971). The ramparts are also composed of this diamict.

The thickness of peat (3 m) and of clayey-silt (>4 m) from the infill of the central 

basin of the ramparted depression (BH3-1997) (Figure 7.8c) supports the 

observations and grain-size analysis of Watson and Watson (1972) and Gurney 

(1994). Radiocarbon dating and palaeoecological analysis of the peat has revealed 

that it is early Holocene in age (Handa and Moore 1976; Shotton et al. 1975; Walker 

and James 2001). On this basis therefore, no organic deposits of pre-Holocene age 

were recovered from BH3-1997. The clayey silt from BH3-1997 (Figure 7.8c) does 

display clear evidence for the input of coarser clastic material, however, with a 

sample from 6.6-7 m containing 30% gravel by weight. The absence of significant 

volumes of clastic material in the basin-infill of the landform has always been 

acknowledged as a problem (Watson and Watson 1972; Watson 1976; Gurney 1995; 

Watson 1996). The thick sequence of fine-grained material (>8 m in ‘Pingo’ U) was 

believed to originate from sedimentation by suspension within the collapsing pond of 

the pingo, the sediment source being the ramparts, which were eroded by mass 

wasting (Watson and Watson 1972). However, if this was the case, then the grain-size 

of the basin-infill should be comparable to that of the ramparts. The absence of the 

coarse material in the basin is therefore inconsistent with derivation of basin fill 

sediments from the covering layer of either a pingo or a paisa (Watson 1996). 

Derivation of the thick basin-infill sequence from mass wasting of the ramparts alone 

appears unlikely (Gurney 1994). Apart from “infinitesimal traces” (p. 221 Watson
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and Watson 1972) of sand and gravel there is little evidence of the coarse gravel that 

is common within the rampart sediments. To counter this problem Gurney (1994) 

proposed that the fine-grained basin infill existed prior to the development of ground- 

ice, and that segregation ice formed within these frost-susceptible fine-grained 

materials, resulting in the growth of lithalsas. Unfortunately the boreholes at ‘Pingo’ 

U were unable to penetrate to the depths required to test the hypothesis that 

glaciolacustrine deposits underlie the ramparts. A low resistivity zone measured at 

‘Pingo’ U extended through the proven silt-clay basin-infill of the landform into the 

unproven sediments that extend beneath the ramparts and upslope of the feature 

(Harris 2001b). However, since different sediments with similar moisture contents 

might display similar electrical properties, it is not necessarily the case that 

glaciolacustrine deposits are more laterally extensive than those recorded by Watson 

and Watson (1972), as was suggested by Gumey (1994, 1995). Unpublished 

microgravity data is consistent with the basin structure indicated by coring (Harris 

2001b).

7.4.2 Ground penetrating radar

The interpretation of the GPR data is dependent upon the interpretation of the strong, 

high-amplitude, laterally continuous reflection that underlies the central basin of the 

landform in both GPR Lines 1 and 2 (Figure 7.10). Fortunately, this landform has 

been intensively explored using coring techniques (Watson and Watson 1972; Handa 

and Moore 1976; Gumey 1994; Walker and James 2001), which have provided 

important controls on the depth and interpretation of this reflector, and BH3-1997 

(this study), which has provided additional borehole information for geological 

control. The maximum depth of the reflector (2.75-2.8 m), determined from the 

known velocity at which EM waves travel through peat (0.038 mns*1) (Theimer et al. 

1994; Comas et al. 2005), correlates well with the depth of the base of the peat 

recognised from augering and boreholes (Watson and Watson 1972; Gumey 1994). 

Prominent reflectors have been reported from peat-clay/silt boundaries in other GPR 

surveys (Warner et al. 1990; Theimer et al. 1994; Jol and Smith 1995; Slater and 

Reeve 2002; Comas et al. 2004, 2005). The reflections above the prominent reflector 

therefore represent the stratigraphy and internal structure of the organic infill (peat 

and lacustrine sediment) of the basin, but the GPR data does not provide any 

information regarding the mineral infill of the landform. The absence of reflections
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from below this peat-mineral sediment boundary is in accord with knowledge of the 

rapid attenuation of EM waves by clay- or silt-rich sediments, particularly at the base 

of peat (Warner et a l 1990; Theimer et a l 1994; Jol and Smith 1995; Slater and 

Reeve 2002; Comas et a l  2004). As peat is 80-95% water (Hobbs 1986) the fluid 

conductivity of the pore waters is important for geological interpretation of GPR 

surveys of peat deposits. Increased fluid conductivity of pore waters at the base of 

peat deposits can attenuate EM wave propagation, reducing penetration depth of a 

GPR survey (Theimer et a l 1994; Slater and Reeve 2002) but this problem is thought 

unlikely to produce an abrupt change in a radar profile, such as the prominent 

reflector interpreted as the base of the peat (Comas et a l 2004).

The morphology of the peat-clay interface based on the GPR data matches the profile 

that was established by coring (Watson and Watson 1972; Gumey 1994). The profile 

of the interface in GPR Line 1 confirms the asymmetrical profile established for the 

base of the peat by Watson and Watson (1972). The prominent hump at 96 m in GPR 

Line 1 (Figure 7.10a) corresponds to a similar feature recorded by Watson and 

Watson (1972). The base of this peat was radiocarbon dated to 10,080±320 yrs BP 

and 10,060±380 yrs BP (Shotton et a l 1975) and it is believed that the buried ice had 

melted out before peat development because of the undisturbed contact between the 

peat and mineral soil (Watson 1975,1982).

The basal 0.5 m of the organic infill in both GPR lines is characterised by a 

homogenous zone (GPR Zone 2) with few high amplitude reflections. This zone may 

represent a layer of organic material deposited in open water conditions (gyttja), prior 

to the initiation of peat development. Watson and Watson (1972) did not subdivide 

the organic infill of the basin of ‘Pingo’ U, but both Handa and Moore (1976) and 

Walker and James (2001) describe a unit of detritus mud or gyttja (30-75 cm thick) 

overlying the basal clay. Both palynological studies reported the presence of aquatic 

taxa indicative of an open water habitat within this unit. A radar unit with similar 

features (lack of prominent reflections) was observed at Caribou Bog, Maine, USA 

although a distinct reflection was also observed between the peat and lake sediments 

(Slater and Reeve 2002; Comas et a l 2004). Such a reflection is absent from both 

GPR lines at ‘Pingo’ U.
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As the GPR signal is primarily controlled by the water content of a material through 

the relative dielectric permittivity (er), the strong reflections of the upper 2-2.25 m of 

the organic infill represent distinct stratigraphical changes associated with the 

physical properties of the peat that influence the moisture content (e.g local moisture 

content, bulk density, type and properties of organic matter content) (Theimer et al.

1994). These reflections may be due to changes in the bulk density or organic content 

of the sediment due to variations in vegetation type or local groundwater levels. 

These may reflect key Holocene palaeoenvironmental events, perhaps associated with 

regional changes in moisture availability.

7.4.3 Seismic refraction

Given that BH1-1998 reached a depth of 5 m through unconsolidated sediment, the 

shallow refractor at a depth of ca. 1 m observed in the seismic refraction data (Figure 

7.12) must represent an internal division of the unconsolidated, superficial geology. 

Given its shallow depth, this refractor is thought to represent the boundary between 

the shallow weathered zone and the underlying diamict recorded at the top of each 

borehole. Although the depth derived from the seismic refraction survey appears to be 

significantly greater than that apparent from the boreholes, this may simply reflect the 

error margin of the layer velocity as it was calculated from the reciprocal of the 

gradient of the traveltime graphs of Shot 6 and Shot 8, rather than from a minus 

graph. A velocity of 140 msec*1 is extremely low for weathered unconsolidated 

deposits (Brabham et al. 1999), and is in fact less than the speed of sound in air (330 

msec'1).

The higher velocity layer (1886 msec'1) underlying the weathered zone (Figure 7.12) 

corresponds to the unweathered till that was recorded in BH1-1998 and BH1-1997. 

The P-wave velocity is comparable to seismic velocities for unconsolidated glacial 

deposits in North Wales (MacDonald 1994; Harris et al. 1997; Brabham et al. 1999). 

Unfortunately, as a result of geographical constraints, the lack of shots far offset from 

the geophone spread meant that it was not possible to determine the depth to bedrock 

from this survey.
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7.4.4 Electrical resistivity tomography
A preliminary interpretation of the resistivity data from ‘Pingo’ U has been presented 

by Harris (2001b), but the processed data from ‘Pingo’ L (Figure 7.13) has not 

previously been presented. In the absence of direct sedimentological evidence from 

‘Pingo’ L the following interpretation relies heavily on boreholes, exposures and trial 

pits from elsewhere in the Cledlyn valley. Despite being the largest landform in the 

Cledlyn valley (210 x 140 m) and having steep rampart slopes (ca. 18°), the basin of 

‘Pingo’ L is shallow like ‘Pingo’ M, with only a thin (5 cm) infill of grey clay 

(Watson 1975).

Zone CL-L1 represents the unsaturated matrix-supported gravelly diamict that has 

been extensively recorded throughout the Cledlyn valley. The compact, silty matrix 

of the sediment does limit the interstitial water-bearing capacity of this sediment, but 

the particularly high resistivity zone in the rampart is believed to be a function of 

lateral seepage of groundwater to the north, draining the rampart sediments. The 

laterally extensive, underlying zone of low resistivity (Zone CL-L2) may also 

represent the same lithological unit, but in a water-saturated state. However, within 

such a thick sequence of unconsolidated glacial deposits (>25 m), sedimentological 

heterogeneity is commonplace, and units of sands and gravels or clays are believed 

likely. However, given the thin minerogenic infill within the basin of ‘Pingo’ L it is 

not believed that Zone CL-L2 represents a thick laterally extensive sequence of 

glaciolacustine silts and clays within the valley, as suggested by Gumey (1994,

1995).

The high resistivity zone (Zone CL-L3) at the base of the resistivity profile (>230 

Dm) is interpreted as bedrock. Although the resistivity values of this zone are quite 

low for bedrock, nearby resistivity values derived from bedrock are between 468 Dm 

(at Lampeter) to 610 Om (at Cornel) (Heaven et al. 1999). A gradual decrease in the 

bedrock resistivity from the mouth of the Teifi upvalley has been observed (values ca. 

5000 Dm having been reported near Cenarth), and this has been attributed to an 

increase in the sandstone component of the rock eastward (Carruthers et a l 1997; 

Heaven et al. 1999). In the Cledlyn valley, rockhead is near to, or at the surface above 

215-245 m OD (Watson 1971) and bedrock with no superficial cover is apparent in
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exposures at Coedlanau-Fach (SN 469487) and Cathal (SN 468474) (Figure 7.2) 

(Gumey 1994). Despite the large ramparts just downslope, bedrock is also exposed at 

the surface behind the house at Llwynfallen (SN 471485) (Gumey 1994, 1995). The 

morphology of the contact between resistivity Zones CL-L2 and CL-L3 is consistent 

with these observations, as it clearly dips northwards beneath ‘Pingo’ L, the 

superficial deposits apparently thickening towards the centre of the Cledlyn valley. 

The resistivity profile from ‘Pingo’ U also indicates a thick sequence of 

unconsolidated deposits (>15 m) beneath ‘Pingo’ U (Harris 2001b), in accordance 

with observations from augering (Watson and Watson 1972).
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7.5 Site description and survey: ‘Pingo’ Q

A third ramparted depression was investigated in the Cledlyn valley on the 3rd March 

2005. This landform corresponds to ‘Pingo’ Q, which was mapped, but not 

investigated, by Watson (1971). It is located on the southern slopes of the Cledlyn 

valley, to the east of Rhydnis (Figure 7.2). ‘Pingo’ Q is a peat-filled basin enclosed 

by a large rampart on its upslope side that extends west from ‘Pingo’ N and by a 

subdued rampart downslope (Figures 7.3 and 7.4). Figure 7.14 shows the locations of 

three trial pits, excavated, along a transect, across the enclosing ridge of the landform. 

Clast fabrics based on more than 25 clasts were measured and two grain-size samples 

(one from a depth of ca. 1 m and one at the base, ca. 2 m) were recovered from each 

trial pit. Two resistivity lines were also undertaken on the same day as the trial 

pitting, using an IRIS instruments Syscal Junior Switch 72. Line CL-Q1 ran north- 

northeast to south-southwest across the landform (140 m in length, 2 x 1 8  electrode 

cables, 4 m spacing of electrodes), intersecting the peat-filled basin. Line CL-Q2 (180 

m in length, 2 x 1 8  electrode cables, 5 m spacing of electrodes) ran east-northeast to 

west-southwest, just inside the upslope rampart of the feature (Figure 7.14 and 7.15). 

Due to the availability of the LiDAR data supplied by the Environment Agency 

(Figure 7.3 and 7.14) no EDM derived DTM of the landform was produced, but 

topographical profiles were measured in association with the resistivity profiles.
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Figure 7.14: Locations of sedimentological and geophysical surveys at ‘Pingo’ Q, Cledlyn valley. Digital terrain model 
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Figure 7.15: ‘Pingo’ Q, Cledlyn valley, (a) Peat-filled basin. Note the subdued rampart downslope (left of photograph) compared to the large 
scale of the upslope rampart (right of photograph). The location of trial pit 3 on the inner slope of the upslope rampart is indicated by the 
position of the mini digger. The resistivity line 2 ran eastwards from the point where this photo was taken through the EDM station on the 
rampart in the far distance; (b) ‘Pingo’ Q from the east. Basin is located out of the line of sight, between the large rampart in the middle 
distance and the house.
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7.6 Results: ‘Pingo’ Q

7.6.1 Sedimentology
The three trial pits excavated into the rampart of ‘Pingo’ Q were dominated entirely 

by a homogenous, hard and compact 2.5Y 5/3 light olive brown, orange mottled, 

well-graded, poorly sorted matrix-supported silty sandy clayey gravel diamict 

(Figures 7.16a-d and 7.17). The diamicton contained subangular to subrounded, 

highly striated clasts of fine sandstone and mudstone (Figures 7.16e and 7.16f), and 

occasional subangular clasts of quartz.

The diamicton of trial pit 1 (southern rampart slope) has a strongly preferred south to 

southeastward dipping clast fabric (high fabric strength, SI = 0.74, S3 = 0.09), 

roughly perpendicular to the ridge trend and parallel to the local slope azimuth, the 

eigenvector of maximum clustering trending 157°, and dipping 22° (Figure 7.18 and 

7.19). The vast majority of clasts measured in trial pit 1 had gently dipping a-axes 

(>80% 0-40°) with a clear peak between 11-20°. However, 16% of a-axes did have 

dips of 50-80°, with 8% of clasts having dips of 71-80° (Figure 7.18). Trial pit 2 

(rampart crest) has a weaker clast fabric than pit 1 (SI = 0.58, S3 = 0.15) with a NW- 

SE preferred orientation (approximately perpendicular to the ridge crest trend), the 

eigenvector of maximum clustering trending 328°, dipping 0.1°. Gently dipping a- 

axes were dominant (85% <30°) and no measured clasts had a-axes dips of >52°. The 

clasts did not have a preferred direction of dip however, with a roughly even 

distribution of clasts dipping northward and southward (Figure 7.18). The clasts from 

trial pit 3 (northern rampart slope) have a stronger clast fabric than pit 2, but weaker 

than pit 1 (SI = 0.63, S3 = 0.14), the eigenvector of maximum clustering trending 

318° (approximately perpendicular to the ridge crest and parallel to the slope 

azimuth), dipping 40.7°. Trial pit 3 was characterised by a much wider and even 

distribution of a-axes dip angles in contrast to trial pits 2 and 3 (Figure 7.18) but was 

marked by a strongly preferred dip direction to the northwest. The fabric shape 

diagram (Figure 7.19) indicates that all three clast fabric sample sets have a clustering 

fabric shape, characterised by high elongation and low isotropy. All samples are 

dominated by a SE-NW orientation of clasts, although the preferred dip direction on 

either side of the rampart is in the direction of the rampart slope.
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Figure 7.16: Excavations of the rampart of ‘Pingo’ Q, Cledlyn valley: (a) Trial pit 1, 
‘Pingo’ Q; (b) Trial pit 2, ‘Pingo’ Q; (c) Matrix-supported diamict, trial pit 2; (d) 
Matrix-supported diamict, trial pit 2; (e) Striated clast, rampart of ‘Pingo’ Q, scale  
bar 5 cm; (f) Striated clast, rampart of ‘Pingo’ Q, sca le  bar 5 cm.
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Figure 7.19: (a) Eigenvalues and eigenvectors for ‘Pingo’ Q, Cledlyn valley; (b) 
Fabric shape diagram for clast fabric data from ‘Pingo’ Q, Cledlyn valley.
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7.6.2 Electrical resistivity tomography

Resistivity Line CL-Q1 has three distinct zones of differing resistivity values (Figure 

7.20a). The near surface (including the ramparts and the central basin) is 

characterised by a 2-5 m thick zone of intermediate resistivity, generally 125-300 Qm 

from 0-110 m (Zone CL-Q1). At 65-85m however, there is a localised but marked 

high resistivity zone of >700 Qm. Beneath the near-surface Zone CL-Q1 there is a 

thick (15-20 m) zone of very low resistivity (mainly 30-100 Qm) (Zone CL-Q2) that 

between 110-134 m extends upwards to the ground surface. At the base of the profile, 

underlying Zone CL-Q2, the resistivity increases to higher values (230-400 Qm) at 

depths of 25-30 m below the ground surface (Zone CL-Q3). The boundary between 

Zones CL-Q2 and CL-Q3 in Line CL-Q1 has a slight north-northeastward dip.

Line CL-Q2 (Figure 7.20b) has very similar characteristics to Line CL-Q1. The 

uppermost, near-surface zone is characterised by intermediate resistivity (125-300 

Qm) (Zone CL-Q1). This zone is thicker in Line CL-Q2 than Line CL-Q1, extending 

to a depth of 7.5 m at the east-northeastern end of the profile (0-40 m). Below Zone 

CL-Q1 is a laterally continuous zone of low resistivity (30-230 Qm, but 

predominantly 30-100 Qm) (Zone CL-Q2) that is 15-20 m thick, underlain by an 

intermediate to high resistivity zone (230-600 Q) (Zone CL-Q3). The boundary 

between Zones CL-Q1 and CL-Q2 is gradational in nature, the resistivity of Zone CL- 

Q3 increasing rapidly with depth. However, resistivity values do not change laterally, 

suggesting a horizontal boundary between Zones CL-Q2 and CL-Q3.
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7.7 Interpretation: ‘Pingo’ Q

7.7.1 Sedimentology

The preliminary investigations of the sediments within the trial pits at ‘Pingo’ Q are 

inconclusive in discriminating the depositional origins of the homogenous hard and 

compact clayey silty diamicton that makes up the rampart. The grain-size distribution 

of this sediment, found throughout all three trial pits (Figure 7.17), indicates that it is 

the same matrix-supported gravelly diamict that was recovered from the boreholes at 

‘Pingo’ U (see Section 7.3.1), and which appears to be widely distributed throughout 

the Cledlyn valley. This diamict is clearly till, but whether it is in situ or has been 

reworked is uncertain. The presence of heavily striated clasts (Figures 7.16e and 

7.16f) indicates that at least a component of this sediment was subglacially 

transported at some period during its history, but it is unclear whether this represents 

the final stage of deposition.

The clast fabric analysis of trial pits 1 and 3 (Figures 7.18 and 7.19) shows that the 

dip direction of the clasts is aligned with the rampart slope azimuth, the clasts of trial 

pit 1 dipping southwards, and those of trial pit 3 dipping to the north. In contrast, the 

clasts in trial pit 2, located on the Crestline of the rampart do not display such strong 

fabrics with no clear preferred direction of dip. Irrespective of the direction of dip, the 

orientation of clasts in all three trial pits is perpendicular to the long axis of the 

rampart. The shallowly dipping clast fabrics that are particularly characteristic of trial 

pits 1 and 2 suggest that at least part of the diamict was most probably deposited by 

gravitational mass movement processes, but they cannot discriminate whether 

deposition of this unit was by glacial or periglacial origins. Whilst the mass wasting 

of till down the steep flanks of a ground-ice mound (pingo or lithalsa) could result in 

these slope-related fabrics, it is also possible that they were the result of supraglacial 

deposition on the surface of a stagnating ice mass, or even later paraglacial 

modification of glacial landforms. Clast fabrics within glacially derived circular 

ridges, with marked orientations perpendicular to the long axis of the ridges, have 

been measured in Scandinavia and have been interpreted as representing either the 

subglacial squeezing (Hoppe 1952; 1957), or the gravitational re-working (Gravenor 

and Kupsch 1959; Knudsen et al 2006), of till. If the ridges in the Cledlyn valley are
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of glacial origins, then the latter is the most likely explanation for the shallowly 

dipping clast fabrics from the three trial pits. However, this does not mean that the 

primary formation of these ridges could not have been the result of subglacial 

processes; the reworking of the diamict may have been post-formational. This 

suggestion is supported by the heavily striated clasts, which indicate the influence of 

subglacial processes, and the absence of even crude stratification within the rampart 

sediments, which would have provided independent evidence for the reworking of 

sediment by slope processes. The more steeply dipping distribution of clasts within 

trial pit 3 could have been the product of the collapse of sediments through the 

meltout of buried ice (either ground-ice or stagnating glacier ice), or post-depositional 

frost sorting (Watson and Watson 1971).

7.7.2 Electrical resistivity tomography

The resistivity surveys do not provide clear information on the internal structure of 

landform ‘Pingo’ Q. However, both lines indicate the nature and thickness of the 

superficial valley-fill deposits within which the landform (and the adjacent ‘Pingo’ N) 

is developed. The upper resistivity zones (CL-Q1 and CL-Q2) are interpreted as 

unconsolidated glacial deposits. Whilst the boundary between the two zones may 

reflect a lithological contact (e.g. glacial till overlying glaciolacustrine clay), 

alternatively it may simply represent a change in the pore-water content of a single 

lithological unit, perhaps due to the level of the water table. The apparent 

homogeneity of resistivity Zone CL-Q2 may mask significant complexity in the 

superficial sequence, different lithologies may result in similar electrical properties, 

or the resolution of the survey may mask laterally or vertically restricted sedimentary 

units. Water-saturated silty diamicts at depth that are less consolidated than those at 

the surface could have similar resistivity values to fine-grained glaciolacustrine 

deposits.

The marked high resistivity zone at the base of both profiles (Zone CL-Q3) is 

interpreted as bedrock. The gradational nature of the contact between Zones CL-Q2 

and CL-Q3 can be explained by either i) a layer of superficial deposits of intermediate 

resistivity (e.g. sand and gravel) resting on bedrock; ii) a weathered layer of bedrock; 

or iii) the coarse resolution of points of measurement at the base of the resistivity 

profile resulting in average resistivity values that are intermediate between the low
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resistivity unconsolidated deposits and the high resistivity bedrock. In any case, the 

resistivity values below a depth of 25 m are comparable to those interpreted as 

bedrock in the resistivity profile from ‘Pingo’ L (Figure 7.13) and from resistivity 

soundings in the Teifi valley near Lampeter and at Cornel (Heaven et al. 1999). The 

depth of bedrock indicated by the two resistivity lines at ‘Pingo’ Q is therefore in 

accordance with the depth suggested by the resistivity line undertaken at ‘Pingo’ L. 

The interpretation that Zone CL-Q3 represents bedrock is supported by the 

morphology of the boundary between Zones CL-Q2 and CL-Q3. In Line CL-Q1 the 

boundary dips northwards, towards the centre o f the Cledlyn valley, whilst it is 

horizontal in Line CL-Q2, which runs parallel to the axis of the valley. At ‘Pingo’ L 

this boundary also dipped northwards, again towards the centre of the valley. The 

morphology of the upper contact of the high resistivity layer at the base of all 

resistivity profiles from the Cledlyn valley therefore suggests that this boundary may 

represent a palaeo-surface of the pre-glacial (pre-late Devensian?) river valley. The 

data presented here and from ‘Pingo’ U (Harris 2001b), indicate that there is a thick 

valley-fill sequence of unconsolidated materials (ca. 20-25 m) in the centre of the 

Cledlyn valley. Additional seismic surveys should be employed to verify the 

interpretation derived from the resistivity data. However, only a deep borehole to 

bedrock would clarify the internal composition of the unconsolidated deposits 

(Watson 1996).
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8 Cletwr Valley

8.1 Introduction

Like those of the Cledlyn valley (Chapter 7), the ramparted depressions of the Cletwr 

Fawr basin (Figure 8.1) have a ‘mutually interfering’ character with a complex 

arrangement of superimposed forms (Watson and Watson 1974). Two groups of 

landforms with different characteristics have been identified in the Cletwr Fawr 

valley: i) round and oval forms (Llawr Cwrt group); ii) linear or very elongate forms 

(Glan-rhyd-y-dre (Glantre) and Darren Fawr groups) (Watson and Watson 1974) 

(Figures 8.2, 8.3 and 8.4). Although morphologically very different, and segregated in 

terms of their distribution, Watson and Watson (1974) believed that both groups in 

the Cletwr valley were the result of a common process (open system pingo 

development), and that the variance in morphology may have been a response to 

different groundwater conditions. Parallels have been drawn between the elongate 

features and linear landforms reported from the Hautes Fagnes, Belgium (Pissart 

1963) and from the Hohe Venn region of Germany (Muckenhausen 1960).

The bedrock of the Cletwr Fawr valley is characterised by mudstones and sandstones 

of Ordovician and Silurian age (Figure 8.5) (BGS Sheet 194: Llangrannog, 

unpublished map). Most of the valley where ramparted depressions are situated (e.g. 

around 241000.250000 and 242400.248900) is underlain by mudstones of the 

Claerwen Group and Cwmere Formation, both of Llandovery Series (Silurian) age. 

Mudstones and sandstones of the Yr Allt Formation of Ashgill Series (Ordovician) 

age underlie these Silurian rocks at depth and outcrop to the southeast and southwest 

of the river valley (Figure 8.5). A series of west-southwest to east-northeast trending 

faults have been mapped across the area (Figure 8.5), but these do not directly 

underlie any of the ramparted depressions. Seepage of groundwater is likely through 

these faults (and numerous smaller, unmapped discontinuities), and through the more 

permeable sandstone units within the Allt Goch Sandstone Formation, the Rhyddlan 

Formation and parts of the Yr Allt Formation.

Watson and Watson (1974) conducted a series of investigations of the internal 

structure of the enclosed basins at Rhos Llawr Cwrt (‘Pingos’ 1 and 3) and at Glan-
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rhyd-y-dre (Glantre) (‘Pingo’ 5 and rampart ‘a’) (Watson and Watson 1974; Watson 

1975, 1976). The peat-filled basins of ‘Pingos’ 1 and 3 (Llawr Cwrt group) (Figures 

8.2 and 8.6) were underlain by a well-sorted, dark grey clay (<0.2 m thick), 

containing scattered gravel (mostly <2 cm), and incorporating small amounts of plant 

debris and pollen (Watson and Watson 1974). Beneath this deposit was a gritty, 

gravelly, dark grey clay greater than 1.55 m in thickness (Watson and Watson 1974). 

Based on a transect of auger points, the basins of both ‘Pingos’ 1 and 3 appeared to 

have an asymmetrical form (Watson and Watson 1974), the maximum depth of 

‘Pingo’ 1 being ca. 4 m and the smaller ‘Pingo’ 3 ca. 2.5 m. Pollen analysis of the 

peat infill of ‘Pingo’ 1 was conducted by Handa and Moore (1976), whilst two 

radiocarbon dates of 10,170±220 yrs BP and 8,260±300 yrs BP from the lowermost 

peat within the basin were provided by Shotton et al. (1974). ‘Pingo’ 2 (Watson and 

Watson 1974) at Rhos Llawr Cwrt was augered by Gumey (1994, 1995). This 

revealed that the contact between the mineral soil (smooth, structureless, plastic, blue 

grey (5B 7/1) silty-clay) and the overlying peat infill in the central basin was at a 

depth of less than 4.1 m (Gumey 1994).

The linear rampart of ‘Pingo’ 5 at Glan-rhyd-y-dre (Figure 8.3b) impounded a 3.3 m 

sequence of peat within an asymmetrical basin (Watson and Watson 1974), but more 

detailed investigations of the basins of these linear landforms have not been 

undertaken. A section through linear rampart ‘a’ (Watson and Watson 1974) of the 

Glan-rhyd-y-dre group (Figure 8.3b) was provided by the construction of a drainage 

ditch in the early 1970s. The section displayed a zone of interbedded silts and fine 

gravels, alongside a zone of deformation with upturned beds, and vertical clast 

fabrics. Watson (1975) argued that this section provided evidence for deformation 

from outward ice expansion, alongside evidence for pingo collapse and related mass 

movement processes (Watson 1975; 1976). Similar features have been recorded in 

rampart sections from Llangurig (Pissart 1963), the Hautes Fagnes, Belgium (see 

Section 2.3.1) (Bastin et al. 1974; Pissart 1983, 2000; Pissart et a l 1981; Pissart and 

Juvigne 1980), and in active pingos in the Canadian Arctic (Pissart 1967; Pissart and 

French 1976).

214



254000

|  253000
tro

252000

m * }  > •

. '//A  INIcRMXP

■ J T
>  4
t * Crua-vCrug-y-eryr Quarry 
Area of 
Figure 8.2

251000

250000

249000

248000

247000

246000

t

Area of 
Figure 8.3

TalgarregQ

d
letwr Fach

Cledlyn

ewydd

Cletwr Fawr

W v
Bwdram

>

* r m

Cletwr Fawr

y ;
/

■ft Mm
239000 240000 241000 242000 243000 244000 245000 246000 247000 248000 249000 250000

Eastings
Figure 8.1: NEXTMAP digital terrain model (DTM) of the upper reaches of the Cletwr and Cledlyn valleys (© 
Intermap Technologies Inc). Areas of Figures 8.2 and 8.3 indicated.



N
or

th
in

gs

Eastings

Figure 8.2: Aerial photograph of the Cletwr Fawr valley with the locations of specific circular ramparted depressions 
(’Pingos’ 1,2, and 3), zones of linear ‘pingos’ (’Pingo’ 5, and rampart ‘a ’) and key farms labelled (© Getmapping Pic 2006).

250000

249500

249000

240000 240500 241000 241500 242000 242500 243000



between

Rampart

250500

250000

249500

249000

248500

Crug-y-eryr Quarry

WT' f

250500-r-

241500 242000 242500 243000

250000

249500

249000

248500

Ramparts as mappad by 
Watson and Watson 1974

*

Linear

241500 242000

Eastings

Landforms destroyed
1970 and 1974.

