ORCA – Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/57090/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Clare, Elizabeth L., Symondson, William Oliver Christian, Broders, Hugh, Fabianek, François, Fraser, Erin E., MacKenzie, Alistair, Boughen, Andrew, Hamilton, Rachel,
Willis, Craig K. R., Martinez-Nuñez, Felix, Menzies, Allyson K., Norquay, Kaleigh J. O., Brigham, Mark, Poissant, Joseph, Rintoul, Jody, Barclay, Robert M. R. and Reimer,
Jesika P. 2014. The diet of Myotis lucifugus across Canada: assessing foraging quality and diet variability. Molecular Ecology 23 (15), pp. 3618-3632. 10.1111/mec.12542

Publishers page: http://dx.doi.org/10.1111/mec.12542

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1	The diet of <i>Myotis lucifugus</i> across Canada: assessing foraging quality and diet
2 3 4 5 6 7	variability Elizabeth L. Clare ¹ , William O.C. Symondson ² , Hugh Broders ³ , François Fabianek ⁴ , Erin E. Fraser ⁵ , Alistair MacKenzie ⁶ , Andrew Boughen ⁷ , Rachel Hamilton ⁸ , Craig K.R. Willis ⁹ , Felix Martinez-Nuñez ⁹ , Allyson K. Menzies ⁹ , Kaleigh J.O. Norquay ⁹ , Mark Brigham ¹⁰ , Joseph Poissant ¹⁰ , Jody Rintoul ¹⁰ , Robert M.R. Barclay ¹¹ , Jesika P. Reimer ¹¹
8 9	¹ School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
10 11 12	² Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
13 14 15	³ Department of Biology, Saint Mary's University, Robie Street, Halifax, NS B3H 3C3, Canada
16 17 18	⁴ Faculty of Forestry, Faculty of Geography and Geomatics, Laval University 2405 rue de la Terrasse, Quebec G1V 0A6, Canada
19 20 21 22 22	⁵ Environmental Science (Biology), Memorial University of Newfoundland, Grenfell Campus, 20 University Dr., Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
23 24 25	⁶ Pinery Provincial Park, Ontario Parks, 9526 Lakeshore Road, R.R. #2 Grand Bend, Ontario N0M 1T0, Canada
26 27 28	⁷ Lake St. George Conservation Field Centre, Toronto and Region Conservation, 950 Bethesda Sd. Rd., Richmond Hill, Ontario, L4E 3G2, Canada
29 30 31	⁸ Department of Biology, Biological and Geological Sciences Building, University of Western Ontario, London Ontario, N6A 5B7, Canada
32 33 34	⁹ Department of Biology, Lockhard Hall, University of Winnipeg, Portage Avenue, Winnipeg Manitoba, R3B 2E9, Canada
35 36 37	¹⁰ Department of Biology, Laboratory Building, University of Regina, Wascana Parkway, Regina Saskatchewan, S4S 0A2, Canada
38 39 40 41	¹¹ Department of Biological Sciences, University of Calgary, University Drive N.W., Calgary Alberta, T2N 1N4, Canada
42 43 44 45 46	Corresponding Author: E.L. Clare. School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, e.clare@qmul.ac.uk, Fax: +44 (0)20 7882 7732

- 47 Key words: molecular diet analysis, species' interactions, spatial-temporal variation,
- 48 resource use
- 49 **Running Head:** Diet of little brown bats across Canada
- 50

51	Abstract

52 Variation in prey resources influences the diet and behaviour of predators. When 53 prey become limiting, predators may travel farther to find preferred food or adjust to 54 existing local resources. When predators are habitat limited, local resource abundance 55 impacts foraging success. We analyzed the diet of *Myotis lucifugus* (little brown bats) 56 from Nova Scotia (eastern Canada) to the Northwest Territories (north western Canada). 57 This distribution includes extremes of season length and temperature and encompasses 58 colonies on rural monoculture farms, and in urban and unmodified areas. 59 We identified recognized nearly 600 distinct species of prey, of which $\approx 30\%$ 60 could be identified using reference sequence libraries. We found a higher-than-expected 61 use of lepidopterans, which comprised a range of dietary richness from $\approx 35\%$ early in the 62 summer to \approx 55% by late summer. Diptera were the second largest prey group consumed, representing $\approx 45\%$ of dietary diversity early in the summer. We observed extreme local 63 64 dietary variability and variation among seasons and years. Based on the species of insects 65 that we recorded in the dietconsumed, we suggest that two locations support prey species 66 with extremely low pollution and acidification tolerances, suggesting that these are areas 67 without environmental contamination. We conclude there is significant local population 68 variability in little brown bat diet which is likely driven by seasonal changes in insect

- 69 diversity and may be a good indicator of environment quality.
- 70

71 Introduction

72	Molecular techniques are increasingly used to identify species, particularly
73	morphology morphologically cryptic taxa. This has generated databases of taxonomically
74	validated reference sequences (e.g. BOLD, Ratnasingham & Hebert 2007) to quantify
75	biodiversity (e.g. Hebert et al. 2003), detect food market substitutions (e.g. Wong &
76	Hanner 2008; Hanner et al. 2011) and improperly labelled food (e.g. Cohen et al. 2009).
77	Characterizing ecological connections is more complicated than indexing species'
78	presence (McCann 2007) and the use of reference databases to document interactions
79	(e.g. Smith et al. 2006, 2007) has expanded greatly. Molecular techniques provide a
80	powerful means to unravel food webs (Symondson 2002; King et al. 2008; Pompanon et
81	al. 2012) which cannot be observed. These techniques developed from monoclonal
82	antibody methods (e.g. Symondson & Liddell 1993) to cloning (e.g. Zeale et al. 2011;
83	Alberdi et al. 2012), and next generation sequencing (NGS) (Pompanon et al. 2012).
84	NGS now dominates <u>these</u> analyses and has been applied to marine systems (Deagle <i>et al.</i>
85	2009, 2010), herbivores (Soininen et al. 2009; Valentini et al. 2009) and terrestrial
86	insectivores (Bohmann et al. 2011; Brown et al. 2013). Next generation sequencing is
87	particularly effective when applied to generalists.
88	One hypothesis to explain food web stability is that increased species richness is
89	related to food-web complexity (the number of interactions). When richness is coupled
90	with functional redundancy and behavioural flexibility, food webs become more stable

- 91 (Solé & Montoya 2001; Kondoh 2003; Dunne *et al.* 2004). Generalism provides the
- 92 opportunity for flexibility in prey choice and its importance is documented e.g. stabilizing
- both predator and prey population demography (Singer & Bernays 2003) or indirectly

94	controlling lower food web links (Rosenheim & Corbett 2003). The main prediction of
95	this hypothesis is that, when resources become limited, flexible consumers become more
96	general in resource use. Dietary flexibility can be driven by limited high quality food, and
97	the necessity to diversify to achieve nutrition, to avoid toxins, to follow resources, or
98	minimize foraging risks (Singer & Bernays 2003). Some generalists switch between
99	specialized resources (e.g. omnivory, Clare et al. 2013) while others consume food in
100	ratios based on abundance (Rosenheim & Corbett 2003; Bastille-Rousseau et al. 2011).
101	Bats are an ideal group to study dietary flexibility as they occupy multiple trophic
102	levels (carnivores, sanguivores, frugivores, nectarivores, insectivores) and niches (e.g.,
103	active hunting, passive listening for prey, fishing, trawling). They are frequently top
104	predators and may consume resources at different trophic levels (e.g. Clare et al. 2013).
105	However, they consume resources cryptically (. They are active at night, using high-
106	frequency echolocation) and are thus difficult to observe. Molecular methods provide a
107	solution and are particularly useful in insectivores where thorough mastication of prey
108	limits traditional morphological analyses of faeces (guano) (Kunz & Whitaker 1983) or
109	culled prey remains (e.g. Nycteris grandis Fenton et al. 1981, 1990). In both cases
110	identification of prey is limited to order or family and small, soft bodied prey may be
111	overlooked (Clare et al. 2009). Molecular analysis permits us to identify prey to species
112	(Clare et al. 2009) particularly when coupled with reference libraries (Hebert et al. 2003;
113	Ratnasingham & Hebert 2007) increasing precision.
114	Carter et al. (2006) showed a proof of the concept by amplifying chicken DNA

114 Carter *et al.* (2006) showed a proof of the concept by amplifying chicken DNA 115 from the faeces of white-winged vampire bats (*Diaemus youngi*). The first full molecular 116 analysis of bat diet assessed predator-prey relationships between *Lasiurus borealis* and

Page 6 of 40

117	Lepidoptera (Clare et al. 2009) by sequencing DNA directly from residual prey
118	fragments. Cloning and prey-specific primers were developed (Zeale et al. 2011) and
119	used to uncover a novel hunting strategy of Barbastella barbastellus (Goerlitz et al.
120	2010) and the diet of Plecotus macrobullaris (Alberdi et al. 2012). These methods have
121	rapidly been replaced by NGS (Bohmann et al. 2011; Razgour et al. 2011; Clare,
122	Symondson, et al. 2013; Emrich et al. 2013) which are faster and more cost effective.
123	Myotis lucifugus, the little brown bat, was one of the most common and
124	widespread bats in North America, though populations are in decline due to white nose
125	syndrome (Frick et al. 2010). They have a distribution from Alaska, through southern
126	Northwest Territories, the prairies, Ontario, Quebec and the Maritime provinces in
127	Canada, and south through the continental United States and northern Mexico (Fenton &
128	Barclay 1980). Arthropod consumption by bats (including Myotis lucifugus) varies by
129	species and season (tied to lack of many prey early and late in the year and reproductive
130	cycle) (Kunz et al. 2011), and by age (Fraser & Fenton 2007). At peak metabolic demand
131	during lactation, little brown bats may consume more than their body mass in prey each
132	night (Kurta et al. 1989) and thus potentially provide a significant ecosystem service
133	through insect consumption (Boyles et al. 2011). They are generalists consuming insects
134	of low prey hardness (Freeman 1981) mostly emerging from aquatic systems e.g. Diptera
135	and Trichoptera (Belwood & Fenton 1976; Freeman 1981; Ober & Hayes 2008), although
136	adult females consume more Lepidoptera and Trichoptera (Belwood & Fenton 1976).
137	Myotis lucifugus' tendency to forage over water provides a means to assess
138	foraging location quality. In this context, our reference to foraging habitat/location
139	quality refers to both type of habitat (such as moving or still water) and also to the

140	potential acid and pollution content of the aquatic system. Benthic macro-invertebrates
141	are frequently used as environmental indicators. Their pollution tolerance (e.g. organic
142	pollutants, acidification) and habitat requirements have been documented (Hilsenhoff
143	1988). If we consider bats as a sampling mechanisms, species-level diet analysis provides
144	data for assessing the quality of foraging areas without complicated, potentially invasive
145	methods such as radio tracking bats to locate foraging followed by mass insect sampling.
146	Thus, while bats may not be used as a method of general habitat assessment (their
147	sampling is biased by perceptual characters and preferences etc.), their diet can provide
148	us which information on specific areas they have visited.
149	Clare et al. (2011) performed the first molecular analysis of little brown bat diet in
150	three locations in Southern Ontario. They identified 66 prey species and noted a shift
151	from consumption of Diptera early in the summer to Ephemeroptera in mid and late
152	summer. There was evidence of local diet variation which allowed inferences about
153	for a for a function quality. There is evidence that diet diversity is a function of location $\frac{1}{27}$
154	populations in northern Ontario have greater dietary variability than those in southern
155	areas (Belwood & Fenton 1976). The range of little brown bats in Canada includes areas
156	of high and low insect species richness. If prey themselves are a limited (and limiting)
157	resource, as prey richness decreases, the null hypothesis is that predators should similarly
158	consume a lower species richness; however, if abundance is high, diet may change little
159	or predators may adopt a more general strategy and consume a wider variety of prey
160	(higher values of Simpson's diversity index, Simpson 1949).
161	Our study had two objectives. First, we assessed variability of little brown bat
162	diets across Canada, over the summer and between years, and tested the hypothesis that

163	they have high degree of dietary variability across location and time. Second, we used the
164	identity of prey to make inferences about habitat, based on known habitat requirements
165	and pollution tolerances of the prey. We tested four predictions about diet: 1) latitude has
166	an effect on diet, 2) temporal patterns of prey exploitation across the summer are stable
167	from year to year, 3) there is a significant shift from the consumption of species of
168	Diptera to Ephemeroptera associated with phases of the reproductive cycle and 4)
169	species-level analysis of prey provides criteria for assessing foraging location-area
170	quality and yields quantitatively different insights than ordinal level analysis.
171	
172	Methods:
173	Sample Collection:
174	We collected guano under maternity roosts of <i>M. lucifugus</i> across Canada (Figure
175	1) during three periods, including pregnancy (early summer = May to mid-June),
176	lactation (middle summer = mid-June to mid-July) and post lactation (late summer = mid-
177	July to September). Collections in Ontario were performed in 2009 (at Clinton, the
178	Pinery), 2009 and 2011 (Lake St. George) and in 2011 for all other locations. Sampling
179	was performed weekly in Ontario throughout the summer (fine grained analysis), and
180	during the three established periods in other locations (see Figure 1 for details).
181	Additional material was collected at two locations in Quebec but due to sampling
182	differences and difficulties with molecular analysis we include this only as a supplement
183	(see details in Supplemental Files 1 and 2) for comparison. We adopted the definitions of
184	seasons from Clare et al. (2011) (see Supplemental File 3 for collection dates and
185	locations). We froze samples or preserved them in high-percentage ethanol (70-100%).

