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Abstract

Gene expression measurements detailing mRNA quantities are widely employed in molecular biology and are increasingly
important in diagnostic fields. Reverse transcription (RT), necessary for generating complementary DNA, can be both
inefficient and imprecise, but remains a quintessential RNA analysis tool using qPCR. This study developed a Transcriptomic
Calibration Material and assessed the RT reaction using digital (d)PCR for RNA measurement. While many studies
characterise dPCR capabilities for DNA quantification, less work has been performed investigating similar parameters using
RT-dPCR for RNA analysis. RT-dPCR measurement using three, one-step RT-qPCR kits was evaluated using single and
multiplex formats when measuring endogenous and synthetic RNAs. The best performing kit was compared to UV
quantification and sensitivity and technical reproducibility investigated. Our results demonstrate assay and kit dependent
RT-dPCR measurements differed significantly compared to UV quantification. Different values were reported by different kits
for each target, despite evaluation of identical samples using the same instrument. RT-dPCR did not display the strong inter-
assay agreement previously described when analysing DNA. This study demonstrates that, as with DNA measurement, RT-
dPCR is capable of accurate quantification of low copy RNA targets, but the results are both kit and target dependent
supporting the need for calibration controls.
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Introduction

Measuring RNA by reverse transcription real-time quantitative

PCR (RT-qPCR) is an established approach for investigating gene

expression and viral diagnostics. It is well known that the RT step,

required to convert RNA to complementary DNA (cDNA), is

imprecise and that different reverse transcriptase enzymes (RTase)

can work with considerably different efficiencies [1]. Many of the

issues associated with differing RTase efficiencies may be

sidestepped by taking advantage of the linear nature of RT and

performing relative quantification, with the results expressed as

fold changes, or by comparing to a standard curve that is equally

affected by the limitations of the RT.

Digital (d)PCR is continuing to gain recognition in the field as

an extremely precise and reproducible methodology offering the

potential for accurate, robust and highly sensitive measurement

without the need for a standard curve [2]. Much work has already

been done to meticulously evaluate this technique for DNA

molecular measurement [3,4,5,6,7,8]. However, a comprehensive

evaluation is yet to be established for RNA. dPCR expands the

long established premise of molecular quantification by qPCR

through facilitating measurement of individual target molecules.

Molecules are isolated by limiting dilution and partitioning, before

being individually amplified by PCR [7,9]. Each reaction is then

analysed separately. A count of positive partitions may then be

used to calculate, using Poisson statistics, an absolute count of

target molecules present in the sample [10]. As a result, the need

for a calibration curve to assign a value is argued to be unnecessary

[4,5,7,11,12,13], and this fact has quickly led to the notion that

dPCR is calibration free [2]. dPCR may also offer the potential to

maximise the accuracy, sensitivity and reproducibility of RNA

measurements, for capabilities such as diagnostic mRNA profiling,

biomarker analysis and monitoring of viral load.

While this may be true, many studies have demonstrated that

the variability inherent in the RT component of the process far

outweighs that observed from the PCR step when performing

qPCR [14,15,16]. Quantification sensitivity differences reported

between one-step and two-step RT-qPCR for low copy targets or

low concentration samples such as single cells [17,18,19,20], may

in part be attributed to gene-specific priming in one-step protocols

(as opposed to random hexamers or oligo (dT) commonly used in

two-step protocols). An additional consideration when performing

RT-dPCR is sample partitioning. For two-step protocols, the

cDNA is produced before sample partitioning for dPCR. This

therefore must rely on the assumption that the RT step is linear

and so the number of cDNA molecules accurately represents the

initial number of target RNA molecules. If this is not the case,

significant bias may be introduced. Alternatively for one-step

protocols, the RNA population is partitioned prior to RT and as

such, one RNA target molecule is represented by one positive

partition (pending successful amplification). One-step RT-dPCR

protocols therefore reduce the potential for bias in this capacity.

In this study we investigated how this characteristic of the RT

might affect cDNA production and ultimately influence the dPCR
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measurement by performing RNA analysis by RT-dPCR and

assessing the repeatability, linearity and sensitivity of dPCR

measurement. We prepared a Transcriptomic Calibration Mate-

rial (TCM) and measured both synthetic and endogenous targets,

comparing RT-dPCR analysis to UV, and evaluated how different

assays and commercially available one-step RT-qPCR kits

perform using both endogenous targets and synthetic process

controls.