Linear

Glan-rhyd-y-dre

242500 243000
Eastings

Figure 8.3: Shaded relief Digital Terrain Model (DTM) of landforms in the Cletwr Fawr valley, derived from LiDAR airborne surveying 
(© Environment Agency copyright and/or database right 2006). (a) LiDAR DTM data with 4 x vertical exaggeration; (b) LiDAR DTM 
data with 4 x vertical exaggeration with geomorphological mapping of Watson and Watson (1974) overlaid.



Darren Fawr

N

A

B asin Complex microtopographyRampart 200 400 600 Metres

Figure 8.4: Geomorphological map of the Cletwr Fawr valley ramparted depressions (SN 41080.49977), based on mapping 
from stereoscopic aerial photographs. LANDLINE data © Crown Copyright/database right 2006. An Ordnance 
Survey/(Datacentre) supplied service.



Silurian
[ ' '“• M l  Devils Bridge Formation,
I— . . - . I interbedded mudstones and sandstones

| | Allt Goch Sandstone Formation

Claerwen Group, mudstones

Rhyddlan Formation,
interbedded mudstones and sandstones

Cwmere Formation, mudstones

Ordovician
Yr Allt Formation, sandstones

Yr Allt Formation, silty mudstone 

Nantmel Mudstones Formation.

Faults

240000 241000 242000 243000 244000 245000

Eastings

Figure 8.5: Bedrock geology of the Cletwr Fawr Valley (© British Geological Survey) draped on the surface of a NEXTMAP digital 
terrain model (DTM) with 3 x vertical exaggeration (© Intermap Technologies Inc.). Note that this map is adapted from unpublished, 
unchecked, draft mapping by the British Geological Survey and may therefore contain som e inaccuracies.



» 
i

Figure 8.6: Ramparted depression (‘Pingo’ 3) at Rhos Llawr Cwrt, Cletwr Fawr. The boreholes were drilled in a transect 
across the subdued rampart of the landform.



Chapter 8: Cletwr Valiev

8.2 Site description and survey

The linear ridges near Glan-rhyd-y-dre and Darren Fawr were not investigated during 

this research project. Instead, geological and geophysical investigations were 

concentrated on the round and oval forms of the Llawr Cwrt Group. However, as 

these two groups are considered by Watson and Watson (1974) to have common 

origins, and because LiDAR data are available for the linear ramparts (Figure 8.3), a 

brief outline and discussion of the geomorphology and possible origins of the linear 

landforms is also provided in this section.

8.2.1 Glan-rhyd-y-dre and Darren Fawr groups
LiDAR-derived digital terrain model data (Figure 8.3) show that the 

geomorphological mapping of the landforms near Glan-rhyd-y-dre and Darren Fawr 

by Watson and Watson (1974) was highly accurate (Figure 8.3b). Many of the 

landforms originally mapped by Watson and Watson (1974) were not recognised 

using modem aerial photographic resources (Figures 8.2 and 8.4), but are clearly 

apparent in the LiDAR data (Figure 8.3). The absence of some ramparts mapped by 

Watson and Watson (1974) in the LiDAR dataset (e.g. around 242250.249500) is 

probably the result of agricultural improvements during the late 20th Century. For 

example, several landforms at Glan-rhyd-y-dre (Glantre) were bulldozed flat in the 

1970s (Watson and Watson 1974, Sybil Watsonpers comm.) (Figure 8.3).

The LiDAR data however, does indicate that the morphology of the landforms in the 

Cletwr Fawr valley is rather more complex than the well-defined, linear, sinuous 

ramparts of collapsed permafrost ground-ice mounds suggested by the 

geomorphological map produced by Watson and Watson (1974) (Figure 8.3b). This 

complexity of “..close-set ridges, sometimes forming irregular “plateaus”..” (Watson 

and Watson 1974, pg. 219) (e.g. around Glan-rhyd-y-dre), was attributed to the 

repetitive, cyclic development of linear pingos (Watson and Watson 1974), but it is 

unclear from the LiDAR data how such an interpretation can be justified. With the 

exception o f ‘Pingo’ 5, investigated by Watson and Watson (1974), there are no other 

examples of linear, enclosed depressions in the Cletwr valley. Instead, many of the 

other linear ridges appear to be solitary landforms that cannot be grouped with other 

ridge fragments to form enclosed rampart forms (Figure 8.3a). As a result, these
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ridges do not impound central basins (Figure 8.3a). On the basis of the LiDAR data 

therefore, these landforms do not appear to fulfil the basic criteria necessary to enable 

their classification as ramparted ground-ice depressions. The suggestion that clearly 

defined, linear ramparted depressions can be identified from the complex association 

of ridges is therefore somewhat misleading. On the basis of the geomorphology 

alone, several of the linear ridges could have formed as the result of alternative 

processes unrelated to the development of permafrost ground-ice mounds. Given that 

the Cletwr Fawr valley was glaciated during the late Devensian (see Section 2.5.2.2), 

the stagnation and meltout of glacier ice could provide an alternative hypothesis for 

the origins of many of the linear sinuous ridges near Glan-rhyd-y-dre and Darren 

Fawr. In at least one case, the depressions between long sinuous ridges mapped as 

ramparts by Watson and Watson (1974), could have been the result of fluvial 

(meltwater?) incision of a thick sequence of superficial sediments by tributary 

streams of the Cletwr Fawr, rather than the development of ground-ice (Figure 8.3a).

8.2.2 Rhos Llawr Cwrt group
One ramparted depression was investigated at Rhos Llawr Cwrt in the Cletwr valley. 

This subdued landform corresponds to ‘Pingo’ 3 investigated by Watson and Watson 

(1974) (Figure 8.6). It is situated on the north-facing slope of the Bwdram valley, a 

tributary of the Cletwr Fawr, at an altitude of approximately 195 m OD. Rhos Llawr 

Cwrt was selected as an appropriate site for geological and geophysical investigation 

because the model of open system pingo development in west Wales, proposed by 

Watson and Watson (1974), was developed at this site. ‘Pingo’ 3 was selected from 

the numerous landforms at Rhos Llawr Cwrt because the morphology of the peat- 

filled basin was already known (Watson and Watson 1974), physical access to the 

landform was straightforward, and because the basin had not been affected by 

historical peat cutting (Watson and Watson 1974), which made ‘Pingos’ 1 and 2 

unsuitable for the safe deployment of drilling and geophysical equipment.

Figure 8.7 shows the locations of the investigations described below. Three boreholes 

were drilled on the 28th and 29th September 2004. Borehole 1 was drilled directly 

through the rampart crest (Figure 8.7), and reached a depth of 5.5 m. The second, 

Borehole 2, was drilled into the peat-filled basin, just inside the inner edge of the 

rampart (Figure 8.7), and reached a depth of 3 m. A third borehole, Borehole 3, was
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drilled just beyond the outer edge of the rampart (Figure 8.7), and reached a depth of 

5 m. Thirteen representative disturbed samples were extracted from the cores and 

later subjected to grain-size determination in the laboratory. The three boreholes were 

supplemented by three electrical resistivity and induced polarisation (IP) surveys, and 

a seismic refraction line.

Three resistivity and IP surveys (Lines RLC-1, RLC-2 and RLC-3) were undertaken 

utilising an IRIS instruments Syscal Junior Switch 72. Line RLC-1 (106 m in length, 

3 x 1 8  electrodes cables, 2 m spacing of electrodes) and Line RLC-2 (140 m in 

length, 2 x 1 8  electrode cables, 4 m spacing o f electrodes) both ran north-northwest to 

south-southeast across the landform, orientated so they were aligned through all three 

boreholes (Figure 8.7). Lines RLC-1 and RLC-2 overlapped; electrode 1 (0 m) is 

common to both Lines RLC-1 and RLC-2, so Line RLC-2 simply extends the survey 

to the north by 34 m (Figure 8.7). Compared to Line RLC-1, Line RLC-2 extends the 

maximum depth of survey from 17 m to 25 m, but provides a lower resolution 2D 

profile as a result of the larger spacing between the electrodes (4 m rather than 2 m 

for Line RLC-1). Line RLC-3 (105 m in length, 2 x 1 8  electrode cables, 3 m spacing 

of electrodes) was perpendicular to Lines RLC-1 and RLC-2, running east-northeast 

to west-southwest.

One short, reversed, P-wave seismic refraction line was shot along the northern 

rampart of the landform, intersecting the location of Borehole 1 (Figure 8.7). 

Geophone 1 was located on the westernmost end of the spread with geophone 24 to 

the east. A 2 m spacing between geophones was deployed resulting in a 46 m long 

spread. The seismic line was orientated roughly parallel to resistivity/IP Line RLC-3, 

but was offset 20 m to the north of the resistivity/IP profile. Borehole 1 was located 

approximately at the centre of the geophone spread.

A site survey utilising an EDM theodolite was undertaken to produce a digital terrain 

model of the landform and its surrounding topography (Figure 8.7). The boreholes 

and geophysical surveys were georeferenced by correcting the EDM data using 

handheld GPS data and Getmapping aerial photography. LiDAR data of the Cletwr 

valley (Figure 8.3a) does not provide coverage of these landforms.
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8.3 Results

8.3.1 Sedimentology

The upper 4-4.5 m of Borehole 1 and Borehole 3 were dominated by poorly sorted, 

well-graded, compact, non-calcareous gravelly silt to silty gravel diamictons (Figures 

8.8a, 8.8c and 8.9a). The gravels comprised subangular to rounded mudstone and 

sandstone clasts, with long axes up to 7 cm in length. Underlying these upper 

sediments, more than 0.5-1 m of non-calcareous clayey silt was found beneath 4.75 m 

in Borehole 1 and 3.91 m in Borehole 3 (Figures 8.8a, 8.8c, 8.9a and 8.9b). This 

lower unit was characterised, in parts, by very fine, faint laminations (e.g. BH3 4.5-5 

m) (Figure 8.9b) and occasional small clasts (e.g. BH1 5-5.5 m). The total thickness 

of this unit of clayey silt is unknown as neither of the boreholes was able to penetrate 

it.

The upper diamicton in Boreholes 1 and 3 can be considered as a single unit, but 

there was some vertical variation in the grain-size of this unit. The upper samples of 

Boreholes 1 and 3 (BH1 0.5-1 m, 1.5-2 m, BH3 0.5-1 m) have a much lower gravel 

component than the sediments below 2.75 m in Borehole 1 and 1.3 m in Borehole 3 

(Figure 8.10) Beneath these depths, samples BH1 2.75-3 m, BH3 1.3-1.5 m, 1.5-2 m 

and 3.5-4 m plot within a very tightly constrained grain-size envelope (Figure 8.10).

Two slightly different components can be recognised within the unit of clayey silt at 

the base of Borehole 1 (4.75-5.5 m) and Borehole 3 (3.91-5 m BH3), with a laminated 

clayey silt, free of gravel and sand-sized material (BH1 4.75-5 m, BH3 4.5-4.75 m), 

underlain by a clayey silt including occasional small clasts (BH1 5-5.5 m, BH3 4.75- 

4.95 m, 4.92-5 m) (Figures 8.8a, 8.8c and 8.10). The clayey silt was characterised by 

an absence of organic material and was non-calcareous throughout. The fence 

diagram, adjusted for topography (Figure 8.8d), shows that the boundaries between 

the upper silty gravelly diamicton (0-4.75 m in BH1), the gravel-free clayey silt 

(4.75-5 m in BH1), and the clayey silt with occasional small clasts (5-5.5 m in BH1), 

can be correlated laterally at the same relative height with the equivalent boundaries 

in Borehole 3. A similar stratigraphy to that recorded in these boreholes was observed 

in a stream section of the Bwdram at SN 41013.50069, some 150 m to the northwest,
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Figure 8.8 (cont): Sedimentary log of (c) Borehole 3; and (d) fence diagram of 
Boreholes 1-3, adjusted for topography, ‘Pingo’ 3, Rhos Llawr Cwrt, Cletwr Fawr. ‘S’ 
marks sampling locations for grain-size analysis.



Figure 8.9a: Photographs of borehole cores from ‘Pingo’ 3, Rhos Llawr Cwrt, 
Cletwr valley. Borehole 1: (i) gravelly, slightly sandy, clayey silt (1-2 m) (Photo: C. 
Harris); (ii) clayey silty gravel (3-4 m); (iii) silty fine gravel underlain by clayey silt 
(4.5-5 m); (iv) clayey silt with occasional clasts (5-5.5 m). Borehole 2: (v) sandy, 
silty clayey gravel (2-3 m). Borehole 3: (vi) peaty organic topsoil underlain by 
weathered sandy, clayey silt (0-0.5 m); (vii) silty sandy gravel (1-2 m) (Photo: C. 
Harris); (viii) finely laminated clayey silt (4.5-5 m) (Photo: C. Harris).
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Figure 8.9b: Laminated clayey silts from Borehole 3, Rhos Llawr Cwrt, Cletwr Fawr. (i) Sample from unit 4.5-4.75 m; (ii)
Sample from unit 4.75-5 m. Black scale bar is 5 cm long. Note the vertically orientated elongate gravel-sized clast in the 
centre of the sample from unit 4.75-5 m.
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where a 1.25 m thick blue-grey silty diamict, overlies a thin gravelly unit (<10 cm), 

with platy clasts up to 10 cm in length, underlain by a clayey silt which is more than 1 

m in thickness, containing occasional gravel-sized clasts.

Borehole 2, located just inside the inner edge of the rampart, was characterised by 2 

m of peat underlain by more than 1 m of silty, sandy, clayey gravel, with clasts up to 

4-5 cm, and occasional plant macrofossils (Figure 8.8b). The sample analysed from 

this unit of silty sandy gravel (BH2 2-3 m) (Figures 8.8b, 8.8d and 8.9a) is similar in 

general grain-size characteristics to the silty gravel units from Borehole 1 (0-4.75 m) 

and Borehole 3 (0-3.91 m), except that it has a greater proportion of material less than 

63pm (40% rather than 20%, Figure 8.10).

8.3.2 Electrical resistivity tomography

Resistivity Line RLC-1 is characterised by three zones of resistivity values (Figure

8.1 la). A thin near-surface zone (Zone RLC-1) of high resistivity (>230 Qm), which 

varies in thickness between 2-6 m, is laterally continuous across most of the 

resistivity profile. This zone is not apparent however, or is very thin (<2 m) in the 

area between 42-68 m, corresponding to the central basin of the landform. High 

resistivity values are characteristic of the ramparts of the landform and to the north, 

where Zone RLC-1 reaches its greatest thickness. Beneath Zone RLC-1 is a 6-12 m 

thick zone of low to intermediate resistivity (80-230 Qm) (Zone RLC-2). The contact 

between these uppermost zones is sharp with an abrupt change in resistivity (400 Qm 

to 150 Qm) over <2 m. Zone RLC-2 is continuous across the profile and extends 

from beyond the margins of the landform, beneath the ramparts and through the 

central basin. The lowest values of resistivity within Zone RLC-2 (ca. 80-125 Qm) 

are found at 44-66 m along the profile and at depths of 2-6 m, corresponding to the 

area beneath the peat-filled central depression. The third, bottommost zone (Zone 

RLC-3) has intermediate to high resistivity values (230-400 Qm). The contact 

between this zone and the overlying Zone RLC-2 is gradational in nature with 

resistivity values increasing over a vertical distance of 2-4 m. This contact is 

characterised by a marked south to north dip. Taking the 230 Qm contour as the 

boundary between these two zones, the contact dips from a depth of 6 m in the south 

to 14 m at the north end of the profile. The internal resistivity of Zone RLC-3 shows 

little lateral variability, but an increase in resistivity is apparent with depth.
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Line RLC-2 is characterised by the same three distinct zones of resistivity values as 

Line RLC-1 (Figure 8.11b). Due to the reduced resolution in comparison to Line 

RLC-1, the thin, near-surface Zone RLC-1 is not apparent to the south of the central 

basin in Line RLC-2, but is identified in the rampart to the north and extends 

continuously from here (68 m) to the end of the line (134 m). It is clear from Line 

RLC-2 that Zone RLC-1 is of greater thickness to the north of the central basin (5 m), 

compared to its thin vertical extent to the south of the landform. As in Line RLC-1, 

Zone RLC-2 extends throughout, but is marked by a decreasing resistivity from south 

to north. The contact between Zones RLC-1 and RLC-2 is again abrupt. Line RLC-2 

provides additional information regarding the resistivity and lateral and vertical 

character of Zone RLC-3 and the morphology of the contact between this basal zone 

and the overlying Zone RLC-2. Line RLC-2 indicates that the thickness of Zone 

RLC-3 extends to depths in excess of 25 m and is characterised by relatively high 

resistivity values (up to 500 Q m). Taking the 230 Qm contour as the boundary 

between Zones RLC-2 and RLC-3, Line RLC-2 supports the observation that the 

contact dips northwards, but also suggests that this contact may be marked by a 

stepped profile, an observation that was not apparent from Line RLC-1.

Line RLC-3, also characterised by three zones of resistivity (Figure 8.1 lc), was run 

perpendicular to Lines RLC-1 and RLC-2, with the centre of the landform’s basin 

marking the intersection point between the lines (Figure 8.7). The high resistivity 

near-surface zone (Zone RLC-1) is apparent, but is again absent over the central basin 

and is slightly thinner to the east of the profile (1 m) in comparison to its vertical 

thickness to the west (2-3 m). Zone RLC-2 is again characterised by relatively low 

resistivity values (80-230 Qm), and is laterally continuous with little horizontal 

variation. Resistivity values increase with depth. At 12 m below the ground surface 

the 230 Qm contour marks the upper contact of Zone RLC-3. The horizontal nature of 

the contact between Zones RLC-2 and RLC-3 in Line RLC-3 contrasts with the 

steeply dipping and/or stepped profile observed in Lines RLC-1 and RLC-2. Again, 

the contact between Zones RLC-2 and RLC-3 is marked by a gradational boundary of 

resistivity values in Line RLC-3.
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8.3.3 Induced polarisation

In contrast to measurements of induced polarisation (IP) recorded at other sites (e.g. 

Crychell Moor, Nant Brynmaen, Cledlyn valley, Llanpumsaint), which were 

characterised by high noise to signal ratios, apparently good IP data were collected 

from resistivity Lines RLC-1 and RLC-2 at the Rhos Llawr Cwrt site (Figure 8.1 la 

and 8.11b). Unfortunately the data from Line RLC-3 had a significant noise 

component and was of little use to inform interpretation of the internal structure of the 

landform, or the depth to bedrock (Figure 8.1 lc).

IP Lines RLC-1 and RLC-2 are characterised by two main zones of IP values (Figures

8.1 la and 8.1 lb). The uppermost zone has low chargeability (0-3.6 mV/V), whilst the 

underlying zone has comparably high chargeability (3.6-10 mV/V), which increases 

with depth. The lateral and vertical extent of the high-chargeability, lower IP zone 

corresponds to the zone of relatively high resistivity values of Zone RLC-3 in Lines 

RLC-1 and RLC-2 (Figures 8.11a and 8.11b). The morphology of the contact 

between the two IP zones is also very similar to the boundary between Zones RLC-2 

and RLC-3 in electrical resistivity Lines RLC-1 and 2. IP Line RLC-1 is also 

characterised by a very thin (ca. 2 m) near-surface zone of intermediate chargeability 

(1.8-3.6 mV/V) between 52-70 m and between 78-96 m. The former roughly 

corresponds to the dimensions of the peat filled basin of ‘Pingo’ 3 (Watson and 

Watson 1974).

8.3.4 Seismic refraction
Three distinct P-wave first break velocity segments were recognised in both the 

forward and reverse directions of the travel-time graph (Figure 8.12). Shots 1, 2, 8 

and 9 have two velocity segments representing the direct wave and a refracted wave. 

A change in the inflection of the best-fit line at 8 m (geophone 10) on Shot 1 and 40 

m (geophones 21) on Shot 2 marks the crossover distance of the first arrivals from the 

first refracted wave. The traveltime vs distance plots of Shots 4 and 8 show good 

parallelism with Shot 1, and Shots 5 and 9 with Shot 2. Shot 6 and Shot 7 do not lie 

parallel to these shots however and indicate the presence of a second deeper refracted 

wave. The arrival of this second refracted wave can be observed near the ends of 

Shots 4 and 5 and is recorded on Shot 4 by the geophones between 38 to 46 m
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(geophones 20-24) and on Shot 5 between 4 to 8 m (geophones 3-5). The direct wave 

and two refracted waves can therefore be identified on the basis of the traveltime 

graph (Figure 8.12).

The average P-wave velocity of the direct wave, calculated from the average velocity 

of Shots 1 and 2, was 1007 msec*1. The P-wave velocity of the first refracted wave, 

calculated from the reciprocal of the gradient o f the graph of the minus time vs. 

distance for Shots 1&2, 1&3, 2&3, 8&9, varied between 1705 to 1913 msec'1 

(average of 1832 msec*1). The second refracted wave, derived from the minus graph 

of Shots 6&7, has a velocity of 3146 msec*1

The observation of two refracted waves from the first break data at Rhos Llawr Cwrt 

indicates a three-layer model. Using the Common Receiver Point method the depth 

and morphology of the two refractors were defined (Figure 8.13). For Shots 1&2, 

1&3, 2&3, 8&9 (all Refraction 1), the reciprocal time was measured directly, but 

because the reciprocal time was not measured in the field for Shots 4&5 (Refraction 

1) and Shots 6&7 (Refraction 2), an estimated value of the reciprocal time was 

calculated using the intercept time (see Section 3.4.3.1). Based on the depth of 

refractor 1 derived from Shots 1&2 the average depth to the first refracted horizon is

4.01 m, but the morphology of the refractor varies from a depth of 3.02 m to 6.18 m, 

with significant variation between 30-40 m (Geophones 16-21) (Figure 8.13). This 

observation is supported by the morphology of refractors derived from Shots 1&3, 

2&3 and 8&9, which are also undulating between 30-40 m. The average depth to the 

lower refracted horizon, based on Shots 6&7, is 21.78 m, varying from 19.54 to 23.31 

m (Figure 8.13).

237



<0

1
1 st refracted wave

Direct wave

W est East

(a) 50

o
0 5 10 15 20 25 30 35 40 45

Distance (metres)

2nd refracted wave

Shot 1
Shot 2
Shot 3
Shot 4
Shot 5
Shot 6
Shot 7
Shot 8
Shot 9
Shot 10

W est

(b)

East

2nd refracted wave

30 1st refracted wave

E
20

F Direct waveDirect wave

a  Shot 2: Direct wave 
•  Shot 2  1st refracted wave 
e Shot 7: 2nd refracted wave

a Shot 1 Direct wave 
•  Shot 1 1st refracted wave 

Shot 6: 2nd refracted wave
Linear (Shot 2: 1st refracted wave)  Lnear (Shot 1: 1st refracted wave)

 Linear (Shot 2: Direct wave)
 Linear (Shot 7: 2nd refracted wave)

 Linear (Shot 1 Direct wave)
Linear (Shot 6 2nd refracted wave)

10 15 20 25
Distance (m)

30 35 40 45

Figure 8.12: (a) Traveltime graph of seism ic refraction data collected at ‘Pingo’ 3, 
Rhos Llawr Cwrt, Cletwr Fawr. (b) Traveltime graph of selected shots, to 
demonstrate the direct, first refracted and second refracted waves.



De
pt

h 
(m

et
re

s)

West
Distance (metres)
20 25o 10 15 30 35 40 455

0

Layer 1 1007 msec

5 Refractor 1

Depth (Shots 1&2) 

Depth (Shots 48,5) 

Depth (Shots 18,3) 

Depth (Shots 88,9) 

Depth (Shots 28,3)

Layer 2 1832 msec

Depth (Shots 68,7)

Refractor 2

Layer 3 3146 msec

Figure 8.13: Refractor depths and morphology, ‘Pingo’ 3, Rhos Llawr Cwrt, Cletwr Fawr, derived using the Common 
Receiver Point method.

East



Chapter 8: Cletwr Valiev

8.4 Interpretation

8.4.1 Sedimentology
The clayey silts at the base of Boreholes 1 and 3 (Figures 8.8a and 8.8c), which are in 

parts faintly laminated and contain scattered clasts (dropstones) (Figure 8.9b), were 

deposited subaqueously in an ice-contact lake. Deposition is believed to have resulted 

from suspension fallout of sediment-rich underflows and turbidity currents fed by 

plumes of clay and silt originating from subglacial sediments and debris-rich basal 

ice. No evidence for annual rhythmites could be recognised from the boreholes, the 

very fine laminations within the clayey silt do not represent annual varves. Instead, 

the rhythmites are thought to represent intra-seasonal, probably diurnal variations as a 

result of daily fluctuations of the sediment supply (Johnson 1997). The high 

sedimentation rate is the result of the proximity to the ice margin, which apparently 

stabilised in the vicinity of what is now Crug-y-eryr Quarry (Figure 8.1 and 8.3). This 

is supported by the gravel-sized clasts within the deposit, which are interpreted as 

dropstones deposited from floating ice blocks derived either from sediment-rich 

glacier ice or from debris accumulated on seasonal lake ice (Johnson 1997). The 

clayey silts were devoid of any flora and fauna, a feature also common to other 

glaciolacustrine deposits in west Wales (Fletcher and Siddle 1998; Hambrey et al 

2001).

The lateral extent of the lake, suggested by the glacio-lacustrine deposits, is unknown 

and it is possible that these deposits represent a localised body of standing water in 

the Bwdram valley rather than one that filled the entire Cletwr Fawr catchment. 

However, evidence supporting the argument for a relatively deep and areally 

extensive lake is provided by glaciolacustrine silts with scattered gravel-sized clasts 

exposed in the stream section of the Bwdram (SN 41013.50069) and the steeply 

dipping (20-40° towards 234° SW) coarse-grained sand and gravel deposits exposed 

at Crug-y-eryr Quarry (SN 42065.50311) that have deltaic, subaqueous ice-contact 

origins (Gilbert-type delta). If the uppermost sediments in this quarry at between 

220-225 m OD, which are interpreted as topsets, represent the altitude of the upper 

water level, then the lake was probably dammed both by both ice and by topography. 

On this evidence, maximum water depths were in the region of 40-45 m. The delta
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marks an ice-marginal position of a glacier flowing from the upper part of the Cletwr 

Fawr valley into the basin from the north or northeast. The presence of occasional 

erratics in the delta (Jerry Davies, pers comm.) suggests that this landform was fed by 

Irish Sea ice, or that Welsh ice was reworking pre-existing sediments derived from 

the Irish Sea.

The obvious drainage outlet for the lake was through the narrow lower reaches of the 

Cletwr Fawr at the southern end of the basin at 170-175 m OD (Figures 8.14 and 

8.15). However, the altitude of the Gilbert-type delta at Crug-y-eryr suggests that for 

at least part of the lakes existence the lower part of the Cletwr Fawr was dammed 

with glacier ice. At the time of the development of the Cletwr Fawr lake and the 

Crug-y-eryr delta, ice masses must have been present in both the northern and 

southern parts of the Cletwr valley. Whether these were distinct ice masses, or simply 

different lobes of the same glacier is extremely difficult to establish. However, there 

remains the possibility that the lake could have been impounded between the 

westward flowing Teifi glacier of Welsh origins and the southward flowing Irish Sea 

glacier.

Given that the altitude of the cols between the Cletwr Fawr and the Cerdin valley 

(>250 m OD) and the Cletwr Fach (>240 m OD) are significantly greater than the 

altitude of the topsets at Crug-y-eryr Quarry (220-225m OD) (Figure 8.14), overspill 

drainage did not occur into these valleys during this phase of the lake, that is, when 

the lake level corresponded to the Crug-y-eryr delta. For overspill to occur into these 

valleys, the depth of the lake would have needed to be at least 60-65 m. The location 

of the Crug-y-eryr delta suggests that the Mydr was ice-filled at this time and 

drainage could not occur through the Cletwr-Mydr col (currently at ca. 245 m OD) 

(Figure 8.14). In contrast to the deep sequence of superficial deposits in the middle- 

reaches of the Cletwr Fawr valley, the lower reaches, south of Darren Fawr and Glan- 

rhyd-y-dre, are characterised by steep sided valleys with bedrock at the surface. This 

suggests that this route (Figure 8.15) may have been used as a spillway, with the 

superficial cover being removed by meltwater erosion during (catastrophic?) drainage 

of the lake.
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Figure 8.15: Cletwr Fawr valley, just south of the linear ‘pingos’ at Darren Fawr and Glan-rhyd-y-dre. Compared to the 
wide, drift-filled basin upslope (foreground of photo), the lower part of the catchment (middle distance) is narrow and 
steep-sided with little superficial deposits in the floor of the channel.
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The diamicton recorded in Boreholes 1 and 3 is very similar in physical properties to 

the ‘gravelly clay’ or ‘clayey gravel’ with angular to rounded clasts, that dominates 

the near-surface superficial geology of the lower slopes of the valley (Watson and 

Watson 1974). The deposition of this unit occurred either late in the existence of the 

ice-contact lake or after its drainage, as there is no evidence for glaciolacustrine 

sediments overlying the diamict. The interpretation of this deposit is critical. If it 

represents periglacial or paraglacial deposition or reworking, then the landforms at 

Rhos Llawr Cwrt cannot have glacial origins. However, if this diamict was 

subglacially or supraglacially deposited then their development may not be the result 

of periglacial processes.

Watson and Watson (1974) believed that the diamict represented reworked glacial 

deposits that had been removed from the upper slopes of the valley and the adjacent 

plateau by mass movement processes under extended periglacial conditions, although 

they did predict that in situ glacial deposits existed at depth in the valley bottom. In 

the model of open system pingo development proposed by Watson and Watson 

(1974), this unit was deposited before and/or during the period of pingo development, 

being reworked again during pingo growth and collapse (Watson and Watson 1974). 

Alternatively, the diamict could represent a high magnitude geomorphic event such as 

a mudflow or a debris-flow either into the lake or onto the exposed lake floor 

following drainage. The amount of sediment accumulated seems significant (up to 4 

m), but at Morfa Bychan on the Ceredigion coast 45 m of sediments were deposited 

by rapid slumping and flow of water-saturated till under paraglacial conditions during 

deglaciation (Watson and Watson 1967; Harris 1998). However, based on the 

borehole data and the limited exposure in the stream section at Rhos Llawr Cwrt, 

there is no clear evidence for the reworking of the diamict by slope processes. This 

does not suggest a supraglacial or paraglacial origin for the diamict. This often- 

compact diamicton contains no evidence for sorting in either Borehole 1 or 3. Instead 

the sediment resembles an in situ glacial till. It is therefore believed possible that a 

short-lived readvance of glacier ice over the floor of the drained lake occurred during 

deglaciation, depositing the diamict subglacially onto the glaciolacustrine sequence. 

