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Throughout human history, coastal and marine resources have been a vital part of human subsistence. As
a result archaeological faunal assemblages from coastal sites often contain large quantities of skeletal
remains indicative of human interaction with marine mammals. However, these are often hard to
identify due to a unique combination of factors regarding the procurement, utilisation, morphological
and physical characteristics of marine mammal bones. These factors often result in a large number of
archaeological cetacean and pinniped specimens fragmented beyond visual recognition, being labelled
‘whale’ or ‘marine mammal’. In this paper we report the development of a Zooarchaeology by Mass
Spectrometry (ZooMS) method of collagen fingerprinting, for efficient and low cost discrimination of a
wide range of marine mammal species including cetaceans and pinnipeds. We apply the technique to
more than fifty archaeological specimens from seven different North Atlantic sites ranging from the
Mesolithic until the Early Modern period.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction

Coastal activities have been important to hominids from the
earliest times, with studies on Neanderthals at different sites across
Gibraltar providing evidence that marine mammal exploitation
predates modern humans (Erlandson, 2001; Sabin, 2005; Stringer
et al., 2008). These species continue to be significant to present
day populations, especially to coastal communities and most
importantly as a source of food. Marine mammals comprise the
cetaceans (whales, dolphins and porpoises), pinnipeds (earless
(true) seals, eared seals (sea lions and fur seals) and walruses) and
sirenians (sea-cows). These groups are not related and differ
markedly in ecology and behaviour. However, due to geographical
constraints, only cetaceans and pinnipeds are discussed further in
this paper. Pinnipeds are distinguished from cetaceans by their
ability to move on land as well as water and have limbs configured
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to allow this transition. Cetaceans never leave the water and have
non-weight bearing forelimbs modified to act as flippers and
hindquarters represented only by vestigial pelvises. As a result of
this evolutionary commitment, post-cranial cetacean bones are
mostly composed of cancellous bone with a thin cortical layer,
fewer distinct morphological features and a lower density of min-
eral in their bones to aid buoyancy (Gray et al., 2007). This lower
mineral density reduces the likelihood of archaeological bone
preservation in relation to those of terrestrial mammals.

There is a large body of evidence for marine mammal exploi-
tation in communities living on the coasts of the North-Eastern
Atlantic, North Sea and Baltic since the prehistoric period (Storå
and Lõugas, 2005). The manner of this exploitation can provide
important insights into the cultural and technological achievement
of a society, partly because of the relative difficulty in exploiting the
various cetacean species (Erlandson, 2001; Mulville, 2002). The
regular occurrence of cetacean bones at archaeological sites (e.g.,
Clark, 1947; Hallén, 1994; Herman and Dobney, 2004; MacGregor,
1985) has fuelled a long-running debate about their procurement
(Erlandson, 2001; Savelle, 1997). In particular, there is considerable
interest in whether cetaceans were obtained as an occasional
“windfall” due to natural stranding events, or were actively hunted
nse.
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(e.g. Clark, 1947; Erlandson, 2001; Gardiner, 1997; Mulville, 2002)
and, if deliberately procured, were they captured with harpoons
from the shore, from small boats, or was a more active strategy of
hunting whales at sea used?

Whilst marine mammal remains are present on sites from
prehistory onwards, the earliest written reference for the exploi-
tation of marine mammals comes from the late 7th century AD text
by Adomnán on St Columba, who lived in the 6th century AD. Later,
an early Christian text written by Bede in 731 AD mentions the
hunting of both seals and cetaceans whilst later still there are ac-
counts of herding, stranding and slaughter of small whales in the
Western and Northern Isles of Scotland and in Iceland (Fenton,
1997; Kristjánsson, 1986). Overall, however, there is a paucity of
detailed information about marine mammal exploitation in the
early written records (Szabo, 2008). It is therefore important to
examine archaeological bone assemblages if we are to understand
the prehistoric and early historic human interaction with these
mammals.

Cetaceans provide food, hide, blubber, sinew, fuel, containers,
tool-making material and structural elements (Clark, 1947, 1952;
Erlandson, 2001; Mulville, 2002; Savelle, 1997). Toothed whales
also provide additional material for carving or ornamentation. Seals
supply food, hide, sinew, storage containers from stomach and
pericardium, teeth for decoration and blubber (Clark, 1952;
Grigson, 1981). Although it is possible that complete seal car-
casses may be processed at a settlement, it is unlikely that the
bones of larger cetaceans would be transported from the sitewhere
an animal was accidentally beached, or a carcass was landed, unless
there was some specific reason (Erlandson, 2001; Mulville, 2002;
Savelle, 1997). Indeed many cetacean bones recovered from
archaeological excavations tend to show evidence of modification,
burning or in situ structural use. Whale bones were used as building
material, for tools such as chopping blocks, and as craft items such
as gaming pieces (Childe, 1931; Erlandson, 2001; Mulville, 2002;
Savelle, 1997; Smith and Kinahan, 1984; Whitridge, 2002;
Harrison et al., 2008; Kristjánsson, 1986; Mehler, 2007). This sub-
jects them to further fragmentation and makes their identification
through visible inspection more difficult (Eldjárn, 2000; Erlandson,
2001; Mulville, 2002).