Because we collected samples from colonies rather than individuals, the volume of material was substantial (exceeding half a liter per week by volume in some cases) and reflected deposition by many individuals (potentially exceeding a thousand in some locations), we analyzed a random subset of the pellets from each collection (volume c.1.5ml of guano or c.50 pellets, hereafter a "sample").

191

192 DNA Extraction, Amplification and Sequencing:

193 We extracted DNA from homogenized samples using the QIAmp DNA Stool 194 Mini Kit (Qiagen, UK) following manufacturer's instructions with modifications from 195 Zeale et al. (2011), further modified as follows: 1) to encompass more individuals and 196 thus greater prey diversity we used approximately 50x more starting material and 2) we 197 extended the first centrifuge step (Zeal step 4) to 3 minutes to aid in pelleting the particulate material. Extracted DNA was stored at -20 °C prior to amplifications. 198 199 We tested DNA extractions success using the primers ZBJ-ARTF1c and ZBJ-200 ArtR2c (Zeale et al. 2011). We then amplified each sample using a modified fusion-201 primer version for the Roche FLX sequencer (Bohmann et al. 2011) consisting of a Lib-L 202 adaptor, the key sequence, a unique 10 bp DNA sequence (MID) and the original primer 203 sequence (ZBJ-ARTF1c or ZBJ-ArtR2c). In our design (Brown et al. 2013; Clare et al. 204 2013), MID sequences were used on both forward and reverse primers allowing fewer 205 primers to be used to resolve the same number of samples (i.e. rather than 100 unique 206 forward MID tagged primers for 100 samples, 10 unique forward and 10 unique reverse 207 MIDsd can yield the same resolution power) while reducing primer costs. We assigned

208 each sample a unique primer combination so all sequences could be identified to original209 samples.

210	We performed PCR reactions as described by Bohmann <i>et al.</i> (2011) in a 20 μ l
211	reaction containing 1µl of template DNA using Qiagen multiplex PCR kits (Qiagen, UK)
212	with the following modifications. We did not use Q solution (from the kit) or BSA (as
213	suggested by Bohmann et al. 2011). We visualized PCR products on a 1.5% agarose gel
214	and quantified them following Brown et al. (2013) and mixed approximately equal molar
215	quantities of each sample. We size-selected and samplesproducts using a QIAquick Gel
216	Extraction kit (Qiagen, UK) and quantified the final PCR mix using a Qubit dsDNA BR
217	Assay Kit (low sensitivity with a Qubit Fluorometer, Invitrogen life technologies).
218	We concentrated the final product to $10\mu g/1\mu l$ in molecular grade water.
219	Sequencing was conducted at the Liverpool Center for Genomic Research (University of
220	Liverpool) using a ¼ plate, Lib-L chemistry on a Roche 454 GS FLX+ sequencing
221	system (Roche Applied Sciences).
222	
223	Sequence Analysis:
224	We analyzed sequences using Galaxy (<u>https://main.g2.bx.psu.edu/root</u> , Giardine
225	et al. 2005; Blankenberg et al. 2010; Goecks et al. 2010). We screened all recovered
226	sequences for those longer (>180 bp) or shorter (<100 bp) than expected, collapsed all
227	sequences to unique haplotypes, split the file by forward and reverse MIDs, removed
228	primers, MIDs and adaptors and excluded rare haplotypes (<2 copies).
229	We clustered the sequences into molecular operational taxonomic units (MOTU)
230	in jMOTU (Jones et al. 2011) and tested thresholds from 1-10 bp. A graph of recovered

MOTU vs. threshold (not shown) suggests a 4 bp cut-off was most appropriate (Razgour *et al.* 2011).

233	We compared representative sequences for each MOTU to the BOLD database
234	(www.barcodinglife.org) following criteria modified from Razgour et al. (2011):
235	1a=match to one species or several species in a genus (100% similarity), most
236	conservative taxonomy kept; 1b=good match (>98% similarity), but could belong to a
237	congener showing a higher sequence match; 2=match to more than one species (>98%),
238	only one of which is present in the sampling range (that taxonomy kept); and 3=close
239	match (as above) to several species from different genera, or to a reference sequence
240	which lacks a full taxonomic record. In these cases, the most conservative taxonomy
241	(normally family) was kept (note this is not an identification to higher level taxonomy,
242	but a match meeting criteria 1b but retaining ambiguity in the assignment due to multiple
243	similar matches or incomplete data in the reference collection).
244	In addition, we estimated the identity of all MOTU (including unidentified
245	MOTU) using the methods of Emrich et al. (2013) and the programme MEGAN (Huson
246	et al. 2011). See Emrich et al. (2013) for details of that procedure and a brief discussion.
247	

248 Ecological Analysis:

We divided our collections into the three time periods. We conducted ecological analyses in PAST (Hammer *et al.* 2001) on species and order-level data with p-values estimated by permutation. We compared the Simpson's diversity indices for identified prey among locations (sequential Bonferroni correction) and among summer sampling periods, and estimated the magnitude of the effect (effective number of species), where

254	differences were statistically significant, following Jost (2006). We compared species
255	richness from paired weekly samples from the high-density sampling sites at Clinton
256	(rural monoculture farming area) and Lake St. George in 2009 (environmentally variable
257	conservation area). We computed rarefaction curves for all data.
258	We compared the proportion of each order in the diet (proportion = frequency of
259	occurrence of that order / total occurrences, where an occurrence is an identified MOTU
260	in a sample) among locations and among sampling periods using a χ^2 frequency test with
261	p-values computed using a Monte Carlo simulation with 2000 replicates in R 2.15.1 ("R
262	Development Core Team: R: A language and environment for statistical computing"
263	2008).
264	We use the recovered species to evaluate the foraging area-location of the
265	populations using the Hilsenhoff Biotic Index for organic pollutants developed for the
266	western Great Lakes (Hilsenhoff 1988) and the Fjellheim & Raddum (1990) index for
267	acid tolerance.
268	
269	Results
270	Sequence Processing:
271	We recovered 167,562 sequences. After filtering, these were resolved into 10,792
272	unique haplotypes that could be assigned to an original sample. We clustered these into
273	molecular operational taxonomic units (MOTU) and examined a representative sequence
274	from each cluster. We removed 6 MOTU as contaminants (nearest BLAST similarity was
275	identified as a non-prey item e.g. bacteria). The remaining 566 MOTU were used in
276	further analysis and represent a mean of ≈ 9 species per sample.

277

278 Diet of Little Brown Bats:

279	Through comparison to the reference library, we identified 211 MOTU to species
280	using criteria 1a, 1b and 2 (Supplemental File 1), hereafter referred to as species. We also
281	identified of an additional group of MOTU using criteria 3 but consider them as
282	provisional identifications. Of the identified occurrences (defined above), \approx 45% were
283	Lepidoptera, \approx 34% Diptera, \approx 11% Ephemeroptera, \approx 6% Trichoptera and \approx 4% Coleoptera
284	(Figure 2). An additional 9 species represented Araneae (four species), Hemiptera (one
285	species), Hymenoptera (one species), Megaloptera (two species) and Neuroptera (one
286	species). The most common prey were two species of Chironomids (Diptera):
287	Dicrotendipes tritomus and Paracladopelma winnelli found in 29% and 22% of samples,
288	respectively, and two species of Ephemeroptera: Caenis youngi and Caenis amica found
289	in 28% and 22% of samples respectively (note that Caenis are difficult to separate
290	morphologically or genetically and multiple cryptic species are suspected, thus the actual
291	identity of species within this genus should be considered an estimate due to taxonomic
292	limitations). A single species was identified as prey in all sampled locations, a moth,
293	Hydriomena (Lepidoptera, Geometridae). However, Hydriomena contains species with
294	overlapping DNA barcodes (shared haplotypes at COI), and thus this identification may
295	correspond to more than one species. We recovered a similar analysis of prey diversity
296	from MEGAN (Figure 8) which suggest that unidentified prey are relatively dispersed
297	among the consumed insect groups.
298	Many of the prey consumed provide specific information on the type and quality

299 of the aquatic system; the most sensitive taxa, including families Glososomatidae,

300	Ephemerellidae and Corydalidae and genera Lemnephilus, Agrypnia and Phryganea,
301	were consumed in both the Northwest Territories and Lake St. George (for a site-by-site
302	analysis see Table 1).
303	
304	Spatial-Temporal Variation in Resource Use:
305	Considering species from the five main prey groups (Ephemeroptera, Coleoptera,
306	Lepidoptera, Diptera and Trichoptera) with all data pooled, the proportion of
307	consumption varied significantly among periods ($\chi^2 = 26.89$, p=0.0005, Figure 2). In early
308	summer, the diet was dominated by Diptera (45% of occurrences) though the bats'their
309	presence decreased throughout the summer (30% in mid summer, 29% in late summer).
310	In contrast, Lepidoptera increased from 35% of occurrences in early summer, to 46% in
311	mid summer and 55% in late summer. The frequency of occurrence of Ephemeroptera,
312	Coleoptera and Trichoptera remained stable. We did not observe a switch from
313	consumption of Diptera to Ephemeroptera as previously reported (Clare et al. 2011).
314	Prey use varied significantly among locations ($\chi^2 = 119.69$, p=0.0005, Figure 3).
315	In some locations (Northwest Territories, Lake St. George 2009), the main prey were
316	Lepidoptera and Diptera, while in other locations (e.g. Lake St. George 2011) prey
317	consumption was dominated by Lepidoptera. These differences do not appear to reflect
318	sampling intensity; the three most heavily sampled locations (Clinton, Lake St. George
319	2009 and 2011) showed different patterns of prey use.
320	Despite difference in prey consumption, Simpson Index measures did not indicate
321	a significant difference in dietary diversity among locations (Figure 4) except at Pinery
322	Provincial Park (Pinery) in Ontario. When considered at the ordinal level, diversity of

323	prey at Pinery was particularly low. This pattern was different when considering species			
324	(MOTU) level resolution; diversity estimates were more even, and bats at Pinery had			
325	high diversity. Saturation of rarefaction curves (Figure 5) indicates sampling reached a			
326	plateau in ordinal level identifications, while species-level identifications were still			
327	increasing almost linearly (Figure 5c and 5d). Diversity estimates at ordinal and species			
328	level were not correlated (r=0.27, p=0.18). Latitude did not correlate with diversity at the			
329	ordinal (r=0.43, p=0.15) or species (r=-0.11, p=0.4) levels.			
330	Diversity estimates varied significantly among seasons (early = 0.66 , mid = 0.67 ,			
331	late = 0.60) with a nearly significant reduction in dietary diversity observed between			
332	early and late season (p=0.05) and a significant reduction between mid and late season			
333	(p=0.031) (Figure 6), reflecting reductions in the effective numbers of species of 14% and			
334	20%, respectively.			
335	We sampled the same colony at Lake St. George in 2009 and 2011. In 2009 we			
336	estimated that this colony consisted of several thousand individuals, although this number			
337	declined slightly in 2011 likely due to white nose syndrome (Frick et al. 2010). Sampling			
338	at this location was done during matched weeks between the two years, but we observed			
339	remarkable difference in the spatial-temporal pattern of prey use. In 2009, prey use			
340	mirrored that observed across all locations (Figure 2), while in 2011, Diptera represented			
341	a minority of prey, Lepidoptera dominated all seasons (91% in late season), and no			
342	Coleoptera or Trichoptera were consumed.			
343	The most heavily sampled locations were Clinton (n=14 weeks) and Lake St.			

