
 

DEVELOPMENT OF A NOVEL IN VITRO 

3D OSTEOCYTE-OSTEOBLAST 

CO-CULTURE MODEL 

TO INVESTIGATE 

MECHANICALLY-INDUCED SIGNALLING 

MARISOL VAZQUEZ 
 

PhD 
 

2013 

 



 
 
 

 
DECLARATION 
 
This work has not been submitted in substance for any other degree or award at this 
or any other university or place of learning, nor is being submitted concurrently in 
candidature for any degree or other award. 
 
 
Signed …………………………………(candidate)       Date ………………………… 
 
 
STATEMENT 1 
 
This thesis is being submitted in partial fulfillment of the requirements for the degree 
of PhD. 
 
Signed …………………………………(candidate)       Date ………………………… 
 
 
STATEMENT 2 
 
This thesis is the result of my own independent work/investigation, except where 
otherwise stated. 
Other sources are acknowledged by explicit references.  The views expressed are 
my own. 
 
Signed …………………………………(candidate)       Date ………………………… 
 
 
STATEMENT 3 
 
I hereby give consent for my thesis, if accepted, to be available for photocopying 
and for inter-library loan, and for the title and summary to be made available to 
outside organisations. 
 
Signed …………………………………(candidate)       Date ………………………… 
 
 
STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS 
 
I hereby give consent for my thesis, if accepted, to be available for photocopying 
and for inter-library loans after expiry of a bar on access previously approved by 
the Academic Standards & Quality Committee.  
 
Signed …………………………………(candidate)       Date ………………………… 



 
 
 
John Wiley & Sons, Inc. DECLARATION 
 
 
Permission was granted for the use of  figures from (Tortora and Derrickson, 2006) 
to the usual acknowledgements (author, title, and copyright [year and owner]).  
  
Any third party material is expressly excluded from this permission. If any of the 
material appears with credit to another source, authorization from that source must 
be obtained.  
 
This permission does not include the right to grant others permission to photocopy 
or otherwise reproduce this material except for accessible versions made by non-
profit organizations serving the blind, visually impaired and other persons with print 
disabilities (VIPs). 
 
 
 



                   

ACKNOWLEDGEMENTS 

 
Without a doubt completing my PhD has been the biggest challenge of the 

first 26 years of my life. Many ups and downs occurred along the way which were 
shared with many people, all of which I will always cherish and be thankful to.  

 
First of all in the long list of ‘thank you’ are Arthritis Research UK and 

Cardiff University for funding my PhD, and my three supervisors, or how I like to 
call them, the three brains. Deborah Mason, my principal supervisor, who provided 
the vision, encouragement and support I needed to complete my degree. I deeply 
thank Debbie for pushing me to my limits and out of my comfort zone, and for her 
unwavering belief that I could take on every challenge no matter how big or small. 
Bronwen Evans, who stimulated thought provoking critical analysis of the data I 
produced testing the strength of each experiment.  I am very grateful to Bronwen for 
welcoming me to her lab whenever I needed a chat or carry out experiments, and for 
teaching me to be critical of my work. Daniela Riccardi, my PhD agony aunt, whose 
door was always open for me whether it was to share the happiness of my successes 
or break down in tears when science got the best of me. Dani always provided me 
with straight forward advice and thanks to her I started believing in myself and what 
I could achieve. Debbie, Bronwen and Dani have made me the strong and determined 
person I am today. 
 

My second debt of gratitude goes to Vic Duance, Sophie Gilbert, Emma 
Blain, Karen Brakspear, Yadan Zhang, Emma Mead and Aisha Al-Sabah, for giving 
me infinite scientific and personal advice as well as edible treats when I needed them 
the most. I could not have done it without you. I am especially thankful to Cleo 
Bonnet, my lab older sister, who has always been there for me. We laughed, cried 
and argued but we always had each other and I will never forget that. I also thank 
members of the Evans, Archer and Caterson labs, for the advice, chat and even the 
odd lab reagent or table-tennis match they have given me throughout my PhD.  
 

Special thanks go to Lynda Bonewald for the provision of the MLO-Y4 cells, 
Carole Elford for her cell culture expertise, Jim Ralphs for the imaging and 
immunostaining help, Martin Schepelmann for his CaSR immunostaining skills, 
Tony Hayes and Marc Isaacs for the confocal imaging support; Sam Evans, John 
McCrory and Hayley Wyatt for their engineering assistance; Tom Davies, for his 
contribution to cloning and his witty and warm-hearted friendship; and to Jack Ham, 
who has been my scientific mentor from the very start, for the provision of the 
adenosine receptors antibodies. 

 
 
 

I 

 



                   

During my PhD I discovered my love for higher education teaching. I owe 
this to the support of Beatrix Fahnert and Peter Kille who kindly allowed me to 
demonstrate in their undergraduate practicals; and to the students, who always made 
me smile with their questions. In particular, I am thankful to those students who 
through the turns of life became my friends and made my PhD experience that little 
bit extra special.  

 
Thanks also go to all the members of Cardiff Institute of Tissue Engineering 

and Repair for giving me the opportunity to get involved in public engagement; to 
the Cardiff University Hockey Club, especially my hockey girls, who unknowingly 
helped me cope with the worries and stresses of my PhD by just playing hockey with 
me; and to all my family and friends in the UK and in Argentina, who have always 
encouraged me when I needed it the most, even from the other side of the pond.  
 

Last, but certainly not least, I thank my parents, my step-dad Martin and my 
mum Isabel, who gave me unconditional love and financial support. My parents, in 
particular my mum, have been my driving force throughout my PhD making sure I 
only ever had to focus on my studies by feeding me and exempting me of house 
chores, being patient with me during the occasional (!) break down, being the 
practise audience to the talks I prepared, encouraging me to take control of and solve 
any problems encountered, and most of all by being proud of all my achievements.  

 
If I had to pick one accomplishment from my PhD it would be being resilient 

when faced with adversity, something I was not when I started and I am still learning 
to be. 

To everyone: I DID IT!!! 
  

II 

 



                   

ABSTRACT 

 
Normal mechanical loading potently induces bone formation mediated by 

osteocyte effects on osteoblasts. Current in vitro bone models do not reflect these 
cellular interactions, either focusing on mechanical loading of osteoblasts in 
monolayers or in 3D and therefore not elucidating the osteocyte-osteoblast 
interactions that regulate mechanically-induced bone formation. Adenosine, calcium-
sensing and glutamate signalling have been shown to influence bone biology, with 
both adenosine precursors and glutamate having been implicated in 
mechanotransduction. The aims were to develop a novel in vitro 3D co-culture model 
of bone to investigate mechanically-induced signalling, and to determine the 
expression of adenosine, calcium-sensing and glutamate signalling components 
within the 3D model and their contribution to the regulation of mechanically-induced 
bone formation markers. 

A 3D model was developed as a two-phase culture system where MLO-Y4 
osteocytes were embedded within type I collagen gels and MC3T3-E1osteoblasts 
were layered on top.  In this model, cells were viable over 7 days (100 % osteoblasts, 
87 % osteocytes), maintained appropriate morphology and contacted neighbouring 
cells through CX43 labelled projections. RT-qPCR revealed Runx2, OCN and E11 
mRNA expression in both osteoblasts and osteocytes. COL1A1 mRNA expression 
was significantly higher in the osteoblasts (P=0.0001), whereas ALP mRNA was 
higher in the osteocytes (P=0.001). RT-PCR revealed expression of adenosine 
receptors A2A and A2B and glutamate transporter GLAST1 in osteoblasts and 
osteocytes, as well as glutamate receptors AMPAR2 and KA1 in osteocytes. 
Immunostaining confirmed expression of A2A, GLAST1 and KA1, and revealed 
expression of CaSR, in both osteoblasts and osteocytes.  

A novel mechanical loading device was developed which was used to apply 
osteogenic loads (5 min, 10 Hz, 2.5 N) to 3D osteocyte mono-cultures and 3D 
osteocyte-osteoblast co-cultures. A minimum of 48 hr pre-load time was required for 
a reliable load response. 3D osteocyte mono-cultures cultured for 48-72 hr or 7 days 
pre-load, remained viable, significantly increased PGE2 0.5 hr after load (48-72 hr: 
P=0.0249, 7 days: P=0.041) and decreased their IL-6 synthesis. RT-qPCR revealed 
a load-induced decrease in E11 (P=0.018) and RANKL (P=0.0486) mRNA, in 48-
72 hr cultures. In 7 day cultures, E11 mRNA (P=0.041) increased as a result of 
loading. Preliminary data showed that the same loading conditions increased PINP 
synthesis, a bone formation marker, in 3D co-cultures (P=0.022). The AMPA/KA 
receptors antagonist NBQX increased PINP synthesis by 2-fold over 5 days, similar 
levels induced by loading in untreated cultures, suggesting that NBQX has similar 
anabolic effects as mechanical stimuli. Similarly, the A2A receptor antagonist SCH 
442416 increased osteoblast ALP mRNA expression by 3.5-fold at day 1 post-load 
and increased PINP synthesis by 1.9-fold, in co-cultures after 5 days. 

This 3D osteocyte-osteoblast co-culture model represents a useful in vitro 
model for the investigation of the osteocyte-osteoblast interactions that lead to 
mechanically-induced signalling and regulation of bone formation markers. 
Adenosine, calcium-sensing and glutamate signalling components are expressed 
within the model, facilitating future investigations of their roles in mechanically-
induced signalling. Preliminary experiments indicated that adenosine and glutamate 
signalling may each contribute individually to the regulation of mechanically-
induced bone formation markers.  
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INTRODUCTION 



                  Chapter 1 

1. Introduction 

 

1.1 Bone structure  

 

The mature human skeleton has 213 bones, excluding sesamoid bones (bones 

within a tendon, e.g. patella). Bones are composed of a hard outer-layer of cortical 

bone (80%) and a spongy inner layer of trabecular bone (20%) (Standring, 2004). 

Cortical bone is found in external bone surfaces and in the diaphysis (Figure 1.1A), 

whereas trabecular bone is found in the marrow space and in the epiphysis (Figure 

1.1A). However, the molecular and cellular composition of cortical and trabecular 

bone are the same (White and Folkens, 1999, Clarke, 2008). 

 

Cortical bone contains osteons (Figure 1.1B) (Bourne, 1972), each composed 

of concentric circles or lamellae of bone matrix (Figure 1.1B). Between lamellae, 

small cavities called lacunae (Figure 1.1B) contain osteocytes, and minute fluid-

filled passageways known as canaliculi (Figure 1.1B), extend from one lacuna to 

another and from the Harvesian canal to each lacuna. This allows cells in the 

mineralised matrix to communicate and undergo nutrient/waste exchange (Bourne, 

1972, White and Folkens, 1999). Harvesian canals are hollow channels within 

osteons through which blood and lymph vessels, together with nerve fibres, pass. 

Smaller Volkmann canals link osteons and supply nutrients to all cells (White and 

Folkens, 1999), running perpendicular to the sheath of connective tissue covering the 

outer bone surface (periosteum) (Figure 1.1A and B),  and the cellular membrane 

covering the inner bone surface (endosteum) (Figure 1.1A) (White and Folkens, 

1999, Standring, 2004, Clarke, 2008).  
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B A 

Figure 1.1 Bone structure. A) Diagram of a partially sectioned humerus. B) Diagram representing the structure of compact bone 

(Tortora and Derrickson, 2006).  This material is reproduced with permission of John Wiley & Sons, Inc. 
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Chapter 1 

1.2 Bone constituents 

 

1.2.1 Bone matrix 

 

  The mechanical properties of bone result from the composition of its matrix 

which has an organic and a mineral component (Currey, 1984, Weiner, 1986, Weiner 

and Traub, 1986). The mineral component of mature bone consists of inorganic 

mineral salts (Doty et al., 1976, Glimcher, 1981), with the major component being an 

analogue of hydroxyapatite: Ca10(PO4)6(OH)2, but it also contains calcium 

carbonate, calcium fluoride and magnesium phosphate (Posner, 1987, Glimcher, 

1992, Standring, 2004). It is the mineral phase that gives bone its rigidity and load-

bearing strength, making it able to withstand compression but not twisting or bending 

(Currey, 1984, Landis, 1995). The organic phase of mature bone consists mainly of 

proteins with type I collagen (ColI) being the major component. However, it also 

includes lipids, glycoproteins and proteoglycans (Tracy et al., 1987, Robey et al., 

1988). Traces of other collagen types such as II, V and XI are also present which 

may derive from vascular tissues (Leushner, 1983, Robey et al., 1992). Non-

collagenous proteins present in bone matrix include osteocalcin (OCN), osteopontin 

(OPN) and fibronectin (Stevenson and Lindsay, 1998). It is the organic phase that 

gives bone its elasticity, making it able to withstand twisting and bending, but not 

compression (Currey, 1984). Mineral and organic phases interact so that collagen 

fibres provide a scaffold in which mineral crystals can form in between the fibres 

(Martini et al., 2011).  

 

1.2.2 Bone cells 

 

1.2.2.1 Osteoblasts 

 

Osteoblasts were first identified as large, mononucleated cells situated on the 

bone surface by Gegenbaur in 1864, who suggested that these cells were responsible 

for the manufacture of bone matrix (Bourne, 1972) (Figure 1.2). 
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Chapter 1 

1.2.2.1.1 Morphology 

 

Osteoblasts  range in shape from ovoid to cuboidal (Figure 1.2), being more 

compact than, for example, connective tissue fibroblasts which are more elongated 

(Bourne, 1972). Cytoplasmic processes extend out of osteoblast cell bodies 

connecting them to  nearby cells such as other osteoblasts, pre-osteoblasts and 

osteocytes (Bourne, 1972). Active osteoblasts usually form a single cell layer, laying 

perpendicular to the bone surface (Bourne, 1972) (Figure 1.2), with their nuclei 

uppermost and away from the bone surface (Bourne, 1972). However, osteoblasts 

may also lie with their long axis parallel to the bone surface, diagonally overlapping 

like roof tiles (Bourne, 1972), or be organised into a rosette fashion, as seen at 

growing points of trabeculae. Osteoblasts have a large Golgi apparatus and rough 

endoplasmic reticulum, and numerous mitochondria, typical of high metabolic 

activity and secretion (Bourne, 1972).  
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BONE 

* * 

* * 

* 
* 

BONE MARROW 

Figure 1.2 Osteoblasts. Cuboidal bone forming osteoblasts (arrows) can be seen 

aligned perpendicular to the bone surface, with a thick layer of newly formed 

osteoid underneath. *Osteocytes within mineralised bone matrix. Figure adapted 

from Russ Turner, the American Society for Bone and Mineral Research 

(ASBMR).  
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Chapter 1 

1.2.2.1.2 Function  

 

Osteoblasts are actively involved in bone formation through the synthesis of 

bone matrix by generating osteoid (unmineralised bone matrix) (Bourne, 1972, 

Parfitt, 1977). They produce ColI and non-collagenous proteins such as OCN, bone 

sialoprotein (BSP), OPN and osteonectin (ON) (Lian et al., 1999, Aubin et al., 2006). 

Osteoblasts also show high alkaline phosphatase (ALP) activity, an enzyme involved 

in mineralisation, on their plasma membrane suggesting that they not only produce 

osteoid, but they also mineralise it (Whyte, 1994, Mornet et al., 2001, Nakamura, 

2007). These proteins are all highly expressed by osteoblasts compared to other bone 

cells and are therefore considered osteoblast phenotypic markers (Aubin et al., 2006). 

Other markers include runt-related transcription factor 2 (Runx2) and osterix, which 

are essential for osteoblast differentiation (Nakashima et al., 2002, Komori, 2010). 

Osteoblasts synthesise and secrete proteoglycans and glycoproteins which can bind 

calcium ions for calcification, and control the growth of hydroxyapatite avoiding 

excess calcification (Lian et al., 1999). Osteoblasts also regulate the activity of 

osteoclasts and bone growth through the secretion of various hormones, such as 

prostaglandins and cytokines. Mature osteoblasts may die, become embedded in the 

bone matrix and differentiate into osteocytes, or become quiescent bone lining cells 

(Parfitt, 1987, Miller et al., 1989). 
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Chapter 1 

1.2.2.2 Osteoclasts 

 

 Osteoclasts were first described by Robin in 1849, who distinguished them 

from megakaryocytes (Bourne, 1972). However, it was Kölliker in 1873 who 

suggested that osteoclasts are the main agents in bone resorption (Bourne, 1972) 

(Figure 1.3).  

 

1.2.2.2.1 Morphology 

 

 Osteoclasts are large multinucleated cells (Figure 1.3) which result from the 

fusion of monocyte macrophage lineage cells (Cormack and Ham, 1987) in the 

presence of macrophage colony stimulating factor (M-CSF) and receptor activator of 

nuclear factor κB ligand (RANKL), a member of the tumour necrosis factor (TNF) 

family (Felix et al., 1990, Kodama et al., 1991, Suda et al., 1992, Nakagawa et al., 

1998). Osteoclasts attach to bone to commence resorption. They are motile cells and 

so their shape varies. They can appear as flattened cells against bone or as a roughly 

spherical mass (Figure 1.3). Their many nuclei are usually found close together and 

their cell body may contain processes or be separated into lobes (Bourne, 1972). 

Active osteoclasts are polarised with an apical plasma membrane in contact with 

bone and a basolateral membrane opposite to it (Mulari et al., 2003). The apical 

membrane contains a ruffled or brush border, which increases surface area for 

resorption (Bourne, 1972); and a sealing zone which anchors the osteoclast to the 

bone restricting protons and enzymes to the resorption compartment (Vaananen et 

al., 2000, Nakamura, 2007). The basolateral membrane is involved in cell-cell 

communication with neighbouring cells through RANKL and osteoprotegerin (OPG) 

(Bourne, 1972, Vaananen et al., 2000). Osteoclasts contain many mitochondria, 

indicative of active bone resorption (Bourne, 1972). 
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BONE MARROW 

BONE 

* * 
* * 

* * * * * * 

Figure 1.3 Osteoclasts. Multinucleated, roughly spherical, bone resorbing osteoclasts 

(*) can be seen within the erosion cavity (dotted line) on the bone surface. 

Osteoblasts (arrows) can be seen perpendicular to the bone surface. Figure adapted 

from Russ Turner, ASBMR.  
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Chapter 1 

1.2.2.2.2 Function 

 

Osteoclasts resorb bone (Bourne, 1972) by attaching to the bone matrix and 

forming a closed compartment. This is where they pump out hydrogen ions, lowering 

the pH leading to the mobilisation of the mineral component of the bone matrix 

(Silver et al., 1988, Delaisse et al., 1991, Blair et al., 1993, Delaisse et al., 1993, 

Goto et al., 1993, Wucherpfennig et al., 1994, Holliday et al., 1997). Osteoclasts then 

secrete enzymes including tartrate-resistant acid phosphatase (TRAP), cathepsin K 

and gelatinase, which digest the organic component of the bone matrix forming an 

erosion cavity (Delaisse et al., 2003). This process of resorption, together with 

formation and activation of osteoclasts, is induced by RANKL (Boyle et al., 2003, 

Blair and Athanasou, 2004), a membrane bound protein expressed by osteoblasts 

(Atkins et al., 2003, Singh et al., 2012) and osteocytes (Zhao et al., 2002, Nakashima 

et al., 2011). RANKL binds to RANK, a surface membrane receptor present in pre-

osteoclasts and osteoclasts (Lacey et al., 1998, Yasuda et al., 1998b). OPG, a soluble 

decoy receptor for RANKL secreted by osteoblasts and osteocytes, competes with 

RANK for RANKL binding (Yasuda et al., 1998a, Yasuda et al., 1998b) and 

therefore inhibits bone resorption and osteoclastogenesis (Mizuno et al., 1998). 

TRAP, RANK and cathepsin K are osteoclast phenotypic markers; whereas the 

RANKL/OPG ratio is an indicator of activation of bone resorption (Grimaud et al., 

2003). 

 

1.2.2.3 Osteocytes 

 

 Osteocytes are the most abundant cell type in mature bone where there are ten 

times more osteocytes than those of osteoblasts (Parfitt, 1977). They are terminally 

differentiated, non-proliferative cells derived from mature osteoblasts that are 

synthesising osteoid (Dudley and Spiro, 1961, Baud, 1968, Palumbo, 1986). 
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Chapter 1 

1.2.2.3.1 Morphology 

 

 Osteocytes are dendritic cells encased within lacunae in the bone matrix 

(Figure 1.4). In the adult human, osteocyte cell bodies are smaller than osteoblasts; 

they have lost many of their organelles (Jande and Belanger, 1973, Irie et al., 2008) 

and contain a sparse endoplasmic reticulum and an underdeveloped Golgi apparatus, 

typical of low amounts of synthesis and secretion (Bourne, 1972, Mullender et al., 

1996). Osteocytes produce E11, a glycoprotein involved in the formation and 

maintenance of dendritic processes (Wetterwald et al., 1996, Hadjiargyrou et al., 

2001), which extend and retract through canaliculi allowing communication between 

adjacent osteocytes, bone marrow and surface bone cells (Doty, 1981, Menton et al., 

1984, Palumbo et al., 1990) (Figure 1.4). The dendritic processes are able to connect, 

disconnect and re-connect with neighbouring cells (Zhang et al., 2006). Osteocytes 

interconnect through gap junctions, for example connexin 43 (CX43), at the ends of 

their processes which are essential for osteocyte activity, maturation and survival 

(Baud, 1968, Doty, 1981, Knothe Tate et al., 2004). Osteocytes reside within the 

lacunocanalicular system (LCS) (Plotkin et al., 2002) which permits metabolic traffic 

and exchange.  

 

1.2.2.3.2 Function 

 

Osteocytes have many functions in bone, which depend on the maturation 

state of the cell. Genes that distinguish osteocytes from osteoblasts are those 

expressed by mature osteocytes, such as fibroblast growth factor 23 (FGF23) and 

sclerostin (SOST) (Bonewald, 2011) (Figure 1.5). 
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Figure 1.4 Osteocytes. Dendritic osteocytes can be seen extending their long 

processes within the bone matrix forming an osteon. Figure by Tim Arnett, from the 

Bone Research Society. 
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Figure 1.5 Expression of markers during osteoblast-to-osteocyte differentiation. 

Osteoblasts express Runx2 for differentiation, and ColI and ALP for matrix synthesis. 

OCN is expressed by late osteoblasts and continued to be expressed by osteocytes. 

Some osteoblasts are then embedded within the osteoid and become osteoid 

osteocytes where they develop dendritic processes through the expression of E11. At 

this stage, mineralisation markers phosphate-regulating gene with homologies to 

endopeptidases on the X chromosome (PHEX) and matrix extracellular 

phosphoglycoprotein (MEPE) begin to be expressed followed by dentin matrix 

protein 1 (DMP1). Finally mature osteocytes express FGF23 and SOST. Figure 

adapted from (Bonewald, 2011).  
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Chapter 1 

1.2.2.3.3 Mechanotransduction 

 

Osteocytes are ideal candidate cells within bone to detect and respond to the 

physical stimuli from forces exerted on bones, because of their abundance, 

morphology, position within bone and ability to form an extensive network 

(Mullender and Huiskes, 1997, Nomura and Takano-Yamamoto, 2000, Plotkin et al., 

2002, Turner et al., 2002, Klein-Nulend et al., 2013). Furthermore, osteocytic 

processes are considered the principal structure involved in sensing mechanical 

stimuli and they are mainly composed of actin filaments which may have an 

important role in mechanosensing (You et al., 2001, McGarry et al., 2005). 

Osteocytes also have primary cilia (Xiao et al., 2006, Malone et al., 2007) which, as 

in other cell types, have been shown to be involved in mechanosensing (Hoey et al., 

2011, Xiao et al., 2011, Nguyen and Jacobs, 2013). In addition, proteins involved in 

the connection of osteocytes to surrounding cells and/or the extracellular matrix 

(ECM), like focal adhesions, CX43 and integrins, have been found to be involved in 

osteocyte response to mechanical stimuli (Litzenberger et al., 2010, Zhang et al., 

2011). Consequently, osteocytes have been shown to respond to loading in vivo and 

in vitro and details of these studies can be found in page 34. 

 

1.2.2.3.4 Regulation of bone remodelling 

 

There are many factors that regulate bone remodelling, including systemic 

factors such as calcitonin, which inhibits osteoclast resorption (Zaidi et al., 2002); 

parathyroid hormone (PTH), which not only induces osteoclastic bone resorption and 

stimulates renal calcium reabsorption to balance serum calcium levels (Talmage and 

Elliot, 1958), but also induces bone formation (Selye, 1932, Dempster et al., 1993) 

(page 18), vitamin D3  which indirectly regulates bone resorption through osteoblasts 

(Baldock et al., 2006, Crockett et al., 2011) and oestrogen, which regulates osteoclast 

(Nakamura et al., 2007, Krum et al., 2008) and osteocyte (Tomkinson et al., 1997, 

Tomkinson et al., 1998, Mann et al., 2007) survival .  
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Osteocytes are thought to regulate bone formation by orchestrating the 

formation and activity of osteoblasts and osteoclasts (Klein-Nulend et al., 2013) 

(page 34). Osteocytes release prostaglandins and bone morphogenetic protein 2 

(BMP2), which stimulate osteoblast recruitment and activity (Li et al., 2002, Rawadi 

et al., 2003). Osteocytes also regulate bone formation through components of the 

wingless related integration site (Wnt) signalling pathway. SOST is an osteocyte 

specific protein (Poole et al., 2005) and a Wnt signalling pathway antagonist, which 

inhibits bone formation by preventing osteoblast differentiation (Winkler et al., 2003, 

van Bezooijen et al., 2004, Poole et al., 2005, van Bezooijen et al., 2005, Lowik and 

van Bezooijen, 2006, van Bezooijen et al., 2007). The Wnt signalling pathway 

stimulates osteoblast differentiation and SOST inhibits this pathway by binding to 

low density lipoprotein receptor-related protein 5/6 (LRP5/6) (Li et al., 2005c, 

Semenov et al., 2005, Semenov and He, 2006). SOST expression is responsive to 

mechanical stimulation (Robling et al., 2008). Inactivating mutations in the SOST 

gene lead to a high bone mass phenotype in mice (Li et al., 2008) and humans 

(Balemans et al., 2002) (page 18). 

 

Osteocytes have also been shown to support osteoclast formation and 

activation as they express large amounts of RANKL, OPG and M-CSF along their 

processes which come into contact with marrow cells (Kamioka et al., 2001, Zhao et 

al., 2002, You et al., 2008, Nakashima et al., 2011, Xiong et al., 2011). Furthermore, 

osteocyte apoptosis is thought to trigger bone resorption signals in defined areas of 

microdamage (Noble, 2003). Osteocytes undergo apoptosis before osteoclasts start 

the bone resorption process, suggesting that a signal is generated from dying 

osteocytes to trigger osteoclastic resorption (Noble et al., 1997, Verborgt et al., 2002, 

Noble, 2003). It is important to note that osteocyte apoptosis is a common event in 

both healthy and unhealthy bone (Noble et al., 1997), is age related (Frost, 1960, 

Dunstan et al., 1990), but it can also be triggered by disruption of cell-cell and cell-

matrix interactions (Xing and Boyce, 2005). However, it is reduced by mechanical 

stimulation (Plotkin et al., 2005).  
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1.2.2.3.5 Mineralisation 

 

Osteocytes express low levels of ALP. However, they can regulate 

mineralisation and phosphate metabolism through the expression of phosphate-

regulating gene with homologies to endopeptidases on the X chromosome (PHEX), 

found in osteoid osteocytes (Bonewald, 2011); matrix extracellular 

phosphoglycoprotein (MEPE), which influences mineralisation through activation of 

BMP2 (Rowe et al., 2004), also found in osteoid osteocytes (Petersen et al., 2000); 

dentin matrix protein 1 (DMP1), involved in hydroxyapatite formation  and found in 

mineralising osteocytes (Feng et al., 2003, Feng et al., 2006); and FGF23, a 

phosphaturic hormone  expressed by mature osteocytes (Feng et al., 2006) (Figure 

1.5).  

 

1.2.2.4 Bone-lining cells 

 

 Bone-lining cells are flattened in shape and cover most of the bone surfaces 

that are not undergoing remodelling. They have cytoplasmic processes that pass 

through the osteoid connecting them to mature osteoblasts and early osteocytes 

(Miller et al., 1989). Bone-lining cells have low amounts of cytoplasm, rough 

endoplasmic reticulum and free ribosomes, suggesting low metabolic activity. These 

cells form the endosteum on trabecular surfaces and are present below the 

periosteum on the cortical bone surface (Parfitt, 1994, Clarke, 2008). Elimination of 

bone lining cells, leading to exposure of bone matrix, is essential for bone 

remodelling to occur (Jones and Boyde, 1976, Zambonin Zallone et al., 1984). Bone-

lining cells are thought to be quiescent osteoblasts (Nakamura, 2007), but retain the 

ability to re-differentiate into osteoblasts (Dobnig and Turner, 1995, Leaffer et al., 

1995). These cells are joined to mature osteoblasts by adherens junctions (Shin et al., 

2000, Shin et al., 2004) and may be involved in regulation of calcium and phosphate 

movement in bone tissue, thereby acting as a bone-blood barrier (Miller et al., 1989, 

Dobnig and Turner, 1995). Bone-lining cells also aid resorption by secreting 

collagenase which removes bone matrix so osteoclasts can attach to bone (Parfitt et 

al., 1996) 
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1.2.3 Bone marrow 

 

 Bone marrow is present in the cavities of long bones and in the pores of 

trabecular bone, extending to the blood vessel canals where the blood supply of both 

bone and bone marrow are directly connected (Brookes, 1961, Standring, 2004). In 

long bones, marrow is yellow and mainly composed of fat cells, whereas in flat and 

short bones, marrow is red and is mainly composed of haematopoietic cells, 

including osteoclasts (Standring, 2004). Red marrow can also be found in the 

epiphyses of long bones (Figure 1.1A). Bone turnover and marrow composition are 

directly linked, with a higher turnover rate found in trabecular bone associated with 

haematopoietic marrow (Krempien et al., 1978, Eventov et al., 1991). Osteoclasts 

and osteoblasts differentiate from haematopoietic and non-haematopoietic stem cells 

respectively which are also present in the bone marrow (Compston, 2002). Non-

osteogenic marrow cells, such as mononuclear cells of monocyte or macrophage 

linage, regulate osteoclastogenesis and osteoclast activity through the production of 

interleukin 1 (IL-1) and TNF-α (Jilka, 1998, Pacifici, 1999, Compston, 2001). 

Megakaryocytes have also been found to be involved in bone remodelling as they 

express RANKL (Kartsogiannis et al., 1999), transforming growth factor beta (TGF-

β) and its receptors (Bord et al., 2001), as well as glutamate receptors (Genever et al., 

1999) and calcium-sensing receptors (House et al., 1997).  

 

1.3 Modelling and remodelling 

 

Bone is a dynamic tissue that undergoes modelling and remodelling.  

 

1.3.1 Bone modelling 

 

 The process of modelling, defined by Frost (1990), involves bones altering 

their overall shape as a result of growth, mechanical loading or physiological effects, 

adjusting the skeleton to its environment. Modelling may lead to the addition or 

removal of bone and/or to bones changing their axis. However, bone growth is the 

major type of modelling (Frost, 1990b, Clarke, 2008).  
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In 1892, Wolff observed that trabeculae are orientated according to the paths 

of the mechanical stresses applied to the bone. Therefore, he proposed that long 

bones adapt their shape to accommodate stresses experienced by them (Wolff, 1986).  

During modelling, bone formation and resorption are not strongly linked and occur 

continuously but at different locations in bone (Frost, 1990b, Kobayashi et al., 2003). 

Modelling is less common than remodelling in the adult human (Kobayashi et al., 

2003) but may be enhanced in several pathologies such as hypoparathyroidism 

(Ubara et al., 2005) and renal osteodystrophy (Ubara et al., 2003). Treatment with 

anabolic therapies can also increase bone modelling (Lindsay et al., 2006). 

 

1.3.2 Bone remodelling 

 

 Bone remodelling is the process by which old bone is replaced with new bone 

in order to maintain strength and mineral homeostasis. There are no changes in the 

morphology of the bone, and resorption and formation are balanced and occur in the 

same site (Frost, 1990a). Bone remodelling takes place in small groups of cells called 

‘Basic Multicellular Units’ (BMUs) (Frost, 1990b). Bone remodelling is initiated by 

the recruitment of pre-osteoclasts from the circulation (Roodman, 1999). The 

endosteum and bone lining cells are lifted to reveal the bone surface allowing pre-

osteoclasts to fuse and form large multinucleated cells which attach to the bone 

matrix. Pre-osteoclasts form a resorbing compartment and differentiate into mature 

osteoclasts (Clarke, 2008) that resorb bone matrix by releasing hydrogen ions and 

enzymes forming an erosion cavity. Osteoclasts then die and mononuclear cells 

prepare the bone surface for bone formation (Eriksen, 1986, Reddy, 2004). Bone 

formation occurs when osteoblasts begin to synthesise new organic matrix and 

regulate its mineralisation (Anderson, 2003). The new matrix (osteoid) fills in the 

erosion cavity, 70% of osteoblasts die and the rest are buried within it to differentiate 

into osteocytes, or convert into bone lining cells, and finally the osteoid is 

mineralised (Burger et al., 2003). Resorption and formation processes are thought to 

be coupled, ensuring old bone is removed and restored with new bone, therefore 

maintaining bone mass (Parfitt, 2000). 
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1.3.3 Bone diseases 

 

Common diseases occur as a consequence of abnormal bone remodelling. 

These result from an imbalance between the activities of osteoblasts and osteoclasts 

and speed of remodelling, leading to disproportionate bone formation and resorption. 

Many of these pathologies have no or limited treatments and therefore would benefit 

from alternative therapies.  

 

1.3.3.1 Osteoporosis 

 

 Osteoporosis is the most common bone disease (Raisz, 1997) and is 

characterised by decreased bone mass and weakening of the bone resulting in 

increased risk of fractures. Osteoporosis leads to accelerated bone remodelling, with 

increased rates of bone formation which are not sufficient to replace the bone lost by 

resorption (Raisz, 2005) suggesting a decrease in osteoblast activity which could be 

due to senescence or the lack of systemic and global growth factors (Raisz, 2005). 

Osteoporosis can be classified into primary type 1, primary type 2 or secondary 

osteoporosis (Rosen et al., 2008). Females are more affected than men as bone mass 

in women is lower and reduced oestrogen production causes female bone mass to 

abruptly decrease during the menopause (Riggs et al., 1986, Wark, 1993). 

Menopause-induced osteoporosis is primary type 1 osteoporosis. Primary type 2 

osteoporosis is age-related and affects 1 in 2 women and 1 in 5 men over 50 in the 

United Kingdom (UK) (van Staa et al., 2001). Secondary osteoporosis occurs as a 

result of other medical conditions, such as hyperparathyroidism, vitamin D 

deficiency, anorexia and renal disease; or prolonged use of certain medications such 

as glucocorticoids, immunosuppressants and chemotherapy (Rosen et al., 2008). 

 

Osteoporosis can also be caused by reduced mechanical loading of the 

skeleton, in which case it is known as disuse osteoporosis and is characterised by 

increased bone resorption (Weinreb et al., 1989, Bain and Rubin, 1990, Zerwekh et 

al., 1998, Rantakokko et al., 1999, Li et al., 2005a). It affects bed ridden patients and 

astronauts, who undergo reduced loading or weightlessness respectively, for long 

periods of time (Szollar et al., 1998, Kanis et al., 2001, Wang et al., 2001). 
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Most of the available osteoporosis treatments involve anti-resorptive agents 

such as oestrogen, selective oestrogen-receptor modulators (SERMs), calcitonin and 

bisphosphonates. However, none of these cause a great increase in bone mass. 

Strontium ranelate (PROTELOS®) and PTH (Teriparatide) are the only two available 

therapies that induce bone formation. Teriparatide is the only food and drug 

administration (FDA) approved drug, however it was only approved for use of up to 

2 years due to safety issues (Dempster et al., 2001, Neer et al., 2001, Rubin and 

Bilezikian, 2003, Sato et al., 2004). 

 

Oestrogen and SERMs are considered hormone replacement therapy. 

Oestrogen used to be the only pharmacological approach to osteoporosis, however 

since other therapies have been approved, it has been proposed that hormones should 

only be used for treatment of post-menopausal osteoporosis and only after all other 

treatments have been considered, due to its increased cancer risk (Rosen et al., 2008). 

SERMs were developed as an alternative to oestrogen. They are molecules that 

interact with oestrogen receptors producing similar effects to oestrogen itself, 

however, they have been linked to an increased risk of thrombo-embolic disease 

(Rosen et al., 2008). 

 

Calcitonin is a peptide secreted by thyroid gland cells which inhibits bone 

resorption as a result of increased serum calcium levels. It was first used as a 

treatment for Paget’s disease of bone (page 21), but since then it has been used for 

less severe osteoporosis and in patients who cannot tolerate newer drugs (Rosen et 

al., 2008).  

 

Bisphosphonates are internalised by osteoclasts and inhibit bone resorption 

(Russell, 2007), but their retention in bone (Lin, 1996, Khan et al., 1997, Rodan, 

1997, Papapoulos and Cremers, 2007) and association with osteonecrosis in the jaw 

(Marx, 2003, Ruggiero et al., 2004, Marx et al., 2005) have led to concerns about 

their long term use.  
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Strontium ranelate (PROTELOS®) is a drug composed of two atoms of 

strontium (Sr2+) used for post-menopausal osteoporosis. It has been suggested that 

strontium ranelate triggers bone formation by activating the calcium-sensing receptor 

(CaSR) to induce osteoblast proliferation (Brown, 2003, Coulombe et al., 2004); and 

it decreases bone resorption by downregulating RANKL and upregulating OPG 

(Marie, 2007, Brennan et al., 2009).  

 

Denosumab (Prolia®) is a monoclonal antibody against RANKL, which 

prevents osteoclast activation and inhibits bone resorption (McClung et al., 2006). It 

has no major adverse effects (Cummings et al., 2009) and is FDA approved for the 

treatment of osteoporosis in post-menopausal women (McClung et al., 2006, 

Cummings et al., 2009) and osteoporotic men.  

 

Teriparatide is a recombinant fragment of human parathyroid hormone 

(rhPTH1-34), the main regulator of bone and kidney calcium and phosphate 

metabolism, and is used for the treatment of advanced osteoporosis for a maximum 

of 18 months. However, its association with increased osteosarcoma risk in animals 

(Vahle et al., 2004, Schneider et al., 2005, Tashjian and Gagel, 2006) has limited its 

use.  

 

Rare autosomal recessive inherited bone disorders, such as sclerosteosis and 

Van Buchem disease, which are caused by loss of function mutations in the SOST 

gene (Balemans et al., 1999, Balemans et al., 2001, Brunkow et al., 2001, Winkler et 

al., 2003, van Bezooijen et al., 2004)  or SOST enhancer (Balemans et al., 2002, 

Staehling-Hampton et al., 2002, Loots et al., 2005) respectively, result in increased 

bone formation without affecting bone resorption. The study of these diseases has led 

to the development of monoclonal antibodies against sclerostin which mimic its 

downregulation (Li et al., 2009, Papapoulos, 2011). 
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1.3.3.2 Paget’s disease of bone 

 

 Paget’s disease of bone is characterised by accelerated and disorganised bone 

remodelling in localised areas of  bone, as a result of highly increased bone 

resorption and formation (Kanis, 1998, Cundy and Reid, 2012, Ralston and Layfield, 

2012). This rapid bone remodelling leads to woven bone formation, which has 

reduced mechanical strength than normal bone (Ralston and Layfield, 2012). Paget’s 

disease affects one or more bones such as the femur, lumbar spine, skull and tibia, 

with the pelvis being the most common (Kanis, 1998). It is prevalent in middle-aged 

and older people with up to 8 % of men and 5 % of women by the age of 80 being 

affected in the UK (van Staa et al., 2002, Haddaway et al., 2007). Paget’s disease can 

be asymptomatic, or present with bone pain, secondary arthritis, pathological 

fractures and larger distorted bones. If the skull is affected, it can also cause deafness 

and increasing hat size (Cundy and Reid, 2012). It is also associated with increased 

risk of osteoarthritis, back pain and reduced quality of life (Langston et al., 2007). 

Paget’s disease is usually treated with potent bisphosphonates which lead to long-

term suppression of the disease (Reid et al., 2005). 

 

It has been suggested that Paget’s disease is triggered by environmental 

factors including vitamin D deficiency (Barker and Gardner, 1974),  low calcium 

intake (Siris, 1994), rural lifestyle (Merlotti et al., 2005) and, more controversially, 

viral infections such as measles, respiratory syncytial virus (Mills et al., 1984, 

Friedrichs et al., 2002, Rima et al., 2002), and paramyxovirus (Ralston et al., 2007, 

Ralston and Layfield, 2012). As reviewed in (Cundy and Reid, 2012), Paget’s 

disease of bone is also inherited as an autosomal dominant trait caused by mutations 

in the SQSTM1 gene (Morales-Piga et al., 1995, Hocking et al., 2002, Laurin et al., 

2002), which encodes a protein involved in the control of NFκB, extracellular signal 

regulated kinases (ERK), and mitogen activated protein kinase (MAPK) signalling, 

as well as transcriptional activation. In addition, common variants of other genes, 

such as CSF1, TNFRSF11A and TM7SF4, have been linked to increased risk of 

developing Paget’s disease of bone.  
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1.3.3.3 Osteoarthritis 

 

 Osteoarthritis (OA) is the most common degenerative joint disease in the UK, 

affecting 1 million people per year. OA usually develops in people over the age of 50 

and is more common in women than men, however younger people can also be 

affected. OA is characterised by joint pain and stiffness associated with loss of 

articular cartilage, the formation of osteophytes (bony outgrowths) and subchondral 

bone sclerosis (Castaneda et al., 2012). Subchondral bone, underlying the articular 

cartilage, acts as a shock absorber, provides support (Imhof et al., 2000) and is 

subject to increased remodelling, microfractures, sclerosis and increased 

vascularisation in OA (Castaneda et al., 2012). The increased stiffness and 

thickening of the subchondral bone decreases its shock absorbing capacity, leading to 

increased mechanical load and breakdown of the articular cartilage (Radin and Rose, 

1986, Burr and Radin, 2003).   

 

Current OA treatments, such as painkillers, steroid injections, physiotherapy 

and joint replacement surgery do not stop the progression of the disease but instead 

alleviate symptoms such as joint pain, inflammation and stiffness; and so there is a 

need for disease-halting drugs. Thus, it is unsurprising that anti-osteoporotic drugs 

have been tested as possible novel OA therapies. From the previously mentioned 

osteoporosis therapies (page 18), it was found that oestrogens (Turner et al., 1997, 

Ham et al., 2002, Ho et al., 2011), bisphosphonates (Doschak et al., 2004, Hayami et 

al., 2004, Karsdal et al., 2008, Kadri et al., 2010, Moreau et al., 2011), anti-RANKL 

antibodies (Castaneda et al., 2012), Teriparatide (Chang et al., 2009) and strontium 

ranelate (Tat et al., 2011, Cooper et al., 2012, Reginster et al., 2013) improve the 

biomechanical properties of subchondral bone. 
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1.3.3.4 Rheumatoid arthritis 

 

 Rheumatoid arthritis (RA) is the second most common degenerative joint 

disease in the UK, with 580,000 people affected in England and Wales. RA usually 

develops between 40 and 70 years of age and is more common in women than men, 

however RA can affect people of any age. RA is an autoimmune disorder 

characterised by chronic systemic inflammation of various tissues and organs, but 

mainly of the synovial joints. It is also associated with cardiovascular, pulmonary 

and psychological disorders. Joint pathology includes destruction of cartilage and 

subchondral and periarticular bone (Goldring, 2003, McInnes and Schett, 2011). 

Focal erosions in RA bone are associated with osteoclasts (Bromley and Woolley, 

1984, Gravallese et al., 1998) and do not form in RA animal models unable to 

produce mature osteoclasts (Pettit et al., 2001, Redlich et al., 2002, Li et al., 2004a).  

 

There is no cure for RA but it is managed with a combination of surgery, 

physiotherapy, painkillers, and drugs such as non-steroidal anti-inflammatory drugs 

(NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), biological response 

modifiers (BRMs), anti-cytokines, such as TNF inhibitors, and steroids, depending 

on the severity of RA and patient responses (Goldring, 2003, Geiler et al., 2011, 

McInnes and Schett, 2011). Denosumab (Prolia®) (page 18) has been in clinical trials 

for the treatment of RA, where it has been shown that it attenuates the development 

and progression of bone erosions in RA patients (Cohen et al., 2008, Deodhar et al., 

2010). 

 

1.4 Mechanical loading in bone 

 

1.4.1 The mechanostat theory 

 

 Bones must tolerate voluntary physical activities without breaking. There are 

physical and biological factors which act together to strengthen bones enough to 

sustain load-bearing (Frost, 1987b, Frost, 1998). Physical factors include the cross-

sectional area, bone size and shape; tissue distribution and presence of microdamage 

(Martin and Burr, 1989, Martin, 1991). Bone modelling and remodelling, and 

microfracture repair are the biological determinants (Parfitt, 1983). 
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The mechanostat theory originates with Frost’s proposal (1964) of a 

minimum effective strain (MES), strain being a measure of how much bone deforms 

in response to force application (Skerry, 2008a). There are a range of strain values 

that will not induce an adaptive response to mechanical load (Figure 1.6A). A single 

strain above this range (MES) leads to an increase in bone mass (Figure 1.6B), 

whereas, a strain below this range leads to loss of bone mass (Figure 1.6C). The 

mechanostat theory also states that strains above 1500 microstrain (µε) stimulate 

modelling-induced bone formation (Figure 1.6D); and remodelling-induced bone loss 

occurs at strains below 100 µε (Figure 1.6E). It is because of the difference in strain 

values that modelling and remodelling are not stimulated at the same time on the 

same bone surface (Frost, 1987a, Ferretti et al., 1995, Frost, 1996, Frost, 1998). Even 

though the forces suffered in limb bones of animals decrease as a function of body 

size, for example 6.9 G in a 7 kg turkey and 0.8 G in a 2500 kg elephant; the peak 

strains in vertebrates ranging from horses and humans to turkeys and dogs, are very 

similar ranging from 2000-3500 µε (Rubin and Lanyon, 1984a, Rubin and Lanyon, 

1984b, Rubin et al., 1990).  

 

The mechanostat theory inspired Frost to generate the ‘Utah paradigm of 

skeletal physiology’ which proposed the following (Frost, 1996):  

1) Skeletal health and disease is determined by biological mechanisms requiring 

effector cells and non-mechanical stimuli. 

2) Biological mechanisms are guided by biomechanics. 

3) Biological mechanisms are dominated by neuromotor anatomy and 

physiology after birth. 

4) Non-mechanical factors can facilitate or hinder mechanical control but cannot 

replace or duplicate it. 

This paradigm was the first to account for the significant effects of mechanical 

loading on bone structure, changing the dogma in bone physiology. 
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Figure 1.6 The effect of mechanical strain on bone mass. The graph shows bone 

mass is maintained with moderate strain (A), increased with strains higher than 

2000-3000 µε (B), and lost with trivial strains (C).  The graph also shows mechanical 

strains at which modelling (D) and remodelling (E) occur. MES: minimum effective 

strain. Figure adapted from (Bailey et al., 1996). 
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Bone adapts to its environment by regulating its own mass (Lanyon and 

Smith, 1970, Lanyon, 1973, Lanyon et al., 1975, Jones et al., 1977, Goodship et al., 

1979, Woo et al., 1981, Rubin and Lanyon, 1984b). This dynamic link between bone 

structure and its mechanical environment (Lanyon and Smith, 1970, Lanyon, 1973, 

Lanyon et al., 1975) is seen in tennis players whose humeri in their ‘racquet arm’ 

tends to have 35 % higher bone mass than in their other arm (Lanyon et al., 1975, 

Jones et al., 1977, Haapasalo et al., 2000, Kontulainen et al., 2003), and in astronauts 

who experience long periods of weightlessness (Baldwin et al., 1996, Goodship et 

al., 1998, Carmeliet et al., 2001), or patients subject to paralysis or prolonged bed 

rest (Gross and Rubin, 1995) resulting in reduced bone mass. 