Determining the numbers and species of marine mammal
remains found at archaeological sites has an important part to
play in resolving questions about their procurement and use.
However archaeological cetacean bone is relatively fragile, due to
its low mineral content, and has often been worked for various
purposes. Consequently many archaeological specimens are
fragmented beyond morphological recognition, often being
labelled ‘whale’ or ‘marine mammal’ (e.g. Harrison et al., 2008;
McGovern, 2009; Mulville, 2002; Pálsdóttir, 2008). Additionally,
not all countries or regions have museum collections with suffi-
cient numbers of cetacean and pinniped skeletons to use for
species identification making it even more important to establish
relatively cheap alternative methods to visual inspection of
comparative morphology.

Three examples illustrate the difficulty of using comparative
morphology for cetacean identification from archaeological sites.
Firstly, in a collection from sevenWestern Isles archaeological sites,
ranging from the later Bronze Age to the Norse period, only 30
(5.3%) of 568 cetacean bone fragments could be identified to spe-
cies when compared with the marine mammal collection held at
the Natural History Museum, London (Mulville, 2002). Secondly,
only seven (5.2%) of 134 cetacean bone fragments recovered from
the Iron Age site of Brest Ness in Orkney, could be identified to
species using the comparative collection at the National Museums
Scotland (Fraser, unpublished). Thirdly there were few specific
identifications among an extensive list of cetacean bone recovered
from archaeological sites in the Baltic, North Sea and North-West
Atlantic (Clark, 1947).

Pinniped identification is often hampered by the remarkable
level of intra-specific variation in bone morphology (Amorosi,
1992; Hodgetts, 1999) and this has led to the widespread practice
of identifying only a limited number of elements (e.g., cranium,
mandible, humerus, ulna and femur) to the species level. Although
other elements of the post-cranial skeleton can sometimes be
identified, there is often overlap between species, so that many
identifications are only made to ‘seal’ (Hodgetts, 1999). Since Clarks
seminal publication many archaeological sites have consistently
yielded small but significant proportions of cetacean and pinniped
bone but few of these have been ascribed to species, illustrating the
difficulties of identification usingmorphological characteristics. For
example, in the Mesolithic shell midden at Cnoc Coig, Oronsay,
Argyll and Bute, a number of grey seals were identified but as many
again could only be recorded as probable grey seal (Grigson and
Mellars, 1987); there were similar difficulties in identifying a
common seal. At the same site a range of small cetacean bones
could not be identified to species, but the authors suggested these
probably derived from common porpoise or common dolphin
based on size and present day distribution (Grigson and Mellars,
1987). At the site of Northton on the Isle of Harris, neither pinni-
peds nor cetaceans could be identified to species. In the Neolithic
assemblage, seven bone and tooth fragments were allocated to seal,
which was 1% of those recovered. At the Beaker phase 1 of the site,
19 bones (3%) were allocated to seal and two bones (0.3%) were
unidentified cetaceans (Finlay, 2006). At the Neolithic and Early
Bronze Age period from Tofts Ness in Orkney, 172 bones were
allocated only as ‘seal’, 1.4% of the total collection for that period,
and a further 36 bones (0.3%) as cetacean (Nicholson and Davies,
2007).

Specific identification of cetacean remains has particular
value in the understanding of species distributions before the
time of large-scale commercial whale hunting in the early
modern period (Roman and Palumbi, 2003). Zooarchaeological
data has also been used in arguments for and against modern
whaling (Mulville, 2005), thus the importance of accurate iden-
tification and thorough understanding of the nature of whale
exploitation has become particularly significant in recent years.
Extraction of DNA provides a means to identify such fragments
and can also yield considerable information on species, number
of individuals at the archaeological site and even in the source
population (Foote et al., 2012; Nichols et al., 2007), however it is
a relatively time-consuming and expensive process. In this paper
we report the development of a Zooarchaeology by Mass Spec-
trometry (ZooMS) method, initially designed to separate sheep
from goat (Buckley, 2008; Buckley et al., 2010), as a tool that can
distinguish a wide range of marine mammal species. As
described here, it can be used to separate cetaceans and pinni-
peds at least to subfamily levels and down to species level in
some groups of cetaceans.

1.1. Species identification using collagen peptide mass
fingerprinting (ZooMS)

Depending on the conditions, as collagen (Type 1 collagen;
COL1) loss in bone is sensitive to temperature, the preservation of
collagen molecules in fossils can be sustained for hundreds of
thousands or even millions of years; studies have used collagen
peptide mass fingerprints from Mediterranean sites >10 Ka
(Buckley et al., 2009; Buckley and Kansa, 2011), British Pleistocene
fossils w1.5 Ma (Buckley and Collins, 2011) and Arctic Pliocene
fossils from w3.5 Ma (Rybczynski et al., 2013) for species deter-
mination. This long term survival has been linked to the intimate



Table 1
Details of standards used in this study, listing the source and common, family, genus
and species names.