The most heavily sampled locations were Clinton (n=14 weeks) and Lake St. George in 2009 (n=18 weeks). Of these, 13 sampling weeks were common and could be directly compared (difference reflects differential colony establishment). Although not

346	significant, there is a trend towards higher species richness at Lake St. George in 2009;
347	mean prey species richness was 20 species/sample compared to a mean of 17 in Clinton
348	(Figure 7), although the number of species was higher in only 8 of 13 weeks.
349	
350	Discussion
351	Our goal was to examine variation in resource use by bats across Canada and to
352	use these data to infer foraging area location quality. Our analysis suggests that prey use
353	by little brown bats at the most northern sampling location (NWT) consumed prey evenly
354	between orders, although there was no consistent pattern of consumption among
355	locations. Intensive sampling of populations in different locations in Ontario across two
356	years indicated that there was spatial-temporal variation in prey use. We did not observe a
357	seasonal shift between the consumption of Diptera and Ephemeroptera. Analyses at
358	species level showed different patterns than at ordinal level, indicating that species-level
359	resolution provides novel insights in dietary analysis.
360	
361	Spatial Variation in Diet Across Canada
362	When we combined data from all locations, Diptera dominated the diet in the
363	early season but was replaced by Lepidoptera in the mid and late seasons. This pattern
364	was prominent at Lake St. George (2009) and the NWT, but variable at other locations.
365	The reliance on Diptera in the early season agrees with previous morphological (Belwood
366	& Fenton 1976; Freeman 1981; Ober & Hayes 2008) and molecular (Clare et al. 2011)
367	analyses. Diptera are an important prey group in both species richness and dietary
368	abundance. We found no evidence to support the reported heavy reliance on Trichoptera,

369	but found more species of Lepidoptera than expected. This may reflect the
370	overabundance of Lepidoptera within the reference collection, biasing the number of
371	taxonomic identities reported. It is possible that Trichoptera represent a large number of
372	the "unknowns" within our sample however our estimations using MEGAN indicate that
373	unknowns are relatively dispersed among taxonomic groups
374	Traditional morphological analyses are based on estimating abundance of prey
375	groups in any given sample. Lepidoptera are frequently identified from scales and small
376	morphologically cryptic species may be lumped into a single unit or overlooked. One
377	advantage of molecular analysis is the routine detection of rare prey (Clare et al. 2009).
378	However, as molecular analyses cannot estimate abundance, biomass or volume (e.g.
379	haplotype number \neq abundance, MID tags, primers and adaptors influence sequencing,
380	sequencing direction produces different results and biases in sequencing are not
381	consistent between runs even using the same PCR products, (Pompanon et al. 2012;
382	Deagle et al. 2013; Piñol et al. 2013)) within a sample, rare and common items are both
383	"present". A large sample size may control for overrepresentation of rare prey (or
384	underrepresentation of common prey) however there is a trade-off between increasing the
385	volume of material analysed (the pooling method here) to increase our assessment of
386	biodiversity and the potential for skew with presence and absence records, though it is not
387	a correction that can be empirically assessed.
388	While we cannot estimate sample-based abundance, molecular analysis allows us
389	to measures species richness and frequency across samples. While richness within an
390	order can be related to abundance, there are important exceptions. Mass emerging prey
391	like mayflies (Ephemeroptera) may be extraordinarily abundant but low in species

richness. In our analysis, Lepidoptera may appear as the most important food source

392

Page 18 of 40

393 because they are more speciose, while mayflies may be underrepresented. The abundance 394 of Lepidoptera may also reflect previous observations that females consume more 395 Lepidoptera than males (Belwood & Fenton 1976); all of the colonies we sampled were 396 maternity groups dominated by females and their offspring. The results from Quebec 397 based on males (Supplemental File 2) recovered more Diptera which may support this 398 conclusion. 399 We observed significant spatial variation in diet. We use Simpson's Index which 400 is less sensitive to rare events that frequently occur in species-level analysis (Bohmann et 401 al. 2011; Razgour et al. 2011). Our estimates of diversity were not correlated with 402 latitude and not related to sample size. The Saskatchewan and Pinery colonies had the 403 lowest sample sizes (and could not be sampled in late season at all) but differ in patterns 404 of prey use. Both were low in diversity at the ordinal level, but so was Lake St. George 405 (2011) which had one of the largest sample sizes. Significant spatial variation in resource 406 use is unsurprising across such a wide geographical area, however, it was also similarly 407 variable within southern Ontario and between years. This matches previous observations (Clare et al. 2011) supporting the view that these bats responded to local variation in 408 409 environment and prey. As such, predicted declines in the populations of little brown bats 410 (Frick et al. 2010) may have locally-specific effects on insect populations. 411 The main assumption of the correspondence between insect diversity and diet is 412 that resources themselves are limiting. Although little brown bat coloniess may each 413 consume hundreds or thousands of insects in a night, it is not clear whether their 414 populations are large enough to significantly reduce local populations of insects.

415

416 *Temporal Variation in Diet*

417 We observed a significant decrease in dietary diversity in late season when the 418 effective reduction in species richness was 20%. This contrasts with a matching analysis 419 of big brown bats (Eptesicus fuscus) (Clare et al. 2013) for which dietary diversity rose 420 sharply in late season. These inverse patterns may reflect non-overlapping resource use 421 by these predators. Big brown bats are a flexible hunter that appears to forage in most 422 habitat types (Geggie & Fenton 1985; Furlonger *et al.* 1987) and consumess large 423 numbers of beetles, moths, and flies (Clare *et al.* 2013). Insect diversity falls in late 424 season just as both species must store fat for hibernation. While big brown bats may 425 compensate by exploiting a wider variety of habitats (and thus prey), increasing their 426 dietary diversity, little brown bats may simply consume a greater volume of more limited 427 prey. Habitat selection by bats strongly influences insect availability and thus diet and 428 may explain apparent resource partitioning among many species (Emrich et al. 2013). 429 Current or historical competition for resources is also possible, but makes the assumption 430 that resources are limiting. There is little direct evidence that competition drives patterns 431 of resource use because this cannot be assessed without controlled removal experiments, 432 which are exceedingly difficult with bats.

Clare *et al.* (2011) observed a significant shift from consumption of Diptera in
early season to Ephemeroptera in middle and late season. The same pattern was not
observed here in any location, including in the same samples originally analyzed by Clare *et al.* (2011). This likely reflects a difference in methodology. Clare *et al.* (2011)
sequenced DNA directly from fragments of prev removed from guano under microscopic

438	dissection. The advantage of this technique is that the user can preferentially attempt to
439	maximize the taxonomic richness of the sample but it is likely biased towards the
440	detection of less-digestible prey (Razgour et al. 2011). Because Clare et al. (2011) took
441	efforts to sample a large number of guano pellets, they also assumed that each fragment
442	represented a different capture, and thus frequency was calculated directly from the
443	recovered sequences. NGS provides an automated method to maximize the diversity of
444	prey recovered, but does not allow for the same assumption of independence of each
445	haplotype. The fragment and sampling method employed by Clare et al. (2011) is a
446	hybrid between traditional morphological analysis and NGS and may be more similar to
447	abundance-based methods. This is only likely to cause significant difference when the
448	taxa are mass-emerging species found in high abundance but low species richness, such
449	as Ephemeroptera. NGS may underestimate the importance of this prey group, while the
450	fragment method may overestimate them if the assumption of independence between
451	fragments is not met. In addition, our methods used short amplified regions (157 bp)
452	compared to Clare <i>et al.</i> (2011) who used full DNA barcodes of \approx 657 bp. Short primers
453	may provide lowerlimit taxonomic resolution in some cases but increases the likelihood
454	that degraded DNA will be amplified. Different primers will always have different
455	binding affinities and this may partially explain specific prey differences between these
456	two analyses.
457	

457

458 Methodological Advances and Species vs Ordinal Level Data

We used two specific methodological advances in our analysis. To separatesamples after sequencing, NGS uses incorporated tags in primers. These tags are often

461 called MIDs or 'barcodes' (although we do not use this term to avoid confusion with 462 DNA barcodes as per Hebert *et al.* (2003)). Using MIDs on forward primers, each sample 463 can be amplified with a unique forward primer and subsequently separated. However, for 464 very large sample sizes, this becomes costly. As introduced (Brown et al. 2013), we 465 incorporated MIDs in both forward and reverse primers so that each sample can be 466 assigned a unique combination of MIDs (e.g. 10 forwards and 10 reverses = 100 unique 467 combinations). This technique significantly reduces primer costs without impacting 468 sequencing performance. Second, rather than extracting DNA from a single guano pellet 469 (or even half a pellet as in some publications) we extracted DNA from a pool of pellets 470 totalling 1-1.5 ml by volume. This roughly translated into 20-50 pellets per sample 471 (depending on size). Previous analyses have estimated a mean of 5 taxa per pellet 472 (Bohmann *et al.* 2011) while we recovered a mean of 9 per sample. In this study, each 473 "sample" is, in effect, an assay of diet in what is likely dozens of individuals. The 474 disadvantage of this method is that larger volume extractions lead to more PCR inhibitors 475 that may complicate reactions. However, this also provides two specific advantages. In 476 general it leads to greater taxonomic richness in the resulting sequencing run. More 477 specifically, insectivorous bats have a very fast gut transit time with prey passing as fast 478 as 35 minutes after ingestion (Buchler 1975). As such, any single pellet may be low in 479 prey richness. Morphological analyses normally examine many dozens of pellets to 480 estimate diet and we have incorporated this method. As discussed earlier, large sample 481 sizes may control for the potential for overrepresentation of rare prey though this may 482 explain our lower than expected measures of Ephemeroptera.

Molecular methods allow us to go beyond traditional ordinal-level assessments, available from morphological analysis, to establish species-level taxonomic assignments of prey. It is particularly interesting that when we remove these data, some dramatic changes (e.g. estimates of diversity in Pinery) can be observed. This is largely due to saturation of ordinal level collections, while species-level data have not reached a plateau.

489

490 Environmental Indicators and Foraging Assessment

491 Benthic macro-invertebrates are frequently used as environmental indicators of 492 the quality of a water system (Hilsenhoff 1988; Fjellheim & Raddum 1990; Lenat 1993). 493 The analysis of diet from bats foraging over these areas locations provides a direct (non-494 invasive) method to infer the quality of their foraging areaslocation. This method is more 495 specific than a general insect survey as it assesses where the bat has been rather than 496 where it may have been. Insect tolerance estimates vary by season and area (see a 497 comparison of Wisconsin and North Carolina, Lenat (1993)), but we can make a number 498 of observations from our data using the Hilsenhoff Biotic Index for organic pollutants 499 developed for the western Great Lakes (Hilsenhoff 1988) and the Fjellheim & Raddum 500 (1990) index for acid tolerance (extrapolating from related species) and inferences about 501 other Canadian regions (Table 1).

Among the Trichoptera, Hydropsychidae, Leptoceridae and Phryganeidae have moderate pollution tolerances of 4 while Helicopsychidae have a tolerance of 3 and Glossosomatidae a tolerance of 0. Glossosomatidae also have a low tolerance for acidification. Leptoceridae and Phryganeidae were eaten by bats in the Northwest

506	Territories, Nova Scotia, Long Point and Lake St. George (2009), while Helicopsychidae
507	occurred in the diet at -Clinton. The pollution intolerant gGlososomatides ae-were eaten
508	in the Northwest Territories and Lake St George (2009). Diptera in the family Tipulidae
509	have a tolerance of 3 and were also found at Clinton. The Ephemeroptera family
510	Ephemerellidae has a pollution tolerance of 1. These were detected in the Northwest
511	Territories and Lake St. George (2011); the Megaloptera family Corydalidae has a
512	pollution tolerance of 0 and was detected in Lake St. George (2009). Species of Molanna
513	may be acid intolerant and were detected in Nova Scotia.
514	While habitat specificity of many macro-invertebrate species declines (or
515	becomes more variable) at higher latitudes (Lenat 1993), these observations suggest that
516	bats at Clinton forage in good quality habitat (Helicopsychidae and Tipulidae both have
517	tolerance =3). However, there is convincing evidence that the sites in the Northwest
518	Territories and Lake St. George have an excellent quality habitat with little apparent
519	organic pollution (species with tolerance of 0 and 1 detected frequently) or acidification.
520	This might be expected for the remote Northwest Territories locations (which are far
521	from major human modification), but is less expected for Lake St. George, which lies on
522	the edge of the greater Toronto area. The continued presence of prey with low pollution
523	tolerances at Lake St. George in 2011 demonstrates the stability of this site and may be an
524	indication of the effectiveness of small-scale conservation efforts even in areas near
525	intensive urban modification.
526	Some macro-invertebrates are relatively good indicators of habitat type. Species
527	in the Trichoptera genera Agrypnia and Traenoides were identified in Northwest
528	Territories, Long Point and Lake St. George. They are associated with pond or lake-like

529	habitats in northern parts of their range. We have previously confirmed that the Lake St.
530	George bats hunt in the vicinity of Lake St. George (a very small water body) less than
531	300 m from the roost site. It is likely that the Long Point bats are hunting along the shores
532	of Lake Erie, and the Northwest Territories population may be using any of hundreds of
533	variously sized water bodies.
534	
535	Summary
536	In response to resource fluctuations, species may move to track prey or adapt to
537	match local variability. The little brown bat, M. lucifugus, occupies a broad niche,
538	foraging over aquatic systems. Species-level identifications of benthic macro-
539	invertebrate prey serve as environmental indicators and allow us to use information about
540	diet to directly measure the quality of the foraging habitat. In total, we recorded nearly
541	600 species of prey consumed by this predator and present one of the largest and most
542	geographically diverse molecular dietary analyses to date. With these data, we
543	demonstrate seasonal, regional and inter-annual variation in little brown bat diets across
544	Canada which is independent of latitude. We identify two locations where the prey
545	consumed are particularly intolerant to organic pollution or acidification and thus
546	locations where foraging area habitat is of high quality, even when in the vicinity of high-
547	density urban development.
548	
549	Acknowledgements:
550	

- 551 We thank all participating landowners for their co-operation with sample collection.
- 552 Professor Gareth Jones and Colin Lazarus provided laboratory support. This study was
- 553 made possible by funding from K.M. Molson foundation and the Natural Sciences and
- 554 Engineering Research Council of Canada (NSERC) through grants to ELC. RMRB and
- 555 JPR were funded by NSERC, Bat Conservation International, the Yukon Government,
- and the Alberta Conservation Association. <u>Bat capture in Quebec were made possible by</u>
- 557 <u>support from the Fonds Québécois de la Recherche sur la Nature et les Technologies</u>
- 558 (FQRNT) and the Ministère du Développement Durable, de l'Environement, de la Faune
- 559 <u>et des Parcs.</u> We thank many colleagues for advice and suggestions on analysis and
- 560 manuscript content.
- 561

562 **References**

- Alberdi A, Garin I, Aizpurua O, Aihartza J (2012) The foraging ecology of the mountain
 long-eared bat *Plecotus macrobullaris* revealed with DNA mini-barcodes. *PLoS ONE*, 7, e35692.
- Bastille-Rousseau G, Fortin D, Dussault C, Courtois R, Ouellet J-P (2011) Foraging
 strategies by omnivores: are black bears actively searching for ungulate neonates or
 are they simply opportunistic predators? *Ecography*, 34, 588–596.
- Belwood JJ, Fenton MB (1976) Variation in the diet of *Myotis lucifugus* (ChiropteraVespertilionidae). *Canadian Journal of Zoology*, 54, 1674–1678.
- Blankenberg D, Von Kuster G, Coraor N *et al.* (2010) Galaxy: a web-based genome
 analysis tool for experimentalists. *Current protocols in molecular biology*,
 Supplement, 19.10.1–19.10.21.
- Bohmann K, Monadjem A, Lehmkuhl Noer C *et al.* (2011) Molecular diet analysis of two
 african free-tailed bats (molossidae) using high throughput sequencing. *PloS ONE*,
 6, e21441.
- Boyles JG, Cryan PM, McCracken GF, Kunz TH (2011) Economic importance of bats in
 agriculture. *Science*, 332, 41–42.

