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Summary of thesis

This thesis describes the use of the rarest high-mass and high-redshift galaxy
clusters to constrain cosmology, with a particular focus on the methodology of
Extreme Value Statistics (EVS).

Motivated by the prospect that even a single sufficiently high mass and
high redshift cluster can provide strong evidence agains a given cosmology, we
first use exact EVS to construct the probability density function (PDF) for the
mass of the most-massive cold dark matter (CDM) halo within a fixed redshift
volume. We find that the approximation of uncorrelated haloes is valid for
high mass haloes & 1015M� and large volumes r & 100h−1Mpc, which are also
required before the shape of the PDF converges to an asymptotic Generalised
Extreme Value (GEV) form. Furthermore, we show the GEV shape parameter
γ to be a weak discriminant of primordial non-Gaussianity on galaxy cluster
scales.

We then extend this analysis to real observations, predicting the PDF for
the most-massive galaxy cluster within an observational survey, showing no
cluster so far observed is significantly larger than the most-massive expected at
its redshift in a concordance cosmology. We also show how the predictions for
most-massive cluster with redshift are changed in cosmologies with primordial
non-Gaussianity or coupled scalar field dark energy.

Finally, we consider why this result appears at odds with some previous
analyses, reaffirming that they make use of a biased statistic and showing how
an equivalent unbiased one may be constructed. This is then used to rank
a comprehensive sample of galaxy clusters according to their rareness, with
the cluster ACT-CLJ0102-4915 found to be the most extreme object so far
observed. However, the observation of this (and all other clusters so far seen)
is shown to be a not unusual event in a concordance universe.
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Notation

Throughout this work, the Planck constant ~ and the speed of light c will be
given units such that ~ = c = 1.

Greek indices, α, β, . . ., run over the four spacetime labels 0, . . . , 3.

Latin indices, i, j, . . ., run over the three spatial indices 1, 2, 3.

Repeated indices are summed unless otherwise noted.

A dot over any object denotes the time derivative of that object. Hence,

∂

∂x0
α(x) =

1

c

∂

∂t
α(x) =

1

c
α̇(x).

A comma will be used to denote partial derivatives and a semi-colon to denote
covariant derivatives:

∂

∂xκ
A = ∂κA = A,κ,

∂

∂xβ
Aα − ΓκαβAκ = Aα;β.

The flat-space metric signature is ηµν = diag(−,+,+,+).

The affine connection, Γρµν , and the Reimann tensor, Rµ
νρσ are defined as

Γρµν =
1

2
gρσ
(

∂

∂xµ
gσν +

∂

∂xν
gσµ −

∂

∂xσ
gµν

)
,

Rµ
νρσ =

∂

∂xρ
Γµνσ −

∂

∂xσ
Γµνρ + ΓµαρΓ

α
νσ − ΓµασΓανρ.

The Ricci tensor is Rµν = Rα
µαν , and the Ricci scalar is R = gµνRµν .

The astronomical unit of solar mass, equivalent to 1.99 × 1030kg, shall be
denoted by M�.
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For a non-empty subset of R, S, we denote the supremum (or lowest upper
bound) as supS. A supremum y is the smallest value y ∈ R such that for all
x ∈ S, x ≤ y

Similarly, the infimum of S, denoted by inf is the greatest lower bound. An
infimum y is the largest value y ∈ R such that for all x ∈ S, x ≥ y
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Quidquid latine dictum sit, altum videtur.
Traditional
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Chapter 1

Modern Cosmology

These times are unfriendly toward Worlds alternative to this one.

– Thomas Pynchon, Mason & Dixon

1.1 A Brief History

Cosmology, the study of the Universe and our place within it, has spent the

past century making the transition from being a preserve of philosophy and

theology to becoming a true empirical science with large (very large) amounts

of observational data. In the first decades of the 20th century, the impact

of Einstein’s General Relativity and its solutions was to provide a physical

foundation on which a theory of a coherent ‘history’ of the entire Universe

could be built, be it expanding from a beginning, collapsing to an end or re-

maining static in perpetuity. The growth of observational data also allowed

early cosmologists to decide (somewhat after the fact) on the winner of the

famous Shapley-Curtis debate; the ‘spiral nebulae’ were in fact other galaxies

separated by great distances from our own Milky Way. The observations by

Slipher (1915) and Hubble (1929) that these galaxies appeared to be system-

atically receding in all directions caused another overturn in prevailing wisdom

by giving the first evidence that the Universe was expanding from an initial

much denser phase. Gamow (1948) (along with Herman and Alpher) consid-

ered the theoretical implications of this and predicted that this early epoch

must have consisted of a soup of protons, electrons and photons which con-

densed out, forming light elements in the process. This theory received some

spectacular supporting evidence in the form of the Cosmic Microwave Back-

ground discovered by Penzias & Wilson (1965), once they had realised it was
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1.1. A Brief History

not just pigeon debris on their radio antenna.

Technological advances drove continued improvements in telescopes, giving

the first hints that something was askew between the matter seen in the sky and

the familiar leptons and baryons more locally. Zwicky (1937) first proposed the

necessity of the existence of dark matter, which only strongly interacts with

gravity, and its presence in galaxy clusters in order to explain the motions of

the galaxies within them. As a succession of galaxy surveys probed ever larger

structures it became apparent that the shapes of cluster, voids and walls (and

stickmen) within them also required there to be a large amount of this invisible

matter. Observations of sound waves in the Cosmic Microwave Background

by a succession of telescopes on satellites and balloons throughout the 1990s

gave almost insurmountable evidence that this as yet physically unmodelled

form of matter makes up six times as much of our Universe as the form we

and everything we are familiar with is made from.

In another surprise, cosmology has managed to double bluff even Einstein.

After at first being regarded as his “biggest mistake,” when the inclusion of

a constant term in his gravitational theory in order to produce his favoured

static universe was rendered unnecessary by Hubble’s observation of expan-

sion, the Λ term was then rendered necessary again some seventy years later

by the observation that the rate of expansion was in fact accelerating (Riess

et al., 1998; Perlmutter et al., 1999). Since the turn of the millennium, cos-

mology has become a ‘precision’ science, with the exponential growth of data

from thousands of different observatories gathering data on dozens of differ-

ent cosmological probes. This has lead to the adoption and development of

sophisticated statistical techniques in order to select the best models and pa-

rameters for the theory to describe them all. The remarkable agreement of

an overwhelmingly large number of these observations on a particular model

has led to it being named the ‘concordance cosmology,’ with the current state

of the art described by the Planck Collaboration (2013b). Indeed, though a

vast menagerie of alternatives and extensions to this concordance model gen-

erates large numbers of (sometimes extremely long) articles and discussions,

new data has so far persisted in its support for the concordance model, to the

exasperation of some (hence the epigraph to this chapter).

This thesis will describe a new way of making inference on the cosmologi-

cal model by considering the masses of the very highest mass gravitationally

bound objects in the universe: dark matter haloes containing galaxy clus-

ters. Through the use of a novel statistical approach, that of Extreme Value

– 2 –



Chapter 1. Modern Cosmology

Statistics, we will see (perhaps unfortunately) that none of these objects so far

observed are so extreme as to cause problems for the concordance cosmological

model.

In this chapter, we will motivate our work by further discussion of cos-

mological models. We will begin in Section 1.2 by describing the constituent

parts of the concordance model along with its expansion history and growth of

perturbations in Section 1.3. Section 1.4 will provide an overview of plausible

extensions to the concordance model, before 1.5 discusses the various observa-

tional probes which have allowed cosmologists to gain our working model of

the Universe.

The base material in this chapter was sourced primarily from the text-

books of Peacock (1999), Dodelson (2003b) and Lyth & Liddle (2009); further

references are provided where relevant.

1.2 The Concordance Model

In this section we will describe the concordance cosmological model (so named

in order to emphasise the agreement of many independent observational probes)

as it appears in the summer of 2013, with the understanding that, of all the

cosmological models so far described, it represents the best fit to the greatest

amount of available observational data. The concordance model consists of

a universe containing baryonic matter, radiation, neutrinos, cold dark matter

(CDM) and dark energy, which are subject to Einstein gravity with kinematics

given by an expanding Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

with Gaussian perturbations seeded by an early period of accelerated expan-

sion. From an initial state in which the Universe is hot and dense enough such

that interactions between particles are strong enough to keep all in equilibrium,

the size of the spatial sections expands at a uniform rate in all directions. As

expansion proceeds, the temperature cools and interactions gradually drop out

of equilibrium, causing particle species to freeze out. Around the seed pertur-

bations in density, gravity causes increasing clumping of matter over time in

a hierarchical merger process, generating large scale structures in the CDM

of clusters, filaments and voids. Baryonic matter falls into the potential wells

created by CDM, shocks, virialises and creates galaxies and clusters of galax-

ies. Finally, another period of accelerated expansion begins due to a spatially

smooth cosmological constant dark energy.

The concordance model is usually understood in terms of the parameters
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1.2. The Concordance Model

Parameter Description Planck WMAP7

H0 = 100h Hubble rate of expansion today 67.0± 0.77 70.4
Ωbh

2 Energy density in baryons 0.02205± 0.00028 0.0226
Ωch

2 Energy density in CDM 0.1199± 0.0027 0.112
ΩΛ Energy density in dark energy 0.685+0.018

−0.016 0.728
zeq Matter-radiation equality redshift 3391± 60 3138
ns Scalar spectral index 0.9603± 0.0073 0.967
ln(1010As) Normalisation of perturbations 3.089+0.024

−0.027 2.42

Table 1.1: Parameters within the Concordance Cosmology from the Planck
satellite (Planck Collaboration, 2013b), combining results from the
CMB power spectrum and foreground lensing, with 68% confidence
level (CL) error regions. Also shown are the maximum likelihood
(ML) values from the WMAP satellite’s 7-year data (Komatsu
et al., 2011) combined with Baryonic Acoustic Oscillation and Hub-
ble constant data, which are used for much of the analysis in this
thesis.

within the constructed theory. A selection of important parameters within

the concordance model, as constrained by the Planck satellite (Planck Collab-

oration, 2013b) are displayed in Table 1.1. The Hubble parameter H0 gives

the rate of expansion of the Universe observed at redshift of zero; Ωb, Ωc and

ΩΛ give the fractions (of the critical density necessary for a flat, cosmological

constant-free universe to become asymptotically stationary) of the total energy

density of the Universe observed to exist in the form of baryonic matter, cold

dark matter (CDM) and as a cosmological constant; zeq gives the redshift at

which the fractional energy densities in matter and radiation were equal; ns

the scalar spectral index which determines which scales in the Universe will

cluster more strongly, large or small; and ln(1010As) gives the amplitude (at

a certain pivot scale) of the small perturbations from smoothness from which

large scale structure has grown. In this section we will give a brief description

of each of the relevant concepts.

1.2.1 Cosmological Principles

The number of plausible cosmological models is potentially infinite, but fortu-

nately there are two well-motivated principles which enable us to vastly reduce

this space of potential models. In order to do this we choose to assume certain

guiding principles which simplify the picture a cosmology needs to describe,

reducing the number of free parameters necessary to specify it, in accordance

with Occam’s Razor:
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Chapter 1. Modern Cosmology

Copernican Principle

On large scales within the Universe, human observers do not occupy a

privileged position. Hence, observations made by such observers should

reflect a ‘typical’ picture of the Universe.

Cosmological Principle

The Copernican principle applies to all observers. This implies that,

on large enough scales, the properties of the Universe are homogeneous

(invariant under spatial translation) and isotropic (invariant under rota-

tion).

These two principles are related to each other by the empirical observation of

isotropy: if we observe an apparently isotropic universe and assume we are not

occupying a special place within it, we must then conclude that the universe

is also homogenous.

The concordance model assumes these two principles to hold and is there-

fore an isotropic and homogeneous cosmology. However, there is a large liter-

ature on cosmologies which violate these two assumptions, such as Lemâıtre-

Tolman-Bondi (LTB) models (Garcia-Bellido & Haugbølle, 2008) and Bianchi

models (Pontzen & Challinor, 2007; Sung & Coles, 2011).

1.2.2 Einstein Gravity

One of the earliest ingredients of the concordance cosmological model is that it

exists with a metric theory of gravitation: general relativity (GR) as described

by Einstein (1915, 1916) and in innumerable textbooks, which has the action:

SEinstein−Hilbert =
1

16πG

∫
d4x
√−gR +

∫
d4x
√−gLm, (1.1)

where G is Newton’s gravitational constant, g is the metric which describes

the behaviour of 4-dimensional spacetime, R is the Ricci scalar and Lm is the

Lagrangian of the matter contents.

GR abandons the concepts of flat spacetime (described by a Minkowski

metric with line element ds2 = − dt2 + d~x2) and consequently that of a global

inertial reference frame or global co-ordinate system. Varying the action (1.1)

gives the relationship between the background spacetime its contents, known

as the Einstein field equations:

Gµν = 8πGTµν . (1.2)
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Here, the Einstein tensor Gµν is a combination of Ricci tensor Rµν and its

scalar contraction Rµ
µ = R:

Gµν = Rµν −
1

2
gµνR− gµνΛ. (1.3)

Rµν and R themselves are also functions of the metric gµν and describe the

curvature of the spacetime. On the right hand side of the equation, Tµν is the

stress-energy tensor, which contains information about the matter within the

spacetime. The dialogue between spacetime and contents implied by Equa-

tion (1.2) is summarised by the familiar credo (usually attributed to J. A.

Wheeler) spacetime tells matter how to move, matter tells spacetime how to

bend.

The cosmological constant Λ in Equation (1.3) appears as an integration

constant and was originally considered in order to allow solutions to the Ein-

stein equations which were static and did not evolve with time in accordance

with theoretical prejudices at the time. However, observations have inter-

vened (twice): first in the discovery the Universe is expanding, rendering Λ

unnecessary, and secondly in the more recent discovery that the expansion is

accelerating. As we will show in the next section, a Λ term in the Einstein

equations is capable of creating such accelerated expansion.

Stress-Energy

The stress-energy tensor in Equation (1.2) encapsulates the behaviour of mass-

energy within a spacetime. In the cosmological context, the stress-energy

tensor used is almost exclusively that of a perfect fluid: one which has no shear

or viscosity, being described only by its energy density ρ, isotropic pressure p

and 4-velocity Uµ:

T µν = (ρ+ p)UµUν − pgµν (1.4)

When considered in the frame which is comoving with respect to the expansion

or contraction of the universe, Uµ = (1, 0, 0, 0) and the stress-energy tensor of

a perfect fluid reduces to the simple form:

T µν = diag(−ρ, p, p, p). (1.5)

Different types of fluid are frequently parameterised using the equation of state

parameter w:

w ≡ p

ρ
. (1.6)
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We will describe behaviour of the particular fluids contained within the con-

cordance model in Section 1.2.4.

1.2.3 Expanding FLRW Metric

By considering the spatial symmetries inherent in the assumptions of isotropy

and homogeneity given by in the Cosmological Principle, the Einstein equa-

tions (1.2) may be solved to find the Friedmann-Lemâıtre-Robertson-Walker

metric:

ds2 = − dt2 + a(t)2

[
dr2

1−Kr2
+ r2 dΩ2

]
, (1.7)

where a(t) is the scale factor of the metric, which sets the size of spatial

sections. Throughout, the scale factor will be normalised such that it is unity

at the present day: a(0) = 1. The change over time of the scale factor a(t)

creates, on cosmological scales, a growth in the physical distance r represented

by a unit distance on a co-moving grid ~r(t) = a(t)~χ. This can be treated as

an observed recession velocity:

~v(t) = ~̇r(t)

= ȧ~χ =
ȧ

a
~r (1.8)

One of the founding observations of concordance cosmology was the observa-

tion by Hubble (1929) of a relationship between distance and recession velocity

of nearby galaxies implying that the Universe was expanding. The growth of

the scale factor between the time of emission of a photon and the time of its

observation will give a redshift (lengthening of wavelength λ):

1 + z =
λ2

λ1

=
a(t2)

a(t1)
, (1.9)

which allows the expansion between the two times to be calculated. It is worth

mentioning that the doppler redshift due to peculiar motions is a separate

effect to the overall gravitational redshift caused by expansion of the Universe.

Observation of redshift in photometry of Spectral Energy Distributions (SEDs)

and spectral lines allows relative recession velocities to be calculated, with

expansion inferred once peculiar motions have been accounted for. In honour

of the discovery of a non-static universe, the coefficient of this expansion H ≡ ȧ
a

is often referred to as the Hubble parameter (with the value at the present time

denoted by H0).
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K in Equation (1.7) represents the curvature of the spatial part of the

metric and may be positive (corresponding to parallel lines converging, as

on a sphere), zero (parallel lines staying parallel as in Euclidean flat space) or

negative (parallel lines diverge as on a saddle topology). Whilst K specifies the

behaviour of initially parallel lines, it does not completely specify the topology

of the universe, which may be multiply connected as in the case of a torus

or octahedron. Such non-trivial topologies can have viable cosmologies (e.g.

Niarchou & Jaffe, 2007), but are not considered in the concordance model as

they are not well supported by current observations.

By inserting the metric Equation (1.7) into the Einstein equations and

including a stress-energy tensor as given by Equation (1.4), it is possible to

derive the two Friedmann equations of motion for the scale factor a(t):(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− K

a2
(1.10)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (1.11)

By differentiating Equation (1.10), we may then find the continuity equation

for ρ (which may also be found by considering covariant conservation of stress-

energy T µν;µ = 0):

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (1.12)

The behaviour of a(t) in the first of these equations has three possible

solutions for a universe with Λ = 0 and no curvature K = 0. By defining the

critical density:

ρc =
3

8πG

(
ȧ

a

)2

, (1.13)

a universe with ρ < ρc will be open (expand forever) a universe with ρ > ρc

will be closed (collapse back to a final singularity) and one with ρ = ρc will

asymptotically approach ȧ = 0

1.2.4 ΛCDM Contents

In this section we will consider the different fluids which appear in the stress-

energy tensor describing the contents of the concordance cosmological model.

The density of a fluid X will be written as a fraction of the critical density

Equation (1.13):

ΩX =
ρX
ρc
. (1.14)
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Throughout, density parameters without arguments will be implicitly be eval-

uated at the present day, a = 1.

Baryons

In cosmology, any matter particles which are strongly interacting and massive

are referred to as ‘baryons’, including both electrons and true baryonic matter

(nuclei). The defining property of such material is that it is pressureless and

hence has an equation of state parameter wb = 0. Although baryonic matter

makes up all of the familiar and visible matter in the Universe including dust,

gas, stars, planets and people, the current best-fitting concordance model has

a baryon fraction of only:

Ωb = 0.049, (1.15)

less than 5% of the total observed density Ωtot ' 1. Furthermore, though this

value may be inferred from large scale probes such as the Cosmic Microwave

Background (CMB) (see Section 1.5.2), other inventories of baryons on cluster

and galactic scales imply many are ‘missing’ and not directly visible to us in

the local Universe (Nicastro et al. 2008, though see the Planck Collaboration

2013e).

Radiation – Photons and Neutrinos

In contrast to matter components, radiation (relativistic, massless particles) is

treated as a gas with pressure, giving an equation of state parameter wr = 1/3.

Energy density in radiation is expected to dominate the Universe at early times,

but is sub-dominant today (see Section 1.3). The energy density in radiation

is the sum of two components: photons and neutrinos Ωr = Ωγ + Ων .

From measurements of the CMB temperature and black-body spectrum,

the radiation energy density today is determined via the redshift of matter-

radiation equality (the point at which the behaviour of the universe transitions

from being dominated by radiation forms to matter forms), which can be

derived from observations of the CMB power spectrum:

Ωr =
Ωb + Ωc

1 + zeq

(1.16)

≈ 9.34× 10−5.

Photons remain tightly coupled to baryons in the primordial plasma until the

time of recombination, when conditions are cool enough to allow electrons and
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protons to become bound, lowering the cross-section for Compton scattering

and allowing photons to propagate.

Neutrinos are a particle within the standard model of particle physics, con-

sisting of three types which are extremely light (if not quite massless) and

interact only via the weak force. They are expected to decouple from the hot

plasma of the early universe at an earlier stage than photons, meaning pho-

tons acquire extra temperature from electron-positron annihilations which take

place after neutrino decoupling, giving slightly less energy density in neutrinos:

Ων = 0.68Ωγ.

Cold Dark Matter

CDM in the concordance model is treated as collisonless matter which is non-

relativistic well before the epoch of matter-radiation equality, but does not

strongly interact with baryons or radiation. Like baryonic matter it may be

described as pressureless dust with wc = 0. Hints of the existence of CDM

formed remarkably early, with Zwicky (1937) finding it necessary to invoke

a non-radiating form of matter in order explain observed motion of galaxies

within the Coma cluster. Observational evidence for the existence of CDM

has built since then in galaxies, galaxy clusters, large scale structure (LSS)

and the CMB with a best fit density given by (see Peebles, 2013, for a recent

review):

Ωm = 0.268. (1.17)

Though many of its properties (such as temperature and strength of coupling

to ordinary matter) are well constrained, a physical model for CDM is not yet

known. Several well-motivated candidates are available from particle physics,

and the search for a direct detection of such particles is ongoing (Feng, 2010).

Cosmological Constant Dark Energy

The dark energy component of the concordance model consists of a cosmo-

logical constant term (Λ in Equation (1.10)) which corresponds to a spatially

smooth dark energy which has negative pressure, w = −1. This negative pres-

sure will actually cause the rate of expansion of the universe to accelerate, as

well as keeping the energy density of the dark matter constant. The fractional

energy density in dark energy at the present time is measured to be:

ΩΛ = 0.685, (1.18)
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making up the majority of the current mass-energy content of the Universe.

Like dark matter, the physical nature of dark energy is the subject of much

theoretical consideration (Copeland et al., 2006, and Section 1.4 below). When

considered as a pure cosmological constant representing the energy density of

vacuum (i.e. empty spacetime), calculated from the zero-point energies in a

quantum field theory, the observed value of Λ is found to be between 1039 and

10121 times (depending on the cut-off scale) smaller than that expected. The

fact that Λ has such a value which is similar to the current energy density in the

Universe, is known as the ‘fine-tuning’ problem. A popular approach to solving

the problem is by assuming Λ = 0 and instead creating the observed accelerated

expansion from negative pressure with either another type of matter in the

stress-energy tensor or through changing the reaction of curvature to matter,

both prospects which will be discussed in Section 1.4.

Curvature

Though not actually an energy density, the amount of curvature in the Universe

can be parameterised in the same way as the fluids considered above. By

considering the total energy density Ωtot = ρ/ρc we can re-write the first

Friedmann equation as:

K

a2
= H2(Ωtot − 1) (1.19)

= H2(Ωm + Ωr + ΩΛ − 1),

motivating the use of ΩK = −K/(a2H2) to measure the deviation from flatness.

In the concordance model Ωtot is very close to one, implying a highly flat

universe with ΩK = −0.5 ± 6.5 × 10−3 (95% CL) as measured by Planck

Collaboration (2013b).

1.2.5 Gaussian Perturbations from Inflation

A cosmology with the other concordance ingredients expands from a hot big

bang phase, but a number of observations are problematic if we consider ex-

pansion through radiation, matter and dark energy dominated phases to the

present day:

� The highly flat nature of the Universe embodied by the measurement

of ΩK, as this is expected to be an unstable fixed point, implying the

Universe must have been even flatter in the past.
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now end
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Figure 1.1: From Baumann (2009). Left shows how shrinking of the Hubble
radius by inflation allows a previously small smooth patch to be
expanded to a scale larger than the currently observable region of
the Universe. Right shows evolution of a single scale during and
after inflation as it exits and re-enters the co-moving horizon.

� The lack of observable exotic particles, such as magnetic monopoles,

expected to be created during phase transitions in the very early, high

energy universe.

� The observation of patches of the CMB (see section Section 1.5.2) on

scales of ≈ 14Gpc as having been in causal contact at the time of recom-

bination, when the causal horizon of the Universe was only ∼ 200Mpc

All of these problems may be solved if the cosmological model includes a period

of inflation (as reviewed in Baumann & Peiris, 2009; Baumann, 2009) at early

times, with the added bonus of providing a method by which the Universe

may form structures, rather than remaining completely smooth. Figure 1.1

demonstrates the principle of inflation, in which accelerating expansion causes

the Hubble radius (aH)−1, the size of a region which may be in causal contact,

to shrink. This allows a smooth patch which was previously smaller than the

Hubble radius to be stretched across the horizon. After inflation ceases (aH)−1

grows once more, with inflated scales re-entering the causual horizon. For the

regions observable via the CMB to have been in, but then left, causal contact,

we need to shrink the Hubble radius:

d

dt

(
1

aH

)
< 0, (1.20)

which, by Equation (1.11), implies the growth of the scale factor must be

accelerating ä > 0. By considering the continuity equation we can then see

the required equation of state for accelerated expansion, w < −1/3. In the

– 12 –



Chapter 1. Modern Cosmology

concordance model, this accelerated expansion is caused by a single scalar field

known as the inflaton which dominates the energy density of the Universe as

its value slowly evolves down a flat potential. The Lagrangian for such a simple

scalar field inflaton is:

L =
1

2
gµν∂µ∂νϕ− V (ϕ) (1.21)

and equation of state:

wϕ =
pϕ
ρϕ

=
1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

. (1.22)

The inflaton is thus capable of giving negative pressure and accelerated expan-

sion when the potential energy term dominates over the kinetic one, ϕ̇2 � V (ϕ)

requiring that the inflaton slowly rolls down its potential. In order for inflation

to proceed for long enough (∼ 50 e-folds) the potential is also required to be

extremely flat. These two conditions are embodied in the slow roll parameters:

ε(ϕ) ≡
m2

pl

2

(
V ′

V

)
(1.23)

η(ϕ) ≡ m2
pl

V ′′

V
, (1.24)

with |η|, ε < 1 necessary for inflation (prime represents derivative with respect

to ϕ). When these conditions are satisfied, the scale factor will increase almost

exponentially with a constant Hubble rate:

a(t) ∼ exp(Ht) (1.25)

as in a de Sitter spacetime. This allows the Hubble radius to decrease, tak-

ing previously connected regions out of causal contact, driving the Universe

asymptotically towards flatness and diluting relics from high energy phase

transitions.