Materials and Methods

LoBindH tubes were employed throughout this study (Eppen-

dorf, Cambridge, UK). Primer and probe sequences for dPCR

were designed in-house using Primer Express, software version 3

(Life Technologies, Paisley, UK) and obtained from Sigma

(Dorset, UK). Primers/assays were positioned across different

RNA secondary structure motifs (predicted using MFOLD

[21,22], representing both tightly folded and more open regions,

depending on the target (Figure S1). Sequences, gene accession

numbers and assay concentrations are outlined in Table S1.

ERCC RNA concentration and copy number estimates are

summarised in Table S2. Assay positions within the respective

transcripts are detailed in Table S3. Total yeast RNA [from bakers

yeast (Saccharomyces cerevisiae), Sigma] at 25 ng/reaction was used as

carrier in this study. All samples were diluted using RNA Storage

Solution, RSS (Life Technologies), unless otherwise stated.

Synthetic RNA Transcripts
Six synthetic (ERCC developed targets; External RNA Control

Consortium) RNA transcripts (ERCC-00013, 200025, 200042,

200099, 200113, and 200171) were selected for investigation

(supplied in plasmid DNA format, courtesy of Dr Marc Salit,

NIST, USA). For brevity, the ERCCs shall be subsequently

identified without the preceding zeros. Concentrations of plasmid

were assigned by the supplier using UV spectrophotometry and

converted to copy number using published methods [23]. Copy

number conversions were performed using the appropriate

extinction coefficient values for dsDNA (50 ng-cm/mL) or RNA

(40 ng-cm/mL).
ERCC RNA was prepared from the corresponding plasmid

DNA, as described previously [24] In vitro transcription (IVT)

performed using MEGAscriptH T7 Kit (Life Technologies): 37uC
overnight incubation, with Turbo DNase treatment. IVT ERCC

RNA concentrations and insert sizes were subsequently estimated

using Nanodrop UV spectrophotometry (Thermo Scientific,
Massachusetts, USA) and 2100 Bioanalyzer (Agilent, West

Lothian, United Kingdom), respectively. 2100 Bioanalyzer data

may be found in Figure S2. Samples were diluted to approximately

1 ng/mL in RSS and aliquots stored at 280uC. Concentrations
and copy number estimates are reported in Table S2.

Cell Lines: Endogenous Targets
Three human cell lines were employed for production of

complex background material for endogenous target selection;

Hep-G2 (organ: liver, disease: hepatocellular carcinoma), SaOS-2

(organ: bone, disease: osteosarcoma) and Hs 683 (organ: brain,

disease: glioma), (all cell lines from ATCC, Teddington, UK).

Culturing details given in Appendix S1.

Based on confluency and cell size, eight to fourteen flasks were

prepared for each cell type, as outlined in Appendix S1. Medium

was removed, cells washed in Hanks Balanced Salt Solution

(HBSS; PAA Laboratories, Somerset, UK) and TRIzol (Sigma)

added directly to cell monolayers (17.5 mL per T-175 flask) and

passed three times over the entire surface of the flask to ensure cell

lysis. Lysates were transferred to 50 mL round-bottomed Falcon

tubes and stored at 280uC until RNA extraction. Replicate T-175

flasks (one per cell line used) generated at the same time and under

the same conditions were used for cell enumeration and viability

estimates using a Vi-Cell (Beckman Coulter, High Wycombe,

UK). For cell counting, cells were detached post HBSS wash using

5 mL Trypsin/EDTA (Sigma) for 5 min at 37uC and neutralised

with 5 mL culture medium before Vi-Cell analysis.

Total RNA was extracted from cell lysates by following the

standard TRIzol protocol (Invitrogen), details given in Appendix

S1. Total RNA solutions were then treated with recombinant

(r)DNase I (Life Technologies), as per manufacturer’s protocol (1 U

rDNase I reagent added per 4 mg of total RNA, incubated at 37uC
for 30 min). These preparations were then purified using RNeasy

midi kit (Qiagen), assessed for quantity (yield; Nanodrop), and

subsequently pooled (per cell-type).

Following total RNA extraction, DNase treatment and clean-up,

pooled cell-line RNA samples were subjected to standard quality

metrics for concentration and integrity (Nanodrop and 2100

Bioanalyzer, respectively). Neat samples (resuspended following

clean-up in nuclease-free water, between 110–700 ng/mL) were
then stored in aliquots at 280uC.

