

Enhancements for the Bees Algorithm

A thesis submitted to Cardiff University in the candidature for the degree of

Doctor of Philosophy

By

Azar Imanguliyev

Manufacturing Engineering Centre

School of Engineering

Cardiff University

United Kingdom

September 2013

 ii

ABSTRACT

This work introduces new enhancements to the Bees Algorithm in order to improve

its overall performance. These enhancements are early neighbourhood search process,

efficiency based recruitment for neighbourhood search process, hybrid strategy

involving tabu search, new escape mechanism to escape locals with similar fitness

values and autonomy to minimise interaction between search process and the user.

The proposed enhancements were applied alone or in pair to develop improved

versions of the Bees Algorithm. Three Enhanced Bees Algorithms were introduced:

the Early Neighbourhood Search and Efficiency Based recruitment Bees Algorithm

(ENSEBRBA), the Hybrid Tabu Bees Algorithm (TBA) and the Autonomous Bees

Algorithm (ABA).

The ENSEBRBA with an empowered initialisation stage and extra recruitment for

neighbourhood search is introduced to improve performance of the Bees Algorithms

on high dimensional problems.

The TBA is proposed as a new version of the Bees Algorithm which utilises the

memory lists to memorise less productive patches. Moreover, the local escape

strategy was also implemented to this algorithm. Proposed modifications increased

the productivity of the Bees Algorithm by decreasing number of evaluations needed to

converge to the global optimum.

 iii

The ABA is developed to provide independency to the Bees Algorithm, thus it is able

to self tune its control parameters in a sub-optimal manner.

All enhanced Algorithms were tested on continuous type benchmark functions and

additionally, statistical analysis was carried out. Observed experimental results proved

that proposed enhancements improved the Bees Algorithm’s performance.

 iv

ACKNOWLEDGEMENTS

I would like to thank my first supervisor Professor Duc Truong Pham for his excellent

supervision, help and continuous encouragement. My thanks go to him for accepting

me to be one of his students in the Manufacturing Engineering Centre (MEC) at

Cardiff University.

In addition, without the assistance of my main supervisors Dr. Michael Packianather

and Professor Rossi Setchi this thesis might not have been possible to produce.

I also thank to the Ministry of Education of The Azerbaijan Republic for sponsoring

me during my study.

Also, special thanks to Dr. Fuad Omar, Dr. Baris Yuce, Dr. Mario Javier Gonzalez

Romo, Dr Janyarat Phrueksanant and Dr. Siti Azfanizam Ahmad.

Last but not least, I thank my lovely family for always supporting me; mentally,

emotionally and physically during this four years journey.

 v

DECLARATION AND STATEMENTS

DECLARATION

This work has not previously been accepted in substance for any degree and is not
concurrently submitted in candidature for any degree.

Signed ……………………. … (Azar Imanguliyev) Date………………………….

STATEMENT 1

This thesis is being submitted in partial fulfilment of the requirements for the degree
of Doctor of Philosophy (PhD).

Signed ……………………. … (Azar Imanguliyev) Date………………………….

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where
otherwise stated. Other sources are acknowledged by explicit references.

Signed ……………………. … (Azar Imanguliyev) Date………………………….

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to
outside organisations.

Signed ……………………. … (Azar Imanguliyev) Date………………………….

 vi

CONTENTS

ABSTRACT..ii

ACKNOWLEDGEMENTS..iv

DECLARATION AND STATEMENTS..v

CONTENTS ..vi

LIST OF FIGURES...ix

LIST OF TABLES...xiv

ABBREVIATIONS...xv

LIST OF SYMBOLS...xvi

Chapter 1: Introduction …………………………………......................1

1.1. Introduction …………………………………………………………….........…..2

1.2. Motivation……………………………………………………………….............3

1.3. Aims and objectives …………………………………………………….............4

1.3. Research methods ……………………………………………………........….....5

1.4. Outline of the thesis ……………………………………………………........…..6

Chapter 2: Optimisation Techniques …………………….....................8

2.1. Preliminaries …………………………………………………………….............9

2.2. Optimisation Techniques ………………………………………………........…..9

 2.2.1. Classification of the optimisation techniques………………………...........12

 2.2.2. Deterministic optimisation techniques ……………………………............14

 2.2.2.1. State space search ……………………………………………….....14

 vii

 2.2.2.2. Algebraic geometry …………………………………………......…15

 2.2.2.3. Branch bound ……………………………………………………...15

 2.2.3. Stochastic optimisation techniques …………………………………..…...15

 2.2.3.1. Stochastic hill climbing …………………………………………....16

 2.2.3.2. Random optimisation ……………………………………………...16

 2.2.3.3. Simulated annealing …………………………………………..…..17

 2.2.3.4. Tabu search ……………………………………………….…....….17

 2.2.3.5. Genetic algorithms …………………………………………….......20

 2.2.3.6. Genetic programming ………………………………………...……21

 2.2.3.7. Evolutionary programming ………………………………………..21

 2.2.3.8. Ant colony optimisation …………………………………………...22

 2.2.3.9. Particle swarm optimisation …………………………………….....25

 2.2.3.10. Artificial Bees Colony ……………………………………….…...28

 2.2.4. The Basic Bees Algorithm ……………………………………………..…30

 2.2.4.1. Foraging behaviour of honey bees …………………………….…..30

 2.2.4.2. The Algorithm …………………………………………….......…..34

 2.2.5. Applications of the Bees Algorithm …………………………………..…..36

2.6. Summary ……………………………………………………………………..…39

CHAPTER 3: The Bees Algorithm with Early Neighbourhood

Search and Efficiency-Based Recruitment Strategies ……........…40

3.1. Preliminaries …………………………………………………………………...41

3.2. The Early Neighbourhood Search Strategy …………………………………....44

3.3. Efficiency-based Recruitment Strategy ……………………………………......45

3.4. Experiments …………………………………………………………………....48

 viii

3.5. Results and Discussion ………………………………………………………...56

3.6. Summary …………………………………………………………………….…71

Chapter 4: The Tabu Bees Algorithm …………………………........72

4.1. Preliminaries ……………………………………………………………………73

4.2. Defining Tabu List ……………………………………………………………..76

4.3. Adaptive Neighbourhood Search ………………………………………………77

4.4. Updating the Tabu list ………………………………………………………….80

4.5. Experiments ………………………………………………………………....….81

4.6 Results and Discussion ………………………………………………………….84

4.7. Summary ………………………………………………………………………..98

Chapter 5: The Autonomous Bees Algorithm …………………........99

5.1. Preliminaries ………………………………………………………………......100

5.2. Autonomous Behaviour ………………………………………………........….102

5.3. Experiments ………………………………………………………………...…118

5.4. Results and Discussion ………………………………………………………..118

5.5. Summary ……………………………………………………………………....134

Chapter 6: Conclusion and Future Work ……………….............…135

6.1 Contributions ………………………………………………………............…...136

6.2 Conclusions ………………………………………………………................….137

6.3 Future work ………………………………………………………................….149

References ………………………………………………...............…..141

Appendix A ………………………………………………….........…..151

 ix

LIST OF FIGURES

Figure 2.1: Graph of the optimisation process..11

Figure 2.2: Classification of optimisation techniques based on types of the

parameters..13

Figure 2.3: Pseudo code of Tabu Search with short term memory.............................19

Figure 2.4: Pseudo code for simple version of ACO..23

Figure 2.5: Pseudo code for simple PSO..26

Figure 2.6: Pseudo code of the ABC...29

Figure 2.7: Waggle dance of the scout bee...31

Figure 2.8: Relation between duration of dance and distance to the food..................32

Figure 2.9: Relation between dance and the Direction of the food source.................33

Figure 2.10: Pseudo code for the basic Bees Algorithm...35

Figure 3.1: Pseudo code of the ENSEBRBA..42

Figure 3.2: The flow chart of the ENSEBRBA...43

Figure 3.3: The results of a hundred runs for the BBA and the ENSEBRBA on

Goldstein & Price (2D)..61

Figure 3.4: The results of a hundred runs for the BBA and the ENSEBRBA on

 Schewel 2D...61

Figure 3.5: The results of a hundred runs for the BBA and the ENSEBRBA on

Schaffer 2D..62

Figure 3.6: The result of a hundred runs for the BBA and the ENSEBRBA on

Rosenbrock 10 D...62

Figure 3.7: The results of a hundred runs for the BBA and the ENSEBRBA on Hyper

sphere 10 D..65

 x

Figure 3.8: The results of a hundred runs for the BBA and the ENSEBRBA on

Ackley 10 D...65

Figure 3.9: The results of a hundred runs for the BBA and the ENSEBRBA on

Rastrigin 10 D..67

Figure 3.10: The results of a hundred runs for the BBA and the ENSEBRBA on

Martin & Gaddy 2 D..67

Figure 3.11: The results of a hundred runs for the BBA and the ENSEBRBA on

Easom 2D...68

Figure 3.12: The results of a hundred runs for the BBA and the ENSEBRBA on

inverted Griewank 10D..68

Figure 4.1: Pseudo code for the TBA..74

Figure 4.2: Flowchart of the TBA...75

Figure 4.3: Simple example for shifting neighbourhood area.....................................78

Figure 4.4: Simple example for possible outcomes from ‘test neighbourhood’

areas..79

Figure 4.5: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Goldsein-Price 2D function..89

Figure 4.6: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Schewel 2D function..89

Figure 4.7: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Schaffer 2D function..90

Figure 4.8: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Rosenbrock 10 D function..90

Figure 4.9: The results of a hundred runs for BBA, ENSEBRBA and TBA on Hyper

sphere 10 D function..93

 xi

Figure 4.10: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Ackley 10 D function...93

Figure 4.11: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Rastrigin 10 D function..94

Figure 4.12: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Martin & Gaddy 2 D function..94

Figure 4.13: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Easom 2D function...96

Figure 4.14: The results of a hundred runs for BBA, ENSEBRBA and TBA on

inverted Griewank 10 D function...96

Figure 5.1: Block diagram of the ABA...101

Figure 5.2a: Fitness values obtained after Rough Tuning of “n”..............................104

Figure 5.2b: Number of Evaluations obtained after Rough Tuning “n”...................104

Figure 5.3a: Fitness values obtained after Fine Tuning of “n”.................................105

Figure 5.3b: Number of Evaluations obtained after Fine tuning of “n”...................105

Figure 5.4a: Fitness values obtained after Rough Tuning of “m”............................107

Figure 5.4b: Number of Evaluations obtained after Rough Tuning of “m”.............107

Figure 5.5a: Fitness values obtained after Fine Tuning of “m”................................108

Figure 5.5b: Number of Evaluations obtained after Fine tuning of “m”..................108

Figure 5.6a: Fitness values obtained after Rough Tuning of “e”..............................110

Figure 5.6b: Number of Evaluations obtained after Rough Tuning “e”...................110

Figure 5.7a: Fitness values obtained after Fine Tuning of “e”.................................111

Figure 5.7b: Number of Evaluations obtained after Fine tuning of “e”....................111

Figure 5.8a: Fitness values obtained after Rough Tuning of “nsp”..........................112

Figure 5.8b: Number of Evaluations obtained after rough tuning of” nsp”..............112

 xii

Figure 5.9a: Fitness values obtained after Fine Tuning of “nsp”..............................113

Figure 5.9b: Number of Evaluations obtained after Fine tuning of “nsp”................113

Figure 5.10a: Fitness values obtained after Rough Tuning of “nep”........................115

Figure 5.10b: Number of Evaluations obtained after Rough tuning of “nep”..........115

Figure 5.11a: Fitness values obtained after Fine Tuning of “nep”...........................116

Figure 5.11b: Number of Evaluations obtained after Fine tuning of” nep”..............116

Figure 5.12a: Fitness values obtained after Fine Tuning of “ngh”...........................117

Figure 5.12b: Number of Evaluations obtained after Fine tuning of “ngh”.............117

Figure 5.13: The results of a hundred runs for the BBA and the ABA on Goldstein

and Price 2D...124

Figure 5.14: The results of a hundred runs for the BBA and the ABA on Schwefel

2D...124

Figure 5.15: The results of a hundred runs for the BBA and the ABA on Schaffer

2D...125

Figure 5.16: The results of a hundred runs for the BBA and the ABA on Rosenbrock

10D...125

Figure 5.17: The results of a hundred runs for the BBA and the ABA on Hyper

Sphere 10D...130

Figure 5.18: The results of a hundred runs for the BBA and the ABA on Ackley

10D...130

Figure 5.19: The results of a hundred runs for the BBA and the ABA on Rastrigin

10D...131

Figure 5.20: The results of a hundred runs for the BBA and the ABA on Martin and

Gaddy 2D...131

 xiii

Figure 5.21: The results of a hundred runs for the BBA and the ABA on Easom

2D...132

Figure 5.22: The results of a hundred runs for the BBA and the ABA on Griewank

10D...132

 xiv

LIST OF TABLES

Table 3.1: The patch range and required numbers of bees..47

Table 3.2: The parameters to run the ENSEBRBA on different benchmark functions

(Ahmad 2012)..49

Table 3.3: Accuracy of proposed algorithm compared with other well known

optimisation techniques..59

Table 3.4: Average evaluation of proposed algorithm compared with other well-

known optimisation techniques..60

Table 3.5: The statistical analysis between the proposed Bees Algorithm and the

Basic Bees Algorithm...70

Table 4.1: Test functions (Pham and Castellani, 2009and Ahmad, 2012)..................82

Table 4.2: Parameters used for TBA ..83

Table 4.3: Accuracy of the TBA compared with the BBA and the

ENSEBRBA...85

Table 4.4: Average evaluation of the TBA compared with the BBA and the

ENSEBRBA...86

Table 4.5: The statistical analysis between the TBA and the basic Bees

Algorithm...97

Table 5.1: Average evaluations obtained from hundred runs of the BBA and the

ABA...121

Table 5.2: Global optimums obtained from hundred runs of the BBA and the

ABA...122

Table 5.3: The statistical analysis between the Autonomous Bees Algorithm and the

Basic Bees Algorithm...133

 xv

ABBREVIATIONS

ABA The Autonomous Bees Algorithm

ABC The Artificial Bee Colony

ACO The Ant Colony Optimisation

BA The Bees Algorithm

BBA The Basic Bees Algorithm

D Dimension

ENSEBRBA
The Early Neighbourhood Search and Efficiency-based
Recruitment Bees Algorithm

EP The Evolutionary Programming

ER Efficiency Rate

GA The Genetic Algorithm

GP The Genetic Programming

IR Improvement Ratio

MEC Manufacturing Engineering Centre

PSO The Particle Swarm Optimisation

RO The Random Optimisation

SA The Simulated Annealing

SHC The Stochastic Hill Climbing SHC

TA The Tabu Search

TBA The Tabu Bees Algorithm

TSP Travelling Salesman Problem

 xvi

LIST OF SYMBOLS

Chapter 2

f(X) Objective function

A Candidate solution

nℜ Euclidian space

X Local optima

)(tp k
ij The transition probability from node i to node j

ijτ The posterior effectiveness of the move from node i to node j

ijη Already available heuristic information

α Influence of pheromone trail

β Influence of heuristic information.

M Number of ants

)(tij
kτ∆

The amount of pheromone deposited by ant m from node i to node j at
time step t .

Vn
The particle velocity in iteration n

Pn
The particle position in iteration n

Pbestn
“personal” best position in iteration n

Gbestn
“global” best position in iteration n

C1,C2 Weight factors

 xvii

w Inertia weight

n Number of scout bees

m Number of sites selected out of n visited sites

e Number of best sites out of m selected sites

nep Number of bees recruited for best e sites

nsp Number of bees recruited for the other (m-e) selected sites

ngh Patch size around a selected best location

Chapter 3

nab The number of added bees according to the efficiency calculation

β Number of iterations to do Efficiency calculation

minF∆ Difference of less productive fitness values in β iteration

maxF∆ Difference of most productive fitness values in β iteration

j
iF∆ Difference of the fitness values for the searched patch in β iteration

α Confidence level for the t-test

Chapter 4

w Worst patches out of n-m

Tnbh Test neighbourhood area

 1

Chapter 1

Introduction

 2

1.1 Introduction

Population growth and resource depletion creates tough competition in many areas of

life. In order to address these issues, industries try to maximise their productions.

Therefore, optimisation techniques become an important tool for efficient operation.

Optimisation is a process of seeking the values of variables to find an optimal solution

for the optimisation problem that needs to be maximised or minimised. There are

various types of optimisation techniques available in the literature. These techniques

can be classified in many different ways. One such method is to classify based on

their variables. Classification based on variables divides optimisation techniques into

two groups, deterministic and stochastic. To solve problems in polynomial time,

deterministic optimisation techniques are used. On the other hand there are

optimisation problems which cannot be solved in polynomial time. Stochastic

optimisation techniques are utilised to solve these types of problems. Many stochastic

optimisation techniques such as Genetic Algorithm Evolutionary Programming,

Particle Swarm Optimisation, The Ant Colony technique or the Bees Algorithm were

inspired by nature.