 

Early bone loading experiments in avian ulnae (Rubin and Lanyon, 1984b) 

showed that adaptive (re)modelling is largely responsive to short periods of high 

strain suggesting that it is a process controlled by signals to which bone is not 

accustomed (Skerry, 2008a). Short periods of high strain (Rubin and Lanyon, 

1984b), high strain rates (Mosley and Lanyon, 1998) and periods of rest interrupting 

strain cycles (Robling et al., 2000) all increase osteogenic potential (Skerry, 2008a). 

 

1.4.2 Mechanical loading models  

 

1.4.2.1 In vivo models 

 

The starting point for developing mechanical loading models requires 

assessment of strains experienced in vivo. This has been done by attaching strain 

gauges directly onto the bone surfaces of sheep (Lanyon, 1973), horses (Rubin and 

Lanyon, 1982, Gross et al., 1992), turkeys (Rubin and Lanyon, 1985, Adams et al., 

1997), goats (Roszek et al., 1993), dogs (Rubin and Lanyon, 1982) and even humans 

(Lanyon et al., 1975, Hillam et al., 1996), in order to measure the strains engendered 

during daily activities. Although the attachment of strain gauges to bone in vivo has 

proven to be very useful for the study of load, bone growth and adaptation, this 

method is invasive and only measures strains. Non-invasive loading models, such as 

the rat ulna, mouse tibia, rodent vertebrae and tail suspension models, have been 

developed to study bone mechanotransduction and are briefly described below. 
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1.4.2.1.1 Ulna loading 

 

 The loading of a rodent ulna was first described by Torrance et al. in 1994. 

They developed a cyclic, axial loading model where the rat forearm is placed 

between two cups, holding the wrist and the elbow, and compressed in a cyclic 

manner, which elicits osteogenesis when peak physiological strains are exceeded 

(Torrance et al., 1994) (Figure 1.7A). Since then, this model has been used in many 

mechanotransduction studies. For example, it was used to show that bone resorption 

is inhibited whilst formation is stimulated by loading (Hillam and Skerry, 1995), that 

oestrogen and loading produce a greater osteogenic response together than separately 

(Cheng et al., 1994) and that the glutamate signalling pathway may be involved in 

mechanotransduction, as glutamate/aspartate transporter 1 (GLAST1) is 

mechanically regulated (Mason et al., 1997). The use of the ulna as a loading model 

has also been applied to birds (Lanyon and Rubin, 1984, Rubin and Lanyon, 1984b, 

Lanyon et al., 1986, Pead et al., 1988, Rubin et al., 1996), mice (Hsieh et al., 2001, 

Robling et al., 2008) and sheep (O'Connor et al., 1982). 

 

1.4.2.1.2 Tibial loading 

 

 The loading of a rodent tibia was first described by Seireg and Kempke in 

1969 as a technique for the investigation of degenerative and regenerative influence 

of cyclic loads on living bone (Seireg and Kempke, 1969). Rats were exposed to long 

periods of low and short periods of high cyclic loading. This model was then updated 

to the four point bending of the rat tibia, causing compression and tension on 

different areas of the bone by applying large rods directly on the skin and the 

underlying periosteum (Figure 1.7B). This method causes dense bone to form in low 

strain regions, and woven bone to form in high strain regions (Turner et al., 1991). 

Other interesting results have been found using the four point bending rat tibia 

model, such as the increase in osteocyte insulin growth factor 1 (IGF-1) mRNA 

expression (Reijnders et al., 2007b) and OPN expression (Miles et al., 1998) after 

load; and load induced cyclooxygenase 2 (COX-2) expression mediation of bone 

formation induction (Forwood, 1996).  
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1.4.2.1.3 Vertebrae loading 

 

 The loading of rodent vertebrae was first described by Chambers et al. in 

1993. In this loading model pins are inserted into the seventh and ninth caudal 

vertebrae of rats which are used to load the eighth caudal vertebra through cyclic 

compression (Chambers et al., 1993, Chow et al., 1993) (Figure 1.7C). Woven and 

lamellar bone formation could be induced with short loading regimes (Chambers et 

al., 1993), with a single 10 minute loading episode inducing 24-fold increases in 

bone formation (Chow et al., 1993). Although the vertebrae loading model is more 

invasive than ulna or tibial loading models, interesting results have been obtained 

including that oestrogen enhances osteogenic responses after load (Jagger et al., 

1996); that nitric oxide (NO) is necessary but not sufficient to induce bone formation 

(Chow et al., 1998a), and that mechanical loading induces bone formation by 

reactivating bone lining cells (Chow et al., 1998b). Mice vertebrae have also been 

used as loading models (Webster et al., 2008, Webster et al., Lambers et al., 

Wasserman et al.). 

 

1.4.2.1.4 Tail suspension 

 

 The tail suspension model was first developed in the 1970s with the aim to 

provide a gravity-based model that could mimic the effects of weightlessness 

(Morey-Holton and Globus, 1998). In this model rodents are held by a harness in a 

head-down position, so that they have the use of the front limbs for movement, 

eating, and grooming, with the hind limbs being unloaded (Morey-Holton and 

Globus, 1998) (Figure 1.7D). Studies using this model have shown that after a short 

period of unloading, there was a higher incidence of osteocyte apoptosis which 

correlated with sites of resorption suggesting that osteocyte death precedes bone loss 

(Aguirre et al., 2006), that OPN is required for bone resorption as a result of 

unloading (Ishijima et al., 2001) and that OPN is associated with NFκB during this 

process (Ishijima et al., 2006). This model was also used to show the effects of 

bisphosphonates on bone changes (Apseloff et al., 1993) (page 18).  
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Figure 1.7 In vivo bone loading models. Diagrams of the ulna (A), tibia (B), vertebrae 

(C) and tail (D) loading models, adapted from (Turner et al., 1991, Robling et al., 2001, 

Barbosa et al., 2011, Lambers et al., 2011). CV: caudal vertebra. 
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1.4.2.2 In vitro models 

 

Although cell specific knockout (KO) animal models are a powerful tool in 

unravelling specific cellular responses to mechanical loading, the in vivo bone 

environment is highly complex. Bone organ cultures, involving bone explants, have 

also been used to investigate mechanical loading responses (Davies et al., 2006, 

Rawlinson et al., 1995, Chan et al., 2009). Although organ cultures have the 

advantage of simplifying the complexity of the in vivo environment whilst 

maintaining bone cells within their native ECM, they contain a heterogeneous cell 

population, are awkward to maintain and have a limited life-span (Arnett et al., 1998, 

Pitsillides and Rawlinson, 2012). Therefore the investigation of direct cell-cell 

interactions has depended on in vitro loading models. The loading method used, the 

cell type and the cell environment all need to be considered when designing an in 

vitro bone loading model. It is the combination of these factors that will lead to a 

model which resembles a physiological situation and can therefore be used to answer 

a range of scientific questions.   

 

1.4.2.2.1 Loading methods  

 

In vitro loading models generally involve cell culture systems, which are 

subjected to mechanical stimuli such as hydrostatic pressure, fluid shear stress, or 

substrate strain in a precise manner. For this reason, many mechanical loading 

devices have been designed which range in complexity, accuracy and consistency of 

loading (Brown, 2000). Pioneering work on in vitro mechanical loading devices 

started in 1939 (Glücksmann, 1939) and quantitative devices started to be used in the 

mid-1970s. Since then a range of compression, stretch, substrate bending, distension 

and fluid shear devices, involving either contact or contactless-loading, have been 

developed (Brown, 2000). Early devices limited to low loading frequencies have 

been superseded by those that can mimic osteogenic in vivo frequencies of 10-100 

Hz (Brown, 2000, Rubin et al., 2001a). Commercially available bone loading 

systems include BOSE, FlexCell® and ZETOS. For instance, BOSE ElectroForce® 

devices allow the application of tension, compression, bending, stress, torsion or 

fluid shear to in vivo (Macione et al., 2011), ex vivo (Price et al., 2011, Xiao et al., 

2011) and three-dimensional (3D) in vitro cultures (Sittichockechaiwut et al., 2009), 
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but not to two-dimensional (2D) cell cultures. FlexCell® has a smaller range of 

devices which are only applicable to ex vivo and 2D or 3D in vitro cultures, and has 

been previously used to load 2D osteocyte cultures in vitro (Plotkin et al., 2005, 

Zhang et al., 2006). Finally, ZETOS systems have been mainly used for long term ex 

vivo loading (Davies et al., 2006, Endres et al., 2009, Aw et al., 2012). The main 

disadvantage of these industrial designs is the number of specimens or cultures that 

can be loaded at the same time. The majority of BOSE® systems can only load one 

sample at a time, with a maximum of 6 for FlexCell®.  

 

1.4.2.2.2 Cell type 

 

The majority of in vitro bone loading investigations focus on osteoblasts 

(page 32). Although osteocytes are the principal load sensors in vivo, much less 

loading research has been done on these cells (pages 9 and 34). This is possibly due 

to the limited availability of osteocytes. Primary osteocytes are difficult to isolate and 

culture due to their position within bone. To date, only chick (Nijweide et al., 2003, 

van der Plas and Nijweide, 2005), mouse (Nakashima et al., 2011, Halleux et al., 

2012, Stern et al., 2012) and rat (Gu et al., 2006) primary osteocytes have 

successfully been isolated using sequential bone digestion. Nevertheless, the yield of 

live osteocytes after digestion is low and they do not proliferate in culture, limiting 

their use for experimental procedures. Two mouse osteocyte cell lines, MLO-A5 

(osteoid pre-osteocyte) (Kato et al., 2001) and MLO-Y4 (osteocyte-like) (Kato et al., 

1997) have been developed to facilitate the study of these cells. Although MLO-Y4 

cells are ‘osteocyte-like’ (Kato et al., 1997), they do not express late-osteocyte 

markers and therefore are not a true representation of mature osteocytes. A recently 

developed osteoblast-to-late-osteocyte cell line (IDG-SW3) that expresses all mature 

osteocyte genes when differentiated, provides new potential for investigating 

osteocyte biology (Woo et al., 2011). 
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1.4.2.2.3 Cell environment 

 

Over the last three decades, the mechanisms involved in mechanically-

induced bone formation have been largely revealed by applying forces to primary 

osteoblasts or osteoblast-like cell-lines cultured in 2D monolayers. These showed 

that loading regulates osteoblast survival (Carvalho et al., 1995, Cillo et al., 2000, 

Cheng et al., 2002, Ogata, 2003, Bucaro et al., 2004), differentiation (Chen et al., 

2003, Jagodzinski et al., 2004, Li et al., 2004b, Henriksen et al., 2006) and function 

(You et al., 2000, Di Palma et al., 2003, Kapur et al., 2003, Li et al., 2004b, Liegibel 

et al., 2004, Mullender et al., 2004).  

 

The few studies investigating loading of osteocytes in 2D have revealed some 

of the mechanisms involved in mechanotransduction. For example, the secretion of 

prostaglandins and NO, mediators of adaptive bone formation, in response to fluid 

shear (Klein-Nulend et al., 1995a, Klein-Nulend et al., 1995b, Ajubi et al., 1999, 

Burger and Klein-Nulen, 1999); and also the involvement of the cytoskeleton in 

mechanotransduction (Ajubi et al., 1996). These investigations supported the idea of 

osteocytes being the most mechanosensitive cells in bone, as when exposed to fluid 

shear, osteocytes were more responsive than osteoblasts (Klein-Nulend et al., 1995a). 

 

Studying either osteoblasts or osteocytes in 2D loading models has 

undoubtedly shed light into the signalling underlying mechanotransduction. 

However, the more physiological model of 2D co-culture started to reveal how 

loaded osteocytes control the activities of other bone cells. For example, loaded 

MLO-Y4 cells regulate osteoclasts by inhibiting osteoclastogenesis of pre-osteoclasts 

and bone marrow stromal cells (BMSCs) through direct cell-cell contact (You et al., 

2008) and by expressing RANKL and OPG, and releasing M-CSF (Zhao et al., 

2002). Furthermore, loaded osteocytes rapidly increase ALP activity of osteoblasts 

through direct communication via gap junctions (Taylor et al., 2007). In addition, 

osteoblasts also regulate osteoclasts when in 2D co-cultures by reducing 

osteoclastogenesis when mineralising (Deyama et al., 2000) by increasing secretion 

of OPG (Schroder et al., 2012) in the absence of load. However, these in vitro 

investigations do not reflect the complex 3D dynamics that control the structure and 

function of the living bone organ and the interactions of the cells within it (Parfitt, 
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1994, Collin-Osdoby, 1994, Parfitt, 2000, Pogoda et al., 2005, Matsuo and Irie, 2008, 

Tortelli and Cancedda, 2009). 

 

In recent years, 3D in vitro bone models have become increasingly popular. 

Some of these models use type I collagen gels as the matrix within which bone cells 

are embedded (Kurata et al., 2006, Murshid et al., 2007, Qi et al., 2007, Atkins et al., 

2009), in an attempt to mimic the bone matrix, however, most of these (Murshid et 

al., 2007, Qi et al., 2007, Atkins et al., 2009) have not been exposed to loading. 

Instead these 3D bone models revealed differences in cytoskeleton composition 

between osteoblast-like cells and primary osteocytes when in 3D collagen gels 

(Murshid et al., 2007); that adenosine tri-phosphate (ATP) decreases osteoblast-like 

cells integrins expression (Qi et al., 2007); and that MLO-Y4s increase expression of 

RANKL and M-CSF but decrease OPG expression when in 3D collagen gels with 

polyethylene particles, involved in orthopaedic implant bone destruction (Atkins et 

al., 2009). Interestingly, Kurata et al. applied an undefined load to mimic 

microdamage by scratching embedded MLO-Y4 cells co-cultured with BMSCs, and 

as a result MLO-Y4 cells secreted M-CSF and RANKL and induced TRAP positive 

cells (Kurata et al., 2006).  

 

3D cultures made out of other materials such as other hydrogels (Chatterjee et 

al., 2010), polybicarbonate membranes (Boukhechba et al., 2009), and scaffolds 

(Santos et al., 2009, Tortelli et al., 2009, Barron et al., 2010), have also been used. 

Here cells are not embedded within a matrix, but instead are attached to the scaffold 

surface and therefore do not accurately capture the environment of an osteocyte 

within bone. Nevertheless, these systems have proven the feasibility of reproducing 

the synthesis of an organised matrix (Tortelli et al., 2009) and cell-mediated matrix 

degradation (Nakagawa et al., 2004, Domaschke et al., 2006, Tortelli and Cancedda, 

2009). Still, there are no models that co-culture osteoblasts and osteocytes in 3D and 

at the same time are mechanically stimulated. This highlights a major gap in the 

understanding of the interactions that lead to mechanically-induced bone formation. 
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1.5 Mechanical signalling in bone 

 

Mechanotransduction has been suggested to use similar intracellular 

signalling cascades to those generated by ligand-receptor binding, resulting in 

changes in gene expression (Rubin et al., 2006). This has been well demonstrated in 

endothelial cell responses to shear stress where mechanical stimuli activates signal 

transduction cascades, including increases in intracellular cyclic adenosine 

monophosphate (cAMP) (Lavandero et al., 1993), inositol triphosphate (IP3) and 

intracellular calcium (Dassouli et al., 1993, Li et al., 2004b), guanine regulatory 

proteins (Gudi et al., 2003) and MAPK (Rubin et al., 2002). 

 

Application of mechanical load to bone cells such as osteoblasts, marrow 

stromal cells, periosteal fibroblasts and osteocytes, leads to modulation of cell 

proliferation (Kaspar et al., 2002, Boutahar et al., 2004, Li et al., 2004b), 

differentiation (Li et al., 2004b), secretion of inflammatory modulators (Klein-

Nulend et al., 1995a, Smalt et al., 1997, Klein-Nulend et al., 1998, McAllister and 

Frangos, 1999, Zaman et al., 1999, Sanchez et al., 2009) and extracellular matrix 

protein synthesis (Dumas et al., 2009, Sittichokechaiwut et al., 2010). Therefore, 

there has been a lot of speculation around the identification of the mechanosensor in 

bone tissue. Osteoblasts and osteoclasts respond to strain signals (Rubin et al., 2006). 

Endothelial and smooth muscle cells of the bone blood vessels (Davis et al., 2001, 

Boo and Jo, 2003), together with stromal cells  in the bone marrow (Li et al., 2004b),  

may also contribute to mechanoresponses (Skerry et al., 1989). However, the 

osteocyte intercommunicating network within bone, which is connected to bone 

surface cells, that integrates hormonal, growth factor and prostaglandin signals, is 

thought to be the main regulator of bone remodelling (Skerry et al., 1989, Lanyon, 

1993, Duncan and Turner, 1995, Klein-Nulend et al., 1995a, Klein-Nulend et al., 

1995b, Mullender and Huiskes, 1997, Burger and Klein-Nulen, 1999, Han et al., 

2004).  
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Osteocytes contain the necessary cellular machinery to sense mechanical 

loading (page 13) and they have been shown to respond to loading in vivo and in 

vitro. In vivo, osteocytes increase transcriptional and metabolic activities in response 

to short loading periods (Pead et al., 1988, Skerry et al., 1989); increase their DMP1 

and MEPE expression, controlling bone matrix mineral quality (Gluhak-Heinrich et 

al., 2003, Harris et al., 2007); increase IGF-1 and related proteins involved in 

mechanically-induced bone formation (Reijnders et al., 2007a, Reijnders et al., 

2007b), and stimulate NO production (Zaman et al., 1999), an early mediator of 

mechanically-induced bone formation (Fox et al., 1996). Furthermore, recent in vivo 

studies have shown that load-regulated gene expression in trabecular osteocytes is 

different to that of compact osteocytes and the genes involved are related to 

osteoblast and osteoclast life cycles (Zaman et al., 2010, Wasserman et al., 2013). In 

vitro, ultrasound loaded MLO-Y4 cells in 2D increase COX-2 expression, necessary 

for  prostaglandin E2 (PGE2) synthesis, and decrease RANKL:OPG ratios (Li et al., 

2012a). Primary osteocytes under fluid flow secrete prostaglandins (Klein-Nulend et 

al., 1995b, Ajubi et al., 1996, Ajubi et al., 1999) and produce NO (Klein-Nulend et 

al., 1995b). MLO-Y4 cells under cyclic hydraulic pressure decrease apoptosis (Liu et 

al., 2010); and under fluid flow activate CX43 (Cheng et al., 2001b) resulting in 

adenosine tri-phosphate (ATP) release (Genetos et al., 2007). 

 

Interestingly, mechanically loaded osteocytes have been shown to directly 

regulate osteoblast activity through various mechanisms including the 

downregulation of SOST expression (Robling et al., 2008, Tu et al., 2012) and 

release of NO, which has an anabolic effect on osteoblast activity (Fox et al., 1996) 

in vivo, and the communication with neighbouring osteoblasts through gap junctions 

(Taylor et al., 2007), and release of PGE2, which regulates osteoblast proliferation 

and differentiation (Li et al., 2012b) in vitro. Furthermore, loaded osteocytes also 

regulate osteoclast activity by regulating RANKL expression (Nakashima et al., 

2011), inducing in vivo bone resorption in unloading situations (Xiong et al., 2011) 

increasing SOST expression promoting osteoclast formation (Wijenayaka et al., 

2011) and releasing NO after loading inhibiting osteoclast bone resorption (Tan et 

al., 2007) in vitro. 
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1.5.1 Adenosine, CaSR and glutamate signalling in bone 

 

 The adenosine, calcium-sensing and glutamate signalling pathways have been 

implicated in bone biology, with several in vivo studies showing that KO animals of 

some of these receptors display a bone phenotype (Morimoto et al., 2006, Chang et 

al., 2008a, Skerry, 2008b, Kara et al., 2010b, Carroll et al., 2012, Mediero et al., 

2012). In vitro studies have also associated these pathways to bone cell biology, with 

glutamate (Mason et al., 1997, Spencer and Genever, 2003, Mason, 2004) and ATP 

(Genetos et al., 2005, Li et al., 2005b, Genetos et al., 2007, Riddle et al., 2007, Liu et 

al., 2008) being implicated in mechanotransduction. GLAST1, a glutamate 

transporter, has been shown to be mechanically-regulated in osteocytes (Mason et al., 

1997),  as well as N-methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methyl-

isoxazol-4-yl) propanoic acid (AMPA) and kainate (KA) glutamate receptors in 

osteoclasts and bone lining cells (Szczesniak et al., 2005). These findings are highly 

indicative of a role for glutamate in mechanotransduction.  Furthermore, a 

hypothetical model on mechanically-induced glutamate signalling in  bone has been 

proposed (Mason, 2004). On the other hand, ATP has been shown to be released as a 

result of mechanical stimuli in osteoblasts (Pavlin et al., 2000, Romanello et al., 

2001, Genetos et al., 2005, Li et al., 2005b) and osteocytes (Genetos et al., 2007); 

and consequently, to mediate prostaglandin release (Genetos et al., 2005) and 

activate ERK 1/2 intracellular signalling (Liu et al., 2008), indicative of a role in 

mechanotransduction. 

 

1.5.1.1 Adenosine signalling 

 

Adenosine is an endogenous, ubiquitous nucleoside and a metabolite of ATP 

that acts as an extracellular signalling molecule (Drury and Szent-Gyögyi, 1929). It 

is usually present at low concentrations (less than 1 µM) in the extracellular space 

and accumulates in response to metabolic stress and cell damage eliciting 

physiological responses by binding to and activating one or more of the four G-

protein coupled adenosine receptors (A1, A2A, A2B and A3)  (Jacobson and Gao, 

2006, Evans and Ham, 2012). Adenosine receptor signalling occurs through the 

inhibition or stimulation of adenylyl cyclase, leading to a decrease or an increase in 

intracellular cAMP concentration ([cAMP]i) respectively. Therefore, adenosine 
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receptors are classified according to the effect they have on cAMP concentration: A1 

and A3 decrease [cAMP]i  (Jin et al., 1997), whereas A2A and A2B increase [cAMP]i 

(Bruns et al., 1986).  

 

Adenosine research in bone has been recently reviewed (Evans and Ham, 

2012). All adenosine receptor messenger ribonucleic acids (mRNAs) are expressed 

in MG63 osteoblasts (Russell et al., 2007), and all adenosine receptor proteins are 

expressed in human primary osteoblasts (Costa et al., 2011). A2A and A2B receptors 

are expressed in human osteoclasts (Pellegatti et al., 2011, Mediero et al., 2012). No 

data have yet been published on the expression or functionality of adenosine 

receptors in osteocytes, or as a result of mechanical stimuli in vivo or in vitro (Evans 

and Ham, 2012). Although there is a lack of publications on the expression of these 

receptors in bone, they have an effect on bone biology as a result of activation or 

inhibition in osteoblasts and osteoclasts (Evans and Ham, 2012). 

 

1.5.1.1.1 Adenosine receptor A1 in bone 

 

The role of A1 receptors in osteoblasts is unclear, with some studies not 

detecting expression in osteoblast-like cells (Lerner et al., 1987). No effects on 

osteoblast morphology or function were observed in A1
 KO mice (Kara et al., 

2010b), although the higher bone volume, smaller osteoclasts with no ruffled border 

and an absence of osteoclast bone resorption (Kara et al., 2010b) revealed A1 to be 

essential for osteoclast differentiation and function (Kara et al., 2010a). A1 receptors 

play a role in adipocyte differentiation (Gharibi et al., 2011, Gharibi et al., 2012). 

 

1.5.1.1.2 Adenosine receptor A2A in bone 

 

In osteoblasts, A2A is upregulated during final stages of osteoblast 

differentiation, during which activation of the receptor stimulates ALP activity 

(Gharibi et al., 2011). In osteoclasts, deletion of A2A increased bone resorption and 

osteoclast activity as seen in A2A KO mice (Mediero et al., 2012). In a mouse model 

of RA, adenosine was shown to decrease bone resorption through the A2A receptor 

(Mazzon et al., 2011) (page 23). 
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1.5.1.1.3 Adenosine receptor A2B in bone 

 

In osteoblasts, deletion of A2B decreases osteoblast differentiation and 

expression of osteoblast-related transcription factors by mesenchymal stem cells 

(MSCs) (Evans and Ham, 2012, Mediero and Cronstein, 2013). The A2B
 KO mouse 

showed a lower bone density, delayed fracture physiology and lower expression of 

osteoblast differentiation related genes (Carroll et al., 2012). Consistent with this, 

when overexpressed or activated, A2B stimulates mineralisation, ALP activity and 

ALP and Runx2 gene expression (Gharibi et al., 2012). In osteoclasts, very little is 

known about the expression and function of A2B. Although adenosine produced 

during inflammation inhibits differentiation of mouse bone marrow macrophages 

through A2B receptor (Xaus et al., 1999), and A2B is expressed in human osteoclast 

precursors, inhibition of A2B does not affect osteoclast formation (Pellegatti et al., 

2011). 

 

1.5.1.1.4 Adenosine receptor A3 in bone 

 

A3 is expressed in osteoblasts (Russell et al., 2007, Costa et al., 2011), but 

there are no published studies on its expression in osteoclasts. Activation of A3 

receptors increases human primary osteoblast proliferation (Costa et al., 2011) and 

decreases osteoclast number and expression of RANKL in a RA mouse model (Rath-

Wolfson et al., 2006).  

 

1.5.1.2 Calcium-sensing signalling 

 

Bone is a calcium (Ca2+) reservoir. Hormonal systems are coupled to bone 

tissue in order to transport Ca2+ in and out of bone according to the body’s needs.  

Parathyroid gland cells ensure extracellular Ca2+ homeostasis, secreting PTH when 

extracellular free ionised calcium concentration ([Ca2+]o) decreases below a 

threshold. This increases bone resorption, as well as acting on the kidney, to increase 

[Ca2+]o into the circulation. Ca2+ is sensed by cells through the CaSR, a G-protein 

coupled receptor (Brown et al., 1993). CaSR can be activated not only by 

extracellular calcium, but by other compounds including polyamines, Mg2+ and L-
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amino acids (Riccardi and Brown, 2010) such as glutamate, which acts as a positive 

allosteric modulator of the CaSR (Conigrave et al., 2000). 

 

In bone, CaSR is expressed in rat and bovine osteoblasts, osteocytes and bone 

marrow cells in vivo, but not in mature osteoclasts (Chang et al., 1999), as well as in 

osteoblasts, osteocytes and osteoclasts in rat femur and human undecalcified bone 

(Dvorak et al., 2004). In vitro, CaSR is present in rat calvarial osteoblasts 

(Chattopadhyay et al., 2004) and in several osteoblast-like cell lines (Yamaguchi et 

al., 1998b, Yamaguchi et al., 2001) including MC3T3-E1 cells (Yamaguchi et al., 

1998a, Ye et al., 2000), in addition to pre- and mature osteoclasts (Kameda et al., 

1998, Mentaverri et al., 2006). However, no studies have been published yet on the 

expression of CaSR mRNA in osteocytes in vitro.  

 

1.5.1.2.1 CaSR in bone 

 

CaSR tissue-specific KOs in parathyroid gland cells and osteoblasts both 

display severe growth retardation, small undermineralised skeletons and reduced 

body weights (Chang et al., 2008a, Dvorak-Ewell et al.). In addition, the parathyroid 

specific KO also suffers fractures in the ribs and tibiae (Chang et al., 2008a) whereas 

the osteoblast specific KO has impaired osteoblast bone forming activity (Dvorak-

Ewell et al., 2011). 

 

Cultured osteoblasts lacking the CaSR showed decreased type I collagen 

(COL1A1), OCN, ALP and DMP1 gene expression and reduced mineralisation 

(Yamauchi et al., 2005, Dvorak-Ewell et al., 2011), suggesting a role of CaSR in 

osteoblast differentiation. The CaSR is also involved in the proliferation and 

chemotaxis of osteoblasts (Yamaguchi et al., 1998a, Chattopadhyay et al., 2004, 

Dvorak et al., 2004). In cultured osteoclast precursors, high [Ca2+]o activates the 

CaSR and reduces osteoclast formation (Kanatani et al., 1999), and deletion of CaSR 

in these cells leads to a decrease in differentiation to mature osteoclasts (Mentaverri 

et al., 2006). In mature osteoclasts, high [Ca2+]o induces apoptosis (Mentaverri et al., 

2006) and inhibits resorptive activity (Zaidi et al., 1991, Kameda et al., 1998).  

Deletion of CaSR in osteoblasts increased expression of RANKL and induced 

osteoclastogenesis in co-cultured pre-osteoclasts (Dvorak-Ewell et al., 2011). 
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1.5.1.3 Glutamate signalling 

 

Glutamate is a ubiquitous amino acid and the main excitatory 

neurotransmitter in the vertebrate central nervous system (CNS), where it is involved 

in cognitive functions, e.g. memory and learning (McEntee and Crook, 1993). 

Glutamate signals through receptors which are classified into two groups according 

to signalling mechanism; ionotropic receptors (iGluRs) which act as glutamate gated 

ion channels, and metabotropic receptors (mGluRs) which are G-protein coupled 

receptors (Reynolds and Miller, 1988, Hollmann et al., 1989, Nakanishi, 1998, 

Mason, 2004). iGluRs are categorised into three groups according to homology and 

selective agonists; NMDA, AMPA and KA (Wisden and Seeburg, 1993, Hollmann 

and Heinemann, 1994). mGluRs are categorised in to three groups (I, II and III) 

according to functional groups, agonist sensitivity and signalling (Masu et al., 1991, 

Tanabe et al., 1992, Wisden and Seeburg, 1993). Glutamate concentrations across 

cell membranes are maintained by transporters driven by ion-exchange pumps 

(Schousboe and Divac, 1979, Danbolt, 2001). There are three types of glutamate 

transporters; excitatory amino acid transporters (EAATs), vesicular glutamate 

transporters (VGLUTs) and the cysteine/glutamate antiporters. EAATs (5 members), 

are high-affinity, sodium-dependent glutamate transporters that transport 

extracellular glutamate into the cell (Kanai and Hediger, 1992, Pines et al., 1992, 

Storck et al., 1992, Arriza et al., 1994, Fairman et al., 1995, Arriza et al., 1997). 

VGLUTs have lower affinity to glutamate than EAATs, comprise three transporters 

and release glutamate from vesicles (Shigeri et al., 2004). Finally, the 

cysteine/glutamate antiporters are sodium and chloride-dependent, high-affinity 

transporters which pack glutamate into vesicles ready for release (Bannai and 

Kitamura, 1980, Bannai and Kitamura, 1981, Waniewski and Martin, 1984, Cho and 

Bannai, 1990). 

 

Glutamate signalling was first associated with bone when GLAST1, also 

known as EAAT1 in humans, was identified in a gene screening investigation to 

reveal mechanically regulated genes in  rodent osteocytes (Mason et al., 1997). Since 

then, other studies reported the expression of glutamate signalling components in 

bone cells. NMDA and AMPA receptors, together with EAATs are expressed by 

osteoblasts, osteoclasts and osteocytes, whereas mGluR and KA receptors have only 
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been detected in osteoblasts and osteoclasts (Brakspear and Mason, 2012). Although 

receptor function has been reported in both osteoblasts and osteoclasts, no studies to 

date have been performed in osteocytes. Furthermore, NMDA, AMPA and KA 

receptors were also shown to be mechanically-regulated in osteoclasts and bone 

lining cells (Szczesniak et al., 2005). Glutamate concentrations were also found to 

vary  in arthritic joints increasing from 6 µM in healthy joints (Plaitakis et al., 1982, 

McNearney et al., 2000) to 332.3 ±29.3 and 240 ±38 µM in RA and OA joints 

respectively (McNearney et al., 2004) (pages 22-23). 

 

1.5.1.3.1 NMDA receptors in bone 

 

In vivo, NMDAR2A and NMDAR2B expression has been reported to be 

mechanically-regulated in osteoclasts and bone lining cells (Szczesniak et al., 2005). 

Furthermore, the development of an osteoblast/osteocyte specific NMDAR1 KO 

mouse, which displayed delayed development, thin bone structure and poor 

mineralisation of the axial and appendicular bones (Skerry, 2008b), indicates NMDA 

receptors  play a role in bone biology.  Inhibition of NMDA receptors delayed onset 

of RA and reduced bone resorption, swelling and pain symptoms in animal models of 

RA (Sluka et al., 1994, Lam and Ng, 2010) (page 23). 

 

In osteoblasts in vivo, NMDA receptor expression decreased in rats with 

disuse-induced bone loss (Ho et al., 2005) and mice treated with an NMDA 

antagonist display reduced cortical thickness (Burford et al., 2004). In rat primary 

osteoblasts, NMDA receptor antagonists downregulate Runx2 expression, reduce 

mineralisation, and inhibit ALP activity and OCN expression (Hinoi et al., 2003, Ho 

et al., 2005, Lin et al., 2008). Consistent with this, NMDA receptor agonists increase 

OCN expression and mineralisation in osteoblasts (Lin et al., 2008). In osteoclasts in 

vitro, NMDA receptor activation reduces osteoclast differentiation and activity, and 

promotes apoptosis through a decrease in NO production (Chenu et al., 1998, Peet et 

al., 1999, Itzstein et al., 2000, Mentaverri et al., 2003). 
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1.5.1.3.2 AMPA/KA receptors in bone 

 

In vivo, AMPA and KA receptors were shown to be mechanically-regulated 

(Szczesniak et al., 2005). Rats injected with AMPA showed increased bone volume 

in their tibia (Lin et al., 2008), whereas mice treated with AMPA/KA receptor 

antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione 

(NBQX), displayed decreased trabecular thickness (Burford et al., 2004). 

Furthermore, NBQX also reduces bone remodelling in rat antigen-induced arthritis 

(Bonnet, Williams and Mason unpublished data). Consistent with this, in cultured 

osteoblasts, AMPA receptor agonists increased OCN expression and mineralisation 

(Lin et al., 2008), whereas the AMPA/KA receptor antagonist NBQX inhibits 

mineralisation and reduces cell number (Bonnet, Williams and Mason unpublished 

data). Interestingly, in vitro, AMPA  treatment of osteoclasts had no effect on 

osteoclastogenesis (Lin et al., 2008), however, NBQX treatment inhibited osteoclast 

resorptive activity (Szczesniak et al., 2005). 

 

1.5.1.3.3 mGluRs in bone 

 

To date, there are no studies on the function of mGluRs in osteoblasts. 

However, agonists for mGluR8 inhibit glutamate release and bone resorption, whilst 

antagonists activate bone resorption (Morimoto et al., 2006). 

 

1.5.1.3.4 Glutamate transporters in bone 

 

In vivo, GLAST1 expression has been reported to be mechanically regulated, 

and therefore is a candidate in bone biology (Mason et al., 1997). However, a 

GLAST1 KO did not affect bone length (Gray et al., 2001). In contrast, a VGLUT1 

KO mouse showed low bone mass and large reductions of trabecular bone as a result 

of an increase in osteoclastic resorption (Morimoto et al., 2006). 

 

In vitro, inhibition of EAATs has been shown to prevent bone formation by 

calvarial osteoblasts and change their osteoblastic phenotype to a more adipogenic 

one (Taylor, 2002) and to affect the bone forming phenotype and cell number of 

osteoblast cell lines by influencing OCN, ALP and OPG mRNA expression, ALP 
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activity and mineralisation (Brakspear, 2010). On the other hand, there are currently 

no studies on the direct role of VGLUTs in osteoblasts. Nevertheless, the 

cysteine/glutamate antiporter has been shown to be functionally required for pre-

osteoblast differentiation. The antiporter was also shown to suppress pre-osteoblast 

proliferation (Uno et al., 2007, Takarada-Iemata et al., 2011) and downregulate 

Runx2 expression and ALP activity in differentiating osteoblasts (Uno et al., 2011). 

Osteoclast differentiation requires activation of the cysteine/glutamate antiporter 

(Hinoi et al., 2007) and VLGUT1 accumulates glutamate with bone degradation 

products in vesicles for release (Morimoto et al., 2006). There are no studies to date 

on the role of EAATs in osteoclast biology. 

 

1.5.1.4 Heterodimerisation of receptors in the CNS 

 

In the CNS, glutamate receptors can be controlled by other neuromodulators 

(Conn and Pin, 1997). Adenosine is a key neuromodulator in the CNS (Phillis and 

Wu, 1981) and inhibits glutamate signalling in various regions of the brain (Peris and 

Dunwiddie, 1985). Group I mGluR responses are enhanced by the action of A1 

adenosine receptors (Ogata et al., 1994, Toms and Roberts, 1999). In the CNS, in 

vivo and in vitro, mGluR1α and A1 receptors co-localise and have direct molecular 

interactions, specific to the mGluR1α splice variant (Ciruela et al., 2001). The CaSR 

heterodimerises with mGluR1α in vivo and in vitro (Gama et al., 2001) after CaSR 

and mGluR1α expression patterns were shown to overlap in the brain (Testa et al., 

1995, Chattopadhyay et al., 1997, Rogers et al., 1997, Ferraguti et al., 1998, 

Tallaksen-Greene et al., 1998, Ferry et al., 2000, Stinehelfer et al., 2000, Tanaka et 

al., 2000). mGluR5 also co-localises, heterodimerises and has synergistic interactions 

with both CaSR and adenosine receptor A2A (Pintor et al., 2000, Gama et al., 2001, 

Popoli et al., 2001, Diaz-Cabiale et al., 2002). Interestingly, A2A/mGluR5 

heterodimerisation regulates c-fos expression in the brain (Ferre et al., 2002), a 

proto-oncogene found to be key in osteoclast formation and bone remodelling 

(Grigoriadis et al., 1994) and in osteoblast differentiation (Hipskind and Bilbe, 

1998). The fact that these G-protein coupled receptors, which have been found to 

have a role in bone remodelling, heterodimerise to enhance their activity in the CNS, 

suggests similar events may also take place in bone (Mason et al., 2006, Mattinzoli et 

al., 2009). 
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1.6 Hypothesis and aims  

 

Currently, in vitro mechanical loading models do not reflect the interactions 

of the cells within bone. The majority focus on mechanical loading of osteoblasts in 

monolayers (Wang et al., 2011, Xiao et al., 2011, Li et al., 2012c) (page 30) and the 

available 3D in vitro bone models (page 32), do not elucidate the osteocyte-

osteoblast interactions (page 13) that regulate mechanically-induced bone formation 

(Kurata et al., 2006, Tortelli and Cancedda, 2009, Tortelli et al., 2009, 

Papadimitropoulos et al., 2011a, Papadimitropoulos et al., 2011b, Barthelemi et al., 

2012). Therefore the following hypothesis was generated: 

 

“A 3D osteocyte-osteoblast co-culture model, where osteocytes embedded 

within type I collagen gels are overlaid with osteoblasts, represents a useful in vitro 

model for the investigation of the regulation of mechanically-induced bone formation 

markers.” 

 

Furthermore, the adenosine, calcium-sensing, and glutamate signalling 

pathways have been shown to be involved in bone biology (page 36), as seen in KO 

animals involving signalling components of these pathways. Additionally, all 

adenosine receptors have been found to be expressed in osteoblasts (Evans and Ham, 

2012) (page 37), and CaSR (page 38) and a variety of glutamate receptors and 

transporters (Brakspear and Mason, 2012) (page 40) have been found to be expressed 

in both osteoblasts and osteocytes. Interestingly, two adenosine receptors (A1, A2A) 

and CaSR have been shown to heterodimerise with glutamate receptors mGluR1 

and/or 5 in the CNS (page 43), and both glutamate and the adenosine precursor ATP 

have been implicated in mechanotransduction (page 36). However the role of the 

adenosine, CaSR and glutamate signalling pathways in mechanically-induced bone 

formation is not fully understood. Therefore the following hypothesis was 

formulated: 

 

“Adenosine, calcium-sensing and glutamate signalling components are expressed in 

the 3D osteocyte-osteoblast co-culture model and contribute, individually or in 

combination, to the regulation of mechanically-induced bone formation markers.” 
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To investigate these hypotheses, the aims of the project were: 

1. To establish and characterise a novel in vitro mouse 3D osteocyte-osteoblast 

co-culture model. 

2. To determine the expression of osteocyte and osteoblast phenotypic markers. 

3. To determine the expression of adenosine receptors, CaSR and glutamate 

receptors and transporters within the 3D co-culture model. 

4. To determine whether embedded osteocytes respond to mechanical load in 

the 3D model by assessing PGE2 and IL-6 release, and expression of 

signalling and phenotypic markers. 

5. To determine the responses of 3D co-cultures to mechanical load by assessing 

PGE2 release, pro-collagen type I (PINP) synthesis and expression of bone 

formation markers. 

6. To determine the effects of receptor antagonists on the response of 3D co-

cultures to mechanical stimuli (as in aim 5). 
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2. Materials and Methods 

 

2.1 Materials 

 

All reagents were purchased from Sigma-Aldrich® (Poole, UK) unless 

otherwise stated below. 

 

2.1.1 Tissue culture 

 

Alpha Minimum Essential Medium with L-glutamine and without ribo- and 

deoxynucleosides (αMEM), Dulbecco’s Modified Eagle’s Medium with high 

glucose, GlutaMAX™ and pyruvate (DMEM), 10X Minimum Essential Medium 

(MEM); foetal bovine serum (FBS), newborn calf serum (NCS), penicillin-

streptomycin (PenStrep), and trypsin-EDTA with phenol red were purchased from 

GIBCO (Life Technologies™, Paisley, UK). Dialysed FBS (DFBS), dialysed by 

ultra-filtration with a 10,000 molecular weight cut-off membrane was obtained from 

Sera Laboratories International Ltd. (Bolney, UK). Rat tail tendon type I collagen for 

coating flasks was from Becton Dickinson Bioscience (BD) (VWR®, Leicestershire, 

UK). Tissue culture treated plasticware was from BD Falcon (VWR®). CellTiter 96® 

AQueous One Solution Cell Proliferation Assay (MTS) was from Promega 

(Southampton, UK).  NBQX and 2-(2-Furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-

pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH 442416) were from 

Tocris Bioscience (Bristol, UK). 

 

2.1.2 Molecular biology 

 

TRIzol® reagent, Quant-iT™ dsDNA High-Sensitivity Assay Kit and 

SuperScript® III Reverse Transcriptase were purchased from Life Technologies™. 

DNA-free™ and sodium acetate were obtained from Ambion® (Huntington, UK). All 

primers were synthesised and purified by MWG (Milton Keynes, UK). QIAquick 

Gel Extraction Kit was obtained from Qiagen (Crawley, UK). Ampicillin was 

purchased from Bioline (London, UK). Random primers, deoxynucleotide 

triphosphates (dNTPs), Recombinant RNasin® Ribonuclease Inhibitor, agarose, tris-

borate-EDTA (TBE), pGEM®-T plasmid vector, Escherichia coli (E. coli) JM109 
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competent cells, isopropyl β-D-1-thiogalactopyranoside (IPTG), X-Galactosidase (X-

Gal) and Wizard® Plus SV Miniprep  deoxyribonucleic acid (DNA) Purification kit 

were purchased from Promega. Safeview was obtained from NBS Biologicals 

(Huntingdon, UK) and low molecular weight DNA ladder from New England 

Biolabs Inc.® (Herts, UK). Polypropylene Reverse Transcriptase-quantitative 

Polymerase Chain Reaction (RT-qPCR) plates and optical strip caps were purchased 

from Agilent Technologies (Berkshire, UK). All plasticware and consumables were 

certified ribonuclease (RNase)/deoxyribonuclease (DNase) free.  

 

2.1.3 Immunolocalisation and histochemistry 

 

Ethidium homodimer, anti-CX43 mouse monoclonal antibody (clone: CX-

1B1), and goat anti-rabbit secondary antibody conjugated with Alexa 594 were from 

Life Technologies™. Anti-ColI mouse monoclonal antibody was obtained from 

Developmental Studies Hybridoma Bank (Iowa, USA). Anti-E11 (podoplanin) goat 

polyclonal antibody was obtained from R&D Systems® (Abingdon, UK). Anti-A1, 

anti-A2A, anti-AMPAR2, anti-mGluR1 and anti-KA1 rabbit polyclonal antibodies 

were obtained from Abcam® (Cambridge, UK). Anti-A2B, anti-A3, anti-GLAST1, 

and anti-excitatory amino acid carrier 1 (EAAC1) rabbit polyclonal antibodies were 

purchased from Alpha Diagnostics Int. (San Antonio, USA). Anti-CaSR rabbit 

polyclonal antibody was purchased from AnaSpec (Fremont, USA). Rabbit anti-goat 

peroxidase conjugated secondary antibody, goat anti-rabbit peroxidase conjugated 

secondary antibody. Dylight594 streptavidin; Vectamount Universal Elite ABC 

rabbit kit; rabbit immunoglobulins control (IgG), goat IgG, normal rabbit serum; 

normal horse serum, mouse IgG, and 3,3'-diaminobenzidine (DAB) were obtained 

from Vector Laboratories (Peterborough, UK). Optimal cutting temperature (OCT) 

compound mounting medium for cryotomy, coverslips, and poly-lysine coated slides 

were purchased from VWR®. Dibutyl phthalate xylene (DPX) was from Raymond A. 

Lamb Laboratory Supplies (VWR®).  
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2.1.4 Protein assays 

 

CytoTox 96® Non-Radioactive Cytotoxicity Assay was from Promega. PGE2 

Enzyme-linked Immunosorbent Assay (ELISA) kit was purchased from Enzo Life 

Sciences® (Exeter, UK). DuoSet mouse Interleukin-6 (IL-6) ELISA Development kit 

was obtained from R&D Systems®. Rat/Mouse N-terminal pro-peptide of type I pro-

collagen (PINP) Enzymeimmuno assay (EIA) was from Immunodiagnostic systems 

(Tyne & Wear, UK). 

 

2.1.5 Loading device 

 

TECH-SIL 25 Silicone Elastomer for the loading device was purchased from 

Technovent Ltd. (Newport, South Wales, UK). Face paint for strain measurements 

was from Snazaroo™ (Minehead, UK). 

 

2.2 Equipment and software 

 

2.2.1 Molecular biology 

 

RNA quantitation was carried out using a Thermo Scientific NanoDrop 2000 

with Thermo Scientific NanoDrop 2000/2000c Software. Thermocycling was carried 

out on a Techne TC-312 Thermal Cycler (Cambridge, UK), or using a Stratagene 

Mx3000P cycler for quantitative reactions. Quantitative amplifications were 

monitored using MxPro RT-qPCR software (Agilent Technologies). Agarose DNA 

gels were viewed using a GelDoc system from BioRad (Hempstead, UK) and 

photographed using BioRad GelDoc Software. 

 

2.2.2 Microscopy 

 

Light microscope images of live cultures were obtained with a Nikon Coolpix 

4500 camera attached to a Nikon eclipse TS100 inverse-light microscope (Surrey, 

UK). Cryosectioning was carried out using a Bright OTF 5000 cryostat (Huntingdon, 

UK). Light-microscope images of stained cryosections were obtained with a Motic 

Moticam 2000 digital camera (Barcelona, Spain) attached to a Leica DMRB light 
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microscope (Milton Keynes, UK) and using the Motic Images Plus 2.0ML basic 

image acquisition software. Fluorescence microscope images were obtained with an 

Olympus Soft Imaging Systems F-view black and white digital camera (Tokyo, 

Japan) attached to an Olympus BX61 epi-fluorescence microscope and using the 

Olympus AnalySIS software. Confocal images were obtained with a Leica TCS SP2 

AOBS confocal scanning laser microscope and using the Leica Confocal Software. 

