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Fish responses to flow velocity and
turbulence in relation to size, sex
and parasite load

F. A. Hockley!, C. A. M. E. Wilson?, A. Brew' and J. Cable'
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ZHydro-Environmental Research Centre, School of Engineering, Cardiff University, Cardiff CF24 OYF, UK

Riverine fish are subjected to heterogeneous flow velocities and turbulence
and may use this to their advantage by selecting regions that balance
energy expenditure for station holding while maximizing energy gain
through feeding opportunities. This study investigated microhabitat selec-
tion by guppies Poecilia reticulata in terms of flow characteristics generated
by hemisphere boulders in an open channel flume. Velocity and turbulence
influenced the variation in swimming behaviour with respect to size, sex and
parasite intensity. With increasing body length, fish swam further and more fre-
quently between boulder regions. Larger guppies spent more time in the areas
of high-velocity and low-turbulence regions beside the boulders, whereas
smaller guppies frequented the low-velocity and high-turbulence regions
directly behind the boulders. Male guppies selected the regions of low velocity,
indicating possible reduced swimming ability owing to hydrodynamic drag
imposed by their fins. With increasing Gyrodactylus turnbulli burden, fish
spent more time in regions with moderate velocity and lowest turbulent kinetic
energy which were the most spatially and temporally homogeneous in terms of
velocity and turbulence. These findings highlight the importance of hetero-
geneous flow conditions in river channel design owing to the behavioural
variability within a species in response to velocity and turbulence.

1. Introduction

Rivers differ from oceanic and estuarine habitats in that flow is primarily in the
longitudinal direction and particularly subjected to disturbance events, for
example flooding as a result of heavy rainfall. Natural and man-made structures,
such as boulders, woody debris and bridge piers, create physical obstructions to
the water flow and generate localized regions where velocity magnitudes and
turbulence levels are spatially heterogeneous. Ecological theory suggests that
habitat heterogeneity is positively related to fish species diversity, with flow
regime strongly influencing patterns of global-scale species richness [1]. Place-
ment of in-stream structures, such as boulders and woody debris, to improve
connectivity and complexity has been increasingly employed in river rehabilita-
tion programmes [2]. Improvement in fish species richness and abundance as a
result of these restoration projects is variable, with increased densities reported
for some species, but not for others, depending on species habitat requirements
[3]. For example, the placement of boulders in watersheds in southwest Oregon
caused an increase in the number of pools, providing more suitable habitat for
coho salmon Oncorhynchus kisutch (Walbaum 1792) and trout O. mykiss (Walbaum
1792), but saw a decrease in dace Rhinichthys spp. (Girard 1856) and no change in
abundance of young-of-year trout [3]. Thus, successful restoration projects need
to be both species and site specific [2].

A stationary obstacle, for example a boulder, used in these regeneration pro-
jects or coarse river bed generates turbulence which can lead to the development
of vortices. Turbulence and vortices can be either beneficial or detrimental to fish,
depending on the directionality and strength of each velocity component, their

© 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
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temporal fluctuation, the turbulent stresses imposed and the
ability of the fish to maintain stability [4]. The capability of
fish to maintain position in a current relative to the substratum
(station holding) [5] is an essential survival strategy to avoid
being washed downstream and may limit individuals or
species to specific areas of the river [6]. When station holding,
stream-dwelling fish orientate themselves upstream (positive
rheotaxia) in order to minimize energy expenditure, maximize
food capture and intercept chemical cues [7,8] by detecting
water currents with neuromasts on their lateral line [7,9]. The
size of the vortices (turbulence length scale) in relation to fish
length is critical when considering the effect of perturbed
flow on swimming performance [10,11]. If a vortex generated
from a stationary body is small relative to the body size of
the fish, then the moments of force are evenly distributed
across its body and balance is not affected. If the size of the
vortex is equal to the size of the fish, then the rotating vortex
will introduce a torque and the fish may overturn [11,12].
Lupandin [11] concluded that perch Perca fluviatilis (Linnaeus,
1758) swimming performance decreased when the turbulence
length scale exceeded two-thirds of the fish length, but this has
never been tested on other fish species.