Preparation of Transcriptomic Calibration Material
Pooled cell line RNA stocks were diluted in RSS to 250 ng/mL

(Hep-G2 and Hs683) or 100 ng/mL (SaOS-2), and the complex

background material prepared by mixing different proportions of

each cell line RNA to a final concentration of 50 ng/mL
(Proportions: 0.755 Hep-G2, 0.205 Hs 683, 0.04 SaOS-2). A

mix containing all six ERCC transcripts was spiked into the mixed

ratio cell line solution, at approximately 1.0E+06 copies/mL (final

concentration), to produce the Transcriptomic Calibration Mate-

rial (TCM) for analysis. The TCM solution was aliquoted (150 mL)
to generate 245 replicate units prior to storage at 280uC.

RT-dPCR Analysis
dPCR experiments were performed using the Fluidigm Biomark

platform. Both 12.765 and 48.770 chip formats were utilised.

Assays were first optimised using the Prism 7900 HT real-time

PCR system (Life Technologies) before transfer to the Biomark.

One-step RT-dPCR utilised AgPath-ID one-step RT-PCR

reagents (Ambion). Master reactions comprised RT-PCR buffer/

master mix (16), RT enzyme (16), GE sample loading reagent

(16, Fluidigm), sequence-specific gene assay (Table S1. RT

priming was gene-specific due to one-step process), 25 ng/reaction

Yeast total RNA carrier and RNA at various concentrations

(Table 1). These master reactions were added to dPCR chip inlets,

a proportion of which is loaded per panel (see Appendix S2 for

volumetric details). Samples were analysed in triplicate (kit

comparison) or replicates of six panels (Quantification Sensitivity

experiment). Reaction mix (i.e. master mix, gene specific assay and

RNA) was loaded into sample inlets and delivered to nanolitre

partitions by an integrated fluidic circuit controller. Thermal

cycling conditions: (RT) 45uC for 30 min, (RTase inactivate/

denature) 95uC for 15 min, (PCR) 40 cycles 95uC for 15 s and

60uC for 60 s. Analysis was performed utilising dPCR analysis

software (Fluidigm), version 3.0.2. dPCR calculations are ex-

plained in further detail in the Appendix S2. Adherence to the

MIQE guidelines is detailed in Table S4.

A count of partitions showing positive amplification can be

made and an absolute target concentration elucidated. ‘‘Estimated

copies’’ or ‘‘Copies per panel’’ refer to the number of targets on

the panel following a Poisson correction, to account for the fact

that some positive partitions will contain more than one molecule.

Digital PCR Quantification of RNA

PLOS ONE | www.plosone.org 2 September 2013 | Volume 8 | Issue 9 | e75296



As the number of positive partitions increases, so does the

probability that some partitions will contain more than one target

molecule. See Appendix S2 for calculations. Examples of dPCR

output are provided in Figure S3.

For one-step kit comparison, two further commercial kits were

evaluated; Quantitect Probe one-step RT-PCR Kit (Qiagen) and

Superscript III Platinum one-step RT-qPCR system w/ROX

(Invitrogen). Both the Ambion (Multiscribe) and Invitrogen

(Superscript III) RTases are derived from Moloney murine

leukemia virus (MMLV) RTase. Alternatively, the Qiagen

(Omniscript and Sensiscript) RTases are derived from a unique

source (undisclosed). The Qiagen RTases maintain RNase H

activity, while the Ambion and Invitrogen RTases are claimed to

have reduced RNase H activity.

One-Step RT-qPCR Kit Comparison by dPCR
Initially, quantification was assessed for two external (ERCC-25

and ERCC-99) targets in both uniplex and duplex formats,

between the three commercial one-step RT-qPCR kits: AgPath ID

(Ambion), Quantitect (Qiagen) and Superscript III (Invitrogen).

RT-dPCR was performed using Fluidigm Biomark 12.765 dPCR

chips, n = 1 panel, plus three replicate experiments. Sample was

diluted to approximately 1896 copies per panel (or 2062 copies/

mL added to master mix), based on UV estimates. Following this,

ERCC-25 and ERCC-99, plus two endogenous (UBC and

MMP1) targets were compared between the kits. These assays

were analysed in duplex: ERCC-25 with ERCC-99 (duplex A),

UBC with MMP1 (duplex B), and ERCC-25 with UBC (duplex

C). Sample was diluted to approximately 1886 copies per panel (or

1640 copies/mL added to master mix, for ERCC targets), based on

UV estimates. RT-dPCR was performed using Fluidigm Biomark

12.765 dPCR chips, n = 3 replicate panels, plus two replicate

experiments.

