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Abstract 

The protease-chaperone DegP undergoes secondary through quaternary structural changes, regulating 

function and preventing indiscriminate proteolysis. Several structures of DegP oligomers have been 

observed, including the resting state 6-mer and the 12-mer and 24-mer active states. However, the 

precise events of the transition between the resting and active states still need to be elucidated. We 

used native mass spectrometry to demonstrate that binding of multiple substrate-mimicking peptide 

ligands to the DegP resting state occurs prior to the transition to an active conformation. This transition 

occurred at a 6-mer occupancy of 40% for each peptide ligand. We observed ligand-specific 9-mer 

formation with a maximum load of 9 peptides, whereas other substrates led to 12-mers accommodating 

24 peptides. Based on these data, we present a model for the initial steps of substrate-induced 

transitions from the resting to active states of DegP. 
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Introduction 

Protein misfolding and aggregation occurring under stress conditions is often counter-acted by 

molecular chaperones and proteases to prevent cell death.(Kim and Kim, 2005; Merdanovic et al., 2011; 

Tyedmers et al., 2010) These proteins frequently target the exposed hydrophobic regions of misfolded 

proteins thereby preventing aggregation. For the majority of proteases, function is regulated by ATP, 

which is used to control access to the proteolytic sites (Tyedmers et al., 2010). However, some proteases 

are ATP-independent, allowing them to function in an ATP-depleted environment, such as the bacterial 

periplasm. One such protease is the widely conserved extracytoplasmic protein quality control factor 

DegP (Merdanovic et al., 2011). Escherichia coli DegP is a periplasmic protein upregulated by the Cpx 

and 
E
 pathways in response to conditions that result in protein folding problems, such as heat stress, 

and is required for cell survival above 37 °C.(Clausen et al., 2011; Kim and Sauer, 2012; Meltzer et al., 

2009; Ortega et al., 2009) While it is generally accepted that the oligomeric state and function of DegP 

are directly related, a full, detailed structural model remains to be established. 

DegP exists in multiple oligomeric forms with a 3-mer as the fundamental building block. The center of 

the DegP 3-mer consists of the three trypsin-like protease domains of the individual monomers arranged 

in a planar fashion with the PDZ1 and PDZ2 domains on the exterior.(Krojer et al., 2002) While digestion 

occurs at the catalytic triad in the protease domain, PDZ1 and PDZ2 domains have been shown to be 

necessary for substrate binding, allosteric regulation, and oligomer stabilization.(Iwanczyk et al., 2007; 

Jiang et al., 2008; Jomaa et al., 2007; Subrini and Betton, 2009) DegP forms multiple oligomers, 

composed of multiples of 3-mers, ranging from a 6-mer to a 24-mer that can be classified into three 

categories: face-to-face, cage-like, and bowl-shaped structures (Figure 1), each with the common 

feature of the active sites localized in the interior of the particle. The 6-mer is the only oligomer that 

exhibits a face-to-face structure where the two 3-mers are positioned parallel to each other.(Krojer et 
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al., 2002) The structure is stabilized by PDZ domain interactions across the exterior interface and the 

extension of the LA loop from a protease domain of one 3-mer into a protease domain of the opposite 

3-mer.(Sawa et al., 2010) Two different DegP oligomers have been shown to have the cage-like 

structure: the 12-mer and the 24-mer. While the sizes of these cage-like structures are different due to 

the number of trimeric building blocks involved, a large interior cavity is common to both 

structures.(Sawa et al., 2010) The 12-mer adopts tetrahedral symmetry, and the 24-mer adopts 

octahedral symmetry, both containing large pores that can allow the entrance of unfolded 

substrates.(Jiang et al., 2008; Kim et al., 2011; Krojer et al., 2008b) The PDZ domains between 

neighboring 3-mers interact to stabilize these hollow shells. Multiple oligomers, including the 12-mer, 

the 15-mer, and the 18-mer, have been shown to form bowl-shaped structures on a lipid interface. 

These highly flexible structures exhibit similar PDZ domain interactions as those observed in the cage-

like structures, suggesting that the bowl-shaped conformations may represent intermediates on the 

pathway to form large cages in the periplasmic space.(Shen et al., 2009)  

The likely reason for the many different oligomeric states of DegP is to provide functional control of 

proteolytic activity. DegP is a highly efficient, relatively non-specific protease that binds and cleaves 

exposed hydrophobic residues. However, DegP has developed a mechanism through which to control its 

indiscriminate function.(Hauske et al., 2009; Huber and Bukau, 2008; Jones et al., 2002; Krojer et al., 

2008a) In the resting state of DegP, i.e., 6-mer, the LA loops stabilize the face-to-face structure and 

distort the catalytic triad of an opposite monomer. Exposed hydrophobic regions of unfolded proteins 

can bind to the PDZ1 domain, initiating the transformation from the resting state to an active state, 

whereby the LA loops are extracted from the active site of their neighbors, and the activity of DegP is 

restored.(Hauske et al., 2009; Kim et al., 2011; Krojer et al., 2010; Meltzer et al., 2009; Merdanovic et al., 

2010) During this process, the 6-mer rapidly transforms to higher-order oligomers, such as the 12-mer or 

24-mer.(Jiang et al., 2008) The transition is initiated by the binding of the substrate to the PDZ1 domain 
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inducing a conformational change of the PDZ domains (Krojer et al., 2010) followed by dissociation from 

the 6-mer into 3-mers.(Jiang et al., 2008) The substrate-bound 3-mer then associates rapidly into higher-

order oligomers that remove the unfolded substrate from solution via proteolysis. After DegP has 

performed its function and cleared unfolded proteins, it reverts back to the resting state.(Jiang et al., 

2008; Kim et al., 2011; Krojer et al., 2008b) The changes in oligomeric states reflect an “on-off” switch of 

DegP, depending on the requirements of the cell. While structures of several oligomeric states are 

available, the exact transition from the 6-mer to the higher-order oligomers upon substrate interaction 

remains undefined. 

