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Abstract

The recent rise of services and networks that rely on human mobility has prompted
the need for tools that detect our patterns of visits to locations and encounters with
other individuals. The widespread popularity of location- and encounter-aware mo-
bile phones has given us a wealth of empirical mobility data and enabled many novel
applications that benefit from automated detection of an individual’s mobility patterns.

This thesis explores the presence and character of periodic patterns in the visits and
encounters of human individuals. Novel tools for extracting and analysing periodic
mobility patterns are proposed and evaluated on real-world data. We investigate these
patterns in a range of datasets, including visits to public transport stations on a met-
ropolitan scale, university campus WLAN access point transitions, online location-
sharing service checkins, and Bluetooth encounters among university students. The
methods developed in this thesis are designed for decentralised implementation to en-
able their real-world deployment.

Analysing an individual’s visit and encounter events is a challenging problem since
the data are often highly sparse. In order to study visit patterns we propose a novel
inter-event interval (IEI) analysis approach, which is inspired by neural coding tech-
niques. The resulting measure, IEI-irregularity, quantifies the weekly periodic patterns
of an individual’s visits to a location. To detect encounter patterns we propose and
compare methods based on IEI analysis and periodic subgraph mining. In particular,
we introduce the novel concept of a periodic encounter community; that is, a collec-
tion of individuals that share the same periodic encounter pattern. The decentralised
algorithms we develop for periodic encounter community detection are of particular
relevance to human-based opportunistic communication networks. We explore these
communities in terms of their opportunistic content sharing performance.

Our findings show that periodic patterns are a prominent feature of human mobility
and that these patterns are algorithmically detectable.
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Chapter 1

Introduction

The electronic footprints left by our real-world routines have become wide and var-

ied. The technological systems we interact with and the electronic devices we carry

are capable of recording our patterns of behaviour and adapting to our needs. Such

systems and devices are increasingly able to detect the context in which they are in-

voked, enabling them to learn from user behaviour and react to a user’s current and

future context. Recent hardware advances have made it cheap to manufacture devices

with the ability to determine their location and detect other nearby devices and sys-

tems. This has led to the proliferation of services and networks that either modify their

operation based on the location of the user or whose operation depends on the move-

ment of users. Examples include online social networks (such as Google+, Twitter,

and Facebook), intelligent digital personal assistants (such as Google’s Google Now

and Apple’s Siri), human-based opportunistic networks, and online location-sharing

services (such as Foursquare and the now-defunct Gowalla and Brightkite).

The trend towards location awareness has driven interest in two types of mobility con-

text: the places that an individual visits and the people with whom an individual comes

into proximity (his or her encounters). Factors that influence an individual’s patterns

of mobility can be social, professional, psychological, biological, cultural, and envir-

onmental. From the combination of these factors, daily and weekly routines emerge,

leading to encounters and visits that periodically recur over time. This thesis is con-

cerned with extracting and analysing these periodic patterns. Our objective is twofold.

Firstly, we develop methods for automated detection of periodic encounter and visit

patterns that are suitable for application in existing real-world systems. Secondly, we

use these methods to explore the character and prevalence of periodicity in human



2 1.1 Human mobility in real-world systems

encounters and visits.

In this chapter we expand on our objective and formally state the contributions made

by this thesis, along with the potential implications of this research.

1.1 Human mobility in real-world systems

Opportunistic networks, location-sharing services, location-aware online social net-

works, and context-aware mobile devices are a selection of real-world services and

networks that are capable of recording an individual’s visits to locations and his or her

encounters with other people. Recent trends have seen these systems attempting to

model the temporal patterns that exist within the mobility data they are capturing.

A key factor in the proliferation of these systems is the rapid adoption of mobile

phones. The increasing affordability and extensive capabilities of these devices has

made them almost ubiquitous in highly developed countries, to the extent that they

can now often be regarded as proxies for their owners. It is the now-common ability

of mobile phones to geolocate themselves (by using, for example, GPS) that has led

to location-awareness being built into online social networks and prompted the rapid

growth of location-sharing services.

In the case of human encounters, the short-range device-to-device communication cap-

ability of modern mobile phones (through technologies such as Bluetooth and Wi-Fi

direct) has made them the most-viable candidate for large-scale deployment of op-

portunistic networks. An opportunistic network is an extreme case of a mobile com-

munication network where content is communicated exclusively through short-range

encounters between the devices in the network. Although other realisations of oppor-

tunistic networks exist, human-based opportunistic networks (also referred to as human

encounter networks and pocket-switched networks) are the most prolific.

Many advances in opportunistic network protocol design have arisen through the de-

velopment of methods that detect patterns in devices’ encounters and then use these

patterns as context for making forwarding decisions. More recently, protocols with ba-

sic models of periodicity have emerged, resulting in further improvements to network
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performance. This thesis contributes to the field of opportunistic networking through a

dedicated study of periodicity in human encounters and the introduction of a number

of methods for their automated detection.

Our interest in periodic visiting patterns is primarily related to location-sharing ser-

vices and location-aware online social networks. These services are predicated on the

association between their invocation and the mobility of the user. Many of their fea-

tures benefit from modelling and mining user mobility patterns. A particularly salient

example is that of place and activity recommendation. A recommendation algorithm

equipped with the ability to make accurate inferences about a user’s visit patterns is

able to provide more-personalised recommendations, and even proactively offer sug-

gestions based on the user’s current location, previous patterns of behaviour, and the

current time. The method and analysis of periodic visit patterns introduced in this

thesis adds to the context-aware capabilities of these recommender systems.

The final real-world example that motivates this thesis is context-aware mobile com-

puting. It is estimated that in 2013 over 50% of adults in the United Kingdom owned

a smartphone1. The two operating systems used by the majority of these devices

are Google’s Android and Apple’s iOS, both of which have recently added powerful

context-aware features to their implementations. Detecting the periodic patterns that

exist within records of visits and encounters enables mobile phones to generate even

richer context for applications, such as intelligent digital personal assistants. In the

future, by a mobile phone being able to infer its user’s periodic visits and encounters

it can take proactive action such as prefetching information, issuing spatiotemporal

notifications, and automatically generating location- and encounter-aware reminders.

1.2 Thesis objectives

We now draw on the motivating scenarios from the previous section to formally state

the scope, assumptions, and objective of this thesis as follows:

This thesis explores the presence and character of periodic patterns in the visits and en-

1UK Office of Communications (Ofcom) Communications Market Report 2013.
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counters of human individuals for use as context in a variety of decentralised context-

aware applications by proposing methods that operate on an event stream representa-

tion of data.

Event stream data: The most-common representations of visit and encounter data

are as a set of time intervals or as a stream of zero-duration events. For example,

Foursquare records the checkins of users to venues as events and does not capture any

information about length of stay. In this thesis we develop methods specifically for

the event stream representation of encounter and visit data. The data in most systems

are either inherently event-based, or can be easily translated to an event-stream repres-

entation. Although this data can be challenging, building methods specifically to deal

with event streams makes them widely applicable and allows us to explore visit and

encounter periodicity in a variety of domains.

Decentralisation: Not all systems have consistent access to centralised infrastructure.

An extreme example of this is an opportunistic network, which is by definition infra-

structureless. Any methods we develop for this scenario must therefore be amenable

to a decentralised implementation. More generally, a decentralised approach is also of

benefit in scenarios relying on mobile phones to gather individuals’ visit and encounter

patterns. First, this keeps the control of personal information, and any sensitive patterns

that may be revealed, with the user. Users participate in the system by communicat-

ing with other peers, rather than via any central authority, and can therefore choose

to withhold personal data from users they do not trust. Second, if the methods for

identifying visit and encounter patterns are computable at the phone itself, there is no

need to wait for access to infrastructure, rely on a cellular network connection, or de-

fer processing to a remote server. In many situations, cellular infrastructure is either

unavailable, costly to access, bandwidth-constrained, or overloaded, and so it is ne-

cessary to offload communication work on to more-efficient short-range technologies.

Other types of challenged network that require decentralised approaches include those

in limited-power environments, such as sensor and wildlife monitoring networks, and

those in settings that lack infrastructure such as rural, remote, or less economically

developed areas.

Context at the individual scale: This thesis seeks to extract and analyse the periodic
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patterns of each individual. Many interesting results have been found by analysing

aggregated mobility patterns; however, the literature concerning periodic patterns at

the individual scale is limited, and this is where our focus lies. To provide individual-

specific context the methods we develop must be at this scale.

In summary, this thesis has two overriding themes: the development of decentralised

methods to detect periodic patterns and the application of these methods to explore

the presence and character of periodicity in human visits and encounters through real-

world data.

1.3 Thesis contributions and outline

This thesis contributes novel methods for quantifying and detecting periodic patterns

in human mobility. As this is a nascent topic of research, we also find it necessary to

introduce new frameworks to define and analyse periodic human mobility patterns, and

then apply our methods to study the existence of periodic patterns in the real world. The

two features of mobility we study are visits and encounters, and we develop methods

to extract periodicity in each of these cases.

In addition to the detection and study of periodic mobility patterns, this thesis also

makes a key contribution in providing decentralised implementations of the methods

we introduce. The need for decentralised methods is motivated by the potential applic-

ation scenarios for periodic mobility pattern detection, including opportunistic rout-

ing protocols, wildlife monitoring and sensor networks, mobile peer-to-peer content

sharing, and pervasive advertising systems. Aside from decentralised scenarios, more-

general applications include user modelling, customer profiling, and mobility context

for intelligent digital personal assistants.

The remaining chapters of this thesis and their contributions are summarised as follows.

In Chapter 2 we discuss existing methods used to analyse human mobility and en-

counter patterns and the insights and applications that these methods have enabled.

Particular focus is given to time-aware models of behaviour as these are most relevant

to this thesis. To navigate the literature a novel classification system is also introduced.
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Using this system we place this thesis in the literature to highlight the contributions it

makes.

Chapter 3 discusses the datasets available to explore and evaluate the methods de-

veloped in this thesis. This discussion covers both encounter and visit datasets. A

variety of data sources, collected via various methods, are open to us, all of which

are inherently event-based or can be reduced to an event stream representation. The

chapter evaluates the suitability of these various data sources before detailing those

selected for use in this thesis. Part of our analysis considers Foursquare checkin pat-

terns, necessitating the collection of a dataset for use in this thesis. This dataset is also

detailed in Chapter 3, along with our collection method. The selected datasets are used

throughout subsequent chapters.

In Chapter 4 we tackle the problem of measuring regularity in visit patterns. We begin

by highlighting the weekly patterns of visit behaviour at the collective scale. This

motivates our subsequent study of regularity at the individual scale, which forms the

primary contribution of this chapter. To deal with the event stream data we introduce

a novel method of measuring regularity by inter-event interval analysis. This approach

is inspired by techniques used in the field of neurophysiology.

In Chapter 5 we move our focus from visit patterns to encounter patterns. We for-

mulate the problem of periodic encounter community detection, which seeks to extract

not only pairwise periodic encounter patterns, but also communities of individuals that

share the same periodic encounters. Using a data mining approach and a discrete-time

representation we develop a decentralised algorithm that allows individuals to detect

the periodic encounter communities they belong to. An important feature of this al-

gorithm is that the periods with which the individuals of a community encounter one

another are automatically detected. Our application scenario for this method is op-

portunistic networking, and we dedicate part of our analysis to the communication

dynamics within these communities.

In response to a number of limitations of the periodic encounter community detection

algorithm detailed in Chapter 5 we develop an alternative approach in Chapter 6. Our

findings prior to this chapter show that one-day and seven-day periods are the strongest
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periods for human encounter behaviour, and therefore we can develop a single-period

method that overcomes the limitations of the strict discrete-time representation used

in Chapter 5. This method extends the inter-event interval methods developed in

Chapter 4 to allow us to detect weekly encounter communities and is tolerant to uncer-

tainty and noise in encounter times. The algorithm introduced in Chapter 6 re-uses the

decentralised approach used for periodic encounter community detection in Chapter 5.

Finally, Chapter 7 concludes the thesis. In this chapter the key insights and implica-

tions of the thesis are summarised and directions for future work are discussed.

1.4 List of publications

The work in this thesis has contributed to the following refereed publications:

[WWA12a] M. J. Williams, R. M. Whitaker, and S. M. Allen. Decentralised de-

tection of periodic encounter communities in opportunistic networks. Ad Hoc

Networks, 10(8):1544–1556, 2012.

[WWA12b] M. J. Williams, R. M. Whitaker, and S. M. Allen. Measuring individual

regularity in human visiting patterns. In Proc. 2012 ASE/IEEE International

Conference on Social Computing and 2012 ASE/IEEE International Confer-

ence on Privacy, Security, Risk and Trust (SOCIALCOM-PASSAT), 2012.

[CCW+12] G. B. Colombo, M. J. Chorley, M. J. Williams, S. M. Allen, and R. M.

Whitaker. You are where you eat: Foursquare checkins as indicators of hu-

man mobility and behaviour. In Proc. 2012 IEEE Pervasive Computing and

Communications (PERCOM) Workshops, 2012.

We also note that this thesis contributed to the following refereed paper whose work-

shop proceedings were not published:

[CCW+11] M. J. Chorley, G. B. Colombo, M. J. Williams, S. M. Allen, and R. M.

Whitaker. Checking out checking in: observations on foursquare usage patterns.

In Proc. International Workshop on Finding Patterns of Human Behaviors in

Network and Mobility Data (NEMO) (ECML-PKDD Workshops), 2011.
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More specifically, these papers draw from this thesis as follows. Features of the

Foursquare dataset we collect in Chapter 3 and use to analyse visit patterns in Chapter 4

are explored in [CCW+12]. The collective-scale analysis of weekly visit patterns in

this dataset detailed at the beginning of Chapter 4 appears in [CCW+11]. [WWA12b]

also draws on Chapter 4 and, in particular, presents the method and analysis of visit

pattern regularity. Finally, [WWA12a] is based on Chapter 5.
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Chapter 2

Models, methods, and analyses of

human mobility patterns

Introduction

Many different fields of research have found it necessary to model dynamic real-world

human mobility. There is a broad spectrum of research, ranging from work invest-

igating universal rules of behaviour [GHB08, SQBB10] to systems that incorporate

models of dynamic behaviour [MM09, MMC08]. Often the work is rooted in static

(non-dynamic) analysis which has been extended to incorporate dynamic features of

the behaviour being studied [TMML09].

This chapter provides a background to the methods used in human mobility and en-

counter research, along with the insights into human behaviour these methods have

enabled. The focus of this thesis is on dynamic approaches and, in particular, peri-

odicity in human behaviour; however, in order to place this area of research in the

literature this chapter also briefly discusses static methods. We also note that while

this thesis is directed at event-based data representation (as mentioned in Chapter 1),

in this chapter we also consider methods that use other representations.

Chapter outline

In Section 2.1 an overview of the related fields of research is presented using a classi-

fication scheme based on scale and temporal context. In Section 2.2 we place this thesis

with respect to the classification scheme, which serves to highlight the contributions of
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this thesis in the body of relevant literature. The various findings and analyses in the

relevant fields of mobility pattern research are discussed in Section 2.3. Section 2.4

discusses existing methods and models for extracting periodic patterns in human en-

counter and mobility behaviour, which is the focus of this thesis. Finally, Section 2.5

concludes this chapter.

2.1 Classification by temporal context and scale

To navigate the many fields of related research we propose a classification scheme of

two dimensions: the scale and the type of temporal context.

2.1.1 Temporal context

Temporal context refers to the extent to which temporal information is encoded by a

model. This dimension is divided into AGGREGATE, RECENT, and PERIODIC categor-

ies.

An AGGREGATE perspective is where temporal information is not explicitly encoded.

These are typically static models of mobility and encounter behaviour where the under-

lying temporal processes is ignored and data are viewed as a single aggregate. There is

still rich information that can be extracted from a static analysis, but inferences regard-

ing temporal structure (i.e., patterns and periodicities) are not possible. Methods that,

for example, calculate frequencies or rates aggregated over time, without reference to

the ordering or timing of the underlying events, fall into this category.

Very often, the representation of data indicates the amount of temporal context that

is available. Figure 2.1 illustrates how the same data can be viewed either tempor-

ally or statically. In this example, only AGGREGATE temporal context is available in

the static representation, whereas the continuous- and discrete-time representations are

amenable to RECENT and PERIODIC models.

A RECENT perspective uses conditions or patterns that have occurred recently as tem-

poral context. Most approaches based on sequence analysis fall into this category. Se-
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Figure 2.1: Three representations of encounters among a set of individuals. The
continuous-time representation consists of a time-ordered sequence of timestamps. The
label (v, u) indicates an encounter event between individuals v and u. By partitioning
time into equally sized bins a discrete time representation can be derived from the original
continuous-time representation. The static representation aggregates all events over the
whole duration, producing a representation that does not encode any temporal informa-
tion.

quence analysis methods consider an immediate sequence of events that have occurred,

and their relative ordering, and compare them to other (e.g., historical) sequences of

events to make inferences. For example, a frequent sequence approach to location pre-

diction (such as [AS02]) might look for sequences of location visits (e.g., a visit to

location l1 is often followed by a visit to location l2) that occur frequently with refer-

ence to the relative ordering of those visits (but not the specific times they occur) and

compare them to the most-recent sequence of visited locations.

PERIODIC temporal context refers to the proposition that conditions (e.g., visit or en-

counter behaviour) at a particular instance are likely to be similar to conditions at some

regular interval in time prior to that instance, and therefore there is repeated beha-

viour according to one or more periodicities. In less abstract terms, an example is a

commuter’s travel between 08:00 and 09:00 every Monday morning. The individual’s

movement is likely to be very similar to that of the same hour and day in the previ-

ous week, and the week before that, and so on. In this example we are assuming the
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individual has a seven-daily periodic behaviour. A method leveraging periodic tem-

poral context would look through the individual’s history at multiples of this seven-day

period and use the conditions at these instances to make inferences.

When comparing PERIODIC and RECENT, an important distinction is that RECENT

temporal context does not discriminate when events occurred in time, and therefore

ignores factors such as calendar-driven human behaviour.

2.1.2 Scale

Scale refers to whether the method and/or analysis extracts behaviour at an INDI-

VIDUAL or COLLECTIVE level. INDIVIDUAL methods act on data for a particular indi-

vidual; i.e., a person’s encounters with others or a person’s visits to locations. Methods

at this scale are amenable to local computation; e.g., by a user’s mobile device. They

also reveal user-specific behaviours, and therefore are useful as context for user-centric

applications. Existing research in related areas has found it necessary to differentiate

between collective scale and individual scale analysis [CGW+08]. Both scales have

their respective uses depending on the characteristics (population or individual) one

seeks to extract and the choice affects the methods that are necessary and how they can

be applied.

2.2 Overview and thesis position

Given the thesis objectives stated in Chapter 1, the methods, models, and analyses in

the literature that are most relevant to this thesis are INDIVIDUAL-PERIODIC. Although

more recently a number of areas of encounter and mobility research have found utility

in incorporating periodic temporal context, the overall amount of research in this area

is limited. Figure 2.2 places the fields of mobility research according to our classi-

fication scheme. The contributions of this thesis lie in the bottom-right corner of the

figure. To date, the most-significant contributions in the INDIVIDUAL-PERIODIC cat-

egory are in the fields of location prediction and mobile communication networks. We

will elaborate on the advances in these fields, along with relevant contributions in a
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Figure 2.2: Classification of visit and encounter analysis by temporal context and scale.

number of other categories, in the rest of this chapter. We include discussion of a num-

ber of approaches in other categories as these may have the potential to be adapted to

INDIVIDUAL-PERIODIC or highlight the evolution towards extracting richer temporal

context.

2.3 Mobility and encounter patterns

In the following sections we discuss literature relevant to RECENT and PERIODIC tem-

poral context, with particular reference to how periodic patterns in mobility and en-

counters have been observed and exploited. We also briefly consider AGGREGATE con-

text, but only to provide background for the temporally richer approaches that are most

relevant to this thesis. Each of the following sections elaborates on a research area clas-

sified in Figure 2.2; namely, mobile communication networks (Section 2.3.1), mobile

recommendation systems (Section 2.3.2), community structure in complex networks

and social group evolution (Section 2.3.3), temporal graph metrics (Section 2.3.4), hu-

man dynamics (Section 2.3.5), and location prediction (Section 2.3.6).
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2.3.1 Mobile communication networks

The broad field of communication networks has been concerned with human mobil-

ity since the advent of wireless communications. The connectivity of portable devices

such as mobile phones, personal digital assistants, and laptops through wireless tech-

nologies such as Bluetooth, 802.11, and ZigBee is subject to the device’s proximity to

its neighbours, and therefore the owner’s location and movement.

2.3.1.1 Human encounter networks

Traditionally, computer communication networks and their protocols are designed to

enable synchronous connection to a wider-scale network such as the Internet. However,

a more-extreme class of networks are human encounter networks (HENs), which are a

specific type of opportunistic network [PPC06] where content and messages are shared

over occasional short-range connections between devices carried by individuals. A

HEN relies on human mobility for data to travel from one location to another. We

should note that this type of network is also sometimes referred to in the literature as a

human-based opportunistic network or pocket-switched network.

In addition to opportunistic networks formed by mobile devices carried by humans,

there are a variety of scenarios in the literature that envisage communication networks

that rely on human mobility. These include intermittently connected mobile ad hoc

networks (IC-MANETs) [MHM05] and vehicular ad hoc networks (VANETs) [LW07].

The extent to the impact of human mobility depends on the scenario, but in all cases

understanding and detecting patterns in movement provide valuable context for routing

and content sharing protocols.

2.3.1.2 Context for opportunistic forwarding protocols

Human mobility patterns are responsible for the sporadic contacts between nodes in

HENs. This movement is driven by the users’ underlying behaviour and social rela-

tions. Intuitively, there is structure and routine in human mobility, and thus we expect

that encounters will also exhibit structure and routine. This assumption has driven re-
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search into opportunistic forwarding protocols that use human behaviour as context in

making forwarding decisions.

Pelusi et al. [PPC06] provide a taxonomy for the classification of forwarding tech-

niques in opportunistic networks. The authors define context-based (or context-aware)

protocols as infrastructureless protocols where nodes asses the usefulness (or utility)

of proximate nodes as the next hop in communication, based on context information.

The types of context that can be utilised are wide and varied. Examples that have

been exploited in the literature include local network metrics such as a node’s rate-

of-change of connectivity (demonstrated in the CAR protocol [MM09]) and personal

data such as name, place of work, and place of residence (demonstrated in the HiBOp

protocol [BCP08a]). Context can also extend beyond a node’s immediate neighbour-

hood to include broader network structures that are relevant to it. In protocols such as

SimBet [DH07] and Island Hopping [SPG06] nodes collaborate to learn topological

features over which they can perform content forwarding. These approaches require

nodes to build network knowledge over time, but do not explicitly model the temporal

dynamics of encounter behaviour. By introducing methods to detect temporal features

such as regularity in movement and encounters this thesis provides network engineers

with more tools to extract context at nodes. This context can be used to find further

improvements in the performance of HEN dissemination algorithms.

Many of the concepts in human context-aware systems are drawn from the domain of

user modelling; research in this field attempts to develop machine-computable models

for learning and understanding particular aspects of individual human behaviour. One

area of user modelling research highly relevant to HENs is user mobility prediction

[AS02] [SK05]. Human encounters occur due to users co-locating for a period of time,

and this in turn is a result of the users’ mobility, so the relationship with opportunistic

communication protocols that operate in HENs is apparent.

It is clear, therefore, that predicting future locations has potential for application in

information diffusion; however, for application in opportunistic networks we would

require continuous-time high-precision location data for all individuals. The incom-

pleteness, inaccuracy, and unreliability of existing location-inference techniques (GPS
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tracking, cell tower signal strength [LRT04], etc.) mean that it is often difficult to use

location context in practice. For this reason many protocols only focus on encounters

between nodes, leaving the location-based patterns of nodes as a hidden layer.

2.3.1.3 HEN knowledge constraints

In a HEN, each node has the ability to maintain a history of its contacts for each of

its acquaintances. In practice this can be implemented by humans carrying short-range

radio devices which log and timestamp the sightings of other devices. Such systems

have already been deployed in empirical studies. Examples are the MIT Reality Mining

dataset [EP06], which used Bluetooth-enabled smart phones, and the Haggle dataset

[SGC+06], which used Bluetooth-enabled iMotes. From the pairwise contact histories

available at a node it is possible to extract the periodic patterns of encounters with the

node’s acquaintances and project these into the future to estimate forthcoming contacts.

For HEN communication protocols (i.e., protocols enabling the routing and sharing of

content across a HEN) it is important to distinguish between having complete know-

ledge of the whole network and only local knowledge. This distinction is referred to

in [LPdR06] as the difference between an omniscient view of the evolution of the net-

work and an egocentric view. Certain systems allow for an omniscient view, the most

obvious example being online social networks. Encounter networks, however, are in-

herently decentralised. Only local contact data is readily available at a node in such

networks, therefore any truly deployable periodic pattern detection algorithm should

be egocentric.

The egocentric and omniscient views of HENs correspond to the INDIVIDUAL and

COLLECTIVE scales we introduced in Section 2.1. Much of the HEN communication

protocol literature is concerned with INDIVIDUAL-scale extraction of encounter pat-

terns as it is difficult to achieve global knowledge in an inherently decentralised net-

work, and inferences regarding whole populations are not directly useful to individual

nodes of the network. Human encounter networks are one of this thesis’s motivat-

ing scenarios, and therefore the INDIVIDUAL scale is highly important to the periodic

encounter pattern methods we develop in subsequent chapters.
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2.3.1.4 Human encounter modelling for HEN communication protocols

Encounter prediction models have been developed and employed in content forward-

ing protocols. A subset of prediction techniques require the segmentation of time

into slices and attempt to predict future quantities within such slices (e.g., the Con-

tent Source Selection protocol [MMC08]). For these models the size of slices is an

important parameter; for example, an estimate of a dyad’s in-contact duration within

10 minute chunks is more useful than estimates for 6 hour chunks. A narrower slice

width equates to higher temporal resolution, and ideal models will provide sufficiently

accurate estimates at high temporal resolution.

For HEN communication protocols there are a few specific attributes of encounters one

may wish to predict. Many models focus on the start and end times of a given dyad’s

encounters. From these data two quantities readily follow:

• Contact duration: The duration of a particular contact.

• Intercontact time: The gap between two consecutive contacts.

Prediction can be carried out by forming a time series of these quantities (e.g., a time

series of intercontact times) and extrapolating according to some prediction model.

Two further attributes, each of which respectively relate to those above, can be obtained

by slicing time into intervals:

• In-contact fraction: The duration within a time slice that the pair were in contact.

• Out-of-contact fraction: The duration within a time slice that the pair were out

of contact.

These two quantities are less valuable than their non-time-sliced counterparts since

they introduce ambiguity into the measure. The measures do not specify exactly how

the encounters are distributed within the slice, providing only a generalised abstraction

of the original measure.

The Content Source Selection (CSS) algorithm in [MMC08] is a type of in-contact

fraction predictor. In particular, the CSS algorithm produces estimates of the frac-

tion of in-contact duration per hour as a way to model the time-of-day dependency of

human encounter behaviour. The Habit protocol [MMC09] uses a similar model, in
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which a regularity weight is computed as the frequency of encounters between two

nodes at a given time-of-week. These protocols based on a temporally varying mean

fall into the category of INDIVIDUAL-PERIODIC models. By leveraging periodicity in

appropriate scenarios these protocols have been able to improve routing and content

sharing performance with respect to periodicity-naïve approaches; most notable is the

CSS algorithm, which exploited weekly patterns among commuters to deliver content

by opportunistic sharing.

More common in the mobile communications literature are naïve mean and refresh-

and-decay models, which we categorise as INDIVIDUAL-RECENT.

Naïve mean models, such as [BCP08a], are simpler versions of temporally varying

mean approaches. Instead of modelling time-of-day variation in encounter behaviour,

naïve mean models estimate the likelihood of a future meeting by averaging encounter

frequency over a finite history.

The refresh-and-decay class of models, such as drop-least-encountered [DFL01] and

PRoPHET [LDS04], operate on the principle that a high number of encounters with

a node in the immediate past implies high chance of meeting again in the future. An

individual maintains a meeting likelihood value for each node it has sighted; the al-

gorithms function by updating these values as follows:

When a pair of nodes are co-located they increment their respective meeting likelihoods

by some predefined value (this is the refresh component of the protocol). Periodically,

nodes decrease their meeting likelihoods for non-proximate nodes according to some

decay factor.