Comparison between dPCR and UV Measurement
Measurement variability of six ERCC targets was tested using

RT-dPCR evaluated as above (AgPath ID kit, Ambion). ERCC

targets were spiked into cell line-derived total RNA at approxi-

mately 1.0E+06 copies/mL (estimated by UV), enabling evaluation

of potential assay bias. Sample was diluted to approximately 200–

400 copies per panel. RT-dPCR was performed using Fluidigm

Biomark 48.770 dPCR chips, n = 3 replicate experiments. Assays

were analysed in uniplex.

RT-dPCR Quantification Sensitivity
An evaluation of RT-dPCR quantification sensitivity was

performed using ERCC-25 and ERCC-99 assays. Based on UV

estimated values, sample was diluted in 0.5% Tween 20 (Sigma) to

approximately 500, 250, 100, 50, 25, 10 and 5 copies per panel

(equivalent to 3077, 1538, 615, 308, 154, 62 and 18 copies/mL,
respectively). Volumetric dilutions were performed independently

for each dilution, rather than sequentially, to avoid volumetric

error propagation during dilution steps. RT-dPCR was performed

using Fluidigm Biomark 48.770 dPCR chips, n = 6 panels per

dilution, plus three replicate experiments. Assays were analysed in

duplex.

Statistical Methods
All statistical analyses were performed using MS Excel 2007 and

the R statistical programming environment (http://www.r-project.

org/). All data sets incorporated ANOVA calculations.

One-Step RT-qPCR kit comparison by dPCR. The square

of the copy numbers was needed in order to stabilise the difference

in variance between groups. Standard uncertainties have 2 degrees

of freedom, converted to expanded uncertainty with coverage

factor (k) = 4.3.

Comparison between dPCR and UV

measurement. Weighted regression was used to stabilise the

different variance between groups. Standard uncertainty estimates

were made to 3 significant figures and have 2 degrees of freedom,

with k = 4.3 to convert to expanded uncertainties. Only dispersion

due to plate-to-plate variation was included. dPCR plate-to-plate

variability was estimated by pooling the data for all six ERCCs.

The relative standard deviation was approximately 7.59% (46,000

copies) with 12 degrees of freedom (18 data points minus the six

estimated group means).

RT-dPCR quantification sensitivity. A linear mixed model

fit was used with experiment as random effect. Additionally, an

ANOVA was applied removing experiment from the model and

applying a classical fixed effect linear model fit (with only assay

and dilution as factors).

Endogenous versus synthetic targets. The analysis was

split into four groups, one per assay. The square root of the copy

numbers was needed in order to stabilise the difference in variance

between groups. The Qiagen kit always resulted in zero positive

partitions for MMP1, which was therefore removed from the data

set.

Results

One-Step RT-qPCR Kit Comparison by dPCR
Three commercially available kits were compared for quanti-

tative performance by RT-dPCR. The three kits were initially

assessed using both uniplex and duplex formats for quantification

of two synthetic RNA targets: ERCC-25 and ERCC-99 (Figure 1).

The choice of kit significantly affected RNA quantification

(p,0.0001) with the Ambion kit consistently yielding the highest

Table 1. Sample dilutions analysed. Derived by UV spectrophotometry (ERCCs only).

Experiment Assay RNA target copies per panel* Replicates

One-Step RT-qPCR Kit Comparison by dPCR ERCC-25 and ERCC-99 ,1896 1 panel/assay, 3 replicate chips

Comparison between dPCR and UV Measurement All six ERCCs ,200–400 3 panels/assay

RT-dPCR Quantification Sensitivity ERCC-25 and ERCC-99 ,500, 250 100, 50, 25, 10 or 5 6 panels/dilution/assay, 2 replicate
chips

Evaluation of Reverse Transcriptases ERCC-25, ERCC-99, UBC and MMP1 ,1886 3 panels/assay duplex, 2 replicate
chips

*Dilutions are quoted based on RNA copies per dPCR panel. RNA concentrations were estimated by UV and converted to copy number using published methods [23].
No template controls (NTCs) for every experiment resulted in no amplified signal observed.
doi:10.1371/journal.pone.0075296.t001
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signal. A significant difference was also observed between uniplex

and duplex formats for the Qiagen (ERCC-25 p= 0.045) and

Invitrogen (ERCC-25 p= 0.025, ERCC-99 p= 0.019) kits but not

the one supplied by Ambion (ERCC-25 p= 0.347, ERCC-99

p= 0.736), (Qiagen ERCC-99 p= 1.000); however this difference

was considerably smaller than the inter kit differences (Figure 1).