Fish will avoid an environment where there are large fluc-
tuations in temporal velocity (an indication of the turbulence
level). In turbulent flows, water particles move irregularly
causing a continuous exchange of momentum from one por-
tion of the water to another and this momentum exchange
can cause turbulent shear stress on a fish’s body. This stress
can have a negative effect on fish, for example individuals of
Luciobarbus bocagei (Steindachner 1864) avoided areas of high
horizontal shear stress [13]. In extreme cases, for example in
hydroelectric dams, the rotating turbine can generate turbulent
shear stresses which can cause fish injury or mortality [14,15]
that will vary between species and size categories [16].
Additionally, turbulent shear stress, velocity shear and velocity
magnitude are negatively correlated with abundance, taxa
richness and community composition of macroinvertebrates
[17], potential prey for fish. On the other hand, fish may use
turbulence to their advantage with some species capable of
capturing energy from vortices to propel themselves upstream
or station hold [18]. For example, at intermediate area mean
velocities of 25-50 cms™' chub Nocomis micropogon (Cope
1865) harnessed the energy from vortices generated by vertical
cylinders to maintain position within the water column [18].
However at lower area mean velocities (less than 25 cm s~ '),
the chub avoided swimming behind the cylinders and at
higher area mean velocities (50-75cm s ") they were dis-
placed from their positions on the cylinder and forced to
swim in the adjacent free stream [19]. Numerous studies have
used experimental flumes in the laboratory to examine the criti-
cal swimming speeds and optimal longitudinal velocities (i) of
fish both in the laboratory and field [20—24], however, very few
studies have investigated the effects of turbulence parameters
(vortices, turbulent kinetic energy and turbulent shear stress)
in relation to fish behaviour on a microhabitat scale [13]. Differ-
ences in behaviour within a species in response to these
turbulence parameters might explain why some restoration
processes using boulders have been a success while others
have seen little benefit.

Biotic factors also influence fish swimming ability, for
instance fin size. Wild-type zebrafish Danio rerio (Hamilton
1822) had significantly higher critical swimming speed than
long-tailed varieties, owing to the drag effect of the larger fins

[25]. Large and colourful fins in male fish are common in n

nature, and the evolution of this exaggerated ornamentation
is driven by sexual, rather than natural selection [26]. In guppies
Poecilia reticulata (Peters 1859), females select males with larger
tails, as an indicator of reproductive fitness [27], yet males with
longer tails exhibit poorer swimming performance [28], indi-
cating a trade-off between swimming performance (natural
selection) and courtship success (sexual selection). Addition-
ally, infectious disease may impair swimming ability by
causing symptoms, such as atrophy of musculature, nervous
system pathology, obstruction of blood flow and physiological
interference from parasite waste products [29]. Heavy infections
may also reduce a host’s physical agility or modify the shape
and size of the fish, affecting its profile in the water, and
thus generating increased hydrodynamic drag [29]. Few studies
have attempted to examine the impact of infection on fish
behaviour within a flow environment, with the majority of
experiments being conducted in tanks of static water [30-32].
To our knowledge, no previous study has quantified how tur-
bulence levels impact infected fish, and generally little is
known about the potential implications of habitat heterogeneity
on host—parasite interactions in aquatic systems. On the one
hand, differences in swimming ability, different life stages or
sexual segregation may cause spatial repartition of individuals
within a population, thus affecting parasite transmission. On
the other hand, parasite infection may cause a change in fish
behaviour or reduction in swimming ability, thus affecting
microhabitat use within the river system.