Refresh-and-decay protocols have two main weaknesses. First, the meeting likelihoods

have no well-defined meaning; these likelihoods are used as relative quantities for the

purpose of ranking nodes to make forwarding decisions. Second, the protocols do not

account for the periodic variation of encounters; more-recent encounters are favoured

without consideration of more-complex temporal patterns (e.g., diurnal cycles).

The temporally varying mean model is more temporally aware than the naïve mean and

refresh-and-decay approaches, but it too has its limitations. The predictor only models

one period (i.e., 24-hour), even though other cycles, such as weekly, also exist. Also,
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the period is predefined and does not account for individual behaviour; for example,

some relationships may have a stronger diurnal component while other relationships

may have stronger weekly component.

The state of the art in encounter-aware protocols is the context-aware adaptive rout-

ing (CAR) protocol [MM09], which predominantly operates at the INDIVIDUAL scale

and incorporates RECENT and PERIODIC context. CAR represents the co-location time

series as binary values, each element indicating co-location or absence during a partic-

ular time slice. The protocol uses a Kalman filter estimator [BD02], which is a well-

established analytical prediction technique in which seasonal and trend components

can be modelled. In this way the protocol models both periodic patterns (seasonal) and

recent (trend) patterns. Through synchronous multi-hop communication, nodes also

share their context information within their partition of the network. CAR is there-

fore another example of a PERIODIC protocol and partly relies on the assumption that

periodic encounter patterns exist. The assumption of detectable periodic encounter

behaviour is a hypothesis that this thesis specifically explores.

2.3.2 Mobile recommender systems

The rise of mobile phone usage has enabled the use of location in making personal-

ised location-aware recommendations, allowing recommender systems to move from

online systems into the real-world. Location can be used as context for many recom-

mendation applications. Examples include recommending tourism services [Kab10],

recommending social events [QLC+10], location-based content provision [BBG12],

and location-based advertising [SQC12].

Recommender systems typically act at the individual scale. The system should recom-

mend content that a user wishes to consume, and user-specific context provides a way

to personalise recommendations to that user. Collaborative filtering methods introduce

other users’ behaviours and preferences to the recommendation process [MHN07].

Of particular interest is the use of a user’s visit history to recommend venues to visit.

A simple method is to consider the user’s distance to candidate locations in the rank-

ing process. More-sophisticated approaches consider the set of places a user has vis-
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ited, from which other similar venues can be suggested as recommendation candidates

[ZCZ+10], or using the social characteristics of users to generate candidates [YYL10].

We categorise these approaches as INDIVIDUAL-AGGREGATE.

In the context of human encounters, recommender systems have been built to automat-

ically infer and suggest friends of an individual based on his/her Bluetooth proximity

[QC09]. This work also falls in the INDIVIDUAL-AGGREGATE category as it relies on

aggregated encounter characteristics.

2.3.3 Communities in complex networks

Community detection is a well-studied problem in the field of network science and has

recently been applied to networks of physical proximity between human individuals. In

general, community detection seeks to identify highly clustered components in large

real-world networks. Many community detection methods have been proposed, but

most are intended for offline analysis of networks (see [For10] for a comprehensive

survey of community detection methods). Furthermore, most methods analyse static

networks; i.e., where interactions have been aggregated into a single graph regardless

of their time and order. The most-relevant community detection algorithms to this

thesis are those of Hui et al. [HYCC07]. These algorithms are notable as they offer

a decentralised approach for nodes to detect the static encounter communities they

belong to over time. However, the algorithm considers aggregated graphs rather than

any temporal or periodic trend in the encounter patterns.

In the context of centralised offline analysis, recent work has generalised community

detection from a single-graph representation to a multi-slice network representation

[MRM+10], where the network is taken as a collection of slices whose nodes are

coupled by inter-slice edges. When applied to discrete-time data, this representation is

similar to that of a time-varying graph (discussed in more detail in Section 2.3.4). This

multi-slice network approach has so far not explored temporal dynamics within human

encounter networks. Other recent research into the dynamics of community structure,

such as that of Palla et al. [PBV07], has analysed the evolution of social groups over

time, and falls into our COLLECTIVE category. There is little prior research into peri-
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odic community behaviour, however.

The closest example is the Habit [MMC09] communication protocol mentioned in Sec-

tion 2.3.1.4, which attempts to merge both multi-node encounter behaviour and period-

icity. Habit begins with node-centric pairwise analysis of regularity patterns between

familiar strangers and, subsequently, nodes exchange their regularity patterns to con-

struct a regularity graph. This is an interesting direction for extending HEN routing

into the PERIODIC category. As previously noted in our discussion of other protocols

that presuppose periodicity in human encounter patterns, this area of protocol design

can benefit from more-detailed empirical analysis of the presence and prevalence of

periodic encounters.

2.3.4 Time-varying graphs

A common recent approach to studying the temporal properties of networks is to use

a dynamic graph representation, sometimes also referred to as a time-varying graph

[TMML10, NTM+12, TSM+10, TMML09]. A dynamic graph retains a network’s

temporal information by segmenting time into equally sized timesteps, with the en-

counters in a given timestep being collected together to form a single graph. The result

is, therefore, a sequence of graphs representing the time-varying nature of the network,

as illustrated in Figure 2.1.

We note that a dynamic graph representation introduces discrete timesteps. By dis-

cretising time, we lose some information on the ordering of events within a particular

timestep. Discretisation is both a limitation, as it reduces temporal precision, and a

benefit as it smooths uncertainty and noise in the timing of events. The degree of

quantisation is governed by the timestep width, which we refer to as the temporal

granularity Q.

Using a dynamic graph representation, traditional INDIVIDUAL and COLLECTIVE static

graph methods have been extended to temporal methods. Temporal distance and reach-

ability metrics [TMML10] have found application for quantifying information diffu-

sion among humans. Temporal counterparts to path length, network efficiency, and

connected component size [LM01, WS98] are presented and related to the spread of
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information within encounter networks (and, less relevant to this thesis, in online social

networks). The concept of small-world networks [WS98] has also been applied in the

context of dynamic graphs [TSM+10].

We note that these analyses focus on temporal, but not periodic, encounter behaviour.

This also applies to [NTM+12], which is nevertheless of interest to this thesis as it

considers temporal multi-nodal community behaviour.

A unique example of analysis of encounter periodicity in dynamic encounter graph

research is periodic subgraph mining, introduced by Lahiri and Berger-Wolf [LB09,

LB08]. Unlike the other dynamic graph methods discussed in this section, periodic

subgraph mining does not extend work in the static network science literature, and

instead tackles the problem of identifying periodic encounters from a data mining per-

spective. The authors present PSE-Miner, a single-pass algorithm for extracting all

periodic subgraphs embedded in a dynamic graph. PSE-Miner automatically extracts

the recurrence period, constituent nodes, and constituent edges of each periodic sub-

graph. Automatic detection of the period is particularly novel, as other methods often

require the expected period to be set a priori either explicitly or implicitly. As such,

this work falls into the PERIODIC category of temporal context. Applying the PSE-

Miner approach to a human encounter dataset, the authors find strong periodicities at

24 hours, 48 hours, and seven days.

We note that application of dynamic graph approaches are not limited to encounter

networks. The temporal properties of dynamic graphs is also of interest in animal en-

counter networks (e.g., wild zebra association patterns [LB09]), biological networks

(e.g., cortical networks [TSM+10]), and virtual networks (e.g., an online social net-

work [TMML10]). While the behavioural insights of these analyses are not directly

relevant to human visits and encounters, the methods they employ to conduct their

analysis are of interest.

2.3.5 Human dynamics

The field of human dynamics attempts to model human behaviour as a complex system

and to understand the collective behaviours that emerge from individual behaviour and
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interaction. Through the abundance of large empirical datasets collected from techno-

logical systems, such as mobile phone logs [CGW+08], e-mail logs [Bar05], and social

network logs, human dynamics is able to investigate hypotheses and make inferences

about large populations. Although originally focused on virtual systems (briefly dis-

cussed in Section 2.3.5.1), human dynamics has recently expanded into the analysis of

human mobility patterns (we discuss encounter dynamics in Section 2.3.5.2 and move-

ment dynamics in Section 2.3.5.3), making this field of research particularly relevant

to this thesis.

2.3.5.1 Human dynamics in virtual systems

Initial human dynamics research focused on virtual human behaviour, such as the inter-

event times of e-mail communications [Bar05] and activity patterns of users on social

networks [GWH07]. [GWH07] is of particular relevance as it highlights periodicities

in social network usage. Human routine gives rise to these patterns, and similar pat-

terns manifest in real-world human behaviour, since the users follow the same multi-

scale calendar cycles in both cases. In the case of encounter behaviour, one important

difference is that an online interaction network will not include interactions between

familiar strangers, which would exist in encounter networks. A familiar stranger is a

person that an individual encounters regularly, but with whom there is no intentional

interaction or explicit relationship. These interactions are of note, despite the lack of a

conscious relationship between the individuals.

2.3.5.2 Encounter dynamics

The cheapness of equipping users with encounter and location monitoring hardware

and software has enabled researchers to directly obtain data about the movements and

meetings of individuals. One salient example of this is the nine-month Reality Min-

ing project [EP06] which followed 100 users and generated over 350,000 hours of

encounter and visit data (along with a plurality of other behavioural data).

Two local metrics frequently used in the analysis of human and social networks are

clustering coefficient and node degree [AB02]. Typically, these have been applied
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to time-independent encounter networks, and in this case we classify them as INDI-

VIDUAL-AGGREGATE. These networks ignore the time at which an encounter occurred

and ignore the patterns of repeat encounters on the same dyad. Static analysis with

these two metrics has revealed some interesting properties (e.g., transitivity of friend-

ships and scale-freeness of degree distributions [MGC+07, AB02]) but the omission of

time-varying behaviour makes them less relevant to our work.

Chaintreau et al. [CHC+07] present a rigorous analysis of intercontact times (the gaps

between consecutive contacts of a particular dyad) in human encounter networks. The

authors study the distribution of intercontact times for both the aggregated nodes and

individual dyads, showing that both can be characterised with a power law relationship.

Their model makes the assumption that the sequence of a dyad’s intercontact times is

independent identically distributed and that there is no dependency between dyads.

Given this, the time-varying nature of the network is ignored, and so this work falls

outside of PERIODIC and RECENT. In reality, we would expect dependency in the

series of intercontact times of a particular dyad due to changing behaviour throughout

the day. For example, an individual is more likely to meet colleagues during work

hours, resulting in shorter intercontact times during the day. We would also expect

dependence among the individuals a person meets; for example, an individual is more

likely to see commuters along with other commuters.

Our focus in this thesis is dynamic analyses. These capture the evolution and time-

varying nature of human behaviour and fall in the PERIODIC and RECENT categories.

Clauset and Eagle [CE07] have adapted clustering coefficient and the node degree, two

individual-scale metrics, to a dynamic network and show that they vary periodically

with diurnal and weekly cycles. The authors also define nodal adjacency correlation

and network adjacency correlation metrics. These local metrics attempt to quantify the

similarity of a node’s neighbourhood between two discrete timesteps. It is found that

the amount of variation between consecutive snapshots is large during weekday days,

and smaller on weekends and evenings; meaning that people tend to consecutively stay

with the same group more in the evenings and weekends than during weekdays.

Analysis of the variation in encounters is also carried out in [MGC+07]. Instead of
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looking at consecutive snapshots, the authors consider differences between encounters

at the same time-of-day over different days. The number of encounters per hour for

a particular node does not change greatly for the same hour of the day. Again this

corroborates the proposition of cyclic encounter behaviour. We should note, however,

that only the number of contacts is measured, not whether the neighbour encountered

was the same.

Also at the individual scale is the life entropy metric presented in [EP06] which meas-

ures the strength of the patterns in a user’s high-level daily activities and hourly en-

counter rates. Life entropy quantifies the level of uncertainty (randomness) in an in-

dividual’s routine, but does not go to the finer scale of evaluating pairwise patterns

between individuals. [EPL09] provides insight into periodic encounter behaviour of

friends and non-friends. For both types of relationship, time-of-week encounter prob-

ability show diurnal cycles, with especially strong periodicities for encounters between

friends.

At the COLLECTIVE scale, one property that has been studied is the evolution of the

volume of interactions per unit time (equivalent to the number of edges in each snap-

shot). [MGC+07] examines the average number of encounters per day, showing that

there are much fewer encounters on weekends as opposed to weekdays. In [EP06]

the same metric is examined, but at a finer granularity using hourly buckets instead of

whole days. The power spectra of this time series exposes 24 hour and 7 day period-

icities, as one would intuitively expect.

Other COLLECTIVE-scale properties include aggregate network metrics such as av-

erage degree, average clustering coefficient, global efficiency, and largest connected

component size [WS98]. The temporal and periodic behaviour of these properties have

been studied by Scellato et al. [SMML10]. Wavelet decomposition reveals daily and

weekly encounter cycles; i.e., multi-scale periodicity of human encounter patterns.

One application of the study of encounter dynamics is in analysing the spread of mobile

phone malware; for example, [WGHB09]. This spread is similar to that of content

sharing in opportunistic communication discussed in Section 2.3.1.1, and the findings

have implications for both. We note, however, that this work studies the spreading
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properties over time from an initial infection; it does not consider the influence of

temporal properties such as periodicity.

2.3.5.3 Mobility dynamics

Human dynamics is also concerned with quantifying patterns in human mobility. Ana-

lysis of mobile phone logs has revealed deep insights into the movements of individu-

als.

The work of Gonzalez et al. in [GHB08] reveals both spatial and temporal regularity in

human movement. Within a population, average travel distance is diverse. By normal-

ising each individual’s movement history by his/her characteristic travel distance, the

authors find a high degree of similarity in the mobility of individuals across the whole

population. More relevant for this thesis is the authors’ identification of periodicity in

the probability of individuals to return to the locations they visited before; in particular,

strong periodicities at 24 hours and 48 hours, and a notable peak at 168 hours (seven

days).

Further attention is given to temporal and periodic movement behaviour in [SQBB10],

leading to two key contributions. First, the authors investigate the concept of regularity

as the probability that an individual is found at his or her most-visited location at a

particular time-of-week, noting a clear diurnal cycle and differences in weekday and

weekend behaviour. Furthermore, they find that higher regularity is inversely related

to the variety of places an individual typically visits during a particular time-of-week;

in other words, the times when an individual is likely to be at his/her most-visited

location, he/she is less likely visit a number of different locations. This is clear and

unsurprising evidence that individuals do not move randomly between their locations,

and movement is characterised by regularity.

Second, the authors of [SQBB10] study the entropy of mobility patterns to find that a

significant amount of predictive information is encoded in the sequence and ordering

of visits. More-recent work [MSRJ12] investigates this further by considering the vari-

ation in entropy by time-of-week. This shows that an individual goes through periods

of high predictability and low predictability depending on the time of week; in par-
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ticular, night-time hours have low uncertainty (high predictability), weekdays are less

predictable during working hours and evenings, and weekend afternoons are highly

unpredictable.

We should also acknowledge work identifying higher-level location context; i.e., in

[EP06, EP09, Pen07] where regular behaviour is identified in the times of visits to

home and work locations. In this case information entropy is used to quantify the

predictability of mobile phone users’ patterns of transition between home and work and

used to predict a user’s future activities with 79% accuracy. Jiang et al. [JFG12] also

investigate mobility at the level of location-based activities (e.g., work, home, school,

shopping, etc.). Using a dataset of individuals’ self-reported visits, Jiang et al. study

the time-of-week and time-of-day variations in the types of locations individuals visit

at a collective scale. Furthermore, they perform a cluster analysis to group individuals

according to their daily patterns of activity, identifying behaviour archetypes such as

students, regular workers, early-bird workers, afternoon workers, the stay-at-home, and

morning adventurers.

2.3.6 Location prediction

The ability to predict a user’s future visits to locations has many applications, includ-

ing context-aware content provision, digital assistants, and analysis of virus spreading

patterns. Being able to do this accurately and at fine temporal and spatial resolution is a

challenging task. In this area of research, one is interested in predicting an individual’s

future locations, time to arrival, and/or staying time. The focus is commonly on the

next location an individual will visit, so-called next place prediction [LGA+12]. While

the scale of location prediction is INDIVIDUAL, the temporal context used in existing

techniques ranges from AGGREGATE to PERIODIC.

2.3.6.1 Data mining for location prediction

Yavas et al. [YKUM05] adapt a frequent sequential pattern mining [AS95, NKM03]

approach for prediction of a user’s inter-cell movement in a cellular radio system. Sim-

ilar to the requirement we outline in Section 1.2, the prediction method in [YKUM05]
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operates on an event stream of visits. The dwell time (cell staying time) is ignored

except in a pre-processing step to filter out brief visits. Prediction is carried out by

comparing the user’s recent temporal context (their most recent sequence of visits)

to previously mined sequences, and therefore we categorise this as an INDIVIDUAL-

RECENT approach.

In [YKUM05] sequences are treated equally, regardless of the time-of-day or time-

of-week they appear. Jeung et al. improve on this work with the Hybrid Prediction

Algorithm [JLSZ08], which predicts location by considering not only the previous

sequences, but also previous sequences occurring at a given period in the past; for

example, comparing the user’s current trajectory to the trajectories at the same time

on previous days. This work extends an existing periodic pattern mining approach

presented in [MCK+04]. By combining recent context and periodic context, the Hy-

brid Prediction Algorithm is both INDIVIDUAL-RECENT and INDIVIDUAL-PERIODIC.

A key contribution of this work is the algorithm’s differentiation between near time

and distant time predictions. The algorithm operates differently in these two cases,

preferring recent trend data for short-term predictions (short prediction length) and

restricting pattern matching to periodic context for long-term predictions (long predic-

tion length). With this approach the algorithm is able to maintain low prediction error

as prediction length increases, unlike the non-periodic model used as comparison.

We also note the Periodica algorithm [LDH+10] among data mining approaches. Al-

though it is not a prediction algorithm, it presents a data mining approach to extract

periodic behaviour in moving objects. The approach can be categorised as INDIVIDUAL-

PERIODIC. Periodica is interesting as it first attempts to automatically detect the most-

prominent periodicity in an individual’s movement patterns. Period detection identifies

the strongest periodicity in the individual’s visits to each location, with a periodicity

being associated with each location. A discrete Fourier transform is used to extract

the strongest period; this contrasts with the PSE-Miner’s period detection algorithm

([LB09], discussed in Section 2.3.4), which uses a pattern tree to store repeated events

and their periods in memory while performing a single pass over each timestep. Two

advantages of PSE-Miner over Periodica are that PSE-Miner is able to extract and re-

tain multiple periodicities involving the same objects. Of course, these two algorithms
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are intended for different domains: PSE-Miner extracts periodic encounter patterns,

Periodica extracts periodic visiting patterns. Furthermore, Periodica outputs a prob-

ability distribution describing the likelihood of a particular individual visiting a par-

ticular location in a particular time offset according to the identified periodicity; in

other words, it generates a time-of-day, time-of-week, or otherwise (depending on the

period) probability, similar to the time-varying mean methods discussed in Section

2.3.1.4.

2.3.6.2 Other location prediction approaches

In this section we consider location prediction techniques developed outside the field

of data mining.

Markov (or, equivalently, n-gram) methods for location prediction are sequence-based

approaches and have been explored by various authors [AS02, GKdPC12, MRM12,

SKJH06]. These Markov prediction algorithms are INDIVIDUAL-RECENT. They are

probabilistic sequence-based methods, where the user’s recent sequence of visits is

compared to previous sequences of visits and a distribution of transition probabilities

built for subsequently visited locations. In an evaluation by Song et al. [SKJH06],

Markov predictors were shown to outperform other RECENT-based techniques for pre-

dicting wireless local area network (WLAN) access point (AP) visits; namely, predic-

tion by partial matching (PPM), sampled pattern matching (SPM), LZ-compression.

The NextPlace algorithm [SMM+11] is a key contribution in the field of next place

prediction. NextPlace uses a time-delay embedding method from the field of nonlinear

time series analysis [KS99]. This involves mapping sequences in an individual’s series

of visits to a location to an embedding space, and then finding neighbour sequences in

this space that are closest to the most-recent sequence. It is notable that the data points

used in [SMM+11] are the daily start times of visits to the given location. Therefore

some periodic information about the visits is captured by the algorithm, indicating

that NextPlace incorporates some elements of PERIODIC temporal context, rather than

solely RECENT. In addition, predicting on this data distinguishes NextPlace from many

other prediction algorithms, which often use location transition sequences (e.g., loca-
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tion A is followed by location B is followed by location C), and allows it to produce

predictions about the time of day when a user will make his/her next visit in addition

to the location itself.

NextPlace’s implementation in [SMM+11] uses sequential uniform time-delay co-

ordinates; in other words, the algorithm builds sequential patterns, similar to other

approaches (e.g., frequent sequences mining and probabilistic Markov modelling) we

have discussed in this section, but with the key difference that NextPlaces uses a dis-

tance metric to find similar context as opposed to direct matching of sequences. The

nonlinear time series method is open to other interesting extensions, such as non-

sequential and non-uniform time-delay coordinates, which would capture other period-

icities (e.g., seven-day recurrence) and nonlinearities in human visiting behaviour on

an individual basis. We note that even without such extensions, NextPlace’s prediction

performance improves upon the state of the art, and by incorporating periodicity is also

able to achieve superior precision for long prediction lengths.

Finally, particularly relevant contributions in this field are the Periodic Mobility Model

(PMM) and Periodic & Social Mobility Model (PSMM) algorithms presented by Cho

et al. [CML11]. Not only does this work explicitly model periodicity in an individual’s

visiting patterns (categorising it as INDIVIDUAL-PERIODIC), it also models the influ-

ence of the visiting patterns of friends on an individual’s visits. Furthermore, the ap-

proach deals with the same data type as this thesis; that is, zero-duration event streams

such as check-ins on online location-sharing services. Modelling temporally periodic

movement in an individual’s transitions between home and work is shown to outper-

form prediction accuracy when compared to naïve baselines and even frequent-location

models. We note that there is temporal context to be leveraged beyond what is used in

[CML11], as there are candidates for periodic behaviour other than the home and work

latent states considered by the authors. Indeed, a variety of other location types (such

as gyms, sports venues, and lecture theatres) are likely to exhibit their own periodic

visit patterns with certain individuals.
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2.4 Methods and models for detecting periodic patterns

In this section we consider the tools and techniques used to study and extract tem-

poral context. The methods and models most relevant to this thesis are INDIVIDUAL-

PERIODIC and we therefore direct most of our attention here. We note, however, that

the amount of research in this area is limited.

There are two primary motives in the literature for the development of periodic mod-

els and methods. The first is to observe and investigate periodic behaviour in human

visits and encounters. This research seeks to study the existence of periodic behaviour,

and make inferences about its prevalence and character independent of any particu-

lar application domain. These observational studies provide insight into encounter

and mobility behaviour, and are typically at the COLLECTIVE scale. The methods de-

veloped in these studies do not necessarily directly lead to methods that can be used in

particular application domains. The second motive, on the other hand, is to extract and

exploit temporal structure, such as periodicity, for use in particular applications. These

methods are INDIVIDUAL-PERIODIC in nature.

A common approach to investigate collective periodic behaviour is to view how a

measure, such as visit rate, encounter rate, distance from home, or average clustering

coefficient, changes over time [CE07, CGW+08]. To further highlight periodic be-

haviour, these can be aggregated by time-of-day or time-of-week to analyse the daily

or weekly profile of the measure [SQBB10, CGW+08]. Work in the literature has

highlighted periodic aggregate behaviour at this scale; for example, in [SMML10] a

wavelet decomposition of various time series of collective statistics shows strong daily

and weekly periodicities in human encounter behaviour.

At the individual scale the data are more sparse and different methods are used. Meth-

ods based on sequence analysis are a common INDIVIDUAL-RECENT approach and in-

clude Markov models [AS02, GKdPC12, MRM12, SKJH06], frequent sequence min-

ing [YKUM05], and pattern matching (compression-based prediction, prediction by

partial matching, and sampled pattern matching) [SKJH06].

The aforementioned approaches do not model PERIODIC temporal context, but a minor-

ity of sequence-based methods have been extended to incorporate periodic characterist-
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ics. NextPlace [SMM+11] uses a similar-sequence matching method, but incorporates

daily behaviour by taking the visits’ time-of-day values. The Hybrid Prediction Al-

gorithm [JLSZ08] adapts a sequence mining method by considering the time-of-day

that previous sequences occurred.

Signal processing techniques for modelling periodicity are available, as demonstrated

by the application of a Kalman filter [Har90] for predicting pairwise encounters in the

CAR protocol [MM09, MHM05]. CAR models both trend and seasonal components,

and can therefore theoretically capture dependence of encounters on periodic temporal

context, although the extent to which the predictor utilises seasonality in practice is not

investigated.

A number of methods have been developed to assess predictability of visits [SQBB10,

EP06, MSRJ12] and encounters [MM06b], which have utility in both studies and ap-

plication domains. Life entropy measures the overall uncertainty in an individual’s

visits to locations and encounters with other Bluetooth devices [EP06]. This is a useful

measure to understand an individual’s overall behaviour, but does not reveal predictab-

ility in the individual’s visits to specific locations (which is likely to vary by location)

or other individuals (which is likely to vary by user). The work in this thesis seeks

to extract and understand individual-at-location and individual-to-individual patterns,

rather than overall behaviour. Instantaneous entropy is used in [MSRJ12] to study the

variation entropy through the day, but at a COLLECTIVE rather than INDIVIDUAL scale.

Other relevant literature includes methods for automatically detecting periodicities in

location and encounter data. Periodica [LDH+10] does so by selecting the strongest

frequency in the discrete Fourier transform in the binary sequence of visits of an indi-

vidual to a location. PSE-Miner [LB09], on the other hand, is able to detect multiple

periodicities in a stream of individual-to-individual encounters at the cost of extra com-

putation time.

It is clear from the literature that there is utility in periodic temporal context, and the

increase in papers in this area indicates interest in, and the need for, periodicity-aware

methods. When we narrow the scope to methods dealing with zero-duration event

streams, the periodicity-aware literature is very limited. This is a more-challenging
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data type due to sparsity, making it more difficult to apply approaches that require

densely sampled continuous values. However, encounter and visit events are often the

natural representation of these data.

Point process models (e.g., [CHC+07]) conform to this data type, but assume time-

independence. Among the periodicity-aware models of mobility we have considered,

NextPlace [SMM+11] is the closest to our scenario. The model deals with daily arrival

times, and partially incorporates periodic temporal context. (We note that NextPlace

also separately models staying times.) In terms of human encounter research, PSE-

Miner [LB08] is capable of handling encounter event data by bucketing events into

discrete time slots. It is also particularly relevant because it explicitly models and

extracts periodic encounter behaviour.

2.5 Conclusions

We have presented a range of research, motivated by different domains and objectives,

related to observing and extracting temporal context in human mobility and encounter

patterns. We have discussed the emerging body of work that is finding value in periodic

temporal context for a variety of applications. Incorporating periodic context has led

to improved visit and encounter prediction algorithms and a deeper understanding of

human behaviour. Existing analyses of human visits and encounters find strong evid-

ence of fundamentally dynamic, and often periodic, behaviour on both an individual

and collective scale.

We have classified the related work according to scale and temporal context. The

methods developed in this thesis intend to extract periodic context concerning an indi-

vidual’s visits to locations and an individual’s encounters with other people. Further-

more, these methods should be applicable on an individual basis, without the need for

centralised infrastructure. Given these objectives and constraints, we have placed this

thesis’s contributions in the category of INDIVIDUAL scale and PERIODIC temporal

context.

The most-related techniques in INDIVIDUAL-PERIODIC lie in location prediction (e.g.,
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NextPlace [SMM+11]) and mobile communication protocols (e.g., CAR [MM09]).

Other algorithms and protocols such as HiBOp ([BCP08a]) and Habit ([MMC09])

have also modelled periodicity to some degree, or made the assumption that periodic

patterns exist. These models, however, are evaluated at the application level; that is,

in terms of performance measures such as prediction accuracy, delivery time, and re-

source usage.

