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ABSTRACT

This work introduces new enhancements to the Beégsrithm in order to improve
its overall performance. These enhancements algregighbourhood search process,
efficiency based recruitment for neighbourhood deaprocess, hybrid strategy
involving tabu search, new escape mechanism topesiceals with similar fitness

values and autonomy to minimise interaction betwsssarch process and the user.

The proposed enhancements were applied alone @aimto develop improved
versions of the Bees Algorithm. Three Enhanced Bdgerithms were introduced:
the Early Neighbourhood Search and Efficiency Bassiuitment Bees Algorithm
(ENSEBRBA), the Hybrid Tabu Bees Algorithm (TBA)dathe Autonomous Bees

Algorithm (ABA).

The ENSEBRBA with an empowered initialisation stagel extra recruitment for
neighbourhood search is introduced to improve perdmce of the Bees Algorithms

on high dimensional problems.

The TBA is proposed as a new version of the Begpmthm which utilises the

memory lists to memorise less productive patchesrebler, the local escape
strategy was also implemented to this algorithnopBsed modifications increased
the productivity of the Bees Algorithm by decregsimumber of evaluations needed to

converge to the global optimum.



The ABA is developed to provide independency toBkes Algorithm, thus it is able

to self tune its control parameters in a sub-optmeanner.

All enhanced Algorithms were tested on continugygse tbenchmark functions and

additionally, statistical analysis was carried @ibserved experimental results proved

that proposed enhancements improved the Bees #&lgos performance.
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Chapter 1

Introduction



1.1 Introduction

Population growth and resource depletion createght@ompetition in many areas of
life. In order to address these issues, industriggo maximise their productions.

Therefore, optimisation techniques become an inapbibol for efficient operation.

Optimisation is a process of seeking the valuesadgfbles to find an optimal solution
for the optimisation problem that needs to be masech or minimised. There are
various types of optimisation techniques availabléhe literature. These techniques
can be classified in many different ways. One songthod is to classify based on
their variables. Classification based on variallesdes optimisation techniques into
two groups, deterministic and stochastic. To sgveblems in polynomial time,

deterministic optimisation techniques are used. tda other hand there are
optimisation problems which cannot be solved inypomial time. Stochastic

optimisation techniques are utilised to solve thgpes of problems. Many stochastic
optimisation techniques such as Genetic Algorithwol&ionary Programming,

Particle Swarm Optimisation, The Ant Colony techu@gr the Bees Algorithm were

inspired by nature.

The motivation for this research is described anfthiilowing section.



1.2 Motivation

The Bees Algorithm is a stochastic optimisatiorhteque inspired by the foraging
behaviour of honey bees. The Bees Algorithm hak ptibal exploration and local
exploitation strategies which increase the succatesof the algorithm in finding the
global optimum. In order to demonstrate its perfance, the Bees Algorithm was
implemented on several single and multi-objectivenctions. The Basic Bees
Algorithm has undergone many improvements sinc&as introduced in 2005 by
Professor D.T Pham and colleagues. Most of the orgiments were focused on the
neighbourhood search site such as an abandonmeategst population and

neighbourhood size change strategies. The otherowements were focused on
parameter tuning and hybridisation of the basicsBagorithm with other well-

known optimisation techniques, such as Ant Colamy Barticle Swarm Optimisation

techniques.

Although several modifications were introduced lite Bees Algorithm, there is still
opportunity for further improvements. For examglee Bees Algorithm has certain
weaknesses which were not studied properly, such @sor initialisation stage, the
absence of the memory and number of parametersedver, new neighbourhood
search strategies can also be developed to makeB#es Algorithm more

competitive.



1.3 Aims and objectives

The overall aim of this study is to explore the ib#ities of further improvements to

the Bees Algorithm for single objective optimisatioroblems.

The following objectives were set to achieve this:a

® Develop a strategy to improve the initialisatiorage of the Bees

Algorithm.

® Develop an adaptive neighbourhood search strategyprove the Bees

Algorithm’s performance on high dimensional optiatisn problems.
® Provide memory to the Bees Algorithm to avoid sitgetitions.

® Develop a strategy for the Bees Algorithm to prévemducing similar

fitness values around local optimum.

® Develop a version of the Bees Algorithm which doesneed to be tuned

manually for each problem.



1.3 Research methods

To carry out this research, the following methodas were used:

® Surveying previous work related to optimisation caithms focusing on

swarm-based optimisation techniques.
® Studying all available versions of the Bees Aldunit
® Developing three new versions of the Bees Algorithm
® Implementing the proposed algorithms in MATLAB

® Utilising the proposed algorithms to solve continsdype benchmark

functions.

® Comparing results with some other optimisation méghes for the verification

of the algorithm.

® Testing the statistical significances of the aldoris using the T-test.



1.4 Outline of the thesis

The remainder of this thesis is organised as falow

Chapter 2 reviews both stochastic and deterministic optinmgatechniques. The
chapter is mainly focussed on stochastic optimosatechniques. Also, the Basic

Bees Algorithm is described in detail.

Chapter 3 presents the Bees Algorithm with Early Neighboudhd®earch and
Efficiency-based Recruitment. The proposed algoritias been tested on continuous-
type benchmark functions. Also, compared resulth wiher well known optimisation
algorithms are presented in this chapter. Moreoséatistical analysis has been

carried out using a T-test.

Chapter 4 introduces a Hybrid Tabu Bees Algorithm. The praabsalgorithm was

tested on Continuous-type benchmark functionsdthten, results were compared to
the Basic Bees Algorithm and The Bees Algorithmhviatarly Neighbourhood Search
and Efficiency-based Recruitment. Moreover, staastanalysis has been carried out

using a T-test.

Chapter 5 presents the Autonomous Bees Algorithm. The pregpadgorithm was
tested on Continuous-type benchmark functionsdthten, results were compared to

the Basic Bees Algorithm. T-test results are atstuded.



Chapter 6 summarises the conclusions and contributions efrésearch, and gives

suggestions for further investigations.



Chapter 2

Optimisation Technigues



2.1 Preliminaries

This chapter presents an overview of current og@tion techniques. There are
various methods to classify and one of them issdiaation based on the type of
variables. The main focus of this chapter is omlsistic optimisation techniques but

brief information about deterministic methods isocaprovided.

2.2 Optimisation Techniques

The mathematical technique concerned with findireg“best” solution for a problem,
where the “best” refers to the fittest solution time solution space, is called
optimisation. In many fields like physics, chemystmedicine, manufacturing or
economic analysis, various optimisation techniduege been used. However, there is
no optimisation technique which is suitable for rgveoroblem (Wolpert and
Macready, 1997). A block diagram of the optimisatprocess is given in Figure 2.1

(Chinneck, 2000).

Moving from the real world problem to the algorithmodel or solution technique is
called analysis. Here, the main task is eliminating-crucial details and focusing on
important elements. Moving from the algorithm, mipdslution technique to the
computer implementation is called numerical methodsid from computer

implementation back to the algorithm, model, solutiechnique is called verification.



Finally, moving from the algorithm, model, solutitechnique to real world problems
is called validation and sensitivity analysis. histstep, obtained results are compared
with the real world and in case of failure; theqass goes to the next cycle.

The goal of an optimisation is to maximise or miisenthe objective function

concerning constraints and search space. An examgieen below:

Given:
Function:
f(X) definedas f:A - O"
XOA and A issubsetof n dimensional
Euclidian spdad"
Constraints:
Inequality constraints: a (X) <0, i=12...... m
Equality constraints: b(X)= 0 I=12...... p
Sought:

Maximisation:  maxO A such thatf (max)=> f (X Jorall X OA

Minimisation: mind A such thatf (min)< f(X) forall X OA

10



real world problem

analysis

validation, sensitivity
analysis

algorithm, model. solution techmque

numerical
methods

vernification

computer implementation

Figure 2.1: Block diagram of the optimisation procss (Chinneck, 2000).
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Where f(X) is called the “objective function™ is called the “search space” or
“parameter space”, each element of A is called“t@didate solution” (Blondin,
2009).Candidate solutions are tested in the obgediuinction to find an “optimal
solution”. An optimal solution is the maximisedramimised solution of an objective

function.

2.2.1 Classification of the optimisation techniques

Many different strategies can be used to classgiingsation techniques. One of
these strategies is classification of optimisatechniques based on the nature of the
variables. In this classification, optimisation hajues are distributed in to two
different groups (deterministic and stochastic mpation techniques) depending on
whether their variables are deterministic or stgtha Figure 2.2 illustrates the

variable-based classification of optimisation teghes (Weise, 2009).

12



Optimisation Technigques

Deterministic Optimisation Techniques

A
[ | |
State Space Algebraic
_ . Branch Bound
Search Geomefry

Stochastic Optimisation Techniques

T

Single Individual
Based Stochastic
Techniques

-

Stochastic Hill
Climbing

Random
Optimisation

Simulated
Annealing

Tabu Search

T

Multi Population
Based Stochastic

Techniques
. Swarm Based
Evolutionary N
. Optimisation
Algorithms PUse
Technicues
Genetic Ant Colony
Algorithms Technique
Genetic ,
, Particle Swarm
Programming — o
Optimisation
Evolutionary
Programming Bees Algorithm

Figure 2.2 Classification of optimisation techniqus based on types of the parameters (Baris, 2012).
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2.2.2 Deterministic optimisation techniques

Deterministic optimisation techniques are thoser@tzedirect relation exists between
the characteristics of the possible solutions &ed wtility and they can be solved in

polynomial time.

Examples of deterministic optimisation techniquesgiven below.

2.2.2.1 State space search.

State space search is a deterministic search meliimdmation is needed to guess
the effects of an action and to decide if it isoalgstate recorded state (David Poole
and Alan Mackworth, 2000 State space searching considers that the agent ha

complete knowledge about state space and canhall state it is in:

- the agent has a set of actions that have knowmndigtistic effects;

« there are more than one goal states, the agenideatify them and agent
wants to reach that state.

« sequence of actions to get the agent from its ntustte to a goal state is a

solution

14



2.2.2.2 Algebraic geometry.

Algebraic geometryis a branch of mathematics, sotafly studying zeros
of polynomial equations. Thus, the technique fosus& the resolution of the
stationary conditions in the polynomial optimisatias a system of polynomial

equations (Kavasseri and Nag, 2007).

2.2.2.3 Branch bound.

Branch bound are techniques to solve discrete amdbinatorial optimisation
problems (A. H. Land and A. G. Doig, 1960). Theadd a branch bound search is to
maintain the lowest-cost path to a goal found sp dad its cos{David Poole and
Alan Mackworth, 2010 A branch bound algorithm starts with setting thost as a
bound. If the search finds a pathvherecost(p)> bound pathp can be eliminated.
Only a better path to the goal will be acceptedy Aurther new better solution is
memorised anBioundis set to the cost of this new solution. The pssceontinues

until all paths have been checked.

2.2.3 Stochastic optimisation techniques

If the relationship between the candidate solutmal the problem’s fitness is not

clear or the problem has no solution in polynontiialke, then stochastic optimisation

15



techniques bring a different solution which seascfer optimum value, generating

random variables.

2.2.3.1 Stochastic hill climbing

The Stochastic Hill Climbing (SHC) technique isazdl search technique which is
based on a direct search strategy (SchmidhuberzZaiad, 1999). SHC climbing
attempts to maximize (or minimize) a target funetigX). At each iteration, hill
climbing will change one element #to find if the change improves the value of
f(X). Any change that improve$X) is accepted and this process continues until no

improvements can be found. Final X is called tloeél optima” of the problem.

2.2.3.2 Random optimisation

The Random Optimisation (RO) technique is one da thost straightforward
numerical techniques used to search for the glopaimum which does not require
the gradient of the problem (Li and Rhinehart, 99RO is used as starting point for

most stochastic-based optimisation techniques {¢ffessen, 2007).

The point at which to start the RO is chosen rarlgormhere is a tfeproducé

operator in RO which is responsible for reachidgofthe points in the search space

from every other point (Weise, 2009).
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2.2.3.3 Simulated annealing

Annealing is a metallurgical technique involvingaliag and the controlled cooling of
materials in order to change the size of their tatgs This affects some of their
physical properties including strength, hardnesd ductility (Koppen and et al.,

2011). Slow temperature change gives a materiaighé hardness and ductility but if
the temperature change is too rapid, the metal beypme too weak. Simulated
Annealing (SA) is a single-point random search mégpe imitating the annealing

process (Goffe et al., 1994). It is one of mainhods to locate an approximation of
the global minimum / maximum for problems with agka search space (Koziel and
Yang, 2011). The Slow controlled cooling procekthe material is implemented as
a slow decrease in the probability of acceptingseasolutions while exploring the
solution space. Accepting worse solutions allowsreanextensive search for the

optimal solution.

2.2.3.4 Tabu search

Tabu Search (TS) is a Single Individual Based Sistib search technique with a

local optima avoidance mechanism ( Pham and Kaggtzi2p0).