A second feature of inflation is its ability to form the seeds for structure

formation later in the universe. When quantised, the scalar field ϕ will have

fluctuations δϕ around its homogeneous mean value: ϕ(~x) = ϕ̄ + δϕ(~x). The

physical size of these fluctuations will scale with the exponential expansion

during inflation, all the way up to the Hubble radius and larger. By consid-

eration of the ground state oscillations of a quantised singular, slowly-rolling

inflaton field, it is also possible to show that the distribution of these fluc-
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tuations should be Gaussian to a very high degree, with random phases and

Fourier modes evolving independently of one another.

Because fluctuations are continually being created and inflated away, it is

expected that there is an equal amount of power in all spatial scales, denoted

by wavevector k, giving the Harrison-Zel’dovich power spectrum:

P (k) = Ask
ns (1.26)

with the scalar spectral index ns = 1 and an overall amplitude in the pertur-

bation given by As. However, in order for the evolution of the Universe to

proceed through its standard hot big bang phase and through to the present

day, inflation must come to a smooth end. Inflation must thus slow, giving a

small departure from the ns = 1 scale-invariant case. This is a key prediction

of an inflationary cosmology and has been borne out by observations of the

CMB, which give a value of ns = 0.96 ± 0.0073, a 5σ detection of non-scale-

invariance.

After inflation slows, ϕ ceases to dominate the energy density and decays

into the other types of matter listed above in a process known as reheating

(as reviewed by Allahverdi et al., 2010), from which a standard hot big bang

cosmology may proceed.

1.3 Evolution

In this section, we will discuss the behaviour of an expanding universe with the

concordance make-up and initial perturbations in the densities of the contents

seeded by inflation

1.3.1 Behaviour of Contents

By either combining the Friedmann equations or considering the conservation

of stress energy we find the continuity Equation (1.12), which can be written

as:
d ln ρ

d ln a
+ 3(1 + w) = 0. (1.27)

Solving this equation gives ρ ∝ a−3(1+w), allowing us to follow the evolution

of the density of the different fluids discussed in Section 1.2.4 as the universe
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expands. We find:

Relativistic matter (w = 1/3) Ωr ∝ a−4

Non-relativistic matter (w = 0) Ωm ∝ a−3

Curvature (w = −1/3) Ω‘k′ ∝ a−2

Cosmological constant (w = −1) ΩΛ ∝ a−0

General (w) ΩX ∝ a−3(1+w)

Because the different constituents dilute at different rates, the universe is ex-

pected to go through periods during which each dominates the evolution, as

demonstrated in Figure 1.2. An important point (because, as we shall see

in the next section, perturbations evolve qualitatively differently before and

after) is the redshift of matter-radiation equality:

1 + zeq =
Ωm

Ωr

(1.28)

' 3391

the value of which has a discernable effect on the power spectrum of fluctua-

tions (see section 1.3.3).

Using these expressions for densities as a function of a (which may be

readily converted to z), it is then possible to re-write first Friedmann Equa-

tion (1.10) as:

E(z) ≡ H(z)

H0

=
√

Ωr (1 + z)4 + Ωm (1 + z)3 + ΩK (1 + z)2 + ΩΛ, (1.29)

known as the Hubble function, which shows explicitly how the background

expansion depends on the contents of the universe. This may be used to define

the angular diameter distance to an object at redshift z from an observer:

Da(z) =
1

(1 + z)

∫ z

0

dz′

E(z′)
(1.30)

and in turn the co-moving volume element at a given redshift:

dV

dz
=

4π(1 + z)2D2
a(z)

E(z)
. (1.31)
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Figure 1.2: The evolution of the different constituent types of matter in the
concordance cosmology, showing transitions between radiation,
matter and dark energy domination.

1.3.2 Thermal History

If we decrease the scale factor and consider the Universe as it becomes hotter

and denser towards the initial time, the many particle species within are ex-

pected to become more and more strongly coupled — that is, they will interact

more often. If a particle’s interaction rate ΓX is larger than the expansion rate:

ΓX > H (1.32)

then we may reasonably expect it to have interacted at least once in the his-

tory of the Universe. For ΓX � H, it is possible to regard the particle as

being in thermal equilibrium. Because interaction rates are typically propo-

tional to temperature and density, as the early Universe cools, particle species

will freeze-out (cease interacting) and no longer be in thermal equilibrium.

Particles which are relativistic at freeze-out (such as neutrinos) are referred to

as hot relics, whilst those which are non-relativistic (such as CDM) are cold

relics. Three important examples of considerations of thermal relics include the

relative abundances of light elements from Big Bang Nucleosynthesis (BBN)

(section 1.5.1), the freezing out of photons to form the CMB (section 1.5.2)

and the (expected to be very early) decoupling of CDM particles leaving them
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with only gravitational and weak interactions.

1.3.3 The Perturbed Universe

One of the most fundamental observations we can make of the Universe is

that, whilst it appears to be homogeneous and isotropic on large scales, it is

not completely smooth and structure exists: galaxy clusters, galaxies, stars,

planets and people all represent such small-scale inhomogeneities. We have

seen in 1.2.5 how inflation is capable of creating such density perturbations

by taking quantum fluctuations and stretching them to scales larger than the

Hubble volume. The perturbations generated are expected to be adiabatic,

with equal over and under-densities in all forms of matter (an alternative would

be isocurvature perturbations, where the total energy density is kept constant).

In this section, we will see how these perturbations evolve from their initial

state to the present epoch. For now, we will consider linear scales, where the

density contrast δ < 1. Using smaller scale, non-linear structures to constrain

cosmology is a major theme of this thesis and will hence be introduced in its

own chapter (2).

Correlation Functions and Power Spectra

We begin by defining the density contrast of a quantity in terms of the local

density compared with the global average density ρ̄:

δ(~x) ≡ ρ(~x)− ρ̄
ρ̄

, (1.33)

which can be transformed into Fourier space with the transform:

δ(~k) ≡
∫

d3x δ(~x)ei
~k·~x, (1.34)

along with the condition that, even if the Fourier modes are complex variables,

the real-space density field must remain a purely real quantity: δ∗(~k) = δ(−~k).

Because the inflaton fluctuations in the early universe are expected to be

due to truly stochastic quantum effects, we do not make predictions for the

actual values of the density field, instead concerning ourselves with statistical

quantities such as the two point correlation function:

ξ( ~x1, ~x2) ≡ 〈δ( ~x1)δ( ~x2)〉, (1.35)
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where the angle braces represent an ensemble average over all realisations.

The ergodic hypothesis asserts that this ensemble average is equivalent to a

spatial average at fixed ~x1 − ~x2 for a single realisation. Furthermore, if we

consider our density field to be homogeneous, then the correlation function

will be invariant under translation and hence a function only of the separation

between the two points ξ(~r) ≡ 〈δ(~x)δ( ~x1 − ~x2)〉. Because Fourier modes of

Gaussian-distributed variables will evolve independently of each other under

gravity, we are also frequently interested in the Fourier transform of the two-

point correlation function, the Power Spectrum:

P (k) ≡ 〈δ(~k)δ∗(~k′)〉 → δ(~k − ~k′)〈|δ(k)|2〉, (1.36)

where we have also assumed isotropy to remove the dependence on the direction

of the wavenumber k. In this homogeneous, isotropic case we can relate the

two quantities as:

ξ(r) =
1

(2π)2

∫
d ln k P (k)k3 sin(kr)

kr
, (1.37)

where the dependence of ξ only on the magnitude r is again from the assump-

tion of isotropy. As discussed in Section 1.2.5, P (k) represents the relative

amplitude of fluctuations on a scale k. A useful quantity is the dimensionless

power spectrum:

∆2(k) =
1

(2π)2
k3P (k). (1.38)

which expresses the level of fluctuations in a logarithmic interval around k.

Perturbations in the Newtonian Limit

As a simplfied case, we can treat perturbations on a scale much smaller than

the Hubble scale (which are, by definition, small), and consider their evolution

in the Newtonian limit. This involves solving the equations of motion for a

perfect fluid in an expanding background, requiring the use of the convective

derivative (the derivative with respect to the moving co-ordinate system):

D

Dt
=

∂

∂t
+ ~v · ~∇. (1.39)

The evolution of the fluid in terms of the velocity v, the pressure p, density

ρ and Newtonian gravitational potential Φ can then be specified by the Euler
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equation:
D~v

Dt
= −

~∇p
ρ
− ~∇Φ, (1.40)

the energy equation:
Dρ

Dt
= −ρ~∇ · ~v, (1.41)

and the Poisson equation:

∇2Φ = 4πGρ. (1.42)

In the case of a completely smooth, unperturbed fluid the solutions to this set

of equations are:

ρ(0) = ρ(0)(t0)a−3(t) (1.43)

~v(0) =
ȧ

a
~r (1.44)

~∇Φ(0) =
4πGρ(0)

3
~r. (1.45)

This recovers the expected dilution of matter density, the Hubble expansion

and Newtonian gravity. We then add first-order perturbations to each of the

quantities (e.g. ρ = ρ(0) + δρ) and move to the Fourier domain, finding the

solution:

δ̈ + 2Hδ̇ −
(
c2
s

k2

a2
− 4πGρ(0)

)
δ = 0, (1.46)

where c2
s = ∂p/∂ρ, the sound speed of the fluid. In the case without expansion,

this reduces to the equation for a harmonic oscillator, with solutions

δ±(t) = A± exp

(
±it
√
c2
sk

2 − 4πGρ(0)

)
. (1.47)

This will have two sets of solutions: when the term in the square root is

negative the two solutions will represent growth and decay of the perturbations,

whilst when it is positive δ will oscillate with time. The scale representing

transition between these cases is known as the Jeans scale:

kJ =

√
4πGρ(0)

c2
s

. (1.48)

Putting the expansion back in, we can consider some interesting cases. For

a small k � kJ scale perturbation in a universe which is flat and matter

dominated, with Ωm = 1 the growth of structure goes as a power law, slower
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than the non-expanding case:

δ+(t) = A+

(
t

t0

)2/3

. (1.49)

For a universe dominated by smooth radiation, the growth of structure is only

logarithmic:

δ(t) = A+ ln

(
t

t0

)
+ C. (1.50)

Whilst these results are found as limiting cases in the Newtonian theory, the so-

lutions of power-law growth in a matter dominated era and logarithmic growth

in a radiation dominated one persist in the full relativistic case. The result is

important as it causes a distinctive ‘knee’ in the power spectrum of fluctua-

tions P (k) at the scale corresponding to matter-radiation equality; the large

scale modes which entered the horizon after zeq have grown at a faster rate

than the small scale ones which entered before.

Processing of the Primordial Power Spectrum

The initial power spectrum of fluctuations generated by inflation is expected

to be a nearly scale-invariant (nearly) Harrison-Zel’dovich spectrum P (k) =

Ask
ns . These perturbations in the inflaton energy density can also be related

to perturbations in the Newtonian gravitational potential Φ (where we will

suppress the δ and refer to the small perturbations only as Φ). After their cre-

ation, these perturbations are processed by a number of physical effects before

they may be observed. These processes are normally separated into a scale

dependent transfer function T (k) and a time dependent linear growth function

D+(a), giving the modes of the processed potential from the primordial one

Φp:

Φ(~k, a) = Φp(~k)× transfer function(k)× growth function(a). (1.51)

The transfer function accounts for radiative and dissipative processes, whilst

the linear growth function corresponds to the scale-independent enhancement

of the power spectrum due to gravity.

In the limit of large scales and no radiation (as is true at late times in the

Universe), the potential may be related to the overdensity using the Poisson
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equation, giving:

δ(~k, a) =
3

5

k2

ΩmH2
0

Φp(~k)T (k)D+(a). (1.52)

The transfer function T (k) may be found by considering the coupled Einstein-

Boltzmann equations. The Einstein equations govern interaction between the

different matter contents and the metric and the Boltzmann equations the

evolution of the phase space distribution of the contents. Because components

of the contents interact with each other via a variety of forces, and all interact

with the potential, solution of these coupled differential equations is difficult.

However, approximations can be made in order to find valid solutions (Bardeen

et al., 1986; Eisenstein & Hu, 1998) and the full set of equations may be solved

numerically (Lewis et al., 2000).

Figure 1.3 shows the calculated transfer functions for a number of different

matter constituents, showing a number of important features. In the case of

CDM, the transition between small scales, which are within the horizon during

radiation domination and hence are suppressed in comparison to the large

scales can be clearly seen. For baryons, the scale at which this transition occurs

is visibly larger due to the heating by tightly coupled photons erasing small

scale structure and oscillatory features can also be seen. These oscillations

are due to the competing forces of gravitational collapse and pressure support

during the period before recombination in which the baryons and photons are

a tightly coupled plasma and represent an extremely useful observational tool,

as will be described in Section 1.5.

At times much latter than zeq, we may consider the Universe to be domi-

nated by CDM (and later Λ) only. In this regime, the only process important

in growth of perturbations is gravity, which due to Birkhoff’s theorem will

cause them to grow in a scale (k) independent way as mass clumps together.

The general growing solution to the evolution equation for perturbations in

this case is the linear growth function:

D+(a) =
5Ωm

2

H(a)

H0

∫ a

0

da′
(

H0

a′H(a′)

)3

, (1.53)

which acts simply to scale the power spectrum, increasing its amplitude as

the scale factor increases. The growth factor D+(a) is usually normalised such

that D+(a = 1) = 1.
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Figure 1.3: Transfer functions for various types of matter described in the
text, including isocurvature perturbations and Hot Dark Matter.
The dependance of the steepness of the small-scale cutoff on the
matter temperature can be clearly seen.
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1.4 Extensions to the Concordance Model

Now we will consider three physically motivated extensions to the concordance

model described above. Though the space of alternative models and extensions

is effectively infinite, the three here are some of the best-motivated and most

discussed in the literature at the present time.

1.4.1 Primordial non-Gaussianity

Primordial non-Gaussianity (reviews by Bartolo et al., 2004; Chen, 2010; Des-

jacques & Seljak, 2010) involves the alteration of the inflation stage of the

concordance model (Section 1.2.5) so as to make the generated fluctuations

follow a distribution other than a Gaussian. In order to make sense of such

a large number of possibilities for non-Gaussianity, a simple ansatz (due to

Komatsu & Spergel, 2001) is to consider adding the square of the local value

of the linear fluctuation field Φ:

Φ(~x) = ΦL(~x) + f local
NL (Φ2

L(~x)− 〈Φ2
L(~x)〉), (1.54)

where the factor f local
NL determines the amount of non-Gaussianity. Because the

primordial fluctuations, measured by the CMB, are O(10−5), this implies the

distribution is highly Gaussian for reasonable values of fNL.

More generally, because all of the n-point (k-space) polyspectra of a fluc-

tuation field 〈Φ(~k1)Φ(~k2) . . .Φ(~kn)〉 are zero for a Gaussian for n > 2 and odd

(and combinations of lower-order terms for n > 2 and even), this is frequently

the place in which we look for non-Gaussian information, starting with the

n = 3 case, the Bispectrum BΦ:

〈Φ(~k1)Φ(~k2)Φ(~k3)〉 = (2π)3δDirac(~k123)BΦ(k1, k2, k3), (1.55)

where the cosmological assumption of isotropy removes the dependence on the

direction of the ks and conservation of momentum means the three vectors

must form a closed triangle. Rather than the two dimensional power spec-

trum, the bispectrum is a three-dimensional function and the picture over

large ranges of k in observational data can be difficult to evaluate numerically.

Hence, limiting cases for the shapes of the triangles are typically considered:

the local form f local
NL corresponding to “squeezed” triangles k3 � k1 ∼ k2,

the equilateral form f equil
NL with k1 = k2 = k3 and the folded form f fold

NL with

k1 = 2k2 = 2k3. In terms of the moments of the fluctuation distribution, the
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integral of the bispectrum over all k is proportional to the skewness of the dis-

tribution: a positive skewness will give the distribution an enhanced high-value

tail, whilst negative skewness enhances the probability of low fluctuations.

These cases also correspond to particular modifications to the field theory

which causes the inflationary period. Though the fiducial model of a single,

slowly-rolling scalar field with a simple Lagrangian and initial conditions will

generate no observable bispectrum, a number of physically motivated alter-

ations to this picture will each generate a specific signature in the different

bispectrum triangle shapes:

� f local
NL is principally generated by models in which multiple scalar fields

are present during inflation

� f equil
NL can be generated by models which do not have ‘canonical’ kinetic

terms in the Lagrangian (e.g. with higher powers of the term (∂µϕ)2).

� f fold
NL may be generated in models which have initial conditions for the

scalar field other than the expected Bunch-Davies vacuum.

An important analysis by Maldacena (2003) showed that, even for the fiducial

single field, slow-roll inflationary scenario, levels of primordial non-Gaussianity

fNL ∼ O(1) may be generated. The current best constraints on primordial

non-Gaussianity are given by the Planck Collaboration (2013d) as:

f local
NL = 2.7± 5.8

f equil
NL = −42± 75

f fold
NL = 178± 781.

Various theories of inflation will also generate higher order polyspectra, such as

the n = 4 trispectrum, parameterised by gNL, and the n = 5 quadraspectrum

τNL.

1.4.2 Modified Gravity

Another frequently discussed modification to the concordance model is the

proposition of removing the need for a finely-tuned vacuum energy cosmolog-

ical constant in the Einstein equations by instead altering the way the curva-

ture reacts to mass-energy. This is a subject which has received much interest,

1The Planck Collaboration (2013d) give constraints for several ‘targeted’ bispectrum
shapes corresponding to non-Bunch Davies (‘NBD’) initial conditions. This constraint cor-
responds to the most-folded model.
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as the size of the review by Clifton et al. (2012) demonstrates. Modifica-

tions to gravity can also be proposed to do away with the need for CDM, as

in MOdified Newtonian Dynamics (MOND) and its relativistic generalisation,

the Tensor-Vector-Scalar (TeVeS) theory (Famaey & McGaugh, 2012). Rather

than considering modified gravity models one-by-one, a number of parameter-

isations have been proposed which characterise differences in behaviour from

GR. Broadly, there are two approaches, parameterising theories, as in Baker

et al. (2011), who consider the most general modifications which may be made

to metric theories of gravity, or observables quantities as in Linder (2005) who

makes a prediction for the growth parameter γ defined as:

d ln δ

d ln a
= Ωm(a)γ, (1.56)

and has the value γ = 0.55 for GR with a cosmological constant term.

As an example, a simple modification involves changing the Einstein-Hilbert

action:

SEH =
1

16πG

∫
d4x
√−gR, (1.57)

by including higher order terms of the Ricci scalar R→ R+f(R). Along with

an FRW metric, this action leads to a modified Friedmann equation:

H2 =
8πG

3
ρ+ fR(HH ′ +H2)− f

6
−H2fRRR

′. (1.58)

where the subscript R represents d
dR

and the prime d
d ln a

. This can be compared

to the concordance version:

H2 =
8πG

3
(ρm + ρΛ). (1.59)

to yield a second order differential equation for f(R). We are then able to freely

pick from the family of solutions to this equation to mimic the concordance

cosmology’s background evolution. However, it is still possible to distinguish

between models with Λ dark energy and modified gravity, as modifying the field

equations will affect the formation of large scale structure. The new dynamics

of Equation (1.58) alter the Poisson Equation (1.42) and enhance the growth

of gravitational perturbations and also affect the spherical collapse mechanism

by which structures form. Both of these factors are capable of enhancing the

growth of structures at different times compared to concordance predictions.

However, this ‘fifth force’ effect is required to disappear on small scales where
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there are stringent constraints on modifications to GR, requiring a screening

mechanism such as the chameleon mechanism (Khoury & Weltman, 2004).

Another modified gravity model of interest is the Dvali-Gabadadze-Porrati

(Dvali et al., 2000) (DGP) model, in which the posited true five dimensional

nature of the spacetime bulk manifests itself in modified gravity within the

four dimensional brane on which the observable universe lies. This leads to

weakened gravitation and hence modified expansion (allowing for accelerated

expansion without dark energy) and structure formation.

1.4.3 Scalar Fields

We may also consider both the dark matter and/or the dark energy components

included in T µν to be in the form of scalar fields (we have already seen how a

scalar field may drive accelerated expansion in Section 1.2.5). An observable

consequence of such a model is expected to be in the form of a time variation

of the dark energy equation of state parameter w(z), dependent on the form

of the scalar field and its potential. Exactly analogous to the inflaton in the

early universe, but with potentials which are able to give late-time expansion

instead are the scalar Quintessence fields. These often have power law or

exponential potentials (which have the desirable property of having tracking

solutions which solve the fine-tuning problem) motivated by theories of high

energy physics such as string theory and supergravity. A significant subset

of quintessence theories also invoke coupling of the dark energy component

to the CDM and/or baryonic matter (Amendola, 2000; Baldi et al., 2010),

providing a natural way for the energy density of dark energy to track that of

the Universe.

Phenomenologically, dynamical dark energy theories are expected to be

observable via their effect on the background through the time varying equation

of state and through their role in the formation of large scale structures (see

Chapter 2). A consequence of the tracker behaviour of quintessence models

is a period of Early Dark Energy (EDE), in which the dark energy has a

high ΩDE at early times, but its equation of state is such that it does not yet

drive accelerated expansion (but later asymptotes to w(zlate) = −1 as in the

concordance model). However, CMB observations place stringent constraints

on the dark energy density at early times to be . 1 − 5% (Pettorino et al.,

2013).
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Figure 1.4: Constraints on BBN parameters from the Planck Collaboration
(2013b) CMB measurements of the baryon density and local mea-
sures of light element abundance.

1.5 Observational Probes

As mentioned above, the concordance model is so named in order to emphasise

the agreement of multiple observational probes as to the nature and history

of the Universe. In this section, we will give a brief overview of some of these

observational probes and how they may be used to define the concordance

cosmology.

1.5.1 Big Bang Nucleosynthesis

In the early universe, at temperatures above ∼ 1MeV protons and neutrons

are expected to be in thermal equilibrium. As the Universe cools, the inter-

action rate drops below the Hubble expansion rate and the proton to neutron

ratio freezes out. This is the first stage in BBN, which predicts the forma-

tion ratio of light elements (isotopes of Hydrogen, Helium and Lithium) from

consideration of the expected interaction rates, expansion rate, temperatures

and abundances. These predictions are frequently parameterised in terms of

the ratios of the number densities of Helium and baryons YP ≡ 4nHe/nb and
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Deuterium and Hydrogen yDP ≡ 105nD/nH. Figure 1.4 shows concordance

model predictions for YP and yDP along with observational constraints: in the

local Universe, Aver et al. (2012) measure the relevant chemical abundances in

spectroscopic lines from ionised Hydrogen regions and Pettini & Cooke (2012)

observe the Lyman-α (Ly-α) absorption from a z ∼ 3 QSO. Also shown are

the high redshift (z ' 1100) constraints from the CMB, which measures the

baryon fraction to high precision (see Section 1.5.2 below) on which the BBN

abundances depend.

1.5.2 The Cosmic Microwave Background

The CMB consists of photons released at the Last Scattering Surface in the

early Universe. In the hot, dense conditions, atoms and electrons dissociate,

creating a plasma which is strongly coupled to radiation, with photons continu-

ally scattering and not propagating. As the Universe expands, the plasma cools

until the nuclei and electrons recombine, rendering the Universe transparent to

photons, which travel directly from their last scattering to today. The discov-

ery of the CMB by Penzias & Wilson (1965) and the subsequent measurement

of a highly isotropic temperature field with a near-perfect black-body spectrum

by the COsmic Background Explorer (COBE) satellite (Mather et al., 1994)

represents almost insurmountable evidence that the Universe experienced a

hot big bang phase. Further to this, the discovery of small (δT ∼ 10−5) fluctu-

ations in the temperature distribution has provided cosmologists with a wealth

of information about the contents of the Universe, how it has evolved and how

the structures in it may have been created.