Source Common name Family Genus Species

NCM Walrus Odobenidae Odobenus rosmarus
NMS Northern fur seal Otariidae Callorhinus ursinus
NMS Bearded seal Phocidae Erignathus barbatus
NMS Ringed seal Phocidae Pusa hispida
NCM Hooded seal Phocidae Cystophora cristata
NCM Grey seal Phocidae Halichoerus grypus
NCM Common seal Phocidae Phoca vitulina
YM Harp seal Phocidae Phoca groenlandica
NMS Bottlenose dolphin Delphinidae Tursiops truncates
NMS Common dolphin Delphinidae Delphinus delphis
NMS White-beaked

dolphin
Delphinidae Lagenorhynchus albirostris

CU Euphrosyne
dolphin

Delphinidae Stenella coeruleoalba

CU Risso’s dolphin Delphinidae Grampus griseus
NMS Pilot whale Delphinidae Globicephala melas
NMS False killer whale Delphinidae Pseudorca crassidens
NMS Orca Delphinidae Orcinus orca
NMS White-sided

dolphin
Delphinidae Lagenorhynchus obliquidens

NCM Porpoise Phocoenidae Phocoena phocoena
NCM Narwhal Monodontidae Monodon monoceros
YM Beluga whale Monodontidae Delphinapterus leucas
CU Sperm whale Physeteridae Physeter catodon
NMS Sowerby’s whale Ziphidae Mesoplodon bidens
NMS Bottlenose whale Ziphidae Hyperoodon ampullatus
CU Minke whale Balaenopteridae Balaeonoptera acutorostrata
NMS Fin whale Balaenopteridae Balaenoptera physalus
NMS Humpback whale Balaenopteridae Megaptera novaeangliae
NMS Blue whale Balaenopteridae Balaenoptera musculus
NMS Sei whale Balaenopteridae Balaenoptera borealis
NMS Right whale Balaenidae Eubalaena glacialis
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organization between the collagen fibrils and the bone apatite.
The bone apatite grows into the fibrils, and it has been proposed
that the radial compression that is applied by the intergrowth of
bone mineral reduces the rate of collagen gelatinisation (Hofreiter
et al., 2012). In colder regions, the preservation of both the bones
and the proteins within the tissue allow collagen to become a
valuable biomolecular tool, which can store information beyond
the length of time for which DNA remains useful (Hofreiter et al.,
2012).

This longevity is extremely useful for identification of extinct
animals because it gives collagen the potential to be used as a
molecular marker for analysing the remains of diverse taxa
(Buckley et al., 2009; Collins et al., 2010), but over much greater
periods of time than ancient DNA. Not only does the fibrous protein
degrade at a slower rate than DNA, but it can also be sampled
directly from bone, avoiding the risk of contamination during the
amplification process usually carried out for DNA analysis.
Although long considered a highly conserved protein with slow
evolutionary rates, Buckley et al. (2009) found that one of the three
polypeptide chains that make up the collagen triple helix (the
COL1a2 chain) present higher sequence variability than previously
assumed. This allows the discrimination of closely related genera
and makes collagen peptides useful in zooarchaeological identifi-
cation (Buckley et al., 2010; Collins et al., 2010), where it offers an
inexpensive alternative to ancient DNA.

Our aim here is to show that the technique can be used to
distinguish between the range of marine mammals that are likely
to be found in archaeological sites around the North Atlantic ocean,
at least to a taxonomic level that will provide useful information in
this context, and to demonstrate its efficacy on a range of relevant
archaeological bone remains.

2. Materials and methods

2.1. Materials

Hydrochloric acid (HCl) and acetonitrile (ACN) were obtained
from Merck (UK) and Fisher Scientific (UK), respectively.
Sequencing-grade trypsin was purchased from Promega (UK) and
trifluoroacetic acid (TFA), ammonium bicarbonate (ABC), mass
spectrometric standards (calibration peptides) and a-cyano-4-
hydroxycinnamic acid were purchased from SigmaeAldrich (UK).
The C18 solid phase extraction pipette tips were purchased from
Varian (UK). Bone samples from modern cetaceans and pinnipeds
were obtained from Cardiff University (CU), National Museums
Scotland (NMS), the Yorkshire Museum (YM) and the Norwich
Castle Museum (NCM) (Table 1). Over 50 archaeological specimens
were sampled from sites ranging from the Mesolithic period to the
Early Modern period throughout the North Atlantic (Fig. 1). The
samples were removed as powder using a diamond-tipped dremel
drill.

2.2. Background information for archaeological sites included in
this study

West Voe, Sumburgh, Shetland Islands. HU 39205 10199. Two
shell middens exposed by coastal erosion and separated by a layer
of sand were sampled. A shell from the lower midden was dated to
4320e4020 cal BC (Melton and Nicholson, 2004). Subsequent ex-
cavations (Melton and Nicholson, 2007; Melton, 2008, 2009)
established that this midden comprised a sequence of mollusc
species: initially oyster (Ostrea edulis), then limpet (Patella vul-
gata), and finally mussel (Mytilus edulis). Large numbers of bones
from seals, mainly juveniles, and seabirds were also present.
Additional radiocarbon dates established that the lower midden
encompassed the MesolithiceNeolithic transition. The Mesolithic
‘oyster’ and ‘limpet’ phases spanned the period ca. 4300e3700 BC,
and the Neolithic ‘mussel’ phase, in which domesticated species
(cattle and sheep) and ceramics were also present, dated to ca.
3700e3500 BC. The single cetacean bone recovered, and included
in this study, was found in the primary ‘oyster’ phase of midden
deposition.

Links of Noltland, Westray, Orkney. HY 428 493. A late
Neolithic settlement site, excavated on behalf of Historic Scotland
in order to record the prehistoric buildings and the associated finds,
soils, field boundaries and landscape features before severe and
continuing erosion exposes the remains to disintegration and
dispersal (Moore and Wilson, 2011; RCAHMS).

Rowiegar, Rousay, Orkney. HY 373 298. A Neolithic stalled
burial cairn excavated by W.G. Grant in 1937 (RCAHMS).