Although there is no clear evidence for glaciotectonism of the underlying clayey silts 

in Boreholes 1 and 3, deformation structures should also be present if the unit 

represented a large mass movement event, such as a large debris flow, which was
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deposited onto water-saturated lacustrine deposits (Johnson 1997). Such structures 

were not observed. The absence of erratic clasts characteristic of Irish Sea ice and the 

absence of calcium carbonate in the samples from Rhos Llawr Cwrt suggests that this 

till was deposited by Welsh ice. Scattered erratics have been reported from the Cletwr 

valley however (Watson and Watson 1974; Watson 1976; Watson 1996; Jerry Davies, 

pers comm.), suggesting the influence of ice from an Irish Sea source. The grain-size 

of the till falls within the grain-size envelope of till from elsewhere in Cletwr Fawr 

and from the adjacent Cledlyn valley.

The sandy, silty clayey gravel infill of the basin that underlies the peat recorded in 

Borehole 2 is interpreted as a partially sorted component of reworked till slumped and 

washed from the ramparts into a central pond impounded by the rampart. The grain- 

size of this material overlaps with the grain-size envelope of both the sediments in the 

rampart of this landform (Figure 8.10) and till in the Cledlyn valley (Figures 7.9 and 

7.17). The presence of organic fragments suggests that deposition of this unit 

occurred some time after formation of the rampart. The depth of this unit beneath the 

peat infill indicates that the inner slope of the rampart at the northern edge of the 

basin is quite steep, in accordance with the asymmetrical nature of the peat-filled 

depression presented by Watson and Watson (1974)

8.4.2 Electrical resistivity tomography
Based on the evidence from Boreholes 1 and 3, the base of the high resistivity near- 

surface zone (Zone RLC-1) at Rhos Llawr Cwrt correlates with the boundary between 

the diamict (till) and the underlying clayey silt. This boundary also appears to 

represent an important hydrogeological boundary, as there is a relationship between 

the lithology and the water content of the sediment (dry diamict vs. moist clayey silt) 

(Figures 8.8a and 8.8c). The water chemistry and water content of sediment are 

important factors determining the resistivity of unconsolidated superficial deposits. 

Because there is a close relationship between groundwater conditions and the near

surface sedimentary properties at Rhos Llawr Cwrt, Zone RLC-1 is believed to 

provide a reliable representation of the vertical and lateral extents of the diamict. The 

boundary between Zone RLC-1 and Zone RLC-2 therefore corresponds to the contact 

between the dry diamict (till) and the underlying water-saturated clayey silts observed 

in Boreholes 1 and 3. Zone RLC-1 cannot represent a near-surface weathering zone as
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its thickness (2-6 m), is much greater than the depth of weathering observed in the 

boreholes (<1.5 m).

The thickness and distribution of Zone RLC-1 displays some degree of variability. 

The central basin of ‘Pingo’ 3 is not characterised by a high resistivity near-surface 

zone. This corresponds to the absence of the diamict unit in Borehole 3, which 

penetrated 2 metres of peat and a further metre of matrix-supported silty sandy gravel 

that had a higher silt-component compared to the diamict in Boreholes 1 and 3 

(Figure 8.10). The resistivity and thickness of Zone RLC-1 is greatest to the north of 

‘Pingo’ 3, where Line RLC-2 extends on to the eastern rampart of ‘Pingo’ 1 (Figures

8.4 and 8.7), and where a relatively thick sequence of diamict is predicted. The 

thickness of RLC-1 at this point may also be a function of the water table dipping 

downwards towards the Bwdram, and the northward dipping bedrock surface (see 

below). The apparent absence of Zone RLC-1 to the south of the landform in Line 

RLC-2 is a function of the resolution of the survey (electrode spacing of 4 m) 

compared to Line RLC-1 (electrode spacing of 2 m). Line RLC-1 however does 

suggest that the diamict is thinner to the south of landform.

The laterally extensive, low resistivity Zone RLC-2 is interpreted as saturated 

unconsolidated sediments. The low resistivity values beneath the ramparts appear to 

correlate with the clayey silt deposits that underlay the diamicton in the boreholes. 

There is some horizontal variation in the resistivity of Zone RLC-2. Line RLC-1 in 

particular demonstrates a zone of low resistivity (80-100 fhn) beneath the peat-filled 

central basin of the landform to depths of ca. 7 m. This is likely to represent enhanced 

saturation of the underlying minerogenic sediments because of vertical migration of 

water from the water-saturated peat. Unfortunately, the current investigations were 

unable to drill to greater depths due to problems with the extraction of the coring 

equipment. Therefore, whilst the basal units of Boreholes 1 and 3 were composed of 

clayey silt greater than 1 m thick it was not possible to determine the vertical extent 

of these deposits. Without borehole control, the resistivity data alone cannot be used 

to confidently ascribe the lithology of the thick sequence (up to 15 m) of 

unconsolidated deposits. The resistivity of different unconsolidated sediments 

overlaps considerably depending on the water content (Loke 2004b), and it is likely 

that there will be some degree of variation within this sequence with depth. The
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gradational boundary between Zone RLC-2 and Zone RLC-3 may represent a 

lithological change at the base of Zone RLC-2, perhaps to fluvioglacial deposits or till 

associated with higher resistivity values. Nevertheless, as there is little vertical 

variation for the majority of Zone RLC-2, it is also possible that the entirety of Zone 

RLC-2 represents glaciolacustrine clayey silts. The resistivity data, supported by the 

shallow boreholes, indicates a glaciolacustrine sequence capped by a thin (<4 m) unit 

of diamict. This diamict is not laterally contiguous and is apparently absent where 

peat-filled depressions occur.

Because the ramparts of this landform are more subdued than those in the Cledlyn 

valley and the area is generally less well drained, the ramparts are not characterised 

by high resistivity values of the type recorded in the nearby Cledlyn valley (see 

Sections 7.3.4 and 7.6.2). Overall, the general resistivity of the saturated 

unconsolidated materials (Zone RLC-2) at Rhos Llawr Cwrt tend to be higher than 

those measured in the Cledlyn valley (Figures 7.13 and 7.20). However, without 

deeper boreholes (10-20 m) at both sites it is difficult to assess the significance of 

these values. These differences may reflect variations in water content between the 

different seasons when these surveys were conducted, resulting from slight 

differences in the physical properties (e.g. density, void ratio) of the sediments. A 

higher void ratio would result in higher moisture contents in saturated soils and 

therefore lowering the resistivity of that material.

The basal high resistivity Zone RLC-3 (>230 Om) is interpreted as representing 

bedrock. Although these are relatively low resistivity values for bedrock, they are 

similar to values recorded by Carruthers et al. (1997) and Heaven et al. (1999) from 

resistivity soundings of Silurian and Ordovician mudstones and sandstones at nearby 

Lampeter and at Cornel. The resistivity data therefore indicate a thickness of 

superficial deposits of 10-15 m, although it is impossible to determine the 

composition or structure of these deposits without additional borehole control. 

Although the boundary between Zone RLC-2 and Zone RLC-3 appears gradational, 

this may be a function of the increased size of model blocks with depth used by the 

inversion of the resistivity data. The 230 Qm contour, taken as the boundary between 

Zone RLC-2 and Zone RLC-3, has a marked northward dip in Lines RLC-1 and 

RLC-2. The data in Line RLC-2 suggest that this boundary may also be characterised
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by a stepped profile. This is in contrast to the horizontal nature of the 230 Qm contour 

in Line RLC-3. The 3D morphology of this boundary suggests that rockhead dips 

significantly to the north, towards the Bwdram (Figure 8.11).

8.4.3 Induced polarisation

The IP data (Lines RLC-1 and RLC-2) are characterised by a near-surface zone of 

low chargeability (<3.6 mV/V) underlain by a basal zone of higher chargeability 

(>3.6 mV/V) (Figure 8.11). The most significant feature of the IP data is the 

correspondence of the basal high chargeability zone with the high resistivity Zone 

RLC-3. The higher chargeability zone (>3.6 mV/V) is therefore interpreted as 

bedrock. Comparison of the measured values with recognised IP values indicate that 

the bedrock underlying the site is either sandstone or weathered shale. Thick 

sequences of weathered, mineralised bedrock have been recorded in the area near 

Ffostrasol (Huw Sheppard, pers comm.). The measured values are probably too low 

to represent unweathered shales, which have chargeability values of ca. 100 mV/V.

The slight near-surface increase in chargeability may represent peat. Peat is 

recognised as chargeable (Slater and Reeve 2002, Slater and Lesmes 2002), but the 

thin sequence of peat (<2 m) and the coarseness of the inversion model blocks makes 

it difficult to evaluate this hypothesis at this site. A slight increase in chargeability is 

apparent within the central basin of the landform and to its north in Line RLC-1 

however, where peat thickness was greatest.

8.4.4 Seismic refraction
The two seismic refractors are interpreted as defining: a) the boundary between two 

layers of unconsolidated sediments (refractor 1); b) the superficial-bedrock boundary 

(rockhead) (refractor 2). The three layers defined by the seismic P-wave velocities are 

therefore Silurian bedrock (mudstone or sandstone) overlain by two distinct 

unconsolidated lithologies. The calculated depth of the upper bedrock boundary 

indicated by the seismic refraction survey is therefore approximately 22 m. Although 

the velocity contrast between superficial deposits and the solid geology is normally 

significant enough to define the boundary between the two, it is not as common to 

detect internal divisions within unconsolidated glacial materials, because the P-wave 

velocity contrast is not normally large enough (Brabham et al. 1999). The borehole
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data supports the interpretation of an internal division within the superficial deposits 

at Rhos Llawr Cwrt however, as the depth derived from the first refracted arrivals (ca. 

4 m) corresponds to the contact between the diamict (silty gravels to gravelly silts) 

and the underlying clast-poor clayey silts in Borehole 1. The thin, near-surface, low 

velocity layer therefore corresponds to the gravelly silty diamict found in the upper 4-

4.5 m of Boreholes 1 and 3. Although the upper limit of the clayey silt found at the

base of Boreholes 1 and 3 corresponds to the depth of the first refractor it is not

necessarily the case that this lithology continues to rockhead. The sequence may be 

more complex, as P-wave velocity contrasts between individual units within the 

sequence may not be significant enough to produce refracted arrivals or the clayey 

silts may be underlain by a lower velocity zone from which a refracted wave would 

not be produced at the interface of the two layers (blind zone problem). However, it is 

clear from the P-wave velocities and the borehole data that the upper two layers are 

composed of unconsolidated materials.

The P-wave velocity of the upper diamict (interpreted as till) derived from the direct 

wave (1007 m sec'1) is low in comparison to the velocity derived from saturated till in 

the adjacent Cledlyn valley (see Section 7.3.3), which ranged between 1814 to 1945 

msec'1. Near-surface Holocene weathering of the upper part of the till may have 

contributed to the low P-wave velocity derived from the direct wave at Rhos Llawr 

Cwrt. The measured P-wave velocity is comparable to values recorded from

weathered glacial deposits in North Wales (Brabham et a l 1999). Mottling of the

upper few metres of Borehole 1 (Figures 8.8a and 8.9a) and clear mottling (iron 

staining) of the upper 75 cm of the till exposed in the stream section at SN 

41013.50069 demonstrates the existence of a near-surface weathering profile. 

Additionally, the velocity of the upper unit at Rhos-Llawr Cwrt was based on only a 

few data points and is therefore susceptible to a more significant error margin. The 

velocity may therefore be an underestimate of the true velocity. P-wave velocity 

measurements using a short geophone spread with a closer geophone spacing (e.g. 

0.25 m) would be required to reduce the error margins and resolve this issue. 

However, the velocity of the upper layer (1007 msec'1) is much greater than that 

measured for the weathered zone at ‘Pingo’ U in the Cledlyn valley (140 m sec'1). 

This may be a result of different agricultural practices. It is unlikely that the field at 

Rhos Llawr Cwrt in which ‘Pingo’ 3 is located has been ploughed, although it is
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thought that the fields in the Cledlyn valley have at some point in their history 

(Watson 1971).

The P-wave velocity of the first refractor (1705 to 1913 msec'1), which corresponds to 

the contact between the overlying diamict and the clayey silts recorded in Borehole 1, 

is high in comparison to the velocities recorded for glacio-lacustrine deposits 

elsewhere in Wales (e.g. Camlad valley 1430-1500 msec"1, Hussen 1998; Brabham et 

al. 2005) and at Llanpumsaint (1352-1441 msec'1, see Section 9.3.4) Lateral and 

vertical variability in the superficial sequence is likely however and this could 

influence the measured seismic velocity. Furthermore, if the upper diamict represents 

a till then it is likely that deposition of that till was associated with consolidation of 

the underlying silts, which could increase their P-wave velocity.

The P-wave velocities of the superficial deposits and bedrock measured in the Rhos 

Llawr Cwrt survey are comparable to seismic velocities measured for similar 

materials in the abandoned meander of the Afon Teifi at Castle Malgwyn, south of 

Llechryd (blue clay 1524 msec'1, Ordovician slates 3901 msec'1) (Allen 1960), in the 

estuary mouth of the Teifi (till 1524 msec"1, bedrock 4328 to 4999 msec'1) (Allen 

1960) and in an abandoned meander at Cenarth (overburden 1768 msec’1, bedrock 

4023 to 4053 msec'1) (Francis 1964). The velocity of bedrock in the Cletwr valley is 

lower than the velocities derived by Allen (1960) and Francis (1964), but this may 

simply represent weathering of the bedrock in the Cletwr Fawr valley. Deep 

weathering of bedrock in the area is evident from exposures around Ffostrasol on the 

watershed between the Teifi valley and Cardigan Bay (Huw Sheppard, pers comm.). 

The velocity of refracted arrivals from Ordovician bedrock at Dinas Dinlle and Porth 

Neigwl in North Wales varies between 2915 to 4300 m sec*1, with the low end of the 

range representing weathered bedrock (Harris et al. 1997; Brabham et al. 1999). 

These values are comparable to the 3146 m sec*1 derived for bedrock at Rhos Llawr 

Cwrt.

The rockhead depth established from the refraction survey supports the interpretation 

of the depth to bedrock derived from the electrical resistivity tomography surveys. 

The seismic line ran perpendicular to resistivity Line RLC-2, the intersection point 

being ca. 74 m on the resistivity line (Figures 8.7 and 8.1 lb). The 230 Dm contour at
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74 m in Line RLC-2 (15 m depth) (interpreted as the bedrock boundary) appears to 

underestimate the depth to bedrock derived from the seismic survey (22 m) however. 

This may be because the bedrock is characterised by a surface weathered zone, which 

has a seismic velocity similar to that of the overlying superficial deposits and 

therefore did not produce a refracted wave. Whilst the resistivity data define the upper 

limit of the weathered bedrock, the increasing resistivity with depth representing the 

change from weathered to unweathered bedrock, the refraction data may be defining 

the upper limit of unweathered bedrock. Alternatively, both data sets could be picking 

out the same boundary (rockhead), but the accepted error margins of the seismic 

refraction data (10%) and the resolution of the resistivity model blocks (3 m x 3 m) 

could be responsible for the apparent mismatch of depth between the two methods. A 

velocity inversion within the unconsolidated sequence (e.g. sands and gravels 

underlying the clayey silts) would also result in an overestimation of depth (blind 

zone problem) from the seismic data. Despite these uncertainties, both geophysical 

techniques indicate a significant thickness of superficial deposits (15-22 m) at this 

site. The morphology of the superficial-bedrock boundary derived from the refraction 

survey is in accordance with the horizontal nature of the 230 Qm contour in Line 

RLC-3, supporting the interpretation that whilst the bedrock dips significantly from 

south to north, there is little vertical change in an east-west direction.
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9 Llanpumsaint

9.1 Introduction

Relict pingos near Llanpumsaint, Pont-ar-sais (Figure 9.1) and at other sites in 

Carmarthenshire, were first reported by Bowen (1974), and Watson and Watson 

(1974), but no geological investigations or geomorphological maps of these 

landforms were ever published. Of the numerous landforms located over a wide area 

around Llanpumsaint (Ross et al. 2005a), perhaps the most impressive are those at 

Helfa Hall, south of Llanpumsaint, where six ring-like circular ramparted depressions 

are found at altitudes of 125-140 m OD. These landforms lie on a low-gradient, north- 

facing slope to the east of the Nant Cwm-cerwyni, a tributary of the Afon Gwili 

(Figures 9.1, 9.2, 9.3a and 9.4).

The bedrock geology of the area around the Helfa Hall site is characterised by 

interbedded mudstones, siltstones and sandstones of Silurian and Ordovician age 

(Figure 9.5). The contact between the Yr Allt Formation and the mudstones of the 

Cwmere Formation and the Claerwen Group that underlie the site also represents the 

boundary between rocks of late Ashgill Series (latest Ordovician) age (Yr Allt 

Formation), and Llandovery Series (early Silurian) age (Cwmere Formation and 

Claerwen Group) (BGS Sheet 211: Newcastle Emlyn, unpublished map). This 

boundary is obliquely intersected by a prominent west-southwest to east-northeast 

trending fault (Figure 9.5) (BGS Sheet 211: Newcastle Emlyn, unpublished map) that 

underlies several of the landforms near Helfa Hall.

The Gwili valley lies in an unexplored part of Wales in terms of Quaternary research, 

roughly equidistant between the classic exposures of glacial deposits on Gower to the 

south and the Cardigan Bay coast to the north. No sites from this inland area are 

included within either the Quaternary of Wales Geological Conservation Review 

(GCR) volume (Campbell and Bowen 1989), or the Revised Correlation of 

Quaternary Deposits in the British Isles (Bowen 1999). The lack of research into the 

glacial history of the area is partly a result of very poor geological exposure, paucity 

of Quaternary deposits, and until very recently, the lack of basic geological mapping 

by the British Geological Survey. The site lies beyond the conjectural glacial limits
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defined by the part of the South Wales End Moraine between Tregaron and Mynydd 

Du (Charlesworth 1929), but within the ice-margins proposed by Griffiths (1940) and 

Bowen (1970, 1973a, 1973b, 1974, 1981). The glacial deposits of the Llanpumsaint 

area, recently mapped by the British Geological Survey (BGS Sheet 211: Newcastle 

Emlyn, unpublished map), belong to the Elenid Formation of late Devensian age 

(Bowen 1999, 2005), and comprise materials derived from Lower Palaeozoic rocks. 

The very sparse distribution of tills and fluvioglacial deposits to the west and 

southwest of Llanpumsaint suggest that the landforms at Helfa Hall are found at, or 

very near to, the maximum extent of the Elenid glaciation in this area (BGS Sheet 

211: Newcastle Emlyn, unpublished map).
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Figure 9.2: Aerial photograph, Helfa Hall, Llanpumsaint, taken in 2000 (© Getmapping Pic 2006). Area of 
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Figure 9.3a: Digital terrain model (DTM) of landforms at Helfa Hall, Llanpumsaint, Carmarthenshire, 
derived from LiDAR airborne surveying (© Environment Agency copyright and/or database right 2006).
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9.2 Site description and survey
The landforms at Helfa Hall are characterised by circular, peat-filled basins (up to 45 

m in diameter) impounded by low (less than 2 m high) circular ramparts, which in 

some cases stand proud of the surrounding ground surface by up to 4 m. The ramparts 

entirely encircle the basins, even on the upslope side. The width of the ramparts is up 

to 25 m, but most are less than 15 m across. Several landforms are positioned 

immediately adjacent to one another, and several have interlocking ramparts (Figure 

9.3a). In addition to the prominent circular landforms, the surrounding area is 

characterised by a complex, chaotic microtopography (Figure 9.3a). Some of this 

more subdued topography could represent the more degraded forms of similar 

landforms. A similar variety of ramparted depressions and complex microtopography 

is also apparent in an area to the north of Llanpumsaint (Figure 9.3b).

Two ramparted depressions (Landforms 1 and 2) at Helfa Hall, Llanpumsaint 

(Figures 9.2, 9.3a, and 9.4) were investigated during the current project (Figures 9.6 

and 9.7). The site investigations included two boreholes, one 15 m long trench, six 

electrical resistivity lines, four IP lines and one seismic refraction survey (Figure 9.6). 

Two boreholes were drilled on the 1st July 2004 to assess the suitability of the site 

before trenching was undertaken. The first, through the rampart crest of Landform 1 

reached a depth of 8 m (Borehole 1), whilst the second, through the centre of the 

enclosed peat basin of the same feature, reached a depth of 5 m (Borehole 2). The 

cores were logged in the field following British Standard 5930 (1999). Twelve 

representative, disturbed samples were removed for laboratory grain-size analyses.

Excavation and logging of the Llanpumsaint trench took place on the l st-3rd 

September 2004. The trench was excavated through the rampart of Landform 1, 

where Borehole 1 indicated a complex subsurface stratigraphy in the upper few 

metres. The trench was 15 m in length and 2 m deep, excavated north to south 

through the northern section of the features rampart. The trench was aligned 

perpendicular to the Crestline of the rampart, through the location of Borehole 1 and 

was roughly parallel to resistivity Lines LP-1 and LP-2 (Figure 9.6). The 

sedimentology and internal structure of the eastern face of the trench were described

260



Chapter 9: Llanpumsaint

and logged in the field, with representative samples extracted from each key unit for 

grain-size analysis.

Four electrical resistivity surveys were undertaken at Llanpumsaint on the 30th July 

2004 utilising an IRIS instruments Syscal Junior Switch 72. Lines LP-1 and LP-2 ran 

southwest to northeast through Landform 1. Line LP-1 extended across the entire 

landform (106 m in length, 3 x 1 8  electrode cables, 2 m spacing of electrodes), and 

ran roughly parallel to the line of the excavated trench, orientated so that it was 

aligned approximately through both boreholes (Figure 9.6). Line LP-2 (35 m in 

length, 2 x 18 electrode cables, 1 m spacing of electrodes) provided a higher 

resolution survey of the rampart than that given by Line LP-1, but with a shallower 

depth and shorter length of profile (Figure 9.6). Borehole 1 was located at the central 

point of Line LP-2, with Electrode 1 (0 m) of the line corresponding to Electrode 4 (6 

m) of Line LP-1. Line LP-3 ran perpendicular to Line LP-1 (70 m in length, 2 x 1 8  

electrode cables, 2 m spacing of electrodes), aligned southeast to northwest across 

Landform 1. Line LP-4 (79.5 m in length, 3 x 1 8  electrode cables, 1.5 m spacing of 

electrodes), ran southeast to northwest across Landform 2. Induced polarisation (IP) 

data was collected for Lines LP-1 and LP-4 only.

A further field visit was made to the site on the 25th July 2005 to undertake a seismic 

refraction survey and two supplementary electrical resistivity tomography profiles. 

The geophone spread for the short seismic survey was located between the two 

landforms, orientated northwest to southeast (Figure 9.6). The location was chosen to 

minimise the problems associated with the attenuation of high-frequency seismic 

energy by soft peat (Brabham et al. 2005), and thereby maximise the signal to noise 

ratio. One resistivity line (175 m in length, 2 x 18 electrode cables, 5 m spacing of 

electrodes) was positioned along the line of the geophone spread and the offset shots, 

to provide complementary information on the physical properties of the near-surface 

geology (Line LP-5). The second resistivity line (175 m in length, 2 x 1 8  electrode 

cables, 5 m spacing of electrodes) was approximately perpendicular to the first, 

through the central basin of Landform 1 and along the western rampart of Landform 2 

(Line LP-6) (Figure 9.6). These two additional resistivity profiles were undertaken to 

provide information, additional to the seismic refraction survey, on the depth to

2 6 1



Chapter 9: Llanpumsaint

bedrock at Helfa Hall. Induced polarisation (IP) data was also collected for both Lines 

LP-5 and LP-6.

A site survey utilising an EDM theodolite, target prism and the triangulation of 

ground stations (including borehole locations) was undertaken to produce a digital 

terrain model of the landform under investigation and its surrounding topography. 

However, since the EDM survey, LiDAR data of the field area has been made 

available to the project by the Environment Agency, providing extensive, high- 

resolution terrain data of the site (Figure 9.3). This dataset has therefore been used for 

all terrain models of the site (e.g. Figure 9.6) and for providing the topography 

necessary for the processing of resistivity Lines LP-5 and LP-6. Topography data for 

Lines LP-1, LP-2, LP-3 and LP-4 were measured at the time of survey using the 

EDM system.
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9.3 Results

9.3.1 Sedimentology

9.3.1.1 Boreholes
The upper 4 m of Borehole 1 (SN 42029.27658) were composed of silt and silty clay 

interspersed with thin (<0.20 m) units of silty, sandy gravel and silty sand between 

1.82-2 m, 3.24-3.29 m, 3.74-3.81 m and 4-4.07 m (Figures 9.8a, 9.9, 9.10 and 9.11). 

The clayey silts that dominated the upper 1.5 m of the borehole were characterised by 

the presence of occasional subangular sandstone and quartzite clasts with long axes of 

0.5-5 cm, which were particularly concentrated between 0.74-0.81 m. Although the 

clayey silt was generally massive, pale brown laminae were observed between 1.28- 

1.59 m (Figure 9.8a). The poorly-sorted, thin units of gravel between 1.82-2.00 m and 

3.24-3.29 m contained platy, subrounded to rounded shale and sandstone clasts, up to 

3 cm long, embedded in a fine gravel matrix. Precipitation of iron oxide from solution 

was apparent in the mottling throughout the uppermost 2-3 m of the borehole, but was 

particularly concentrated within the gravel units, in which there was also evidence for 

manganese precipitation. The beds of massive, silty, fine sands between 3.74-3.81 m 

and 4.00-4.07 m were separated and underlain by a moist, firm, silty clay which 

dominated the sequence between, and exceeding, 4.07-8.00 m. Laminations were 

apparent in the field between 5.00-5.50 m (Figure 9.8a), an observation verified in the 

laboratory following the drying of the samples which suggested laminations 

throughout the sequence from 5 m to the base of the borehole at 8 m depth. The 

borehole was terminated at this depth, so the total thickness of this unit could not be 

established.

Borehole 2 (SN 42018.27638) demonstrated a thick fill of dark, reddish-brown, 

fibrous peat, containing woody macrofossils, in the centre of the basin. This was 

underlain, below 4.07 m, by a unit of silty clay (Figure 9.8b), which was in parts 

laminated (Figure 9.10a), and was similar in grain-size to the sediments at the base of 

Borehole 1 (Figure 9.1 la). Drilling to a depth greater than 5 m was inhibited by the 

thick peat fill, which posed problems for the safe retrieval of the coring equipment. 

The total thickness of the silty clay could not therefore be established.
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9.3.1.2 Trench
The Llanpumsaint rampart section was dominated by a massive, structureless, light 

grey mottled clayey silt with occasional clasts (Unit M) (Figure 9.9). Interspersed 

within this ‘matrix’ were numerous units of iron and manganese stained, subrounded 

to rounded sandy gravels to silty sands (e.g. Units C, D and E) (Figure 9.10b). These 

units were exposed as asymmetrical antiforms; approximately horizontal to gently 

dipping between 0-8 m along the length of trench, and dipping at angles of up to 45° 

proximal to the central basin (e.g. 8-13.5 m) (Figure 9.9). Localised, dipping laminae 

within the light olive grey, clayey silt matrix of Unit M, where it was sandwiched 

between Units G and H at 9-11 m (Figure 9.10b), were similar to those observed 

within Borehole 1, between 1.28-1.59 m. These laminae dipped parallel to the angle 

of the contacts between the underlying units (Units E, F & G). Unit N corresponded 

to the concentration of gravel clasts recorded between 0.74-0.81 m in Borehole 1. 

Evidence for compressional deformation of the sequence was provided by the partial 

folding and buckling (reverse faulting) of Units D, E and H, particularly at 6 m and 8 

m. Each of the sand and gravel units between 0-12 m thinned away from the central 

basin, tapering out on the downslope side of the rampart (Figure 9.9). This was 

mirrored by a fining of the grain-size, with poorly sorted sandy gravels becoming 

increasingly finer, gravelly, coarse sands (e.g. Samples LPT 10 and 11, and Samples 

LPT 4 and 7, Figure 9.1 lb). The poorly sorted gravel units had a comparable grain- 

size distribution to the gravel units between 1.82-2 m (Sample BH1-3) and 3.24-3.29 

m (Sample BH1-6) in Borehole 1 (Figures 9.8a and 9.1 la).

Units L and O, at the proximal end of the rampart section (13.5-15 m) were composed 

of gravelly to silty sands (Figures 9.9, 9.10b and 9.1 lb) that did not display a trend of 

decreasing grain-size towards the distal end of the trench. Unit L contained 

alternating beds of iron-stained and non iron-stained beds of silty sand, which dipped 

southwards towards the central basin of the landform (Figures 9.10b). Although they 

were dipping southwards, these thin beds did not display the arching structures that 

were apparent in the deformed gravel units (e.g. Units D, E and F). The unit of 

gravelly sand (Unit O) was horizontal and displayed no evidence for deformation.
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8

Figure 9.8a: Sedimentary log of Borehole 1, Helfa Hall, Llanpumsaint. ‘S ’ marks 
the locations of sampling for grain-size analysis.
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Figure 9.8b: Sedimentary log of Borehole 2, Helfa Hall, Llanpumsaint. ‘S ’ marks the 
locations of sampling for grain-size analysis.
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Figure 9.9: Trench section, Helfa Hall, Llanpumsaint. Units are labelled A toO  from distal to proximal ends of the trench. 
Locations of sampling for grain-size analysis indicated by annotations (LPT) 1-14.
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Figure 9.10a: Photographs of sedim ents from Borehole 1 and Borehole 2, Helfa 
Hall, Llanpumsaint: (i) Clayey silts and silty, sandy gravels, 1.5-2 m, Borehole 1; (ii) 
Clayey silts with thin unit of clayey, silty, sandy gravel, 3-3.5 m, Borehole 1; (iii) 
Clayey silts with thin units of fine sand, 3.5-4 m, Borehole 1; (iv) Silty clay, 6.5-7 m, 
Borehole 1; (v) Silty clay, 7.5-8 m, Borehole 1; (vi) Peat, 3-3.5 m, Borehole 2; (vii) 
Silty clay, 4 .07-4.5 m, Borehole 2; (viii) Laminated silty clay, sam pled from 6-7 m, 
Borehole 1. Sam ple is approximately 8 cm long.



Figure 9 .10b: Photographs of sediments and structures exposed in trench, Helfa Hall, Llanpumsaint: (i) Oblique photograph of trench, 8-10.5 
metres from the distal end, taken from ground surface. Note steeply dipping iron-stained gravels (Units E & F) embedded within a clayey silt 
matrix (Unit M); (ii) Gravelly sands (Units Aand C) within Unit M, 1-3.5 m from distal end of trench (Photo: C. Harris); (iii) Gravelly sand (Unit 
C), on west wall of trench (not logged), 3.5-4.5 m from distal end of trench; (iv) Laminated clayey silts within Unit M, at 9-11 m from distal end of 
trench (thin section block is 6 cm across); (v) Silty fine sand and sandy silt (Unit L), 14-15 m from distal end of trench (thin section block is 6 cm 
across); (vi) Thin section from Unit L displaying sand grains with southward dipping fabrics overlying clast of quartzite (bottom left of view). 
Field of view 17 mm across. Location of thin section shown in photo (v).
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Chapter 9: Llanpumsaint

9.3.2 Electrical resistivity tomography

Resistivity Line LP-1 (Figure 9.12a) is characterised by three clear zones of 

resistivity. The ramparts of Landform 1 are marked by intermediate to high resistivity 

(190- >1500 Qm) (Zone LP-1). Although the peat-filled central basin of the landform 

(Zone LP-2) also has intermediate values of resistivity (>190 Qm), in contrast to 

Zone LP-1 the maximum value measured for the peat does not exceed 500 Qm. 