One of the key sources of information within the CMB is the angular power

spectrum Cl of the temperature fluctuations (which is analogous to the flat-

space power spectrum of Section 1.3.3 expanded over spherical multipoles l).

Before last scattering, the competing forces of gravitational collapse and ra-

diation pressure create acoustic oscillations within the plasma. The distance

corresponding to the largest distance a wave could have travelled before last

scattering corresponds to the first peak in the power spectrum seen in Fig-

ure 1.6, with the subsequent peaks corresponding to harmonics. The heights,

locations, relative heights and relative locations of the peaks in this power spec-

trum are highly sensitive to changes in the ΛCDM contents of the Universe

allowing for the precise determination of parameters within the cosmological

model, as reviewed by Hu & Dodelson (2002). The measured Gaussianity of

these fluctuations (Planck Collaboration, 2013d) and the small, but present,
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Figure 1.5: Maps of the sky at microwave wavelengths, as seen by the Planck
satellite. Left is a map showing all emission, including that from
foreground sources such as the galaxy. In the right image a com-
ponent separation process has been performed, leaving only the
CMB temperature fluctuations. The colourbar refers to the right
image.

departure from ns = 1 (and indeed the very appearance of a coherent power

spectrum at all, Dodelson 2003a) are powerful pieces of evidence in favour of

inflation. In addition to the temperature fluctuations, quadropolar temper-

ature anisotropies around electrons at last scattering are expected to polarise

the CMB photons in an ‘E-mode’ (curl free) pattern, the cross-spectrum with

temperature of which can be seen in Figure 1.6. The ‘B-mode’ (divergence-

free) pattern of polarisation may also be created by gravitational waves, which

are often referred to as a ‘smoking gun’ signature of inflation; the ratio between

the scalar (temperature) and tensor (B-mode) polarisation power spectra also

gives a measurement of the energy scale at which inflation took place. Pri-

mordial B-modes are yet to be observed, but an important first step has been

taken by Hanson et al. (2013) who measure the foreground B-mode signal due

to gravitational lensing of the CMB.

1.5.3 Matter Clustering

Another of the principle probes in the history of cosmology has been the cor-

relation function of visible objects in the sky (other than the CMB tempera-
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Figure 1.6: CMB angular power spectra from the Planck satellite (Planck Col-
laboration, 2013a) showing multipole l against Dl = l(l+1)Cl/2π,
the power per unit logarithmic interval in l. The ΛCDM model
shown in the TE is the one with best fitting parameters from the
TT power spectrum, i.e. with no free parameters. The close agree-
ment of the zero free-parameter model with the data is extremely
strong evidence in favour of the concordance cosmological model.

ture fluctuations). The linear growth and transfer functions of 1.3.3 modifies

the intial power spectrum of matter overdensities, making the power spectra

and correlation functions sensitive to the ΛCDM composition of the Universe.

Early on in the history of cosmology, the discovery that galaxies exhibited clus-

tering with ξ 6= 0, rather than being Poisson-distributed, was regarded as a

major discovery; the Lick catalogue being found to have a correlation function

consistent with a power law ξ(r) ∝ r−1.8. Because distance measurements to

objects such as galaxies are (and particularly, have been in the past) subject

to significant uncertainties, it is also useful to define the angular correlation

function w(θ) which measures the clustering of objects projected onto the sky,

rather than in real or redshift space.

Because visible structures are expected to form at high peaks in the CDM

distribution, most matter clustering probes are regarded as biased tracers of

true matter overdensities. This bias may be calculated and accounted for

however, and clustering of galaxies (of various types) as in Figure 1.8, quasars

and absorption lines in their spectra caused by intervening Hydrogen regions

have all been used to constrain cosmology. Clustering of CDM haloes and

matter will be further discussed in Chapter 2.
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1.5.4 Standard Candles and Standard Rulers

The Hubble diagram of redshift against distance (such as that shown in the top

panel of Figure 1.7) was one of the earliest cosmological probes; the positive

linear relationship showing the Universe was expanding. However, a correctly-

calibrated Hubble diagram is difficult to produce. Sources of a luminosity Ls

throughout the Universe have the energy flux F diluted with distance. The

luminosity distance:

d2
L ≡

Ls
4πF (1.60)

measures how this flux drops off with distance and may also be related to the

background expansion:

dL =
1 + z

H0

∫ z

0

dz′
1

E(z)
. (1.61)

However, most populations of astronomical objects cannot be characterised

by a single luminosity and are also subject to small scale peculiar motions

which affect their redshift, meaning measurements at large distances must be

calibrated by measurements within our galaxy, in stages referred to as the

cosmological distance ladder (Freedman et al., 2001). Fortunately, there do

exist some observables which can be used to directly measure the Hubble

expansion.

Type 1a Supernovae

Type 1a supernovae, the violent explosions resulting from white dwarf stars

accreting mass to above the Chandrasekhar limit, are thought to have identical

intrinsic luminosities, providing a ‘standard candle’ for measuring dL. Obser-

vations of their distance-redshift relation were the first to show the dimming of

high-redshift objects implying that the Universe was accelerating (Riess et al.,

1998; Perlmutter et al., 1999). Figure 1.7 shows a Hubble diagram composed

of measurements of Type 1a supernovae. The lower panel has the linear trend

implied by the upper panel divided out, showing the extra dimming caused

by accelerating expansion, along with the solutions for a number of sets of

cosmological parameters.

Baryon Acoustic Oscillations

The oscillations in the CMB power spectrum of Section 1.5.2 are also imprinted

on the large scale matter structures in the universe (albeit exactly out of phase
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Figure 1.7: Luminosty distance-redshift plot for type-1a supernovae from
Suzuki et al. (2012). The linear trend in the top figure is divided
out in the bottom, showing the extra dimming of high-redshift
supernovae due to the accelerated expansion, with comparison to
the expected behaviour for a selection of combinations of cosmo-
logical parameters.
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with the oscillations in the CMB) at a fixed co-moving scale. The physical size

of this ‘standard ruler’ can then be measured at varying redshifts to constrain

the background expansion.

Figure 1.8 shows the Baryon Acoustic Oscillations (BAO) in the power

spectrum of massive galaxies in the BOSS survey as measured by Anderson

et al. (2012). The size of this scale can be measured using galaxy probes at

multiple redshifts, as well as other large scale structure tracers such as the Ly-α

forest (as performed in Busca et al., 2013). Obtaining the precise photometric

redshifts along with a large sample of galaxies in order to determine the BAO,

with the goal of constraining the evolution of the dark energy equation of

state with redshift will be one of the key science objectives of a number of

coming large observational surveys including DES2, LSST3 and Euclid4. The

right hand panel of Figure 1.8 also shows the BAO scale measured using a

number of probes at a number of redshifts, with the expected scale inferred

from a concordance cosmology and observations of the CMB divided out. The

clustering of values around 1 implies excellent agreement across the different

observables.

1.5.5 Abundance of Collapsed Objects

The evolution of structure formation will be described in more detail in Chap-

ter 2. A combination of analytical predictions for the rate at which overdensi-

ties break away from the background expansion and collapse to form gravita-

tionally bound structures, and numerical N-body simulations of this process,

enable us to predict how the abundance of such objects should evolve with

redshift. The abundances of such structures will depend on all ingredients of

a cosmology: initial conditions, contents, background expansion and theory of

gravity, making them a highly sensitive probe. Principally, abundances of the

largest structures, clusters of galaxies, are used (Allen et al., 2011; Planck Col-

laboration, 2013c) to constrain Ωm and appear consistent with measurements

on other probes.

1.5.6 Gravitational Lensing

Another probe of the cosmological model is given by gravitational lensing

— the distortion of bundles of light rays from background sources as they

2http://www.darkenergysurvey.org/
3http://www.lsst.org/lsst/
4http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=42266
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Figure 1.8: Left shows the BAO in the matter power spectrum as measured
by Anderson et al. (2012) using galaxies as a mass tracer. Right
shows the ratio between the BAO scale measured by a variety of
probes at a number of different redshifts and the scale expected
in a Planck Collaboration (2013b) cosmology (represented by the
solid line and shaded area), showing excellent agreement between
different observations.

travel through gravitational potentials, the prediction of which is a key facet

of Einstein’s GR. Because the Universe is not completely smooth (and the

potential is hence not uniform) all images will be lensed to a certain degree. In

practice, gravitational lensing is broken into two regimes: strong lensing, where

concentrated potentials create highly distorted images leading to background

sources appearing as arcs or even (in the case of alignment) closed ‘Einstein

rings’; and weak lensing, whereby small but coherent distortions by larger scale

structures are analysed statistically across the sky.

Strong lenses are typically used to constrain cosmology through inferred

abundances of lenses and sources (as in Jullo et al., 2010). In the weak lensing

regime, the object of interest is frequently the power spectrum of the dis-

tortions. This is sensitive to cosmology in a similar way to other probes of

matter clustering, but is unique in that is measures the matter distribution

directly, with tomographic techniques also allowing the growth of clustering to

be probed through multiple redshift regions (Heymans et al., 2013).
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Chapter 2

Non-Linear Structures

In the previous chapter, we have described the concordance cosmological model

and seen how a number of observational probes may be used to constrain it. In

this chapter, we will focus on one particular aspect of the model: the formation

of structures in the non-linear regime, at high overdensities. We have seen

how in the matter-dominated era, linear perturbations will grow at a rate

proportional to t2/3, moving the curve of the matter power spectrum gradually

upwards. As the value at a particular scale approaches unity, the perturbations

are no longer small, different Fourier modes cease to evolve independently and

the linear theory no longer applies. Here we will describe how the perturbations

are dealt with in this non-linear regime as they eventually break away from

the background expansion of the Universe, undergo gravitational collapse and

form bound, relaxed structures: dark matter haloes. We will also discuss

the baryonic matter which becomes bound in these haloes, visible to us as

galaxy clusters. We will see that, because the observed abundance of such

structures depends on initial conditions, background expansion, contents and

interactions, they represent an extremely sensitive probe of the cosmological

model.

Section 2.1 will describe the evolution of a non-linear spherical overden-

sity in a concordance cosmology, before Section 2.2 discusses the prediction

of the abundance of haloes with given mass and redshift in both the concor-

dance model and extended cosmologies. Finally 2.3 will be concerned with the

formation and observation of galaxy clusters within the CDM haloes.

Comprehensive reviews of much of the material in this chapter can be found

in Padmanabhan (1993), Zentner (2007) and Kravtsov & Borgani (2012).
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2.1 Haloes and Spherical Collapse

A simple model for the formation of non-linear structures consists of a spherical

constant overdensity within a sharp boundary, as analysed in Gunn & Gott

(1972). A consequence of Birkhoff’s theorem is that the interior and exterior

of a spherical shell of matter will evolve independently of one another. If the

background cosmology is that of a flat K = 0, matter-dominated Ωm = 1

Einstein-de Sitter (EdS) universe any overdensity will then evolve as a closed

universe with density Ωm,p = 1 + δ (where p denotes a perturbation) and

Freidmann equation:

ȧ

a
= H0

(
Ωm,p

a3
+

(1− Ωm,p)

a2

)1/2

. (2.1)

It is possible to solve this equation with a parametric solution:

ap(t)

amax

=
1

2
(1− cos θ) (2.2)

t

tmax

=
1

π
(θ − sin θ) (2.3)

where θ = (0, 2π]. From initially growing with an expansion velocity the

same as the background, the perturbation then decelerates until reaching a

maximum co-moving radius amax at time tmax before turning around and rec-

ollapsing to a singularity at t = 2tmax. In order to investigate the linear

behaviour of the perturbation, we may expand the trigonometric functions

in Equations (2.2) and (2.3) to second order (expanding them to first order

will give the a ∝ t2/3 expected for the background) and combine to find the

linearised scale factor at time t:

a
(1)
p (t)

amax

=
1

4

(
6π

t

tmax

)2/3
[

1− 1

20

(
6π

t

tmax

)2/3
]
. (2.4)

Becase the energy density in the background and the overdensity will evolve

at the same rate, we may equate them to find 1+δ(1) = (abgd/a
(1)
p )3. This may

be then inserted into Equation (2.4) to find the linear theory overdensity

δ(1)(t) =
3

20

(
6π

t

tmax

)2/3

, (2.5)
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which has the value δ(1)(tmax) ' 1.06 at the time the perturbation ceases

expanding and starts to contract. By symmetry, the overdensity will become

collapsed at t = 2tmax, giving the linear theory prediction for the density

contrast at collapse:

δc ≡ δ(1)(2tmax) ' 1.686. (2.6)

In reality, we do not expect the overdensity to be perfectly spherical and ho-

mogeneous, meaning dissipative processes cause it to reach virial equilibrium,

with potential energy twice the kinetic. For a Λ = 0 universe, the time for this

to happen can be approximated as the free-fall time for a uniform sphere with

the density at the turn-around time ρ(tmax). The density at virialisation will

be given by 23 times this (as the radius has halved from turn-around):

ρ(tcoll) = 8ρ(tmax)

= 8
3π

32G(tcoll/2)2
=

3π

Gt2coll

. (2.7)

This can then be compared to the background overdensity, evolving as ρm =

1/(16πGt2) to find the overdensity at virialisation:

∆vir =
ρ(tcoll)

ρm(tcoll)
(2.8)

= 18π2 ' 178.

These values hold at all redshifts for an EdS universe, but for cosmologies

containing a dark energy component the extra expansion slows the structure

formation and δc becomes a weak function of redshift, as shown in Figure 2.8 for

both the cosmological constant (ΛCDM) and scalar field dark energy models.

In order to relate these spherical overdensities to the overall spectrum of

perturbations, a useful quantity is the variance of the matter field at a given

radius:

σ2(R, z) = D2
+(z)

∫
dk

2π
k2W 2(k;R)P (k) (2.9)

where the W (k;R) is a smoothing function, with the relevant spherical top-hat

being expressed in Fourier space as:

W (k;R) = 3
sin(kR)− kR cos(kR)

(kR)3
. (2.10)

How σ(R, z) scales with redshift gives an illustration of how structures form in

the concordance model. Evaluating σ(R, z) shows it monotonically decreases
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with radius meaning, if we consider scales with σ(R, z) & 1 as non-linear

(again, as the perturbation is no longer small), we can see it is the small scales

which will go through this process of spherical collapse first. Larger and larger

scales will then enter the non-linear regime as σ(R, z) increases with the linear

growth function D+(z). This kind of ‘bottom up’ or heirarchical growth is a

direct result of the shape of the Harrison-Zel’dovich power spectrum and is an

important prediction of the concordance model. Another important quantity

is the peak height:

ν ≡ δc
σ(m, z)

, (2.11)

which will follow the Gaussian distribution from the initial conditions for δ

when smoothed on the given mass scale. Because only the σ scales strongly

with redshift, a halo of given mass m which has just met the collapse criterion

δc at a given redshift will represent a higher peak height (and thus a rarer

fluctuation) with increasing redshift.

2.1.1 The Importance of Simulations

The picture of spherical collapse described in the previous section is a useful

analytic model of structure formation. However, in a real universe, overdensi-

ties will not be spherical and homogeneous and we may wish to consider the

fully non-linear behaviour. Semi-analytic models may overcome some of these

simplifications, but by far the most significant progress has been made due

to numerically simulating structure formation on a computer. Typically, the

collisonless CDM density field is discretised as a series of point particles, given

an initial distribution according to the primordial power spectrum, the Poisson

Equation (1.42) is solved to find the Newtonian potential and the particle’s

positions and velocities are updated accordingly. Such ‘N-body’ simulations

have been crucial in investigation of small-scale cosmological stucture forma-

tion. Figure 2.1 shows the CDM particles within a co-moving slice through

the volume of an N-body simulation (the Millenium simulation Springel et al.,

2005), with some key features clearly visible. The growth of larger objects,

such as the object at the centre, proceeds heirarchically via the mergers of

smaller structures which virialised at earlier times. Within this large halo,

similar sub-structures can be seen, with the patterns on large scales replicated

on smaller ones. The tri-axial nature of the initial overdensities also leads to

the ‘cosmic web’ pattern of elongated filaments, elliptical haloes and large, un-

derdense voids. Early simulations such as those of the ‘Gang of Four’ (Davis
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Figure 2.1: Evolution with redshift of CDM particles within a co-moving vol-
ume of an N-body simulation, the colour scale representing the
density of particles. The growth of over and underdensities into
triaxial haloes, extended filaments and empty voids can be clearly
seen, as can the heirarchical nature of the growth over time, with
small scale overdensities appearing before larger ones.
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et al., 1985; Efstathiou et al., 1985) were crucial interpolations between lin-

ear theory and observations, showing quantitatively the behaviour of structure

formation in CDM models. Aided by Moore’s law and improving numerical

techniques, such simulations have gotten ever larger (up to and larger than a

Hubble volume, Jenkins et al. 2001; Watson et al. 2013), allowing for precision

predictions for different models for experiments to be tested against. Con-

currently, simulators have made increasingly sophisticated attempts to include

baryonic physics into their models. As scales decrease in size from galaxy

clusters to dwarf galaxies, the role of complex baryonic physics becomes more

important, both due to the necessary hydrodynamics of the collisional fluid

and the effect of ‘feedback’ — winds from Active Galactic Nuclei (AGN) and

supernovae which suppress structures on small scales.

Whilst on large scales such simulations have made precision predictions

which match well to precise observations, in small scale regimes tension has

emerged between simulations and observations (as reviewed in Weinberg et al.,

2013). It remains to be seen whether such tensions are the result of the diffi-

culty of correctly simulating the complicated physics important in forming the

small scale structures or are truly requiring of alterations to the concordance

model (Kuhlen et al., 2012).

2.1.2 Halo Definitions

Whilst the collapse of isolated spherical overdensities with a sharp, top-hat

boundary as described in Section 2.1 leads to a well-motivated definition of a

halo boundary, real haloes in both simulations and observations are expected

to be tri-axial, have non-uniform densities and blur into, and be influenced by,

the surrounding large scale structure, containing particles which are not truly

bound. Hence, working definitions of what constitutes a halo must be used in

order to compare theory with observations, two of which are described here.

Spherical Overdensities

Motivated by the spherical collapse picture, one way of defining a halo is by

imposing a spherical radius enclosing a certain overdensity. After identifying a

halo centre, a sphere enclosing a region with average density a given multiple

∆ of the background density is taken to define the halo:

M∆ =
4π

3
(∆ρ)R3

∆. (2.12)
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Note that, for a given ∆, both M∆ and R∆ may be used to describe the

same halo. Popular choices of ∆ to define a halo include the virial 178, 200

and 500. A choice must also be made for the density ρ relative to which the

halo is defined, either the critical density ρc or the average matter density

ρm(z) = ρc/Ωm(z). Throughout, we will refer to halo masses relative to ρc as

m∆c and those relative to ρm as m∆m. In order to convert between such mass

definitions it is necessary to assume a radial halo profile ρ(r), models for which

are described in Section 2.1.3.

The choice of halo centre necessary for the spherical overdensity may also

be made in a number of ways — caution is required when comparing simu-

lations (which may centre on peaks in density, potential minima and so on)

and observations (wherein centres are defined by peaks in the baryonic matter

within a halo).

Friends-of-Friends

The Friends-of-Friends (FoF) definition of a bound cluster is conceptually sim-

ple and easy to implement algorithmically within N-body simulations. If two

particles are separated by a distance less than the linking length:

l = bl̄, (2.13)

where l̄ is the mean interparticle separation for all particles within the volume,

are regarded as being bound in the same halo. b is a free parameter within the

algorithm, frequently given a value of 0.2 which corresponds to an overdensity

of ∼ 400 at z = 0. However, this evolves strongly with redshift, meaning the

FoF mass is difficult to interpret theoretically.

2.1.3 Mass Profiles

The internal structure of collapsed haloes may also be expected to be a func-

tion of cosmology, being determined by the dynamical behaviour of the matter

forming the haloes as well as the properties of the initial density field. Sur-

prisingly, the density profiles (ρ(r), the density at a given radius from the halo

centre) have been found to be highly consistent over a wide variety of cos-

mologies, being well-approximated by the Navarro, Frenk and White (Navarro
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Figure 2.2: NFW halo density profiles for varying values of the concentration
parameter c (for which c ' 7 is typical for a z = 0,m = 1014M�
halo). Solid lines are for a 1014M� halo, dashed for a 1013M�
halo.

et al., 1997) (NFW) profile shown in Figure 2.2:

ρNFW(r) =
4ρs

r
rs

(
1 + r

rs

)2 , (2.14)

where rs is the scale radius at which d ln ρ/ d ln r = −2 and ρs is the density at

this radius. This single free parameter is often given in terms of the concen-

tration for a given overdensity c∆ ≡ R∆/rs. The concentration parameter has

been found within N-body simulations to be a function of mass and redshift

(Bullock et al., 2001; Duffy et al., 2008; Gao et al., 2008), with more-massive

haloes being less concentrated. Theoretical motivation for the NFW halo pro-

file and its universality has been comparatively difficult to come by, however

recent progress has been made by Pontzen & Governato (2013).

2.2 Halo Mass Functions

One of the key observables for non-linear structures is their abundance and how

this changes with mass and redshift, most often expressed as the differential

co-moving number density dn(m, z)/ dm, the halo mass function (HMF). The
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Figure 2.3: Left shows fractional differences between the Press & Schechter
(1974) (PS) halo mass function and the Sheth et al. (2001) (ST)
and Tinker et al. (2008) mass functions. Right shows the evolution
of the PS mass function with redshift.

HMF is then observable via the number of haloes within a observational win-

dow between masses (mmin,mmax) and redshifts (zmin, zmax) covering a fraction

fsky of the sky:

Ntot = fsky

[∫ zmax

zmin

∫ mmax

−mmin

dz dM
dV

dz

dn(M, z)

dM

]
, (2.15)

where dV/ dz is the co-moving volume element. Halo abundance can therefore

probe many of the important features of cosmology: changing the initial con-

ditions will create more or fewer high fluctuations and produce more or fewer

high-mass haloes; the theory of gravity through changes in the collapse process

affecting the rate of growth of haloes; and the background expansion through

the volume-redshift relationship. In this section, we will describe a number of

analytic and numerical methods for predicting the HMF in concordance and

extended cosmologies.

2.2.1 In Concordance Cosmology

The first description of a HMF was by Press & Schechter (1974) (PS) who, in

spite of the use of a number of ad-hoc arguments, provided a mass function

which has subsequently proven a good qualitative match to both simulations

and observations. If we consider overdensities δ smoothed by a top-hat window

function on a scale R to have a Gaussian initial distribution:

P (δ;R, z) =
1√

2πσ(R, z)
exp

(
− δ2

2σ2(R, z)

)
, (2.16)
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where σ is the root-mean-square (RMS) mass variance, Equation (2.9). It

is then possible to calculate the fraction of regions which have collapsed to

form objects of a given mass (i.e. the mass corresponding to the smoothing

radius) as those which have exceeded the linear theory overdensity at collapse,

δc ' 1.686:

F (z,R) =

∫ ∞
δc

dδ P (δ;R, z)

=
1

2
erfc

(
δc√

2σ2(R, z)

)
. (2.17)

Now, we find the number of newly collapsed regions dF when the smoothing

scale is increased by dR (or an increase in the equivalent enclosed mass dM)

and convert this fraction to a number density by multiplying with the factor

ρ̄/M . The final consideration, which is frequently referred to as the “Press-

Schechter Swindle,” is to enforce the normalisation constraint that the total

mass collapse fraction should integrate to unity (i.e. that all mass should be

contained within haloes), this is multiplied by a factor of 2. Press & Schechter

(1974) argue that the half of the total mass orginally left unaccounted for cor-

responds to initially underdense regions which will accrete onto the collapsed

haloes, doubling their mass. This gives us the PS halo mass function:

dn

dM
dM =

ρ̄

M
2

dF (M)

dM
dM

=
ρ̄

M

√
2

π

δc
σ

exp

(
− δ2

c

2σ2

) ∣∣∣∣d lnσ

dM

∣∣∣∣ dM. (2.18)

The right panel of Figure 2.3 shows the PS mass function and its evolution

with redshift, due to the z-dependence of the RMS matter variance.

Extended Press-Schechter

In the decades since Press & Schechter (1974), much attention has been devoted

to deriving HMFs with greater physical accuracy and applicability to a variety

of cosmological models. The cosmologically-sensitive part of the halo mass

function is the collapse fraction, meaning HMFs are frequently written in the

general form:
dn(M, z)

dM
=

ρ̄

M
f(σ, z)

∣∣∣∣d lnσ

dM

∣∣∣∣ (2.19)
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where f(σ, z) is the collapse fraction and depends on z both through the σ(z)

and (though not in all cases) also in its functional form.