As for every local search algorithm, TS takes aeptal solution to a problem and

checks its neighbourhood to find an improved sohutiThe main problem with most

local search methods is getting stuck in areas evimamy solutions are equally fit but
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in Tabu Search this problem is solved by implenmgna special memory unit called
'tabu list'(Tsubakitani and Evans, 1998) .
Previously visited or not satisfactory solutione aecorded in the 'tabu list'. All data

in this list is marked as tabu and this helps atigor to shrink the search space.

Three different structures can be used while angatabu list' (F. Glover, 1990).

« Short-term: The list of recently considered solusioThe size of the list is
limited and with every new element entering thg lise oldest one is erased.
When a potential solution appears on this list,algwrithm does not revisit it

until a solution drops out from list.

. Intermediate-term: A list of rules to lead the sham the direction of the

promising areas of the search space.

+ Long-term: A list of rules that brings variety ihet search process. As an
example, the algorithm can reset when it becomesksaround equally fit

solutions.

The pseudo code of the Tabu Search with short teemory for minimising the cost

function is given as an example in figure 2.3 (deBomownlee, 2011).

As for every algorithm, Tabu Search has some wesase One of biggest

weaknesses of Tabu Search is being effective anedesspaces because it is very rare

for the algorithm to visit the same point in realue spaces (Sean Luke, 2009).
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sBest— initial solution
tabuList— null
while (not stoppingCondition())
candidateList— null
for(sCandidate in sNeighborhood)
if(not containsTabuElements(sCandid@tieyList))
candidateList- candidateList + sCandidate
end
end
sCandidate- LocateBestCandidate(candidateList)
if(fitness(sCandidate) > fithess(sBest))
tabuList— featureDifferences(sCandidate, sBest)
sBest— sCandidate
while(size(tabuList) > maxTabulListSize)
ExpireFeatures(tabulList)
end
end
end

return(sBest)

Figure 2.3 Pseudo code of Tabu Search with shortrte memory.

19



2.2.3.5 Genetic algorithms

The Genetic Algorithm (GA) is population-based aitjon which was proposed by
Holland in 1975. In 1983 GA's engineering applicasi were studied by Goldberg. In
nature only strong species pass their genes toefgenerations when weak ones are
facing extinction. This phenomenon was the ingjginafor the creation of the
Genetic Algorithm. During many years, various muadifions to the original structure
of GA were proposed. To distinguish it from numeraersions of the algorithm, the
original GA proposed by Holland is often referredas the 'canonical' GA. Crossover

and Mutation are fundamental operators of the caab®A (Rutkowski, 2008).

Crossover creates offspring by randomly mixing isest of the parental genome.
One-point crossovertwo-point crossoverand uniform crossover arethe most
common crossover proceduré®avis, 1991). Couples not selected for recombamati

will generate two offspring identical to the paent

A small group of the offspring are randomly choserbe mutated. Mutation is the
changing of the bit value, in the case of a binagling, from 0 to 1 and vice versa
(Ho et al, 1999). The mutation operator is not extremely angnt. However, it

provides diversity to the genetics of the createputation.

For GA's better performance, mutation and crossaates are two important

parameters requiring careful tuning (Eiben and S2@iL1).
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2.2.3.6 Genetic programming

Genetic programming (GP) is a set of instructioms a fithess function to measure a
computer's performance on a given task. GP is acispetype of genetic
algorithm (GA) where each individual is a compugmogram. Therefore, GP's

operators are basically GA's operators (Banzhai,988).

2.2.3.7 Evolutionary programming

Evolutionary programming (EP) is evolutionary aijun developed by Lawrence J.
Fogelin 1960. EP wuses simulated evolution for thearning process to
generate artificial intelligence (Baak al., 1997). Traditional EP uses the Gaussian
mutation operator. Traditional EP has no crossoperator. However, in the modern
version of EP there is a crossover operator ancgtpailation for crossover will be
selected by a mutation operator. In modern EP thition operator is adaptive.

The steps for modern EP are given below:

» Firstly generate an initial population,
» Secondly EP duplicates the initial solutions. Aftieiplication each solution is
mutated using any chosen distribution function,

* The last step is the evaluation of the crossoviettisa of population.
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2.2.3.8 Ant colony optimisation

Ant colony optimisation (ACO) in swarm-based opsation techniques was
introduced by M.Dorigo and his colleagues, inspibgdthe behaviour of real ants.
ACO was developed to solve combinatorial optim@atproblems (Dorigcet al.,

1996).

In nature, ants scout for food randomly wanderirguad their nest. Every scout ant
explores a wide area to find sources of food. Wdrgnof them find food they bring it
back to the nest. On the way back, the ant makgdissage by laying down a
pheromone trail (Shtovba, 2005). If another antidirsuch a path, it stops random
scouting and checks for the food source at thedadritie trail. In case of success it
goes back to the nest and brings reinforcement®ltect the food more effectively
(Dorigo and Stutzle, 2004). Reinforcement ants Vel down pheromones on that
trail as well. Pheromones evaporate in time. Thenrf@aging behaviour of ants is
based on finding the shortest path between theceand their nest (Panigradti al,
2011). The pheromone level on a shorter path weiltdinforced but it will evaporate
as time passes (Sumathi and Surekha, 2010). A ghthriwill be visited by more ants
and thus the pheromone level will be higher comgbdceother paths. That is why
pheromone density on short passes will remain hitjfen that on long passes. After

observing this behaviour of ants, ACO was created.

Steps for the simple version of ACO is given inFey2.4.
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Start
While (stopping criterion not met)
Generate solutions
Pheromone update using equation (2.2)
Move according probability calculated witquation (2.1)
End While.
End

Figure 2.4: Steps for simple version of ACO
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The first problem where ACO was used was the Thagekalesman problem (TSP)
(M. Dorigo, 2003). In ACO, each ant is initiallygzed in a random location (city) and
has a memory which stores the partial solutiorag bonstructed so far in that city.
Each ant starts to move from city to city. Antlecides to move from city (initial

location) to city] with provided probability:

r @ *[n,F
I IO IR S

k : k
P (t) = JUN | (2.1)

n; =1/d;is a already available heuristic information,

a and f are parameters to determine the influence of phenentrail and
heuristic  information.

* N is cities around ank which were not visited yet. After every ant has
completed a tour solution construction ends. Né&g s updating pheromone

trails. The update process shown in given equation.
M k . -
r(t+) = (- P rr (O + ) AT (1) 0G, i) (2.2)
k=1

* 0<p<1isthe evaporation rate of the pheromone trail.

* Mis the number of ants.
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* A7 (t) is the amount of pheromone deposited by ant m fiodei to nodej

at time stefd .

2.2.3.9 Particle swarm optimisation

The Particle Swarm Optimisation (PSO) is a swarsedaoptimisation algorithm
which was proposed by Eberhart and Kennedy (Eberblad Kennedy, 1995).
Inspiration for the creation of PSO was the sogialiganised behaviour of different
animal populations such as animal herds or birckBdBlum and Merkle, 2008). The
concept of PSO gained in popularity due to its $icitg. Individuals in PSO are
called particles and a population is called a swérvand Liu, 2011). Each particle
has a position and velocity. Particles are frebiyng in the search space by at a given
velocity. In each iteration, the velocities of pelds are stochastically changed based
on the previous best position for the particle litsend the neighbourhood best
position. Basically, particles of PSO are travglim the search space and change
their positions from time to time. This change hapgp based on their previous
experience and the experiences of their neighbdimis.behaviour allows particles to

move toward better locations while being able tplese a wider area.

The PSO Algorithm has been successfully appliea tumber of optimisation problems
such as; determination of optimum location andype (Onwunalu and Durlofsky, 2010),
determination of the optimum constriction factoangrtia weights, and tracking dynamic
systems (Eberhart and Yuhui, 200D)e to its simplicity and relatively low number of

parameters than other algorithms, PSO has becomguepular.

The pseudo code for a simple version of PSO isngbedow (Figure 2.5).
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For each particle
Initialise positio?0 and velocity VO
End

While maximum iterations are not exceeded or

minimum error is not attained

Do Foreach particle
Calculate fitness value
Iffitness better thaRbest
Updat®best
End

DeterminegGbestamong all particles

Foreach particle
Update position
Update velocity

End

End

Figure 2.5: Pseudode for simple PSO.
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Every iteration velocity and position of the padgchange based on 2 cryteria:

* Pbest: thisis the best position visited byipkritself (local optimum).

* Gbest : this is best position visited by any péeticof the swarm (global

optimum).

Equations for velocity and position updates ofihdicles are given below:

Vn+1l =wVn + cl * rand1*(Pbestn — Pn) + c2 * rand@bestn — Pn) (2.3)
Pn+l=Pn «* Vn+l (2.4)
where:

Vn ,is the particle velocity in iteratiom

Pn ,is the particle position in iteratian

Pbestnis “personal” best position in iteratian

Gbestnis “global” best position in iteration

randlandrand2are random numbers between 0 and 1

cl, c2are weighting factors. These factors determinesibe of movement a particle
can do in a single step (number in the range Q to 4

w is the ‘inertia’ weight. If w has large value itrf@ms a global search. If it is small

then it performs a local search.
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2.2.3.10 Artificial Bees Colony

The Artificial Bee Colony (ABC) algorithmis a swarbased meta-heuristic
optimisation technique inspired by the intelligéotaging behaviour of honey bees
which was proposed by Karaboga in 2005 (Karabo@®52 Base for the ABC
algorithm was the model proposed by Tereshko anengarov (Tereshket al,

2005) for the foraging behaviour of honey bee caen

The model proposed by Tereshko and Loengarov has tinain components: Food
sources, employed and unemployed bees. Employexldredoragers employed at a

promising food source. Unemployed bees are dividexdtwo groups:

e Scouts: Bees looking for a new food source.

* Onlookers: Bees waiting at the hive for informatiabout the food source

(They get information related to the food sourcesifemployed bees)

The model defines two type of behaviour: the rigerent to a nectar source and the

abandonment of a source.

e Recruitment: Scouts become employed bees whenfitieya promising food
source. Onlookers convert to employed bees aswedh they get necessary

information on a food source.

* Abandonment: Employed bees abandon an extinct soGame bees go for

further scouting; some fly back to the hive anddmee onlookers.
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After observing the proposed model, the ABC aldonitwas developed. The ABC
algorithm follows the rules of the proposed moddie main steps of the algorithm

are given below (Figure 2.6):

Send the scouts to the initial food sources
REPEAT
Send the employed bees to the food sources andrde¢etheir nectar amounts

Calculate the probability value of the sources Wwhice preferred by the onlooker
bees

Send the onlooker bees to the food sources anchdatetheir nectar amounts
Stop the exploitation process of the sources exbdusy the bees

Send the scouts into the search area for the disg@f new food sources, randomly
Memorize the best food source found so far

UNTIL (requirements are met)

Figure 2.6: Stepf the ABC
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2.2.4 The Basic Bees Algorithm

The Bees Algorithm is also one of the swarm ingeltice-inspired algorithms which
was developed by researchers at the ManufacturimginEering Centre (MEC) in
Cardiff University, under the supervision of PDfT. Pham (Pharet al.,2005) after

observing bees foraging for nectar.

2.2.4.1 Foraging behaviour of honey bees

A colony of honey bees explores a wide area ardheil hive to find a food source
(nectar). Bees assigned for initial exploration @ated scout bees. Scout bees can fly
up to 11 km to find better flower patches (Seel395 and Gould and Gould, 1988).
When a scout bee finds a food source its job ish@re information regarding the
discovered patch with bees waiting in the hive.eAftlelivering nectar to the hive,
scouts go to a special area (dance floor) in fadrthe hive and perform eight shape
movements, also known as the ‘waggle dance’ (Sedl@95). The waggle dance
contains information about the direction, distameel quality of the flower patch
found by the bee (Talbi, 2009). A waggle dancehimws inFigure 2.7 The relation
between the duration of the dance and distance fiom is given in Figure 2.8
(Seeleyet al. 2006). Information related to the direction of gmurce is given in Figure

2.9.
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Figure 2.8 Relation between duration of dance and distance tilve food.
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Figure 2.9: Relation between dance and the Directioof the food source
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After the performance of the “dancers”, the colaecides the amount of bees that

need to be assigned for the food source. More gped¢s more promising patches for

harvesting. Recruited bees monitor food levels @erye patch and share this

information with the colony when they go back te thive. So, bees concentrate on

better patches all the time, which makes the foattheying process much faster and

more efficient. This behaviour of honey bees wammatationally modelled as a

search algorithm.

2.2.4.2 The Algorithm

The parameters and the pseudo code of the algoatlrgiven below.

Number of scout bees)(

Number of sites selected out of n visited sitaf (

Number of best sites out of m selected sigs (

Number of bees recruited for best e sites),

Number of bees recruited for the other (m-e) setésitesiisp,

Patch size around a selected best locatigh)(

Steps of the basic Bees Algorithm are given in Fedti10.
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Start
Initialise population with random solutions.

Evaluate fitness value of the population.

While (stopping criterion met).