Underlying both the ramparts and the basin, at depths of 3-4 m beneath the ground 

surface, is a homogenous zone of low resistivity (40-190 Qm) that extends laterally 

beneath the landform (Zone LP-3). The contact of this unit with both Zone LP-1 and 

Zone LP-2 is abrupt, with a vertical change in resistivity of 300 Qm within 1-2 m. 

The thickness of Zone LP-3 in Line LP-1 exceeds the depth of Borehole 1 (8 m) and 

extends to at least 16 m beneath the ground surface. Resistivity values appear to 

increase slightly at the base of Line LP-1, but given the coarse resolution of the 

survey at depth it is difficult from the evidence of this line alone to ascribe any 

significance to this apparent increase.

Line LP-2 (Figure 9.12b) provides a very high-resolution survey of the northeastern 

rampart of the landform (electrode spacing of 1 m). This emphasises the very abrupt 

contact between the high resistivity of Zone LP-1 and the underlying low resistivity 

Zone LP-3. As observed in Line LP-1, the change in resistivity over this horizontal 

contact is >300 Qm over a vertical distance of less than 2 m. The very near surface 

(0-1 m) is marked by particularly high resistivity values (>650 Qm).

The electrical properties of Line LP-3 (Figure 9.12c) are very similar to that of Line 

LP-1. The southeastern and northwestern parts of the rampart of Landform 1 are 

characterised by intermediate to high resistivity (190- >1500 Qm) (Zone LP-1), and 

intermediate resistivity (190-500 Qm) again characterises the peat-filled depression at 

the centre of the profile (Zone LP-2). A homogenous layer of low resistivity materials 

(40-190 Qm, although predominantly <100 Qm) again underlies both these zones, 

extending laterally beneath the ramparts and the basin (Zone LP-3). As observed in 

Lines LP-1 and LP-2, the contact between the near-surface Zones LP-1 and LP-2 with 

Zone LP-3 is abrupt. The thickness of Zone LP-3 exceeds 8-10 m.
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Resistivity Line LP-4 (Figure 9.12d) ran southeast to northwest across Landform 2 

(Figure 9.6). Although there is no sedimentological control for the interpretation of 

this landform from boreholes or trenching, the electrical properties of this landform 

are very similar to those observed from Landform 1 (resistivity Lines LP-1, LP-2 and 

LP-3). The ramparts are marked by very high resistivity (predominantly >650 Qm) 

(Zone LP-1), the peat-filled basin by intermediate resistivity (190-500 Qm) (Zone 

LP-2), both underlain by a low resistivity layer (<190 Qm) that is more than 8 m 

thick (Figure 9.12d).

The depth of investigation of resistivity Lines LP-1, LP-2, LP-3 and LP-4 was limited 

(maximum depth of investigation 18 m) because of the narrow electrode spacings that 

were deployed (1-2 m). The additional resistivity surveys undertaken in July 2005 

(Lines LP-5 and LP-6) utilised electrode spacings of 5 m in an attempt to provide 

additional information on the electrical properties at greater depths, and identify 

rockhead.

A thin (<3 m) layer of intermediate to high resistivity (190-1500 Qm) (Zone LP-1) is 

apparent in the near-surface zone of resistivity Line LP-5 (Figure 9.12e). This is 

underlain by a 20-25 m thick layer of low resistivity (40-230 Qm) that corresponds to 

resistivity Zone LP-3 observed in Lines LP-1, LP-2, LP-3 and LP-4. The modelled 

resistivity increases at the base of Line LP-5, with a layer of intermediate resistivity 

(230-450 Qm) (Zone LP-4). If the 230 Qm contour is selected as the boundary 

between Zones LP-3 and LP-4, then the contact between these two zones appears to 

dip southeastwards. This boundary appears to be gradational in nature, with resistivity 

values increasing from 100 Qm at 15 m depth to 290 Qm at a depth of 20-25 m. Line 

LP-5 did not intersect any peat-filled basins (Figure 9.6), and as a result, resistivity 

Zone LP-2 was not measured in this profile.

Resistivity Line LP-6 (Figure 9.12f), which ran perpendicular to Line LP-5, is also 

characterised by at least three resistivity zones. The survey line ran over the ramparts 

of both Landform 1 and Landform 2, as well as over the peat-filled basin of Landform 

1 (70-105 m) (Figure 9.6). Where the profile ran over the ramparts and areas of high 

ground, the profile is characterised by intermediate to high resistivity (190->600 Qm) 

(Zone LP-1). Because of the low resolution of resistivity Line LP-6, in comparison to

276



( i )
Modal rssistwity with topography
Iteration 3 RMS error = 1.2

Southeast
2 4 2 0 1 8 .2 2 7 5 2 9

Resistivity in ohm m

Unit E lectrode Spacing =  0  750 m
Horizontal sca le  is 11.30 pixels per unit spacing 
Vertical exaggeration in model sec tion  display = 1 23 
First electrode is located at 0  0 m 
Last electrode is located at 79.5 m

Model IP with topography 
Elevation iteration 4 RMS error = 4.2

Chargeability in mV/V

Unit Electrode Spacing =  1.50 m
Horizontal sca le  is 22.59 pixels per unit spacing 
Vertical exaggeration in model section display = 1 28 
First electrode is located at 0 0  m.
Lasl electrode is located at 79 5  m

Northwest
2 4 1 9 7 0 .2 2 7 6 0 5
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intersection points of other geophysical survey lines indicated. The 190 Qm resistivity contour is marked on the resistivity
profile by a black dashed line and on the IP profile by a white dashed line.
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Lines LP-1 and LP-3, it is difficult to clearly define the peat-filled basin of Landform 

1 (Zone LP-2). However, a slight decrease in resistivity is apparent in the near

surface zone between 70-105 m compared to where the profile ran over the landforms 

ramparts (0-70 m and 105-135 m). A laterally continuous low resistivity zone (40-230 

Qm) is apparent beneath the intermediate to high resistivity near-surface layer of 

Zones LP-1 and LP-2. This 20-25 m thick layer corresponds to Zone LP-3 observed 

in all other resistivity profiles at this site (LP-1 to LP-5). Resistivity Zone LP-3 is 

thickest to the southwest of Line LP-6, with the lowest values of resistivity apparent 

beneath the upslope rampart and the peat-filled basin of Landform 1. The increase in 

resistivity, to values exceeding 230 Qm, at depths of 25-30 m beneath the ground 

surface, represents the contact between Zone LP-3 and the underlying, higher 

resistivity (230-350 Qm), Zone LP-4. As in Line LP-5, this contact is gradational, 

appearing to dip towards the southwest.

9.3.3 Induced polarisation
Induced polarisation Line LP-1 is dominated by very low chargeability (0-3.6 mV/V) 

(Figure 9.12a). There is some evidence however, of slightly higher chargeability in 

the near surface, particularly in the centre of the northeastern rampart near the 

location of Borehole 1 and within the peat-filled basin, where chargeability values of 

2.4-8.4 mV/V were measured. These correspond to zones of intermediate to high 

values of resistivity (resistivity Zones LP-1 and LP-2).

Line LP-4 is also dominated by low values of chargeability (0-3.6 mV/V) (Figure 

9.12d). The ramparts and peat-filled basins are characterised by a weak chargeability 

(2.4-6.6 mV/V). In the area corresponding to the peat-filled basin (16-42 m), this 

near-surface zone extends to a depth of 3-4 m below the bog surface.

Like the two previous IP profiles, Line LP-5 (Figure 9.12e) is characterised by low 

chargeability values (0-4.8 mV/V). However, Line LP-5 is also marked by two 

pronounced, circular IP anomalies (>8.4 mV/V) at 55 m and 122 m along the profile, 

at a depth of approximately 10 m below the ground surface. Similar ‘bulls eye’ 

shaped anomalies are also apparent in Line LP-6 (Figure 9.12f), at 40 m, 60m and at 

120 m.

280



Chapter 9: Llanpumsaint

9.3.4 Seismic refraction

Three first break velocity segments are apparent from the seismic P-wave travel-time 

graph (Figure 9.13). The direct wave, representing a very thin near-surface zone, is 

indicated by the low velocity gradients between 18-22 m and 22-24 m of Shot 2. The 

direct wave is not apparent in Shots 1 and 3 however, suggesting that this layer is 

very thin. For the purposes of this site investigation this layer has been ignored but is 

thought to represent a thin, near-surface, unsaturated, weathered zone. The first 

refracted wave is apparent on the traveltime vs distance plots of Shots 1, 2, 3, 5, 6, 7 

and 13, which all show strong parallelism. Shots 9, 10, and 11 have two velocity 

segments representing two refracted waves. Shot 10 and Shot 11 display good 

parallelism. The arrival of the second refracted wave, indicated by the change in the 

inflection of the best-fit lines, occurs at 26 m (geophone 14) on Shot 9, 36 m 

(geophone 19) on Shot 10, and 28 m (geophone 15) on Shot 11. A total of two 

refracted waves are therefore identified from the traveltime graph.

The average velocity of the first refractor, derived from the reciprocal of the gradient 

of the minus graphs of eight pairs of reversed shots (1&3, 1&13, 3&6, 3&7, 5&3, 

5&13, 6&13, 7&13) was 1395 msec'1, varying from 1352 to 1441 msec'1. The 

velocity of the second refractor (Shots 9, 10 and 11) could not be calculated using 

minus time values due to the lack of reversed coverage. The velocity of this refractor 

was therefore determined from the reciprocal of the gradient of the best-fit line for the 

appropriate segment of the traveltime graph for each shot. The calculated values were 

3915 msec'1 (Shot 9), 4058 msec'1 (Shot 11) and 4335 msec'1 (Shot 10), averaging 

4103 msec*1.

The refracted waves identified from the first break data can be simply interpreted 

using a two-layer model with a low velocity (1395 msec'1) layer overlying a higher 

velocity layer (4103 msec'1). The depth of the refractor between these two layers was 

calculated using the Intercept Time method because of a lack of reversed coverage 

and the absence of a direct reciprocal time measurement (see Section 3.4.3.2). The 

calculated depths for the second refractor varied between 29-35 m, averaging 32 m 

(Figure 9.14).
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9.4 Interpretation

9.4.1 Sedimentology
The laminated silty clays from 4.07 m to the base of Borehole 1 at 8 m (Figure 9.8a) 

are indicative of deposition by suspension in a low-energy subaqueous environment. 

Like the glacio-lacustrine sequences associated with Lake Teifi (Fletcher and Siddle 

1998; Hambrey et al. 2001; Etienne et al. 2006) these sediments are apparently 

devoid of any significant volume of in situ flora and fauna. Given their elevation at 

125-130 m OD, 40-45 m above the floor of the Gwili valley at Llanpumsaint, it is 

suggested that these sediments were deposited in a body of standing water dammed 

by an ice mass. As the Afon Gwili currently drains southwards, entering the Towy 

valley at Carmarthen at <10 m OD (Figure 9.1), blockage of the mouth and the lower 

reaches of the Gwili by the Towy glacier during the Late Devensian would have been 

necessary to impede drainage, thereby allowing the development of a large proglacial 

lake (Lake Gwili). Recent British Geological Survey (BGS) mapping in the area 

however does suggest that glaciers flowing from northeastern (Teifi glacier) or 

eastern (Cothi glacier) sources may also have influenced lake development (BGS 

Sheet 211, Newcastle Emlyn, unpublished map).

Moraine and ice-dammed lakes were widespread in south and mid-Wales during 

deglaciation (Charlesworth 1929; Jones 1942, 1965; George 1942; Bowen 1967; 

Culver and Bull 1979; Anderson and Owen 1979; Cave and Hains 2001; Hambrey et 

al. 2001). There is also unequivocal evidence for bodies of water in the Afon Towy 

catchment during the late glacial period. In the Afon Cothi valley a 5 m thick 

sequence of glacio-lacustrine clays has been reported in the Edwinsford (Rhydodyn) 

Bridge borehole (M.S. Parry unpublished, in Bowen 2005) and up to 11 m of clay has 

been recorded 400 m east of Pumsaint (Peter Brabham pers comm.). Recent BGS 

mapping has confirmed similar deposits 1-2 km upvalley (BGS Sheet 195, Lampeter, 

unpublished map). In the upper Towy valley lacustrine clays are exposed downvalley 

from the dam at Llyn Brianne (Allan Potts pers comm.). Glacio-lacustrine deposits, 

mapped by the BGS, throughout the catchment of the Afon Gwili suggest that Lake 

Gwili may have been relatively extensive (BGS Sheet 211, Newcastle Emlyn, 

unpublished map). The drainage of this lake presumably occurred following up-valley
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retreat of the Towy glacier to the east. This event could have been responsible for the 

deposition of the large volumes of sand and gravels, composed predominantly of 

Palaeozoic shales and grits, which underlie Carmarthen, downstream of the 

confluence of the Afon Gwili and Afon Towy (Strahan et a l 1909; British Geological 

Survey 1967). Terraces of fluvioglacial sands and gravels at the mouth of the Afon 

Cothi (Strahan et a l 1909) may also represent a similar event associated with the 

deglaciation and drainage of the Cothi valley.

Following exposure of the glacio-lacustrine sediments deposited by Lake Gwili after 

lake drainage, permafrost aggradation, during the late Devensian and/or the Loch 

Lomond Stadial (Younger Dry as), is likely to have occurred. Ice-wedge casts 

developed within glaciofluvial ice-contact sands and gravels 3 km east of Helfa Hall 

at Lletty-tegan (SN 44896.27477) provide clear evidence for permafrost in the area 

after deglaciation and lake drainage (Figure 9.15). The clayey silts and silty clays 

throughout Borehole 1 and from Units M and I of the trench (Samples LPT 1, 6, 8, 9 

and 12) (Figure 9.11) are highly frost susceptible (Beskow 1935). Following lake 

drainage, the high pore-water content of these sediments would have meant that the 

development of even a thin layer of permafrost within these glacio-lacustrine silts and 

clays would have resulted in ice segregation, and frost heave. Such conditions are 

characteristic of both lithalsa and open system pingo development within freshly 

exposed fine-grained sediments, such as marine clays, in actively uplifting arctic 

coastal zones (Svensson 1971; Ahman 1973; Pissart and Gangloff 1984; Allard et al 

1987, 1996).

The upper 4 m of Borehole 1 (Figure 9.8a) and the trench section (Figure 9.9) provide 

an important record of the development of the rampart of Landform 1 at Helfa Hall, 

Llanpumsaint. The units of rounded and sandy gravels within the trench represent 

sediments deposited, reworked and/or deformed during development of the circular 

rampart. The distal fining of grain-size and the abrupt tapering of Units E and K 

towards the outer slope of the rampart (Figure 9.9) indicates localised sedimentary 

events that resulted in deposition outwards from the central basin of the landform. 

These observations make it unlikely that the sediments that comprise the rampart 

were deposited before landform development and were simply heaved upward and 

deformed without remobilisation. If the ground was permanently frozen after the

284



Figure 9.15: Ice-wedge casts developed within glaciofluvial ice-contact sands and gravels 3 km east of 
Helfa Hall at Lletty-tegan (SN 44896.27477).



Chapter 9: Llanpumsaint

initial deposition of glacio-lacustrine materials associated with Lake Gwili, then these 

sediments may have been extensively reworked and re-deposited by mass movement 

and slope wash processes associated with seasonal active layer thaw and melting of 

bodies of ground-ice or buried glacier ice. Given its generally massive, structureless 

nature and the occasional presence of larger clasts, Unit M was probably deposited by 

mass wasting (Harris 1981). The occasional laminae that are apparent in parts of Unit 

M may reflect deposition of material in small, localised bodies of standing water both 

on the surface of the landform and around its periphery or as the result of surface 

wash. The presence of bodies of standing water can be attributed to differential thaw 

consolidation processes during summer thaw of the active layer and during 

permafrost degradation.

The asymmetrical, anticlinal, arching structures seen in the rampart section suggest 

lateral deformation. Similar structures have been reported from sedimentological 

investigations of ramparted depressions in Wales near Llangurig (Pissart 1963) and in 

the Cletwr valley (Watson 1975,1976), as well as at Clonroche, Co. Wexford, Ireland 

(Lewis 1985), in Belgium (Bastin et a l 1974; Pissart and Juvigne 1980; Pissart et al 

1981; Pissart 1983, 2000,2003), Holland (De Gans 1981), and from degrading pingos 

in Canada (Mackay and Stager 1966; Pissart 1967; Pissart and French 1976; French 

and Dutkiewcz 1976; French et al 1982). These structures are not diagnostic 

evidence for ground-ice mounds however, anticlinal structures have also been 

observed in sections through the ramparts of iceberg gravity craters (Longva and 

Bakkejord 1990). Irrespective of potential origins, the arching, partial folding and 

buckling of Units D, E and H must have occurred as a result of deformation and 

collapse associated with the gradual thaw of massive ground-ice, or buried glacier ice, 

at depth. The scale of deformation in the sequence suggests the meltout of a relatively 

significant body of ground ice. Massive ground-ice has been reported from beneath 

the periphery of Ibyuk Pingo, Canada (Rampton and Walcott 1974; Mackay 1988).

The lack of deformation and the shallowly dipping to horizontal beds of Units L, O 

and P (Figure 9.9) suggest that during the later stages of rampart development, 

sediment was redistributed back into the central basin by slumping and surface wash. 

The part of Unit M that overlies Units K and L was also redistributed back into the 

central basin following the deposition of Unit L. The sharp contact between Unit K
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and Unit M suggests that the erosion of Unit K may have provided a sediment source 

for the deposition of Unit L. The 4.07 m thick sequence of peat in Borehole 2 is 

believed to be of Holocene age. The laminated clays that underlie this peat are 

interpreted as lacustrine sediments deposited within a pond confined by the encircling 

rampart, rather than during glaciolacustrine conditions associated with Lake Gwili 

prior to landform development. Depending on when the rampart was formed, 

deposition of these clays may have occurred either during the late Devensian, or 

during the Younger Dryas. No organic sediments that could be perceived as 

representing the Lateglacial Interstadial were found, although they may exist below 

the maximum depth of coring. The silty clay at the base of Borehole 2 was deposited 

either contemporaneously, or after, Units O and P.

9.4.2 Electrical resistivity tomography
Based on the geological evidence provided by the two boreholes and the trench, the 

interpretation of three of the four resistivity zones identified within the resistivity 

surveys (Zones LP-1, LP-2 and LP-3) can be constrained by direct observation. The 

upper 4 m of Borehole 1 and the section exposed by the trench indicate that the 

ramparts of these landforms are predominantly composed of unsaturated, massive 

clayey silts, interspersed with thin units of sand and gravels containing some 

precipitated iron and manganese (Figures 9.8, 9.9 and 9.10). The unsaturated nature 

of these sediments and the coarse-grained units of sand and gravel, are the result of 

the high values of resistivity characteristic of Zone LP-1. The very high resistivity 

values measured in the rampart of Landform 2 (Line LP-4, Figure 9.12d) suggest that 

this rampart may be characterised by a greater proportion of sand and gravel than the 

rampart of Landform 1.

Because peat is 80-95% water, the electrical resistivity of peat is fundamentally 

dependent on the solute content of its porewaters, which determines the waters 

conductivity (Theimer et a l 1994; Comas et a l 2004). The intermediate to high 

values of resistivity (190-500 Qm) that characterise the peat-filled central basins of 

both landforms at Helfa Hall primarily reflect the low ionic concentrations of the 

porewaters of the peat at this site. The relatively high resistivity (low conductivity) of 

these peats compared to some other sites (Theimer et a l 1994; Comas et a l 2004) 

means that the peat-infill of the central basins would be highly suitable for ground
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penetrating radar (GPR) surveys. Although previous studies have reported increases 

in the electrical conductivity of peat with depth due to the influence of inorganic 

solutes dissolved from mineral sediments underlying the peat (Theimer et a l 1994; 

Slater and Reeve 2002), this could not be confidently observed in the current surveys. 

The low solute content suggested by the intermediate to high resistivity of the peat- 

filled basin suggests that the porewaters are derived mainly from precipitation. These 

systems can therefore be classified as oligotrophic basin mires (bogs) rather than 

minerotropic fens, which at least partly source inorganic ions from groundwater 

sources (Lindsay 1995).

A significant contrast between the resistivity of the peat-filled basins and the 

underlying mineral soil is apparent from profiles LP-1, LP-3 and LP-4 (Figures 9.12a, 

9.12c and 9.12d). This sharp boundary is a function of the markedly different physical 

properties of organic and non-organic sediments (Comas et a l 2004). The base of the 

peat in Borehole 2 (4 m) (Figure 9.8b) corresponds well with the lower boundary of 

Zone LP-2 in both Line LP-1 and LP-3 (Figures 9.12a, 9.12c), suggesting that the 

intermediate resistivity zone that characterises the peat-filled basins of the landforms 

(Zone LP-2) can be utilised to clearly define the lower and lateral boundaries of the 

peat. The vertical extent of Zone LP-2 in Line LP-4 suggests that a similar thickness 

of peat is present within the central basin of Landform 2. This observation was 

supported by preliminary augering of the basin, which recorded a 3.3 m thick layer of 

peat.

The low resistivity Zone LP-3 that extends laterally beneath the ramparts and the 

peat-filled basins in all resistivity lines corresponds to the saturated, laminated silty 

clays observed between 4.07-8 m in Borehole 1, and the fine-grained saturated 

sediments beneath the peat-filled basin between 4.07-5 m in Borehole 2 (Figure 9.8). 

The very low resistivity values measured for these sediments, relative to the clayey 

silts that comprised the upper 4.07 m of Borehole 1, are partly the result of a 

reduction in grain-size with depth, but are mainly a function of the saturated state of 

the sediments below 4 m in Borehole 1. Therefore, the boundary between Zones LP-1 

and LP-3 primarily represents the location of the water table rather than a geological 

boundary. Clay minerals are naturally conductive because of their large surface area 

and cation exchange capacity (CEC), which enables surface chemical reactions.
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Although this usually results in very low resistivity values, the resistivity of Zone LP- 

3 is relatively high for clay. This may be a result of the clay being relatively compact 

rather than being composed of disassociated particles, thereby restricting the CEC 

(Turesson and Lind 2005).

The increased resistivity at the base of Lines LP-5 and LP-6 (Zone LP-4) (Figures 

9.12e and 9.12f) is interpreted as bedrock. Although resistivity values do increase 

from a depth of 15-20 m beneath the ground surface in both lines, the 230 Qm 

contour is interpreted as representing the superficial-bedrock boundary. This contour 

is found at depths of 25-30 m in both Lines LP-5 and LP-6. The increase in resistivity 

at the base of resistivity Zone LP-3 apparent in Lines LP-1, LP-5 and LP-6 may 

represent a change in the lithology of the superficial deposits with depth (e.g. to till), 

but may alternatively be a function of the coarse resolution of the resistivity model 

blocks. Irrespective of the composition of Zone LP-3, Lines LP-5 and LP-6 indicate 

that the thickness of superficial deposits at Helfa Hall is >25 m. This is in accordance 

with resistivity Lines LP-1, LP-3 and LP-4, which suggest that the thickness of 

superficial sediments at this site exceeds at least 8 m, and the results of the seismic 

refraction survey (see Section 9.4.4).

9.4.3 Induced polarisation
The IP data from Line LP-1 and LP-4 (Figures 9.12a and 9.12d) suggest that the peat 

deposits within the central basins of the both Landform 1 and Landform 2 are 

chargeable. The chargeability of peat has been attributed to the high surface-charge 

density on partially decomposed organic matter (Hobbs 1986; Slater and Reeve 

2002). As a result of this factor, the IP response of peat should contrast significantly 

with the IP response of mineral soil (Slater and Reeve 2002). As a consequence, IP 

surveys therefore provide a better technique for estimating the thickness of a peat 

deposit than electrical resistivity (Slater and Reeve 2002). Contrary to this 

conclusion, this study has found that IP surveys are not necessarily a suitable method 

for estimating the location of the peat-mineral soil boundary at all sites. Whilst the IP 

data at Helfa Hall does suggest that the peat at this site is chargeable, the high 

resistivity Zone LP-2 is more consistent with the direct geological sampling 

(Borehole 2) of peat thickness than the zone of high chargeability (e.g. Figure 9.12a). 

At Helfa Hall, electrical resistivity therefore provides a much better geophysical tool
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for estimating the thickness of peat. This supports the argument that a suite of 

geophysical methods must be deployed during site surveys, as results for each 

technique can vary widely on a site-by-site basis depending on geological and 

hydrogeological conditions. Despite the positive results achieved from the resistivity 

method at Helfa Hall however, GPR will remain by far the best technique for 

estimating the thickness of peat deposits where the conductivity of peat is low 

(Theimier et a l 1994; Jol and Smith 1995).

The high chargeability ‘bulls-eyed’ shaped anomalies from IP Lines LP-5 and LP-6 

(Figures 9.12e and 9.12f) are believed to be the result of noisy data. Although they 

partly correspond to the low resistivity Zone LP-3, the high values of chargeability do 

not extend throughout this layer. It is therefore likely that these high chargeability 

anomalies are the result of noisy data, perhaps caused by poor ground contact of 

electrodes. This interpretation is supported by the high root mean square (RMS) error 

of IP Line LP-6 (6.8%) (Figure 9.12f).

Although it is widely reported that the large surface area and cation exchange 

capacity of clays enables clay-rich deposits to store charge (e.g. Slater and Reeve 

2002), this has not been observed, despite the high clay content of the glacio- 

lacustrine clays, at the Llanpumsaint site. IP data cannot always be used to reliably 

identify the presence of clay-rich materials, as the CEC is partly dependent on the 

density of the material (Turesson and Lind 2005). High densities of clay particles may 

reduce the CEC of a clay unit. Alternatively, ambiguous IP data may simply be a 

function of the insensitivity of raw chargeability measurements to lithological 

variation (Slater and Lesmes 2002), or noisy datasets (e.g. LP-5 and LP-6, Figures 

9.12e and 9.12f). Calculation of the normalised chargeability, which is a direct 

measurement of surface polarisation processes, may improve the identification of 

clay-rich zones in IP data (Slater and Lesmes 2002).

9.4.4 Seismic refraction
The seismic refractor observed at a depth of 32 m is interpreted as rockhead. The two 

layers identified from the seismic survey at Llanpumsaint are therefore: i) a layer of 

unconsolidated superficial deposits; ii) bedrock (Figure 9.14). Based on the evidence 

from Borehole 1 (Figure 9.8a), the superficial deposits are dominated, at least in the
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upper 8 m, by fine-grained silts and clays, interspersed with occasional thin units of 

sand and gravel. The velocity of the upper layer (1395 msec'1) is consistent with P- 

wave velocities measured for similar glaciolacustrine sediments elsewhere in Wales 

(e.g. Camlad valley 1430-1500 msec'1, Hussen 1998; Brabham et a l 2005). This 

layer corresponds with the very low resistivity zone (40-190 Qm) of Zone LP-3.

The velocity of the second, high-velocity layer (4103 msec'1) is greater than the 

recognised values for unconsolidated sediments (normally <2000 msec'1). This layer 

must therefore represent unweathered bedrock, and the velocity is comparable to 

measured velocities for Silurian and Ordovician mudstones elsewhere in the region 

(see Section 5.4.3) and in previous studies (Allen 1960; Francis 1964). Rockhead is 

therefore interpreted at a depth of approximately 32 m (ca. 100 m OD). This 

corresponds with the depth of the high resistivity Zone LP-4 at the base of resistivity 

profiles LP-5 and LP-6 (Figures 9.12e and 9.12f), which was also interpreted as 

bedrock. Based on these two independent geophysical observations, a significant 

thickness of superficial deposits is interpreted to exist at this site (ca. 30 m).

The seismic data suggest that the velocity of the superficial deposits may increase at 

depth. Velocity calculations for the first refracted wave based on the reciprocal of the 

gradient of the best-fit lines for Shots 8, 9, 10, 11 and 12 varied between 1747 to 

2451 msec'1 (average = 2065 msec'1), compared to the average value of 1395 msec'1 

calculated from minus graphs using Shots 1, 3, 5, 6, 7 and 13. This increase in 

velocity is not apparent on the traveltime graph (Figure 9.13) because the increase is 

not very pronounced (1395 msec'1 to 2065 msec’1). This increase in velocity could 

represent a more consolidated superficial material (e.g. till or compacted clays) or a 

weathered bedrock layer between the glaciolacustrine deposits and unweathered 

bedrock. A higher P-wave velocity layer of this nature would result in an increase in 

the calculated depth to bedrock derived from the seismic survey. The presence of this 

layer is consistent with the increasing resistivity of Zone LP-3 at depth in resistivity 

lines LP-5 and LP-6.
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10 Svalbard

10.1 Introduction: pingos and permafrost in Svalbard
To accurately classify relict forms interpreted as periglacial ground-ice mounds, 

modem analogue data on the internal structure (ground ice geometry and physical 

characteristics) of active pingos in the current permafrost zone are required (Pissart 

1988). Studies of this type are rare however due to the lack of suitable exposures and 

the difficulties associated with the transportation and deployment of drilling 

equipment. This chapter presents results from ground penetrating radar (GPR) and 

electrical resistivity tomography surveys used to determine the internal structure 

(geometry and physical properties) of open system pingos on Svalbard. This research 

was primarily designed to provide reference data for the interpretation of relict 

landforms in Wales. Pingos in Svalbard were selected as suitable modem analogues 

because the current permafrost environment of the archipelago is comparable to that 

found in Western Europe during the late Pleistocene (Akerman 1987), when 

permafrost aggraded on deglaciated terrain. The varied character and environmental 

contexts of Svalbard pingos means they have great potential to provide evidence for 

the origins and evolution of open system forms. Unfortunately however, previous 

investigations of pingos in Svalbard have focused primarily on their geomorphology 

and the geochemistry of the ground-ice or groundwaters (e.g. Orvin 1944; Piper and 

Porritt 1966; van Autenboer and Loy 1966; Svensson 1971; Ahman 1973; Liestol 

1977). With the exception of Yoshikawa (1993), detailed investigations of the 

internal structure remain rare.