The motivation for this research is described in the following section.

 3

 1.2 Motivation

The Bees Algorithm is a stochastic optimisation technique inspired by the foraging

behaviour of honey bees. The Bees Algorithm has both global exploration and local

exploitation strategies which increase the success rate of the algorithm in finding the

global optimum. In order to demonstrate its performance, the Bees Algorithm was

implemented on several single and multi-objective functions. The Basic Bees

Algorithm has undergone many improvements since it was introduced in 2005 by

Professor D.T Pham and colleagues. Most of the improvements were focused on the

neighbourhood search site such as an abandonment strategy, population and

neighbourhood size change strategies. The other improvements were focused on

parameter tuning and hybridisation of the basic Bees Algorithm with other well-

known optimisation techniques, such as Ant Colony and Particle Swarm Optimisation

techniques.

Although several modifications were introduced to the Bees Algorithm, there is still

opportunity for further improvements. For example, the Bees Algorithm has certain

weaknesses which were not studied properly, such as a poor initialisation stage, the

absence of the memory and number of parameters. Moreover, new neighbourhood

search strategies can also be developed to make the Bees Algorithm more

competitive.

 4

1.3 Aims and objectives

The overall aim of this study is to explore the possibilities of further improvements to

the Bees Algorithm for single objective optimisation problems.

The following objectives were set to achieve this aim:

• Develop a strategy to improve the initialisation stage of the Bees

Algorithm.

• Develop an adaptive neighbourhood search strategy to improve the Bees

Algorithm’s performance on high dimensional optimisation problems.

• Provide memory to the Bees Algorithm to avoid site repetitions.

• Develop a strategy for the Bees Algorithm to prevent producing similar

fitness values around local optimum.

• Develop a version of the Bees Algorithm which does not need to be tuned

manually for each problem.

 5

1.3 Research methods

To carry out this research, the following methodologies were used:

• Surveying previous work related to optimisation algorithms focusing on

swarm-based optimisation techniques.

• Studying all available versions of the Bees Algorithm.

• Developing three new versions of the Bees Algorithm.

• Implementing the proposed algorithms in MATLAB

• Utilising the proposed algorithms to solve continuous-type benchmark

functions.

• Comparing results with some other optimisation techniques for the verification

of the algorithm.

• Testing the statistical significances of the algorithms using the T-test.

 6

 1.4 Outline of the thesis

The remainder of this thesis is organised as follows:

Chapter 2 reviews both stochastic and deterministic optimisation techniques. The

chapter is mainly focussed on stochastic optimisation techniques. Also, the Basic

Bees Algorithm is described in detail.

Chapter 3 presents the Bees Algorithm with Early Neighbourhood Search and

Efficiency-based Recruitment. The proposed algorithm has been tested on continuous-

type benchmark functions. Also, compared results with other well known optimisation

algorithms are presented in this chapter. Moreover, statistical analysis has been

carried out using a T-test.

Chapter 4 introduces a Hybrid Tabu Bees Algorithm. The proposed algorithm was

tested on Continuous-type benchmark functions. In addition, results were compared to

the Basic Bees Algorithm and The Bees Algorithm with Early Neighbourhood Search

and Efficiency-based Recruitment. Moreover, statistical analysis has been carried out

using a T-test.

Chapter 5 presents the Autonomous Bees Algorithm. The proposed algorithm was

tested on Continuous-type benchmark functions. In addition, results were compared to

the Basic Bees Algorithm. T-test results are also included.

 7

Chapter 6 summarises the conclusions and contributions of the research, and gives

suggestions for further investigations.

 8

Chapter 2

Optimisation Techniques

 9

 2.1 Preliminaries

This chapter presents an overview of current optimisation techniques. There are

various methods to classify and one of them is classification based on the type of

variables. The main focus of this chapter is on stochastic optimisation techniques but

brief information about deterministic methods is also provided.

2.2 Optimisation Techniques

The mathematical technique concerned with finding the “best” solution for a problem,

where the “best” refers to the fittest solution in the solution space, is called

optimisation. In many fields like physics, chemistry, medicine, manufacturing or

economic analysis, various optimisation techniques have been used. However, there is

no optimisation technique which is suitable for every problem (Wolpert and

Macready, 1997). A block diagram of the optimisation process is given in Figure 2.1

(Chinneck, 2000).

Moving from the real world problem to the algorithm, model or solution technique is

called analysis. Here, the main task is eliminating non-crucial details and focusing on

important elements. Moving from the algorithm, model, solution technique to the

computer implementation is called numerical methods, and from computer

implementation back to the algorithm, model, solution technique is called verification.

 10

Finally, moving from the algorithm, model, solution technique to real world problems

is called validation and sensitivity analysis. In this step, obtained results are compared

with the real world and in case of failure; the process goes to the next cycle.

The goal of an optimisation is to maximise or minimise the objective function

concerning constraints and search space. An example is given below:

Given:

 Function:

)(Xf defined as nAf ℜ→:

 AX ∈ and A is subset of n dimensional

 Euclidian space nℜ

 Constraints:

 Inequality constraints: ,0)(≤Xai mi2,1=

 Equality constraints: ,0)(=Xbi pi2,1=

 Sought:

 Maximisation: A∈max such that)((max) Xff ≥ for all AX ∈

 Minimisation: A∈min such that)((min) Xff ≤ for all AX ∈

 11

Figure 2.1: Block diagram of the optimisation process (Chinneck, 2000).

 12

Where f(X) is called the “objective function”, f is called the “search space” or

“parameter space”, each element of A is called the “candidate solution” (Blondin,

2009).Candidate solutions are tested in the objective function to find an “optimal

solution”. An optimal solution is the maximised or minimised solution of an objective

function.

2.2.1 Classification of the optimisation techniques

Many different strategies can be used to classify optimisation techniques. One of

these strategies is classification of optimisation techniques based on the nature of the

variables. In this classification, optimisation techniques are distributed in to two

different groups (deterministic and stochastic optimisation techniques) depending on

whether their variables are deterministic or stochastic. Figure 2.2 illustrates the

variable-based classification of optimisation techniques (Weise, 2009).

 13

Figure 2.2 Classification of optimisation techniques based on types of the parameters (Baris, 2012).

 14

2.2.2 Deterministic optimisation techniques

Deterministic optimisation techniques are those where a direct relation exists between

the characteristics of the possible solutions and their utility and they can be solved in

polynomial time.

Examples of deterministic optimisation techniques are given below.

2.2.2.1 State space search.

State space search is a deterministic search method. Information is needed to guess

the effects of an action and to decide if it is a goal state recorded in state (David Poole

and Alan Mackworth, 2010). State space searching considers that the agent has

complete knowledge about state space and can tell what state it is in:

• the agent has a set of actions that have known deterministic effects;

• there are more than one goal states, the agent can identify them and agent

wants to reach that state.

• sequence of actions to get the agent from its current state to a goal state is a

solution

 15

2.2.2.2 Algebraic geometry.

Algebraic geometry is a branch of mathematics, classically studying zeros

of polynomial equations. Thus, the technique focuses on the resolution of the

stationary conditions in the polynomial optimisation as a system of polynomial

equations (Kavasseri and Nag, 2007).

2.2.2.3 Branch bound.

Branch bound are techniques to solve discrete and combinatorial optimisation

problems (A. H. Land and A. G. Doig, 1960). The idea of a branch bound search is to

maintain the lowest-cost path to a goal found so far, and its cost (David Poole and

Alan Mackworth, 2010). A branch bound algorithm starts with setting the cost as a

bound. If the search finds a path p where cost(p) ≥ bound, path p can be eliminated.

Only a better path to the goal will be accepted. Any further new better solution is

memorised and bound is set to the cost of this new solution. The process continues

until all paths have been checked.

2.2.3 Stochastic optimisation techniques

If the relationship between the candidate solution and the problem’s fitness is not

clear or the problem has no solution in polynomial time, then stochastic optimisation

 16

techniques bring a different solution which searches for optimum value, generating

random variables.

2.2.3.1 Stochastic hill climbing

The Stochastic Hill Climbing (SHC) technique is a local search technique which is

based on a direct search strategy (Schmidhuber and Zhao, 1999). SHC climbing

attempts to maximize (or minimize) a target function f(X). At each iteration, hill

climbing will change one element in to find if the change improves the value of

f(X). Any change that improves f(X) is accepted and this process continues until no

improvements can be found. Final X is called the “local optima” of the problem.

2.2.3.2 Random optimisation

The Random Optimisation (RO) technique is one of the most straightforward

numerical techniques used to search for the global optimum which does not require

the gradient of the problem (Li and Rhinehart, 1998). RO is used as starting point for

most stochastic-based optimisation techniques (Kristoffersen, 2007).

The point at which to start the RO is chosen randomly. There is a “reproduce”

operator in RO which is responsible for reaching all of the points in the search space

from every other point (Weise, 2009).

 17

2.2.3.3 Simulated annealing

Annealing is a metallurgical technique involving heating and the controlled cooling of

materials in order to change the size of their crystals. This affects some of their

physical properties including strength, hardness and ductility (Koppen and et al.,

2011). Slow temperature change gives a material the right hardness and ductility but if

the temperature change is too rapid, the metal may become too weak. Simulated

Annealing (SA) is a single-point random search technique imitating the annealing

process (Goffe et al., 1994). It is one of main methods to locate an approximation of

the global minimum / maximum for problems with a large search space (Koziel and

Yang, 2011). The Slow controlled cooling process of the material is implemented as

a slow decrease in the probability of accepting worse solutions while exploring the

solution space. Accepting worse solutions allows more extensive search for the

optimal solution.

2.2.3.4 Tabu search

Tabu Search (TS) is a Single Individual Based Stochastic search technique with a

local optima avoidance mechanism (Pham and Karaboga, 2000).

As for every local search algorithm, TS takes a potential solution to a problem and

checks its neighbourhood to find an improved solution. The main problem with most

local search methods is getting stuck in areas where many solutions are equally fit but

 18

in Tabu Search this problem is solved by implementing a special memory unit called

'tabu list'(Tsubakitani and Evans, 1998) .

Previously visited or not satisfactory solutions are recorded in the 'tabu list'. All data

in this list is marked as tabu and this helps algorithm to shrink the search space.

Three different structures can be used while creating 'tabu list' (F. Glover, 1990).

• Short-term: The list of recently considered solutions. The size of the list is

limited and with every new element entering the list, the oldest one is erased.

When a potential solution appears on this list, the algorithm does not revisit it

until a solution drops out from list.

• Intermediate-term: A list of rules to lead the search in the direction of the

promising areas of the search space.

• Long-term: A list of rules that brings variety in the search process. As an

example, the algorithm can reset when it becomes stuck around equally fit

solutions.

The pseudo code of the Tabu Search with short term memory for minimising the cost

function is given as an example in figure 2.3 (Jason Brownlee, 2011).

As for every algorithm, Tabu Search has some weaknesses. One of biggest

weaknesses of Tabu Search is being effective on discrete spaces because it is very rare

for the algorithm to visit the same point in real value spaces (Sean Luke, 2009).

 19

 sBest ← initial solution

 tabuList ← null

 while (not stoppingCondition())

 candidateList ← null

 for(sCandidate in sNeighborhood)

 if(not containsTabuElements(sCandidate, tabuList))

 candidateList ← candidateList + sCandidate

 end

 end

 sCandidate ← LocateBestCandidate(candidateList)

 if(fitness(sCandidate) > fitness(sBest))

 tabuList ← featureDifferences(sCandidate, sBest)

 sBest ← sCandidate

 while(size(tabuList) > maxTabuListSize)

 ExpireFeatures(tabuList)

 end

 end

 end

 return(sBest)

Figure 2.3 Pseudo code of Tabu Search with short term memory.

 20

2.2.3.5 Genetic algorithms

The Genetic Algorithm (GA) is population-based algorithm which was proposed by

Holland in 1975. In 1983 GA's engineering applications were studied by Goldberg. In

nature only strong species pass their genes to future generations when weak ones are

facing extinction. This phenomenon was the inspiration for the creation of the

Genetic Algorithm. During many years, various modifications to the original structure

of GA were proposed. To distinguish it from numerous versions of the algorithm, the

original GA proposed by Holland is often referred to as the 'canonical' GA. Crossover

and Mutation are fundamental operators of the canonical GA (Rutkowski, 2008).

Crossover creates offspring by randomly mixing sections of the parental genome.

One-point crossover, two-point crossover and uniform crossover are the most

common crossover procedures. (Davis, 1991). Couples not selected for recombination

will generate two offspring identical to the parents.

A small group of the offspring are randomly chosen to be mutated. Mutation is the

changing of the bit value, in the case of a binary coding, from 0 to 1 and vice versa

(Ho et al., 1999). The mutation operator is not extremely important. However, it

provides diversity to the genetics of the created population.

For GA's better performance, mutation and crossover rates are two important

parameters requiring careful tuning (Eiben and Smit, 2011).

 21

2.2.3.6 Genetic programming

Genetic programming (GP) is a set of instructions and a fitness function to measure a

computer’s performance on a given task. GP is a specific type of genetic

algorithm (GA) where each individual is a computer program. Therefore, GP's

operators are basically GA's operators (Banzhaf, W 1998).

2.2.3.7 Evolutionary programming

Evolutionary programming (EP) is evolutionary algorithm developed by Lawrence J.

Fogel in 1960. EP uses simulated evolution for the learning process to

generate artificial intelligence (Back et al., 1997). Traditional EP uses the Gaussian

mutation operator. Traditional EP has no crossover operator. However, in the modern

version of EP there is a crossover operator and the population for crossover will be

selected by a mutation operator. In modern EP the mutation operator is adaptive.

The steps for modern EP are given below:

• Firstly generate an initial population,

• Secondly EP duplicates the initial solutions. After duplication each solution is

mutated using any chosen distribution function,

• The last step is the evaluation of the crossover solution of population.

 22

2.2.3.8 Ant colony optimisation

Ant colony optimisation (ACO) in swarm-based optimisation techniques was

introduced by M.Dorigo and his colleagues, inspired by the behaviour of real ants.

ACO was developed to solve combinatorial optimisation problems (Dorigo et al.,

1996).

In nature, ants scout for food randomly wandering around their nest. Every scout ant

explores a wide area to find sources of food. When any of them find food they bring it

back to the nest. On the way back, the ant marks its passage by laying down a

pheromone trail (Shtovba, 2005). If another ant finds such a path, it stops random

scouting and checks for the food source at the end of the trail. In case of success it

goes back to the nest and brings reinforcements to collect the food more effectively

(Dorigo and Stutzle, 2004). Reinforcement ants will lay down pheromones on that

trail as well. Pheromones evaporate in time. The main foraging behaviour of ants is

based on finding the shortest path between the source and their nest (Panigrahi et al.,

2011). The pheromone level on a shorter path will be reinforced but it will evaporate

as time passes (Sumathi and Surekha, 2010). A short path will be visited by more ants

and thus the pheromone level will be higher compared to other paths. That is why

pheromone density on short passes will remain higher than that on long passes. After

observing this behaviour of ants, ACO was created.

Steps for the simple version of ACO is given in Figure 2.4.

 23

Start

 While (stopping criterion not met)

 Generate solutions

 Pheromone update using equation (2.2)

 Move according probability calculated with equation (2.1)

 End While.

End

Figure 2.4: Steps for simple version of ACO

 24

The first problem where ACO was used was the Travelling salesman problem (TSP)

(M. Dorigo, 2003). In ACO, each ant is initially placed in a random location (city) and

has a memory which stores the partial solution it has constructed so far in that city.

Each ant starts to move from city to city. Ant k decides to move from city i (initial

location) to city j with provided probability:

[] []
[] []βα

ι ι

βα

ητ
ητ

ili

ijijk
ij

t

t
tp

*)(

*)(
)(

i
kN∑ ∈

= If i
k

Nj ∈ (2.1)

• ijij d/1=η is a already available heuristic information,

• α and β are parameters to determine the influence of pheromone trail and

heuristic information.

• N is cities around ant k which were not visited yet. After every ant has

completed a tour solution construction ends. Next step is updating pheromone

trails. The update process shown in given equation.

)()(*)1()1(
1

ttpt
M

k

ij
k

ijij ∑
=

∆+−=+ τττ),(ji∀ (2.2)

• 0 < ρ ≤ 1 is the evaporation rate of the pheromone trail.

• M is the number of ants.

 25

•)(tij
kτ∆ is the amount of pheromone deposited by ant m from node i to node j

at time step t .