579 580 581 582	Brown DS, Symondson WOC, Burger R <i>et al.</i> (2013 <u>THIS ISSUE</u>) Dietary competition between the alien Asian Musk Shrew (<i>Suncus murinus</i>) and a reintroduced population of Telfair's Skink (<i>Leiolopisma telfairii</i>). <i>Molecular Ecology</i> , (XXX- XXX)In press.
583 584	Buchler ER (1975) Food transit time in <i>Myotis lucifugus</i> Chiroptera: Vespertilionidae. Journal of Mammalogy, 56 , 252–255.
585 586 587	Carter GG, Coen CE, Stenzler LM, Lovette IJ (2006) Avian host DNA isolated from the feces of white-winged vampire bats (Diaemus youngi). <i>Acta Chiropterologica</i> , 8 , 255–274.
588 589 590	Clare EL, Barber BR, Sweeney BW, Hebert PDN, Fenton MB (2011) Eating local: influences of habitat on the diet of little brown bats (<i>Myotis lucifugus</i>). <i>Molecular</i> <i>Ecology</i> , 20 , 1772–1780.
591 592 593	Clare EL, Fraser EE, Braid HE, Fenton MB, Hebert PDN (2009) Species on the menu of a generalist predator, the eastern red bat (<i>Lasiurus borealis</i>): using a molecular approach to detect arthropod prey. <i>Molecular Ecology</i> , 18 , 2532–2542.
594 595 596	Clare EL, Goerlitz HR, Drapeau VA <i>et al.</i> (2013) Trophic niche flexibility in <i>Glossophaga soricina</i> : how a nectar seeker sneaks an insect snack. <i>Functional</i> <i>Ecology</i> , In press .
597 598 599	Clare E, Symondson WOC, Fenton MB (2013 THIS ISSUE) An inordinate fondness for beetles? Variation in seasonal dietary preferences of night roosting big brown bats (Eptesicus fuscus). <i>Molecular Ecology</i> , In review(XXX-XXX).
600 601 602	 Cohen NJ, Deeds JR, Wong ES <i>et al.</i> (2009) Public health response to puffer fish (Tetrodotoxin) poisoning from mislabeled product. <i>Journal of Food Protectionrot</i>, 72, 810–817.
603 604 605	Deagle BE, Chiaradia A, McInnes J, Jarman SN (2010) Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? <i>Conservation Genetics</i> , 11 , 2039–2048.
606 607	Deagle BE, Kirkwood R, Jarman SN (2009) Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. <i>Molecular Ecology</i> , 18 , 2022–2038.
608 609 610	Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarman SN (2013) Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: which counts count? <i>Molecular Ecology Resources</i> , 13 , 620–633.
611 612	Dunne JA, Williams RJ, Martinez ND (2004) Network structure and robustness of marine food webs. <i>Marine Ecology Progress Series</i> , 273 , 291–302.

613 614 615	Emrich MA, Clare EL, Symondson WOC, Koenig SE, Fenton MB (2013 THIS ISSUE) Resource partitioning by insectivorous bats. <u>Molecular Ecology</u> , (XXX-XXX)In review.
616	Fenton MB, Barclay RMR (1980) Myotis lucifugus. Mammal Species, 142, 1–8.
617 618 619	Fenton MB, Swanepoel CM, Brigham RM, Cebek J, Hickey MBC (1990) Foraging behaviour and prey selection by large slit-faced bats (<i>Nycteris grandis</i> ; Chiroptera: Nycteridae). <i>Biotropica</i> , 22, 2–8.
620 621	Fenton MB, Thomas DW, Sasseen R (1981) <i>Nycteris grandis</i> (Nycteridae): an African carnivorous bat. <i>Journal of Zoology (London)</i> , 194 , 461–465.
622 623	Fjellheim A, Raddum G. (1990) Acid precipitation: biological monitoring of streams and lakes. <i>Science of the Total Environment</i> , 96 , 57–66.
624 625	Fraser EE, Fenton MB (2007) Age and food hardness affect food handling by insectivorous bats. <i>Canadian Journal of Zoology</i> , 85 , 985–993.
626 627	Freeman PW (1981) Correspondence of food habits and morphology in insectivorous bats. <i>Mammalogy Papers: University of Nebraska State Museum</i> , 62 , 166–173.
628 629 630	Frick WF, Pollock JF, Hicks AC <i>et al.</i> (2010) An emerging disease causes regional population collapse of a common North American bat species. <i>Science</i> , 329 , 679– 682.
631 632	Furlonger CL, Dewar HJ, Fenton MB (1987) Habitat use by foraging insectivorous bats. Canadian Journal of Zoology, 65, 284–288.
633 634 635	 Geggie JF, Fenton MB (1985) A comparison of foraging by <i>Eptesicus fuscus</i> (Chiroptera: Vespertilionidae) in urban and rural environments. <i>Canadian Journal of Zoology</i>, 63, 263–267.
636 637	Giardine B, Riemer C, Hardison RC <i>et al.</i> (2005) Galaxy: a platform for interactive large- scale genome analysis. <i>Genome Research</i> , 15 , 1451–1455.
638 639 640	Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. <i>Genome biology</i> , 11 , R86.
641 642 643	Goerlitz HR, Ter Hofstede HM, Zeale MRK, Jones G, Holderied MW (2010) An aerial- hawking bat uses stealth echolocation to counter moth hearing. <i>Current Biology</i> , 20 , 1568–1572.
644 645	Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleotological statistics software package for education and data anaysis. <i>Palaeontologia Electronica</i> , 4 , 1–9.

646 647 648	Hanner R, Becker S, Ivanova N V, Steinke D (2011) FISH-BOL and seafood identification: geographically dispersed case studies reveal systemic market substitution across Canada. <i>Mitochondrial DNA</i> , 22, 106–122.			
649 650	Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. <i>Proceedings of the Royal Society B-Biological Sciences</i> ,			
651	270 , 313–321.			
652 653	Hilsenhoff WL (1988) Rapid field assessment of organic pollution with a family-level biotic index. <i>Journal of the North American Benthological Society</i> , 7 , 65–68.			
654 655	Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. <i>Genome Research</i> , 21 , 1552–1560.			
656 657	Jones M, Ghoorah A, Blaxter M (2011) jMOTU and Taxonerator: turning DNA barcode sequences into annotated operational taxonomic units. <i>PloS ONE</i> , 6 , e19259.			
658	Jost L (2006) Entropy and diversity. Oikos, 113, 363–375.			
659 660	King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. <i>Molecular Ecology</i> ,			
661	17, 947–963.			
662 663	Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. <i>Science</i> , 299 , 1388–1391.			
664 665	Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats. <i>Annals of the New York Academy of Sciences</i> , 1223 , 1–38.			
666 667	Kunz TH, Whitaker JO (1983) An evaluation of fecal analysis for determining food habits of insectivorous bats. <i>Canadian Journal of Zoology</i> , 61 , 1317–1321.			
668 669 670	Kurta A, Bell GP, Nagy KA, Kunz TH (1989) Energetics of pregnancy and lactation in freeranging little brown bats (<i>Myotis lucifugus</i>). <i>Physiologiacl Zoology</i> , 62 , 804– 818.			
671 672 673	Lenat DR (1993) A biotic index for the doutheastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. <i>Journal of the North American Benthological Society</i> , 12 , 279–290.			
674	McCann K (2007) Protecting biostructure. Nature, 446, 29.			
675	Ober HK, Hayes JP (2008) Prey selection by bats in forests of western oregon. Journal of			

676 *Mammalogy*, **89**, 1191–1200.

677 678 679	Piñol J, San Andrés V, Clare EL, Mir G, Symondson WOC (2013) A pragmatic approach to the analysis of diets of generalist predators: the use of next-generation sequencing with no blocking probes. <i>Molecular ecology resources</i> .
680 681	Pompanon F, Deagle BE, Symondson WOC <i>et al.</i> (2012) Who is eating what: diet assessment using next generation sequencing. <i>Molecular Ecology</i> , 21 , 1931–1950.
682 683	R Development Core Team: R: A language and environment for statistical computing (2008)
684 685	Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (www.barcodinglife.org). <i>Molecular Ecology Notes</i> , 7 , 355–364.
686 687 688	Razgour O, Clare EL, Zeale MRK <i>et al.</i> (2011) High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. <i>Ecology and Evolution</i> , 1 , 556–570.
689 690	Rosenheim J, Corbett A (2003) Omnivory and the indeterminacy of predator function: can a knowledge of foraging behaviour help? <i>Ecology</i> , 84 , 2538–2548.
691	Simpson EH (1949) Measurement of Diversity. Nature, 163, 688–688.
692 693	Singer M, Bernays E (2003) Understanding omnivory needs a behavioural perspective. <i>Ecology</i> , 84 , 2532–2537.
694 695 696 697	Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN (2007) DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. <i>Proceedings of the National Academy of Sciences</i> <i>of the United States of America</i> , 104 , 4967–4972.
698 699 700 701	Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 103 , 3657–3662.
702 703 704	Soininen EM, Valentini A, Coissac E <i>et al.</i> (2009) Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. <i>Frontiers in Zoology</i> , 6 , 16.
705 706	Solé R V, Montoya JM (2001) Complexity and fragility in ecological networks. Proceedings of the Royal Society B-Biological Sciences, 268 , 2039–2045.
707 708	Symondson WOC (2002) Molecular identification of prey in predator diets. <i>Molecular</i> <i>Ecology</i> , 11 , 627–641.

- Symondson WOC, Liddell JE (1993) A monoclonal antibody for the detection of arionid
 slug remains in carabid predators. *Biological Control*, 3, 207–214.
- Valentini A, Miquel C, Nawaz MA *et al.* (2009) New perspectives in diet analysis based
 on DNA barcoding and parallel pyrosequencing: the trnL approach. *Molecular Ecology Resources*, 9, 51–60.
- Wong EH-K, Hanner RH (2008) DNA barcoding detects market substitution in North
 American seafood. *Food Research International*, 41, 828–837.
- Zeale MRK, Butlin RK, Barker GLA, Lees DC, Jones G (2011) Taxon-specific PCR for
 DNA barcoding arthropod prey in bat faeces. *Molecular Ecology Resources*, 11,
 236–244.

719 **Data Accessibility:**

- All DNA sequencing reads and an explanatory "read me" file along with BLAST scores
- for figure 8 have been placed in Dryad:
- http://datadryad.org/submit?journalID=MolEcol&manu=MEC-13-0701
 723

Author's contributions: ELC, HB, FF, EF, AM, AB, RH, CW, FM, AM, KN, MB, JP,
JR, RMRB, JPR designed and conducted field research. ELC conducted the molecular
analysis. WOCS contributed to molecular protocols. All authors contributed to
manuscript production.