Many open system pingos in Svalbard are located in areas where groundwater 

migration occurs through faults and other discontinuities (Orvin 1944; van Autenboer 

and Loy 1966; Liestol 1977; Yoshikawa and Harada 1995). Liestol (1977) proposed 

that groundwater supplying these open system pingos originated from meltwater at 

the base of polythermal glaciers. Downward flowing meltwaters from the glacier sole 

become confined within sub-permafrost bedrock aquifers below cold-based glacier 

margins and impermeable permafrost, where it may be forced down to significant 

depths and geothermally heated (Liestel 1977) (Figure 2.5). Upwelling of this, 

frequently warm and mineralised groundwater, occurs preferentially through
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geological structures in large, wide valleys, where the artesian head is greatest and the 

permafrost relatively thin, to form pingos. The flow path of this water will be strongly 

influenced both by permafrost and by geological structure (Liestol 1977). Like open 

system pingos in Greenland (Muller 1959; Cruickshank and Colhoun 1965; O’ Brien 

1971; Allen at al 1976; Scholz and Baumann 1997; Worsley and Gurney 1996) a 

characteristic of many of these ‘fault guided’ pingos is the incorporation and heave of 

bedrock as well as superficial Quaternary sediments (van Autenboer and Loy 1966; 

Ahman 1973; Liestol 1977). Many are also associated with perennial groundwater 

springs with high salt contents, which often form surface icings (Orvin 1944; Liestol 

1977).

It is also clear however, that the development of many pingos in Svalbard is also 

partly determined by changes in Holocene relative sea level. The lowermost pingos in 

Adventdalen, (Lagoon, Longyear and Hytte) (Figure 10.1) are found developed in 

highly frost-susceptible, saturated, fine-grained marine sediments, below the 

uppermost Holocene marine limit in inner Adventdalen at 62 m asl, where a raised 

beach is dated to 10,025±160 yrs BP (Lonne and Nemec 2004). As a consequence, it 

has been suggested that these pingos may be a derivative of the closed system type, 

caused by permafrost aggradation on isostatically uplifted marine sediments 

(Svensson 1971). However, these pingos have many features characteristic of the 

open system type, as they are clearly associated with groundwater seepage and 

surface icings (Orvin 1944; Liestol 1977; Yoshikawa and Harada 1995). Other pingos 

located in similar settings elsewhere on Svalbard (e.g. Woodfjorden) may also be of a 

type related to the closed system model (Ahman 1973; Liestol 1977; P^kala and 

Repelewska-P^kalowa 2004). Pingos developed within marine sediments of Holocene 

age or in nearshore settings have also been reported from the Canadian Arctic (Pissart 

1967) and Greenland (Cruickshank and Colhoun 1965; O’ Brien 1971; Yoshikawa 

1991; Yoshikawa et al. 1996; Christiansen 1995). Because the overburden of many 

‘nearshore’ pingos in Adventdalen (e.g. Longyear and Hytte), and in Reindalen and 

Grondalen, does not incorporate evidence for terrestrial sedimentation, it has been 

suggested that many developed rapidly after glacio-isostatic emergence (Yoshikawa 

and Harada 1995). A number of these ‘nearshore’ pingos in Svalbard have been 

radiocarbon dated on the basis of material within or above the sediment covering the 

pingo surface (Svensson 1971; Ahman 1973; Yoshikawa and Nakamura 1996;

293



Chapter 10: Svalbard

Humlum unpublished) but the majority are dated with less certainty, constrained by 

the timing of deglaciation and Holocene relative sea level curves (Landvik et al.

1998; Forman et al. 2004).

Permafrost in Svalbard is defined as continuous (Liestol 1977; Akerman 1987; Brown 

et al. 1997) but, due to the complexity of its glacial and sea level history, this 

definition disguises a great variability in permafrost thickness and distribution 

(Landvik et al. 1988; Humlum et al. 2003). Permafrost has been recorded by direct 

measurements at depths of 200-400 m below the ground surface in the mountains of 

Svalbard (Liestol 1977; Christiansen et al. 2005). Based on the extrapolation of 

temperature profiles from boreholes, permafrost is 220 m thick at Janssonhaugen, 

inner Adventdalen (Figure 10.1) (Isaksen et al. 2001), and between 100-190 m thick 

in and around Longyearbyen (Gregersen and Eidsmoen 1988). ID electrical 

resistivity surveys suggest that the thickness of permafrost varies between 3 m to 100 

m in the nearshore area around Longyearbyen (Yoshikawa and Harada 1995; Harada 

and Yoshikawa 1996). Beneath the cold-based Foxfonna ice cap south of 

Adventdalen, permafrost is found at a depth of 290 m below rockhead (Christiansen 

et al. 2005). Generally, permafrost is estimated at 100 m thick beneath the floors of 

the major valleys (e.g. Longyearbyen and Reindalen) and up to 400-500 m below the 

high mountains (Orvin 1944; Liestol 1977; Humlum et al. 2003).
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10.2 Site descriptions and survey

10.2.1 Geophysical methods
Geophysical methods such as electrical resistivity tomography and GPR can provide 

key data on the geometry and interned structure of pingo ice-cores. The conceptual 

model of the internal structure of open system pingos assumes that they contain a 

simple plano-convex ice core. As a result, the electrical properties of a high resistivity 

body of massive pingo ice and the low resistivity host geological materials should 

provide a significant geophysical contrast, enabling the geometry of the pingo ice to 

be defined using 2D electrical resistivity tomography or GPR. For this study, four 

open system pingos in Adventdalen (Riverbed, Innerhytte, Hytte and Longyear 

pingos) were investigated using these methods. The geophysical method used at each 

site was determined by the substrate within which the landform was developed and by 

the degree of snow cover at the time of survey.

GPR surveys at Riverbed and Innerhytte pingos were undertaken between the 14th 

and 21st April 2004. This period was chosen as the use of sledges and snowmobiles 

facilitated equipment transport, and because there was no unfrozen active-layer to 

interfere with electromagnetic (EM) wave penetration. The key factor determining the 

selection of these sites for investigation was the well-recognised limitations of GPR 

at sites where the dominant superficial geology is silt or clay, or where groundwaters 

are saline (Jol and Bristow 2003). Because Innerhytte and Riverbed pingos are 

located above the upper altitudinal limit of fine-grained Holocene marine deposits in 

Adventdalen (which would significantly limit the penetration depth of EM waves) 

and are primarily developed in frozen Jurassic shales, these pingos were chosen as 

sites most suitable for GPR. A Pulse Ekko 100 GPR system with 50 Mhz and 100 

Mhz antennae was used for the surveys (Section 3.5.3). Based on a limited common 

midpoint (CMP) survey, the propagation velocity of the electromagnetic waves was 

measured at 0.14 mns*1. This is a relatively conservative estimate for both frozen 

bedrock and massive ice, which have values in the region of 0.13-0.16 mns"1 (Davis 

and Annan 1989), and is supported by velocity analysis of hyperbolic reflections 

within the GPR profiles.
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The pingos located below the Holocene marine limit in lower Adventdalen (Longyear 

and Hytte), were deemed inappropriate for GPR survey because they are developed 

in, and uplift, fine-grained, saline marine clays. Electrical resistivity tomography was 

therefore selected as a suitable near-surface geophysical technique for the 

investigation of the internal structure of these landforms. All electrical resistivity 

tomography surveys in Svalbard were undertaken between 19th and 23rd April 2005, 

using an ABEM SAS 300C Terrameter instrument with an ES464 electrode selector 

(Section 3.2.3.2). In addition to surveys at Longyear and Hytte pingos, a single 

resistivity survey was also undertaken at Innerhytte pingo, but snow cover and 

topography restricted any other lines being acquired at this site. A planned survey of 

Riverbed pingo could not be performed because of the deep snow drifted against the 

pingo sides in April 2005. All resistivity survey lines used 2 cables with 20 electrodes 

takeouts each and an electrode spacing of either 4 m or 5 m (cable length of 156 m or 

195 m), with measurements on the multi-electrode array made using the Wenner fast 

array. This array was selected because it is well adapted to highly resistive, 

heterogeneous materials with weak signal strengths (Vonder Muhll et al. 2001), and 

to optimise battery life under cold conditions.

10.2.2 Riverbed pingo
Riverbed pingo (Figure 10.2), located approximately 17.5 km east of Longyearbyen 

(Figure 10.1), is 12 m high (summit at 93 m asl), with dimensions of 90 m by 50 m. 

The pingo is developed in mid- to late Jurassic shales of the Agardhfjellet formation 

(Major et al. 2000), overlain by a superficial cover of alluvial gravels. An EDM 

derived map of Riverbed pingo shows that the landform is oval in plan, with an 

asymmetrical north-south profile resulting from fluvial incision on its southern flanks 

(Figure 10.3). Pronounced frost blisters were evident at the western end of the feature 

during March and April 2004 and to the south of the pingo in 2005. Piper and Porritt 

(1966) recorded massive, clean ice at depths of less than 1 m below the surface of the 

pingo, and further work by Yoshikawa (1993) has described the internal structure and 

crystallography of the ice core as revealed by a fluvially eroded section on the south 

side of the landform. Yoshikawa (1993) estimated a permafrost thickness of 15.5 m 

at Riverbed pingo based on ID resistivity surveys, but this depth is likely to be a 

significant underestimate given that a permafrost depth of 22.8 m was also estimated
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Figure 10.2: Riverbed pingo, Adventdalen, showing steep , fluvially incised southern 
flank. The person to the left of the photograph is standing on the surface of a 
seasonal frost blister.
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Figure 10.3: Map of Riverbed pingo, surveyed using an EDM. Contours at 1 m 
intervals. Locations of GPR survey lines (Profiles 1 and 2) indicated.
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at Lagoon pingo near the shore of Adventfjord using the same technique (Yoshikawa 

and Harada 1995; Harada and Yoshikawa 1996).

A series of GPR profiles were measured at Riverbed pingo along the long and short 

axes of the landform. Two of these survey lines are presented here (Figure 10.3). 

Both profiles were completed using 50 Mhz and 100 Mhz antennae to evaluate the 

suitability of each frequency. As expected, the 100 Mhz antennae resulted in an 

increased resolution of survey. Surprisingly however, there was no apparent decrease 

in the depth of penetration between the 100 Mhz and 50 Mhz antennae. As a 

consequence, data from the higher frequency antennae are presented here.

10.2.3 Innerhytte pingo
Innerhytte pingo (Figure 10.4) (16 km east of Longyearbyen, dimensions 410 m by 

200 m, 28 m in height, summit at 95 m asl), is located above the Holocene upper 

marine limit in inner Adventdalen (Figure 10.1) and is developed within, and uplifts, 

Jurassic shales of the Agardhfjellet formation (Major et al. 2000), which are exposed 

on its surface. The surface topography is complex, with the distinct, steep-sided apex 

of the pingo characterised by a crater containing several roughly concentric, ridges 

and depressions, displaying clear evidence for cryogenic disturbance (Figures 10.4 

and 10.5). Due to fluvial incision, the south-facing flanks of the pingo dip very 

steeply down to the floodplain, but the slope of the northern flanks is markedly 

shallower. The main area of uplift is flanked to the north by a gently sloping, lower- 

lying zone (Figure 10.5), elevated only about 10 m above the Adventelva floodplain, 

which is characterised by ice wedge polygons or extensive tension cracks, but which 

otherwise displays little evidence for ground-ice disturbance (Piper and Porritt 1966). 

A thin cover of alluvial gravels overlies the gently sloping ‘lower tier’ of the 

Innerhytte feature, but this does not extend to the pingo apex where shales with only 

occasional sandstone clasts are exposed. A perennially flowing mineralised spring, 

which forms a pronounced surface icing covering the pingo summit and southern 

flank each winter (Figures 10.4 and 2.6), indicates that Innerhytte pingo is of the open 

system type (Orvin 1944; Liestol 1977). Piper and Porritt (1966) conducted the first 

investigations of Innerhytte pingo and produced a detailed topographic map of the 

landform. As at Riverbed pingo, massive, clean ice, which followed the surface
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Figure 10.4: Innerhytte pingo, Adventdalen. Note the well developed surface icing 
on the southern flank of the pingo (left of photograph), the result of the perennial 
seepage of groundwater (see  Figure 2.6), and the chaotic surface topography.

Figure 10.5: Oblique aerial photo of Innerhytte pingo, Adventdalen (Photo: I. Roer,
September 2004). Locations of GPR and electrical resistivity lines indicated.
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topography, was recorded at depths of less than 1 m below the surface of Innerhytte 

(Piper and Porritt 1966).

Two GPR survey lines are presented from Innerhytte pingo. Due to constraints on the 

survey time at Innerhytte, it was necessary to use different antennae depending on the 

length of the survey line. High-resolution 100 Mhz profiles were undertaken around 

the pingo apex and lower resolution 50 Mhz surveys over the lower gradient, lower 

tier zone (Figure 10.5). Because attenuation of the EM wave significantly limited the 

depth of investigation over much of the landform using radar techniques, the 

following year a complementary resistivity tomography survey was undertaken. This 

single survey line (4 m electrode spacing, 156 m long) ran roughly north to south 

from the gently sloping, flat lying area that characterises the northern part of the 

landform, up the north-facing flank and into the central crater at the pingo crest 

(Figure 10.5).

10.2.4 Hytte pingo
Hytte pingo (Figure 10.6) (dimensions 825 m long, 275 m wide and 20 m high), 

located 9 km to the west of Innerhytte pingo (Figure 10.1), is formed within marine 

muds deposited during early Holocene high relative sea levels. Shells from within 

these sediments have been radiocarbon dated to 6980±70 yr BP (Yoshikawa and 

Nakamura 1996) and 7405±65 yrs BP (AAR-7985) (previously unpublished date). 

Hytte pingo has a highly chaotic surface topography, with no clear pingo crest. The 

landform is composed of a series of small mounds and depressions, and is deeply 

incised by two southward flowing streams (Figure 10.7). Although apparently 

inactive since at least 1990 (Yoshikawa and Harada 1995), springflow and icing 

mound development were observed at Hytte pingo during 1924 (Orvin 1944) and 

1971 (Liestol 1977). A single resistivity survey tomogram (5 m spacing of electrodes, 

195 m in length) was conducted at Hytte pingo, running roughly northwest to 

southeast, aligned along the long axis of the landform (Figure 10.7). Because the 

values of resistivity measured at this site are significantly lower than those recorded 

from Innerhytte pingo, the data are plotted using a different scale.
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Figure 10.6: Hytte pingo, Adventdalen. Note the elongate form of this open system  
pingo, and its location on the valley floor at the base of a steep slope.

Figure 10.7: Oblique aerial photograph of Hytte pingo. The location of the electrical
resistivity survey line is indicated.
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10.2.5 Longyear pingo

Longyear pingo (Figure 10.8) is 300 m in diameter and about 15 m high. Like Hytte 

pingo, it is also developed within fine-grained marine sediments, but a radiocarbon 

age of 265Q±55 yrs BP from driftwood within its overburden (Svensson 1971) and its 

location 3 km downvalley (Figure 10.1) suggests that it developed at a somewhat 

later stage. Longyear pingo has a much simpler morphology than Innerhytte and 

Hytte pingos, with a single rounded dome of uplifted material. The landform already 

displays initial evidence for decay, with an incipient crater developing at its crest and 

a well-developed drainage gully on its southeastern flank. Because Longyear pingo 

has a circular plan form, and has a less complex topography than Hytte pingo, it was 

possible to undertake two perpendicular survey lines at this site. Line 1 ran northwest 

to southeast and Line 2 ran from northeast to southwest (Figure 10.9). Both lines used 

electrode spacings of 4 m, but snow cover conditions on the pingo flanks meant that 

ground contact was not possible for all electrodes. As a result, Line 1 was 144 m long 

and Line 2 156m long. The lines intersected at a distance of 76 m along line 1 and 84 

m along Line 2. To facilitate easy comparison of the datasets, the resistivity 

tomograms from Longyear pingo are plotted using the same contour scale as Hytte 

pingo.
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Figure 10.8: Longyear pingo, Adventdalen. This landform is positioned on the 
valley floor, at the base of a steep slope, a typical location for open system pingos 
development.

Figure 10.9: Oblique aerial photograph of Longyear pingo. The location of the
electrical resistivity survey lines are indicated.
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10.3 Results

10.3.1 Riverbed pingo: GPR surveys
GPR Profile 1 (Figure 10.10) was conducted from west to east along the length of 

Riverbed pingo (Figure 10.3). The profile is characterised by a high degree of 

variability in the depth of penetration of the radar signal, with up to 10 m of 

penetration on the western flank in contrast to approximately 5 m on the top of the 

feature. The central zone of the profile is characterised by complex chaotic 

reflections, with little or no lateral continuation. This is in contrast to the continuous 

planar horizontal sub-surface reflectors parallel to the valley floor adjacent to the 

pingo. The best example of these horizontal reflectors is between 0-45 m at the 

western-most edge of the landform. Between 25-45 m these reflectors appear to be 

uplifted, particularly beneath the surface icing whose surface form the reflectors 

parallel. Steeply dipping reflections (>45°) which are sub-parallel to the sides of the 

pingo are apparent within both flanks but are more markedly pronounced on the west 

side between 45-60 m. Between 60-70 m these reflections become less steeply 

dipping but due to the poor signal penetration around the centre of the pingo they 

cannot be traced across the landform.

More than five steeply dipping reflections are also apparent beneath the northernmost 

flank of the pingo in Profile 2 (Figure 10.11). Although they are roughly sub-parallel 

to the ground surface, these reflections are clearly more steeply dipping. Signal 

penetration is again relatively shallow beneath the top of the pingo where the 

reflections are characterised by complex chaotic reflections similar to those recorded 

in Profile 1. A GPR profile of the southern flank of Riverbed pingo could not be 

obtained due to its steep gradient.

10.3.2 Innerhytte pingo: GPR and resistivity surveys
GPR Profile 3 (Figure 10.12) crosses the apex of Innerhytte pingo (Figure 10.5), 

where thermokarst processes have resulted in the development of complex crater 

topography, suggesting ice near to the ground surface. The profile was only a few 

metres from a conspicuous surface icing. Like Riverbed pingo, the depth of 

penetration varied widely. Penetration was approximately 10 m between profile
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distances of 0 and 30 m. Although not as steeply dipping as the reflections recorded at 

Riverbed pingo, the reflections in this zone were again sub-parallel to the ground 

surface.

GPR Profile 4 (Figure 10.13) trended west to east across the lower tier of Innerhytte 

(Figure 10.5). Signal penetration is poor throughout most of its length with the 

exception of the western edge of the landform where strong reflections reminiscent of 

hyperbolic diffractions are located. In contrast to the hyperbolic diffractions at 45 m, 

320 m and 440 m however, these reflections have very low gradient arms and are 

therefore more likely to be primary structures.

The resistivity tomogram from Innerhytte pingo (Figure 10.14) has a marked near

surface zone of relatively low to intermediate resistivity (1500-6000 Q m) that 

extends laterally across the entire profile, and downwards from the ground surface to 

a depth of 3-4 m. This near-surface layer is underlain by a zone of much greater 

resistivity (6000-30,000 Q m) that is well developed beneath both the steep upper 

flanks of the pingo and beneath the gently sloping flat-lying zone to the north. This 

high resistivity zone extends from a depth of 3-4 m below the ground surface, to a 

depth of at least 20-25 m. The contact between the near-surface zone and the 

underlying zone of high resistivity is relatively abrupt, with an increase of ca. >6000 

Q m i n a  vertical distance of less than 5 m. The high resistivity layer appears to be 

divided into two clear zones of very high resistivity that are separated by a vertical 

column with intermediate to high values of resistivity. A small pocket of low 

resistivity exists at the bottom right of the resistivity tomogram. Because of the 

uncertainty associated with the model blocks at the margins of the tomogram, and the 

coarseness of the model blocks used in this survey, this pocket of low resistivity 

should not be considered as geologically significant. Instead, it probably represents an 

anomalous value, associated with data processing.

10.3.3 Hytte pingo: resistivity survey
The resistivity tomogram from Hytte pingo (Figure 10.15) displays exceptionally low 

values of electrical resistivity for permanently frozen ground (predominantly 10-100 

Q m, but ranging up to 400 Q m) at all depths beneath the first 100 m of the survey 

line. Intermediate to relatively high values (400-3000 Q m) characterise the
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southeastward sloping part of the tomogram (100-196 m), with two pronounced 

circular zones of high resistivity (900->4000 Q m) centred at depths of 5-10 m below 

the ground surface at distances of 120 m and 160 m along the tomogram. The 

increase in resistivity at the boundaries of these circular anomalies is abrupt, 

increasing by approximately 1000 O m over lateral and vertical distances of a few 

metres. The tomogram indicates that both these high resistivity anomalies extend 

upwards to approximately 1-2.5 m from the ground surface, but that they do not 

appear to extend to depths in excess of 15-20 m.

10.3.4 Longyear pingo: resistivity survey
Both resistivity profiles from Longyear pingo are characterised by very low resistivity 

values, ranging from 10-400 Q m. These are comparable to the values of resistivity 

recorded at Hytte pingo, as might be expected from landforms developed within 

similar host materials. Line 1 (Figure 10.16a) indicates that Longyear pingo has a 

zone of very low resistivity (<50 Q m) beneath its southeast flank, which extends 

throughout the landform from the ground surface to the bottom of the tomogram. This 

zone is also apparent in Line 2 (Figure 10.16b), but with a more restricted lateral 

extent, being concentrated in a narrow vertical column directly beneath the central 

depression of the landform. This plume of low resistivity extends from the base of the 

tomogram to a depth of 2.5-5 m beneath the central depression. A second, localised 

zone of very low resistivity is also apparent beneath the northeast flank of the pingo 

in Line 2. This circular anomaly is found at a depth of 2.5-12.5 m and from 24-40 m 

along the survey line. Both lines from Longyear pingo also have localised pockets of 

higher resistivity, such as at depths of 0-10 m beneath the ground surface between 96- 

136 m along Line 2 where resistivities of 250-1000 Q m were measured. However, 

these are not as resistive as the anomalies apparent in the single tomogram from Hytte 

pingo.
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10.4 Interpretation

A clear distinction can be made between the physical properties of the internal 

structure of pingos in Adventdalen depending upon whether they are located above 

(Riverbed and Innerhytte) or below (Hytte and Longyear) the maximum Holocene 

marine limit. This is a function of the material within which these landforms are 

developed, which controls the type of ground ice responsible for the uplift of these 

landforms. As a result, this section is therefore divided into two sections, the first 

interpreting the geophysical data from Riverbed and Innerhytte pingos, above the 

marine limit, and the second interpreting the surveys of Hytte and Longyear pingos, 

located below the marine limit.

10.4.1 Riverbed and Innerhytte pingos
The gently dipping, continuous reflectors that drape the western margin of Riverbed 

pingo in GPR Profile 1 are interpreted as units of alluvial gravels (Figure 10.10). 

These reflectors are disturbed and uplifted between 30-45 m where they underlie the 

seasonal icing that was developed in the winter of 2003-2004. Exposures reveal that 

the surface icing incorporated thick bands of gravel from the alluvial cover. These are 

clearly seen to dip away from the apex of the icing (Figure 10.10). Although the 

uplifted reflectors in the GPR profiles could be interpreted as the result of a change in 

the propagation velocity of radar signal caused by the heterogeneity of subsurface 

material, the geological evidence favours the interpretation that they represent 

uplifted units of alluvial gravel. The GPR profiles suggest that these gravel bands do 

not continue into the core of the pingo however. This is supported by exposures on 

the steep southern side of the pingo, which show that the landform appears to be 

primarily developed in shales.

Despite the apparent absence of gravel units within the pingo core, both GPR profiles 

from Riverbed pingo are characterised by gentle to steeply dipping reflections that lie 

roughly sub-parallel to the pingo flanks (e.g. 45-60 m Figure 10.10). Most clearly 

defined on the northern and western flanks of Riverbed pingo, these onlapping 

reflectors represent boundaries between materials of different dielectric properties. 

These dipping reflections are thought to represent alternations between thin units of 

ground ice and frozen mineral material, probably partially disaggregated shale.
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Although strong continuous reflectors can be generated by the dielectric contrast 

between zones of clear ice and ice with high air bubble content (Annan and Davis 

1976; Moorman and Michel 2000), the evidence for units of segregation and injection 

ice alternating with units of shale observed by Yoshikawa (1993) at this site supports 

the former interpretation. Each of the 4-6 layers of ice described by Yoshikawa was 

approximately 0.5 m thick (Matsuoka et al. 2004). The strong dipping reflections 

apparent in GPR Profiles 1 & 2 (Figures 10.10 and 10.11) may therefore reflect the 

strong contrast between ice-rich layers, interspersed with units of shale, in the 

uppermost parts of Riverbed pingo. Alternating bands of ice and sediment have also 

been recorded above pure ice cores from sections and drill holes through pingos in 

Canada (e.g. Porsild 1938; Miiller 1959, 1962; Mackay and Stager 1966; Rampton 

and Mackay 1971; Tamocai and Netterville 1976; Pissart and French 1976).

The GPR surveys at Riverbed pingo were unable to image the geometry of a massive 

ice-core. Because massive ice has homogenous dielectric properties and is highly 

resistive, EM waves will propagate rapidly (0.16 mns'1) through ground-ice without 

producing internal reflections (Moorman and Michel 2000). However, below the 

upper few metres of the GPR profiles, no reflections that might be interpreted as the 

base of a massive ice body were observed. Such reflections would be expected from a 

contact between ground-ice and bedrock, or between ground-ice and a sub-pingo 

water lens because of the contrasting dielectric properties of these materials. The lack 

of a basal reflection may be due to signal attenuation beneath the top of the pingo 

caused by a greater thickness of shale overburden and/or the absence of thin (0.5 m 

thick) units of massive ice within the shale. Signal attenuation can also be caused by 

intra-permafrost scattering of EM waves resulting from the presence of high 

concentrations of segregation ice (Arcone et al. 1998; Moorman et al. 2003). Such 

scattering of the GPR signal is suggested in the central zone of Profile 1 (70-90 m) 

where the data is characterised by complex chaotic reflections with little or no lateral 

continuation, and shallow signal penetration. These chaotic reflections are similar to 

those described by Moorman et a l (2003) as being produced by segregation ice. This 

is supported by the observations of Yoshikawa (1993) who describes segregation ice 

in the uppermost part of the section in the southern flank of the pingo. Whereas shale, 

rich in segregation ice, near the top of the pingo may have caused the observed signal 

attenuation with no clear reflectors, alternating units of injection ice and shale within
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the flanks could result in the much clearer, stronger reflections apparent in GPR 

Profiles 1 and 2 (Figures 10.10 and 10.11).

GPR Profile 3 (Figure 10.12) displays reflections that are interpreted as representing 

the internal structure of the ice core at the apex of Innerhytte pingo. Given that Piper 

and Porritt (1966) record massive ice at a depth of 1 m, these reflections are likely to 

represent internal structures within the ice. These reflections may be due to the 

presence of units of shale interspersed with bodies of injection ice, similar to those 

described from Riverbed pingo. With the exception of the surface icings, ice was not 

visible at or near the surface of either pingo during the period in which the GPR 

surveys were conducted. The ground-ice described by Piper and Porritt (1966) at 

Innerhytte was found only beneath the area of the pingo apex, and followed the 

surface topography, contained air bubbles, but was free of rock debris. In the absence 

of observational evidence for rock debris within the ice core of Innerhytte pingo it is 

difficult to unequivocally argue that the internal reflectors recorded in Profile 3 

represent such ice-shale alternations and it may be that variations in the chemistry, ice 

crystal properties or air content of the ice core may be the cause of these reflections. 

At Riverbed pingo, Yoshikawa (1993) described stratification of the basal pingo ice, 

interpreting these structures as the result of seasonal changes in the freezing of new 

ice onto the base of the ice body. The layering followed the shape of the pingo 

surface as it was uplifted by the freezing of water at the centre of the base of the ice 

body. Such variations in the structure of pingo ice have also been recorded from 

closed system pingos in Canada (Pissart and French 1976; Gell 1978; Mackay 1985, 

1990) and in icing mounds (Pollard and French 1983, 1984, 1985), where they were 

due to variations in the content of air bubbles. Internal layering of subsurface ice has 

also been recognised from GPR surveys of several closed system pingos in Alaska 

(Kovacs and Morey 1985). Such reflections corresponded with units of sandy ice and 

layers of varying air bubble arrangements and geometries recorded from cores 

through the pingo ice. Variations of this nature could result in the apparent ‘banding’ 

of pingo ice suggested by the GPR reflections within Profile 3. However, without 

borehole control such interpretations should be regarded as preliminary in nature.

It is significant that Piper and Porritt did not locate ice within 1.2 m of the surface 

beneath the more gently sloping, flat-lying northern zone of Innerhytte pingo, which
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they describe as “having little evidence for ice action” (p. 84). They did however 

believe that ice existed at depth, as the topography did not suggest that this sector was 

derived from slope processes on the pingo apex (Piper and Porritt 1966). GPR Profile 

4 (Figure 10.13) was conducted across this intermediate level of the pingo. Between 

90-160 m the depth of signal penetration is greater than 10 m. The arching layered 

reflections are similar in structure and in scale to those found around the pingo apex 

and may therefore suggest the presence of a buried ice mass. The poor depth of signal 

penetration and the absence of radar reflections in the area between 170-500 m on this 

profile (Figure 10.13) are interpreted as the result of a high degree of signal 

attenuation by shale with a low massive ice content. The lack of massive ice in this 

part of the pingo suggested by radar Profile 4 may be due either to an almost 

complete absence of ground-ice development in this area, or the absence of any 

significant volumes in the upper few metres, within the depth penetration range of the 

EM waves.

As was the case at Riverbed pingo, no clear reflection that could be interpreted as 

delimiting the base of the ice-core was recognised from either of the two GPR 

profiles from Innerhytte pingo. This is surprising given that GPR surveys of glacial 

ice masses commonly delimit the ice-bedrock interface (Plewes and Hubbard 2001). 

Although the presence of a body of highly conductive saline groundwater beneath the 

ice body at Innerhytte, as suggested by geochemical analysis of the spring waters 

(Orvin 1944; Liestol 1977), could cause attenuation of the radar waves, a strong 

reflection from the interface between the pingo ice and such a body would be 

expected. Alternatively it could be that the boundary between the ice body and 

underlying shales is gradational, causing no clear reflections. Buried ice bodies, 

mapped from GPR profiles of the internal structure of the moraine of Scott 

Tumerbreen in Bolterdalen, a tributary valley of Adventdalen, also appear to have no 

clear basal reflections (Lonne and Lauritsen 1996). Determination of the basal 

geometry of pingo ice therefore awaits the application of further geophysical and/or 

borehole investigations at Riverbed and Innerhytte pingos.