2.2.3.9 Particle swarm optimisation

The Particle Swarm Optimisation (PSO) is a swarm-based optimisation algorithm

which was proposed by Eberhart and Kennedy (Eberhart and Kennedy, 1995).

Inspiration for the creation of PSO was the socially organised behaviour of different

animal populations such as animal herds or bird flocks (Blum and Merkle, 2008). The

concept of PSO gained in popularity due to its simplicity. Individuals in PSO are

called particles and a population is called a swarm (Li and Liu, 2011). Each particle

has a position and velocity. Particles are freely flying in the search space by at a given

velocity. In each iteration, the velocities of particles are stochastically changed based

on the previous best position for the particle itself and the neighbourhood best

position. Basically, particles of PSO are travelling in the search space and change

their positions from time to time. This change happens based on their previous

experience and the experiences of their neighbours. This behaviour allows particles to

move toward better locations while being able to explore a wider area.

The PSO Algorithm has been successfully applied to a number of optimisation problems

such as; determination of optimum location and its type (Onwunalu and Durlofsky, 2010),

determination of the optimum constriction factors, inertia weights, and tracking dynamic

systems (Eberhart and Yuhui, 2001). Due to its simplicity and relatively low number of

parameters than other algorithms, PSO has become very popular.

The pseudo code for a simple version of PSO is given below (Figure 2.5).

 26

For each particle

 Initialise position P0 and velocity V0

End

 While maximum iterations are not exceeded or

 minimum error is not attained

 Do For each particle

 Calculate fitness value

 If fitness better than Pbest

 Update Pbest

 End

 Determine Gbest among all particles

 For each particle

 Update position

 Update velocity

 End

End

 Figure 2.5: Pseudo code for simple PSO.

 27

Every iteration velocity and position of the particles change based on 2 cryteria:

• Pbest : this is the best position visited by particle itself (local optimum).

• Gbest : this is best position visited by any particles of the swarm (global

optimum).

Equations for velocity and position updates of the particles are given below:

Vn+1 = wVn + c1 * rand1*(Pbestn – Pn) + c2 * rand2 * (Gbestn – Pn) (2.3)

Pn+1 = Pn + k * Vn+1 (2.4)

where:

Vn , is the particle velocity in iteration n

Pn , is the particle position in iteration n

Pbestn is “personal” best position in iteration n

Gbestn is “global” best position in iteration n

rand1 and rand2 are random numbers between 0 and 1

c1, c2 are weighting factors. These factors determine the size of movement a particle

can do in a single step (number in the range 0 to 4)

w is the ‘inertia’ weight. If w has large value it performs a global search. If it is small

then it performs a local search.

 28

2.2.3.10 Artificial Bees Colony

The Artificial Bee Colony (ABC) algorithm is a swarm-based meta-heuristic

optimisation technique inspired by the intelligent foraging behaviour of honey bees

which was proposed by Karaboga in 2005 (Karaboga, 2005). Base for the ABC

algorithm was the model proposed by Tereshko and Loengarov (Tereshko et al.,

2005) for the foraging behaviour of honey bee colonies.

The model proposed by Tereshko and Loengarov has three main components: Food

sources, employed and unemployed bees. Employed bees are foragers employed at a

promising food source. Unemployed bees are divided into two groups:

• Scouts: Bees looking for a new food source.

• Onlookers: Bees waiting at the hive for information about the food source

(They get information related to the food sources from employed bees)

 The model defines two type of behaviour: the recruitment to a nectar source and the

abandonment of a source.

• Recruitment: Scouts become employed bees when they find a promising food

source. Onlookers convert to employed bees as well when they get necessary

information on a food source.

• Abandonment: Employed bees abandon an extinct source. Some bees go for

further scouting; some fly back to the hive and become onlookers.

 29

After observing the proposed model, the ABC algorithm was developed. The ABC

algorithm follows the rules of the proposed model. The main steps of the algorithm

are given below (Figure 2.6):

Send the scouts to the initial food sources

REPEAT

Send the employed bees to the food sources and determine their nectar amounts

Calculate the probability value of the sources which are preferred by the onlooker

bees

Send the onlooker bees to the food sources and determine their nectar amounts

Stop the exploitation process of the sources exhausted by the bees

Send the scouts into the search area for the discovery of new food sources, randomly

Memorize the best food source found so far

UNTIL (requirements are met)

 Figure 2.6: Steps of the ABC

 30

2.2.4 The Basic Bees Algorithm

The Bees Algorithm is also one of the swarm intelligence-inspired algorithms which

was developed by researchers at the Manufacturing Engineering Centre (MEC) in

Cardiff University, under the supervision of Prof. D.T. Pham (Pham et al., 2005) after

observing bees foraging for nectar.

2.2.4.1 Foraging behaviour of honey bees

A colony of honey bees explores a wide area around their hive to find a food source

(nectar). Bees assigned for initial exploration are called scout bees. Scout bees can fly

up to 11 km to find better flower patches (Seeley, 1995 and Gould and Gould, 1988).

When a scout bee finds a food source its job is to share information regarding the

discovered patch with bees waiting in the hive. After delivering nectar to the hive,

scouts go to a special area (dance floor) in front of the hive and perform eight shape

movements, also known as the ‘waggle dance’ (Seeley, 1995). The waggle dance

contains information about the direction, distance and quality of the flower patch

found by the bee (Talbi, 2009). A waggle dance is shown in Figure 2.7. The relation

between the duration of the dance and distance from hive is given in Figure 2.8

(Seeley et al. 2006). Information related to the direction of the source is given in Figure

2.9.

 31

Figure 2.7: Waggle dance of the scout bee.

 32

 Figure 2.8: Relation between duration of dance and distance to the food.

 33

Figure 2.9: Relation between dance and the Direction of the food source

 34

After the performance of the “dancers”, the colony decides the amount of bees that

need to be assigned for the food source. More bees go to more promising patches for

harvesting. Recruited bees monitor food levels on every patch and share this

information with the colony when they go back to the hive. So, bees concentrate on

better patches all the time, which makes the food gathering process much faster and

more efficient. This behaviour of honey bees was computationally modelled as a

search algorithm.

2.2.4.2 The Algorithm

The parameters and the pseudo code of the algorithm are given below.

• Number of scout bees (n),

• Number of sites selected out of n visited sites (m),

• Number of best sites out of m selected sites (e),

• Number of bees recruited for best e sites (nep),

• Number of bees recruited for the other (m-e) selected sites (nsp),

• Patch size around a selected best location (ngh).

Steps of the basic Bees Algorithm are given in Figure 2.10.

 35

Figure 2.10: Steps of the basic Bees Algorithm

Start

Initialise population with random solutions.

Evaluate fitness value of the population.

 While (stopping criterion met).

 For each best patch

Select the best m patches for neighbourhood search.

Recruit bees for selected patches (more bees for best patches) and

evaluate their fitness.

Select the fittest bee value from each patch.

 End

Assign remaining bees to search randomly and evaluate their fitness.

 End

 36

According to Figure 2.10, the Bees Algorithm has six main steps. The first step is

placing the “n” scout bees on a search space. In the following steps, the fitness values

of the visited patches are evaluated.

The patches with the highest fitness values are chosen as “selected sites” for

neighbourhood search as step 3. In step 4, the algorithm performs a neighbourhood

search on selected areas by assigning more scout bees to the elite sites ‘e’, less scout

bees to the non elite best sites ‘m-e’. In step 5, the scout bees around the best sites

with the highest fitness values are selected as representative bees to form a new

population. The remainder of the bees are assigned for random search to find potential

solutions in step 6. This process continues until one of the stopping criteria has been

met.

2.3 Applications of the Bees Algorithm

The Bees Algorithm was utilised to solve multiple optimisation problems. In this

section, examples for applications of the Bees Algorithm are presented.

Continuous type benchmark functions were selected to test the performance of the

Bees Algorithm. Optimisation of these functions was the first application of the Bees

Algorithm (Pham et al., 2006a). Later, the Bees Algorithm was tested on even more

benchmark functions. Results were compared with different optimisation algorithms

(Pham and Castellani, 2009a). Results obtained using the Bees Algorithm were better

when compared to other algorithms.

 37

The Bees Algorithm was used to optimise the cost of fabrication on a multi-objective

welded beam problem by (Ghanbarzadeh, 2007). The goal of the study was to

minimise the cost by finding an optimum weld thickness, weld length, beam thickness

and beam width under the stress constraints. The Algorithm was also utilised to solve

a multi-objective carbon energy system and an environmental dispatch problem (Lee,

2010). The goal was to minimise the total cost and CO emissions for designing a low

carbon system.

The Bees Algorithm was also implemented to determine weights for the neural

networks such as: Learning Vector Quantisation network (Pham et al., 2006b), Multi

Layered Perceptron neural network (Pham et al., 2006c; Koc, 2010), Radial Basis

neural network (Pham et al., 2006d). Results showed that the Bees Algorithm is a

good classifier and optimisation tool.

The Bees Algorithm was also applied to cellular manufacturing systems to optimise

the cell information problem (Pham et al., 2007a). The results obtained proved that

the Bees Algorithm is good enough to be used for combinatorial applications.

The Bees Algorithm was tested on the job scheduling problem (Pham et al., 2007b).

The performance of the Bees Algorithm was better than that of TS, GA, and PSO on

this problem.

Another application of the Bees Algorithm was on clustering problems. The Bees

Algorithm was implemented on the K-means and C-means clustering problems (Pham

 38

et al., 2007c; Al-Jabbouli, 2009). The results showed that the Bees Algorithm could

be a powerful tool for clustering applications.

Promising results were obtained from a robotic application of the Bees Algorithm

which has been proposed (Pham et al., 2008). In this study the Bees Algorithm was

used for learning the inverse kinematics of a robot manipulator. The second robotic

application of the Bees Algorithm was proposed by (Pham et al., 2009b). The

Algorithm was utilised to tune the fuzzy logic controller parameters for stabilising and

balancing an acrobatic robot. Experimental results were positive.

Several studies were done to increase the performance of the Bees Algorithm. One of

these studies was a hybrid approach where the Bees Algorithm and PSO were

combined (Sholedolu, 2009). This combination was done for the Bees Algorithm to

benefit from PSO’s advantages in an adaptive neighbourhood search. Hybrid PSO-

Bees Algorithms results were promising and fast.

Another study done to improve performance of the Bees Algorithm was using

algorithm to tune parameters (Otri, 2011). The performance of the Bees Algorithm

was improved by this enhancement.

Moreover, the Bees Algorithm was applied on multiobjective Supply chain problem

to minimise the total cost and the total lead-time (Ernesto et al., 2013).

 39

2.6 Summary

Different optimisation techniques have been described in this chapter. These

techniques were classified based on their variables. The aim of this chapter was to

provide background information for the following chapters. Brief information about

deterministic optimisation techniques was given. Stochastic optimisation techniques

were described in detail. The Bees Algorithm was described in detail, which will be

used in Chapters 3, 4 and 5.

In following chapters three modified versions of the Bees Algorithm will be

discussed. In chapter 2 the Bees Algorithm with early neighbourhood search and

efficiency-based recruitment will be introduced. The following Chapter 4 will be

about the Hybrid Tabu Bees Algorithm. Autonomous Bees Algorithm, which is third

and last contribution, will be explained in Chapter 5.

 40

CHAPTER 3

The Bees Algorithm with Early

Neighbourhood Search and Efficiency-

Based Recruitment Strategies

 41

3.1 Preliminaries

In the literature there are several optimisation algorithms with different search

abilities and each of them has their own strengths and weaknesses. Considering the

Bees Algorithm which is the focus of this study, it has a random initialisation stage.

Such initialisation has both advantages and disadvantages. The results produced by

the algorithm are subject to this random initialisation process. This can be overcome

by starting the search from a more promising location.

 This study presents new modifications to the basic Bees Algorithm, which are early

neighbourhood search and improved recruitment using an efficiency calculation. The

aim of the Early Neighbourhood Search and Efficiency-based Recruitment Bees

Algorithm (ENSEBRBA) is to enhance the performance of the initialisation stage and

make the neighbourhood search more competitive, which will empower the overall

performance of the algorithm on high dimensional problems. The steps and flow chart

for proposed version of the Bees Algorithm are given in Figures 3.1 and 3.2.

 42

Start

Initialise population with random solutions.

Do (early neighbourhood search for each random solutions)

 Evaluate fitness values of each neighbourhood.

End

While (stopping criterion not met)

 For each best patch

 Select sites for neighbourhood search.

Recruit bees for selected sites (using normal strategy + efficiency based

enhancement) and evaluate fitnesses.

 Select the fittest bee from each patch.

 End

Assign remaining bees to search randomly and evaluate their fitnesses.

End

 Figure 3.1: Steps of the ENSEBRBA

 43

Figure 3.2: The flow chart of the ENSEBRBA

 44

3.2 The Early Neighbourhood Search Strategy

The Early Neighbourhood Search Strategy-based Bees Algorithm starts with a

random initialisation of n scout bees on search space, the same as in the Basic Bees

Algorithm (BBA). The initialisation stage in BBA considers a list of all random points

visited by each scout bee. This may not contain enough information about the space

surrounding. To get a better view of the vicinity of the point and to start a

neighbourhood search from more promising patches, an early neighbourhood search

stage is introduced during the first scouting process. The neighbourhood search is

carried out with a minimum number of scout bees in order not to affect the

computational time of the algorithm too much by increasing the number of iterations.

This leads to the discovery of better fitness valued sites from where the local search

will be carried out because if the algorithm starts its search from an advantageous

position, it is obvious that it will have better opportunity to converge to the global

optimum.

In addition to this, another improvement is proposed in the following section, which is

efficiency-based recruitment for each best patch to increase the performance of the

algorithm.

 45

3.3 Efficiency-based Recruitment Strategy

Efficiency characterises how well the time, cost and effort used for the

implementation of a task or job compares to that achieved by alternative methods.

This term has widely varying meanings and applications in different disciplines. In

particular for engineering, it can be generalised such that Efficiency is a capability of

producing a specific outcome effectively with a minimum amount or quantity of

waste, cost, or unnecessary work.

Efficiency can be shown as a percentage of what ideally could be achieved. The

efficiency of any work in its simplest form can be calculated with the formula below:

 100×=
Input

Output
Efficiency (3.1)

Efficiency-based recruitment for neighbourhood search strategy is the second step of

the proposed Bees Algorithm. In this stage, the fitness values of each patch are

evaluated for choosing “m” best patches to start the neighbourhood search. The

neighbourhood search process is performed as in the Basic Bees Algorithm with the

addition of efficiency-based recruitment.

The number of recruited bees for the neighbourhood search changes dynamically

according to the efficiency of the related sites where the number of bees around elite

 46

(nep) and non-elite best sites (nsp) are computed based on Equations 3.2 and Equation

3.3 respectively.

nabnepnep ii += −1 (3.2)

nabnspnsp ii += −1 (3.3)

where “nab” is the number of added bees according to the efficiency calculation and

“ i ” is the number of the iteration.

The number of the added bees,nab, is computed based on the Efficiency Rate (ER)

of the best sites after a predefined number of iterationsβ . The ‘ER’ for each selected

patch is calculated as given in Equation 3.4.

minmax

min

FF

FF
Er

j
ij

∆−∆
∆−∆= (3.4)

 where “i ” is the iteration number, “j ” is the site number, j
i

j
i

j
i FFF β−−=∆ ,

{ }β−−=∆ ii FFF minmin , { }β−−=∆ ii FFF maxmax , jEr is the efficiency rate of patch

“ j ”. Each patch is ranked according to their efficiency rate. So the number of

recruited bees around each site changes according the ranks given in Table 3.1.

 47

Range of ER Group Type Required Bees

2000 .ER. <=<= E 0 Bees

4020 .ER. <=<= D +1 Bees

6040 .ER. <=<= C +2 Bees

8060 .ER. <=<= B +3 Bees

0180 .ER. <=<= A +4 Bees

 Table 3.1: The patch range and required numbers of bees.

 48

Finally, the remaining scout bees are assigned randomly to carry out a global search.

The process will run until stopping criteria are met. Stopping criteria for the proposed

version of the algorithm are:

• Global optimum found with acceptable error rate (ER) (In this study error rate

was chosen as, ER <0.0001).

• Maximum number of the Evaluations.(In this study this value is chosen as,

5000000)

• Number of repetitions of the global optimum.(In this study this value is

chosen as, 100)

3.4 Experiments

To measure the performance of the algorithm, some well known continuous type

benchmark problems were selected. Each of these functions has different

characteristics, so obtained results illustrate strengths and weaknesses of the algorithm

in different situations. The Algorithm was run a hundred times for each function. The

results were compared with the basic Bees Algorithm (BA) and other well-known

optimisation techniques such as Particle Swarm Optimisation (PSO), Evolutionary

Algorithm (EA) and Artificial Bee Colony (ABC).