Here, we apply native mass spectrometry (MS) (Loo, 2000; van Duijn et al., 2005) to study the transition 

of DegP upon binding of a variety of substrate-mimicking peptide ligands. Because native MS combines 

the ability to conserve large, non-covalent protein structures in the gas phase with high mass resolution 

and accuracy, it is well-suited for measuring both large and small changes in molecular mass of 

transitory protein complexes. Similar to this study, native MS has previously been used to characterize 

the DegP-related DegQ system, demonstrating the ability to retain multiple non-covalent complexes in 

the gas phase, and tandem MS was used to confirm the presence of a specific number of ligands bound 

to the DegQ oligomer.(Malet et al., 2012) In our study, we use native MS to monitor all oligomers 

present simultaneously, whereby the high mass resolving power allows us to quantify heterogeneous 

oligomer populations resulting from the variety of bound peptide ligands. We found that each substrate-

mimicking peptide ligand induced a transition from the resting state 6-mer to a higher-order oligomer at 

the point where the 6-mer occupancy reached 40%. We also detected a transitory 9-mer that bound 

fewer peptides than the 12-mer “active” state. With native MS, we were able to probe the initial steps 

of substrate binding and oligomerization of DegP. The interactions between DegP and a variety of 

peptide ligands, as well as the transition to higher-order oligomers, allow us to contribute to the 

oligomerization model by characterizing the initial steps of activation by oligomerization. 
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Results 

Selection of substrate-mimicking peptide ligands 

In our experiments, a variety of substrate-mimicking peptide ligands were used as well as control 

peptides. Meltzer et al. previously demonstrated that DegP exhibits allosteric induction of proteolytic 

activity by peptides mimicking unfolded or mislocalized proteins.(Meltzer et al., 2008) Such activating 

peptides also induce a transition in oligomeric state.(Merdanovic et al., 2010) Therefore, peptides that 

increased proteolytic activity of DegP were treated as substrate-mimicking and assumed to induce an 

oligomeric transition; peptides that induced no such activity were used as negative controls. Two 

peptides, DPMFKLV and SPMFKGV have been shown to be activating and non-activating, respectively, 

with suggested DPMFKLV binding to both the protease domain and PDZ1 domain binding sites, and 

SPMFKGV unable to bind to either site.(Merdanovic et al., 2010) The observed factor of activation was 

compared between the peptide substrate and a known non-activating peptide substrate (SPMFKGV) to 

determine whether other peptides were substrate-mimicking or control (Table S1). The peptides 

DPMFKLV, DYFGSALLRV, CHHSAFPVFL, and SPMFKGVLDMMYGGMRGYQV were found to increase the 

proteolytic activity of DegP, and were thereby classified as substrate-mimicking with the implication of a 

peptide-induced oligomeric transition as well. SPMFKGVLDMMYGGMRGYQE, a derivative of the largest 

activating peptide used, along with SPMFKGV were previously shown to have little to no interaction with 

DegP.(Krojer et al., 2008a; Merdanovic et al., 2010) This protease assay revealed that these two 

peptides induced similarly low levels of proteolytic activity, and both were used as negative controls. 

The results from this protease assay agree with what has previously been observed, where the C-

terminal sequence is crucial for substrate binding and degradation.(Krojer et al., 2008a) 

Substrate-mimicking peptide ligands induce substrate-specific DegP oligomerization 
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To avoid auto-degradation, we used the proteolytically inactive mutant, DegP S210A, where the catalytic 

Ser210 residue is replaced by an Ala residue. DegP S210A has been shown to undergo oligomer 

transformations in the presence of substrates and substrate-mimicking peptide ligands.(Iwanczyk et al., 

2011; Jiang et al., 2008; Kim et al., 2011; Krojer et al., 2010; Merdanovic et al., 2010) In addition, we 

used DegP samples that were purified under denaturing conditions (to reduce the amount of co-purified 

ligands) and subsequently refolded.(Merdanovic et al., 2010) Native MS of refolded DegP S210A 

revealed a mixture of oligomers, whereby the 6-mer and 3-mer were the most intense species (Figure 

2A). The observation of these two species reflects the dynamic equilibrium between the 6-mer and 3-

mer that has been suggested, (Jiang et al., 2008) though the population of the 3-mer may be enhanced 

due to the conditions required to transfer DegP oligomers to the gas phase and achieve high mass 

resolution. Subsequently, DegP S210A was mixed and incubated with the various peptide ligands. A clear 

transition from the resting state of DegP to “active” higher-order oligomers was observed for each 

substrate-mimicking peptide ligand as monitored by native MS. An example of this transition using the 

peptide DPMFKLV is shown in Figure 2 (B-E). At increased peptide concentrations, DegP forms higher-

order oligomers (the 12-mer for this peptide) until none of the resting state (6-mer) remains (Figure 2E). 