 

2.2.3 Microplate assays 

 

All assays requiring a microplate reader were performed using a BMG 

Labtech FLUOstar Optima plate reader (Bucks, UK) and readings were recorded 

with the Optima Software for FLUOstar V2.00 R3 (BMG Labtech). 

 

2.2.4 Mechanical loading 

 

A Richmond aerovac vacuum chamber (Fareham, UK) attached to a DVP 

vacuum pump (San Pietro in Casale, Italy) was used for the manufacturing of the 

silicone loading plate. Strain measurements of the loading device were performed 

using a Losenhausen Servo Hydraulic Testing Machine (Delhi, India) with MTS 

FlexTest® Controller Software and using DANTEC Correlated Solutions cameras 

with DANTEC Dynamics Q-400 System Software (Columbia, USA). Mechanical 

loading of cultures in the silicone plate was performed using a BOSE ElectroForce® 

3200 instrument (Kent, UK) and controlled with WinTest® Software 4.1 with 

TuneIQ control optimisation (BOSE). 

 

2.2.5 Statistics 

 

Statistical analysis was performed using Minitab 16 statistical software 

(Coventry, UK). 
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2.3 Methods 

  

2.3.1 Cell lines and cell culture 

 

2.3.1.1 MC3T3-E1(14) 

 

MC3T3-E1 is an osteoblast-like cell line initially derived from newborn 

mouse calvaria by in vitro differentiation. This is a spontaneously immortalised cell 

line (Sudo et al., 1983) which has been characterised into pre-osteoblast subclones 

(Wang et al., 1999). MC3T3-E1 subclones were defined by their ability to mineralise 

extracellular matrix and expression of osteoblast-related genes. MC3T3-E1 subclone 

14 (MC3T3-E1(14)), a kind gift of Dr Bronwen Evans (School of Medicine, Cardiff 

University, UK), is a mineralising subclone which expresses high levels of BSP, ColI 

and OCN mRNA (Wang et al., 1999). 

 

MC3T3-E1(14) cells were cultured in 75 cm2 flasks with αMEM 

supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, 10 % FBS at 37°C 

in 5 % carbon dioxide (CO2) /95 % air atmosphere (Wang et al., 1999). Medium was 

replaced every 2-3 days. After reaching 80 % confluency, cells were treated with 

0.25 % (w/v) trypsin-EDTA and re-seeded into new flasks. Passages 15-30 were 

used for experiments. 

 

2.3.1.2 MLO-Y4 

 

 MLO-Y4 osteocyte-like cells were kindly donated by Prof Lynda Bonewald 

(University of Missouri, USA). The cells were isolated by sequential collagenase 

digestion from the long bones of transgenic mice expressing the simian virus 40 

(SV40) large T-antigen oncogene under the control of the OCN promoter. These 

cells have been shown to behave like primary osteocytes as they express high 

amounts of OCN, low amounts of ALP and ColI, and they have complex cytoplasmic 

processes expressing CD44, CX43 and OPN (Kato et al., 1997). 
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MLO-Y4 osteocyte-like cells (Kato et al., 1997) were cultured on collagen 

coated 75 cm2 or 225 cm2  flasks (0.15 mg/ml rat tail tendon type I collagen in 0.02 N 

glacial acetic acid) (Kato et al., 1997) in αMEM supplemented with 100 U/ml 

penicillin, 100 µg/ml streptomycin, 2.5 % heat-inactivated FBS (HIFBS) and 2.5 % 

heat-inactivated NCS (HINCS) at 37°C in 5 % CO2/95 % air atmosphere ((Kitase et 

al., 2010), personal communication with Prof Lynda Bonewald). Media was replaced 

every 2-3 days. At 70-80 % confluency, cells were treated with 0.25 % (w/v) trypsin-

EDTA and re-seeded into new flasks. Passages 29-50 were used for experiments. 

 

2.3.2 Serum heat inactivation 

Both FBS and NCS were heat-inactivated following the instructions provided 

by Cambrex (Wiesbaden, Germany). The frozen sera bottles were placed at room 

temperature (rt) for 3-4 hr before thawing completely in a 37ºC water bath. The 

bottles were then agitated to mix the contents and placed for 30 min in a 56ºC water 

bath where the water level is above the serum level, and mixed occasionally. 

Temperature was controlled by placing a thermometer in a bottle with water of equal 

volume to the sera.  

 

2.3.3 Sera batch test 

 

To maintain optimum culture conditions for MC3T3-E1(14) and MLO-Y4 

cells in monolayer, new batches of FBS and NCS were tested using CellTiter 96® 

AQueous One Solution Cell Proliferation Assay (MTS). In a 96-well plate, 1,500 

cells/well were seeded and incubated overnight (o/n) at 37°C in 5 % CO2/95 % air 

atmosphere in 100 µl of their corresponding culture medium (page 50). Medium was 

removed and replaced with medium containing either old (control) or new (test) FBS 

and/or NCS and cells were incubated o/n at 37°C in 5 % CO2/95 % air atmosphere. 

The CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) was 

performed at day 2 and 3 following manufacturer’s instructions. Briefly, 20 µl of 

CellTiter 96® AQueous One Solution reagent was added to each well. The plate was 

then incubated for 2 hr at 37°C in 5 % CO2/95 % air atmosphere wrapped in foil to 

avoid exposure to light. Finally the plate was read at 490 nm using a BMG Labtech 
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FLUOstar Optima plate reader and absorbance was recorded using Optima Software 

for FLUOstar V2.00 R3. For results see page 266. 

 

2.3.4 3D collagen co-cultures 

 

Rat tail tendon type I collagen (2.5 mg/ml in 7 mM glacial acetic acid) was 

mixed on ice in a 4:1 ratio with 5X MEM containing 11 g/L sodium bicarbonate 

(NaHCO3), and neutralised to pH 7.4 with 1 M tris (hydroxymethyl)aminomethane 

(Tris) base (pH 11.5) to give a 2 mg/ml collagen solution. MLO-Y4 (1.5x106 cells/ml 

gel, page 50) cells were diluted in their corresponding medium (less than 10 % of 

total gel volume) and then mixed thoroughly into the collagen solution on ice. The 

collagen-cell mix was dispensed into 48-well plates (250 µl/well) and incubated at 

37°C in 5 % CO2/95 % air atmosphere for 1 hr for polymerisation. 1 ml of MLO-Y4 

medium was added on top before gels were incubated o/n at 37°C in 5 % CO2/95 % 

air atmosphere. MLO-Y4 medium was then removed and MC3T3-E1(14) cells 

(1.5x105 cells/well, page 50) were then layered on top of the collagen gels in DMEM 

GlutaMAX™ supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin and 5 

% DFBS. Co-cultures were kept for up to 7 days and medium was changed every 2-3 

days. 

 

2.3.5 Molecular biology 

 

2.3.5.1 RNA extraction from 3D co-cultures 

 

Total RNA was extracted from 3D co-cultures using TRIzol® reagent 

according to the manufacturer’s protocol except with a 2-propanol incubation of 1 hr 

at -80 ºC. Surface zone cells were treated with 0.5 ml TRIzol® for exactly 10 sec, and 

deep zone cells with 1 ml TRIzol®, until the collagen gel was completely dissolved, 

by re-suspending with a pipette. Briefly, 0.2 ml of chlorophorm was added per 1 ml 

of TRIzol®, samples shaken, centrifuged (12,000 rpm, 15 min, 4ºC), and aqueous 

phase precipitated with 0.5 ml 2-propanol per 1 ml of TRIzol® (1 hr, -80 ºC) before 

centrifugation (12,000 rpm, 10 min, 4ºC). RNA pellets were washed with 1 ml 75 % 

ethanol, centrifuged (7,500 rpm, 5 min, 4ºC), and pellets dried and redissolved in 50 

µl DEPC-treated water. Isolated total RNA was DNase-treated using DNA-free™ 
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according to the manufacturer’s instructions to remove DNA contamination. Total 

RNA was then re-precipitated to ensure the removal of all organic contaminants. 

Briefly, 0.1 volume of 3M sodium acetate (CH3COONa, pH 5.5) and 3 volumes of 

ice-cold 100 % ethanol were added to each sample and incubated for 1 hr at -80ºC  or 

o/n at -20ºC. Samples were resuspended by vortexing and centrifuged (7,500 rpm, 

4ºC, 5 min). Supernatant was decanted and pellets dried at rt. Finally, pellets were 

dissolved in DEPC-treated water (25 µl for surface zone; 50 µl for deep zone) and 

incubated for 10 min at 55ºC. All RNA samples were then used immediately or 

stored at -80ºC until needed. 

 

2.3.5.1.1 Estimation of RNA concentration and purity 

 

 Total RNA was quantified after precipitation using a NanoDrop (page 48). 

All measurements were done against a blank of DEPC-treated water. RNA purity 

was indicated by the 260 nm/280 nm (A260/A280) absorbance ratio for the presence of 

protein contaminants; and the 260 nm/230 nm (A260/A230) absorbance ratio for the 

presence of carbohydrates, salts and phenol. Pure RNA has an A260/A280 ratio of 2.0 

and an A260/A230 ratio of 1.8-2.2. Samples with A260/A280 and A260/A230 ratios of 

≥1.8 were deemed of good quality.  

 

2.3.5.2 DNA extraction from 3D co-cultures  

 

 Total DNA was extracted from 3D co-cultures using TRIzol® reagent 

according to the manufacturer’s protocol. Surface and deep zone cells were treated 

with TRIzol® as described in page 52. Briefly, 0.2 ml of chlorophorm was added per 

1 ml of TRIzol®, samples shaken and centrifuged (12,000 rpm, 15 min, 4ºC).  The 

aqueous phase was removed for RNA extraction (page 52) and the DNA in the 

interphase and organic phase precipitated with 0.3 ml 100 % ethanol (4°C) per 1 ml 

TRIzol® (2-3 min, rt) before centrifugation (2,000 rpm, 5 min, 4ºC). DNA pellets 

were washed with 1 ml  0.1 M sodium citrate in 10 % ethanol per 1 ml TRIzol® (30 

min, rt, with periodic mixing) and centrifuged (2,000 rpm, 5 min, 4ºC). The DNA 

pellets were washed twice and then resuspended with 1.5 ml 75 % ethanol per 1 ml 

TRIzol® (20 min, rt, with periodic mixing) before centrifugation (2,000 rpm, 5 min, 
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4ºC). DNA pellets were dried and redissolved in 50 µl diethylpyrocarbonate (DEPC) 

treated water by incubating at 37°C o/n. 

 

2.3.5.2.1 Estimation of DNA concentration 

 

 Total DNA was quantified after precipitation using a Quant-iT™ dsDNA 

High-Sensitivity Assay Kit following the manufacturer’s instructions.  Briefly 

Quant-iT™ dsDNA HS reagent (contents are trade secret, CTS) was diluted (1:200) 

in Quant-iT™ dsDNA HS buffer (CTS) in a plastic container, and 200 µl of the 

working solution added to the appropriate wells of a microplate. 10 µl of λ DNA 

standards (0-100 ng/µl) (CTS) and experimental samples were added to the 

corresponding wells and mixed well. The plate was read immediately using a plate 

reader (page 49) at 510/527 nm fluorescein wavelength. Fluorescence was recorded 

using the provided software (page 49). The standard curve was used to determine 

DNA concentration of the experimental samples. An example of a DNA standard 

curve can be found in page 270. The sensitivity of the assay was 0.5 ng/µl and was 

calculated by adding two standard deviations to the mean absorbance value of 0 

ng/µl standard replicates and then determining the concentration from the standard 

curve. 

 

2.3.5.3 Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) 

 

2.3.5.3.1 Reverse transcription 

 

Total RNA was reverse transcribed to make complementary DNA (cDNA) 

using SuperScript® III Reverse Transcriptase according to manufacturer’s protocol. 

Quantities of RNA reverse transcribed varied between 0.2-29.8 ng/µl for the surface 

zone of the model and 12.8-219.4 ng/µl for the deep zone of the model. Briefly, total 

RNA (8.5 µl) was mixed with 2.5 mM dNTPs and 250 ng of random primers and 

incubated for 5 min at 65°C and then placed on ice for 2 min. 5X first strand 

synthesis buffer, 0.1M dithiothreitol (DTT), 40 units Recombinant RNasin® 

Ribonuclease Inhibitor and 200 units SuperScript® III Reverse Transcriptase were 

added in a total reaction volume of 20 µl. The reverse transcription reaction was 

carried out (25°C for 5 min, 50°C for 50 min and 70°C for 15 min), and held at 4ºC 
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on a thermal cycler (page 48). Samples were used immediately or stored at -20ºC 

until needed. 

 

2.3.5.3.2 Standard PCR 

 

After reverse transcription, PCR was carried out for non-quantitative 

amplifications in 25 µl reactions containing 1.5-3.5 mM magnesium chloride 

(MgCl2), 0.2 µM of each forward and reverse primer, GoTaq® Flexi buffer (pH 8.5), 

200 nM dNTPs and 1 unit GoTaq® Flexi DNA polymerase. Using a thermal cycler 

(page 48), after an initial denaturation step of 3 min at 95°C, samples were amplified 

for 30-40 cycles at 95°C for 30 sec, 55-66°C for 30 sec (annealing) and 72°C for 30 

sec (extension) followed by a final extension step for 10 min at 72°C. Samples were 

held at 4ºC before the products were separated by agarose gel electrophoresis. Each 

gene assay was optimised by varying cycle number (30-40), MgCl2 concentration 

(1.5-3.5 mM), primer concentration (0.02 µM, 0.1 µM and 0.2 µM), and annealing 

temperature (55-66°C). No template (water blank) and positive controls were 

included in all reactions.  

As a result, these conditions varied between optimised primer pairs (Tables 2.1 and 

2.2). PCR was also carried out for 18S ribosomal RNA (18S rRNA) to check the 

integrity of cDNA. 

 

2.3.5.3.3 Agarose gel electrophoresis 

 

PCR products were separated in 2 % agarose gels containing SafeView 

nucleic acid stain at 10 µl/100 ml. Gel electrophoresis was carried out in 1X TBE 

(appendix 9.2) buffer together with a low molecular weight DNA ladder spanning 

25-766 base pairs (bp) (page 268). Gels were visualised and photographed under 

ultraviolet (UV) light (page 48). 

 

2.3.5.3.4 Quantitative PCR (qPCR) 

 

qPCR reactions were carried out using SYBR® Green I fluorescent dye which 

binds to all double stranded DNA. The fluorescence signal of the dye increases 

proportionally as more double stranded DNA accumulates during amplification. The 

55 

 



Chapter 2 

threshold of this increase was automatically set to the centre of the logarithmic phase 

of the amplification curve for each gene (qPCR software, page 48). As a result, a 

cycle threshold value (Ct), i.e. the cycle number at which the fluorescence crosses 

the threshold, was generated. Following amplification, the PCR products are melted 

during a dissociation cycle. The decrease in fluorescence with increasing temperature 

gives a dissociation curve of the specificity of the reaction, as the dissociation 

temperature depends on the length and sequence of the product. 

 

Using a Real-Time PCR System (page 48), polypropylene RT-qPCR plates 

and optical strip caps, amplifications were carried out for each cDNA sample in 25 

µl reactions. Each reaction contained 0.1 or 0.2 µM forward and reverse primers 

(Tables 2.1 and 2.2), 12.5µl of 2X JumpStart™ Taq ReadyMix™ with SYBR® Green I 

dye, 2.5 or 3.5 mM MgCl2  (Tables 2.1 and 2.2), 1 µl of cDNA and DEPC-treated 

water to make up the reaction volume to 25 µl. Thermocycling consisted of 10 min 

denaturation cycle at 95°C, followed by 40 cycles of 95°C for 30 sec, 60°C for 30 

sec (annealing), 72°C for 30 sec (extension) and one dissociation cycle at 95°C for 1 

min, 55°C for 1 min and 95°C for 30 sec. Results were analysed using the qPCR 

Software (page 48). 

 

2.3.5.3.4.1 cDNA standard curves 

  

 Standard curves were performed to assess the efficiency and linear range of 

detection for all primers and optimise their reaction conditions. Stock MLO-Y4 or 

MC3T3-E1(14) cDNA (1-5 µg RNA reverse transcribed) was serially diluted 1:10 in 

DEPC-treated water giving a range of cDNA concentrations from 101 (stock) to 10-

6  or 1:5 to give a range of cDNA concentrations from 101 (stock) to 6.4x10-5. Each 

gene assay was optimised by varying MgCl2 concentrations (2.5 and 3.5 mM) and 

primer concentrations (0.1 and 0.2 µM). Standard curves of 90-110 % efficiency and 

with an R2 value of ≥0.99 were accepted as valid. An example of a standard curve 

can be found in page 268. 
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2.3.5.3.4.2 Reference genes (RG) 

 

 RGs act as internal controls when performing RT-qPCR. Ideally, a RG would 

be universally recognised and should have constant expression levels regardless of 

sample, treatment and experimental design. However, several studies have shown 

that no such gene has been found (Thellin et al., 1999, Bustin, 2000, Schmittgen and 

Zakrajsek, 2000, Suzuki et al., 2000, Warrington et al., 2000, Bustin, 2002, Tricarico 

et al., 2002) and reported expression variation of RGs (Thellin et al., 1999, Bustin, 

2000, Suzuki et al., 2000, Tricarico et al., 2002, Bemeur et al., 2004, Sugden et al., 

2010). Therefore, identification and validation of a stable RG for each experimental 

design is important. 

 

 In all cases, RT-qPCR was carried out using three RGs, 18S rRNA, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hypoxanthine-guanine 

phosphoribosyltransferase (HPRT1). The most stable RG was determined via 

NormFinder. Expression data for each gene in an experiment were transformed from 

log10 to linear scale using a standard curve and then loaded into the NormFinder 

Microsoft Excel Add-In (http://www.mdl.dk/publicationsnormfinder.htm) (Andersen 

et al., 2004). NormFinder, is a mathematical algorithm which finds the best RG or 

combination of two genes from a set of candidates by ranking them according to 

expression stability in a given sample set and experimental design (Andersen et al., 

2004). This algorithm works by calculating the intragroup variation, e.g. differences 

in expression within all surface zone and all deep zone samples, and the intergroup 

variation, e.g. differences in expression between surface zone and deep zone samples 

(Andersen et al., 2004). The intra- and intergroup variation values are then combined 

to give a stability value which represents the systematic error that will occur when 

using a particular RG. This approach then ranks the top three genes  and combination 

of two genes with minimum intra- and intergroup variation and provides a stability 

value for the best gene (Andersen et al., 2004).  The top ranked gene or combination 

of two genes, combined by calculating the geometric mean, was used for 

normalisation and is clearly stated in the methods section of the appropriate 

experimental chapter and relevant figure legends of this thesis.  
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2.3.5.3.4.3 Relative RT-qPCR 

  

 Relative quantification involves normalising the expression of the gene of 

interest to that of a stable RG in a particular sample, e.g. treated sample, and then 

calibrating this expression to a reference sample, e.g. an untreated control. The 

experimental sample group used as calibrators is clearly stated in the methods section 

of the corresponding chapters. This method requires that both primer sets for the RG 

and the gene of interest have similar efficiencies (90-110 %) for all samples. Relative 

quantitation of RT-qPCR products was calculated using the 2(-∆∆Ct) method as 

described by (Livak and Schmittgen, 2001). Briefly, the appropriate RG was 

determined as in page 57, then for each experimental sample the Ct value of the RG 

was subtracted from the Ct value of the gene of interest (GOI) (CtGOI – CtRG). This 

gives normalised values called delta Ct (∆Ct). Then, the ∆Ct for each experimental 

sample was subtracted from the ∆Ct of the chosen calibrator, giving a delta-delta Ct 

value (∆∆Ct) resulting in values expressed relative to the calibrator. Finally, all ∆∆Ct 

values were converted to Relative Expression Units (REU) by 2(-∆∆Ct)
. Means, 

Standard Deviation (STDEV) and Standard Error of the Mean (SEM) were obtained 

from the REU values. 

 

2.3.5.4 Primer design 

 

Primers were designed for known gene sequences 

(http://www.ncbi.nlm.nih.gov/gene) using the Primer-BLAST option from the 

National Center for Biotechnology Information (NCBI) website 

(http://www.ncbi.nlm.nih.gov), unless otherwise stated. Primer-BLAST uses the 

Primer 3 web-based program (http://primer3.sourceforge.net/) to design PCR primers 

and then uses BLAST (Basic Alignment Search Tool) and a global alignment 

algorithm to avoid primer pairs that may cause non-specific amplifications. Primer-

BLAST also ensures similar melting temperatures and GC % content, minimum 

primer-dimer formation and excludes 3’ end complementation. For each gene, except 

OCN, primers spanned an intron in order to discriminate genomic DNA products and 

amplicon sizes were between 100-150 bp. Accession number, nucleotide sequences, 

amplicon size and source for each primer used can be found in Tables 2.1 and 2.2. 
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Table 2.1 Primer details for RGs and bone markers with their optimum conditions for RT-PCR and RT-qPCR 

Gene Primers (5'-3') 
Amplicon 
size (bp) 

PCR conditions qPCR conditions Source 

   
[Primers] &  

[MgCl2] 
Cycle 

Nº 
Tm 
(ºC) 

[Primers] &  
[MgCl2] 

Tm 
(ºC) 

 

GAPDH Fwd - GACGGCCGCATCTTCTTGTGCA 
114 

0.2 µM Primers 

2.5 mM MgCl2 

 

32 60 
0.1 µM Primers 

60 Primer-BLAST 
NM_008084.2 Rev - TGCAAATGGCAGCCCTGGTGAC 3.5 mM MgCl2 

18S rRNA Fwd - GCAATTATTCCCCATGAACG 
125 

0.2 µM Primers 

2.5 mM MgCl2 

 

30 60 
0.2 µM Primers 

60 Dr Sophie Gilbert 
NR_003278.3 Rev - GGCCTCACTAAACCATCCAA 3.5 mM MgCl2 

HPRT1 Fwd - CGTGATTAGCGATGATGAACCAGGT 
149 

0.2 µM Primers 

2.5 mM MgCl2 

 

35 55 
0.1 µM Primers 

60 Primer-BLAST 
NM_013556.2 Rev - CCATCTCCTTCATGACATCTCGAGC 2.5 mM MgCl2 
COL1A1 Fwd - ACTGCCCTCCTGACGCATGG 

140 
0.2 µM Primers 

2.5 mM MgCl2 

 

35 60 
0.1 µM Primers 

60 Primer-BLAST 
NM_007742.3 Rev - TCGCACACAGCCGTGCCATT 3.5 mM MgCl2 

ALP Fwd - GCTGGCCCTTGACCCCTCCA 
132 

0.2 µM Primers 

2.5 mM MgCl2 

 

35 64 
0.1 µM Primers 

60 Primer-BLAST 
NM_007431.2 Rev - ATCCGGAGGGCCACCTCCAC 2.5 mM MgCl2 

SOST* 
NM_024449.5 

Fwd - CCAAAGACGTGTCCGAGTACAG 
112 

0.2 µM Primers 

2.5 mM MgCl2 

 

40 66 NI NI Dr Karen Brakspear 
Rev - CACTGGCCGGAGCACAC 

E11  Fwd - AAGATGGCTTGCCAGTAGTCA 
118 

0.2 µM Primers 

2.5 mM MgCl2 

 

35 60 
0.2 µM Primers 

60 Dr Deborah Mason 
NM_010329.2 Rev - GGCGAGAACCTTCCAGAAAT 3.5 mM MgCl2 

OCN Fwd - CCGCCTACAAACGCATCTAT 
153 

0.2 µM Primers 

2.5 mM MgCl2 

 

35 60 
0.1 µM Primers 

60 Primer-BLAST 
NM_007541.2 Rev - TTTTGGAGCTGCTGTGACAT 3.5 mM MgCl2 

Runx2 Fwd - GACGAGGCAAGAGTTTCACC 
120 

0.2 µM Primers 

2.5 mM MgCl2 

 

35 58 
0.1 µM Primers 

60 Dr Deborah Mason 
NM_001145920.2 Rev - GTCTGTGCCTTCTTGGTTCC 2.5 mM MgCl2 

RANKL Fwd - CGCTCTGTTCCTGTACTTTCGAGC 
116 

0.2 µM Primers 

2.5 mM MgCl2 

 

35 55 
0.2 µM Primers 

60 Primer-BLAST 
NM_011613.3 Rev - TCGAGTCCTGCAAATCTGCGTTTT 2.5 mM MgCl2 

OPG Fwd - GAGTGTGAGGAAGGGCGTTAC 
111 

0.2 µM Primers 

2.5 mM MgCl2 

 

40 55 
0.2 µM Primers 

60 Dr Deborah  Mason 
NM_008764.3 Rev - GCAAACTGTGTTTCGCTCTG 2.5 mM MgCl2 

SV40 large T-antigen Fwd - AGGGGGAGGTGTGGGAGGTTTT 
100 

0.2 µM Primers 

2.5 mM MgCl2 

 

35 64 
0.1 µM Primers 

60 Primer-BLAST 
 YP_003708382.1 Rev - TCAGGCCCCTCAGTCCTCAC 2.5 mM MgCl2 

*Optimised conditions for femur cDNA (positive control) only; NI: not investigated. 
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Table 2.2 Primer details for adenosine, calcium-sensing and glutamate receptors and transporters with their optimum conditions for 

RT-PCR and RT-qPCR 

 

Gene Primers (5'-3') 
Amplicon 
size (bp) 

PCR conditions qPCR conditions Source 

   
[Primers] &  

[MgCl2] 
Cycle 

Nº 
Tm 
(ºC) 

[Primers] &  
[MgCl2] 

Tm 
(ºC) 

 

A1* Fwd - GATCGGTACCTCCGAGTCAA 
160 

0.2 µM Primers 
35 60 NI NI Dr Bronwen Evans 

NM_001008533.2 Rev - TTGGCTATCCAGGCTTGTTC 2.5 mM MgCl2 

A2A Fwd - GGCTATTGCCATCGACAGAT 
228 

0.2 µM Primers 
35 62 

0.2 µM Primers 
60 Dr Bronwen Evans 

NM_009630.2 Rev - ATGGGTACCACGTCCTCAAA 2.5 mM MgCl2 2.5 mM MgCl2 

A2B Fwd - TGCTCACACAGAGCTCCATC 
158 

0.2 µM Primers 
35 60 

0.1 µM Primers 
60 Dr Bronwen Evans 

NM_007413.4 Rev - AGTCAATCCAATGCCAAAGG 2.5 mM MgCl2 3.5 mM MgCl2 

A3* Fwd - TCCCTGATTACCACGGACTC 
151 

0.2 µM Primers 
40 60 NI NI Dr Bronwen Evans 

NM_001174169.1 Rev - TCCTTCTGTTCCCCACATTC 2.5 mM MgCl2 

CaSR (exons 6-7)* Fwd - GTGGTGAGACAGATGCGAGT 
100 

0.2 µM Primers 
35 55 NI NI (Chang et al., 2008a) 

NM_013803.2 Rev - GCCAGGAACTCAATCTCCTT 2.5 mM MgCl2 

AMPAR2 Fwd - GGAAGTAAGGAAAAGACCAGTGCCCTC 
85 

0.2 µM Primers 
40 60 

0.2 µM Primers 

2.5 mM MgCl2 
NI Dr Cleo Bonnet 

NM_001083806.1 Rev - TTGCCAAACCAAGGCCCCCG 2.5 mM MgCl2 
KA1 Fwd - GAACTTGGGATGGTGTCAGC 

135 
0.2 µM Primers 

40 60 
0.1 µM Primers 

3.5 mM MgCl2 
NI Dr Cleo Bonnet 

NM_146072.4 Rev - AGAAAGCATGGGATTGGTTG 2.5 mM MgCl2 

mGluR1* Fwd - TGGGCGAGTTCTCACTCATT 
169 

0.2 µM Primers 
40 60 NI NI Dr Cleo Bonnet 

NM_016976.3 Rev - TTCCTTGTGTTGGTGTCCAG 2.5 mM MgCl2 

GLAST1 Fwd - GGTCACTGCTGTCATTGTGG 
123 

0.2 µM Primers 
40 60 

0.1 µM Primers 
60 Dr Karen Brakspear 

NM_148938.3 Rev - AGCATCTGCAGCATCCTCAT 2.5 mM MgCl2 2.5 mM MgCl2 

EAAC1 Fwd - ATCCAGCATGATCACAGGTG 
104 

0.2 µM Primers 

2.5 mM MgCl2 
40 60 NI NI Dr Karen Brakspear 

NM_009199.2 Rev - TTACAGCAATGACGGTGGTG 

*Optimised conditions for femur cDNA (positive control) only; NI: not investigated. 
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2.3.5.5 Plasmid preparations for cloning 

 

RT-PCR products from each of the primer pairs used (Tables 2.1 and 2.2) 

were cloned and sequenced to confirm primer and target specificity. 

 

2.3.5.5.1 Purification of DNA from gel 

 

PCR products from each gene amplification reaction were excised from an 

agarose gel using sterile scalpels under UV light and weighed in 1.5 ml 

microcentrifuge tubes. DNA was extracted and purified using a QIAquick Gel 

Extraction Kit according to manufacturer’s instructions. Briefly, PCR products were 

incubated at 50ºC for 10 min in Buffer QG (CTS) to dissolve the gel. DNA was 

mixed with 2-propanol (1 volume) and bound using QIAquick columns with 

collection tubes by centrifugation (1 min). 0.5 ml of Buffer QG was added and 

columns centrifuged (1 min). DNA was washed with Buffer PE (0.75 ml, CTS), 

centrifuged (1 min) and any remaining Buffer PE was removed by a further 

centrifugation step (1 min). Finally, DNA was eluted into 1.5 ml microcentrifuge 

tubes with 30 µl DEPC-treated water by centrifugation (1 min). All centrifugation 

steps were carried out at 13,000 rpm and rt. 

 

2.3.5.5.2 Cloning into pGEM ®-T vector 

 

DNA (5-11.4 ng, according to primer pair amplicon size) was ligated into 50 

ng pGEM®-T plasmid vector (page 269), o/n at 4ºC, in the presence of 3 units of T4 

DNA ligase and Rapid Ligation Buffer (containing 30 mM Tris-HCl pH 7.8, 10 mM 

MgCl2, 10 mM DTT, 1 mM ATP, 5 % polyethylene glycol) in a 10 µl reaction 

volume. 

 

2.3.5.5.3 Transformation into E. coli competent cells 

 

Ligation reactions were transformed into 25 µl E. coli JM109 competent cells 

according to manufacturer’s protocol by incubating on ice for 20 min and then heat-

shocking for 50 sec at 42ºC. Reactions were then incubated on ice (2 min) before 
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adding super optimal broth with catabolite repression (SOC) medium (475 µl) and 

incubating for 1.5 hr at 37°C with shaking (150 rpm). 100 µl of each transformation 

was then plated onto lysogeny broth (LB) agar plates (containing 100 µg/ml 

ampicillin, 500 µg/ml IPTG and 100 µg/ml X-gal) (page 267) and incubated o/n at 

37°C. Recombinant (white) colonies were picked at random and directly screened for 

inserts by PCR (page 55, primers as in Table 2.1 and 2.2) using a 10 min 95°C 

denaturation step to lyse all cells. Positive colonies were grown in LB broth 

(containing 100 µg/ml ampicillin) (page 267) o/n at 37°C with shaking (150 rpm). 

 

2.3.5.5.4 Plasmid DNA purification 

 

Plasmid DNA was purified from recombinant colony broth cultures using a 

Wizard® Plus SV Miniprep Kit following the manufacturer’s instructions. Briefly, 5 

ml broth cultures were pelleted by centrifugation (5 min), supernatant discarded and 

pellets thoroughly resuspended with Cell Resuspension Solution (250 µl, CTS). Cell 

Lysis Solution (250 µl, CTS) was then added and mixed. Alkaline Protease Solution 

(10 µl, CTS) was mixed and samples were then incubated (5 min). Neutralisation 

Solution (350 µl, CTS) was mixed with samples before centrifugation (10 min). 

Plasmid DNA was bound by using Spin Columns with collection tubes and by 

centrifugation (1 min). Samples were washed with Wash Solution (750 µl, CTS) and 

centrifuged (1 min). Samples were washed for a second time with Wash Solution 

(250 µl, CTS) and centrifuged (2 min). DNA was eluted into a clean 1.5 ml 

microcentrifuge tube with 100 µl DEPC-treated water by centrifugation (1 min). All 

mixing steps were done by inverting 4 times. All centrifugation steps were done at 

13,000 rpm and at rt. 

 

2.3.5.5.5 DNA sequencing 

 

 pGEM®-T cloned inserts were sequenced by the Cardiff University Molecular 

Biology Unit DNA sequencing core facility using T7 forward and SP6 reverse 

primers. nBLAST (nucleotide collection BLAST) was then used to check the identity 

of the insert sequence with the target sequence. 
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2.3.6 Microscopy 

 

2.3.6.1 Light microscopy 

 

Monolayer cultures were observed using an inverse-light microscope and 

images taken with a Coolpix 4500 camera prior to incorporation into gels (page 48). 

For the duration of each experiment, 3D collagen co-cultures were observed every 

day, as above, at random fields of view across gel depth and imaged as above at 

various time points. 

 

2.3.6.2 Specimen preparation for cryosection imaging  

 

3D collagen co-cultures were washed with phosphate buffered saline (PBS) 

(page 267), fixed with 1 % paraformaldehyde (PFA) (page 267) for 30 min at 4°C 

and then washed 3-4 times with PBS over 2 days at 4°C. They were then infiltrated 

with a 1:1 dilution of OCT mounting media compound for cryotomy in PBS o/n at 

4°C in order to reduce ice crystal formation. Specimens were removed from wells 

and cut into quarters (Figure 2.1A) which were then orientated into square plastic 

moulds; embedded in OCT compound and frozen in 2-methyl butane, previously 

cooled in dry ice. Specimens were then transferred to a cryostat, removed from the 

mould and mounted on a cryostat chuck by freezing with OCT compound. 20 µm 

transverse sections (Figure 2.1B), showing the surface zone down to the bottom of 

the collagen gel (Figure 2.1C), were cut using a cryostat (page 48) and placed on 

poly-lysine coated slides (Figure 2.1D). Sections were stored at -20°C until needed. 
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B A 

D C 

Figure 2.1 Processing of 3D co-cultures for cryosectioning. A) Diagram showing a 3D 

co-culture cut into quarters looking down on the surface zone (osteoblasts). B) Position 

of a 3D co-culture quarter indicating the direction of cryosectioning to give transverse 

sections which also show cells from the outside into the middle of the 3D co-culture. C) 

Transverse section of a 3D co-culture showing the full depth of the gel. D) Position of 

cryosections in a poly-lysine coated slide.  
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2.3.6.3 Immunolocalisation and histochemistry 

 

Details on blocking sera, primary and secondary antibodies and nonimmune 

immunoglobulins used, including concentrations and incubation times, can be found 

in Tables 2.3 and 2.4. For all immunolocalisation 4-6 sections of each replicate co-

culture were observed. 

 

2.3.6.3.1 Immunocytochemistry 

 

2.3.6.3.1.1 Quenching of endogenous peroxidases  

 

Hydrophobic rings were drawn around each cryosection on poly-lysine 

coated slides using an ImmEdge pen. Cryosections were then rehydrated in PBS 0.1 

% TWEEN® 20 (PBST), incubated in 0.3 % hydrogen peroxide (H2O2)  in PBST for 

30 min to block endogenous peroxidase activity and washed in PBST (3 times in 5 

min). 

 

2.3.6.3.1.2 Primary and secondary antibody application 

 

For immunostaining with a secondary antibody conjugated to horseradish 

peroxidase (HRP), sections were blocked for non-specific binding with serum and 

incubated with primary antibody (Table 2.3). The primary antibody was replaced in 

control sections with PBST alone as a control for general non-specific binding of the 

procedure, or with nonimmune immunoglobulins (Table 2.3), to show non-specific 

binding that may result from the primary antibody. All sections were then washed 

(page 65) and incubated with the corresponding secondary antibody. Washing in 

PBST was then repeated (page 65).  

 

For immunostaining using a Vectamount Universal Elite ABC kit, sections 

were treated with primary antibody or controls as above. After washing in PBST (3 

times in 5 min), following manufacturer’s instructions, sections were incubated with 

biotinylated secondary antibody (CTS) for 30 min (Table 2.3), washed (PBST, 3 

times in 5 min), and incubated with ABC reagent (100 µl Reagent A, avidin DH 

65 

 



Chapter 2 

solution) and 100 µl Reagent B (biotinylated enzyme, usually HRP or alkaline 

phosphatase) mixed together in 5 ml PBST) for 30 min. Washing was repeated as 

previously described. 

 

2.3.6.3.1.3 Disclosure 

 

All immunostaining was detected by incubating 2-5 min at rt with nickel-

enhanced DAB, which acts as a substrate to the HRP or biotinylated enzyme by 

binding to the secondary antibody. DAB is then oxidised giving a visible brown 

colour or a grey-black colour if the reaction is nickel-enhanced. Briefly, 2 drops of 

Buffer Stock Solution (CTS), 4 drops of DAB Stock Solution (CTS), 2 drops of 

Hydrogen Peroxide Solution (CTS) and 2 drops of Nickel Solution were added to 5 

ml of distilled water and mixed well. The reaction was stopped by washing the slides 

in tap water (3 times in 5 min). All slides were dehydrated in alcohols and cleared in 

xylene before mounting with DPX. Slides were left to dry o/n before imaging with a 

digital camera attached to a light microscope, and analysed with the software 

provided (page 49). All controls, where primary antibodies were omitted or 

substituted with nonimmune immunoglobulins, showed no labelling.  
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2.3.6.3.2 Immunofluorescence 

 

For immunostaining with a secondary antibody conjugated to a fluorescent 

dye, hydrophobic rings were drawn around cryosections (page 65), rehydrated (page 

65) and blocked (page 65). Cryosections were either incubated with primary 

antibody or with PBST or non-immune immunoglobulins as negative controls (Table 

2.4), washed (PBST, 3 times in 5 min) and incubated with a secondary antibody 

conjugated to a fluorescent dye (Table 2.4). Cryosections were washed (PBST, 3 

times in 5 min), and mounted with Fluoroshield™ with DAPI as a nuclear 

counterstain. For immunofluorescence of CaSR, cryosections were incubated with 50 

mM ammonium chloride (NH4Cl) in PBS for 10 min prior to blocking and all 

washing steps consisted of 4 washes in PBS for 5 min each (personal communication 

with Mr Martin Schepelmann). Results were analysed with an epi-fluorescence 

microscope with the provided software (page 48), except for CX43 results which 

were analysed by confocal microscopy (page 72). 
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Table 2.3 Immunocytochemistry conditions.  

Protein Primary antibody Secondary antibody 
Immunoglobulins 

control 
Block 

E11 
(#) 

2.5 µg/ml anti-mouse E11 

(podoplanin) antibody                                       

(goat polyclonal) 

1:800 rabbit anti-goat  

(HRP conjugated) 
2.5 µg/ml goat IgG 

5 % normal 

rabbit serum 

o/n at 4°C 30 min at rt o/n at 4°C 20 min 

EAAC1 
(^) 

5 µg/ml anti-rat EAAC1 IgG       

(rabbit polyclonal) 

1:100 goat anti-rabbit 

(HRP conjugated) 
5 µg/ml rabbit IgG 

5 % normal 

goat serum 

o/n at 4°C 30 min at rt o/n at 4°C 20 min 

GLAST1  
(^) 

5 µg/ml anti-rat glutamate 

transporter (GLAST1) antiserum 1 

(rabbit polyclonal) 

1:100 goat anti-rabbit 

(HRP conjugated) 
5 µg/ml rabbit IgG 

5 % normal 

goat serum 

o/n at 4°C 30 min at rt o/n at 4°C 20 min 

KA1* 
(^) 

0.156 µg/ml anti-KA1 antibody  

(rabbit polyclonal) 

7.5 µg/ml  anti-rabbit 

biotinylated antibody 

in PBST with 1.5 % 

serum 

0.156 µg/ml rabbit 

IgG 

1.5 % normal 

goat serum 

o/n at 4°C 30 min at rt o/n at 4°C 20 min 

mGluR1 
(~) 

5 µg/ml anti-mGluR1 antibody 

(rabbit polyclonal) 

o/n at 4°C 

1:100 goat anti-rabbit 

(HRP conjugated) 
5 µg/ml rabbit IgG 

5 % normal 

goat serum 

30 min at rt o/n at 4°C 20 min 

Adenosine 
receptor A1 

(+) 

2.5 µg/ml anti-adenosine A1 

receptor antibody                                     

(rabbit polyclonal) in 5 % mouse 

serum 

1:100 goat anti-rabbit 

(HRP conjugated) 

2.5 µg/ml rabbit 

IgG in 5 % mouse 

serum 

5 % normal 

goat serum 

o/n at 4°C 30 min at rt o/n at 4°C 20 min 

Adenosine 
receptor A2A 

(+) 

2.5 µg/ml anti-adenosine receptor 

A2A antibody                             

(rabbit polyclonal) in 5 % mouse 

serum 

1:100 goat anti-rabbit 

(HRP conjugated) 

2.5 µg/ml rabbit 

IgG in 5 % mouse 

serum 

5 % normal 

goat serum 

o/n at 4°C 30 min at rt o/n at 4°C 20 min 

Adenosine 
receptor A2B 

(+) 

5 µg/ml anti-human A2BR IgG 

(rabbit polyclonal) in 5 % mouse 

serum 

1:100 goat anti-rabbit 

(HRP conjugated) 

5 µg/ml rabbit IgG  

in 5 % mouse 

serum 

5 % normal 

goat serum 

o/n at 4°C 30 min at rt o/n at 4°C 20 min 

Adenosine 
receptor A3 

(+) 

5 µg/ml anti-rat A3R IgG         

(rabbit polyclonal) in 5 % mouse 

serum 

1:100 goat anti-rabbit 

(HRP conjugated) 

5 µg/ml rabbit IgG  

in 5 % mouse 

serum 

5 % normal 

goat serum 

o/n at 4°C 30 min at rt o/n at 4°C 20 min 

*Avidin-biotin complex was added after secondary antibody (30 min at rt). Primary antibodies were kind 

gifts from (#) Dr Bronwen Evans, (^) Dr Cleo Bonnet (School of Bioscience, Cardiff University, UK), (~) 

Prof Daniela Riccardi (School of Bioscience, Cardiff University, UK) and (+) Dr Jack Ham (School of 

Medicine, Cardiff University, UK). All dilutions were in PBST unless otherwise stated. 

 

 

68 

 



Chapter 2 

Table 2.4 Immunofluorescence conditions. 

Protein Primary antibody Secondary antibody 
Immunoglobulins 

control 
Block 

Type I 
collagen 

(-) 

5 µg/ml anti-type I collagen                   

(mouse monoclonal) 

5 µg/ml goat anti-mouse                  

(Alexa Fluor 594) 
5 µg/ml mouse IgG 

5 % normal goat 

serum 

1 hr at rt 1 hr at rt 1 hr at rt 20 min 

CX43 
(-) 

5 µg/ml anti-connexin 43     

(mouse monoclonal) 

2.5 µg/ml horse anti-

mouse (Dylight 594) 

0.25 µg/ml mouse 

IgG 

5 % normal 

horse serum 

o/n at 4°C 1 hr at rt o/n at 4°C 20 min 

SV40 
large T-
antigen 

 

5 µg/ml anti-SV40 T-antigen 

antibody                             

(mouse monoclonal) 

5 µg/ml horse anti-mouse 

(Dylight 594) 
5 µg/ml mouse IgG 

5 % normal 

horse serum 

1 hr at rt 1 hr at rt 1 hr at rt 20 min 

CaSR 
(~) 

2 µg/ml anti-CaSR                 

(rabbit polyclonal) diluted in 

0.1 % (v/v) Triton X100 with 1 

% (w/v) BSA in PBS 

4 µg/ml goat anti-rabbit                 

(Alexa Fluor 594) diluted 

in 0.1 % (v/v) Triton X100 

with 1 % (w/v) BSA in PBS 

2 µg/ml rabbit IgG 

diluted in 0.1 % (v/v) 

Triton X100 with 1 % 

(w/v) BSA in PBS 

0.1 % (v/v) 

Triton X100 with 

1 % (w/v) BSA in 

PBS 

o/n at 4°C 1 hr at rt o/n at 4°C 1 hr at rt 
 

Primary antibodies were a kind gift from (-) Dr Jim Ralphs (School of Bioscience, Cardiff University, 

UK) and (~) Prof Daniela Riccardi. BSA: bovine serum albumin. All dilutions were in PBST unless 

otherwise stated. 
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2.3.6.4 Actin filament staining 

 

Actin filament staining was performed in order to assess morphology of the 

surface and deep zones of the model by delineating the cytoskeleton of the cells. In 

all cases results were analysed by confocal microscopy (section 2.3.6.6).  

 

2.3.6.4.1 Surface zone 

 

The 3D co-cultures contain a layer of osteoblasts which could be easily lost 

whilst cryosectioning, therefore analysis of the surface zone was performed on whole 

gel quarters, as opposed to cryosections, as for the deep zone. Day 7 3D collagen co-

cultures were fixed and washed (page 63), cut into quarters and directly placed in the 

middle of a 2 mm thick nylon washer (which served as a well) attached onto a poly-

lysine coated slide.  The gel quarters were stained o/n at 4°C with 5 µM phalloidin 

conjugated with Atto488 (Phalloidin-Atto488). They were then washed in PBST (3 

times in 5 min) and mounted with Fluoroshield™ with DAPI as a nuclear counterstain 

and observed by looking directly down on to the gel surface (page 72). For analysis, 

5 arbitrary regions of the surface zone of each replicate co-culture were observed. 

 

2.3.6.4.2 Deep zone 

 

Hydrophobic rings were drawn around day 7 3D co-culture cryosections 

(page 65), rehydrated (page 65), incubated with 5 µM Phalloidin-Atto488 (1 hr at rt), 

washed and mounted (page 67). For analysis, 4-6 sections of each replicate co-

culture were observed (page 72). 
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2.3.6.5 Cell death 

 

Ethidium homodimer is a membrane-impermeable fluorescent dye that is 

weakly fluorescent unless bound to DNA when it emits red fluorescence (Gaugain et 

al., 1978a, Gaugain et al., 1978b). The dye is generally used for viability assays as 

dead or dying cells have disrupted cell and nuclear membranes and therefore 

ethidium homodimer is able to penetrate and bind to DNA. The dye is not able to do 

this in live cells as their membranes are intact (Glazer et al., 1990). 

 

DAPI is a fluorescent dye that binds strongly to A-T rich regions of double-

stranded DNA and so emitting blue fluorescence. The dye can also bind to A-U rich 

regions in RNA but it is not as strongly fluorescent as when it binds DNA. DAPI is a 

membrane-permeable dye and therefore it can bind to DNA in both dead and live 

cells (Kapuscinski, 1995). 

 

At day 1 and day 7, culture medium was removed and 3D collagen co-

cultures were washed with PBS and then incubated with 1 µM ethidium homodimer 

in serum-free medium for 2 hr at 4°C with gentle agitation. This procedure was done 

to ensure the dye penetrates the depth of the gel whilst slowing down cell 

metabolism of the dye. Co-cultures were then incubated for a further 2.5 hr at 37°C 

in 5 % CO2/95 % air atmosphere and washed o/n at 37°C in 5 % CO2/95 % air 

atmosphere with culture medium containing serum. Positive control co-cultures were 

frozen for 1 hr at -20°C and thawed for 10 min, three times to ensure 100 % death, 

before treating with ethidium homodimer as above.  