Previous investigations of the north-facing flanks of Innerhytte pingo (Piper and 

Porritt 1966), and GPR Profile 4 suggest that ground ice is either found at significant 

depth below the ground surface, or that there is a complete absence of massive
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ground ice development beneath that part of the pingo. Both interpretations may be 

consistent with the resistivity data (Figure 10.14). The high values of resistivity (5-25 

m) that dominate the resistivity tomogram from Innerhytte pingo (Figure 10.14) 

could be interpreted either as ice-rich frozen bedrock or as large lenses of massive 

ice. However, without borehole calibration of the dataset it is very difficult to make 

an unequivocal interpretation. Although values of resistivity comparable to those at 

Innerhytte pingo have been measured from ground-ice bodies (see Haeberli and 

Vonder Miihll 1996) these values are exceptionally low for massive ground ice, most 

measurements being greater than 1 MQ m. The resistivity measurements at Innerhytte 

pingo are also within the range of frozen bedrock. ID resistivity soundings and 

profiling at the nearby PACE drillsite at Janssonhaugen (Figure 10.1), where the 

bedrock is a relatively homogenous sandstone, gave a range of apparent resistivity 

values from 8 kfl m to 30 kfl m in the upper 20-30 m (Ketil Isaksen personal 

communication). Although the bedrock type is shale rather than sandstone, the high 

values of resistivity at Innerhytte pingo could also represent ice-rich permanently 

frozen bedrock. It is widely acknowledged that high resistivity anomalies in 

permafrost environments are not always the result of the presence of ground ice. Ice, 

air and certain rock types can have very similar high resistivities because they all act 

as electrical insulators. Therefore, without additional information from 

complementary geophysical methods or borehole control, distinguishing between 

these very different materials can be difficult (Hauck and Vonder Miihll 2003a, 

2003c). Deriving the P-wave velocity of the high resistivity zone at Innerhytte pingo 

using seismic refraction tomography could therefore assist in distinguishing whether 

this unit is composed of massive ice or ice-rich frozen bedrock.

Because the resistivity surveys at Innerhytte pingo were undertaken during the late 

winter period, the near-surface layer o f low to intermediate resistivity (Figure 10.14) 

cannot represent a thawed active layer. As a result, this uppermost zone must 

represent frozen bedrock. The relatively low resistivity of this layer, in comparison to 

the values at depth, is likely to be a function of weathering of the upper few metres of 

bedrock. Weathering of bedrock in this environment is evident from the highly 

friable pieces of shale that scatter the surface of this and other pingos developed in 

bedrock in Svalbard. The depth of weathering may be related to the depth of 

summertime active layer processes. During the summers of 1998 and 1999, the depth
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of the active layer at Janssonhaugen was 1.54 m and 1.42 m respectively (Isaksen et 

a l 2001).

10.4.2 Hytte and Longyear pingos

At both Longyear and Hytte pingos (Figures 10.15 and 10.16), resistivity values were 

exceptionally low for permanently frozen ground (<2000 m), apparently

inconsistent with the presence of a large body of massive ground ice. These low 

values of resistivity cannot be attributed to warm permafrost however. Although air 

temperatures were relatively high during the period of survey, ground temperatures 

(and therefore ground resistivity) within permafrost should be at their lowest in early 

spring (Hauck and Vonder Miihll 2003b). This is particularly true of pingos, where 

deflation results in snow-free conditions throughout the winter on the summit and 

upper flanks. Even at the end of summer, the unfrozen active layer at both Hytte and 

Longyear pingos will be less than 2 m and resistivity values at depths below this 

should not vary significantly, if at all, during the course of the year.

An alternative explanation is that a plano-convex lens of massive ice does not exist 

beneath Hytte or Longyear pingo. Instead, the internal structure of these landforms 

may be dominated by segregation ice and possibly small, localised pockets of 

massive ice. Segregation ice plays an important role in the heave of a variety of 

ground-ice mounds such as paisas and lithalsas (Ahman 1976; Allard et al. 1987; 

Seppala 1988b; Allard and Rousseau 1999; Pissart 2002) and has been recorded 

within many pingos (Muller 1959; Pissart and French 1976; Mackay 1973, 1998). In 

Adventdalen, segregation ice has been observed within both Lagoon and Riverbed 

pingos (Ahman 1973; Yoshikawa 1993). Because Hytte and Longyear pingos are 

developed within highly frost-susceptible marine muds, then the development of 

segregation ice during permafrost aggradation following subaerial exposure of the 

materials is probable. If the uplift of these landforms is the result of lenses of 

segregation ice, then a significant proportion of their internal structure will be 

composed of minerogenic sediments, which might explain both the complex 

distribution of resistivity and the apparently uncharacteristically low values.

Because of the contrast in electrical properties of ice and water, the resistivity of 

frozen ice-rich materials (both superficial sediments and bedrock) is significantly
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higher than the same material in its unfrozen state (Hoekstra et al. 1975; King et al. 

1988; Scott et al. 1990; Hauck and Vonder Miihll 2003c). This increase in resistivity 

is more pronounced in coarse-grained sediments however. Fine-grained sediments 

such as clays can have very low resistivity (100-1000 Q m) even when frozen at 

temperatures below -5°C (Scott et al. 1990) because of their high, unfrozen water 

contents. Films of unfrozen, adsorbed water enable electrolytic conduction through 

ionic transport in solution, giving anomalously low resistivity measurements (King et 

al. 1988). The high levels of dissolved salts recorded within marine muds in lower 

Adventdalen (Humlum et al. 2003) could further influence the electrical properties of 

Hytte and Longyear pingos by further depressing the soil water freezing point 

(Anderson and Morgenstem 1973; Furuberg and Berggren 1988; Scott et al. 1990; 

Brouchkov 2002). Because of solute rejection during freezing, the concentration of 

dissolved ions in the pore waters will increase as the pore water gradually freezes, 

further depressing the freezing point o f the remaining liquid. For highly saline soils, 

pore waters can remain almost entirely unfrozen at temperatures of -2  °C to -3 °C 

(Gregersen et al. 1983) and, given the right material, unfrozen water can be present 

within unconsolidated permafrost at temperatures of -5°C (Anderson and 

Morgenstem 1973; Scott et al. 1990).

Saline permafrost is characterised by a highly complex heterogenous composition, 

with frozen zones containing ice lenses interspersed with zones of unfrozen 

porewaters and sediment (Brouchov 2002). Because current will preferentially flow 

through materials of low resistivity, the current induced into a subsurface containing 

unfrozen saline pore waters will flow through this matrix, rather than through highly 

resistive lenses of ice. The effect will be apparently low values of resistivity, 

particularly where the grain-size of the material is very fine. Laboratory analysis of 

marine clays from lower Adventdalen have revealed that even with low volumetric 

water contents (12%), the electrical resistivity of these sediments is low (<100 G m) 

at temperatures as low as -8°C, as a result of the relatively high salinity of the pore 

waters (ca. 5%o) (Harada and Yoshikawa 1996).

Although theoretically the development of segregation ice within fine-grained saline 

sediments can explain the low values of resistivity measured within Hytte and 

Longyear pingos, whether this process can account for the significant amount of
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heave (>20 m) associated with the growth of these landforms is less certain. Low 

resistivity does not preclude high ground ice contents however, resistivity values of 

1000-3000 O m have been observed from permanently frozen silts with a measured 

volumetric ice content of 60-70% (Delaney et al. 1988). In other frost mounds 

generated predominantly by segregation ice, however, such as lithalsas, it is rare to 

find mounds greater than 7 m in height (Pissart 2002). The pockets of high resistivity 

beneath the southeastern end of the resistivity tomogram from Hytte pingo (Figure

10.15), and the circular zones of higher resistivity within Longyear pingo (Figure

10.16), could be interpreted as larger lenses of massive ice or localised high volume 

concentrations of segregation ice. The heterogeneity that is characteristic of saline 

permafrost means that a mixture of segregation and massive ice, even within one 

landform, is possible.

The zones of very low resistivity (<100 Q m) recorded at both Hytte and Longyear 

pingos could potentially represent zones of saturation caused by the build-up of 

upwelling groundwaters. Although it has been suggested that these landforms are of 

the closed system type (Svensson 1971) groundwater flow has been documented at 

Hytte pingo (Orvin 1944; Liestol 1977), and the well developed drainage channel on 

the southeast flank may be evidence for past groundwater seepage at Longyear pingo. 

This evidence points to at least some influence for groundwater under hydraulic 

pressure influencing the development o f these landforms. Potentially, the plumes of 

very low resistivity may indicate zones of groundwater seepage within the internal 

structure of these pingos. Although the regional groundwater has a high dissolved salt 

concentration (Orvin 1944; Liestol 1977), this concentration is lower than would be 

expected within the pore waters of the marine clays following relative sea level fall. 

Seepage of “fresh” groundwater through partially frozen, highly saline marine clays 

at temperatures several degrees below zero could promote localised ice segregation. 

Preferential ground-ice development would occur in sediments saturated by the 

seepage of less saline groundwater from depth, because they would have a higher 

freezing point than the surrounding sediments containing highly saline pore waters. 

Where groundwater seepage was concentrated, such as at fault intersections, mounds 

of ice-rich relatively low salinity soils, surrounded by highly saline clays, could 

develop.
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Traditional classifications of ground-ice mounds discriminate between mounds that 

are formed by the growth of segregation ice (paisas, minerogenic paisas and 

lithalsas), and those that result from the development of massive injection ice 

(pingos). If the landforms in lower Adventdalen are predominantly the result of 

segregation ice yet display evidence for groundwater seepage, then they appear to 

represent a transitional landform between these two extremes. This is not unique, 

examples of minerogenic paisa or lithalsa development in areas of groundwater 

seepage or incorporating units of injection ice have been documented (e.g. Worsley et 

a l 1995; Coultish and Lewkowicz 2003) and segregation ice has been observed in 

many pingos (e.g. Mackay 1973; Yoshikawa 1993).
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10.5 Summary

Ground penetrating radar investigations of the internal structures of Innerhytte and 

Riverbed pingos suggest that the core o f these landforms are not composed entirely of 

pure, massive ice, although ice bodies have been recorded at both pingos (Piper and 

Porritt 1966; Yoshikawa 1993). Steeply dipping radar reflections in the upper few 

metres of Riverbed pingo are likely to represent alternating units of ice and shale. 

Such banding of materials with strong dielectric properties may also be responsible 

for similar reflections in the GPR profiles from Innerhytte pingo. In the absence of 

geological, or crystallographic control however, the possibility that variations in the 

chemistry, ice crystal properties or air content of the pingo ice core might also be 

responsible for such reflections cannot be discounted.

Where pingos are developed within bedrock (e.g Innerhytte pingo), interpretation of 

electrical resistivity tomography data is complicated by the high resistivity 

characteristics of both frozen bedrock and massive ice. The resistivity from the 

northern part of Innerhytte pingo is therefore consistent with both the suggestion that 

a massive ground-ice body exists at depth (Piper and Porritt 1966) or that part of the 

pingo is a bedrock remnant without a body of massive ice (Ross et a l 2005b).

Electrical resistivity tomography surveys of Hytte and Longyear pingos show that 

these landforms have an internal structure characterised by relatively low resistivity. 

This is entirely inconsistent with the presence of a large body of massive ground-ice 

and suggests that the uplift of these landforms was generated by the development of a 

mixture of segregation ice and localised, discontinuous pockets of massive ice within 

a matrix of partially frozen fine-grained, saline marine muds. This contradicts the 

conceptual model of open system pingo development, but is in line with field 

observations from other pingos and ground-ice mounds.

The investigations described in this chapter merely provide basic geophysical data on 

open system pingos in Svalbard. Future work investigating open system pingos 

should concentrate on drilling boreholes for improved geological control, and the 

monitoring of air and ground temperatures and snow cover conditions. As well as 

providing information on the geomorphological processes related to the development
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and evolution of these landforms, this monitoring would also improve interpretation 

of the geophysical data. This work should be complemented by more detailed 

geophysical surveys and by the establishment of fixed geophysical installations (e.g. 

Delisle et al 2003; Hauck and Vonder Miihll 2003b) for long-term observations to 

monitor and evaluate future climatically driven changes (Vonder Miihll et al. 2001). 

The application of a variety of complementary geophysical techniques (e.g. seismic 

refraction tomography) would reduce ambiguity of interpretation (Scott et a l 1990; 

Vonder Miihll et a l 2001; Yoshikawa et a l 2006), particularly where the electrical 

contrast between massive ice and the host geological material (e.g. Innerhytte pingo) 

is not pronounced.
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11 Discussion: Possible Mechanisms of Formation
This section aims to outline and evaluate the geomorphological processes that may 

have been responsible for the development of ramparted depressions in Wales. Four 

possible mechanisms that could account for the development of the landforms are 

identified. These are broadly divided into two categories: i) periglacial origins, 

incorporating pingo and lithalsa formation; and ii) glacial origins, including the 

stagnation, burial and meltout of glacier ice, and the meltout of grounded icebergs

11.1 Periglacial origins

11.1.1 The open system pingo model

Based on their location at the foot o f valley slopes, Watson and Watson (1974) 

suggested that the model of development for open-system pingos of the Yukon Basin, 

(Canada and central Alaska) (Holmes et al. 1968; Hughes 1969), could also be used 

to explain the growth of ground-ice mounds in mid and west Wales during the late 

Pleistocene. Although applied specifically to the Cletwr valley, with minor 

modification this model may also be applicable to other sites in west Wales where the 

geology (both the type and distribution of bedrock and superficial sediments) and 

geomorphology are similar (e.g. in the Cledlyn and Grannell valleys and around 

Llanpumsaint). The pingos of the Yukon basin were selected as suitable modem 

analogues because they are concentrated on the lower slopes of minor river valleys in 

upland areas with discontinuous permafrost (Holmes et a l 1968; Hughes 1969) rather 

than on the alluvial plains of broad valleys in the continuous permafrost zone (e.g. 

Greenland and Svalbard) (Watson and Watson 1974).

Watson and Watson (1974) argued that during the Devensian, limited recharge of 

sub-permafrost groundwaters may have occurred on the valley interfluves and steep 

valley sides where permafrost was discontinuous and superficial deposits thin or 

absent (Figure 11.1). In contrast, groundwater flow would have been impeded 

beneath the lower slopes due to the thick sequences of impermeable fine-grained 

sediments, and the possibility of aspect-related deeper permafrost. Sub- and intra

permafrost groundwater migration could have occurred only in higher permeability 

zones, determined by the presence of gravel units or fractured bedrock. If
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Figure 11.1: Model of the possible formation of open system pingos in Wales, leading to the formation of ramparted 
depressions (Ballantyne and Harris 1994, after Watson and Watson 1974).
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groundwater was confined by an impermeable, permanently frozen near-surface layer 

of unconsolidated materials, high hydrostatic pressures conducive for the 

development of open system pingos might result (Figure 11.1) (Watson and Watson 

1974).

11.1.1.1 Permafrost hydrogeology: the role of groundwater seepage 
through faults and other discontinuities

Whilst the analogy with the central Alaskan pingo belt is broadly acceptable, Watson 

and Watson (1974) ignored the key role that fault systems play in the development of 

open system pingos in Alaska (Holmes et a l 1968; Hamilton and Obi 1982) and 

elsewhere in the world (O’ Brien 1971; Liestol 1977; Babinski 1982; Wang and 

French 1995). Groundwater seepage along fracture zones associated with faulting 

could also have been important in west and mid Wales during the late Pleistocene 

since the mudstones and fine sandstones of the Silurian and Ordovician bedrock, and 

the resultant fine-grained nature of most o f the superficial deposits have generally low 

primary permeabilities. Robins et al. (2000) and Hiscock and Pad (2000) have shown 

that groundwater flow in the Teifi catchment currently occurs through four main 

pathways: i) within granular superficial deposits; ii) through a shallow 10-20 m thick 

weathered and fractured upper zone of bedrock; iii) in interconnected deep-seated 

fractures and faults; and iv) along geological boundaries. There is little reason to 

believe that during the late Pleistocene the hydrogeology of the area was very much 

different, although higher groundwater pressures might be expected as a result of 

glacial meltwaters and the presence of permafrost.

Unequivocal evidence for permafrost development in the Teifi catchment and 

adjoining areas following deglaciation is well documented. Ice wedge casts, 

involutions and vertical stones have been described on the Cardigan Bay coast and in 

the main Teifi valley just upstream of the Teifi-Cletwr confluence, as well as around 

Lampeter and Tregaron (Watson 1965, 1981; Price 1976). A well-developed ice- 

wedge cast observed in sands and gravels at Crug-y-eryr Quarry provides evidence 

for the previous existence of permafrost in the Cletwr basin after lake drainage. There 

is no direct evidence for the thickness of permafrost that developed in the area after 

deglaciation, but the development of ice wedge casts suggests at least some time 

periods with significant winter cooling (Mackay 2000). The analogy with the Yukon
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Basin (30-45 m) (Holmes et al. 1968; Watson and Watson 1974) may in this case be 

appropriate. The depth of rockhead indicated by the geophysical surveys conducted 

during this project, suggest that significant thicknesses of superficial sediments (e.g.

15-22 m at Rhos Llawr Cwrt, Cletwr valley) underlie most of the investigated sites. 

Under permafrost conditions during the late Devensian, these unconsolidated 

Quaternary sediments were likely to have been permanently frozen throughout. 

Lateral groundwater migration would therefore have been significantly impeded, 

except along unfrozen sub-permafrost geological boundaries, through deep-seated 

faults or in a fractured upper zone of bedrock. Under these conditions high 

hydrostatic pressures could have developed, increasing the probability of open system 

pingo development. Poor exposure in the study area means that knowledge of the 

distribution of faults and other geological structures is limited. However, fault-related 

fracture zones have been mapped beneath ramparted depressions near Llanpumsaint 

and at Crychell Moor in mid-Wales (Figures 6.5 and 9.5) (BGS Sheet 211: Newcastle 

Emlyn, unpublished map; British Geological Survey 1993). Given the degree of 

structural deformation of the Welsh Basin rocks (Anketell 1987; Craig 1987), it is 

also probable that numerous small-scale faults coincide with the zones of ramparted 

depressions in the Cletwr and Cledlyn valleys. Groundwater seepage through such 

faults may have promoted pingo development (Figure 11.1).

11.1.2 Problems associated with the pingo origin model
Whilst the preceding section has suggested that the geological and hydrogeological 

context of the ramparted depressions could support the interpretation of these 

landforms in mid and west Wales as the remains of open system pingos, there are a 

number of factors which are not consistent with this interpretation. These are 

discussed within this section.

11.1.2.1 The density and distribution of ramparted depressions in Wales
One of the major criticisms of the pingo model is that active open system pingos are 

not found in the same high densities as clusters of collapsed Pleistocene landforms 

(Sparks et al. 1972; Worsley et al. 1995; Matthews et al. 1997; Pissart 2000, 2003). 

Although there are numerous examples of gregarious, clustering groups of open 

system pingos in modem Arctic environments (e.g. Miiller 1959; Holmes et al. 1968; 

Hughes 1969; Liestol 1977; Worsley and Gurney 1996; Gurney 1998), it has been
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acknowledged that the density and widespread distribution of ramparted depressions 

in Wales is much greater (Watson and Watson 1974). It is therefore something of a 

myth that the distribution and concentration of ramparted depressions in Wales is 

comparable to that o f active open system pingos. To counter this problem, Watson 

and Watson (1974) argued that given an extended period of time and the 

“continuance of open system conditions” (Watson and Watson 1974, p. 224) the 

density of pingos in Alaska would approach the densities in Wales. However, the 

period when permafrost could have developed following deglaciation in west Wales 

(ca. 5000 years) was actually considerably shorter than the period available for pingo 

development in the Yukon basin (20-40,000 years). Even if the period of time was 

long enough, the rather uniform state o f preservation of the ramparted depressions 

suggests that the development of these landforms occurred within a relatively short 

period of time. In fact, these landforms do not actually overlap as much as suggested 

in the literature. For example, at Rhos Llawr Cwrt, Cletwr valley, there are more than 

six landforms in extremely close proximity but, with the exception of the hour-glass 

form of ‘Pingo’ 1, these landforms do not impinge greatly on one another. This is also 

the case in the Cledlyn valley and is not consistent with suggestions that only one or 

two pingos were supported at any one time (Watson and Watson 1974; Watson 

1977). A greater degree of disturbance of earlier forms would be expected if this were 

the case. The lack of overlapping forms is in direct contrast to images of clustering 

open system pingos in Greenland (Muller 1959), which demonstrate significant 

disturbance of collapsing landforms by newly growing pingos, the mass movement of 

material and fluvial erosion. This suggests that rather than being the result of 

repetitive pingo development over an extended period of time at a geologically 

favourable site with only one or two active landforms existing at any one time 

(Watson and Watson 1974; Watson 1977), the ramparted depressions in the Cletwr 

and Cledlyn valleys were formed roughly contemporaneously.

11.1.2.2 Linear pingos and elongated ramparted depressions
It has been suggested that the linear pingos resembling eskers, described from Alaska 

(Porsild 1938), the Mackenzie Delta (Mackay 1962) and Prince Patrick Island (Pissart 

1967), may provide appropriate analogues for the linear, very elongate ramparted 

depressions in the Cledlyn (e.g. ‘Pingos’ X, Y, R, S and A) and Cletwr (e.g. Darren 

Fawr and Glan-rhyd-y-dre) valleys (Watson 1971; Watson and Watson 1974)
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(Figures 7.3 and 8.3). These analogies may be misplaced however, since linear pingos 

in the Arctic have very specific modes of formation involving the aggradation of 

permafrost within taliks associated with either lateral migration of river channels 

(Pissart and French 1976; French and Dutkiewcz 1976; Gurney and Worsley 1997) or 

the aggradation of permafrost in sediments infilling nearshore gullies and marine 

inlets that have been exposed by falling relative sea level (Pissart 1967). Such 

mechanisms cannot be applied to the elongate landforms of the Cletwr valley 

however as they are situated on a slope perpendicular to the current drainage channel 

and there is no reason to believe that any significant palaeo-drainage would have been 

located here. Although the elongate landforms in the Cledlyn valley are aligned 

parallel to the current drainage, the small catchment of the Cledlyn precludes the 

likelihood of significant palaeo-drainage on the valley sides where the landforms are 

located. Also, as Watson and Watson (1974) acknowledged, accounts of elongate 

pingos in Arctic environments have not yet documented examples of these landforms 

on sloping valley sides, all so far having been described from flat locations. Linear 

pingos are therefore probably inappropriate analogues for the elongate, ramparted 

depressions in Wales. The very linear morphology of the landforms on the north- 

facing slopes of the Cledlyn valley (Figure 7.3), suggests that the ridges impound 

peat-filled hollows because they are orientated perpendicular to the slope rather than 

because of the formation of an oval rampart from the meltout of a large ground-ice 

body associated with a linear pingo.

11.1.2.3 The duration of late Devensian permafrost and pingo growth
Pissart (2000, 2003) believed that the Younger Dryas was too short a period for the 

apparent extent of open system pingo development suggested by the number of 

ramparted depressions in Wales and on the Hautes Fagnes plateau of Belgium. This 

observation is certainly true given that evidence from active pingos in the Arctic 

suggests that the time taken for a pingo to grow large enough to form a sizeable 

rampart upon its collapse is in the order of hundreds to thousands of years (Mackay 

1986, 1988). Although pingo uplift is rapid during the first few years of growth, the 

rate of uplift declines rapidly thereafter (Mackay 1981). Unlike the ramparted 

depressions in Belgium however, the chronological control of the landforms in Wales 

is not robust enough to date either the initiation of these landforms, nor the period of 

their development. However, it is possible that these landforms could have developed
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in the late Devensian during and/or after deglaciation, but before the Lateglacial. The 

climate and environment o f this period was certainly suitable for the development of 

ground-ice mounds, following withdrawal of glacier cover, with extensive, probably 

discontinuous, permafrost. If this was the case then a period of about 5000 years, 

rather than 1500 years was available for pingo growth.

11.1.2.4 The permeability of superficial sediments in west Wales
Mackay (1978b) suggested that although pingos are developed in a variety of 

substrates, these substrates must be characterised by some degree of permeability, and 

that there are few examples of active pingos developed in thick sequences of 

impermeable materials such as clays. Relict landforms in the British Isles however 

are commonly found developed in areas of silt or clay-rich till or lacustrine deposits 

(Bryant and Carpenter 1987), and those in Wales are no exception. It is initially 

difficult to comprehend how groundwater flow can be maintained through the 

significant thicknesses of low permeability clayey-silt tills and glaciolacustrine 

deposits that dominate the sites where ramparted depressions are found (e.g. 

Llanpumsaint, Cletwr and Cledlyn valleys). However, numerous examples of active 

pingos in Svalbard associated with groundwater seepage are developed in nearshore 

areas where Holocene permafrost has aggraded into fine-grained sediments exposed 

by glacio-isostatic uplift, demonstrating that the development of large ground-ice 

mounds can occur even within apparently low permeability substrates.

11.1.2.5 Regional topography and groundwater flow
The topography at several ramparted depression sites in Wales also appears to 

undermine an open-system pingo interpretation. At sites elsewhere in Wales such as 

Crychell Moor, Llangurig and Bwlch Derwin, high groundwater pressures could be 

generated by the high surrounding relief. However, in the tributary valleys of the 

Afon Teifi, despite the observed concentration of ramparted depressions, there is a 

lack of significant relief from which such pressures could be generated. Although 

Pissart (2000, 2003) argues that an impervious bedrock and a lack of relief precludes 

open system pingo development, if groundwater seepage is restricted to deep-seated 

faults and other discontinuities within otherwise impermeable bedrock, then seepage 

may occur due to regional scale groundwater gradients at specific locations. This 

would favour open system pingo development under permafrost conditions even on
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plateau locations (e.g. Pissart 1967). Although inter-granular flow is restricted 

through the mudstones and sandstones of the Welsh Basin area, where fractured, 

these rocks have high secondary permeability (Watson 1996; Robins et a l 2000).

11.1.2.6 Depth of depressions
One issue that has been previously overlooked is the shallow nature of several basins, 

particularly in the Cledlyn valley. Previous studies and review papers have focused 

on the more spectacular depressions (e.g ‘Pingo’ U). However, the basins of several 

landforms in the Cledlyn valley (e.g. ‘ Pingos’ A, M, L, N and Q) appear to be too 

shallow to be the remains of open system pingos. In addition, many of the landforms 

have an apparent surplus of material within their ramparts. In these cases, the 

question arises, how can a large volume of rampart sediments be generated from such 

shallow depressions? Whilst the depth to bedrock, indicated by resistivity data, is 

significant in the centre of the Cledlyn valley, the superficial sediment is thin on the 

upper slopes (e.g. below ‘Pingo’ A) (Watson 1971; Gurney 1994, 1995). Whilst this 

might explain why ‘Pingo’ A has a shallow basin, ‘Pingos’ M and L are developed 

above a thick superficial sequence and still only have shallow basins. Furthermore, if 

the superficial sediments are thin beneath ‘Pingo’ A, it is difficult to explain the 

mechanism by which the well defined rampart of this landform could be generated by 

the collapse of an open system pingo which has upheaved so little sediment.

11.1.3 The re-interpretation of ramparted depressions as relict 
lithalsas

On the basis of the density and morphology of the ramparted depressions in Wales, it 

has been suggested that the ramparted depressions of the Cletwr and Cledlyn valleys 

are the remains of lithalsas (no peat cover) or minerogenic paisas (thin peat cover) 

which developed from the growth of segregation ice in fine-grained sediments 

(Pissart and Gangloff 1984; Gurney 1994, 1995; Pissart 2000, 2003). This revised 

interpretation has been supported by evidence from active examples in North 

America and in Scandinavia (Pissart and Gangloff 1984; Worsley et a l 1995; 

Matthews et a l 1997). Lithalsas and minerogenic paisas normally develop from the 

growth of segregation ice within fine-grained, frost-susceptible silts and clays 

(Svensson 1969; Matthews et a l 1997), but can also develop in coarser material and 

the internal structure can contain units of massive ice (Allard et a l 1987; Lagerback
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and Rodhe 1986; Worsley et a l 1995) (see Section 2.2.1). There is now widespread 

evidence that lithalsas produce encircling rim-ridge ramparts during their collapse 

(Svensson 1969; Lagerback and Rodhe 1985, 1986; Akerman and Malstrom 1986; 

Worsley et a l 1995; Matthews et al 1997; Allard et a l 1987; Pissart 2000, 2003) but 

the exact mechanisms responsible for the development of ramparts remain unclear.

There are significant morphological similarities between some of the landforms in 

Wales (e.g. in the Cletwr valley and near Llanpumsaint), and collapsed or collapsing 

modern-day landforms in Scandinavia (Svensson 1964b, 1969; Seppala 1972b). The 

relict forms in the Hautes Fagnes, Belgium, which have been interpreted as lithalsas 

or minerogenic paisas by Pissart (2000, 2003) also show striking morphological 

similarities to some of the Welsh features discussed in this thesis (e.g. Rhos Llawr 

Cwrt and Llanpumsaint). Intriguingly, although Watson and Watson (1974) 

interpreted the landforms at Rhos Llawr Cwrt in the Cletwr valley as the relict form 

of open-system pingos, they did suggest that the amount of clear ice within the 

landforms was probably limited and that it was likely that the ice contained lenses of 

sediments.

A critical argument used to support the re-interpretation of ramparted depressions in 

Wales as the remains of lithalsas was the presence of highly frost-susceptible fine

grained substrates, which are necessary for the development of these ground-ice 

mounds, at Llangurig, and in the Cletwr and Cledlyn valleys (Gurney 1994, 1995; 

Gurney and Worsley 1996). Similar sediments have also been recognised in 

association with ramparted depressions at Bwlch Derwin in north Wales (Moore 

1980) and at Owlbury, just over the English border in Shropshire (Gurney and 

Worsley 1996). During the current investigation highly frost-susceptible silts and 

clays were found both within and beneath the ramparts at Llanpumsaint, at Rhos 

Llawr Cwrt and within the basin fills at four of the six sites investigated. If 

permafrost developed following deposition, these silts would have supported 

extensive ice segregation during ground freezing in such poorly drained settings. 

However, demonstrating the presence of these sediments alone does not provide 

unequivocal evidence that these landforms are the remains of lithalsas or minerogenic 

paisas.
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11.1.4 Problems associated with the lithalsa origin model
In the Cledlyn valley, the main location used to support the re-interpretation of the 

Welsh landforms, the current investigation has provided little or no evidence that the 

ramparted depressions are the remains of lithalsas or minerogenic paisas. This 

hypothesis was based on the premise that a significant thickness of frost-susceptible 

sediments existed in the valley, within which ice segregation, and ground-ice mound 

development, had occurred. The evidence previously presented in support of 

extensive glaciolacustrine deposition however is limited to only thin units of this 

deposit observed in the few available, poorly exposed stream sections (Watson 1971; 

Gurney 1994, 1995), and the assumption that the thick basin infills of ‘Pingos’ U and 

W were deposited prior to ground-ice development. Gurney (1994, 1995) believed 

that extensive glaciolacustrine sediments overlay till in the Cledlyn valley. To the 

author’s knowledge however, nowhere outside the basins of the ramparted 

depressions, is there a section that provides unequivocal stratigraphical evidence that 

extensive deposits of clay or silt overlie till. During the current investigations no 

glaciolacustrine deposits overlying the glacial till were observed. In fact, the current 

study found no evidence for lacustrine clays or silts at all (except within the basin of 

‘Pingo’ U), in any of the boreholes or trial pits, although such deposits could exist at 

depth. The low resistivity zones beneath ‘Pingos’ L, M, N, Q and U may represent the 

presence of fine-grained sediments, but it is impossible from the geophysical 

evidence alone to define lithology. As Watson (1996) pointed out, only a deep bore to 

bedrock would finally prove the presence or absence of extensive glaciolacustrine 

deposits. However, neither the boreholes nor the trial pits from the ramparts of 

‘Pingo’ U and ‘Pingo’ Q support a stratigraphy of till overlain by glaciolacustrine 

silts and clays and head.