Consistent ratios for ERCC-25:ERCC-99 between uniplex and

duplex measurements were not maintained between kits suggest-

ing an assay-dependent as well as a kit associated difference

(Table 2). The ERCC-99 assay consistently resulted in lower

estimated copies than that for ERCC-25 (with all kits), despite

being added at the same concentration; as estimated by UV.

Comparison Between dPCR and UV Measurement
To investigate this disparity further, RT-dPCR measurements

using the Ambion kit were compared when measuring a further

four ERCC targets (all six present within the TCM) (Figure 2).

dPCR estimates of ERCC transcript quantities were on average

40% lower than when measured by UV (p,0.0001). Bioanalyzer

quantification for all six synthetic targets was comparable to

nanodrop concentration estimates (p = 0.660, with an average

difference between the two approaches of 1.02). The differences

observed in absolute quantification between dPCR and UV were

assay-specific (Figure 2). The number of dPCR positive partitions

for ERCC-25 was closest to UV at 77.41% agreement, whereas

ERCC-99 displayed the lowest agreement at 50.45%, as

previously described. Furthermore, there was no inter-plate

difference observed despite 5–6 days between runs.

Linearity and Sensitivity of RT-dPCR
An additional aim was to identify RT-dPCR sensitivity and

linearity of measurement for low copy targets. This was performed

utilising the Ambion kit alone, due to its superior capabilities

throughout our initial analyses. A dilution series of two synthetic

RNA targets, ERCC-25 and ERCC-99, were analysed in duplex

(Figure 3). Dilutions were performed based on UV evaluation,

using dH2O 0.5% v/v Tween 20 as diluent, to generate samples

equating to approximately 500, 250, 100, 50, 25, 10 or 5 copies/

panel.

There was a significant difference identified between the two

targets agreement with UV values, p,0.0001 (Figure 3A & B),

which concurred with our previous observations (Figure 2). Both

ERCC-25 and ERCC-99 displayed linear quantification capabil-

ities, with good precision (CVs of less than 10%) achievable down

to 50 UV assigned copies (Figure 3C).

Further Evaluation of Reverse Transcriptase’s Targeting
Endogenous Transcripts
In order to investigate the applicability of our findings to real

samples, the same three, one-step RT-qPCR kits were tested to

compare measurement of endogenous targets alongside external

controls in various duplex combinations in the TCM (Figure 4).

Again for each target, there was a significant effect of kit on dPCR

quantification (all p values ,0.0001). For endogenous targets, the

Ambion kit yielded the highest quantification values, as previously

observed with external controls: although the variability observed

for UBC was higher.

To establish whether different plex pairings influenced RT-

dPCR results, duplex reactions were performed pairing different

targets (Duplex A: ERCC-25+ ERCC-99. Duplex B: MMP1+
UBC. Duplex C: ERCC-25+ UBC). As observed above, there was

a significant difference between the kits, but no significant

difference observed in dPCR values between ERCC-25 or UBC

when assessed in different duplex reactions using the Ambion

reagents (ABC), p = 0.061 and 0.92, respectively. Therefore, for

these targets, assays did not influence the quantification result of

their duplex partners.

Discussion

In this study we used a Transcriptomic Calibration Material

(TCM) containing synthetic RNA transcripts in a complex

background made of mixtures of human cell line total RNA. This

was used to both evaluate dPCR measurement and demonstrate

the applicability of the TCM for supporting accurate RNA

enumeration by RT-dPCR.

The findings from the one-step kit comparison by dPCR

(Figure 1, Table 2) indicate that there can be large numbers of

RNA molecules present within the dPCR partitions that are not

being detected with dPCR because either they are not converted

to cDNA or are being converted to cDNA but not being amplified

by the PCR: and that this is kit and/or transcript dependent.

Furthermore, the UV measurement may potentially overestimate

the initial valuation. This is explored in more detail below.