 

2.3.6.5.1 Surface zone  

 

For cell death analysis of the surface zone, all 3D collagen co-cultures were 

fixed, washed, cut into quarters (page 63), placed directly into a 2 mm thick nylon 

washer attached onto a poly-lysine coated slide, and mounted (page 67).  For 

analysis, 5 arbitrary regions of the surface zone of each replicate co-culture were 

observed using confocal microscopy (page 72).  
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2.3.6.5.2 Deep zone 

  

For cell death analysis of the deep zone, 3D collagen co-cultures were 

washed with PBS, fixed, infiltrated with diluted OCT compound and cryosectioned 

(page 63). For analysis, 5 random slides of each replicate co-culture were rehydrated 

(page 65) and mounted (page 67). One random section from each slide was observed 

with a fluorescence microscope (page 48). DAPI (blue) labelled nuclei (total number 

of cells) and ethidium homodimer and DAPI (purple) labelled nuclei (number of 

dead cells) were counted across 10 fields of view per section at x20 magnification. 

  

2.3.6.6 Confocal microscopy 

 

Confocal microscopy was performed by Dr Anthony Hayes and Mr Marc 

Isaacs (School of Bioscience, Cardiff University) using a confocal scanning laser 

microscope (page 48). Specimens were observed either directly down onto the 

surface zone (actin filament stain, page 70, and cell death of surface zone, page 71) 

or by observing transverse cryosections (Figure 2.1) (deep zone actin filament stain, 

page 70 and CX43 immunofluorescence, page 67). Samples were scanned using 

appropriate excitation and emission settings for simultaneous recording of DAPI 

(358 Excitation(max), Ex(max), 461 Emission(max), Em(max)) and Phalloidin-Atto488 

(495 Ex(max), 519 Em(max)) for actin filament staining; DAPI and ethidium 

homodimer (590 Ex(max), 617 Em(max)) for cell death, or DAPI and Alexa 594 (590 

Ex(max), 617 Em(max)) for CX43 immunostaining. Specimens were optically sectioned 

using a x63 objective with an arbitrary zoom (surface and deep zone actin filament 

stain, and CX43 immunofluorescence) or x10 objective with a 2.32 zoom (surface 

zone cell death). 5 µm (surface zone) or 0.5 µm (deep zone) step size z-stack optical 

sections through the specimen were reconstructed using confocal software (page 48). 

Maximum intensity models were prepared showing detail of the surface zone or deep 

zone. 
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2.3.7 Protein assays 

 

2.3.7.1 Lactate dehydrogenase assay (LDH) 

 

LDH is an enzyme released naturally by cells into cell culture medium upon 

lysis as a result of cell death. LDH release can also be used to quantify cell number 

by purposely lysing the cultures in question. In this case LDH release is directly 

proportional to cell number. Culture supernatants from 3D MLO-Y4 mono-cultures 

were collected for analysis of LDH release as a result of cell death. For analysis of 

cell number, 3D MLO-Y4 mono-cultures were lysed by adding 200 µl of cell lysis 

buffer (9 % Triton™ X-100 in distilled water), frozen at -80°C for 1 hr, thawed and 

then incubated at 37°C for 45 min. The supernatant of the lysed cultures was then 

collected into a 1.5 ml microfuge and centrifuged (1000 rpm, rt, 5 min) to pellet cell 

debris, the clear lysate kept for analysis. LDH assay was carried out using a CytoTox 

96® Non-Radioactive Cytotoxicity Assay following the manufacturer’s instructions. 

Briefly, 50 µl of experimental samples were added to a 96-well plate followed by 50 

µl of Substrate Mix (CTS). The plate was covered with foil and incubated in the dark 

at rt for 10-30 min according to the reaction. 50 µl of Stop Solution (CTS) was added 

and the plate read at 492 nm wavelength using a plate reader (page 49). If necessary, 

samples were diluted in order to avoid saturation of the assay. Dilutions of samples 

are clearly stated in the relevant experimental chapters.  
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2.3.7.2 ELISAs 

 

2.3.7.2.1 PGE2  

 

 PGE2 ELISA was carried out using an Enzo Life Sciences PGE2 kit 

following manufacturer’s instructions. A dilution series of experimental samples 

defined the required dilutions for samples to fit within the standard curve of the 

assay, dilutions are clearly stated in the relevant experimental chapters. All 

experimental samples were within the standard curve. An example of a PGE2 ELISA 

standard curve can be found in page 270. The sensitivity of the assay is 8.26 µl as 

stated by the manufacturer. 

 

Briefly, 100 µl of experimental samples and standards (7.81-1000 pg/ml 

PGE2 in standard diluent) were pipetted into the appropriate wells of the provided 

96-well plate. Blue conjugate (50 µl, blue solution of alkaline phosphatase 

conjugated with PGE2) was added to all wells except the Total Activity (TA) and 

Blank wells. Yellow antibody (50 µl yellow solution of monoclonal antibody to 

PGE2) was added to all wells except the Blank, TA and non-specific binding (NSB) 

wells.  The plate was covered and incubated (o/n, 4ºC). The plate was then emptied, 

and washed 3 times with Wash Solution (400 µl, 5 % Tris buffered saline with 

detergents in distilled water). Blue conjugate (5 µl) was added to the TA wells, pNpp 

Substrate Solution (200 µl, p-nitrophenyl phosphate (pNpp) in buffer) was added to 

all wells, the plate covered and incubated (1 h, 37ºC). Stop Solution (50 µl, trisodium 

phosphate in water) was added to all wells and the plate was read immediately using 

a plate reader (page 49) at 405 nm wavelength with correction between 570 and 590 

nm to correct for optical imperfections in the plate. Absorbance was recorded using 

the provided software (page 49). The standard curve was used to determine PGE2 

concentration of the experimental samples. Data normalisation is clearly stated in the 

relevant experimental chapters.  
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2.3.7.2.2 IL-6  

 

 IL-6 ELISA was carried out using an R&D Systems DuoSet IL-6 ELISA kit, 

a kind gift from Dr Bronwen Evans, following the manufacturer’s instructions. A 

dilution series of experimental samples defined the required dilutions for samples to 

fit within the standard curve of the assay, dilutions are clearly stated in the relevant 

experimental chapters. All experimental samples were within the standard curve 

range. An example of an IL-6 ELISA standard curve can be found in page 270. 

 

Briefly, Capture Antibody (2 µg/ml in PBS of rat anti-mouse IL-6) was used 

to coat a 96-well microplate (100 µl/well, o/n, rt). Wells were aspirated and 

thoroughly washed 3 times with Wash Buffer (400 µl, 0.05 % TWEEN® 20 in PBS, 

pH 7.2-7.4), blocked with Reagent Diluent (300 µl, 1 % BSA in PBS, pH 7.2-7.4, 0.2 

µm filtered), incubated (1 hr, rt) and washed. 100 µl of experimental samples and 

standards (15.62-1000 pg/ml, recombinant mouse IL-6 diluted in Reagent Diluent) 

was added in the appropriate wells, incubated (2 hr, rt), and washed before adding 

Detection Antibody (100 µl, 400 ng/ml biotinylated goat anti-mouse IL-6 diluted in 

Reagent Diluent). The plate was incubated (2 hr, rt) and washed. Streptavidin-HRP 

(100 µl, 1:200 streptavidin conjugated to HRP in Reagent Diluent) was added to each 

well, and the plate incubated in the dark (20 min, rt), and washed. Substrate Solution 

(100 µl, 1:1 mix of Colour Reagent A, H2O2 and Colour Reagent B, 

Tetramethylbenzidine, TMB) was added, and the plate incubated in the dark (20 min, 

rt), before adding Stop Solution (50 µl, 2 N sulphuric acid, H2SO4). The plate was 

read using a plate reader (page 49) at 450 nm wavelength with wavelength correction 

at 540 nm and 570 nm to correct for optical imperfections of the plate. The 

absorbance was recorded using the provided software (page 49). The standard curve 

was used to determine IL-6 concentration of the experimental samples. Data 

normalisation is clearly stated in the relevant experimental chapters.  
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2.3.7.2.3 PINP 

 

 PINP ELISA was carried out using an Immunodiagnostic systems Rat/Mouse 

PINP EIA kit, a kind gift from Dr Cleo Bonnet, following the manufacturer’s 

instruction. A dilution series of experimental samples defined the required dilutions 

for samples to fit within the standard curve of the assay, dilutions are clearly stated in 

the relevant experimental chapters. All experimental samples were within the 

standard curve range. An example of a PINP ELISA standard curve can be found in 

page 270. The sensitivity of the assay was 0.7 ng/ml as stated by the manufacturer. 

 

Briefly, 50 µl of experimental samples, controls (mouse serum in PBS with 

BSA and 0.025 % sodium azide) and standards (0-77 ng/ml, mouse PINP in PBS 

with mouse and goat serum, BSA and 0.025 % sodium azide) were added to the 

appropriate wells of the 96-well plate provided. 50 µl of PINP Biotin (PINP labelled 

with biotin in PBS with BSA) was added to each well; the plate was covered and 

incubated (1 hr, rt) with shaking (500-700 rpm). The plate was emptied and washed 3 

times with Wash Solution (PBS with Tween). 150 µl of Enzyme Conjugate (avidin-

linked HRP in PBS with protein, enzyme stabilisers and preservative) was added to 

all wells. The plate was then covered, incubated (30 min, rt) and washed. 150 µl of 

TMB Substrate (aqueous formulation of TMB and H2O2) was added to all wells, the 

plate covered and incubated (30 min, rt). 50 µl of Stop Solution (0.5 M hydrochloric 

acid, HCl) was then added and the plate immediately read using a plate reader (page 

49) at 450 nm wavelength with correction at 650 nm wavelength to correct for 

optical imperfections of the plate. The absorbance was recorded using the provided 

software (page 49). The standard curve was used to determine PINP concentration of 

the experimental samples. Data normalisation is clearly stated in the relevant 

experimental chapters.  
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2.3.8 Mechanical loading  

 

2.3.8.1 Manufacturing of loading device 

  

In order to be able to apply strain to the 3D cultures, a 16-well loading plate 

was generated from TECH-SIL 25 Silicone Elastomer (Technovent, Newport, South 

Wales, UK). TECH-SIL 25 (S-25) is a medical-grade silicone with low viscosity. 

200 g of silicone was mixed thoroughly for 2-3 min in a plastic container at a 9:1 

ratio by weight with the platinum catalyst provided. The mixed silicone in the 

container was then placed inside a vacuum chamber (page 49) attached to a vacuum 

pump (page 49) for 10-20 min until all bubbles in the mix disappeared. During this 

process, air was gently let out of the vacuum once or twice by opening the vacuum 

valve and then closing it again in order to help remove bubbles from the mix. The 

silicone mix was then gently poured into the middle of a clean custom-made metal 

mould with its borders previously coated with polyvinyl chloride (PVC) tape. The 

mould was made based upon the dimensions of a standard 48-well tissue culture 

plate in order to fit a 48-well plate lid, and also give 16 wells of 10 mm diameter 

with 150 µm well base thickness. However, the spaces between the wells were filled 

with silicone, and the mould allowed for a series of holes to be made on each side of 

the plate to accommodate hooks for the attachment of the plate to the BOSE loading 

instrument. The mould was overfilled by 10 %, and at this point any remaining 

bubbles were removed with a scalpel. The base of the mould was then pressed down 

and clamped with a G-clamp so that excess silicone seeped out.  The clamped mould 

was then placed into a dry oven at 80°C for a minimum of 1 h to cure the silicone. 

After this, the plate was removed from the mould and immediately wrapped in tin 

foil or lint free tissue paper to avoid dust or dirt sticking to it. The silicone plate was 

then further cured by boiling it at 100°C in distilled water for 3-4 hr. The silicone 

plate was then washed thoroughly with water and detergent and then soaked in 2-3 

changes of tap water per day for 2-3 weeks in order to remove any remaining dirt or 

detergent. The last 2-3 days of soaking were done in distilled water (dH2O). Once 

clean, the plate was autoclaved and was then ready to use. After each use, the plate 

was washed thoroughly with tap water and dH2O but without detergent and 
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autoclaved for re-use. The silicone plate was designed by and manufactured with 

help from Prof Sam Evans (School of Engineering, Cardiff University, UK). 

 

2.3.8.2 Strain measurements 

 

Digital Image Correlation (DIC), based on the use of contrast produced by 

arbitrary speckle patterns, can be used to measure strain (Barranger et al., 2012) in 

the loading plate. DIC compares two digital images of two different mechanical 

states of a particular object: a reference state and a deformed state. A previously 

applied speckle pattern follows the strain of the object, and so the displacement that 

occurs between both reference and deformed state can be measured by matching the 

speckle pattern in small regions of the image (Peters and Ranson, 1982, Chu et al., 

1985).  By using two cameras and matching speckle patterns in each image, the 

position and displacement in three dimensions can be obtained, after calibrating the 

system using a grid of known dimensions to determine the position of the cameras. 

 

The bottom of the plate was covered in a light layer of white Snazaroo face 

paint with a sponge and then a speckle pattern was applied using a sponge and black 

face paint. The patterned was formed by carefully covering the whole bottom of the 

plate in random white and black speckles. The plate was attached using hooks to the 

testing machine vertically (Figure 2.2B) and stretched using a 5 N load cell (Figure 

2.2A) attached to a Servo Hydraulic Testing Machine, which was controlled by an 

MTS FlexTest® GT controller and software (page 49). Images were captured at 2.5 N 

using DIC cameras (page 49) (Figure 2.2C), and the strain was measured with the 

provided software. This method was performed by Prof Sam Evans, Mr John 

McCrory and Miss Hayley Wyatt (School of Engineering, Cardiff University, UK).  
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Figure 2.2 Set-up for strain testing of loading device. A 5N load cell (A) pulls on a 

string attached to the 16-well silicone plate (B) causing strain in each individual 

well. The strain is detected by the cameras (C) filming the speckle pattern on the 

bottom of the plate.  
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2.3.8.3 Mechanical loading of 3D collagen mono- and co-cultures 

 

Mechanical loading using the developed silicone loading device (page 77) 

was performed on 3D collagen osteocyte mono-cultures, or on 3D collagen 

osteocyte-osteoblast co-cultures.  

 

3D osteocyte mono-cultures were prepared and cultured in the silicone plate 

(page 77) by embedding MLO-Y4 cells in type I collagen gels (page 52). 800 µl of 

DMEM GlutaMAX™ supplemented with 100 U/ml penicillin, 100 µg/ml 

streptomycin and 5 % DFBS was added on top of the 3D collagen MLO-Y4 mono-

cultures and they were then incubated o/n at 37°C in 5 % CO2/95 % air atmosphere 

for 24, 48 or 72hr without changing culture medium prior to load, or 7 days where 

culture medium was changed every 2-3 days and prior to loading. 

 

 3D collagen co-cultures were prepared and cultured in the silicone loading 

device (page 77) for 7 days (page 52).  At day 7, cultures were treated for 1 h with 

either AMPA/KA antagonist NBQX (200 µM in DMEM 5% DFBS), A2A antagonist 

SCH 442416 (1 µM in DMEM 5% DFBS), or with standard culture medium 

(DMEM 5% DFBS) for untreated cultures. Antagonist carriers, PBS for NBQX or 

dimethyl sulfoxide (DMSO) for SCH 442416, were present in all cultures. 3D 

collagen co-cultures were mechanically loaded in the presence of antagonists. 

 

In both cases, the silicone plate was attached to a BOSE ElectroForce® 

loading instrument (page 49) by a custom-made device in order to stretch the plate 

on one side only causing cyclic compression and tension forces at the same time but 

in perpendicular directions in all wells. A 250 N load cell was used to apply a 

loading regime of 5 min, 10 Hz, 2.5 N to the 3D collagen cultures. Loading was 

controlled using the provided software (page 49). The time points at which cultures 

were terminated post-load are clearly stated in the appropriate experimental chapters 

of this thesis. 
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2.4 Statistics 

 

 Statistical tests were performed using Minitab (page 49). Data points >2 

standard deviations away from the mean were considered outliers and not included in 

analyses. All data were tested for normality (Anderson-Darling test) and equal 

variances (Barlett’s test) in order to fulfil the assumptions of the statistical tests used. 

If these assumptions were violated, data were transformed or non-parametric tests 

were used. Transformations are clearly stated in the relevant results sections. 

Differences were deemed significant if P<0.05. 

 

Some results are presented graphically using boxplots showing the smallest 

sample and the largest sample as whiskers (Figure 2.3A and B), the lower quartile 

and the upper quartile (25 % of the data presented is lower or higher than 

interquartile range respectively) (Figure 2.3 C and D), the interquartile range (range 

of data between the lower and upper quartiles, represented by a box) (Figure 2.3E) 

and the median (line across middle of data set) (Figure 2.3 F). If the median line is 

not central and/or the whiskers are of different lengths, the data may not be normally 

distributed. Boxplots can also detect outliers, usually shown by an asterisk (Figure 

2.3G) (Rubin, 2010, Peck et al., 2012). 

 

The number of independent experiments, and replicates per experiment (n), 

for each method is clearly stated in the relevant materials and methods and figure 

legends of this thesis. Independent experiments were set up so that each 3D culture 

replicate was derived from the same pool of cells. However, because each culture 

replicate was plated in different wells within a plate and all subsequent 

manipulations (e.g. surface osteoblasts, antagonist treatments and loading) were 

performed independently in each culture, it cannot be assumed that all cells behaved 

in the same manner, even if derived from the same pool. Therefore, when performing 

all statistical analyses in this thesis, raw data was used from each culture replicate 

within each independent experiment. An example of an experimental design can be 

found in Figure 2.4. 
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Figure 2.4 Example of a boxplot. A) Smallest sample whisker. B) Largest sample 

whisker. C) Lower quartile showing 25 % of data is lower than 0.45. D) Upper quartile 

showing 25 % of data is higher than 0.8. E) Interquartile range. F) Median indicating 

the middle of the data set. G) An outlier from the dataset. H) A non-central median line 

indicating data are not normally distributed. 
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Figure 2.5 Example of experimental design. Diagram showing a single independent experiment of 3 replicates per condition for both control and 

loaded plates. For repetition of independent experiments the same design as the initial experiment was used. 
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Chapter 3 

3. Characterisation of a novel 3D in vitro osteocyte-osteoblast co-culture model 

 

3.1 Background  

 

Normal mechanical loading potently induces bone formation via effects of 

loading on osteocytes, which transmit the signal to osteoblasts, increasing their 

activity and so leading to bone formation (Heino et al., 2004, Taylor et al., 2007, 

Rhee et al., 2011, Zarrinkalam et al., 2012). Current in vitro mechanical loading 

models do not reflect the interactions of the cells within bone, with most focusing on 

mechanical loading of osteoblasts in monolayers (Wang et al., 2011, Xiao et al., 

2011, Li et al., 2012c) (page 30). Furthermore, although interesting findings have 

been obtained from the available 3D in vitro bone models (section 1.4.2.3.2), none 

elucidate the osteocyte-osteoblast interactions that regulate mechanically-induced 

bone formation (Kurata et al., 2006, Tortelli and Cancedda, 2009, Tortelli et al., 

2009, Papadimitropoulos et al., 2011a, Papadimitropoulos et al., 2011b, Barthelemi 

et al., 2012). This highlights a major gap in the understanding of bone 

mechanotransduction. In order to address this issue, a 3D osteocyte-osteoblast co-

culture model was developed by Mason et al. using the mouse osteocyte-like cell line 

MLO-Y4  and a human osteoblast cell line (MG63 and SaOS-2) (Mason D., 2009, 

Mason et al., 2009). However, this model has the disadvantage that it uses cell lines 

from different species, which could affect the interactions between osteocytes and 

osteoblasts. 

 

3.1.1 Aims 

 

 The experiments in this chapter aimed to develop and characterise a novel 

mouse 3D in vitro osteocyte-osteoblast co-culture model suitable for investigating 

osteocyte-osteoblast interactions and mechanotransduction. Viability, morphology 

and phenotype of the cells within the model, and the ability of the osteocytes to form 

a network within the 3D model, were assessed. 
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3.2 Materials and Methods 

 

 The 3D co-culture model was adapted from Mason et al. (Mason D., 2009, 

Mason et al., 2009), to incorporate cell lines representing osteocytes and osteoblasts 

from the same species, in this case, mouse. For all experiments in this chapter, 3D 

collagen co-cultures from 3 independent experiments of n=3 per experiment, unless 

otherwise stated, were prepared and cultured for 1 or 7 days as outlined in page 52. 

 

3.2.1 3D osteocyte-osteoblast co-culture model 

  

At day 7, 3D co-cultures were fixed, infiltrated and cryosectioned (page 63), 

immunostaining for type I collagen was performed to reveal the 3D collagen gel and 

counterstaining with DAPI revealed the presence of cell nuclei (page 67 and Table 

2.4). 

 

3.2.2 Cell death 

 

In situ cell death assays for both surface and deep zones of the model were 

carried out as described in section page 70 at day 1 and day 7. Percentage death was 

quantified as a proportion of total cell number and statistically analysed using 

General Linear Model (GLM) for crossed factors (page 81). Pairwise comparisons 

where P≤0.05 were recorded. GLM is used to test hypotheses by taking into account 

all of its contributing factors in a linear combination, whilst also accounting for error 

contribution. The hypotheses tested may be univariate (involving one variable) or 

multivariate (involving two or more variables). 

 

3.2.3 Morphology  

 

 Monolayer cultures of MC3T3-E1(14) (page 50) and MLO-Y4 (page 50) 

cells and 3D co-cultures (page 52) were observed and imaged daily over 7 days using 

an inverse light microscope (page 63). At day 7, 3D co-cultures were fixed, 

infiltrated and cryosectioned (page 63). Cryosections of all replicates were stained 

with Phalloidin-Atto488 for actin filament labelling (page 70). 
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3.2.4 mRNA expression  

 

Total RNA from the surface and deep zones of day 7 3D co-cultures was 

extracted, reverse transcribed and cDNA integrity checked by RT-PCR of 18S rRNA 

or amplified for SOST (pages 52-55). mRNA levels were quantified by relative RT-

qPCRs for E11, COL1A1, ALP, OCN, Runx2 and SV40 large T-antigen; 18S rRNA, 

GAPDH and HPRT1 were amplified as RGs. For all templates, amplifications were 

carried out on cDNA diluted 1:10, in DEPC water, for all genes except SV40 large 

T-antigen and HPRT1 (page 55). Primer details are outlined in pages 56, 58 and 

Table 2.1). RT-qPCR data were normalised to the optimal RF using NormFinder as 

in page 57. Data for each GOI were calibrated to the highest expresser, expressed as 

REU (page 58) and statistically analysed using GLM for crossed factors (page 81). 

Pairwise comparisons where P≤0.05 were recorded. RT-qPCR products were 

resolved by agarose gel electrophoresis (page 55). Data are from 3 independent 

experiments of n=4 per experiment for both the surface and deep zones. 

 

3.2.5 Protein expression 

 

At day 7, 3D co-cultures were fixed, infiltrated and cryosectioned (page 63). 

4-6 cryosections per culture were immunostained for E11 (page 65 and Table 2.3), 

SV40 large T-antigen or CX43 (page 67 and Table 2.4).  
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3.3 Results 

 

3.3.1 3D osteocyte-osteoblast co-culture model 

 

MLO-Y4 osteocyte-like cells embedded within a 3D type I collagen gel 

overlaid with MC3T3-E1(14) osteoblasts (Figure 3.1A) and maintained for 7 days 

revealed a single osteoblast surface cell layer and osteocytes embedded throughout 

the depth of the type I collagen gel (Figure 3.1B). This confirmed the original 

organisation of the 3D co-culture is maintained for up to 7 days in culture. 

  

3.3.2 Cell death  

  

3.3.2.1 Surface zone 

 

Confocal images of the surface zone across 5 arbitrary fields of view were 

taken at x10 magnification with a 2.32 zoom for all 9 replicates. At both day 1 

(Figure 3.2A) and day 7 (Figure 3.2B), viability of MC3T3-E1(14) mouse osteoblast-

like cells was 100 %. Freeze-thaw controls showed 100 % death of the surface zone 

of the model (Figure 3.2C).  

 

3.3.2.2 Deep zone  

 

 10 arbitrary fields of view from 5 random transverse cryosections from all 9 

replicates were used for quantification of cell death as a proportion of total cell 

number (Figure 3.3E) at x20 magnification. At day 1 (Figure 3.3A) and day 7 (Figure 

3.3B) a mixture of live and dead MLO-Y4 cells was observed. Live osteocytes had a 

blue nucleus and dendritic morphology, whereas a purple nucleus and rounded 

morphology was observed for dead cells. Some live MLO-Y4 cells also had red 

staining in their cytoplasm but not their nucleus (Figures 3.3A and B). Freeze-thaw 

controls showed 100 % osteocyte death (Figure 3.3C). Across the 3 independent 

experiments, an average of 16.13 ±3.16 % osteocyte cell death was observed at day 1 

and 13.85 ±2.35 % at day 7 (Figure 3.3D) as a proportion of total number of 

osteocytes at day 1 and day 7, respectively. MLO-Y4 cell death within 3D co-
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cultures was not significantly different between day 1 and day 7, however a 

significant difference was observed between replicate experiments (GLM, P=0.002) 

(pairwise comparisons: day 1 experiment 1 vs. 3, P=0.0069 and experiment 2 vs. 3, 

P=0.004; day 7 experiment 1 vs. 2, P=0.0414) with means ± standard errors ranging 

from; 20.62 ±2.28 % (experiment 1), 17.32 ±1.43 % (experiment 2) and 10.04 ±1.14 

%  (experiment 3) at day 1; and 18.08 ±1.86 % (experiment 1), 9.35 ±1.39 % 

(experiment 2) and 13.48 ±1.41 % (experiment 3) at day 7, and an  interaction 

between both  factors (day and experiment) was observed (GLM, P=0.018). A 

significant difference was seen in total cell number between day 1 and day 7 (GLM, 

P=0.003 of log10 data) and between replicate experiments (GLM, P=0.00001 of 

log10 data). At day 1, total cell number was 2-fold higher in experiment 3 when 

compared to experiment 1 (GLM, P=0.0089 of log10 data),  and 1.5-fold higher 

when compared to experiment 2 (GLM, P=0.0187 of log10 data). At day 7, total cell 

number was 1.7-fold higher in experiment 3 when compared to experiment 1 (GLM, 

P=0.0494 of log10 data) (Figure 3.3E). 

 

3.3.3 Morphology 

 

3.3.3.1 Surface zone 

 

MC3T3-E1(14) cells in a 3D co-culture (Figure 3.4C) had a similar ovoid or 

pyriform morphology to those in monolayer cultures (Figure 3.4A). The osteoblasts 

formed a thin pavement-like single cell layer on top of the 3D co-cultures which 

were difficult to image under the inverse light microscope (Figure 3.4C). However, 

when labelled for actin filaments (Figure 3.4E), the osteoblast layer and cell 

morphology were clearer. The osteoblasts were seen projecting stress fibres 

throughout their cell bodies. Actin filament labelling also showed similar osteoblast 

morphology after a 7 day culture period (Figure 3.4E). 
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3.3.3.2 Deep zone  

 

MLO-Y4 cells in 3D co-cultures (Figure 3.4D) had a similar dendritic 

morphology to those in monolayer cultures (Figure 3.4B) across the collagen gel. At 

day 7, osteocytes showed their typical dendritic morphology and connections 

between neighbouring osteocytes as revealed by actin filament staining (Figure 

3.4F). 
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Figure 3.1 Novel 3D osteocyte-osteoblast co-culture model. A) Diagram of the 3D in vitro model indicating the surface and deep zone, and 

positions of the osteoblasts and osteocytes. B) Fluorescence microscope image of a 3D co-culture transverse cryosection immunostained to reveal 

the 3D type I collagen gel (Alexa594) and cell nuclei (DAPI). The image shows a single cell layer of cells on top of the collagen gel and cells 

embedded within the gel (SZ: surface zone; DZ: deep zone). Scale bar: 100 µm (B). Image was taken at an arbitrary field of view and is 

representative of 3 independent experiments of n=3 per experiment. Controls performed by omitting (PBST) or substituting (IgG) the primary 

antibody, showed no labelling (page 271). 
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A B C 

Figure 3.2 Osteoblast viability on the surface of the 3D co-culture (red: ethidium homodimer, blue: DAPI, purple: combination of both dyes). A) 

Confocal microscope image of an arbitraty field of view showing only live (blue nuclei) osteoblasts at day 1 and at day 7 (B). Some live osteoblasts 

show red staining in their cytoplasm but not their nucleus at both time points. C) Confocal microscope image of an arbitrary field of view from a 

freeze-thaw control where all osteoblasts are dead. Images are taken at the level of the surface zone and are representative of 3 independent 

experiments, n=3 per experiment, 5 arbitrary fields of view per replicate. Scale bars: 50 µm (A, B and C).  (x10 magnification with a 2.32 zoom).  
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Figure 3.3 Osteocyte viability in 3D co-cultures (red: ethidium homodimer; blue: 

DAPI, purple: combination of both dyes). A) Fluorescence microscope image of an 

arbitrary field of view showing a mixture of live (blue nuclei) and dead (purple 

nuclei) osteocytes at day 1 and at day 7 (B). Some live osteocytes also show red 

staining in the cytoplasm but not their nucleus. C) Fluorescence microscope image of 

an arbitrary field of view from a freeze-thaw control where all osteoblasts and 

osteocytes are dead (SZ: surface zone, DZ: deep zone). D) Boxplot of percentage cell 

death as a proportion of total number of cells at day 1 and day 7. E) Boxplot showing 

total cell number counted for each replicate experiment at day 1 and day 7 in each 

independent experiment. For total cell number, signifcant differences obtained by 

GLM of log10 data between day 1 and day 7 denoted by **P<0.01. Significant 

differences from pairwise comparisons, within each day, between independent 

experiments are shown by ‘a’, with respect to experiment 2, and ‘b’, with respect to 

experiment 3. Images are taken from 3D co-culture transverse cryosections and are 

representative of 3 independent experiments, n=3 per experiment, 5 sections per 

replicate, 10 arbitrary fields of view per section. (x20 magnification, Scale bars: 100 

µm A, B and C). 
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Figure 3.4 Osteoblast and osteocyte morphology in the 3D co-cultures. A) Inverse 

light microscope image of MC3T3-E1(14) cells in monolayer with a typical array of 

osteoblastic morphologies, mainly ovoid or pyriform. B) Inverse light microscope 

image of MLO-Y4 cells in monolayer with a typical dendritic morphology. C) 

Inverse light microscope image taken from the surface zone of the 3D model. A 

confluent monolayer of osteoblasts is observed. D) Inverse light microscope image 

of MLO-Y4 cells halfway through the depth of a 3D co-culture showing a similar 

dendritic morphology to that seen in monolayer cultures. E)  Confocal microscope 

image looking down onto the surface zone of a 3D co-culture at day 7. Osteoblasts 

were stained to reveal actin filaments (Phalloidin-Atto488) and cell nuclei (DAPI). 

Image shows a pavement-like osteoblast monolayer, with individual osteoblasts 

containing well-developed stress fibres, and therefore maintenance of MC3T3-

E1(14) morphology. F) Confocal microscope image of a 3D co-culture transverse 

cryosection at day 7. Osteocytes were stained to reveal actin filaments (Phalloidin-

Atto488) and cell nuclei (DAPI). Image shows connections between neighbouring 

osteocytes and with dendritic morphology, therefore maintenance of MLO-Y4 

morphology. Images are arbitrary fields of view representative of 3 independent 

experiments, n=3 per experiment. (Scale bars: 200 µm (A), 50 µm (B), 200 µm (C), 

50 µm (D), 50 µm (E) and 10 µm (F) respectively). 
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3.3.4 mRNA expression 

 

Low quantities of total RNA were obtained from the surface zone of the 

model, and therefore, the A260/A230 (0.06-6.69) and the A260/A280 (1.09-3.19) surface 

zone ratios were generally suboptimal (page 54) indicating presence of contaminants. 

However, concentration absorbances close to the NanoDrop detection limit (2 ng/µl) 

are less accurate. Therefore, cDNA for the surface zone was generated by reverse 

transcribing the maximum volume of RNA permitted in the reaction. This approach 

was also taken with deep zone RNA for consistency (page 54). The range of total 

RNA reverse transcribed varied between 17-1655.80 ng for the surface zone and 

108.80-1817.30 ng for the deep zone.  

 

mRNA expression was assessed in both surface and deep zones of day 7 3D 

collagen co-cultures by relative RT-qPCR using primers against osteoblast and 

osteocyte phenotypic markers. Data were expressed in REU and normalised to 

GAPDH, which was ranked as the most stable RG through NormFinder as it had the 

lowest stability value and inter- and intragroup variation (page 57, Table 3.1 and 

Figure 3.5). SOST expression was determined by RT-PCR. Data were from 3 

independent experiments of n=4 for both surface and deep zones. However, an 

outlier was detected in the surface zone samples for all genes except COL1A1 where 

3 outliers were detected in the surface zone samples. Therefore, data analysed were 

from 3 independent experiments where n=3 for the surface zone and n=4 for the deep 

zone, except COL1A1 (2 independent experiments). 

 

All mRNAs were detected in both zones of the co-culture (Figure 3.6A) 

except for SOST (Figure 3.6B). No significant difference in expression was detected 

between zones of the model for E11 (surface zone, 0.264 ±0.072 REU; deep zone, 

0.361 ±0.087 REU) (Figure 3.7A), OCN (surface zone, 0.212 ±0.076 REU; deep 

zone, 0.269 ±0.080 REU) (Figure 3.7D) and Runx2 (surface zone, 0.275 ±0.083 

REU; deep zone, 0.157 ±0.025) (Figure 3.7E). However, the surface zone of the 

model showed a significantly higher expression of COL1A1 (0.168 ±0.085 REU) 

compared to the deep zone (0.028 ±0.007 REU) (GLM, P=0.0001 of log10 data) 

(Figure 3.7B). In contrast, the deep zone (0.366 ±0.075 REU) of the 3D co-culture 
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showed a significantly higher ALP expression than the surface zone (0.185 ±0.047 

REU) (GLM, P=0.001 of ranked data) (Figure 3.7C). Quantification of the SV40 

large T-antigen, only expressed by MLO-Y4 cells (deep zone), was performed to 

indicate levels of MLO-Y4 RNA cross-contamination in the surface zone (MC3T3-

E1(14)) of the model. SV40 large T-antigen expression was significantly lower in the 

surface zone (0.102 ±0.018 REU) of the model compared to the deep zone (0.315 

±0.079 REU) (GLM, P=0.005 of log10 data) (Figure 3.7F). This indicates a 3-fold 

decrease in SV40 large T-antigen mRNA expression in the surface zone. 

 

Whilst all genes showed a significant difference in expression between 

replicate experiments (GLM, E11 P=0.0001 of log10 data, OCN P=0.0001 of log10 

data, Runx2 P=0.013 of ranked data, COL1A1 P=0.0001 of log10 data, ALP 

P=0.0001 of ranked data, SV40 large T-antigen P=0.002 of log10 data) (pairwise 

comparisons: surface zone E11 experiment 1 vs. 3, P=0.0099 and experiment 2 vs. 3, 

P=0.0097, OCN experiment 1 vs. 2, P=0.0011, Runx2 experiment 2 vs. 3, P=0.044, 

ALP  experiment 1 vs. 3, P=0.0009; deep zone E11 experiment 1 vs. 3, P=0.0094 

and experiment 2 vs. 3, P=0.047, OCN experiment 1 vs. 2, P=0.0057 and 

experiment 1 vs. 3, P=0.0046, COL1A1 experiment 1 vs. 2, P=0.001, ALP 

experiment 1 vs. 2, P=0.0281 and experiment 1 vs. 3, P=0.0009, SV40 large T-

antigen deep zone experiment 1 vs. 3, P=0.0030) the trend within each experiment 

was generally consistent, except for Runx2 experiment 3. 
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Table 3.1 NormFinder outputs. Stability values, inter- and intragroup variation outputs for 

all 3 candidate reference genes. 

  
Figure 3.5 Determination of the most stable reference gene through NormFinder. Graph 

shows the intergroup variation for all candidate reference genes in all replicates. Standard 

error of the mean was calculated from the average intragroup variation in all replicates. (3 

independent experiments, n=3 for surface and 4 for deep zones). 

 

Gene Stability value Intergroup variation Intragroup variation 

    Surface zone Deep zone Surface zone Deep zone 
18S rRNA 0.603 0.477 -0.477 0.000 0.435 
GAPDH 0.398 0.376 -0.376 0.000 0.012 
HPRT1 1.192 -0.853 0.853 0.015 5.851 
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Figure 3.6 Gene expression in 3D co-cultures after 7 days. A) Gel electrophoresis 

of RT-qPCR products shows expression of E11 (118 bp), COL1A1 (140 bp), ALP 

(132 bp), Runx2 (120 bp) and OCN (153 bp) in both surface and deep zones of the 

model. B) Gel electrophoresis showing expression of SOST (112 bp) by RT-PCR 

in mouse femur (positive control), but absence of expression in the surface and 

deep zones of the model. Negative controls (blank) were clean for all reactions. 

Gels are representative of 2 (COL1A1) or 3 (others) independent experiments, n=3 

for surface and 4 for deep zones. 
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Figure 3.7 Quantification of gene expression in the 3D co-culture after 7 days by relative RT-qPCR. Boxplots of E11 (A), COL1A1 (B), ALP (C), 

OCN (D), Runx2 (E) and SV40 large T antigen (F) expressed as REU and normalised to GAPDH expression. Significant differences obtained by 

GLM of log10 data (E11, COL1A1, OCN and SV40) or ranked data (ALP and Runx2) between surface and deep zones denoted by **P<0.01, 

***P<0.0001. Significant differences from pairwise comparisons, within each zone, between independent experiments denoted by ‘a’ with respect 

to experiment 1, and ‘b’ with respect to experiment 2. (2 (COL1A1) or 3 (others) independent experiments, n=3 for surface and 4 for deep zones). 
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3.3.5 Protein expression  

  

In all cases, presented data are representative of day 7, 3D co-cultures from 3 

independent experiments where n=3. 4-6 cryosections of all 9 replicates were 

observed. IgG controls showed no immunoreaction (Figure 3.8G-L). 

 

3.3.5.1 Surface zone 

 

Osteoblasts in 3D co-cultures showed strong uniform immunolabelling for 

the dendricity marker E11 (Figure 3.8A), in agreement with gene expression results. 

Abundant CX43 immunostaining was also observed in these cells in the cell 

membrane and cytoplasm when cultured in 3D co-cultures (Figure 3.8C). As 

expected, no immunostaining of SV40 large T-antigen was detected in the surface 

zone of the 3D model (Figure 3.8E). 

 

3.3.5.2 Deep zone  

 

Osteocytes in 3D co-cultures showed E11 (Figure 3.8B) and connexin 43 

(Figure 3.8D) immunostaining. CX43 was detected, in high abundance, along the 

processes, as well as within the cytoplasm, around the nucleus of the osteocytes 

(Figure 3.8D) and also in junctions between cells (Figure 3.8D inset). Connections 

between MLO-Y4 cells in 3D co-cultures were also observed in images where actin 

filaments were labelled (Figure 3.4F). Nuclear SV40 large T-antigen 

immunolabelling was also detected in the deep zone of the model, however 

osteocytes showed varying strengths of SV40 large T-antigen staining (Figure 3.8F). 
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Figure 3.8 Protein expression in 3D co-cultures after 7 days by immunostaining (SZ: 

surface zone, DZ: deep zone). A) Light microscope image revealing immunostaining 

for the dendricity marker E11 in both osteoblasts (SZ) and osteocytes (DZ). B) Light 

microscope image showing E11 immunostaining in the osteocytes highlighting their 

morphology. C) Confocal microscope image showing CX43 (Dylight594) 

immunolabelling and cell nuclei stain (DAPI) in the osteoblasts and osteocytes (D). 

Image reveals abundant quantities of CX43 present in the cytoplasm and cell 

membranes of both cell types, around the nucleus of the osteocytes, and connections 

between embedded osteocytes (D, inset). E) Fluorescence microscope image shows 

immunolabelling for SV40 large T-antigen (Dylight594) and cell nuclei stain (DAPI) 

in osteocytes only, represented by the purple colour (combination of both dyes). 

However, the image reveals no SV40 large T-antigen immunostaining in the 

osteoblasts. F) Fluorescence microscope image showing varying degrees of SV40 

large T-antigen immunostaining in the osteocytes. In all cases, controls performed by 

omitting (PBST: E11 (H), CX43 (J), SV40 large T-antigen (L)) or substituting (IgG: 

E11 (G), CX43 (I), SV40 large T-antigen (K)) the primary antibody, showed no 

labelling. Images are arbitrary fields of view taken from 3D co-culture transverse 

cryosections representative of 3 independent experiments, n=3 per experiment. Scale 

bars: 50 µm (A), 50 µm (B), 20 µm (C), 20 µm (D), 10 µm (inset), 50 µm (E), 50 µm 

(F), 200 µm (G), 200 µm (H), 10 µm (I), 10 µm (J), 100 µm (K), 100 µm (L). 
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3.4 Discussion 

 

A novel in vitro 3D mouse osteocyte-osteoblast co-culture model has been 

morphologically and phenotypically characterised. The model is a two-phase culture 

system where osteocytes were first embedded within collagen gels and left in culture 

overnight before osteoblasts were added the following day (Figure 3.1).  In this 

model, cells were viable, expressed appropriate phenotypic markers and connected to 

neighbouring cells (Figure 3.9). For all quantitative data presented, there appeared to 

be a significant difference between independent experiments. The reasons for this are 

discussed at the end of the discussion 

 

The model was developed as an all mouse adaptation of a previously 

published 3D human osteoblast-mouse osteocyte co-culture model (Mason D., 2009, 

Mason et al., 2009). The model developed by Mason et al. (Mason D., 2009, Mason 

et al., 2009), has been fully characterised (article awaiting re-submission). However, 

the main disadvantage of this model is the use of two different species of cells: 

human osteoblasts (MG63) and mouse osteocytes (MLO-Y4) which does not 

represent an in vivo situation. Likewise, the osteocyte-osteoblast interactions 

observed may be influenced by the difference in species between cell types. A 

further disadvantage of using MG63 cells is that they are a heterogeneous 

osteosarcoma-derived cell line which is arrested at the pre-osteoblast state. Whereas, 

MC3T3-E1 cells are a non-cancer cell line which can be differentiated from 

immature to mature osteoblast. Furthermore, MC3T3-E1 subclones, such as MC3T3-

E1(14), provide homogeneous cell populations (Czekanska et al., 2012). 
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Figure 3.9 Summary of results. Osteoblasts and osteocytes were shown to 

have minimal cell death at both day 1 and 7 of culture, as well as 

maintain their phenotype through the expression of bone markers (grey 

bars), and their connectivity through the expression of CX43 (green bar), 

and express signalling components. 
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3.4.1 Cell viability 

 

3.4.1.1 Surface zone 

  

In the 3D co-cultures, MC3T3-E1(14) mouse osteoblasts were 100 % viable 

(Figure 3.2). The most likely explanation is that osteoblasts behave like a monolayer 

of cells with dead osteoblasts detaching from the top of the collagen gel and being 

replaced by new osteoblasts to maintain the single cell layer on the co-culture 

(personal observation). 

 

3.4.1.2 Deep zone 

 

In the 3D co-culture, MLO-Y4 mouse osteocyte-like cells displayed an 

average of 16.13 ±3.16 % death after 1 day of culture and an average of 13.85 ±2.35 

% death after 7 days of culture (Figure 3.3A-D). It has previously been reported that 

osteocytic death, common in normal human bone (Noble et al., 1997), increases with 

age from less than 1 % at birth up to 75 % by 80 years old (Frost, 1960, Mullender et 

al., 1996, Tomkinson et al., 1997).  Assuming there is a linear relationship between 

age and osteocyte death, 20 % death would occur by 21 years of age. Thus the 16.13 

±3.16 % osteocyte viability observed in the 3D model appears consistent with in vivo 

viabilities.  

 

Furthermore, osteocyte cell death rates at day 1 were not significantly 

different from those at day 7 (Figure 3.3D). Although this could suggest that cell 

death was caused by the experimental set up, the method used to quantify cell death 

does not take into account cell proliferation, which could mask any further cell death.  

 

In vivo, most cells undergoing cell death are destroyed by neighbouring or 

phagocytic cells (Gregory and Pound, 2011). However, this is only subject to the 

accessibility of the cells in question. In bone, osteocytes are embedded within a 

mineralised matrix and so are inaccessible, unless during osteoclastic resorption. 

Consistent with this hypothesis, in vivo, dead osteocytes can be detected within their 

lacunae (Tomkinson et al., 1998, Weinstein et al., 2000). In in vitro 3D cultures it is 
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difficult to determine whether all dead cells remain embedded within the 3D matrix. 

However, in the 3D co-culture a similar percentage osteocyte cell death was 

observed at day 1 and day 7. This observation suggests that the dead osteocytes 

present at day 1 did not disintegrate, but like in vivo, remained encased within the 

matrix. Osteocyte death has been shown to be common in both healthy and unhealthy 

bone and to trigger bone resorption (page 13), suggesting that the 3D co-culture 

model could also be modified to study bone resorption and remodelling in 

physiological and pathophysiological conditions, by adding osteoclasts. 

 

3.4.2 Morphology 

 

3.4.2.1 Surface zone 

 

In the 3D co-culture model, MC3T3-E1(14) cells displayed a range of 

osteoblastic morphologies, mainly ovoid and pyriform with stress fibres, which were 

maintained for 7 days (Figure 3.4A, C and E). They also formed a pavement-like 

monolayer on top of the 3D culture (Figure 3.4E). In vivo, osteoblasts range in shape, 

they can be ovoid, rectangular, columnar, cuboidal or pyriform (Bourne, 1972). 

Osteoblasts have been shown to be situated on top of the bone matrix containing 

osteocytes (Gegenbaur, 1864 as cited in (Bourne, 1972)) forming a pavement-like or 

‘overlapping roof tiles’ monolayer on top of the bone surface (Bidder, 1906 as cited 

in (Bourne, 1972), (Sudo et al., 1983)) and their position is essential for osteocyte-

osteoblast interactions which ultimately lead to the regulation of bone matrix 

formation (Heino et al., 2004, Taylor et al., 2007, Rhee et al., 2011, Zarrinkalam et 

al., 2012). In vitro, monolayer cultures of MC3T3-E1(14) cells show a fibroblastic 

morphology during their logarithmic growth phase. However, when confluent they 

assume a pyriform shape with prominent stress-fibres across their cell bodies (Sudo 

et al., 1983, Murshid et al., 2007). Therefore, osteoblasts morphology in the 3D co-

culture is consistent with in vivo and in vitro observations. 
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3.4.2.2 Deep zone 

 

In the 3D co-culture model, MLO-Y4 cells maintain their osteocytic 

morphology throughout all gel depths for 7 days and appear to connect to each other 

(Figure 3.4B, D and F). In vivo, osteocytes present a dendritic morphology, which 

allows communication with neighbouring osteocytes. This forms an extensive 

network known as LCS (Doty, 1981, Menton et al., 1984, Palumbo et al., 1990, 

Bonewald, 1999, Plotkin et al., 2002), which permits metabolic traffic and exchange 

in the mineralised environment of the bone matrix. In vitro, monolayer cultures of 

MLO-Y4 cells display a two-dimensional dendritic morphology, which becomes 

three-dimensional in 3D collagen cultures (Kato et al., 1997, Murshid et al., 2007). 