The Bees Algorithm requires a number of parameters to be set manually for each

benchmark function. Further, the number of recruited bees for early neighbourhood

search and ‘β ’ for efficiency-based recruitment must be predefined in the proposed

version of the Bees Algorithm. In this study, the number of recruit bees for early

 49

neighbourhood search and ‘β ’ were defined as 2 and 10, respectively. The other

parameters to run the proposed algorithm to solve different benchmark problems are

given in Table 3.2 (Ahmed, 2012).

Table 3.2: The parameters to run the ENSEBRBA on different benchmark

functions (Ahmad, 2012).

No. Function n m nsp e nep ngh

1 Goldstein & Price (2D) 10 3 2 1 13 0.005

2 Schwefel (2D) 10 2 5 1 6 0.5

3 Schaffer (2D) 100 4 10 2 30 3

4 Rosenbrock (10D) 15 8 10 5 30 0.0015

5 Sphere (10D) 10 7 20 1 30 0.05

6 Ackley (10D) 100 8 10 1 20 0.7

7 Rastrigin (10D) 100 3 20 1 40 0.01

8 Martin & Gaddy (2D) 10 5 10 1 30 0.1

9 Easom (2D) 100 4 10 2 30 0.5

10 Griewank (10D) 100 40 10 20 30 1.5

 50

All used test functions are described below. The 3 D plots of all used test function can

be found in appendix A. (Molga, 2005).

Goldstein-Price’s function

The Goldstein-Price function is a two dimensional global optimisation test function

which can be defined as following (Molga, 2005):

)]273648123218()32(30[

]361431419()1(1[)2,1(
2
2212

2
11

2
21

2
2212

2
11

2
21

+−++−−+⋅

⋅++−+−+++=

xxxxxxx

xxxxxxxxxxf
 (3.5)

 ;,22 21 ≤≤− xx 3)(=xf)1,0(),(21 −=xx

Schwefel’s function

The Schwefel function has complex geometrical topography, where the local

minimuma are far from each other. Thus, search algorithms struggle to converge in

the direction of the global minimum. A definition of the function is given below

(Molga, 2005):

)]sin([)(
1

ii

n

i

xxxf −=∑
=

r
 (3.6)

500500 ≤≤− ix , i = 1……… n;

 51

=)(xf
r

-418.9829n;

 xi = 420.9687, i= 1………n;

Rosenbrock’s valley

Rosenbrock’s valley is also known as the banana function or the second function of

De Jong. The global optimum for the function is located at the flat valley which has a

long narrow parabolic shape. It is simple enough to find the valley. However

convergence to the global optimum is difficult. This Function is defined as (Molga,

2005):

∑
−

=
+ −+−=

1

1

222
1])1()(100[)(

n

i
iii xxxxf

r
 (3.7)

048.2048.2 ≤≤− ix , i=1………n;

0)(=xf
r

ix =0, i=1 … … …n;

Hyper sphere function

Hyper sphere is continues type unimodal, curved function, which is also known as the

weighted sphere model. Function can be defined as (Molga, 2005):

 52

∑
=

⋅=
n

i
ixixf

1

2)()(
r (3.8)

12.512.5 ≤≤− ix , i=1 ………n;

0)(=xf
r

,

xi = 0, i = 1………n;

Ackley’s function

Ackley’s is a widely used multimodal test function. This function can be defined as

(Molga, 2005):

∑∑
==

++−⋅−⋅−=
n

i
i

n

i
i acx

n
x

n
baxf

11

2)1exp())cos(
1

exp()
1

exp()(
r

 (3.9)

a = 20, b = 0.2, c = 2π

32,768 x 32,768- i ≤≤ , i=1……….n;

0)(=xf
r

xi ii = 0, i = 1……… n.

 53

Rastrigin function

Rastrigin’s function is a modified version of the De Jong function. In order to produce

numerous local minima with cosine modulation a Rastrigin function was utilised. This

addition makes the test function highly multimodal. However, the locations of the

minima are regularly distributed. The function has the following definition (Molga,

2005):

∑
=

−+=
n

i
ii xxnxf

1

2)]2cos(10[10)(πr
 (3.10)

12.512.5 ≤≤− ix i=1………n;

0)(=xf
r

,

 xi=0, i=1………n

Martin & Gaddy

Martin & Gaddy is a widely used multimodal test function. The definition of the test

functions is given below (Molga, 2005):

2212
2121]

3

)10(
[)(),(

−++−= xx
xxxxf (3.11)

2020 21 ≤≤− xx , f(x)=0 , (x1,x2)=(5,5).

 54

Easom’s function

The Easom function is a two dimensional, unimodal test function. This function’s

global optimum has a small area compared to the search space. The definition of the

test functions is given below (Molga, 2005):

))()(exp()cos()cos(),(2
2

2
12121 ππ −−−−−= xxxxxxf (3.12)

100100 21 ≤≤− xx , f(x) =-1,),(),(21 ππ=xx .

Griewangk’s function

Griewangk’s function is similar to the function of Rastrigin, where local minima are

widely spread using regular distribution. The definition of the test function is given

below (Molga, 2005):

1)cos(
4000

1
)(

11

2 +−= ∏∑
==

n

i

i
n

i
i

i

x
xxf (3.13)

600600 ≤≤− ix , i=1…………n;

0)(=xf
r

,
xi=0. i=1…………n.

 55

Benchmark functions can be used to represent key features of the real world

problems. Some examples for the benchmark functions representing manufacturing

problems are given below.

For example, Dynamic motion problems found in physics and manufacturing can be

described as 3rd, 4th and 5th degree polynomial functions (Klipp 2001). Goldstein Price

is second degree polynomial problem (Goldstein, Price 1971). Therefore dynamic

motion problems can be defined with modified Goldstein and Price benchmark

function.

 Another example is the representation of surfaces in atomic level by benchmark

functions. Atomic force microscope (AFM) is used to analyse surfaces of the

materials down to atomic level and can produce 3D topography of surface. It is

possible to use Rastrigin, Schwefel, Schaffer and Ackley functions to represent the

surface features of the materials. “Thus, they have the strength of an analytical

expression with a known global minimum and they are extendable to arbitrary

dimensionality allowing for scaling investigations on global structure optimization of

atomic and molecular clusters” (Dieterich, Hartke 2012).

Furthermore, the Cost curve in engineering economy (Mishra 2009) can be

represented by Hyper Sphere benchmark functions. Moreover for cost minimisation,

Rosenbrock function was suggested to be utilised by Rosenbrock (Rosenbrock 1960).

 Cases given above can also be extended for other benchmark functions.

 56

3.5 Results and Discussion

The performance of the proposed algorithm was assessed according to the accuracy

and the average evaluation numbers and results were compared to well known

optimisation techniques. These are given in Tables 3.3 and 3.4. Experimental results

for PSO, EA and ABC were extracted from Ahmad (2012).

The accuracy of algorithms was computed based on average absolute differences of

the best results of a hundred runs. According to this approach, the more accurate

results are closer to zero.

Goldstein-Price 2D: Expected optimum result for the function is 3. Average result

obtained from the Basic Bees algorithms for a hundred runs was found to be 3.0005.

The result received from ENSEBRBA on the same problem was found to be 3.0007.

The BBA used an average of 504 evaluation numbers to find that result, where

average of new algorithms evaluation numbers was 21.496. Both algorithms produced

similar average global optima. However performance of the BA was not improved on

given problems by applying presented enhancements. Thus average number of

evaluations used by the ENSEBRBA was significantly more than number of

evaluations used by the BBA. Figure 3.3 illustrates global optima for a hundred runs

of BBA and ENSEBRBA on a given problem.

 57

Schwefel 2D: The expected optimum for the function is -837.97. The average global

optimum obtained from a hundred runs of the Basic Bees algorithm and ENSEBRBA

were -837.144 and -837.964 respectively. BBA used an average of 250049 evaluation

numbers to find that optimum, whereas the average for the new algorithm’s evaluation

was 338.600. As mentioned earlier this test function has complex topography so it is

hard to converge to the global optimum but the Bees algorithm with both global and

local search found the optimum with no problem. However, ENSEBRBA with early

neighbourhood search and enhanced local search was more accurate on the given task.

Average global optima for a hundred runs of BBA and ENSEBRBA on the given

problem are shown in Figure 3.4.

 Schaffer 2D: The expected optimum for the function is 0. Averages of a hundred

global optimums of the Basic Bees algorithm was 0,01. The corresponding result

obtained from the presented version of the Bees algorithm (a hundred runs) was

0,001. BBA used an average of 121.088 evaluation numbers to find that result,

whereas the average for the new algorithm’s evaluation was 112.430. The

ENSEBRBA performed more accurately and faster than the BBA on this optimisation

problem. Figure 3.5 illustrates global optima for a hundred runs of BBA and

ENSEBRBA on the given problem.

Rosenbrock 10 D: The expected answer is 0. The average global optimum obtained

from the Basic Bees algorithms (a hundred runs) was 0.0003. The result received from

ENSEBRBA was 0.0002. BBA used an average of 116904 evaluations to find that

result, whereas the average for the new algorithm was 148193.The BBA found less

 58

accurate global optimum when the presented version of the BA produced more

accurate result. The performance of algorithm for given problem was increased. This

is related to the extra initialisation during the early phases of the proposed algorithm.

Figure 3.6 illustrates global optima for a hundred runs of BBA and ENSEBRBA on

the given problem.

 59

 Table 3.3: Accuracy of proposed algorithm compared with other well known optimisation techniques.

PSO EA ABC BA ENSEBRBA

No. Functions Average
Absolute
Difference

Standard.
Deviation.

Average
Absolute
Difference

Standard.
Deviation.

Average
Absolute
Difference

Standard.
Deviation.

Average
Absolute
Difference

Standard.
Deviation.

Average
Absolute
Difference

Standard.
Deviation.

1
Goldstein &
Price (2D)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0006 0.0007 0.0008

2
Schwefel
(2D)

4.7376 23.4448 4.7379 23.4448 0.0000 0.0000 0.1492 0.7679 0.0004 0.0057

3
Schaffer
(2D)

0.0000 0.0000 0.0009 0.0025 0.0000 0.0000 0.0096 0.0018 0.0009 0.0029

4
Rosenbrock
(10D)

0.5998 1.0436 61.5213 132.6307 0.0965 0.0880 0.0003 0.0003 0.0002 0.0003

5
Sphere
(10D)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0003 0.0001 0.0001

6
Ackley
(10D)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0294 0,0477 0.0001 0.0028

7
Rastrigin
(10D)

0.1990 0.4924 2.9616 1.4881 0.0000 0.0000 0.005 0.02 0.0002 0.0003

8
Martin &
Gaddy (2D)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0003

9 Easom (2D) 0.0000 0.0000 0.0000 0.0000 0.0000 2.0096 0.3 0.23 0.0000 0.0003

10
Griewank
(10D)

0.0008 0.0026 0.0210 0.0130 0.0052 0.0078 0.3158 0.1786 0.0049 0.0019

 60

 Table 3.4: Average evaluation of proposed algorithm compared with other well-known optimisation techniques.

PSO EA ABC BA ENSEBRBA

No. Functions Average
evaluation

s

Standard
Deviation.

Avg.
evaluations

Standard
Deviation.

Avg.
evaluations

Standard
Deviation.

Avg.
evaluation

s

Standard
Deviation

.

Avg.
evaluations

Standard
Deviation.

1
Goldstein &
Price (2D)

3262 822 2002 390 2082 435 504 211 21496 36855

2
Schwefel

(2D)
84572 90373 298058 149638 4750 1197 250049 680 338600 0

3
Schaffer

(2D)
28072 21717 219376 183373 21156 13714 121088 174779 112430 66120

4
Rosenbrock

(10D)
492912 29381 500000 0 497728 16065 935000 0 148193 116904

5 Sphere (10D) 171754 7732 36376 2736 13114 480 285039 277778 95643.5 89997

6
Ackley
(10D)

236562 9,119 50344 3949 18664 627 910000 0 236299 123325

7
Rastrigin

(10D)
412,440 67,814 500,000 0 207,486 57,568 885,000 0 53935 44779

8
Martin &

Gaddy (2D)
1778 612 1512 385 1498 329 600 259 15,888 16554

9 Easom (2D) 16124 15942 36440 28121 1542 201 5280 6303 1120 1,345

10
Griewank

(10D)
290466 74501 490792 65110 357438 149129 4300000 0 316443 97830

 61

The Best Results of Each Run

2,9995

3

3,0005

3,001

3,0015

3,002

3,0025

3,003

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

 Figure 3.3: The results of a hundred runs for the BBA and the ENSEBRBA on

Goldstein & Price (2D).

The Best Results of Each Run

-838,5

-838

-837,5

-837

-836,5

-836

-835,5

-835

-834,5

-834

0 20 40 60 80 100 120

Number of Run

F
itn

es
s

V
al

u
e

The ENSECBA

The BBA

Figure 3.4: The results of a hundred runs for the BBA and the ENSEBRBA on

Schewel 2D.

 62

The Best Results of Each Run

-2,00E-03

0,00E+00

2,00E-03

4,00E-03

6,00E-03

8,00E-03

1,00E-02

1,20E-02

1,40E-02

1,60E-02

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 3.5: The results of a hundred runs for the BBA and the ENSEBRBA on

Schaffer 2D.

The Best Results of Each Run

-2,00E-04

0,00E+00

2,00E-04

4,00E-04

6,00E-04

8,00E-04

1,00E-03

1,20E-03

1,40E-03

1,60E-03

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 3.6: The result of a hundred runs for the BBA and the ENSEBRBA on

Rosenbrock 10 D.

 63

Hyper Sphere 10D: The expected optimum result for this function is 0. The average

result obtained from a hundred runs of The Basic Bees algorithm on the given

function was 0.0003. The corresponding result obtained by the presented version of

The Bees algorithms for 100 runs was 0.0001. BBA used an average of 285039

evaluations to find that result, whereas the average of the proposed algorithm’s

evaluation numbers was 95643. The performance of the Bees algorithm was increased

significantly for the given function. Figure 3.7 illustrates global optima for a hundred

runs of BBA and ENSEBRBA on the given problem.

Ackley 10D: The expected global optimum for the function is 0. The average

optimum result obtained from 100 runs of The Basic Bees algorithms on the given

function was 0.029. The corresponding result received from the presented version of

The Bees algorithm was 0.0001. BBA used an average of 910000 evaluations to find

that result, whereas the average evaluations needed by the new algorithm was 236299.

According to the experimental results, ENSEBRBA performance on the Ackley

function was significantly better than that of the BBA. Again, it is because of the

complex search space of the function that makes algorithms hard to converge to the

global optimum with the standard approach. Thus, introduced enhancements

empowered the Bees Algorithm to find a more accurate solution. Figure 3.8

illustrates global optima for a hundred runs of BBA and ENSEBRBA on the given

problem.

Rastrigin 10D: The global optimum of the function is 0. The average optimum

obtained from The Basic Bees algorithms for a hundred runs was 0.005 and BBA used

an average of 885000 evaluations to find that value. The corresponding result received

 64

from the presented version of The Bees algorithm was more accurate (0.0002), and

the average of new algorithm’s evaluations was only 53935. The Rastrigin function is

highly multimodal, which makes it very hard for global optimisation algorithms to

find an optimum. Even the BBA, with local and global search strategies, was not very

accurate on the Rastrigin function. However the ENSEBRBA with improved local

(efficiency-based recruitment) and global search (early neighbourhood search)

strategies was successful on this problem. Figure 3.9 illustrates optima of a hundred

runs for BBA and ENSEBRBA on the given problem.

Martin & Gaddy 2D: The expected optimum for this function is 0 .Experimental

results obtained from The Basic Bees algorithms (a hundred runs) was 0,000 with 600

evaluations.. ENSEBBA found the same result, however the number of evaluations

was too high (15,887). This is related to the structure of the new algorithm because it

is not necessary to do extra calculations (efficiency rate, early neighbourhood search)

for such “easy” functions where it will only increase number of evaluations. Figure

3.10 illustrates global optima for a hundred runs of BBA and ENSEBRBA on the

given problem.

 65

The Best Results of Each Run

-0,0002

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure3.7: The results of a hundred runs for the BBA and the ENSEBRBA on

Hyper sphere 10D.

The Best Results of Each Run

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0 20 40 60 80 100 120

Number of Run

Fi
tn

es
s

V
al

ue

The ENSECBA

The BBA

Figure3.8: The results of a hundred runs for the BBA and the ENSEBRBA on

Ackley 10D.