Guppies and their natural parasites Gyrodactylus spp. are
popular host—parasite model organisms for use in ecological,
genetic and behavioural studies [33,34]. This is partly owing
to the fact that guppies are highly sexually dimorphic, with
males being smaller in size with ornate dorsal and caudal
fins. These larger caudal fins have been associated with a
reduced swimming ability [28,35], and compared with
females, males exhibit lower critical swimming speeds and
have an affiliation for slower water velocities in the wild
[28,36]. Gyrodactylus turnbulli (Harris 1986) is an ectoparasitic
monogenean which naturally infects guppies in Trinidad and
Tobago [33]. The parasite causes behavioural changes, for
example by inducing erratic swimming behaviour [37], and
in the later stages of infection the host fins become contracted
and the fin rays fuse together [37].

The aim of this study was to assess how swimming behav-
iour of fish is affected by velocity and turbulence characteristics
in a heterogeneous flow field generated by hemispherical
boulders. Using open channel flume experiments, we explored
intraspecies variation in swimming behaviour of guppies
P. reticulata between different flow regions with respect to
size, sex and parasite load. The flow regions around the
boulders were characterized in terms of their spatial variation
in velocity, turbulence and turbulent shear stress through
relatively high-frequency measurements of velocity. The inter-
action of the fish within the habitat was examined in terms of
the frequency of movement both in the near-field locality of
the boulder and further afield between up- and downstream
boulders. We hypothesized that turbulence and velocities
generated by the boulders act as niche habitats for the fish
to enhance station holding, and that large, female and un-
parasitized fish would have stronger swimming abilities, and
therefore tolerate regions of higher velocity and turbulence
and higher spatial variability, compared with their smaller,
larger finned and parasitized counterparts.
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Figure 1. Plan and side view schematic showing positioning of boulders along length of open channel flume. The control volume where velocity and turbulence
measurements took place is shown by the diagonal hatched area. All dimensions are in mm.

2. Material and methods
2.1. Open channel flume and velocity measurements

The study took place in a glass-walled recirculating open channel
flume in the Hydro-environmental Research Centre (HRC),
Cardiff University, UK. The flume was 10 m long and 0.29 m
wide, and the surface water profile controlled by a downstream
tailgate weir. The flume was set at a negative gradient of 1 in
1000 and concrete quasi-hemisphere boulders of diameter
150 mm and height 75 mm were positioned at 0.5 m intervals
along the centreline of the flume bed (figure 1). Uniform flow
conditions were established at a discharge (Q) of 0.0049 m3s!
and flow depth of 135.7 mm, which gives an average pore
velocity (taking into account the boulder area) of 12.7 cms™ .
The selected flow velocity is typical of natural conditions in
guppy streams in Trinidad [38]. The Reynolds number of the
flow was 37 062, which relates to a turbulent flow regime [39].
Chlorides were removed from the water by the addition of
Haloex at 0.02 ml 171, and water was heated to 25° £+ 1°C using
an Electro Titanium Digital heater.

The velocity and turbulence field around the hemispheres
were characterized using a Nortek Vectrino I downwards-
looking acoustic Doppler velocimeter (ADV). The water was
seeded using Q-Cel hollow microspheres to increase the signal
to noise ratio (SNR) in order to produce sufficient sound scatter
[40]. The velocity measurement grid was generated with point
velocity measurements taken at 10-20 mm intervals within a
representative control volume of 0.5 m length (longitudinal direc-
tion), 0.29 m width (transverse direction) and 0.06 m depth
(vertical direction) located at the mid-length of the flume. The
measurement grid was composed of 1112 point measurements
and captured the wake immediately behind the boulder and
the high-pressure region immediately upstream of the boulder.
Higher densities of velocity measurements were taken in the
vicinity of the boulder where velocity gradients were the
steepest. All readings were taken at a sampling rate of 200 Hz
for 4 min with a nominal velocity range of +0.3 msfl, transmit
length of 1.8 mm and sampling volume of 7 mm height and
6 mm diameter. The time-averaged velocity and turbulence stat-
istics for each reading were calculated using the WINADV
software [41] after filtering with a minimum correlation of 70%
and minimum SNR of 20 as recommended by Rusello et al. [42].