Foreach best patch
Select the best m patches for neighbourhood search.
Recruit bees for selected patches (more bees &br Ipatches) and
evaluate their fitness.
Select the fittest bee value from each patch.
End

Assign remaining bees to search randomly and etethair fitness.
End

Figure 2.10: Steps of the basic Bees Algorithm
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According to Figure 2.10, the Bees Algorithm has msiain steps. The first step is
placing the “n” scout bees on a search space.didlfowing steps, the fitness values

of the visited patches are evaluated.

The patches with the highest fithess values aresashoas “selected sites” for
neighbourhood search as step 3. In step 4, theithigoperforms a neighbourhood
search on selected areas by assigning more scesittbehe elite sites ‘e’, less scout
bees to the non elite best sites ‘m-e’. In stefh8,scout bees around the best sites
with the highest fithess values are selected aseseptative bees to form a new
population. The remainder of the bees are assifpradndom search to find potential
solutions in step 6. This process continues um@d of the stopping criteria has been

met.

2.3 Applications of the Bees Algorithm

The Bees Algorithm was utilised to solve multiplptimisation problems. In this

section, examples for applications of the Bees Allgm are presented.

Continuous type benchmark functions were seleatetbst the performance of the
Bees Algorithm. Optimisation of these functions wiae first application of the Bees
Algorithm (Phamet al., 2006a). Later, the Bees Algorithm was tested @mawore

benchmark functions. Results were compared witfemdiht optimisation algorithms
(Pham and Castellani, 2009a). Results obtainedyubim Bees Algorithm were better

when compared to other algorithms.
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The Bees Algorithm was used to optimise the cogalofication on a multi-objective
welded beam problem by (Ghanbarzadeh, 2007). Tt gbthe study was to
minimise the cost by finding an optimum weld thieks, weld length, beam thickness
and beam width under the stress constraints. Theréhm was also utilised to solve
a multi-objective carbon energy system and an enuiental dispatch problem (Lee,
2010). The goal was to minimise the total cost @@emissions for designing a low

carbon system.

The Bees Algorithm was also implemented to deteemiveights for the neural
networks such as: Learning Vector Quantisation agtvwPhamet al., 2006b), Multi

Layered Perceptron neural network (Phatmal, 2006c; Koc, 2010), Radial Basis
neural network (Pharet al, 2006d). Results showed that the Bees Algorithma is

good classifier and optimisation tool.

The Bees Algorithm was also applied to cellular ofaoturing systems to optimise
the cell information problem (Phagt al, 2007a). The results obtained proved that

the Bees Algorithm is good enough to be used farloatorial applications.

The Bees Algorithm was tested on the job schedwimdplem (Phanet al., 2007b).

The performance of the Bees Algorithm was bettantthat of TS, GA, and PSO on

this problem.

Another application of the Bees Algorithm was onstéring problems. The Bees

Algorithm was implemented on the K-means and C-rme&dustering problems (Pham
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et al., 2007c; Al-Jabbouli, 2009). The results showed thatBees Algorithm could

be a powerful tool for clustering applications.

Promising results were obtained from a robotic @ppbn of the Bees Algorithm
which has been proposed (Phatmal., 2008). In this study the Bees Algorithm was
used for learning the inverse kinematics of a rabanipulator. The second robotic
application of the Bees Algorithm was proposed Pham et al., 2009b). The
Algorithm was utilised to tune the fuzzy logic caoiter parameters for stabilising and

balancing an acrobatic robot. Experimental resméige positive.

Several studies were done to increase the perfaenainthe Bees Algorithm. One of
these studies was a hybrid approach where the Bé&gsithm and PSO were
combined (Sholedolu, 2009). This combination wasedfor the Bees Algorithm to
benefit from PSO’s advantages in an adaptive neigtitood search. Hybrid PSO-

Bees Algorithms results were promising and fast.

Another study done to improve performance of thesBélgorithm was using

algorithm to tune parameters (Otri, 2011). The guenince of the Bees Algorithm

was improved by this enhancement.

Moreover, the Bees Algorithm was applied on mujgcebve Supply chain problem

to minimise the total cost and the total lead-t{fBmestoet al, 2013).
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2.6 Summary

Different optimisation techniques have been deedribn this chapter. These
techniques were classified based on their variallae aim of this chapter was to
provide background information for the followingagiters. Brief information about
deterministic optimisation techniques was giveracBastic optimisation techniques
were described in detail. The Bees Algorithm wascdbed in detail, which will be

used in Chapters 3, 4 and 5.

In following chapters three modified versions ofetlBees Algorithm will be
discussed. In chapter 2 the Bees Algorithm withyeaeighbourhood search and
efficiency-based recruitment will be introduced.eTfollowing Chapter 4 will be
about the Hybrid Tabu Bees Algorithm. Autonomoug®8dalgorithm, which is third

and last contribution, will be explained in Chagier
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CHAPTER 3

The Bees Algorithm with Early
Neighbourhood Search and Efficiency-

Based Recruitment Strategies
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3.1 Preliminaries

In the literature there are several optimisatiogoathms with different search

abilities and each of them has their own strengii weaknesses. Considering the
Bees Algorithm which is the focus of this studyhés a random initialisation stage.
Such initialisation has both advantages and digatdgas. The results produced by
the algorithm are subject to this random initidlisa process. This can be overcome

by starting the search from a more promising larati

This study presents new modifications to the bBsies Algorithm, which are early
neighbourhood search and improved recruitment usmgfficiency calculation. The
aim of the Early Neighbourhood Search and Efficiehased Recruitment Bees
Algorithm (ENSEBRBA) is to enhance the performan€¢he initialisation stage and
make the neighbourhood search more competitivectwhiill empower the overall
performance of the algorithm on high dimensionabfems. The steps and flow chart

for proposed version of the Bees Algorithm are giwreFigures 3.1 and 3.2.
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Start

Initialise population with random solutions.

Do (early neighbourhood search for each random saisitio
Evaluate fitness values of each neighbmaoih

End

While (stopping criterion not met)

For each best patch
Select sites for neighbourhood dearc
Recruit bees for selected sites (using normalegigat efficiency based
enhancement) and evaluate fitnesses.
Select the fittest bee from eacltipat
End

Assign remaining bees to search randomly and etethair fitnesses.
End

Figure 3.1: $eof the ENSEBRBA
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Flace random n bees on
search space

.

Eatly neighb ourhood search for
n scout bees

r

Tes

Evaluate data recetved from
eatly neighhourhood search

Stopping

criteria met

Select m patches for
neighhourhood search

4

Eecruit Bees for neighbourhood
search

¥

Select fittest hee from each patch

r

Send retnamning bees to random
search and ewaluate their
fithesses

:C END >

Figure 3.2: The flow chart of the ENSEBRBA
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3.2 The Early Neighbourhood Search Strategy

The Early Neighbourhood Search Strategy-based Bdgerithm starts with a
random initialisation of n scout bees on searcltsptne same as in the Basic Bees
Algorithm (BBA). The initialisation stage in BBA osiders a list of all random points
visited by each scout bee. This may not contairughanformation about the space
surrounding. To get a better view of the vicinity the point and to start a
neighbourhood search from more promising patchesaaly neighbourhood search
stage is introduced during the first scouting psscelrhe neighbourhood search is
carried out with a minimum number of scout beesomder not to affect the
computational time of the algorithm too much byreasing the number of iterations.
This leads to the discovery of better fithess vdlsies from where the local search
will be carried out because if the algorithm starsssearch from an advantageous
position, it is obvious that it will have better mtunity to converge to the global

optimum.
In addition to this, another improvement is prombsethe following section, which is

efficiency-based recruitment for each best patcintoease the performance of the

algorithm.

44



3.3 Efficiency-based Recruitment Strategy

Efficiency characterises how well the time, cost and effogedu for the

implementation of a task or job compares to th&ieased by alternative methods.
This term has widely varying meanings and applicetiin different disciplines. In
particular for engineering, it can be generalisachsthat Efficiency is a capability of
producing a specific outcome effectively with a miom amount or quantity of

waste, cost, or unnecessary work.

Efficiency can be shown as a percentage of whall@eould be achieved. The

efficiency of any work in its simplest form can tedculated with the formula below:

Output
Input

Efficiency= x100 AB
Efficiency-based recruitment for neighbourhood skatrategy is the second step of
the proposed Bees Algorithm. In this stage, theefis values of each patch are
evaluated for choosing “m” best patches to staet mieighbourhood search. The
neighbourhood search process is performed as iBase Bees Algorithm with the

addition of efficiency-based recruitment.

The number of recruited bees for the neighbourhsearch changes dynamically

according to the efficiency of the related siteserenthe number of bees around elite
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(nep) and non-elite best sites (nsp) are compusddon Equations 3.2 and Equation

3.3 respectively.

nep =nep_; +nab (B.2

nsp =nsp_; +nab B.3

where “nab” is the number of added bees according to theieffcy calculation and

“i"is the number of the iteration.

The number of the added beesb, is computed based on the Efficiency Raix |

of the best sites after a predefined number cdiikens. The ‘ER’ for each selected

patch is calculated as given in Equation 3.4.

eri = 8F ~AFwn (3.4)
AI:max_AI:min

where ‘i” is the iteration number, " is the site numbenF’'=F’'-F!;,

AF . = min{Fi - Fi_ﬂ}, AF . = ma>{Fi - Fi_ﬁ}, Er’ is the efficiency rate of patch

“}”. Each patch is ranked according to their efficierrate. So the number of

recruited bees around each site changes accottngiks given in Table 3.1.
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Range ofER Group Type Required Bees
0.0<=ER<=0.2 E O Bees
0.2<=ER<=04 D +1 Bees
04<=ER<=0.6 C +2 Bees
06<=ER<=0.8 B +3 Bees
0.8<=ER<=1.0 A +4 Bees

Table 3.1: The patch range dmequired numbers of bees.
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Finally, the remaining scout bees are assignedorahdto carry out a global search.
The process will run until stopping criteria aretn®&opping criteria for the proposed
version of the algorithm are:
* Global optimum found with acceptable error rate HR this study error rate
was chosen as, ER <0.0001).
* Maximum number of the Evaluations.(In this studisthalue is chosen as,
5000000)
*  Number of repetitions of the global optimum.(Insthstudy this value is

chosen as, 100)

3.4 Experiments

To measure the performance of the algorithm, soralk kmown continuous type
benchmark problems were selected. Each of thesetidms has different
characteristics, so obtained results illustratergjths and weaknesses of the algorithm
in different situations. The Algorithm was run andved times for each function. The
results were compared with the basic Bees AlgoritBA) and other well-known
optimisation techniques such as Particle Swarm gétion (PSO), Evolutionary

Algorithm (EA) and Atrtificial Bee Colony (ABC).

The Bees Algorithm requires a number of parameterBe set manually for each
benchmark function. Further, the number of reccuibees for early neighbourhood

search and 8’ for efficiency-based recruitment must be prededirin the proposed

version of the Bees Algorithm. In this study, thember of recruit bees for early
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neighbourhood search ang3* were defined as 2 and 10, respectively. The other

parameters to run the proposed algorithm to soifferent benchmark problems are

given in Table 3.2 (Ahmed, 2012).

No. | Function n m nsp e nep ngh

1 Goldstein & Price (2D) 10 3 2 1 13 0.005
2 Schwefel (2D) 10 | 2 5 1] 6 0.5

3 Schaffer (2D) 100 | 4 10 2 30 3

4 Rosenbrock (10D) 15 8 10 5 30 0.0015
5 Sphere (10D) 10 | 7 20 1| 30 0.05
6 | Ackley (10D) 100 | 8 10 1] 20 0.7

7 Rastrigin (10D) 100 | 3 20 1| 40 0.01
8 Martin & Gaddy (2D) 10 5 10 1 30 0.1

9 Easom (2D) 100| 4 10 2| 30 0.5
10 | Griewank (10D) 100 | 40 10 20 30 15

Table 3.2: The parameters to run the ENSEBRBA on dlierent benchmark

functions (Ahmad, 2012).
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All used test functions are described below. T2 @ots of all used test function can

be found in appendix A. (Molga, 2005).