An extremely important analysis is performed by Bond et al. (1991) who

reproduce the PS mass function without resorting to weakly-motivated factors

of 2 as well as providing the theoretical foundation for including other more

realistic physical effects. A key issue with the PS mass function derivation is its

ambiguity in treating the ‘cloud-in-cloud’ problem: how to treat overdensities

which are not collapsed when smoothed on a given scale R1, but are when

smoothed on some larger radius R2 > R1. A solution is provided by considering

the collapse fraction within an excursion set formalism. Whilst considering the

value of the density at a fixed point in real space as the smoothing scale R

changes, the value of the overdensity will execute a random walk in this δ-R

space. The key to solving the cloud-in-cloud problem is to consider a region

collapsed at the largest R value at which it exceeds the barrier value δc. As

shown in Figure 2.4, for every set of trajectories which cross the barrier at

a given scale there will be, by symmetry, half which proceed upwards and

half which proceed downwards. The PS swindle was necessary as only those

proceeding upwards were considered; the correct ensemble of trajectories to

count as collapsed on a scale R is those which have a first barrier crossing at

that scale.

The Bond et al. (1991) result replicating the PS function is gained by solv-

ing a diffusion equation for a δ field smoothed with a k-space top hat function

(i.e. all Fourier modes independent) with an absorbing barrier located at δc.

However, as reviewed by Zentner (2007), the excursion set approach has proven

extendible to alterations representing a more physical picture. In particular,

including the effects of non-spherical collapse via the Zel’dovich approxima-

tion, as performed by Lee & Shandarin (1998) and matched to simulations by

Sheth & Tormen (1999), is found to be well-modelled by treating the collapse

threshold δc as a stochastic variable in the random walk (e.g Sheth et al., 2001;

Maggiore & Riotto, 2010b). Another utilisation of the excursion set formalism

is in the conditional collapse fraction:

f (σ(R2), w2|σ(R1), w1) , (2.20)

where w = δc
D+(z)

, the probability that a region becomes a bound halo at a time

and scale R2, z2 given that it was contained in a smaller scale object R1 at an

earlier time z1. Lacey & Cole (1993) implement this as a random walk with

two-barriers, allowing for calculation of merger and accretion rates for haloes,
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Figure 2.4: Random walks from Bond et al. (1991) showing overdensity (f
here) against smoothing scale (Λ), where collapsed objects are
those which cross the barrier at fv. The PS analysis only considers
trajectories which proceed above the barrier after breaking it, half
of the required total.

again giving good qualitative agreement with numerical simulations.

Numerical Mass Functions

Further to the theoretical considerations, a second strand of progress in HMFs

has been due to large-scale cosmological N-body simulations. As discussed

above, N-body simulations are a way of surmounting the difficulties in eval-

uating the effect of non-linear physical processes on halo formation. In order

to produce a HMF, simulations are evolved from high redshift to z = 0, with

the positions and masses of particles recorded in a series of snapshots. Bound

haloes are then identified algorthimically within these snapshots, using meth-

ods such as the FoF and spherical overdensity criteria. The identification of

haloes is a process which may be done in a number of different well-motivated

ways, with respect to deciding which particles are truly bound, defining halo

edges and identifying substructure. Empirically however, it has been found

that a wide variety of different approaches are actually consistent with each

other (Knebe et al., 2011; Onions et al., 2012).

As simulations have grown in size they have gained statistical power with

which to constrain the abundance of the rarest haloes and as they have gained

in resolution and sophistication they have gained an ability to better represent
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the physical processes which create haloes in the real Universe. This has

produced a number of fitting formulae for the collapse fraction f(σ, z). Sheth

& Tormen (1999) take a semi-analytic approach, finding best fit parameters

describing the normalisation and shape of an ellipsoidal collapse mass function.

The Jenkins et al. (2001) mass function is directly fitted to a large simulation,

whilst Tinker et al. (2008) were the first to find strong evidence for a redshift

dependent f(σ, z) and remains the most-tested mass function up to the time of

writing. A comparison of these and a number of other numerically determined

HMFs can be found in Murray et al. (2013).

2.2.2 Correlations and Bias

As discussed in Section 1.5.3, an important discovery in the development of the

concordance cosmology was the observation that galaxies and groups of galax-

ies were clustered, rather than exhibiting Poisson occurrence probabilities. A

full description of the cosmological density field would require a measurement

of all correlation functions ξn = 〈δ1δ2 . . . δ3〉, requiring large data sets (the

higher-order a moment, the further into the rare-object limit of a distribution

it probes). A useful ansatz due to the properties of Newtonian gravitation is

heirarchical clustering, in which higher-order correlation functions are related

to lower ones in the form:

ξn = Snξ
n−1. (2.21)

In addition, it is possible to calculate the correlation functions of the density

field using perturbation theory techniques borrowed from particle physics, as

reviewed in Bernardeau et al. (2002).

With the exception of gravitational lensing analyses (see section 2.3.2),

observations do not probe the true mass distribution, but structures such as

haloes, clusters and galaxies within it. Following the realisation of Kaiser

(1984) that the observation that densely concentrated Abell clusters were more

clustered than galaxies this has been described within what has become known

as the ‘peak-background split’ model. Figure 2.5 illustrates this concept for a

one dimensional model, showing the overdensity δ with position. Density peaks

which have reached the collapse threshold and formed structures (dark shaded

regions) preferentially occur in regions which are overdense on some larger

scale (the long wavelength mode represented by the dashed line). This implies

collapsed structures are more highly clustered than matter in general and are

a biased tracer of the underlying distribution and is usually parameterised by
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δ=νσ

δ

x

Figure 2.5: Peak-background split approach to matter bias. Small scale fluc-
tuations (solid line) are more likely to meet the collapse threshold
(δσ) and form haloes (black regions) if they are in a region in
which a large scale density mode (dashed line) is also peaking.
Picture from Peacock (1999).

the linear bias parameter b:

δobj. = bobj.δmass, (2.22)

which measures the relative overabundance of collapsed objects (haloes, galax-

ies etc) in dense regions above the global average. The excursion set theory

discussed in Section 2.2.1 provides a natural way of calculating the bias (by

lowering the relative collapse threshold δc,haloes = δc− δLS where δLS is a large-

scale overdensity), which for CDM haloes in the PS collapse fraction is given

by:

bh =

(
1 +

ν2 − 1

δ
(1)
c

)
. (2.23)

Improved versions of the halo bias are given by Sheth & Tormen (1999) for a

collapse barrier modified for ellipsoidal collapse and fitted to numerical simu-

lations by Tinker et al. (2008).

2.2.3 In Extended Cosmologies

Because halo abundance is a function of initial conditions, background expan-

sion and gravitational collapse, modifications to any of these away from the

concordance model will be observable via the number density of haloes. In this

section we will describe how the HMF is expected to change in the alternative

cosmologies introduced in Section 1.4.

– 49 –



2.2. Halo Mass Functions

Primordial non-Gaussianity

Primordial non-Gaussianity changes the initial distribution of fluctuations

P (δ), thus changing the collapse fraction f(σ) which depends upon it. Though

fNL is well-constrained on the large scales probed by the CMB, observations on

a given scale are sensitive to the behaviour of the inflaton in only the segment

of its potential it was rolling through at the time perturbations on that scale

were created. Hence, a number of theories with inflaton potentials with fea-

tures within them (such as the DBI model, Lo Verde et al. 2008) are capable

of creating scale-dependent running of the non-Gaussianity parameter:

fNL(k) ∝ knNG−1, (2.24)

and hence larger values of fNL on the scales of different observables. Moti-

vated by the search for non-Gaussianity on the scales probed by galaxy clusters

within CDM haloes, a number of authors have replicated the PS argument us-

ing a non-Gaussian distribution for the initial fluctuations: Lucchin & Matar-

rese (1988) and Matarrese et al. (2000) via a saddle-point expansion around

the Gaussian distribution and Lo Verde et al. (2008) via the well-known Edge-

worth expansion in cumulants. These are typically not directly parameterised

by the full Bispectrum or limiting fNL cases (section 1.4), but by the reduced

cumulants:

Sn ≡
〈δn〉
〈δ2〉n−1

(2.25)

These Sn are found to be weakly-varying functions of the smoothing scale R

and different shapes of fNL (Lo Verde et al., 2008; Enqvist et al., 2011).

Because these analytically derived mass-functions are subject to the same

simplifying assumptions of sphericity and cloud-in-cloud as the PS approach,

they are not expected to be directly comparable with observations. Instead, it

is typical to form the non-Gaussian enhancement factor:

RnG(fNL) =
nnG,a(fNL)

nnG,a(fNL = 0)
(2.26)

where nnG,a is the analytic non-Gaussian mass function. This enhancement fac-

tor is then applied to mass functions which have been calibrated with N-body

simulations of Gaussian initial conditions nG,c with the understanding they

better capture the physics of structure formation and hence are comparable

with observations:

nnG,c(fNL) = nG,cRnG(fNL). (2.27)
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Figure 2.6: The non-Gaussian enhancement factor as calculated by Lo Verde
et al. (2008). Blue curves correspond to f equil

NL = 332, magenta to

f equil
NL = −256 and shaded regions represent the region in which

the Edgeworth expansion used is no longer valid.

Though appearing to be something of a fudge, this procedure has in fact been

shown to give excellent agreement with mass functions found directly from

N-body simulations with non-Gaussian initial conditions (Grossi et al., 2009;

Pillepich et al., 2010). Following the works by Matarrese et al. (2000) and

Lo Verde et al. (2008), a number of authors have produced non-Gaussian

mass functions with differing expansions, concentrating especially on trying

to guarantee smallness of the parameter being expanded in at high masses

(Enqvist et al., 2011; Paranjape et al., 2011). In addition, a number of authors

have modified the excursion set formalism to account for non-Gaussianity,

including Maggiore & Riotto (2010c) and D’Aloisio et al. (2013).

Figure 2.6 shows the effect of including non-Gaussianity: abundances of

low (M . 1013h−1M�) mass haloes remain unaffected, with a monotonically

increasing enhancement (decrement) of higher mass haloes in the case of pos-

itive (negative) fNL non-Gaussianity. In addition to the effect on pure abun-

dance, Dalal et al. (2008); Matarrese & Verde (2008) have shown primordial
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local non-Gaussianity creates a running of the bias parameter b with scale

∆b(k, f local
NL ) ∝ f local

NL (b− 1)/k2 and this has been used to give competitive con-

straints on non-Gaussianity on scales k ∼ 0.1h/Mpc of −29 < f local
NL < 70 in

Slosar et al. (2008) and f local
NL = 48± 20 in Xia et al. (2011).

Modified Gravity

A generic consequence of making alterations to gravity, as discussed in Sec-

tion 1.4.2, is a loss of the scale-free behaviour of Newtonian and Einsteinian

gravity and hence modifications to the spherical collapse argument of Sec-

tion 2.1. From the wide variety of modified gravity models which exist how-

ever, only a limited sub-set have had non-linear structure formation processes

investigated in detail. For DGP models, Schäfer & Koyama (2008) find the

Hubble expansion history, modified growth law and new spherical collapse

overdensity δc(z). The effect on the halo mass function is then accounted for

by using this δc(z) in the Sheth-Tormen (ST) halo mass function, taking the

form of an enhancement in the multiplicity of high mass haloes.

A series of papers also consider structure formation in the f(R) model

of the form given by Hu & Sawicki (2007). A fitting function for the HMF

taking into account the modified gravity power spectrum (which is enhanced

on intermediate and small scales) and spherical collapse parameter δc(z), again

applied to a ST mass function is given by Schmidt et al. (2009a) and then used

to predict cluster abundances by Ferraro et al. (2011) and constrain the models

with observations in Schmidt et al. (2009b). Throughout all of these analyses,

the pattern of increasingly enhanced abundance with higher halo mass persists,

with two examples shown in Figure 2.7.

Scalar Field Cosmologies

As discussed in Section 1.4.3, a frequently considered extension to the concor-

dance model is the replacement of the cosmological constant dark energy with

a scalar field component in T µν , frequently creating a period of Early Dark

Energy (EDE). A reasonable assumption for such a field is that it may couple

to matter (Amendola, 2000, although its coupling to baryons must be weak in

order to satisfy local measurements, the coupling to dark matter is relatively

unconstrained), meaning they may affect the halo mass function both through

the effect on background expansion and their ability to provide a ‘fifth force’

enhancing or depleting the rate of structure formation.
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A number of approaches have been taken to a variety of such models, but all

find an appreciable difference in the abundance of massive collapsed objects.

Bartelmann et al. (2006), Mainini & Bonometto (2006) and Tarrant et al.

(2012) consider spherical collapse within coupled scalar field models, find a

stronger evolution of δc(z) than in the cosmological constant case, examples of

which are shown in Figure 2.8, and consider the alterations to classical Press-

Shechter and Sheth-Tormen mass functions. Another approach is taken by Li

& Efstathiou (2012), who apply the excursion set formalism to the problem

with appropriate modifications to the (now moving, due to the dependance on

environment) barrier.

Finally a number of authors including Li & Barrow (2011); Baldi (2012) (for

coupled quintessence) and Carlesi et al. (2011) (for vector field dark energy)

perform N-body simulations of coupled scalar field cosmologies in order to

determine the statistics of non-linear objects, again confirming the qualitative

behaviour of halo mass function enhancement or decrement dependent on the

particular model considered.

2.3 Galaxy Clusters

By definition, the CDM composing the majority of the matter content of the

Universe is not directly visible to us through electromagnetic radiation. How-

ever, the gravitational potentials created by the CDM do have visible effects

on the baryonic matter we can observe. In the case of the massive haloes

discussed above, the relevant observables are galaxy clusters, which have two

main baryonic constituents:

� Galaxies: highly overdense conglomerations of gas, dust and stars, often

observed at visible, infra-red and sub-mm wavelengths. A typical cluster

will contain ∼ 10 − 1000 galaxies within a ∼ 10Mpc radius, a density

far greater than that of ‘field’ galaxies. Most clusters contain a massive

non-star-forming elliptical Brightest Cluster Galaxy (BCG) close to their

centre, with other galaxies orbiting the potential with velocity dispersions

∼ 103 km/s. Galaxies typically make up ∼ 1% of the total mass of a

cluster.

� Intracluster Medium (ICM): a gaseous plasma which permeates the space

between the galaxies. Heated by shocks to temperatures ∼ 10keV as it

falls into the CDM potential wells, the ICM emits thermal bremsstrahlung
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Figure 2.9: Composite image of the galaxy cluster RXJ1347-1145 from Mason
et al. (2010). Left shows optical images of background galaxies
(green) with gravitational lensing distortions clearly visible, mass
contours from a joint weak and strong lensing analysis (white),
and the thermal Sunayev-Zel’dovich (tSZ) signal from the ICM
(red/blue). Right shows the tSZ temperature decrement (white
contours) and X-ray emission from the ICM.

radiation at X-ray wavelengths. Compton scattering of CMB photons by

the electrons in the ICM also leads to a detectable signal at microwave

wavelengths, the Sunyaev-Zel’dovich effect. The ICM makes up around

∼ 10% of cluster mass.

In this section we will briefly discuss the physics of galaxy clusters, with a

particular focus on their observables properties which may be used as a proxy

for the mass of the halo within which they reside.

2.3.1 The Self-Similar Model

One of the most useful descriptions of galaxy clusters is due to Kaiser (1986),

who models them as scale-free or self-similar objects. We first define the non-

linear mass, the mass at which a peak of height unity (ν = 1) collapses at a

given redshift:

σ(MNL, z) = δc(z). (2.28)

By assuming an EdS universe, a power-law (i.e. Harrison-Zel’dovich) power

spectrum and no other scale-inducing physics, the properties of all clusters

in hydrostatic equilibrium (with pressure gradient forces balanced by gravita-

tional ones) may be uniquely determined by µ = M/MNL. Such clusters are
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said to be self-similar, with the properties of clusters of a given µ remaining

constant with time. By assuming constant densities within similar clusters

containing an ideal gas (pressure ∝ gas temperature Tg), hydrostatic equilib-

rium gives:

Tg ∝
GMtot

R
(2.29)

which, via the use of Equation (2.12) to relate mass and radius at a given

overdensity, gives a scaling relation between gas temperature and total grav-

itational mass of the halo (which is also assumed to be directly proportional

to gas mass):

Mtot ∝ T 3/2
g . (2.30)

This gas temperature is difficult to directly observe (requiring coverage at

multiple wavelengths), so instead an emissivity from thermal bremsstrahlung

is assumed, giving a relationship between X-ray luminosity and temperature,

and hence mass:

LX ∝ T 2
g ∝M

4/3
tot . (2.31)

These scaling relations between observables and the cosmologically-sensitive

halo mass thus provide us with a means for using galaxy clusters to constrain

the HMF and consequently the cosmological model.

It is important to point out once more that these relations rely on the

assumption of hydrostatic equilibrium, requiring clusters to be in a relaxed

state, with no recent major mergers. However, a consequence of the heirarchi-

cal model is that haloes and clusters merge frequently, taking ∼ 3− 4 Gyr to

reach equilibrium, potentially systematically biasing mass estimates made via

the scaling relations.

2.3.2 Observations

Figure 2.9 shows the galaxy cluster RXJ1347-1145 observed through a number

of different proxies: constituent galaxies, gravitaional lensing of background

sources, X-ray emission and thermal Sunyaev Zel’dovich (tSZ) decrement. In

this section we will discuss each of these observables, how they can be related

via the self-similar model to each other and to the mass of the parent halo.

Hot Gas in X-rays

Weighing galaxy clusters via the X-ray luminosity of the ICM within them

is motivated by the assumption that, due to the depth of the CDM potential
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wells isolating the baryonic matter from the surrounding environment, clusters

may be regarded as relaxed systems in hydrostatic equilibrium, with collapse

forces due to gravity counter-balanced by pressure gradient forces:

dp

dr

1

ρg
=
−GM(< r)

r2
. (2.32)

Using this and treating the plasma as an ideal gas with pressure:

p =
ρgkBT

m̄mp

, (2.33)

where m̄ is the mean molecular weight and mp is the proton mass, it is possible

to deduce the mass of the cluster:

MHE(< r) = −rkBT (r)

Gµmp

[
d ln ρg(r)

d ln r
+

d lnT (r)

d ln r

]
. (2.34)

As discussed in the previous section, consideration of this problem in a EdS

universe with scale-free initial conditions leads to the Kaiser (1986) scaling

relations between X-ray observables and halo mass. In other cosmologies, the

dependence of the scaling relations with redshift can be parameterised via

Fz = E(z)(∆(z)/∆), where E(z) is the Hubble function and ∆ is the relevant

overdensity at a given redshift. In addition to temperatures, luminosities and

masses T, L,M , another quantity of interest is the gas thermal energy:

Y = MgTg, (2.35)

which is expected to exhibit a lower scatter around the mean scaling relation

than other observables. The full set of scaling relations for the self-similar

model in a general concordance-like model is then given by (Giodini et al.,

2013):

LX ∝ FzT
2
g

LX ∝ F 7/3
z M

4/3
tot

LX ∝ F 9/5
z Y

4/5
X

Mtot ∝ F−1
z T 3/2

g

Mtot ∝ F−2/5
z Y

3/5
X

Mg ∝ F−1
z T 3/2

g .
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Figure 2.10: Observed likelihoods for values of three different cluster scal-
ing relations published in the period 2009-2012, from Table 1 of
Giodini et al. (2013). The expected values from the self-similar
model are shown by vertical dashed lines.

Observational determinations of the true (logarithmic) slopes of these scaling

relations make up a good fraction of the literature on X-ray study of galaxy

clusters. All are found to be in reasonable agreement with observational data,

with random scatter around the mean relation of ∼ 10 − 20% for individual

objects. Figure 2.10 shows a summary of measured X-ray cluster scaling re-

lations from 2009-2012. All these exponents are steeper than their expected

values from the self similar model, with the most likely explanation expected

to be due to non-gravitational processes such as AGN and supernovae feedback

affecting the ICM in lower mass clusters. Also of interest is the distinction of

‘cool-core’ clusters, which have lower measured temperatures in their central

∼ 100kpc than expected; this gives them a higher luminosity and thus biases

flux-limited samples towards them. Excising the cool core regions has been

found to greatly reduce the scatter around scaling relations (e.g. Maughan

et al., 2012) as seen in Figure 2.11.

In the past two decades a number of satellite experiments have been used to

create X-ray cluster samples, as well as obtaining follow-up data for clusters de-

tected using other methods. The Meta-Catalogue of X-ray Clusters (Piffaretti

et al., 2011) (MCXC) aggregates the observations of the ROSAT experiment,

whilst more recent samples are available from the XMM (Fassbender et al.,

2011) and Chandra (Vikhlinin et al., 2009a). satellites.

The Thermal Sunyaev-Zel’dovich Effect

Another observable proxy for halo mass is the tSZ effect (Carlstrom et al.,

2002). CMB photons emitted at last scattering travel through galaxy clusters

before reaching us; inverse Compton scattering by the high-energy electrons

within the ICM imparts energy to the photons, shifting the spectrum and

changing the observed CMB temperature along the line of sight of the cluster.
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Figure 2.11: Recent examples of measured LX -Tg scaling relations, showing
the apparent difference in behaviour in low mass (< 4 keV) sys-
tems, expected to be due to non-gravitational feedback processes.

The Compton parameter:

y =
σTkB
mec2

∫
dl Tene, (2.36)

where σT is the Thompson scattering cross-section and Te,me, ne are the elec-

tron temperature, mass and number density, measures the electron pressure

along the line of sight l. This creates a frequency-dependent change in the

CMB temperature along the line of sight:

∆T

T
= y

(
x
ex + 1

ex − 1
− 4

)
, (2.37)

where x = hν/kBTCMB and the function in x is the (non-relativistic) frequency

dependence of the signal. This creates a characteristic signature on the CMB:

temperatures are lowered at frequencies below 218 GHz and increased above.
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The integrated Compton parameter:

YSZ =

∫
Ω

dΩ y

=
1

D2
A

σTkB
mec2

∫
dV neTe (2.38)

∝ Ne〈Te〉
D2
a

∝ M〈Te〉
D2
a

, (2.39)

then provides an estimate of the total mass of electrons along the line of sight

through the cluster, weighted by temperature. For a spherical cluster, this will

then be proportional to the total mass; however, real clusters are expected to

be non-spherical in general, biasing surveys towards clusters elongated along

the line of sight and providing a systematic in mass estimation via scaling

relations.

Following intial detection of the tSZ effect, the recent advent of CMB exper-

iments with arcminute resolution (the angular size of a typical massive cluster

being 1-5 arcminutes) such as South Pole Telescope (SPT), Atacama Cosmol-

ogy Telescope (ACT) and Planck satellite has greatly increased the number of

known clusters at intermediate and high redshifts. A key advantage of observ-

ing galaxy clusters within the tSZ effect is that the size of the signal is only

redshift dependent through the angular diameter distance Da, which flattens

out at high redshifts in the concordance cosmology. This means surveys may

approach being truly mass-limited, making them ideal for cosmology. How-

ever, redshift information is not directly obtainable from tSZ surveys, meaning

spectroscopic optical or X-ray follow up observations are required.

Optical Tracers

The earliest galaxy cluster observations were of the optical emission from stars

in the constituent galaxies. By considering a simplified Jeans argument, a

cluster in virial equilibrium will have a velocity dispersion related to a mass

enclosed by a given radius:

σ2
v ≈

GM

2r
. (2.40)

The velocity dispersion can then be measured by the redshift due to the pe-

culiar velocities of the cluster galaxies (i.e. in addition to the cosmological

redshift). Such precise redshift information can be difficult to obtain for a

large number of galaxies however, motivating the use of other optical proxies

based solely on the abundance of galaxies within the cluster.
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In addition to velocity dispersion, because the mass fraction of baryonic

matter is expected to remain constant (and proportional to Mtot) in the self-

similar model, the total optical luminosty Lopt and number of cluster galaxies

Ngal are often used, in particular N200, the number of galaxies within r200. The

MaxBCG catalogue (Koester et al., 2007) contains a large number (13823)

of clusters from optical SDSS data, with objects ranging from small galaxy

groups to large clusters.

Weak and Strong Gravitational Lensing

In addition to the indirect measurements of halo mass via the properties of

galaxy clusters, it is also possible to measure their mass directly using strong

and weak gravitational lensing (as reviewed in Hoekstra et al., 2013). In strong

lensing (where the source is multiply imaged), for a given axially-symmetric

lens model, the radius from the lens centre of the critical curve rt is uniquely

defined by the lens mass:

M(rt) ≈ 4.4× 1014M�
( rt

30arcseconds

)2
(

DlDs

DlsGpc

)
, (2.41)

where D represents distances between source, lens and observer. The dramatic

banana-shaped distortions of background galaxies by haloes seen in optical

images can then be used to measure the total mass, including dark matter,

of the haloes. Because of the concentration of haloes in CDM models, the

critical curves are close to the lens centre, meaning the technique can typically

only measure halo masses at small radii. Further from the halo centre, weak

lensing (coherent small distortion of many background images) may also be

used to infer the total mass of a halo. The measured ellipticity of a background

galaxy will be changed by the shear γ due to gravitational potentials between

the source and observer. For galaxies with an expected intrinsic ellipticity

distribution, the shear in a region can then be found by averaging the observed

ellipticity over a large number of sources:

〈ε〉 = 〈εint〉+ γ (2.42)

This shear estimate may then be converted into an estimate of lens mass using

methods such as the aperture mass statistic (Schneider et al., 1998), an integral

of the shear within an annuli (as is done in High et al., 2012).