2.2. Velocity and turbulence definitions
A number of terms are used to describe the velocity and turbu-
lence field both temporally and spatially (see table 1 for

definitions). The time-averaged point velocities in the longitudi-
nal, transverse and vertical directions are denoted as u,vand w,
respectively. The instantaneous turbulent fluctuation of the
longitudinal velocity from the time mean velocity is

u'(t) = u(t) — u. (2.1)

The turbulence strength is defined as

urms =\ (t)°, (22)
where ‘RMS’ is the root-mean-square. Similar definitions apply
to the transverse and vertical velocities, v(t) and w(t). The turbu-
lent kinetic energy (k) which is a measure of the total turbulent
energy production, and hence a bulk measure of the turbulence
intensity was calculated as

k = 0.5(t13ps + Vs + Wins)- (23)

The normalized turbulent kinetic energy is defined by vk.u!
and is used in this study to normalize the turbulence inten-
sity from the velocity magnitude. The turbulent shear stress
(Reynolds stress) in each plane was calculated as

T = |pUWV|; Ty = |p'w!| and Ty, = |p0'W], (2.4)
where p is the density of water and u'v’, u'w’ and v'w’ are
the covariance of the instantaneous velocity fluctuations.
The volume-averaged velocity and turbulence parameters for
each flow region are denoted using the square brackets, i.e.
(@y, (@), (@), (k) and (Vk i), etc. The ratio of volume-averaged
longitudinal, transverse and vertical turbulent length scale to
fish standard length of an individual fish is given by
(1,)/SL,(l,)/SL and (l,)/SL, respectively. The turbulent length
scale was calculated using the autocorrelation function [48]
where the longitudinal turbulent length scale [, is given by

T
I = aJ R(t)dt, (2.5)
0

where T is the sampling time and R is the autocorrelation function
defined as

R(H) = w (f).u'(t+s) ’ 26)

(1)

where s is the time lag in seconds. The transverse and vertical tur-
bulent length scales (I, and I,,) were calculated in a similar manner.
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Table 1. Glossary of terms.

term definition reference
area mean velocity, i mean velocity of a cross-sectional area of the channel defined as the volume rate of discharge, Q, [39]
divided by the cross section area, A
e ST gron loced o e p urposes o analysrsto . specrﬁc e
physrcal Iaws c@n be applred
Wdrscharge 0 ' total volume of ﬂurd ﬂowrng in unrt trme past a ross- sectron of a channel Also known as ﬂow rate - [391 -
" mean | parasrte rntensrty“ C mean number of mdrvrduals of a partrcular parasrte specres per mfected host ina sample .......[43].... -
Wparasrte intensity . number of |nd|vrduals ofa partrcular parasite species in the |nfected host - [43] -
. prevalence © number of individuals of a host species infected with a partrcular parasrte divided by number of hosts “M[43]M” o
examrned Usually expressed as a percentage
‘ rheotaxrs - behavrour in whrch animals detect and orrentate themselves to the ﬂow of water Wrth posrtrve - [44] -
rheotaxra ﬁsh orientate themselves by positioning themselves wrth therr head pointing upstream
*sham infeion ~~ method by which the fish are anaesthetized and manrpulated 50 to simulate the infection process, -
without the transfer of parasites
‘ standardlength © measurement from the most anterior trp of the body (trp of snout) to the mid-lateral posterror edge [45] -
of the hypural plate or posterior end of the vertebral column
‘ “statron holdrng ‘ the abrlrty of a ﬁsh to marntarn posrtron |n a current relatrve to the substratum - [5] -
 turbulence | Iength 'sale  turbulence Iength scale is a physrcal property which represents the size of the Iargest dominant [46] -
eddies i in turbulent ﬂows
Ctubulentflow~ turbulence is defined as the three-dimensional time- dependent motion characterized by raprd [3947] .
fluctuations superimposed on the mean velocity. Defined by the Reynolds number, which is the
ratio of the inertial forces to the viscous forces. In open channels, turbulent flow occurs when the
Reynolds number based on the hydraulrc radrus Is greater than 2000
* turbulent shear stress turbulent shear stress is caused by the |rregu|ar movement of fluid partrcles and their continuous [46] -