The formation of higher-order oligomers was observed for each substrate-mimicking peptide ligand 

studied, however, the observed dominant higher-order oligomers were quite different. By native MS, 

the most abundant higher-order oligomers were the 9-mer and the 12-mer, showing a strong 

dependence on the specific peptide ligand incubated with DegP (Table 1 and Figure S1). Previous studies 

reported even larger higher-order oligomers; a reason for these apparent discrepancies may be due to 

the much lower peptide concentration used here compared to that used in previous studies.(Hasenbein 

et al., 2010; Jiang et al., 2008; Krojer et al., 2008a; Krojer et al., 2010; Krojer et al., 2008b; Merdanovic et 

al., 2010) Such high peptide concentrations, i.e., – , are not compatible with native MS 

as the signal from the unbound peptide would completely suppress that from the DegP oligomers. Since 
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the size of DegP higher-order oligomers has previously been linked to substrate size and concentration, 

(Iwanczyk et al., 2011; Krojer et al., 2008b) it is reasonable to attribute the observation of smaller 

higher-order oligomers by native MS to the use of low peptide concentrations. To confirm that these 

oligomeric transitions were not specific to the inactive DegP S210A mutant, the effect of peptide ligand 

binding to DegP WT was also tested, yielding similar transitions to the same higher-order oligomers as 

observed for DegP S210A (Figure S1).  

The native mass spectra acquired during titration of small amounts of peptide suggest that a minimum 

amount of peptide is required to induce the formation of the higher-order oligomers. Upon the addition 

of peptide ligands to DegP, multiple peaks are observed for each charge state of both the 3-mer and 6-

mer (Figures 2 and 3). The formation of additional peaks originates from DegP oligomers with various 

numbers of peptide ligands bound (Figure 3). Close inspection of a single charge state reveals that the 

mass difference between adjacent peaks corresponds to the mass of a single peptide. Due to the high 

mass resolving power, peaks corresponding to oligomers with different numbers of peptides were 

resolved (peptide masses ranging from 821 Da to 2297 Da compared to the DegP S210A 6-mer mass of 

287,276 Da). As expected, the addition of greater amounts of peptide ligand results in increased 

numbers of bound peptides to both DegP 3-mer and 6-mer to a maximum of one peptide per monomer, 

i.e., 3 peptides per 3-mer and 6 peptides per 6-mer. A maximum occupancy for these oligomers implies 

specific binding of the peptide ligand to a DegP monomer. It has been shown that the PDZ1 domain is 

necessary for substrate binding (Iwanczyk et al., 2007; Krojer et al., 2008a; Merdanovic et al., 2010) and 

does indeed have a hydrophobic cleft as a suggested binding site.(Kim et al., 2011; Meltzer et al., 2008; 

Meltzer et al., 2009) An additional binding site exists in the active site of the protease domain.(Kim et 

al., 2011; Kim and Sauer, 2012; Krojer et al., 2010; Merdanovic et al., 2010) However, given that the 

protease domain is generally obstructed in the resting state structure(Krojer et al., 2002; Sawa et al., 

2010; Subrini and Betton, 2009) and that the average number of peptides bound corresponds to a single 

8 

 



peptide per monomer at the highest peptide concentrations, it is most likely that the peptide ligands are 

bound to the PDZ1 domain. 

To confirm the substrate-dependent oligomerization, DegP S210A and DegP WT were incubated with 

the control peptides, and the effect on the oligomeric state was investigated. No higher-order oligomers 

were formed, even at molar excess of the peptide (Figure S1, E and F). Both of the peptides used as 

negative controls have been shown to have limited binding to the PDZ1 domain of DegP yet retain the 

ability to bind to the protease domain site for cleavage.(Krojer et al., 2008a; Merdanovic et al., 2010) 

The severely reduced binding of these peptides to the DegP 6-mer indicates that the protease domain 

binding site of the protease domain is obstructed and that binding to the PDZ1 domain is necessary for 

the formation of higher-order oligomers. 

Common occupancy found for oligomeric transitions induced by substrate-mimicking peptide ligands 

To probe the initial steps of DegP’s oligomeric transitions, we measured the occupancy of the 6-mer at 

the onset of higher-order oligomer formation because this value represents the number of occupied 

binding sites necessary to induce the transition from the resting state to the active state. Since the 

occupancy was calculated for the 6-mer, in which only one binding site is available, i.e., the PDZ1 

domain binding site, (Krojer et al., 2002) only one site per monomer was considered in the calculation. 

This assumption is supported by the lack of binding of the control peptides, both of which have been 

shown to still bind to the protease domain binding site.(Krojer et al., 2008b; Merdanovic et al., 2010) 

The changes in occupancy as a function of peptide concentration are illustrated in Figure 4. The use of 

low peptide concentration afforded the observation of the initial steps of oligomerization, specifically 

peptide binding prior to higher-order oligomer formation, as evidenced by an increase in 6-mer 

occupancy upon the addition of peptide ligand. The peptide ligands DPMFKLV and DYFGSALLRV bind to 

DegP S210A strongly, demonstrated by the low [peptide]:[DegP 1-mer] ratio needed to induce the 
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transition to higher-order oligomers (indicated by the asterisks in Figure 4). The occupancy of the 6-mer 

increases slightly before a plateau is reached, indicating that a maximum number of peptides can be 

bound to the 6-mer. The occupancy of the 6-mer at the onset of higher-order oligomer formation is 

listed in Table 1 for each substrate-mimicking peptide ligand. The occupancy at the onset of oligomeric 

transition is approximately 40% for all of the substrate-mimicking peptide ligands, though the peptide 

concentration necessary for higher-order oligomer formation is different for each peptide. The 

similarities in occupancy upon higher-order oligomer formation imply that the initial steps of the 

oligomerization mechanism are similar for each peptide. 