Both gravitational lensing methods have the significant advantages that
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they are sensitive directly to the total mass of the halo (requiring no assump-

tions as to the mapping between ICM mass and halo mass) and do not require

assumptions of hydrostatic or thermal equilibrium which may not be true for

recently merged clusters. Indeed a combined lensing analysis of the Bullet

cluster merger event by Clowe et al. (2006) shows a complete offset between

the X-ray emission from the recently-collided baryonic matter and the lensing

signal from the collisionless dark matter. However, the degree of lensing of an

object is an integral over the whole line of site between source and observer,

making lensing masses susceptible to contamination from correlated (or un-

correlated) large scale structures other than the halo, as well as suffering the

same issue with elliptical haloes as the tSZ signal.

Calibration and Cross-Calibration

With the advent of large samples of clusters with data in more than one observ-

able property, efforts have been made to cross-calibrate the different variables,

with the hope of improving the precision and accuracy of their mass mea-

surements (as well as gaining insights into the internal cluster physics), see

Rozo et al. (2012) and references therein. A particular issue in these studies is

the mis-centering problem (Zitrin et al., 2012); the mass reconstruction from

lensing requires a halo centre, often taken as the peak of the X-ray emission

or position of the BCG. However, for clusters not dynamically relaxed, the

baryonic centre may not coincide with the halo centre (the Bullet cluster be-

ing an extreme example of this) and the cluster may also contain significant

sub-structure.

Caution must also be taken in accounting for the full effect of selection bi-

ases when comparing scaling relations for different observables. Angulo et al.

(2012) address this problem by constructing mock observations of cluster rich-

ness, X-ray emission and tSZ signature in the large Millenium XXL N-body

simulation, reassuringly replicating the apparent discrepancies between obser-

vations (e.g. Planck Collaboration, 2011a,b) and showing how they may be

mitigated by correct treatment of the selection function.

Cosmological Constraints

Once compiled, samples of galaxy clusters are capable of providing useful cos-

mological constraints. Figure 2.12 shows the mass function of clusters in a

sample from the Chandra X-ray satellite and shows excellent agreement with

the concordance cosmology combined with the Tinker et al. (2008) halo mass
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function, although the overall amplitude of the matter power spectrum, σ8

(the amplitude of Equation (2.9) when evaluated on a scale of 8h−1Mpc) must

also be determined from the data. As well as the direct determination of the

mass function, clusters may be used in a parameter estimation analysis. Mantz

et al. (2010) detail the fiducial statistical method, wherein the space of cluster

observables (e.g. mass and redshift) is divided into bins in which the observed

number of clusters within that bin Nj is compared to the expected number

from a population function (e.g. the halo mass function dN/dmdz), which is a

function of the cosmological parameters, within that bin 〈Ndet,j〉. The overall

likelihood is then the product of independent Poisson likelihoods for each bin:

L({Nj}) =
∏
j

〈Ndet,j〉Nj exp (−〈Ndet,j〉)
Nj!

. (2.43)

In order to obtain as robust constraints as possible, observable values (such

as detected cluster signal-to-noise) rather than the mass m are used, with

the parameters of the scaling relation and the observational selection function

included as nuisance variables in an Markov-chain Monte Carlo (MCMC) anal-

ysis. This approach has been used to constrain cosmological parameters using

X-ray (Mantz et al., 2010) and tSZ clusters (Reichardt et al., 2013; Hasselfield

et al., 2013; Planck Collaboration, 2013c) and a similar one on the MaxBCG

optical sample (Rozo et al., 2010).

Such parameter measurements have mostly been consistent with other

probes of the concordance model, however the result from the Planck satel-

lite shown in Figure 2.13 is in apparent disagreement with the CMB-only

measurement of matter abundances. Constraints on extensions to the concor-

dance model with galaxy cluster surveys are regarded as promising, due to

the potential effects on the halo mass function discussed in Section 2.2.3. The

sensitivity of the cluster mass function to the growth function D+(z) and ob-

servability at low to intermediate redshifts makes them an excellent probe of

the dark energy equation of state (Sartoris et al., 2012) and modified gravity

prescriptions (Thomas & Contaldi, 2011; Mak et al., 2012) and to primoridial

non-Gaussianity through their dependence on the tail of the initial overden-

sity distribution (Sartoris et al., 2010; Mak & Pierpaoli, 2012). In addition,

the prospect that observation of even a single cluster of sufficiently high mass

and redshift, in a region where the concordance halo mass function is vanish-

ing, could provide strong evidence against a cosmological model has also been

raised (e.g. Mortonson et al., 2011; Holz & Perlmutter, 2012). Constructing a
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Figure 2.12: Measured halo mass function of X-ray selected galaxy clus-
ters from Vikhlinin et al. (2009b). Left compares observations
(points) to a concordance model Tinker et al. (2008) halo mass
function (lines), whilst right compares the observations to a
model with no dark energy.

framework in which such objects may be correctly used to constrain cosmology

will be the main aim of this thesis.
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Figure 2.13: Constraints on the cosmological matter abundance directly from
galaxy clusters measured via two different mass proxies: X-rays
(left, Mantz et al., 2010) and tSZ (right, Planck Collaboration,
2013c, showing the apparent discrepancy between measurements
from galaxy cluster, in blue, and the CMB in red).
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Chapter 3

Extreme Value Statistics

Possibly the most pervasive assumption across the sciences is that observa-

tional data are Gaussian distributed. Provided the Central Limit Theorem

(CLT) may be reasonably invoked, a Gaussian may be fitted to the data and

inference on the underlying model made using the mean and variance statis-

tics. However, as discussed in Chapter 1, cosmological models contain many

observables which are far from Gaussian distributed. In many cases, model

selection may be done by looking in the tails of the distribution: in the high

and low probability regions far from the mean (in the case of a unimodal dis-

tribution with finite variance). For example, a positive or negative value of

the primordial non-Gaussianity parameter fNL, generated by the field theory

driving inflation, will impart the distribution of temperature fluctuations of

the CMB with either a positive or negative skewness, enhancing or depleting

the amount of fluctuations in the high and low tails of the distribution. If

we were to appeal to the CLT and assume the fluctuations to be Gaussian

distributed, we would not be sensitive to the important physical information

available in fNL.

In other observables with even less-Gaussian behaviour we have also seen

that changes to the cosmological model have their effect far from the mean

of the distribution, changing the abundances of rare, high-mass objects as in

the case of different models for the HMF in universes with dynamical dark

energy and non-Einsteinian gravity, as well as primordial non-Gaussianity.

Indeed, in recent years the comparison of new observations of a number of rare

galaxy clusters to their expected abundance from the halo mass function has

motivated a number of authors to suggest modifications to the concordance

model may be necessary (e.g. Hoyle et al., 2011). In addition to this, though

they may be rare, objects with large values of observables such as mass and
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luminosity typically appear as the highest signal-to-noise ratio (SNR) events

in an experiment, meaning they are often the first objects to reach definitive

‘discovery’ status. Predictions for these high SNR objects may allow us to do

useful science with even a single object in what may otherwise be considered

preliminary data.

The problem of making predictions for observations in the far tail of a

distribution is the concern of Extreme Value Statistics (EVS). EVS predicts

the order statistics of a sample: the probability distribution for the value of the

largest (or smallest), second largest, thirds largest (and so on) values within

a sample taken from the underlying distribution. As well as predicting the

exact distribution of extremes from a known underlying distribution, it is the

seminal result of EVS that, just as the CLT exists for sample means, there is a

limiting distribution to which all extreme value distributions will approach as

the number of observations tends to infinity: the Generalised Extreme Value

(GEV) distribution. The existence of this limit law allows predictions to be

made for the frequency of rare observations far outside the regime which has

previously been seen. Much of this thesis is concerned with the application of

EVS techniques in a cosmological setting.

In this chapter, we will provide a brief overview of the history of Extreme

Value Statistics in Section 3.1 and demonstrate how we may derive both the

exact distribution of extremes and the asymptotic GEV distribution in Sec-

tion 3.2, before considering the cases of both the absolute maxima and minima

and less extreme (but still rare) events above high thresholds in Section 3.3.

Finally in Section 3.4 we will illustrate the use of these methods with two ex-

amples: a forward-modelling one, showing how EVS may be used to predict the

order statistics of a Gaussian distribution, and a reverse modelling example,

modelling the tail of the distribution of arXiv pre-print page lengths. There

are many excellent resources describing EVS; this chapter draws in particular

from the textbooks of Gumbel (1958); Embrechts et al. (1997); Beirlant et al.

(2004) and the lecture notes of Coles & Davison (2008).

3.1 Motivation and History

One important property of a probability distribution is its ‘tail behaviour’ —

how it behaves at high and low values where probabilities are small. Frequently,

this tail behaviour is characterised by a comparison with an exponential dis-

tribution. ‘Heavy-tail’ distributions are those which fall off more slowly than
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Figure 3.1: The arXiv data, left showing the largest paper length in pages
Np per day for 572 days and right the corresponding empirical
cumulative distribution function

an exponential:

lim
x→∞

eλxPr(X > x) =∞ ∀λ > 0, (3.1)

whilst ‘light-tail’ distributions will fall off as fast or faster. Whilst many distri-

butions used for modelling data — the exponential or the ubiquitous Gaussian

distribution — are light-tailed, observational data is frequently found to have a

heavy-tailed behaviour. Tail behaviour is often important in areas such as en-

vironmental sciences and finance, where the strength of defences against flood

inundation or bankruptcy may be informed by the probability for a quantity

to exceed a certain threshold. We have also seen in previous chapters how cos-

mological models may be separable by their predictions for the tail behaviour

of certain observables.

In addition, in cases where there is no well-motivated theory to describe

data, empirical methods for predicting extremes can fail. Suppose we are

interested in the length (in pages) of the longest article published in the

astro-ph.CO section of the arXiv pre-print server1 each day. For some cu-

mulative distribution function F , we may define the quantile function, which

returns the smallest sample value x such that the cumulative probability of x

is greater than or equal to some value p:

Q(p) := inf{x : F (x) ≥ p}. (3.2)

If we are in possession of an observed dataset of size N which is then ordered

as X1,N ≤ . . . ≤ XN,N , we can form the empirical cumulative distribution

1http://arxiv.org/list/astro-ph.CO/recent
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function (CDF):

F̂N(x) =
i

N
ifx ∈ [xi,N , xi+1,N) (3.3)

and use this to find the probability that an observation will exceed a given

threshold. Frequently of interest are the block maxima — the largest valued

observation in some block of data segregated by a time variable. As an example

dataset, Figure 3.1 shows the length of the longest (in terms of page count)

article for a period of 572 days. We may use the empirical distribution function

Equation (3.3) to estimate the probability that the longest paper on a given

day will be longer than 100 pages: p̂ = 1 − F̂n(100) = 0.08, providing the

busy cosmologist with some estimate as to the maximum amount of time he

may need to spend reading a paper that day. However, what if we wish to

estimate the probability that a paper is longer than the longest which has

so far appeared on any day in our data set? For x > 528 in our data, the

procedure above tells us p̂ = 0 and longer papers are impossible. This is

equivalent to attempting to use an empirical quantile function:

Q̂N(p) := inf{x : F̂N(x) ≥ p}. (3.4)

when p < 1
N

, and is clearly not the correct result. The estimation of the

true probability of such rare events is the goal of EVS. Whilst it is possible to

adopt a simple model-fitting approach, such as finding the best-fitting Gaussian

distribution, a model which fits the bulk of the observations close to the mean

will not necessarily be correct in the rare-event tails.

One of the first fields in which the statistics of extremes was considered was

in fact astronomy. Peirce (1852) is concerned with “Criterion for the rejection

of doubtful observations,” in which he seeks to set objective rules for the rejec-

tion of outliers in data. For normally distributed observations, Peirce’s crite-

rion specifies a maximum allowable deviation of observations from the mean,

in multiples of the sample standard deviation, with tabulated acceptable mul-

tiples dependent on the size of the sample. Rider (1933) provides a review of

Peirce’s criterion, along with several others developed in the intervening years

for the purpose of rejecting outliers in a sample from an expected normally-

distributed population. Concurrent with this, Lundberg (1903) and Cramér

(1930) developed the classical actuarial risk theory around the ‘ruin proba-

bility’: what is the probability a rare, large insurance claim will bankrupt

an insurance company in a given time frame, given income at a particular

premium rate and outgoings according a particular distribution of claim oc-
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curances N(t) and amounts f(x). Solving for the ruin probability is clearly

dependent on the tails of both N(t) and f(x).

However, the first explicit consideration of the largest values in a sample

(again in the case of a Gaussian distribution) was given by von Bortkiewicz

(1922), who finds an analytic form for the expected full range (i.e. the distance

between the largest and smallest value) of a sample of size N . Following this,

the propogation of EVS methods was given an immeasurable boost by the

discovery by Fréchet (1927) of an asymptotic theory. Fréchet (1927) showed

that for all distributions in a particular class, the distribution of extremes in

a sample will tend towards a single limiting distribution. This result was soon

extended by Fisher & Tippett (1928) to two further classes of distribution

(covering all realistic cases), who also showed the three limiting distributions

may be written in a single unified form. Gnedenko (1943) then gave a full

description of domains of attraction for the three limiting forms (the require-

ments on the underlying distribution for its EVS to be of a given asymptotic

type) and described the necessary and sufficient criteria for the convergence to

take place.

Following these theoretical developments, the asymptotic form of EVS

found a wide variety of applications, apparently driven by the lectures and

proselytising of E. J. Gumbel (whose lectures form the basis of Gumbel, 1958).

In environmental sciences, one may be concerned with problems such as the

expected distribution of maximum inundation levels of floodwaters; in addi-

tion to classic works from the 1940s, priority was given to research in EVS by

the government of the Netherlands, culminating in the PhD thesis of de Haan

(1970), which is summarised in de Haan (1990). Another major proponent

of EVS methods have been engineers, seeded by Weibull (1939) who had the

insight to treat the strength of materials as a function of stochastic variables,

where the extreme value distribution for the weakest component determines

the overall behaviour. In finance, the Cramér-Lundberg ruin probability is still

of importance, as is consideration of the fluctuation of stock markets (for ex-

ample Longin, 1996; Gill, 2006). Resnick (1997) provides an excellent overview

of the presence of EVS in the field of telecommunications, where the extremes

of interest relate to the capacity of networks to handle the necessary quantities

of data requests.

Interest in EVS methods in cosmology has mostly been muted until re-

cently. Bhavsar & Barrow (1985) consider the EVS of the brightest galaxies

within groups and clusters, showing that some apparently discrepant observa-
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tions (i.e. so large as to possibly come from a different parent population) were

in fact consistent with being in the extreme tail of the main population. The

asymptotic form for a Gaussian was applied to the hottest temperature spots

in the CMB by Coles (1988), with the goal of discriminating between detector

noise and true high CMB fluctuations. Immediately prior to, and during the

completion of, the work in this thesis, there has been a significant up-turn in

applications of EVS in a cosmological context. With the goal of testing the

concordance model, Colombi et al. (2011) and Mikelsons et al. (2009) again

consider extremes of CMB temperature fluctuations and Davis et al. (2011)

Waizmann et al. (2011, 2012a,b, 2013) Chongchitnan & Silk (2012) all con-

sider abundances of galaxy clusters as a proxy for CDM haloes. Waizmann

et al. (2012c) considers sizes of strong lensing Einstein rings and Capranico

et al. (2013) weak lensing convergence fields. EVS of large scale structures in

N-body simulations is the concern of Yaryura et al. (2011), whilst Antal et al.

(2009) consider not abundances of galaxies, but their clustering distances.

3.2 Exact and Asymptotic Distributions

In situations where we are interested in distributions of extrema, we may or

may not be in possession of a well-motivated and complete model for the data,

in particular for the rare-event tail of the data. Here, we describe how extreme

value distributions may be formed in two cases, the exact case in which we

do know the underlying distribution and the classical GEV case, where the

underlying distribution is unknown beyond some weak assumptions.

3.2.1 Exact

In almost all of the historical practical applications (outside of cosmology)

listed in Section 3.1, the paradigm has been that of reverse modelling: taking

historical data, asserting that it must fit a limiting distribution, fitting the

parameters for this distribution and making predictions for future observations.

In contrast, we may have a theory which predicts the underlying distribution

for our observations, in terms of a probablity distribution function (PDF)

f(x) and CDF F (x) and be interested in its predictions for extreme events. In

this case, we can consider the exact extreme value statistics directly, without

having to assert that the asymptotic regime has been reached (convergence can

indeed be very slow, see Section 3.4). If we are interested in the supremum

(the smallest upper bound for all elements within the set) of N independant
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and identically distributed (i.i.d.) random variates:

Mmax = sup{X1, . . . , XN}, (3.5)

then the probability that all of the deviates are less than or equal to some

value m is given by the probability that each individual deviate is less than or

equal to that value:

Φmax(Mmax ≤ x;N) = F1(X1 ≤ x) . . . FN(XN ≤ x)

= FN(x) (3.6)

and the PDF for Mmax is then found by differentiating Equation (3.6):

φmax(Mmax = x;N) = Nf(x) [F (x)]N−1 . (3.7)

Conversely, for the minimum:

Mmin = inf{X1, . . . , XN}, (3.8)

the CDF is given by:

Φmin(Mmin ≤ x;N) = 1− [1− F (x)]N (3.9)

and the PDF by:

φmin(Mmin = x;N) = Nf(x) [1− F (x)]N−1 . (3.10)

Using these equations, we may predict the greatest and smallest values in a

sample of size N for a known underlying distribution. For the example of a

unit Gaussian distribution, Figure 3.2 shows both the predicted and observed

(from 105 Monte Carlo (MC) realisations) distribution for the maximum and

minimum of 103 samplings along with the Poisson error bars for each bin.

3.2.2 Asymptotic

In the contrasting case, where a well-motivated model for the underlying dis-

tribution may not exist, use of EVS has been aided by a theorem analogous

to the central limit theorem for sample means: the Fisher-Tippet-Gnedenko

theorem. This theorem states that, in the limit N → ∞, the distribution for

sample maxima Φ(Mmax = x) will approach one of only three limiting forms.
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Figure 3.2: The PDF for a unit Gaussian G(x), shown along with the exact
extreme value distribtions for the maximum and minimum of N =
103 observations from it (lines). Also shown are histograms for
105 random realisations of such observations (points with Poisson
error bars).

More formally, there exist constants (dependent on N) aN > 0 and bN such

that:

lim
N→∞

Φ

(
Mmax − bN

aN
≤ x

)
= G(x) (3.11)

where G(x) is a unique, non-degenerate distribution of one of three types, the

Type-I (or Gumbel), Type-II, (Fréchet) or Type-III (Weibull). This theorem

was first proved for the case of distributions which converge to the Type-II

extreme value case by Fréchet (1927). Soon after, Fisher & Tippett (1928)

extended the proof to the other two limiting cases finding the three limiting

distributions to have the forms:

GI(x) = exp (− exp(−x)) x ∈ R, γ = 0 (3.12)

GII(x) = exp
(
−x−1/γ

)
x > 0, γ > 0 (3.13)

GIII(x) = exp
(
−(−x)−1/γ

)
x < 0, γ < 0, (3.14)

where x is a variate which has been normalised with the location bN and

scale aN parameters and γ is the extreme value shape parameter, which is

determined by the tail behaviour of the underlying distribution. Figure 3.3

shows examples of the three distributions for varying values of γ. Due to
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their related form, it is also possible to encapsulate all three of the limiting

distributions in the single Generalised Extreme Value (GEV):

GGEV (x) =

exp [−(1 + γx)]−1/γ if γ 6= 0

exp [− exp(−x)] if γ = 0,
(3.15)

with each case defined where 1 + γx > 0. The γ = 0 Gumbel form appears in

the limit γ → 0 in the other two cases.

For the Type-I distribution alone, it is possible to quite simply sketch the

derivation. If we consider a series of n draws of N random deviates from a

distribution, then each of the n series will have a maximum Mn
max. The largest

of these maxima will be the maximum of both the N maxima of sequences and

the nN total deviates. If a limiting distribution G(x) exists, its form must be

the same for both of these sets, up to a linear transformation:

GN(x) = G(aNx+ bN) (3.16)

where aN and bN vary with N . This is known as the ‘stability postulate’. The

simplest asymptotic distribution may be found by considering the stability pos-

tulate with aN = 1. By twice taking the natural logarithm of Equation (3.16):

lnN + ln[− lnG(x)] = ln{− ln[G(x+ bN)]}, (3.17)

if we consider the stability postulate for two sequences of size N and p then:

GNp(x) = [G(x+ bN)]p (3.18)

= G(x+ bN + bp)

= G(x+ bNp).

From this we can see bN is related logarithmically to N and let bN = σ lnN

where σ is a constant. In the case where x = −σ lnN

ln[− lnG(x)] = ln{− ln[G(x+ σ lnN)]} − lnN

= ln{− ln[G(0)]} − x

σ
(3.19)
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Figure 3.3: Generalised Extreme Value (GEV) distributions, showing the
Gumbel (γ = 0), Fréchet (left, γ > 0) and Weibull (right, γ < 0)
cases for different values of the shape parameter.

then

− lnG(x) = exp

[
−x− σ ln{− ln[G(0)]}

σ

]
= exp

[
−x− µ

σ

]
, (3.20)

where µ = σ ln{− ln[G(0)]}. This gives the final cumulative distribution func-

tion as the Type-I extreme value distribution, specified by its location and

scale parameters µ and σ:

G1(x) = exp

[
− exp

(
−x− µ

σ

)]
. (3.21)

In addition to this case, Fisher & Tippett (1928) give the derivations for the

distributions where an 6= 1, accounting for the Type-II and Type-III limiting

cases. Following the discovery of the limiting cases, Gnedenko (1943) for-

mally established the domains of attraction for underlying distributions to the

asymptotic cases. A simplified form is given by Coles & Davison (2008) for

sufficiently smooth distributions in terms of the reciprocal hazard function:

r(x) =
1− F (x)

f(x)
. (3.22)
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Table 3.1: Common classes of distributions and their tail behaviour

Distribution CDF F (x) Tail index, γ

Gumbel

Gaussian 1
2

[
1 + erf

(
x√
2

)]
0

Exponential 1− exp(−x) 0

Log-normal 1
2

[
1 + erf

(
lnx√

2

)]
0

Logistic 1
1+exp(−x)

0

Fréchet
Pareto 1− x−α, x > 1; α > 0 1

α

Burr type XII (1− xc)−k −1
ck

Inverse-gamma
Γ(α,β

x
)

Γ(α)
1
α

Weibull
Uniform x -1

Beta B(x;α,β)
B(α,β)

−1
β

Using which it is possible to find the location and scale parameters as:

bN = F−1

(
1− 1

N

)
aN = r(bN) (3.23)

and the asymptotic value of the shape parameter given by:

γ = lim
x→∞

d

dx
r(x). (3.24)

The limiting cases for a selection of common distributions are shown in Ta-

ble 3.1. Broadly, distributions with tails which decay as a polynomial will be

in the Fréchet domain of attraction, those with light tails and a finite upper

limit will tend to a Weibull distribution and those with an exponential tail to

a Gumbel distribution. Gnedenko (1943) gives conditions for convergence to

the three different types and shows that these conditions are both necessary

and sufficient, their generality motivating the application of the GEV for all

typical distributions. A number of other authors give alternative necessary

and sufficient conditions for convergence; a review of which is contained in

Kotz & Nadarajah (2000).

3.3 Extrema Below the Maximum

When considering only the single maxima and minima of a sample, we are

required to ignore all of the other data which has been observed. Whilst, as

is the key tenet of EVS, investigating the distribution of maxima and minima
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allows us to constrain the tail behaviour of the underlying distribution, infor-

mation is being lost when this data is not considered. Hence, we may also be

interested in the probability distributions for other order statistics.

3.3.1 Exact Order Statistics

We may consider exact distributions for other order statistics than the first-

ranked: the second-largest, third-largest and so on. The formulation repre-

sented by Equation (3.7) is merely a single case of the m-th oder statistics,

with m = N , the last entry in the ordered data. For the m-th largest value in

a sample of size N to be less than or equal to some xm, we require that m− 1

samples are above xm and N −m are below. For independant and identically

distributed (i.i.d.) variates, this becomes the product of the probability for the

draw of the m-th value itself, f(xm), the probability for m− 1 samples below,

Fm−1(x), and the probability for N −m samples above, 1 − FN−m(x), along

with the necessary combinatoric factor:

φ(xm;N) =
N !

(N −m)!(m− 1)!
Fm−1(xm)(1− FN−m)f(xm). (3.25)

It can easily be seen that Equation (3.25) does indeed reduce to Equation (3.7)

for the case of the maximum, m = N . The Hill estimator (Hill, 1975) of the

GEV parameter γ is formed by considering k of these order statistics, with

the choice of k involving a balancing between including more data to minimise

the variance of the estimate (high k) and the fact that the estimator becomes

biased as k increases.