Goldstein-Price’s function

The Goldstein-Price function is a two dimensionllbgl optimisation test function

which can be defined as following (Molga, 2005):

f (X4, x2) = [L+ (X, + X, +1)* 19-14x, + 3%} —14x, +6X,X, +3x] [

3.5
030+ (2%, —3X,)? (L8—32x, +12x> + 48X, —36X,X, + 272)] (3:9)

-2<xX%<2,; f(x)=3 (x,%,)=(0-1

Schwefel’s function

The Schwefel function has complex geometrical togplgy, where the local
minimuma are far from each other. Thus, searchrdifgos struggle to converge in
the direction of the global minimum. A definitiorf the function is given below

(Molga, 2005):

f(%)= Y1 - x sing[x])] (3.6)
—-500< x, <500, i=1........ n;
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f (%) =-418.9829n:;

X = 420.9687, i=1......... n;

Rosenbrock’s valley

Rosenbrock’s valley is also known as thenana functioror thesecond function of
De Jong The global optimum for the function is locatedta flat valley which has a
long narrow parabolic shape. It is simple enoughfital the valley. However

convergence to the global optimum is difficult. §Htunction is defined as (Molga,

2005):
n-1
f(X) ZZ[lquHl_xiz)z +(1-%)7] (3.7)
i=1
—2.048< x < 2.048, i=1l......... n,
f(X)=0
x, =0, i=1 ... ... n;

Hyper sphere function

Hyper sphere is continues type unimodal, curvedtfan, which is also known as the

weighted sphere moddtunction can be defined as (Molga, 2005):
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f(%=300) (3.8)

—-512<x <512, =1......... n;
f(X)=0,
X =0, i=1....... n

Ackley’s function

Ackley’s is a widely used multimodal test functiorhis function can be defined as

(Molga, 2005):

f(X) = —aléxp(b /%.Z:‘ x*) - exp%é cosCx)) +a+exp) (3.9)
a=20,b=0.2,c=2Z

-32,768& X, < 32,768 i=1.......... n;

f(X)=0

Xii = 0, i=1........n
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Rastrigin function

Rastrigin’s function is a modified version of the Dong function. In order to produce
numerous local minima with cosine modulation a Rgist function was utilised. This
addition makes the test function highly multimoddbwever, the locations of the

minima are regularly distributed. The function hhs following definition (Molga,

2005):

f(X) =10n+ Zn:[xf -10cos@7x. )] (3.10)

-512<x <512 I=1......... n;
f(X) =0,

x=0, i=1.....0..

Martin & Gaddy

Martin & Gaddyis a widely used multimodal test function. The difon of the test

functions is given below (Molga, 2005):

f04,5) = (5 =) + [ 22210y (3.11)
-20< xx, <20, f(x)=0, Xx2)=(5,5).
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Easom'’s function

The Easom function is a two dimensional, unimo@sk function. This function’s
global optimum has a small area compared to theclsesppace. The definition of the

test functions is given below (Molga, 2005):

f (%, X,) = —cosf,) cos,) expE(x, — 1) = (x, = 71)?) (3.12)

—-100< x,x, <100, f(x) =-1, (X, X,) = (711, 7).

Griewangk’s function

Griewangk’s function is similar to the function Bhastrigin, where local minima are

widely spread using regular distribution. The digfom of the test function is given

below (Molga, 2005):

)(i
X; coS +1 3.13
40002 ” %) ( )
—-600< x, <600, =1 n;
f(X)=0,
x;=0. i=1............Nn.
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Benchmark functions can be used to represent keyres of the real world
problems. Some examples for the benchmark functiepsesenting manufacturing
problems are given below.

For example, Dynamic motion problems found in pbysand manufacturing can be
described as' 4" and %' degree polynomial functions (Klipp 2001). Goldst&rice

is second degree polynomial problem (Goldsteinge?d971). Therefore dynamic
motion problems can be defined with modified Gadstand Price benchmark
function.

Another example is the representation of surfaneatomic level by benchmark
functions. Atomic force microscope (AFM) is used amalyse surfaces of the
materials down to atomic level and can produce 8pography of surface. It is
possible to use Rastrigin, Schwefel, Schaffer ac#lley functions to represent the
surface features of the materials. “Thus, they htee strength of an analytical
expression with a known global minimum and they awmtendable to arbitrary
dimensionality allowing for scaling investigatioos global structure optimization of
atomic and molecular clusters” (Dieterich, Har#4.2).

Furthermore, the Cost curve in engineering econaoflyshra 2009) can be
represented by Hyper Sphere benchmark functionse®der for cost minimisation,
Rosenbrock function was suggested to be utiliseRdsenbrock (Rosenbrodl60.

Cases given above can also be extended for ogmehinark functions.
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3.5 Results and Discussion

The performance of the proposed algorithm was asdeaccording to the accuracy
and the average evaluation numbers and results w@mgared to well known
optimisation techniques. These are given in TaBl8sand 3.4. Experimental results

for PSO, EA and ABC were extracted from Ahmad (2012

The accuracy of algorithms was computed based erage absolute differences of
the best results of a hundred runs. According te #pproach, the more accurate

results are closer to zero.

Goldstein-Price 2D: Expected optimum result for the function is 3. Page result
obtained from the Basic Bees algorithms for a hedduns was found to be 3.0005.
The result received from ENSEBRBA on the same gmobivas found to be 3.0007.
The BBA used an average of 504 evaluation numberénd that result, where
average of new algorithms evaluation numbers wa$981 Both algorithms produced
similar average global optima. However performapicthe BA was not improved on
given problems by applying presented enhancemertisis average number of
evaluations used by the ENSEBRBA was significanttypre than number of
evaluations used by the BBA. Figure 3.3 illustragexbal optima for a hundred runs

of BBA and ENSEBRBA on a given problem.
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Schwefel 2D:The expected optimum for the function is -837.Bfle average global
optimum obtained from a hundred runs of the BagieBalgorithm and ENSEBRBA
were -837.144 and -837.964 respectively. BBA usedwerage of 250049 evaluation
numbers to find that optimum, whereas the averagéhe new algorithm’s evaluation
was 338.600. As mentioned earlier this test fumctias complex topography so it is
hard to converge to the global optimum but the Begerithm with both global and
local search found the optimum with no problem. ldear, ENSEBRBA with early
neighbourhood search and enhanced local searcmas@saccurate on the given task.
Average global optima for a hundred runs of BBA &NSEBRBA on the given

problem are shown in Figure 3.4.

Schaffer 2D: The expected optimum for the function is 0. Averagesadiundred

global optimums of the Basic Bees algorithm wasl0,Dhe corresponding result
obtained from the presented version of the Beesridtign (a hundred runs) was
0,001. BBA used an average of 121.088 evaluatiombaus to find that result,
whereas the average for the new algorithm’s eviaoatwas 112.430. The
ENSEBRBA performed more accurately and faster tharBBA on this optimisation
problem. Figure 3.5 illustrates global optima forhandred runs of BBA and

ENSEBRBA on the given problem.

Rosenbrock 10 D:The expected answer is 0. The average global optimutairedgl
from the Basic Bees algorithms (a hundred runs)®@803. The result received from
ENSEBRBA was 0.0002. BBA used an average of 1169@uations to find that

result, whereas the average for the new algorittan #48193.The BBA found less
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accurate global optimum when the presented versiothe BA produced more
accurate result. The performance of algorithm fgeg problem was increased. This
is related to the extra initialisation during treglg phases of the proposed algorithm.
Figure 3.6 illustrates global optima for a hundrads of BBA and ENSEBRBA on

the given problem.
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PSO EA ABC BA ENSEBRBA
: Average Average Average Average Average
No. | Functions Absolute Sta’?d?“d- Absolute Staf.‘d?fd- Absolute Staf.‘d?fd- Absolute Sta’?d?“d- Absolute Staf.‘d?fd-
. Deviation. . Deviation. . Deviation. . Deviation. . Deviation.
Difference Difference Difference Difference Difference
1 Sﬁé%szgg)& 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005|  00086. 0.0007 0.0008
Schwefel
2 | ooy 4.7376 23.4448 | 4.7379 23.4448 0.0000 0.0000 0.1492 0.7679 0.0004 0.0057
3 (Szcg)aﬁer 0.0000 0.0000 0.0009 0.0025 0.0000 0.0000 0.0096| 0018, 0.0009 0.0029
4 ﬁ%sbe)”bm"k 0.5998 1.0436 615213 | 132.6307| 0.0965 0.0880 0.0003 0.0003 0.0002 0.0003
Sphere
5 | (10D) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003  000G. 0.0001 0.0001
6 (Al‘gk[')e)y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0294 0470, 0.0001 0.0028
7 (Rl%%;'g'” 0.1990 0.4924 2.9616 1.4881 0.0000 0.0000 0.005| 200 |0.0002 0.0003
8 gg‘gg; (208; 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000, 000G. 0.0000 0.0003
9 | Easom (2D)| 0.0000 0.0000 0.0000 0.0000 0.0000 0980 | 0.3 0.23 0.0000 0.0003
10 8%%";’6‘”“ 0.0008 0.0026 0.0210 0.0130 0.0052 0.0078 0.3158| 1786. 0.0049 0.0019

Table 3.3: Accuracy of proposed algorithm comparedavith other well known optimisation techniques.
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PSO EA ABC BA ENSEBRBA
No. Functions | Average Standard Avg. Standard Avg. Standard Avg. Standard Avg. Standard
evaluation L . . . . evaluation| Deviation . L
s Deviation. evaluations Deviation. | evaluations| Deviation. S evaluations| Deviation.
1 | Goldstein& | o5, 822 2002 390 2082 435 504 211 21496 36855
Price (2D)
2 Sc(g"lgife' 84572 90373 208058 149638 4750 1197 250049 690 08386 0
Schaffer
3 20) 28072 21717 219376 183373 21156 13714 121088 174779112430 66120
4 RO(SfO”g)ka 492912 29381 500000 0 497728 16065 935000 0 148193 116904
5 | Sphere (10D} 171754 7732 36376 2736 13114 48( 03B5| 277778 95643.5 89997
6 A(fg'g’ 236562 9,119 50344 3949 18664 627 910000 0 236209 2332B
Rastrigin L
7 (10D) 412,440 | 67,814 500,000 0 207.486 57,568 885,000 q 393% 44779
Martin & :
8 | Gaddy 2Dy | 1778 612 1512 385 1498 329 600 259 15,888 16554
9 | Easom (2D)| 16124 15942 36440 28121 1542 201 5280 6303 1120 1,345
10 Gz'leg’vlg”k 200466 74501 490792 65110 357438 149129 4300000 0 16443 97830

Table 3.4: Average evaluation of proposed algorithnacompared with other well-known optimisation techngues.
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Figure 3.3: The results of a hundred runs for te BBA and the ENSEBRBA on

Goldstein & Price (2D).
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Figure 3.4: The results of a hundred runs for the BA and the ENSEBRBA on

Schewel 2D.
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Figure 3.5: The results of a hundred runs for the BA and the ENSEBRBA on

Schaffer 2D.
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Figure 3.6: The result of a hundred runs for the BB\ and the ENSEBRBA on

Rosenbrock 10 D.
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Hyper Sphere 10D:The expected optimum result for this function isThe average

result obtained from a hundred runs of The BasiesBalgorithm on the given

function was 0.0003. The corresponding result olethiby the presented version of
The Bees algorithms for 100 runs was 0.0001. BBAduan average of 285039
evaluations to find that result, whereas the awerafythe proposed algorithm’s
evaluation numbers was 95643. The performanceeoB#es algorithm was increased
significantly for the given function. Figure 3.Tustrates global optima for a hundred

runs of BBA and ENSEBRBA on the given problem.

Ackley 10D: The expected global optimum for the function is 0. Téeerage

optimum result obtained from 100 runs of The Bd&#es algorithms on the given
function was 0.029. The corresponding result resgbifrom the presented version of
The Bees algorithm was 0.0001. BBA used an avend§i 0000 evaluations to find
that result, whereas the average evaluations ndsdea new algorithm was 236299.
According to the experimental results, ENSEBRBA fpenance on the Ackley

function was significantly better than that of tBBA. Again, it is because of the
complex search space of the function that makesrithgns hard to converge to the
global optimum with the standard approach. Thudrotduced enhancements
empowered the Bees Algorithm to find a more aceurstlution. Figure 3.8

illustrates global optima for a hundred runs of BBAd ENSEBRBA on the given

problem.

Rastrigin 10D: The global optimum of the function is 0. The ageraoptimum

obtained from The Basic Bees algorithms for a hedduns was 0.00mdBBA used

an average of 885000 evaluations to find that valtbe corresponding result received
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from the presented version of The Bees algorithrs mare accurate (0.0002), and
the average of new algorithm’s evaluations was 68§35. The Rastrigin function is
highly multimodal, which makes it very hard for ghd optimisation algorithms to
find an optimum. Even the BBA, with local and glbbaarch strategies, was not very
accurate on the Rastrigin function. However theSEBRBA with improved local
(efficiency-based recruitment) and global searchlrlye neighbourhood search)
strategies was successful on this problem. Figudell@strates optima of a hundred

runs for BBA and ENSEBRBA on the given problem.

Martin & Gaddy 2D: The expected optimum for this function is Experimental
results obtained from The Basic Bees algorithmsufadred runs) was 0,000 with 600
evaluations.. ENSEBBA found the same result, howélve number of evaluations
was too high (15,887). This is related to the stmecof the new algorithm because it
IS not necessary to do extra calculations (efficyerate, early neighbourhood search)
for such “easy” functions where it will only incia number of evaluations. Figure
3.10 illustrates global optima for a hundred rufsBBA and ENSEBRBA on the

given problem.
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Figure3.7: The results of a hundred runs for the BB and the ENSEBRBA on

Hyper sphere 10D.
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Figure3.8: The results of a hundred runs for the BB\ and the ENSEBRBA on

Ackley 10D.
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Easom 2D:The expected optimum result for this function iSBBA performance on

the given function was not satisfactory. An averafjaundred results obtained from
The Basic Bees algorithm was -0.707 while BBA usmd average of 5280
evaluations. On the other hand, results obtainedh fENSEBRBA were better.
Respective results received from ENSEBRBA were98@0and 1120 (evaluations).
Easom is another hard optimisation problem. The EBFBA performed better than
the BBA on this function. Figure 3.11 illustratdslzal optima for a hundred runs of

BBA and ENSEBRBA on the given problem.