Peptide binding-induced higher-order oligomers exhibit an increased maximum loading of substrate-

mimicking peptide ligands 

The achieved resolving power of these native MS experiments reveals not only the number of peptide 

ligands bound to the DegP 6-mer but also the number of peptides bound to the higher-order structures, 

i.e., the 9-mer and the 12-mer. Close inspection of the signals for these two oligomers revealed that the 

9-mer binds up to one peptide per DegP monomer, to a maximum of 9 peptides bound to the 9-mer, 

but, in sharp contrast, the 12-mer forms with two peptides per DegP monomer bound resulting in an 

average loading of 24 peptides per 12-mer. To confirm the correct assignment of the peaks in the native 

MS spectrum, simulated spectra of the higher-order oligomers were generated using SOMMS.(van 

Breukelen et al., 2006) The native MS spectra of both the 9-mer and the 12-mer were simulated with 

the addition of one or two peptides per monomer and compared to the experimental spectrum (Figure 

5).  Comparison of the same charge state between the two simulated spectra and the experimental data 

confirms the maximum loads of the 9-mer and 12-mer to be 9 and 24 peptides, respectively. Further 

evidence supporting this finding comes from the fact that two independent substrate-mimicking peptide 

ligands, i.e., DPMFKLV and CHHSAFPVFL, induce the formation of the 12-mer with 24 peptides bound, 
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whereas two other independent substrate-mimicking peptide ligands, i.e., DYFGSALLRV and 

SPMFKGVLVDMMYGGMRGYQV, induce the formation of 9-mers with only 9 peptides bound maximally. 

These data hint at a substrate-dependent fine regulation between enzyme and substrate. 

As mentioned above, it was recently proposed that each DegP monomer possesses two binding sites: 

one on the PDZ1 domain and one in the protease domain.(Iwanczyk et al., 2007; Kim et al., 2011; Kim 

and Sauer, 2012; Krojer et al., 2008a; Krojer et al., 2010; Merdanovic et al., 2010) Therefore, the binding 

of up to two peptides per monomer can be explained by the presence of these two binding sites; 

however, the differences in maximum load between the 9-mer and the 12-mer imply inherent 

differences in structure. As observed earlier, the DegP 6-mer binds a maximum of one peptide per 

monomer, an observation that can be explained by the obstruction of the active site by interfacial loops 

in the 6-mer structure. Similar behavior of the 9-mer indicates that the 9-mer is not a complete active 

state conformation, but it may be a transitory oligomer. Examination of the distribution of bound 

ligands to the 9-mer and 12-mer at increasing peptide concentration revealed that the number of 

peptide ligands bound to the 9-mer increases with concentration, but this distribution on the 12-mer 

remains constant (Figure 6). These results indicate that the released 3-mers associate into the 9-mer 

prior to further binding of peptide ligands. The binding of two peptides to the 12-mer demonstrates the 

presence of two binding sites per monomer, both of which are available in this cage-like structure. From 

these results, it is most likely that the PDZ1 binding site is available in all DegP structures, but the 

protease domain substrate binding site becomes available upon the formation of the larger cage-like 

structures, and, therefore, multiple peptide binding is only observed for the DegP 12-mer and possibly 

for other higher-order oligomers, such as the previously reported 24-mer.(Krojer et al., 2008b) 

Discussion 
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Here, we used native MS to monitor the initial steps in the activation of DegP, leading to the formation 

of higher-order oligomers. Native MS has provided excellent characterization of the small mass changes 

resulting from peptide ligand binding, which then induces dramatic oligomeric shifts. The high mass 

resolving power of native MS allows the observation and differentiation of not only multiple non-

covalent DegP oligomers but also the heterogeneous population within each oligomeric species due to 

the variety of peptide ligands bound. Our data show that multiple peptides bind to the resting state 

DegP oligomers (3-mer and 6-mer only) prior to initiating higher-order oligomer formation. It was also 

observed that the maximum number of peptides bound is directly related to the oligomeric state of 

DegP, reflecting the possible differences in structures as well as demonstrating the differences in 

kinetics between released 3-mer association and subsequent ligand binding. Most interesting is the 

amount of peptide bound to the resting state 6-mer at the onset of higher-order “active” oligomer 

formation. It was observed that this amount, as calculated by the occupancy, is similar for all activating 

peptides, in that, at 40% occupancy, an oligomeric transition begins to occur within the DegP 

population. This common occupancy was only observed due to the use of low peptide ligand 

concentrations to probe the initial steps of oligomerization and the high resolving power of native MS to 

differentiate the heterogeneous population of each oligomer. 