The performance improvements that existing approaches have gained by modelling

periodicity motivate this thesis to focus on empirically investigating the presence of

the periodic patterns that these models presuppose. This allows us to gain insights into

the characteristics and prevalence of periodic mobility patterns, which can then inform

future application-level methods. We have noted that the amount of literature exploring

these INDIVIDUAL-PERIODIC patterns is limited. Furthermore, when narrowing our

scope to data represented as zero-duration event streams, we have found that there are

few techniques designed for this representation.

In the next chapter we will discuss the datasets that have been used in the literature, and

those that will be used in this thesis. Visits and encounters are both the result of human

mobility and we consider both types of dataset in the next chapter. Since encounters

emerge from visits, this thesis first considers regularity in individual visiting patterns

before moving on to encounter patterns in subsequent chapters. This allows us to

explore the assumption of periodicity in the case of individual’s visits to individual

locations before exploring periodicity in encounters.
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Chapter 3

Datasets of visit and encounter event

streams

Introduction

Event streams of visits and encounters emerge from a variety of existing real-world

systems and can also be generated synthetically. This representation of data is funda-

mental to this thesis.

This chapter serves two purposes. First, it provides a background to the empirical and

synthetic data employed in the analysis of human visits and encounters. Second, this

chapter introduces the four empirical datasets that we explore in this thesis. These

datasets will be used to evaluate the methods developed in subsequent chapters. We

select a variety of datasets to allow us to apply our methods in different contexts and

study the presence of periodicity in a variety of scenarios. We note that not all datasets

are relevant to all our analysis, and each may only be applied in a subset of cases.

An introduction to technological systems that collect human visits and encounters was

presented in Section 1.1; in particular, we named opportunistic networks, location-

sharing services, location-aware online social networks, and context-aware mobile

phones as the scenarios of primary interest. The features captured in each of these

systems are varied. Some systems record interval data; i.e., the start and end time of

an individual’s visit to a location or the start and end time of an encounter between a

pair of individuals. In many cases, however, the application does not require interval

data, and therefore does not need to record it, or other constraints (e.g., hardware lim-

itations, battery life, and privacy concerns) make the task of recording interval data too
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challenging.

The commonality in the systems mentioned in Section 1.1 is that they either directly

record event streams or can be readily reduced to one. An event stream encodes the

information that individual v was at location l at time t or, in the case of encounters,

individual v was near individual u at time t.

Chapter outline

Section 3.1 provides an overview of existing datasets used in the literature and high-

lights the dataset requirements for use in this thesis. Existing empirical approaches

are most-relevant to this thesis, and we discuss how these have been applied in related

fields of research. This section also briefly considers synthetic methods for generating

visit and encounter data, including mobility models and direct generators, and explains

why these methods are not applicable in our work. Section 3.2 presents the datasets to

be applied throughout this thesis. The context of each dataset is discussed, and their

respective limitations are highlighted. Furthermore, we detail any sanitisation that was

carried out to prepare the data for use. Conclusions are presented in Section 3.3.

3.1 An overview of mobility datasets

This section provides a background for the mobility datasets commonly used in the

literature. These datasets fall into two broad categories: empirical and synthetic. Syn-

thetic approaches (discussed in Section 3.1.1) use models of human behaviour to gen-

erate artificial data for evaluation. Empirical datasets, on the other hand, contain real-

world visit and encounter data.

The worldwide popularity of mobile phones and online social networks has given rise

to massive databases of individual visit and encounter behaviour, recorded by organ-

isations such as cellular network operators (e.g., used in [PKK+12]), WLAN oper-

ators (e.g., [HKA08]), and social network providers (e.g., Foursquare and Gowalla

[NSLM12]). Through datasets made available by these organisations, or by crawling

their services using public APIs, scientists have access to rich real-world encounter and
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visit data.

In addition to existing organisations and services that record mobility data as a by-

product, encounter and visit data has also been collected as part of formal experi-

ments investigating human behaviour. These typically involve equipping subjects with

a device to monitor their movements and interactions. Mobile phones are desirable can-

didate devices as modern smartphones can record visit data using GPS and cell tower

signal strength, and encounter data by Bluetooth proximity sensing. Furthermore, par-

ticipants are likely to routinely carry their mobile phone with them, providing meas-

urements on many of their daily activities. The MIT Reality Mining project [EPL09]

is an example of a mobile phone dataset. Bespoke devices have also been used for data

collection, particularly for recording human encounters. The Haggle datasets contain

encounter data collected from participants carrying Bluetooth-enabled iMote devices

[CMMD07, HCS+05]. While Bluetooth sensing represents proximity in the order of

tens of meters, other work has found it necessary to capture face-to-face encounters,

for which radio-frequency identification (RFID) badges have been used [ISB+11].

Regardless of the scenario a dataset represents, the methods presented in this thesis

operate on timestamped sequences of individual-at-location visits and individual-to-

individual encounters. These are the fundamental data structures we deal with in our

work, and we will refer to them as chronologies.

Definition 3.1
A chronology is an ordered sequence of timestamped events. In the context of visit

data, we let the visit chronology of an individual v’s visits to a particular location l

be denoted by the ordered sequence of times Sv,l = {ti | i = 1, . . . , L}, where L is

the number of v’s visits to l. In the context of encounter data, we let the encounter

chronology of an individual v’s encounters with another individual u be denoted

by the ordered sequence of times Sv,u = {ti | i = 1, . . . , L}, where L is the number

of v’s encounters with u.

Dataset characteristics relevant to our work are:

• Geographic region: The extent of the geographic area in which data are collected.

• Sample size: The number of individuals for whom data are recorded.
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• Chronology fidelity: The degree to which a particular encounter or visit chrono-

logy captures all real-world events. Fidelity can suffer due to unavailability (of

an online service or of a mobile device), undersampling, and misreporting.

• Localisation: In the case of mobility data, this refers to the geographic locality

of a visit. For example, in a WLAN trace, visits are localised to wireless APs,

whose indoor range in ideal conditions is up to 40m [HKA08]. These locations

correspond to wireless propagation areas such as a room or small building. For

encounter data, localisation refers to the range threshold for which two individu-

als are recorded as proximate.

• Duration: The uninterrupted duration for which data was collected.

As our focus is on repeating patterns, datasets we use in experiments must be of suf-

ficient duration to allow behaviour at various periodicities to emerge. Chronology

fidelity is also particularly important, as missing visits and encounters can preclude

the detection of periodicities that may have been present in reality. In this section we

provide an overview of the data sources most relevant to this thesis, focusing on these

two requirements as well as the secondary criteria.

3.1.1 Synthetic trace generation

A large amount of research, particularly in the field of mobile communications, re-

lies on synthetic generation of human visit and encounter traces, rather than empirical

traces. Synthetic methods are necessary in these fields to evaluate algorithms (such as

communication protocols) under a variety of conditions where obtaining sufficiently

large real-world datasets matching the desired test criteria would be impractical.

Many models of human mobility have be formulated, each incorporating particular

characteristics of human movement. Such models can be used to generate visit events

and encounter events. To generate visit events one can discretise the movement area

into regions and regard entry into a region as a visit event. Encounters can be extrac-

ted by detecting node proximity. Features that have been modelled include statistical

properties of human mobility and encounters [LHK+09], social and group mobility

[MM06a, MM07, BCP08b], activity-based travel [BCP08b, ZBY+12, EKKO08], and
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time-variant behaviour [MCK+04, EKKO08]. Direct encounter trace generation meth-

ods also exist, such as [CMRM07], where synthetic encounter traces are generated that

replicate the statistical properties (e.g., inter-contact time distribution and node degree

distribution) from input empirical traces.

Synthetic approaches such as these are out of the scope of this thesis. Our focus is

to detect and quantify periodic behaviour in real-world encounters and visits. Exist-

ing synthetic encounter and visit generators do not sufficiently model periodicity for

use in this thesis. While two aforementioned time-variant mobility models, the Peri-

odic Trajectory Generator (PTG) [MCK+04] and the Working Day Movement Model

(WDMM) [EKKO08], go towards modelling periodic behaviour, they are limited in

the behaviours they produce. Furthermore, the nature and prevalence of periodicity in

mobility is still not fully understood, and therefore there are real patterns that may not

manifest in existing artificial models, which the methods developed in this thesis may

capture. We wish to be sure that the results of our experiments reflect true human be-

haviour, rather than artefacts of a synthetic model, and therefore we restrict ourselves

to empirical datasets.

3.1.2 Empirical visit data

Visit data used in related work includes GPS tracks, cellular network call logs, WLAN

traces, location-sharing network traces, and fare collection in public transport systems.

3.1.2.1 GPS and cellular network data

global positioning system (GPS) logs have been useful in the study of mobility. For

example, the GeoLife dataset covers 182 users over a period of three years [ZZXM09].

Despite being more than sufficient in duration, this dataset (and other GPS trajectory

logs) is not suitable for our experiments. GPS logs alone do not provide the locations

an individual visited, such as the places visited, and so we would need to perform

significant-location mining before generating visit traces. This may potentially intro-

duce false positive location visits. Furthermore, GPS is predominantly limited to out-

door scenarios, which precludes identification of different locations within the same
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building, such as a restaurant and shop in the same shopping centre.

Anonymised datasets of mobile phone call logs have been made available to mobility

researchers, such as the dataset explored in [GHB08]. These datasets are constructed

from the locations of cell towers when they route calls or SMS messages for a mobile

phone within their cell. The reliance on call and SMS events means the fidelity of

these datasets is insufficient for analysing periodic patterns, since users are unlikely to

consistently make calls or send SMS messages in each location they visit.

3.1.2.2 Wireless LAN traces

WLAN datasets consist of logs of wireless device registrations to WLAN access points

(APs). When individuals carrying WLAN-enabled electronic devices, such as mobile

phones and laptops, connect to an AP, the access is logged, thus providing a record

of their visit to that location. Logs can be collected either from users’ devices (e.g.,

[MV05]) or from APs (e.g., [HKA08]). When logs of multiple APs over a region

are combined we can reconstruct a partial record of individuals’ movements over that

region. Many of the available datasets have been collected by universities (Dartmouth

College [HKA08], UNC [CLP04], and UCSD [MV05]) and correspond to campus-

wide geographic areas.

University campuses are a particularly interesting testbed for our experiments as they

feature a variety of location types, such as residences, lecture theatres, cafes, and res-

taurants, and therefore allow us to study how periodicity is affected by the types of

activities individuals perform at different times and locations. Since campus WLANs

are managed networks and are often dense, these datasets do well to satisfy our two

main requirements; i.e., duration and fidelity. We should note, however, that these

networks have the limitation of being restricted to a specific campus and to a predom-

inantly student population.

3.1.2.3 Location-sharing service traces

As briefly introduced in Section 1.1, location-sharing services are a class of location-

based social networks focused on enabling users to share their location with one an-
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other. Examples of services which are exclusively, or partly, location-sharing services

include Facebook, Google Latitude, Gowalla, Foursquare, and BrightKite. These ser-

vices have in common the ability for users to record that they visit a particular location.

In the parlance of location-sharing services, a visit is often referred to as a check in and

locations correspond to venues. Most services record checkins as time-stamped visit

events and do not attempt to explicitly capture staying durations.

Location-sharing services can capture information on many individuals’ daily routines

over long periods of time, making them very attractive sources of data for human mo-

bility research. Large checkin datasets have already been collected and explored in

the human mobility research community. [SNLM11] presents an analysis of user be-

haviour in BrightKite, Foursquare, and Gowalla from datasets collected over multiple

weeks, resulting in recordings for 54,190, 258,706, and 122,414 users, respectively.

Still larger datasets have also been studied, such as [CCLS11], containing 22 million

checkins by 220,000 users over five months.

In addition to valuable movement data, some services also provide rich information

about venues, which can be obtained by crowdsourcing or obtaining a curated database

of places of interest. For example, Foursquare provides a hierarchy of venue categories,

varying from broad (e.g., Food and Shops) to specific (e.g., College Tennis Court and

Paella Restaurant). This allows us to investigate not only the locations of checkins,

but also the types of place a user is visiting.

We should note that these services require a user to check in using their mobile device

when they visit a location. Visits in location-sharing service datasets are therefore self-

reported, making them liable to under-reporting, misreporting, and different reporting

behaviours among the population.

3.1.2.4 Automated fare collection in public transport systems

Automated fare collection systems in public transport systems provide convenience to

both passengers and transport authorities for the payment of transport fares and have

seen widespread adoption in metropolitan areas across the world. These electronic

systems require each passenger to carry a smart card that he/she uses to access the
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transport network and record his/her journeys. Each card is associated with an ac-

count from which fares are deducted according to the journeys of the corresponding

passenger.

While some automated fare collection (AFC) systems use magnetic stripe cards and

readers, many modern systems now use passive RFID smart cards for contactless in-

teractions, allowing passengers to simply touch their cards against sensors placed on

the transport network to register a journey. In most AFC implementations, each pas-

senger is required to touch his/her card at least twice: once at his/her point of entry

(‘touch in’) to the transport system and again at his/her point of exit (‘touch out’).

Some implementations also track intermediate transfers, thereby recording yet more

detail on passenger travel.

The daily touch-ins and touch-outs of AFC users generate large amounts of data on

the movements of passengers, including where each user has been (e.g., at a bus stop,

tram stop, rapid-transit station, or train station) and when they visited. Furthermore,

since smart cards are intended for long-term individual use, from AFC logs one could

extract a trace of an passenger’s visits over a long duration (e.g., months and years),

representing a rich image of movement over a large metropolitan region. As with

location-sharing service checkins, AFC systems do not record staying times, only the

event of an individual visiting a location at a particular time.

Existing large-scale AFC implementations include Hong Kong’s Octopus card1, Lon-

don’s Oyster card2, and New York’s metrocard3. Common applications of AFC data

include urban transport planning, transport system performance monitoring, and ticket

price analysis [Jan10, LC11]. In the field of human mobility, these datasets have

proved useful in evaluating content sharing protocols and personalised transport sys-

tems [LFC10, MMC08]. Regarding periodicity, previous studies of transport systems

have suggested that passenger movement is highly regular. For example, in [LFC10]

Lathia et al. find two surges in journey activity, one between 06:30 and 09:30, and

another between 16:30 and 20:00. The authors also identify a high degree of predict-

1http://www.octopus.com.hk
2http://oyster.tfl.gov.uk
3http://www.mta.info/metrocard

http://www.octopus.com.hk
http://oyster.tfl.gov.uk
http://www.mta.info/metrocard
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ability in users’ trip times and future visits to stations. Given the large amount of

commuter activity, we expect many individuals in transport networks to exhibit strong

periodic visit behaviour.

AFC data is of course specific to the movements of passengers, and therefore only rep-

resents a subset of the population in the region. Furthermore, chronologies can only be

obtained for passengers participating in the AFC system, and data on these passengers’

visits to locations outside of the transport system are unavailable. However, the geo-

graphic scale, long duration, and large sample size makes these AFC datasets a very

interesting test case for this thesis.

3.1.3 Empirical encounter data

Encounter traces have been predominantly collected by one of two methods: direct

sensing and proximity inference.

Direct encounter sensing makes use of short-range wireless communication techno-

logies to detect proximity between individuals. Direct sensing experiments collect

encounter information by equipping individuals with mobile devices that periodically

scan their vicinity via one of these wireless technologies to detect other devices nearby.

Over time a device constructs a trace of the other devices (carried by other individuals)

its owner comes into contact with.

Proximity inference encounter datasets use movement traces of individuals, such as

those discussed in Section 3.1.2, to extract encounter events. By comparing the visit

traces of two individuals, we can infer when they were in proximity by finding in-

stances where they were at the same location at roughly the same time.

3.1.3.1 Direct encounter sensing

Among the short-range wireless communication technologies used for direct proximity

sensing in the literature, Bluetooth has been the most commonly used. The widespread

adoption of Bluetooth in modern mobile phones as a device-to-device data transfer

mechanism means that many individuals carry a device capable of encounter sensing.
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Bluetooth-enabled smart phones were used to collect direct encounters in the 2004-

2005 Reality Mining experiment at the Massachusetts Institute of Technology (MIT)

[EPL09]. 100 staff and students were involved in this experiment, each equipped with

a mobile phone loaded with data logging software. The nine-month duration of this

experiment makes it highly relevant to our work. Data from the Reality Mining project

has already been used to study aspects of human encounter patterns and periodicity,

such as in [CE07], [EPL09], and [SMML10]. Furthermore, as subjects were asked to

carry their devices as much as possible, the dataset captures a large fraction of indi-

viduals’ daily and weekly encounters.

Other Bluetooth direct sensing experiments have been carried out using a variety of

devices, including embedded devices (e.g., Intel iMotes) and personal digital assist-

ants. Overviews of existing direct encounter datasets are presented in [CHC+07]

and [HYCC09], including iMote experiments (conducted at Cambridge [LLS+06], In-

focom 2005 [HCS+05], and Infocom 2006) and personal digital assistants (conducted

at Toronto [SCM+06]). However, unlike the Reality Mining experiment, these exper-

iments are less than five days in duration, therefore precluding the study of weekly

encounter patterns.

Proximity sensing approaches have the advantage of detecting only true encounters;

i.e., only situations where the two devices are in range. Bluetooth range varies depend-

ing on the device’s transceiver and surrounding environment, but in practice mobile

phone scanning typically acquires devices within 10 metres [PD09], equating to true

proximity events. Such events can represent opportunities for device-to-device con-

tent sharing, malware transfer, and, if proximity is especially close, transmission of a

biological contagion.

RFID badges have also been used as an alternative proximity sensing method to Blue-

tooth [ISB+11, ASC+09, CVdBB+10, VdBCB+10]. This approach requires each par-

ticipant to wear an active RFID badge on his/her chest which is able to detect other

badges in its line-of-sight. These allow specific detection of face-to-face interactions,

rather than the general proximity events that Bluetooth uncovers. Although this en-

ables interesting avenues of research in human behaviour, the scope of this thesis is

on the broader scenario; i.e., where encounters are localised to between 10 and 20
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metres, rather than restricted specifically to face-to-face encounters. In addition, the

existing RFID proximity datasets are not suitable for our experiments because they do

not follow particular individuals for longer than a few days.

Despite the advantages of Bluetooth proximity detection, we should note that it is prone

to missed encounters. The main source of this problem is the Bluetooth scanning

interval. Most experiments must use a long interval (2+ minutes) to balance battery

usage. The interval in the Reality Mining project was five minutes, long enough for

an encounter between two nodes to be omitted if one or both of the nodes are moving.

This loss of fidelity is a necessary compromise for the longer duration of these datasets.

The iMote experiments used a shorter scan interval (two minutes), but were carried out

over five or less days.

3.1.3.2 Inferred encounter traces

Reliable direct encounter sensing for large sample sizes is challenging due to the power

demand on devices and the need for users to install monitoring software. The abund-

ance of large-scale mobility datasets (some of which were discussed in Section 3.1.2)

offer an alternative means of generating encounter data. By inferring when two indi-

viduals are in proximity from their visit logs we can extract a chronology for that pair’s

encounters, at the expense of potentially introducing false-positive encounter events.

Inference errors can occur due to two individuals moving quickly through the location,

and therefore never being proximate at the same instant, or due to a granular localisa-

tion that allows two individuals to be designated as at the same location while being

separated by a significant distance.

The advantage of inferred datasets is their size. The largest sample size among dir-

ect encounter datasets (Section 3.1.3.1) was 100 individuals. On the other hand, the

WLAN visit datasets range from 200 to 7,000 individuals.

An overview of encounter datasets, including both direct and inferred methods, is

presented by Chaintreau et al. in [CHC+07]. The Reality Mining Bluetooth dataset col-

lected 54,667 internal encounters (i.e., encounters among individuals participating in

the experiment) among the 100 participants over 246 days, compared to the 4,058,284
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internal encounters over 114 days generated by inferring encounters in the Dartmouth

College WLAN dataset. Analyses have shown that the inter-contact time distributions

of these datasets are well approximated by a truncated power law, regardless of whether

the encounters are by Bluetooth sightings or inferred from WLAN AP logs [FWYC10].

Further investigation comparing the Reality Mining Bluetooth and Dartmouth College

WLAN datasets in terms of the properties of encounter chronologies finds they have

similar heterogeneity among their pairwise inter-contact distributions. These results

indicate that both collection methods produce similar pictures of human encounter be-

haviour, at least in terms of their static properties, making them both useful means of

studying human encounter patterns.

3.2 Visit and encounter datasets used in this thesis

In this thesis we explore the following four datasets:

• DARTMOUTH: Dartmouth College WLAN AP accesses.

• FOURSQUARE: checkins to venues on Foursquare.

• REALITY: Bluetooth encounters in the MIT Reality Mining project.

• UNDERGROUND: journeys by passengers on the London Underground recorded

by the Oyster card AFC system.

These datasets and their derivatives will be used in this thesis’s experiments. Of the

four datasets, the FOURSQUARE visit was collected specifically for these experiments.

The other three are existing datasets that were obtained from online data repositories

or directly from the data collector; in particular, REALITY was obtained from Nathan

Eagle at MIT (now available online1), UNDERGROUND was obtained from Transport

for London (TfL), and DARTMOUTH was obtained from the CRAWDAD online repos-

itory2.

In this section these datasets are introduced, including the circumstances of their col-

lection, preprocessing that we carry out, and their limitations. We note that not every

1http://realitymining.com
2http://crawdad.cs.dartmouth.edu/

http://realitymining.com
http://crawdad.cs.dartmouth.edu/
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dataset will be applied in each experiment, and that some of these datasets include both

visit and encounter traces.

3.2.1 FOURSQUARE: visits to Foursquare venues

Many existing Foursquare datasets were collected by monitoring Twitter for users pub-

licly tweeting their Foursquare checkins [NSLM12]. This indirect method relies on a

Foursquare user having associated their Foursquare account with their Twitter account

and then choosing to have their checkins tweeted (this can be done on a per-checkin

basis or automatically). This approach has the advantage of collecting many checkins

at large scales (e.g., country-wide and larger), but does not capture all of an individual’s

checkins or achieve comprehensive coverage of a particular geographic region. For the

purpose of this thesis a dataset of complete visit chronologies is needed, and therefore

we collected our own dataset consisting of all checkins in a number of small regions.

We collected our data over 54 consecutive days in 2011. At this time Foursquare al-

lowed users to opt-in to having the venue they are currently visiting be displayed on

that venue’s Here Now list. Real-time monitoring of the Here Now lists for all venues

in a particular region allowed us to construct a complete snapshot of participating in-

dividuals’ movements in that region. Using the Foursquare API we collected a list of

all venues in a given region, and then implemented a real-time crawler to query each

venue’s Here Now list every five minutes, recording users’ visits in a database. We also

collected each venue’s category and geographic coordinates for use in our analyses.

The geographic regions we selected were three cities in the UK; namely, Bristol,

Cardiff, and Cambridge. Data was collected in 2011, from 13th May to 6th July. Heat-

maps showing the distribution of the checkins observed in the monitoring period over

two of the three cities are given in Figure 3.1. As can be seen, the heavy concentrations

of checkins tend to match up to features such as roads and dense areas. Checkins are

concentrated within the centre of both cities as may be expected.

A summary of the data collected over these three cities is presented in Table 3.1. The

combined dataset consists of 810 checkins per day. This equates to an average of 7.7

checkins per user over the 54 days; however, we note that the distribution of users and
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(a) Cardiff. (b) Cambridge.

Figure 3.1: Heatmaps showing the geographic distribution and intensity of checkins in
two cities.

Bristol Cardiff Cambridge Combined
Urban population 587,400 292,150 122,700 1,002,250
Collection area (km2) 1,066 1,395 1,584 4,045
Active users 2,683 2,104 1,376 5,654
Venues 5,161 5,637 3,153 13,951
Active venues 1,774 2,118 882 4,774
Checkins 15,904 19,841 8,022 43,767

Table 3.1: Summary of the base Foursquare dataset. Checkins in Bristol, Cardiff, and
Cambridge over 54 days. Population estimates taken from 2011 UK census data. Active
users and venues are those with at least one checkin during the collection period.

checkins is not uniform. A small proportion of users are responsible for a large amount

of the checkins in this dataset. The overall number of chronologies (i.e., user-venue

pairs with at least one visit) is 16,155.

3.2.2 UNDERGROUND: visits of London Underground passengers

The London Underground is a metropolitan rapid-transit rail system serving most of

Greater London. An average four-week period in 2010 consisted of 84 million jour-

neys across the Underground’s 270 different stations1. The Oyster AFC system is used

1UK Government, Department for Transport. London Underground statistics annual reports.
http://www.dft.gov.uk. Table reference: LRT9901.

http://www.dft.gov.uk
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by many passengers, requiring each user to touch his/her personal Oyster RFID card

at the station of entry and station of exit. Each touch represents a visit by the Oyster

user to a particular Underground station, thus providing a partial record of the user’s

movement in the transit system. Although not all passengers use Oyster card fare pay-

ment, it is estimated that roughly five million cards are used per month1. We obtained

an anonymised dataset of all Oyster card journeys over 28 days in March 2010 from

Transport for London (TfL), the government body responsible for the service, to use

in this thesis.

The dataset is provided as passenger journeys, consisting of an entry and exit station

for each journey. As a basic sanitisation step, we filtered out journeys missing an entry

or exit location (e.g., due to a passenger neglecting to touch in or touch out). To obtain

visit chronologies each Oyster card touch is treated as a visit to a station, regardless

of whether it is a touch in or touch out, producing visit-event three-tuples in the form:

(station_id, passenger_id, timestamp). A visit chronology Sv,l for a

particular passenger v’s visits to a given station l is then obtained by collecting and

ordering all visit events corresponding to v and l.

The raw dataset consists of 5,177,134 individuals, each having visited one of the 270

stations at least once. In the four weeks, there were 159,111,519 visits to stations,

distributed among 35,338,486 chronologies, giving a mean number of visits per chro-

nology of 4.5.

3.2.3 REALITY: Bluetooth encounters in the MIT Reality Mining

project

The 2004-2005 Reality Mining project carried out at the Massachusetts Institute of

Technology (MIT) followed 100 subjects equipped with Bluetooth-enabled mobile

phones and recorded information about their behaviour over a nine-month academic

period [EPL09]. These subjects were staff and students at MIT. 68% of the subjects

were postgraduates and staff working in the same building and the remaining subjects

are students beginning the same degree.

1Transport for London FOI request 0291 1011.
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Among the data collected are Bluetooth sightings between subjects, with Bluetooth

scanning carried out at five-minute intervals. The dataset also includes sightings with

devices outside of the experiment. We ignore these encounter chronologies as we

cannot guarantee whether the external device is a device that is reliably carried by

another individual.

531,703 encounter events were recorded during the dataset’s nine-month duration, giv-

ing an average of 19.7 encounters per subject per day. These encounters are distributed

over 2,675 chronologies.

3.2.4 DARTMOUTH: visits and encounters on Dartmouth College

campus

Visits in the DARTMOUTH dataset are drawn from the use of wireless access points

(APs) by staff and students at Dartmouth College campus in the United States [HKA08].

Over 450 APs placed across the 800km2 of campus provide wireless coverage for most

of the area, serving roughly 5,000 undergraduates and 1,200 faculty. When staff and

students with wireless-enabled electronic devices (such as laptops and mobile phones)

access the campus network the AP used to do so is logged at a central server, thus

providing a partial record of the users’ movements across the campus. The dataset

providers estimate that at least 75% of undergraduates owned portable laptops in the

collection period. The campus includes a variety of facilities, including residences,

auditoriums, and social spaces. The type of building in which the AP is located is also

included in the dataset.

From the four years of wireless traces available in the Dartmouth movement dataset

we selected visits from a more-recent year (2003) for our experiments, as recent years

are likely to feature more mobile devices (such as wireless-enabled smartphones or

personal digital assistants), and thus provide a richer record of user mobility. Such

devices did not become very common until recently, however.

To prepare this dataset for our experiments we carried out a number of sanitisation and

filtering steps. In particular, we found many cases where a user repeatedly visited with

the same AP at a short interval (typically less than 15 minutes). These are artefacts of
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the WLAN AP protocol and are caused by the same device periodically re-associating

with the same AP. When these re-associations are separated by less than 15 minutes

we assume that the user has not moved and therefore we discard the repeat events. In

addition to this, we also acknowledge that some devices may be stationary throughout

their stay on campus. Although many devices are carried with the students and staff

(such as laptops or smartphones), some individuals may have unportable devices (such

as desktop computers) accessing the campus WLAN. Since our aim is to study human

mobility, we wish to focus on the devices often carried by the user. To mitigate the

effect of stationary devices we only included devices that visited at least five different

APs. The resulting 365-day dataset consists of 4,724,255 visits, 7,187 users, 567 APs,

and 275,843 visit chronologies.