The analysis method was shown to significantly affect the RNA

quantification result. There may be a number of reasons

explaining the significant difference observed between dPCR

and UV methodologies. While dPCR makes an absolute count of

specific amplified cDNA target molecules, UV cannot discriminate

between nucleic acid species, non-target RNA and fragmented/

degraded/non-amplifiable targets [7,25,26,27,28,29]. This could

contribute to the consistent increased RNA concentration

estimated by UV. However, the concordance between UV and

the 2100 Bioanalyzer suggest these additional factors are not

playing a major role. Another explanation for the discrepancy is

that the RT-dPCR measurement value may be underestimating

the true concentration. Quantification of RNA reflects only the

number of target cDNA molecules converted from the original

RNA. This may or may not give an accurate estimate for the

original concentration of the RNA molecules of interest [30]. Not

only have we shown here the potential for RT sensitivity and

variability to affect dPCR estimation, as previously reported when

using qPCR [1,31], but our previous studies have shown similar

disparity between dPCR and UV valuation when measuring DNA

targets [7], suggesting the PCR step in the RT-dPCR may also

contribute to the observed differences.

Figure 1. One-step kit comparison. Three different one-step RT-
qPCR kits were compared in both uniplex and duplex formats, by dPCR.
Two external targets, ERCC-25 and ERCC-99 were analysed. Error bars:
95% Confidence intervals. n = 3 replicate panels. Equivalent UV
estimates: ERCC-25 1185 copies/panel, 95% CI 17.34. ERCC-99 1185
copies/panel, 95% CI 26.19.
doi:10.1371/journal.pone.0075296.g001
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Our linearity and sensitivity data clearly show a pattern of

increased variability with the increase of dilution factor below 50–

100 estimated copies. We have previously demonstrated that when

analysing DNA targets, dPCR is highly precise down to 16 copies/

panel [7] suggesting RNA measurement is more variable.

The magnitude of the quantification difference between kits was

not consistent between different targets, both synthetic and

endogenous, suggesting an additional assay specific and kit

associated bias. There was a greater difference between kits when

measuring endogenous targets than for synthetic targets. Further-

more, both Invitrogen (1 positive partition) and Qiagen (0 positive

partitions) kits were unable to provide satisfactory quantification

values for MMP1 despite being measured with six replicates

totalling some 4590 reactions. However, as the Ambion kit only

measured on average 112 MMP1 positive partitions, it would

suggest that this transcript was below the limit of detection for the

two former kits. Measurement, or specifically enzyme, efficiency/

sensitivity is an important consideration when measuring low

abundance RNA targets, in order to avoid false negative results

and our data suggests that choice of kit is crucial for ensuring the

most sensitive result when performing RT-dPCR. It should also be

noted that while MMP1 target was present at low abundance in

Table 2. Three one-step kit comparison with uniplex and duplex formats.

Method Format ERCC- Positive Partitions Copies per panel* Ratio{ Standard Uncertainty

Ambion Duplex 25 627 1316 1.37 0.051

99 546 959

Uniplex 25 639 1383 1.47 0.076

99 541 944

Invitrogen Duplex 25 295 373 3.31 0.223

99 104 113

Uniplex 25 335 442 5.18 0.262

99 81 85

Qiagen Duplex 25 68 71 4.22 0.588

99 17 17

Uniplex 25 89 95 5.57 0.906

99 17 17

*Copies per panel calculated from the number of positive partitions using the Poisson correction.
{Ratio of ERCC-25/ERCC-99 dPCR values with standard uncertainties. Ratios calculated using copies per panel. Standard uncertainty calculated by dividing the standard
deviation by the square root of n (number of replicate measurements).
doi:10.1371/journal.pone.0075296.t002

Figure 2. dPCR versus UV quantification. Six external targets (ERCC-13,225,242,299,2113 and2171) were assessed by both one-step dPCR,
utilising the Ambion one-step RT-qPCR kit, and UV measurement. Error bars: 95% Confidence intervals. n = 3 replicate dPCR experiments or UV
measurements.
doi:10.1371/journal.pone.0075296.g002

Digital PCR Quantification of RNA
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Figure 3. dPCR sensitivity for RNA measurement. Assessment of RT-dPCR quantification sensitivity, using independent dilutions and
quantifying ERCC-25 and ERCC-99 external targets in a duplex format. n = 6 panels per dilution, plus two replicate experiments. UV data based on

Digital PCR Quantification of RNA
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the dilutions tested, evaluation of a more concentrated sample may

circumvent the sensitivity issues associated with the two kits.

Therefore, this must also be considered when validating protocols,

and where possible, low copy measurements should be avoided.