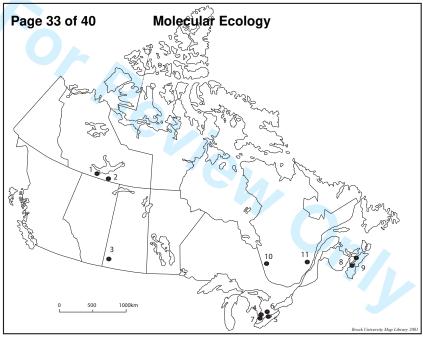
727 manuscript produc

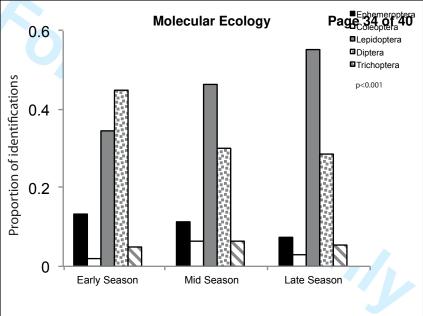
729 **Figure Legends**:

730

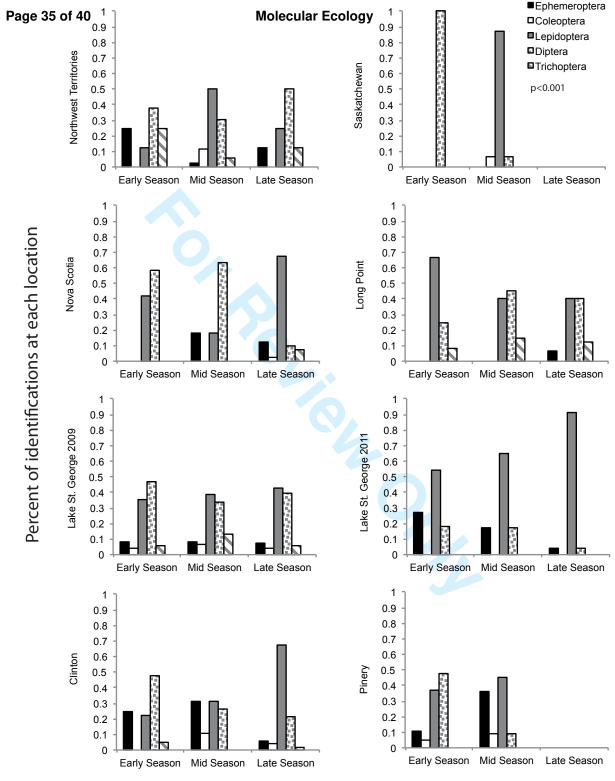
Figure 1: Distribution of sampling sites across Canada. Samples in Northwest Territories (n=5) were collected at sites in Kakisa (1) and Salt River (2) (considered as one unit in statistical analysis). Samples in the prairies (n=3) were collected between Medicine Hat

- (Alberta) and Swift Current (Saskatchewan) (3). Samples in Ontario were collected in
- 735 Clinton (4) (n=14), Long Point (5) (n=7), Lake St. George (6) (2009 n=18, 2011 n=7) and
- 736 Pinery Provincial Park (7) (n=4). Samples in Nova Scotia (n=8) were collected at sites in $\frac{727}{100}$
- 737 Martock (8) and Tatamagouche (9) (considered as one unit in statistical analysis).
- Samples in Quebec were collected at Jacques-Cartier and Aiguebelle National Parks (10)
 and Montmorency Forest Station (11).
- 740 (Map Modified from: Canada Outline Map. St. Catharines, Ontario: Brock University Map Library.
- 741 Available: Brock University Map Library Controlled Access
- http://www.brocku.ca/maplibrary/maps/outline/North_America/canadaNONAMES.pdf (Accessed April 2, 2013).)
- 744
- Figure 2: Seasonal diversity in prey consumed by *M. lucifugus*. The proportion of each
- prey group in the diet varied significantly across seasons. Diptera dominated the early
- season diet while Lepidoptera become more important in the middle and late seasons.
- 748 Proportion = frequency of occurrence of that order / total occurrences, where an
- occurrence is an identified MOTU in a sample.
- 750

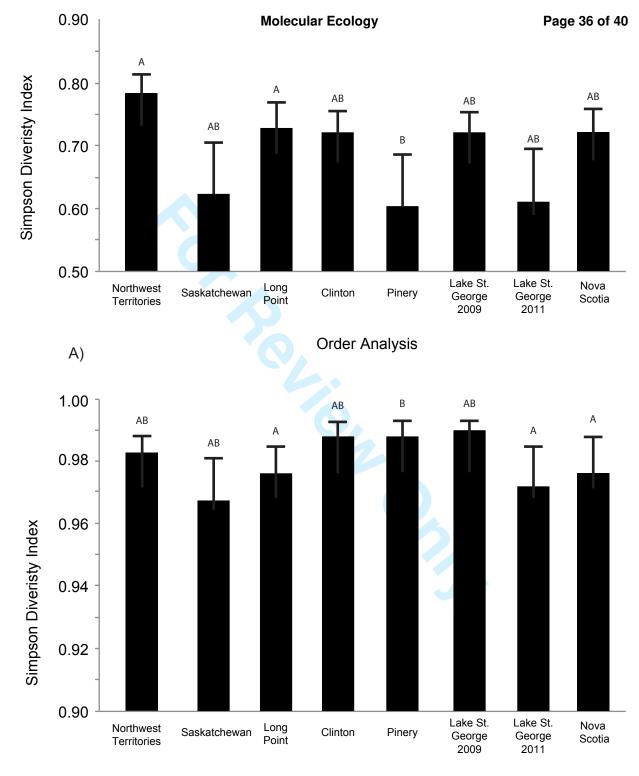

751 Figure 3: Seasonal diversity in prev consumed by *M. lucifugus* at 8 locations across 752 Canada. The proportion of each prey group composing the diet varied significantly across 753 seasons and with location. Proportion = frequency of occurrence of that order / total 754 occurrences, where an occurrence is an identified MOTU in a sample. 755 756 Figure 4: Estimates of *M. lucifugus*' dietary diversity with 95% confidence intervals, 757 based on the Simpson diversity index on data restricted to ordinal-level taxonomy (A) 758 and using MOTU as a proxy for species (B). 759 760 Figure 5: A comparison of rarefaction curves for operational taxonomic units at the order 761 (A, B) and species (C, D) level. Lines are mean estimates (A, B, C) or mean with 95% 762 confidence levels (D) based on permutations. 763 764 Figure 6: Estimates of *M. lucifugus*' dietary diversity with 95% confidence intervals 765 based on the Simpson diversity index from three seasons. Early season=females are 766 pregnant, middle season=females are lactating, late season=young are independent. 767 768 Figure 7: Weekly species richness in the diet of *M. lucifugus* for the two most heavily sampled sites, at Clinton and Lake St. George in 2009, showing a trend of higher mean 769 770 species richness with 95% confidence intervals in bats at Lake St. George, which is also 771 an area where prey have a lower pollution tolerance suggesting higher quality habitat. 772 773 Figure 8: A schematic of prey species consumed including all MOTU (including those 774 that could not be identified using a reference database). Identifications have been made 775 by BLAST score and are limited to hypothesis at the order level. Values at nodes or tips 776 represent the number of MOTU assigned. Node size is scaled to the number of 777 assignments. See Emrich et al. (2013) for additional details. 778


Table 1: Approximate habitat assessments based on the lowest scoring (lease tolerant to pollution or acidification) taxa identified in the diet of bats at each location.

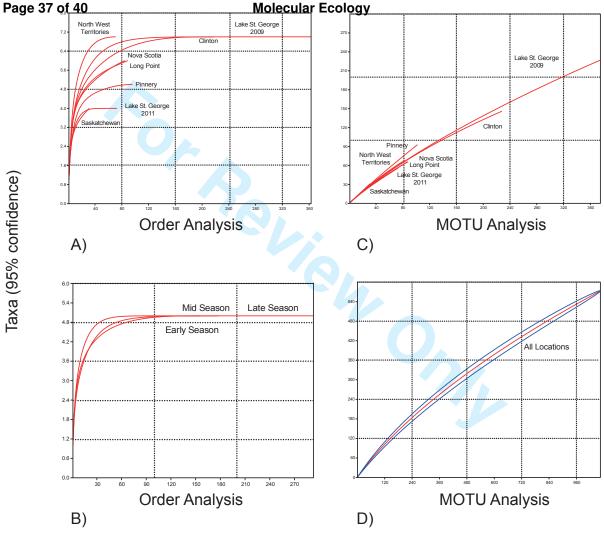
Location	Example Taxa	Pollution Tolerance	Acid Tolerance	Maximum Quality
NWT	Glososomatidae	0	low	
	Ephemerellidae	1		Low organic pollution
	Heptagenia sp		Low-med	No acidification
Lake St. George	Glososomatidae	0	low	
(Ontario)	Ephemerellidae	1	high	Low organic pollution
	Corydalidae	0		No acidification
Clinton	Helicopsychidae	3		
(Ontario)	Tipulidae	3		Trace organic
	Isonychia	3		pollution
Long Point	Leptoceridae	4		Some organic
(Ontario)	Phryganeidae	4		pollution
Nova Scotia	Leptoceridae	4		
	Phryganeidae	4	high	Some organic
	Stenacron	4		pollution
	Molanna sp.		low	No Acidification
Pinery	Chironomidae	6		Some organic
(Ontario)	Psychodidae	10		pollution
	Phryganeidae	4	high	Possibly acidified
Saskatchewan	Chironomidae	6		Likely organic
				pollution*

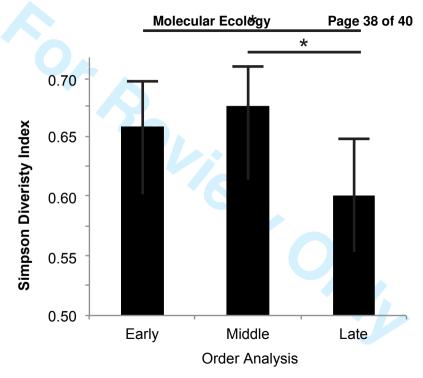

782 * Little Data Available

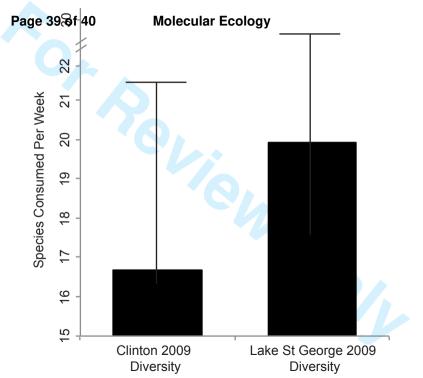
783 Hilsenhoff index goes from 1(low) to 10 (high) tolerance

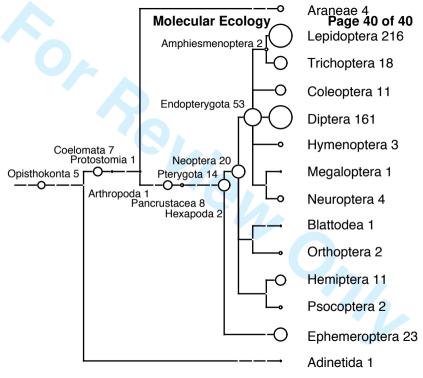


Maternity Time Period




Maternity Time Period




MOTU Analysis

B)