This dataset also forms the basis for generating a dataset of encounters using the in-

ference approach discussed in Section 3.1.3.2. To generate an encounter event we

identify occurrences of pairs of individuals visiting the same AP within 10 minutes of

each other. An occurrence of a pair of individuals visiting the same location within 10

minutes of each other translates to one encounter event between those two individu-

als, with the time of the encounter taken as the midpoint between the two individuals’

respective visit times.

The resulting encounter dataset contains 6,800,755 encounters, 7,173 active individuals

(down from the 7,187 devices in the visit dataset due to 14 devices with no encoun-

ters), and 897,996 chronologies. A user in this dataset is on average involved in 2.6

encounters per day.

3.2.5 Summary of datasets

A summary of the base datasets is given in Table 3.2 and Table 3.3. These datasets and

their derivatives will be used in the experiments in this thesis.

As depicted in Figure 3.2, a small number of very-active individuals in each dataset

are responsible for a large proportion of visits. The distribution for DARTMOUTH also

suggests a power law, but has a slight bulge rather than strictly following a straight line.

UNDERGROUND exhibits significantly different behaviour. We observe three trans-
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FOURSQUARE DARTMOUTH UNDERGROUND

Area(s) Bristol, Cardiff, & Camb. Dartmouth London
Scale Urban Campus Metropolitan
Duration 54 days 365 days 28 days
Location type Venue Access point Metro station
Visit type Checkin Association Card swipe
Individuals 5,654 7,187 5,177,134
Locations 4,774 567 270
Visits 43,767 4,724,255 159,111,519
Visits per day 811 12,943 5,682,554
Visits per indi-
vidual per day 0.14 1.80 1.10

M 16,155 275,843 35,338,486
〈L〉 2.7 17.0 4.5

Table 3.2: Summary of base visit datasets. M denotes the number of chronologies and 〈L〉
denotes the mean number of visits per chronology. A chronology Sv,l is only included in
a dataset if v visited l at least once in the duration of the dataset. Only active individuals
and locations are counted; that is, locations and individuals are only counted if they were
involved in at least one chronology.

DARTMOUTH REALITY

Area(s) Dartmouth MIT
Duration 365 days 270 days
Encounter type Access point co-location Bluetooth proximity
Encounter range ≤ 40m ≤ 10m
Individuals 7,173 100
Encounters 6,800,755 531,703
Encounters per day 18,632.2 1,969.3
Encounters per indi-
vidual per day 2.6 19.7

M 897,996 2,675
〈L〉 7.6 198.8

Table 3.3: Summary of base encounter datasets. M denotes the number of chronologies
and 〈L〉 denotes the mean number of encounters per chronology. A chronology Sv,u is
only included in a dataset if v encountered u at least once in the duration of the dataset.
Only active individuals are counted; that is, an individual is only counted if he/she was
involved in at least one chronology.
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itions in behaviour, the first at 100 (3.6 visits per day), the second at 355 (9.1 visits per

day), and the third at 1,250 (44.6 visits per day). This may be explained by the types of

individual that use the Oyster card for payment. Some tourists choose to use the Oyster

card over other travel cards, and these are likely to be responsible for many of the low-

frequency visits. Commuters contribute to the middle of the distribution. Finally, the

most-active users are likely to be London Underground stewards and individuals who

rely on metro transport as part of their job, such as for messengering and newspaper de-

livery. An important factor is the financial incentive for using the Oyster card. Oyster

cards can be used in conjunction with weekly, monthly, and annual travelcards, and

individuals’ travel frequency will influence their decision on whether to opt-in to using

an Oyster card to receive these discounts. (A deeper analysis of Oyster card usage and

fare discounts can be found in [LC11].)

We estimate an upper-bound for reasonable Underground travel frequency to be roughly

60 visits per day, accounting for very-active individuals that need to travel in and out

of many Underground stations as part of their job. Only a very small proportion of

individuals (0.003%) are more active than this. These are likely to be Underground

stewards, as these individuals have access to privileged Oyster cards to allow them to

manage the transport network. We filter these users out in subsequent analysis as they

are not representative of typical travel behaviour.

Finally, we can see from Table 3.2 that measuring visits through WLAN AP associ-

ations results in more-frequent visits (1.80 per individual per day). This is due to the

fine-grained localisation of AP data. Small movements of an individual (such as to

another room in a building) can result in the individual’s device associating with a dif-

ferent AP, and therefore a new visit being recorded. We can also observe the effect

of filtering out devices that have not visited at least five locations by the absence of

individuals with fewer than five visits in Figure 3.2. In terms of encounter behaviour,

we note that REALITY exceeded the number of encounters per user per day than even

DARTMOUTH (Table 3.3).
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Figure 3.2: Distribution of the number of visits by an individual in each dataset on a
log-log scale.

3.3 Conclusions

We have discussed the datasets and experimental methods used to investigate human

mobility. The sources of data for human visits and encounters are wide-ranging and

have been collected in many different contexts using a variety of methods. We have se-

lected four datasets for study in the rest of this thesis. These datasets represent a range

of scenarios on various geographic scales, allowing us to generalise our findings and

test our methods in different conditions. In particular, we consider students and staff

on university campuses (REALITY and DARTMOUTH), passengers travelling between

stations on a metropolitan-scale transport system (UNDERGROUND), and users of a

location-sharing service in urban areas (FOURSQUARE). The latter dataset was col-

lected for use in this thesis. In all cases the data are inherently event based or can

be reduced to an event representation. The methods in the following chapters are de-

veloped for this type of event visit and encounter data.
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Chapter 4

Regularity in human visiting patterns

Introduction

Identifying regular behaviour in individuals’ visiting patterns has applications in a wide

range of fields including context for digital assistants (such as Google’s Google Now

and Apple’s Siri), customer profiling for shop owners, urban planning [CSHS12], and

understanding the spread of biological viruses and electronic malware [WGHB09].

We note that in referring to visit regularity we do not mean visit frequency. Our goal

is to identify consistency between time (e.g., the time of week) and the places an indi-

vidual visits. In other words, we refer to regularity as the behaviour of an individual

to consistently visit a particular location at similar times each day or week. Frequent

visits to a location are not necessarily regular as the timing of those visits may be in-

consistent. This notion of regularity is also held by individuals’ own views on their

regularity. This is discussed in [LC11], where it is found that transport network users

tend to think of travel regularity as being related to destinations and time of travel,

rather than amount of travel.

Many existing studies of periodic and regular behaviour have focused on collective-

scale dynamics. However, for the applications mentioned above, regularity context is

most valuable when it describes an individual’s behaviour rather than aggregate beha-

viour of a population. Furthermore, not all places an individual visits are necessarily

regular. There is likely a great deal of diversity in the visiting patterns between indi-

viduals and locations. Factors such as wealth, profession, lifestyle, and health affect an

individual’s routine, and therefore his or her mobility patterns. In fields outside human

mobility, diversity has been found to be fundamental to human behaviour, both within
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Figure 4.1: Checkin statistics for venues in Cardiff and Cambridge grouped by top-level
category. In particular, each plot shows the number of active venues in each category, the
number of checkins in the venues in each category, and the number of unique visitors to
venues in each category.

the same population and among different populations, even having an evolutionary

component [BDSL11]. Diversity in visiting regularity may also exist among locations,

with some places, such as workplaces, having a natural predisposition for routine.

In this chapter we carry out two tasks. We develop a method that quantifies the amount

of regularity in an individual’s visits to a location that is applicable to event stream

data. This method is then used to investigate the prevalence and character of regularity

in human visit patterns. To introduce this we also discuss collective-scale behaviour

before moving to the individual scale.

Chapter outline

We briefly consider collective-scale visiting routine in Section 4.1 before focusing on

individual-scale visit patterns in the rest of this chapter. In Section 4.2 we introduce

IEI-irregularity (inter-event interval irregularity) which is then applied to empirical

visit chronologies in Section 4.3. A discussion of the findings and their relationship to

related work is given in Section 4.4. The chapter is concluded in Section 4.5.

The work in Section 4.1 has contributed to [CCW+11]1 and [CCW+12]. Work in

Section 4.2 and Section 4.3 has appeared in [WWA12b].

1[CCW+11] is a refereed workshop paper whose proceedings were not published.
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4.1 Collective visiting behaviour: a case study

In this section we investigate collective-scale visiting patterns in the FOURSQUARE

dataset (Section 3.2.5), showing how routine behaviour appears when many individu-

als’ visits are aggregated. Using Foursquare’s category hierarchy we can investigate

the types of venue that are visited and how their usage is influenced by time, and the

extent to which patterns can be seen at the aggregate level.

4.1.1 Collective checkins by category

Foursquare’s category hierarchy consists of eight top-level categories, each of which

can have a number of sub-categories and sub-sub-categories. These sub-categories

are too many and too specific to easily examine, so we have grouped venues by their

top-level categories, as shown for Cambridge and Cardiff in Figure 4.1.

This figure reveals some interesting characteristics of individuals in the two cities.

For example, Cambridge has almost as many checkins in the College & Universities

category as the Food category, while in Cardiff checkins in the Food category outnum-

ber those in the College & Universities category by almost 2 to 1. Looking at ratios

between the number of venues and the number of checkins reveals further details, for

instance in Cambridge the ratio of venues to checkins in the Nightlife Spots category is

approximately 3 : 1, while in Cardiff this ratio is approximately 6 : 1.

Although this aggregate view tells us about general behaviour of individuals, it does not

indicate when individuals tend to visit locations in these categories. To capture more

of the temporal component, we can instead look at the venues visited by hour-of-day.

4.1.2 Daily check-in behaviour

The per-hour distribution of checkins offers insights into how the behaviour of Four-

square users is influenced by the time of day. Although this only describes collective

behaviour, it does indicate when certain categories of venue are more popular.

The plots in Figure 4.2 show the total number of checkins during each hour of the
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Figure 4.2: Number of checkins per hour of the day in Cardiff and Cambridge. The
contribution of each venue category to the total checkins for each hour is indicated by
colour

day, along with the categories of venues that were visited. To limit potential bias due

to occasional interruptions in data collection, a 21-day period with the fewest outages

was selected. The number of checkins recorded in this period were 5,226 and 2,609 for

Cardiff and Cambridge respectively. Checkins occurring within the same hour of the

day were aggregated to produce the figures. We also differentiate between checkins

on weekdays (i.e., Monday to Friday) and checkins on weekends (i.e., Saturday and

Sunday), as we expect work patterns to have a strong influence on weekday check-in

behaviour.

We found that there was a slight increase in the number of checkins per day on week-

ends. Cardiff averaged µ1 = 246.2 checkins per day on weekdays (with σ1 = 57.7) and

µ2 = 255.5 checkins per day on weekends (with σ2 = 73.6). A comparable increase

was found in Cambridge, which averaged µ1 = 123.5 checkins per day on weekdays

(with σ1 = 29.3) and µ2 = 126.0 checkins per day on weekends (with σ2 = 51.6).

Within each city we tested whether the difference in the weekday and weekend means
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were statistically significant by applying the two-sample T -test with the null hypothesis

H0 : µ1 = µ2. The resulting p-values lead us to accept H0 for both cities (p = 0.79

for Cardiff and p = 0.91 for Cambridge) at the 0.05 significance level. Therefore we

conclude that there is no statistically significant change in the number of checkins on

weekdays versus checkins on weekends.

Both cities also appear to have the same ratio of weekday checkins to weekend checkins.

The fraction of weekday checkins is f1 = 0.704 for Cardiff and f2 = 0.710 for Cam-

bridge. We tested the statistical significance of this similarity between Cardiff and

Cambridge using the two-proportion Z-test with the null hypothesis H0 : f1 = f2. The

test gave a p-value of 0.55, indicating that there is no statistically significant difference

between the two ratios.

Despite the negligible difference in the number of checkins per day, the distribution of

checkins on weekdays and weekends are noticeably different. In the case of weekdays,

we find that both cities have three bursts of checkins that occur during the day. In

Cardiff there is a morning burst from 07:00 to 10:00, an early-afternoon burst from

12:00 to 14:00, and an early-evening burst from 17:00 to 19:00. Cambridge checkins

follow a similar pattern, but with the morning and early-evening peaks being smaller

relative to the early-afternoon peak.

The morning burst on weekdays is likely due to users waking up and checking in to

venues as they travel to work. Indeed, in the 07:00 to 10:00 burst the four most-

popular venue categories for Cardiff are Home - Work - Others (29%), Food (15%),

Shops (15%), and Travel Spots (15%). It is not surprising that the early afternoon

(12:00 to 14:00) checkins are predominantly at Food (24%) and Shops (21%) venues.

The percentage of Home - Work - Others checkins in the early afternoon (11%) is

much smaller than in the morning burst (29%), which may indicate that either many

individuals do not leave work for lunch or neglect to check-in on their return to work.

A notable change in the early evening checkins is an increase in the percentage of

Nightlife Spots checkins (21% for 17:00 to 19:00). This category becomes increasingly

popular as the evening progresses.

Although we can observe a three-burst pattern for both Cardiff and Cambridge during
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weekdays, there is no strong similarity between their weekend checkin patterns. The

number of checkins per hour in Cardiff does not drastically change between 11:00 and

21:00. Cambridge has a high rate of checking in between 10:00 and 15:00; however,

unlike Cardiff, this rate is not sustained into the evening. These results indicate that

weekday user behaviour is predominantly driven by routine, whereas there is scope for

more variation and less predictability in weekend patterns. Chen et al. [CCLS11] have

found similar weekday structure in visit patterns within other cities, indicating that this

may be a universal behaviour.

4.1.3 Summary

At the collective scale, we have found a strong relationship between the time of week

and visits to Foursquare venues. The checkin rate across all venue categories follows

a three-burst pattern during weekdays. On weekends, however, this three-burst pattern

is much less pronounced. In this case study we also demonstrated how moving from

AGGREGATE temporal context to PERIODIC revealed richer information about the cat-

egories visited by users over time. In particular, Section 4.1.1 shows that the aggregate

number of checkins per category varies, and in Section 4.1.2 we see that the type of

venue visits is related to the time of week. In the rest of this thesis we narrow our scale

further, moving our focus to INDIVIDUAL-PERIODIC.

4.2 Measuring individual regularity

The investigation into collective-scale regularity discussed in Section 4.1, and found in

other studies (e.g., [CCLS11]), shows that there is a periodic component in aggregate

human visiting patterns. On an individual scale, however, there has been little work

examining the extent to which individuals’ regular (or irregular) patterns contribute

to the population’s aggregate behaviour. By focusing on the individual scale we can

explore the patterns of individuals from which the collective properties emerge. In this

section we develop a method to quantify the amount of regularity in the visits of an

individual to a particular location.
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We define regularity as a visiting pattern that is repeated with a reoccurring time-frame

(for example, on a week-by-week or day-by-day basis); in other words, an individual

that consistently visits a particular location at similar times each week is defined as

having a highly regular visiting pattern with that location.

The event-based nature of the data we consider precludes the application of existing

methods that require continuous, densely-sampled data. User visit data such as this is

very sparse and consequently challenging to effectively model. Even the most act-

ive users typically visit the same place fewer than a dozen times per week. This

sparsity makes it difficult to apply many established approaches for measuring reg-

ularity and periodicity, such as nonlinear time series analysis, harmonic analysis, and

recurrence quantification analysis, as these are most effective for time series that are

continuous and densely sampled. As an alternative to these approaches, we can instead

draw on the large body of relevant work in the neurophysiology community dealing

with the problem of finding regularity in event-based data. In particular, we adapt an

efficient neural synchrony measure named ISI-diversity (inter-spike interval diversity

[KCA+09, KCGA11]) to develop a method of quantifying the regularity of a visit’s

chronology. To the best of my knowledge this is the first application of neural syn-

chrony methods to deal with event-based human mobility data.

4.2.1 Neural synchrony methods

Neural coding is the branch of neurophysiology concerned with the coding of inform-

ation among the neurons in the brain. In the context of neural coding, neurophysiolo-

gists deal with ensembles of spike trains, where each train represents the instantaneous

electrical spikes (or pulses) of a particular neuron. A spike train is a model of neuron

activity as zero-duration events, similar to how we model visit data in this thesis.

Identifying patterns in spike trains has become an essential part of analysing and under-

standing neuron activity. A large variety of methods and tools tackling this task have

been presented in the neurophysiology literature. Among the methods applied, tech-

niques detecting regular neuron firing patterns have borrowed from information theory

[BD05], wavelet analysis [RBY+01, PP06], and Fourier analysis [HR99]. Some of
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these approaches require binning of data along the temporal axis, and therefore result

in a loss of temporal resolution and the addition of an extra parameter (the bin width).

To quantify regularity we adapt a neural synchrony measure named ISI-diversity (inter-

spike interval diversity) [KCA+09]. Neural synchrony is the behaviour of an ensemble

of neurons to jointly fire with a similar pattern [BKM04]. An ensemble of spike trains

is said to exhibit high synchrony if the spikes in the trains occur at similar times. ISI-

diversity is one of a number of methods developed to detect this behaviour [KCGA11].

In the domain of neural coding this measure is preferred because it considers all trains

concurrently, as opposed to other methods which evaluate pairwise similarity and pro-

duce an average. The measure also retains temporal resolution of events, rather than

quantising the trains through binning, and has the additional benefit of being parameter

free.

Spikes can be regarded as abstract, zero-duration events; for the purpose of measuring

visit regularity, spikes correspond to visits to a particular location. In the rest of this

thesis we will generalise the concept of a spike to an event and refer to an inter-spike

interval (ISI) as an inter-event interval (IEI).

4.2.2 IEI-irregularity

Here we present the regularity measure used in this chapter, named IEI-irregularity

(inter-event interval irregularity). Our approach is based on measuring the dissimilarity

in the timing of visits on a per week (or other period such as per day) basis. We

use ISI-diversity to quantify the level of dissimilarity in visits in different weeks; if

visits in each week occur at very similar times, then dissimilarity is very low, and thus

regularity is high. This models regularity as repeated routine over time. For example,

an individual visiting a location at very similar times each week is considered to have

a highly regular pattern for that location. On the other hand, if the individual visits the

location at very different times each week it is considered to be a very irregular pattern.

Throughout this chapter we use week-by-week comparison to determine regularity;

however, in the following formulation we generalise this to any window size, denoted

by ω. Although human mobility follows cycles at multiple scales (e.g., daily, weekly,
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Figure 4.3: Example visit trains for a particular user and access point in the DARTMOUTH
dataset. Window width ω = 7 days.

biweekly, and yearly), here we will focus on weekly regularity as this is one of the most

prominent and captures a range of routine, including weekday and weekend patterns.

More formally, recall that Sv,l is a chronology of an individual v’s visits to a location

l, denoted by the ordered sequence of times

Sv,l = {ti | i = 1, . . . , L} ,
where L is the number of v’s visits to l (Definition 3.1). These times are assumed

to be offsets from some arbitrary origin, giving values ti ∈ (0, Tmax] ∀ i = 1, . . . , L.

The chronology is segmented into disjoint windows of duration ω to build N visit

trains. The absolute times of visits are translated to offsets from the start time of

their corresponding window; thus, each train has visit times in the interval (0,ω]. We

assume Tmax and ω are chosen such that ωN = Tmax. We denote the number of visits

in the nth train with Ln and the sequence of visit time offsets in train n with

Un = {uni | i = 1, . . . , Ln} .
An example of the visit trains for a four-week chronology in the DARTMOUTH dataset

are shown in Figure 4.3a.

Irregularity is quantified by applying the ISI-diversity [KCA+09] measure to the en-

semble of N visit trains. The measure is computationally efficient, scaling linearly in

both the number of visit trains N and number of visits L [KCA+09, KCGA11].

We begin by defining the inter-event interval (IEI) as the time between two consecutive

visits.

Definition 4.1
The instantaneous inter-event interval function In(u) gives the IEI for the nth
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train at time offset u ∈ (0,ω]; formally, instantaneous IEI is defined for three cases:

In(u) = un1 if 0 < u ≤ un1 ,

In(u) = ω− unLn
if unLn

< u ≤ ω ,
and

In(u) = min(uni |uni ≥ u)−max(uni |uni < u) if un1 < u ≤ unLn
.

Figure 4.3b shows the example train from Figure 4.3a annotated with example instant-

aneous IEI values at a particular offset u.

We define two further instantaneous measures which are computed from instantaneous

inter-event intervals. For time offset u, the instantaneous mean µ(u) is given by

µ(u) =
1

N

N∑
n=1

In(u)

and the instantaneous standard deviation σ(u) is given by

σ(u) =

(
1

N − 1

N∑
n=1

(In(u)− µ(u))2

)1/2

.

Using these two instantaneous measures we can evaluate the dispersion in IEI values

at a particular time offset, which represents the degree of dissimilarity in the timings

of events across the N trains at that offset.

Definition 4.2
The coefficient of variation cvar(u) provides a measure of dispersion in the IEI

values at time offset u,

cvar(u) =
σ(u)

µ(u)
.

cvar(u) is a unitless measure and normalised against the mean, which enables compar-

ison between the dispersion in collections of large IEI values and collections of small

IEI values.

By integrating over time offset u we obtain a measure of overall dissimilarity D(Sv,l)
in the ensemble of visit trains for chronology Sv,l.
Definition 4.3

The IEI-irregularity of a visit chronology Sv,l, denoted D(Sv,l), is given by

D(Sv,l) =
1

ω

∫ ω
0

cvar(u) du .
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Figure 4.4: Four example visit trains (U1, U2, U3, and U4) and their corresponding mas-
ter train U∗.

The resulting D(Sv,l) is a non-negative value, with D(Sv,l) = 0 indicating identical

trains (i.e., perfect regularity), and higher values indicating more irregularity in the

visiting patterns.

4.2.3 Computing IEI-irregularity

IEI values are computed by inserting dummy event times 0 and ω into each train and

computing the difference between neighbouring events in each train. The arrival of an

event in a train indicates a change in the instantaneous IEI for the period up to (but not

including) the next event in that train. In other words, given two consecutive spikes uni
and uni+1 in train n, the instantaneous inter-event interval In(u) during u ∈ (uni , u

n
i+1]

is uni+1 − uni .

As part of computation it is necessary to know offset intervals where there are no

intervening events. These intervals represent durations where cvar(·) is constant. To

support this task we create a master train to store the event times taken from all trains.

Definition 4.4

A master train, denoted U∗, is the sequence of events U∗ = U1 ∪ . . . ∪ UN in

ascending order. For convenience we write the master train and its ordered events

as U∗ = {u∗1, . . . , u∗L}.

An example of a collection of visit trains and the corresponding master train is depicted

in Figure 4.4.

We compute a new cvar(·) at each event in the master train. For each i = 2, . . . , L
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a coefficient of variation cvar(u
∗
i ) is computed which yields the constant coefficient

of variation for the interval (u∗i−1, u
∗
i ]. In addition, we also calculate the coefficient

of variation at the first event (i.e., u∗1) to give the dispersion over (0, u∗1], and at ω to

give the dispersion over (u∗L,ω]. Finally, to calculate the IEI-irregularity D(Sv,l), we

compute the sum of the cvar(·) values for each of these L+ 1 intervals, weighted by the

duration of the interval; in other words,

D(Sv,l) =
1

ω

(
cvar(u

∗
i ) (u∗i ) + cvar(ω) (ω− u∗L) +

L∑
i=2

cvar(u
∗
i ) (u∗i − u∗i−1)

)
.

Two variables relevant to the algorithm’s time complexity are the number of events L

and the number of trains N . Given that the input chronology is in ascending order, the

task of translating it to N trains and a master train is trivial. Computing the coefficient

of variation at a given time offset requires a look up of one instantaneous IEI value

from each train, making the time complexity linear in the number of trains N for fixed

L. To understand the reciprocal case (i.e., fixed N and varying L) we consider the

effect of adding an event to a chronology. The result is one additional interval in the

master train, requiring one additional calculation of the coefficient of variation and

another value involved in the weighted sum calculation. Therefore, assuming fixed N ,

the algorithm is linear in the number of events L.

4.3 Character and prevalence of regularity in visiting

patterns

In this section IEI-irregularity is applied to real-world data to explore regularity in

human visit patterns. In particular, we compare four-week segments within each of our

three visit datasets. The base datasets from which we derive our four-week datasets are

discussed in Section 4.3.1. We divide our analysis into four areas of interest. We first

consider the influence of the time of week on the inter-visit intervals of chronologies

(Section 4.3.2). In Section 4.3.3 we compare the datasets in terms of their irregularity,

followed by studying how the types of the locations within the datasets contribute to the

overall irregularity (Section 4.3.4). Finally, we consider how prevalent regular visiting
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Dataset FOURSQUARE DARTMOUTH UNDERGROUND

Area(s) Bristol, Cardiff, and Camb. Dartmouth London
Scale Urban Campus Metropolitan
Month June April March
Location type Venue Access point Metro station
Visit type Checkin Association Card swipe
Individuals 293 1,681 1,167,363
Locations 336 391 270
Visits 4,640 229,300 58,945,475
M 401 3,656 2,260,354
〈L〉 11.6 62.7 26.1

Table 4.1: Summary of datasets used in the analysis of regularity. Each dataset corres-
ponds to a four-week period. M denotes the number of chronologies and 〈L〉 denotes the
mean number of visits per chronology. A chronology Sv,l is only included in a dataset
if v visited l at least twice in each of the four weeks. Locations and individuals are only
counted if they were involved in at least one chronology.

patterns are among the individuals in each dataset and the relationship between visit

frequency and visit regularity (Section 4.3.5).

4.3.1 Four-week visit datasets

A four-week segment was selected from each dataset to obtain visit chronologies for

study. We selected four weeks in June from FOURSQUARE and four weeks in March

from UNDERGROUND (these are the only weeks available to us). The DARTMOUTH

dataset is particularly sensitive to the time-of-year because much of the user behaviour

is driven by teaching semesters (changing usage patterns during each year are discussed

in [HKA08]). We therefore selected four weeks in April 2003 from DARTMOUTH as

this corresponds to an uninterrupted period of teaching time at Dartmouth College.

The original datasets (as presented in Section 3.2) contained many individuals that

visited certain locations very rarely or exclusively in only a few of the four weeks.

Chronologies such as these are not suitable for studying regularity, as their activity is

too rare and too transient. We restrict the four-week datasets to chronologies with at

least two visits in each of the four weeks. The derived four-week datasets used in this

chapter are summarised in Table 4.1. The filtering of infrequent chronologies culled
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roughly 93% of the original four-week person-location pairs in both DARTMOUTH and

UNDERGROUND, indicating that, although the set of places a person has visited at least

once may be large, many of these places are only visited very occasionally. The num-

ber of chronologies for FOURSQUARE reduced to 3% of the original, leaving a small

sample of 401. The remaining chronologies in FOURSQUARE involve 4% of the users,

a small proportion compared to 67% in DARTMOUTH and 23% in UNDERGROUND. A

substantial number of transient users (such as tourists or individuals passing through)

may also contribute to this substantial reduction.

4.3.2 Inter-visit intervals and the time of week

As discussed in Section 4.2, our approach focuses on the weekly patterns of inter-event

intervals (IEIs) for an individual’s visits to a particular location. The IEIs themselves,

along with their level of dispersion at a particular time-of-week, are an interesting

property of human mobility and thus we consider them specifically in Figure 4.5. The

figure shows how IEI dispersion (as quantified by the coefficient of variation cvar of a

chronology at a given time-of-week) varies throughout the week.

The small standard deviations in visit rates indicate that the volume of visits is very

similar in each week. This contrasts with the 〈cvar〉 values which have very high stand-

ard deviation. This highlights the person-specific nature of an individual’s visiting

patterns with a location; in other words, the visiting patterns (and therefore IEIs) of

two different individuals visiting the same location can be very different.