Previously, an oligomerization mechanism was proposed, (Jiang et al., 2008; Kim et al., 2011; Krojer et 

al., 2010) indicating that the binding of a substrate to the PDZ1 domain induces a conformational change 

of the PDZ1 and PDZ2 domains as well as in loops of the protease domain. This conformational change 

was represented as a transition from the closed 6-mer structure to the open 6-mer structure. The next 

step in this proposed mechanism is the dissociation of the 6-mer into two 3-mers, which subsequently 

function as building blocks for the large cage-like structures common to the active state of DegP. With 

current understanding, it is impossible to determine the level of PDZ conformational change necessary 

to disrupt 6-mer for progression to larger active structures.  
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The native MS data shed light onto the binding of a substrate and the transition from resting state to 

active state. With our observations of peptide binding (mimicking substrate binding), the occupancy at 

the onset of oligomerization, and the maximum load observed for multiple DegP oligomers, we can 

provide insight into the mechanism for higher-order oligomer formation (Figure 7). When in the resting 

state, i.e., no substrate present, the DegP exists predominantly as a 6-mer, as indicated by (1) in Figure 

7. In this conformation, the only substrate-binding site available is on the PDZ1 domain (red squares) as 

the protease domain binding site is disrupted and inaccessible (blue hexagons). Upon the addition of a 

peptide ligand to the 6-mer (2), we suggest it binds to a PDZ1 domain causing a conformational shift 

from the closed to the open conformation, thereby destabilizing the PDZ-PDZ interfacial interactions. 

Subsequent addition of peptide ligands induces conformation changes in other monomers of the 6-mer, 

progressively opening the 6-mer (3). At an occupancy greater than 40%, the 6-mer conformation is 

destabilized to such an extent that it dissociates into two 3-mers bearing multiple substrates (4). The 

reason for substoichiometric occupancy being sufficient to trigger oligomeric rearrangements is most 

likely due to positive cooperativity.(Merdanovic et al., 2010) The released 3-mers then rapidly associate 

with other 3-mers to form transitory oligomers, such as 9-mer (5), before completing higher-order 

oligomer formation (6). In Figure 7, transitory species are indicated by the gray brackets and include the 

released 3-mers and the 9-mer. We believe the transitory nature of the 9-mer causes the incomplete 

occupancy of the two peptide binding sites, rather than the 9-mer being a complete structure with an 

obstructed peptide binding site. This conclusion is supported by the increasing occupancy of the 9-mer 

with increased peptide concentration. The 12-mer, being a cage-like structure, is able to accommodate 

24 peptides indicating that both the binding site on the PDZ1 domain and the protease domain are 

available. 

The very rapid association of released 3-mers is deduced from the maximum load observed for the 9-

mer and 12-mer structures and from the increasing occupancy of the 9-mer with increased peptide 
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concentration. In the native MS spectrum, formation of higher-order oligomers occurred with an 

occupancy of 40%, or approximately upon the addition of the third to fourth peptide, meaning that the 

released 3-mers typically have one or two peptides bound. The 9-mer exhibited up to 9 peptides bound, 

equating to one per monomer or three per trimer, which is increased over that of the released 3-mer. 

Therefore, during the formation of the transitory 9-mer, additional peptides bind to available binding 

sites, either in the PDZ1 or protease domains, as observed by increased number of peptides bound with 

increased concentration (Figure 6). However, the 12-mer exhibits a defined population dominated by 

the 12-mer with the addition of 24 peptides. It was recently shown that substrate binding in both the 

protease domain and PDZ1 domain binding sites enhances degradation over substrate binding in only 

one location.(Kim et al., 2011) This result combined with the formation of the 12-mer with two peptides 

per monomer implies that the 12-mer indeed reflects the active conformation and that the 9-mer is 

indeed a transitory structure. Given that 9-mer and 12-mer formation occur on similar time scales, and it 

is unlikely that peptide ligand addition would be faster for one ligand over another, it is highly likely that 

peptide ligand binding continues after cage-like higher-order oligomer formation. It is known that the 

cage-like structures of the 12-mer and 24-mer have large pores, (Jiang et al., 2008; Kim et al., 2011; 

Krojer et al., 2008b) and these results imply that the additional peptide can diffuse through these pores 

to the now-free protease domain binding site. Any more definite conclusions about the nature of the 9-

mer or 12-mer structures cannot be deduced from our data, albeit that our MS-based binding assays 

define the ideal conditions for generating DegP 9-mers or 12-mers, amenable to X-ray crystallography or 

cryo-electron microscopy. Structural biology approaches may further reveal how the nature of the 

substrate-binding motif regulates the conformational changes in the resting state of DegP, inducing 

either 9- or 12-mer formation. 

The oligomeric transitions of DegP upon the addition of intact substrate proteins or substrate-mimicking 

peptide ligands have been documented using techniques such as size exclusion chromatography (SEC) 
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and SDS-PAGE combined with cross-linking.(Merdanovic et al., 2010) However, these studies were 

unable to determine the substrate load in these different oligomers or observe the heterogeneity within 

a single oligomer population due to the low resolution of these techniques and the high concentration 

of substrate used. A single study has probed the substrate load of denatured lysozyme in a DegQ 12-mer 

utilizing native MS, (Malet et al., 2012) but the amount of substrate was determined for only the end 

point of the oligomeric transition rather than observing the transition in oligomeric state upon 

introduction of the substrate. While native MS has been used to probe oligomeric states of large protein 

complexes, the level of detail achieved for these transitory states of DegP is ground-breaking. We have 

been able to assess the amount of substrate necessary for DegP oligomeric transitions, and, with this 

novel information, have added crucial details to the already proposed oligomerization model.  