(Reynolds stress)
veIocrty shear

exchange of momentum from one portron of fluid to another
 fluid partrcles in a turbulent flow experience different velocities dependrng on their spatral posrtrons

within a cross-section. These different particle velocities generate velocity shear

2.3. Region characterization

From the depth-averaged velocity field, each boulder control
volume was divided into four regions (figure 2). The areas
where the flow accelerates around the sides of the boulder are
referred to as the high-velocity regions (region H), and the regions
downstream where the flow decelerates and recovers are referred
to as the ‘moderate-velocity regions’ (region M). A recirculation
zone lies directly in the wake of the boulder (region R), and a
region of low velocity in the boulder wake forms the velocity-
deficit region (region L). A summary of the volume-averaged
data are given in table 2.

2.4. Study system

Guppies Poecilia reticulata imported from the lower Aripo River,
Northern Trinidad in 2003, were maintained in aquarium facilities
at the School of Biosciences, Cardiff University, UK. At the time
and place of sampling, the lower Aripo River had width 481 cm,
depth 17 cm and surface flow rate approximately 8.5cms !
(measured by the mean time for a plastic float to travel 100 cm),
and is known to be a high-predation site [49]. Holding tanks
each had an air supply and filter, and fish were maintai-
ned under a 12L:12D regime at 22° + 1°C, fed on a diet of
fish flakes (Aquarian) and bloodworm. A total of 60 female
(mean + s.d. standard length 21.3 + 3.5 mm) and 51 male guppies

—— e EE 2

0 10 20 30 40
10 T 1 1

0246 8911131517

Figure 2. Flow regions around boulders defined by depth- and time-
averaged longitudinal velocity . (H) High-velocity region where there is an
acceleration of flow between the side walls and the boulder, (M) moderate-
velocity region where the flow from region H decelerates, (R) the recirculation
zone, and (L) the velocity-deficit zone in the wake of the boulder (solid
black areas). The white areas around the boulders are the limits of the ADV
probe so measurements were not taken in these areas. Velocity units are in
cm s~ " and length units are in cm.
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Table 2. Volume-averaged velocity and turbulence parameters for the four velocity regions depicted in figure 2. Ranges of the minimum and maximum time-
averaged velocity for the longitudinal, transverse and vertical velocity components together with the turbulence intensities («/, v/ and w’), turbulent kinetic
energy (k) the relative turbulence intensity (\/I?H"), turbulent shear stresses (7, 7, and 7,,) and turbulent length scale (L, L, L,) within each flow
volume are given. Negative velocities for u,vand w refer to upstream, towards the left-hand side flume wall (looking in the downstream direction) and

downwards movement, respectively. The standard deviation (o) for each volume-averaged parameter is given in brackets.