3.3.2 Peaks Over Threshold

In addition, it is also possible to consider, rather than the block maxima, the

number of discrete peaks in the data above a chosen threshold. However,

this potential gain is tempered by the introduction of an extra parameter, the

threshold t which must be chosen. The distribution of interest is now the

conditional probability for a random variate X to exceed the threshold by a

given amount y > 0:

P (X > t+ y|X > t) =
1− F (t+ y)

1− F (t)
(3.26)
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Just as the GEV exists for block maxima, Balkema & de Haan (1974) and

Pickands (1975), showed that probability distributions for exceedances y will

converge to an asymptotic family as N → ∞, specified by the Generalised

Pareto Distribution (GPD):

FGPD(x) =

1− (1 + ξx)−1/ξ for ξ 6= 0

1− exp(−x) for ξ = 0.
(3.27)

where x is a scaled, located variable and ξ is the GPD parameter. Again, for

all distributions obeying a weak set of convergence criteria, the same as those

for the GEV, the probability for exceedances in the large N limit and a ‘high’

threshold will asymptotically approach a GPD. The GPD is usually included

in a Points Over Threshold (POT) methodology, in which a threshold is chosen

and the location, shape and scale parameters estimated from the distribution.

It should be noted that the distribution parameters will be a function of the the

chosen threshold t and this choice must be made optimally: the same interplay

between minimising both estimator variance and bias must be considered as

in the case of the Hill estimator.

3.4 Examples

We will now show two case studies of applications of EVS for block maxima.

In the first, we consider a forward modelling problem, predicting extrema

of samples from a known distribution. In the second, we perform a reverse

modelling, seeking to make inference about an unknown theory from observed

data.

3.4.1 Forward Modelling: Gaussian Data

For the example of a unit Gaussian (or Normal) distribution, with PDF:

h(x) =
1√
2π

exp

(
−x

2

2

)
, (3.28)

we feed the known PDF and CDF to the exact extreme value Equation (3.7).

For a number of samples N = 103, the calculated exact EVS distribution for

the maximum and minimum is shown as the solid lines in Figure 3.2. This

predicted distribution is in agreement with the results shown as circles — a

histogram of maxima observed in 105 random realisations of the sampling from
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the Gaussian distribution.

We may also investigate the asymptotic behaviour. By considering the

reciprocal hazard function Equation (3.22) for the Gaussian distribution, it is

possible to show the expected value for the GEV parameter γ in the large N

limit is expected to be γ = 0, corresponding to a Type-I Gumbel distribution.

In Figure 3.4 we create 105 random realisations of maxima for increasing sample

sizes taken from a unit Gaussian. We then calculate the necessary location and

scale parameters:

aN =
√

2 log(N)

bN =
√

2 log(N)−
√

2 log(N)

2
[log(log(N)) + log(4π)] (3.29)

for each N using Equation (3.23) and fit a GEV distribution to the re-scaled

maxima (Mmax−bN)/aN using a maximum likelihood method. The right panel

shows the found distributions with increasing N , whilst the left panel shows

the convergence of the γ parameter. As can be seen, the convergence to the

limiting distribution is exceptionally slow, converging at the rate (log(N))−1

(Hall, 1979) motivating the use of the exact formulation for most reasonable

sample sizes in the advantageous case where the underlying distribution is

known. However, this contrasts to the case of the exponential distribution,

where convergence of the extreme value distribution to the limiting Gumbel

case is much faster, going as N−1 (Hall & Wellner, 1979), as replicated in

Figure 3.4.

3.4.2 Reverse Modelling: arXiv Page Length Data

In the converse situation to that of above, when no explicit model exists for

the underlying distribution, we may be interested in predicting the size of fu-

ture extremes from past data. Indeed, this procedure has been the one chiefly

historically considered in EVS for environmental sciences, finance and engi-

neering. Because the conditions for convegence to a GEV are weak, we may

expect that any sequence of extremes of i.i.d. variates will be satisfactorily

modelled by Equation (3.15) for the case of suitably large N (although, as

seen above, caution is required when invoking the limiting distribution as con-

vergence may be slow).

As an example, we consider the daily maximum page length for articles

published in the cosmological astro-ph.CO section of the popular arXiv pre-
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Figure 3.4: Convergence of GEV shape parameter γ to limit for a Gaussian
(upper) and exponential (lower) distribution as the number of
samples N is increased. Parameters are estimated using a max-
imum likelihood method and error bars represent the 95% confi-
dence regions. Left shows the values of the shape parameter, right
the evolution of the corresponding distributions.
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print server. For all days where abstracts are published, i.e. excluding days

such as weekends and public holidays, in the period 17/11/2011 to 13/06/2013

(a total of 572 days) we find Nmax, the number of pages of each article published

on that day, as shown in Figure 3.1. A graphical tool often used in analysis

of extreme values is to plot the ordered data against quantiles of an assumed

distribution, with the aim of showing a linear relationship. Figure 3.5 shows

such a quantile-quantile (QQ) plot of the arXiv data, with quantiles for an

exponential distribution plotted on the horizontal axis converted to a return

period, i.e. the inverse of the expected frequency of such a large event per day.

Such a plot allows rough-and-ready prediction for future extremes allowing us

to estimate, for example, that the return period for a 500 page paper is once

in every ∼ 103 days.

A more sophisticated treatment of the data is shown in Figure 3.6. Here,

parameters of a GEV distribution have been fitted to the observed page-length

data using a maximum likelihood (ML) method, showing good agreement even

at low occurance probabilities. Using the ML values for the GEV parameters:

γ = 0.2862, σ = 17.3684 and µ = 31.5618, we may infer that the distribution of

maximum page lengths per day for astro-ph.CO follows the Type-II Freéchet

distribution, indicating a heavy-tail behaviour. Using the fitted distribution,

we can predict that the longest paper on a given day will be over 500 pages

once every 5.3 years and over 1000 pages once every 54.1 years.
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Figure 3.5: Quantile-Quantile plot of the arXiv data, showing the return pe-
riod (assuming the data are exponentially distributed) for each
daily-largest page length.
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Figure 3.6: A GEV distribution (line) fitted using a maximum likelihood to
the arXiv data (points), showing good agreement with the ob-
served extremes and Poisson count errors for each bin.
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Chapter 4

Extreme Value Statistics and

the Halo Mass Function

In Chapter 2, we have seen how physical models of cosmology make quantifi-

able predictions for the abundance of observable galaxy clusters and how many

of the well-motivated modifications to the concordance cosmology are capable

of altering predictions for this abundance, principally in the rare-object limit.

This observation led us to consider the subject of EVS in Chapter 3, seeing

how it is possible to both make predictions for the statistics of extreme ob-

servations in the far tail of a distribution, and to make inference on such tails

by using observed data. In this chapter, we will use EVS to make predictions

for the most-massive galaxy cluster we may expect to observe in a co-moving

cosmological volume. Because the halo mass function can be formed into an

underlying PDF for galaxy cluster masses, we will treat this as a forward

modelling problem as described in Section 3.4.1.

In Section 4.1 we will describe the methodology used to make predictions for

the most massive halo within a volume. Using this methodology, we calculate

the PDF for this quantity in Section 4.2, compare it to numerical simulations,

show how sensitive the result may be to the modelling of the assumed cos-

mology and how it may change in the presence of primordial non-Gaussianity.

Finally in Section 4.3 we conclude and discuss the prospects for using EVS to

constrain cosmology.

4.1 Formulation

As discussed in Section 2.2, Press & Schechter (1974) were the first to pro-

vide an analytic method for predicting the co-moving number density n(M)
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of haloes of a given mass M , in differential form dn/dM , considering spheri-

cal collapse of density perturbations in the matter field. Subsequent to this,

there has been much work developing the halo mass function, both analytic

and through fitting functions to N-body simulations. We choose to use the

mass function from Sheth & Tormen (1999) including effects from ellipsoidal

collapse:

dn

dM
= A

√
2aδc
πσ

exp

(
−aδ

2
c

2σ2

)[
1 +

(
σ2

aδ2
c

)p]
ρ̄

M

dln(σ−1)

dM
. (4.1)

Here, σ2 is the variance of the matter field smoothed with a top hat window

of radius R = (3M/4πρ)1/3, with linear power spectrum P (k):

σ(M)2 =

∫ ∞
0

dk

2π
k2P (k)W 2(k;R), (4.2)

ρ̄ is the mean density in the Universe, δc ' 1.686 is the critical overdensity

for collapse and {A, a, p} are parameters fitted to an N-body simulation and

here given the values of {0.322, 0.707, 0.3} found in Sheth & Tormen (1999).

Throughout, we use a power spectrum calculated numerically using Code for

Anisotropies in the Microwave Background (Lewis et al., 2000) (CAMB) and

the WMAP7+BAO+SN Maximum Likelihood parameters from Komatsu et al.

(2011), displayed in Table 1.1. Using the halo mass function as a predictor of

number densities of haloes n(M), we can construct a PDF for halo mass to be

used in the calculation of the extreme value distribution outlined above:

f(m) =
1

ntot

dn(m)

dm
, (4.3)

F (m) =
1

ntot

[∫ M

−∞
dM

dn(M)

dM

]
, (4.4)

where the normalisation factor

ntot =

∫ ∞
−∞

dM
dn(M)

dM
(4.5)

is the total (co-moving) number density of haloes. For a constant redshift box

of volume V the total number of expected haloes N is then given by ntotV . We

now wish to predict the largest valued of N draws from this known distribution,

as in Section 3.2.1. We then insert the underlying halo mass distribution into
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the exact extreme value statistics formula:

φmax(Mmax = x;N) = Nf(x) [F (x)]N−1 , (4.6)

allowing us to predict the probability distribution for the mass of the most-

massive halo found in a cosmological simulation box of volume V .

The form of halo mass distribution in the concordance cosmology and al-

ternative cosmologies can also be examined; as an example of deviations from

the concordance model we include the effects of primordial non-Gaussianity.

The halo mass function has long been known to be sensitive to the presence

of primordial non-Gaussianity (Lucchin & Matarrese, 1988) and these effects

have been replicated within N-body simulations (Grossi et al., 2009; Pillepich

et al., 2010). We include non-Gaussianity into the model via the non-Gaussian

correction factor R(fNL) of Lo Verde et al. (2008) (LMSV):

RLMSV (fNL) = 1 +
σ2

6δc

[
S3(σ)

(
δ4
c

σ4
− 2δ2

c

σ2
− 1

)
+

dS3

d lnσ

(
δ2
c

σ2
− 1

)]
. (4.7)

where S3 is the normalised skewness of the matter density field, for which we

use the approximation:

S3 ' 3× 10−4fNLσ
−1 (4.8)

given by equation (2.7) of Enqvist et al. (2011) and expected to be valid across

the range of relevant halo masses. The choice of the LMSV version is moti-

vated by Figure 4.1, in which we plot three methods of including primordial

non-Gaussianity in the halo mass function; the R(fNL) correction factors of

LMSV and Matarrese et al. (2000) (MVJ) and the analytically applied non-

Gaussianity of Maggiore & Riotto (2010a) (MR), all applied to the fNL = 0 MR

mass function. As can be seen (and as observed by Enqvist et al. 2011 when

applied to the Tinker et al. 2008 mass function), the MVJ correction factor

leads to a divergence in the mass function in the high-mass limit, which in this

analysis we are still required to integrate over. By applying non-Gaussianity

to the MR mass function we can explicitly see that it is the R(fNL) factor

which leads to this divergence, rather than the mass function itself.
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4.2 Results and Comparisons with Other Work

4.2.1 Validation via Monte-Carlo Simulations

In order to evaluate the efficacy of this formulation of the extreme value statis-

tics of the halo mass function, we compare the extreme value PDF calculated

from Equation (4.6) to Monte Carlo simulations of the most massive halo in a

universe with a given mass function. In each cosmology, we construct an en-

semble of realisations of the halo mass function. Each realisation is constructed

by calculating the expected number of haloes in a bin of width ∆ logm and

drawing from a Poisson distribution with this mean. The Poisson distribution

has been shown to be a good model of halo occurances for high mass haloes

in appreciable cosmological volumes (Smith & Marian, 2011), over which the

correlation function of high-mass objects is expected to be small. Whilst high

peaks in the initial density field are expected to be highly correlated, as dis-

cussed in Peebles (1980) the absolute space density of such haloes is small

enough to render the number of correlated neighbours (which is a product

of number density n and volume-integrated correlation function) to be small.

The value drawn from the Poisson distribution is then taken as the number of

haloes in this bin for this realisation, generating a mock catalogue of uncorre-

lated haloes in the volume V . The largest cluster mass for the realisation is

determined as the central value of the highest occupied bin (which is always

singly occupied). The distribution of highest-mass cluster in each catalogue is

then recorded over 104 realisations. Figure 4.3 shows the excellent agreement

of the exact extreme value theory prediction described in Section 4.1 with such

Monte Carlo simulations.

4.2.2 Effect of HMF Choice

The steepness of descent of the halo mass function is both crucial to the EVS

of haloes and difficult to determine. For mass functions derived from N-body

simulations, the Poisson counting error in the abundance of rare haloes may

only be overcome by simulating extremely large volumes, as discussed in Reed

et al. (2013). In Figure 4.2, we show the effect of halo mass function choice

on the EVS, with predictions for the PS, ST and Tinker mass functions, rep-

resenting three of the most-studied mass functions within the literature. The

behaviour of the extreme value PDF may be compared with the comparative

weights of the high mass tails of the three mass functions shown in Figure 2.3,
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Figure 4.1: Halo mass functions with non-Gaussianity applied using the pre-
scriptions of MR, MVJ and LMSV showing the divergence of the
MVJ prescription at high masses.

with the expected behaviour of the ST and Tinker distributions, which have

heavier tails, having higher expected extreme masses.

4.2.3 Convergence to GEV

Figure 4.3 shows the results of the above exact extreme value procedure ap-

plied to the Sheth & Tormen (1999) mass function with WMAP7 cosmological

parameters. Plotted are Monte Carlo results with Poisson errors, the exact

extreme value distribution calculated using Equation (4.6), along with the

best fitting asymptotic Type-I (Gumbel) and GEV distributions, found using

a maximum likelihood method for the location, shape and scale parameters.

It can be seen that the predictions of the exact extreme value distribution

Equation (4.6) well match the results of the Monte-Carlo simulations. The

importance of including the extra degree of freedom in the γ parameter can

also be seen in the poorness of the fit of the Gumbel distribution, with the

maximum likelihood γ̂ = −0.14 indicating the data is Weibull-distributed,

with a light tail.

As discussed in Section 3.4, the convergence of extreme value distributions

to the GEV limit may be extremely slow. Figure 4.4 shows the convergence

of the shape parameter γ for a variety of spherical volumes and values of the
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Figure 4.2: Extreme value distributions for the most-massive halo in a sphere
of radius 100h−1Mpc at z = 0 from the Press & Schechter (1974)
(PS), Sheth & Tormen (1999) (ST) and Tinker et al. (2008) halo
mass functions.

non-Gaussianity parameter fNL. Values of γ are estimated with a maximum

likelihood method and error bars represent 95% confidence intervals. As can

be seen, the shape parameter appears to be well converged for volumes above

r & 30. For a thin shell of ∆z = 0.1 at z = 0.2, this corresponds to a survey

region of ∼ 40deg2.

4.2.4 Estimating fNL

Figure 4.4 also shows the estimated shape parameter for three representative

values of fNL. Even for regions where the shape parameter is well-converged

to the asymptotic value, there appears to be enough statistical noise so as to

wash out any potential detection of fNL . 300 by using γ as a test statistic,

even in this simple case with uncorrelated haloes. This concurs with the broad

findings of Mikelsons et al. (2009), who find γ to be a poor discriminant of

different values of fNL in realisations of patches of the CMB sky. However,

we shall see in Chapter 5 (and as shown in Chongchitnan & Silk 2012) that

inclusion of primordial non-Gaussianity can make an appreciable difference to

the location parameter of the extreme value distribution for the most-massive

cluster in an observational survey.
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4.2.5 Extreme Values via the Void Probability

As well as the exact method considered in this chapter, Davis et al. (2011)

(DDCSP) show it is also possible consider the extreme value statistics of the

halo mass function, forming the extreme value distribution as the differential

of the void probability:

Φvoid(Mmax = m) =
dP0(m)

dm
, (4.9)

where the probability a halo is the most-massive in its given volume is equal to

the probability that there are zero haloes with a higher mass. In the Poisson

limit, the void probability is given by:

P0(m) = exp(−n(> m)V ). (4.10)

where n(> m) is the number density of haloes with mass greater than m. This

limit is expected to be true for rare objects such as high-mass galaxy clusters

in survey volumes large enough that the correlation function is negligible and

corresponds to the assumption of independence of each sample inherent in the

use of Equation (4.6). However, in smaller survey volumes the halo correlation

is appreciable and the Poisson assumption is no longer valid. White (1979)

provides a method to account for these correlations, showing that the void

probability P0 depends heirarchically on all orders of the correlation function

of the density field. In Davis et al. (2011), the effect of correlations is imple-

mented through the count-in-cell formalism of Bernardeau & Schaeffer (1999)

(also including the necessary halo bias term), modifying Equation (4.10). This

is found to match well with the most-massive objects identified in large N-

body simulations, with the purely Poisson approach giving good results for

the high-mass tail and for volumes ∼ 100h−1Mpc and above. Davis et al.

(2011) also provide an approximation to the full PDF by Taylor expanding

around Equation (4.10) with the effect of correlations and bias included.

Shown in Figure 4.5 is the comparison between the extreme value distri-

butions calculated using Equation (4.9) and Equation (4.3). For the limit of

uncorrelated haloes with the exact prescription and unadorned Equation (4.10)

the two approaches are equivalent and give the same result as expected. For

this box size (20h−1Mpc) the effect of including correlations and bias is shown

by the line labelled ‘with ξ’; the left hand tail of the PDF is altered, but the

high-mass tail, where we are expecting to be making inference, is unchanged.
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Figure 4.5: Comparison of DDCSP and this work, showing the agreement of
both methods of determining the extreme value statistics of the
halo mass function. The dotted line represents the DDCSP version
with halo correlations included.

For larger volumes, the with ξ PDF becomes even more similar to the uncor-

related curve as correlations become less important and the Poisson behaviour

is approached.

4.3 Discussion and Conclusions

In this chapter, motivated by our knowledge of the effect of some extended

cosmological models on non-linear structure formation, we have constructed a

method to create the PDF for the mass of the most-massive halo on a fixed

redshift hypersurface. This was done using an exact calculation, without re-

sorting to the assumption that data will be fitted by one of the asymptotic

GEV distributions, which will not be strictly true in the case of a finite num-

ber of observations. Using both analytical and numerical techniques we have

shown that there can be significant differences between the exact and asymp-

totic distributions and show in particular that the shape parameter γ is un-

likely to provide an effective statistical discriminator between Gaussian and

non-Gaussian theories of structure formation.

The approach we have taken relies on accurate knowledge of the behaviour

of the underlying distribution for large halo masses. Even for the case of
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Gaussian initial conditions (i.e. fNL = 0) there is some theoretical uncertainty

in what this behaviour actually is. There exist a number of plausible halo mass

functions in the literature (e.g. the extensive list in Murray et al., 2013), all

of which have differing tail behaviour and the level of indeterminacy worsens

when we consider non-Gaussian and other models, as discussed in Section 2.2.3.

However, this is true of all attempts to constrain cosmology using the halo mass

function, making our approach subject to only the same nuisance parameters

as more traditional statistical methods. Furthermore, EVS may be expected

to be a more sensitive approach to modifications such as those discussed in

Section 2.2.3 as the statistical power is focussed in the tail of the underlying

PDF for halo masses, exactly where the deviation is expected to be greatest.

In addition, the most massive haloes are so rare that probing them us-

ing numerical techniques will require enormous volumes to be simulated with

sufficient resolution to obtain accurate halo masses whilst at the same time

avoiding boundary artifacts. For example, in order to determine the probabil-

ity distribution of the most massive cluster in the Hubble volume we would

need an ensemble of simulations, each so large that it would comprise a large

number of independent Hubble volumes. Faced with the significant compu-

tational cost of such a programme, there can be no doubt that an analytical

theory for predicting rare observations, calibrated by smaller scale simulations,

can be a theoretical tool by which extreme objects may be studied. In the fu-

ture, it may be productive to consider the EVS of high mass haloes as a reverse

modelling problem, applying statistics such as the Hill estimator (section Sec-

tion 3.3.1) to simulated objects in order to constrain the tail of the halo mass

function.
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Chapter 5

Predicting the Most-Massive

Cluster in the Universe

We have shown in Chapter 4 that, modulo underlying uncertainties, which

affect all attempts to constrain cosmological models using CDM haloes, our

simple approach is capable of correctly predicting the most-massive halo within

cosmological volumes at fixed redshift, such as those found in cosmological N-

body simulations. However, we are not fortunate to have direct access to

such information when making observations of the real Universe, looking out

down our past light-cone. In this chapter, we will develop the EVS analysis of

Chapter 4 to make predictions for the most-massive cluster in an observational

survey and test these predictions against current observations.

As discussed in Chapter 2, massive galaxy clusters at both high and low

redshifts are useful probes of the cosmological model. Indeed, because the high-

mass tail of the halo mass function is expected to descend exponentially steeply,

the observation of even a single sufficiently extreme cluster, in terms of both its

high mass and redshift, can be capable of ruling out a given cosmological model

to a high confidence level. This tantalising prospect has been explored in a

number of previous analyses, driven by our increasing ability to detect massive

clusters at higher and higher redshifts. The discovery of XMMU-J2235.3-2557

(Jee et al., 2009), a z = 1.4 galaxy cluster with a mass of m200c = 7.3± 1.3×
1014M� in a survey area of 11deg2, prompted multiple analyses contending

such a large, early object was at odds with a concordance cosmology. By

considering the expected number of clusters with greater mass and redshift

than the observed cluster in a concordance cosmology in a survey covering
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fsky:

〈N>m>z〉 = fsky

[∫ ∞
zobs

∫ ∞
mobs

dz dM
dV

dz

dn(M, z)

dM

]
, (5.1)

Jee et al. (2009) found the cluster to be a 3σ fluctuation away from concor-

dance expectations for cluster abundance, a result corroborated by Holz &

Perlmutter (2012). Using a similar method of estimating rare cluster abun-

dances, Mortonson et al. (2011) create ‘exclusion curves’, in the mass-redshift

plane, above which the observation of a cluster would imply the ruling out of a

variety of cosmological models (chiefly considering quintessence forms of dark

energy) to a prescribed confidence level.

In an effort to explain such an apparently discrepant observation, Jimenez

& Verde (2009) then calculated the value of fNL required to raise the abundance

of such clusters by a factor of 3-10, finding f local
NL ∼ 150 − 260 necessary, in

possible tension with the (then best) CMB-scale constraint of −9 < f local
NL <

111 (95% CL Komatsu et al. 2009). This case was furthered by Cayón et al.

(2011) who calculated a posterior PDF for f local
NL , finding f local

NL = 449±286 (95%

CL) using XMMU-J2235.3-2557. Hoyle et al. (2011) and Enqvist et al. (2011)

extended this analysis to include information from a sample of 15 high-redshift

(z > 1) clusters, both finding f local
NL > 400 at 95% confidence. This raised a

number of intriguing prospects, for local form non-Gaussianity the implication

would either be a catastrophic failure of CMB estimates of primordial non-

Gaussianity (since tightened even further by the Planck Collaboration 2013d)

or a running with scale of the value of fNL:

fNL(k) ∝ knNG−1, (5.2)

where nNG is a non-Gaussianity spectral index. High-mass, high-redshift clus-

ters typically probe scales a factor ∼ 10, smaller than CMB and large scale

structure probes, as shown in Figure 5.1 However, all of these analyses unfor-

tunately suffer from a flaw in their statistical reasoning which causes them to

over-estimate the amount of tension a particular observation represents with

a cosmology (i.e. a type-I error in the language of classical statistics). This

flaw corresponds to an incorrect counting of objects rarer than that observed

(and hence an incorrect trials factor) and was pointed out by Hotchkiss (2011).

Objects with a lower occurance probability than an observed cluster exist not

only at higher mass and redshift, but also at lower redshift (but higher mass)

and higher redshitf (but lower mass); there are therefore far more clusters at

least as unusual as the one observed and the probability of observing one is

– 99 –



Figure 5.1: Scales probed by different observables for primodrial non-
Gaussianity, from Lo Verde et al. (2008).
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necessarily greater. A more detailed description of this flaw and how it may

be corrected for is the subject of Chapter 6.

Here, motivated by the interest in using observations of extremely mas-

sive galaxy clusters to constrain cosmology, we will seek to apply EVS to the

problem and predict the PDF for the mass of the most-massive cluster in

an observation and how this may vary with cosmological model, considering

two well-motivated alternatives. Section 5.1 adapts the analysis of the previ-

ous chapter for observational surveys, which is then applied in Section 5.2 to

show that no currently observed cluster is significantly more massive than the

expected most-massive at that redshift in the concordance cosmology. Then

in Section 5.3 we consider two extensions to the cosmological model which

are known to be capable of enhancing structure formation, showing how the

predictions for the most-massive cluster are changed.