Inverted Griewank 10D: The expected global optimum for this functionl® The
average result obtained from the Basic Bees Algorifor a hundred runs was 9.989.
The corresponding result received from the preseweesion of The Bees Algorithm
was 9.990 BBA used an average of 4300000 evaluations t fivat result, whereas
the average of the new algorithm’s evaluation nusbeas 316443. Experimental
results obtained from the BBA on the given functiere not satisfactory. Although,
the average global optimum was close to the exgemte, the number of evaluations
to get that result was extremely high. However, BSEBRBA performed
significantly well on the Griewank function. Botlverage optimum and number of
evaluations for the proposed Bees Algorithm werdtebethan the BBA's
corresponding results. The proposed version ofréhgo’'s number evaluations is still
too high. Figure 3.12 illustrates global optima f@rhundred runs of BBA and

ENSEBRBA on the given problem.
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Figure 3.9: The results of a hundred runs for the BA and the ENSEBRBA on

Rastrigin 10D.
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Figure 3.10: The results of hundred runs for the BB and the ENSEBRBA on

Martin & Gaddy 2D.
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A further t-test was utilised to do statistical ses of the algorithm where the
confidence level was selected to be 95 &0<(0.05). Based on observed results
(Table 3.5), the proposed algorithm is statistjcalpnificantly better than the Basic

Bees on all benchmark functions.

Overall results illustrate that the ENSEBRBA’s memhance on complex high
dimensional functions is better than on lower disienal ones. Although the
proposed algorithm finds an accurate global optimtime number of evaluations
needed to get that result is relatively high. Tifidue to extra computation performed

in the proposed version of the algorithm.

According to the ‘no free lunch’ theorem, if an @lighm performs well on a certain

class of problems then it necessarily pays for witdt degraded performance on the

set of all remaining problems (Wolpert and Macred®97).
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Significance between the basic Bees Algorithm

No. | Function
and the improved Bees Algorithm
Significant
( 0<0.05)
1 Goldstein & Price (2D) | Yes 0.0004
2 Schwefel (2D) Yes 3.698 E-18
3 Schaffer (2D) Yes 6.472 E-52
4 Rosenbrock (10D) Yes 0.0045
5 Sphere (10D) Yes 1.9650 E-06
6 Ackley (10D) Yes 7.150 E-08
7 Rastrigin (10D) Yes 0.0085
8 Martin & Gaddy (2D) Yes 0.0010
9 Easom (2D) Yes 0.0024
10 Griewank (10D) Yes 0.019

Table 3.5: The statistical analysis between the ppmsed Bees Algorithm and the

basic Bees Algorithm.
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3.6 Summary

In this study, two novel enhancements have beesepted for the Bees Algorithm.
The Basic Bees algorithm was improved both withahdy neighbourhood search in
the initialisation stage and efficiency-based raorant in the neighbourhood search
stage. The proposed algorithm has been successipfbied to continuous type

benchmark functions and compared with other wetlvkim optimisation techniques.

To test the performance of proposed algorithm,ftlewing approaches have been

utilised; accuracy analysis, average evaluationtaest.

According to the accuracy analysis and the averagaluation, the proposed
algorithm performed better on higher dimensionahtfower dimensional functions.
Finally, the statistical significance of the propdsalgorithm has been computed with
a t-test and the results were compared with thie liees Algorithm. Based on t-test
results, it can be claimed that the proposed dlgoriis statistically significantly

better in performance than the basic Bees Algorithm
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Chapter 4

Tabu Bees Algorithm
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4.1 Preliminaries

In earlier chapters it was mentioned that the Bdgerithm has both local and global
searches. Global search of the Basic Bees Algordgbnsiders random exploration of
the search space. Because of this random behateualgorithm is unable to avoid
visiting already visited sites in order to carryt au local search. Eventually the
algorithm converges to the global optimum at theemse of the number of

evaluations.

To overcome this site repetition problem, a newoalgm is proposed which is a
hybrid of BBA and Tabu Search. The new algorithmcalled the Tabu Bees
Algorithm (TBA). In TBA, the tabu list was adoptéal provide memory to the BBA,

memorising unproductive sites and not visiting thagain. This shrinks the search

space and decreases the number of evaluationscheede

Moreover, a new escape strategy for neighbourheadck is proposed to lead the
algorithm out of patches where the fitness valuestao similar, due to the Bees
Algorithm’s nature of getting stuck around the logptima..

The steps and the flowchart for the proposed algoriare given in Figures 4.1 and

4.2
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Start

Initialise population with random solutions.
Evaluate fitness values of each neighbourhood.
While (stopping criterion not met)

Define tabu list

Do for each best patch
Select sites for neighbourhood search.
Recruit bees for selected sites
If Neighbourhood search gets stuck around one point
Use escape strategy
End
Evaluate fitness values from neighbouthaeas
Select the fittest bee from each patch.

End

Update tabu list

Assign remaining bees to search randomly and eteathair fithesses.

End

Figure 4.1: Steps of the TBA.
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Place random nhees
on search space

v

Esraluate fithess wralues

.

Define tabug list

While stopping
aiteTiarot

Zelect m patches for
teighhonthood search

'

Heighbouthood search

If stucks around

Vea ofie poitit
Jse escape
No strategy
Select fittest bee frorm each
patch
Uprdate tabioo list

'

Send remaining bees to
randomn search and esvaluate

their fatnesses

—.CEND)

Figure 4.2: Flowchart of the TBA.
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4.2 Defining Tabu List

Tabu list is a list of not satisfactory or previbusisited solutions which helps an
algorithm to avoid those solutions in order to ioy® its performance. The length of
tabu list strongly affects the computational timietlee algorithm. Thus, the new

solution needs to be verified from the recordednfmesed) tabu list.

To avoid this problem, the length of the tabuWwgt be updated in every iteration due

to having limited size (Rothlauf, 2011).

There are three main strategies to create a tab(Plham and Karaboga, 2000), given

below:

1. Forbidding strategy: to control new elements engethe existing list.
2. Freeing strategy: to control what exits the tabtidnd when.
3. Short-term strategy: to determine a hybrid stratefyforbidding and freeing

strategies.
In this study, a short-term strategy-based appraashutilised to create the tabu list.

Tabu Bees Algorithm (TBA) starts the search by ocanly placing scout bees in the
search space. Then, the fithess values of eacba#dld site will be evaluated. The
next stage is to define the sites for the local #redglobal search. The local search
process will be carried out on “m” best patchesceMtain percentage of the “n-m”

patches will be utilised for the global search #me rest will be recorded to the tabu
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list. These selected patches are the worst pafehemmong the “n-m” sites. The size
of the tabu list will be determined empirically. tims study, the tabu list size “t” was
determined as equal to the number of scout beesTh® next stage of the process is
to undertake the neighbourhood search based onlagstiee approach. This will be

given in the next section.

4.3 Escape Strategy

There are some problems with a complex search spdwze fitness values are too
close to each other or even have same value. & dase, the Bees Algorithm
performs remarkably slowly during neighbourhoodrslealt may not be able to
escape from local search either. Let us call sii#s close fitness values ‘plain’ areas.
To escape from ‘plain’ areas an adaptive neighbmagthsearch is presented. The
algorithm tracks the improvement ratio (IR) of &8% values on elite patches to detect
‘plain’ areas. Value of IR must be lower than 0.006r the patch to be marked as a

‘plain’ area

IR = fitness,, — fitness (4.1)

If no ‘plain’ areas are found, the neighbourhoodrsk process is carried out as for
the basic Bees Algorithm. However, if the algoritkdetects ‘plain’ areas, it changes
its behaviour and shifts the neighbourhood searea mto two directions in order to
escape. The new neighbourhood search areas aee tedit neighbourhoods (tnbh).
The size of the shifting is ngh/2, which means ttia& central points for test

neighbourhoods areas will be the borders of thtealrone (Figure 4.3).
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Figure 4.3Simple example for shifting neighbourhood area.

T
.
R

After evaluating the fitness values of the tesghbourhoods, the algorithm decides
on the direction of the search by choosing a mooenfsing ‘test neighbourhood’ as
the actual neighbourhood area. There can be sevetabmes of the search on test

neighbourhoods as follows:

* Fitness values are not improving for both test meoyirhood areas (Figure
4.4a). In this case, the algorithm shifts test meayrhood areas further.
Shifting is carried out three times and if no imyd solutions are found, that
patch is added to the tabu list.

* Fitness values are degrading for both test neigiioma areas (Figure 4.4b).
The algorithm adds both patches to the tabu list.

* Fitness values are improving on one of the tegjhimurhood areas (Figure
4.4c). The algorithm adds the better site to theutéist and continues
neighbourhood search from the patch where bettezss values were found.

* Fitness values are improving on both test neighthmaat areas (Figure 4.4d).
The algorithm compares obtained fitness values.t&seneighbourhood with
the better fitness is selected in which to contiaueighbourhood search. The

worse one will be considered as one of ‘m’.
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Wil ke shifted farther

tnbh 1 tnbh 2

Wil be added to tabu Lst
trbh 1

E /l’ " I " 4\

3 tnbh 2
Wil be added to tabu Lst

Choose for neighbourhood search

o e
l tnbh 2
Wil be added to tabu Lst

IF  fitmess,y < fithess,,,

Choose for neighbourhood search

= \mahllf. /

tnbh 2

Becomes one of 'm'

Figure 4.4: Simple example for possible outcomesdm ‘test neighbourhood’

areas.
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Further, when neighbourhood search is finished, TBA evaluates results and

updates the tabu list.

4.4 Updating the tabu list

After every neighbourhood search process, the Tiabus updated using a ‘first in

last out’ strategy. New elements enter to thefimtn the top. As a result, elements
which were already in the list move down. One orenelements drop out from the
list if there is no space for new incoming datagd@ithm continues search process

until one of stopping criteria not met.

Stopping criteria for the proposed version of tlypathm are:
* Global optimum found with acceptable error rate R this study error rate
was chosen as, ER <0.0001).
*  Maximum number of the Evaluations.(In this studis thalue is chosen as,
5000000)
* Number of repetitions of the global optimum.(Insthstudy this value is

chosen as, 100)
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4.5 Experiments

To measure the performance of the proposed algoritih was tested on ten
continuous type benchmark functions. These funstieme given in Table 4.1 (Pham
and Castellani, 2009 and Ahmad, 2012). Brief infation about the used test

functions was given in previous chapter.

In previous chapters it was mentioned that the Bakgrithm requires some
parameters to be tuned manually for each optinoisgiroblem. Parameters used for
the TBA are given in table 4.2 (Ahmed, 2012). Ma&o value of “w” was chosen

empirically to be (n-m)/5 and value “t” was equal‘h” in this study.
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No | Function Interval Equation Minimum
1 | Goldstein & | [-2.2] |A(x,.x,)=1+x, +x, + 1)*(19— i=(0,-1)
Price (2D) 14x; + 3xf — 14x, + 6x,x, + 3x7) fix) =

32x; + 1202 + 48x, — 3631, +
27x3)
fixy, x;) = AB
2 | Schwefel | [-500.500] | fx, x,) = —xysin ({x]) — i
(2D) rosil (.\/|T|') | = (420.97,420.97)
: 2 fi¥) = -837.97
3 | Schaffer [-100.100] (sin [x2+x2)-05 x=(0, [])
5 N _ v ' 3
(2D) fixyx,) =05 [1.0+0.001 (x2+22)]2 fix) =
4 | Rosenbrock | [-1.2.1.2] |AiX) =Y, 100(x,, — x*)*+ = (‘1')
(10D) (1-x,)? f@)=0
5 | Sphere [-5.12.5.12] | fiX)=%10, 22 i=(0)
(10D) fit)=0
6 | Ackley [3232] | —[1 J10) 720 2 i=(0)
(10D) fiX)=20-20e = fiH)=0
e[lflujgl.lﬂﬂmstzmj te
7 |Rastrigin | [-5.12,5.12] | A%)=221%1(x;)? — 10cos (2mx;) + i=(0)
(10D) 10] fiX)=0
8 | Martin & [-20.20] | flxy,x,) = (x; — x,)* + 1=(55)
Gaddy (2D) [Jnﬂ“z 1UJ]z f)=0
9 | Easom(2D) | [-100.100] |fix,,x,) = i=(mm)
— cos(xy) cos(x,)eltes )~ (x2=m)] fa)=-1
10 | Griewank | [-600.600] ﬂf) i = (100)
10D ) —
ob) 4ounE 20(%i = fix)=0
! 10 xg—lDO
100)* ~ [TiZ3° cos =) +1

Table 4.1: Test functions (Pham and Castellani, 28@nd Ahmad, 2012).
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No. | Function n m nsp e nep ngh

1 Goldstein & Price (2D) 10 3 2 1 13 0.005
2 Schwefel (2D) 10 | 2 5 1] 6 0.5

3 Schaffer (2D) 100 | 4 10 2 30 3

4 Rosenbrock (10D) 15 8 10 5 30 0.0015
5 Sphere (10D) 10 | 7 20 1| 30 0.05
6 | Ackley (10D) 100 | 8 10 1] 20 0.7

7 Rastrigin (10D) 100| 3 20 1 40 0.01
8 Martin & Gaddy (2D) 10 5 10 1 30 0.1

9 Easom (2D) 100| 4 10 2| 30 0.5
10 | Griewank (10D) 100 | 40 10 20 30 15

Table 4.2: Parameters used for the TBA (Ahmad, 2032
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4.6 Results and Discussion

The performance of the algorithm was assessedfameden previous chapter, which
will be based on the accuracy and the average a&atunumbers (Tables 4.3-4.4).