In the UNDERGROUND dataset we observe that, on average, chronologies’ IEIs are

most-dispersed between 10:00 and 16:00 on weekdays, and least-dispersed during

nighttime. This is because the relative effect of a discrepancy in visit times that are

close together is greater than when the visit times are further apart. For example, the

morning and afternoon commute on the same day are separated by roughly nine hours,

whereas the time between the afternoon commute and the following day’s morning

commute is roughly 15 hours. Therefore, minor discrepancies in the visits to a com-

muter’s stations will have a greater influence on the dispersion of daytime IEIs than

nighttime IEIs. The same behaviour is responsible for the dip in IEI dispersion dur-
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Figure 4.5: Time-of-week means of visit rates and coefficients of variation (〈cvar〉) for
each dataset. 〈cvar〉 is obtained by averaging over the cvar values in the corresponding
two-hour time slot of all chronologies. A high 〈cvar〉 indicates that the instantaneous IEI
values were, on average, more dispersed during that time of week.
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ing the weekend. Many chronologies consist of predominantly weekday visits. The

weekends for these chronologies will correspond to large IEIs spanning from Friday to

Monday, and so the dispersion (cvar) will be less during this period.

When comparing DARTMOUTH and UNDERGROUND we note that DARTMOUTH’s

weekday visit activity is sustained throughout the day and lasts longer into the evening,

rarely declining before midnight. This reflects the fact that the DARTMOUTH dataset

includes many types of visit (including social, residential, and academic), whereas

UNDERGROUND is restricted to transportation. This late-evening visit activity is also

the reason for the delayed dip in IEI dispersion, which does not decrease until 22:00

(compared to 16:00 in UNDERGROUND). It is also worth noting that the DARTMOUTH

decline in visit rate on the weekend is small. This is explained by a large number of

students living on-campus, compared to a small proportion of students and staff who

either live off-campus or spend the weekend elsewhere.

4.3.3 Comparison of regularity between datasets

Given that the three datasets differ in context, time of year, and geographic scale we

would expect differing visiting behaviours in each. Indeed, we have already discussed

how the three datasets’ time-of-week visit rates exhibit different patterns. The same

is also true of the level of regularity present in each dataset, as shown in Figure 4.6.

DARTMOUTH is distinct from the other two datasets, with the weight of its distri-

bution shifted towards higher irregularity. This is reflected in the mean irregularity

〈D〉 (which we take over the available user-location chronologies), which is higher for

DARTMOUTH (0.510) than for FOURSQUARE and UNDERGROUND (0.381 and 0.373,

respectively). This suggests that the patterns of individuals visiting locations on Dart-

mouth campus tend to be more irregular. This is unlikely to be due to a sudden change

in routine, as the duration of the dataset (April 2003) is a continuous period of term-

time teaching, uninterrupted by holidays or exams. The small deviations in visit rates

(see visit rate plots in Figure 4.5) also indicate that there was no overall change in vis-

iting patterns between the weeks. An alternative reason for the increased irregularity

may be the highly dynamic and spontaneous nature of student behaviour. This con-



4.3 Character and prevalence of regularity in visiting patterns 71

0.0 0.2 0.4 0.6 0.8
Irregularity score

0

20

40

60

80

100

%
 o

f s
co

re
s 

 x

Foursquare
Dartmouth
Underground

Figure 4.6: Cumulative distributions of IEI-irregularity scores (i.e., D(·) values) in each
dataset. High D(·) indicates high irregularity. The mean IEI-irregularity value 〈D〉 is
0.381 (± 0.131) for FOURSQUARE, 0.510 (± 0.185) for DARTMOUTH, and 0.373 (± 0.173)
for UNDERGROUND.

trasts with Underground passengers and Foursquare users, whose student proportion

is likely to be much smaller, consisting instead of a large population of individuals

following less-flexible routines (for example, commuters).

The finer-grained localisation of the DARTMOUTH dataset may also contribute to the

increased irregularity. The Dartmouth APs had an indoor range of up to 40m, so most

buildings required multiple APs to achieve good WLAN coverage. This means that

users moving as little as a few tens of metres can register as having visited a new loc-

ation. These short-distance movements are likely to be more unpredictable and driven

less by routine than larger-distance movements, and thus result in higher irregularity in

AP visits.

We also note the similar mean irregularities of FOURQSUARE and UNDERGROUND

chronologies, which may be attributed to both datasets being at a city-wide scale and

consisting of a broad cross-section of people, as opposed to Dartmouth campus’s pre-

dominantly student population.
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FOURSQUARE

Venue category M 〈L〉 〈D〉
Arts & Entertainment 6 8.5 0.335 (± 0.215)
Food 35 8.5 0.354 (± 0.103)
Nightlife Spots 32 8.6 0.356 (± 0.130)
Shops 63 9.0 0.373 (± 0.112)
Homes/Work/Others 139 14.0 0.374 (± 0.123)
Travel Spots 36 11.6 0.380 (± 0.120)
Colleges & Universities 37 13.7 0.432 (± 0.153)
Great Outdoors 20 11.7 0.438 (± 0.166)

DARTMOUTH

Building type M 〈L〉 〈D〉
Academic 965 30.1 0.375 (± 0.165)
Library 135 26.6 0.445 (± 0.169)
Social 119 42.3 0.446 (± 0.168)
Admin 81 59.7 0.531 (± 0.185)
Residence 2,276 79.5 0.573 (± 0.161)
Athletic 65 78.9 0.579 (± 0.185)

Table 4.2: Comparison of irregularity by type of location. For each subpopulation of
chronologies we show the number of traces M , the mean IEI-irregularity value 〈D〉 along
with its standard deviation, and the mean number of visits per chronology 〈L〉. Uncat-
egorised Foursquare venues and Dartmouth APs are not included.

4.3.4 Influence of location type

To further study regularity in these datasets we separate the chronologies into sub-

populations by the type of location they are involved in. Table 4.2 lists the location

types in the FOURSQUARE and DARTMOUTH datasets, along with their subpopulation

irregularity means and other relevant properties.

APs in the Dartmouth dataset are categorised by the type of building they were placed

in. For Foursquare venues we used the venue’s top-level category. We also show the

distributions of irregularity values in the Dartmouth subpopulations in Figure 4.7. We

do not plot the FOURSQUARE subpopulations due to the small sample sizes.

The results for DARTMOUTH (Table 4.2 and Figure 4.7) reveal that the source of the

dataset’s high overall irregularity (discussed in Section 4.3.3) is the large Residence

subpopulation (consisting of M = 2,276 chronologies) with high mean irregularity

(〈D〉 = 0.573). It is intuitive that residential locations are the least regular. First, since
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Figure 4.7: Cumulative distributions showing the distribution of IEI-irregularity scores
(i.e., D(·) values) by type of location in the DARTMOUTH dataset.

these are where students spend most of their time, there are likely to be more fine-

grained movements to different APs in the same building, which are likely to increase

irregularity. Second, the comparatively small area of the campus means it is convenient

for students to return to their residence between making visits elsewhere; therefore,

many visits to residences depend on other events (such as the end of a lecture), allowing

for a lot more variation in the week-by-week visits. Residences also have no curfew,

unlike other types of building that have restricted periods of use (libraries have limited

opening times, for example).

Another intuitive result is that the subpopulation with the lowest mean irregularity is

the Academic subpopulation (〈D〉 = 0.375). This is unsurprising since most visits

to academic locations are caused by timetabled events such as weekly lectures and

seminars.

In the case of FOURSQUARE, we find that the Great Outdoors subpopulation of chro-

nologies had the highest mean irregularity (〈D〉 = 0.438). This can be explained by

the nature of these venues. As they are outdoor venues, they are highly subject to

weather conditions. Many outdoor activities will therefore be rescheduled to coincide
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with fairer weather, rather than occurring at a specific time of week.

It is surprising that Colleges & Universities is among the least-regular subpopulations.

We would expect its visits to be driven by a timetabled routine, as with DARTMOUTH’s

academic buildings. We note that this may be because Foursquare’s Colleges & Uni-

versities top-level category includes a wide variety of subcategories, such as cafeterias

and accommodation. Further sub-dividing the subpopulation of chronologies may re-

veal subcategories of high regularity; however, the sample size prevents any strong

conclusions from being drawn.

4.3.5 Prevalence of regularity among individuals

We now study the extent to which an individual has regular relationships with the

locations he or she visits. We begin by considering the overall number of locations

individuals tend to visit, as shown in Figure 4.8a. In FOURSQUARE and DARTMOUTH

the percentage of individuals decreases with the number of different locations, with

DARTMOUTH users typically visiting a wider variety of locations. UNDERGROUND

follows a similar pattern, except its peak is at two locations rather than one, which is

explained by the nature of Underground journeys. An individual with only one location

can occur in the rare case where a passenger bypasses the exit turnstile or exits from

the entry station, or where a passenger has had one of their stations discarded in the

minimum-visits filtering we discussed in Section 4.3.1.

Using the IEI-irregularity D(Sv,l) of an individual v’s visits to location l we can eval-

uate whether v’s visits to l are regular or irregular. We set a threshold for irregularity,

below which we will regard v’s visits to l as regular. In Figure 4.8b we plot the distri-

bution of individuals and how many of the locations they visited were deemed regular

in this way. We set a strict threshold of 0.2, as we wish to find the chronologies with

near-perfect regularity. As shown in Figure 4.6, a minority of chronologies in each

dataset are within this threshold (8.2% in FOURSQUARE, 4.4% in DARTMOUTH, and

17.4% in UNDERGROUND).

Figure 4.8b shows how the set of highly regular chronologies is distributed among the

individuals. 8% of Foursquare users and Dartmouth WLAN users had at least one
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(a) Distributions showing the number of locations
for individuals used in our analyses. Individuals
exceeding nine locations are not plotted.
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(b) Distributions showing the number of regular
locations (i.e., whereD(Sv,l) ≤ 0.2) for individu-
als in each dataset.

Figure 4.8: Number of regular locations per individual compared to the overall number
of locations per individual.

location that they visited with high regularity. The percentage increases in the case of

Underground passengers, with 21% of individuals having at least one regular location,

likely due to the more-routine nature of travel. At stricter thresholds (i.e., thresholds

closer to 0), the size of the core group of users with at least one regular venue decreases.

The threshold at which the size of this group dropped to 1% of individuals was 0.009

for FOURSQUARE, 0.050 for DARTMOUTH, and 0.007 for UNDERGROUND.

We also consider whether there is any relationship between an Underground passen-

ger’s most-visited station and his or her most-irregular station. Most-visited stations

are likely to be ‘home’ stations, which we expect to have irregular visiting patterns,

since they represent a convolution of many different routines throughout the week. We

consider the probability p(m) that, given an individual v who has visited m stations,

the individual’s most irregular station l (i.e., l such that D(Sv,l) is maximised) is also

the station that v visited the most. We find that p(2) = 0.55, p(3) = 0.37, p(4) = 0.29,

p(5) = 0.28, and p(6) = 0.28, indicating that the probability of these stations matching

is slightly higher than chance. The deviation from chance becomes greater when indi-

viduals have four or more frequently visited stations. This deviation is more significant

in DARTMOUTH, which has probabilities p(2) = 0.57, p(3) = 0.47, and p(4) = 0.43.

Finally, a relevant insight to this thesis we wish to consider is the finding in [LC11]

that a transport network user’s perception of their regularity is not necessarily related

to the amount of travel. Through application of our regularity measure (Figure 4.9) we
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Figure 4.9: Joint frequency distribution of visit frequencies and irregularity scores of
chronologies in the UNDERGROUND dataset. Non-zero probabilities occur outside the
plotted area but are omitted due to their rarity.

can see that this is indeed the case. The joint distribution shows that there is no linear

correlation between chronology visit rate and IEI-irregularity.

4.4 Discussion and related work

At the collective scale, the three-burst pattern we noted in aggregate Foursquare visit-

ing behaviour has also been observed in the hourly variation in the rate of cell trans-

itions of mobile phone users [CGW+08]. This is not surprising since morning, lunch-

time, and evening correspond to periods of movement activity. One difference between

the two datasets, however, is that the largest peak in cell transitions is in the morning,

whereas the Foursquare morning burst is smaller than both the lunchtime and the even-

ing bursts. This is explained by the differing definitions of location in the two datasets.

In [CGW+08], the many cell tower transitions during long-distance commutes are re-

corded as location visits. On the other hand, Foursquare checkins are self-reported

locations that have some degree of significance for the user.



4.4 Discussion and related work 77

At the individual scale, Eagle and Pentland [EP06] have also presented an approach

to quantifying patterns in human visits. Information entropy is used to measure the

predictability of mobile phone users’ patterns of transition between home and work.

The work we have presented attempts to go beyond only home and work, considering

the many other locations a person visits. An interesting observation in [EP06] is that

university students, especially those in their first year of study, have the highest entropy,

and therefore are the least predictable. This agrees with our finding that DARTMOUTH

individuals have higher irregularity. In addition, unlike the entropy measure presented

in [EP06], our measure is time-of-week resolved, allowing us to further investigate how

IEI dispersion within a particular chronology varies throughout the week, as discussed

in Section 4.3.2.

While both the results of this chapter and those in [EP06] agree that student behaviour

is less predictable, it is interesting that when collective-scale time-varying encounter

statistics are analysed in [SMML10], DARTMOUTH is found to be the most regular of

the datasets considered. This may be due to differing scales (individual and collective)

and the differing nature of encounter and visit behaviour.

Song et al. [SQBB10] have made two key contributions relevant to our findings. First,

the authors investigate a different but related concept of regularity, which is defined

by them as the probability that an individual is found at his or her most-visited loca-

tion. They find that this property is tied to the time-of-week, as we also observed with

the mean coefficient of variation (Section 4.3.2). As previously mentioned, we have

gone beyond the individual’s most-visited location and consider their relationships

with other places. We note that although [SQBB10] considers mobile phone record

data, periodicity in return probability is also found in Foursquare checkins [CCLS11].

Second, Song et al. find that a significant amount of predictive information is encoded

in the sequence and ordering of visits. With our regularity measure we have focused

on IEIs and their variation by time of week; patterns in the sequences of IEIs is an

interesting direction for future work.
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4.5 Conclusions

In this chapter we detailed our definition of visit regularity and introduced a method

for its measurement that is designed for event-based data. The method is adapted from

the neural coding concept of synchrony and is computationally efficient. Our approach

retains the temporal resolution of event timings and can be applied in cases of relatively

low visit rates (e.g., as few as two visits per week).

Using this measure we have investigated the visiting patterns of individuals in our

three datasets. Most existing analyses of regularity in visit patterns have either been

at a collective scale or focused on an individual’s relationship with their home loca-

tion. Our work in this chapter goes further into visit periodicity than previous studies

and specifically considers individuals’ regular visit patterns with the many different

places they visit. Our analyses have revealed features of individual behaviour beyond

the weekday daily three-burst aggregate pattern we observed at the collective scale.

We find that campus visits are the most irregular, likely due to the flexible nature of

student behaviour, and transport visits are most regular, likely due to the significant

commuter population. In all three datasets we find a core group of individuals that visit

at least one location with near-perfect regularity. We also note a correlation between an

individual’s most-visited location (likely to be a associated with their home) and irreg-

ularity. We have observed that the type of location, which is typically associated with

a particular activity, has strong influence over individuals’ visiting patterns. There are

location types whose usage is predominantly driven by inflexible constraints (such as

lectures in academic buildings) whereas others, such as outdoor venues, are less con-

strained or subject to external random effects. We have found that there is no strong

correlation between frequency of visit and regularity. Using IEI-irregularity we can

identify irregular and regular visit behaviour, which we may wish to treat differently

in some applications. For example, shop owners may wish to identify which of their

customers visit routinely, but not necessarily frequently.

One limitation of our measure is that a very-regular pattern (e.g., a visit each Tuesday

afternoon) embedded within other non-regular visits receives a high irregularity score,

despite the presence of consistent recurrent behaviour among the visits. These embed-
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ded patterns are particularly important in the case of encounters, where events are more

frequent (as shown in the number of events per day in Section 3.2.5) and we need to

identify repeated patterns embedded within many incidental occurrences. In the next

chapter we will focus on encounter patterns specifically. One cause of regularity in en-

counters is through pairs and groups of individuals regularly visiting the same location;

however, regular encounter patterns can also emerge from individuals visiting different

locations together, such as friends who each lunch together at different locations.
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Chapter 5

Periodicity in human encounter

patterns

Introduction

The method introduced in Chapter 4 measured regularity in visit patterns, where regu-

larity was defined as similarity in the weekly timing of visits. In this chapter we move

on to consider encounter (i.e., person-meets-person) patterns, rather than person-visits-

place patterns. Although both are functions of human mobility, encounter periodicity

differs from visit periodicity in that the places where two individuals periodically meet

may be different.

The effect of multiple incidental encounters mixing with periodic encounters makes

the task of identifying periodic behaviour more challenging. As discussed in the pre-

vious chapter, our IEI-irregularity method for measuring periodic visit patterns treats

additional non-periodic events as irregularities. In this chapter we instead explore a

data mining perspective to develop a periodic encounter pattern detection method. Data

mining provides an existing body of work dealing with the extraction of periodic events

embedded among incidental events. Furthermore, these approaches allow the period

of repetition to be treated as a feature and therefore are not restricted to only patterns

of an a priori period (unlike the window parameter ω in Chapter 4). Collective-scale

analysis of encounter networks [SMML10] has highlighted strong periodic compon-

ents at different temporal scales (in particular, at one, seven, and 14-day periods) and

therefore we begin our exploration of individual-scale encounter patterns by allowing

more than one periodicity. This also generalises our approach to settings where we
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are unable to anticipate the nodes’ encounter periodicities beforehand, such as in wild-

life networks. The challenging sparse and event-based nature of the encounter data

requires us to quantise the original time-resolved events into bins to make data mining

approaches applicable.

As with the method we developed in Chapter 4, our method for detecting periodic en-

counter patterns is designed to be computable on individual devices without the need

for centralised infrastructure. To identify periodic encounters with direct neighbours

this requires that each node analyse its pairwise local encounter histories. Furthermore,

a pair of individuals who are involved in a periodic encounter relationship may also

be periodically encountering other individuals, giving rise to broader periodic com-

munities consisting of multiple individuals. Not all individuals in a community such

as this are necessarily able to directly observe all other individuals in the community,

and therefore we require a method for individuals to communicate and discover the

broader periodic communities they belong to. We refer to such communities as peri-

odic encounter communities (PECs). Devices can directly share, gain, and convey

information and knowledge within their PECs with some degree of reliability due to

the periodic re-occurrence of encounters.

Enabling nodes to detect the PECs they belong to provides them with useful context

about the network they operate in, especially in the field of human encounter net-

works. The existence of PECs in a network has a substantial impact on the diffusion

of information among mobile nodes and can be used to inform content forwarding de-

cisions. Although many existing encounter-aware protocols focus on routing over pair-

wise (i.e., non-community) relationships, recent innovations, such as Habit [MMC09]

and BUBBLE [HCY11], have shown that nodes can exploit multi-hop relationships

(i.e., beyond neighbours) to improve the efficiency of disseminating media [MMC09]

and to reduce routing delivery cost [HCY11]. PECs represent multi-hop encounter re-

lationships that have stability over time, and therefore can be exploited in extensions

to protocols such as Habit and BUBBLE. We note that our definition of PEC treats

a periodic encounter pattern between a pair of individuals as a subcase of a periodic

encounter community; in other words, our approach captures both pairwise patterns as

well as community patterns.
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Apart from human-based opportunistic networks (i.e., human encounter networks),

other examples of application domains that would benefit from decentralised periodic

encounter community detection include wildlife monitoring networks [JOW+02] and

vehicular ad-hoc networks (VANETs) [LW07].

In this chapter we introduce, formalise, and model the concept of periodic encounter

communities. This forms, to the best of my knowledge, the first treatment of the

concept of a periodic encounter community and the first decentralised algorithm for

their detection. The algorithm we present automatically detects the periodicities with

which communities occur. Our approach combines data mining for the extraction of

periodic encounter information at individual nodes with opportunistic sharing of this

information when nodes are in communication range. Through opportunistic commu-

nication all nodes are able to discover the complete periodic encounter communities

they appear in, including those parts of the community that a node cannot directly ob-

serve. We evaluate our approach using the real-world REALITY dataset and explore its

behaviour with a number of metrics.

Chapter outline

The rest of the chapter is organised as follows. In Section 5.1 we formulate the PEC de-

tection problem along with its local-knowledge variant and discuss the relation between

PEC detection and the periodic subgraph mining problem from the literature. Our de-

centralised PEC detection algorithm is presented in Section 5.2. In Section 5.3 we

introduce a model for investigating the information diffusion characteristics of PECs

and the limits of decentralised PEC detection. This model is applied to the REALITY

Bluetooth encounter dataset in Section 5.4 to analyse the decentralised PEC detection

algorithm. Section 5.5 discusses related work in the area. Finally, we conclude this

chapter in Section 5.6.

The work in this chapter appears in [WWA12a].
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5.1 The PEC detection problem

A PEC (periodic encounter community) can be thought of as a group of nodes that

encounter one another periodically. All pairs of nodes in the community do not neces-

sarily have to directly encounter one another, but may instead have an acquaintance in

common with whom they are both encountering with the same periodicity.

More formally, the structure of a PEC is defined in graph theoretic terms as a connected

graph representing the nodes and their encounters. The temporal information of the

PEC specifies the period with which the encounters (as represented by the graph) repeat

in time and how long the pattern repeats for. We note that the same nodes may have

encounter patterns at more than just one periodicity (for example, a group of nodes

may meet daily during the week, and fortnightly on weekends), and thus the same set

of nodes may belong to multiple PECs.

The formal definition of PECs and the language we use to discuss them are presented in

detail in Section 5.1.1, along with a formulation of the general PEC detection problem.

We present the local-knowledge variant of the PEC detection problem in Section 5.1.2.

It is this local-knowledge PEC detection problem that we must solve in the context

of opportunistic networks, since the limited connectivity and decentralised nature of

these networks make it unfeasible to maintain a single source of complete knowledge

of the network. Furthermore, it would be very inefficient to have nodes flood their

whole (unprocessed) local encounter histories through the network to emulate a global

knowledge scenario.

In Section 5.1.3 we show that the global PECs (the result of the general PEC detec-

tion problem) can be decomposed into multiple locally detectable PECs, and thus there

is a viable solution to the local-knowledge PEC detection problem. The relationship

between PEC detection and the existing problem of periodic subgraph mining is dis-

cussed in Section 5.1.4, along with reasons why periodic subgraph mining is not dir-

ectly applicable to the local-knowledge problem.
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5.1.1 General PEC detection formulation

PEC detection and periodic subgraph mining [LB09] are closely related and we adopt

consistent terminology in our formulation. The representation of time in our formu-

lation is as a series of discrete timesteps. The duration Q that each timestep spans is

referred to as the granularity. In particular, for some arbitrary start time c, a timestep t

spans the interval [ c+ (t− 1)Q, c+ tQ ).

Definition 5.1
A simple encounter graphGt = (Vt, Et) is a snapshot of all encounters and nodes

appearing within the time window corresponding to timestep t. That is, {v, u} ∈ Et
if and only if nodes v ∈ Vt and u ∈ Vt, where v 6= u, were in range at least once

during the time interval represented by t. A simple encounter graph Gt = (Vt, Et)

is proper if and only if ∀v ∈ Vt there exists u ∈ Vt such that {v, u} ∈ Et; in other

words, a proper simple encounter graph is one where every node is involved in at

least one encounter.

Definition 5.2
A dynamic encounter graph D = 〈G1, . . . , GT 〉 is a time-ordered sequence of

proper simple encounter graphs.

We note that our definition of dynamic encounter graph implies that a node exists in

Vt if and only if it is involved in an encounter with another node at timestep t. The

definition of dynamic graph in [LB09] is less strict as it permits nodes with degree

zero.

The encounter events between individuals v and u in an encounter chronology Sv,u =

{xi | i = 1, . . . , L} (Definition 3.1) that covers an overall duration Tmax have a corres-

ponding representation in a dynamic encounter graph that consists of Tmax/Q timesteps.

We assume Tmax and Q are chosen such that Q divides Tmax and that ∀x ∈ Sv,u,
x < Tmax. A given encounter event at time x ∈ Sv,u is represented in the dynamic

encounter graph as an edge between v and u in the simple encounter graph at timestep

b x/Q c+ 1.

Definition 5.3
The subgraph C = (V,E) of a proper simple encounter graph Gt is an encounter

community if C is connected and |V | > 1.
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We write F2 ⊆ F1 to denote that F2 is a subgraph of, or equal to, F1. We say that

an encounter community C exists in the dynamic encounter graph D at timestep t if

C ⊆ Gt. An encounter community C may exist in D at periodic timesteps, leading to

the following definition.

Definition 5.4
A periodic support set, denoted by Sλ where λ = (i, p, n), for an encounter com-

munity C in a dynamic encounter graph D = 〈G1, . . . , GT 〉 is a subsequence of

n > 1 timesteps

Sλ = 〈i, i+ p, i+ 2p, . . . , i+ (n− 1)p〉
for which C exists, where i ≥ 1 and i+ (n− 1)p ≤ T . The kth timestep specified

by a periodic support set, where 1 ≤ k ≤ n, is given by i + (k − 1)p and denoted

by Sλ(k).

Given a periodic support set Sλ, λ = (i, p, n) for encounter community C, we refer to

n as the number of periodic occurrences of C specified by Sλ. We write |Sλ| to denote

periodic support set size, noting that |Sλ| = n.

Definition 5.5
A periodic support set Sλ, where λ = (i, p, n), for an encounter community C in a

dynamic encounter graph D = 〈G1, . . . , GT 〉 is a maximum periodic support set

if both C 6⊆ Gi−p and C 6⊆ Gi+pn.

Definition 5.6
Denoted as the pair 〈C, Sλ〉, a periodic encounter community (or PEC) is an

encounter community C along with a maximum periodic support set Sλ for which

C exists.

Note that an encounter community may exist in a dynamic encounter graph for more

than one maximum periodic support set. A maximum periodic support set may be

wholly contained within, intersect, or be disjoint from another. If a maximum periodic

support set is contained within another, the contained periodic support set is redund-

ant and the containing periodic support set subsumes all of the temporal information

conveyed by the contained periodic support set.
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Definition 5.7
A periodic support set Sλ2 is a subset of Sλ1 if and only if all timesteps contained

in Sλ2 are contained in Sλ1 . Letting λ2 = (i2, p2, n2) and λ1 = (i1, p1, n1), an

equivalent definition is that Sλ2 is a subset of Sλ1 if and only if all of the following

conditions hold:

1. i2 ≥ i1 and i2 + p2(n2 − 1) ≤ i1 + p1(n1 − 1)

(i.e., Sλ2 is temporally bounded by Sλ1);

2. p2 = kp1 for some integer k > 0

(i.e., the period p1 is a factor of p2);

3. i2 = i1 + lp1 for some integer 0 ≤ l < n1

(i.e., the first timestep in Sλ2 must be equal to a timestep in Sλ1).

We denote by Sλ2 ⊆ Sλ1 the relationship of Sλ2 being a subset of Sλ1 . We call Sλ2
a proper subset of Sλ1 if and only if Sλ2 ⊆ Sλ1 and Sλ2 6= Sλ1 . This relation is

denoted Sλ2 ⊂ Sλ1 .

The definition of the subset relation for periodic support sets formalises the concept of

temporal subsumption. If we have an encounter community C which exists in periodic

support sets Sλ1 and Sλ2 such that Sλ2 ⊂ Sλ1 , then Sλ1 conveys more information than

Sλ2 about the periodic occurrences of C.

Definition 5.8
An encounter community C ′ is a subcommunity of encounter community C if and

only if C ′ ⊆ C.

Subsumption can also occur between the structural components of PECs. For example,

given a PEC 〈C, Sλ〉, any subcommunity C ′ of C also exists for Sλ. If Sλ is maximum

for C ′ then 〈C ′, Sλ〉 forms a PEC; however, in the case that C ′ ⊂ C the PEC 〈C ′, Sλ〉
contains only some of the structural information conveyed by 〈C, Sλ〉.

Definition 5.9
Let P1 = 〈C1, Sλ1〉 and P2 = 〈C2, Sλ2〉 be two PECs. We say that P1 is subsumed

by P2 if and only if Sλ1 ⊆ Sλ2 and C1 ⊆ C2. We denote this relationship by

P1 ⊆ P2.



88 5.1 The PEC detection problem

1 2

3 4

5

P1

�1 = (3, 4, 2)

1 2

3 4

P2

�2 = (1, 2, 4)

1 2

3 4

5

P3

�3 = (3, 4, 2)

1 2

3 4

P4

�4 = (1, 4, 2)

1 2

3 4

5

1 2

3 4

1 2

3 4

5

1 2

3 4

t=1 t=2 t=3 t=4 t=5 t=6 t=7

D

Figure 5.1: A dynamic encounter graph D and a selection of PECs in D.