For the DegP protease, the transition from the resting state to the active state involves a structural 

change through which proteolytic activity is governed by the oligomeric form. The exact mechanism of 

this transition is not known in detail, though the general shift from the small 6-mer structure to the 

large, cage-like structures of the active state has been well documented. Using a native MS approach, 

we have visualized the initial steps of resting-state destabilization and the formation of higher-order 

oligomers. The resolving power achieved with these native MS experiments enables the exact 

identification of the number of peptides bound to DegP. With this information, we developed a way to 

monitor DegP oligomers complexed with substrate-mimicking peptides by measuring the occupancy. It 

was observed that the onset of higher-order oligomer formation resulted from the binding of activating 

peptides. It was found that the occupancy of the 6-mer was similar for each of the activating peptides 

studied, being around 40%. We present a model of the transition from the 6-mer to higher-order 

oligomers for DegP. 
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While this current study has focused on the initial steps of DegP oligomerization, the results found here 

apply to homologs of DegP, including many members of the HtrA family. Also, this technique is 

applicable to many other systems where oligomeric transitions are crucial to function, including most 

molecular chaperones. Native MS has already been used to study substrate-binding to complexes as 

large as CRISPR-associated complexes as well as probing the structure and stability of virus 

particles.(Shoemaker et al., 2010; van Duijn et al., 2012) This study has highlighted the applicability of 

native MS to these large heterogeneous protein complexes, demonstrating the ability to measure both 

small and large mass differences in these complexes. These capabilities of native MS demonstrate its 

complementarity to techniques such as X-ray crystallography and cryo-EM, making it a powerful tool in 

the field of structural biology. 

Experimental Procedures 

DegP purification 

DegP purification was carried out under non-denaturing conditions as previously described.(Spiess et al., 

1999) Purified DegP were repurified using nickel tris-carboxymethyl ethylene diamine affinity columns. 

Equilibration and binding with 50–100 mM NaH2PO4 pH 8 was followed by thorough washing with 8 M 

urea and 50 mM NaH2PO4 pH 8. The denatured protein was recovered with 150 mM imidazole, and 

protein concentration was adjusted to 2 mg ml
1
. Refolding was performed by 50-fold dilution of the 

denatured protein sample in the refolding buffer (in 500 mM sodium phosphate buffer, pH 7). After 

refolding, DegP 6-mer formation was confirmed by size-exclusion chromatography (Superdex 200 

26/60). 

DegP activity assay 
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DegP activity was assessed via protease assays using the synthetic p-nitroanilin substrate, SPMFKGV-

pNA. The pNA-peptide has been previously shown to have very little interaction with the PDZ1 domain 

but undergo proteolytic cleavage to remove the absorbent pNA. The assays were performed in 100 mM 

ammonium acetate (pH 7.5) with 10 M DegP (monomer equivalent) and 0.5 mM pNA-substrate by 

measuring the changes in OD405 (Tecan GENios Pro reader) continuously for 1 hr at 37°C. Substrate-

mimicking peptides were preincubated with DegP for 10 minutes at 37°C before adding the pNA-

substrate. The factor of activation was calculated via the comparison of the pNA substrate turnover with 

and without the additional substrate-mimicking peptide. 

Native mass spectrometry 

Purified, refolded DegP S210A and DegP WT samples were exchanged to 100 mM ammonium acetate 

buffer, pH 7.5, using 10 kDa molecular weight cutoff spin-filter columns (Millipore, Carrigtwohill, Co. 

Cork, Ireland). Peptides were synthesized in the M. Kaiser lab (University Duisburg-Essen) and dissolved 

in water. DegP S210A or WT was mixed with peptide solutions to the various molar ratios used in these 

experiments. The concentration of DegP (1-mer) was approximately 10 µM for each mixture. Mixtures of 

DegP and substrate-mimicking peptide were sprayed on a nano-electrospray time-of-flight (nanoESI-

TOF) mass spectrometer (LCT, Waters, Manchester, UK) using gold-coated borosilicate needles prepared 

in house. Needles were generated using a Sutter P-97 puller (Sutter Instruments Co., Novato, CA, USA) 

and coated using an Edwards Scancoat six sputter-coater (Edwards Laboratories, Milpitas, CA, USA). 

Source backing pressure was increased to 6.2 mbar.(Tahallah et al., 2001) Capillary and cone voltages 

were set to 1300 V and 200 V respectively. Mass calibration was performed using aqueous CsI solution 

(25 mg/mL). All measurements were performed in triplicate. 

Data analysis 

17 

 



MassLynx V4.1 (Waters, Manchester, UK) was used for experimental mass determination. Oligomers and 

the number of attached peptides were assigned based on the theoretical mass of the purified DegP 1-

mer (with His tag, 47879.26 Da) and the theoretical mass of the peptides. Peak area for the occupancy 

calculation of the 6-mer was determined using Igor Pro V6.22. Individual peaks were fit using a 

Lorentzian function with the peak width determined according to the raw spectrum and a constant 

baseline (Figure S2). All peaks corresponding to the 6-mer were used for the occupancy calculations. 