Causes of Differing RT-dPCR Results
One of the most striking findings of this study is the large inter

assay and inter kit difference in the estimated copies for a given

target. There are a number of potential causes for these

observations. It is clear from our data that some, if not all, of

the kits analysed during this study were not measuring all the RNA

molecules that were present. There may be a number of different

reasons for this. The assumption that DNA measurement by

dPCR can be precise, reproducible, and absolute cannot be

readily extrapolated to the measurement of RNA [30]. The RT

step introduces an additional source of variability. It is a well-

documented fact that RT does not convert all RNA to cDNA

[32,33]. RT inefficiency and variability may account for the

majority of measurement divergence, especially given that qPCR

has been shown to be extremely sensitive and efficient [34,35]. In

addition, several studies have shown that RT reaction components

may have a reversible inhibitory effect on the subsequent qPCR,

the magnitude of which depends on the RT system

[17,27,36,37,38]. While it would be hoped that in the one-step

kits investigated in this study the RT components would have

minimal effect on the PCR step, one cannot rule out the possibility

that as well as RNA not being converted to cDNA, failed

subsequent amplification of the cDNA may also explain the

underestimation.

In our recent study, we documented a dPCR phenomenon

termed molecular dropout [39]. This event is characterised as a

failure to detect the presence of a target molecule during dPCR. In

other words, the target molecule is present in the partition but is

not amplified. Given this precedent, it is therefore plausible to

assume that molecular dropout, either at the cDNA or RNA stage

of the RT-dPCR process, on a much larger scale to that measured

by dPCR alone, may partly explain our findings. Moreover, it is

possible that different enzymes may be affected to different degrees

by this phenomenon. Several factors may contribute to molecular

dropout including assay sensitivity, reagent inhomogeneity,

template complexity and matrix effects (e.g. inhibition).

Template secondary structure and position of the assay is known

to impact on the RT-qPCR reaction [34] and may contribute to

this molecular dropout. The potential impact of template

secondary structure was assessed [21,22] to evaluate whether this

could be a cause for molecular drop out and determine positional

influences contributing to assay performance. All templates

displayed a degree of secondary structure within the amplicon

region (Figure S1). When concentrating on the regions comple-

mentary to the reverse primer (used in the RT to prime cDNA

synthesis), all templates exhibited some degree of stem-loop

structures. However, the 39 ends of the reverse primer comple-

mentary region showed differing secondary structures. For

example the 39 end within ERCC-25 was within an open (loop)

structure while for ERCC-99, the final base was designed to bind

to a closed (stem) region (Figure S1 D & F). Given that the primers

are extended from the 39 end, this may explain why ERCC-25

consistently gave a higher value than ERCC-99 despite their being

present at the same copy number. The assay-specific bias observed

between kits for different external and endogenous targets maybe

in part explained by predicted template secondary structures and

this would also appear to be kit specific.

The recommendation from the MIQE guidelines [34] that RT

primers be designed to stem loops to improve qPCR maybe a

initial UV quantification of stock and predicted target levels following volumetric dilutions. (A) & (B) dPCR sensitivity. (B) Focus on lowest level target
dilutions. Error bars: 95% Confidence intervals. (C) Precision of dPCR quantification compared to UV.
doi:10.1371/journal.pone.0075296.g003

Figure 4. Evaluation of Reverse Transcriptases. Three different one-step RT-qPCR kits were compared in different duplex formats, by dPCR.
Quantification for external (ERCC-25 and ERCC-99) and endogenous (MMP1 and UBC) targets was evaluated. ERCC-25 with ERCC-99 (duplex A), UBC
with MMP1 (duplex B), and ERCC-25 with UBC (duplex C). In the key/tabulated values, the assay in brackets is the duplex partner for the assay whose
positive partition values are being displayed. Error bars: 95% Confidence intervals. n = 3 replicate panels, plus two replicate experiments.
doi:10.1371/journal.pone.0075296.g004
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particularly important consideration when performing RT-dPCR

to improve assay sensitivity. Further work is required to build on

the hypothesis that RNA structure will effect RT-dPCR sensitivity,

but our findings suggest reaction efficiency may in part reflect the

ability of an enzyme to negotiate strong secondary structures and

successfully progress the course of the reaction and that this is

specific to different kits.

There may be other factors contributing to RT yields. For

example, the samples used were sourced from cell line lysates. Co-

extracted inhibitors may affect different reverse transcriptases to

different degrees. Furthermore, components of total RNA, such as

rRNA and tRNA may additionally inhibit RTase efficiency [40],

by competing for reagents and producing undesired products.