Knap of Hower, Papa Westray, Orkney. HY 483 518. An early
Neolithic farmhouse settlement, radiocarbon dated to the later
4th millennium BC, consisting of two interconnecting buildings
built on a pre-existing midden. Excavated by W. Trail and W.
Kirkness in the 1930’s and Dr A. Ritchie in the 1970’s (RCAHMS;
Ritchie, 1983).

Cladh Hallen, South Uist, Western Isles. NF 731 220. A multi-
stage site, from a late Bronze Age cemetery through to the occu-
pation of a series of roundhouses and figure of eight houses from
the 12th to 10th century BC to the 7th to 6th century BC. Excavated
by the Sheffield Environment Archaeological Research Campaign in
the Hebrides (RCAHMS).

A’Cheardach Mhor, South Uist, Western Isles. NF 757 413. A
settlement comprising five phases of occupation from amiddle Iron
Age roundhouse through to the late medieval period. This site was
excavated on behalf of the Scottish Office Ministry ofWorks in 1956
(RCAHMS; Young and Richardson, 1959).



Fig. 1. Locations of the archaeological sites included in this study.
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Galson, Lewis, Western Isles. NB 437 595. Iron Age site with
middens and some stone structures, excavated in the 1920’s
(RCAHMS).

Gurness, Mainland, Orkney. HY 382 286. An Iron Age broch
surrounded by outbuildings, with subsequent Dark Age and Viking
activity. Excavations first took place in 1929 (RCAHMS).

Bornais, South Uist, Western Isles. NF 729 302. A late Iron Age
and early 10th to 15th century Viking site (RCAHMS).

Alþingisreitur, Reykjavík, Iceland. Loc. 64.1468, �21.94195.
Excavated in 2008e2012, the site is divided into four main phases
based on tephrochronology and radiocarbon dates. Phase IV dates
to 871e1226 AD, phase III to 1226e1500, phase II to 1500e1800
and phase I from 1800 to the modern day (Garðarsdóttir, 2010).
Animal bone preservation ranged from excellent to very poor, in
some parts of the site bones were completely encrusted in soil,
brittle and hard to identify but the majority of the bone material
was well preserved. A portion of the bone from the site had viv-
ianite crystals on the surface (Pálsdóttir, 2010, 2013); vivianite is a
mineral which is formed in soil when iron, phosphate andwater are
present (McGowan and Prangnell, 2006). Icelandic soil is generally
very iron rich and the location of the site in an area with a high
water table and close proximity to the Reykjavík pond allowed for
the formation of vivianite, which can affect the results of DNA
analysis and conservation of bone (McGowan and Prangnell, 2006).
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2.3. Methods

2.3.1. Peptide isolation and extraction
From each of the specimen samples, w50 mg of bone powder

was demineralised prior to collagen extraction using 1 mL 0.5 M
HCl, overnight at 4 �C. The samples were centrifuged (13,000 � g,
5 min) and the supernatant was discarded. The remaining acid-
insoluble pellet from each sample was resuspended using 500 mL
of 50 mM ABC (pH 7.4) and gelatinised at 70 �C for 3 h. Subsequent
to gelatinisation, the sample was centrifuged (13,000 � g, 15 min),
precipitating the ungelatinised protein from the supernatant. The
supernatant was then removed for tryptic digestion where 2 mL of
1 mg/mL sequencing-grade trypsin solution was added to the su-
pernatant and incubated at 37 �C for 18 h.

To produce Peptide Mass Fingerprints (PMFs), C18 pipette tips
were used to purify (desalt and concentrate the peptides) and
fractionate the generated peptide mixture. The pipette tips were
firstly equilibrated for sample binding, washing, and elution. This
was done with two bed volumes of 50% ACN/0.1% TFA, followed by
two bed volumes (100 mL) of 0.1% TFA. Post digestion, the samples
were centrifuged (13,000� g, 15 min) and acidified to 0.1% TFA. The
samples were then loaded onto the activated C18 pipette tips by
aspirating and dispensingwith 10 cycles. The pipette tips were then
washed twice with 100 mL 0.1% TFA and a stepped gradient of
increasing ACN concentration was applied to the tips to fractionate
and elute the peptides (100 mL 10% ACN and 50% ACN with 0.1%
TFA). The eluant was aspirated and dispensed 10 times, dried using
a centrifugal evaporator and resuspended with 10 mL 0.1% TFA.

2.3.2. MALDI analysis
1 mL of the sample solution was spotted onto a Bruker ultraflex

384 target plate, mixed together with 1 mL of a-cyano-4-hydrox-
ycinnamic acid matrix solution (1% in ACN/H2O 1:1v/v) and dried
to air. Each of the collagen digest fractions were analysed by
MALDI-MS in reflectron mode using a Bruker ultraflex II MALDI-
Fig. 2. Example MALDI-ToF-MS spectra showing 0e10% (top) and 10e50% (bottom) ACN f
trypsin and purification using C18 solid phase extraction. Proposed peptide biomarkers are
TOF/TOF mass spectrometer equipped with a Nd:YAG smart beam
laser. MS spectra (e.g., Fig. 2) were acquired over a mass range ofm/
z 700e3700 using 1000 laser acquisitions. Final mass spectra were
externally calibrated against an adjacent spot containing five cali-
brant peptides. To confirm the homology of peptides between
different species, tandem MS (MS/MS) was carried out on selected
peptide markers (precursor ion selected with 500 laser acquisi-
tions, up to 4500 laser acquisitions were used for the fragment ions,
and argonwas used as the collision gas). In some cases, particularly
the more abundant (i.e., precursor ion count >1000) and variable
peptides (particularly those discussed in Buckley et al., 2009), the
peptide sequences could be deciphered (labelled peptide B & D in
this study; see Inline Supplementary Fig. S1 & Supplementary
Fig. 2) by manually interpreting the spectra produced from
collision-induced dissociation product ion (MS/MS) of these
selected peptides (i.e., de novo sequencing).