 66

Easom 2D: The expected optimum result for this function is -1. BBA performance on

the given function was not satisfactory. An average of hundred results obtained from

The Basic Bees algorithm was -0.707 while BBA used an average of 5280

evaluations. On the other hand, results obtained from ENSEBRBA were better.

Respective results received from ENSEBRBA were -0.9999 and 1120 (evaluations).

Easom is another hard optimisation problem. The ENSEBRBA performed better than

the BBA on this function. Figure 3.11 illustrates global optima for a hundred runs of

BBA and ENSEBRBA on the given problem.

Inverted Griewank 10D: The expected global optimum for this function is 10. The

average result obtained from the Basic Bees Algorithm for a hundred runs was 9.989.

The corresponding result received from the presented version of The Bees Algorithm

was 9.990. BBA used an average of 4300000 evaluations to find that result, whereas

the average of the new algorithm’s evaluation numbers was 316443. Experimental

results obtained from the BBA on the given function were not satisfactory. Although,

the average global optimum was close to the expected one, the number of evaluations

to get that result was extremely high. However, the ENSEBRBA performed

significantly well on the Griewank function. Both average optimum and number of

evaluations for the proposed Bees Algorithm were better than the BBA’s

corresponding results. The proposed version of algorithm’s number evaluations is still

too high. Figure 3.12 illustrates global optima for a hundred runs of BBA and

ENSEBRBA on the given problem.

 67

The Best Results of Each Run

-0,02

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 3.9: The results of a hundred runs for the BBA and the ENSEBRBA on

Rastrigin 10D.

The Best Results of Each Run

-0,0005

0

0,0005

0,001

0,0015

0,002

0,0025

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 3.10: The results of hundred runs for the BBA and the ENSEBRBA on

Martin & Gaddy 2D.

 68

The Best Results of Each Run

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0 20 40 60 80 100 120

Number of Run

F
it

ne
ss

 V
al

ue

The BBA

The ENSEBRBA

Figure 3.11: The results of hundred runs for the BBA and the ENSEBRBA on

Easom 2D.

The Best Results of Each Run

9,84

9,86

9,88

9,9

9,92

9,94

9,96

9,98

10

10,02

0 20 40 60 80 100 120

Number of Run

F
itn

es
s

V
al

u
e

The ENSECBA

The BBA

Figure 3.12: The results of a hundred runs for the BBA and the ENSEBRBA on

inverted Griewank 10D.

 69

A further t-test was utilised to do statistical analysis of the algorithm where the

confidence level was selected to be 95 % (α < 0.05). Based on observed results

(Table 3.5), the proposed algorithm is statistically significantly better than the Basic

Bees on all benchmark functions.

Overall results illustrate that the ENSEBRBA’s performance on complex high

dimensional functions is better than on lower dimensional ones. Although the

proposed algorithm finds an accurate global optimum, the number of evaluations

needed to get that result is relatively high. This is due to extra computation performed

in the proposed version of the algorithm.

According to the ‘no free lunch’ theorem, if an algorithm performs well on a certain

class of problems then it necessarily pays for that with degraded performance on the

set of all remaining problems (Wolpert and Macready, 1997).

 70

Table 3.5: The statistical analysis between the proposed Bees Algorithm and the

basic Bees Algorithm.

No. Function
Significance between the basic Bees Algorithm

and the improved Bees Algorithm

Significant

(α<0.05)
α

1 Goldstein & Price (2D) Yes 0.0004

2 Schwefel (2D) Yes 3.698 E-18

3 Schaffer (2D) Yes 6.472 E-52

4 Rosenbrock (10D) Yes 0.0045

5 Sphere (10D) Yes 1.9650 E-06

6 Ackley (10D) Yes 7.150 E-08

7 Rastrigin (10D) Yes 0.0085

8 Martin & Gaddy (2D) Yes 0.0010

9 Easom (2D) Yes 0.0024

10 Griewank (10D) Yes 0.019

 71

3.6 Summary

In this study, two novel enhancements have been presented for the Bees Algorithm.

The Basic Bees algorithm was improved both with the early neighbourhood search in

the initialisation stage and efficiency-based recruitment in the neighbourhood search

stage. The proposed algorithm has been successfully applied to continuous type

benchmark functions and compared with other well-known optimisation techniques.

To test the performance of proposed algorithm, the following approaches have been

utilised; accuracy analysis, average evaluation and t-test.

According to the accuracy analysis and the average evaluation, the proposed

algorithm performed better on higher dimensional than lower dimensional functions.

Finally, the statistical significance of the proposed algorithm has been computed with

a t-test and the results were compared with the basic Bees Algorithm. Based on t-test

results, it can be claimed that the proposed algorithm is statistically significantly

better in performance than the basic Bees Algorithm.

 72

Chapter 4

Tabu Bees Algorithm

 73

4.1 Preliminaries

In earlier chapters it was mentioned that the Bees Algorithm has both local and global

searches. Global search of the Basic Bees Algorithm considers random exploration of

the search space. Because of this random behaviour, the algorithm is unable to avoid

visiting already visited sites in order to carry out a local search. Eventually the

algorithm converges to the global optimum at the expense of the number of

evaluations.

To overcome this site repetition problem, a new algorithm is proposed which is a

hybrid of BBA and Tabu Search. The new algorithm is called the Tabu Bees

Algorithm (TBA). In TBA, the tabu list was adopted to provide memory to the BBA,

memorising unproductive sites and not visiting them again. This shrinks the search

space and decreases the number of evaluations needed.

Moreover, a new escape strategy for neighbourhood search is proposed to lead the

algorithm out of patches where the fitness values are too similar, due to the Bees

Algorithm’s nature of getting stuck around the local optima..

The steps and the flowchart for the proposed algorithm are given in Figures 4.1 and

4.2

 74

Start

Initialise population with random solutions.

Evaluate fitness values of each neighbourhood.

While (stopping criterion not met)

 Define tabu list

 Do for each best patch

 Select sites for neighbourhood search.

 Recruit bees for selected sites

 If Neighbourhood search gets stuck around one point

Use escape strategy

 End

 Evaluate fitness values from neighbourhood areas

 Select the fittest bee from each patch.

 End

Update tabu list

Assign remaining bees to search randomly and evaluate their fitnesses.

End

Figure 4.1: Steps of the TBA.

 75

Figure 4.2: Flowchart of the TBA.

 76

4.2 Defining Tabu List

Tabu list is a list of not satisfactory or previously visited solutions which helps an

algorithm to avoid those solutions in order to improve its performance. The length of

tabu list strongly affects the computational time of the algorithm. Thus, the new

solution needs to be verified from the recorded (memorised) tabu list.

To avoid this problem, the length of the tabu list will be updated in every iteration due

to having limited size (Rothlauf, 2011).

There are three main strategies to create a tabu list (Pham and Karaboga, 2000), given

below:

1. Forbidding strategy: to control new elements entering the existing list.

2. Freeing strategy: to control what exits the tabu list and when.

3. Short-term strategy: to determine a hybrid strategy of forbidding and freeing

strategies.

In this study, a short-term strategy-based approach was utilised to create the tabu list.

Tabu Bees Algorithm (TBA) starts the search by randomly placing scout bees in the

search space. Then, the fitness values of each allocated site will be evaluated. The

next stage is to define the sites for the local and the global search. The local search

process will be carried out on “m” best patches. A certain percentage of the “n-m”

patches will be utilised for the global search and the rest will be recorded to the tabu

 77

list. These selected patches are the worst patches (w) among the “n-m” sites. The size

of the tabu list will be determined empirically. In this study, the tabu list size “t” was

determined as equal to the number of scout bees “n”. The next stage of the process is

to undertake the neighbourhood search based on an adaptive approach. This will be

given in the next section.

4.3 Escape Strategy

There are some problems with a complex search space, where fitness values are too

close to each other or even have same value. In this case, the Bees Algorithm

performs remarkably slowly during neighbourhood search. It may not be able to

escape from local search either. Let us call sites with close fitness values ‘plain’ areas.

To escape from ‘plain’ areas an adaptive neighbourhood search is presented. The

algorithm tracks the improvement ratio (IR) of fitness values on elite patches to detect

‘plain’ areas. Value of IR must be lower than 0.0001 for the patch to be marked as a

‘plain’ area

ii fitnessfitnessIR −= +1 (4.1)

If no ‘plain’ areas are found, the neighbourhood search process is carried out as for

the basic Bees Algorithm. However, if the algorithm detects ‘plain’ areas, it changes

its behaviour and shifts the neighbourhood search area into two directions in order to

escape. The new neighbourhood search areas are called test neighbourhoods (tnbh).

The size of the shifting is ngh/2, which means that the central points for test

neighbourhoods areas will be the borders of the initial one (Figure 4.3).

 78

 Figure 4.3: Simple example for shifting neighbourhood area.

After evaluating the fitness values of the test neighbourhoods, the algorithm decides

on the direction of the search by choosing a more promising ‘test neighbourhood’ as

the actual neighbourhood area. There can be several outcomes of the search on test

neighbourhoods as follows:

• Fitness values are not improving for both test neighbourhood areas (Figure

4.4a). In this case, the algorithm shifts test neighbourhood areas further.

Shifting is carried out three times and if no improved solutions are found, that

patch is added to the tabu list.

• Fitness values are degrading for both test neighbourhood areas (Figure 4.4b).

The algorithm adds both patches to the tabu list.

• Fitness values are improving on one of the test neighbourhood areas (Figure

4.4c). The algorithm adds the better site to the tabu list and continues

neighbourhood search from the patch where better fitness values were found.

• Fitness values are improving on both test neighbourhood areas (Figure 4.4d).

The algorithm compares obtained fitness values. The test neighbourhood with

the better fitness is selected in which to continue a neighbourhood search. The

worse one will be considered as one of ‘m’.

 79

Figure 4.4: Simple example for possible outcomes from ‘test neighbourhood’

areas.

 80

Further, when neighbourhood search is finished, the TBA evaluates results and

updates the tabu list.

4.4 Updating the tabu list

After every neighbourhood search process, the Tabu list is updated using a ‘first in

last out’ strategy. New elements enter to the list from the top. As a result, elements

which were already in the list move down. One or more elements drop out from the

list if there is no space for new incoming data. Algorithm continues search process

until one of stopping criteria not met.

Stopping criteria for the proposed version of the algorithm are:

• Global optimum found with acceptable error rate (ER) (In this study error rate

was chosen as, ER <0.0001).

• Maximum number of the Evaluations.(In this study this value is chosen as,

5000000)

• Number of repetitions of the global optimum.(In this study this value is

chosen as, 100)

 81

4.5 Experiments

To measure the performance of the proposed algorithm, it was tested on ten

continuous type benchmark functions. These functions are given in Table 4.1 (Pham

and Castellani, 2009 and Ahmad, 2012). Brief information about the used test

functions was given in previous chapter.

In previous chapters it was mentioned that the Bees Algorithm requires some

parameters to be tuned manually for each optimisation problem. Parameters used for

the TBA are given in table 4.2 (Ahmed, 2012). Moreover, value of “w” was chosen

empirically to be (n-m)/5 and value “t” was equal to “n” in this study.

 82

Table 4.1: Test functions (Pham and Castellani, 2009and Ahmad, 2012).

 83

Table 4.2: Parameters used for the TBA (Ahmad, 2012).

No. Function n m nsp e nep ngh

1 Goldstein & Price (2D) 10 3 2 1 13 0.005

2 Schwefel (2D) 10 2 5 1 6 0.5

3 Schaffer (2D) 100 4 10 2 30 3

4 Rosenbrock (10D) 15 8 10 5 30 0.0015

5 Sphere (10D) 10 7 20 1 30 0.05

6 Ackley (10D) 100 8 10 1 20 0.7

7 Rastrigin (10D) 100 3 20 1 40 0.01

8 Martin & Gaddy (2D) 10 5 10 1 30 0.1

9 Easom (2D) 100 4 10 2 30 0.5

10 Griewank (10D) 100 40 10 20 30 1.5

 84

4.6 Results and Discussion

The performance of the algorithm was assessed as defined in previous chapter, which

will be based on the accuracy and the average evaluation numbers (Tables 4.3-4.4).

Results were compared to BBA and ENSEBBA.

The experimental results for each function are given below.

Goldstein-Price 2D: The expected global optimum is 3. According to the

experiments, the computed results were obtained by evaluation of a hundred runs. The

BBA and the ENSEBRBA found the average global optimum at 3.0005 and 3.0007,

respectively. The average evaluation numbers found for each algorithm were 504 with

BBA and 21496 with ENSEBRBA. The TBA is utilised to solve this benchmark

function and the average global optimum was found as 3.0002 in 761 evaluations. The

results of a hundred runs for BBA, ENSEBRBA and TBA are given in Figure 4.5.

Although the number evaluation of the proposed algorithm is better than the

ENSEBRBA, the performance of the BBA is better. Moreover, the proposed

algorithm found the global optimum better than all others. According to this

comparison, the proposed algorithm performed better than all.

 85

Table 4.3: Accuracy of proposed algorithm compared with the BBA and the ENSEBRBA.

ENSEBRBA BA TBA

No. Functions Average
Absolute

Difference

Standard
Deviation.

Average
Absolute

Difference

Standard
Deviation.

Average
Absolute

Difference

Standard
Deviation.

1
Goldstein & Price

(2D)
0.0007 0.0008 0.0005 0.0006 0.0002 0.0002

2 Schwefel (2D) 0.0004 0.0057 0.1500 0.7679 0.0004 0.0212

3 Schaffer (2D) 0.0009 0.0029 0.0096 0.0018 0.0000 0.0000

4
Rosenbrock

(10D)
0.0002 0.0003 0.0003 0.0003 0.0000 0.0000

5 Sphere(10D) 0.0001 0.0003 0.0003 0.0003 0.0001 0.0001

6 Ackley (10D) 0.0001 0.0028 0.0294 0.0477 0.0001 0.0003

7 Rastrigin (10D) 0.0003 0.0003 24.8499 8.3306 0.0000 0.0000

8
Martin & Gaddy

(2D)
0.0000 0.0003 0.0000 0.0003 0.0000 0.0000

9 Easom (2D) 0.3 0.23 0.0003 0.0003 0.0000 0.0002

10 Griewank (10D) 0.0049 0.0019 0.3158 0.1786 0.0000 0.0001

 86

Table 4.4: Average evaluation of proposed algorithm compared with the BBA and the ENSEBRBA.

ENSEBBA BA TBA
No. Functions

Average
Evaluations

Standard
Deviation.

Average
Evaluations

Standard
Deviation.

Average
Evaluations

Standard
Deviation.

1
Goldstein & Price

(2D)
219496 36855 504 211 761 330

2 Schwefel (2D) 338600 0 250049 0 62054 0

3 Schaffer (2D) 112430 66120 121088 174779 6.309 2165

4

Rosenbrock
(10D)

148193 116904 935000 0 9821 3333

5 Sphere (10D) 95644 89997 285,039 277,778 2,972 1,963

6 Ackley (10D) 236299 123325 910000 0 9199 3651

7 Rastrigin (10D) 53935 44779 885000 0 7559 7093

8
Martin & Gaddy

(2D)
15888 16554 600 259 1065 1.517

9 Easom (2D) 1120 1345 5280 6303 1063 1130

10 Griewank (10D) 316443 97830 4300000 0 8294 2586

 87

Schwefel 2D: The expected optimum result for the function is -837.97. The average

result obtained from a hundred runs of the BBA and the ENSEBRBA were -837.144

and -837.964 respectively. BBA used an average of 250049 evaluations to find that

optimum, whereas the average for the ENSEBRBA was 338.600. The TBA used to

solve same optimisation problem and the algorithm found the average global optimum

as -837.93 in 62054 evaluations. Figure 4.6 illustrates global optima for a hundred

runs of BBA, ENSEBRBA and TBA on the given problem. Although all versions of

the Bees algorithm produced fairly accurate results for this optimisation problem, the

TBA found the global optimum in lower number of evaluations. This is because TBA

has memory and the algorithm avoids revisiting already visited sites.

Schaffer 2D: The expected global optimum is 0. The experimental results computed

by evaluation of a hundred runs were 0.01 and 0.001 respectively. BBA used an

average of 250049 evaluations to find that result, whereas the average of ENSEBRBA

evaluations was 112430. The TBA is utilised to solve this benchmark function and the

average global optimum was found as 0 in 6309 evaluations. The results of a hundred

runs for BBA, ENSEBBA and TBA are given in Figure 4.7. Based on experimental

results, the TBA found a more accurate global optimum for the problem in lower

number of evaluations than other described versions of the Bees Algorithm.