The current evidence therefore appears to suggest that the unit of glaciolacustrine 

sediments in the Cledlyn valley is not laterally or vertically extensive and that there is 

little evidence for a widespread proglacial lake and extensive glaciolacustrine 

sedimentation (see also Watson 1996). It is instead possible that the fine-grained 

glaciolacustrine sediments observed by Gurney were deposited in a series of small 

lakes that developed either on the valley floor, where they could have been 

impounded by topography, or supraglacially. Even if extensive fine-grained
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glaciolacustrine deposits existed (outside the landform infill), it is difficult to 

understand how large ramparts, composed of a matrix-supported, but clast-rich 

diamict could be produced. If the lithalsas were generated within a thick lacustrine 

succession overlying the till, then the ramparts would be expected to be mainly 

composed of fine-grained silts and clays. Furthermore, these ramparts far exceed the 

scale of any ramparts likely to be produced by the collapse of a lithalsa less than 10 m 

in height.

Simply interpreting landforms as the product of the collapse of lithalsas on the basis 

of the presence of fine-grained glaciolacustrine deposits (e.g. Gurney 1994, 1995; 

Worsley et al. 1995, Gurney and Worsley 1996) is misleading. There are a number of 

alternative mechanisms by which rim ridges can be produced, in association with 

fine-grained sediments, by processes associated with glacial lakes and glacial 

processes. Therefore, where these landforms are developed in glaciolacustrine clays 

and silts a segregation ice origin should still be considered a possible option, but the 

substrate alone is not necessarily an unequivocal indicator of the origins of these 

landforms.

11.1.5 Periglacial origins: a summary
Whilst the geomorphological setting, and the regional hydrogeology and permafrost 

history are consistent with a pingo origin for the ramparted depressions found 

throughout parts of mid and west Wales, the density of these landforms in particular 

makes it very unlikely that they are the remains of open system pingos. Whilst the 

mechanism by which open system pingos form does cause these landforms to 

congregate at localities where groundwater seepage favours their development (e.g. 

Muller 1959; Holmes et al. 1968; Worsley and Gurney 1996), this phenomena is not 

as common as widely believed. Most open system pingos have a very scattered 

distribution (Pissart 2000, 2003) and are not found in the densities characteristic of 

the Welsh landforms. This is in direct contrast to lithalsas, which are concentrated in 

low-lying areas, underlain by water-saturated, frost-susceptible fine-grained 

sediments (Pissart 2000, 2003). In terms of their density therefore, the ramparted 

depressions of Wales are more consistent with the interpretation of these landforms as 

the collapsed forms of late Pleistocene lithalsas (Pissart and Gangloff 1984; Gurney
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1995; Pissart 2000, 2003) rather than open system pingos (Watson 1971; Bryant and 

Carpenter 1987; Ballantyne and Harris 1994).

Another possibility for the origins of ramparted depressions does exist however. A 

variety of glacial processes can also produce ramparted depressions, which, 

morphologically, can be very similar to those produced by periglacial processes. 

Although in terms of their density and morphology the Welsh landforms are very 

similar to the relict lithalsas of Belgium, because the Hautes Fagnes area was not 

glaciated during the late Pleistocene any possible glacial origins for the landforms in 

Belgium can be easily dismissed. This is not the case for the ramparted depressions in 

Wales however, which are all located within areas affected by glaciation during the 

late Pleistocene. As a result, these glacial mechanisms of formation must be 

incorporated within any evaluation of the possible origins of the Welsh landforms. 

This is the case even for the classic site of the Cledlyn valley, where the re- 

interpretation of these landforms as relict lithalsas (Gurney 1995) is undermined by 

the apparent absence of an extensive frost-susceptible, fine-grained substrate.
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11.2 Possible glacial origins

11.2.1 Ice stagnation origins

11.2.1.1 Ice stagnation landforms in North America and Scandinavia
In North America and Scandinavia, complex till-cored hummocky topography, 

including a variety of ice-contact hummocks, rims, ridges, and moraine, interspersed 

with dead-ice hollows (kettle holes), have been reported from areas glaciated during 

the Late Pleistocene (Hoppe 1952; Gravenor and Kupsch 1959; Stalker 1960; Parizek 

1969; Clayton and Moran 1974; Aartolahti 1974; Lundqvist 1981; Mollard 1983, 

2000; Lagerback 1988; Eyles et al. 1999; Menzies and Shilts 2002; Knudsen et al 

2006). Of this collection of glacial landforms, which includes Veiki moraine (Hoppe 

1952; Lagerback 1988), those of most relevance are the circular “closed 

disintegration ridges” (Gravenor and Kupsch 1959) or “rimmed kettles” (Parizek 

1969). These ring-, or doughnut-shaped ridges range from 10-300 m in diameter and 

1-7 m in height, and impound central depressions 0.5-3 m deep (Gravenor and 

Kupsch 1959; Mollard 2000), dimensions that are directly comparable with the 

ramparted depressions of Wales.

Two mechanisms by which these landforms could develop have been proposed: i) the 

irregular mass movement of supraglacial debris (flow tills) into crevasses and 

sinkholes around wasting ice blocks during the meltout of stagnant, dead ice 

(Gravenor and Kupsch 1959; Parizek 1969; Clayton and Moran 1974); and ii) the 

squeezing of saturated, plastic, subglacial till into basal crevasses and cavities during 

the stagnation and disintegration of glacier ice resting on fine-grained, water- 

saturated deformation till (Hoppe 1952; Gravenor and Kupsch 1952; Stalker 1960; 

Eyles et al. 1999; Boone and Eyles 2001). The two models of formation (supraglacial 

and subglacial) are not mutually exclusive however, and many studies have described 

very compact subglacial till, underlying supraglacial tills and glaciolacustrine 

deposits, within the internal structure of these landforms (e.g. Gravenor and Kupsch 

1959; Parizek 1969; Aartolahti 1974). As the stagnating ice melts out small 

supraglacial lakes can develop, and fine-grained sedimentation in these lakes 

(dammed both by ice and by ridges of sediment) can result in the formation of a till
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ridge ring surrounding a basin filled with glaciolacustrine clays (Eyles et a l 1999). 

Regardless of the exact mechanisms responsible for their development, there is 

widespread acceptance that these rim-ridge landforms have glacial origins, and that 

they formed as a result of the widespread regional stagnation, disintegration and melt- 

out of an ice mass (Gravenor and Kupsch 1959; Stalker 1960; Parizek 1969; 

Lundqvist 1981; Lagerback 1988; Eyles et a l 1999). The similarities in terms of the 

depositional environments indicated by their sedimentological composition (till and 

glaciolacustrine sediments) and their geomorphology (form, density etc.) means that 

they offer a possible analogue for the landforms of the Cledlyn (Chapter 7), Cletwr 

(Chapter 8) and Grannell (not investigated during this project) valleys. The following 

section presents a landsystem model that suggests how the ramparted depressions in 

the Afon Teifi-Cardigan Bay area could have formed by the meltout of stagnant 

glacier ice.

11.2.1.2 The Afon Teifi-Cardigan Bay area: a landsystem of glacier 
stagnation?

Supraglacial landforms and sediments are frequently associated with escarpments, 

where ice flow becomes compressional due to some topographic obstruction (Paul 

1983; Eyles et a l 1999; Johnson and Menzies 2002). The uplands of Ceredigion 

provide an environment conducive for compressional flow and ice stagnation because 

both the Irish Sea and Teifi glaciers flowed uphill onto this upland area from lower 

ground to the north and the east respectively. The marginal zones of both these ice 

masses would therefore have experienced significant basal resistance from the rigid- 

bed zones (“sticky spots”) associated with the upland areas free of superficial 

sediments. During deglaciation it is highly unlikely that any ice that had flowed onto 

the upland area would have retreated actively. Instead, parts of the ice masses 

probably became isolated, with in situ stagnation and downwasting taking place. The 

Irish Sea glacier in particular would have been strongly affected by this process, as 

the ice mass had flowed inland over the steep cliffs of what is now the current 

coastline and up the steep rise in topography from the coast (a vertical relief of up to 

250 m). This probably explains the significant number of ridges and hummocks, 

originally interpreted as the remains of open system pingos (Watson 1972) that are 

developed in the northward draining valleys between Mydroilyn and Llwyncelyn that 

flow down to Cardigan Bay (Watson 1972, 1977; Ross et a l 2005a).
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In the parts of the Afon Teifi-Cardigan Bay watershed area associated with deposition 

from the Teifi glacier, geomorphological and sedimentological evidence for ice 

stagnation may be limited to the valley floors and lower valley sides because ice 

persisted longer in the steeply incised tributary valleys of the Afon Teifi (e.g. 

Cledlyn, Cletwr and Grannell valleys). Whilst downwasting of this ice occurred, 

supraglacial and paraglacial processes could have reworked sediment, concentrating it 

on the surface of any remnant ice masses within the valleys. As melt-out proceeded, 

then the irregular mass movement of supraglacial till into crevasses, meltwater 

channels and depressions in the ice could have led to the accumulation of a significant 

thickness of supraglacial sediment within the steep sided valleys, and the formation of 

ramparted depressions. However, if this was the case, then the sediments associated 

with the landforms in the Cletwr and Cledlyn valleys should be dominated with 

supraglacial flow tills, fluvioglacial and mass movement sediments. The fine-grained, 

homogenous and massive nature of the till observed within the ramparted depressions 

of the Cledlyn valley (both ‘Pingos’ U and Q) however, is not indicative of 

supraglacial facies associations, which are normally composed of complexly- 

interbedded, coarse-grained flow and meltout tills, and glaciofluvial and 

glaciolacustrine deposits (Paul 1983; Eyles et al. 1999). The highly compact nature of 

the till in the Cledlyn valley in particular is instead suggestive of subglacial origins. 

Although there is some evidence for localised reworking of this till, the heavily 

striated clasts found from the trial pits excavated within the ridges at ‘Pingo’ Q in the 

Cledlyn valley certainly indicate subglacial transport at some stage during its 

formation (Section 7.7.1).

An alternative explanation for these landforms, consistent with the evidence for 

subglacial till, was that sediment was already concentrated within the “pre-glacial” 

valleys prior to deglaciation and that debris-poor ice stagnated across the entire 

landscape. Where the stagnating ice rested on saturated unconsolidated materials, 

subglacial sediments could be deformed and remobilised by differential overburden 

pressures, causing the development of “squeeze-up structures” analogous to the 

processes inferred to have formed ring-ridges in North America and Scandinavia 

(Hoppe 1952; Stalker 1960; Eyles et al. 1999). On the interfluves however, the thin 

superficial cover meant that the downwasting ice had little or no unconsolidated
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material available for deformation, and ramparted depressions were unable to form. 

Geomorphological evidence (ramparted depressions) for ice stagnation would 

therefore only have been generated, and preserved, in the valleys where there were 

thick sequences of superficial sediments to deform (e.g. Cledlyn and Cletwr valleys), 

explaining the current distribution of these landforms. As well as being applicable to 

the Cledlyn and Cletwr valleys, this model is also relevant to the formation of 

ramparted depressions in the adjacent Grannell valley, not investigated during the 

current research programme. If regional stagnation simply modified existing 

(subglacial) sediments, then the model that valley infills in southwest Wales 

(Pembrokeshire) are comprised of flow tills and paraglacially modified sediments 

(McCarroll and Rijsdijk 2003) may not be appropriate throughout the region.

11.2.1.3 Implications of the glacial landsystem model
As well as being consistent with the available field evidence, a glacial origin for 

many ramparted depressions in the Afon Teifi-Cardigan Bay watershed area can also 

resolve the apparently intractable problems relating to the origins and thickness of the 

sequences of fine-grained sediment which infill the basins of some of the ramparted 

depressions in the Cledlyn valley (Section 7.4.1) (Watson and Watson 1972; Gurney 

1994, 1995; Gurney and Worsley 1996). Although Gurney (1994, 1995) and Gurney 

and Worsley (1996) believe that these sediments could have been deposited in an 

extensive proglacial lake prior to landform (lithalsa/minerogenic paisa) formation, 

there is no evidence for a thick sequence of such sediments beyond the confines of 

the landforms’ central depressions. Thick sequences of fine-grained silts and clays 

deposited under quiet-water conditions are characteristic of areas of hummocky 

moraine in North America and Scandinavia (e.g. Stalker 1960; Eyles et a l 1999; 

Mollard 2000). Many rim-ridge landforms in these areas are infilled with thick (up to 

tens of metres) accumulations of glaciolacustrine sediments (Stalker 1960; Lagerb&ck 

1988; Eyles et a l 1999; Mollard 2000). These sediments were deposited either within 

supraglacial lakes, or within ice walled meltwater channels (moulins or dolines). 

Stratified lacustrine sediments more than 7 m in thickness are also associated with the 

De Kalb mounds of Illinois (Flemal et a l 1973; Flemal 1976). Although originally 

interpreted as the remains of pingos, these landforms probably have glacial origins 

(Menzies and Shilts 2002; Iannicelli 2003). The current evidence for the distribution 

of glaciolacustrine sediment in the Cledlyn valley is more consistent with a model of
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localised deposition in association with the stagnation of glacier ice, rather than 

widespread proglacial deposition followed by lithalsa formation. A glacial model 

addresses the problems associated with the previous interpretations of these 

landforms as either relict pingos (Watson 1971; Watson and Watson 1972) or relict 

mineral paisas (lithalsas) (Gurney 1994, 1995; Gurney and Worsley 1996), because 

the sediment infilling the central basins of these landforms is not derived from the 

ramparts. As a result, there is no need to explain why the gravel-sized material found 

in the ramparts is a rare component within the sedimentary infill of the central basins, 

nor how such thick sequences o f fine-grained deposits were derived purely from the 

mass wasting of the compact till-cored ramparts (Watson and Watson 1972; Gurney 

1994,1995; Gurney and Worsley 1996).

11.2.1.4 Problems associated with the glacial model
One significant problem that contradicts the glacial model is the apparent absence of 

organic deposits from the Lateglacial Interstadial (Handa and Moore 1976; Walker 

and James 2001). This evidence appears to directly contradict the model of glacial 

origins as it suggests that the infilling of the central depressions of these landforms 

began no earlier than at the end of the Younger Dryas (Loch Lomond Stadial). If the 

landforms were formed by glacial processes during the Devensian glaciation, then 

their central depressions should contain organic deposits dating to the Lateglacial 

Interstadial. There are a number of reasons why this might not be the case however. 

Adapted from Ballantyne and Harris (1994), these include: i) the survival of 

subsurface ice during the interstadial; ii) the non-accumulation of interstadial organic 

deposits; and iii) the burial o f interstadial deposits beneath minerogenic sediments 

during the Younger Dryas. In southwest Norway the infill of some glacial moraine 

rim ridges (Veiki or Pulju moraines) contain full Lateglacial sequences, whilst 

adjacent landforms contain only organic-rich gyttja, believed to be Holocene in age, 

indicating that the absence of Lateglacial sediments does not necessarily preclude a 

glacial origin for ramparted depressions (Knudsen et a l 2006).

11.2.2 Glaciolacustrine origins
Whilst the glacial (supraglacial or subglacial) model could be used to explain the 

origins of those landforms composed of till in the tributary valleys of the Afon Teifi, 

or those in the upland areas o f mid-Wales (e.g. Crychell Moor), it cannot explain the
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formation of the ramparted depressions at Llanpumsaint which are developed entirely 

within a thick sequence of glaciolacustrine deposits, beyond the late Devensian ice 

margin (BGS Sheet 211: Newcastle Emlyn, unpublished map). The hypothesis that 

many of the ramparted depressions in Wales are the remains of lithalsas rather than 

open system pingos (Gurney 1994, 1995; Gurney and Worsley 1996) appears 

strengthened by the borehole evidence presented in this thesis for fine-grained 

lacustrine deposits beneath the till-cored ramparts at Rhos Llawr Cwrt (Section 8.3.1) 

and the significant thickness of frost-susceptible glaciolacustrine silts and clays 

recorded from the deep borehole at Helfa Hall, near Llanpumsaint (Section 9.3.1.1). 

However, as previously discussed, the simple presence of frost-susceptible materials 

in association with ramparted depressions does not automatically mean that these 

landforms developed through ice segregation. There are several other mechanisms 

through which ramparted depressions can develop in extensive proglacial lacustrine 

depositional environments. It is acknowledged however that the exposure of water- 

saturated, fine-grained frost susceptible sediments by changes in lake level or 

catastrophic lake drainage is highly conducive to the formation of lithalsas. Excellent 

examples of collapsing lithalsas, with similar morphologies to those at Rhos Llawr 

Cwrt and Helfa Hall have been observed around shallow lake margins in Quebec 

(Pissart 2000, 2003).

Masses of stagnant debris-rich glacier ice can melt very slowly when buried beneath 

glacial debris and/or lake clays on the floors of glacial lakes (Mollard 1983). In a 

lake basin dammed by the Kaskawulsh Glacier, southwest Yukon, circular kettle 

holes, enclosed by ramparts and up to 100 m in diameter, were revealed after lake 

drainage, indicating extensive stagnant ice and ice-cored debris beneath the lake 

(Johnson 1997). Similar ice-stagnation kettle lakes have been reported from ice- 

marginal lakes in Alaska (Ashley 2002). Circular depressions surrounded by rim 

ridges have also been shown to result from the grounding of floating blocks of ice 

during the sudden or catastrophic drainage of ice-dammed lakes (Mollard 1983, 2000; 

Longva and Thoresen 1991; Maizels 1992). Such landforms are very similar in 

morphology and scale to the circular ramparted depressions at Rhos Llawr Cwrt, in 

the Cletwr valley and around Llanpumsaint. Their formation occurs through two 

different processes associated with the settlement (“let down”) of ice blocks: i) 

grounded icebergs deform underlying soft, water-saturated, plastic lacustrine clays
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and silts, displacing the substrate sideways towards the margins of the ice block to 

form ‘boulder-ring’ structures (Mollard 1983; Longva and Thoresen 1991); and ii) 

slumping of sediment from the in situ meltout of debris-rich ice blocks grounded by 

waning flow regimes, leading to the development of diamict cored ramparts (Maizels 

1992).

Whilst the grounding of icebergs has been widely used to explain landforms that 

developed within the fine-grained sediments deposited by Lake Agassiz following the 

retreat of the Laurentide ice sheet in North America (Mollard 1983, 2000), evidence 

for ramparted depressions attributed to catastrophic lake drainage events during the 

late Pleistocene are rare in Europe. A notable exception is the drainage of an ice- 

dammed lake (jokulhaup) into a shallow fjord in southeastern Norway during the 

early Holocene, where Longva and Thoresen (1991) have described ‘iceberg gravity 

craters’ with pressure ridges developed in glaciomarine silts and clays. Although the 

majority of craters are 15 m to 30 m in diameter, some landforms up to 100 m in 

diameter have been recognised. Concentrations of these landforms are found in 

locations thought to represent immobile backwater positions during drainage (Longva 

and Bakkejord 1990; Longva and Thoresen 1991), and near drainage outlets, where 

flow is constricted (Longva and Thoresen 1991). In North America, similar 

doughnut-like rings are frequently found in association with lake shorelines (Mollard 

2000).
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11.3 Summary of the genetic interpretation of ramparted 
depressions in Wales

The preceding discussion has indicated that the precise interpretation of the origins of 

many of the ramparted depressions found at localities throughout Wales remains 

somewhat uncertain and that a single model cannot explain the development of all the 

landforms. Based on the evidence presented within this thesis however, this section 

aims to briefly summarise the most likely origins for these landforms. The origins of 

two of the Welsh sites (Hirwaun valley and Llanio Fawr) have already been discussed 

in their relevant chapters (Chapters 4 and 5) as the landforms at both of these sites 

have unequivocal glacial origins. The Hirwaun valley ridges are a form of 

subglacially derived or ice-marginal landform (possibly De Geer moraines) (Section 

4.4.3), whilst the landforms near Llanio Fawr were deposited by proglacial 

fluvioglacial sedimentation onto the surface of either a stagnating ice margin, or a 

proglacial icing (Section 5.4.4). As they are clearly not the remains of periglacial 

ground-ice mounds, further discussion of their origins is not therefore necessary, and 

this section will focus on the landforms at Helfa Hall near Llanpumsaint, at Crychell 

Moor, and in the Cledlyn and Cletwr valleys.

11.3.1 Llanpumsaint
Of all the landforms investigated during this project, the ramparted depressions 

situated around Llanpumsaint (Chapter 9) are the most likely to represent the remains 

of periglacial ground-ice mounds. This interpretation is based on the morphology of 

the landforms (closely spaced ramparted depressions), the fine-grained, frost- 

susceptible substrate within which they are developed (glaciolacustrine silts and 

clays), and the presence of deformed units of mass movement and fluvial sediments 

described from the internal structure of the rampart. The close spacing of many of 

these landforms is similar to active lithalsas from the current permafrost zone, 

suggesting that these ground-ice mounds may provide the most appropriate modem 

periglacial analogue. Whilst the density of these ramparted depressions makes it is 

unlikely that they represent the remains of open system pingos, their development 

may have been at least partly controlled by fault-guided groundwater seepage. The 

landforms investigated near to Helfa Hall, south of Llanpumsaint, are clearly 

developed directly above the intersection of two faults (Figure 9.5), and groundwater
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seepage through these faults may have influenced their development by maintaining a 

high moisture content within the overlying glaciolacustrine sediments, providing a 

potentially unlimited supply of water for ground-ice formation. In this sort of setting, 

it is possible that whilst some ground-ice mounds formed exclusively by ice 

segregation, immediately adjacent landforms may have been directly associated with 

points of groundwater seepage, and injection ice, as well as segregation ice, could 

have formed beneath the mound.

Given the possible influence that groundwater seepage could have played in 

controlling the location of their development, these landforms may represent a 

transitional form between pingos and lithalsas. It is clear from studies of active 

periglacial ground-ice mounds that a continuum of landforms between these two 

classifications exists, with the internal structure of some paisa and lithalsas containing 

units of injection ice (e.g. Ahman 1973; Allard et al. 1987, 1996; Coultish and 

Lewkowicz 2003), and many closed and open system pingos containing segregation 

ice (Sections 10.4.1 and 10.4.2) (e.g. Mackay 1973, 1979; Yoshikawa 1993). The 

possibility that the formation of some lithalsas and paisas is controlled by 

groundwater seepage has also been suggested (Worsley et al. 1995; Coultish and 

Lewkowicz 2003). This highlights the difficulties associated with the categorical 

definition of active periglacial ground-ice mounds within the current permafrost zone, 

let alone those formed during the late Pleistocene. Many existing classification 

schemes are too rigid to accommodate the continuum of landforms that exists.

The ramparted depressions at Llanpumsaint are situated in a hydrogeological setting 

highly conducive for the development of ‘transitional’ ground-ice mounds, with 

groundwater seepage through faults and other discontinuities potentially feeding the 

growth of segregation ice lenses within fine-grained, frost-susceptible sediments. 

However, without better knowledge of the current hydrogeological regime in the area, 

let alone during the late Devensian, precisely interpreting these ramparted depressions 

is virtually impossible. Nevertheless, the small- to medium-sized ground-ice mounds 

and ground-ice depressions found in parts o f Scandinavia (Svensson 1969; Lagerback 

and Rodhe 1985, 1986; Akerman and Malmstrom 1986), which contain a mixture of 

segregation ice lenses and units of massive injection ice, probably provide a more
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appropriate modem periglacial analogue for the landforms at Llanpumsaint than the 

larger open system pingos on Svalbard for example.

Because they appear to be developed entirely within a glaciolacustrine sequence of 

sediments, the ramparted depressions at Helfa Hall cannot be the result of 

supraglacial or subglacial deposition during ice stagnation. However, there remains 

the possibility that these landforms could be a type of iceberg gravity crater, which 

formed when drainage of Lake Gwili occurred (Section 9.4.1). If this was the case, 

then the sediments and structures within the rampart could have formed either 

through the deformation of pre-existing sediments, or by deposition from the meltout 

of a debris-rich ice block, with deformation occurring when ice, buried by sediment 

released from within the iceberg, melted. Sedimentary beds deformed into an 

anticline within the ramparts of iceberg gravity craters have been reported (e.g. 

Longva and Bakkejord 1990), and these appear similar in gross form to those 

observed from the rampart at Llanpumsaint.

LiDAR data from the area around Llanpumsant (Figure 11.2) reveals many unusual 

elongate mounds that may have formed as a result of erosion (gullying) during the 

drainage of Lake Gwili. If these landforms do indeed represent this process, then they 

could support an iceberg gravity interpretation for the ramparted depressions around 

Llanpumsaint, including those at Helfa Hall. Similar elongate mounds are found in 

close proximity to ramparted depressions associated with catastrophic lake drainage 

in southwest Norway and in North America, and are also believed to be the result of 

current erosion (Longva and Thoresen 1991; Mollard 1983). Features that may have 

similar origins have also been observed developed in glaciolacustrine clays within the 

buried meander loops of the Afon Teifi (Bradley 1980; Lear 1986; Waters et al. 

1997).

Whilst the alternative “grounded iceberg” model is possible on the basis of the 

existing evidence, the preferred explanation for the ramparted depressions around 

Llanpumsaint is that they are a type of periglacial ground-ice mound. The growth of 

ground-ice responsible for the development of these landforms may have been fed by 

the fault-guided seepage of groundwater. If these landforms are the result of the 

collapse of periglacial ground-ice mounds, given the complexities associated with
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accurately interpreting the origins of such landforms it is wise to follow the approach 

of Sparks et a l (1972), and refer to them as ‘ground-ice features’ or ‘ground-ice 

depressions’, or perhaps more specifically ‘ramparted ground ice depressions’ 

(Bryant and Carpenter 1987). These terms are preferred to more specific terms with 

genetic connotations, such as ‘pingo scars’, (Flemal 1976; De Gans 1988). Where a 

ground-ice origin for relict landforms cannot be confidently established, then the use 

of the simple, purely morphological term ‘ramparted depressions’ is advocated.

11.3.2 Crychell Moor

Because the investigations of the ramparted depressions at Crychell Moor (Chapter 6) 

were relatively limited compared to the study of other sites contained within this 

thesis, the origins of these landforms are very uncertain. As the internal structure of 

the ramparts is dominated by till, the ramparted depressions at Crychell Moor could 

have developed through the chaotic deposition of supraglacial sediments on the 

surface of an ice mass that downwasted on the floor of the steep sided valley within 

which they are located. The fine-grained silts and clays within the basin of the 

investigated landform are consistent with this model, and could have been deposited 

within a small lake on the surface of the downwasting glacier, impounded either by 

ice or by ridges of sediment. Alternatively however, the ramparted depressions at 

Crychell Moor could equally be the remains of a type of periglacial ground-ice 

mound. Like those at Llanpumsaint, they are found in too great a density to be the 

remains of open system pingos, and are most probably a form of smaller ground-ice 

mound such as lithalsas, or perhaps even seasonal ground-ice mounds. As the lateral 

extent of the silts within the basin of these landforms is uncertain (Section 6.4.1), it is 

possible that this unit extends beyond the landform and could underlie the entire site. 

If this is the case, then this deposit may have provided a highly frost-susceptible 

medium favourable for ground-ice mound development. Because the site is underlain 

by a prominent fault (Section 6.1), groundwater seepage may also have played a role 

in their development, by providing a constant supply of water for ice lens growth. 

Like the ramparted depressions at Llanpumsaint therefore, these landforms could also 

represent a transitional form of ground-ice mound, with internal structures containing 

a mixture of injection and segregation ice depending on groundwater availability and 

the proximity of the landform to faults and other discontinuities. Currently however, 

the preferred origin of these landforms is the stagnation and meltout of glacier ice.
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11.3.3 Cletwr valley

Morphologically, the landforms at Rhos Llawr Cwrt in the Cletwr valley are very 

similar to the ramparted depressions at Llanpumsaint, as well as the relict landforms 

described from Scandinavia and Belgium (Svensson 1964b, 1969; SeppSlS 1972b; 

Pissart 2000, 2003). In combination with the evidence for frost-susceptible, fine

grained silts at depth beneath their ramparts (Section 8.3.1), there is therefore a strong 

case that these landforms represent the remains of periglacial ground-ice mounds 

such as lithalsas (Gurney 1994, 1995; Gurney and Worsley 1996). These silts would 

have supported extensive ice segregation during ground freezing in a poorly drained 

environment such as in the Cletwr valley. Although it is accepted that the high 

density of these ramparted depressions is inconsistent with the interpretation of these 

landforms as open system pingos (Pissart 2000, 2003), it still remains possible that 

groundwater seepage may have contributed to their development. Numerous faults 

and discontinuities characterise the local bedrock, although unlike the sites at 

Llanpumsaint and Crychell Moor no significant faults have yet been mapped in direct 

association with the Rhos Llawr Cwrt site.

There is however, an equally plausible alternative explanation for these landforms: 

the stagnation and meltout of glacier ice. The ramparts of the landform investigated at 

Rhos Llawr Cwrt are composed of a compact, matrix-supported diamict. If this unit 

represents an in situ till, then the meltout of debris-rich glacier ice, or subglacial 

squeezing of sediment, rather than ground-ice mound development, may have been 

responsible for the development of the landforms at Rhos Llawr Cwrt.

Although the topography in the Cletwr basin would be highly suitable for the 

isolation of bodies of downwasting ice buried beneath the floor of a proglacial lake, 

the stratigraphy from the boreholes at Rhos Llawr Cwrt does not support this 

possibility. Because the till found in the rampart of ‘Pingo’ 3 overlies the silts in 

Boreholes 1 and 3 (Section 8.3.1), deposition of the silts must have occurred before 

the till was emplaced. This till could therefore only have been deposited after 

glaciolacustrine deposition, either by ice that overran the lake (followed either by 

glacier ice stagnation or by the formation of periglacial ground-ice mounds), or by the 

meltout of debris-laden icebergs that were stranded following lake drainage (cf.
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Maizels 1992). The latter possibility is thought unlikely however, as the unit of till is 

widely distributed across the valley floor, rather than locally concentrated around the 

enclosed depressions. Furthermore, the boreholes at this site did not appear to 

demonstrate any evidence for mass movement processes. However, it is accepted that 

an excavated section would be far more likely to reveal such structures associated 

with slope processes than borehole cores o f diameter 100 mm or less.