Inline Supplementary Fig. S1 can be found online at http://dx.
doi.org/10.1016/j.jas.2013.08.021.
3. Results

3.1. Fractionation using 10% and 50% acetonitrile

Fractionation was used to separate and identify some of the
most variable sequences in collagen, reducing the signal to noise
ratio for the m/z peak values. Fig. 2 highlights the stronger signal
achieved for the larger and more hydrophobic peptides from the
tryptic digest with higher m/z peak values in the 50% acetonitrile.
Although themajority of samples showed little improvement in the
signal of the larger, hydrophobic peptides, it has previously been
vital in the detection of such peptides, and has been particularly
useful in quickly identifying peptides D and G in other analyses
(Buckley et al., 2010; Buckley and Collins, 2011). For example, the
fractionation is particularly useful in distinguishing between sheep
ractionation of collagen extracted from Risso’s dolphin bone following digestion with
labelled AeD, F, G, Cet1 and Cet2 (Table 2).

http://dx.doi.org/10.1016/j.jas.2013.08.021
http://dx.doi.org/10.1016/j.jas.2013.08.021
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and goat collagen solely by improving the signal intensity of the
two peptide G variants (Buckley et al., 2009, 2010).

3.2. Collagen fingerprinting in marine mammals

It has beenwell established that collagen sequences can be used
in the discrimination of mammals at the family (Buckley et al.,
2011), genus (Buckley et al., 2009) and occasionally species level
(Rybczynski et al., 2013) depending upon the species being studied.
Although more than 100 peaks representing collagen peptides can
be seen in the mass spectra (e.g., Fig. 2; Supplementary Figs. 3e28),
six of the seven specific peptide markers previously reported in
Buckley et al. (2009), labelled peptide AeG (peptide E was not
frequently observed in the archaeological collagen fingerprints and
is not included in this study), and three additional peptide markers
were needed for confident species separation with the modern
standards (Figs. 2 and 3).

The cetaceans and pinnipeds can easily be separated using
peptides Cet1 and A (Fig. 3; Table 2), which are at m/z 1063/1079
and m/z 1205 in cetaceans and m/z 1105 (all other known mam-
mals) and m/z 1221 (pinnipeds) respectively. The three families of
pinnipeds, Odobenidae, Otariidae and Phocidae can be separated
using peptide D (m/z 2121 in the former two, m/z 2171 in the latter
family) and peptide G (m/z 3003 in the former, m/z 2957 in the
latter two families). Distinction within the earless (‘true’) seals
(Phocidae) can be made using peptide F (m/z 2869) to separate the
Phocini tribe (all species with these markers were formerly named
within the genus ‘Phoca’) from all other pinnipeds (m/z 2853).
Bearded seal can be identified by its unique Cet1 peptide (m/z 1121)
and ringed seal by its unique P peptide (m/z 2231).

The markers for the cetacean group were more species-specific
but also more complex to systematically describe. Peptide D is by
far the most diagnostic peptide (Table 3; Supplementary Fig. 2)
although highly conserved within the baleen whales (m/z 2135; all
except blue whale) and dolphins (m/z 2119). However, the baleen
whales can be separated to species level using peptides B, C, D and F
(although unable to separate bowhead whale from right whale).
Within the dolphins the two main sub-families taxa could be
separated using a combination of Cet1 and Cet2. TheMonodontidae
family is represented by a diagnostic peptide B peak atm/z 1443 (m/
Fig. 3. MALDI-ToF-MS spectra of collagen peptide digest (10e50% ACN fraction) from selec
study. The complete set of spectra and markers (e.g., markers A, C, Cet2 and P are more no
z 1453 in most cetaceans; m/z 1441 in Minke and beaked whales)
and also have unique sequences for marker peptide D (within ce-
taceans) at m/z 2089 and m/z 2121 for narwhal and beluga whale
respectively. Sperm whale (Physeteridae) can also readily be
identified using the peptide D with a peak at m/z 2133.

The Delphinidae family only showed distinctive biomarkers at
the subfamily level, with Delphinus, Tursiops, Stenella all being
members of the Delphininae subfamily, and Globicephala, Grampus
and Pseudorca being members of the Globicephalinae subfamily.
Lagenorhynchus and Orcinus are typically considered basal groups
within this family (McGowen, 2011), but share the samemarkers as
those for the Delphininae subfamily, perhaps indicating the derived
nature of the amino acid substitution in the Globicephalinae in the
Cet1 marker.

In the cetacean species, only peptide A sequences were
conserved throughout all the species sampled with peptide F
conserved in all except the Humpback whale, with an m/z 2869;
peptides B, D and G showed multiple variants within the cetaceans
for each peptide. This high level of variability is contrasted to the
marine carnivores, where only peptide D, F and G showed any
differences in their amino acid composition.

3.3. Collagen fingerprinting in archaeological samples

Over 50 archaeological samples, mostly from unidentifiable
fragmentary material, were tested for the presence of collagen in
order to establish the potential for this technique in a sample age
range spanning over 6000 years. Most of the material studied was
originally only identified to ‘marine mammal’ or ‘cetacean’, yet the
ZooMS results were able to provide identification to at least the
subfamily/tribe level. For many samples, specifically the whales, it
was possible to get the identification down to the level of genus and
species (Table 4; Fig. 4). Within our sample, large whales make up
the bulk of unidentified material, presumably because bones from
smaller animals are less likely to be broken up or worked by
humans.