Rosenbrock 10 D: The expected optimum is 0. An average of a hundred

experimental results obtained from the BBA and the ENSEBRBA were 0.0003 and

0.0002 respectively. BBA used an average of 11690 evaluations to find that result,

whereas the average of ENSEBRBA evaluations was 148193. Moreover, TBA was

applied on the same function and the new algorithm found the average global

 88

optimum as 0 in 9821 evaluations. Figure 4.8 illustrates global optima for a hundred

runs of BBA, ENSEBRBA and TBA on the given problem. Although ENSEBRBA

was better than the BBA in terms of results on this complex high dimensional

problem, due to the memory unit used in TBA, results were improved even further.

This is because Rosenbrock’s global optimum is located at the flat valley, which has a

long narrow parabolic shape and the TBA, with a local escape strategy, converges to

the global optimum easily.

Hyper Sphere 10D: The global optimum for this function is 0. Experimental results

computed by evaluation of a hundred runs were 0.0003 and 0.0001 respectively. The

BBA needed an average of 285039 evaluations to find that result, when the average of

the proposed ENSEBRBA evaluations was 95643. Experimental results obtained from

the TBA on the same benchmark function were 0.0001 (global optimum) in 2972

evaluations. The results of a hundred runs for BBA, ENSEBRBA and TBA are given

in Figure 4.9. The proposed version of the Bees Algorithm produced the same global

optimum as the ENSEBRBA, which was already better than the optimum obtained

using the BBA. However, due to utilised memory, the TBA used fewer evaluations to

get that result.

 89

The Best Results of Each Run

2,9995

3

3,0005

3,001

3,0015

3,002

3,0025

3,003

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The TBA

The BBA

The ENSEBRBA

Figure 4.5: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Goldsein-Price 2D function.

The Best Results of Each Run

-838,5

-838

-837,5

-837

-836,5

-836

-835,5

-835

-834,5

-834

0 20 40 60 80 100 120

Number of Run

F
itn

es
s

V
al

u
e

The TBA

The BBA

The ENSEBRBA

Figure 4.6: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Schewel 2D function.

 90

The Best Results of Each Run

-2,00E-03

0,00E+00

2,00E-03

4,00E-03

6,00E-03

8,00E-03

1,00E-02

1,20E-02

1,40E-02

1,60E-02

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The TBA

The BBA

The ENSEBBA

Figure 4.7: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Schaffer 2D function.

The Best Results of Each Run

-2,00E-04

0,00E+00

2,00E-04

4,00E-04

6,00E-04

8,00E-04

1,00E-03

1,20E-03

1,40E-03

1,60E-03

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The TBA

The BBA

The ENSECBA

Figure 4.8: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Rosenbrock 10 D function.

 91

Ackley 10D: The expected optimum of this is 0. According to the experiments, the

computed global optimum obtained by the evaluation of a hundred runs were 0.029

for the BAA and 0.0001 for the ENSEBRBA. The BBA needed an average of 910000

evaluations to find that result and the average number of evaluations of the

ENSEBRBA was 236299. The TBA was utilised to solve the same optimisation

problem and the algorithm found an average global optimum as 0,0001 in 2972

evaluations. The results of a hundred runs for BBA, ENSEBRBA and TBA are given

in Figure 4.10. As for the previous function, the proposed version of the Bees

Algorithm produced the same global optimum as the ENSEBRBA which was already

better than optimum found by the BBA. Because of the memory factor, the TBA used

a lower number of evaluations to converge to a global optimum.

Rastrigin 10D: The global optimum of this function is 0. An average of a hundred

optima of the BBA and the ENSEBRBA were 0.005 and 0.0002 respectively. An

average of a hundred evaluations for the BBA was of 885000, when the

corresponding result for the ENSEBRBA was 53935. The result of the same

experiment using the TBA was an average global optimum as 0 in 7559 evaluations.

The results of a hundred runs for BBA, ENSEBBA and TBA are given in Figure 4.11.

On the Rastrigin function, the proposed algorithm performed better than the other

two. The TBA was better than the BBA in all aspects and as it was expected that TBA

would surpass ENSEBRBA on number of evaluations.

Martin & Gaddy 2D: The expected global optimum is 0. According to the

experiments, the computed results were obtained by evaluation of a hundred runs. The

average optimum obtained from the BBA and the ENSEBRBA were both 0. BBA

 92

needed an average of 600 evaluations to find that result, whereas the average for

ENSEBRBA was 15888. The average of a hundred global optima found by using the

TBA to solve the same optimisation problem was 0 and average number of

evaluations was 1065. Figure 4.12 illustrates global optima for a hundred runs of

BBA, ENSEBRBA and TBA on the given problem. On the Martin and Gaddy

function, the Basic version of the Bees algorithm performed better than both proposed

versions. However, the TBA obtained global optimum in fewer evaluations than the

ENSEBRBA.

Easom 2D: The expected optimum result for this function is -1. The average result

obtained from a hundred runs of the BBA and the ENSEBRBA were -0.707 and -

0.9999 BBA needed an average of 5280 evaluations. The corresponding results for

ENSEBRBA were 1120. TBA was used to solve the same optimisation problem and

the algorithm found the average global optimum as -0.9999 in 1063 evaluations.

Figure 4.13 illustrates global optima for a hundred runs of BBA, ENSEBRBA and

TBA on the given problem. On the given function the TBA found the same global

optimum as the ENSEBRBA, which was already better than the optimum found by

the BBA. This is because the Easom function’s optimum is in a small area compared

to a large search space. Therefore, the BBA with the standard approach is unable to

converge to the global optimum.

 93

The Best Results of Each Run

-0,0002

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 20 40 60 80 100 120

Number of Run

F
itn

es
s

V
al

u
e

The TBA

The BBA

The ENSECBA

Figure 4.9: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Hyper sphere 10D function.

The Best Results of Each Run

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0 20 40 60 80 100 120

Number of Run

F
itn

es
s

V
al

u
e

The TBA

The BBA

The ENSECBA

Figure 4.10: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Ackley 10D function.

 94

The Best Results of Each Run

-2,00E-02

0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

1,60E-01

0 20 40 60 80 100 120

Number of Run

F
itn

es
s

V
al

u
e

The TBA

The BBA

The ENSECBA

Figure 4.11: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Rastrigin 10D function.

The Best Results of Each Run

-5,00E-04

0,00E+00

5,00E-04

1,00E-03

1,50E-03

2,00E-03

2,50E-03

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The TBA

The BBA

The ENSECBA

Figure 4.12: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Martin & Gaddy 2D function.

 95

Inverted Griewank 10D: The expected global optimum for this function is 10. The

average result obtained from the Basic Bees algorithms over hundred runs was 9.989.

The corresponding result obtained by ENSEBRBA was 9.990. BBA needed an

average of 4300000 evaluations to find that result, whereas the average of

ENSEBRBA’s evaluations was 316443. TBA was used to solve the same optimisation

problem and the algorithm found an average global optimum as 9.9999 in 8294

evaluations. The experimental results of a hundred runs for BBA, ENSEBBA and

TBA are given in Figure 4.14. Due to having widely spread local optima, the BBA

has performed poorly on the Griewank function. The ENSEBRBA found a fairly

accurate global optimum but in a high number of evaluations. However, the TBA

found the most accurate global optimum in fewer evaluations because this algorithm

has poor location avoidance mechanisms.

Although main reason to develop both introduced strategies was to decrease the

number of evaluations used by the BBA to find the global optimum, overall results

illustrate that the accuracy of the BBA was significantly increased in the process as

well.

Further statistical analysis was carried out by using t-test, where the confidence level

was selected to be 95 % (α < 0.05). The T- test results are illustrated in table 4.5.

From the t-test results between the Tabu Bees Algorithm and the Basic Bees

Algorithm it is clearly seen that TBA performs statistically significantly better.

 96

The Best Results of Each Run

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The TBA

The BBA

The ENSEBRBA

Figure 4.13: The results of a hundred runs for BBA, ENSEBRBA and TBA on

Easom 2D function.

The Best Results of Each Run

9,84

9,86

9,88

9,9

9,92

9,94

9,96

9,98

10

10,02

0 20 40 60 80 100 120

Number of Run

F
itn

es
s

V
al

u
e

The TBA

The BBA

The ENSECBA

Figure 4.14: The results of a hundred runs for BBA, ENSEBRBA and TBA on

inverted Griewank 10D functions.

 97

Table 4.5: The statistical analysis between the TBA and the basic Bees

Algorithm.

No. Function Significance between the TBA and the BBA

Significant

(α<0.05)
α

1 Goldstein & Price (2D) Yes 0,0021

2 Schwefel (2D) Yes
2,59325E-17

3 Schaffer (2D) Yes
2,24632E-14

4 Rosenbrock (10D) Yes
1,42986E-15

5 Sphere (10D) Yes
3,82E-09

6 Ackley (10D) Yes
2,09428E-08

7 Rastrigin (10D) Yes
0,0057

8 Martin & Gaddy (2D) Yes
4,94477E-25

9 Easom (2D) Yes
2,53E-22

10 Griewank (10D) Yes
3,06308E-06

 98

4.7 Summary

In this study a novel algorithm was proposed which is hybrid between the BBA and

Tabu. The new algorithm is called Tabu Bees algorithm. In this algorithm, tabu list

was utilised to give memory to the BBA to solve the site repetition problem. In

addition, a new adaptive neighbourhood strategy was proposed to overcome the issue

of getting stuck around local optima with similar fitness values. The proposed

algorithm has been successfully applied on continuous type benchmark functions and

compared with the BBA and ENSEBRBA.

Accuracy analysis, average evaluation and t-test were utilised compute the

performance of the proposed algorithm.

According to the Experimental results it can be concluded that the number of

evaluations needed both on lower and higher dimensional problems were dramatically

decreased. On the other hand, the proposed improvements increased the accuracy of

algorithm as well. Based on t-test results, it can be concluded that the proposed

algorithm is statically significantly better performing than the basic Bees Algorithm.

 99

Chapter 5

The Autonomous Bees Algorithm

 100

5.1 Preliminaries

In this chapter, the Autonomous Bees Algorithm (ABA) is presented as a solution for

the below mentioned problem.

Various weaknesses of the BBA were discussed in previous chapters and some

enhancements were introduced to solve these problems. This chapter focuses on the

one of the biggest issues for the BBA, which is the large number of parameters to be

set manually. These parameters must be tuned to produce accurate results. Although

the BBA is a relatively easy algorithm to apply on different optimisation problems,

the large number of parameters makes it hard for new users.

As a concept, autonomy is the capacity of an individual to make an informed, un-

coerced decision. It is widely used in fields like politics, sociology, religion and

engineering. Autonomy has applications in artificial intelligence as well. For example:

Autonomous Genetic Algorithm for Functional Optimisation (Meng, 2007).

In the literature several studies on parameter tuning for the BBA have been presented.

However, these studies did not provide the BBA with full independence. The ABA is

a self-directed version of the BBA where interaction between the user and the process

is on a minimal level.

The block diagram of the ABA is given in Figure 5.1.

 101

Figure 5.1: Block diagram of the ABA.

 102

5.2 Autonomous Behaviour

In this section autonomous behaviour of the ABA is explained in detail. To illustrate

every step of algorithm, a ten dimensional Hyper Sphere function was chosen. The

definition of the used function was given in Chapter 2.

 The ABA starts search with a set of predefined parameters. It is then guided, based

on previous information, toward a better parameter set. The default values of the

parameters are given below:

• Number of scout bees. n =10;

• Number of sites selected out of n visited sites. m = 3;

• Number of best sites out of m selected sites. e =1;

• Number of bees recruited for best e sites. nep =8;

• Number of bees recruited for the other (m-e) selected sites. nsp =4;

• Patch size around of a selected best location. ngh=1;

In previous research on the BBA, the parameters were tuned as given numbers

empirically to solve many different optimisation problems. Therefore, it is quite

promising to start searching with these parameters. The ABA tunes parameters one at

time and there are two steps for each of them: rough tuning and fine tuning.

Determining n: Number of scout bees is the first parameter to be tuned. It is an

important parameter because if “n” is too low, the algorithm will fail to find the

 103

optimum and if n is too large the number of evaluations needed will be high. Based on

previous experience, it can be said that the number of scout bees alters between 0 and

100 depending on the structure of the problem. The algorithm creates ten equal groups

of numbers in this range and randomly picks one value from each group [1-10; 11-20;

21-30; 31-40; 41-50; 51-60; 61-70; 71-80; 81-90; 91-100].

 Further, algorithm uses these values as the number of scout bees to do a search on the

optimisation problem. After running the search for each of the scout bees, the ABA

evaluates the obtained results to choose the most promising group of numbers. The

algorithm assesses the results based on fitness values and the number of evaluations

prioritised on the fitness values. In our experiment, the algorithm chose 69 as most

promising number of scout bees, as shown in Figure 5.2a. The fitness value obtained

using 69 bees to do the scouting was 0, which is the expected result for the Hyper

Sphere function. The same result was obtained while using other numbers of scout

bees as well. However, the number of evaluations needed to achieve that result was

the lowest for 69 scout bees (Figure 5.2b). Finding this value is considered as rough

tuning of parameter “n” (number of scout bees).

After determining the rough value of “n”, the algorithm carries out the fine tuning of

the parameter, using every member of the group where the rough value of “n” was

found [61; 62; 63; 64; 65; 66; 67; 68; 69; 70]. Furthermore, ABA evaluates the

results of the fine tuning using the same strategy (based on global optimum and

evaluation numbers) as for rough tuning. The number of scout bees was selected to be

66 after fine tuning, as illustrated in figures 5.3a and 5.3b.

 104

Figure 5.2a: Fitness values obtained after Rough Tuning of “n”.

Figure 5.2b: Number of Evaluations obtained after Rough Tuning “n”.

 105

Figure 5.3a: Fitness values obtained after Fine Tuning of “n”.

Figure 5.3b: Number of Evaluations obtained after Fine tuning of “n”.

 106

Determining m: Number of sites selected for local search is another very important

parameter to be determined accurately. The value of “m” changes the core behaviour

of the algorithm, such as:

• 0<m<n : Classical global and local search of the Bees Algorithm

• 0=m<n: Only global search of the Bees Algorithm.

• 0<m=n : Only local search of the Bees Algorithm

After finding the value of “n”, the algorithm starts tuning the next parameter, which is

“m”. Accordingly, “m” can not exceed “n”. Therefore the value of “m” will be

between 0 and 66. The ABA creates ten groups of numbers in that range and chooses

random numbers from each of them [0-6; 7-13; 14-20; 21-27; 28-35; 36-42; 43-49;

50-56; 57-63; 64-66;].

 Based on the best fitness and evaluations, the algorithm selects the rough value of

“m”, which is 9 for our problem, as shown in Figures 5.4a and 5.4b.

Fine tuning can then be performed when the rough number of “m” is found. Fine

tuning is carried out using ten numbers from the group to which 9 belongs. The

algorithm needs 10 numbers from that group to undertake fine tuning. If the number

of elements in that group is lower than ten, the algorithm adds random elements from

same range to the group [7; 8; 9; 10; 11; 12; 13; (7; 10; 11;)].

After evaluating results obtained, “m” was chosen to be 8, as illustrated in Figures

5.5a and 5.5b.

 107

Figure 5.4a: Fitness values obtained after Rough Tuning of “m”.

Figure 5.4b: Number of Evaluations obtained after Rough Tuning of “m”.

 108

Figure 5.5a: Fitness values obtained after Fine Tuning of “m”.

Figure 5.5b: Number of Evaluations obtained after Fine tuning of “m”.

 109

Determining e: The same methodology as for determining “m” was used to find the

number of elite sites. “e” must be lower or at least equal to “m”. The algorithm will

create ten groups of numbers between 0 and 8 and random elements from each group

will be selected as “e” while solving the optimisation problem [0; 1; 2; 3; 4; 5; 6; 7;

8;(0;)].

Figures 5.6a and 5.6b illustrate the results of rough tuning where 2 was selected as “e”

for further fine tuning.

The fine tuning of “e” in this experiment was relatively easy because there was only

one element in the group from where algorithm chooses values of elite sites to

perform fine tuning. The results obtained from fine tuning on the given problem are

illustrated in Figures 5.7a and 5.7b.

Determining nsp: In general, the number of recruited bees for neighbourhood search

on selected sides has no direct relations with number of patches or scout bees.

Because of this the parameter is tuned independently from “n”, “m” or “e”. Maximum

number of recruit bees is assumed to be 50. This number is divided into five groups of

numbers and 2 random values are selected from each group in order to have 10 well

distributed values of nsp for comparison [1-10; 11-20; 21-30; 31-40; 41-50].

The rough number of “nsp” is selected to be 3 as shown in Figures 5.8a and 5.8b. The

group of numbers which 3 represents is selected for fine tuning of the parameter.

After fine tuning of the parameter, the value “nsp” was found to be 2 (Figures 5.9a

and 5.9b).