However, the manufacturers claim that the RTase used in the

Invitrogen kit is not significantly inhibited by such total RNA

components. These considerations taken together may in part

explain the disparity displayed between different one-step RT-

qPCR kits.

As may be seen from this comparison, despite the accuracy

conferred by dPCR, analysis of RNA using RT-dPCR needs to be

approached with caution. While for RNA measurement the

precision of the RT-dPCR technique is high, it nonetheless

introduces increased variability into the measurement value than

dPCR alone [7]. The significant differences observed between kit

sensitivities, particularly for low abundance targets (MMP1),

highlight the importance of reagent choice and protocol consis-

tency as critical if data sets are to be meaningfully compared.

Furthermore, the inability to detect certain targets may be due to

the choice of RTase/kit and all experimental plans should

therefore be validated appropriately before embarking upon

studies analysing important samples.

For accurate RNA analysis by RT-dPCR it is possible that

unknown measurements should be properly correlated to an

appropriate measurement standard, with a well-defined value and

uncertainty [30,41,42,43]. It may also be the case that while,

unlike RT-qPCR, RT-dPCR may not need a calibration curve to

assign a value, some kind of calibration molecule will be required

to compensate for the assay/kit differences observed here. All

samples may be normalised to a calibrator sample, also known as a

reference sample, in a similar way as performed for relative

quantification by RT-qPCR. It is possible that in some cases where

assay bias is observed, only gene specific calibrators will be

appropriate. For accurate absolute quantification our data suggest

use of a calibrant sample, with an accurate assigned value, will

allow straightforward correction of dPCR data to account for

differences in enzyme efficiencies, inhibitors and molecular

dropout. Such dPCR-specific calibrant materials are yet to be

developed and approaches combining validated external and

endogenous control materials, as described here, represent a

possible strategy. The full power of this technique may only be

realised on their experimental incorporation.

Conclusion

This study has shown that dPCR is capable of making precise

measurements of synthetic and endogenous RNA molecules in a

complex RNA background. RT-dPCR quantification of RNA

targets was significantly lower than that derived from UV values

suggesting a possible underestimation bias. Furthermore, absolute

measurements differed between the three one-step kits assessed,

with bias in detection sensitivity. Linearity and precision were

sustained for duplex dPCR measurement of synthetic RNA using

the Ambion kit, while sensitivities differed between RNA targets.

dPCR is unencumbered by the restraints of calibration curve

measurements, however, the employment of dPCR-specific

calibrant materials (reference samples) would facilitate greater

accuracy for absolute quantification. Furthermore, use of the

TCM shows the applicability of RT-dPCR for the target-

dependent selection of suitable RT enzymes. This study is novel

in demonstrating application of RT-dPCR for absolute quantifi-

cation of RNA endogenous and synthetic targets. Our findings

give strong weight to the applicability of RT-dPCR to measure-

ment fields including RNA diagnostics and RNA viral measure-

ment.

Supporting Information

Figure S1 RNA Secondary Structure Predictions from mFold.

(A) MMP1, (B) UBC, (C) ERCC-13, (D) ERCC-25, (E) ERCC-42,

(F) ERCC-99, (G) ERCC-113 and (H) ERCC-171. Green

highlighted regions indicate amplicon. Folding predictions were

performed at 45uC (temperature of RT step).

(DOCX)

Figure S2 Integrity assessment of Synthetic RNA Transcripts.

2100 Bioanalyzer quantification for all six synthetic targets was

comparable to nanodrop concentration estimates (p = 0.660, with

an average fold change between the two measurements of 1.02).

(DOCX)

Figure S3 Typical dPCR output data from this study. Both

amplification plots and heatmaps are shown. Amplification plots

display DRN versus cycle number. Heatmaps are the correspond-

ing schematic representations of positive partitions as detected by

the Biomark instrument. Black= no amplification. Red=FAM

amplification. Blue =HEX amplification. Threshold was adjusted

to eliminate cross talk between the filters (FAM versus HEX). (A)

One-Step RT-qPCR Kit Comparison by dPCR. (B) Endogenous

versus Synthetic Targets.

(DOCX)

Table S1 Primer and probe sequences.

(DOCX)

Table S2 ERCC RNA concentration and copy number

estimates.

(DOCX)

Table S3 Assay Positions.

(DOCX)

Table S4 MIQE checklist for authors, reviewers and editors.

(DOCX)

Appendix S1 Materials and Methods.

(DOCX)

Appendix S2 dPCR Calculations Explained.

(DOCX)
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