Of the six ‘marine mammals’ identified by morphology, three
turned out to be bovine, whilst of the 27 ‘cetacean’ samples, only
one was found not to be cetacean, instead being identified here as
walrus; these examples highlight the problems that fragmentation
ted modern pinnipeds and cetaceans showing the main peptide markers used in this
ticeable in the 0e10% ACN fractions) is given in the Supplementary Material.



Table 2
List of m/z markers for marine mammals where bottlenose dolphin (Tursiops truncatus) is the only cetacean species with a genome-derived collagen sequence.

Walrus Northern
furseal

Bearded
seal

Ringed
seal

Hooded
seal

Common/
Grey/Harp
seal

Common/Bottlenose/
White-beaked/
Euphrosyne dolphin

Risso’s dolphin/
Pilot whale/False
killer whale

Orca/
White-sided
dolphin

Porpoise Narwhal Beluga
whale

Sperm
whale

Bottlenose/
Sowerby’s
whale

Minke
whale

Fin
whale

Humpback
whale

Blue
whale

Sei
whale

Right
whale

1063 Cet1 Cet1
1079 Cet1 Cet1 Cet1 Cet1 Cet1 Cet1 Cet1 Cet1 Cet1 Cet1 Cet1 Cet1
1105 Cet1 Cet1 Cet1 Cet1 Cet1
1121 Cet1
1205 A A A A A A A A A A A A A A
1221 A A A A A A
1441 B B B
1443 B B
1453 B B B B B B B B B B B B B B B
1550 C C C C C C C
1566 C C C C C C C C C C C
1626
1638 Cet2 Cet2 Cet2
1652 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2 Cet2
1682 Cet2
2089* D
2091* D
2105* D
2119* D D D D
2121* D D D
2133* D
2135* D D D D D
2171 D D D D
2215 P P P P
2231 P
2246 P
2853 F F F F F
2869 F F
2883 F F F F F F F F F F F F F
2957 G G G G G
3003 G
3023 G G G G G G G G G G G
3039 G
3051 G G

*Sequences for peptide G1861eR1884 are given in Table 3. Two new markers (Cet1 and Cet2) are useful for separating cetaceans, and one (P) is useful for separating pinnipeds.
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Table 3
Sequences for Peptide D obtained byMS/MS sequencing (except* which was also publicly available and used in Buckley et al., 2009). Underline represents hydroxylated proline
residues, amino acid substitutions are coloured red. In sperm whale ‘I’ is assumed by sequence similarity to published (UniProt) sequences of other mammals, despite being
isobaric with ‘L’.

Species MH+ Peptide D Sequence 

Dolphins* (ENSTTRG00000003717) 2119.1 

1.1212aguleB

1.9802lahwraN

1.3312elahWmrepS

1.5312selahWneelaB

1.5012elahWeulB

1.1902WhalesdekaeB

1.1312)29364O(*goD

Walrus & Eared Seals 2121.1 

1.1712True Seals
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can have on morphological interpretation. The newly proposed
marker (Cet1) for cetaceans at m/z 1163/1179 is highly conserved
amongst most terrestrial mammals at m/z 1105, including cattle,
sheep, goats and horses. Although the more degraded collagens
yield fingerprints with lower signals for higher m/z peaks (e.g.,
Buckley and Collins, 2011), all of the proposed marine mammal
markers are low m/z peaks that are easily recognisable following
adequate collagen extraction and fingerprint analysis. All of the ten
‘Phocidae’ samples were identified as belonging to the Phocini
group. However, all three common seal samples could only be
identified to Phocini using the presentedmarkers, highlighting that
when possible, the morphological information can be much more
informative. However, it should be noted that in all three cases this
identification was based on the easily diagnostic distal humerus,
suggestive of the potential biases that relying solely onmorphology
could have on the interpretation of an archaeological assemblage.
Although the identification of walrus was corroborated with the
molecular results, a bearded seal specimen was reassigned as also
deriving from walrus, despite being from a nearly complete pelvis.
Overall the species found within this study are not substantially
different from those previously reported in the North Atlantic area.
Most notable is the presence of a number of right whales (Euba-
laena) as this species was absent from all Scottish assemblages
reviewed by Mulville (2002). This has been attributed to problems
with identification, perhaps due to the paucity of comparative
material from this recently extinct population.