Results were compared to BBA and ENSEBBA.

The experimental results for each function are myivelow.

Goldstein-Price 2D: The expected global optimum is 3. According to the
experiments, the computed results were obtaineslvbluation of a hundred runs. The
BBA and the ENSEBRBA found the average global optimat 3.0005 and 3.0007,
respectively. The average evaluation numbers fdandach algorithm were 504 with
BBA and 21496 with ENSEBRBA. The TBA is utilised smlve this benchmark
function and the average global optimum was found.8002 in 761 evaluations. The
results of a hundred runs for BBA, ENSEBRBA and TB# given in Figure 4.5.
Although the number evaluation of the proposed rdlgm is better than the
ENSEBRBA, the performance of the BBA is better. Btorer, the proposed
algorithm found the global optimum better than athers. According to this

comparison, the proposed algorithm performed bé#itar all.
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ENSEBRBA BA TBA
- Average Average Average
No. Functions Absolute Sta'nd'ard Absolute Sta'nd'ard Absolute Sta'nd'ard
) Deviation. . Deviation. . Deviation.
Difference Difference Difference
1 GO'dSI(‘;'B)& Pricel  4.0007 0.0008 0.0005 0.0006 0.0002 0.0002
2 Schwefel (2D) 0.0004 0.0057 0.1500 0.7679 0.0004  0.0212
3 Schaffer (2D) 0.0009 0.0029 0.0096 0.0018 0.0000 0.0000
4 Rofleong)r ock 0.0002 0.0003 0.0003 0.0003 0.0000 0.0000
5 Sphere(10D) 0.0001 0.0003 0.0003 0.0003 0.0001 000Q.
6 Ackley (10D) 0.0001 0.0028 0.0294 0.0477 0.0001 .0003
7 Rastrigin (10D) 0.0003 0.0003 24.8499 8.3306 @00 0.0000
8 Mart'?z‘gl‘))Gaddy 0.0000 0.0003 0.0000 0.0003 0.0000 0.0000
9 Easom (2D) 0.3 0.23 0.0003 0.0003 0.0004 0.0002
10 | Griewank (10D)|  0.0049 0.0019 0.3158 0.1786 @000 0.0001

Table 4.3: Accuracy of proposed algorithm comparedavith the BBA and the ENSEBRBA.

85



ENSEBBA BA TBA
No. Functions
Average Standard Average Standard Average Standard
Evaluations Deviation. Evaluations Deviation. Evaluations Deviation.
1 GO'dSt(ez'B)& Price 219496 36855 504 211 761 330
2 Schwefel (2D) 338600 0 250049 0 62054 0
3 Schaffer (2D) 112430 66120 121088 174779 6.309 6521
4 RO(SfO“S)rOCk 148193 116904 935000 0 9821 3333
5 Sphere (10D) 95644 89997 285,039 277,778 2,972 9631,
6 Ackley (10D) 236299 123325 910000 0 9199 3651
7 Rastrigin (10D) 53935 44779 885000 0 7559 7093
8 Ma””(‘z‘gl‘))Gaddy 15888 16554 600 259 1065 1517
9 Easom (2D) 1120 1345 5280 6303 1063 1130
10 Griewank (10D) 316443 97830 4300000 0 8294 2586

Table 4.4: Average evaluation of proposed algorithnacompared with the BBA and the ENSEBRBA.

86



Schwefel 2D:The expected optimum result for the function is7-83. The average
result obtained from a hundred runs of the BBA HrelENSEBRBA were -837.144
and -837.964 respectively. BBA used an average56029 evaluations to find that
optimum, whereas the average for the ENSEBRBA 828500 The TBA used to

solve same optimisation problem and the algoritbonfl the average global optimum
as -837.93 in 62054 evaluations. Figure 4.6 ilatss global optima for a hundred
runs of BBA, ENSEBRBA and TBA on the given problefithough all versions of

the Bees algorithm produced fairly accurate redoltghis optimisation problem, the
TBA found the global optimum in lower number of miaions. This is because TBA

has memory and the algorithm avoids revisitingaalsevisited sites.

Schaffer 2D: The expected global optimum is 0. The experimental ltestomputed
by evaluation of a hundred runs were 0.01 and Om@8pectively. BBA used an
average of 250049 evaluations to find that resuigreas the average of ENSEBRBA
evaluations was 112430. The TBA is utilised to edhs benchmark function and the
average global optimum was found as 0 in 6309 ewals. The results of a hundred
runs for BBA, ENSEBBA and TBA are given in Figure’4Based on experimental
results, the TBA found a more accurate global optmfor the problem in lower

number of evaluations than other described versbtise Bees Algorithm.

Rosenbrock 10 D: The expected optimum is 0. An average of a hundred
experimental results obtained from the BBA and ENMSEBRBA were 0.0003 and
0.0002 respectively. BBA used an average of 116&0uations to find that result,
whereas the average of ENSEBRBA evaluations wadd318Moreover, TBA was

applied on the same function and the new algorifioomd the average global
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optimum as 0 in 9821 evaluations. Figure 4.8 itsts global optima for a hundred
runs of BBA, ENSEBRBA and TBA on the given probleAithough ENSEBRBA
was better than the BBA in terms of results on tasnplex high dimensional
problem, due to the memory unit used in TBA, resulere improved even further.
This is because Rosenbrock’s global optimum istextat the flat valley, which has a
long narrow parabolic shape and the TBA, with al@scape strategy, converges to

the global optimum easily.

Hyper Sphere 10D: The global optimum for this function is BExperimental results
computed by evaluation of a hundred runs were @@0O® 0.0001 respectively. The
BBA needed an average of 285039 evaluations tothatresult, when the average of
the proposed ENSEBRBA evaluations was 95643. Expmarial results obtained from
the TBA on the same benchmark function were 0.0@ddbal optimum) in 2972
evaluations. The results of a hundred runs for BBNSEBRBA and TBA are given
in Figure 4.9. The proposed version of the Beeoiigm produced the same global
optimum as the ENSEBRBA, which was already bett@antthe optimum obtained
using the BBA. However, due to utilised memory, 1A used fewer evaluations to

get that result.
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The Best Results of Each Run
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Figure 4.5: The results of a hundred runs for BBAENSEBRBA and TBA on

Goldsein-Price 2D function.
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Figure 4.6: The results of a hundred runs for BBAENSEBRBA and TBA on

Schewel 2D function.
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The Best Results of Each Run
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Figure 4.7: The results of a hundred runs for BBAENSEBRBA and TBA on

Schaffer 2D function.
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Figure 4.8: The results of a hundred runs for BBAENSEBRBA and TBA on

Rosenbrock 10 D function.

90



Ackley 10D: The expected optimum of this is 0. According to the emxpents, the
computed global optimum obtained by the evaluatba hundred runs were 0.029
for the BAA and 0.0001 for the ENSEBRBA. The BBAeded an average of 910000
evaluations to find that result and the average bmrmof evaluations of the
ENSEBRBA was 236299. The TBA was utilised to sotlie same optimisation
problem and the algorithm found an average glolinauum as 0,0001 in 2972
evaluations. The results of a hundred runs for BBNSEBRBA and TBA are given
in Figure 4.10. As for the previous function, theogmsed version of the Bees
Algorithm produced the same global optimum as tNSEBRBA which was already
better than optimum found by the BBA. Because efrttemory factor, the TBA used

a lower number of evaluations to converge to aaloptimum.

Rastrigin 10D: The global optimum of this function is 0. An avgeaof a hundred
optima of the BBA and the ENSEBRBA were 0.005 an@002 respectively. An
average of a hundred evaluations for the BBA was 886000, when the
corresponding result for the ENSEBRBA was 53935e Tesult of the same
experiment using the TBA was an average globahopti as 0 in 7559 evaluations.
The results of a hundred runs for BBA, ENSEBBA afhA are given in Figure 4.11.
On the Rastrigin function, the proposed algoritherfgrmed better than the other
two. The TBA was better than the BBA in all aspextd as it was expected that TBA

would surpass ENSEBRBA on number of evaluations.

Martin & Gaddy 2D: The expected global optimum is. QAccording to the

experiments, the computed results were obtaineslbluation of a hundred runs. The

average optimum obtained from the BBA and the ENSBR were both 0. BBA

91



needed an average of 600 evaluations to find thsult, whereas the average for
ENSEBRBA was 15888. The average of a hundred glopiina found by using the
TBA to solve the same optimisation problem was @ average number of
evaluations was 1065. Figure 4.12 illustrates dlamima for a hundred runs of
BBA, ENSEBRBA and TBA on the given problem. On tMartin and Gaddy
function, the Basic version of the Bees algorithenf@rmed better than both proposed
versions. However, the TBA obtained global optimimfewer evaluations than the

ENSEBRBA.

Easom 2D:The expected optimum result for this function is -1.eTéwerage result
obtained from a hundred runs of the BBA and the EBISBA were -0.707 and -
0.9999 BBA needed an average of 5280 evaluatibims.corresponding results for
ENSEBRBA were 1120. TBA was used to solve the saptgnisation problem and
the algorithm found the average global optimum @9999 in 1063 evaluations.
Figure 4.13 illustrates global optima for a hundrads of BBA, ENSEBRBA and
TBA on the given problem. On the given functioe fhiBA found the same global
optimum as the ENSEBRBA, which was already bettantthe optimum found by
the BBA. This is because the Easom function’s optims in a small area compared
to a large search space. Therefore, the BBA wighstlandard approach is unable to

converge to the global optimum.
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Figure 4.9: The results of a hundred runs for BBAENSEBRBA and TBA on
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Figure 4.10: The results of a hundred runs for BBAENSEBRBA and TBA on

Ackley 10D function.
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Figure 4.11: The results of a hundred runs for BBAENSEBRBA and TBA on

Rastrigin 10D function.
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Figure 4.12: The results of a hundred runs for BBAENSEBRBA and TBA on

Martin & Gaddy 2D function.
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Inverted Griewank 10D: The expected global optimum for this functionl® The
average result obtained from the Basic Bees algustover hundred runs was 9.989.
The corresponding result obtained by ENSEBRBA wa&9® BBA needed an
average of 4300000 evaluations to find that resulhereas the average of
ENSEBRBA'’s evaluations was 316443. TBA was usesbtoe the same optimisation
problem and the algorithm found an average gloimauum as 9.9999 in 8294
evaluations. The experimental results of a hundtes for BBA, ENSEBBA and
TBA are given in Figure 4.14. Due to having widsjyread local optima, the BBA
has performed poorly on the Griewank function. HMSEBRBA found a fairly
accurate global optimum but in a high number ofl@attons. However, the TBA
found the most accurate global optimum in fewerdwat#gons because this algorithm

has poor location avoidance mechanisms.

Although main reason to develop both introducedtsties was to decrease the
number of evaluations used by the BBA to find thabgl optimum, overall results
illustrate that the accuracy of the BBA was sigrdfitly increased in the process as

well.

Further statistical analysis was carried out byggitest, where the confidence level
was selected to be 95 % & 0.05). The T- test results are illustrated inldad.5.
From the t-test results between the Tabu Bees Algor and the Basic Bees

Algorithm it is clearly seen that TBA performs sstitally significantly better.
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Figure 4.13: The results of a hundred runs for BBAENSEBRBA and TBA on

Easom 2D function.
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Figure 4.14: The results of a hundred runs for BBAENSEBRBA and TBA on

inverted Griewank 10D functions.
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No. Function Significance between the TBA and tiBAB
Significant
(0
(0<0.05)
1 Goldstein & Price (2D) Yes 0,0021
2 Schwefel (2D) Yes 2,59325E-17
3 Schaffer (2D) Yes 2,24632E-14
4 Rosenbrock (10D) Yes 1,42986E-15
5 Sphere (10D) Yes 3,82E-09
6 Ackley (10D) Yes 2,00428E-08
7 Rastrigin (10D) Yes 0.0057
8 Martin & Gaddy (2D) Yes 4,94477E-25
9 Easom (2D) ves 2,53E-22
10 | Griewank (10D) Yes 3.06308E-06

Table 4.5: The statistical analysis between the TBAnd the basic Bees

Algorithm.
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4.7 Summary

In this study a novel algorithm was proposed whghybrid between the BBA and
Tabu. The new algorithm is called Tabu Bees algoritin this algorithm, tabu list
was utilised to give memory to the BBA to solve thiee repetition problem. In
addition, a new adaptive neighbourhood strategy pragosed to overcome the issue
of getting stuck around local optima with similatnéss values. The proposed
algorithm has been successfully applied on contisugpe benchmark functions and

compared with the BBA and ENSEBRBA.