 110

Figure 5.6a: Fitness values obtained after Rough Tuning of “e”.

Figure 5.6b: Number of Evaluations obtained after Rough Tuning “e”.

 111

Figure 5.7a: Fitness values obtained after Fine Tuning of “e”.

Figure 5.7b: Number of Evaluations obtained after Fine tuning of “e”.

 112

Figure 5.8a: Fitness values obtained after Rough Tuning of “nsp”.

Figure 5.8b: Number of Evaluations obtained after rough tuning of” nsp”.

 113

Figure 5.9a: Fitness values obtained after Fine Tuning of “nsp”.

Figure 5.9b: Number of Evaluations obtained after Fine tuning of “nsp”.

 114

Determining nep: The next parameter to be tuned is the number of recruit bees for

elite sites. In most studies, the value of this parameter is greater than nsp. However, in

this study both these parameters are considered to be in the same range. So, the same

approach as for nsp was used to tune nep. The results of rough tuning are given in

Figures 5.10a and 5.10b. Figures 5.11a and 5.11b illustrate the results of fine tuning.

Determining ngh: Size of neighbourhood search is the last parameter to be tuned.

There is no need to do rough tuning for “ngh”. In this study, the maximum size of the

neighbourhood search was chosen to be 1 and decreased by half for ten times, [1; 0.5;

0.25; 0.125; 0.062; 0.031; 0.015; 0.007; 0.003; 0.001], and the results were

compared. Results are given in Figures 5.12a and 5.12b.

 115

Figure 5.10a: Fitness values obtained after Rough Tuning of “nep”.

Figure 5.10b: Number of Evaluations obtained after Rough tuning of “nep”.

 116

Figure 5.11a: Fitness values obtained after Fine Tuning of “nep”.

Figure 5.11b: Number of Evaluations obtained after Fine tuning of” nep”.

 117

Figure 5.12a: Fitness values obtained after Fine Tuning of “ngh”.

Figure 5.12b: Number of Evaluations obtained after Fine tuning of “ngh”.

 118

After tuning the last parameter, which is ngh, the algorithm gets the parameter set to

start the actual search. In the case of the Hyper Sphere function, the algorithm has

generated the given parameter set:

 n=66; m=8; e=2; nsp=2; nep=13; ngh=0,007;

In the following section experimental results obtained from the ABA will be

presented.

5.3 Experiments

Ten continuous type benchmark functions were used for experiments to test the

productivity of the proposed algorithm. These functions are given in Table 4.1 in

chapter four (Pham and Castellani, 2009 and Ahmad, 2012). Brief information about

the used test functions was given in chapter 2. The algorithm was applied to all

problems as described in the previous section.

5.4 Results and Discussion

The performance of the algorithm was assessed according to the global optima found

and the average number of evaluations needed (Table 5.1 and 5.2). Further, T test

was utilised to check the significance of the algorithm. Results obtained from the

ABA were compared with results of the BBA on the same functions.

 119

Goldstein-Price: The expected global optimum is 3. The parameter set used for BBA

to solve this problem was:

 n=10; m=3; e=1; nsp=2; nep=13; ngh=0,005;

The average global optimum obtained from the BBA was 3.0005 and the algorithm

needed an average of 504 evaluations to find that optimum. The parameter set found

by the ABA was:

 n=12; m=3; e=2; nsp=4; nep=9; ngh=0,005;

The average of 100 global optima produced by the ABA was 3.0002 and the average

of evaluations was 654. Global optima obtained from the ABA and the BBA’s

hundred runs are given in Figure 5.13. The experimental results obtained from the

ABA were better than the results obtained from the BBA. Thus, with a better

parameter set, the algorithm becomes more accurate and efficient.

The two dimensional Schwefel function was selected for experiment. The expected

optimum for the function is -837.97. The parameter set used for BBA to solve this

problem was:

 n=10; m=2; e=1; nsp=5; nep=6; ngh=0,05;

The average of results obtained from the BBA was -837,144 and the algorithm used

an average of 250049 evaluations to find that optimum. The parameter set found by

the ABA was:

 120

 n=53; m=17; e=3; nsp=8; nep=41; ngh=0.25;

The average of 100 global optima produced by the ABA was -837,711 and the average

of evaluations was 163053. Global optima obtained from the ABA and the BBA’s

hundred runs are given in Figure 5.14. Experimental results show that the

performance of the ABA is better than the Basic Bees. However, even the global

optimum found by the ABA is not very accurate. This is because the BBA was used

as an “engine” in the ABA which already failed to find an accurate global optimum.

To overcome this problem, more accurate versions of the Bees Algorithm can be used

as a core for the ABA.

The two dimensional Schaffer function was selected for experiment. The expected

answer for the function is 0. The parameter set used for BBA to solve this problem

was:

 n=100; m=4; e=2; nsp=10; nep=30; ngh=3;

The average of results obtained from the BBA was 0.01 and the algorithm used an

average of 121088 evaluations to find that optimum. The parameter set found by the

ABA was:

 n=60; m=23; e=5; nsp=5; nep=15; ngh=0.5;

The average of 100 global optima produced by the ABA was 0.0005 and the average

of evaluations was 9370. Global optima obtained from the ABA and the BBA’s

hundred runs are given in Figure 5.15.

 121

Table 5.1: Average evaluations obtained from hundred runs of the BBA and the

ABA.

BA ABA
No. Functions

Average Evaluations

1 Goldstein & Price (2D) 504 654

2 Schwefel (2D) 250049 163053

3 Schaffer (2D) 121088 9370

4 Rosenbrock (10D) 935000 529045

5 Sphere (10D) 285039
29906

6 Ackley (10D) 910000 700870

7 Rastrigin (10D) 885000 148960

8 Martin & Gaddy (2D) 600 840

9 Easom (2D) 5280 3137

10 Griewank (10D) 4300000 750020

 122

Table 5.2: Global optimums obtained from hundred runs of the BBA and the

ABA.

BA ABA
No. Functions

Global optimum

1 Goldstein & Price (2D) 0.0005 0.0002

2 Schwefel (2D) -837.144
-837,711

3 Schaffer (2D) 0.01 0.0005

4 Rosenbrock (10D) 0.0003 0.0004

5 Sphere (10D) 0.0003 0.0000

6 Ackley (10D) 0.029 0.02

7 Rastrigin (10D) 0.0048 0.0004

8 Martin & Gaddy (2D) 0 0

9 Easom (2D) -0.707 -0.8168

10 Griewank (10D) 9.9895 9.9949

 123

The Rosenbrock function was selected for experiment. The expected answer for the

function is 0. The parameter set used for the BBA to solve this problem was:

 n=15; m=8; e=5; nsp=10; nep=30; ngh=0,0015;

The average of results obtained from the BBA was 0.0003 and the algorithm used an

average of 935.000 evaluations to find that optimum. The parameter set found by the

ABA was:

 n=23; m=17; e=6; nsp=5; nep=44; ngh=0,003;

The average of 100 global optima produced by the ABA was 0.0004 and the average

of evaluations was 529045. Global optima obtained from the ABA and the BBA’s

hundred runs are given in Figure 5.16. Due to the function’s nature, accurate local

search is required to find the global optimum. Both the BBA and the ABA found

fairly accurate global optima because of utilised local search. However, the ABA

found the optimum in fewer evaluations because the proposed algorithm performed a

local search on more patches.

 124

The Best Results of Each Run

2,9998

3

3,0002

3,0004

3,0006

3,0008

3,001

3,0012

3,0014

3,0016

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ABA

The BBA

Figure 5.13: The results of a hundred runs for the BBA and the ABA on

Goldstein and Price 2D.

The Best Results of Each Run

-838,5

-838

-837,5

-837

-836,5

-836

-835,5

-835

-834,5

-834

0 20 40 60 80 100 120

Number of Run

F
itn

es
s

V
al

u
e

The ABA

The BBA

Figure 5.14: The results of a hundred runs for the BBA and the ABA on

Schwefel 2D.

 125

The Best Results of Each Run

-0,002

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 5.15: The results of a hundred runs for the BBA and the ABA on Schaffer

2D.

The Best Results of Each Run

-0,0002

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 5.16: The results of a hundred runs for the BBA and the ABA on

Rosenbrock 10D.

 126

The Hyper Sphere function was selected for experiment. The expected answer for the

function is 0. The parameter set used for the BBA to solve this problem was:

 n=10; m=7; e=1; nsp=20; nep=30; ngh=0,05;

The average of results obtained from the BBA was 0.0003 and the algorithm used an

average of 285039 evaluations to find that optimum. The parameter set found by the

ABA was:

 n=66; m=8; e=2; nsp=2; nep=13; ngh=0,007;

The average of 100 global optima produced by the ABA was 0 and the average

evaluations was 29906. Global optima obtained from the ABA and the BBA’s

hundred runs are given in Figure 5.17. The influence of the accurate parameter set on

the performance of the algorithm can be observed from the experimental results, thus,

with more precise parameters, the algorithm obtained better results.

The ten dimensional Ackley function was selected for experiment. The expected

answer for the function is 0. The parameter set used for BBA to solve this problem

was:

 n=100; m=8; e=1; nsp=10; nep=20; ngh=0,7;

The average of results obtained from The BBA was 0,029 and the algorithm used an

average of 910.000 evaluations to find that optimum. The parameter set found by the

ABA was:

 n=54; m=6; e=3; nsp=15; nep=24; ngh=1;

 127

The average of 100 global optima produced by the ABA was 0.02 and the average of

evaluations was 700870. Global optima obtained from the ABA and the BBA’s

hundred runs are given in Figure 5.18. Ackley is another hard type benchmark

function. Both the ABA and the BBA failed to find a precise global optimum and the

number of evaluations needed to get results was not far from each other. However,

both algorithms got similar results, so it can be concluded that the ABA is as effective

as the BBA for a given optimisation problem.

The ten dimensional Rastrigin function was selected for experiment. The expected

answer for the function is 0. The parameter set used for BBA to solve this problem

was:

 n=10; m=3; e=1; nsp=20; nep=30; ngh=0,01;

The average of results obtained from the BBA was 0.048 and the algorithm used an

average of 885000 evaluations to find that optimum. The parameter set found by the

ABA was:

 n=70; m=13; e=7; nsp=8; nep=21; ngh=0.31;

The average of 100 global optima produced by the ABA was 0.0004 and the average

of evaluations was 148960. Global optima obtained from the ABA’s and the BBA’s

hundred runs are given in Figure 5.19. In the BBA “n” was chosen too low. The

algorithm used the maximum number of evaluations available and stopped searching

before converging to an actual global optimum. However, the ABA chose a higher

number of initial scout bees, which lead to a more accurate result. Another factor,

which affects result on such problems, is the number of sites for local search. On

 128

functions like Rastrigin, algorithms utilising local search are more productive than

those that the use only global search.

The two dimensional Martin & Gaddy function was selected for experiment. The

expected answer for the function is 0. The parameter set used for BBA to solve this

problem was:

 n=10; m=5; e=1; nsp=10; nep=30; ngh=0,1;

The average of results obtained from the BBA was 0 and the algorithm used an

average of 600 evaluations to find that optimum. The parameter set found by the ABA

was:

 n=13; m=4; e=3; nsp=17; nep=36; ngh=0.625;

The average of 100 global optima produced by the ABA was 0 and the average of

evaluations was 840. Global optima obtained from the ABA’s and the BBA’s hundred

runs are given in Figure 5.20. On the given function, performances of both algorithms

were approximately the same. As mentioned in previous chapters, the BBA is already

enough to solve relatively easy optimisation problems.

The two dimensional Easom function was selected for experiment. The expected

answer for the function is -1. The parameter set used for the BBA to solve this

problem was:

 n=100; m=10; e=2; nsp=4; nep=30; ngh=0, 5;

The average of results obtained from the BBA was -0,707 and the algorithm used an

average of 5280 evaluations to find that optimum. The parameter set found by the

ABA was:

 129

 n=69; m=11; e=8; nsp=2; nep=48; ngh=0,5;

The average of 100 global optima produced by the ABA was -0.8168 and the average

of evaluations was 3137. Global optima obtained from the ABA’s and the BBA’s

hundred runs are given in Figure 5.21. Both the Basic Bees Algorithm and the

Autonomous Bees Algorithm failed to find a global optimum but again, both

algorithms generated similar results.

A modified version of the ten dimensional Griewank function was selected for

experiment. The expected answer for the function is 10. The parameter set used for

the BBA to solve this problem was:

 n=100; m=40; e=20; nsp=10; nep=30; ngh=1,5;

Average of results obtained from The BBA was 9.989 and algorithm used average of

4300000 evaluations to find that optimum. Parameter set found by the ABA was:

 n=48; m=32; e=19; nsp=6; nep=9; ngh=1;

The average of 100 global optima produced by the ABA was 9.9949 and the average

of evaluations was 750020. Global optima obtained from the ABA’s and the BBA’s

hundred runs are given in Figure 5.22. For this function “n” was chosen too high for

the BBA, which caused an unusually high number of evaluations. Although the ABA

found a similar global optimum, due to well tuned parameters, number of evaluations

to find the global optimum was significantly lower.

 130

The Best Results of Each Run

-0,0002

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 5.17: The results of a hundred runs for the BBA and the ABA on Hyper

Sphere 10D.

The Best Results of Each Run

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 5.18: The results of a hundred runs for the BBA and the ABA on Ackley

10D.

 131

The Best Results of Each Run

-0,02

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 5.19: The results of a hundred runs for the BBA and the ABA on

Rastrigin 10D.

The Best Results of Each Run

-2,00E-05

0,00E+00

2,00E-05

4,00E-05

6,00E-05

8,00E-05

1,00E-04

1,20E-04

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 5.20: The results of a hundred runs for the BBA and the ABA on Martin

and Gaddy 2D.

 132

The Best Results of Each Run

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0 20 40 60 80 100 120

Number of Run

F
it

n
es

s
V

al
u

e

The ENSECBA

The BBA

Figure 5.21: The results of a hundred runs for the BBA and the ABA on Easom

2D.

The Best Results of Each Run

9,84

9,86

9,88

9,9

9,92

9,94

9,96

9,98

10

10,02

0 20 40 60 80 100 120

Number of Run

F
itn

es
s

V
al

u
e

The ENSECBA

The BBA

Figure 5.22: The results of a hundred runs for the BBA and the ABA on

Griewank 10D.

 133

Moreover, Statistical analysis has been carried out using t-test. The confidence level

was selected to be 95 % (α < 0.05). T- test results are illustrated in table 5.3.

According to results the ABA is more significant than the BBA on most benchmark

functions. Which means the ABA is better than the BBA

Table 3.5: The statistical analysis between the Autonomous Bees Algorithm and

the Basic Bees Algorithm.

No. Function
Significance between the Basic Bees Algorithm

and the Autonomous Bees Algorithm

Significant

(α<0.05)
α

1 Goldstein & Price (2D) Yes
4,09009E-10

2 Schwefel (2D) Yes
6,89091E-11

3 Schaffer (2D) Yes
6,23132E-74

4 Rosenbrock (10D) No
0,06113

5 Sphere (10D) Yes
3,28918E-14

6 Ackley (10D) No
0,06612

7 Rastrigin (10D) Yes
0,0111

8 Martin & Gaddy (2D) No
0,72923

9 Easom (2D) Yes
7,74352E-05

10 Griewank (10D) Yes
0,0132

 134

5.5 Summary

In this study, the Autonomous Bees Algorithm was presented. The aim of the research

was to create an independent version of the BBA where there is no need to tune the

initial parameters manually.

The proposed algorithm has been successfully tested on continuous type benchmark

functions and the results observed were compared with the results obtained from the

experiment on the Basic Bees Algorithm. Results of the experiments proved that the

ABA can autonomously tune parameters without human interaction and produce at

least similar or better results than The Basic Bees algorithm.

All experimental results were illustrated in the previous section. Moreover, statistical

analysis has been employed using t-test and the results have been shown in this

chapter.

 135

Chapter 6

Conclusion and Future Work

 136

6. Conclusion

This chapter summarises the main contributions and conclusions of this study. It also

provides suggestions for the future work.

6.1 Contributions

This study has introduced new enhancements to the Bees Algorithm. The following

enhancements are given below:

• Early neighbourhood search to improve initialisation stage of the Bees

Algorithm.

• Efficiency based recruitment for the neighbourhood search to improve

performance of the algorithm on high dimensional problems.

• Hybridisation of the Tabu search and the Bees algorithm to provide memory

for the Bees Algorithm to decrease number of evaluations.

• Novel strategy to escape from local patches with similar fitness values

• Provide autonomy for the Bees Algorithm to minimise the human interaction

with the search process.

 137

6.2 Conclusions

The objectives stated in chapter one have all been achieved.