DegP occupancy calculation 

Occupancy =
×

÷ ÷ × 100  Equation 1 

DegP occupancy was used to assess the amount of peptide ligands bound to each DegP oligomer. Since 

the focus was the transition from resting to active state, the occupancy was calculated for the 6-mer and 

3-mer. From the crystal structure of the 6-mer, it is suggested that only one binding site is available, i.e., 

the PDZ1 domain binding site.(Krojer et al., 2002) To calculate the occupancy, the average mass of 

peptides bound to a DegP oligomer was calculated by finding the weighted average mass of that 

oligomer and subtracting the mass of the free oligomer (Mn=0). The weighted average mass of an 

oligomer was derived from the mass of each peptide:DegP complex (Mn) and the peak area 

corresponding to that complex (An). For these sums, n indicates the number of peptide substrates 

bound, and N is the maximum number of bound peptide substrates observed in the spectrum. An is the 

sum of the peak area for all charge states observed for a given complex, e.g., the DegP 6-mer with 3 

substrate-mimicking peptides bound. The mass of the free DegP oligomer, calculated from the 

theoretical mass of the DegP 1-mer (47879.26 Da), was subtracted from the weighted average mass to 

yield the average mass of peptide bound to the DegP oligomer. The mass of peptide bound was then 

normalized by the theoretical mass of the peptide (Mpeptide) and the number of possible binding sites 

(Nsites), i.e., the number of PDZ1 domains, to yield a percentage of binding sites occupied. 
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Figure Legends  

Figure 1 Classification of the different shapes of DegP oligomers with each color representing an 

individual 3-mer subunit. In face-to-face structures, the planar faces of the 3-mers are parallel to each 

other, and structural stabilization results from loops extending from one 3-mer into the opposite 3-mer 

as well as PDZ domain interactions across the interface (closed structure). Bowl-shaped structures have 

similar curvature to the cage-like structures but do not form a closed sphere. Cage-like structures are 

comprised of multiple 3-mers to form a hollow sphere with large pores on the surface. These structures 

were derived using the 1KY9 and 3OU0 PDB structures. 

Figure 2 Native MS spectra simultaneously monitoring peptide-binding and oligomerization of DegP 

S210A induced by the binding of the substrate-mimicking peptide DPMFKLV. The different oligomers are 

color-coded, with the 12-mer being the “active” form. The masses of each oligomer without additional 

peptide substrate are: 143,638 Da for the 3-mer, 287,276 Da for the 6-mer, and 574,551 Da for the 12-

mer. Increasing amounts of DPMFKLV were added to a constant amount of DegP S210A (b-e). The 

[DPMFKLV]:[DegP 1-mer] ratios were 0.00 (A), 0.58 (B), 1.16 (C), 1.74 (D), and 2.32 (E). For DegP 

oligomeric transition to the 9-mer, see Figure S1. 

Figure 3 Native MS spectra revealing the binding of multiple peptide ligands prior to higher-order 

oligomer formation. These spectra show the DegP S210A 6-mer with increasing amounts of the peptide 

DPMFKLV. [DPMFKLV]:[DegP 1-mer] ratios of 0.00 (A), 0.13 (B), 0.26 (C), and 0.50 (D). In these spectra, 

the 34+ through the 39+ charge states of the 6-mer are shown. The gray number above each peak 

indicates the number of peptide ligands bound to the DegP 6-mer. The higher-order oligomer (12-mer) 

formed only at [DPMFKLV]:[DegP 1-mer] ratios above 0.25 (C and D). 
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Figure 4 Occupancy of the DegP 6-mer (maximum loading of 6 peptides) with increasing amounts of the 

peptide ligand. Panels A-D show the occupancy for those peptides that induced higher-order oligomer 

formation measured by native MS. The asterisk indicates the ratio at which the higher-order oligomer 

first appears in the mass spectrum. Panels E and F show the lack of response for the negative control 

peptides. The error bars are the standard deviation over three replicates. Individual peak fitting is 

illustrated in Figure S2. 

Figure 5 Overlays of experimental and simulated spectra used to validate the number of peptide ligands 

bound to each higher-order oligomer. Native MS spectra were simulated using SOMMS. The charge 

state distribution for the oligomer with one peptide per monomer is shown in red, and the distribution 

for the oligomer with two peptides per monomer is shown in blue. The experimental data is black with 

the number of substrate-mimicking peptides bound indicated in gray. For each spectrum, a single charge 

state is highlighted by a circle. A) Native MS spectra highlighting the 46+ through 48+ charge states of 

the DegP 9-mer formed after incubation with DYFGSALLRV at a [peptide]:[DegP 1-mer] ratio of 1.49:1. 

The alignment of the simulated and experimental spectra for each charge state confirms the addition of 

9 peptides to the DegP 9-mer. The slight increase in mass is most likely due to incomplete desolvation. 

B) Native MS spectra highlighting the 57+ through 60+ charge states of the DegP 12-mer formed after 

incubation with CHHSAFPVFL at a [peptide]:[DegP 1-mer] ratio of 7:1. The alignment of the simulated 

and experimental spectra for each charge state confirms the addition of 24 peptides to the DegP 12-

mer. 

Figure 6 Native mass spectra reveal transitory nature of 9-mer. These spectra show the bound ligand 

distribution of DegP S210A higher-order oligomers with increasing peptide concentration (top to 

bottom: [peptide]:[DegP 1-mer] of 0.26, 0.50, 0.74, 1.0, and 1.49). The DegP S210A 9-mer (left) was 

formed via binding with the peptide DYFGSALLRV, and the DegP S210A 12-mer (right) was formed via 
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binding with the peptide DPMFKLV. The distribution of peptides bound to the 12-mer shifts only slightly 

with increased peptide concentration whereas the distribution of peptides bound to the 9-mer shifts 

dramatically (from an average of 4 peptides to 8 peptides). These results indicate that the 12-mer forms 

with both binding sites occupied while the 9-mer is transitioning between the occupancy of the 6-mer 

and the 12-mer. The charge states are labeled above each distribution (in black), and the number of 

peptides bound to each oligomer is listed above each peak (in gray). 