Thus, the osteocyte morphology in the 3D co-cultures is consistent with in vivo and 

in vitro observations, indicating that these cells have the morphological 

characteristics necessary for network formation throughout the 3D co-culture. 

 
3.4.3 mRNA expression 

 

In the 3D co-culture model, surface zone cells showed a significantly higher 

expression of COL1A1 compared to the deep zone of the model (Figure 3.7B). This 

correlates with in vivo and in vitro data which showed both osteoblasts (Collin et al., 

1992, Zhou et al., 1994, Shi et al., 1996, Wang et al., 1999),  and osteocytes express 

COL1A1 however, osteocytes express COL1A1 at lower levels (Sun et al., 1995, 

Kato et al., 1997). Interestingly, deep zone cells within the 3D co-cultures were 

found to express significantly higher levels of ALP compared to the surface zone of 

the model (Figure 3.7C). Osteoblasts have been shown to express ALP both in vivo 

and in vitro (Takuwa et al., 1991, Collin et al., 1992, Whyte, 1994, Zhou et al., 1994, 

Wang et al., 1999). However, previous in vivo and in vitro data has shown that 

osteocytes express low levels of ALP (Dodds et al., 1993, Mikuni-Takagaki et al., 

1995, Kato et al., 1997). This suggests that under appropriate conditions the MLO-

Y4 cells within the 3D model may be able to mineralise the collagen matrix within 

which they are embedded.  
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OCN and Runx2 are also expressed in both the surface and deep zones of the 

model (Figure 3.7D and E respectively).  This correlates with both in vivo and in 

vitro studies which showed both osteoblasts and osteocytes express OCN  

(osteoblasts: (Collin et al., 1992, Zhou et al., 1994); osteocytes: (Mason et al., 1996, 

Kato et al., 1997)) and Runx2 in osteoblasts in vivo and in vitro (Ducy et al., 1997, 

Komori et al., 1997, Otto et al., 1997, Gilbert et al., 2002, Choi et al., 2005) and in 

osteocytes in vitro (Fujita et al., 2001). Both surface osteoblasts and embedded 

osteocytes were also shown to express E11 when cultured in 3D co-cultures (Figure 

3.7A). E11 is an early osteocyte marker (Wetterwald et al., 1996, Schulze et al., 

1999, Hadjiargyrou et al., 2001, Zhang et al., 2006) which has also been detected in 

mature osteoblasts and osteoblasts undergoing bone matrix synthesis (Nose et al., 

1990, Wetterwald et al., 1996, Hadjiargyrou et al., 2001, Zhang et al., 2006, Jahn et 

al., 2010). The fact that there is E11 expression in the surface zone of the model 

suggests that the osteoblasts may be not only sending out projections to connect with 

neighbouring osteoblasts and/or embedded osteocytes, but also be attempting to 

differentiate into osteocytes.  

 

SOST was not detected in either zones of the model (Figure 3.6B). In bone in 

vivo, SOST is exclusively expressed by mature osteocytes (van Bezooijen et al., 

2004, Poole et al., 2005, van Bezooijen et al., 2005, Li et al., 2008). Whilst some 

studies have reported the expression of SOST in osteocytes (Bellido et al., 2005, 

Papanicolaou et al., 2009, Woo et al., 2011) and osteoblasts (Galea et al., 2011, Yu et 

al., 2011) in vitro, the MLO-Y4 (Papanicolaou et al., 2009, Yang et al., 2009) and 

MC3T3-E1 (Papanicolaou et al., 2009) cell lines do not express SOST. This finding 

is consistent with the idea that MLO-Y4 cells are not mature osteocytes and lack a 

mineralised environment in culture (Yang et al., 2009). 

 

There are several matters to take into account when analysing gene 

expression in this 3D co-culture. According to the minimum information for 

publication of quantitative real-time PCR experiments (MIQE) guidelines, in order to 

perform RT-qPCR, ideally, the mass of RNA reverse transcribed should be equal for 

all samples in order to reduce variance when comparing, in this case, between 

surface and deep zone mRNA expression (Gu and Publicover, 2000, Kalariti et al., 
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2004). However, due to the low and variable amounts of total RNA extracted from 

the surface zone samples, this is not possible as there would be a high risk of not 

detecting low expression genes. Nevertheless, normalisation to the most stable RG 

accounts for differences in quality and quantity of the reverse transcribed RNA used 

in the reaction. 

 

Another matter to take into account is the possibility of RNA cross-

contamination between zones due to the extraction protocol. The fact that there is 

expression of SV40 large T-antigen in the surface zone (Figure 3.7F), albeit at lower 

levels, suggests that there are small levels of RNA cross-contamination from the 

osteocytes. MLO-Y4 cells express SV40 large T-antigen as they were initially 

isolated from transgenic mice expressing the SV40 large T-antigen oncogene under 

the control of the OCN promoter (Kato et al., 1997) (page 50). However, MC3T3-

E1(14) are a spontaneously immortalised cell line and therefore do not express  SV40 

large T-antigen (Wang et al., 1999) (page 50). There is not a gene that is only 

expressed by the osteoblasts in the model, therefore RNA cross-contamination from 

the surface zone into the deep zone of the model could not be quantified. However, 

light microscope images of toluidine blue stained transverse cryosections where 

MC3T3-E1(14) cells were cultured on top of empty 3D collagen gels for 7 days, 

showed no invasion of the osteoblasts (page 272). This contradicts previous data 

which showed the human osteoblast cell line MG63 invading empty 3D collagen gels 

and the invasion being controlled by embedding MLO-Y4 cells in the 3D gel (Mason 

D., 2009, Mason et al., 2009). However, the invasion of empty collagen gels by 

MG63 cells may be due to their cancer phenotype, as they are osteosarcoma-derived, 

and the lack of contact-inhibition, which leads to uncontrolled proliferation 

(Czekanska et al., 2012). Therefore, the fact that MC3T3-E1(14) cells do not invade 

empty 3D collagen gels, and that there are low levels of MLO-Y4 RNA present in 

the surface zone preparation, suggests limited cross-contamination between zones.  

 

Significant differences in gene expression observed between replicate 

experiments should also be taken into consideration. Relative RT-qPCR was used as 

the quantification method by normalising to GAPDH, selected as the most stable RG. 

Therefore, any intra- and/or intergroup variation in individual replicates should be 
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accounted for and so there should no difference between independent experiments. 

However, this is not the case and this is addressed at the end of the discussion. 

 

Finally, even though there are significant differences in expression of 

COL1A1, ALP and SV40 large T-antigen between surface and deep zones, the actual 

amount of expression of each gene, in terms of mRNA copy number, is not known. 

Thus the changes seen could be between relatively low levels. This is because 

relative RT-qPCR was performed. To be able to quantify copy numbers of each gene 

absolute RT-qPCR should be carried out. This method would particularly be useful 

to assess the extent of osteocyte RNA cross-contamination by determining the exact 

amount SV40 large T-antigen mRNA present in the two zones.  

 

3.4.4 Protein expression 

 

3.4.4.1 Surface zone 

 

In the 3D co-culture, osteoblasts showed immunolabelling for E11, 

supporting gene expression data (page 109), and CX43 protein throughout osteoblast 

cytoplasm and cell membrane (Figure 3.8A and C), suggesting that the surface 

osteoblasts are indeed connecting to neighbouring cells through projections that have 

the potential to be functional. Osteoblasts have been previously shown to express 

E11 and the gap junction CX43 protein, in vivo and in vitro (Wetterwald et al., 1996, 

Lecanda et al., 2000, Hadjiargyrou et al., 2001, Yamaguchi and Ma, 2003, Zhang et 

al., 2006, Taylor et al., 2007). The fact that osteoblasts synthesise E11 protein is not 

surprising. Previous studies have shown that osteoblasts have cytoplasmic processes 

connecting them to neighbouring cells (Spuler, 1899 as cited in (Bourne, 1972), 

(Wetterwald et al., 1996, Schulze et al., 1999)). Additionally, MC3T3-E1 cells have 

been shown to have prominent stress fibres that stretch across their cell bodies into 

small cytoplasmic processes (Murshid et al., 2007). Furthermore, these connections 

between osteoblasts and neighbouring cells are mainly through CX43. This gap 

junction is not only the most abundant in bone, but also has an important role in 

skeletal development and function (Stains and Civitelli, 2005, Rhee et al.). No SV40 

large T-antigen immunostaining was observed in the surface zone of the model even 
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after 7 days of co-culture (Figure 3.8E); as it is only MLO-Y4 cells that express this 

protein within the 3D model (Kato et al., 1997). This shows that no osteocytes have 

migrated to the surface zone of the 3D co-culture and that this zone is solely 

composed of osteoblasts. 

 

3.4.4.2 Deep zone 

 

In the 3D co-culture, MLO-Y4 cells showed expression of E11, in agreement 

with gene expression data (page 112), and CX43 protein (Figure 3.8A-D). Confocal 

images of osteocytes in 3D co-cultures showed presence of CX43 throughout the 

cytoplasm, osteocytic processes and around the nucleus (Figure 3.8C and D). 

Osteocytes, like osteoblasts, have been shown to express proteins for E11 

(Wetterwald et al., 1996, Hadjiargyrou et al., 2001, Zhang et al., 2006) and CX43 

both in vivo and in vitro (Kato et al., 1997, Cheng et al., 2001b, Taylor et al., 2007). 

Both of these proteins are key in osteocyte morphology and function. E11 helps 

maintain osteocyte dendricity (Zhang et al., 2006) whereas CX43 not only allows the 

formation of the LCS within the bone matrix, but also permits connection of 

osteocytes to surface osteoblasts, as shown in vitro by Yellowley et al. and Taylor et 

al. (Shalhoub et al., 2006, Taylor et al., 2007). Most importantly, CX43 has been 

shown to contribute to bone remodelling and formation (Bivi et al., 2012). This is 

further evidence that osteocytes within the 3D co-culture are potentially able to form 

a network similar to the LCS, as well as connect to the osteoblasts on the surface. 

 

In the 3D co-culture, osteocytes showed nuclear expression of SV40 large T-

antigen as they were immortalised by the overexpression of the SV40 large T-antigen 

(Figure 3.8E and F) (page 50) (Kato et al., 1997). Although the nuclear localisation 

of SV40 large T-antigen in MLO-Y4 cells has not previously been shown, it has been 

demonstrated in other cells (Haddaway et al., 2007, Ralston and Layfield, 2012). 

SV40 large T-antigen is considered an oncogene, due to its ability to arrest cell cycle 

and apoptosis, leading to uncontrolled proliferation (reviewed in (Barker and 

Gardner, 1974, Siris, 1994, Langston et al., 2007). Thus, the proliferation of the 

MLO-Y4 cell line is driven by the expression of the SV40 large T-antigen. In day 7 

3D co-cultures, osteocytes showed varying strengths of SV40 large T-antigen 
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immunostaining suggesting not all embedded osteocytes may be undergoing 

proliferation (Figure 3.8F), and those which are may have a low proliferation rate. 

Cells staining for SV40 large T-antigen, regardless of strength of staining, were only 

observed embedded within the 3D collagen gel. This observation supports evidence 

of no osteoblast invasion into the deep zone of 3D gel or of osteocytes into the 

surface zone (pages 109 and 272).  

 

3.4.5 Differences between replicate experiments 

 

 As previously mentioned, for all quantitative data presented, a significant 

difference was observed between independent experiments. This difference could be 

due to variability in setting up the 3D co-cultures. Total cell number was 

significantly different between replicate experiments (Figure 3.3E) and also some 

differences were observed between individual replicates within each experiment 

(page 273). The total cell number fold differences seen when comparing experiment 

3 with either experiment 1 or 2 at day 1 or 7, suggests that when cells were mixed 

well within the collagen solution before polymerising the gels, some gels had more 

cells than others. Another possible explanation is that because of the variance in cell 

density, there would be a change in behaviour of the cells in the 3D co-culture and as 

a consequence osteocyte-osteoblast interactions would have differed between 

replicate co-cultures and between independent experiments. Thus, differences in cell 

densities and, consequently, differences in osteocyte-osteoblast interactions, could 

have affected the overall percentage death and gene expression across replicate 

experiments. 
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3.5 Conclusion 

 

The mouse osteocyte-osteoblast 3D co-culture model characterised in this 

chapter provides a 3D platform to study the osteocyte control of osteoblast activity as 

a result of mechanical loading, something other current 3D models do not provide 

(Kurata et al., 2006, Murshid et al., 2007, Atkins et al., 2009). The next challenge is 

to determine whether this model is functional and can be used to investigate 

physiological mechanical stimuli and the resulting signalling that regulates osteocyte 

control of osteoblast activity.  
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4. Expression of adenosine, calcium-sensing and glutamate signalling 

components in the 3D co-culture model 

 

4.1 Background 

 

 The adenosine, calcium-sensing, and glutamate signalling pathways have 

been shown to influence bone biology (page 36), as seen in KO animals involving 

signalling components of these pathways. Briefly, for the adenosine signalling 

pathway, the A1 KO model had increased bone volume and small osteoclasts (Kara et 

al., 2010b), the A2A KO mouse displayed increased bone resorption and osteoclast 

activity (Mediero et al., 2012), and the A2B
 KO model exhibited decreased bone 

density (Carroll et al., 2012) (pages 37-38). Furthermore, CaSR KO mice displayed 

growth retardation, small skeletons and several fractures (Chang et al., 2008a) (page 

38). In addition, for the glutamate signalling pathway, the NMDAR1 KO model 

exhibited a thin bone structure and poor mineralisation (Skerry, 2008b), and the 

VGLUT1 KO model displayed a decrease in bone mass and an increase in osteoclast 

resorption (Morimoto et al., 2006) (pages 41-42)  

 

All adenosine receptors have been found to be expressed in primary 

osteoblasts and osteoblast cell lines. However, currently there are no studies on the 

expression of these receptors in osteocytes (Evans and Ham, 2012) (page 36). CaSR 

has been found to be expressed in osteoblasts and osteocytes (page 38). Glutamate 

receptors NMDARs and AMPARs together with transporters EAATs are expressed 

in both osteoblasts and osteocytes, however, receptors KAs and mGluRs have only 

been shown to be expressed in osteoblasts (Brakspear and Mason, 2012) (page 40). 

Interestingly, receptors A1, A2A and CaSR have been shown to heterodimerise with 

mGluR1 and/or 5 in the CNS (page 43). Furthermore, both glutamate and ATP have 

been implicated in mechanotransduction (page 36). ATP has a short half-life and is 

quickly broken down to smaller products such as adenosine, suggesting that 

adenosine may also be a mechanical signal. However the role of the adenosine, CaSR 

and glutamate signalling pathways in mechanically-induced bone formation is not 

fully understood.  
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4.1.1 Aims 

 

The experiments in this chapter aimed to determine the expression of 

signalling components of the adenosine, calcium-sensing and glutamate signalling 

pathways within the novel 3D osteocyte-osteoblast co-culture model. This study 

provided a platform for the investigation of the roles of these pathways in bone 

biology. The mRNA and protein expression of the all of the adenosine receptors, 

CaSR and a range of the glutamate receptors and transporters was selected according 

to previous data linking them to bone remodelling, mechanical loading or to the 

adenosine or CaSR pathways (pages 40 and 43). 
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4.2 Materials and Methods 

 

For all experiments in this chapter, 3D collagen co-cultures were prepared 

and cultured for 7 days as described in page 52. 

 

4.2.1 mRNA expression  

 

Total RNA from the surface and deep zones of day 7 3D co-cultures was 

extracted, reverse transcribed, cDNA integrity checked by RT-PCR of 18S rRNA 

and then amplified for A1, A2A, A2B and A3 adenosine receptors, CaSR, or 

AMPAR2, KA1, mGluR1, mGluR5 glutamate receptors and GLAST1 and EAAC1 

glutamate transporters (pages 52-55). Primer details are outlined in page 58 and 

Table 2.2.  Data presented are representative from 3 independent experiments of n=4 

for both surface and deep zones.  

 

4.2.2 Protein expression 

 

At day 7, 3D co-cultures were fixed, infiltrated and cryosectioned (page 63). 

Cryosections were immunostained for adenosine receptors (A1, A2A, A2B, A3), 

glutamate receptors (AMPAR2, KA1, mGluR1), and glutamate transporters 

(GLAST1, EAAC1) (page 65 and Table 2.3), or CaSR (page 67 and Table 2.4). Data 

presented are representative of 3 independent experiments of n=1 per experiment and 

4-6 cryosections per gel. 
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4.3 Results 

 

4.3.1 mRNA expression 

 

Adenosine receptors A2A and A2B (Figure 4.1A) and glutamate transporter 

GLAST1 (Figure 4.1C) mRNAs were detected in both surface and deep zones, 

whereas, glutamate receptors AMPAR2 and KA1 were only detected in the deep 

zone of the model (Figure 4.1C). However, mRNAs for adenosine receptors A1 and 

A3 (Figure 4.1A), CaSR (Figure 4.1B), glutamate receptor mGluR1 and 5 (page 273) 

and transporter EAAC1 (Figure 4.1C) could not be detected in either zone of the 

model . In all experiments and primer combinations RT-PCR negative controls did 

not amplify any products. 
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Figure 4.1. RT-PCR expression of adenosine, calcium-sensing and glutamate 

signalling components in day 7 3D co-cultures. Gel electrophoresis shows RT-PCR 

products for all adenosine receptors (A), CaSR (B) and glutamate receptors 

(AMPA2, KA1 and mGluR1) and transporters (GLAST1 and EAAC1) (C) in 

osteoblasts (surface) and osteocytes (deep). Mouse brain cDNA was the positive 

control for all RT-PCRs except CaSR, where mouse kidney cDNA was used. 

Negative controls did not yield any products. Gels are representative of 3 

independent experiments, n=4 for both surface and deep zones. 
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4.3.2 Protein expression 

 

Both osteoblasts and osteocytes in 3D co-cultures showed strong uniform 

immunolabelling for the adenosine receptor A2A (Figures 4.2C and D) and for CaSR 

(Figures 4.3A and B). Immunolabelling for the glutamate receptor KA1 (Figures 

4.4C and D) and transporter GLAST1 (Figures 4.4G and H) was also observed in 

both osteoblasts and osteocytes.  However, adenosine receptors A1 (Figures 4.2A and 

B), A2B (Figures 4.2E and F) and A3 (Figures 4.2G and H); and glutamate receptors 

AMPAR2 (Figures 4.4A and B) and mGluR1 (Figures 4.4E and F); and glutamate 

transporter EAAC1 (Figures 4.4I and J) were not detected in either zone of the model 

with the antibodies used. Negative controls where primary antibodies were omitted 

(PBST) or substituted with non-immune immunoglobulins (IgG) did not reveal 

immunolabelling (Figures 4.3C and D, and 4.4K-T), except for adenosine receptor 

controls where non-specific background staining is observed (Figures 4.2I and J). 
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Figure 4.2 Adenosine receptors protein expression in day 7 3D co-cultures detected 

by immunostaining.  Light microscope images from transverse cryosections of 3D 

co-cultures immunolabelled for adenosine receptor A1 (A and B), A2A (C and D), 

A2B (E and F), and A3 (G and H) in osteoblasts (SZ) and osteocytes (DZ). Controls 

where primary antibodies were omitted (PBST) or substituted with non-immune 

immunoglobulins (IgG) showed non-specific background staining (I and J). Scale 

bars: 50 µm. Images are arbitrary fields of view representative of 3 independent 

experiments, n=1 per experiment. 
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Figure 4.3 CaSR protein expression in day 7 3D co-cultures detected by immunostaining 

(red: CaSR, blue: DAPI).  Fluorescence microscope images of transverse cryosections of 

3D co-cultures immunolabelled for CaSR (A and B) in osteoblasts (SZ) and osteocytes 

(DZ).  Controls where primary antibodies were omitted (PBST) or substituted with non-

immune immunoglobulins (IgG) showed no labelling (C and D). Scale bars: 50 µm, 50 µm, 

100 µm, 100 µm. Images are arbitrary fields of view representative of 3 independent 

experiments, n=1 per experiment. 
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Figure 4.4 Glutamate receptors and transporters protein expression in day 7 3D co-

cultures detected by immunostaining.  Light microscope images of transverse 

cryosections of 3D co-cultures immunolabelled for AMPAR2 (A and B), KA1 (C 

and D), mGluR1 (E and F), GLAST1 (G and H), and EAAC1 (I and J), in osteoblasts 

(SZ) and osteocytes (DZ).  Controls where primary antibodies were omitted (PBST: 

AMPA2 (L), KA1 (N), mGluR1 (P), GLAST1 (R), EAAC1 (T)) or substituted with 

non-immune immunoglobulins (IgG: AMPA2 (K), KA1 (M), mGluR1 (O), GLAST1 

(Q), EAAC1 (S)) showed no labelling. Scale bars: 50 µm. Images are arbitrary fields 

of view representative of 3 independent experiments, n=1 per experiment. 
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4.4 Discussion 

 

Various adenosine, calcium-sensing and glutamate signalling component 

mRNAs and proteins were detected by RT-PCR and immunolabelling respectively 

(Table 4.1). 

 

Table 4.1 3D co-culture mRNA and protein expression of signalling components. 

 

+ present; - absent; NI not investigated. 

 

It is important to note that to confirm the absence of protein expression of 

some of these receptors, immunostaining must be repeated with different antibodies 

to those used in this thesis and with a positive control alongside. Furthermore, 

quantification of these proteins in the 3D model by western blotting in surface 

osteoblasts and deep osteocytes should also be carried out. Nevertheless, these results 

provide an expression prolife of adenosine, calcium-sensing and glutamate signalling 

components within the 3D co-culture model. 

 

 

 

 

 

Signalling Pathway Receptor/Transporter mRNA Protein 

  Surface Zone Deep Zone Surface Zone Deep Zone 

Adenosine 

A1 - - - - 

A2A + + + + 

A2B + + - - 

A3 - - - - 

Calcium-sensing CaSR - - + + 

Glutamate 

AMPAR2 - + - - 

KA1 - + + + 

mGluR1 - - - - 

mGluR5 - - NI NI 

GLAST1 + + + + 

EAAC1 - - - - 
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4.4.1 mRNA expression 

 

In the 3D co-culture model, surface osteoblasts and deep osteocytes 

expressed mRNAs for adenosine receptors A2A and A2B, and glutamate transporter 

GLAST1, after 7 days of culture (Figure 4.1A and C). Glutamate receptors AMPAR2 

and KA1 were only expressed in the deep zone osteocytes (Figure 4.1C). Adenosine 

receptors A1 and A3, CaSR, glutamate receptors mGluR1 and 5, and glutamate 

transporter EAAC1 were not expressed in the 3D model (Figure 4.1A-C) (Table 4.1).  

 

To date, studies on the mRNA expression of adenosine receptors are scarce 

and in vitro (page 36). Osteoblasts have been previously shown to express mRNA for 

adenosine receptors A1, A2A and A2B, but not for A3, in MG63 human osteoblast-

like cells (Russell et al., 2007).  In the 3D co-culture, surface osteoblasts express A2A 

and A2B receptors, but no A3; consistent with MG63 data. However, the lack of A1 

mRNA expression in 3D co-culture surface osteoblasts contradicts previous findings. 

This difference in expression could be due a difference in species as MG63 cells are 

a human osteoblast cell line. Other explanations include low gene expression, and the 

fact that previous studies were done on cells in monolayer, and not in a 3D co-

culture, both of which are discussed later in this section.  

 

No data have been published yet on the mRNA expression of adenosine 

receptors in osteocytes in vivo or in vitro (Evans and Ham, 2012). Therefore, this 

thesis reports, for the first time, the expression of adenosine receptors A2A and A2B, 

and absence of A1 and A3 mRNA in MLO-Y4 osteocyte-like cells when cultured in 

3D co-cultures. 

 

CaSR mRNA has previously been found to be expressed in osteoblasts in 

vivo in rat and bovine bone (Chang et al., 1999) and in rat and human undecalcified 

bone (Dvorak et al., 2004), and in vitro in rat calvarial osteoblasts (Chattopadhyay et 

al., 2004) and in several osteogenic cell lines (Yamaguchi et al., 1998b, Yamaguchi 

et al., 2001) including MC3T3-E1 cells (Yamaguchi et al., 1998a). In osteocytes, 

expression of CaSR mRNA has been previously shown in vivo (Chang et al., 1999, 

Dvorak et al., 2004), however, the absence of CaSR mRNA in MLO-Y4 osteocyte-
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like cells reported here is the first investigation of CaSR mRNA expression in 

osteocytes in vitro. The fact that no CaSR mRNA could be detected in the 3D co-

culture surface MC3T3-E1(14) cells contradicts previous findings. CaSR is a G-

protein coupled receptor and many of this type of receptors are highly difficult to 

detect at the mRNA level as they are scarce (Yang et al., 1999, Sarramegna et al., 

2003, Hansen et al., 2007). Indeed, expression of CaSR mRNA has been shown to be 

controversial in vascular smooth muscle cells (VSMCs) with some studies showing 

expression (Smajilovic et al., 2006, Molostvov et al., 2007) and others failing to 

detect CaSR mRNA (Farzaneh-Far et al., 2000, Shalhoub et al., 2006). This issue 

could also be the case in osteoblasts and osteocytes, accounting for the inability to 

detect it in the surface and deep zones of the 3D model. Further reasons for the 

inability to detect CaSR mRNA in the 3D co-culture are discussed at the end of this 

section. 

 

As reviewed in (Kalariti et al., 2004, Brakspear and Mason, 2012), of the 

selected receptors and transporters, osteoblasts have been shown to express in vivo 

mRNA for glutamate transporter GLAST1 (Mason et al., 1997). In vitro, studies 

have demonstrated that osteoblasts also express mRNAs for GLAST1 in rat primary 

osteoblasts (Takarada et al., 2004), human osteoblast-like cell lines MG63 (Kalariti 

et al., 2004) and SaOS-2 (Huggett et al., 2002), EAAC1 in rat primary osteoblasts 

(Takarada et al., 2004); glutamate receptors KA1 in rat calvarial osteoblasts (Hinoi et 

al., 2002), and mGluR1 in rat femoral osteoblasts and MG63 cells (Gu and 

Publicover, 2000, Kalariti et al., 2004) and 5 in MG63 cells (Kalariti et al., 2004). 

However, to date, there are no reports on the expression of AMPAR2 mRNA in 

osteoblasts in vivo, whereas in vitro Hinoi et al reported absence of AMPAR2 in rat 

calvarial osteoblasts (Hinoi et al., 2002). Surface osteoblasts in 3D co-cultures 

express GLAST1 mRNA but no AMPAR2 mRNA was detected, consistent with 

published data. However, surface osteoblasts showed no expression of mRNAs for 

EAAC1, KA1 or mGluR1 or 5, contradicting previous studies. Whilst this may 

reflect rare transcripts for the receptors, this is unlikely for EAAC1 which is 

relatively abundant (Brakspear, 2010).  
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Osteocytes have previously been found to express GLAST1 mRNA in vivo in 

rat bone (Mason et al., 1997) and in vitro in MLO-Y4 cells (Huggett et al., 2002), 

consistent with 3D co-culture data for osteocytes, which also express GLAST1. This 

thesis reports for the first time expression of AMPAR2 and KA1, and absence of 

expression of EAAC1, and mGluR1 and 5 mRNA in osteocytes in vitro.   

 

The differences in mRNA expression of some genes between previous studies 

and the 3D co-culture surface osteoblasts could be due low amounts of RNA and low 

abundance mRNA expression genes by RT-PCR. Alternatively, expression of some 

of these genes in the surface osteoblasts may be inhibited by the presence of 

embedded osteocytes, which would suggest a direct effect of osteocytes on osteoblast 

behaviour. This hypothesis could be tested by culturing M3CT3-E1(14) osteoblasts 

on empty gels and in 3D co-cultures with a different cell type embedded in the 

collagen gel, then assessing mRNA expression. Indeed, regulation of osteoblast 

phenotype, through the expression of COL1A1, in 3D co-cultures with osteocytes 

has already been shown in the human-mouse 3D co-culture model by Mason et al. 

(Mason et al., 2009, Mason D., 2009), suggesting this could also be the case in the all 

mouse 3D model.  

 

An explanation for the differences in gene expression, for the embedded 

osteocytes, is the fact that all previous in vitro studies have been performed in 

monolayer cultures of cells. Embedding cells within a 3D matrix has been shown to 

alter gene expression (Boukhechba et al., 2009, Kozlowski et al., 2009). 

 

4.4.2 Protein expression 

 

In the 3D co-culture model, both osteoblasts and osteocytes expressed A2A 

(Figure 4.2C and D), CaSR (Figure 4.3A and B), KA1 and GLAST1 proteins (Figure 

4.4C-D and G-H respectively), but A1 (Figure 4.2A and B), A2B (Figure 4.2E and F), 

A3 (Figure 4.2G and H), AMPAR2 (Figure 4.4A and B), mGluR1 (Figure 4.4E and 

F) or EAAC1 (Figure 4.4I and J) were not detected (Table 4.1).  
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Osteoblasts have been shown to express protein for all adenosine receptors in 

human primary osteoblasts (Costa et al., 2011), A1, A2A and A2B, but not for A3, in 

MG63 human osteoblast-like cells (Russell et al., 2007). In the 3D co-culture, 

surface osteoblasts stained for A2A receptor, consistent with previous studies and 

mRNA data (page 130). However, none of the other receptors were detected 

contradicting previous data. The difference in expression with previous studies could 

be due a difference in species as MG63 cells are a human osteoblast cell line. The 

lack of A2B protein in the 3D co-culture contradicts previous studies and mRNA 

expression data (page 130). This finding could be due to the degradation of A2B 

protein and therefore not being detected by immunostaining, or because the mRNA 

produced is not being translated to protein. However, even though the absence of A1 

and A3 protein in surface osteoblasts contradicts previous findings, it is consistent 

with mRNA data (page 130), suggesting that A1 and A3 receptors are not present in 

MC3T3-E1(14) cells when cultured in 3D co-cultures.  

 

Since protein expression of adenosine receptors has not previously been 

reported for osteocytes in vitro or in vivo (Evans and Ham, 2012), this is the first 

observation of A2A protein expression, and absence of A1, A2B and A3 protein in 

MLO-Y4 osteocyte-like cells in 3D co-cultures. 

 

CaSR protein is expressed in osteoblasts in vivo in rat and bovine bone 

(Chang et al., 1999), and in vitro in rat calvarial osteoblasts (Chattopadhyay et al., 

2004) and in various osteoblast-like cell lines (Yamaguchi et al., 1998b, Yamaguchi 

et al., 2001) including MC3T3-E1 cells (Yamaguchi et al., 1998a). This is consistent 

with 3D co-culture surface osteoblasts data. CaSR protein expression has only been 

shown in vivo in rat, human and bovine osteocytes (Chang et al., 1999, Dvorak et al., 

2004) with no in vitro studies in osteocytes or osteocyte-like cell lines. Thus, this 

thesis reports, for the first time, immunolabelling of CaSR protein in embedded 

MLO-Y4 cells, consistent with in vivo data. Interestingly, the presence of CaSR 

protein in the 3D model contradicts CaSR mRNA expression data obtained from 

surface osteoblasts and deep osteocytes, possibly reflecting rare and/or unstable 

CaSR mRNA (Smajilovic et al., 2006, Molostvov et al., 2007). 
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As reviewed in (Brakspear and Mason, 2012, Cowan et al., 2012), of the 

selected receptors and transporters, osteoblasts and osteocytes have been shown to 

express, in vivo, protein for glutamate transporters GLAST1 (Mason et al., 1997) and 

EAAC1 in rat bone (Bonnet, Williams and Mason, unpublished data).  In vitro, 

GLAST1 and EAAC1 proteins are expressed in human osteoblast-like cell lines 

(Brakspear, 2010) with EAAC1 protein also being present in human primary 

osteoblasts (Brakspear, 2010), but there are no reports of expression in mouse 

osteoblasts in vitro. GLAST1 protein is abundant in MLO-Y4 osteocyte-like cells 

(Huggett et al., 2002), but there are no reports of EAAC1 protein in these cells. 3D 

co-culture surface osteoblasts and embedded osteocytes stained for GLAST1 protein, 

consistent with mRNA data (page 130), in vivo data for osteoblasts and both in vivo 

and in vitro data for osteocytes. Furthermore, it is reported for the first time the 

presence of GLAST1 protein in MC3T3-E1 mouse osteoblasts in vitro. Absence of 

EAAC1 protein in the 3D co-culture, although consistent with mRNA data (page 

130), contradicts previous in vivo and in vitro studies.  

 

AMPAR2 protein is expressed by osteoblasts in vivo in human and rat bone 

(Bonnet, Williams and Mason unpublished data, (Szczesniak et al., 2005)). However, 

there is contradicting evidence in osteocytes in vivo, where Bonnet et al. reported 

AMPAR2 protein in osteocytes (Bonnet, Williams and Mason unpublished data), 

whereas, Szczesniak et al. showed absence of AMPAR2 in these cells (Szczesniak et 

al., 2005). Both studies used rat bone, but there were differences in terms of rat 

strains, age and sex, which could account for the contradicting results. In vitro, 

AMPAR2 protein was not expressed in rat primary osteoblasts (Szczesniak et al., 

2005), but studies on in vitro osteocyte expression of AMPAR2 protein have not yet 

been carried out. The absence of AMPAR2 protein in 3D co-culture osteoblasts is 

consistent with mRNA data (page 130) and in vitro studies, but not with in vivo data. 

Absence of AMPAR2 protein in 3D co-culture osteocytes contradicts mRNA 

expression data (page 130), but is consistent with the in vivo studies, and also is a 

novel in vitro finding. These differences in expression could be ascribed to the low 

amount of protein being produced, or because the mRNA produced is not being 

translated to protein.  
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Finally, no studies have reported the presence of KA1 or mGluR1 protein in 

osteoblasts or osteocytes in vivo or in vitro. Therefore, this thesis shows, for the first 

time, presence of KA1 and absence of mGluR1 protein in mouse osteoblasts and 

osteocytes in vitro. Immunostaining for KA1 in surface osteoblasts contradicts the 

absence of KA1 mRNA in the surface zone of the model (page 130). 

 

 4.5 Conclusion 

 

 In conclusion, a concise profile of expression of adenosine, calcium-sensing 

and glutamate receptors and transporters was developed. Components of each of the 

three signalling pathways are expressed in one or both zones of the 3D co-culture 

(Table 4.1). The lack of expression of mGluR1 and 5 means that the 

heterodimerisation between A1 and mGluR1, A2A and mGluR5, or CaSR and 

mGluR1 or 5 (section 4.1) cannot be investigated. However, it is probable that there 

is functional adenosine signalling, involving receptor A2A and possibly receptor A2B, 

glutamate signalling involving transporter GLAST1 and receptor KA1, and possibly 

receptor AMPAR2, and also CaSR signalling within the 3D model. This sets a 

platform for further investigation of the roles of adenosine, calcium and glutamate in 

mechanically-induced bone formation.  
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5. Development of a novel loading device for mechanical loading of 3D osteocyte 

cultures 

 

5.1 Background 

 

Currently, many mechanical loading devices exist which allow the 

application of osteogenic loads in vitro  (Brown, 2000) . However, most of these are 

custom-made devices which range in complexity, accuracy and consistency of 

loading and are not commercially available (page 30). Commercially available bone 

loading instruments include BOSE ElectroForce®, FlexCell® and ZETOS. These 

devices can be used to load in vivo, ex vivo or 2D and 3D in vitro cultures. For 

instance, BOSE ElectroForce® can be used to apply tension, compression, bending, 

and shear loads of up to 450 N and frequencies between 0.00001-300 Hz in vivo 

(Macione et al., 2011), ex vivo (Price et al., 2011, Xiao et al., 2011) and 3D in vitro 

cultures (Sittichockechaiwut et al., 2009), but not to 2D cell cultures. Although 

BOSE ElectroForce® systems have the right specifications to mechanically load the 

3D model, they can only load one specimen at a time and its set-up would disrupt the 

surface osteoblast layer of the 3D model (page 30).  

 

FlexCell® is only applicable to ex vivo and 2D or 3D in vitro cultures, and can 

be used to apply tension, compression or fluid flow with forces of up to 62 N and 

frequencies between 0.01-5 Hz. FlexCell® has the advantage of being able to load 6 

specimens at a time for compression and up to 24 for tension loads. However, the 

frequency range of FlexCell® is not suitable for physiological osteogenic loads which 

require a minimum frequency of 10 Hz (Rubin et al., 2001a, Fritton et al., 2000) 

(page 30). Furthermore, the FlexCell® compression system cannot be used to apply a 

defined force or strain as it does not have a load cell and functions by using a piston 

and compressed air to apply forces, which could be affected by, for example, 

changes in temperature or atmospheric pressure.  
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Finally, ZETOS systems have only been validated for ex vivo specimens and 

the set-up would disrupt the surface osteoblast layer. Therefore this system would not 

be appropriate for the loading of the 3D co-culture model (Davies et al., 2006, 

Endres et al., 2009, Aw et al., 2012) (page 30).  

 

For the mechanical loading of the 3D co-culture model, a device that applies 

physiological osteogenic mechanical stimuli without disrupting the osteoblast layer 

or the 3D collagen gel itself, as this is not very stiff, is essential. Also, it must have 

the ability to load numerous 3D co-cultures at the same time, maintaining equal 

strains across cultures. Currently there are no loading devices which are suitable for 

the 3D co-culture model developed in this thesis.  

 

5.1.1 Aims 

  

The experiments in this chapter aimed to develop a novel mechanical loading 

device suitable for the application of forces to the 3D co-culture model. The 

performance of the device was assessed by validating strain measurements using DIC 

and assessing responses of embedded osteocytes to physiological loads in 3D mono-

cultures. The effect of culture time prior to load (time pre-load) on the osteocyte 

responses, and the effect of load on specific signalling pathways (Chapter 4) were 

also investigated.  
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5.2 Materials and methods  

 

 For all experiments in this chapter, 3D collagen osteocyte mono-cultures 

were prepared, cultured in a flexible multi-well plate (page 77) and mechanically 

loaded (5 min, 10 Hz, 2.5 N) using a BOSE ElectroForce® loading instrument (page 

77). For all experiments, medium was not changed before mechanical stimulation, 

except in the 7 days pre-load culture time experiment where medium was changed 

immediately before load. Data presented are from 3D osteocyte mono-cultures and as 

in Table 5.1, unless otherwise stated. Control (non-loaded) cultures underwent all 

manipulations, such as movements in and out of incubators and to and from loading 

instrument, except mechanical loading.  

      

 

 

 

5.2.1 Mechanical loading device 

 

A 16-well loading plate was manufactured from solid silicone so that the 

wells of the plate were of the same dimensions (10 mm diameter) as a standard 48-

well tissue culture plate but with a 150 µm thick base to allow microscopic 

observation of the cells. The plate was also manufactured to fit a 48-well plate lid 

(page 77). The spaces between the wells were filled with silicone and a series of 

holes were made on each side of the plate to accommodate hooks, which enabled the 

BOSE loading instrument to stretch the plate causing cyclic compression and tension 

forces at the same time, but in perpendicular directions in all wells (pages 77 and 80).  

 

 

Time pre-load No of experiments No of culture replicates 
 (control and loaded) 

24 hr (pilot) 1 2 

24 hr 2 3 

48 hr 1 3 

72 hr 1 3 

7 days 1 3 

Table 5.1 Source of data presented 
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Strain measurements were carried out by applying a speckle pattern to the 

base of the plate, which was then stretched at 2.5 N using a 5 N load cell attached to 

a Servo Hydraulic Testing Machine. Images were captured using DIC cameras and 

strains measured with the software provided (page 78).  

 

For loading 3D cultures, the silicone plate was attached to a BOSE 

ElectroForce® loading instrument by a custom-made device. A 250 N load cell was 

used to apply a cyclic loading regime of 5 min, 10 Hz, 2.5 N to the 3D cultures (page 

80).  

 

5.2.2 Cell death/number 

 

LDH assays were carried out at all time-points post-load with medium or 

culture lysates from 3D osteocyte mono-cultures (control and loaded) cultured for 

24, 48 or 72 hr or 7 days pre-load to assess cell death and cell number respectively 

(page 73). For all experimental samples, the assay was carried out on media/lysates 

diluted in culture medium or lysis buffer (respectively) as indicated in Table 5.2. 

LDH absorbance values obtained from culture lysates (cell number) were expressed 

as a percentage of the average of 0 hr control cultures except the 7 days experiment 

where the average of 0.5 hr control cultures was used. LDH absorbance values from 

culture lysates were also used to normalise PGE2 and IL-6 ELISA data. 

  

5.2.3 PGE2 release 

 

 PGE2 ELISAs were carried out (page 74) on media from control and loaded 

3D osteocyte mono-cultures cultured for 24 hr pre-load  at 0 (immediately after 

load), 0.5, 1, 3, 6, 12 and 24 hr post-load (1 pilot experiment, n=2) and then at 0.5 hr 

post-load in a further 2 independent experiments (n=3). Control and loaded 3D 

osteocyte mono-cultures cultured for 48 hr, 72 hr and 7 days pre-load were also 

analysed 0.5 hr post-load (1 independent experiment, n=3). For all experimental 

samples, the assay was carried out on media diluted in standard diluent as indicated 

in Table 5.2. Data from all experiments were normalised to cell number (page 139) 

except the pilot experiment, which was not normalised. The average release of 0.5 hr 
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control samples was subtracted from all values as medium was not changed before 

mechanical stimulation, except in the 7 days pre-load culture time experiment where 

medium was changed before mechanical stimulation. Raw data for all assays can be 

found in page 275. 

 

5.2.4 mRNA expression 

 

Total RNA was harvested at 3 and 24 hr post-load from control and loaded 

osteocytes cultured in 3D collagen gels for 24, 48, 72 hr or 7 days pre-load. RNA 

was extracted, reverse transcribed and cDNA integrity checked by RT-PCR of 18S 

rRNA (pages 52-55). Relative RT-qPCR for A2A, A2B, AMPAR2, GLAST1, KA1, 

E11 and RANKL, and 18S rRNA, GAPDH and HPRT1 as RGs, was carried out 

(pages 55-56, 58, Tables 2.1 and 2.2).  For all templates, amplifications were carried 

out on cDNA diluted in DEPC water as indicated in Table 5.2. RT-qPCR data were 

normalised to the correct RG using NormFinder (page 57). Data for each GOI were 

calibrated to the average ∆CT of the unloaded samples at each time point and 

expressed as REU (page 58). 

 

5.2.5 IL-6 release 

 

IL-6 ELISAs were carried out (page 75) on medium from control and loaded 

3D osteocyte mono-cultures cultured for 24 hr pre-load at 0.5, 1, 3, 6, 12 and 24 hr 

post-load (1 pilot experiment, n=2) and then at 0 (immediately after load), 0.5, 6 and 

24 hr post-load in a further 2 experiments (n=3). Control and loaded 3D osteocyte 

mono-cultures cultured for 48 hr and 72 hr pre-load were also analysed at 0 

(immediately after load), 0.5, 6 and 24 hr post-load (1 independent experiment, n=3). 

For all experimental samples, the assay was carried out on media diluted in reagent 

diluent as indicated in Table 5.2. Data from all experiments were normalised to cell 

number (page 139), except the pilot experiment which was not normalised, and the 

average release of 0 hr control samples was subtracted from all values as medium 

was not changed before mechanical stimulation. Raw data for all assays can be found 

in page 279. 
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Table 5.2 Experimental sample dilutions used. 

-: not diluted (neat); NI: not investigated. 

 

5.2.6 Statistics 

 

Data were statistically analysed using GLM for crossed factors or one-way 

Analysis of Variance (ANOVA) with Tukey-Kramer post-hoc test for parametric 

data. When transformation did not make data parametric Kruskal-Wallis with Mann-

Whitney post hoc tests were used (page 81). Pairwise comparisons where P≤0.05 

were recorded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time pre-load No of experiments LDH Media LDH Lysates RT-qPCR PGE2 IL-6 

24 hr (pilot) 1 - NI - 1:64 - 

24 hr 2 - 1:4 - 1:64 - 

48 hr 1 - - - 1:16 1:10 

72 hr 1 - - - 1:16 1;10 
7 days 1 - 1:4 - 1:40 NI 
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5.3 Results 

 

5.3.1 Novel loading plate 

 

 A 16-well loading plate was generated from solid silicone (Figure 5.1B) so 

that it was deformable and optically transparent to allow microscopic observation of 

the cells, and was manufactured to the dimensions of a 48-well tissue culture plate 

(Figure 5.1A). Before loading 3D cultures, the strain that occurs within each empty 

well when 2.5 N of force is applied to the silicone plate, was measured using DIC. 

Strain testing showed that there is a large variability in strains across wells (from 

approximately 3000 µε to 6000 µε), with some wells demonstrating inward welling 

(Figure 5.1C). Furthermore, strain variability was also observed in between wells 

ranging from approximately 500 to 3500 µε (Figure 5.1C). However, 9 out of the 16 

wells had strains of 4000-4500 µε (Figure 5.1C).  

 

When applying a cyclic loading regime of 5 min, 10 Hz, 2.5 N to the 3D 

cultures, the provided software showed that the force was maintained at a 2.5 N peak 

and a smooth sine-wave was produced during each loading cycle applied, indicating 

negligible loading variance and a reproducible loading regime (Figure 5.3).  
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* 

* 

* 

* 

* 

* 

Figure 5.1 A novel mechanical loading device. A) A standard 48-well tissue culture plate. 

B) 16-well silicone loading plate with holes for its attachment to a BOSE loading 

instrument. C) Heat map generated by DIC showing strains occurring in each well of the 

loading device when 2.5 N of force is applied. Inward welling (*) is also observed in some 

wells. 
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Figure 5.2 Mechanical loading of 3D cultures. The silicone loading plate (C) is attached to a BOSE ElectroForce® loading instrument with a 

custom-made device (A) which contains pins holding the plate in place and small rollers to allow the plate to move during loading (B). *: load 

cell; arrows: direction of stretching of the plate.  

A B 

C 

* 
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Figure 5.3 Example of mechanical loading control performed with WinTest® Software 4.1 with TuneIQ control optimisation (BOSE). Image is a 

screen-shot of the output observed whilst performing a 5 min, 10 Hz, 2.5 N cyclic loading regime (*) using the silicone plate and custom-made 

adaptor on a BOSE ElectroForce® loading instrument. A 2.5 N force peak (circle) and a smooth sine-wave were observed during each loading 

regime. 
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5.3.2 Cell death/number 

 

LDH release into the medium as a result of cell death was measured at all 

time-points post-load in all experiments. LDH was not detected indicating no 

measurable cell death as a result of mechanical loading (raw data can be found in 

page 284). 

 

To assess cell number, LDH release from culture lysates was measured at all 

time-points in all experiments, except for the 24 hr pre-load pilot experiment. Data 

were expressed as a percentage of the average of 0 hr control cultures for all values 

in all experiments except the 7 days pre-load experiment where the average of 0.5 hr 

control cultures was used. The effect of load and time pre-load on cell number was 

assessed at 0.5, 6 and 24 hr post-load. At 0.5 hr post-load there was a significant 

effect of load (GLM, P=0.027 of log10 data) but no effect of time pre-load, and 

pairwise comparisons at each pre-load time were not significant (Figure 5.4A). At 6 

hr post-load there was a significant effect of time pre-load (GLM, P=0.0015 of 

ranked data) but no effect of load (Figure 5.4B). Cell number was significantly 

higher in loaded osteocytes cultured for 72 hr pre-load compared to loaded 

osteocytes cultured for 24 hr pre-load (24 hr loaded 93.02 ±2.53 %, 72 hr loaded 

152.60 ±12.03 %; P=0.0266) (Figure 5.4B). At 24 hr post-load there was a 

significant effect of time pre-load (GLM, P=0.0001) but no effect of load (Figure 

5.4C). Cell number was significantly higher in loaded osteocytes cultured for 72 hr 

pre-load compared to those cultured for 24 hr or 48 hr pre-load (24 hr loaded 102.53 

±4.05 %, 48 hr 104.32 ±8.93 %, 72 hr 182.08 ±5.51 %; 24 hr vs. 72 hr P=0.0011, 48 

hr vs. 72 hr P=0.0055) (Figure 5.4C).  