5.1 Making EVS Predictions for Observations

In a cosmological survey we observe clusters at various redshifts along our

past light cone rather than on a single spatial hypersurface at fixed z. If we

wish to construct the EVS for galaxy clusters within an observational survey

which covers a fraction fsky of the sky between redshifts zmin and zmax we

therefore need to take into account both the effect of the growth of structure

with decreasing redshift on the halo mass function n(m, z) and the observa-

tional volume we are probing in an expanding universe, via the volume element

dV/dz. Doing this allows us to form the PDF of halo masses within that survey

as:

f(m) =
fsky

Ntot

[∫ zmax

zmin

dz
dV

dz

dn(m, z)

dm

]
, (5.3)

F (m) =
fsky

Ntot

[∫ zmax

zmin

∫ m

−∞
dz dM

dV

dz

dn(M, z)

dM

]
, (5.4)

where

Ntot = fsky

[∫ zmax

zmin

∫ ∞
−∞

dz dM
dV

dz

dn(M, z)

dM

]
. (5.5)

and then feed these distributions into our extreme value prescription Equa-

tion (3.7) (of course it is impractical to integrate numerically to infinite end-

points and so finite limits of 12 < log10m < 18 are chosen; we have checked

that widening this choice makes no difference to the conclusions). In order to
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Cluster Reference z MEdd
200m/M�

A2163 Maughan et al. 2012 0.203 3.04+0.87
−0.67 × 1015

A370 Maughan et al. 2012 0.375 2.62+0.87
−0.67 × 1015

RXJ1347 Maughan et al. 2012 0.451 2.14+0.60
−0.48 × 1015

ACT-CL J0102 Menanteau et al. 2012 0.87 1.85+0.42
−0.33 × 1015

PLCK G266 Planck Collaboration 2011c 0.94 1.45+0.27
−0.20 × 1015

SPT-CL J2106 Foley et al. 2011 1.132 1.11+0.24
−0.20 × 1015

SPT-CL J0546 Brodwin et al. 2010 1.067 7.80+1.27
−0.90 × 1014

XXMU J2235 Jee et al. 2009 1.4 6.82+1.52
−1.23 × 1014

XXMU J0044 Santos et al. 2011 1.579 4.02+0.88
−0.73 × 1014

Table 5.1: The extreme clusters considered in this chapter (MEdd
200m is calcu-

lated using the numerical code of (Zhao et al., 2009) to convert
from M200c (where necessary) and Equation (5.12) to include the
Eddington bias.

make best use of this information, we want to be able to see the distributions

for all redshifts at once; we hence construct the EVS distribution for narrow

bins in redshift space ∆z = 0.02 (chosen so that Nbins >> Nclusters and the

highest expected mass for all redshifts remains the same as for Nbins = 1), in-

tegrate over these PDFs to find the 66%, 95% and 99% confidence regions and

plot these, along with the peak of the distribution, for all redshifts 0 < z < 2.

This can then be used to test the cosmological model: if an observed cluster

lies above e.g. the 95% region of such a distribution, then we may say we have

a correspondingly significant detection of enhanced structure formation in that

redshift bin.

5.2 Testing the Concordance Model

We can now apply this technique to find out if any currently observed clusters

are discordant with the concordance model predictions. We emphasize that,

because we are predicting the distributions of the most massive cluster at each

redshift, if even a single galaxy cluster lying outside the extreme value contours

when placed on a mass-redshift plot can be seen as a significant detection of

deviation from concordance cosmology.

5.2.1 Calibration of Cosmology and Cluster Masses

In order to meaningfully compare our theoretical predictions to observations,

we need to carefully ensure our concordance cosmology is as well-calibrated
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as possible. As the ingredients for our concordance cosmology here, we use a

linear matter power spectrum P (k) calculated using the numerical code CAMB

(Lewis et al., 2000) and the Wilkinson Microwave Anisotropy Probe (WMAP)

7-year (WMAP7)+BAO+H0 Mean parameters from Komatsu et al. (2011).

From this we calculate the variance of the matter field, smoothed with a top

hat window W (k;R) of radius R = (3m/4πρ̄m,0)1/3, evolved to a redshift z

with the linear growth function D+(z) (normalised to D+(0) = 1):

σ2(m, z) = D2
+(z)

∫ ∞
0

dk

2π
k2P (k)W 2(k;R). (5.6)

This is used as the input for the halo mass function from Tinker et al. (2008):

dn(m, z)

dm
= A

[(σ
b

)−a
+ 1

]
e−c/σ

2 ρ̄m,0
m

dln(σ−1)

dm
. (5.7)

where ρ̄m,0 is the mean density in the universe at redshift z = 0. We also

include the evolution of the mass function parameters with redshift:

A(z) = A0(1 + z)−0.14 (5.8)

a(z) = a0(1 + z)−0.06 (5.9)

b(z) = b0(1 + z)−α (5.10)

α(∆) = exp

[
−
(

0.75

log(∆/75)

)1.2
]
, (5.11)

where the z = 0 parameters have the values {A0, a0, b0, c} = {0.186, 1.47, 2.57, 1.19}
and ∆ = 200.

As discussed in Section 2.3, estimation of halo masses from observations

of galaxy clusters is a complex procedure. In this analysis, already published

cluster mass estimations and error regions are used, converted to the ρ̄m,z

mass definition where necessary. The only correction applied is to account

for the classical Eddingtion bias (well described by Teerikorpi, 2004): there

is a larger population of small mass haloes which may up-scatter into our

observations than there are high mass haloes which may down-scatter into

them, meaning we will typically over-estimate the population of high mass

haloes. The correction is applied using the formula from Mortonson et al.

(2011):

lnmEdd = lnm+
1

2
εσ2

lnm, (5.12)

where ε is the local slope of the halo mass function and σ2
lnm is the measurement
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Figure 5.2: Extreme value contours and modal highest-mass cluster with red-
shift for a concordance cosmology, along with a set of currently
observed ‘extreme’ galaxy clusters. None lie in the region above
the 99% contour and hence are consistent with a concordance cos-
mology.

uncertainty for the cluster mass.

In order to ensure we are avoiding a posteriori selection (by only performing

our test in regions in which we have already observed something which we

believe to be unusual) we set fsky = 1. This is both the most conservative

estimate and, we believe, the correct one for testing ‘the most extreme clusters

in the sky’.

5.2.2 Results

We now use the apparatus described above to test if any currently observed

objects are significantly extreme to give us cause to question concordance cos-

mology. We consider the set of recently observed, potentially extreme clusters

shown in Table 5.1 in a concordance cosmology as described above. The ex-

treme value contours (light - 66%, medium - 95%, dark - 99%), most likely

maximum mass M0
max (solid line) and the cluster masses and redshifts (stars)
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are plotted in Figure 5.2. The plot shows the expected features of a peak

in maximum halo mass at z ≈ 0.2 (the location and height of which is in

broad agreement with the analysis of Holz & Perlmutter 2012). As can be

seen, none of the currently observed clusters lie outside the 99% confidence

regions of the plot meaning that there is no current strong evidence for a need

to modify the concordance concordance model from high-mass high-redshift

clusters. This appears to be in agreement with the findings of Waizmann et al.

(2012a) for a similar set of clusters and Chongchitnan & Silk (2012) for the

cluster XMMUJ0044, both of whom consider redshift bins with a larger extent

than considered here, but values of fsky relevant to the surveys discovering the

clusters considered.

5.2.3 Validation with N-body simulations

Further validation of the robustness of the results shown here to the assump-

tions made is shown by Watson et al. (2013), whose results are shown in Fig-

ure 5.4. From a large, high-resolution simulation of the concordance cosmology,

an ensemble of volumes are sampled within snapshots at a series of redshifts

and the most-massive cluster found within each. The empirically found prob-

ability contours for the most-massive cluster found in this way are shown,

appearing in good agreement with the analytically predicted ones shown in

Figure 5.2.

5.3 Testing Alternative Models

In addition to simply ruling out concordance cosmology with massive clusters,

we may also consider whether extreme objects offer the potential to discrim-

inate between different alternative models. Whilst many alternative models

are capable of predicting enhanced structure formation, the exact scale and

time dependence of the enhancement will differ from model to model. Here

we consider two models which have a well defined and investigated effect on

the halo mass function, and hence are relatively simple to calculate the ex-

treme value statistics over a range of redshift for: local form primordial non-

Gaussianity and the bouncing, coupled scalar field dark energy model labelled

as ‘SUGRA003’ in Baldi & Pettorino (2011). These should be regarded as toy

models – our aim is to show how the extreme value statistics can be used to

select between different models, rather than make definite predictions.
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Figure 5.3: From Watson et al. (2013). Extreme value contours found directly
from volumes sampled from the Jubilee N-body simulation. Dia-
monds represent a selection of the clusters from Table 5.1. Good
agreement is seen with the analytical prediction presented in this
chapter.

– 106 –



Chapter 5. Predicting the Most-Massive Cluster in the Universe

5.3.1 Models Considered

In order to model the non-linear structure formation in the alternative cos-

mologies considered, we make use of the Coupled Dark Energy Cosmology

Simulations (CoDECS) simulations kindly made publicly available by Baldi

et al. (2010); Baldi (2012). This suite of large N-body simulations includes

realisations of both the concordance cosmology and a number of coupled dark

energy cosmologies. Here, we compare the CoDECS Λ-Cold Dark Matter

(ΛCDM)-L (where ‘L’ is for ‘Large’) simulation of the concordance cosmology

to both the primordial non-Gaussianity and the SUGRA003 bouncing dark

energy models. Primordial non-Gaussianity, motivated by considerations of

the fluctuations of the inflaton field, is one of the most widely explored mod-

ifications to the concordance cosmology (e.g. Desjacques & Seljak, 2010) and

has long (Lucchin & Matarrese, 1988) been known to affect the abundances of

high-mass galaxy clusters. It has also been the model most invoked (Jimenez

& Verde, 2009; Cayón et al., 2011; Hoyle et al., 2011) to account for apparently

over-massive high redshift objects, all of these authors reporting values of local

non-Gaussianity parameter fNL ∼ 300− 500 as being able to account for such

clusters.

However, Baldi & Pettorino (2011) points out that such models enhance

numbers of high mass clusters at all redshifts, creating tension with observa-

tions at low redshift in the attempt to alleviate them at high redshift. As

an alternative scenario, the super-gravity (SUGRA)-motivated scalar field sce-

nario of Brax & Martin (1999) is considered. This model includes a scalar field

component φ which couples to dark matter with a coupling strength β and has

the self interacting potential:

V (φ) = Bφ−αeφ
2/2 (5.13)

This scalar field component acts as a ‘bouncing’ dark energy; structure for-

mation is enhanced at early times, but is suppressed with respect to con-

cordance cosmology after the point at which the evolution of φ changes sign

(the ‘bounce’), meaning concordance values for σ8 can still be reproduced

at z = 0. In order to match background observables given by WMAP7

constraints, the SUGRA003 version of the potential has ‘tuned’ parameters

{B,α, β} = {0.0202, 2.15,−0.15}.
For concordance and SUGRA models, we fit a halo mass function of the

Tinker et al. (2008) form directly to the haloes identified using a FoF algorithm
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with linking length l = 0.2l̄ (where l̄ is the mean inter-particle separation) in

the relevant CoDECS simulation (ΛCDM-L and SUGRA003-L respectively).

For the primordial non-Gaussianity model, we apply a non-Gaussian correction

factor R(fNL) to the halo mass functions found in the ΛCDM-L simulation,

choosing the R(fNL) of LMSV:

RLMSV (fNL) = 1 +
σ2

6δc

[
S3(σ)

(
δ4
c

σ4
− 2δ2

c

σ2
− 1

)
+

dS3

d lnσ

(
δ2
c

σ2
− 1

)]
. (5.14)

where S3 is the normalised skewness of the matter density field, for which we

use the approximation:

S3 ' 3× 10−4fNLσ
−1 (5.15)

given by equation (2.7) of Enqvist et al. (2011). We adopt a value of fNL = 300

for our non-Gaussian model as it is both consistent with the observational

findings discussed above and leads to a similar magnitude of enhancement of

structure formation at high redshifts as the SUGRA003 model.

The values of H(z) and D+(z) required to find dV/dz for all three models

are calculated using the tabulated growth functions and expansion histories

for the cosmologies, numerically calculated from the evolution equations and

provided on the CoDECS website.

5.3.2 Results

With the halo mass functions and expansion histories of each cosmology we

are then able to carry out the procedure of Section 5.1 to find the EVS of ob-

jects within an observational survey in each cosmology, the results of which are

shown in Figure 5.4. Plotted are extreme value contours (light - 66%, medium

- 95%, dark - 99%) for the concordance model and the edges of the three ex-

treme value contours for the non-Gaussian and SUGRA models (dashed lines)

as well as the enhancement in the most likely maximum mass M0
max over the

concordance predictions. As can be seen (and as expected) the primordial

non-Gaussianity model shows an enhancement of the mass of the highest mass

cluster at all redshifts, whilst the SUGRA model is capable of enhancing M0
max

at high redshifts whilst leaving it unchanged at more recent times. Thus, if

concordance cosmology is ruled out by both high and low redshift clusters,

primordial non-Gaussianity could be seen as the favoured explanation whilst,

if only high redshift observations appear in contradiction, both non-Gaussian
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the enhancement of modal highest-mass cluster over the concor-
dance value, showing different behaviour for the two alternative
models.
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and SUGRA models would be allowed (unless the limit of an ideal, complete

survey was reached). In addition, it should be noted that the uniform enhance-

ment across redshifts demonstrated in the non-Gaussian model is degenerate

with an increase of around 10% in the value of the matter power spectrum

normalisation σ8, determined by Komatsu et al. (2011) to a factor of around

4% (68% confidence region).

5.4 Discussion and Conclusions

In this chapter, we have presented a theoretical framework for the interpreta-

tion of extremely massive clusters in cosmological surveys. By considering the

exact extreme value statistics prediction for the most-massive cluster existing

in a concordance cosmology within a given redshift interval over the whole

sky, we have provided a test which is both robust and conservative — avoid-

ing ambiguities in the true volume being probed by surveys. This provides

an inescapable null test for the concordance model, requiring consideration of

modification to one of its elements if a cluster is significantly more massive

than the most-massive expected.

We have also considered a number of the most-massive clusters so far ob-

served at high and low redshifts and shown that none currently fail this test

and the concordance model survives. This in accordance with some recent

analyses (e.g Waizmann et al., 2012a; Chongchitnan & Silk, 2012), but contra-

dictory to some others (Jee et al., 2009; Jimenez & Verde, 2009; Hoyle et al.,

2011; Cayón et al., 2011, we shall see why in the next chapter). This survival

will not necessarily persist, however, as future surveys will probe far greater

fractions of the mass-redshift-fskyvolume. Should a cluster be observed above

the contours presented in Figure 5.2, this would represent strong evidence

against the concordance model; in Section 5.3 we have shown how in this case,

alternative models may also be tested, with models capable of displaying qual-

itatively different behaviour for most-massive clusters. However, it should also

be acknowledged that a more prosaic facet of the concordance model, such as

the true nature of the halo mass function at high-masses or normalisation of

the matter power spectrum, may be at fault, rather than the theory of dark

energy or inflation.
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Chapter 6

A Consistent Approach to

Falsifying the Concordance

Model with Rare Galaxy

Clusters

The “SH” initials of Stephen Hawking are shown in the ILC sky map.

The “S” and “H” are in roughly the same font size and style, and both

letters are aligned neatly along a line of fixed Galactic latitude. A cal-

culation would show that the probability of this particular occurrence

is vanishingly small. Yet, there is no case to be made for a non-

standard cosmology despite this extraordinarily low probability event.

It is clear that the combined selection of looking for initials, these par-

ticular initials, and their alignment and location are all a posteriori

choices. For a rich data set, as is the case with WMAP, there are a

lot of data and a lot of ways of analyzing the data. Low probability

events are guaranteed to occur. The a posteriori assignment of a like-

lihood for a particular event detected, especially when the detection

of that event is “optimized” for maximum effect by analysis choices,

does not result in a fair unbiased assessment. This is a recurrent is-

sue with CMB data analysis, and is often a tricky issue and one that

is difficult to overcome.

– Bennet et al, 2011

In the previous chapters, we have seen how the the mass of the most-

massive bound haloes in the universe may be used to make statements about
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the validity of different cosmological models. We have used the formalism of

extreme value statistics, but also mentioned other methods (in the introduction

to Chapter 5) which had been used to attack this problem, asserting that they

have often been used in a flawed manner. This flaw is a common one in

statistical analyses and goes by many names: the “look-elsewhere effect”, the

prosecutor’s fallacy, a posteriori analysis and inadequate marginalisation. In

short, it relates to incorrectly mapping between the probability of obtaining

an observed data set given a theoretical model and the related, but different,

probability of the model given the obtained data. The epigraph to this chapter

contains a description of one famous recent example in cosmology, the apparent

presence of Stephen Hawking’s initials in the WMAP map of CMB temperature

fluctuations. Such ‘cosmic anomalies’ may appear significant at first glance,

but care must be taken to correctly evaluate the probability of seeing not just

this unusual event but any other event as unusual.

In Section 6.1 we will elucidate the argument of Hotchkiss (2011), that

many previous estimations of cluster rareness have over-estimated the degree

of tension with the concordance model, before showing in Section 6.2 how this

tension may be correctly calculated using three physically-motivated defini-

tions of rareness. We will then detail the construction of correctly-calibrated

exclusion curves for testing the concordance cosmological model, along with

predicting the location in the mass-redshift plane of the rarest objects and,

in Section 6.3 ranking them according to the equivalent mass at redshift zero.

These methods are then applied to a comprehensive sample of cluster mass

estimations in Section 6.4, showing that none are in current tension with the

concordance model. Finally, in Section 6.4.3 we make a link with extreme

value statistics, showing its application to another variable than cluster mass,

the ‘equivalent mass at redshit zero’ for a given halo.

6.1 Cosmology with Rare Objects

6.1.1 Galaxy cluster abundance and cosmology

As described in Chapter 2, in the standard cosmological model with Gaussian

initial conditions and hierarchical structure growth, high-mass galaxy clusters

are expected to evolve from high peaks in the initial cold dark matter (CDM)

density fluctuations. The smallest scales collapse first, before merging over

time to form ever more massive CDM haloes, into which baryons fall to form

galaxy clusters. Consequently, high mass clusters are expected to be very rare
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at early times, as reflected in the exponential steepness of the halo mass func-

tion n(m, z). The steepness of this tail is also highly sensitive to the physical

assumptions which go into the initial conditions and dynamical evolution of

the dark matter overdensity field, meaning the observation of even a single

sufficiently extreme (in terms of both its mass and redshift) cluster has the

potential to provide strong evidence against a particular cosmological model.

The number of galaxy clusters expected to occur in a survey window cov-

ering fraction of the sky fsky and sensitive to clusters with masses between

mmin and mmax at redshifts between zmin and zmax is given by the integrated

product of the halo mass function and volume element within this region:

〈N〉 = fsky

[∫ zmax

zmin

∫ mmax

mmin

dz dM
dV

dz

dn(M, z)

dM

]
. (6.1)

In real surveys the mass of a halo is not measured directly, but via proxies

such as X-ray gas temperature TX , galaxy velocity dispersion σv or the tSZ

Compton-y. The realities of detecting these proxies mean that real surveys are

not typically mass limited (although tSZ surveys approach this) and the use of

absolute mass and redshift limits is a crude approximation to the real selection

function. However, in this chapter we will endeavour to be conservative with

our approximate selection functions, providing lower limits on cluster detection

probabilities. The methodology presented here can still be applied in the

advantageous situation where the full selection function is known, and our

conclusions are expected to be stable.

Throughout this work, the cosmology assumed is that described by the

WMAP7+BAO+H0 ML parameters given by Komatsu et al. (2011). From

these parameters we calculate the linear matter power spectrum P (k) using the

numerical Einstein-Boltzmann code CAMB and in turn the variance σ2(m, z),

smoothed with a top hat window function W (k;m) and evolved to a redshift

of z with the normalised linear growth function D+(z)

σ2(m, z) = D2
+(z)

∫ ∞
0

dk

2π
k2P (k)W 2(k;R). (6.2)

The calculated σ(m, z) is then used in the version of the Tinker et al. (2008)

mass function:

dn(m, z)

dm
= A

[(σ
b

)−a
+ 1

]
e−c/σ

2 ρ̄m,0
m

dln(σ−1)

dm
. (6.3)
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which includes evolving parameters: A = 0.186(1+z)−0.14, a = 1.47(1+z)−0.06,

b = 2.57(1+z)−0.011, c = 1.19. This mass function has been well tested against

large, high-resolution N-body simulations and has become the most frequently

used in cosmological analyses.

6.1.2 Comparison with previous analyses

Many observable quantities are potentially available to classify galaxy clusters:

halo mass, profile and concentration; redshift; population of galaxies (and

their type, colour etc); gas temperature and many others. Values of these

observables can be combined to define a statistic and, when an observation of a

cluster is made, the value of the statistic for that observation can be calculated.

If we then wish to use this statistic to do inference on our cosmological model

then we need to calculate the probablity distribution for this statistic. It

is then straightforward to determine how unlikely/rare a particular cluster

would be in a concordance cosmology (and a given survey) by calculating the

probability that any cluster could be observed with a value that exceeds the

measured value of the statistic. This probability to exceed (PTE) is a direct

measure of the tension an observation provides with concordance cosmology.

Here, we summarise the previous work of Hotchkiss (2011) considering correct

and incorrect ways in which to calculate this tension.

Many previous analyses aimed to quantify whether some observed clusters

were too massive or formed too early for the concordance cosmology. The

statistic typically used in these analyses Jee et al. (2009); Cayón et al. (2011);

Jee et al. (2011); Jimenez & Verde (2009); Hoyle et al. (2011); Enqvist et al.

(2011) is the Poisson probability of observing at least one cluster (with ob-

served mass m̂ and redshift ẑ denoted by hats) with both greater mass and

redshift than the one which has been observed:

R̂>m̂>ẑ = 1− exp (−〈N>m̂>ẑ〉) , (6.4)

In these analyses the value of R̂>m̂>ẑ was taken, directly, as the degree of ten-

sion a cluster provides with the concordance model. However, as first pointed

out by Fergus Simpson1 and later expounded in Hotchkiss (2011), using R̂>m̂>ẑ

as a PTE will lead to incorrect conclusions because it ignores the fact that (ob-

servable) clusters at lower redshift and higher mass or higher redshift and lower

mass would have values of this R>m̂>ẑ statistic equal to or lower than what was

1http://cosmocoffee.info/viewtopic.php?p=4932&highlight=#4932
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Figure 6.1: High-mass clusters from 100 Monte-Carlo realisations of the
WMAP7 cosmology, plotted along with exclusion curves from
Mortonson et al. (2011) and this chapter. As can be seen, signifi-
cantly more than the expected 5 clusters lie above the Mortonson
et al. (2011) 95% exclusion curve, meaning these curves are ca-
pable of ruling out concordance cosmology to an erroneously high
confidence level. The problem becomes worse the larger a frac-
tion of the sky-mass-redshift plane is probed, with the right panel
showing significantly more clusters above the Mortonson et al.
(2011) exlcusion line for a wider, deeper survey.

observed. As explained in Hotchkiss (2011) the true probability of an observa-

tion exceeding R>m̂>ẑ is necessarily greater than the value of R>m̂>ẑ, meaning a

low value of R>m̂>ẑ is not an uncommon property for the most extreme galaxy

clusters expected in a concordance cosmology. The correct probability can be

found by finding the line in the mass-redshift plane of clusters which have an

equal 〈N>m̂>ẑ〉 and calculating the probability of observing a galaxy cluster

anywhere above this line (i.e. the probability of making any observation more

unusual than the one made). This flaw in calibration also exists in the exclu-

sion curves calculated by Mortonson et al Mortonson et al. (2011) and hence

in subsequent uses of these curves in the literature Williamson et al. (2011);

Brodwin et al. (2012); Menanteau et al. (2012, 2013). The defining property

of an ‘exclusion curve’ is that observation of a single cluster above the curve

will rule out a concordance cosmology at the corresponding confidence level,

meaning for an 100α% exclusion curve we should expect to observe a cluster

above the line only 100(1 − α)% of the time (i.e. because of a random fluc-

tuation caused by sample variance). The curves from Mortonson et al. (2011)

do not obey this property. Figure 6.1 shows 100 Monte-Carlo realisations of

halo masses within a WMAP7 cosmology, along with a 95% confidence level

(CL) exclusion curve from Mortonson et al. (2011). As can be seen, whilst

there are ∼ 5 clusters in the region > m > z of each point on the line (as
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Figure 6.2: Fraction of WMAP7 cosmologies ruled out against confidence
level, for both the Mortonson et al. (2011) exclusion curves and
those presented in this chapter. As can be seen, Mortonson et al.
(2011) curves rule out the underlying cosmology to an erroneously
high confidence level. Again, the worsening of the problem with
wider, deeper surveys can be seen in the difference between the left
and right panels, with the larger survey containing more clusters
which cause a type-I error.

is to be expected from their construction), there are significantly more than

the expected five clusters lying above the curve in total, a number which in-

creases as more of the mass-redshift-fsky region is probed. Figure 6.2 further

emphasises this; plotted is α against the fraction of Monte Carlo realisations

of a concordance cosmology that contain a cluster that lies above a 100α%

exclusion curve. It can clearly be seen that Mortonson et al curves do not

follow the behaviour required of correctly calibrated exclusion curves, repre-

sented by the solid straight line (i.e. that an 100α% CL-breaking cluster is

found in 100(1− α)% of realisations). They instead show a significant hump,

ruling out the concordance model at a high confidence level in a high fraction

of realisations. Also displayed in Figure 6.1 and Figure 6.2 are the results

gained using the analysis in this work, which do behave correctly as exclusion

curves.