All taxonomic matches are 1 or 1a unless indicated with a *=level 2

1 ArachimisAraneidaeAraneidaeAraneidaeInhypheem pectrosos11 ArachimisAraneidaeInhinoides potagintus2112 ArachimisAraneidaeInhinoides potagintus2111 ArachimisAraneidaeInhinoides potagintus2111 ArachimisCalenoteraeCarabidaeInhinoides potagintus so111 InsectaColenoteraeCarabidaeSelonophrus son concounces111 InsectaColenoteraeCarabidaeSelonophrus son concounces111 InsectaColenoteraeCarabidaeSelonophrus son concounces111 InsectaColenoteraeCarabidaeSelonophrus son concounces111 InsectaColenoteraeCarabidaePhyero son11111 InsectaColenoteraeCarabidaeSelonophrus son concounces11<	Frequency		Order	Family	Species	NWT	Saskatchewan	Nova Scotia	Pinnery	Long Point	Lake St. George 2011	Clinton	Lake St. George 2009
2 ArachidaAraneidaIntroindes propingators21 ArachidaAraneaeAraneidaIntroindes sclopetorius212 InsectaColeoptraCarabidaePromins piceus211 InsectaColeoptraCarabidaeNotobio terminsta111 InsectaColeoptraCarabidaeStenoloptrus schumata111 InsectaColeoptraCarabidaeStenoloptrus schumata111 InsectaColeoptraCarabidaeStenoloptrus schumata111 InsectaColeoptraCurculionideHypera sp.111 InsectaColeoptraCurculionideHybers sp.111 InsectaColeoptraUrukilonide schumata1111 InsectaColeoptraStarabeidaeOptins schumata111 InsectaColeoptraStarabeidaeOptins sp.1111 InsectaColeoptraStarabeidaeOptins sp.1111 InsectaDiptraAildaeDiotra sp.11111 InsectaDiptraChironomidaeAirar sp.11111 InsectaDiptraChironomidaeCarabuta sp.111111 InsectaDiptraChironomidaeCarabuta sp.111111111111111111 <t< td=""><td></td><td></td><td></td><td>Araneidae</td><td>Anyphaena pectorosa</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></t<>				Araneidae	Anyphaena pectorosa					1			
1 ArachidaAraneidaInitiolités solucitaria1212 InsectaColeoptraCarabidaNotidoia terminata211 InsectaColeoptraCarabidaSelenophores sp.111 InsectaColeoptraCarabidaSelenophores sp.111 InsectaColeoptraCarabidaSelenophores sp.111 InsectaColeoptraCarabidaSelenophores sp.111 InsectaColeoptraCurulionidaeMotodore biclooh112 InsectaColeoptraCurulionidaePolytruse serices111 InsectaColeoptraUcrulionidaeMotodore biclooh1111 InsectaColeoptraSciritidaeCarabidae11111 InsectaColeoptraSciritidaeCychon sp.111111 InsectaColeoptraSciritidaeCychon sp.111		1 Arachnida	Araneae									1	
2 insectaColongteraGrahidaeDominis piceu's221 insectaColongteraGrahidaeSelenophorus sp.111 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						2							
1 insectaColeopteraCarabidaeNotobia ferminata11 insectaColeopteraCarabidaeSelenophrous sp.111 insectaColeopteraCarabidaeStenolophus achropezus111 insectaColeopteraCurculionidaePolydrusus serietus111 insectaColeopteraCurculionidaePolydrusus serietus1112 insectaColeopteraCurculionidaePolydrusus serietus11111 insectaColeopteraEsteridaeDentcollis dentcorris111<			Araneae										1
1 insectaColeopteraCarabidaeSelenaphrus sp.11 insectaColeopteraCarabidaeSelenaphrus schropezus11 insectaColeopteraCurculionidaePhylera sp.11 insectaColeopteraCurculionidaePhylera sp.11 insectaColeopteraUniculionidaePhylera sp.11 insectaColeopteraUniculionidaePhylera sp.11 insectaColeopteraElotetidaeCattopis luridipennis11 insectaColeopteraElotetidaeCattopis luridipennis11 insectaColeopteraSarabeidaeOntophagus sp.111 insectaColeopteraSarabeidaeOntophagus sp.111 insectaDipteraAlidaeDiotria sp.1111 insectaDipteraChironomidaeAkarus sp.1111 insectaDipteraChironomidaeChironomus psittacirus1111 insectaDipteraChironomidaeChironomus psittacirus11111 insectaDipteraChironomidaeChironomus psittacirus111111 insectaDipteraChironomidaeChironomus psittacirus111111111111111111111111111111		2 Insecta	Coleoptera		•							2	
1 InsectaColeopteraCarabidaeStenolophus ochropezus11 InsectaColeopteraCurculionidaeCymatodero bicolor111 InsectaColeopteraCurculionidaePolydruss sericeus22 InsectaColeopteraCurculionidaePolydruss sericeus21 InsectaColeopteraCurculionidaePolydruss sericeus21 InsectaColeopteraEtaleridaeDenticolis denticornis111 InsectaColeopteraEtaleridaeCatops Luridgeanis151 InsectaColeopteraScritdaeOrthophogus sp.151 InsectaColeopteraScritdaeOptera optica111 InsectaDipteraAsilidaeDictra sp.1111 InsectaDipteraChironomidaeAkorus sp.1111 InsectaDipteraChironomidaeChironomis sp.1111 InsectaDipteraChironomidaeChironomis sp.1111 InsectaDipteraChironomidaeCritopus sp.1111 InsectaDipteraChironomidaeCritopus sp.1111 InsectaDipteraChironomidaeCritopus sp.1111 InsectaDipteraChironomidaeCritopus sp.1111 InsectaDipteraChironomidaeCritopus sp.1111 InsectaDipteraChironomid			Coleoptera										1
1 insectaColeopteraCurculionidae <i>lypera sp.</i> 11 insectaColeopteraCurculionidae <i>Hypera sp.</i> 111 insectaColeopteraCurculionidae <i>Hybera sp.</i> 111 insectaColeopteraEntidaePoticolis centrosis111 insectaColeopteraEntidaeCatops luridipennis1111 insectaColeopteraScatabaeidaeOthoparus sp.11111 insectaColeopteraScatabaeidaeOthoparus sp.11 <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			•				1						
1 InsectaColeopteraCurculionidae <i>Phyera sp.</i> 12 InsectaColeopteraOytis cidaePhylicus sericeus21 InsectaColeopteraOytis cidaeUlpbins sp.111 InsectaColeopteraElateridaeDenticollis denticornis111 InsectaColeopteraElateridaeOntrophygus sp.1111 InsectaColeopteraScirtidaeOntrophygus sp.11111 InsectaColeopteraScirtidaeOntrophygus sp.11			•						1				
2 InsectaColcopteraCurculionidaePolydruss sericeus21 InsectaColcopteraEtaridaeItybis sp.111 InsectaColcopteraEtaridaeDenticoliis denticornis111 InsectaColcopteraScarabaeidaeOntophogus sp.111 InsectaColcopteraScarabaeidaeOptophogus sp.1111 InsectaDipteraChironomidaeOptonomis sp.111			•		,								
1 InsectaColeopteraDytiscidaeDytiscidaeDytiscidaeDiversitie11 InsectaColeopteraLeidenidaeCatops Inticollis denticonis1111 InsectaColeopteraScarabaeidaeOttophagus sp.11111 InsectaColeopteraSciribaeOptor sp.111 <td></td> <td></td> <td></td> <td></td> <td><i>,</i>, ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>					<i>,</i> , ,							1	
1 InsectaColeopteraElateridaeDenticollis denticornis11 InsectaColeopteraLeiodidaeCotops luridigennis11													2
1 insectaColeopteraLeiodidaeCatops luridipennis11 InsectaColeopteraScarabaeidaeOntrophagus sp.117 InsectaColeopteraAsilidaeOptora sp.1111 InsectaDipteraAsilidaeDiotria sp.1113 InsectaDipteraChironomidaeAkarus sp.1113 InsectaDipteraChironomidaeAkarus sp.1111 InsectaDipteraChironomidaeChironomus acidophilus1111 InsectaDipteraChironomidaeChironomus sp.11111 InsectaDipteraChironomidaeChironomus sp.11 <td< td=""><td></td><td>1 Insecta</td><td>Coleoptera</td><td>•</td><td>, ,</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		1 Insecta	Coleoptera	•	, ,	1							
1InsectaColeopteraScarabaeidaeOnthophagus sp.117InsectaColeopteraScitidaeCyphon sp.1151InsectaDipteraAsilidaeDiotri sp.1133InsectaDipteraChironomidaeAbabesmyia americana1331InsectaDipteraChironomidaeAxarus sp.1331InsectaDipteraChironomidaeChironomus acidophilus11131InsectaDipteraChironomidaeChironomus sp.11 </td <td></td> <td></td> <td>Coleoptera</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>			Coleoptera									1	
7 InsectaColeopteraScirtidaeCyphon sp.1151 InsectaDipteraAsildaeDioctria sp.111			Coleoptera			1							
1InsectaDipteraAsilidaeDiotria sp.13InsectaDipteraChironomidaeAblabesnyia americana31InsectaDipteraChironomidaeAxarus sp.131InsectaDipteraChironomidaeChironomus acidophilus1111InsectaDipteraChironomidaeChironomus sp.11111InsectaDipteraChironomidaeChironomus sp.11 <td></td> <td></td> <td>Coleoptera</td> <td></td> <td>1 5 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Coleoptera		1 5 1								
3 InsectaDipteraChironomidaeAblabesmyia americana11 InsectaDipteraChironomidaeKarus sp.113 InsectaDipteraChironomidaeChironomidaeChironomidae111 InsectaDipteraChironomidaeChironomus sp.1111 InsectaDipteraChironomidaeChironomus sp.1111 InsectaDipteraChironomidaeChironomus sp.1111 InsectaDipteraChironomidaeChironomus sp.1111 InsectaDipteraChironomidaeChironomus sp.11111 InsectaDipteraChironomidaeChironomus sp.111 <td></td> <td>7 Insecta</td> <td>Coleoptera</td> <td></td> <td><i>/</i>·· ·</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>5</td>		7 Insecta	Coleoptera		<i>/</i> ·· ·			1	1				5
1InsectaDipteraChironomidaeAxarus sp.13InsectaDipteraChironomidaeChironomus acidophilus1111InsectaDipteraChironomidaeChironomus sp.1111InsectaDipteraChironomidaeChironomus sp.111111InsectaDipteraChironomidaeChironomus sp.11		1 Insecta	Diptera		Dioctria sp.							1	
3 InsectaDipteraChironomidaeChironomias acidophilus1111 InsectaDipteraChironomidaeChironomus sp.111		3 Insecta	Diptera		Ablabesmyia americana								3
1 InsectaDipteraChironomidaeChironomus sp.11 InsectaDipteraChironomidaeChironomus sp.11 InsectaDipteraChironomidaeCryptochironomus psittacinus17 InsectaDipteraChironomidaeCladopelma sp.72 InsectaDipteraChironomidaeCladopelma sp.22 InsectaDipteraChironomidaeCricotopus bicinctus111 InsectaDipteraChironomidaeCricotopus bicinctus111 InsectaDipteraChironomidaeDiamesa sp.1111 InsectaDipteraChironomidaeDicotendipes pedellus1111 InsectaDipteraChironomidaeMicrotendipes pedellus11111 InsectaDipteraChironomidaeParacladopelma winnelli210111 InsectaDipteraChironomidaeProcladius sp.11<		1 Insecta	Diptera	Chironomidae	Axarus sp.				1				
1 InsectaDipteraChironomidaeChironomus sp.11 InsectaDipteraChironomidaeCryptochironomus psittacinus17 InsectaDipteraChironomidaeCladopelma sp.72 InsectaDipteraChironomidaeCladopelma sp.22 InsectaDipteraChironomidaeCladopelma sp.11 InsectaDipteraChironomidaeCricotopus bicincutus11 InsectaDipteraChironomidaeDiarosa sp.11 InsectaDipteraChironomidaeDiarose sp.11 InsectaDipteraChironomidaeMicrotendipes pedellus11 InsectaDipteraChironomidaeParachironomus tenuicaudatus612 InsectaDipteraChironomidaeParacladopelma winnelli2101 InsectaDipteraChironomidaeParacladopelma winnelli2101 InsectaDipteraChironomidaeParacladopelma winnelli2101 InsectaDipteraChironomidaeParacladopelma winnelli211 InsectaDipteraChironomidaeParacladopelma winnelli111 InsectaDipteraChironomidaeReopelopia ornata111 InsectaDipteraChironomidaeReopelopia ornata161 InsectaDipteraChironomidaeTaytarsus mendax161 InsectaDipteraChironomidaeTaytarsus mendax161		3 Insecta	Diptera		Chironomus acidophilus				1	1			1
1 InsectaDipteraChironomidaeCryptochironomus psittacinus17 InsectaDipteraChironomidaeCladopelma sp.72 InsectaDipteraChironomidaeCladopelma sp.22 InsectaDipteraChironomidaeCricotopus bicinctus111 InsectaDipteraChironomidaeDicrotendipes tritomus111 InsectaDipteraChironomidaeDicrotendipes tritomus111 InsectaDipteraChironomidaeDicrotendipes tritomus111 InsectaDipteraChironomidaeMicrotendipes pedellus116 InsectaDipteraChironomidaeParachadopelma winnelli21011 InsectaDipteraChironomidaeProcledius sp.1111 InsectaDipteraChironomidaeProcledius sp.1111 InsectaDipteraChironomidaeProcledius sp.1111 InsectaDipteraChironomidaeProcledius sp.1111 InsectaDipteraChironomidaePsectrotanypus sp.1111 InsectaDipteraChironomidaeReceplopia ornata1111 InsectaDipteraChironomidaeReceplopia ornata1111 InsectaDipteraChironomidaeReceplopia ornata1111 InsectaDipteraChironomidaeReceplopia ornata <td></td> <td>1 Insecta</td> <td>Diptera</td> <td>Chironomidae</td> <td>Chironomus sp.</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1 Insecta	Diptera	Chironomidae	Chironomus sp.		1						
7 InsectaDipteraChironomidaeChironomidaeChironomidae72 InsectaDipteraChironomidaeCladopelma sp.22 InsectaDipteraChironomidaeCricotopus bicinctus111 InsectaDipteraChironomidaeDiamesa sp.111 InsectaDipteraChironomidaeDicrotendipes tritomus11161 InsectaDipteraChironomidaeDicrotendipes tritomus111161 InsectaDipteraChironomidaeMicrotendipes pedellus11116161 InsectaDipteraChironomidaeParachironomus tenuicaudatus21011616111611161116111		1 Insecta	Diptera	Chironomidae	Chironomus sp.	1							
2 InsectaDipteraChironomidaeCladopelma sp.22 InsectaDipteraChironomidaeCricotopus bicinctus111 InsectaDipteraChironomidaeDiamesa sp.111 InsectaDipteraChironomidaeDicrotendipes tritomus11161 InsectaDipteraChironomidaeMicrotendipes pedellus11161 InsectaDipteraChironomidaeParachironomus tenuicaudatus6101612 InsectaDipteraChironomidaeParacladopelma winnelli21011 InsectaDipteraChironomidaeProcladius sp.1111 InsectaDipteraChironomidaeParacladopelma winnelli21011 InsectaDipteraChironomidaeProcladius sp.1111 InsectaDipteraChironomidaePsectrotanypus sp.1111 InsectaDipteraChironomidaeRheopelopia ornata1111 InsectaDipteraChironomidaeTanytarsus mendax1111 InsectaDipteraChironomidaeTanytarsus mendax161 InsectaDipteraChironomidaeTanytarsus mendax161 InsectaDipteraChironomidaeTanytarsus mendax161 InsectaDipteraChironomidaeTanytarsus mendax161 InsectaDipteraChiron		1 Insecta	Diptera	Chironomidae	Cryptochironomus psittacinus							1	
2 InsectaDipteraChironomidaeCricotopus binctus111 InsectaDipteraChironomidaeDiamesa sp.11118 InsectaDipteraChironomidaeDicrotendipes tritomus111161 InsectaDipteraChironomidaeMicrotendipes pedellus1116161 InsectaDipteraChironomidaeParachironomus tenuicaudatus610161612 InsectaDipteraChironomidaeParacladopelma winnelli210161 InsectaDipteraChironomidaeProcladius sp.111161 InsectaDipteraChironomidaePsectrotanypus sp.111161 InsectaDipteraChironomidaePsectrotanypus sp.1111161 InsectaDipteraChironomidaePsectrotanypus sp.11111161 InsectaDipteraChironomidaePsectrotanypus sp.111<		7 Insecta	Diptera		Cladopelma sp.								
1 InsectaDipteraChironomidaeDiamesa sp.118 InsectaDipteraChironomidaeDicrotendipes tritomus11161 InsectaDipteraChironomidaeMicrotendipes pedellus11166 InsectaDipteraChironomidaeParachironomus tenuicaudatus111612 InsectaDipteraChironomidaeParacladopelma winnelli210161 InsectaDipteraChironomidaeProcladius sp.11161 InsectaDipteraChironomidaePsectrotanypus sp.11161 InsectaDipteraChironomidaeRheopelopia ornata11161 InsectaDipteraChironomidaeRheopelopia ornata11161 InsectaDipteraChironomidaeRheopelopia ornata11161 InsectaDipteraChironomidaeRheopelopia ornata11161 InsectaDipteraChironomidaeTanytarsus mendax11161 InsectaDipteraChironomidaeTanytarsus mendax1111 InsectaDipteraChironomidaeTanytarsus mendax1111 InsectaDipteraChironomidaeTanytarsus mendax1111 InsectaDipteraChironomidaeTanytarsus mendax1111 InsectaDipteraChironomidaeTanytarsus mendax11<		2 Insecta	Diptera		Cladopelma sp.								2
18 InsectaDipteraChironomidaeDicrotendipes tritomus11161 InsectaDipteraChironomidaeMicrotendipes pedellus116 InsectaDipteraChironomidaeParachironomus tenuicaudatus1112 InsectaDipteraChironomidaeParacladopelma winnelli21011 InsectaDipteraChironomidaeProcladius sp.21011 InsectaDipteraChironomidaePsectrotanypus sp.1111 InsectaDipteraChironomidaeRheopelopia ornata1117 InsectaDipteraChironomidaeTanytarsus mendax1111 InsectaDipteraChironomidaeTanytarsus mendax11 <t< td=""><td></td><td>2 Insecta</td><td>Diptera</td><td>Chironomidae</td><td>Cricotopus bicinctus</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td></t<>		2 Insecta	Diptera	Chironomidae	Cricotopus bicinctus				1			1	
1 InsectaDipteraChironomidaeMicrotendipes pedellus16 InsectaDipteraChironomidaeParachironomus tenuicaudatus612 InsectaDipteraChironomidaeParacladopelma winnelli2101 InsectaDipteraChironomidaeProcladius sp.111 InsectaDipteraChironomidaePsectrotanypus sp.111 InsectaDipteraChironomidaeRheopelopia ornata117 InsectaDipteraChironomidaeTanytarsus mendax161 InsectaDipteraChironomidaeTanytarsus mendax161 InsectaDipteraChironomidaeUnknown16		1 Insecta	Diptera		Diamesa sp.								
6 InsectaDipteraChironomidaeParachironomis tenuicaudatus612 InsectaDipteraChironomidaeParacladopelma winnelli2101 InsectaDipteraChironomidaeProcladius sp.111 InsectaDipteraChironomidaePsectrotanypus sp.111 InsectaDipteraChironomidaeRheopelopia ornata117 InsectaDipteraChironomidaeTanytarsus mendax161 InsectaDipteraChironomidaeUnknown16	1	l8 Insecta	Diptera	Chironomidae	Dicrotendipes tritomus			1	1				16
12 InsectaDipteraChironomidaeParacladopelma winnelli2101 InsectaDipteraChironomidaeProcladius sp.111 InsectaDipteraChironomidaePsectrotanypus sp.111 InsectaDipteraChironomidaeRheopelopia ornata117 InsectaDipteraChironomidaeTanytarsus mendax161 InsectaDipteraChironomidaeUnknown16		1 Insecta	Diptera	Chironomidae	Microtendipes pedellus								
1 InsectaDipteraChironomidaeProcladius sp.11 InsectaDipteraChironomidaePsectrotanypus sp.11 InsectaDipteraChironomidaeRheopelopia ornata17 InsectaDipteraChironomidaeTanytarsus mendax11 InsectaDipteraChironomidaeUnknown1		6 Insecta	Diptera	Chironomidae	Parachironomus tenuicaudatus								6
1 InsectaDipteraChironomidaePsectrotanypus sp.11 InsectaDipteraChironomidaeRheopelopia ornata17 InsectaDipteraChironomidaeTanytarsus mendax11 InsectaDipteraChironomidaeUnknown6	1	2 Insecta	Diptera	Chironomidae	Paracladopelma winnelli				2			10	
1 InsectaDipteraChironomidaeRheopelopia ornata17 InsectaDipteraChironomidaeTanytarsus mendax161 InsectaDipteraChironomidaeUnknown1		1 Insecta	Diptera	Chironomidae	Procladius sp.								1
7 Insecta Diptera Chironomidae Tanytarsus mendax 1 6 1 Insecta Diptera Chironomidae Unknown 1 6		1 Insecta	Diptera	Chironomidae	Psectrotanypus sp.		1						
1 Insecta Diptera Chironomidae Unknown 1		1 Insecta	Diptera	Chironomidae	Rheopelopia ornata							1	
		7 Insecta	Diptera	Chironomidae	-				1				6
2 Insecta Diptera Culicidae Aedes implicatus 2		1 Insecta	Diptera	Chironomidae	Unknown		1						
		2 Insecta	Diptera	Culicidae	Aedes implicatus	2							