 

Data from osteocytes cultured for 48 and 72 hr pre-load were combined and 

re-analysed at 0.5, 6 and 24 hr post-load, and showed no significant effect of load or 

time post-load on cell number (control; 0.5 hr 128.80 ±17.87 %, 6 hr 105.78 ±9.51 

%, 72 hr 122.18 ±15.06 %; loaded: 0.5 hr 91.17 ±4.61 %, 6 hr 125.21 ±13.46 %, 24 

hr 143.20 ±18.01 %) (Figure 5.4D). When osteocytes were cultured for 7 days prior 

to mechanical stimuli, there was also no significant effect of load on 3D osteocyte 

mono-cultures (control 100 ±2.41 %, loaded 99.65 ±1.48 %) (Figure 5.4E). 
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Figure 5.4 Cell number in mechanically-loaded 3D osteocyte mono-cultures by LDH assay. Graphs showing cell number categorised by time of culture 

(A-C), combined 48-72 hr cultures (D) and 7 day cultures (E) at 0.5, 6 and 24 hr post-load unless other time-points are indicated. Data were expressed as 

a percentage of the average of 0 hr control cultures (A-D) or the average of 0.5 hr control cultures (E). *P<0.05, ***P<0.001 as obtained by GLM (C), 

GLM of log10 data (A) or ranked data (B). Significant differences as obtained by GLM pairwise comparisons denoted by ‘a’ with respect to 24 hr loaded 

cultures (B-C) and ‘b’ with respect to 48 hr loaded cultures (C). Data presented are from (A-C) 1 (48-72 hr cultures) or 2 (24 hr cultures) independent 

experiments, n=3; (D) 2 independent experiments, n=3 and (E) 1 independent experiment, n=3.  
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5.3.3 PGE2 release 

 

 A pilot experiment (1 independent experiment, n=2) was carried out in order 

to determine when and whether PGE2 is released from 3D osteocyte mono-cultures 

after being mechanically stimulated using the loading device. In this experiment, 

where 3D osteocyte mono-cultures were cultured for 24 hr prior to loading, there was 

a significant effect of load (GLM, P=0.040) but not time post-load (Figure 5.5A), 

and pairwise comparisons of control vs. loaded at each time-point were not 

significant (Figure 5.5B). Although not significantly different in this pilot 

experiment, mean PGE2 release increased approximately 4-fold at 0.5 hr post-load 

(control 1206.55 ± 37.32 pg/ml/OD492 nm; loaded 4632.91 ±1773.78 pg/ml/OD492 nm) 

in loaded cultures (Figure 5.5B).  

 

This experiment was then repeated twice measuring PGE2 release at 0.5 hr 

post-load only and normalising data to cell number (page 139). At 0.5 hr post-load, 

there was a significant effect of load (GLM, P=0.002 of ranked data), time pre-load 

(GLM, P=0.0275 of ranked data) and an interaction between both factors (GLM, 

P=0.033 of ranked data). PGE2 was barely detectable in 3D osteocyte mono-cultures 

cultured for 24 hr pre-load and so mean PGE2 was significantly higher in loaded 

osteocytes cultured for 48 hr prior to loading (24 hr: loaded -246.47 ±216.99 

pg/ml/OD492 nm; 48 hr: loaded 36120.75 ±13357.06 pg/ml/OD492 nm, P=0.0249) 

(Figure 5.5C), and although not significant, those cultured for 72 hr pre-load also 

revealed  a load-induced increase in mean PGE2 (control 0 ±4661.30 pg/ml/OD492 

nm; loaded 15896.88 ±2361.87 pg/ml/OD492 nm) (Figure 5.5C). Since osteocytes 

cultured for 48 and 72 hr pre-load increased PGE2 release in response to loading, 

these data were combined and re-analysed.  
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 Following loading, PGE2 release significantly increased at 0.5 hr post-load in 

3D mono-cultures cultured for 48-72 hr prior to loading (control 0 ±2505.57 

pg/ml/OD492 nm; loaded 26008.81 ±7566.25 pg/ml/OD492 nm) (one-way ANOVA, 

P=0.0001 of ranked data) (Figure 5.5D). When cultured for 7 days prior to 

mechanical stimuli, 3D osteocyte mono-cultures also showed a significant increase in 

PGE2 release 0.5 hr post-load in loaded cultures compared to control cultures 

(control 1195.40 ±109.72 pg/ml/OD492 nm; loaded 3152.26 ±435.20 pg/ml/OD492 nm) 

(one-way ANOVA, P=0.041) (Figure 5.5E). 
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Figure 5.5 PGE2 release in mechanically-loaded 3D osteocyte mono-cultures by ELISA. Graphs showing PGE2 release in a pilot experiment of 24 hr cultures 

(A-B), categorised by time of culture (C), combined 48-72 hr cultures (D) and 7 day cultures (E) at 0.5 hr post-load unless other time-points are indicated. 

Data was normalised to the absorbance (OD492 nm) of LDH lysates (cell number) (C-E). *P<0.05 as obtained by GLM (A), GLM of ranked data (C) or one-

way ANOVA (E). ***P<0.001 as obtained by one-way ANOVA of ranked data (D). Significant differences as obtained by GLM pairwise comparisons denoted 

by ‘a’ with respect to 24 hr loaded cultures (C). Data presented are from (A) 1 independent experiment, n=2 or 3; (B) 1 (48-72 hr cultures) or 2 (24 hr cultures) 

independent experiments, n=3; (C) 2 independent experiments, n=3 and (D) 1 independent experiment, n=2 or 3.  
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5.3.4 mRNA expression 

 

A pilot experiment (1 independent experiment, n=2) was carried out in order 

to determine A2A, A2B, AMPAR2, GLAST1, KA1, E11 and RANKL mRNA 

expression by relative RT-qPCR at 3 and 24 hr post-load in control and loaded 3D 

osteocyte mono-cultures after being mechanically stimulated using the loading 

device. Data were expressed in REU and normalised to the geometric mean of 

GAPDH and HPRT1 as selected by NormFinder (page 57). In this experiment, 

mRNAs for A2A, A2B, E11 and RANKL were detected in 3D osteocyte control and 

loaded mono-cultures (Figure 5.6A-D) but GLAST1, AMPAR2 and KA1 mRNAs 

were not detected. Although not significantly different, loading increased A2A 

mRNA expression 1.5-fold after 3 hr (control 1.000 ± 0.0364 REU; loaded 1.512 ± 

0.162 REU) (Figure 5.6A). A2B mRNA expression was significantly increased in 

loaded cultures (3 hr: control 1.000 ± 0.039 REU, loaded 1.302 ± 0.068 REU; 24 hr: 

control 1.000 ± 0.007 REU, loaded 1.368 ± 0.163 REU) (effect of load GLM, 

P=0.021) (Figure 5.6B).  E11 mRNA expression was also significantly increased by 

load (GLM, P=0.002) at both 3 and 24 hr (3 hr: control 1.000 ± 0.033 REU, loaded 

1.248 ± 0.048 REU, P=0.460; 24 hr: control 1.000 ± 0.004 REU, loaded 1.383 ± 

0.060 REU, P=0.0101) (Figure 5.6.C). RANKL mRNA expression decreased by half 

24 hr post-load (control 1.026 ± 0.230 REU; loaded 0.615 ± 0.161 REU) (Figure 

5.6D) in loaded cultures as a result of loading. 

 

This experiment was then repeated twice and data was compared to that 

observed in 3D osteocyte mono-cultures cultured for 48 or 72 hr prior to load (Figure 

5.7). No significant differences were observed between osteocytes cultured for 24, 48 

or 72 hr pre-load in A2A mRNA expression 3 hr post-load (Figure 5.7A), A2B 

(Figures 5.7C and D) and E11 (Figure 5.7E and F) 3 or 24 hr post-load, or in 

RANKL mRNA expression 24 hr post-load (Figure 5.7H). However, there was a 

significant effect of time pre-load (GLM, P=0.013) and load (GLM, P=0.035) in 

A2A mRNA expression 24 hr post-load; and an interaction was observed between 

both factors (GLM, P=0.016). In loaded cultures, A2A mRNA expression was 

significantly higher in osteocytes cultured for 72 hr pre-load when compared to those 

cultured for 24 and 48 hr pre-load (24 hr loaded 1.11 ±0.062 REU; 48 hr loaded 
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0.895 ±0.146 REU; 72 hr loaded 1.651 ±0.175 REU) (pairwise comparisons: 24 hr 

loaded vs. 72 hr loaded P=0.0186; 48 hr loaded vs. 72 hr loaded P=0.0037) (Figure 

5.7B). There was also a significant effect of time pre-load in RANKL mRNA 

expression at 3 hr post-load as a result of culture time (GLM, P=0.018 of ranked 

data). However, no significant effects of load were observed. RANKL mRNA 

expression was significantly higher in osteocytes cultured for 48 hr pre-load 

compared to those cultured for 24 hr pre-load (24 hr loaded 0.908 ±0.125 REU; 48 hr 

loaded 2.072 ±0.095 REU, P=0.0353) (Figure 5.7G). Since loading-induced 

increases in PGE2 release only appeared to occur when osteocytes were cultured for 

48 hr or greater pre-load, mRNA data was re-analysed, combining experiments 

where 3D osteocyte mono-cultures were cultured for a minimum of 48 hr prior to 

mechanical loading. 

 

  No significant effect of load or time was observed in A2A or A2B mRNA 

expression at 3 or 24 hr post-load in 3D mono-cultures cultured for 48-72 hr prior to 

loading (Figures 5.8A and B). However, there was a trend of load increasing mean 

A2A expression at both 3 and 24 hr post-load (3 hr: control 1.007 ±0.056 REU, 

loaded 1.190 ±0.125 REU; 24 hr: control 1.014 ±0.077 REU, loaded 1.273 ±0.197 

REU), although this was a small increase. Load significantly decreased E11 mRNA 

expression (3 hr: control 1.001 ±0.015 REU, loaded 0.937 ±0.030 REU; 24 hr: 

control 1.022 ±0.096 REU, loaded 0.819 ±0.050 REU) (GLM, P=0.018 of ranked 

data), however pairwise comparisons were not significant (Figure 5.8C). 

Furthermore, there was a significant effect of time on RANKL mRNA expression in 

loaded cultures (GLM, P=0.022). RANKL mRNA expression increased at 3 hr post-

load but decreased to control levels at 24 hr post-load (3 hr loaded 1.688 ±0.181 

REU; 24 hr loaded 1.027 ±0.220 REU, P=0.0486) (Figure 5.8D). 
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In osteocytes cultured for 7 day pre-load, mRNA expression was analysed at 

3 hr post-load only. Data were expressed in REU and normalised to GAPDH as 

selected by NormFinder (page 57).  A2A mRNA expression was doubled in loaded 

cultures (control 1.019 ±0.144 REU; loaded 2.128 ±0.379 REU) (one-way ANOVA, 

P=0.052) (Figure 5.9A) and E11 increased 1.3-fold (control 1.002 ±0.049 REU; 

loaded 1.336 ±0.101 REU) (one-way ANOVA, P=0.041) (Figure 5.9C) when 

compared to control cultures. There was no significant effect of load in A2B (Figure 

5.9B) and RANKL mRNA expression (Figure 5.9D), although a 1.8-fold increase in 

RANKL expression was observed (control, 1.020 ±0.141 REU; loaded, 2.126 ±0.430 

REU).  
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Figure 5.6 Quantification of mRNA expression in mechanically-loaded 3D osteocyte mono-

cultures from a pilot experiment by relative RT-qPCR. Graphs of A2A (A), A2B (B), E11 (C) and 

RANKL (D) expression in cultures incubated for 24 hr prior to load. Data expressed as REU 

and normalised to the geometric mean of GAPDH and HPRT1 expression. Significant 

differences as obtained by GLM between control and loaded cultures are denoted by *P<0.05, 

**P<0.01. Significant differences as obtained by GLM pairwise comparisons denoted by ‘a’ 

with respect to 3 hr control, and ‘b’ with respect to 24 hr control. (1 independent experiment, 

n=2). 
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Figure 5.7 Quantification of mRNA expression in mechanically-loaded 3D osteocyte 

mono-cultures by relative RT-qPCR categorised by time of culture prior to load. Graphs of 

A2A (A-B), A2B (C-D), E11 (E-F) and RANKL (G-H) mRNA expression at 24, 48 and 72 hr 

culture time pre-load. Data were recorded 3 and 24 hr post-load and are expressed as REU 

and normalised to the geometric mean of GAPDH and HPRT1. Significant differences as 

obtained by GLM between culture times are denoted by *P<0.05,  **P<0.01. Significant 

differences as obtained by GLM pairwise comparisons denoted by ‘a’ with respect to 24 hr 

loaded, and ‘b’ with respect to 72 hr loaded. (1 (48 and 72 hr) or 2 (24 hr) independent 

experiments, n=3). 
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Figure 5.8 Quantification of mRNA expression in mechanically-loaded 3D osteocyte mono-

cultures cultured for 48-72 hr  prior to load by relative RT- qPCR. Graphs of A2A (A), A2B (B), 

E11 (C) and RANKL (D) mRNA expression. Data were taken at 3 and 24 hr after loading and 

are expressed as REU and normalised to the geometric mean of GAPDH and HPRT1. 

Significant differences as obtained by GLM are denoted by *P<0.05. Significant differences 

as obtained by GLM pairwise comparisons denoted by ‘a’ with respect to 3 hr loaded. (2 

independent experiments, n=3). 
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Figure 5.9 Quantification of mRNA expression in mechanically-loaded 3D osteocyte mono-

cultures cultured for 7 days prior to load by relative RT-qPCR. Graphs of A2A (A), A2B (B), 

E11 (C) and RANKL (D) mRNA expression. Data were taken at 3 hr post-load and 

expressed as REU and normalised to GAPDH expression. Significant differences as 

obtained by one-way ANOVA are denoted by *P<0.05. (1 independent experiment, n=3). 
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5.3.5 IL-6 release 

 In the pilot experiment of 3D osteocyte mono-cultures cultured for 24 hr prior 

to loading, there was a significant effect of load (GLM, P=0.00001) (Figure 5.10A) 

but not time, however pairwise comparisons at each time-point were not significant 

(Figure 5.10B). This experiment was then repeated twice at 0 (immediately after 

loading), 0.5, 6 and 24 hr post-load, and data was compared to that observed in 3D 

osteocyte mono-cultures cultured for 48 or 72 hr prior to load (Figure 5.10 C-E) and 

expressed relative to the average of 0 hr control samples.  

 At 0.5 hr post-load, there was a significant effect of loading (GLM, P=0.038 

of ranked data) and time pre-load (GLM, P=0.009 of ranked data) on IL-6 release 

(Figure 5.10C). Although there was a significant effect of load on the whole data set 

which appeared to increase mean IL-6 at 48 and 72 hr time pre-load, within 

individual time-points there were no significant effects of load. IL-6 release was 

significantly greater at 0.5 hr in osteocytes cultured for 48 hr prior to loading 

compared to those cultured for 24 hr pre-load (24 hr: control 134.17 ±51.37 

pg/ml/OD492 nm, loaded 107.46 ±19.69 pg/ml/OD492 nm; 48 hr: control 3989.93 

±2153.05 pg/ml/OD492 nm, loaded 6524.92 ±1498.27 pg/ml/OD492 nm) (GLM, 

P=0.0134 of ranked data) (Figure 5.10C). At 6 hr post-load, there was an effect of 

time pre-load (GLM, P=0.00001 of ranked data) but no effect of load on IL-6 

release. IL-6 release from osteocytes cultured for 24 hr pre-load was significantly 

different when compared to those cultured for 48 hr and 72 hr pre-load (GLM, 

P=0.00001 of ranked data for both 24 hr vs. 48 hr and 24 hr vs. 72 hr) (Figure 

5.10D). IL-6 significantly increased in control osteocytes cultured for 48 and 72 hr 

pre-load when compared to control osteocytes cultured for 24 hr pre-load (24 hr 

control 214.10 ±37.12 pg/ml/OD492 nm; 48 hr control 7935.85 ±3110.22 pg/ml/OD492 

nm; 72 hr control 8898.65 ±3849.85 pg/ml/OD492 nm, P=0.0001 for both pairwise 

comparisons); and in loaded cultures at 48 hr when compared to 24 hr loaded 

cultures (24 hr loaded 252.51 ±27.09 pg/ml/OD492 nm; 48 hr loaded 7036.81 ±898.95 

pg/ml/OD492 nm, P=0.0004) (Figure 5.10D). Finally, at 24 hr post-load, there was an 

effect of time pre-load (GLM, P=0.00001 of ranked data) but no effect of load on IL-

6 release. IL-6 release was significantly increased in control osteocytes cultured for 

48 and 72 hr pre-load when compared to control osteocytes cultured 24 hr pre-load 
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(24 hr control 263.51 ±42.28 pg/ml/OD492 nm; 48 hr control 12351.79 ±3993.19 

pg/ml/OD492 nm; 72 hr control 7192.60 ±3387.89 pg/ml/OD492 nm) (pairwise 

comparisons: 24 hr control vs. 48 hr control P=0.0094; 24 hr control vs. 72 hr 

control P=0.0326); and in loaded osteocytes cultured for 48 hr pre-load when 

compared to those cultured for 24 hr pre-load (24 hr loaded 299.57 ±73.13 

pg/ml/OD492 nm; 48 hr loaded 6506.72 ±1864.32 pg/ml/OD492 nm) (pairwise 

comparisons: 24 hr loaded vs. 48 hr loaded P=0.0399) (Figure 5.10E). Since IL-6 

release was much lower in osteocytes cultured for 24 hr pre-load and PGE2 responses 

to loading were increased in osteocytes cultured for 48 hr or greater pre-load, these 

data were combined for 3D osteocyte mono-cultures cultured for a minimum of 48 hr 

prior to mechanical loading. 

 

 One-way ANOVAs were used to analyse 48-72 hr time pre-load data as 

transformation did not make data parametric when using GLM. Therefore the only 

comparisons made were between control and loaded cultures at the individual time-

points. Although there was no significant effect of load on IL-6 release in 3D mono-

cultures cultured for 48-72 hr prior to loading (Figure 5.10F), a trend of decreased 

mean IL-6 release as a result of load was observed at 6 and 24 hr post-load, but not at 

0.5 hr post-load.  
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Figure 5.10 IL-6 release in mechanically-loaded 3D osteocyte mono-cultures by 

ELISA. Graphs showing IL-6 release in a pilot experiment of cultures incubated for 24 

hr prior to load (A-B), categorised by time of culture  pre-load (C-E) and combined 

48-72 hr pre-load cultures (F) at time-points indicated post-load. Data were normalised 

to total cell number (C-F). *P<0.05, ***P<0.001 as obtained by GLM of ranked data. 

Significant differences as obtained by GLM pairwise comparisons denoted by ‘a’ with 

respect to  24 hr control cultures, and ‘b’ with respect to 24 hr loaded cultures (D-E). 

Data presented are from (A) 1 independent experiment, n=2 or 3; (B-D) 1 (48-72 hr 

cultures) or 2 (24 hr cultures) independent experiments, n=2 or 3; (E) 2 independent 

experiments, n=3. 
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5.4 Discussion  

 

 A novel mechanical loading device was developed in order to facilitate the 

application of mechanical stimuli to the 3D co-culture model (Figure 5.1A and B). 

The ability of the device to induce a cellular response was assessed by loading 

osteocytes, the mechanosensing cell in bone, in 3D type I collagen gels. The work in 

this chapter aimed to test the loading device and characterise the osteocyte response. 

A summary of the results shown can be seen in Figure 5.11. It is important to 

mention that the results presented in this chapter from the 24 hr pilot experiment and 

7 day pre-load cultures are each derived from single experiments (n=2 or 3) and 

therefore all trends observed should be discussed with caution. In order to increase 

the reliability of the results presented, these experiments should be repeated. 

Nevertheless, the data presented give an indication of the load responses from 3D 

collagen embedded osteocytes using a novel loading device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

161 

 



Figure 5.11 Summary of results. Embedded osteocytes were 

shown to respond to physiological loads by releasing PGE2, and 

this loading response was maintained if the embedded osteocytes 

were cultured for a minimum of 48 hr and up to 7 days prior to 

mechanical stimuli. Culture time pre-load appeared to have an 

effect on E11 mRNA expression as a result of loading. 

Furthermore, the adenosine receptor A2A was shown to be 

mechanically regulated. 

LOAD LOAD 

↑ PGE2  (1.8-fold) 

↓ IL-6 (2-fold) 
↑ PGE2 (2.6-fold) 

Time pre-load 
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5.4.1 Mechanical loading device 

 

A 16-well silicone plate was developed where the wells were of the same 

dimensions as a standard 48-well tissue culture plate but with thinner bottoms 

(Figure 5.1A and B). The silicone plate accommodates hooks to stretch the plate, 

therefore when stretched it causes compression and tension forces at the same time 

but in perpendicular directions (Figure 5.2). This silicone plate was attached to the 

BOSE ElectroForce® 3200 loading instrument and the loading regime (5 min, 10 Hz, 

2.5 N) was based on previous publications showing that a short period of  10 Hz, 

4000-4500 µε  loading is physiological and osteogenic (Hillam and Skerry, 1995, 

Mason et al., 1996, Rubin et al., 2001a). The loading device was designed so that 

when stretched, a uniform strain would be produced in every well causing 

compression and tension forces at the same time but in perpendicular directions. 

Furthermore, it was shown that when 2.5 N is applied to the silicone plate, the wells 

experience strains of approximately 4000-4500 µε (Figure 5.1C). However, there 

was variability in strain across wells. The majority of the wells showed 4000-4500 

µε when loaded at 2.5 N (Figure 5.1C), which has been shown to be a high 

osteogenic strain in rats in vivo (Mason et al., 1996). Some wells experienced inward 

welling during strain testing, which resulted in higher strains being recorded, with 

the highest being approximately 6000 µε, but other wells showed lower strains, 

between 3000-3500 µε (Figure 5.1C). In an ideal situation, all wells would 

experience the same strain, and that strain would be physiological and osteogenic 

(4000-4500 µε), as if wells were to experience different strains it could lead to a 

variation in load response across repeats within an independent experiment. 

Furthermore, even though some of the strain values measured are lower than 

physiological strains (3000-3500 µε), they are still within the peak strain values 

observed in vertebrates which range from 2000-3500 µε (Rubin and Lanyon, 1984a, 

Rubin and Lanyon, 1984b, Rubin et al., 1990). However, wells with strains recorded 

at 6000 µε are exposed to pathophysiological strains. 
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Inward welling was probably caused by the fact that the base of the wells are 

thin and without a 3D gel inside the well, the base is flexible and can bend inwards 

when the plate is stretched. The base of the plate could be made thicker which may 

help resolve the inward welling, however a previous prototype of this silicone plate 

was made with a thicker base and it interfered with microscopic observation of the 

cells as it was not transparent enough. A compromise between thickness and 

transparency of the base of the plate should be found in order to address the inward 

welling. However, if this compromise is not possible, a thicker base should be 

prioritised over transparency, as observation of the cells in culture could be done 

using other microscopy techniques.   

 

The strain testing performed was carried out on an empty plate. Therefore, 

testing the silicone plate with 3D cultures may prevent inward welling and variable 

strains, and thus give a more accurate reading of the strains occurring within each 

well when 2.5 N of force is applied. This method was previously tested by applying a 

speckle pattern on the surface of 3D collagen gels within the silicone plate. However, 

the speckles were too big for the surface area to be analysed by the DIC cameras and 

the 3D gels were also found to reflect the light of the cameras, interfering with the 

readings. This method should be optimised by taking into account the 3 main 

requirements for speckle patters: image contrast, randomness of the pattern and 

attachment of the pattern to the surface of the specimen (Ning et al., 2011). The 

incorporation of toner into the 3D gels before polymerisation within the silicone 

plate may be a possible solution (Sutton et al., 2009). The toner would give a smaller 

speckle pattern which would be detectable by the DIC cameras. However, the natural 

pink colour of the 3D gels may not produce enough contrast for the cameras to detect 

the individual speckles. Furthermore, the light reflective properties of the 3D gels 

may not be able to be addressed. Application of the speckle pattern to the base of the 

silicone plate, with 3D collagen gels in the wells, may be a better solution. It is vital 

to accurately measure strains within the developed loading device and further work 

should be carried out to improve this methodology, as previously mentioned, if the 

strains across wells are truly variable, it could lead to a variation in load response 

across experimental repeats. For example, osteocytes within 3D gels in wells which 
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experience higher strains may release more PGE2 than those in wells suffering lower 

strains.  

 

Currently, there are two devices similar to the one developed in this thesis, 

based on a silicone plate format (Neidlinger-Wilke et al., 2005, Tata et al., 2011). 

Tata et al developed a silicone plate in a six-well plate format to mechanically load 

VSMCs in monolayers, whereas the device developed by Neidlinger-Wilke et al is a 

single-well silicone plate which was designed to load 3D collagen cultures of 

intervertebral disc cells. Both devices were used to apply cyclic mechanical stimuli 

by stretching in a similar fashion to the device developed in this thesis (Neidlinger-

Wilke et al., 2005, Tata et al., 2011). The loading regimes applied using these plates 

(Neidlinger-Wilke et al., 24 hr, 0.1 Hz, 10,000 µε; Tata et al., 6-72 hr, 1 Hz, 10-20% 

strain) (Neidlinger-Wilke et al., 2005, Tata et al., 2011) are indeed very different to 

the regime used in this thesis and used frequencies below osteogenic values (Mason 

et al., 1996, Rubin et al., 2001a). Both published devices were not designed to fit a 

commercially available loading instrument and therefore require their own custom-

made loading apparatus (Neidlinger-Wilke et al., 2005). Furthermore, Neidlinger-

Wilke et al did not publish strain test data and Tata et al assessed the strain field at 

the bottom surface of the wells using finite element (FE) modelling, but did not 

directly measure strains to validate this FE model by using DIC, or any other 

methods (Neidlinger-Wilke et al., 2005, Tata et al., 2011). Thus the strains applied 

with the published models are not validated, nor have been shown to be uniform.  

 

Although further work must be done in order to fully characterise the loading 

device developed in this thesis and ensure the application of uniform strains, the 

strain measurements obtained by DIC gave an initial indication that 2.5 N of force 

may result in physiological osteogenic strains. Furthermore, the device can be 

successfully used with a BOSE ElectroForce® loading instrument and allows the 

application of mechanical stimuli to 16 3D collagen co-cultures at the same time, a 

higher number of specimens than the published or commercially available devices.  
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5.4.2 Cell death/number 

 

 In 3D osteocyte mono-cultures, under the stated experimental conditions, 

there was no detectable cell death as a result of mechanical loading at any time pre-

load or post-load time. However, cell number was found to be significantly higher in 

osteocytes cultured for 72 hr pre-load compared to those cultured for 24 and 48 hr 

pre-load (Figure 5.4B and C). These data suggest that there may be an increase in 

proliferation or a decrease in cell death within the first 24 hr of culturing osteocytes 

in 3D gels. Therefore, 3D osteocyte mono-cultures should be cultured for at least 48 

hr prior to loading.  

 

 In osteocytes cultured for 48-72 hr and 7 day pre-load, there was no 

significant effect of loading on cell number (Figure 5.4D and E), correlating with cell 

death data. Previous in vivo (Noble et al., 2003, Plotkin et al., 2005, Kulkarni et al., 

2012) and in vitro (Bakker et al., 2004, Tan et al., 2006, Tan et al., 2008) studies 

have shown that loading reduces osteocyte cell death. Furthermore, in vitro studies 

have shown that loading increases osteoblast number (Kaspar et al., 2000, Pavlin et 

al., 2000, Kaspar et al., 2002, Ignatius et al., 2005, Jackson et al., 2006). These in 

vitro studies contradict 3D osteocyte mono-culture data. However, this could be 

explained by the fact that osteoblasts were cultured in monolayers and subjected to 

stretching or fluid flow loading regimes of 0.5 or 1 Hz and  approximately 1000 or 

10000 µε, for a minimum of 0.5 hr each day for the duration of their experiments 

(Kaspar et al., 2000, Kaspar et al., 2002, Ignatius et al., 2005, Jackson et al., 2006); 

whereas, the 3D osteocyte mono-cultures in this thesis were exposed to a single 

loading regime of 5 min, 10 Hz, 2.5 N (4000-4500 µε). To date there appear to be no 

studies on the effect of load on osteocyte cell number in vitro.  
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5.4.3 PGE2 release 

 

In 3D osteocyte mono-cultures, load induced PGE2 release at 0.5 hr post-load 

was found to be significantly higher in osteocytes cultured for 48 hr pre-load when 

compared to those cultured for 24 hr pre-load (Figure 5.5C). Although not 

significant, there was also a higher release of PGE2 in osteocytes cultured for 72 hr 

pre-load than those cultured for 24 hr pre-load (Figure 5.5C). These data suggest 

mechanical loading responses from embedded osteocytes using the developed 

silicone plate, are more reliable after the osteocytes have been cultured in 3D 

collagen gels for at least 48 hr prior to loading. This could be because the osteocytes 

may take over 24 hr to form dendrites and develop an osteocytic phenotype within 

the 3D collagen gels. Of particular importance is the expression of functional CX43 

gap junctions, which have been previously shown to be involved in the release of 

PGE2 from osteocytes in vitro (Jiang and Cherian, 2003, Cherian et al., 2005).  

 

In osteocytes cultured for 24 hr pre-load from a pilot experiment, there was a 

significant increase in PGE2 release at all time-points post-load, in particular at 0.5 

hr post-load, though not significant (Figure 5.5A and B). In osteocytes cultured for 

48-72 hr pre-load there was a significant increase in PGE2 release 0.5 hr post-load, 

consistent with the pilot data (Figure 5.5D). This significant increase at 0.5 hr post-

load was also observed in loaded osteocytes cultured for 7 days pre-load (Figure 

5.5E). Previous in vitro studies have shown that mechanically-loaded osteocytes in 

monolayer increase PGE2 release (Cheng et al., 2001a, Jiang and Cheng, 2001, Saini 

et al., 2011, Li et al., 2012b), as early as 0.5 hr post-load (Cheng et al., 2001a), 

consistent with the data presented here. No previous studies have investigated 

osteocyte response to load in 3D. Thus the combination of MLO-Y4 cells in 3D 

collagen gels with the new loading device has shown load-induced PGE2 release by 

these cells for the first time. It is important to note that PGE2 release resulting from 

load appeared to be 10 times lower in loaded osteocytes cultured for 7 days pre-load 

(3152.26 ±435.20 pg/ml/OD492 nm) compared to loaded osteocytes cultured 48-72 hr 

pre-load (26008.81 ±7566.25 pg/ml/OD492 nm). However, without normalisation to 

cell number, loaded osteocytes cultured for 48-72 hr pre-load released 3087.11 

±727.17 pg/ml whereas loaded osteocytes cultured for 7 day pre-load released 
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2076.96 ±307.44 pg/ml, suggesting that the difference observed in normalised values 

is due to a difference in total cell number between 48-72 hr and 7 days time pre-load.  

 

Nevertheless, it can be concluded that in the 3D model, osteocytes are able to 

respond to mechanical stimuli when embedded in 3D collagen gels, but the extent of 

the response is affected by time pre-load time. 

 

5.4.4 mRNA expression 

 

 Although for most genes analysed there was no significant difference in 

mRNA expression between 3D osteocytes cultured for 24, 48 and 72 hr pre-load, 

some differences were observed in A2A expression 24 hr post-load (Figure 5.7B) and 

in RANKL expression 3 hr post load (Figure 5.7G).  This suggests that generally 

culture time has no effect on the osteocyte response to load at the mRNA level. The 

differences observed could be due to the phenotype state of the 3D osteocyte mono-

culture. A2A mRNA expression was higher 24 hr post-load in osteocytes cultured for 

72 hr pre-load than in those cultured for 24 or 48 hr pre-load (Figure 5.7B), and 

RANKL mRNA expression 3 hr post-load was higher in osteocytes cultured for 48 hr 

pre-load than in those cultured for 24 hr pre-load (Figure 5.7G). As previously 

hypothesised (page 166), the embedded osteocytes may take over 24 hr to develop an 

osteocytic phenotype, and form dendrites with connections to neighbouring cells 

within the 3D collagen gels. 

 

In osteocytes cultured for 24 hr pre-load from a pilot experiment, there was 

no significant effect of load on A2A mRNA expression, although an increase in A2A 

expression was observed at 3 hr post-load (Figure 5.6A). However, mechanical 

stimuli significantly increased A2B mRNA expression in loaded cultures (Figure 

5.6B). In osteocytes cultured for 48-72 hr pre-load there was no significant effect of 

load in A2A (Figure 5.8A), consistent with preliminary data, or A2B mRNA 

expression (Figure 5.8B), contradicting preliminary data. However, mean A2A 

mRNA expression increased by approximately 1.2-fold in loaded cultures at both 3 

and 24 hr post-load, consistent with pilot data. There was also a significant 2-fold 

increase in A2A mRNA expression observed in 3D osteocyte mono-cultures cultured 
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for 7 days pre-load (Figure 5.9A).  Thus A2A mRNA expression appears to increase 

in response to mechanical load in 3D osteocyte mono-cultures. The lack of load 

effect on A2B mRNA expression was also observed in osteocytes cultured for 7 days 

pre-load (Figure 5.9B). There are no in vivo or in vitro studies on the effect of 

mechanical stimuli on the expression of adenosine receptors in bone and this is the 

first report of mechanical regulation of A2A expression in osteocytes in vitro.  

 

In osteocytes cultured for 24 hr pre-load from a pilot experiment, mechanical 

loading significantly increased E11 mRNA expression at both 3 and 24 hr post-load 

(Figure 5.6C). In 48-72 hr 3D mono-cultures, mechanical loading significantly 

decreased E11 mRNA expression by 1.15-fold at both 3 and 24 hr post-load (Figure 

5.8C), contradicting preliminary data. However, a significant increase in E11 

expression of 1.3-fold was observed in 7 day loaded cultures 3 hr post-load (Figure 

5.9C). Previous in vitro studies have shown that E11 mRNA expression in MLO-Y4 

monolayers increased 2 hr after exposure to fluid shear (Yang et al., 2004, Zhang et 

al., 2006), which contradicts 48-72 hr time pre-load data, but is consistent with 

observations from osteocytes cultured for 7 days pre-load.  However, all previous 

studies were carried out in monolayer cultures, suggesting that in order for E11 

mRNA expression to increase as a result of load, osteocytes embedded in a 3D 

matrix may require a longer culture time prior to mechanical stimuli. This 

observation also suggests that embedded osteocytes cultured for 24 hr pre-load may 

not respond adequately to mechanical stimuli because of a lack of dendritic process 

extension, which is dependent on E11 expression, and therefore connection to 

neighbouring cells. Furthermore, this observation supports the previous hypothesis 

that osteocytes may take over 24 hr to settle down in the 3D gels, potentially 

affecting the expression of functional CX43 gap junctions (page 166). 

 

In osteocytes cultured for 24 hr pre-load from a pilot experiment, although 

not significant, mean RANKL mRNA expression decreased by half 24 hr post-load 

(Figure 5.6D). In 3D mono-cultures cultured for 48-72 hr pre-load, although there 

was no load effect on RANKL mRNA, time post-load significantly decreased 

RANKL mRNA expression in both control and loaded cultures (Figure 5.8D). 

Furthermore, there was no significant effect of load or time post-load in RANKL 
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mRNA expression in loaded osteocytes cultured for 7 days pre-load (Figure 5.9D). 

However there was a 1.8-fold increase 3 hr post-load in loaded osteocytes cultured 

for 7 days pre-load. Previous in vitro studies have shown that RANKL mRNA 

expression increases in MLO-Y4 cells in monolayers soon after mechanical load by 

fluid flow (You et al., 2008, Kulkarni et al., 2010), contradicting preliminary and 48-

72 hr time pre-load data, but consistent with 7 days time pre-load observations. This 

suggests a pre-load culture time of 7 days is beneficial, consistent with E11 data.  

 

 Interestingly, neither 24 hr, 48-72 hr nor 7 day time pre-load control and 

loaded cultures expressed detectable levels of GLAST1, AMPAR2 or KA1. These 

data contradicts previous observations that showed expression of all 3 genes in 3D 

co-culture embedded osteocytes (Chapter 4). Although there are no previous studies 

on the mechanical regulation of AMPAR2 or KA1 mRNA expression in osteoblasts 

or osteocytes, GLAST1 was found to be mechanically-regulated in loaded osteocytes 

in vivo (Mason et al., 1997). However, the same regulation has not yet been shown in 

vitro. The data presented suggests that the presence of osteoblasts may be essential 

for the expression of GLAST1, AMPAR2 and KA1 in osteocytes embedded in a 3D 

matrix. This could be tested by culturing 3D co-cultures and osteocyte mono-cultures 

at the same time and quantifying these mRNAs under each condition. If loaded, the 

mechanical regulation of GLAST1 in embedded osteocytes could also be tested.  

 

 It is important to note that although significant differences in the mRNA 

expression between control and loaded cultures were observed, some of these 

differences involved small fold changes. Therefore, the sensitivity of the relative RT-

qPCR assay used should be considered. It has been previously been shown that, in 

general, sensitivity of RT-qPCR assays depend on the handling and purity of the 

RNA, the reverse transcription step, and the qPCR assay itself (Bustin et al., 2009). 

Even performing absolute qPCR, which could be considered to be a more accurate 

method than relative qPCR, has been shown to only be sensitive enough to detect a 

minimum of 3 gene copies (Bustin et al., 2009). Therefore, even though the small 

differences in mRNA expression as a result of load were found to be statistically 

significant in this chapter, these should be considered with caution and confirmed by 
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assays which are known to be highly sensitive to small changes, such as digital PCR 

(Vogelstein and Kinzler, 1999, Dube et al., 2008, Schmittgen and Livak, 2008). 

 

5.4.5 IL-6 release 

 

 In 3D osteocyte mono-cultures, IL-6 release at 0.5, 6 and 24 hr post-load as a 

result of loading was found to be significantly higher in osteocytes cultured for 48 hr 

and 72 hr pre-load when compared to those cultured for 24 hr pre-load (Figure 

5.10C-E). These data give further evidence that mechanical loading responses from 

embedded osteocytes using the developed silicone plate are more reliable after at 

least 48 hr incubation prior to mechanical stimuli. 

 

In 3D osteocyte mono-cultures cultured for 24 hr pre-load from a pilot 

experiment, there was a decrease in IL-6 release at all time-points post-load (Figure 

5.10A and B). Although not significant, mean IL-6 release was reduced to 

approximately one half of control values at 6 and 24 hr post-load, but not at 0.5 hr 

post-load, in osteocytes cultured for 48-72 hr pre-load (Figure 5.10F), consistent with 

preliminary data. To date there are no in vivo or in vitro studies on the effects of 

mechanical loading on IL-6 release from osteocytes, however a previous in vitro 

study has shown that osteoblasts in monolayers exposed to compression highly 

increase their IL-6 synthesis (Sanchez et al., 2009).  
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5.5 Conclusion 

 

 In conclusion, a novel loading device, designed to apply uniform strain in a 

multi-well plate format, induced release of PGE2 in 3D osteocyte mono-cultures in 

response to loads of 5 min, 10 Hz, 2.5 N. The device can be attached to a 

commercially available loading rig and be used to mechanically stimulate 16 3D co-

cultures or mono-cultures at the same time. Validation of strain by DIC revealed that 

although there is strain variability across wells ranging from 3000 to 6000 µε, 9 out 

of 16 wells were exposed to 4000-4500 µε, although further work should be done to 

validate the loading device. Furthermore, it was shown for the first time that 

osteocytes within 3D gels exposed to cyclic strains using the developed loading 

device, increased PGE2 release, and A2A and E11 mRNA expression, and decreased 

IL-6 synthesis. These responses were found to be dependent on culturing osteocytes 

within gels for at least 48 hr prior to load. Although some of these experiments must 

be repeated in order to confirm the observations reported, it was demonstrated that 

the silicone plate provides a platform for the study of mechanically-induced bone 

formation and signalling in the 3D co-culture model. 
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6. The effect of mechanical loading on osteogenesis in the 3D co-culture model 

and the role of glutamate and adenosine receptors in this process 

 

6.1 Background 

 

In previous chapters of this thesis it was shown that within the 3D co-culture 

model, adenosine receptors A2A and A2B, CaSR and the glutamate transporter 

GLAST1 and receptors KA1 and AMPAR2 are expressed, indicating their potential 

for functional signalling (Chapter 4). Furthermore, it was also shown that osteocytes 

embedded in 3D type I collagen gels respond to mechanical stimuli (Chapter 5).  

 

Currently, there is only one published osteocyte-osteoblast co-culture model 

(Taylor et al., 2007). Although this is a 2D model, it has been used to investigate the 

effects on osteoblasts of mechanically-induced signals from osteocytes by exposing 

monolayer osteocytes to fluid flow whilst shielding the osteoblasts (Taylor et al., 

2007). Taylor et al showed that functional gap junction connections between 

osteoblasts and osteocytes, and the MAPK/ERK1/2 intracellular signalling pathway, 

are essential for the response of osteoblasts (proliferation and ALP activity) to 

osteocyte mechanical signals (Taylor et al., 2007). Such signals from osteocytes have 

previously been shown to include IGF-1 and related proteins (Reijnders et al., 2007a, 

Reijnders et al., 2007b), NO (Fox et al., 1996, Zaman et al., 1999), BMP2 (Rawadi et 

al., 2003), SOST (Winkler et al., 2003, van Bezooijen et al., 2004, Poole et al., 2005, 

van Bezooijen et al., 2005, Lowik and van Bezooijen, 2006, van Bezooijen et al., 

2007), and PGE2 (Klein-Nulend et al., 1995b, Ajubi et al., 1996, Ajubi et al., 1999). 

 

Previous studies have implicated adenosine, calcium-sensing and glutamate 

mediated signalling in osteogenesis. Several in vivo studies showed that KO animals 

of some of the receptors involved display a bone phenotype (Morimoto et al., 2006, 

Chang et al., 2008b, Skerry, 2008b, Kara et al., 2010b, Carroll et al., 2012, Mediero 

et al., 2012) (pages 36, 38 and 40). In vitro studies have also associated these 

pathways with bone cell biology (pages 36, 38 and 40). However, to date, only 

glutamate (Spencer and Genever, 2003, Mason, 2004) and ATP (Genetos et al., 

2005, Li et al., 2005b, Genetos et al., 2007, Riddle et al., 2007, Liu et al., 2008) have 
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been implicated in mechanotransduction, with GLAST1, being mechanically 

regulated in osteocytes (Mason et al., 1997), and NMDA, AMPA and KA receptors 

in osteoclasts and bone lining cells (Szczesniak et al., 2005) (page 40) ATP was 

released as a result of mechanical stimuli from both osteoblasts (Pavlin et al., 2000, 

Romanello et al., 2001, Li et al., 2005b) and osteocytes (Genetos et al., 2007) (page 

36). However, mechanically-induced glutamate signalling has only been 

hypothesised (Mason, 2004), and although ATP has a short half-life with one of its 

metabolites being adenosine, the role of adenosine itself in mechanically-induced 

signalling has not yet been investigated.  

 

6.1.1 Aims 

  

 This chapter aimed to determine whether mechanical loading of the 3D co-

culture model induced osteogenesis. The roles of glutamate and adenosine in 

mechanotransduction were also investigated by studying the effects of NBQX, an 

AMPA/KA receptor antagonist, and SCH 442416, an A2A receptor antagonist, on the 

3D co-culture responses to mechanical stimuli. 
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6.2 Materials and Methods 

 

For all experiments in this chapter, 3D co-cultures were prepared, cultured for 

7 days, and pre-treated with AMPA/KA (NBQX, 200 µM in DMEM 5% DFBS) or 

A2A (SCH 442416, 1µM in DMEM 5% DFBS) antagonists for 1 hr before being 

mechanically-loaded (5 min, 10 Hz, 2.5 N) in the presence of antagonists (page 80). 

Antagonist carriers, PBS for NBQX and DMSO for SCH 442416 were present in all 

cultures (page 80). The antagonist medium was removed 30 min post-load, retained, 

and replaced with standard culture medium. 3D co-cultures were cultured for a 

further 1 or 5 days post-load. Indicators of bone formation, COL1A1 and ALP 

mRNA and PINP release; as well as indicators of load response, A2A mRNA 

expression and PGE2 release, were measured. Control (non-loaded) cultures 

underwent all manipulations, such as medium changes, movements in and out of 

incubators and to and from loading instrument, except for mechanical loading. Data 

presented are as in Table 6.1.  
 

Table 6.1 Source of data presented from control and loaded cultures. 

 

 

  
Analysed Treatment Time 

post-load 
N° of 

experiments 
N° of culture 

replicates  
(control and loaded) 

Statistical 
test used 

mRNA 

A2A DZ Untreated Day 1 1 2 Untreated one-way 
ANOVA 

COL1A1 SZ 
Untreated 

NBQX 
 SCH 442416 

Day 1 1 
2 Untreated 

3 NBQX 
3 SCH 442416 

GLM 

ALP SZ 
Untreated 

NBQX 
 SCH 442416 

Day 1 1 
2 Untreated 

3 NBQX 
3 SCH 442416 

GLM 

Microplate 
assays 

LDH 
Released 

from 
whole co-

culture 

Untreated 
NBQX, 

SCH 442416 

Day 1 
Day 5 1 

2 Untreated 
3 NBQX 

3 SCH 442416 
- 

DNA 
SZ  
and  
DZ 

Untreated 
NBQX, 

SCH 442416 

0.5 hr 
Day 1 
Day 5 

1 
3 Untreated 

3 NBQX 
3 SCH 442416 

0.5 hr: 
one-way 
ANOVA 

 
Day 1  
and  

Day 5: 
GLM 

PGE2 
Released 

from 
whole co-

culture 

Untreated 0.5 hr 1 3 Untreated one-way 
ANOVA 

PINP 
Released 

from 
whole co-

culture 

Untreated 
NBQX 

 SCH 442416 

Day 1 
Day 5 1 

2 Untreated 
3 NBQX 

3 SCH 442416 
GLM 

SZ: surface zone (osteoblasts); DZ: deep zone (osteocytes); -: No statistical test performed. 

NOTE: one-way ANOVAs were performed with Tukey-Kramer post-hoc test; GLMs were for crossed 

factors and pairwise comparisons where P≤0.05 were recorded. 
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6.2.1 Cell death/number 

 

LDH assays were carried out at day 1 and day 5 post-load with medium from 

untreated and NBQX or SCH 442416 treated 3D co-cultures (control and loaded) to 

assess cell death (page 73).  

 

DNA quantification assays were carried out at all time-points post-load with 

total DNA extracted from both surface and deep zones of untreated and NBQX or 

SCH 442416 treated 3D co-cultures (control and loaded) (pages 53-54). Total ng of 

DNA from surface and deep zones from each 3D co-culture were added to give total 

ng of DNA per 3D co-culture and then used to normalise PGE2 and PINP ELISA 

data, and calculate cell number per 3D co-culture assuming there is 5.8 µg of DNA 

per 1x106 mouse diploid cells. Cell number data were expressed as a percentage of 

the average of 0.5 hr control cultures for all values. Raw data can be found in page 

290. 