4. Discussion

Previous research has demonstrated that collagen finger-
printing has threemain advantages. Firstly it can providemolecular
data from historical, archaeological and palaeontological remains
that originate further back in time than other methods (e.g., up to
w3.5 Ma; Rybczynski et al., 2013). Secondly it can work on poorly
preserved bone (Buckley et al., 2009). Thirdly it is ideal for the
analysis of fragmentary material (Buckley and Collins, 2011). We
demonstrate here that the method can be used to not only separate
terrestrial from marine mammals (using the Cet1 marker), but to
distinguish between cetaceans and pinnipeds, which will allow
important inferences to be made about the exploitation and
evolutionary histories of such species. Cetacean exploitation in
human populations has been recorded in a variety of studies
(Cortes-Sanchez et al., 2011), but research on their procurement in
human communities has been limited by the difficulties of identi-
fication using traditional methods.
Identification of marine mammals on archaeological sites can
not only provide useful biogeographical information on the species
identified, but the distribution of the species can further reveal
insights into the ecological and palaeoenvironmental conditions of
the region in the past (Murray, 2008). The ability to positively
identify previously indistinguishable marine mammal samples can
allow us to reveal species range expansions and contractions in
correlation to changing climates, and can provide information on
the ability of humans to adapt and exploit different resources. This
study and further work will provide an invaluable technique for
marinemammal species identification that is relatively inexpensive
when compared to existing molecular tools such as DNA
sequencing, yet substantially more reliable than morphological
identification alone. Identification of bone samples to family and in
some cases genus and species level provides an opportunity to
further understanding of marine mammal exploitation by human
societies. For example species characteristics can help to distin-
guish seasonality and acquisition strategy and this technique can
furnish important information for the debate onwhether cetaceans
and pinnipeds were acquired through natural standings, opportu-
nistic capture or organised and specialist hunting (Clark, 1947,
1952; Erlandson, 2001; Hallén, 1994; MacGregor, 1985; Mulville,
2002).

We have shown here that cetaceans, in this case porpoise,
were exploited at West Voe, one of the most remote Mesolithic
communities in north-western Europe. Although the hunting-
stranding point cannot be addressed from this single fragment
of cetacean bone, the contrast with the numbers of seal bones at
the site is suggestive that whilst the latter were hunted, ceta-
ceans were not. Material from the later periods has added new
detail to our interpretation of species from previously unidenti-
fied cetacean remains. The majority of whales represented here
belong to two of the commonly hunted larger baleen whales, the
slow-moving coastal northern right whale (Eubalena glacialis)
and the humpback whale (Megaptera novaeangliae) both of which
rarely swim faster than 12 km/h. There are additional records
from the smaller minke whale (Balaenoptera acutorostrata),
which can be trapped by sealing off inland bays with nets, and
then dispatching the animals by hand. This focus on the delib-
erate selection of easily captured species adds weight to the
argument that these communities took part in whale hunting,
however sample sizes remain small. The wide range of species
identified from Alþingisreitur seems to point more towards the
utilisation of stranded whales and perhaps some opportunistic
hunting.



Table 4
Morphological identifications and identifications from collagen fingerprinting (ZooMS) of the archaeological samples.

Sample no. Site Age Bone condition Morphological ID ZooMS ID

WV02/WV3 West Voe Late Mesolithic Fragment Cetacean Porpoise
LON-09 (9009) Links of Noltland Neolithic Fragment Marine mammal Dephininae
LON-08 (7302/sp2) Links of Noltland Neolithic Fragment Marine mammal Bovine
LON-08 (7302/sp3) Links of Noltland Neolithic Fragment Marine mammal Humpback whale
LON-08 (7302/sp4) Links of Noltland Neolithic Fragment Marine mammal Humpback whale
1940.21.34 Rowiegar, Rousay,

Orkney
Neolithic Fragment Cetacean Humpback whale

1941.9.34(a) Knap of Howar,
Papa Westray

Neolithic Fragment Cetacean Minke whale

2588/4174 Cladh Hallan Late Bronze Age Fragment Mammal Humpback whale
721 Cladh Hallan Late Bronze Age Fragment Cetacean Humpback whale
2211/4014 Cladh Hallan Late Bronze Age Fragment Cetacean Sperm whale
1900 Cladh Hallan Late Bronze Age Worked fragment Cetacean Sperm whale
2A A0 Cheardach Mhor Iron Age Fragment Cetacean Humpback whale
2B A0 Cheardach Mhor Iron Age Fragment Cetacean Humpback whale
1940.20.34(a) Galson, Lewis Iron Age Fragment Cetacean Right whale
1940.20.34(b) Galson, Lewis Iron Age Fragment Cetacean Fin whale
1940.11.34(b) Gurness (Aikerness),

Orkney
Iron Age Fragment Cetacean Fin whale

2771 Bornais Late Iron Age Worked fragment Cetacean Right whale
1785 Bornais 9 to 10th century Worked fragment Cetacean Right whale
1607 Bornais 7th to 11th century Fragment Cetacean Right whale
1072/75G Bornais 7th to 9th century Fragment Cetacean Sperm whale
213.8/5552 Bornais 7th to 11th century Fragment Cetacean Fin whale
1190 Bornais 7th to 11th century Fragment Cetacean Phocini
2012-32-3916 (1049) Alþingisreitur 871e1226 Vertebra with chop marks. Cetacean Globicephalinae
2009-32-2419 (1052) Alþingisreitur 871e1226 Vertebra Cetacean Walrus
2012-32-3913 (1044) Alþingisreitur 871e1226 Possibly walrus ivory, knife mark. Marine mammal Bovine
2012-32-3916 (1048) Alþingisreitur 871e1226 Vertebra with chop marks. Cetacean Globicephalinae
2008-32-1217 (1072) Alþingisreitur 871e1226 Skull fragment Phocidae Phocini
2008-32-1396 (1073) Alþingisreitur 871e1226 Skull fragment Phocidae Phocini
2008-32-709 (1051) Alþingisreitur 871e1226 ‘Heavy’ skull fragment Walrus Walrus
2012-32-3916 (1069) Alþingisreitur 871e1226 Distal humerus, chopped Phoca vitulina Phocini
2012-32-4061 (1043) Alþingisreitur 871e1226 Skull fragment Marine mammal,