Definition 5.10
A PEC P1 is maximal if and only if there does not exist another PEC P2, where

P1 6= P2, such that P1 is subsumed by P2.

Figure 5.1 demonstrates the subsumption and maximality criteria on an example dy-

namic encounter graph D. PECs P1 and P2 are the only maximal PECs in D because

they are each not subsumed by any other PEC. PECs P3 and P4 are examples of sub-

maximal PECs. In particular, P3 is structurally subsumed by P1 due to the lack of edge

{4, 5} and P4 is temporally subsumed by P2 because the period of P2 divides that of

P4 causing Sλ4 to be a subset of Sλ2 .

Maximal PECs are the fundamental PECs that we wish to extract from a dynamic

encounter graph. A node may appear in multiple maximal PECs, which reflects the

real-world property that an individual may belong to more than one community. Com-

munities can form due different types relationship, such as work, social, and familial.

Our extension of static communities into the temporal domain allows us to capture the

pattern with which the community reoccurs in addition to the connections within it.

An implication of our definition of PEC is that a node’s membership in a community is

a binary property. This strict definition is a necessary trade-off to make the automatic

detection of community-specific periodicities tractable. The data mining algorithm we

use to extract communities and their periods is introduced later in this chapter.

With knowledge of all maximal PECs, all other PECs are redundant. The collection

of all maximal PECs represents the most compact and complete description of the
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periodic encounter communities present in a dynamic encounter graph.

Definition 5.11
The periodic encounter community detection problem is the problem of find-

ing all maximal periodic encounter communities that exist in a dynamic encounter

graph.

5.1.2 Local-knowledge PEC detection formulation

The problem as introduced in Section 5.1.1 is presented as a global-knowledge prob-

lem, where mining of PECs could be carried out with the full graphs in the dynamic

encounter graph available to a mining algorithm, as is the case with the PSE-Miner in

[LB09]. Alternative to this is the node-centric perspective where the entire graph Gt is

not available to any single entity. In particular, each node has only the knowledge of

encounters that directly involve it. We formalise the concept of local knowledge in the

following definitions.

Definition 5.12
For an encounter graph Gt = (Vt, Et), the intrinsic encounter graph Gv

t =

(V v
t , E

v
t ) is the subgraph of Gt induced by selecting only the edges Ev

t = {e | e ∈
Et ∧ v ∈ e} and their incident vertices.

Definition 5.13
Consider the dynamic encounter graphD = 〈G1, . . . , GT 〉. The intrinsic dynamic

encounter graph of a node v is the sequence of graphs Dv = 〈Gv
1, . . . , G

v
T 〉.

Figure 5.2 shows a set of intrinsic dynamic encounter graphs and the corresponding

global dynamic encounter graph. A node v’s intrinsic dynamic encounter graph rep-

resents the encounter information that is directly observable by v. We note that the

global encounter graph at timestep t is the aggregation of all intrinsic graphs at t; in

other words, if we have dynamic encounter graph D = 〈G1, . . . , GT 〉 and denote the

set of all nodes by V = V1 ∪ . . . ∪ VT , then

Gt =
⋃
v∈V

Gv
t .
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Figure 5.2: A global dynamic encounter graph D and its intrinsic dynamic encounter
graphs. Dv denotes the intrinsic dynamic encounter graph for node v.

Knowledge of the (global) dynamic encounter graph is effectively distributed among

the nodes in the network.

We distinguish PECs that are maximal in the global dynamic encounter graph by re-

ferring to them as globally maximal PECs. An intrinsic PEC is a PEC (be it maximal

or submaximal) that exists in an intrinsic dynamic encounter graph.

Definition 5.14
Local-knowledge periodic encounter community detection is the problem of

identifying all globally maximal periodic encounter communities from local know-

ledge. This is a special case of the periodic encounter community detection prob-

lem (Definition 5.11) where no global view of the dynamic encounter graph exists.

In particular, the following restrictions apply:

• Local knowledge: knowledge of encounters is expressed only as intrinsic

dynamic encounter graphs, all of which are distributed among the corres-

ponding nodes in the network;

• Local exchange: information may be exchanged between a pair of nodes

only when they encounter each other.

The decentralised detection scenario corresponds to the local-knowledge problem.
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5.1.3 Decomposition of PECs

Here we show that all globally maximal PECs decompose into intrinsic PECs. This is

an important property as it means that if individual nodes extract their intrinsic PECs

from their intrinsic dynamic encounter graphs, they can combine these intrinsic PECs

with those of other nodes to find globally maximal PECs. Therefore, all globally max-

imal PECs can be detected in the local-knowledge problem.

Definition 5.15
A set of encounter communities Γ = {C1, C2, . . . , Cm} is a community cover of

encounter community C if ⋃
C′∈Γ

C ′ = C .

Consider the PEC 〈C, Sλ〉 in dynamic encounter graph D and a community cover Γ

of C. From the definition of a PEC (Definition 5.6) and the subgraph property of a

subcommunity, it follows that any encounter community C ′ in Γ exists for periodic

support set Sλ. Although Sλ may not be maximum for the subcommunity C ′, there

must exist a maximum periodic support set Sλ′ for C ′ that contains Sλ, and therefore

there exists a PEC 〈C ′, Sλ′〉.

Definition 5.16
The intrinsic cover of encounter community C = (V,E) is the set of communities

{Cv | v ∈ V }, whereCv = (Vv, Ev) is the subcommunity ofC induced by selecting

only the edges Ev = {e | e ∈ E ∧ v ∈ e} and their incident vertices.

A subcommunity C ′ in the intrinsic cover of C corresponds to a particular node’s in-

trinsic (i.e., local) view of C. We note that the intrinsic cover of C is also a community

cover of C.

Consider a PEC P = 〈C, Sλ〉 and a subcommunity C ′ in the intrinsic cover of C.

It follows that there must be an intrinsic PEC that subsumes 〈C ′, Sλ〉. Therefore, P
decomposes into multiple intrinsic PECs. The same applies if P is a globally maximal

PEC, and so any globally maximal PEC can be reconstructed from a local-knowledge

representation.
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5.1.4 Relation to periodic subgraph mining

The periodic subgraph mining problem introduced by Lahiri and Berger-Wolf in [LB09]

is related to the PEC detection problem that we present in this chapter. Rather than ex-

tracting periodic encounter communities as we do in our work, the periodic subgraph

mining problem seeks to extract periodic subgraph embeddings (PSEs). A PSE in a

dynamic encounter graph D is defined as a pair 〈F, Sλ〉 where F is a subgraph that

exists in D for the periodic support set Sλ. Subsumption and maximality rules apply

to PSEs as they do to PECs. The key distinction between a PEC and a PSE is the

encounter community property of PECs. In particular, the definition of a PSE is more

general as it allows subgraphs that are disconnected and subgraphs consisting of only

one node.

If we assume global knowledge of the dynamic encounter graph, the PEC detection

problem becomes a special case of the PSE mining problem. By extracting connec-

ted subgraphs consisting of at least two nodes from the graphs of maximal PSEs in a

dynamic encounter graph, we obtain the maximal PECs. Lahiri and Berger-Wolf also

show that the time and space complexity of the problem is polynomial in the size of the

input dynamic encounter graph. The PSE-Miner algorithm presented as a solution to

the PSE mining problem requires global knowledge, making it unsuitable for directly

extracting all maximal PECs in the local-knowledge PEC detection problem. For the

local-knowledge problem we instead follow a local mining and local sharing approach.

5.2 Decentralised PEC detection algorithm

In this section we describe our decentralised PEC detection algorithm. From the de-

composition in Section 5.1.3 we know that global maximality of PECs can be reached

from a local-knowledge representation. Therefore, the aim of the detection algorithm

is to build globally maximal PECs from the local-knowledge distributed across all the

nodes in the system.
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Figure 5.3: An overview of the stages of the PEC detection algorithm from the perspective
of a node.

5.2.1 Algorithm overview and parameters

Figure 5.3 provides an overview of the stages that a node goes through during the oper-

ation of the detection algorithm. Here we provide a brief introduction to the detection

algorithm. The individual stages are described in detail later in this section. Note that

the task of a node finding its local periodic communities and the periods with which

these communities repeat (i.e., the task of extracting local PECs) is carried out in Stage

2. These local PECs are subsequently combined with the local PECs found by other

nodes in Stage 3.

Three parameters are required during the detection algorithm. In Stage 1 the granu-

larity Q is used. In Stage 2 pmax (the maximum PEC period) and nmin (the minimum

number of periodic occurrences) are used.

Before the detection algorithm is initiated, all nodes record the times of their encoun-

ters as encounter chronologies (this corresponds to the initial state in Figure 5.3). On

initiation, the first stage of the detection algorithm is for each node to build its in-

trinsic dynamic encounter graph (Definition 5.13) from its encounter chronology. It

is this stage where the granularity parameter (denoted by Q) is applied. As described

in Section 5.1.1, the granularity Q is the duration of each timestep in the node’s in-

trinsic dynamic encounter graph. The choice of granularity Q depends on the domain

and application. Choosing a fine granularity results in more timesteps in the intrinsic

dynamic encounter graph and so increases the computational overhead of the mining

algorithm (which occurs in Stage 2). Fine granularities also have the disadvantage that

the effect of small-scale randomness in the times of encounters is greater. However, in

some cases we may still wish to use a fine granularity for the purpose of identifying

repeating behaviour with a fine degree of temporal resolution (e.g., identifying regular
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encounters to within a specific hour of the day).

Details of the initiation of the PEC detection algorithm (including the building of the

intrinsic dynamic encounter graph in Stage 1) and its data structures are given in Sec-

tion 5.2.2. Note that subsequent stages of the detection algorithm only consider time

in terms of timesteps in the intrinsic dynamic encounter graph. Resulting PECs are

described in terms of timestep indexes rather than real-time units. (For example, the

period of a PEC 〈C, Sλ〉, λ = (i, p, n) is p timesteps.) It is trivial to convert from

timesteps back to real-time units.

The node’s intrinsic dynamic encounter graph built in Stage 1 is used as input to the

local mining stage (Stage 2), which is detailed in Section 5.2.3. In brief, during the

local mining stage individual nodes mine their intrinsic dynamic encounter graphs to

obtain their intrinsic PECs. Each node implements the PSE-Miner algorithm (detailed

in [LB09]) which extracts all (maximal intrinsic) PECs found in the node’s intrinsic

dynamic encounter graph. The correctness of the PSE-Miner is shown in [LB09] and

thus we know that all PECs present in the node’s intrinsic dynamic encounter graph

will be identified (the criteria that define a PEC are given in Definition 5.6). All the

attributes that constitute each PEC are automatically found by the PSE-Miner. For

a PEC P = 〈C, Sλ〉, λ = (i, p, n) these attributes are the community C, the start

timestep i, the period p, and the number of periodic occurrences n. Importantly, it is

the PSE-Miner that identifies the one or more periods that a community repeats with

in the node’s intrinsic dynamic encounter graph, resulting in one or more PECs for the

community. The two parameters, pmax ≥ 1 and nmin ≥ 2, specified in this stage con-

trol the maximum period and minimum number of periodic occurrences, respectively.

Formally, only PECs that meet the conditions p ≤ pmax and n ≥ nmin are identified.

Although PECs with larger periods may exist in the intrinsic dynamic encounter graph,

these are ignored.

The intrinsic dynamic encounter graph is only a local subset of the global dynamic

encounter graph, and so the PECs resulting from the local mining stage (Stage 2) are

not necessarily globally maximal. It is through knowledge exchange during the op-

portunistic construction stage (Stage 3) (detailed in Section 5.2.4) that nodes learn the

globally maximal PECs they belong to. Encounters between pairs of nodes offer the



5.2 Decentralised PEC detection algorithm 95

opportunity for those nodes to share and expand the PECs they have discovered so far.

The process of combining PECs results in PECs that have a larger community, and

possibly a new period derived from the source PECs. Note that nodes will only seek to

learn the PECs they are a member of.

5.2.2 Algorithm setup and initiation

We denote by V the set of all nodes in dynamic encounter graph D. Each node v ∈ V
maintains its local history of encounters with other nodes. When the detection al-

gorithm is initiated, each node v ∈ V first builds its intrinsic dynamic encounter graph

Dv = 〈Gv
1, . . . , G

v
T 〉 from its encounter chronology. Building Dv is done by segment-

ing time into T timesteps, where each timestep represents a duration of time Q. Given

some arbitrary start time c, the encounter graph Gv
t at timestep t represents v’s encoun-

ters in the time interval
[
c + (t − 1)Q, c + tQ

)
. The granularity Q is only used for

the purpose of building the intrinsic dynamic encounter graph and is not used at any

future point in the algorithm.

Each node also maintains a knowledge base (Definition 5.17), which is a data structure

that holds the PECs discovered by a node so far.

Definition 5.17
The knowledge base for a node v, denoted by Kv, is a set that consists of the PECs

known by v.

Knowledge bases are updated over time as locally stored PECs are combined with

PECs received from other nodes. During each update, the algorithm ensures that a

knowledge base Kv meets the following conditions:

1. Relevance to v: ∀ 〈C, Sλ〉 ∈ Kv node v is a member of encounter community

C.

2. Maximality among Kv: ∀P1 6= P2 ∈ Kv, P1 does not subsume P2.

By Condition 1, a node only stores PECs that are relevant to it, and Condition 2 ensures

that no redundant PECs are stored.

Once the intrinsic dynamic encounter graph Dv for a node v is formed and the know-
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ledge base Kv is initialised, v then mines the intrinsic PECs from Dv and places them

in Kv. This mining algorithm is detailed in Section 5.2.3. From timestep T + 1 on-

wards, nodes share and update PEC information whenever they encounter each other,

as detailed in Section 5.2.4.

The point in time to initiate mining depends on domain and application. Most applica-

tions would benefit from obtaining PEC information early; however, mining too early

may result in there being too few timesteps for periodic patterns to be present.

5.2.3 Local mining: extraction of intrinsic PECs

In the decentralised PEC detection algorithm each node v executes the PSE-Miner

algorithm [LB09] on its intrinsic dynamic encounter graph Dv to extract its (locally

maximal) intrinsic PECs. As mentioned in Section 5.1.4, the PSE-Miner algorithm

is capable of extracting all maximal PECs in a dynamic encounter graph. Therefore,

if a node implements PSE-Miner, it can extract its maximal intrinsic PECs from its

intrinsic dynamic encounter graph. Note that period detection is part of the mining

process itself, and therefore periods do not need to be specified beforehand.

For the purpose of the PSE-Miner algorithm a dynamic encounter graph is represented

as a sequence of sets of integers. To establish an invertible mapping between graphs

and sets, all nodes and all edges in a dynamic encounter graph are each mapped to a

unique integer label. The set representation for a particular graph Gt = (Vt, Et) is the

set At of size |Vt| + |Et| where the integer label of each element in Vt ∪ Et appears

in At. This set representation allows fundamental operations such as graph hashing

and maximal common subgraph finding to be carried out efficiently by the PSE-Miner

[LB09].

The PSE-Miner is a single-pass algorithm. During execution the miner maintains two

core data structures: a pattern tree and a subgraph hash map. As soon as a PSE

ceases to be periodic it is flushed to the output stream. Those PSEs that do not have a

sufficient number of periodic occurrences (nmin) are filtered out. A full description of

the operation of the PSE-Miner algorithm, including how subgraphs and their periods

are automatically identified, is provided in [LB09].
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After a node v executes PSE-Miner on its intrinsic dynamic encounter graph, the node

discards any PSEs that consist only of v (these are valid PSEs but not valid PECs).

All other PSEs extracted by PSE-Miner are (locally maximal) intrinsic PECs and are

therefore added to v’s knowledge base.

5.2.4 Opportunistic construction

Opportunistic construction is the process whereby pairs of nodes share and combine

their locally stored PECs when in communication range. Through repeated oppor-

tunistic construction, nodes obtain more information on the structure of the globally

maximal PECs they belong to. As mentioned in Section 5.1.3, any non-intrinsic PEC

can be obtained from its intrinsic PECs. Thus, if a construction strategy is correct and

there are sufficient exchange opportunities, nodes will eventually obtain their globally

maximal PECs.

When a node v encounters a node u, it receives knowledge baseKu. It is the task of v to

update its own knowledge base Kv by pairwise combining the PECs in Kv with those

in Ku. This update mechanism is described in Section 5.2.4.2. As part of knowledge

base updating, node v must check if a pair of PECs are compatible to be combined to

derive a new PEC. Compatibility and combination are explained in Section 5.2.4.1.

Note that although the local mining step returns the intrinsic PECs for a node, over

time these may be subsumed by PECs generated during opportunistic construction. An

intrinsic PEC subsumed by another PEC is removed since the subsuming PEC contains

all the information conveyed by the intrinsic PEC. This reduces the size of knowledge

bases without affecting the ability of the algorithm to build globally maximal PECs.

5.2.4.1 PEC compatibility and combination

Upon node v receiving a PEC P from another node, v must check which PECs in its

knowledge base Kv can be combined with P to derive new PECs. A derived PEC must

be connected, exist in its periodic support set, and be relevant to v.

Definition 5.18
Two PECs 〈C1, Sλ1〉 and 〈C2, Sλ2〉 with encounter communities C1 = (V1, E1) and
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C2 = (V2, E2) are compatible for node v if all of the following hold:

1. Relevance to v: v ∈ V1 and v ∈ V2;

2. Structural overlap: E1 ∩ E2 6= ∅;
3. Temporal containment: either Sλ1 = Sλ2 , Sλ1 ⊂ Sλ2 , or Sλ2 ⊂ Sλ1 .

The method of combination for two compatible PECs 〈C1, Sλ1〉 and 〈C2, Sλ2〉 depends

on the direction of periodic support set containment. The case Sλ1 = Sλ2 is a simple

case because both C1 and C2 exist for the same periodic support set. In the case

Sλ1 ⊂ Sλ2 , we know that C2 exists for Sλ1 , but C1 does not exist for all timesteps

in Sλ2 . Therefore, when combining two PECs where Sλ1 ⊂ Sλ2 , the contained peri-

odic support set (i.e., Sλ1) is chosen to ensure that the resulting community exists in its

support.

Formally, two compatible PECs 〈C1, Sλ1〉 and 〈C2, Sλ2〉 are combined to derive PEC

〈C ′, Sλ′〉 as follows:

• if Sλ1 = Sλ2 then C ′ = C1 ∪ C2 and Sλ′ = Sλ1 = Sλ2;

• if Sλ1 ⊂ Sλ2 then C ′ = C1 ∪ C2 and Sλ′ = Sλ1;

• if Sλ2 ⊂ Sλ1 then C ′ = C1 ∪ C2 and Sλ′ = Sλ2 .

5.2.4.2 Knowledge base updating

During an encounter between two nodes v and u their knowledge bases Kv and Ku

are exchanged. Although we assume for simplicity that whole knowledge bases are

exchanged, in practice a sender node can identify PECs in its knowledge base that will

not be relevant to the recipient node. Withholding these PECs reduces communication

overhead without affecting PEC construction. Examples include withholding a PEC

that the recipient node is not a member of and withholding a PEC that has already been

sent to the same node during a previous encounter. Even without filtering, the size

of a knowledge base is typically small, which minimises the storage and bandwidth

requirements of the opportunistic construction stage. PECs themselves have a compact

representation, consisting of a graph and three integers to describe the periodic support

set, and the algorithm only maintains locally maximal PECs, therefore avoiding storage
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and transfer of redundant data.

Algorithm 5.1: KB-Update
Input: Node v whose knowledge base Kv is to be updated
Input: External knowledge base Ku

Create empty list L to hold candidate PECs
Generate candidates:
foreach Pa ∈ Kv and Pb ∈ Ku do

if Pa and Pb are compatible for v and Pb 6⊆ Pa then
Combine Pa and Pb to generate candidate PEC Pc
Add Pc to L

end
end
Prune candidates list:
foreach Pc ∈ L and Pa ∈ Kv do

if Pc ⊆ Pa then
Remove Pc from L

end
end
Prune knowledge base:
foreach Pa ∈ Kv and Pc ∈ L do

if Pa ⊆ Pc then
Remove Pa from Kv

end
end
Insert candidates:
Add all PECs in L to Kv

For a node v receiving knowledge base Ku from node u, node v updates its own know-

ledge base Kv according to Algorithm 5.1. Candidate pruning is carried out to ensure

that redundant PECs are not added to the knowledge base Kv. A candidate that passes

the pruning step is one that is not subsumed by any PEC already in Kv and should

therefore be added to Kv. Such candidates may subsume a number of PECs already in

the knowledge base. To ensure maximality among PECs in Kv, knowledge base prun-

ing is carried out to remove any pre-existing PECs made redundant by the addition of

the candidate.



100 5.3 Analysis of PEC construction

5.3 Analysis of PEC construction

The time required for a global PEC to be discovered by all its constituent nodes is

of primary interest for the analysis of PEC construction. It is the encounters between

individual nodes that enable the information of a PEC to be shared throughout the

network, and thus the patterns of these encounters have a substantial impact on the

time required for a node to discover the globally maximal PECs it belongs to.

To study the spread of information in the construction of global PECs we define the

equivalent scenario of token broadcast. Informally, token broadcast is where each

node of a PEC being studied attempts to flood a unique token to all other nodes in the

PEC. The route taken by a token from node u to reach node v represents the spread

of u’s local PEC information to v during the opportunistic construction phase of the

decentralised PEC detection algorithm. The event of the token sent from u reaching v

corresponds to the event of v receiving a knowledge base including some of u’s PECs

for the first time. The token can also represent a general packet of information, and

thus the token broadcast scenario provides insight into the flow of information within

a PEC.

We formally define the token broadcast scenario as follows. Consider the (global)

dynamic encounter graph D = 〈G1, G2, . . . , GT 〉 and an arbitrary PEC 〈C, Sλ〉 in D
where λ = (i, p, n) and C = (V,E). Each node v in C stores a token set Tv of received

copies of tokens. We denote node v’s token set after t timesteps by Tv(t). Initially, each

token set Tv only consists of the single token τv. In other words, ∀ v ∈ V, Tv(0) =

{τv}. Token sharing then progresses for each timestep i, i + 1, i + 2, ..., i + (n − 1)p.

To carry out token sharing at timestep t, all of the encounters in the time interval for

t are applied in the order they occurred. When two nodes encounter each other, each

copies all of its tokens to the other. We say that full coverage has been reached in

timestep t if all nodes in V have received all tokens; that is, every node v in V has

Tv(t) = {τv | v ∈ V }.

To characterise the broadcast of a specific PEC, only those encounters that support

the PEC are used as token sharing opportunities. More specifically, only encounters

corresponding to edges in E during timesteps in Sλ are used as token sharing oppor-
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tunities.

5.3.1 Token broadcast metrics

We define the following metrics for evaluating broadcast within a PEC.

First, to quantify the extent of token spread over time we introduce metrics for token

coverage. The coverage fraction fc(v, t) for a node v in encounter community graph

C = (V,E) at the end of timestep t is given by

fc(v, t) =
|Tv(t)| − 1

|V | − 1
.

This measures the relative number of tokens v has obtained by the end of timestep t,

excepting its own token τv. For a PEC P = 〈C, Sλ〉 where λ = (i, p, n), we quantify

the PEC coverage f̄c(P , t) as the average coverage of nodes in C at timestep t,

f̄c(P , t) =
1

|V |
∑
v∈V

fc(v, t) .

It is more convenient to talk in terms of the number of periodic occurrences of a PEC

rather than the number of timesteps. The timestep for the kth periodic occurrence of

P is given by Sλ(k) and so we refer to f̄c(P , Sλ(k)) for the coverage fraction after k

periodic occurrences.

The broadcast time, denoted Λ(P), measures the number of periodic occurrences of

a PEC P that were required for P to reach full coverage. Λ(P) is equal to the smallest

positive integer k such that f̄c(P , Sλ(k)) = 1 . In the case that there were insufficient

encounters to reach full coverage, Λ(P) =∞ .

5.3.2 Worst-case token broadcast time

The worst-case token broadcast time, denoted by Λmax(P), is the theoretical max-

imum number of periodic occurrences that an arbitrary PEC P requires to reach full

coverage, under the assumption that P continues recurring indefinitely. Knowledge

of the existence of a PEC P = 〈C, Sλ〉, where C = (V,E) and λ = (i, p, n), in dy-

namic encounter graph D = 〈G1, . . . , GT 〉 implies some minimum conditions on the

occurrences of encounters in D; in particular, for each edge {v, u} in E, there must be
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at least one encounter between nodes v and u in each timestep Sλ(1), Sλ(2), ..., Sλ(n).

The worst-case analysis of the broadcast time for P considers the largest possible num-

ber of periodic occurrences that P would require to reach full coverage.

We note that if a PEC repeats indefinitely, the worst-case broadcast time is always

finite. Since the encounters for each edge inE must occur at least once in each timestep

in Sλ, if a token τu has not reached every node at the end of timestep Sλ(k) then it will

spread to at least one additional node in timestep Sλ(k + 1).

Definition 5.19
The broadcast front, denoted by Bv(t), of token τv at timestep t is the set of nodes

that received τv in timestep t but did not have it in timestep t− 1.

A worst case for the travel of token τu from node u to node v is presented as follows.

Consider the case where, in timestep Sλ(1), the encounters corresponding to edges

incident to u occur after all other encounters in that timestep. The effect of this is

that τu moves one node closer to v along the shortest paths between u and v, and the

broadcast front Bu(Sλ(1)) consists only of u’s neighbours. If in timestep Sλ(2) the

encounters corresponding to edges incident to the nodes in Bu(Sλ(1)) occur after all

other encounters, τu will again only move one node closer to v. If the encounters

corresponding to edges incident to nodes in Bu(Sλ(k)) are always the last to occur in

each timestep Sλ(k + 1), k = 1, . . . , |Sλ|, then the number of periodic occurrences of

C required for τu to reach v from u is equal to the shortest path distance between v and

u.

A worst-case time for a PEC to reach full coverage results when v and u are peripheral

nodes, requiring a number of periodic occurrences equal to the diameter of C, denoted

by d(C). Thus, for a PEC P = 〈C, Sλ〉 we have Λmax(P) = d(C).

5.4 Experiments and results

In this section we evaluate decentralised PEC detection through the study of token

broadcast in PECs found in a real-world encounter network. In particular, we use

the REALITY encounter trace. The long duration (nine months), frequent sampling (5
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minutes), and direct (rather than inferred) nature of this dataset make it the best op-

tion for detecting both short-duration and long-duration PECs. However, we note that

Bluetooth sampling is unreliable, resulting in some missed encounters. For PEC de-

tection, a missed encounter may result in the true PEC being temporally or structurally

partitioned.

5.4.1 Simulating token broadcast

Simulating token broadcast on the encounter trace follows from the framework estab-

lished in Section 5.3. When extracting the dynamic encounter graphD = 〈G1, . . . , GT 〉
with granularityQ from the encounter trace, the orderings of actual encounters (includ-

ing any repeat encounters) within each timestep 1, 2, . . . , T are retained for the purpose

of simulating token exchange. To simulate token broadcast for a particular globally

maximal PEC 〈C, Sλ〉 with C = (V,E) and λ = (i, p, n), the trace is filtered so that

only the encounters corresponding to edges in E and occurring during timesteps in Sλ

are retained. Unique tokens are placed on the nodes and then broadcast is simulated

for each timestep i, i+ 1, i+ 2, . . . , i+ (n− 1)p. In a timestep t, each encounter from

the underlying encounter trace is used as a token sharing opportunity in the order it

appears during t.

5.4.2 Experimental setup

We set the maximum period parameter (pmax) to be 30 days and the minimum periodic

occurrences1 parameter (nmin) to be four. Other PSE-Miner parameters were left as the

defaults specified in [LB09]; i.e., the minimum period was set to one and no timestep

smoothing was carried out.

Experiments were run with granularities (denoted by Q) of 4, 6, 12, and 24 hours.

Choosing a fine granularity allows the identification of periodic behaviour with greater

temporal precision, but at the cost of an increase in computational overhead. Fur-

thermore, at very fine granularities the effect of small-scale randomness in human en-

1In [LB09] the minimum number of periodic occurrences is denoted by σ rather than nmin.
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counter times becomes great, typically resulting in fewer PECs. Indeed, in experiments

with granularity Q = 1 hour we found that very few PECs had periods longer than one

day. The majority of PECs at this granularity were short-lived communities that re-

peated in consecutive timesteps for part of a day.