 

6.2.2 PGE2 release  

 

PGE2 ELISA was carried out (page 74) on medium harvested at 0.5 hr post-

load from untreated 3D co-cultures (control and loaded) only. Data were normalised 

to total DNA content (pages 53-54) and analysed as in Table 6.1. Raw data can be 

found in page 290. 

 

6.2.3 mRNA expression  

 

Total RNA from the surface and deep zones of day 1 post-load 3D co-

cultures was extracted separately, reverse transcribed and cDNA integrity checked by 

RT-PCR of 18S rRNA (pages 52-55). Relative RT-qPCRs for COL1A1 and ALP in 

the surface zone of all cultures, A2A in the deep zone of untreated cultures only; and 

18S rRNA, GAPDH and HPRT1, as RGs were carried out (page 55). Primer details 

are outlined in pages 56 and 58 and Tables 2.1 and 2.2. RT-qPCR data were 

normalised to the optimal RG using NormFinder as in page 57. Data for each GOI 
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were calibrated to the average ∆Ct of the untreated control cultures and expressed as 

REU (page 58).  Data was analysed as in Table 6.1. 

 

6.2.4 PINP release 

 

PINP ELISA was carried out (page 76) on medium harvested at day 1 and 5 

post-load from treated and untreated 3D co-cultures (control and loaded). Data was 

normalised to total DNA content (pages 53-54) and statistically analysed as in Table 

6.1 
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6.3 Results 

 

In all cases, data were as in Table 6.1. However, 2 repeats of day 5 3D co-

cultures had to be removed from the experiment due to a suspected infection. 

Therefore, day 5 data analysed were from 1 independent experiment where n=3 for 

SCH 442416 control and loaded, and n=2 NBQX and untreated control and loaded. 

 

6.3.1 Cell death/number 

 

LDH release into the medium as a result of cell death was measured in all 

cultures and at day 1 and day 5 post-load. No LDH was detected indicating no 

measurable cell death as a result of mechanical loading or antagonist treatment (raw 

data can be found in page 284). 

 

 Total ng of DNA were measured at all time-points and treatments to assess 

cell number. Data were expressed as a percentage of the average of 0.5 hr control 

cultures for all values. The effect of load, time post-load and treatment on cell 

number was assessed in untreated cultures only at 0.5 hr post-load (Figure 6.1A), and 

in all cultures at day 1 and 5 (Figure 6.1B) post-load. However, no significant effects 

of any of these factors were observed (0.5 hr: untreated control 100 ±13.89 % and 

loaded 145.43 ±61.55 %; day 1: untreated control 94.97 ±9.88 % and loaded; 85.85 

±2.81 %, NBQX control 114.45 ±34.98 % and loaded 87.05 ±5.18 %; SCH 442416 

control 129.45 ±40.66 % and loaded 81.89 ±2.75 %; day 5: untreated control 84.44 

±4.78 % and loaded 79.67 ±2.12 %; NBQX control 79.96 ±2.26 % and loaded 78.69 

±0.13 %; SCH 442416 control 91.24 ±5.12 % and loaded 82.93 ±5.88 %). 

 

6.3.2 PGE2 release 

 

Whilst mean PGE2 release appeared to decrease 0.5 hr after loading (Figure 

6.2), a significant difference was not observed between untreated control and loaded 

cultures (control, 0.031 ±0.005 pg/ml/ng DNA; loaded, 0.023 ±0.006 pg/ml/ng 

DNA) (one-way ANOVA, P=0.371). 
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Figure 6.1 Cell number in mechanically-loaded 3D co-cultures by DNA 

quantification. Graphs showing cell number at 0.5 hr post-load (A) and day 1 

and 5 post-load (B). Data were expressed as a percentage of the average of 0.5 hr 

control cultures (A and B). Data presented are from 1 independent experiment, 

n=3 (A), or 1 independent experiment, n=3 NBQX day 1, SCH 442416 days 1 

and 5, and n=2 NBQX and day 5 and untreated control and loaded cultures days 

1 and 5 (B). 
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Figure 6.2 PGE2 release in untreated mechanically-loaded 3D co-cultures 

by ELISA. Boxplot of PGE2 release from untreated 3D co-cultures 0.5 hr 

post-load normalised to total ng of DNA. (1 independent experiment, n=3 

control and loaded). 
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6.3.3 mRNA expression 

 

 mRNA expression was assessed by relative RT-qPCR in the surface zone of 

day 1 control and loaded cultures in the presence or absence of NBQX or SCH 

442416 using primers against COL1A1 and ALP, and in the deep zone of day 1 

untreated control and loaded cultures using primers against A2A.  Data were 

expressed in REU and normalised to either GAPDH for the surface zone, or the 

geometric mean of GAPDH and HPRT1 for the deep zone (NormFinder used to 

calculate most stable RG) (page 57). 

 

 Mechanical loading did not have a significant effect on embedded osteocyte 

A2A mRNA expression (control 1.006 ±0.111 REU; loaded 1.047 ±0.227 REU) 

(Figure 6.3A), or osteoblast COL1A1 (control 1 ±0.003 REU; loaded 0.902 ±0.087 

REU) (Figure 6.3B) or ALP (control 1 ±0 REU; loaded 1.566 ±0.607 REU) (Figure 

6.3C) mRNA expression in untreated cultures. However, mean ALP mRNA 

expression appeared to increase by 1.5-fold as a result of loading.  

 

 Treatment with NBQX did not have a significant effect on COL1A1 (control 

1.186 ±0.236 REU; loaded 1.217 ±0.299 REU) (Figure 6.3B) or ALP (control 0.928 

±0.047 REU; loaded NBQX 3.457 ±1.469 REU) (Figure 6.3C) mRNA expression on 

loaded surface osteoblasts. However, NBQX treatment seemed to increase mean 

ALP mRNA expression in loaded cultures by 3.7-fold.  

 

 Treatment with SCH 442416 did not have a significant effect on COL1A1 

(control 1.252 ±0.270 REU; loaded 0.956 ±0.224 REU) (Figure 6.3B) or ALP 

(control 0.683 ±0.166 REU; loaded 2.417 ±1.392 REU) (Figure 6.3C) mRNA 

expression on loaded surface osteoblasts. However, SCH 442416 treatment had a 

similar effect to that observed with NBQX on mean ALP mRNA expression as it 

appeared to increase by 3.5-fold in loaded cultures treated with the A2A antagonist. 
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Figure 6.3 Quantification of gene expression in mechanically-loaded 3D co-cultures at day 1 post-load by relative RT-qPCR. Boxplots of A2A (A) in the deep 

zone, and COL1A1 (B) and ALP (C) in the surface zone, expressed as REU and normalised to the geometric mean of GAPDH and HPRT1 expression for A2A, 

or GAPDH expression for COL1A1 and ALP. Data were from 1 independent experiment, where n=2 deep zone for A2A; and n=3 for NBQX and SCH 442416 

treated control and loaded cultures, n=2 untreated control and loaded cultures). 
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6.3.4 PINP release  

 

Mechanical loading and day had a significant effect on PINP release (GLM, 

load: P=0.002; day: P=0.005). Whilst antagonist treatment had no significant effect 

on PINP synthesis, an interaction between antagonist treatment and load was 

observed (GLM, P=0.033). Although there was a significant effect of day on the 

whole data set which appeared to increase mean PINP release at day 5, pairwise 

comparisons were not significant. 

 

PINP release was significantly 1.9-fold higher in untreated loaded 3D co-

cultures when compared to control cultures (GLM, P=0.022) (Figure 6.4A). 

However, no significant differences were observed between untreated control and 

loaded 3D co-cultures at day 1 or 5 (day 1: control 0.0011 ±0.0002 ng/ml/ng DNA 

loaded 0.0017 ±0, ng/ml/ng DNA; day 5: control 0.0008 ±0.0002 ng/ml/ng DNA; 

day 5 0.0019 ±0.0003 ng/ml/ng DNA) (Figure 6.4A).  

 

Treatment with NBQX had no significant effect on PINP synthesis from 

loaded 3D co-cultures at day 1 or 5 (Figure 6.4B). The mean PINP increase at day 1 

and 5 in loaded cultures was not as high as that observed in day 1 or 5 loaded 

untreated cultures (day 1: untreated control 0.0011 ±0.0002 ng/ml/ng DNA, NBQX 

loaded 0.0013 ±0.0002 ng/ml/ng DNA; day 5: untreated control 0.0008 ±0.002 

ng/ml/ng DNA, NBQX loaded 0.0016 ±0 ng/ml/ng DNA), (Figure 6.4B).  At day 1, 

there was no basal effect of NBQX treatment on mean PINP release from control 

cultures (untreated control 0.0011 ±0.0002 ng/ml/ng DNA; NBQX control 0.00106 

±0.0003 ng/ml/ng DNA), however, at day 5, NBQX treatment increased mean PINP 

release by 2-fold, approximately the same levels of those observed in untreated 

mechanically loaded cultures (untreated loaded 0.0019 ±0.0003 ng/ml/ng DNA; 

NBQX control 0.0019 ±0 ng/ml/ng DNA) (Figure 6.4B). 
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Treatment with SCH 442416 had no significant effect on PINP synthesis 

from loaded 3D co-cultures at day 1 or 5 (Figure 6.4C). At day 1, an increase in 

mean PINP levels in loaded cultures was observed (untreated control 0.0011 ±0.0002 

ng/ml/ng DNA; SCH 442416 loaded 0.0014±0.0001 ng/ml/ng DNA); though this 

increase was not as high as that observed in day 1 loaded cultures without SCH 

442416 treatment (Figure 6.4C). Furthermore, at day 1, SCH 442416 treatment 

decreased mean PINP release from control cultures (untreated control 0.0011 

±0.0002 ng/ml/ng DNA; SCH 442416 control 0.0009±0.0002 ng/ml/ng DNA) 

(Figure 6.4C). At day 5, SCH 442416 increased mean PINP release to levels slightly 

higher than those observed in untreated mechanically-loaded cultures, but mean 

PINP levels were significantly higher than those observed in untreated control 

cultures (untreated control 0.0011 ±0.0002 ng/ml/ng DNA; untreated loaded 0.0019 

±0.0003 ng/ml/ng DNA; SCH 442416 loaded 0.0021 ±0.0003 ng/ml/ng DNA; P= 

0.0114) (Figure 6.4C). Furthermore, at day 5, SCH 442416 treatment increased mean 

PINP release from control cultures (untreated control 0.0011 ±0.0002 ng/ml; SCH 

442416 control 0.00154±0.0002 ng/ml) (Figure 6.4C).  
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Figure 6.4 PINP release in mechanically-loaded 3D co-cultures by ELISA. Boxplots of PINP release from untreated (A), NBQX (B) and SCH 442416 (C) 

treated 3D co-cultures day 1 and 5 post-load, normalised to total DNA. Significant differences as obtained by GLM denoted by *P<0.05 (A). Significant 

differences from pairwise comparisons denoted by ‘a’ with respect to day 5 untreated control (C). (1 independent experiment, n=3 NBQX day 1, SCH 442416 

days 1 and 5, and n=2 NBQX and day 5 and untreated control and loaded cultures days 1 and 5). 

185 



                Chapter 6       

6.4 Discussion 

 

 The preliminary experiment in this chapter was used to determine whether the 

novel 3D osteocyte-osteoblast co-culture model could be used to investigate 

mechanical loading responses. Furthermore, mechanical signalling was also 

investigated by exposing the co-cultures to mechanical stimuli and to treatment with 

AMPA/KA and A2A antagonists. A summary of the results obtained can be found in 

Figure 6.5. The data presented in this chapter are preliminary as they are obtained 

from 1 independent experiment with replicate numbers of 2 or 3. Thus the trends 

observed should be treated with caution. Nevertheless, the data presented helped 

establish the initial platform for the investigation of mechanically induced bone 

formation in the novel 3D co-culture model, and mechanotransduction through the 

adenosine and glutamate signalling pathways. 
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Figure 6.5 Summary of results. A) A physiological loading regime applied to the 3D co-culture increases synthesis of PINP and ALP mRNA 

expression by the osteoblasts. B) In control cultures, at day 5 post-treatment, inhibition of AMPA/KA receptors induced a similar anabolic 

response to that obtained by mechanical loading (A). C) Mechanical loading and A2A inhibition lead to a doubling of ALP mRNA expression at 

day 1 and a 1.9-fold increase in PINP release at day 5 when compared to untreated control cultures (A). 
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6.4.1 Cell death/number 

 

 In the 3D co-cultures, under the stated experimental conditions, there was no 

detectable cell death as a result of mechanical loading or treatment with NBQX or 

SCH 442416, at any time post-load. There was also no significant difference in cell 

number observed (Figure 6.1). As previously mentioned (page 166), in vitro studies 

have shown that loading increases osteoblast number (Kaspar et al., 2000, Pavlin et 

al., 2000, Kaspar et al., 2002, Ignatius et al., 2005, Jackson et al., 2006), which 

contradict 3D co-culture data. However, this could be because the loading regimes 

used (0.5 or 1 Hz, 1000 or 10000 µε, 0.5 hr minimum per day of culture) (Kaspar et 

al., 2000, Kaspar et al., 2002, Ignatius et al., 2005, Jackson et al., 2006) do not 

involve a short single loading bout of mechanical stimulus.  

 

Human primary osteoblasts (HPOBs) cell number has previously been shown 

to significantly decrease by approximately 19 % and 23 % after 2 and 5 days of 

treatment with  200 µM NBQX (Bonnet, Mason, Williams and Evans unpublished 

data), contradicting 3D co-culture data. However, this could be explained by the fact 

that 3D co-cultures were only incubated with NBQX for 1 hr, whereas Bonnet et al 

used longer incubation times of 2 and 5 days. Furthermore, the decrease in cell 

number observed by Bonnet et al was relatively small.  

 

Treatment with 1 µM SCH 442416 has previously been shown to have no 

effect on the cell number of MSCs differentiating to osteoblasts (Gharibi et al., 

2011), correlating with 3D co-culture data. 

 

6.4.2 PGE2 release 

 

In the 3D co-culture, there was no significant difference in PGE2 release 0.5 

hr after load (Figure 6.2), suggesting no response to mechanical load. This effect 

contradicts previous data which showed a significant load-induced increase in PGE2 

release in 3D osteocyte mono-cultures (Chapter 5), and previous studies showing 

that both osteoblasts (Reich and Frangos, 1993, Nauman et al., 2001, Rubin et al., 

2001b, Ponik and Pavalko, 2004) and osteocytes (Cheng et al., 2001a, Jiang and 
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Cheng, 2001, Saini et al., 2011, Li et al., 2012b) in monolayers in vitro release PGE2 

in response to mechanical stimuli. Overall, PGE2 release was considerably lower 

when osteocytes were in a 3D co-culture (0.023 ±0.006 pg/ml normalised to ng of 

total DNA) compared to that observed in 3D mono-cultures (78.806 ±10.880 pg/ml 

normalised to cell number) (Chapter 5). Even without normalisation, PGE2 release 

from loaded 3D co-cultures (20.053 ±2.453 pg/ml) was still lower than in loaded 7 

day 3D osteocyte mono-cultures (51.924 ±7.686 pg/ml). Furthermore, these values 

are lower than those previously observed in osteocyte monolayer cultures (Cheng et 

al., 2001a, Jiang and Cheng, 2001, Saini et al., 2011, Li et al., 2012b). This reduction 

in PGE2 release could be due to a failure in inducing a mechanical response or due to 

a failure in the assay performing correctly, however the standard curve produced 

indicated the assay worked and that all samples fell within the standard curve 

(standard curve and raw data can be found in page 284). Another reason for the 

reduction in PGE2 release and lack of response to loading could be the presence of 

osteoblasts. To test this hypothesis, 3D osteocyte mono-cultures and 3D co-cultures 

should be exposed to load at the same time and PGE2 release assessed 0.5 hr post-

load.  

 

6.4.3 mRNA expression 

 

 In the 3D co-culture, there was no significant difference in A2A mRNA 

expression between day 1 untreated control and loaded embedded osteocytes (Figure 

6.3A), which could be due to a failure in inducing a mechanical response, consistent 

with PGE2 data. Another explanation could be that the presence of surface 

osteoblasts regulates osteocyte gene expression, which have not previously been 

investigated, and thus reflecting the same effect observed with PGE2 release. In 

order to confirm this osteoblast regulation of osteocyte gene expression, 3D 

osteocyte mono-cultures and 3D co-cultures should be exposed to load at the same 

time and A2A mRNA expression assessed post-load.  
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In day 1 3D co-cultures, mechanical stimuli had no effect on osteoblast 

COL1A1 mRNA expression (Figure 6.3B). Previous in vivo and in vitro studies have 

shown an increase in osteoblast COL1A1 mRNA expression in response to load. On 

one hand, in vivo studies showed osteoblast COL1A1 mRNA expression is not 

altered 24 hr after cyclic compression load, but instead begins to increase 2-4 days 

after loading (Pavlin et al., 2001, Mantila Roosa et al., 2011), consistent with 3D co-

culture data. However, in vitro osteoblast studies have shown an increase in 

COL1A1 expression 24 hr after compression or tension loading (Liu et al., 2005, 

Rath et al., 2008, Lu et al., 2012), contradicting 3D co-culture data. NBQX and SCH 

442416 had no effect on day 1 osteoblast COL1A1 mRNA expression regardless of 

mechanical stimuli (Figure 6.3B). To date there are no studies on the effect of NBQX 

or SCH 442416 on COL1A1 mRNA expression by osteoblasts.  

 

In day 1 3D co-cultures, mechanical stimuli increased ALP mRNA 

expression by surface osteoblasts (Figure 6.3C). In vivo, osteoblasts increase ALP 

mRNA expression 24 hr after being mechanically stimulated (Pavlin et al., 2001), 

which was also observed in vitro in MC3T3-E1 cells (Lu et al., 2012) and is 

consistent with 3D co-culture data. Interestingly, this load-induced increase in ALP 

mRNA expression was further amplified with NBQX or SCH 442416 treatment 

(Figure 6.3C). Furthermore, in the absence of mechanical stimuli, SCH 442416 or 

NBQX treatment had no effect on ALP mRNA expression by surface osteoblasts at 

day 1 (Figure 6.3C). Consistent with this data, SCH 442416 was previously shown to 

have no effect on ALP expression during osteoblast differentiation in vitro (Gharibi 

et al., 2011).  To date, there are no studies on the effects of NBQX on ALP mRNA 

expression in osteoblasts or SCH 442416 on ALP mRNA expression by 

mechanically loaded osteoblasts.  
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6.4.4 PINP release 

  

In untreated 3D co-cultures, mechanical loading significantly increased PINP 

release (Figure 6.4A), suggesting that mechanical loading of 3D co-cultures elicits an 

osteogenic response. These results are consistent with previous studies which 

demonstrated that  osteoblasts in vitro increase ColI synthesis after loading (Yang et 

al., 2012), which contradicts PGE2 and A2A mRNA data, and therefore the theory 

that no mechanical response was induced in this experiment. However, these results 

contradict COL1A1 mRNA expression data from the same cultures, which showed 

no effect of loading on day 1 COL1A1 expression. This could be explained by fact 

that mRNA data was obtained only from day 1 surface osteoblasts whereas protein 

synthesis was measured from the medium of whole 3D co-cultures. Therefore, PINP 

synthesis may not only be from surface osteoblasts, but also from embedded 

osteocytes. Primary osteocytes have been previously shown to produce ECM 

proteins including ColI in vitro (Tata et al., 2011). However MLO-Y4 cells produce 

lower levels of COL1A1 mRNA compared to osteoblasts both in monolayer (Kato et 

al., 1997) and in 3D co-cultures (Chapter 1), but the production of ColI protein from 

these cells in the presence or absence of load has not been previously investigated. 

Therefore, 3D osteocyte mono-cultures and 3D co-cultures should be exposed to load 

at the same time in order to address the hypothesis that PINP release may be from 

both cell types within the 3D co-culture. Furthermore, analysis of COL1A1 mRNA 

expression in loaded embedded osteocytes should also be carried out as it would give 

an indication of how much collagen these cells may be synthesising. Nevertheless, 

this PINP release data has shown that mechanically-induced collagen synthesis can 

be achieved in the 3D co-culture under a physiological and osteogenic loading 

regime (5 min, 10 Hz, 4000-4500 µɛ) (Hillam and Skerry, 1995, Mason et al., 1996, 

Rubin et al., 2001a). 

 

Treatment with NBQX in control cultures induced an increase in PINP which 

was highly similar to that observed in untreated loaded cultures at day 5 post-load 

(Figure 6.4B). This data contradicts previous in vivo studies which have shown that 

mice injected with NBQX have a decreased trabecular thickness (Lin et al., 2008), 

whereas rats injected with AMPA have an increased bone volume (Burford et al., 
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2004), suggesting that activation of AMPA/KA receptors increases bone formation. 

To date, the effects of NBQX on bone formation have not been investigated in vitro 

and therefore these are reported for the first time in this thesis. This data suggests 

that a single dose of NBQX may have the same long-term anabolic effects as 

mechanical stimuli and, therefore, could be considered a novel anabolic target for 

bone disease therapies. Furthermore, this data also provides further evidence for the 

hypothesis that glutamate signalling may have a role in mechanically-induced bone 

formation (Mason, 2004) 

 

On the other hand, treatment with SCH 442416 caused a significant increase 

in PINP release in day 5 loaded cultures compared to untreated control cultures 

(Figure 6.4C). Although not significant, SCH 442416 treatment increased PINP 

release in control cultures. Furthermore, mechanical loading and a single dose of 

SCH 442416 treatment appeared to have, although small, an additive effect on PINP 

release, as PINP levels were higher in loaded SCH 442416 treated cultures than in 

untreated loaded cultures or treated control cultures. To date, the effects of SCH 

442416 on collagen synthesis have not been investigated in osteoblasts. This data 

suggests that SCH 442416 treatment could be considered as a novel anabolic 

therapeutic target for bone diseases, similar to NBQX. Furthermore, it could be 

hypothesised that adenosine signalling may have a role in mechanically-induced 

bone formation. 

 

6.4.5 Data reliability 

 

 As previously mentioned, the results presented in this chapter are 

preliminary, with low replicate numbers, and therefore all trends and significant P-

values observed should be treated with caution. The data were presented in boxplots 

as a way of performing descriptive statistics and to show the data spread (page 81), 

to indicate how reliable the trends observed are. One of the main points of discussion 

is whether a mechanical response was induced in this experiment or not. In this 

experiment there was no significant effect of load in A2A mRNA expression and 

PGE2 release, indicating no mechanical response. According to the data reported in 

Chapter 5, approximately 2.6-fold and 2-fold increases should be observed for PGE2 
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release and A2A mRNA expression, respectively. However, this experiment is based 

on a small data set with a large range in data points for each of the groups compared 

and therefore the trends may not be reliable. Although PGE2 and A2A data may not 

be reliable enough to indicate load responses, this experiment showed a load-induced 

osteogenic response. The disparity between COL1A1 mRNA expression and PINP 

release was also a point of discussion. The boxplot for COL1A1 mRNA expression 

indicates a large range in the REUs measured within each group indicating the data 

may not be reliable, whereas the data range of PINP synthesis is much smaller in 

comparison. The increase in ALP mRNA expression appeared more robust as the 

ALP data range is large in loaded cultures but not in control cultures. In order to 

increase the reliability of the data, this experiment should be repeated with a larger 

replicate number.  

 

6.5 Conclusion 

 

 In conclusion, preliminary data show the 3D co-culture model can be used to 

investigate the osteocyte-osteoblast interactions that lead to mechanically-induced 

osteogenesis in terms of type I collagen synthesis and alkaline phosphatase activity. 

This thesis showed that both NBQX and SCH 442416 increased osteoblast ALP 

mRNA expression in loaded cultures at day 1 and increased PINP release in both 

control and loaded cultures at day 5. These anabolic effects of AMPA/KA and A2A 

antagonists support the hypothesis of functional adenosine and glutamate signalling 

within 3D co-cultures (Chapter 4), and of the potential roles of glutamate and 

adenosine in mechanotransduction (Mason, 2004) (section 6.1) and osteogenesis. 

Although the experiments in this chapter must be repeated in order to verify the 

results obtained, it has tested the platform for the investigation of mechanically-

induced bone formation and mechanotransduction through novel signalling 

pathways. 
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7. General discussion 

 

7.1 Validation of the novel 3D co-culture model 

 

This thesis developed a novel 3D osteocyte-osteoblast co-culture mechanical 

loading model, where osteocytes embedded within type I collagen gels are overlaid 

with osteoblasts. The cells within the model were shown to be viable, at both day 1 

and 7, maintain their morphology and appear to connect to neighbouring cells 

through CX43 (Figure 7.1A). Both osteoblasts and osteocytes were also shown to 

maintain their phenotype, through the expression of appropriate phenotypic markers 

(Figure 7.1A). Osteoblasts expressed higher levels of COL1A1 mRNA than 

osteocytes, whereas osteocytes expressed higher levels of ALP mRNA than 

osteoblasts (Figure 7.1A). Both cell types within the model were also shown to 

express components of the adenosine, calcium-sensing and glutamate signalling 

pathways (Figure 7.1A), previously shown to be of importance in bone biology as 

seen in KO animals involving signalling components of these pathways. Briefly, for 

the adenosine signalling pathway, the A1 KO model had increased bone volume and 

small osteoclasts (Kara et al., 2010b), the A2A KO mouse displayed increased bone 

resorption and osteoclast activity (Mediero et al., 2012), and the A2B
 KO model 

exhibited decreased bone density (Carroll et al., 2012) (pages 37-38). For  the 

calcium-sensing signalling pathway, CaSR KO mice displayed growth retardation, 

small skeletons and several fractures (Chang et al., 2008a) (page 38). Finally, for the 

glutamate signalling pathway, the NMDAR1 KO model exhibited a thin bone 

structure and poor mineralisation (Skerry, 2008b); and the VGLUT1 KO model 

displayed a decrease in bone mass and an increase in osteoclast resorption 

(Morimoto et al., 2006) (pages 41-42). 
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 Furthermore, the osteocytes within the model were found to respond to 

physiological mechanical loading and some of these responses depended on the 

culture time prior to load (Figure 7.1B). Most importantly, this thesis demonstrated 

that mechanical loading of the 3D co-culture is able to apparently induce an 

osteogenic response by increasing PINP synthesis (Figure 7.1B) as well as regulate 

the mRNA expression of adenosine receptor A2A in embedded osteocytes.  

 

There is a great need for a fully characterised in vitro 3D matrix based bone 

model. The majority of the available 3D models involve culturing cells on scaffolds 

(Tortelli et al., 2009, Barron et al., 2010, Papadimitropoulos et al., 2011b), which 

does not represent the bone environment in vivo where osteocytes, are embedded 

within a matrix (section 1.4.2.3.2). Published models involving embedding 

osteoblasts (Maeno et al., 2005, Murshid et al., 2007), MLO-Y4 (Kurata et al., 2006, 

Murshid et al., 2007) or normal human bone-derived cells (NHBCs) (Atkins et al., 

2009) within a matrix showed maintenance of cell viability (Maeno et al., 2005, 

Kurata et al., 2006), osteocyte cell morphology (Kurata et al., 2006, Murshid et al., 

2007, Atkins et al., 2009), connectivity (Kurata et al., 2006), and gene expression 

(Atkins et al., 2009). However, none of these models have been individually assessed 

in all key areas of viability, morphology, connectivity and gene expression. 

Furthermore, none of the available 3D collagen based cultures involve co-culturing 

osteocytes and osteoblasts, nor they have been exposed to mechanical stimuli. 

Therefore none investigate the important interactions between these cell types which 

lead to mechanically-induced bone formation.  
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A comparison of the 3D co-culture model to previous 3D and 2D in vitro 

models, as well as, to bone in vivo can be found in Table 7.1. This table shows that 

the 3D co-culture model developed in this thesis is better characterised than any 

other current 3D mono-culture and 2D co-culture models, as the majority of these 

previous models show gaps in cell viability data, expression of some bone markers, 

and connectivity of the cells within the model. The 3D co-culture model has 

osteoblast and osteocyte cell viabilities, morphologies, phenotypes and loading and 

osteogenic responses similar to those found in vivo, some of which also correlate 

with previous in vitro monolayer culture data. However, unlike in vivo, there is a lack 

of expression of SOST, an important mechanically-regulated bone formation 

regulator, due to the use of MLO-Y4 cells which do not express SOST. The model 

developed in this thesis has also provided novel information on the expression of 

adenosine, calcium-sensing and glutamate signalling components in bone cells, and 

the effect of mechanical load on their expression (Table 7.1). 
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↑ PGE2 (2.6-fold) 

A B 
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                Chapter 7       

Figure 7.1 A summary of the results presented in this thesis characterising the novel 

3D co-culture model. A) In a resting state, the osteoblasts and osteocytes were shown 

to have minimal cell death at both day 1 and 7 of culture, as well as maintain their 

phenotype through the expression of bone markers (grey bars), and their connectivity 

through the expression of CX43 (green bar), and express signalling components 

(Table 7.1). B) Embedded osteocytes were shown to respond to physiological loads 

through the release of PGE2, and that this loading response was maintained if the 

embedded osteocytes were cultured for a minimum of 48 hr and up to 7 days prior to 

mechanical stimuli. However, time pre-load appeared to have an effect on E11 

mRNA expression as a result of loading, highlighting that culture time pre-load of 

the osteocytes within the 3D model is of great importance. Furthermore, the 

adenosine receptor A2A was shown to be mechanically regulated and therefore 

identified as a potential novel indicator of load response. Most importantly, although 

as preliminary data, it was shown that a physiological mechanical stimulus applied to 

the 3D co-culture is able to potentially induce an osteogenic response through an 

increase in the synthesis of PINP and ALP mRNA expression by the osteoblasts. 
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In vivo 
(human or rodent) 3D co-culture 3D mono-culture 2D co-culture 

(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteoctyes 

 

 

Transient cells 
only present as 

osteoblasts 
during bone 
formation. 

 
Humans 

 
After bone 
formation: 

 
50-70 % death 

 
The rest become 
bone lining cells 

or osteocytes 
 

(Parfitt, 1990, 
Jilka et al., 1998) 

Humans 
 

Birth: 
 

1 % 
80 years old: 

 
75 % 

 
(Frost, 1960, 

Mullender et al., 
1996, Tomkinson 

et al., 1997) 

Day 1: 
 

0 % 
 

Day 7: 
 

0 % 

 
 

Day 1: 
 

16.13 ±3.16 
% 
 

Day 7: 
 

13.85 ±2.35 
% 

 
       86 % 

 
embedded in 

type II 
collagen gels 

 
(Maeno et al., 

2005) 

~ 3 dead 
cells/field of 

view 
 

(Kurata et al., 
2006) 

Cells remained 
viable 

(quantification of 
death/viability 

not shown) 

Cells 
remained 

viable 
(quantification 

of 
death/viability 

not shown) 

Primary 
osteoblasts 

 
Day 1 to 4: 

 
~5-8 % 

 
(Gohel et al., 

1999) 
 

Primary 
osteocytes 

 
Day 6: 

 
~ 25 % 

 
(Bakker et al., 

2004) 

 

 
Ovoid 

Pyriform 
Rectangular 

Cuboidal 
Columnar 

 
(Bourne, 1972) 

 
       Dendritic 

 
(Doty et al., 1976, 

Menton et al., 
1984, Palumbo, 

1986) 
 

Ovoid/pyriform 
with stress 

fibres 
Dendritic 

Dendritic 
 

(within 3D 
matrix) 

 
(Murshid et 
al., 2007) 

Dendritic 
 

(Kurata et al., 
2006, Murshid 

et al., 2007, 
Atkins et al., 

2009) 

Confluent 
monolayer 

 
Individual cell 
morphology: 

 
NI 

Dendritic 

MC3T3-E1: 
 

Fibroblastic 
during 

logarithmic 
growth phase, 
pyriform when 
confluent with 
stress fibres 

 
(Sudo et al., 

1983, Murshid et 
al., 2007) 

MLO-Y4: 
 

Dendritic 
 

(Kato et al., 1997) 

C
EL

L 
D
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TH

 
C
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L 

   
   

   
   

   
   

 
M

O
R
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G

Y 

Table 7.1 Comparison of the 3D co-culture model to bone in vivo and published in vitro models. 3D co-culture data is highlighted in red. 

NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 



 

 

In vivo 
(human or rodent) 3D co-culture 3D mono-culture 2D co-culture 

(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteoctyes 

  

COL1A1 

 

✓ 
 

(Zhou et al., 
1994) 

✓ 
 

(Sun et al., 
1995) 

✓ ✓ 

 
✓ 

 

(Atkins et al., 
2009) 

NI NI NI 

 
 
✓ 

 

(Collin et al., 
1992, Shi et al., 
1996, Wang et 

al., 1999) 

✓ 
 

(Kato et al., 
1997) 

ALP 

 
✓ 

 

(Whyte, 1994, 
Zhou et al., 

1994) 

 
✓ 

 

(Dodds et al., 
1993) 

✓ 
 
✓ 
 

NI NI NI NI 

 
✓ 

 

(Takuwa et al., 
1991, Collin et 

al., 1992, Wang 
et al., 1999) 

 
✓ 

 

(Mikuni-
Takagaki et al., 

1995, Kato et al., 
1997) 

E11 
✓ 

 

(Wetterwald et 
al., 1996) 

 
 

✓ 
 

(Wetterwald et 
al., 1996, 

Schwab et al., 
1999) 

✓ ✓ 

 
✓ 

 

(Atkins et al., 
2009) 

NI NI NI 

 
✓ 

 

(Nose et al., 
1990, 

Hadjiargyrou et 
al., 2001, Zhang 

et al., 2006, 
Jahn et al., 

2010) 

✓ 
 

(Hadjiargyrou et 
al., 2001, Zhang 

et al., 2006) 

SOST 

 
 

X 
 

(Bezooijen et 
al., 2005, 

Poole et al., 
2005) 

 

 

✓ 
 

(Bezooijen et al., 
2005, Poole et 
al., 2005, Li et 

al., 2008) 

X X 

 
 

✓ 
 

differentiating 
osteoblasts 

(Atkins et al., 
2009) 

NI NI NI 

✓ 
 

UMR 106.01 
 

SaOS-2 
 

(Papanicolaou et 
al., 2009, Galea 
et al., 2011, Yu 

et al., 2011) 
 

X 
 
 

MC3T3-E1 
 

(Papanicolaou et 
al., 2009) 

✓ 
 

Primary 
osteocytes 
MLO-A5 
IDG-SW3 

 

(Bellido et al., 
2005, 

Papanicolaou et 
al., 2009, Woo et 

al., 2011) 
 

X 
 

MLO-Y4 
(Papanicolaou et 
al., 2009, Yang 

et al., 2009) 

Runx2 

✓ 
 

(Ducy et al., 
1997, Komori 
et al., 1997, 
Otto et al., 

1997) 

NI ✓ ✓ 
✓ 

 

(Atkins et al., 
2009) 

NI NI NI 

✓ 
 

(Gilbert et al., 
2002, Choi et al., 

2005) 

✓ 
 

(Fujita et al., 
2001) 

OCN 
✓ 

 

(Zhou et al., 
1994) 

✓ 
 

(Mason et al., 
1996) 

✓ ✓ 

✓ 
 

(Atkins et al., 
2009, Maeno et 

al., 2005) 

NI NI NI 

      ✓ 
 

(Collin et al., 
1992) 

 

✓ 
 

(Kato et al., 
1997) 

C
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L 
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Table 7.1 continued. 

NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 



 

 

 

 

 

 

 

  

 

In vivo 
(human or rodent) 3D co-culture 3D mono-culture 2D co-culture 

(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteoctyes 

 
 

E11 

 

 

✓ 
 

(Wetterwald et 
al., 1996, 

Hadjiargyrou 
et al., 2001) 

 

✓ 
 

(Wetterwald et 
al., 1996, 

Hadjiargyrou 
et al., 2001) 

✓ 
 

✓ 
 

NI NI NI NI 
✓ 

 

(Zhang et al., 
2006) 

 

✓ 
 

(Zhang et al., 
2006) 

 

CX43 
✓ 

 

(Lecanda et 
al., 2000) 

 
 

✓ 
 

(Bivi et al., 
2012, Loiselle 
et al., 2013) 

 

✓ 
 

✓ 
 

NI NI 

Functional 
gap junctions 

but not 
specifically 

CX43 

Functional 
gap junctions 

but not 
specifically 

CX43 

✓ 
 

(Yamaguchi and 
Ma, 2003) 

 

✓ 
 

(Kato et al., 
1997, Cheng et 

al., 2001b) 
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Table 7.1 continued. 

NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 



 

 

 

 
In vivo 

(human or rodent) 3D co-culture 3D mono-culture 2D co-culture 
(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteoctyes 

 

 

A1 

mRNA 
 

NI 
 

 
NI 
 

 
X 
 

 
X 
 

 
NI 
 

 
NI 
 

 
NI 
 

 
NI 
 

✓ 
 

(Russell et al., 
2007) 

 
NI 
 

Protein NI NI X X NI NI NI NI 

✓ 
 

(Russell et al., 
2007, Costa et 

al., 2011) 

NI 

A2A 

mRNA NI NI ✓ ✓ NI NI NI NI 
✓ 

 

(Russell et al., 
2007) 

NI 

Protein NI NI ✓ ✓ NI NI NI NI 

✓ 
 

(Russell et al., 
2007, Costa et 

al., 2011) 

NI 

A2B 

mRNA NI NI ✓ ✓ NI NI NI NI 
✓ 

 

(Russell et al., 
2007) 

NI 

Protein NI NI X X NI NI NI NI 

✓ 
 

(Russell et al., 
2007, Costa et 

al., 2011) 

NI 

A3 

mRNA NI NI X X NI NI NI NI 
X 

 

(Russell et al., 
2007) 

NI 

Protein NI NI X X NI NI NI NI 

✓ 
 

HPOBs  
(Costa et al., 

2011) 
 

X 
 

MG63 
 (Russell et al., 

2007) 

NI 

Table 7.1 continued. 

NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 
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 In vivo 
(human or rodent) 3D co-culture 3D mono-culture 2D co-culture 

(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteoctyes 

 

 CaSR 

mRNA 

✓ 
 

(Chang et al., 
1999, Dvorak et 

al., 2004) 
 

✓ 
 

(Chang et al., 
1999, Dvorak 
et al., 2004) 

 

X 
 

X 
 NI NI NI NI 

 

✓ 
 

(Chattopadhyay 
et al., 2004, 

Yamaguchi et 
al., 1998a, 

Yamaguchi et 
al., 1998b, 

Yamaguchi et 
al., 2001) 

NI 

Protein 

✓ 
 

(Chang et al., 
1999, Dvorak et 

al., 2004) 
 

✓ 
 

(Chang et al., 
1999, Dvorak 
et al., 2004) 

 

✓ ✓ NI NI NI NI 

 

✓ 
 

(Chattopadhyay 
et al., 2004, 

Yamaguchi et 
al., 1998a, 

Yamaguchi et 
al., 1998b, 

Yamaguchi et 
al., 2001) 

NI 

SI
G

N
A

LL
IN

G
 C

O
M

PO
N

EN
TS

 

C
A

LC
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M
-S
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N
G

 

Table 7.1 continued. 

NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 



 

 

 

 

 In vivo 
(human or rodent) 3D co-culture 3D mono-culture 2D co-culture 

(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteoctyes 

 

 

AMPAR2 

mRNA NI NI X ✓ NI NI NI NI 

 
 
 

X 
 

(Hinoi et al., 
2002) 

 

NI 

Protein 

✓ 
 

(Bonnet, Mason, 
Williams 

unpublished 
data) 

✓ 
 

(Bonnet, 
Mason, 
Williams 

unpublished 
data) 

 
X 

 

 (Szczesniak 
et al., 2005) 

X X NI NI NI NI 

 
X 

 

(Szczesniak et 
al., 2005) 

NI 

KA1 

mRNA NI 
 NI X 

 
✓ 
 

NI 
 NI NI NI 

✓ 
 

(Hinoi et al., 
2002) 

 

NI 

Protein NI NI ✓ ✓ NI NI NI NI NI NI 

mGluR1 

mRNA NI NI X X NI NI NI NI 

 

✓ 
 

(Gu and 
Publicover, 

2000, Kalariti 
et al., 2004) 

 

NI 

Protein NI NI X X NI NI NI NI NI NI 
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Table 7.1 continued. 

NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 



 

 

 

 

 

 

 

 

 

 

 In vivo 
(human or rodent) 3D co-culture 3D mono-culture 2D co-culture 

(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteoctyes 

  

GLAST1 

mRNA 
✓ 

 

(Mason et al., 
1997) 

✓ 
 

(Mason et al., 
1997) 

✓ ✓ NI NI NI NI 

✓ 
 

(Huggett et 
al., 2002, 

Kalariti et al., 
2004, 

Takarada et 
al., 2004) 

✓ 
 

(Huggett et al., 
2002) 

 

Protein 
✓ 

 

(Mason et al., 
1997) 

✓ 
 

(Mason et al., 
1997) 

✓ ✓ NI NI NI NI 
✓ 

 

(Brakspear, 
2010) 

✓ 
 

(Huggett et al., 
2002) 

EAAC1 

mRNA 
 

NI 
 

NI X X NI NI NI NI 
✓ 

(Takarada et 
al., 2004) 

NI 

Protein 

✓ 
 

(Bonnet, 
Mason, 

Williams, 
unpublished 

data) 

NI X X NI NI NI NI 
✓ 

 

(Brakspear, 
2010) 

NI SI
G
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Table 7.1 continued. 
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NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 



 

 

 

 

 

 

 

 

 

 In vivo 
(rodent unless otherwise stated) 3D co-culture 3D mono-culture 2D co-culture 

(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes  Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes 
 

PGE2 
Released/ 

Synthesised NI 
 

NI 
 

 

3D osteocyte 
mono-culture: 

 

↑ release 
NI NI NI NI 

 
↑ 

release 
 

( Smalt et al., 
1997, Nauman 

et al., 2001, 
Ponik and 

Pavalko, 2004, 
Genetos et al., 

2005) 

↑ 
release 

 

(Cheng et al., 
2001a, Jiang 
and Cheng, 

2001, Saini et 
al., 2011, Li et 

al., 2012) 

3D co-culture: 
 

No significant change 

NO Released/ 
Synthesised NI 

↑ 
release 

 

(Fox et al., 1996, 
Zaman et al., 

1999) 

3D osteocyte 
mono-culture: 

 

 NI NI NI NI NI 

 
↑ 

release 
 

(McAllister and 
Frangos, 1999, 
Mehrotra et al., 

2006) 

↑ 
release 

 

(Klein-Nulend et 
al., 1995b, Tan 

et al., 2007) 3D co-culture: 
 

 NI 

SOST mRNA/ 
Protein NI 

↑ expression 
 
 

(Robling et al., 
2008, Tu et al., 

2012) 

 

3D osteocyte 
 mono-culture: 

 

 NI NI NI NI NI 

 
↓ 

expression 
 

 

(Galea et al., 
2011, Galea et 

al., 2013) 

↑ 
expression 

 

(Wijenayaka et 
al., 2011) 3D co-culture: 

 

 NI 

M
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H
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N
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A
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D
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Table 7.1 continued. 

NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 



 

 

 

 

 In vivo 
(human or rodent) 3D co-culture 3D mono-culture 2D co-culture 

(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes  Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes 
 

RANKL 
 mRNA 

↑ expression 
 

with unloading 
 

(Xiong et al., 2011) 

↑ expression 
 

(Nakashima et 
al., 2011, Xiong 

et al., 2011) 

 

3D osteocyte  
mono-culture: 

 

↓expression 
(48-72 hr pre-culture) 

 
No significant change 

(7 days pre-culture) 
 

NI 
 

NI 
 

NI NI 

↑ 
expression 

 

(Mehrotra et al., 
2006, Rucci et al., 
2007, Kreja et al., 

2008) 

↑ 
expression 

 

(You et al., 2008, 
Kulkarni et al., 

2010) 
3D co-culture:  

 

NI 

IL-6 Released/ 
Synthesised NI NI 

 

3D osteocyte  
mono-culture: 

 

↓ release 
 

NI 
 

NI 
 

NI NI 
↑ release 

 

(Sanchez et al., 
2009) 

NI 
 

3D co-culture: 
 

 NI 

A2A mRNA NI 
 

NI 
 

 

3D osteocyte  
mono-culture: 

 

No significant change 
(48-72 hr pre-culture) 

 
↑ expression 

(7 days pre-culture) 
 

NI 
 

NI 
 

NI NI NI 
 

NI 
 

 

3D co-culture: 
 

↑ expression 
(osteocytes only) 

 

A2B mRNA NI 
 

NI 
 

 

3D osteocyte  
mono-culture: 

 

No significant change 
(48-27 hr and 7 days pre-

culture) 
 

NI 
 

NI 
 

NI NI NI 
 

NI 
 

3D co-culture: 
 

 NI 

M
EC

H
A

N
IC

A
L 
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A

D
IN

G
   

   
   

   
   

   
   

  
R
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N
SE

S 

Table 7.1 continued. 

NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 



 

 

 

 

 

 

 

 In vivo 
 (human or rodent) 3D co-culture 3D mono-culture 2D co-culture 

(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes  Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes 
 

AMPAR2 mRNA NI 
 

NI 
 

 

3D osteocyte  
mono-culture: 

 

 X NI 
 

NI 
 

NI NI NI 
 

NI 
  

3D co-culture:  
 

NI 

KA1 mRNA NI 
 

NI 
 

 

3D osteocyte  
mono-culture:  

 

X NI 
 

NI 
 

NI NI NI 
 

NI 
  

3D co-culture:  
 

NI 

GLAST1 mRNA NI 

 
↓ expression 

 

(Mason et al., 
1997) 

 

3D osteocyte 
 mono-culture:  

 

X NI 
 

NI 
 

NI NI NI 
 

NI 
  

3D co-culture:  
 

NI 

E11 mRNA NI NI 

 

3D osteocyte 
 mono-culture: 

 

↓expression 
(48-72 hr pre-culture) 

 
↑ expression 

(7 days pre-culture) 
 

 
NI 
 

NI NI NI NI 
↑ expression 

 

(Yang et al., 2004, 
Zhang et al., 2006) 

 

3D co-culture:  
 

NI 

Table 7.1 continued. 
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NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 



 

 

 

 

 

 

 

 

 

 In vivo 
 (human or rodent) 3D co-culture 3D mono-culture 2D co-culture 

(Taylor et al., 2007) Monolayer culture 

Osteoblasts Osteocytes  Osteoblasts Osteocytes Osteoblasts Osteocytes Osteoblasts Osteocytes 

 

ALP mRNA 

↑ expression 
 

(Pavlin et al., 
2001) 

 

NI 

 

3D osteocyte  
mono-culture:  

 

NI  
NI 
 

NI NI NI 
↑ expression 

 

(Lu et al., 2012) 
 

NI 
3D co-culture: 

 

↑ expression 
(osteoblasts only) 

COL1A1 mRNA 

↑ expression 
 

(Pavlin et al., 
2001, Mantila 
Roosa et al., 

2011) 

NI 

 

3D osteocyte  
mono-culture:  

 

NI  
NI 
 

NI NI NI 

↑ expression 
 

(Liu et al., 2005, 
Rath et al., 2008, 
Lu et al., 2012) 

 

NI  

3D co-culture: 
 

No significant change 
(osteoblasts only) 

Pro-
collagen 

I 
Released/ 

Synthesised 

↑ synthesis 
 

(Yang et al., 
2012) 

NI 

 

3D osteocyte  
mono-culture: 

 

 NI NI 
 

NI 
 

NI NI 
↑ synthesis 

 

(Yang et al., 2012) 
NI 

 

3D co-culture:  
 

↑release 
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Table 7.1 continued. 