1 Insecta	Diptera	Culicidae	Aedes sp.	1							
1 Insecta	Diptera	Culicidae	Aedes stimulans						1*		
11 Insecta	Diptera	Culicidae	Aedes vexans	3				1	1	2	4
1 Insecta	Diptera	Culicidae	Anopheles sp.								1
1 Insecta	Diptera	Culicidae	Anopheles sp.	1							
3 Insecta	Diptera	Culicidae	Coquillettidia perturbans	2							1
6 Insecta	Diptera	Culicidae	Culex sp.					6			
1 Insecta	Diptera	Culicidae	Culex sp.	1							
1 Insecta	Diptera	Culicidae	Culiseta inornata	1							
1 Insecta	Diptera	Culicidae	Culiseta minnesotae					1			
1 Insecta	Diptera	Culicidae	Culiseta sp.	1							
2 Insecta	Diptera	Culicidae	Ochlerotatus sp.	1							1
4 Insecta	Diptera	Empididae	Trichoclinocera pectinifemur							4	
1 Insecta	Diptera	Limoniidae	Elephantomyia westwoodi			1					
4 Insecta	Diptera	Limoniidae	Erioptera septemtrionis			4					
2 Insecta	Diptera	Limoniidae	Euphylidorea platyphallus	2							
1 Insecta	Diptera	Limoniidae	Helius flavipes			1					
1 Insecta	Diptera	Limoniidae	Idiocera blanda					1			
9 Insecta	Diptera	Limoniidae	Ormosia affinis			7	1				1
1 Insecta	Diptera	Limoniidae	Symplecta sp.							1	
1 Insecta	Diptera	Muscidae	Musca autumnalis							1	
1 Insecta	Diptera	Muscidae	Spilogona sp.	1							
2 Insecta	Diptera	Pediciidae	Pedicia inconstans							2	
4 Insecta	Diptera	Psychodidae	Phychodid sp.				2			1	1
1 Insecta	Diptera	Sepsidae	Sepsis punctum							1	
1 Insecta	Diptera	Tabanidae	Hybomitra lurida	1							
1 Insecta	Diptera	Tachinidae	Cryptomeigenia sp.				1				
1 Insecta	Diptera	Tachinidae	Medina sp.							1*	
1 Insecta	Diptera	Tachinidae	Unnkown		1						
1 Insecta	Diptera	Tipulidae	Tipula caloptera							1	
1 Insecta	Diptera	Tipulidae	Tipula oleracea								1
10 Insecta	Ephemeroptera	Caenidae	Caenis amica sp.?	1			4	1	4		
4 Insecta	Ephemeroptera	Caenidae	Caenis latipennis ?							3	1
1 Insecta	Ephemeroptera	Caenidae	Caenis sp.				1				
1 Insecta	Ephemeroptera	Caenidae	Caenis sp.				1				
1 Insecta	Ephemeroptera	Caenidae	Caenis sp.				1				
2 Insecta	Ephemeroptera	Caenidae	Caenis sp.			2					
6 Insecta	Ephemeroptera	Caenidae	Caenis sp.							6	
18 Insecta	Ephemeroptera	Caenidae	Caenis youngi sp.?					1		2	15
1 Insecta	Ephemeroptera	Ephemerellidae	Ephemerella sp.	1							

5 Insecta	Ephemeroptera	Ephemerellidae	Eurylophella temporalis						3		2
4 Insecta	Ephemeroptera	Ephemeridae	Hexagenia sp.			4					
2 Insecta	Ephemeroptera	Heptageniidae	Heptagenia sp.	2							
6 Insecta	Ephemeroptera	Heptageniidae	Maccaffertium mediopunctatum							6	
1 Insecta	Ephemeroptera	Heptageniidae	Maccaffertium vicarium							1	
1 Insecta	Ephemeroptera	Heptageniidae	Stenacron interpunctatum			1					
2 Insecta	Ephemeroptera	Isonychiidae	Isonychia bicolor							2	
4 Insecta	Hemiptera	Notonectidae	Notonecta kirbyi								4
1 Insecta	Hymenoptera	Vespidae	Polistes sp.								1
1 Insecta	Lepidoptera	Amphisbatidae	Machimia tentoriferella						1*		
3 Insecta	Lepidoptera	Amphisbatidae	Psilocorsis reflexella			3					
1 Insecta	Lepidoptera	Argyresthiidae	Argyresthia alternatella				1				
1 Insecta	Lepidoptera	Argyresthiidae	Argyresthia aureoargentella								1
1 Insecta	Lepidoptera	Argyresthiidae	Argyresthia canadensis								1
1 Insecta	Lepidoptera	Argyresthiidae	Argyresthia thuiella								1
2 Insecta	Lepidoptera	Batrachedridae	Batrachedra praeangusta	1							1
1 Insecta	Lepidoptera	Blastobasidae	Asaphocrita busckiella								1
1 Insecta	Lepidoptera	Blastobasidae	Blastobasis floridella							1	
2 Insecta	Lepidoptera	Blastobasidae	Holcocera chalcofrontella						1		1
1 Insecta	Lepidoptera	Blastobasidae	Holcocera crassicornella*		1						
1 Insecta	Lepidoptera	Carmbidae	Herpetogramma sp.								1
1 Insecta	Lepidoptera	Carmbidae	Ostrinia obumbratalis						1		
1 Insecta	Lepidoptera	Coleophoridae	Coleophora limosipennella						1		
2 Insecta	Lepidoptera	Coleophoridae	Coleophora pruniella			1					1
1 Insecta	Lepidoptera	Coleophoridae	Coleophora sp.								1
1 Insecta	Lepidoptera	Cosmopterigidae	Limnaecia phragmitella								1
1 Insecta	Lepidoptera	Crambidae	Acentria ephemerella							1	
1 Insecta	Lepidoptera	Crambidae	Ostrinia penitalis					1			
1 Insecta	Lepidoptera	Crambidae	Thopeutis forbesellus					1			
12 Insecta	Lepidoptera	Elachistidae	Agonopterix robiniella		1			1*		3	7
2 Insecta	Lepidoptera	Elachistidae	Semioscopis packardella							1	1
1 Insecta	Lepidoptera	Erebidae	Ctenucha virginica								1
1 Insecta	Lepidoptera	Erebidae	Idia sp.	1							
2 Insecta	Lepidoptera	Erebidae	Unknown**				1				1
2 Insecta	Lepidoptera	Erebidae	Unknown**								2
3 Insecta	Lepidoptera	Erebidae	Unknown**	1				1	1		
2 Insecta	Lepidoptera	Erebidae	Unknown**					1		1	
1 Insecta	Lepidoptera	Erebidae	Unknown**							1	
1 Insecta	Lepidoptera	Gelechiidae	Carpatolechia sp.			1					
1 Insecta	Lepidoptera	Gelechiidae	Caryocolum cassella		1						