We note that the combination of noise in the trace dataset, the uncertain nature of hu-

man behaviour, and the crispness of our PEC definition means that PECs can become

temporally fragmented. A break in encounter regularity in an encounter trace, be it due

to inadequate sampling or true individual behaviour, results in a PEC either becoming

temporally partitioned, structurally smaller, or not existing at all. Two or more PECs

having the same encounter community, period, and phase, but spanning different dura-

tions in the trace, are assumed to be the same PEC and such duplicates were discarded

from the experiments.

Finally, PECs whose communities had a diameter equal to one were not included in

the analysis as these are a trivial case for PEC construction.

5.4.3 Results

Information on PECs obtained in the dataset is summarised in Table 5.1. The table

shows that average diameter and average periodic support set size increase at coarser

granularities. This is due to encounters being aggregated into wider snapshots, result-

ing in some encounter communities becoming merged. We note that in all experiments

every PEC reached full coverage within the duration of time it existed.

Figure 5.4 shows the period and diameter of each PEC detected for granularities of 6

hours and 24 hours. We can clearly observe periodicities at one day, seven days, and 14

days, demonstrating the multiscale characteristic of human encounter behaviour. The

figure also shows that many of the PECs occur at periods of one day and seven days.

We suggest that this occurs because many of the PECs are students visiting the same

campus on each weekday, resulting in one day PECs between Monday and Friday.

Although these PECs end at the weekend, students following this weekday behaviour

also exist in PECs at a period of seven days.

In Figure 5.5 we plotted the cumulative distribution of the normalised broadcast times
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Granularity (Q)
4hr 6hr 12hr 24hr

Number of maximal PECs 509 561 897 900
Average d(C) 2.17 2.21 2.34 2.42
Average |Sλ| 4.20 4.24 4.34 4.37
Average Λ(P) 1.32 1.33 1.51 1.54
Average Λ(P)/Λmax(P) 0.298 0.306 0.449 0.465

Table 5.1: Summary of PECs in the REALITY dataset. Four experiments were run,
each with a different granularity (denoted by Q). d(C) denotes community diameter,
|Sλ| denotes periodic support set size (i.e., total number of periodic occurrences of a
PEC), Λ(P) denotes broadcast time (measured in number of periodic occurrences), and
Λ(P)/Λmax(P) gives the normalised broadcast time. PECs with d(C) = 1 are not in-
cluded in the experiments.
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Figure 5.4: Joint frequency distribution of diameters and periods for PECs in the REAL-
ITY dataset. Left: Q = 6 hrs. Right: Q = 24 hrs.
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Figure 5.5: Cumulative distribution of normalised broadcast times for PECs in the REAL-
ITY dataset. The normalised broadcast time for a PEC P is given by Λ(P)/Λmax(P).

of PECs. The normalised broadcast time of a PEC P is its actual broadcast time Λ(P),

normalised by its potential worst-case time Λmax(P). This quantity indicates how close

a PEC’s actual broadcast time is to its worst case. For granularities of 4 hours and 6

hours, 68% of PECs reached full coverage in less than 0.22 of their potential worst-case

times, and 78% of PECs reached full coverage in less than 0.55 of their potential worst-

case broadcast times. For the same granularities, 21% of the PECs required worst-case

broadcast time.

Figure 5.5 also shows that coarser granularities result in PECs with broadcast times

closer to their worst cases. This is reflected in the plot of community coverage over

time (Figure 5.6). The distribution of points shows that after the first periodic oc-

currence, coverage was typically higher for PECs with granularity Q = 6 than for

PECs with granularity Q = 24. There were a number of PECs with Q = 24 hours

that required a 4th occurrence to reach full coverage. It appears that, although coarser

granularities result in more encounters per timestep, the broadcast time still increases.

We suggest that this happens because coarser granularities result in many PECs having

large diameter (Figure 5.7). In PECs with a large diameter, central nodes can have

a greater negative effect on broadcast time by limiting the rate at which information

spreads to the periphery of the community.

To further study the impact of diameter on broadcast time, we plotted the broadcast
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Figure 5.6: Coverage percentage after each periodic occurrence for PECs in the REALITY
dataset. Points show the coverage f̄c(P, Sλ(x)) of each PEC P after each of its x =
1, 2, . . . ,Λ(P) periodic occurrences. Horizontal lines show the average coverages.

times for PECs grouped by diameter (Figure 5.8). We can see that the broadcast time

increases for PECs with larger diameter. However, it is interesting that as diameter

increases, PECs required worst-case broadcast time less frequently. For example, al-

though PECs with diameter six have a potential worst-case broadcast time of six, none

required more than four occurrences. Only at smaller diameters do broadcast times

begin to approach worst-case times; for example, 8% of PECs with diameter three

required worst-case time.

The implications of these results for decentralised PEC detection are that, for most

PECs in the dataset, detection of maximal PECs by the nodes in a community occurs

rapidly. On average, the coverage percentage reaches 92% after the first occurrence

of the community. Furthermore, the patterns of encounters within the PECs are such

that, for finer granularities, the majority of the PECs were detected within 0.22 of their

potential worst-case time.

5.5 Discussion and related work

There is now an established literature for identifying sub-structures within static net-

work topologies, both on a centralised and decentralised basis. However, existing static
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Figure 5.7: Diameters of PECs in the REALITY dataset at different granularities. PECs
with diameter equal to one were not included in the experiments.

0 1 2 3 4 5
k

0

20

40

60

80

100

%
 o

f P
E

C
s 

w
he

re
 Λ

(P
) =

 k

diameter = 2
(647 PECs)

0 1 2 3 4 5
k

diameter = 3
(163 PECs)

0 1 2 3 4 5
k

diameter = 4
(65 PECs)

0 1 2 3 4 5
k

diameter = 5
(17 PECs)

0 1 2 3 4 5
k

diameter = 6
(5 PECs)

Figure 5.8: Comparison of PEC broadcast times (measured in number of periodic occur-
rences, k) by diameter. An individual plot shows the frequency distribution of broadcast
times for PECs with the same diameter. Q = 24hrs.



5.5 Discussion and related work 109

methods (i.e., those in the category AGGREGATE) fail to capture periodicity in the en-

counters between individuals. In particular, we refer to the traditional community de-

tection methods in the field of network science. Community detection seeks to identify

highly clustered components in large real-world networks. Many community detection

methods have been proposed, but most are intended for offline analysis of networks

(see [For10] for a comprehensive survey of community detection methods). Further-

more, most methods analyse static networks; i.e., where interactions have been aggreg-

ated into a single graph regardless of their time and order.

Much of the existing network science literature has focused on communities that are

defined only by node membership. This contrasts with our concept of a PEC, whose

community structure is defined by both nodes and edges, making it similar to the static

link communities studied by Ahn et al. in [ABL10]. This allows us to capture the

configuration of the encounter relationships in a community as well as the individuals

that belong to it. This also permits a node to belong to multiple communities, which

can occur when the node’s communities have different edge structure (as with link

communities) or represent different periodic patterns.

The most relevant community detection algorithms to our work are those of Hui et al.

[HYCC07]. These algorithms are notable as they offer a decentralised approach for

nodes to detect the static encounter communities they belong to over time. Although

this moves the method into the RECENT category in the classification scheme presented

in Chapter 2, the algorithm does not consider periodic trend in the encounter patterns.

Other recent research into the dynamics of community structure, such as that of Palla

et al. [PBV07], has analysed the evolution of networks over time. So far there has been

little work in this area that considers periodic communities.

Early analyses of human encounters focused on time-invariant characteristics, such as

inter-encounter time and encounter duration [CHC+07, HC08]. More recently, atten-

tion has been given to the analysis of temporal patterns in human encounters, such as

the work discussed in Chapter 2. The work of Tang et al. in [TSM+10] and [TMML09]

is particularly relevant as it uses a dynamic graph representation to retain temporal in-

formation about encounters. The authors analyse the temporal dynamics of information

diffusion in these graphs, but without specifically considering communities or period-
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icity. Lahiri and Berger-Wolf [LB09] use a similar graph construction to formulate

the problem of identifying subgraphs that appear periodically in real-world networks.

We use the framework introduced by Lahiri and Berger-Wolf to define the periodic en-

counter community detection problem. However, the PSE-Miner algorithm proposed

by the authors is intended for use in offline analysis and assumes global knowledge of

the network, and is therefore not suitable in our decentralised setting. In addition, the

formulation presented by the authors does not distinguish between communities and

subgraphs.

A substantial amount of related work has been motivated by the study of opportunistic

networks and, more specifically, human encounter networks. Such networks attempt

to use encounters between wireless enabled devices to store, carry, and forward con-

tent for enabling a wide range of applications. Consequently, the temporal patterns of

encounters allow content-sharing protocols in opportunistic networks to make better-

informed forwarding decisions. Protocols such as those in [BCP08a, DFL01, LDS04]

build an understanding of encounter familiarity between nodes. However, these proto-

cols do not attempt to capture any regularity that may be present in encounter patterns.

Some newer protocols, such as those in [MM09, MMC08], include statistical models

that incorporate periodicity. These models require parameters regarding the periodicit-

ies of encounters to be known a priori. For example, in [MMC08] a single period must

be specified, which precludes detection of repeating encounters at other periods.

The aforementioned protocols analyse only pairwise patterns. Broader relationships

between nodes (e.g., acquaintances of acquaintances) are not considered. The Habit

[MMC09] protocol attempts to merge both multi-node encounter behaviour and peri-

odicity. Habit begins with node-centric pairwise analysis of regularity patterns between

familiar strangers and, subsequently, nodes exchange their regularity patterns to build

up a regularity graph. The model, however, requires a priori domain-specific period

and memory parameters.
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5.6 Conclusions

In this chapter we defined the concept of a periodic encounter community (PEC) and

the problem of individuals self-detecting PECs in a decentralised network. Unlike

our work measuring regularity in Chapter 4, our objective in this chapter has been to

identify periodic encounters embedded within a mixture of incidental and routine en-

counters, without any restriction on the periods with which patterns repeat. To solve

this problem we proposed a novel decentralised algorithm which is capable of automat-

ically identifying community periodicities and is able to extract all globally maximal

PECs, under the condition that there are sufficient exchange opportunities between

nodes. Our analysis considered the diffusion of information within PECs, providing

insight into the time required for PECs to be constructed.

The time required for individuals in a PEC to discover the whole community is of par-

ticular interest. This reveals the content-sharing dynamics of PECs in human encounter

networks and is also a practical concern for protocols implementing PEC detection.

Analytical study of diffusion in PECs shows that worst-case broadcast time for a PEC

is given by its community diameter. The experimental results from the REALITY data-

set show that PECs with large community diameter require a longer time to reach full

coverage, further demonstrating the influence of community diameter on information

diffusion. Our results also show that, in the dataset we studied, the time required for a

PEC to reach full coverage was typically much shorter than the PEC’s worst-case time.

Aside from insights concerning human periodic behaviour, this chapter also introduces

the abstract notion of a community of nodes sharing the same temporal structure. In

this chapter the temporal structure is a periodic support set; however, alternative tem-

poral information may be used. In addition, we have introduced a temporal component

to the idea of distributed nodes learning about the broader communities they belong

to (presented by Hui et al. in [HYCC07]). After extracting their local (i.e., intrinsic)

communities nodes discover their broader communities by incrementally extending

their local perspective when they encounter other nodes, while at the same time avoid-

ing the storage of redundant information. To use an alternative temporal structure in

the same framework we simply need to define appropriate compatibility and construc-
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tion rules, and develop an appropriate local mining algorithm that will extract locally

maximal communities sharing this alternative definition of temporal structure. The

extensibility of the framework introduced here will be leveraged in the next chapter

where we use an alternative temporal structure which overcomes the limitations of our

discrete-time representation of periodic encounter communities.
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Chapter 6

Regularity in human encounter

patterns

Introduction

In this chapter we introduce and explore an alternative concept of a community defined

by its shared encounter patterns. Unlike the discrete-time representation used for the

definition of a periodic encounter community in Chapter 5, we draw on the frame-

work from Chapter 4 to define the concept of a regular encounter community (REC),

which models periodicity in terms of IEI (inter-event interval) patterns. The strict

discrete-time representation used for PEC detection resulted in some loss of temporal

resolution. This occurs due to the binning of encounters into timesteps of size Q. The

approach we introduce in this chapter overcomes the loss of temporal resolution by

instead dealing with the underlying time-resolved events. Furthermore, this alternative

approach is more tolerant to minor variations in event timing.

Informally, a REC is a community of individuals that all share the same time-of-week

meeting pattern. As part of our definition of a REC, this chapter also introduces a

novel IEI analysis method that allows nodes to distinguish between regular encounters

and irregular encounters. This method allows us to determine whether different pairs of

nodes share similar regular encounters. The concepts of periodic encounter community

and regular encounter community are similar in that their respective definitions bring

together a community of nodes and temporal information describing how those nodes

meet over time. In the case of a PEC the temporal information is a periodic support set,

whereas for a REC we use an alternative descriptor of periodic encounter behaviour,
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called a regularity mask.

Although this chapter focuses on time-of-week encounter patterns, we note that our

approach is not restricted specifically to a seven-day periodicity. Our motivation for

selecting weekly patterns is our finding from Chapter 5 that the strongest periods iden-

tified in PEC detection were one, seven, and 14 days. Selecting a seven-day period

for REC detection allows us also to incidentally detect any one-day periods that repeat

long enough to appear as weekly patterns.

The REC detection algorithm presented in this chapter builds on the decentralised al-

gorithm introduced earlier in the thesis. To adapt the algorithm to detect RECs we

develop a new local miner and define REC compatibility and combination rules. Aside

from these differences, the process of opportunistic sharing and construction is un-

changed. As with Chapter 5, we explore RECs in empirical datasets by evaluating

token broadcast performance. In particular, we explore RECs in the REALITY and

DARTMOUTH encounter datasets. Our findings provide further insights into the role of

periodic behaviour in human encounter networks and compares the characteristics of

PECs and RECs.

Chapter outline

In Section 6.1 a method for distinguishing between regular and irregular encounters is

presented. This method is fundamental to the definition of the REC detection prob-

lem, which we present formally in Section 6.2. We then adapt the decentralised PEC

detection algorithm to detect RECs in Section 6.3. In Section 6.4 we explore the char-

acter and prevalence of RECs in real-world datasets and evaluate REC token broadcast

dynamics. The chapter is concluded in Section 6.5.

6.1 Identifying regular encounters

In this section we build on the IEI analysis tools in Chapter 4 to identify which events

in a chronology (if any) belong to a regular weekly pattern. These tools provide a way

to identify repeat behaviour while retaining the time-resolution of events.
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To distinguish events that consistently occur at the same time of week from irregu-

lar events we consider the dispersion in IEI values, as measured by the instantaneous

coefficient of variation cvar(·) (Definition 4.2). More formally, let Sv,w = {ti | i =

1, . . . , L} be a chronology of encounters between two individuals v and w, where L

is the number of encounters between v and w. As in Section 4.2.2, we translate the

chronology to a set of N event trains, each covering a window of length ω. Given

that we deal specifically with weekly similarity, ω is set to one week, and therefore

each of the N trains represents one week in the chronology. We denote the event train

corresponding to the nth week as

Un = {uni | i = 1, . . . , Ln}
where Ln is the number of encounters in the nth window. A low cvar(u) for some time-

of-week offset u indicates that encounters occurring in that region of low coefficient of

variation are consistently timed across all weeks. For an encounter at offset u we can

consider whether it belongs to a time-of-week where events are consistently timed by

consulting the cvar(u) value, and marking the encounter as regular or not accordingly.

More formally, we set a dispersion threshold θ to identify regular encounters. An event

at offset u where cvar(u) ≤ θ is marked as regular. We seek to extract the events across

all N trains that are marked regular in this way, resulting in a subset of all time-of-

week events, which we will refer to as the regular set R(Sv,w). R(Sv,w) is therefore the

subset of events in the chronology’s master train (Definition 4.4) that were marked as

regular.

Definition 6.1
Given a chronology Sv,w and its corresponding master train U∗ of duration ω, the

regular set R(Sv,w) is the set of regular events

{ u | u ∈ U∗ ∧ cvar(u) ≤ θ } .

Figure 6.1 provides an example of each stage in obtaining the regular events for a

chronology.

Obtaining the regular set forms the basis for the definition of a regular encounter com-

munity, which we will discuss in the following section. As noted in Section 4.2.3,

computation of IEI measures such as coefficient of variation are linear in complexity.
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Sv,w

(a) An example chronology Sv,w depicting encounters between individuals v and w over 28 days.

U1

U2

U3

U4

(b) Four event trains U1, U2, U3, and U4 each
of duration ω = 7 days, corresponding to chro-
nology Sv,w.

R(Sv,w)

U⇤

cvar(u)

(c) Master train U∗ and the instantaneous coefficient
of variation cvar(u) at each event u ∈ U∗. Filtering
by dispersion threshold θ = 0.2 yields regular events
R(Sv,w).

Figure 6.1: Pipeline for obtaining the regular events from an example chronology.

The algorithm for obtaining R(Sv,w) is therefore more computationally efficient than

extracting local PECs using PSE-Miner, but this improvement comes at the additional

requirement that a single period of regularity (controlled by the window size ω) must

be set a priori.

6.2 The REC detection problem

A regularity set R(Sv,w) represents the regular encounters between a given pair of

individuals. At a broader scale, the encounters among a whole community of individu-

als may also share the same regularity, giving rise to a regular encounter community

(REC). Before presenting the preliminaries necessary to define the concept of a REC

we will informally introduce the concept with an introductory example.

6.2.1 Introductory example

In the simplest case, a given individual v may meet two friends w and x both with

exactly the same regularity. For example, v always meets the two friends at 14:00

Tuesday and at 12:30 Friday. In this case, we have R(Sv,w) = R(Sv,x), and a REC

exists consisting of v, w, and x on the basis of this shared regular encounter pattern.

For a more-complex scenario, let us add a third friend y who also meets with v at
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14:00 Tuesday each week, but not at any other time. We may be tempted to include

this third edge in the aforementioned REC; however, R(Sv,y) does not share a regular

12:30 Friday encounter. Here we instead have a second REC, consisting of v, w, x, and

y, on the basis of a 14:00 Tuesday regular encounter pattern. This property of a REC

mirrors PECs and their rules regarding when one PEC subsumes another and when two

PECs are distinct (Section 5.1.1).

These examples highlight that the definition of a REC unites a community not only in

that each edge independently has a number of regular events, but also collectively all

edges share the same regularity.

6.2.2 Problem formulation

When comparing the regular events R(Sv,w) among the edges of a prospective com-

munity we must permit a small degree of uncertainty around the timing of regular

events. To model this we allow for an amount of jitter around the regular events iden-

tified in R(·). The amount of jitter we permit is controlled by parameter φ which we

use to map a regular event at time u to an interval (u− φ, u+ φ]. Formally, we model

a regularity mask Rv,w that represents the regions of regularity corresponding to the

regular events in R(Sv,w).

Definition 6.2
Let R(Sv,w) be the set of regular events for the chronology of encounters Sv,w
between individuals v and w, constructed with window size ω. Given a jitter

tolerance of φ, the regularity mask Rv,w is defined as the set⋃
u∈R(Sv,w)

(u− φ, u+ φ]

with values falling outside (0,ω] being wrapped around.

Although our definition shows a regularity mask for the encounters between a single

pair of individuals, we can also obtain a regularity mask for two or more edges. To do

this we obtain the intersection of the two or more regularity masks. The intersection of

regularity masks of multiple edges represents the regions of regularity that are shared

by the encounter patterns at all these edges. In other words, by intersecting multiple
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regularity masks we obtain a mask that contains the regular regions common to all

masks, if any exist. For example, given a path graph through individuals v, w, x, y,

and z, the regularity mask Rv,w ∩ Rw,x ∩ Rx,y ∩ Ry,z represents the subset of regular

regions common to all four regularity masks.

The commutative and associative properties of the intersection operator are beneficial

when developing a decentralised solution to REC detection. These properties simplify

the process of incrementally combining RECs through knowledge sharing. In partic-

ular, it means that a node does not need to know the original regularity masks from

which an intersection was computed, and the node can apply additional intersection

operations without the order in which they are applied affecting the result.

We should also note other notation we intend to use when presenting regularity masks.

The empty regularity mask is denoted by ∅ and indicates that no regular regions were

shared among the corresponding pair of individuals or collection of edges. We write

R1 ⊆ R2 to denote the relationship of regularity mask R1 being a subset or equal to

regularity mask R2. Finally, we use |R| to denote the length of a regularity mask R.

|R| can be thought of as the overall duration of the regular regions in R and is defined

as follows.

Definition 6.3
The regularity length |R| of a regularity mask R of window size ω is∫ ω

0

f(u) du

where f(u) = 1 if u ∈ R and f(u) = 0 otherwise. |R| is equivalent to the Lebesgue

measure of R.

In practice, we implement a regularity mask as an ascending series of non-overlapping

intervals, each interval representing a continuous regular region. Given regularity

masks R1 and R2, with R1 represented by n1 intervals and R2 represented by n2 inter-

vals, computing R1 ∩R2 is an efficient operation, requiring O(n1 + n2) comparisons.

Our formal definition of a regular encounter community (REC) is similar to that of

a PEC (Definition 5.6). PECs and RECs are both represented by two components;

namely, the encounter community (Definition 5.3) and a description of an encounter

pattern that is shared by all edges in the community. The key difference in the case
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of RECs is that the temporal information is defined in terms of a regularity mask, as

captured in the following definition.

Definition 6.4
Denoted as the pair R = 〈C,R〉, a regular encounter community (or REC) is

an encounter community C = (V,E) along with a non-empty regularity mask R

where

R ⊆
⋂

(v,w)∈E

Rv,w .

A REC’s regularity mask represents the durations of the week where the community is

regular. In many cases these regularity masks are intersections of two or more pairwise

regularity masks. Given a REC 〈C,R〉 with community C = (V,E) constructed with

jitter threshold φ, the regularity mask R encodes information about the locations of

regular spikes in the chronologies corresponding to edges in E. In particular, a time-

of-week offset u, such that u ∈ R, indicates that for each edge (v, w) ∈ E there exists

at least one regular encounter x in the regular set R(Sv,w) where |u− x| ≤ φ.

The concepts of REC subsumption and maximality follow from those of PEC sub-

sumption and maximality, substituting the periodic support with a regularity mask in

the original definition of PEC subsumption (Definition 5.9).

Definition 6.5
LetR1 = 〈C1, R1〉 andR2 = 〈C2, R2〉 be two RECs. We say thatR1 is subsumed

by R2 if and only if R1 ⊆ R2 and C1 ⊆ C2. We denote this relationship by

R1 ⊆ R2.

Definition 6.6
A REC R1 is maximal if and only if there does not exist another REC R2, where

R1 6= R2, such thatR1 is subsumed byR2.

Finally, we formulate the REC detection problem.

Definition 6.7
The regular encounter community detection problem is the problem of finding

all maximal regular encounter communities that exist among the chronologies of a
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population of individuals.

We have so far not discussed the minimum number of events required for a regular

encounter pattern in a chronology to be meaningful. In the previous definition we also

omit this requirement; however, in our experiments, we will assume that chronologies

with too few events are are filtered out before REC detection. As with Chapter 4, we

will use a minimum of two events per week.

6.3 Decentralised REC detection

In this section we present a decentralised algorithm to solve the regular encounter

community detection problem. This REC detection algorithm follows the same op-

portunistic construction approach used to solve the PEC detection problem (presented

in Section 5.2). To make the REC detection problem amenable to the decentralised

PEC detection algorithm we must define a local REC miner and the rules of REC com-

patibility and combination. The task of the local REC miner is to extract all maximal

local RECs at a given node. The locality of a node is the set of chronologies incident

at the node and is relevant to our problem as it corresponds to the encounter data that a

node can directly observe. Compatibility and combination rules are necessary during

the opportunistic construction stage. These allow a node to compare a local REC to a

REC held by a proximate node and, if they are compatible, to combine these two RECs

to generate a new REC.

6.3.1 Compatibility and combination rules

To adapt compatibility to the case of RECs we simply modify the temporal containment

rule to consider the intersection of regularity masks rather than the compatibility of

periodic support sets.

Definition 6.8
Two RECs 〈C1, R1〉 and 〈C2, R2〉 with encounter communities C1 = (V1, E1) and

C2 = (V2, E2) are compatible for node v if all of the following hold:
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1. Relevance to v: v ∈ V1 and v ∈ V2;

2. Structural overlap: E1 ∩ E2 6= ∅;
3. Intersection of regular regions: R1 ∩R2 6= ∅ .

This leads to a similar modification to combination. Instead of taking the contained

periodic support set, we take the intersection of the two RECs’ regularity masks. This

is the only regularity that both RECs share, and therefore the only maximal regularity

mask valid for the combined encounter community. More formally, given two compat-

ible RECs 〈C1, R1〉 and 〈C2, R2〉, we construct a new REC 〈C ′, R′〉whereC ′ = C1∪C2

and R′ = R1 ∩ R2. We note that in the case R1 = R2, both RECs will be subsumed

by the new REC. Given the continuous-time nature of RECs we expect this case to be

rare when compared to the crisp scenario of PEC detection.

6.3.2 Mining local RECs

The algorithm introduced here extracts maximal local RECs. Formally, we consider

the task of mining all maximal local RECs for a node v. If we let Nv denote the set

of nodes which v has encountered a minimum number of times, our task is to find all

maximal RECs in the tree graph rooted at v and consisting of nodes {v} ∪ Nv.

There are 2 |Nv | − 1 connected subgraphs within this tree. If we were to use a brute-

force approach to mining local RECs the algorithm would need to construct each of

these communities and check if each is a valid REC. The task of checking whether a

local connected subgraph at v is a valid REC is straightforward. Let W be a subset

of neighbours W ⊆ Nv. By inducing a subgraph from the set of nodes {v} ∪W we

obtain an encounter community C = (V,E). The regularity mask intersection for C is

given by

R =
⋂

(v,w)∈E

Rv,w .

We can therefore obtain a REC 〈C,R〉 if the condition R 6= ∅ is met.

This brute-force approach requires checking of each non-empty subset of Nv and is

clearly computationally expensive. Furthermore, this approach requires an additional

step to check whether each REC it generates is subsumed by RECs it has previously
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generated. There are features of RECs that allow us to build a local miner that is more

efficient than the brute-force approach.

Algorithm 6.1 presents our more-efficient approach, which exploits the properties of

RECs to avoid unnecessary or redundant computation. First, we note that the algorithm

avoids re-checking re-orderings of the same subset of neighbour nodes. Through the

commutative property of regularity mask intersection we know that once a subset of

neighbours has been checked, any re-orderings of that same subset will yield the same

result.

A second improvement uses the property that if a particular neighbour subset W ⊂
Nv results in an empty regularity mask intersection, then any neighbour subset W ′

where W ⊂ W ′ ⊂ Nv will also result in an empty regularity mask intersection. A

particular call to REC-Generator constructs |S0| neighbour sets, generates a local

connected subgraph rooted at v from each one, and checks if each forms a valid REC.

The function also recursively checks each neighbour set, with another neighbour node

being introduced at each recursive call, until no more unused neighbour nodes remain.

After the algorithm adds a node from S0 to W0 to produce W1, if the neighbour set W1

results in an empty regularity mask we know that any subsequent recursive calls adding

another node to W1 will also result in empty mask, and therefore no further recursion

involving W1 is necessary.