This thesis has proposed three enhanced the Bees Algorithms. Each new algorithm was

tested on continues type benchmark functions. Further statistical analysis was carried out

using T-test. All experimental results were provided in related chapters. The conclusions

are given below:

1. Early neighbourhood search and efficiency based recruitment for the

neighbourhood search were utilised to create new version of the Bees Algorithm

which was called the Early Neighbourhood Search and Efficiency-based

Recruitment Bees Algorithm (ENSEBRBA). Proposed algorithm was tested on

ten different types of continues benchmark functions. Results were assessed based

on average absolute difference technique and average number of evaluations.

From experimental results it can be concluded that performance of the Bees

Algorithm on high dimensional problems was improved due to proposed

modifications. However, performance of the proposed algorithm was not

satisfactory on easy low dimensional benchmark functions. This can be related

with high computational calculation of the efficiencies of each best patch. Such

calculations are not necessary for "easy" problems. Thus it will only increase the

number of evaluations. The proposed enhancements improved the overall

performance of the algorithm. Moreover results of statistical analysis proved that

the proposed algorithm is significantly better than the Basic Bees Algorithm. First

and second objectives described in chapter 1 were achieved by using

ENSEBRBA.

 138

2. The Hybrid Tabu Bees Algorithm (TBA) was proposed by combining the Tabu

search and the Bees Algorithms. This is first version of the Bees Algorithm which

utilises the memory unit. Moreover new strategy to escape from locals with

similar fitness values. The new algorithm was also tested on continues type

benchmark functions and the results were compared with the BBA and the

ENSEBRBA. Experimental results were again assessed based on average absolute

difference and average number evaluations. According to the generated results the

proposed modifications decreased the number of evaluations needed for the Bees

Algorithm go converge to the global optimum. Although the TBA was introduced

to decrease number of evaluations, it also improved accuracy of the Bees

Algorithm. Utilised t-test proved that proposed algorithm is significantly better

than the Basic Bees Algorithm. The third and forth objectives met by proposing

the Hybrid Tabu Bees Algorithm.

3. Concept of autonomy was utilised to develop version of the Bees Algorithm

where interaction between user and the search process was minimised. The

proposed algorithm was called the Autonomous Bees Algorithm (ABA). The

proposed algorithm was also tested on continues type benchmark functions. The

generated results were compared to the results of the BBA. The experimental

results were assessed based on average of global optimums and number of

evaluations. Observed results proved that the ABA generated optimal parameter

set and produced at least same or better results than the BBA. Moreover, t-test

based statistical analysis was carried out. According to this experiment the ABA

was significantly better than the BBA on seven functions out of ten. Results

observed from those three functions were similar to results of the BBA. From t-

test result it can be concluded that utilised autonomy not only provided the

 139

independency to the Bees Algorithm but also improved accuracy. Objective five

proposed in chapter 1 was achieved by developing the ABA.

6.3 Future work

There are a number of issues which can be investigated in order to improve the Bees

Algorithm and widen its potential.

• Early neighbourhood search was introduced as a solution for the poor

initialisation stage of the Bees Algorithm. However, this search was carried

out in its simplest form using minimum number of recruit bees. In the future

different search strategies can be applied to improve efficiency of this

approach in the initialisation stage.

• Efficiency based recruitment was suggested to improve the performance of the

Bees Algorithms on high dimensional problems. However, the performance of

the algorithm was degraded on simple low dimensional problems due to the

computational complexity. This can be investigated to find more productive

approach to calculate efficiency of the patches with minimum number of

evaluations.

• Different tabu list strategies can be investigated for the Hybrid Tabu Bees

Algorithm.

 140

• Various enhancements were proposed in this study. It can be investigated to

have various combinations of those enhancements.

• In future, it is possible to focus on the BA parameter reduction to run the

algorithm with less parameters.

• Most studies in the BA were carried out to improve the neighbourhood search

stage (local search). The future research studies on the BA may focus on the

global search process stage.

• The new research trend on the BA is to enhance the algorithm with hybrid

approaches using Tabu Search, Genetic Algorithm and PSO. It is possible to

investigate the availability of using other hybrid combinations.

 141

REFERENCES

Ahmad S., 2012, “A study of search neighbourhood in the bees algorithm”, PhD

Thesis, Institute of Mechanical and Manufacturing Engineering, Cardiff University.

Al-Jabbouli H., 2009, “Data Clustering Based on Bees and Trees”, PhD Thesis,

Institute of Mechanical and Manufacturing Engineering, Cardiff University.

Back T., Fogel D. B. and Michalewicz Z., 1997, “Handbook of Evolutionary

Computation (Computational Intelligence Library)”, Taylor and Francis, New York.

Baris Y., 2012, “Novel Computational Technique for Determining Depth Using the

Bees Algorithm and Blind Image Deconvolution”, PhD Thesis, Institute of

Mechanical and Manufacturing Engineering, Cardiff University.

Blondin J., 2009, “Particle Swarm Optimization: A Tutorial”,

http://cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf, August 2013.

Blum C. and Merkle D., 2008, “Swarm Intelligence-Introduction and Applications”,

Springer, Berlin.

Bramier M. F. and Banzhaf W., 2006, “Linear Genetic Programming”, Springer, New

York.

 142

Chinneck J. W., 2000, “Practical Optimization: A Gentle Introduction”, Carleton

University.

David P., and Alan M., 2010, “Artificial Intelligence: Foundations of Computational

Agents”, Cambridge University Press.

Davis L., 1991, “Handbook of genetic algorithms”, Van Nostrand Reinhold, New

York.

Dieterich J.M., Hartke B., 2012, “Empirical Review of Standard Benchmark

Functions Using Evolutionary Global Optimization”, Applied Mathematics, vol. 3, pp.

1552-1564.

Dorigo M., Maniezzo V. and Colorni A., 1996, “Ant System: Optimization by a

Colony of Cooperating Agents”, IEEE Transactions on Systems, Man and

Cybernetics, Part B (Cybernetics) 26(1), pp. 29-41.

Dorigo M. and Stutzle T., 2004, “Ant Colony Optimization”, A Bradford Book The

MIT Press, London.

Eberhart R. C. and Kennedy J., 1995, "A New Optimiser using Particle Swarm

Theory”, Proceedings of Sixth International Symposium on Micromachine and

Human Science, pp. 39-43.

 143

Eberhart R. C. and Yuhui S., 2001, "Particle swarm optimization: developments,

applications and resources," Evolutionary Computation, 2001. Proceedings of the

2001 Congress on, vol.1, pp.81-86.

Eiben A. E. and Smit S. K., 2012, "Evolutionary Algorithm Parameters and Methods

to Tune Them", In Autonomous Search, Eds.Hamadi Y.,Monfroy E. and Saubion F.,

pp. 15-36, Springer Verlag, Berlin.

Ernesto M., Baris Y., Alfredo L. and Michael S. P., 2013, "A Multi-Objective

Optimization for Supply Chain Network Using the Bees Algorithm", International

Journal of Engineering Business Management, InTech, DOI: 10.5772/56754.

Ghanbarzadeh A., 2007, “The Bees algorithm. A novel optimisation tool”, PhD

Thesis, Institute of Mechanical and Manufacturing Engineering, Cardiff University.

Glover F., 1990, “Tabu Search, Part II – ORSA”, Journal on Computing 2, pp. 4-32.

Goffi L. W., Ferrier G. D. and Rogers J., 1994, "Global Optimisation of Statistical

Function with Simulated Annealing", Journal of econometrics, vol. 60 pp. 65-99.

Goldstein A.A., Price J.F., 1967, “An effective algorithm for minimization”,

Numerische Mathematik, vol. 10, pp.184-189.

Gould J.L. and Gould C.G., 1988, “The Honey Bee”, Scientific American Library,

 144

New York.

Jason B., 2011, “Clever Algorithms: Nature-Inspired Programming Recipes”,

http://www.cleveralgorithms.com/nature-inspired/stochastic/tabu_search.html, August

2013.

Ho, C. W., Lee, K. H. and Leung, K. S., 1999, "A genetic algorithm based on

mutation and crossover with adaptive probabilities," Evolutionary Computation, 1999.

CEC 99. Proceedings of the 1999 Congress on, vol.1, pp.,768-775.

Karaboga D., 2005, “An idea based on honey bee swarm for numerical optimization”,

Technical Report TR06, Erciyes University, Turkey.

Klipp D.L., 2001, “A Study in Polynomial Motion”,http://www.isa.org/

InTechTemplate.cfm?Section=Communities2&template=/TaggedPage/DetailDisplay.

cfm&ContentID=7043, August 2013.

Koc E., 2010, “The Bees Algorithm Theory, Improvements and Applications”, PhD

Thesis, Institute of Mechanical and Manufacturing Engineering, Cardiff University.

Koppen M., Abraham A. and Schaefer G., 2011, “Intelligent Computational

Optimization in Engineering Techniques and Applications”, Springer, Berlin.

Koziel S. and Yang X. S., 2011, “Computational Optimization, Methods and

 145

Algorithms”, Springer, Berlin.

Kristoffersen T. K., 2007, “Stochastic programming with applications to power

Systems”, PhD Thesis, University of Aarhus.

Land H. and Doig A. G., 1960, “An automatic method of solving discrete

programming problems”, Econometrica 28 (3), pp. 497–520.

Lee J.Y., 2010, “Multi-Objective Optimisation Using the Bees Algorithm”, PhD

Thesis, Institute of Mechanical and Manufacturing Engineering, Cardiff University.

Li J. and Rhinehart R.R., 1998, “Heuristic Random Optimisation”, Computers and

Chemical Engineering 22(3), pp. 427-444.

Li L. and Liu F., 2011, “Group Search Optimisation for Application in Structural

Design”, Springer, Berlin.

Meng Z., 2007, “Autonomous genetic algorithm for functional

optimization”, Progress In Electromagnetics Research 72, pp 253-268.

Mishra S., 2009, ‘Engineering Economics and Costing”, PHI Learning Private

Limited, New Dehli.

Molga M., 2005, “Test functions for optimization needs”,

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf, August 2013.

Onwunalu, J. E. and Durlofsky L. J., 2010, "Application of a particle swarm

 146

optimization algorithm for determining optimum well location and type ", Comput.

Geosci. 14, pp.183–198.

Otri S., 2011, “Improving the Bees Algorithm for Complex Optimisation Problems”,

PhD Thesis, Institute of Mechanical and Manufacturing Engineering, Cardiff

University.

Panigrahi B. K., Lim M. H. and Shi Y., 2011, “Handbook of Swarm Intelligence -

Concepts, Principles and Applications”, Springer, Berlin.

Passino K. M. and Seeley T. D., 2006, “ Modeling and analysis of nest-site selection

by honeybee swarms: the speed and accuracy trade-off”, Behav. Ecol. Sociobiol.

59(4), pp. 27-42.

Pham D. T., Afify A.A. and Koç E., 2007a, “Manufacturing Cell Formation Using the

Bees Algorithm”, 3rd International Virtual Conference on Intelligent Production

Machines and Systems (IPROMS 2007), Dunbeath, Scotland, pp. 523-528.

Pham D. T., Darwish A. H. and Eldukhri E.E., 2009, “Optimisation of a Fuzzy Logic

Controller Using the Bees Algorithm”, International Journal of Computer Aided

Engineering and Technology 1, pp. 250-264.

Pham D.T. and Castellani M., 2009a, “The Bees Algorithm: Modelling Foraging

Behaviour to Solve Continuous Optimization Problems”, Proceedings of IMechE,

Part C 223(12), pp. 2919-2938.

 147

Pham D.T. and Karaboga D., 2000, “Intelligent optimisation techniques: Genetic

Algorithms, Tabu Search, Simulated Annealing and Neural Networks”, Springer-

Verlag, London.

Pham D.T., Castellani M. and Fahmy A.A., 2008, “Learning the Inverse Kinematics

of a Robot Manipulator Using the Bees Algorithm”, Proceedings of INDIN 2008, pp.

493-498.

Pham D.T., Ghanbarzadeh A., Koc E. and Otri S., 2006d, “Application of the Bees

Algorithm to the training of radial basis function networks for control chart pattern

recognition”, 5th CIRP International Seminar on Intelligent Computation in

Manufacturing Engineering, CIRP ICME, Ischia, Italy, pp. 711-716.

Pham D.T., Ghanbarzadeh A., Koc E., Otri S., Rahim S. and Zaidi M., 2005., “The

Bees Algorithm”, Technical Report: MEC 0501, Manufacturing Engineering Centre,

Cardiff University.

Pham D.T., Ghanbarzadeh A., Koc E., Otri S., Rahim S. and Zaidi M., 2006a, “The

Bees Algorithm: A Novel Tool for Complex Optimisation Problems”, Proc. 2nd Int.

Virtual. Conf. on Intelligent Production Machines and Systems (IPROMS 2006),

Elsevier Oxford, pp: 454-459.

Pham D.T., Koc E., Ghanbarzadeh A. and Otri S., 2006c, “Optimisation of the

Weights of Multi-Layered Perceptrons Using the Bees Algorithm”, 5th International

 148

Symposium on Intelligent Manufacturing Systems, Sakarya, Turkey.

Pham D.T., Koc E., Lee J.Y. and Phrueksanant J., 2007b, “Using the Bees Algorithm

to Schedule Jobs for a Machine. LAMDAMAP”, 8th International Conference on

Laser Metrology, CMM and Machine Tool Performance, Cardiff, Euspen, UK, pp.

430-439.

Pham D.T., Otri S., Afify A., Mahmuddin M. and Al-Jabbouli H., 2007c, “Data

Clustering Using the Bees Algorithm”, 40th CIRP International Manufacturing

Systems Seminar, Liverpool, UK.

Pham D.T., Otri S., Ghanbarzadeh A. and Koc E., 2006b, “Application of the Bees

Algorithm to the Training of Learning Vector Quantisation Networks for Control

Chart Pattern Recognition”, 2nd IEEE International Conference on Information and

Communication Technologies: From Theory to Applications, Damascus, Syria, pp.

1624-1629.

RoRosenbrock H.H., 1960,” An Automatic Method for Finding the Greatest or Least

Value of a Function”, The Computer Journal, vol. 3(3), pp. 175-184.

Rothlauf F., 2011, “Design of Modern Heuristics”, Springer, Berlin.

Rutkowski L., 2008, “Computational Intelligence: Methods and Techniques”,

Springer, Berlin.

 149

Schmidhuber J., and Zhao J., 1999, “Direct Policy Search and Uncertain Policy

Evaluation”, Technical Report: SS-99-07, California: AAAI.

Seanm L., 2009, “Essentials of Metaheuristics”, http://cs.gmu. edu/~sean/ book/

metaheuristics/ , August 2013.

Seeley T.D., 1995, “The Social Physiology of Honey Bee Colonies: The Wisdom of

the Hive, Harvard University Press, London.

Sholedolu M.O., 2009, “Nature-inspired Optimisation: Improvements to the Particle

Swarm Optimisation Algorithm and the Bees Algorithm” , PhD Thesis, Institute of

Mechanical and Manufacturing Engineering, Cardiff University.

Shtovba, S. D., 2005, " Ant Algorithms: Theory and Applications", Translated from

Programmirovanie , Programming and Computer Software 31(4), pp. 167–178.

Talbi E., 2009, “ Metaheuristics: From Design to Implementation”, Wiley.

Tereshko V. and Loengarov A., 2005, “Collective Decision-Making in Honey Bee

Foraging Dynamics”, Computing and Information Systems Journal 9(3), pp 1-7.

Tsubakitani S., Evans J. R, 1998, "Optimising tabu list size for the travelling salesman

problem.", Computers Ops. Res. 25, pp.91-97.

Weise T., 2009, “Global Optimization Algorithms: Theory and Application”,

 150

http://www.it-weise.de/projects/book.pdf, August 2013.

Wolpert D. H. and Macready W. G., 1997, “No Free Lunch Theorems for

Optimisation”, IEEE Transactions on Evolutionary Computation 1(1), pp. 67-82.

 151

APPENDIX A

2 dimensional graphic illustrations of the Benchmark functions are given below

(Molga, 2005):

Figure A1: Graphic illustration of the Goldstein and Price’s function (Molga,

2005).

 152

Figure A2: Graphic illustration of the Schwefel function (Molga, 2005).

Figure A3: Graphic illustration of the Rosenbrock function (Molga, 2005).

 153

Figure A4: Graphic illustration of the Hyper Sphere function (Molga, 2005).

Figure A5: Graphic illustration of the Ackley funct ion (Molga, 2005).

 154

Figure A6: Graphic illustration of the Rastrigin fu nction (Molga, 2005).

Figure A7: Graphic illustration of the Easom function (Molga, 2005).

 155

Figure A8: Graphic illustration of the Griewank fun ction (Molga, 2005).