Accuracy analysis, average evaluation and t-testewetilised compute the

performance of the proposed algorithm.

According to the Experimental results it can be atotled that the number of
evaluations needed both on lower and higher dinseatproblems were dramatically
decreased. On the other hand, the proposed impeusnmcreased the accuracy of
algorithm as well. Based on t-test results, it ¢@nconcluded that the proposed

algorithm is statically significantly better penfoing than the basic Bees Algorithm.

98



Chapter 5

The Autonomous Bees Algorithm
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5.1 Preliminaries

In this chapter, the Autonomous Bees Algorithm (AB# presented as a solution for

the below mentioned problem.

Various weaknesses of the BBA were discussed iwvigue chapters and some
enhancements were introduced to solve these prgbl&ms chapter focuses on the
one of the biggest issues for the BBA, which isldrge number of parameters to be
set manually. These parameters must be tuned tupeoaccurate results. Although
the BBA is a relatively easy algorithm to apply different optimisation problems,

the large number of parameters makes it hard farusers.

As a concept, autonomy is the capacity of an imgial to make an informed, un-
coerced decision. It is widely used in fields ligelitics, sociology, religion and
engineering. Autonomy has applications in artifiardelligence as well. For example:

Autonomous Genetic Algorithm for Functional Optiatisn (Meng, 2007).

In the literature several studies on parametentufor the BBA have been presented.
However, these studies did not provide the BBA \futh independence. The ABA is

a self-directed version of the BBA where interactietween the user and the process

is on a minimal level.

The block diagram of the ABA is given in Figure 5.1
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Figure 5.1: Block diagram of the ABA.
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5.2 Autonomous Behaviour

In this section autonomous behaviour of the AB&xgplained in detail. To illustrate
every step of algorithm, a ten dimensional Hypehe®p function was chosen. The

definition of the used function was given in Chage

The ABA starts search with a set of predefinecapeaters. It is then guided, based
on previous information, toward a better paramettr The default values of the

parameters are given below:

Number of scout been.=10;

* Number of sites selected out of n visited sitas= 3;

* Number of best sites out of m selected siées1;

* Number of bees recruited for best e sitep =8;

* Number of bees recruited for the other (m-e) sebksites.nsp =4;

» Patch size around of a selected best locatigh=1;

In previous research on the BBA, the parametersewened as given numbers
empirically to solve many different optimisationoptems. Therefore, it is quite
promising to start searching with these parametére.ABA tunes parameters one at

time and there are two steps for each of them:hrduging and fine tuning.

Determining n: Number of scout bees is the first parameter tduoed. It is an

important parameter because if “n” is too low, #igorithm will fail to find the
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optimum and if n is too large the number of evabrat needed will be higldased on
previous experience, it can be said that the nurabscout bees alters between 0 and
100 depending on the structure of the problem.algerithm creates ten equal groups
of numbers in this range and randomly picks onaes&lom each groufi-10; 11-20;

21-30; 31-40; 41-50; 51-60; 61-70; 71-80; 81-90;-2Q0].

Further, algorithm uses these values as the nuoflsmout bees to do a search on the
optimisation problem. After running the search éaich of the scout bees, the ABA
evaluates the obtained results to choose the mrostiging group of numbers. The
algorithm assesses the results based on fithegssvahd the number of evaluations
prioritised on the fitness values. In our experiméne algorithm chose 69 as most
promising number of scout bees, as shown in Fi§uw2a. The fitness value obtained
using 69 bees to do the scouting was 0, which esettpected result for the Hyper
Sphere function. The same result was obtained wlsieg other numbers of scout
bees as well. However, the number of evaluatioresie@ to achieve that result was
the lowest for 69 scout bees (Figure 5.2b). Findimg value is considered as rough

tuning of parameter “n” (number of scout bees).

After determining the rough value of “n”, the algbm carries out the fine tuning of
the parameter, using every member of the group evtte rough value of “n” was
found [61; 62; 63; 64; 65; 66; 67; 68; 69; 70]Furthermore, ABA evaluates the
results of the fine tuning using the same stratégpsed on global optimum and
evaluation numbers) as for rough tuning. The nunalbecout bees was selected to be

66 after fine tuning, as illustrated in figures&dahd 5.3b.
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Rough tuning (n) | fitness
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Figure 5.2a: Fitness values obtained after Rough Ting of “n”.
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Figure 5.2b: Number of Evaluations obtained after Rugh Tuning “n”.
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Figure 5.3b: Number of Evaluations obtained after e tuning of “n”.
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Determining m: Number of sites selected for local search is amotbey important
parameter to be determined accurately. Valee of “m” changes the core behaviour

of the algorithm, such as:

e 0<m<n : Classical global and local search of thesB&lgorithm
e 0=m<n: Only global search of the Bees Algorithm.

e 0<m=n: Only local search of the Bees Algorithm

After finding the value of “n”, the algorithm startuning the next parameter, which is
“m”. Accordingly, “m” can not exceed “n”. Thereforthe value of “m” will be
between 0 and 66. The ABA creates ten groups ofbeusnin that range and chooses
random numbers from each of thg@a6; 7-13; 14-20; 21-27; 28-35; 36-42; 43-49;

50-56; 57-63; 64-66;].

Based on the best fithess and evaluations, tharitdg selects the rough value of

“m”, which is 9 for our problem, as shown in Figsi'4a and 5.4b.

Fine tuning can then be performed when the roughbau of “m” is found. Fine

tuning is carried out using ten numbers from theugrto which 9 belongs. The
algorithm needs 10 numbers from that group to uallerfine tuning. If the number
of elements in that group is lower than ten, tlgoadhm adds random elements from

same range to the group; [8; 9; 10; 11; 12; 13; (7; 10; 11;)].

After evaluating results obtained, “m” was choserbe 8, as illustrated in Figures

5.5a and 5.5b.
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Rough tuning (m) |— fitness
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Figure 5.4a: Fitness values obtained after Rough Ting of “m”.
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Fine tuning (m —— fithess
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Determining e: The same methodology as for determining “m” was usefinid the
number of elite sites. “e” must be lower or at teagual to “m”. The algorithm will
create ten groups of numbers between 0 and 8 awldmaelements from each group
will be selected as “e” while solving the optimisat problem[0; 1; 2; 3; 4; 5; 6; 7,

8;(0;)].

Figures 5.6a and 5.6b illustrate the results ofhowning where 2 was selected as “e”

for further fine tuning.

The fine tuning of “e” in this experiment was rélaty easy because there was only
one element in the group from where algorithm ckeosalues of elite sites to
perform fine tuning. The results obtained from finaing on the given problem are

illustrated in Figures 5.7a and 5.7b.

Determining nsp: In general, the number of recruited bees for neaghihood search
on selected sides has no direct relations with rund§ patches or scout bees.
Because of this the parameter is tuned independiath “n”, “m” or “e”. Maximum
number of recruit bees is assumed to be 50. Thiseuis divided into five groups of
numbers and 2 random values are selected fromgracip in order to have 10 well

distributed values of nsp for comparisdnlj0; 11-20; 21-30; 31-40; 41-50].

The rough number of “nsp” is selected to be 3 asvehin Figures 5.8a and 5.8b. The
group of numbers which 3 represents is selectedirier tuning of the parameter.
After fine tuning of the parameter, the value “nspéds found to be 2 (Figures 5.9a

and 5.9b).
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Determining nep: The next parameter to be tuned is the number of rebesat for
elite sites. In most studies, the value of thisapseter is greater than nsp. However, in
this study both these parameters are considerbd to the same range. So, the same
approach as for nsp was used to tune nep. Thetgesfufough tuning are given in

Figures 5.10a and 5.10b. Figures 5.11a and 5.lLrdte the results of fine tuning.

Determining ngh: Size of neighbourhood search is the last paranetée tuned.
There is no need to do rough tuning for “ngh”. hrststudy, the maximum size of the
neighbourhood search was chosen to be 1 and dedrbgsalf for ten times1f 0.5;
0.25; 0.125; 0.062; 0.031; 0.015; 0.007; 0.003; @P and the results were

compared. Results are given in Figures 5.12a afth5.
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After tuning the last parameter, which is ngh, atgorithm gets the parameter set to
start the actual search. In the case of the Hypéei® function, the algorithm has

generated the given parameter set:
n=66; m=8; e=2; nsp=2; nep=13; ybo7;

In the following section experimental results ob&al from the ABA will be

presented.

5.3 Experiments

Ten continuous type benchmark functions were usedekperiments to test the
productivity of the proposed algorithm. These fimt$ are given in Table 4.1 in
chapter four (Pham and Castellani, 2009 and Ahr@a@#?). Brief information about
the used test functions was given in chapter 2.e algorithm was applied to all

problems as described in the previous section.

5.4 Results and Discussion

The performance of the algorithm was assessed @ingoto the global optima found
and the average number of evaluations needed (Eabland 5.2). Further, T test
was utilised to check the significance of the alfjon. Results obtained from the

ABA were compared with results of the BBA on thensdunctions.
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Goldstein-Price: The expected global optimum is 3. The parameteunsed for BBA

to solve this problem was:

n=10; m=3; e=1; nsp=2; nep=13; ngh=0,005;

The average global optimum obtained from the BBA 820005 and the algorithm
needed an average of 504 evaluations to find th@tham. The parameter set found
by the ABA was:

n=12; m=3; e=2; nsp=4; nep=9; ngh=0,005;

The average of 100 global optima produced by thé Ats 3.0002 and the average
of evaluations was 654. Global optima obtained frimta ABA and the BBA's
hundred runs are given in Figure 5.13. The expanial results obtained from the
ABA were better than the results obtained from B#BA. Thus, with a better

parameter set, the algorithm becomes more accamnatefficient.

The two dimensionabEchwefelfunction was selected for experiment. The expected
optimum for the function is -837.97. The paramedetr used for BBA to solve this
problem was:

n=10; m=2; en$p=>5; nep=6; ngh=0,05;

The average of results obtained from the BBA w&¥ ;844 and the algorithm used

an average of 250049 evaluations to find that amimThe parameter set found by

the ABA was:

119



n=53; m=17; en8p=8; nep=41; ngh=0.25;

The average of 100 global optima produced by thé& ABs-837,711 and the average
of evaluations was 163053. Global optima obtainednfthe ABA and the BBA’s
hundred runs are given in Figure 5.14. Experimenmtdults show that the
performance of the ABA is better than the Basic Bd#owever, even the global
optimum found by the ABA is not very accurate. Tisidecause the BBA was used
as an “engine” in the ABA which already failed tod an accurate global optimum.
To overcome this problem, more accurate versiotbe@Bees Algorithm can be used

as a core for the ABA.

The two dimensionaSchaffer function was selected for experiment. The expected
answer for the function is 0. The parameter sedl dise BBA to solve this problem
was:

n=100; m=4; en8p=10; nep=30; ngh=3;

The average of results obtained from the BBA w&4 @nd the algorithm used an
average of 121088 evaluations to find that optimilihee parameter set found by the
ABA was:

n=60; m=23; enASp=>5; nep=15; ngh=0.5;

The average of 100 global optima produced by thé Ats 0.0005 and the average

of evaluations was 9370. Global optima obtainednfrthe ABA and the BBA'’s

hundred runs are given in Figure 5.15.
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BA ABA
No. Functions
Average Evaluations
1 Goldstein & Price (2D) 504 654
2 Schwefel (2D) 250049 163053
3 Schaffer (2D) 121088 9370
4 Rosenbrock (10D) 935000 529045
5 Sphere (10D) 285039 29906
6 Ackley (10D) 910000 700870
7 Rastrigin (10D) 885000 148960
8 Martin & Gaddy (2D) 600 840
9 Easom (2D) 5280 3137
10 Griewank (10D) 4300000 750020

Table 5.1: Average evaluations obtained from hunded runs of the BBA and the

ABA.
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BA ABA
No. Functions
Global optimum

1 Goldstein & Price (2D) 0.0005 0.0002
2 Schwefel (2D) -837.144 837,711
3 Schaffer (2D) 0.01 0.0005
4 Rosenbrock (10D) 0.0003 0.0004
5 Sphere (10D) 0.0003 0.0000
6 Ackley (10D) 0.029 0.02
7 Rastrigin (10D) 0.0048 0.0004
8 Martin & Gaddy (2D) 0 0
9 Easom (2D) -0.707 -0.8168
10 Griewank (10D) 9.9895 9.9949

Table 5.2: Global optimums obtained from hundred runs of the BBA and the

ABA.
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The Rosenbrockfunction was selected for experiment. The expeatexiver for the

function is 0. The parameter set used for the B&Adlve this problem was:

n=15; m=8; exSp=10; nep=30; ngh=0,0015;

The average of results obtained from the BBA w&9@3 and the algorithm used an
average of 935.000 evaluations to find that optimurhe parameter set found by the

ABA was:

n=23; m=17; en6p=5; nep=44; ngh=0,003;

The average of 100 global optima produced by thé Ats 0.0004 and the average
of evaluations was 529045. Global optima obtainednfthe ABA and the BBA’s
hundred runs are given in Figure 5.16. Due toftimetion’s nature, accurate local
search is required to find the global optimum. Bdite BBA and the ABA found
fairly accurate global optima because of utilisedal search. However, the ABA
found the optimum in fewer evaluations becauseptibposed algorithm performed a

local search on more patches.
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Figure 5.14: The results of a hundred runs for thé8BA and the ABA on

Schwefel 2D.
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Figure 5.16: The results of a hundred runs for thd8BA and the ABA on
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TheHyper Spherefunction was selected for experiment. The expeatexiver for the

function is 0. The parameter set used for the B&8Adlve this problem was:

n=10; m=7; en$p=20; nep=30; ngh=0,05;

The average of results obtained from the BBA w&9@3 and the algorithm used an
average of 285039 evaluations to find that optimilihee parameter set found by the
ABA was:

n=66; m=8; endp=2; nep=13; ngh=0,007;

The average of 100 global optima produced by theAA#as 0 and the average
evaluations was 29906. Global optima obtained friia ABA and the BBA's
hundred runs are given in Figure 5.17. The infbeeof the accurate parameter set on
the performance of the algorithm can be observen the experimental results, thus,

with more precise parameters, the algorithm obthbvedter results.