Finally, the algorithm prunes subsumed RECs during each recursive call to the func-

tion REC-Generator. Given that the algorithm begins with the largest possible

regularity mask intersections (i.e., the regularity masks between v and each of its

neighbours) and incrementally intersects these with other masks, the only subsump-

tion the algorithm must check for is structural subsumption; that is, subsumption of

REC 〈C1, R1〉 by REC 〈C2, R2〉 due to C1 ⊂ C2. To describe this situation further

we consider a particular call to REC-Generator. Subsumption only occurs if a re-

cursive call to REC-Generator by the current call returns a list containing a REC

R2 that has the same regularity mask as a REC R1 stored in L1. In this case we must

check for subsumption ofR1 byR2 or vice versa and cull the subsumed REC.
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Algorithm 6.1: REC-Local-Miner
Input: Node v whose maximal local RECs will be extracted
Input: The set Nv of all nodes neighbouring v
foreach w ∈ Nv do

Precompute Rv,w

end
L← REC-Generator( v, {}, Nv)
Output: The set L of all maximal RECs local to v
Function REC-Generator(v, W0, S0)

Input: Node v
Input: A set W0 of neighbour nodes
Input: A set S0 of neighbour nodes not yet added to W0

if S0 = ∅ then
return {}

end
Create empty list L0 to hold candidate RECs
Create set of neighbours S1 as a copy of S0

foreach s ∈ S0 do
Remove s from S1

W1 ← W0 ∪ {s}
R1 ←

⋂
w∈W1

Rv,w

if R1 6= ∅ then
Generate a REC from neighbour set W1:
E1 ← {(v, w) |w ∈ W1}
V1 ← W1 ∪ {v}
C1 ← (V1, E1)
R1 ← 〈C1, R1〉
Create list L1 consisting of candidate RECR1

Remove each REC in L0 that is subsumed-by-or-equal-to a REC in L1

Remove each REC in L1 that is subsumed-by-not-equal-to a REC in L0

Add all RECs in L1 to L0

Generate RECs with nodes remaining in S1:
L2 ← REC-Generator(v, W1, S1)
Remove each REC in L0 that is subsumed-by-or-equal-to a REC in L2

Remove each REC in L2 that is subsumed-by-not-equal-to a REC in L0

Add all RECs in L2 to L0

end
end
return L0

end
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6.4 Experiments and results

In this section we study the presence and behaviour of RECs in the real-world. We

begin our investigation by exploring the character of RECs in the REALITY dataset.

This allows us to understand how common RECs are, their typical size, and at which

time-of-week RECs are likely to appear. By focusing on REALITY RECs we are able

to draw comparisons with the REALITY PECs discussed in Chapter 5.

Following this we evaluate the information sharing potential of RECs using the token

broadcast scenario. As with our application of the token broadcast scenario in Sec-

tion 5.3, these results inform us on the speed with which nodes of a REC can discover

their REC, and the speed of content sharing within the REC. The datasets used for

token broadcast analysis are REALITY and DARTMOUTH.

Given the REALITY dataset’s academic context, the mobility of subjects is very likely

to fluctuate throughout the year, leading to substantial variation in encounter rates and

the consistency of patterns. For example, calendar events such as exam periods, re-

cesses, and teaching semesters result in significant changes in behaviour among the

participants. For our REC experiments we select a four-week period where encounter

behaviour was most stable. Figure 6.2 shows the variation in the number of seven-

day-period PECs in the dataset. Using this figure we can identify where PECs were

most frequent, and therefore where RECs are also likely to be most common. Due to

an anomalous lack of encounter activity on 31st October (possibly owing to data col-

lection failure, a national holiday, or a local event) we avoid any durations intervened

by this date. We select the period of 00:00 Monday 27th September to 00:00 Monday

25th October 2004 for our experiments, producing chronologies of duration Tmax = 28

days. As with our analysis of visit patterns we select a window size ω = 7 days and

therefore chronologies are split into N = 4 encounter trains.

In the case of DARTMOUTH we select 7th April to 5th May 2003. This is the same 28

days used in the analysis of Dartmouth visits in Chapter 4.

Before running experiments we also discard any chronologies with fewer than two

encounters each week. After carrying out this filtering, 33,484 REALITY encounters

remain and 30, 127 DARTMOUTH encounters remain. In all following results we only
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Figure 6.2: Occurrences of periodic encounter communities (PECs) found in the REAL-
ITY dataset that have a period of seven days. The height of the curve at date t corresponds
to |{ 〈C, S(i,p,n)〉 ∈ P∗ | i ≤ t ≤ i+(n−1)p ∧ p = 7 days }| where P∗ is the set of all PECs
extracted from REALITY with granularity Q = 24 hrs.

refer to these filtered datasets. For REC detection we set dispersion threshold θ = 0.2

and jitter tolerance φ = 30 minutes.

To illustrate the concept of a REC, five examples from the REALITY dataset are presen-

ted in Figure 6.3. R1 is a simple REC of two nodes that is regular at many points

during the week. R2 consists of one node that regularly meets three other nodes on

Mondays at 12:00 and 21:30. R3 is a Friday 20:00 REC whose community is a path

graph and has diameter four. Finally, R4 and R5 are an interesting example of mutual

non-subsumption. The triad of subjects in R4 is the same triad in R5 and both RECs

have Wednesday 21:30 among their regular times. Given that R5 has an additional

node we may incorrectly regardR4 as being subsumed byR5. However,R4 is regular

at a second time of week that R5 is not (i.e., Thursday 11:00). The result is that R4

does not subsumeR5 (due toR5 having an additional edge and node) andR5 does not

subsumeR4 (due toR4 having additional region of regularity).

6.4.1 Character of RECs in the REALITY dataset

210 REALITY RECs were detected in the four week period. Of the 50 nodes that re-

mained in the dataset after removing those that did not have at least two encounters

each week, 38 appear in one or more RECs. This indicates that RECs are prevalent in

the REALITY dataset, with only 24% of nodes not exhibiting regular encounter beha-
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R1 = 〈C1, R1〉 R2 = 〈C2, R2〉

R3 = 〈C3, R3〉 R4 = 〈C4, R4〉 R5 = 〈C5, R5〉
Figure 6.3: Example RECs from the REALITY dataset. A regularity mask is depicted
as a rectangle containing green bars. Each rectangle is separated into seven chunks, each
representing a day of week beginning with Monday and ending with Sunday. Ticks denote
midnight. Green bars indicate the time-of-week during which the REC is regular.

viour.

To investigate the structural size of RECs a number of community properties are presen-

ted in Figure 6.4. Unsurprisingly, RECs containing a large number of nodes and edges

are less likely. Most-common are RECs containing two or three individuals, which

accounts for 64% of the RECs.

The diameters of RECs are also relatively small, but typically larger than the diamet-

ers of the PECs extracted from the same dataset. 63% of RECs were found to have a

diameter of 2 or greater, whereas only between 28% and 16% (depending on granular-

ity Q) of PECs had diameters in this range. We suspect that the reason for the larger

diameter is that the RECs tend to be shaped as path and tree graphs. Indeed, we found

that only 4% of RECs contained one or more simple cycles, indicating that the large

majority are tree graphs.

To investigate the structure of the communities further we consider the distribution of

graph density in Figure 6.5. 76 of the RECs consist of two nodes. These two-node
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Figure 6.4: Distributions of the number of nodes (denoted |V |), number of edges (de-
noted |E|), and diameters (denoted d(C)) of regular encounter communities (RECs) and
periodic encounter communities (PECs) in the REALITY dataset.

communities are omitted from the distribution since they are by definition complete

graphs and therefore always have a density of 1. We see that complete graphs among

RECs with three nodes or more are rare. 44% of communities have density between

0.6 and 0.7, many of which are triad communities missing one edge. Intuitively, we

would expect that if a node v meets two nodes w and p at roughly the same time

each week, then w is also likely to have met p at the same time. We therefore expect

triad RECs to tend to form cliques, a property referred to in social network analysis as

transitivity [HL70]. However, our analysis finds that only three of the 59 triad RECs

are transitive.

A number of factors may contribute to the intransitivity of RECs. The range of Blue-

tooth allows for an individual to detect two other devices that are not in range of one

another. This may occur even in the case where all three individuals are stationary;

however, intransitivity is more likely when one or more devices are moving. A highly

mobile central node may encounter two or more individuals in succession without sim-

ultaneously being in contact with all at the same time. RECs such as these are in-

teresting because they either represent an individual periodically repeating the same

route that brings him/her into proximity with the same individuals, or an individual
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Figure 6.5: Distribution of community density for REALITY RECs consisting of at least
three nodes. For a REC with community C = (V,E), community density is given by

2 |E|
|V |2−|V | .

who periodically acts as a bridge between two nearly proximate nodes. This finding

also indicates that RECs are not necessarily cliques, highlighting a difference between

our definition and that of a meeting group [YG10].

Regularity masks represent the temporal structure of RECs. As noted in Section 6.2.2,

the regularity mask for a REC asserts that all edges in the community have at least one

regular event within φ = 30 minutes of all times covered by the regularity mask. The

longer the length |R| of a mask R, the more points during the week the community

is regular for. Figure 6.6 shows the distribution of regularity mask lengths among the

RECs extracted from REALITY. The average regularity mask length is 1.48 hours and

the largest is 10.1 hours. Longer regularity mask lengths are associated with smaller

diameters and, for the largest lengths, with two-node RECs. Regularity masks for

RECs with more than three nodes are built from the intersection of the constituent

edges, and are therefore almost always shorter in length than the two-node RECS they

subsume.

Although the distribution of regularity mask lengths tells us the overall durations which

a REC is regular during the week, it does not describe the times of week where RECs

are regular. We explore this further in Figure 6.7 which plots the times of week that

are typically covered by a REC’s regularity mask. The tallest peak is at 16:45 Friday,

indicating that many RECs were regular at this time (in addition to any other times they

may be regular). Smaller peaks also appear on each weekday at 11:00 and 16:45. These
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Figure 6.6: Cumulative distribution of regularity mask durations in the REALITY dataset.
|R| denotes the overall duration of a regularity mask R.

are significant times in the context of the REALITY dataset as they lie at the boundaries

between MIT classes1. Exact class start and end times vary by day of week, but 11:00

is a common class start time and 16:30 is a common class end time. It is therefore

likely that the 11:00 peaks correspond to subjects arriving at the same class each week,

and that the 16:30 peaks correspond to subjects encountering one another during their

commute from class or on arriving at their residences.

Figure 6.7 also shows that RECs are much less likely to form on weekends. This is

likely due to a combination of two factors. First, many students choose to spend their

weekends off campus, and therefore there is less encounter activity among participants.

Second, when compared to weekdays, weekends have more erratic behaviour due to

the lack of routine tasks such as timetabled lectures.

Although PECs and RECs are different definitions of community, it is interesting to

consider whether there is any correspondence between the two. In particular, since the

REALITY RECs we have extracted are based on weekly regularity (i.e., we set ω = 7

days), we investigate whether these RECs resemble any REALITY PECs that have a

period of seven days. To do this, we check each PEC to see if its nodes appear in

one or more REC. If the nodes of a particular seven-day-period PEC are a subset of

the nodes of a REC, then we regard these two communities as being similar. We base

this analysis on the set of PECs with a period of seven days that appear during 27th

1MIT Fall 2004-2005 Class Schedule, via the Internet Archive: http://web.archive.
org/web/20040917051038/http://web.mit.edu/registrar/www/schedules/
csbindex.shtml

http://web.archive.org/web/20040917051038/http://web.mit.edu/registrar/www/schedules/csbindex.shtml
http://web.archive.org/web/20040917051038/http://web.mit.edu/registrar/www/schedules/csbindex.shtml
http://web.archive.org/web/20040917051038/http://web.mit.edu/registrar/www/schedules/csbindex.shtml
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Figure 6.7: Distribution of regularity masks belonging to REALITY RECs throughout the
week. LettingR∗ denote the set of all RECs, the number of regularity masks that include
the time of week u is given by |{〈C,R〉 ∈ R∗ |u ∈ R}|.

September to 25th October 2004 and were detected using granularity Q = 24 hours.

This set consists of 82 PECs. Our results find that 58.5% of PECs had a node set

that also appeared in at least one REC. Reciprocally, we found that only 14.2% of

RECs had a node set that appeared in at least one PEC. From these results we draw

two conclusions. First, there is not a one-to-one correspondence between the RECs

and PECs in the REALITY dataset. Second, the majority of RECs (85.8%) have no

corresponding PEC, and therefore RECs captured more weekly encounter behaviour

than PECs.

6.4.2 Token broadcast in RECs

The principle of the token broadcast scenario in the context of RECs is the same as

with PEC analysis (detailed in Section 5.3). Although PECs and RECs have different

characteristics it is useful to evaluate them in a similar manner. Token broadcast is

used to measure the time required for a global maximal REC to be discovered by all its

constituent nodes through decentralised opportunistic sharing and construction. This

scenario is analogous to each node in a REC attempting to broadcast a token to each

other, and therefore also represents the speed of information propagation within the

REC.
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6.4.2.1 Selecting encounters relevant to a REC

Each encounter between two nodes represents a token-sharing opportunity. When eval-

uating token broadcast for a particular REC, only encounters described by that REC’s

information are used for token sharing. Assuming the window size is one week, these

are the encounters whose time-of-week offset lies within the REC’s regularity mask

(or close enough, according to the jitter tolerance parameter) and correspond to one of

the edges in the REC’s community.

More formally, consider a REC R = 〈C,R〉, where C = (V,E), constructed from

chronologies of duration Tmax, with window size ω and jitter tolerance φ. To determ-

ine the set of edges where token exchanges will occur at time t ∈ (0, Tmax] we consider

whether the window offset t mod ω is within φ of any value inR. If so, an encounter at

t that corresponds to an edge inE can be used for token exchange. The following func-

tion f(t) formalises this concept and represents the mapping of the time t ∈ (0, Tmax]

to the set of exchanges occurring at time t:

f(t) =
{

(v, w) | (v, w) ∈ E ∧

∃ t ∈ Sv,w, u ∈ R s.t. |u− (t mod ω)| ≤ φ
}
.

To evaluate R we apply token exchanges described by f(t) for each t ∈ (0, Tmax] in

ascending order.

6.4.2.2 Broadcast time in REALITY and DARTMOUTH

Table 6.1 summarises the REALITY and DARTMOUTH datasets used in the following

token broadcast experiments. We observe that RECs were less prevalent among nodes

in DARTMOUTH than REALITY; in particular, 76% of REALITY nodes belonged to

at least one REC, compared to 58% of DARTMOUTH nodes. This is likely due to

the Reality Mining dataset being a closer representation of human encounters than the

inferred Dartmouth WLAN encounters. REALITY’s superior fidelity is due to it being

direct-sensed data from subjects who are consciously participating in a study.

There are a number of RECs which failed to reach full token coverage after four weeks.

This contrasts with the token broadcast analysis of REALITY PECs, where each PEC
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REALITY DARTMOUTH

Duration 27/Sept to 25/Oct 2004 7/Apr to 5/May 2003
Total nodes 50 428
Total edges 166 863
Total encounters 33,484 30,127
RECs 210 773
Nodes appearing in one or
more REC 38 247

Successful broadcasts 142 485
Average diameter 1.98 1.91

Table 6.1: Summary of datasets used in REC token broadcast experiments. Only nodes
and edges that met the minimum number of encounters are included.
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Figure 6.8: Percentage of RECs that have reached full coverage (i.e., successful broadcast)
at the end of each week. 32% of REALITY RECs did not reach full coverage. 37% of
DARTMOUTH RECs did not reach full coverage.

successfully broadcast all its tokens by the last timestep of its periodic support set.

Figure 6.8 depicts the number of RECs that reached full coverage by the end of each

week. This reveals how many RECs are able to successfully broadcast after apply-

ing each week of exchanges corresponding to a regularity mask. Over the first three

weeks the two datasets are almost identical in the increases in successful broadcast. By

the end of week four, however, broadcast in 68% of REALITY RECs was successful,

compared to 63% of DARTMOUTH RECs.

Having found that community diameter has an influence on the speed of broadcast

within PECs in Section 5.3.2, we investigate the extent to which diameter accounts for

the higher failed broadcast rate in DARTMOUTH. A key difference between the two
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types of community is that a PEC only exists if an encounter occurs in each of the

timesteps described by its periodic support set, and therefore it is guaranteed that a

token exchange will occur for each edge in the community in each periodic timestep.

This is a necessary condition for a PEC’s worst-case broadcast time to be its diameter.

The definition of a REC is less strict than this, and permits a degree of variation in

the timing of the regular encounters and is tolerant to occasional missing encounters.

Although this means that the diameter no longer governs the worst-case broadcast time

for RECs, community diameter does influence the speed of token propagation. In

particular, a community of large diameter indicates the presence of two nodes separated

by a large number of hops. Rapid propagation across multi-hop paths such as these

requires frequent and interleaved encounters among the intermediate nodes, which is

rare among the RECs we have extracted. On the other hand, low-diameter RECs allow

for rapid token broadcast. For example, if we consider a REC R = 〈C,R〉 that is a

clique, it has diameter d(C) = 1 and in the worst-case only requires one encounter at

each edge in C before reaching full coverage.

This behaviour is demonstrated in Figure 6.9, where we observe that all RECs with

diameter one reached full coverage within 28 days and were the quickest to do so.

The figure shows that 68% of one-diameter REALITY RECs reached full coverage

within seven days and all were at full coverage within 19 days. One-diameter RECs

in the DARTMOUTH dataset have a similar full-coverage rate, with 65% reaching full

coverage within seven days. These RECs are cliques and, as mentioned earlier, only

require one exchange per edge to reach full coverage. This statistic also indicates that

in 31% (REALITY) and 35% (DARTMOUTH) of the one-diameter RECs there was at

least one pair of nodes that did not have an encounter within the REC’s regularity mask

in the first week.

At larger diameters we see a significant reduction in both the number of successful

broadcasts and the rate at which RECs reach full coverage. This confirms the signific-

ant influence of diameter on token broadcast within a REC.
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Figure 6.9: Percentage of RECs that have reached full coverage over time. RECs have
been grouped to allow comparison of broadcast by diameter.

6.5 Conclusions

The strict discrete-time representation used for periodic encounter community (PEC)

detection (detailed in Chapter 5) resulted in some loss of temporal resolution and was

sensitive to minor variations in the timing of periodic encounters. In this chapter we

solve these limitations by defining communities in terms of inter-event interval pat-

terns, building on the tools we developed in Chapter 4 and the decentralised algorithm

developed in Chapter 5. The concept of a regular encounter community (REC) intro-

duced in this chapter is more tolerant to small variations in periodic encounter patterns

and retains the time-resolution of encounters. We have re-used the same decentralised

construction approach we introduced for PEC detection to allow nodes to self-detect

their RECs, proving the extensibility of this algorithm to other types of temporal in-

formation.

Our results show that many individuals belong to one or more REC, making these an in-

teresting feature for use in encounter-aware opportunistic forwarding protocols. Token

broadcast analysis shows that diameter is again an important factor in the propagation

of information, an observation we also made with periodic encounter communities

(PECs) in Chapter 5. The requirement of a PEC that the community’s encounters must

strictly repeat according to the identified period means that diameter acts as a hard limit

on the PEC’s broadcast time. This contrasts with RECs, whose tolerance to minor vari-

ations in weekly patterns permits occasional missing encounters. We found that due
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to this, and also due to the limited (four week) duration we allowed for propagation,

a number of RECs failed to reach full token coverage. In practice, REC construction

would be faster and have a higher success rate by allowing communities to also use

their irregular encounters for opportunistic REC construction; however, for our experi-

ments we restricted our evaluation to encounters intrinsic to each REC so that we could

investigate the propagation characteristics specific to the community.

When directly comparing PECs and RECs of the same periodicity (i.e., weekly), we

found that REC detection identified over 2.5 times the number of encounter communit-

ies than PEC detection. Given that human mobility is not a strictly timed behaviour, it

is not surprising that permitting an amount of uncertainty in encounter patterns allows

us to capture more periodic communities, and result in more RECs being detected.

Indeed, RECs were able to account for 58.5% of the communities extracted by PEC

detection, and also were able to identify an additional 180 communities (of 210 overall

RECs) that did not appear as PECs.
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Chapter 7

Conclusions

This thesis has proposed and developed methods for detecting periodic patterns in the

visits and encounters of human individuals. As per the scope set out in Chapter 1, these

methods are amenable to decentralised scenarios and operate on an event stream rep-

resentation of data. We have used these methods to explore the presence and character

of periodicity in human mobility, considering visit patterns in Chapter 4 and encounter

patterns in Chapter 5 and Chapter 6.

7.1 Thesis summary and contributions

Our survey of models, methods, and analyses in Chapter 2 found that there is much

interest in human mobility patterns, but limited work dealing specifically with peri-

odic patterns concerning individual mobility. To help navigate the related approaches

a classification scheme based on scale and temporal context was proposed. This clas-

sification scheme highlighted that our contributions are in the detection of PERIODIC

temporal context at an INDIVIDUAL scale. The most-related work in the INDIVIDUAL-

PERIODIC category lies in location prediction and mobile communication networks,

where a number of recent approaches have modelled periodicity in visits and encoun-

ters in a variety of ways.

Throughout this thesis we use a number of real-world datasets to investigate periodic

visit and encounter patterns. These are detailed in Chapter 3, along with a discussion of

the datasets and experimental methods commonly used to investigate human visit and

encounter behaviour. We noted that the empirical data were either naturally represented

as event streams, or could be readily reduced to an event stream. This allows the meth-
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ods developed in this thesis to be applied across a wide range of scenarios, a number of

which we have empirically investigated in this thesis. In particular, the real-world data-

sets we explored include Foursquare checkins in three urban areas, WLAN AP visits

on Dartmouth College campus, public transport users’ visits to London Underground

stations, and Bluetooth traces of encounters between Massachusetts Institute of Tech-

nology (MIT) students. This has allowed us to draw conclusions regarding periodic

patterns in human mobility in a variety of scenarios.

The first method we developed in this thesis, named IEI-irregularity, was used to meas-

ure the amount of weekly periodicity in visit patterns. To deal with the visit event

stream data in a way that retained the temporal resolution of events we adapted a neural

coding technique which is based on the analysis of IEIs (inter-event intervals). This

method is particularly suited to these data as it can be applied even when visits are

sparse, which is often the case when dealing with individual mobility such as a partic-

ular individual’s visits to a particular location. We presented IEI-irregularity and used

it to explore real-world visit patterns in Chapter 4. IEI analysis was not only useful for

the task of quantifying weekly periodicity in visit patterns, but also provides power-

ful and computationally efficient tools for handling patterns in event streams. Indeed,

these IEI analysis tools were used in Chapter 6 to develop a method that identifies peri-

odic encounters between two individuals. To my knowledge, this is the first application

of neuroscience techniques to visit and encounter event stream data.

The exploration of real-world visit patterns using IEI-irregularity (results presented in

Chapter 4) uncovered some interesting features of individual periodic mobility. In a

variety of settings we found a core group of individuals that visit at least one location

with near-perfect regularity. We also observed that the type of location, which is typic-

ally associated with a particular activity, has strong influence over individuals’ visiting

patterns. There are location types whose usage is predominantly driven by inflexible

constraints (such as lectures in academic buildings) whereas others, such as outdoor

venues, are less constrained or subject to external random effects. The IEI-irregularity

measure allows features such as these to be automatically extracted by an individual’s

mobile phone, providing context to other mobile phone applications.

Chapters 5 and 6 explore the concept of a community of individuals that share the
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same encounter pattern. Chapter 5 proposes a periodic encounter community (PEC),

which is a community of nodes that meet according to a particular period (e.g., every

24 hours). The period at which a PEC encounters is itself a feature of the PEC and

may be any value such that the community strictly encounters according to that period.

On the other hand, a regular encounter community (REC), defined in Chapter 6, is

a community of nodes that all share the similar regular encounters; specifically, we

focused on RECs formed around having the same weekly encounters, although other

choices of period may be used.

RECs and PECs are related concepts. Both capture a community that is periodically

encountering in some way. Each has limitations and advantages for extracting periodic

encounter patterns. The formulation of a PEC uses a discrete-time representation, res-

ulting in reduced temporal precision, and making the existence of a PEC sensitive to

variations in encounter times. This formulation is necessary to enable a periodic sub-

graph mining approach, which allows automated detection of a particular community’s

period. After investigating real-world PECs (Chapter 5) we found that the strongest

PEC periods were one, seven, and 14 days. We therefore chose to select weekly pat-

terns, as we also did in Chapter 4 for our visit patterns analysis, and build on the IEI

analysis framework to propose the concept of a REC. Through the assumption of a

single periodicity, RECs overcome the aforementioned limitations of PEC detection.

Results presented in Chapter 6 that compared RECs and PECs showed that RECs did

indeed capture more weekly patterns than PECs did.

The requirement of decentralisation makes developing REC and PEC detection meth-

ods particularly challenging; however, this is necessary for their deployment in human

encounter networks. To design decentralised algorithms for the detection of PECs and

RECs we proposed a framework consisting of local mining and opportunistic construc-

tion phases. This framework is sufficiently general to be applied in the PEC and REC

detection algorithms proposed in this thesis, with only the components that deal with

the differing temporal properties (regularity masks in the case of RECs and periodic

support sets in the case of PECs) requiring modification. Our PEC detection algorithm

adapts an existing centralised data mining approach, which allows the automatic de-

tection of PECs’ periods. For REC detection, a new REC local mining algorithm was
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introduced. As far as I am aware, these are the first decentralised algorithms for the

detection of encounter communities that periodically encounter.

Due to our interest in RECs and PECs as context in human encounter networks we

gave particular attention to the content sharing dynamics within these communities.

The token broadcast scenario (first presented in Chapter 5) let us analyse both content

sharing dynamics and the time required for PECs and RECs to be discovered. In both

cases community diameter acts as a limiting factor to broadcast within the community;

communities with large diameters tend to take longer to complete broadcast than com-

munities with short diameters. The strict, discrete-time formulation of PECs meant

that diameter was a hard limit on broadcast time; on the other hand, since RECs allow

for tolerance in the timing of regular patterns, their failed broadcast rate is greater.

7.2 Future directions

This thesis has made a substantial step in addressing the presence and detectability

of periodicity in individual human mobility. We have validated the intuitive assump-

tion that human routine has a profound influence on visit and encounter patterns, and

provided methods for detecting periodic patterns. Our work opens a variety of in-

teresting possibilities for future work. In particular, there are three broad directions:

exploiting periodic mobility patterns in services and networks, further empirical study

to understand the role of routine and periodicity in human behaviour, and extension of

our methods.

A clear application area lies in context-aware mobile computing. Our methods can

be used to augment existing context-aware software, such as digital personal assist-

ants, to allow them to gain a deeper understanding of their owners’ behaviours. By

identifying periodic patterns in their users’ visits, online location-based services can

also benefit in a similar way. Regarding visit behaviour, we note that although our

experiments primarily focused on the user’s perspective, considering the prevalence of

regular visitors at a particular location is useful for context for venue managers such as

shop owners. This thesis also lays the foundation for investigation into the relationship
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between periodic encounters and periodic visits and, in particular, exploring the extent

to which joint regular visiting patterns lead to regular encounter patterns.

Opportunistic network research often relies on synthetic data and, as we noted in

Chapter 3, there is limited work developing and validating synthetic periodic mobility

models. The methods and findings in this thesis can inform mobility model design and

be used to evaluate the extent to which periodic encounters and visits are expressed by

a mobility model.

Recent opportunistic network routing protocols (and, specifically, those applied to hu-

man encounter networks) have been designed with the assumption of periodic en-

counter behaviour; however, prior to this thesis there was limited work empirically

verifying and exploring the characteristics of these patterns. The findings of this thesis

inform future protocol design and our decentralised PEC and REC detection methods

can be exploited in encounter-aware routing. For example, communities of nodes that

periodically encounter one another can act as a reliable backbone for routing. A future

protocol can differentiate between these regular patterns and other irregular patterns

and leverage them in different ways.

While the decentralised PEC and REC algorithms presented in this thesis are able to

mine and then construct maximal communities over time, there is scope to extend them

for application in a fully dynamic setting. In this setting, nodes would only detect en-

counter communities that currently exist, rather than also retaining those that have ex-

pired. A comprehensive solution to this problem would require a protocol that handles

periodic re-mining and propagation of community updates, including community de-

struction as well as construction.

The decentralised methods we have introduced also provide a basis for a privacy-

aware periodic community detection system. Our work in Chapter 5 and Chapter 6

already details how temporal community structures can be discovered by their con-

stituent members without the need for members to provide information to a central

authority or nodes outside their own communities. This is especially important for

our methods because they reveal previously hidden mobility patterns. These patterns

provide rich context to the variety of applications and services we have discussed in
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this thesis, but in some cases there may be patterns that a user only wishes to share

with particular friends and acquaintances. The opportunistic construction process of

the PEC and REC algorithms relies on mobile peer-to-peer exchanges and it is this

exchange mechanism that provides a convenient means to control how patterns are

shared. Further work in this area would extend our construction process with mechan-

isms to incentivise cooperation and participation in the system while also preserving

privacy of sensitive patterns and protecting against untrusted or malicious nodes.
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