NI: not investigated; ↑:  increased; ↓: decreased; ✓: expressed; X: not expressed 
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7.1.1 Limitations of the 3D co-culture model 

 

7.1.1.1 Osteoblast morphology 

 

 Surface osteoblasts were shown to maintain their ovoid/pyriform morphology 

(Table 7.1) and form a confluent monolayer in an ‘overlapping roof tiles’ pattern 

when cultured in 3D co-cultures. However, this morphology could only be 

determined by staining the osteoblasts for actin filaments and using confocal 

microscopy. Observation of individual surface osteoblasts using inverse-light 

microscopy proved difficult due to the fact that MC3T3-E1 cells are not very thick 

(personal observation) and the fact that the 3D gel with embedded osteocytes can be 

seen underneath the osteoblast monolayer. MC3T3-E1 cells could be replaced by 

mouse primary osteoblasts, which may be easier to observe under the light-

microscope as they may be thicker cells.  

 

7.1.1.2 Phenotype 

 

 This thesis showed the expression of a selection of osteocyte phenotypic 

markers, but other markers were not assessed, namely PHEX, MEPE, DMP1 and 

FGF23. MLO-Y4 cells in monolayer have previously been shown to express mRNAs 

for PHEX, MEPE, DMP1 and FGF23 (Bonewald, 2010), and therefore these genes 

should be investigated in the 3D co-culture model in order to further characterise the 

osteocyte phenotype within the model. Moreover, as previously shown MLO-Y4 

cells do not express SOST within the 3D co-culture model, consistent with previous 

monolayer studies (Papanicolaou et al., 2009, Yang et al., 2009, Woo et al., 2011). 

The lack of SOST expression within the 3D co-culture model is not physiological as 

SOST is both mechanically regulated (Robling et al., 2008, Tu et al., 2012) and a key 

regulator of bone formation (Winkler et al., 2003, van Bezooijen et al., 2004, Poole 

et al., 2005, Lowik and van Bezooijen, 2006, van Bezooijen et al., 2007). This 

limitation could be solved by replacing the MLO-Y4 cells with mouse, primary 

osteocytes (Halleux et al., 2012, Nakashima et al., 2011, Stern et al., 2012). 

However, the yield of primary osteocytes after isolation tends to be low and they do 

not proliferate in culture, limiting the number of cells that can be used for 
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experiments. The IDG-SW3 cell line is likely to be the best option to replace the 

MLO-Y4 in the 3D model, as these cells have already been cultured within 3D type I 

collagen gels and are able to differentiate into mature osteocytes which express 

SOST and mineralise (Woo et al., 2011).  

 

7.1.1.3 Connectivity 

 

 Both embedded osteocytes and surface osteoblasts were shown to express 

CX43 (Chapter 3), and osteocytes were shown to contact neighbouring cells. 

However, the functionality of these connections was not shown. Such testing is 

usually carried out by a scrape-loading dye transfer assay. Briefly, using a needle, a 

monolayer of cells is scratched in the presence of two dyes, lucifer yellow which can 

penetrate through gap junction channels and rhodamine dextran which cannot and so 

serves as a tracer dye for the cells originally receiving the dye, the number of cells  

containing lucifer yellow away from the scratch line is then counted (el-Fouly et al., 

1987, Cheng et al., 2001b, Cherian et al., 2003, Xia et al., 2010). Attempts to 

perform this method in the 3D co-culture failed. Therefore a different method, such 

as fluorescence replacement after photobleaching (FRAP), which involves turning 

cells fluorescent using a cell permeable dye and then using a confocal microscope to 

photochemically bleach cells to a sufficient level so that fluorescence recovery can 

be observed without damaging the cell (Kamioka et al., 2007, Ishihara et al., 2008, 

Sugawara et al., 2011, Wang et al., 2013), should be tested to confirm functional 

connectivity between osteocytes and also between these cells and surface osteoblasts. 

 

7.1.1.4 Mineralisation 

 

Although the 3D model is designed to investigate mechanically-induced 

osteogenesis in a similar in vivo physiological environment, it is not mineralised and 

so it would only represent interactions that occur in newly formed osteoid rather than 

mineralised bone. Several previous studies have shown the mineralisation of 3D 

collagen gels is possible with IDG-SW3 cells (Woo et al., 2011) and MC3T3-E1 

cells (Scully et al., 2013a, Scully et al., 2013b) both during differentiation to 

osteocytes, and therefore the 3D co-culture could be mineralised. Mineralisation of 
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the 3D collagen gel would affect the properties of the matrix and cell-ECM 

interactions. For example, it is known from bone in vivo that it is the mineral 

component of bone matrix, which gives bone its load-bearing strength and ability to 

withstand compression (Currey, 1984, Landis, 1995). This change in the 

biomechanical properties of the ECM after mineralisation has also been shown in 

vitro, where the ECM of both 3D collagen gels and monolayer cultures became 

gradually stiffer (Meng et al., 2009, Scully et al., 2013a). Furthermore, ECM 

composition has been shown to affect gene expression (Bissell et al., 1982) and 

osteoblast differentiation, cell number and behaviour (Prideaux et al., 2012, Scully et 

al., 2013a).  Therefore, mineralising the 3D co-culture would make the collagen gels 

stiffer and alter phenotype, further mimicking a physiological environment. 

However, if mineralisation of the 3D co-culture was to be carried out, further 

investigations should be done to test the mechanical properties of the mineralised 3D 

co-cultures as well as the viability and phenotype of the cells within the model and 

assess whether the medium nutrients can still diffuse to all areas of the 3D gel.  

 

7.1.1.5 Experimental variability 

 

A further limitation is that, even though data trends seemed to be constant in 

independent experiments, significant cross-experiment variability was observed on 

several occasions. One explanation for this variability is the way the model is set-up. 

The mixing of the osteocytes within the collagen solution is a crucial stage of the 

model set-up as it must be done carefully in order to avoid bubbles, but thoroughly in 

order to ensure the osteocytes are evenly distributed within the solution. If this 

method is not performed accurately, some 3D cultures will have more or less 

osteocytes than others, therefore creating cell number variability between 

experimental replicates which could lead to, for example, differences in amounts of 

connections formed between embedded osteocytes and in turn lead to discrepancies 

in loading responses. Cell phenotype, behaviour and signalling could also be 

affected. The solution to this experimental variability is to increase the osteocyte cell 

number being embedded within the gels. This increase in cell number will decrease 

the chance of inaccurately mixing more cells in some gels than others, which in turn 

will reduce the chance of observing differences in phenotype, connectivity and 
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signalling between experimental replicates. However, an experiment should be 

conducted in order to assess the best osteocyte cell density for the 3D co-culture, as 

too many cells may lead to, for example, the contraction of the 3D gels. 

 

7.1.1.6 Loading device 

 

The loading plate also has some limitations. Although the device elicited the 

same trend in cell response to mechanical stimuli every time it was used, the extent 

of the response was different between independent experiments. This difference 

could be attributed to the variability between experiments due to cell number or also 

due to the fact that the strains across the wells of the silicone plate may not be equal 

during the same loading episode. An attempt was made to measure the strains in 3D 

cultures within the wells of the silicone plate by applying a speckle pattern on the 

surface of 3D collagen gels within the silicone plate. However, the speckles were too 

big for the surface area to be analysed by the DIC cameras and the 3D gels were also 

found to reflect the light of the cameras, interfering with the readings. Strain testing 

by applying the speckle pattern to the base of the silicone plate, but with 3D collagen 

gels within the plate, may be a better solution and would reveal the range of strains 

being applied and whether they are equal across all wells of the plate. The properties 

of the silicone used to make the loading plate should also be tested under the same 

mechanical loading conditions used. This testing would give information on whether 

the elasticity of the silicone is maintained throughout several uses of the same plate 

or not. Finally, the adaptor used to attach the silicone plate to the BOSE loading 

instrument was a prototype and therefore a finalised version must be manufactured. 

The use of a string to pull on the plate and mini-rollers which are not permanently 

attached to the adaptor could also cause variability in the applied strains and 

therefore the cell response produced. The string of the adaptor is the link between the 

silicone plate and the BOSE loading instrument but the properties of the string need 

to be measured in order to determine whether its elasticity deteriorates, and thus 

whether this affects the strains in the wells of the plate. The mini-rollers, which aid 

movement of the plate, must be a permanent part of the adaptor. At the moment, the 

rollers are carefully manually positioned avoiding the wells of the plate. However, 

manual positioning does not guarantee the rollers will be on the same place every 
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time or that the rollers will not move underneath a well, causing different strains 

across wells and thus causing variable results. 

 

7.1.1.7 Human 3D co-culture model 

 

Although a human 3D co-culture model would be more meaningful in the 

study of osteocyte-osteoblast interactions, particularly if screening for novel 

therapeutic targets, the development of such model poses many obstacles, such as the 

lack of a human osteocyte cell line and the difficulty in obtaining human primary 

osteocytes (section 1.4.2.3.2). However, having a 3D mouse co-culture model is an 

advantage as all findings obtained using the 3D mouse model can be related to in 

vivo mouse models, which in turn are generally used to model human disease.  

 

7.2 Application of the novel 3D co-culture model 

 

 This thesis used the 3D co-culture model to investigate the roles of 

AMPA/KA and A2A receptors on mechanically-induced bone formation by inhibiting 

these receptors with specific antagonists. Preliminary data showed that NBQX, an 

AMPA/KA antagonist, appeared to have an anabolic effect as it induced PINP 

synthesis in non-loaded 3D co-cultures (Figure 7.2A) to levels equal to those induced 

by loading, 5 days after treatment (Figure 7.1B). Whereas, the A2A antagonist SCH 

442416 had an additive effect on bone formation in loaded cultures (Figure 7.2B). In 

loaded cultures, at day 1, the A2A antagonist increased osteoblast ALP mRNA 

expression to levels which were double of those observed in untreated loaded 

cultures (Figure 7.1B). Moreover, at day 5, the antagonist further increased PINP 

release by 1.9-fold (Figure 7.2B), when compared to untreated control cultures.   

 

 Both NBQX and SCH 442416 seemed to evoke similar osteogenic responses 

on the 3D co-culture. Therefore, it could be hypothesised that both AMPA/KA and 

A2A receptors work in a similar manner in bone cells. As previously stated, A2A is a 

metabotropic receptor (Jacobson and Gao, 2006) whereas AMPA/KA receptors are 

ionotropic (Wisden and Seeburg, 1993, Hollmann and Heinemann, 1994) (pages 36 

and 40). However, AMPA/KA receptors have also been shown to act as 
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metabotropic receptors as they can instigate intracellular signalling cascades 

involving G-proteins (Rao and Finkbeiner, 2007, Rodriguez-Moreno and Sihra, 

2007, Sihra and Rodriguez-Moreno, 2011). The A2A receptor has been shown to 

work through the phosphoinositide-3-kinase–protein kinase B/Akt (PI3K-PKB/Akt) 

pathway; by activating MAPK; or the cAMP-protein kinase A-cAMP response 

element-binding protein (cAMP-PKA-CREB) pathway (Jacobson and Gao, 2006). 

Whereas, during their metabotropic function, KA receptors can work through the 

phospholipase C-protein kinase C (PLC-PKC) pathway as well as the adenylate 

cyclase-cAMP-protein kinase A (AC/cAMP/PKA) pathway and AMPA receptors 

can activate CREB and MAPK. Although NBQX blocks both AMPA and KA 

receptors, it has a higher affinity for AMPARs (Herrling, 1997). Therefore, it could 

be hypothesised that the similar osteogenic responses observed as a result of A2A and 

AMPAR inhibition could be due to both these receptors acting as metabotropic 

receptors through MAPK. Usually an ionotropic response deactivates within sub-

seconds, whereas metabotropic responses are long-lasting (Rodriguez-Moreno and 

Sihra, 2007). To confirm a metabotropic action of AMPAR on bone formation 

markers, the osteogenic response should be assessed whether it is sensitive to 

inhibitors of the putative metabotropic signalling pathways involved, in this case 

MAPK. 

 

Nevertheless, this experiment must be repeated in order to confirm the 

NBQX and SCH 442416 effects.  Unfortunately, it was not possible to assess the role 

of CaSR in mechanotransduction in this thesis, even though CaSR is expressed in the 

3D model. As adenosine, calcium-sensing and glutamate signalling pathways have 

been shown to be synergistic in the CNS (page 43) the effects on mechanically-

induced bone formation markers of these antagonists in combination should also be 

investigated. 
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LOADED 
 

(5 min, 10 Hz, 2.5 N) 

AMPAR/KA  inhibition 
 

(NBQX) 
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(SCH 442416) 

LOAD LOAD 
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↑ ↑ ALP mRNA 
(3.5-fold) 

A B 

Figure 7.2 A summary of the results using the 3D model to investigate the role of AMPA/KA and A2A receptors in mechanically-induced bone formation. A) 

In a resting state, at day 5 post-treatment, inhibition of AMPA/KA receptors induced a similar anabolic response to that obtained by mechanical loading 

(Figure 7.1B). B) Mechanical loading and A2A inhibition appeared to have additive effects on bone formation which led to a doubling of ALP mRNA 

expression at day 1 and a 1.9-fold increase in PINP release at day 5 when compared to untreated control cultures (Figure 7.1B). 
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7.2.1 Further applications of the 3D model 

 

7.2.1.1 Screening for novel therapeutic targets 

 

Currently there is a lack of effective therapies for common bone diseases and 

thus there is a great need to search for novel therapeutic targets (section 1.3.3). This 

thesis showed how the 3D co-culture can be effectively used to test compounds 

which could influence bone formation (Chapter 6). If the 3D model was to be scaled 

up it could be used for mass-scale pharmaceutical screening of new therapeutic 

targets for bone diseases. Anabolic therapies for diseases such as osteoporosis are 

particularly scarce. Thus the effect of adenosine and glutamate receptor antagonists 

on mechanically-induced bone formation markers within the 3D model has provided 

a stepping stone to not only for the delineation of the roles of these signalling 

pathways in mechanotransduction, but also as possible novel anabolic drug targets 

which could be used as therapies for not only bone diseases such as osteoporosis, but 

also for joint diseases such as OA and RA where osteoporosis treatments have 

already been proven to be useful treatments. 

 

7.2.1.2 Studying bone formation mechanisms  

 

The cell lines used in this 3D model could be replaced by primary cells from 

rodent genetically modified (GM) models which would, for example, be useful to 

model bone diseases in vitro or determine the effects of deletion of a signalling 

component of interest. Furthermore, the addition of other cell types to the 3D model 

could also be of great interest in revealing new mechanisms underlying bone 

remodelling. Osteocytes orchestrate bone remodelling by regulating the activity of 

both osteoblasts and osteoclasts (Klein-Nulend et al., 2013) (page 13 and 1.5), thus, 

if osteoclasts or BMSCs were to be added, making the 3D model a tri-culture, it 

could also be used for the investigation of bone remodelling, by essentially 

modelling the BMU (Frost, 1990b). Furthermore,  vascular endothelial cells and/or 

nerve cells could also be added to the 3D model as bone is a highly vascular and 

innervated tissue (section 1.1) and both cell types have been shown to produce 

factors that influence bone remodelling (Collin-Osdoby, 1994, Beckman, 2002, 
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Persson and Lerner, 2011, Clarkin and Gerstenfeld, 2013, Ma et al., 2013, Maes, 

2013). This would allow the in vitro 3D co-culture model to be adapted into a highly 

physiological representation of the in vivo bone environment enabling the accurate 

investigation of the role of each of the aforementioned cell types in the remodelling 

process. 

 

7.3 Concluding remarks 

 

This thesis has provided evidence to support the hypothesis that a 3D 

osteocyte-osteoblast co-culture model represents a useful in vitro model for the 

investigation of the osteocyte-osteoblast interactions that lead to mechanically-

induced bone formation. This thesis also provided evidence for the expression of 

adenosine, calcium-sensing and glutamate signalling components within the model, 

facilitating future investigations of their roles in mechanically-induced osteogenesis. 

Preliminary experiments indicated that adenosine and glutamate signalling may each 

contribute individually to the regulation of mechanically-induced bone formation 

markers. The model would be improved, in the first instance, by increasing the 

osteocyte cell density in order to reduce experiment variability and increase 

osteocyte connectivity, using osteocytes which express mature osteocyte markers, 

demonstrating the functionality of cell-cell connections, and optimising the ECM by, 

for example, mineralisation of the 3D collagen gel. 
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9. Appendix 

 

9.1 Serum batch test results (page 51) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 Effect of new batches of FCS and NCS on MC3T3-E1(14) and MLO-Y4 

cell number. A) MC3T3-E1(14) cell number significantly decreased 12.85 % on day 

3 when cultured with test FCS. B) MLO-Y4 cell number significantly increased 8.3 

% on day 3 when cultured with test FCS. C) MLO-Y4 cell number significantly 

increased 6 % on day 2 when cultured with test NCS. Significant differences were 

obtained by t-test and are denoted by *P<0.05, ***P<0.001. 
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9.2 Solutions 

 

1X TBE 

 10X TBE was obtained from Promega and diluted 1:10 in dH2O. 

 

LB agar 

LB agar tablets were dissolved in dH2O (50 ml/tablet) by autoclaving twice. 

The solution was cooled to rt before adding ampicillin (100 µg/ml), IPTG 

(0.5 mM) and X-gal (40 µg/ml). The agar was then poured into 10 cm agar 

petri dishes and allowed to solidify aseptically. Plates were stored at 4°C until 

needed. 

 

LB broth 

LB broth tablets were dissolved in dH2O (50 ml/tablet) by autoclaving once. 

The solution was cooled to rt before adding ampicillin (100 µg/ml) and stored 

at 4°C until needed. 

 

Phosphate Buffered Saline (PBS) 

1.42 g/L di-sodium orthophosphate anhydrous (Na2HPO4) 

0.32 g/L sodium phosphate monobasic anhydrous (NaH2PO4) 

8 g/L sodium chloride (NaCl)   

Dissolved in 1 L of distilled water (dH2O). Solution was sterilised by 

autoclaving for tissue culture use only. 

 

4 % PFA 

4 g of PFA powder was diluted in 100 ml of PBS with continuous stirring 

whilst heated up to 60°C forming a milky solution. At 60°C NaOH (1 M) was 

added until the milky solution became clear. The solution was then adjusted 

to pH 7.4, aliquoted and stored at -20°C until needed. For specimen fixation, 

PFA was diluted to 1 % using PBS. 
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9.3 Low molecular weight DNA ladder (page 55) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.4 Example RT-qPCR cDNA standard curve (page 56) 

 

GAPDH (0.1 µM Primers, 3.5 mM MgCl2) 
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 9.5 pGEM®-T vector map and sequence reference points (page 61) 
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9.6 Examples of microplate assays standard curves 

 

Quant-iT™ dsDNA High-Sensitivity Assay Kit standard curve (page 54, 

fluorescence measured at 510/527 nm fluorescein wavelength) 

 

 

 

 

 

 
 

 

ELISAs 4 Parameter Logistic (4PL) standard curves (page 74) 

PGE2 (absorbance measured at 405 nm wavelength with correction between 570 and 

590 nm). 

 

 

 

 

 
 

 

IL-6 (absorbance measured at 450 nm wavelength with correction at 540 nm and 570 

nm). 

 

 

 

 

 
 

PINP (absorbance measured at 450 nm wavelength with correction at 650 nm). 
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9.7 Immunofluorescence controls for ColI staining (Figure 3.1) 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2 Type I collagen immunofluorescence controls. IgG (A) and PBST (B) 

controls showed no labelling. Scale bars: 200 µm. 
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9.8 MC3T3-E1(14) cells cultured on an empty 3D collagen gel (page 113) 

 

Toluidine blue staining 

 

Rings were drawn around cryosections on poly-lysine coated slides using an 

ImmEdge pen. Sections were washed in tap water (5 min), stained in toluidine blue 

solution (5 min), washed in tap water (5 min) and dried before mounting with DPX 

mounting medium. Slides were left to dry o/n before imaging with a digital camera 

attached to a light microscope (page 48). 4-6 sections were observed for each 

replicate. 

 

 

 

 

 

 

 

 

 

 

Figure 9.3 Osteoblasts cultured on empty 3D type I collagen gels. A) Light 

microscope image of a day 7 transverse cryosection stained with toluidine blue to 

reveal MC3T3-E1(14) cell bodies and nuclei. Image shows no invasion of MC3T3-

E1(14) cells into the empty 3D collagen gel. B) Light microscope image of a day 7 

transverse cryosection stained with toluidine blue to reveal MG63 cell bodies and 

nuclei. Image shows extensive invasion of MG63 cells into the empty 3D collagen 

gel as previously shown by (Mason et al., 2009, Mason D., 2009). Images are 

representative of 2 independent experiments, n=3 per experiment. Scale bars: 100 

µm. 
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9.9 MLO-Y4 total cell number raw data (page 114) 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.4 Graph shows variation in total cell number counted for each replicate gel 

at day 1 and day 7 in all 3 independent experiments. 

 

 

 

9.10 mGluR5 (NM_001081414.2) RT-PCR (page 119)  

 

Primers (5'-3') 
Amplicon 
size (bp) 

PCR conditions qPCR conditions Source 

  [Primers] 
&  

[MgCl2] 

Cycle 
Nº 

Tm 
(ºC) 

[Primers] 
&  

[MgCl2] 

Tm 
(ºC) 

 

Fwd - CAATTGATGGACGGAAACT 
179 

0.2 µM 

Primers 

2.5 mM 

MgCl2 

40 60 NI NI 
Dr Cleo 

Bonnet 
Rev - CCATTGTCCCAACTTCCAAC 

 

Optimised conditions for brain cDNA (positive control) only; NI: not investigated. 

 

 

 

 

 

 

 

1 Day 
Replicate 

7 
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Figure 9.5 mGluR5 mRNA expression in 3D co-cultures after 7 days. Gel 

electrophoresis showing expression of mGluR5 (179 bp) by RT-PCR in mouse brain 

(positive control), but absence of expression in the surface and deep zones of the 

model. Negative control (blank) was clean. Gel is representative of 3 independent 

experiments, n=3 for both surface and deep zones. 
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9.11 PGE2 release raw data (Chapter 5) 
 

For all tables in this section: ABS- absorbance; W/O- without; NSB- non-

specific binding; STDEV- standard deviation; SEM- standard error or the mean. 

Outliers are highlighted in yellow. 
 

 

 

Pilot experiment (24 hr time pre-load time) 

 

 

 

 

 
TIME  

POST-LOAD 
(hr) 

ABS W/O BLANK pg/ml x64 AVERAGE STDEV SEM 

CONTROL 

0 
0.58 0.395 33.47 2142.13 

1862.02 396.14 280.11 
0.634 0.449 24.71 1581.90 

0.5 
0.688 0.503 18.26 1169.23 

1206.55 52.78 37.32 
0.677 0.492 19.43 1243.88 

1 
0.679 0.494 19.21 1229.98 

1258.22 39.93 28.23 
0.671 0.486 20.10 1286.46 

3 
0.572 0.387 35.02 2241.81 

2430.22 266.44 188.40 
0.545 0.36 40.91 2618.62 

6 
0.601 0.416 29.73 1902.72 

1691.07 299.31 211.64 
0.646 0.461 23.11 1479.43 

12 
0.438 0.253 79.75 5104.16 

3564.23 2177.78 1539.92 
0.59 0.405 31.62 2024.30 

24 
0.503 0.318 52.52 3361.34 

2788.88 809.57 572.45 
0.574 0.389 34.63 2216.42 

LOADED 

0 
0.657 0.472 21.73 1391.29 

2306.44 1294.21 915.14 
0.51 0.325 50.33 3221.58 

0.5 
0.406 0.221 100.10 6406.70 

4632.91 2508.51 1773.78 
0.53 0.345 44.67 2859.12 

1 
0.543 0.358 41.39 2649.29 

2458.41 269.94 190.88 
0.57 0.385 35.43 2267.53 

3 
0.726 0.541 14.71 941.57 

3558.54 3700.95 2616.96 
0.411 0.226 96.49 6175.51 

6 
0.461 0.276 68.40 4378.18 

3799.88 817.83 578.29 
0.51 0.325 50.33 3221.58 

12 
0.531 0.346 44.41 2842.31 

4696.73 2622.54 1854.42 
0.403 0.218 102.36 6551.15 

24 
0.406 0.221 100.10 6406.70 

4118.05 3236.62 2288.64 
0.608 0.423 28.58 1829.41 

BLANKS ABS NSB ABS W/O BLANK 

1 0.19 1 0.187 0.002 

2 0.18 2 0.181 -0.004 

AVERAGE 0.185 AVERAGE  -0.001 
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24 hr time pre-load time experiments 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
TIME 

POST-
LOAD 

(hr) 
ABS W/O 

BLANK 
W/O 
NSB pg/ml x64 

NORMALISED 
TO CELL 
NUMBER 

AVERAGE 
0.5 hr 

CONTROL 

W/O 
AVERAGE 

0.5 hr 
CONTROL 

AVERAGE STDEV SEM 

CONTROL 0.5 

0.581 0.353 0.34 10.35 662.51 1417.64 

1311.30 

106.34 

-7.572E-14 320.31 184.93 0.617 0.389 0.376 6.87 439.83 951.34 -359.95 

0.571 0.343 0.33 11.47 734.46 1564.91 253.61 

LOADED 0.5 

0.601 0.373 0.36 8.31 532.30 1103.59 -207.70 

-231.53 110.88 64.01 0.601 0.373 0.36 8.31 532.30 1176.79 -134.50 

0.619 0.391 0.378 6.70 428.94 958.89 -352.40 

 

TIME 
POST-
LOAD 

(hr) 
ABS W/O 

BLANK 
W/O 
NSB pg/ml x64 

NORMALISED 
TO CELL 
NUMBER 

AVERAGE 
0.5 hr 

CONTROL 

W/O 
AVERAGE 

0.5 hr 
CONTROL 

AVERAGE STDEV SEM 

CONTROL 0.5 

0.538 0.31 0.297 15.78 1010.51 2505.40 

3136.84 

-631.44 

0 1605.71 927.05 0.557 0.329 0.316 13.18 843.83 1942.83 -1194 

0.497 0.269 0.256 22.82 1460.56 4962.29 1825.44 

LOADED 0.5 

0.574 0.346 0.333 11.13 712.36 2016.13 -1120.71 

-261.41 832.67 480.74 0.532 0.304 0.291 16.68 1068.04 2931.50 -205.33 

0.501 0.273 0.26 22.03 1410.14 3678.64 541.80 

BLANKS ABS NSB ABS W/O BLANK 

1 0.224 1 0.234 0.006 

2 0.232 2 0.248 0.02 

AVERAGE 0.228 AVERAGE  0.013 

276 

 



Chapter 9 
 

48 hr time pre-load time experiment 

 

 

 

 

 

 

 

72 hr time pre-load time experiment 

 

 

 

 

 

 

 

 

 

 

 

TIME 
POST-
LOAD 

(hr) 
ABS W/O 

BLANK 
W/O 
NSB pg/ml x16 

NORMALISED 
TO CELL 
NUMBER 

AVERAGE 
0.5 hr 

CONTROL 

W/O 
AVERAGE 

0.5 hr 
CONTROL 

AVERAGE STDEV SEM 

CONTROL 0.5 

0.332 0.157 0.139 195.66 3130.65 38970.94 

36086.32 

2884.61 

-1.21E-12 5383.80 3108.34 0.352 0.177 0.159 157.46 2519.43 29874.88 -6211.44 

0.364 0.189 0.171 138.76 2220.26 39413.14 3326.82 

LOADED 0.5 

0.354 0.179 0.161 154.15 2466.43 49002.38 12916.05 

36120.75 23135.11 13357.06 0.295 0.12 0.102 299.93 4798.98 72346.90 36260.58 

0.279 0.104 0.086 365.20 5843.31 95271.96 59185.63 

 

TIME 
POST-
LOAD 

(hr) 
ABS W/O 

BLANK 
W/O 
NSB pg/ml x16 

NORMALISED 
TO CELL 
NUMBER 

AVERAGE 
0.5 hr 

CONTROL 

W/O 
AVERAGE 

0.5 hr 
CONTROL 

AVERAGE STDEV SEM 

CONTROL 0.5 

0.374 0.199 0.181 125.14 2002.34 16502.86 

20676.18 

-4173.31 

0 8073.61 4661.30 0.384 0.209 0.191 113.05 1808.92 29982.31 9306.13 

0.458 0.283 0.265 55.69 891.14 15543.36 -5132.82 

LOADED 0.5 

0.379 0.204 0.186 118.92 1902.78 37067.39 16391.21 

15896.88 4090.89 2361.87 0.389 0.214 0.196 107.52 1720.38 32257.46 11581.27 

0.385 0.21 0.192 111.92 1790.80 40394.32 19718.14 

BLANKS ABS NSB ABS W/O BLANK 

1 0.171 1 0.19 0.015 

2 0.179 2 0.196 0.021 

AVERAGE 0.175 AVERAGE  0.018 
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7 days time pre-load time experiment 

 

TIME 
POST-
LOAD 

(hr) 
ABS W/O 

BLANK 
W/O 
NSB pg/ml x40 

NORMALISED 
TO CELL 
NUMBER 

AVERAGE 
 STDEV SEM 

AVERAGE 
W/O 

OUTLIER 
STDEV SEM 

CONTROL 0.5 

0.303 0.119 0.107 22.38 895.32 1305.13 

3613.08 4188.97 2418.50 1195.40 155.18 109.72 0.317 0.133 0.121 17.12 685.06 1085.67 

0.236 0.052 0.040 139.39 5575.96 8448.43 

LOADED 0.5 

0.28 0.096 0.084 37.05 1482.04 2322.95 

3152.26 753.79 435.20 3152.26 753.79 435.20 0.26 0.076 0.064 62.72 2509.02 3795.79 

0.264 0.080 0.068 55.99 2239.82 3338.04 

 

BLANKS ABS NSB ABS W/O BLANK 

1 0.186 1 0.2 0.016 

2 0.181 2 0.191 0.007 

AVERAGE 0.183 AVERAGE  0.012 
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9.12 IL-6 release raw data (Chapter 5) 

 

For all tables in this section: ABS- absorbance; W/O- without; STDEV- 

standard deviation; SEM- standard error or the mean. 

 

Pilot experiment (24 hr time pre-load time) 

 

 

 

 
TIME 

POST-LOAD 
(hr) 

ABS W/O BLANK pg/ml AVERAGE STDEV SEM 

CONTROL 

0 
2.455 2.333 531.85 

522.33 13.46 9.52 
2.414 2.292 512.81 

0.5 
1.646 1.5245 259.80 

356.19 136.31 96.39 
2.272 2.1505 452.58 

1 
2.185 2.0635 419.48 

368.46 72.15 51.01 
1.867 1.7455 317.44 

3 
1.13 1.0085 152.92 

249.99 137.27 97.06 
1.968 1.8465 347.06 

6 
2.277 2.1555 454.56 

368 122.42 86.56 
1.733 1.6115 281.43 

12 
1.764 1.6425 289.45 

260.02 41.62 29.43 
1.52 1.3985 230.59 

24 
1.834 1.7125 308.25 

338.95 43.42 30.70 
2.04 1.9185 369.66 

LOADED 

0 
1.389 1.2675 202.57 

173.50 41.10 29.06 
1.082 0.9605 144.44 

0.5 
1.701 1.5795 273.32 

235.49 53.49 37.82 
1.365 1.2435 197.66 

1 
1.075 0.9535 143.21 

133.46 13.79 9.75 
0.96 0.8385 123.71 

3 
1.101 0.9795 147.77 

114.76 46.68 33.01 
0.692 0.5705 81.75 

6 
1.012 0.8905 132.40 

130.89 2.14 1.51 
0.994 0.8725 129.37 

12 
1.067 0.9455 141.82 

138.22 5.10 3.60 
1.025 0.9035 134.61 

24 
1.257 1.1355 176.40 

145.57 43.60 30.83 
0.905 0.7835 114.73 

BLANKS ABS 

1 0.116 

2 0.127 

AVERAGE 0.121 

279 

 



Chapter 9 
 

24 hr time pre-load time experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TIME 

POST-
LOAD 

(hr) 
ABS W/O 

BLANK pg/ml 
NORMALISED 

TO CELL 
NUMBER 

AVERAGE 
0 hr 

CONTROL 

W/O AVERAGE 
0 hr  

CONTROL 
AVERAGE STDEV SEM 

 

0 

1.977 1.855 349.82 185.94 

188.05 

-2.11 

0 3.68 2.12 

CONTROL 

1.984 1.862 351.97 185.90 -2.14 

2.07 1.948 379.47 192.30 4.25 

0.5 
2.533 2.411 570.43 305.154 117.10 

107.32 
  
  

9.53 
  
  

5.50 
  
  

2.483 2.361 545.33 294.88 106.83 

2.466 2.344 537.10 286.10 98.05 

6 
2.571 2.449 590.45 287.55 99.50 

173.08 
  
  

80.31 
  
  

46.36 
  
  

2.695 2.573 662.21 349.02 160.97 

2.871 2.749 785.18 446.80 258.75 

24 
2.737 2.615 689.05 385.09 197.04 

279.45 
  
  

79.99 
  
  

46.18 
  
  

3.146 3.024 1053.37 544.85 356.80 

2.821 2.699 747.28 472.56 284.51 

LOADED 
 
 

0.5 
2.426 2.304 518.30 268.64 80.59 

101.12 
  
  

17.79 
  
  

10.27 
  
  

2.478 2.356 542.89 300.05 112.01 

2.461 2.339 534.71 298.83 110.78 

6 
2.668 2.546 645.67 349.13 161.08 

212.68 
  
  

53.68 
  
  

30.99 
  
  

2.838 2.716 759.88 456.29 268.24 

2.735 2.613 687.74 396.77 208.72 

24 
3.286 3.164 1248.10 740.56 552.51 

424.45 
  
  

181.87 
  
  

105.01 
  
  

3.268 3.146 1219.94 692.62 504.57 

2.965 2.843 864.19 404.33 216.28 

BLANKS ABS 

1 0.116 

2 0.127 

AVERAGE 0.121 
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TIME 

POST-
LOAD 

(hr) 
ABS W/O 

BLANK pg/ml 
NORMALISED 

TO CELL 
NUMBER 

AVERAGE 
0 hr 

CONTROL 

W/O AVERAGE 
0 hr  

CONTROL 
AVERAGE STDEV SEM 

 

0 

2.066 1.944 378.15 199.23 

218.38 

 

 

-19.14 1.89E-14 

 

 

22.37 

 

 

12.91 

 

 

CONTROL 
 

2.01 1.888 360.08 242.97 24.58 

1.982 1.860 351.35 212.94 -5.44 

0.5 

2.331 2.209 476.60 294.56 76.17 
161.01 

 
 

193.20 
 
 

111.54 
 
 

2.196 2.074 423.52 243.12 24.74 

2.768 2.646 709.80 600.51 382.12 

6 

2.707 2.585 669.73 404.92 186.53 
255.13 

 
 

95.74 
 
 

55.28 
 
 

2.821 2.699 747.28 582.90 364.52 

2.714 2.592 674.18 432.72 214.33 

24 

2.996 2.874 892.77 495.43 277.05 
247.56 

 
 

140.18 
 
 

80.93 
 
 

3.252 3.130 1195.77 589.04 370.66 

2.913 2.791 819.15 313.37 94.98 

LOADED 
 
 

0.5 

2.018 1.896 362.61 255.72 37.33 
113.80 

 
 

73.37 
 
 

42.36 
 
 

2.566 2.444 587.76 402.03 183.64 

2.432 2.310 521.07 338.80 120.41 

6 

2.839 2.717 760.63 474.80 256.41 
292.34 

 
 

58.04 
 
 

33.50 
 
 

2.984 2.862 881.54 577.68 359.30 

2.879 2.757 791.50 479.69 261.31 

24 

2.841 2.719 762.13 390.03 171.65 
174.68 

 
 

18.79 
 
 

10.85 
 
 

2.74 2.618 691.02 375.96 157.58 

2.741 2.619 691.68 413.19 194.80 

BLANKS ABS 

1 0.116 

2 0.127 

AVERAGE 0.121 
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48 hr time pre-load time experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLANKS ABS 

1 0.117 

2 0.118 

AVERAGE 0.1175 

 
TIME 

POST-
LOAD 

(hr) 
ABS W/O 

BLANK pg/ml x10 
NORMALISED 

TO CELL 
NUMBER 

AVERAGE 
0 hr 

CONTROL 

W/O 
AVERAGE 

0 hr 
CONTROL 

AVERAGE STDEV SEM 

 

0 

0.44 0.322 60.42 604.22 10725.92 

7980.21 

 

 

2745.71 0 

 

 

3111.01 1796.14 

CONTROL 
 
 

0.4 0.282 53.69 536.90 8613.41 633.20 

0.27 0.152 30.52 305.21 4601.30 -3378.91 

0.5 

0.712 0.594 104.89 1048.91 13057.09 5076.88 
3989.93 

 
3732.66 

 2155.05 0.473 0.355 65.90 659.03 7814.65 -165.55 

0.588 0.470 84.71 847.17 15038.69 7058.47 

6 

0.651 0.533 94.95 949.56 21913.11 13932.89 

7935.85 5387.06 
 3110.22 0.67 0.552 98.04 980.46 14348.32 6368.11 

0.691 0.573 101.46 1014.66 11486.77 3506.55 

24 

0.747 0.629 110.61 1106.17 14304.08 6323.87 

12351.79 6916.40 3993.18 1.252 1.134 198.89 1988.97 27883.01 19902.79 

0.707 0.589 104.07 1040.75 18808.92 10828.70 

LOADED 
 
 

0.5 

0.58 0.462 83.41 834.16 16572.91 8592.69 

6524.94 2595.09 1498.27 0.54 0.422 76.90 769 11593.03 3612.81 

0.646 0.528 94.14 941.43 15349.53 7369.31 

6 

0.59 0.472 85.04 850.42 13219.13 5238.91 

7036.80 1557.03 898.952 0.648 0.530 94.46 944.68 15921.72 7941.51 

0.628 0.510 91.21 912.18 15910.21 7929.99 

24 

0.673 0.555 98.53 985.34 16607.06 8626.84 

6506.74 3229.09 1864.31 0.644 0.526 93.81 938.18 16083.20 8102.99 

0.566 0.448 81.13 811.38 10770.60 2790.38 
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72 hr time pre-load time experiment 

 

BLANKS ABS 

1 0.117 

2 0.118 

AVERAGE 0.1175 

 
TIME 

POST-
LOAD 

(hr) 
ABS W/O 

BLANK pg/ml x10 
NORMALISED 

TO CELL 
NUMBER 

AVERAGE 
0 hr 

CONTROL 

W/O 
AVERAGE 

0 hr 
CONTROL 

AVERAGE STDEV SEM 

 

0 

0.358 0.240 46.47 464.73 7223.96 

7902.09 

 

-678.13 

-6.06E-13 889.58 513.60 

CONTROL 
 
 

0.364 0.246 47.51 475.16 8909.34 1007.25 

0.332 0.214 41.90 419.03 7572.97 -329.12 

0.5 

0.604 0.486 87.31 873.18 7196.57 -705.52 

2080.43 2429.49 1402.66 0.5 0.382 70.35 703.51 11660.58 3758.48 

0.459 0.341 63.58 635.84 11090.43 3188.33 

6 

0.583 0.465 83.90 839.04 13906.87 6004.78 

8898.65 6668.14 3849.85 0.938 0.820 142.48 1424.89 24426.94 16524.84 

0.515 0.397 72.81 728.12 12068.41 4166.32 

24 

0.47 0.352 65.40 654.07 8799.22 897.12 

7192.60 5867.99 3387.88 0.693 0.575 101.79 1017.92 16072.52 8170.42 

0.786 0.668 117.03 1170.30 20412.36 12510.26 

LOADED 
 
 

0.5 

0.43 0.312 58.74 587.49 11444.79 3542.70 

5532.48 1932.90 1115.96 0.569 0.451 81.62 816.26 15305.08 7402.98 

0.438 0.320 60.08 600.88 13553.85 5651.75 

6 

0.498 0.380 70.02 700.23 9173.38 1271.28 

1425.86 452.01 260.97 0.674 0.556 98.69 986.97 9836.98 1934.88 

0.549 0.431 78.36 783.68 8973.50 1071.41 

24 

1.095 0.977 169.90 1699.07 15261.16 7359.06 

3672.36 4470.89 2581.27 0.866 0.748 130.32 1303.22 12860.82 4958.72 

0.483 0.365 67.55 675.54 6601.40 -1300.68 
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9.13 Cell death raw data (Chapter 5) 

 

For all tables in this section: ABS- absorbance; W/O- without. 

 

Pilot experiment (24 hr time pre-load time) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 TIME POST-LOAD (hr) ABS W/O BLANK 

CONTROL 

0 
0.19 -0.020 

0.184 -0.026 

0.5 
0.203 -0.007 

0.196 -0.014 

1 
0.182 -0.028 

0.186 -0.024 

3 
0.201 -0.009 

0.194 -0.016 

6 
0.187 -0.023 

0.181 -0.029 

12 
0.203 -0.007 

0.198 -0.012 

24 
0.19 -0.020 

0.193 -0.017 

LOADED 

0 
0.193 -0.017 

0.196 -0.014 

0.5 
0.192 -0.018 

0.197 -0.013 

1 
0.193 -0.017 

0.2 -0.010 

3 
0.194 -0.016 

0.202 -0.008 

6 
0.196 -0.014 

0.195 -0.015 

12 
0.199 -0.011 

0.199 -0.011 

24 
0.193 -0.017 

0.199 -0.011 

BLANKS ABS 

1 0.207 

2 0.209 

3 0.216 

AVERAGE 0.210 
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24 hr time pre-load time experiments 

 TIME POST-LOAD (hr) ABS W/O BLANK 

CONTROL 

0 

0.201 -0.009 

0.215 0.004 

0.213 0.002 

0.5 

0.222 0.011 

0.21 -0.001 

0.205 -0.005 

6 

0.198 -0.012 

0.206 -0.004 

0.208 -0.002 

24 

0.222 0.011 

0.192 -0.018 

0.194 -0.016 

LOADED 

 
0.5 

0.209 -0.001 

0.214 0.003 

0.198 -0.012 

6 

0.21 -0.001 

0.213 0.002 

0.211 0.001 

24 

0.208 -0.002 

0.208 -0.002 

0.206 -0.004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLANKS ABS 

1 0.207 

2 0.209 

3 0.216 

AVERAGE 0.210 
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 TIME POST-LOAD (hr) ABS W/O BLANK 

CONTROL 

0 

0.2 -0.010 

0.202 -0.008 

0.202 -0.008 

0.5 

0.205 -0.005 

0.211 0.001 

0.209 -0.001 

6 

0.191 -0.019 

0.196 -0.014 

0.205 -0.005 

24 

0.212 0.001 

0.201 -0.009 

0.204 -0.006 

LOADED 

 
0.5 

0.208 -0.002 

0.214 0.003 

0.192 -0.018 

6 

0.202 -0.008 

0.201 -0.009 

0.204 -0.006 

24 

0.212 0.001 

0.215 0.004 

0.224 0.013 

BLANKS ABS 

1 0.207 

2 0.209 

3 0.216 

AVERAGE 0.210 
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48 hr time pre-load time experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 TIME POST-LOAD (hr) ABS W/O BLANK 

CONTROL 

0 

0.196 -0.036 

0.194 -0.038 

0.197 -0.035 

0.5 

0.198 -0.034 

0.200 -0.032 

0.194 -0.038 

6 

0.187 -0.045 

0.192 -0.04 

0.198 -0.034 

24 

0.199 -0.033 

0.193 -0.039 

0.192 -0.04 

LOADED 

 
0.5 

0.201 -0.031 

0.205 -0.027 

0.191 -0.041 

6 

0.200 -0.032 

0.198 -0.034 

0.192 -0.04 

24 

0.198 -0.034 

0.195 -0.037 

0.210 -0.022 

BLANKS ABS 

1 0.230 

2 0.232 

3 0.234 

AVERAGE 0.232 
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72 hr time pre-load time experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 TIME POST-LOAD (hr) ABS W/O BLANK 

CONTROL 

0 

0.195 -0.037 

0.192 -0.04 

0.204 -0.028 

0.5 

0.199 -0.033 

0.194 -0.038 

0.195 -0.037 

6 

0.189 -0.043 

0.190 -0.042 

0.200 -0.032 

24 

0.198 -0.034 

0.186 -0.046 

0.192 -0.04 

LOADED 

 
0.5 

0.206 -0.026 

0.197 -0.035 

0.192 -0.04 

6 

0.199 -0.033 

0.197 -0.035 

0.201 -0.031 

24 

0.192 -0.04 

0.199 -0.033 

0.203 -0.029 

BLANKS ABS 

1 0.230 

2 0.232 

3 0.234 

AVERAGE 0.232 
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7 days time pre-load time experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 TIME POST-LOAD (hr) ABS W/O BLANK 

CONTROL 

0 

0.237 -0.001 

0.227 -0.010 

0.251 0.013 

0.5 

0.21 -0.027 

0.214 -0.023 

0.203 -0.034 

LOADED  
0.5 

0.226 -0.011 

0.223 -0.014 

0.209 -0.028 

BLANKS ABS 

1 0.231 

2 0.229 

3 0.253 

AVERAGE 0.237 
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9.14 Cell death and PGE2 raw data (Chapter 6) 

 

For all tables in this section: ABS- absorbance; W/O- without. 
 

Cell death 
 

TIME 
POST-
LOAD  TREATMENT ABS W/O BLANK 

DAY 1 

CONTROL 

NBQX 

0.217 -0.019333 

0.24 0.003667 

0.232 -0.004333 

LOADED 

0.334 0.097667 

0.269 0.032667 

0.25 0.013667 

CONTROL 

SCH 442416 

0.241 0.004667 

0.254 0.017667 

0.227 -0.009333 

LOADED 

0.27 0.033667 

0.33 0.093667 

0.298 0.061667 

CONTROL 

UNTREATED 

0.233 -0.003333 

0.23 -0.006333 

LOADED 
0.225 -0.011333 

0.332 0.095667 

DAY 5 

CONTROL 

NBQX 

0.246 0.009667 

0.222 -0.014333 

LOADED 
0.223 -0.013333 

0.235 -0.001333 

CONTROL 

SCH 442416 
 

0.241 0.004667 

0.232 -0.004333 

0.229 -0.007333 

LOADED 

0.276 0.039667 

0.229 -0.007333 

0.222 -0.014333 

CONTROL 

UNTREATED 

0.244 0.007667 

0.242 0.005667 

LOADED 
0.231 -0.005333 

0.259 0.022667 

 

 

 

 

BLANKS ABS 

1 0.231 

2 0.237 

3 0.241 

AVERAGE 0.236333 
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PGE2 (0.5 hr post-load) 

 

 ABS W/O 
BLANK pg/ml NORMALISED 

TO ng DNA AVERAGE STDEV SEM 

CONTROL 

0.3 0.107 38.60 0.040 0.030 0.008 0.004 

0.331 0.138 17.12 0.025    
0.331 0.138 17.12 0.027    

LOADED 

0.325 0.132 20.14 0.033 0.023 0.011 0.006 

0.334 0.141 15.75 0.023    
0.318 0.125 24.25 0.011    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLANKS ABS NSB ABS W/O BLANK 

1 0.194 1 0.195 0.002 

2 0.192 2 0.188 -0.005 

AVERAGE 0.193 AVERAGE  -0.0015 

lo
g 1

0 
O

D
 (4

05
 n

m
) 

log10 PGE2 (pg/ml) 
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