It is unlikely that the formation of the elongate landforms near the farms at Glan- 

rhyd-y-dre and Darren Fawr (Section 8.2.1), originally interpreted as collapsed linear 

pingos (Watson and Watson 1974), was entirely unrelated to the formation of the 

landforms at Rhos Llawr Cwrt. As discussed in Section 11.1.2.2 however, a pingo 

origin for the linear ridges is unlikely. Because the area was glaciated during the 

Devensian (Jones 1965; Price 1976; Lear 1986; Waters et al. 1997), glaciotectonism 

or deformation caused by the meltout of buried ice cannot be dismissed as possible 

causes for the deformed silts and steeply dipping and vertical clasts observed in the 

exposure through the rampart of linear landforms at Glan-rhyd-y-dre (Watson 1975,

1976). The elongate ridges at Glan-rhyd-y-dre might therefore be explained as a form 

of constructional morphology associated with glacier ice, and the chaotic overlapping 

forms the result of sediment mass movement and burial of glacier ice during decay of 

a stagnant ice margin. It is possible that the linear landforms were the result of 

sediment deformation (squeezing) into basal crevasses. Such an interpretation 

provides a model (ice stagnation) that can explain the origins of both the linear 

landforms and the more circular enclosed depressions within the Cletwr valley.

On the present evidence from the Cletwr valley, therefore, it can be argued that the 

ramparted landforms at Rhos Llawr Cwrt, and the linear ridge structures at Glan- 

rhyd-y-dre and Darren Fawr, were derived from glacial- rather than permafrost- 

related processes. This is currently the preferred interpretation of these landforms, 

although it is accepted that a periglacial ground-ice mound origin is also possible.

11.3.4 Cledlyn valley
Like those in the Cletwr valley, the ramparted depressions in the Cledlyn valley have 

previously been interpreted as the remains of open system pingos (Watson 1971; 

Watson and Watson 1972) or lithalsas (Gurney 1994, 1995; Gurney and Worsley
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1996; Pissart 2000, 2003). The concentrated density of these landforms is 

incompatible with the former however (Gurney 1995; Pissart 2000, 2003), whilst the 

size of the ramparts (up to 5 m in height), and the lack of clear evidence for a 

widespread frost-susceptible substrate (Section 11.1.4) mean that the latter 

interpretation is also unlikely. Surprisingly, although the ramparts of these landforms 

are composed of till (Sections 7.3.1 and 7.6.1) (Gurney 1994, 1995), previous studies 

have never seriously considered the role that glacial processes might have had in 

generating these landforms. Although Watson (1971, 1972) acknowledged that 

rampart-like ridges can be found between some kettle holes, this possibility was 

simply dismissed because “ ....they are very localized, and they lack the level, nearly 

horizontal Crestline of the pingo ramparts.” (Watson 1972).

Both the large sinuous, elongate, esker-like ridges and the more circular enclosed 

ramparted depressions within the Cledlyn valley (Figure 7.3) have analogues, in 

terms of their distribution, morphology and sedimentary composition, in the glacial 

landforms of North America (Gravenor and Kupsch 1959; Stalker 1960; Parizek 

1969; Eyles et al. 1999). These ridges, which are also intimately associated with 

dead-ice hollows, are believed to have formed either by the supraglacial 

sedimentation of flow tills and glaciolacustrine deposits above and between blocks of 

stagnating ice (Gravenor and Kupsch 1959; Parizek 1969), or by the squeezing of 

water-saturated subglacial till into air-filled cavities and voids (e.g. crevasses, dolines 

and meltwater channels) on the underside of a stagnant, disintegrating ice mass 

(Stalker 1960; Eyles et a l  1999). The till-cored linear ridges and ramparted 

depressions of the Cledlyn valley may also have similar origins. The compact, 

massive till, characterised by a lack of structures indicative of mass movement 

processes, that dominated the three trial pits from ‘Pingo’ Q (Section 7.6.1), and the 

numerous striated clasts support a subglacial origin for these landforms. The steeply 

dipping clast fabrics from these trial pits however could equally be interpreted as 

originating either from the mass movement of supraglacial sediment into depressions 

on the surface of a stagnating ice mass, or alternatively from the subglacial squeezing 

of water-saturated till combined with later gravitational reworking of sediment (or 

perhaps even from the redistribution of sediment down the flanks of a periglacial 

ground-ice mound). Therefore, although the current sedimentological and 

geomorphological evidence clearly supports a glacial origin for these landforms,
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whether these ridges formed supraglacially or subglacially cannot be established on 

the basis of the current evidence. Nevertheless, the stagnation and meltout of glacier 

ice is currently the most favoured interpretation for these landforms, as well as those 

ramparted depressions in the adjacent Cletwr and Grannell valleys, which although in 

places morphologically slightly different, are also likely to have related genetic 

origins.
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11.4 Implications

The results presented in this thesis demonstrate that the superficial geology 

underlying many of the ramparted depressions in Wales is commonly characterised 

by fine-grained sediments such as silts and/or clays. These fine-grained sediments are 

found not only within the central, enclosed depressions of many landforms (e.g. 

Cledlyn valley, Crychell Moor, Llanpumsaint, Cletwr valley), but are also an 

important component of the surrounding superficial geology at some sites (e.g. 

Llanpumsaint, Cletwr valley). Elsewhere in the British Isles, clusters of ramparted 

depressions developed within extensive fine-grained glaciolacustrine sediments are 

known at Bwlch Derwin in North Wales (Moore 1980), Owlbury in Shropshire 

(Gurney and Worsley 1996), and in the Whicham valley in Cumbria (Bryant et al 

1985).

The presence of such fine-grained, frost-susceptible sediments has been viewed as 

important evidence used to argue that such landforms are the collapsed forms of 

mineral paisas (lithalsas) (Gurney and Worsley 1996). However, the possibility that at 

least some of the ramparted depressions investigated during this project could be 

glacially derived landforms rather than the relict forms of periglacial ground-ice 

mounds, does undermine this argument. This conclusion has significant implications 

for the identification and interpretation of ramparted depressions in all formerly 

glaciated areas upon which late Pleistocene permafrost aggraded. These implications 

will be discussed in the context of the possible re-interpretation of ramparted 

depressions at localities elsewhere in the British Isles.

11.4.1 Implications for other landforms in the British Isles

11.4.1.1 Owlbury
At Owlbury in the Camlad valley, Shropshire, where enclosed ramparted depressions 

occur across a flat valley floor, Gurney and Worsley (1996) argued that the frost- 

susceptible fine-grained substrate (glaciolacustrine deposits), which underlies all the 

ramparted depressions, would have developed segregation ice during freezing, 

supporting the hypothesis that these landforms were the result of the collapse of 

mineral paisas (lithalsas) (Gurney 1994; Gurney and Worsley 1996). Based on
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sedimentological and geomorphological comparisons, this interpretation was also 

extended to the ramparted depressions at Rhos Llawr Cwrt in the Cletwr valley, as 

well as those near Llangurig and in the Cledlyn valley (Gurney 1994, 1995; Gurney 

and Worsley 1996), simply because frost-susceptible, fine-grained glaciolacustrine 

sediments were also present at these sites.

Like the ramparted depressions at Llanpumsaint however, the ramparted depressions 

at Owlbury could also be the remains of iceberg gravity craters that formed when 

blocks of floating ice became grounded during lake drainage. The lake clays in the 

Camlad valley have a tendency to become plastic (Cave and Hains 2001), and would 

therefore deform quite easily if subjected to downward pressure from the load of a 

grounding iceberg when water-saturated. Gurney and Worsley (1996) did report that 

the Camlad valley is characterised by the presence of a number of kettle holes, some 

greater than 100 m in diameter, which made identifying ramparted depressions 

difficult. These were believed to have formed as a result of the slow meltout of buried 

glacial ice, which may have persisted throughout the existence of the proglacial lake 

by becoming buried by glaciolacustrine sediments. Whilst Gurney and Worsley 

(1996) believed that kettle holes and the scars of periglacial ground-ice mounds can 

be discriminated at Owlbury on the basis of the presence or absence of a rampart, in 

reality this is a highly simplistic diagnostic method. Several of the landforms 

interpreted as the remains of mineral paisas (lithalsas) have very subdued, “barely 

discemable” ramparts, between 0.4-1 m high (Gurney and Worsley 1996 pg. 16). The 

extremely close proximity of the kettle holes and ramparted depressions suggests that 

these landforms could have common origins. Furthermore, seismic and gravity 

surveys in the Camlad valley suggest that the thickness of Quaternary sediments may 

be up to 100 m thick, and boreholes indicate that a continuous sequence of gravel- 

free, grey, silt and silty clay extends to depths in excess of 12 m (MacDonald 1994; 

Hussen 1998; Brabham et a l 2005). Therefore, for glacier ice to form these kettle 

holes it must have been buried at a significant depth (at least >12 m) beneath the 

ground surface. An alternative possibility is that the kettle holes, and perhaps also the 

ramparted depressions, formed as a result of the grounding of icebergs associated 

with fluctuating lake levels, perhaps during lake drainage. This is feasible, as the lake 

was of a proglacial type, impounded within the Camlad valley by the retreating ice
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margin to the west, and an accumulation of morainic material to the east (Gurney and 

Worsley 1996; Cave and Hains 2001).

11.4.1.2 Whicham valley
In the Whicham valley, Cumbria, a series of enclosed hollows developed in thick 

sequences of clayey silts (>4 m) were interpreted as the remains of pingos (Bryant et 

al 1985). Although they were believed to be of the open system type fed by 

groundwater flowing through underlying units of sand, Bryant et a l (1985), and 

Bryant and Carpenter (1987), also suggested that there was a possibility that these 

landforms could have developed as a result of ground-ice development from pore- 

water expulsion due to permafrost aggradation in water-saturated sediments exposed 

by lake drainage. This model has been described as a modified version of the closed 

system pingo model (Bryant and Carpenter 1987). However, given that the ramparts 

of the landforms in the Whicham valley are composed of frost-susceptible, fine

grained sediments, it is equally likely that these landforms could be the remains of 

lithalsas.

As continuous permafrost would be required for closed system pingo development, 

lithalsa development is probably the most likely permafrost-related model. Like the 

ramparted depressions at Llanpumsaint and at Owlbury however, a further possibility 

is that the landforms in the Whicham valley could be a type of iceberg gravity crater 

caused by the grounding of icebergs on fine-grained, water-saturated sediments 

within an ice-dammed glaciolacustrine basin. Without further investigation of these 

landforms however, it is difficult to evaluate the likelihood of these alternative 

possibilities. However, the gully systems described in association with the ramparted 

depressions (Bryant et al. 1985) do suggest modification of the lake basin floor 

during lake drainage. Furthermore, a possible relationship between the ramparted 

depression and the lake margin has been suggested (Bryant et a l 1985). A similar 

relationship between doughnut-shaped rings formed by the grounding of icebergs and 

lake shorelines has been documented in North America (Mollard 1983, 2000). 

Lakeshores are also highly suitable localities for the development of lithalsas 

however (Pissart 2000, 2003), because even slight changes in water level will enable 

rapid permafrost aggradation on frost-susceptible sediments with a ready supply of 

water available for ice segregation.
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11.4.1.3 Bwlch Derwin
Ramparted depressions at Bwlch Derwin on Llyn, North Wales (Watson 1977; Moore 

1980; Rogers 1998a, 1998b; Ross et a l 2005a) are developed within a thick sequence 

of laminated fine sands and silts deposited within a large ice-contact lake that formed 

between Bwlch Mawr and Mynydd Craig Goch in the Pant Glas col during the late 

Devensian (Thomas et a l 1998). Originally interpreted as the relict form of open 

system pingos (Watson 1977; Moore 1980), like the ramparted depressions at 

Owlbury and in the Whicham valley, these landforms could also have formed through 

the collapse of lithalsas that developed in frost-susceptible sediments after lake 

drainage, or as a result of the meltout of grounded icebergs. The latter possibility is 

supported by evidence for iceberg dump structures within these sediments (Thomas et 

al 1998).

11.4.1.4 Ireland
In Ireland, a very high number and density of landforms, interpreted as the remains of 

open system pingos, were identified in the unglaciated southeastern parts of the 

country, beyond the maximum limits of both the Irish and Irish Sea ice masses during 

the last glaciation (Mitchell 1971, 1973; Coxon and O’Callaghan 1987) (Figure 

2.13b). Since these landforms were identified however, it has become clear that the 

glacial limits in southern Ireland probably require significant modification, and that 

the Southern Irish End Moraine is no longer believed to mark the limit of the last 

glaciation (Warren 1991; O Cofaigh and Evans 2001; Bowen et a l 2002). Given that 

the density of these landforms (over 200 identified in an area of 5.75 km (Mitchell 

1973)) appears to be fundamentally incompatible with an open system model (Pissart 

2000, 2003), the alternative origins proposed for the ramparted depressions in Wales 

are also applicable to similar landforms found in southern Ireland. Because they are 

not associated with glaciolacustrine deposits, the Irish landforms cannot be iceberg 

gravity-craters but, as they are normally developed in diamicton (Coxon and 

O’Callaghan 1987), they could have formed by the stagnation and meltout of glacier 

ice. Mitchell (1973) acknowledged that caution must be exercised in the interpretation 

of ramparted depressions in areas where ice-disintegration has taken place, but he did 

not believe that such processes were important in the region across which ramparted 

depressions were recorded in southern Ireland. As a more extensive glaciation in 

southern Ireland is now thought likely during the last glaciation however, there is a
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distinct possibility that the ramparted depressions in Ireland could also have glacial 

origins. Like the ramparted depressions associated with the Welsh and Irish Sea ice 

masses in west Wales, the Irish landforms may therefore have the potential to provide 

important information concerning the basal regime and behaviour of the Irish ice 

sheet, and perhaps also the Irish Sea glacier, during the initial phase of deglaciation 

after the Last Glacial Maximum.

It does remain possible however that a model of ground-ice mound formation fed by 

sub-permafrost groundwater seepage through bedrock discontinuities, similar to that 

suggested for the landforms at Llanpumsaint, could also be applicable to the 

formation of some of the ramparted depressions in southern Ireland. Although they 

are found above a wide variety of bedrock types (Bryant and Carpenter 1987), at least 

some ramparted depressions in Ireland are developed in superficial sediments 

overlying Ordovician slates and sandstones, which were strongly modified by 

Caledonian deformation (Mitchell 1973). Direct analogy can therefore be made 

between the bedrock lithology and structure underlying both the Welsh and Irish 

landforms. Therefore, it is not unreasonable to assume that the hydrogeological 

systems in both areas are also similar. Many ramparted depressions in Ireland are 

located along spring-lines at the foot o f south-facing slopes (Coxon and O’Callaghan 

1987). This does not necessarily mean that these landforms are the remains of open 

system pingos however; in fact their density makes such an interpretation highly 

unlikely. It has been suggested that the smaller ramparted depressions could represent 

collapsed seasonal frost mounds or mineral paisas (lithalsas) (Coxon and 

O’Callaghan 1987) but, as some of the ramparts are up to 7 m in height (Coxon and 

O’Callaghan 1987), it is apparent that the formation and decay of these smaller 

ground-ice mounds cannot explain all the ramparted depressions in Ireland.

11.4.2 Implications for the interpretation of relict ground-ice 
features

Diagnostic criteria created for the identification and definition of “pingo scars” have 

been proposed (e.g. Flemal 1976; De Gans 1988; Mackay 1988). Several of these 

criteria however cannot even be used to discriminate between relict pingos and 

landforms created by glacial deposition, let alone between relict pingos and other 

types of ground-ice mounds. For example, sedimentary deposits associated with mass
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wasting, stream deposition and debris flow, plus the presence of normal faults in 

ramparts (Mackay 1988) are likely both as the result of the meltout of ground-ice, and 

the meltout of glacier ice.

Flemal (1976) suggested that the following lines of evidence were suggestive of 

ramparted depressions formed by periglacial ground-ice development rather than 

those formed by glacial processes: i) development outside the limits of glaciation, or 

over pro- or postglacial deposits; ii) independent evidence for the existence of 

permafrost in the surrounding area at the time the ramparted depression formed; iii) 

an absence of till in the structure, except from within the rampart. Flemal (1976) 

argued that the differentiation of ramparted depressions formed by the thaw of 

different ground-ice mounds was much more difficult however. Nevertheless, 

numerous, overlapping landforms with deformed sediments within their ramparts 

were believed to be indicative of a pingo origin (Flemal 1976). It is apparent from the 

ramparted depressions of the Hautes Fagnes Plateau that, rather than supporting an 

open system pingo origin (Flemal 1976; Ballantyne and Harris 1994), the high 

density of interfering and superimposed characteristic of many ramparted 

depressions, particularly in the British Isles, is instead probably more indicative of 

collapsed lithalsas (Pissart 2000, 2003). Deformation of rampart sediments is also 

common within the ramparts of relict lithalsas (Pisssart 2000, 2003), as such 

structures simply indicate the growth of an ice core, rather than the precise origin of 

the ice (Ballantyne and Harris 1994).

The present study has shown that in areas glaciated during the late Pleistocene, it is 

extremely difficult to distinguish between ramparted depressions formed by 

periglacial processes and those that developed through the stagnation and meltout of 

glacier ice. Using geological and geomorphological evidence to distinguish between 

landforms that developed from the meltout of buried ice in proglacial lakes (kettle 

holes) from landforms that developed from the growth of ground-ice under 

permafrost conditions after lake drainage (e.g. pingos or lithalsas) is extremely 

difficult. Both mechanisms can produce high-density clusters of ring-ridge landforms 

(ramparted depressions) of similar morphology and scale, the deformation of soft 

sediments and the deposition of sediments by mass movement and fluvial processes. 

Both types of landforms are located in the bottoms of wide valleys with thick
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sequences of water-saturated glaciolacustrine deposits. As a consequence, there 

appears to be little or no unequivocal diagnostic evidence that can be utilised to 

discriminate between landforms that could be the result of these very different 

processes.

11.4.3 Geophysical investigations of open system pingos in 
Svalbard: implications for ramparted depressions

The geophysical investigations undertaken on open system pingos in Svalbard during 

this project have provided further evidence that the upper few metres of some pingos 

are composed of alternating units o f sediment and ice (Mackay and Stager 1966, 

Tamocai and Netterville 1976, Yoshikawa 1993). The observation of alternating 

units of mineral material and ice has important implications for the generation of 

ramparts during pingo decay. The alternating ice units inferred from Innerhytte and 

Riverbed pingos may represent segregation ice rather than injection ice, and during 

pingo decay may generate episodic gravity-driven mass movement events on the 

pingo sides. Accumulation of such mass movement deposits has been suggested as a 

major mechanism of rampart formation (Mackay 1988).

The investigations of pingos in Svalbard have also demonstrated that the conceptual 

model that assumes pingos contain a simple plano-convex clear ice core is not 

necessarily the most appropriate. The heave of both Hytte and Longyear pingos 

appears to have been caused predominantly by the development of segregation ice. 

Many studies of the internal structure of pingos have emphasised the presence of 

segregated ice, even in medium-grained sands (Mackay and Stager 1966, Mackay 

1973, 1979, Tamocai and Netterville 1976; Yoshikawa 1993). It is therefore difficult 

to utilise the presence or absence of a particular ground-ice type (injection ice or 

segregation ice) to distinguish between pingos, lithalsas and other related active 

ground-ice mounds. A more realistic approach is to view ground-ice mounds as a 

continuum of landforms varying in scale, relief and composition of their cores. 

Unfortunately however, such a conclusion clearly makes the precise interpretation of 

relict forms even more difficult.

Although the fieldwork programme in Svalbard was designed to provide reference 

data for the interpretation of relict forms in Wales, it is concluded from the current
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investigations that the open system pingos of Svalbard may not provide the most 

suitable analogue for ramparted depressions in Wales. Throughout Svalbard, the 

density of pingos is low, with clustering of several landforms only taking place in a 

few selected localities in nearshore settings (e.g. Woodfjorden). This is in direct 

contrast to the recognised concentrations of ramparted depressions in Wales and 

elsewhere in the British Isles. Permafrost in Svalbard is probably too thick (Liestol

1977) to provide the most appropriate analogue for those parts of the British Isles 

glaciated during the late Pleistocene. Nevertheless, the current investigations have 

highlighted the variety of ground-ice types found even within individual open system 

pingos fed by groundwater seepage, providing further evidence supporting the 

argument for a continuum of ground-ice mounds.
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12 Conclusions and future research 

12.1 Main conclusions

12.1.1 The internal structure and origins of ramparted depressions 
in Wales

The results presented in this thesis do not support the interpretation that all the 

ramparted depressions of mid and west Wales formed either as a result of the collapse 

of open system pingos (Watson 1971, 1972, 1977; Watson and Watson 1972, 1974) 

or lithalsas (mineral paisas) (Pissart and Gangloff 1984; Gurney 1994, 1995; Gurney 

and Worsley 1996). It is clear that the density of the ramparted depressions at all sites 

in Wales is much greater than that of active open system pingos in the current 

permafrost zone. Whilst the groups of ramparted depressions at Llanpumsaint, 

Crychell Moor and the Cletwr valley could represent the remains of late Pleistocene 

lithalsas (mineral paisas), each could alternatively have formed as the result of 

processes associated with the meltout of glacier ice.

• In the Hirwaun valley, linear elongate ridges cored with compact, calcareous, 

homogenous fine-grained Irish Sea till (with a strongly preferred clast fabric 

orientation, and containing numerous striated clasts) are either subglacially 

derived, or ice-marginal landforms. These ridges could represent De Geer 

moraines, which formed subaqueously where the Irish Sea glacier calved into 

Lake Teifi.

• Fluvioglacial outwash sediments deposited by the retreating Teifi glacier 

dominate the internal structure o f the linear to chaotic esker-like ridges at Llanio 

Fawr in the upper Teifi valley. The low ridges and shallow depressions at this site 

probably reflect deposition of these sediments onto the surface of either 

stagnating glacier ice, or an extensive proglacial icing.

• The preferred interpretation for the small, enclosed depressions at Crychell Moor 

is one of supraglacial sedimentation associated with the meltout of stagnating 

glacier ice. The site investigations at this locality were limited however, and it is
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possible that the fine-grained clayey silt found within the investigated basin may 

represent only part of a laterally extensive frost-susceptible medium, highly 

conducive to the development of periglacial ground-ice mounds. If this were the 

case, groundwater seepage through an underlying fault zone may have promoted 

their development by providing a constant water supply to feed the growth of 

segregation ice.

• This study found no evidence supporting the argument that the ramparted 

depressions of the Cledlyn valley are the remains of open system pingos or 

lithalsas. No evidence for extensive glaciolacustrine sediments, as postulated by 

Gurney (1994, 1995) was found beyond the confines of the central basins of the 

landforms. The ramparts are cored with a homogenous, matrix-supported, 

compact till containing striated clasts, suggesting that glacial processes have 

played a role in their development. Without further investigations however, 

unequivocal interpretations of these ramparted depressions are difficult. For 

example, it is difficult to establish on the basis of the current sedimentological 

evidence whether this till has been reworked or is in situ. These landforms are 

unlikely to represent the remains of either open system pingos or lithalsas 

however, and probably resulted from the meltout of stagnating glacier ice.

• The ramparted depressions of the Cletwr valley are also cored with till. This 

suggests that these landforms may also be the result of sedimentary deposition 

associated with the meltout of stagnating glacier ice. The presence of 

glaciolacustrine sediments at depth beneath the rampart do however provide a 

substrate suitable for the development of segregation ice, and the possibility that 

these landforms represent relict ground-ice mounds therefore remains valid.

• The ramparted depressions at Llanpumsaint are the most likely, of all the sites 

investigated during this project, to represent the remains of periglacial ground-ice 

mounds. They are developed within frost-susceptible, fine-grained 

glaciolacustrine sediments, and groundwater seepage from an underlying fault 

zone may have provided a supply of water sustaining segregation ice 

development. Although on the basis of the current evidence this is the preferred 

interpretation of these landforms, it is also possible that the ramparted depressions
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could be iceberg gravity craters formed by the grounding of icebergs during 

drainage of an ice dammed lake (Lake Gwili). Arching sedimentary structures 

within the rampart of one ramparted depression at Llanpumsaint, as revealed by 

trenching, are consistent with both interpretations.

• The precise origins of the ramparted depressions in Wales therefore remain 

uncertain. Whilst several groups of landforms (Llanpumsaint, Crychell Moor and 

Cletwr valley) could be interpreted as the remains of periglacial ground-ice 

mounds, each could just as convincingly be interpreted as the result of the 

stagnation of glacial ice. Other groups of landforms (Cledlyn valley, Hirwaun 

valley, Llanio Fawr) are almost certainly of glacial origins. These conclusions 

have clear implications for the interpretation of all ramparted depressions located 

in formerly glaciated areas (e.g. in the western and northern parts of the United 

Kingdom, and in southern Ireland). It is therefore essential that all potential 

glacial origins can be dismissed before firm conclusions can be made that such 

landforms represent the remains of periglacial ground-ice mounds. There are 

currently few, if any, diagnostic criteria that can distinguish between the 

landforms and sediments produced by these quite different processes.

• This study indicates that ramparted depressions should not be interpreted as relict 

lithalsas (mineral paisas) simply on the basis of the presence of sediments that 

have frost-susceptible properties which could make them suitable materials for 

the development of segregation ice through cryosuction (e.g. Gurney 1995; 

Gurney and Worsley 1996). There are many different processes (both periglacial 

and glacial) that can explain the origins of ramparted depressions developed in 

such sediments. The substrate alone is not an unequivocal indicator of the origins 

of ramparted depressions.

• Groundwater seepage through faults and other discontinuities can play a key role 

in the development of periglacial ground-ice mounds, whether they are lithalsas, 

open system pingos or transitional landforms between these two classification 

types. Future investigations of both relict and active periglacial ground-ice 

mounds should pay close attention to the hydrogeological regime where such 

landforms are located.
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12.1.2 The internal structure of active open system pingos and 
other periglacial ground-ice mounds

The geophysical investigations of active open system pingos in Svalbard presented in 

this thesis have made a significant contribution to our understanding of the physical 

characteristics of the internal structure of these landforms.

• Although they were unable to delimit the geometry of the ice-core within 

Innerhytte and Riverbed pingos, ground penetrating radar investigations of these 

landforms have suggested that the upper parts of the internal structure of these 

landforms are cored with alternating units of injection ice, and sediments or 

disaggregated bedrock rich in segregation-ice.

• The electrical resistivity of Hytte and Longyear pingos is inconsistent with the 

presence of a body of massive ground ice, suggesting that the internal structures 

of these landforms do not follow the classic model of a plano-convex pingo-core 

of massive injection ice. Instead, the internal structure of these landforms may be 

dominated by segregation ice and localised pockets of massive ice within a matrix 

of partially frozen, fine-grained, isostatically uplifted marine muds.

• Although the pingos in the lower parts of Adventdalen, Svalbard are associated 

with groundwater seepage and are clearly of the open system type, geophysical 

surveys indicate that the internal structure of these landforms may be cored with a 

mixture of massive injection ice and lenses of segregation ice. These landforms 

may therefore represent a transitional ground-ice mound that lies on a continuum 

of landforms between open system pingos and lithalsas. However, without 

detailed borehole information on ground-ice conditions within the cores of a 

range of ground-ice mounds from a variety of environmental settings, plus 

knowledge of local and regional hydrogeology at each site, such a hypothesis is 

extremely difficult to test.
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12.2 Future research

12.2.1 The formation of ramparts and their internal structures
Little observational evidence is currently available from contemporary studies in 

permafrost regions regarding the mechanisms of rampart formation by active 

periglacial ground-ice mounds. In particular, there is a distinct lack of observational 

data assessing the processes of open system pingo decay and collapse. Future work 

should therefore be directed at monitoring and modelling the geomorphological and 

sedimentological processes by which pingos and other ground-ice mounds create 

ramparts. As well as observing the decay phase of ground-ice mounds, observations 

and modelling of the growth phase may also be important for understanding rampart 

formation. For example, although ramparts form predominantly as a result of 

gravitational mass movement processes and slopewash during landform collapse, 

oblique heaving and lateral displacement during growth also contribute to rampart 

formation (Svensson 1969; Pissart 2000, 2003). Understanding the role played by 

these processes during ground-ice growth should therefore be a priority. Such 

investigations will provide a greater understanding of the mechanisms of rampart 

formation, and assist in the accurate identification and classification of relict 

Pleistocene ramparted ground ice depressions.

12.2.2 Important sites identified for future work
Of all the sites presented in this thesis, the clear uncertainties regarding the 

interpretation of the landforms of the Cledlyn valley and the possibility that they 

could be the result of glacial processes means that this site is particularly worthy of 

more detailed future investigations. The superficial geology of the Cledlyn valley is 

obviously highly complex (Chapter 7) and the boreholes and trial pit data presented in 

this project simply represent spot data within a very localised area, and to limited 

depths. Only a systematic series of deep boreholes throughout the Cledlyn valley, 

integrated with extensive geophysical surveys, would provide sufficient data to enable 

a comprehensive understanding of the internal structure and cryogenic origins of these 

landforms. Such a project should be viewed as a clear research priority. As the 

Cledlyn ramparted depressions can be viewed as a component of a wider landsystem 

of similar landforms in the adjacent Grannell and Cletwr valleys, clarification of the
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processes responsible for their formation may provide key information on the nature 

and behaviour o f the Welsh ice mass during and following the Last Glacial 

Maximum.

12.2.3 Dating the formation of ramparted depressions
Whilst it is clear that the majority of ramparted depressions in Wales and the rest of 

the British Isles date to the late Devensian period, it has been assumed by many that 

the landforms in Wales are Loch Lomond Stadial in age on the basis of radiocarbon 

dates and pollen analysis which date the initiation of organic sedimentation within 

basin fills (e.g. Watson 1977; Shotton et al. 1974, 1975; Handa and Moore 1976; 

Walker and James 2001; Harris 2001b). This may not be the case however; so far it 

has proven impossible to quantitatively date the formation of these features, primarily 

because of the lack of exposed rampart sections. The reinvestigation of previously 

identified sites for dateable material beneath enclosing ramparts has been proposed as 

a primary research objective (Bryant and Carpenter 1987), and this suggestion is 

supported by this author. The application of optically stimulated luminescence dating 

may have considerable potential in any future investigations, particularly at sites 

where units of sand are found within the ramparts (e.g. Llanpumsaint). Luminescence 

dates constraining the deposition of these units of sand, and therefore the timing of 

rampart formation, could play an important role in the interpretation of these 

landforms. For example, if sediments within the ramparts are dated to the end of the 

Younger Dryas or early Holocene, then these landforms cannot have glacial origins.
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