Figure 7 Proposed mechanism for the substrate-mimicking peptide-induced transition from resting to 

active state. In this model, the structure of DegP is represented graphically, whereby the blue hexagon is 

the protease domain, the red square is the PDZ1 domain, and the green square is the PDZ2 domain. In 

the resting state (1), the binding site on the PDZ1 domain available for binding, but the protease domain 

binding site is blocked, each represented by white areas. The substrate-mimicking peptide (orange 

circle) binds to the PDZ1 domain (2), inducing a conformational change, destabilizing that interfacial 

PDZ-PDZ interaction. Additional binding of substrates to other PDZ1 domains induces further 

destabilization of the 6-mer (3). The destabilized 6-mer structure dissociates into 3-mers with mixed 

numbers of peptide ligands bound (4). Free 3-mers then associate, through transitory oligomers such as 

the 9-mer (5), to form higher-order oligomers, such as the 12-mer (6). The gray brackets around the 

released 3-mer and the 9-mer indicate that these species are transitory. The 9-mer is shown as binding 9 

peptide ligands, but given the transitory nature, is unable to reach 100% occupancy of both binding 

sites. The cage-like 12-mer, however, is capable of accommodating 24 peptides, indicated by peptide 

binding to both PDZ1 and protease domain.  

Tables 

Peptide Sequence Induced [Peptide]:[DegP 1-mer] Occupancy of the DegP 
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Oligomer ratio at higher-order 

oligomer formation 

6-mer at higher-order 

oligomer formation 

DPMFKLV 12 0.25:1 37% 

DYFGSALLRV 9 0.25:1 30% 

CHHSAFPVFL 12 5:1 41% 

SPMFKGVLDMMYGGMRGYQV 9 4:1 44% 

SPMFKGV - N/A N/A 

SPMFKGVLDMMYGGMRGYQE - N/A N/A 

 

Table 1 Summary of observed oligomerization of DegP S210A induced by peptide ligands. Induced 

oligomer indicates the predominant higher-order oligomer formed with sufficient peptide 

concentration, which is any concentration greater than the [peptide]:[DegP 1-mer] ratio listed. “-“ 

indicates that no higher-order oligomer formed, even at molar excess of peptide. The peptide-binding 

occupancy of the DegP 6-mer is listed at the onset of higher-order oligomer formation. For the factor of 

activation used to classify a peptide as “substrate-mimicking” or “control”, see Table S1. Formation of 

the 9-mer and the lack of higher-order oligomer formation for a control peptide are illustrated in Figure 

S1. 
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Supplemental Information 

Peptide Factor of Activation 

DPMFKLV 219 

DYFGSALLRV 165 

CHHSAFPVFL 7 

SPMFKGVLDMMYGGMRGYQV 43.4 

SPMFKGV 1.3 

SPMFKGVLDMMYGGMRGYQE 1.7 

 

Table S1, related to Table 1. Substrate-mimicking peptide ligands determined via observation of 

increased proteolytic activity compared to a known non-substrate. The factor of activation was 

determined by the comparison of pNA substrate turnover with and without the additional substrate-

mimicking peptide. Comparison of activation factors with that of a known non-activating peptide 

substrate (SPMFKGV) was used to assign each peptide. Those peptides that exhibited increased 

proteolytic activity were classified as substrate-mimicking and assumed to induce oligomeric transitions 

(DPMFKLV, DYFGSALLRV, CHHSAFPVFL, and SPMFKGVLDMMYGGMRGTQV). The peptide that did not 

show increased proteolytic activity was classified as a control (SPMFKGVLDMMYGGMRGYQE). The 

factors of activation listed here are for solutions with a [peptide]:[DegP 1-mer] ratio of 10. 

  



 

  

Figure S1, related to Figure 2 and Table 1 Native MS spectra of DegP WT (a, c, e) and DegP S210A (b, d, 

f) with no peptide substrate added (A, B), with the substrate-mimicking peptide ligand DYFGSALLRV at a 

[peptide]:[DegP 1-mer] ratio of 0.98 (C, D), and with the control peptide SPMFKGV at a [peptide]:[DegP 

1-mer] ratio of 5.04 (E, F). The various DegP oligomers are color-coded according to the legend, and the 

masses of the unbound DegP oligomers are: 143,686 Da (WT) and 143,638 Da (S210A) for the 3-mer, 

287,372 Da (WT) and 287,276 Da (S210A) for the 6-mer, and 431,057 Da (WT) and 430,913 Da (S210A) 

for the 9-mer. Similar activity is observed for both the inactive mutant and the wild type.  



 

 

Figure S2, related to Figure 4 Illustrative peak fitting of a native MS spectrum using Igor Pro V6.22. In 

this example, the fitting of the 36+ through the 38+ charge states of the DegP 6-mer with the peptide 

ligand DPMFKLV is shown. The top spectrum represents the residuals between the experimental and 

fitted spectrum. The middle spectrum is an overlay of the composite fitted peaks (blue) and the 

experimental data (red). The bottom spectrum shows the individual Lorentzian peaks used to create the 

fitted spectrum. The charge states are labeled, and the number of peptides bound is indicated above 

each individual Lorentzian peak.

 