possibly walrus
Globicephalinae

2008-32-1395 (1067) Alþingisreitur 871e1226 Tibia shaft fragment Phocidae Phocini
2012-32-3840 (1047) Alþingisreitur 871e1226 Fragment Cetacean Dephininae
2012-32-3797(1046) Alþingisreitur 871e1226 Fragment Cetacean Humpback whale
2012-32-3916(1032) Alþingisreitur 871e1226 Distal humerus, chopped Phoca vitulina Phocini
2008-32-2371 (1066) Alþingisreitur 1226e1500 Fragment of scapula, chopped Phocidae Phocini
2008-32-1166 (723) Alþingisreitur 1226e1500 Distal humerus Phoca vitulina Phocini
2008-32-685 (711) Alþingisreitur 1226e1500 Nearly complete pelvis, chop marks Bearded seal Walrus
2008-32-685 (1062) Alþingisreitur 1226e1500 Tibia shaft Phocidae Phocini
2009-32-1947 (1058) Alþingisreitur 1226e1500 Vertebra, chop marks Large cetacean Fin whale
2008-32-14409 (1070) Alþingisreitur 1226e1500 Unfused pelvis Phocidae Phocini
2008-32-285 (1065) Alþingisreitur 1226e1500 Fragment of pelvis, chopped Phocidae Phocini
2008-32-217 (1064) Alþingisreitur 1226e1500 Juvenile (unfused), knife mark Phocidae Phocini
2009-32-2083 (1071) Alþingisreitur 1226e1500 Scapula, chopped Phocidae Phocini
2009-32-1787 (1061) Alþingisreitur 1500e1800 Mandible fragment Small cetacean Dephininae
2009-32-1596 (1054) Alþingisreitur 1500e1800 Occipital fragment, scorched Cetacean Dephininae
2009-32-1453 (1059) Alþingisreitur 1500e1800 Rib, part of articulated

vertebral column, chopped
Cetacean Dephininae

2009-32-1787 (1057) Alþingisreitur 1500e1800 Vertebral epiphysis
fragment, scorched

Cetacean Bottlenose whale

2009-32-1792(1053) Alþingisreitur 1500e1800 Vertebral epiphysis Cetacean Globicephalinae
2012-32-1496(1045) Alþingisreitur 1500e1800 Smoothed fragment Marine mammal Bovine
2009-32-1391(1060) Alþingisreitur 1500e1800 Vertebra, chopped Cetacean Globicephalinae
2009-32-1686(1063) Alþingisreitur 1500e1800 Tibia, unfused, juvenile Phocidae Phocini
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Other species present include small dolphins and porpoises that
are previously recorded as being hunted but also includes larger,
faster and more elusive cetacea (Mulville, 2002). Historically,
whalers neglected the rorquals (Balaenoptera) as their speed made
them difficult to catch, for example the blue whale (Balaenoptera
musculus) can reach up to 55 km/h and they have a tendency to sink
once dead. The sperm whale (Physeter macrocephalus) was
considered dangerous and pursuit of it did not begin until 1713
(Clark, 1947). Thus the presence of these species may relate to
accidental strandings as all have been reported as beached on North
Atlantic shores, however the greater range of species and propor-
tion of whale bone on later sites (Norse onwards) on the Western
Isles has been interpreted as an increase in cetacean utilisation that
reflects an expansion in procurement activities (Mulville, 2002).
Further research to routinely characterise the fragmentary marine
mammal bone remains fromNorth Atlantic sites using this effective
and inexpensive method will provide valuable information on
hunting, whaling and scavenging strategies.

The identification of a number of whales is of particular
importance, as some species were hunted close to extinction prior
to the establishment of cetacean reference collections and are
rare within museum collections. For example the north-eastern
Atlantic population of the right whale (E. glacialis) was hunted
to extinction and north-western Atlantic population was reduced



Fig. 4. Example MALDI-ToF-MS spectra of collagen peptide digest (10e50% ACN fraction) from selected archaeological samples showing an identified ‘Phocini’ seal (the group of
seals formerly included in the genus Phoca, e.g., common, grey, harp) and a humpback whale showing the dominant peptide markers used in this study.
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from c. 12,000 in the 11th century to around 300 by the 21st
century (Waldrick et al., 2002). These species are therefore a
challenge to identify within archaeological material but their re-
mains are particularly valuable in reconstructing the genetic
histories of heavily exploited species. This method has demon-
strated a previously undocumented, but suspected, focus on right
whales and these specimens now offer the potential for new
research into the timing and intensity of the genetic bottleneck
documented in this species and its relation to commercial
whaling.

Accurate identification of seal bone may increase the number of
vagrant seals identified. Thus, for example, in Orkney ringed, harp,
bearded and hooded seals and walrus have all been noted as rare
visitors to Orkney (Booth and Booth, 2005) but only possible walrus
bones have been identified at archaeological sites in this area to
date. Although only Phocini seals were identified in the unknown
material in this study, the ability to distinguish between the above
taxa, may prove useful in future research in this area.

The samples analysed here were selected to demonstrate the
success of the technique as a means to distinguish morphologi-
cally unidentifiable remains across a useful range of times, from
the Mesolithic to the present day. Although they are therefore
insufficient to fully address the question of distribution and
exploitation of marine mammals here, we have demonstrated
the potential of the proposed ZooMS’s routinely effective and
inexpensive identification of fragmentary remains. This will
assist with the resolution of many questions on their past dis-
tribution and exploitation, and could provide evidence on
changing palaeoenvironmental conditions.
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