moderate-velocity high-velocity velocity-deficit recirculation
parameter region region region region
@) (o) (ms™") 11,67 (1.28) 14.05 (2.26) 9.15 3.18) 6.46 (6.97)
mrangeu D 887 1507 . 285 1736 o 1742 o ........_256 1790...
m(u’) o) 291 (060) e 274 (088) e (060) 404 (089)
mrangeu PRI
m(v) o) ((ms_1) Ry : 90)” B (222)””. Ry 0 29)”.,. B m”m—038 fi 25).
mrangev ........._590 T ........._707 e “”—436 s _313 e
.v.<|/> 298 (1 64)v e 296 “ 23)”.' R 390 (1 15)”” 411 (1 16)'
mrange|/ 180 1863 e 1238' e T e
W(w) ) ((ms_1) R (046) e (0.82) Ry (094)””. m”m—118 “ 07).
mrangew ..._163 T HMW—218 T .._295 e _329 038‘
m(w’) e (026)v el (033) B 206 (056)”'” 248 (058)
mrangew’ ......092 T ke 082 346”“” B 082 o
m(k} R (cmzs_z) 356 (609)v S 507 “373) e 1083 (1760) e 2528 (2792),”
mrangek 001 o5t B 000 7188'” o 05 . 002 8928“'
W(xfﬁ“) na 013 (012) 012 (023) o (061) 074 (504)
mrange \[u Bt 001 e 000 T e —1268 2750...
. i 0 (Nm_z) 017 (018)” - 014 (025)”. R (031)””. 036 (038)
mrange - S et S e T
<1-,,W> (U) (Nm_z) Ry (010) e (010)”.'. R (03.4).
mrange TUW......... e 036“ e ...,.001_133
'm<1-vw> (0-).” (Nm_z) R (002)” s (003) R (004)””. E— (008)
mrange TVW.........,. ......000 P ..000 o emeos ,.000 o
.v.</u> ((m) 1046 (079)v B 1223 “ 80)” R (251).”., R (495)
mrangel e s e 1506 R i e 1489“'
B 0 o ((m) e (008) Ceash 0 01) B (075) S (074)
mrangel ...,..0008 482 B ,.001 o3 e T e 0
'”</W> B ((m) 008 (028) e (046) Cos (055).”.'. 109( 81)
mrangel B vt AR 001 a0 e ...001 270. S

(mean + s.d. standard length 16.2 4+ 1.3 mm) were used in the be-
havioural experiments. The standard length (L;) to fork length, and
L, to dorsal fin length ratios were 25 and 36% larger in males than
females, respectively (t-test, t = —8.29 and —8.45, d.f. = 50 and 38,
both p < 0.001), from a subsample of 60 individuals.

An isogenic strain of the ectoparasitic worm G. turnbulli (Gt3)
was used to infect 30 females and 27 males with four worms
per individual following standard procedures, e.g. [32]. The remain-
ing 30 female and 24 male guppies were sham-infected under
anaesthetic without exposure to parasites. All fish were housed in
individual 1 1 pots and the infections developed for 8 days. Infection
was confirmed by restraining each individual in a small amount of
water in a crystallizing dish under stereo-microscope. All unin-
fected fish were sham-screened. After 8 days postinfection, the
mean intensity of G. turnbulliwas 24.8 (s.e. 2.76) worms. No individ-
uals showed any symptoms of infection, such as fin clamping or
notable reduced mobility.

2.5. Experimental trials

The open channel flume behavioural experiments took place
on 1-27 February 2012 between 8.00 and 19.00. Each fish was
given a 30 min acclimatization period and then observed for
10 min, recording position in relation to the boulders (figure 2),
starting with the position of the fish at the end of the acclima-
tization period. Frequency of movement was recorded as the
number of times the fish moved from one boulder region to
another, and the distance moved up- and downstream was
recorded as the number of movements to a different boulder con-
trol volume (figure 1) in each direction. If the fish entered an area
within 0.5 m length of the up- or downstream ends of the flume,
the timer was paused until the fish returned to the main working
section, as these flow areas may be subjected to disturbance from
the flow straightening material at the upstream end of the flume
and the weir at the downstream end. If the fish moved into the
top 70 mm elevation of the flow depth, data were discarded as
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Figure 3. Turbulent kinetic energy (k) plots of flow at normalized elevations (z/H) (a) 0.05, (b) 0.09, () 0.12, and (d) 0.85 around boulders in an open channel
flume. Flow elevation (z) is normalized by the boulder height (H). Units are given in cm s

velocity measurements could not be taken in this region owing to
the measurement limitations of the downward-looking ADV.
This resulted in a mean observation period of 4 min 36s per
fish. Parasite infection, host size or sex did not affect the time
spent in the top 70 mm of the flow depth (generalized linear
model (GLM), p > 0.05). Individual fish were tested only once,
so the total sample size was 30 infected and 30 uninfected
females and 27 infected and 24 uninfected males.