The ten dimensionafckley function was selected for experiment. The expected
answer for the function is 0. The parameter sed dise BBA to solve this problem
was:

n=100; m=8; en%p=10; nep=20; ngh=0,7;

The average of results obtained from The BBA w@82%®,and the algorithm used an
average of 910.000 evaluations to find that optimilihre parameter set found by the
ABA was:

n=54; m=6; en3p=15; nep=24,; ngh=1,
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The average of 100 global optima produced by thé& Ais 0.02 and the average of
evaluations was 700870. Global optima obtained fbiem ABA and the BBA’s

hundred runs are given in Figure 5.18. Ackley i®thar hard type benchmark
function. Both the ABA and the BBA failed to findpaecise global optimum and the
number of evaluations needed to get results wasandtom each other. However,
both algorithms got similar results, so it can baatuded that the ABA is as effective

as the BBA for a given optimisation problem.

The ten dimensiondRastrigin function was selected for experiment. The expected
answer for the function is 0. The parameter sedl dise BBA to solve this problem
was:

n=10; m=3; en$p=20; nep=30; ngh=0,01;

The average of results obtained from the BBA w&g®.and the algorithm used an
average of 885000 evaluations to find that optimilihee parameter set found by the
ABA was:

n=70; m=13; engp=8; nep=21; ngh=0.31,

The average of 100 global optima produced by thé Ats 0.0004 and the average
of evaluations was 148960. Global optima obtainmedhfthe ABA’s and the BBA'’s
hundred runs are given in Figure 5.19. In the BBA was chosen too low. The
algorithm used the maximum number of evaluatioreslable and stopped searching
before converging to an actual global optimum. Hesvethe ABA chose a higher
number of initial scout bees, which lead to a maceurate result. Another factor,

which affects result on such problems, is the nundfesites for local search. On
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functions like Rastrigin, algorithms utilising Idcaearch are more productive than

those that the use only global search.

The two dimensionaMartin & Gaddy function was selected for experiment. The
expected answer for the function is 0. The paranmsgtused for BBA to solve this
problem was:

n=10; m=5; en$p=10; nep=30; ngh=0,1;

The average of results obtained from the BBA waan@ the algorithm used an
average of 600 evaluations to find that optimune phrameter set found by the ABA
was:

n=13; m=4; en3p=17; nep=36; ngh=0.625;

The average of 100 global optima produced by thé Alas 0 and the average of
evaluations was 840. Global optima obtained fromABA’s and the BBA'’s hundred

runs are given in Figure 5.20. On the given fungtigerformances of both algorithms
were approximately the same. As mentioned in previthapters, the BBA is already

enough to solve relatively easy optimisation protde

The two dimensionaEasom function was selected for experiment. The expected
answer for the function is -1. The parameter sedu®r the BBA to solve this
problem was:

n=100; m=102ensp=4; nep=30; ngh=0, 5;

The average of results obtained from the BBA wag0D and the algorithm used an
average of 5280 evaluations to find that optimurne parameter set found by the

ABA was:
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n=69; m=11; en8p=2; nep=48; ngh=0,5;

The average of 100 global optima produced by thé ARs -0.8168 and the average
of evaluations was 3137. Global optima obtainedanfrihe ABA’s and the BBA's
hundred runs are given in Figure 5.21. Both theiB&ees Algorithm and the
Autonomous Bees Algorithm failed to find a globgbtimum but again, both

algorithms generated similar results.

A modified version of the ten dimension@riewank function was selected for
experiment. The expected answer for the functiohOisThe parameter set used for

the BBA to solve this problem was:

n=100; m=40268:=nsp=10; nep=30; ngh=1,5;

Average of results obtained from The BBA was 9.88€ algorithm used average of

4300000 evaluations to find that optimum. Paramsgéfound by the ABA was:

n=48; m=32; 8zhsp=6; nep=9; ngh=1;

The average of 100 global optima produced by thé Aks 9.9949 and the average
of evaluations was 750020. Global optima obtairedhfthe ABA’s and the BBA'’s
hundred runs are given in Figure 5.22. For thicfiom “n” was chosen too high for
the BBA, which caused an unusually high numbenaiieations. Although the ABA
found a similar global optimum, due to well tuneatgmeters, number of evaluations

to find the global optimum was significantly lower.
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Figure 5.19: The results of a hundred runs for thé8BA and the ABA on
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Figure 5.20: The results of a hundred runs for thé8BA and the ABA on Martin
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Moreover, Statistical analysis has been carriedusutg t-test. The confidence level
was selected to be 95 % & 0.05). T- test results are illustrated in tabl8.5
According to results the ABA is more significanaththe BBA on most benchmark

functions. Which means the ABA is better than tiB8AB

Significance between the Basic Bees Algorithm
No. | Function
and the Autonomous Bees Algorithm
Significant
03
(0<0.05)
1 Goldstein & Price (2D) | Yes 4,09009E-10
2 Schwefel (2D) Yes 6.89091E-11
3 Schaffer (2D) Yes 6,23132E-74
4 Rosenbrock (10D) No 0.06113
5 Sphere (10D) Yes 3,28918E-14
6 Ackley (10D) No 0.06612
7 Rastrigin (10D) Yes 0.0111
8 Martin & Gaddy (2D) No 0,72923
9 Easom (2D) Yes 7,74352E-05
10 Griewank (10D) Yes 0,0132

Table 3.5:The statistical analysis between the Autonomous Beélgorithm and

the Basic Bees Algorithm.
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5.5 Summary

In this study, the Autonomous Bees Algorithm wasspnted. The aim of the research
was to create an independent version of the BBArevkigere is no need to tune the

initial parameters manually.

The proposed algorithm has been successfully testecbntinuous type benchmark
functions and the results observed were comparéd thve results obtained from the
experiment on the Basic Bees Algorithm. Resultthefexperiments proved that the
ABA can autonomously tune parameters without huimgraction and produce at

least similar or better results than The Basic Bdgsrithm.
All experimental results were illustrated in theyious section. Moreover, statistical

analysis has been employed using t-test and thdtgelsave been shown in this

chapter.
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Chapter 6

Conclusion and Future Work
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6. Conclusion

This chapter summarises the main contributionscamdlusions of this study. It also

provides suggestions for the future work.

6.1 Contributions

This study has introduced new enhancements to é®s Blgorithm. The following

enhancements are given below:

» Early neighbourhood search to improve initialisatistage of the Bees

Algorithm.

« Efficiency based recruitment for the neighbourhosearch to improve

performance of the algorithm on high dimensionabems.

* Hybridisation of the Tabu search and the Bees dhgorto provide memory

for the Bees Algorithm to decrease number of evalna.

* Novel strategy to escape from local patches wittilar fithess values

* Provide autonomy for the Bees Algorithm to minimike human interaction

with the search process.
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6.2 Conclusions

The objectives stated in chapter one have all bebieved.

This thesis has proposed three enhanced the BeesitAms. Each new algorithm was
tested on continues type benchmark functions. Eudtatistical analysis was carried out
using T-test. All experimental results were prodde related chapters. The conclusions

are given below:

1. Early neighbourhood search and efficiency basedruttecent for the
neighbourhood search were utilised to create negior of the Bees Algorithm
which was called the Early Neighbourhood Search d&tfticiency-based
Recruitment Bees Algorithm (ENSEBRBA). Proposedodtgm was tested on
ten different types of continues benchmark funaidResults were assessed based
on average absolute difference technique and asenagnber of evaluations.
From experimental results it can be concluded ffeformance of the Bees
Algorithm on high dimensional problems was improvdde to proposed
modifications. However, performance of the proposgdorithm was not
satisfactory on easy low dimensional benchmark tians. This can be related
with high computational calculation of the effici@s of each best patch. Such
calculations are not necessary for "easy" problérhas it will only increase the
number of evaluations. The proposed enhancemengsouad the overall
performance of the algorithm. Moreover resultstefistical analysis proved that
the proposed algorithm is significantly better tila@ Basic Bees Algorithm. First
and second objectives described in chapter 1 werieieseed by using

ENSEBRBA.
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2. The Hybrid Tabu Bees Algorithm (TBA) was proposgddombining the Tabu
search and the Bees Algorithms. This is first versf the Bees Algorithm which
utilises the memory unit. Moreover new strategyegrape from locals with
similar fitness values. The new algorithm was alssted on continues type
benchmark functions and the results were comparigd the BBA and the
ENSEBRBA. Experimental results were again asseisaseld on average absolute
difference and average number evaluations. Accgrtiirthe generated results the
proposed modifications decreased the number ofiatiahs needed for the Bees
Algorithm go converge to the global optimum. Altlgbuthe TBA was introduced
to decrease number of evaluations, it also improageduracy of the Bees
Algorithm. Utilised t-test proved that proposedalthm is significantly better
than the Basic Bees Algorithm. The third and faytjectives met by proposing

the Hybrid Tabu Bees Algorithm.

3. Concept of autonomy was utilised to develop versidrthe Bees Algorithm
where interaction between user and the search ggoe@as minimised. The
proposed algorithm was called the Autonomous BekgrAhm (ABA). The
proposed algorithm was also tested on continues ihgmchmark functions. The
generated results were compared to the resultheoBBA. The experimental
results were assessed based on average of globaluops and number of
evaluations. Observed results proved that the ABAegated optimal parameter
set and produced at least same or better resalisttie BBA. Moreover, t-test
based statistical analysis was carried out. Acogrdd this experiment the ABA
was significantly better than the BBA on seven fiorts out of ten. Results
observed from those three functions were similaresults of the BBA. From t-

test result it can be concluded that utilised aomoy not only provided the
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independency to the Bees Algorithm but also impdoaecuracy. Objective five

proposed in chapter 1 was achieved by develop@@\BA.

6.3 Future work

There are a number of issues which can be invéstiga order to improve the Bees

Algorithm and widen its potential.

Early neighbourhood search was introduced as atisoluor the poor
initialisation stage of the Bees Algorithm. Howevthis search was carried
out in its simplest form using minimum number ofrét bees. In the future
different search strategies can be applied to ingrefficiency of this

approach in the initialisation stage.

Efficiency based recruitment was suggested to ingthe performance of the
Bees Algorithms on high dimensional problems. Hosvethe performance of
the algorithm was degraded on simple low dimengipnablems due to the
computational complexity. This can be investigatedind more productive
approach to calculate efficiency of the patcheshwitinimum number of

evaluations.

Different tabu list strategies can be investigatedthe Hybrid Tabu Bees

Algorithm.
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Various enhancements were proposed in this stadyan be investigated to

have various combinations of those enhancements.

In future, it is possible to focus on the BA paréenereduction to run the

algorithm with less parameters.

Most studies in the BA were carried out to imprdéwe neighbourhood search
stage (local search). The future research studiethe® BA may focus on the

global search process stage.

The new research trend on the BA is to enhanceaalidperithm with hybrid

approaches using Tabu Search, Genetic AlgorithmR8@. It is possible to

investigate the availability of using other hybcoimbinations.
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APPENDIX A

2 dimensional graphic illustrations of the Benchkfainctions are given below

(Molga, 2005):
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Figure Al: Graphic illustration of the Goldstein and Price’s function (Molga,

2005).
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Figure A2: Graphic illustration of the Schwefel function (Molga, 2005).
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Figure A3: Graphic illustration of the Rosenbrock function (Molga, 2005).
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Figure A4: Graphic illustration of the Hyper Sphere function (Molga, 2005).
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Figure A5: Graphic illustration of the Ackley function (Molga, 2005).
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Figure A6: Graphic illustration of the Rastrigin fu nction (Molga, 2005).

Figure A7: Graphic illustration of the Easom function (Molga, 2005).
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Figure A8: Graphic illustration of the Griewank fun ction (Molga, 2005).
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