6.2 Calculating the rareness of an observed

cluster

As discussed in Section 6.1.2, we can correctly estimate the tension a galaxy

cluster may be in with a given cosmological model, and define the related ex-

clusion curves, by defining a rareness statistic, finding the contour of constant

rareness and then calculating the probability of making an observation of a
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cluster anywhere above this line. As well as being correctly calibrated it is

necessary to draw such curves in a physically motivated manner, as discussed

in Hoyle et al. (2012). Here, we identify three separate physically-motivated

statistics which will later be used to calculate the PTE for observed clusters

in a given cosmology and constuct correctly-calibrated exclusion curves.

6.2.1 Three statistics to measure extremeness

Expected number with greater mass and redshift > m > z

Even though it has been used incorrectly in previous works, the statistic defined

by the expected number of clusters in a region with both greater mass and

redshift:

〈N>m>z〉 =

[∫ ∞
z

∫ ∞
m

dz dM
dV

dz

dn(M, z)

dM

]
. (6.5)

is intuitively physical and may be used in a correctly calibrated way, by find-

ing the probability of observing a cluster anywhere above a line of constant

〈N>m̂>ẑ〉. However, 〈N>m>z〉 is sensitive to modifications in background ex-

pansion, growth and initial conditions, meaning well-motivated modifications

to the concordance model are not separable.

Expected number with greater initial peak height > ν

Galaxy clusters are expected to form at the location of high peaks in the

distribution of primordial density perturbations, seeded by inflation. For a

given fixed background expansion and growth law, changes in the CDM ini-

tial conditions, such as the widely-considered introduction of primordial non-

Gaussianity (often parameterised by positive fNL), would produce more rare

clusters from higher peaks. We thus also consider the peak height from which

a cluster is expected to have formed:

ν(m, z) ∝ 1

D+(z)σ(m)
, (6.6)

as a physically-motivated rareness statistic.
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Expected number with greater mass, per unit volume > mdV

Finally, we also use the statistic defined by the expected number of more

massive clusters per unit volume at a given redshift:2

〈N>mdV 〉 =

[∫ ∞
m

dM
dn(M, z)

dM

]
. (6.7)

Using this definition has the advantage that it fairly weights all clusters at

high masses, even those which come from low-volume regions in the redshift

dimension.

6.2.2 Expected masses and redshifts of the rarest clus-

ters

We may also consider where in the mass-redshift plane we expect the rarest

observed cluster to be found. Answering this question can give information

about where cluster surveys can be most productively targeted, or indeed

what kind of objects may be most sensitive probes of the tail of the halo

mass function. The plots in Figure 6.3 show the probability distribution for

the location in the mass-redshift plane of the rarest observed cluster, for each

statistic. The rarest cluster according to the > ν measure is always most likely

to appear at the highest specified redshift (z = 4 for these plots), whilst the

rarest cluster according to the > m > z and > mdV measures are most likely

to be observed at z ≈ 1 and z ≈ 2.5 respectively.

An interesting inference can be made from the > ν plot with regards to

attempts to constrain primordial non-Gaussianity with rare objects. The mod-

ification to the halo mass function caused by primordial non-Gaussianity de-

pends almost entirely on ν. The tendency of surveys to be most likely to

find their rarest objects, according to the ν definitions, at the highest possible

redshift (and lower absolute masses) indicates that it is perhaps not galaxy

clusters but higher redshift events such as lensing arcs and quasars which may

prove the most sensitive probes of non-Gaussianity.

6.2.3 Dealing with parameter uncertainty

If we are seeking to test a cosmological model, it is necessary to take into

account the uncertainties on the values of the parameters within the model.

2We thank Raul Angulo (private correspondence) for motivating this definition.
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Figure 6.3: Probability distributions for the three statistics, showing where
rarest clusters are most likely to be observed.

As long as we do not introduce biases or make poor assumptions, we wish to

be as sensitive to new physics as possible. A statistically robust way to treat

parameter uncertainty is to simply marginalise the probability to exceed R̂

over available prior constraints on the cosmological parameters:

R̂ =

∫
d~Λ R̂(~Λ)Π(~Λ), (6.8)

where ~Λ is the full set of cosmological parameters and Π(~Λ) is the available

prior probability distribution for those parameters. Of the standard model’s

cosmological parameters, it is the normalisation of the linear matter power

spectrum σ8 which has by far the most significant influence on cluster abun-

dance. For the analysis below we use a Gaussian prior on σ8 from Komatsu

et al. (2011), with a mean of 0.811 and standard deviation of 0.03.

6.2.4 Dealing with measurement uncertainty

A final consideration to be made when examining high-mass galaxy clusters is

the expected posterior distribution for the cluster mass P (m|m̂), for which we

follow the treatment of Andreon (2009). Here, m̂ is to be understood as the full

set of observable parameters relating to the measurement of a cluster’s mass.

In Bayesian reasoning, the posterior probability distribution function for the

cluster mass m in terms of an observable m̂ is proportional to the product of

the likelihood of the observation L(m̂) and a prior probability distribution for

mass Π(m). Here, L(m̂) is taken to be the observed cluster mass and error

region, with either a normal or log-normal form. Because the prior distribution

on cluster mass (the halo mass function) varies significantly over the width of

this likelihood, its effect must be taken into account. This effect constitutes
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the classical Eddington bias for number counts: because there are significantly

more clusters in lower mass bins which may upscatter into higher bins than

there are high mass clusters to scatter downwards, we must adjust our number

counts accordingly. This allows us to calculate the posterior distribution for

the true mass of a galaxy cluster:

P (m|m̂)dm ∝ dN(m, z)

dmdz
L(m̂)dm. (6.9)

The PTE values given here are then calculated by marginalising over their

values for the support of this distribution. This method will give the correct

posterior mass uncertainty for a concordance model prior if and only if the

original quoted observable uncertainties are the statistically correct posterior

mass uncertainties obtained assuming a uniform/no prior on cluster mass.

6.3 Ranking clusters with equivalent mass at

redshift zero

Once a statistic has been defined, we can (as suggested in Hotchkiss, 2011) gain

an intuitive understanding of how extreme an observed cluster is by calculating

how massive a cluster at redshift zero would need to be in order to have the

same value of this statistic. We will denote this by m|0, the ‘equivalent mass at

redshift zero’. Unlike the probability that a cluster could be detected in a given

survey, m|0 is an intrinsic property of each cluster and does not depend in any

way on the depth, region or any other property of the survey it was selected

from. This allows for a comparison (or even a ranking) of the extremeness of

objects detected in different surveys and at different redshifts.

Figure 6.4 shows contours in the mass-redshift plane on which clusters will

have equal values of the three statistics defined in Section 6.2.1. Where these

contours intersect with the mass axis is m|0. As can be seen, the different

definitions do not map points onto m|0 in the same way. For instance, the ν

definition will assign the largest m|0 to the deepest fluctuation in the initial

density field, irrespective of how the volume expansion proceeds between that

epoch and z = 0, meaning they appear as steeper contours on the mass-redshift

plane. In contrast, the tendency of the 〈N>m̂>ẑ〉 measure to down-weight very

low redshift clusters because of the larger volume element at z . 0.3 can be

seen in the flattening of the contours at these low redshifts.
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Figure 6.4: Contours of equal rareness, defined according to the three prop-
erties described in the text. For an observed cluster lying on each
of these contours, the cluster’s m|0 is where the contour inter-
sects the z = 0 axis. Plotted are the rareness contours for clusters
which have m|0 = 3.16×1014, 1×1015, 3.16×1015, 1×1016M�/h.

6.4 Rareness and ranking of currently observed

clusters

In this section we consider a large number of cluster observations and apply

our methodology; we first calculate m|0 for each to find which are the most

extreme objects before finding the tension each observations represents with

the standard cosmological model.

In order to calculate this tension we are required to find (as described in

Section 6.1.2) the probability for a particular observational survey to make

any observation at least as rare as the detected galaxy clusters: the PTE. This

requires knowledge of the survey selection function — as a survey covers more

of the sky and more of the mass-redshift plane it surveys more objects, increas-

ing the number of objects which may be found with a given rareness. Here,

we choose to conservatively set lower limits on the PTE (which correspond to

upper limits on tension with the concordance cosmology) by choosing suitable

approximate selection functions. We do this by choosing the minimal survey

window in mass-redshift space in which the cluster may have been found, as

defined in Table 6.1. We do this by considering only the complete (i.e. where

the probability of detection → 1) region of the survey, choosing high values of

mmin and low values of zmax for each survey and only considering fsky for that

particular survey. We also assume that the probability a cluster could exist in

a region of the mass-redshift plane to be Poisson-distributed (a good approx-

imation for very high-mass galaxy clusters). A more sophisticated analysis
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would be possible on a per-survey basis, taking into account the full selection

functions, such as the one which has been carried out by Stalder et al. (2013),

who perform a correctly-calibrated rareness analysis using simulations of their

observational survey to compare with the observed cluster.

In addition to this, estimation of cluster masses is a procedure fraught

with uncertainty. It has been found both observationally (see Rozo et al.,

2012, and references therein) and in N-body simulations (Angulo et al., 2012)

that masses (and ordering of most-massive clusters) estimated using different

proxies are frequently inconsistent with each other. Further uncertainty oc-

curs when converting between mass definitions for comparison with halo mass

functions: both a halo profile (frequently NFW) and a mass-concentration

relation must be assumed, both of which must be calibrated using N-body

simulations. Such considerations are outside the scope of this thesis. Here

we choose to search the literature for published estimations of cluster masses

and take them ‘at face value’. This choice näıvely ignores differences between

survey mass proxies and sensitivities, which may in reality widen published

error estimates, and all of our conclusions are predicated on this näıvity. How-

ever, where robust estimates on cluster mass and uncertainty are available our

methods will remain robust.

6.4.1 Cluster catalogue

Table 6.2 shows the list of papers used to construct our cluster catalogue.

In total 2334 cluster mass estimations were included, where measurements in

multiple proxies were allowed. As mentioned above, the mass uncertainties

on each method were taken to be those given by each paper and were as-

sumed to be normally distributed where error regions were symmetric and log-

normally distributed when asymmetric. For the MCXC catalogue (Piffaretti

et al., 2011), where no error estimates are given, a log-normal error distribu-

tion with σlnm = 0.2 was assumed, as is fairly typical for X-ray observations

of clusters.

All cluster masses are converted to m200m (the mass which is within the

cluster region 200 times the average density of the Universe) assuming an NFW

halo profile, with a single concentration parameter c, which is calculated using

the concentration-mass relation of Duffy et al. (2008) and WMAP7+BAO+H0

ML parameters from Komatsu et al. (2011). Where multiple cluster mass

estimations appeared in the top-ten of m|0, the observation with the smallest

error region was used.
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Table 6.1: The approximate survey selection functions used to calculate PTE
values for the cluster catalogue.

Survey Asky[deg2] mmin[M�h−1] zmin zmax
ACT 755 8× 1014 0.3 6.0
SPT 2500 8× 1014 0.3 6.0
XMM 80 4× 1014 0.9 1.5
MACS 22735 8× 1014 0.3 0.7
WARPS 72 8× 1014 0.0 0.6
PLCK 41253 1× 1015 0.3 6.0
RDCS 50 8× 1014 0.05 0.8
LoCuSS 32085 3× 1014 0.15 0.3

6.4.2 Rarest and most-massive clusters

Tables 6.3-6.5 show the clusters with the ten highest values of m|0 calculated

using each of the three statistics defined in Section 6.2.1 and the PTE for

that cluster in the relevant survey. Even with our conservative treatment of

selection functions, the lowest PTE value is found to be as large as 0.07, for

the cluster CLJ1226+3332. Note, however, that we have examined eight inde-

pendent surveys. The probability that the smallest PTE in all eight surveys

is greater than or equal to 0.07 is given by (1 − 0.07)8 = 0.56. Therefore,

if we live in a concordance universe, there is at least a 44% chance that the

smallest PTE in our tables will be less than or equal to 0.07. Even with our

very conservative treatment of selection functions, designed to make clusters

appear rarer than they actually are, none of the clusters or surveys we have

considered indicate any tension with the concordance model.

In order to demonstrate how these PTE relate to exclusion curves in Fig-

ure 6.5 we show the relevant plot for the ACT and SPT surveys. These

correctly-calibrated exclusion curves were calculated using the ACT only and

ACT+SPT survey regions and the clusters appearing in the top-ten tables are

plotted. As can be seen, none of the clusters breaks the 66% exclusion curve.

6.4.3 Extreme Value Statistics of m|0
Extreme Value Statistics (EVS), as described in the previous three chapters,

make predictions for the probability distribution function of sample extrema

and can been used in the context of high-mass clusters by predicting the dis-
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Figure 6.5: Currently observed clusters in tables 6.3-6.5 and exclusion lines
(using the > mdV measure described in the text) corresponding
to the ACT and ACT+SPT survey areas and sets of clusters.

tribution for the most-massive cluster in a given survey region. The PTEs

calculated in Section 6.4 represent the probability that at least one galaxy

cluster exists in a survey region above a line of constant m|0. This is 1− P0,

where P0 is the void probability that no clusters exist in the region above the

line of constant rareness (constant m|0). As emphasised by Davis et al. (2011)

(see Section 4.2), this void probability is the same distribution as the EVS

cumulative distribution function, the probability that the highest m|0 in the

survey region is less than or equal to the observed value. Forming the EVS

from m|0 contours in this way has the advantage of considering the entire sur-

vey region within a single distribution, unlike Chapter 5 which predicts the

distribution for the most-massive cluster in narrow redshift bins with fsky = 1

or Waizmann et al. (2012a) which considers smaller fsky but large redshift bins.

However, the EVS distribution for m|0 cannot be written down directly as it

can be for the cluster mass m only; here we obtain the distribution numeri-

cally by simulating 105 highest m|0s and fitting a Generalised Extreme Value

(Section 3.2.2) distribution to the results. Figure 6.6 shows this procedure per-

formed for the ACT survey selection function defined in Table 6.1, with the

location of m|0 for the most extreme object in the survey, ACT-CLJ0102-4915,

also shown. As expected the probability for m|0 to exceed the observed value

on the EVS plot matches the PTE calculated in the rareness approach.

6.5 Discussion and Conclusions

In this chapter we have considered an unbiased, consistent treatment of rare

galaxy clusters. Because previous considerations of cluster rareness have fre-
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Figure 6.6: Extreme value distributions of m|0 for the ACT survey definition
in Section 6.4.1. Blue points are 105 Monte-Carlo realisations of
the highest m|0 in the survey, red lines are a GEV distribution
fit to the points and the vertical line represents the mass of ACT-
CLJ01012-4915, the highest m|0 cluster in our tables.

quently fallen foul of uncalibrated statistics that overestimate the amount of

tension a given observation is in with the concordance model, we have been

careful in defining the probabilities we are calculating to avoid a posteriori

effects. We defined three statistics by considering three physically motivated

properties of a cluster which may be sensitive to modifications in the underly-

ing cosmology: the expected number of clusters at greater mass and redshift;

the peak height ν in the CDM overdensity from which the cluster grew; and

the expected number of clusters with a greater mass, per unit volume. Using

these statistics we calculated the probability that a defined survey would have

observed a cluster as rare as an observed cluster or rarer, anywhere in the

mass-redshift plane, i.e. the probability to exceed (PTE) the observed value of

the statistic. This is a crucial difference to most earlier methods, wherein only

clusters which had greater mass and redshift were considered as more extreme

than the one which had been observed.

We have also considered where in the mass-redshift plane the most extreme

clusters in a survey are most likely to reside. This provided us with an interest-

ing result: for the ν statistic, which is sensitive to primordial non-Gaussianity,

the most unusual cluster is always found at the highest redshift available to the

survey, meaning that, in principle, higher-redshift objects (i.e. quasars, lensing

arcs or gamma-ray bursts as opposed to galaxy clusters) are potentially the

more sensitive probes of non-Gaussianity in large scale structure.

We also discussed a method to rank clusters between different surveys. This

is m|0, the equivalent mass at redshift zero. That is, the mass of the notional

cluster at z = 0 which has the same value of the chosen statistic, for an observed

cluster. The value of m|0 is an intrinsic property of each cluster and does not
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depend at all on the survey in which it was found, meaning it is an ideal proxy

for categorising and ranking clusters according to their extremeness, even when

they have been detected in different surveys and at different redshifts. In fact,

this method is immediately generalisable to any isolated and collapsed halo for

which a reliable mass measurement can be obtained, which would even allow

us to compare and rank the relative “extremeness” of entirely different objects

in a self-consistent way.

Finally, we have conducted a systematic review of cluster mass estima-

tions in the literature. Using conservative approximations to survey selection

functions and an ‘at face value’ approach to published error estimates, we

have calculated the expected PTE for each cluster in its observational survey,

finding that none are rarer than the rarest cluster expected in some 7% of sur-

veys in universes with a concordance cosmology. As we have examined eight

separate surveys, this value is entirely unremarkable.

To facilitate future estimates of galaxy cluster rareness we have made a

numerical code available at: http://www.mv.helsinki.fi/home/hotchkis/

rareness/. This code will calculate m|0, PTE and a set of exclusion curves

for any sets of clusters that are subsequently observed.
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Chapter 7

Discussion and Conclusions

In this thesis, we have seen how it is possible to constrain the cosmological

model using the rarest, most-massive galaxy clusters visible to us in the sky.

Because of the sensitivity of the total number of haloes in an observational

region, Equation (2.15), to the initial conditions, background expansion and

dynamics governing growth of structures, we saw in Chapter 2 how the galaxy

clusters residing with CDM haloes may be useful probes of the cosmological

model. In particular, we saw how well-motivated extensions to the current

concordance cosmology such as primordial non-Gaussianity and scalar field

models of dark energy are cabable of providing a fractional enhancement of

abundances which grows rapidly with halo mass. Observations of objects of

such high mass are expected to be extremely rare and exist far in the tail of

their probability distributions.

Motivated by this, we considered the EVS of CDM haloes in Chapter 4,

using a statistical methodology unusual in the field of cosmology, but uniquely

suited to the problem of making inference with observations in the far tail of

an expected distribution. By assuming that the rarest, most-massive haloes

were Poisson-distributed, we constructed the PDF for the mass of the most-

massive halo within a fixed-redshift cosmological box, of the type found in

an N-body simulation. Through comparison with a similar result from Davis

et al. (2011) and numerical simulations, this approach proved able to make this

prediction in accordance with expectations. We then investigated the effect

on the found PDF of varying the cosmological model, showing that reasonable

amounts of primordial non-Gaussianity do not signifcantly affect the GEV

shape parameter γ.

In Chapter 5, we extended this analysis to include the effect of viewing the

Universe along our past light-cone and made predictions for the mass of the
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most-massive cluster expected to be observed within a given redshift range

within an observational survey. With the goal of avoiding a posteriori biases,

we calculated the PDF for the most-massive object in the entire sky; even if

it may be argued fsky should be set to include only regions which have been

probed by surveys (at least, those whose regions were chosen in a manner

uncorrelated with the large scale structure expected to reside within them),

this provides the most conservative null test possible. Any cluster observed

above the 99% confidence level contour of this test must give us cause to

question the cosmological model. Though none of the mass estimations (made

via a number of observable proxies) currently available within the literature

do lie in this forbidden region of the mass-redshift plane, future surveys will

observe significantly more clusters, with the potential to find one which does.

In this event, we also showed how alterations to the concordance model may

manifest themselves differently in their predictions for most-massive clusters.

Figure 5.4 showed how primordial non-Gaussianity enhances the most-massive

cluster expected at all redshifts, whilst a particular coupled scalar field dark

energy model increases the expectation only at high redshifts.

Finally, in Chapter 6 we considered why the finding of the previous chap-

ter was at odds with a number of earlier analyses, which used the > m > z

method (Equation 6.5) in order to test cosmology with high-mass galaxy clus-

ters. Following Hotchkiss (2011)’s explanation of their underestimation of the

probability of such an unusual observation in a concordance cosmology, we

constructed a similar method which found this probability correctly. This

involved defining three properties of an observed cluster sensitive to the cos-

mological model: number with greater mass and redshift; number with greater

peak height; and number with greater mass per unit volume. For each of these

properties we then calculated the region of the mass-redshift plane which had

the same or lower value for the property as the observed cluster. The level of

tension with a cosmological model is then the probability of having observed

any object within this region, an explicit function of the cluster’s survey selec-

tion function. We also showed the location in the mass-redshift plane of the

most unlikely value of each property which had the greatest chance of being

found, with the particular finding that for changes to the initial conditions

of the overdensity distribution (such as primordial non-Gaussianity), this was

always at the highest redshift viewable.

For a cluster with a given observed mass and redshift, we also used the three

defined properties to consider the equivalent mass at redshift zero — the mass
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of a cluster at z = 0 which has the same value of the property as the observed

cluster. This may be used to rank clusters from different surveys according to

how unusual they are objectively, without resorting to the ad-hoc conditions

of claims such as “the most-massive cluster above redshift 1.” Using this we

showed that ACT-CLJ0102-4915 is the most extreme object observed so far,

but that the observation of it (and all other clusters) is not a low probability

event in a universe with the concordance cosmology.

In addition to the work presented here, performing cosmology with extreme

objects is an ongoing concern. EVS has also been used on cosmological objects

other than galaxy clusters, where observations of rare events are expected to

change with cosmology. Waizmann et al. (2012c) use simulations of strong

gravitational lensing events and the GEV limit law to show that the Einstein

ring identified in the cluster MACSJ0717.5+3745 is not larger than the largest

expected in concordance cosmology. Progress has also been made in predict-

ing the highest peaks in maps of cosmological weak lensing convergence maps

(Capranico et al., 2013), which has the advantage of probing the mass distri-

bution of matter directly, rather than resorting to scaling relations between

the visible baryons and total halo mass.

Objects which appear challenging to the concordance cosmology due to

their extreme nature still remain. The underdense regions, cosmological voids,

evacuated by the collapse of matter to form galaxy clusters may be described

using a formalism similar to the halo mass function and are expected to be

just as (if not more) sensitive to extensions to cosmology (e.g. Kamionkowski

et al., 2009; Clampitt et al., 2013). Gonzalez et al. (2012) contend that a

lensing arc as bright as that seen in IDCSJ1426+3508 “should not exist” in a

concordance cosmology and Lee & Komatsu (2010) point out that the relative

infall velocity of the two components of the Bullet cluster appears to be a 6σ

result over näıve expectations. The application of EVS to these observations

has the potential to more robustly analyse whether they may really give us

cause to consider new physics.
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École Polytechnique Fédérale de Lausanne, Jan. 2008.

– 138 –

http://arXiv.org/abs/0907.5424
http://arXiv.org/abs/0810.3022
http://arXiv.org/abs/astro-ph/0112551
http://arXiv.org/abs/astro-ph/9903387
http://arXiv.org/abs/astro-ph/9905040
http://arXiv.org/abs/1205.3787
http://arXiv.org/abs/1006.5639
http://arXiv.org/abs/astro-ph/9908159
http://arXiv.org/abs/astro-ph/9908159
http://arXiv.org/abs/1211.2616
http://arXiv.org/abs/1305.1485
http://arXiv.org/abs/1108.4173
http://arXiv.org/abs/astro-ph/0208192
http://arXiv.org/abs/astro-ph/0208192
http://arXiv.org/abs/1006.1950
http://arXiv.org/abs/1002.1416
http://arXiv.org/abs/1107.5617
http://arXiv.org/abs/1212.2216
http://arXiv.org/abs/1106.2476
http://arXiv.org/abs/astro-ph/0608407
http://arXiv.org/abs/astro-ph/0608407


Bibliography

Colombi, S., Davis, O., Devriendt, J., Prunet, S., Silk, J., 2011, MNRAS, 414, 2436,
arXiv:1102.5707

Copeland, E. J., Sami, M., Tsujikawa, S., 2006, International Journal of Modern
Physics D, 15, 1753, arXiv:hep-th/0603057

Cramér, H., 1930, On the Mathematical Theory of Risk, Skandia Jubilee Volume,
Stockholm
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