2.6. Statistical analysis
All analyses were conducted using R v. 2.1.0 statistical software [50].

The total time individual fish spent in each flow region was
totalled and the different volumes of each region was corrected
by dividing time by the region volume (to give units of s cm )
producing a comparative value for time budget allocation in
each different-sized region. Times were converted to percentage
of total time occupying each velocity region and arcsine
transformed for statistical analysis.

Differences in the time spent in each region for the pooled
data were analysed using a linear mixed model (GLMM) with
Gaussian distribution using the Imer function in the Ime4 pack-
age [51] followed by Tukey’s honestly significant difference
(HSD) multiple comparisons using the ghlt function from the
multcomp package [52]. Because individual fish spent time in
multiple regions, the term ‘Fish ID” was included in the
GLMM as a random effect to account for autocorrelation.

The effects of host standard length, sex, parasite prevalence
and intensity on the distance moved up- and downstream, and
the frequency of movement between boulder regions were ana-
lysed using a GLM with negative binomial error distribution
and square root link function. The host effects on per cent time
spent in each flow region were analysed using a GLM with
inverse-Gaussian error distributions and either identity or
1 w2 link functions. Fish sex and standard length were included

in the models as an interaction term to account for size differ-
ences of male and female guppies, and parasite intensity and
standard length were included as an interaction term to account
for any differences in parasite infection between different-sized
fish. GLMs were refined using Akaike information criterion
(AIC) values to select the best-finishing model.

3. Results
3.1. Microhabitat hydrodynamics

An open channel flume was used to quantify guppy swim-
ming behaviour according to fish size, sex and parasite load
in relation to microhabitat variation around hemispherical
boulders placed at 0.5m intervals. Flow was ejected over
the boulder crest and there was a strong downwards move-
ment in the lee of the boulder where the vertical velocity
reached as high as 3.29 cm s ™!, which is 26% of the longitudi-
nal average pore velocity of 12.7 cm s~ ' (table 2). While it was
difficult to precisely interpret the type of coherent flow struc-
ture, it was clear that this recirculating region had the highest
kinetic energy (figure 3), the highest relative turbulence
intensity and the strongest shear stresses in the horizontal,
longitudinal and vertical planes (table 2). In the recirculating
region, the flow was highly three-dimensional and the magni-
tude of the shear stresses in both horizontal and vertical planes
was fairly equal. Although the longitudinal velocity was the
lowest in this region, the spatial and temporal variability of
the longitudinal velocity was the greatest. Furthermore, this
region had the greatest turbulent shear stresses in all planes
and the highest mean vertical turbulent length scale I, which
ranged between 0.01 and 2.77 cm, and therefore exceeded the
size of the fish in some instances.
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Figure 4. Volume-averaged turbulent kinetic energy (k) in relation to volume- and time-averaged longitudinal velocity for each velocity region. Horizontal and
vertical error bars show the standard deviation of the volume-averaged value for each velocity region.
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Figure 5. Time spent by guppies in the four velocity regions around a hemisphere boulder in relation to volume-averaged (a) longitudinal velocity ({u)) (b)
turbulent kinetic energy ((k)) and (c) relative turbulence intensity ((r/ku~")). The horizontal and vertical bars shown in (g,b) denote the standard deviation
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The proximity of the flume wall to the boulder sides created
aregion of accelerated flow around the boulders (H in figure 2).
The high-velocity region had the highest longitudinal velocity,
highest turbulent length scale in the horizontal plane, but the
lowest turbulent kinetic energy and shear stresses, relatively
low turbulence intensities and low standard deviations of rela-
tive turbulence intensity (figures 4 and 5; table 2). This indicates
that while the velocity was at its highest, the temporal

variability of the velocity and turbulence at a given point
within this region was relatively low. The narrowing of the
channel at this point resulted in enhanced shear layer develop-
ment between the flow at the walls and in the wake of the
boulder, which probably enhanced rotational strength of the
vortices in the recirculation region (figure 3).