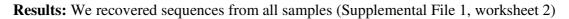
1 Insecta	Lepidoptera	Gelechiidae	Chionodes fuscomaculella			1					
1 Insecta	Lepidoptera	Gelechiidae	Chionodes mediofuscella							1	
3 Insecta	Lepidoptera	Gelechiidae	Coleotechnites sp.			1					2
2 Insecta	Lepidoptera	Gelechiidae	Coleotechnites sp.			2					
1 Insecta	Lepidoptera	Gelechiidae	Coleotechnites thujaella								1
1 Insecta	Lepidoptera	Gelechiidae	Filatima sp.					1			
1 Insecta	Lepidoptera	Gelechiidae	Gelechia sp.	1							
2 Insecta	Lepidoptera	Gelechiidae	Metzneria lappella						1		1
1 Insecta	Lepidoptera	Gelechiidae	Pseudotelphusa quercinigracella				1				
1 Insecta	Lepidoptera	Gelechiidae	Pseudotelphusa querciphaga				1				
1 Insecta	Lepidoptera	Gelechiidae	Xenolechia sp.				1				
2 Insecta	Lepidoptera	Gelechiidae	Xenolechia ontariensis				1	1			
1 Insecta	Lepidoptera	Geometridae	Blastobasis glandulella				1*				
10 Insecta	Lepidoptera	Geometridae	Hydriomena sp.*	1	1	1	2		3	1	1
1 Insecta	Lepidoptera	Geometridae	Lycia ursaria								1
1 Insecta	Lepidoptera	Geometridae	Operophtera bruceata								1
1 Insecta	Lepidoptera	Geometridae	Perizoma alchemillata			1					
1 Insecta	Lepidoptera	Gracillariidae	Caloptilia negundella								1
1 Insecta	Lepidoptera	Gracillariidae	Cameraria caryaefoliella							1	
5 Insecta	Lepidoptera	Lasiocampidae	Malacosoma americana							4	1
1 Insecta	Lepidoptera	Lasiocampidae	Malacosoma disstria							1	
3 Insecta	Lepidoptera	Leptoceridae	Nectopsyche albida						1	2	
1 Insecta	Lepidoptera	Leptoceridae	Oecetis cinerascens								1
1 Insecta	Lepidoptera	Limacodidae	Lithacodes fasciola			1					
1 Insecta	Lepidoptera	Momphidae	Mompha epilobiella						1		
1 Insecta	Lepidoptera	Momphidae	Mompha brevivittella								1
1 Insecta	Lepidoptera	Noctuidae	Anicla sp.							1	
1 Insecta	Lepidoptera	Noctuidae	Apamea devastator		1						
2 Insecta	Lepidoptera	Noctuidae	Apamea sp.								2
2 Insecta	Lepidoptera	Noctuidae	Condica sp.							1	1
1 Insecta	Lepidoptera	Noctuidae	Feltia jaculifera		1*						
1 Insecta	Lepidoptera	Noctuidae	Mythimna unipuncta								1
2 Insecta	Lepidoptera	Noctuidae	Spodoptera sp.							1	1
2 Insecta	Lepidoptera	Noctuidae	Spodoptera sp.		1					1	
1 Insecta	Lepidoptera	Noctuidae	Unknown**		1						
1 Insecta	Lepidoptera	Notonectidae	Notonecta kirbyi						1		
3 Insecta	Lepidoptera	Pterophoridae	Geina sheppardi						1	2	
7 Insecta	Lepidoptera	Pterophoridae	Geina sp.							1	6
1 Insecta	Lepidoptera	Pterophoridae	Hellinsia lacteodactylus							1	
1 Insecta	Lepidoptera	Pyralidae	Scotomera gielisi				1				

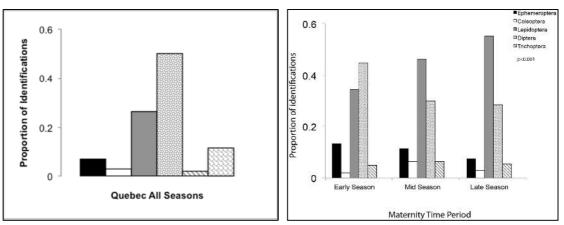
1 Insecta	Lepidoptera	Sphingidae	Amorpha juglandis						1	
1 Insecta	Lepidoptera	Sphingidae	Deidamia inscriptum					1		
2 Insecta	Lepidoptera	Tineidae	Acrolophus heppneri*	1						1
1 Insecta	Lepidoptera	Tineidae	Homosetia fasciella							1
2 Insecta	Lepidoptera	Tortricidae	Acleris chalybeana					1	1	
3 Insecta	Lepidoptera	Tortricidae	Acleris forsskaleana					1	1	1
1 Insecta	Lepidoptera	Tortricidae	Acleris negundana					1		
1 Insecta	Lepidoptera	Tortricidae	Adoxophyes negundana					1*		
1 Insecta	Lepidoptera	Tortricidae	Aethes sp.						1	
1 Insecta	Lepidoptera	Tortricidae	Ancylis divisana					1		
1 Insecta	Lepidoptera	Tortricidae	Argyrotaenia quercifoliana			1				
1 Insecta	Lepidoptera	Tortricidae	Argyrotaenia sp.		1					
1 Insecta	Lepidoptera	Tortricidae	Catastega aceriella							1
1 Insecta	Lepidoptera	Tortricidae	Choristoneura fumiferana					1		
1 Insecta	Lepidoptera	Tortricidae	Choristoneura sp.	1						
1 Insecta	Lepidoptera	Tortricidae	Clepsis virescana	1						
4 Insecta	Lepidoptera	Tortricidae	Cnephasia sp.		1				3	
1 Insecta	Lepidoptera	Tortricidae	Epinotia transmissana				1			
2 Insecta	Lepidoptera	Tortricidae	Eucosma sp.				1			1
1 Insecta	Lepidoptera	Tortricidae	Grapholita eclipsana					1		
3 Insecta	Lepidoptera	Tortricidae	Gretchena sp.					1	2	
1 Insecta	Lepidoptera	Tortricidae	Oecetis cinerascens					1		
1 Insecta	Lepidoptera	Tortricidae	Olethreutes glaciana	1						
1 Insecta	Lepidoptera	Tortricidae	Olethreutes sp.							1
2 Insecta	Lepidoptera	Tortricidae	Pandemis lamprosana				2			
1 Insecta	Lepidoptera	Tortricidae	Pandemis sp.	1						
1 Insecta	Lepidoptera	Tortricidae	Phtheochroa sp.							1
1 Insecta	Lepidoptera	Tortricidae	Platynota idaeusalis	1						
1 Insecta	Lepidoptera	Tortricidae	Platynota sp.					1		
1 Insecta	Lepidoptera	Tortricidae	Platynota sp.				1			
4 Insecta	Lepidoptera	Tortricidae	Proteoteras crescentana					1	1	2
4 Insecta	Lepidoptera	Tortricidae	Pseudexentera sp.							4
3 Insecta	Lepidoptera	Tortricidae	Pseudexentera sp.					2	1	
1 Insecta	Lepidoptera	Tortricidae	Pseudexentera sp.					1		
1 Insecta	Lepidoptera	Tortricidae	Pseudexentera sp.						1	
7 Insecta	Lepidoptera	Tortricidae	Sparganothis pettitana				2	1	4	
1 Insecta	Lepidoptera	Tortricidae	Zeiraphera sp.		1					
1 Insecta	Megaloptera	Corydalidae	Chauliodes sp.							1
1 Insecta	Megaloptera	Sialidae	Sialis sp.						1	
3 Insecta	Neuroptera	Hemerobiidae	Hemerobius sp.						1	2
	-		•							

3 Insecta	Tricoptera	Glossosomatidae	Glossosoma intermedium	2								1
2 Insecta	Tricoptera	Helicopsychidae	Helicopsyche borealis						2			
1 Insecta	Tricoptera	Hydropsychidae	Arctopsyche ladogensis	1								
1 Insecta	Tricoptera	Hydropsychidae	Cheumatopsyche sp.						1			
2 Insecta	Tricoptera	Limnephilidae	Limnephilus sp.									2
3 Insecta	Tricoptera	Leptoceridae	Triaenodes injustus									3
1 Insecta	Tricoptera	Leptoceridae	Triaenodes nox									1
5 Insecta	Tricoptera	Leptoceridae	Triaenodes sp.				5					
1 Insecta	Tricoptera	Leptoceridae	Triaenodes sp.				1					
2 Insecta	Tricoptera	Molannidae	Molanna sp.		2							
8 Insecta	Tricoptera	Nectopsyche	Nectopsyche albida									8
2 Insecta	Tricoptera	Phryganeidae	Agrypnia colorata	2								
1 Insecta	Tricoptera	Phryganeidae	Agrypnia deflata	1								
3 Insecta	Tricoptera	Phryganeidae	Phryganea cinerea		1		1					1
	Additional unid	entiifed prey (inclue	des level 3 identifications)	33	18	42	64	42	27	88	15	8

Procedures for Quebec samples:

Samples from Quebec were not included in regular statistical analyses for three reasons. First, they were collected from individuals rather than from under roosts in large "community" samples. Second, for reasons that are not clear, the DNA was difficult to amplify and so additional steps were taken to recover the data. We include these data then as a supplement to the full analysis. Third, the sample includes males rather than all females and young (as expected in maternity roosts).


Collection procedures: The sampling in Quebec was performed from 15th of June to 5th of August in 2011 (Jacques-Cartier National Park and Montmorency Research Forest) and 2012 (Aiguebelle National Park). A total of 2-5 pellets were collected directly from males.


Sample preparation: We extracted DNA as described in the main manuscript. We encountered a high rate of PCR failure for these samples. Thus we treated all as "recalcitrant" and the PCR was conducted using Q-solution (provided by the Qiagen, UK multi-plex PCR kit) and modified hot start PCR programme.

PCR mixture: 12µl reactions contains 5µl of Master Mix, 1µl of Q solution, 0.5µl of each primer, 3µl H2O and 2µl template DNA.

Thermocycler protocols: An initial denaturation period of 15 min at 95°C followed by 35 cycles of 94°C for 30s, 53°C for 90s and 72°C for 90s, with a final extension period of 10min at 72°C. Using this protocol >90% of samples provided a band on an agarose gel.

Sequencing: To maximize sequencing potential and recovery, the reverse primers were modified for the Ion Torrent platform (Clare et al. 2014) and sequencing and informatics was carried out as described in that same publication.

Supplemental Figure: A comparison of the overall diet of little brown bats at locations in Quebec (across all seasons) with the overall results from Figure 2.

Location Long Point Long Point Long Point Long Point Long Point Long Point Long Point
Clinton Clinton Clinton
Clinton
Clinton
Clinton Clinton
Clinton
Clinton
Clinton
Clinton Clinton
Clinton
Clinton
Lake St George
Lake St George
Lake St George Lake St George
Lake St George
Lake St George
Lake St George
Laba Ch Caanaa
Lake St George Lake St George
Lake St George
Lake St George
Lake St George
Lake St George
Lake St George Lake St George
Lake St George Lake St George
Lake St George
Lake St George
Lake St George
Lake St George
Lake St George
Lake St George Lake St George

Collection Date June 27, 2011 July 5, 2011 July 18, 2011 August 1, 2011 August 17, 2011 June 6, 2011 June 13, 2011 May 20, 2009 May 27, 2009 June 3, 2009 June 11, 2009 June 17, 2009 July 8, 2009 July 15, 2009 July 22, 2009 July 29, 2009 August 5, 2009 August 12, 2009 August 19, 2009 August 26, 2009 September 9, 2009 June 8, 2011 June 21, 2011 July 5, 2011 July 12, 2011 July 18, 2011 Aug 1, 2011 Aug 15, 2011 May 21, 2009 May 27, 2009 May 29, 2009 June 3, 2009 June 10, 2009 June 16, 2009 June 26, 2009 July 2, 2009 July 8, 2009 July 15, 2009 July 22, 2009 July 29, 2009 August 5, 2009 August 12, 2009 August 19, 2009 August 26, 2009

Lake St George Lake St George

Praries Praries Praries

Pinery Provincial Park Pinery Provincial Park Pinery Provincial Park Pinery Provincial Park

Kakisa NWT Salt river NWT Kakisa NWT Salt river NWT Salt river NWT

Martock, Nova Scotia Martock, Nova Scotia Martock, Nova Scotia Martock, Nova Scotia Tatamagouche Nova Scotia Tatamagouche Nova Scotia Tatamagouche Nova Scotia Tatamagouche Nova Scotia September 2, 2009 September 9, 2009

June 22, 2011 July 18, 2011 August 15, 2011

June 14, 2009 Exact Date Not Know Exact Date Not Know July 13, 2008

June 28, 2011 June 23, 2011 July 27, 2011 July 20, 2011 Sept 1, 2011

June 16, 2011 July 10, 2011 July 24, 2011 August 29, 2011 May 31, 2011 July 5, 2011 July 1, 2011 August 1, 2011