The moderate-velocity region had moderate longitudinal
velocities (figures 4 and 5a), the lowest turbulent kinetic
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energy (figures 4 and 5b), low relative turbulence intensities
(figure 5¢), low turbulent shear stresses in all planes and the
lowest spatial variation for each parameter as indicated by
the standard deviations in figures 4 and 5. These low values
indicate that this region was the most spatially and temporally
homogeneous region within the boulder control volume, and
therefore the most predictable and stable region (see com-
parison, table 2). This region had the highest turbulent length
scale in the horizontal plane L,, but with the lowest standard
deviation, again suggesting a relatively stable region.

A summary of the volume- and time-averaged parameters of
each velocity region (figure 2) around the boulders is presented
in table 2. For each velocity region, volume-averaged parameters
and the standard deviation with respect to the time allocation of
the fish in these regions are shown in figures 4 and 5. For all
regions, the turbulent length scale exceeded the size of the fish
in the longitudinal plane (L,).

3.2. Fish movement and position in relation to
microhabitat hydrodynamics

Results of all statistical models relating fish behaviour to host
factors and parasite infection are provided in the electronic
supplementary material.

Fish moved both up- and downstream continuously
throughout the 10-min observation period, and spent only
short periods station holding within different areas of the
flume. With increasing standard length, guppies moved
more frequently between boulder velocity regions (GLM,
adjusted R*=0.964, Z; 190 =3.40, p <0.001) and swam a
greater distance in both the up- and downstream directions
(GLM, adjusted R?=10.923 and 0.934, Z1100 = 3.443 and
3.33, p < 0.001). There was no effect of host sex, parasitism
(prevalence or intensity) or the interaction terms on the
frequency of movement or distance moved.

In terms of flow microhabitat use around the boulders,
guppies spent significantly more time in the region of moderate
velocity magnitude compared with the high, velocity-deficit
and recirculation zones (Tukey’s HSD multiple comparisons
following GLMM F = 5.508, 0.771 and 7.468, respectively, all
p <0.001). This region may therefore represent the best
trade-off between reduced longitudinal velocity and stable
turbulence levels. There was a significant interaction between
parasite intensity and fish standard length (GLM, adjusted
R?=0.126, t3107 = —2.496, p=0.014), with an increase in
time spent in the moderate-velocity region with increasing
parasite intensity but this relationship was stronger for smaller
fish (figure 6). There was no difference in the time spent in the
moderate-velocity region between male and female guppies.

The second most frequented region was the high-velocity
region (H in figure 2), although the time spent in this region
was not significantly higher than that in the velocity deficit or
recirculation zone. This region had the lowest shear stresses in
all planes and was also a predictable environment for the fish
to swim owing to the low temporal variation in velocity. Time
spent in the high-velocity region was significantly related to
fish standard length (GLM, adjusted R*=0.102, t108 = 3.634,
p < 0.001), with larger guppies spending increasingly more
time in the high-velocity region (figure 7). Host sex, parasite
infection (prevalence or intensity) and the interaction terms
had no effect on the time spent in the area of high velocity.

The velocity-deficit region (L in figure 2) had intermediate
values of longitudinal velocity, turbulent kinetic energy and
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Figure 6. Interaction between parasite intensity and host standard length
significantly affecting the percentage of time spent by guppies in the
moderate-velocity regions around boulders. Filled circles show actual data,
lines show predictions from the GLMs at standard length 13 mm (solid
line), 25 mm (dotted line) and 29 mm (dashed line).
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Figure 7. Host factors significantly affecting the percent time spent by gup-
pies in the high-velocity regions around boulders. Black lines represent the
predicted relationship from the GLMs, and dotted grey lines indicate standard
errors of the models.

relative turbulence intensity. Male guppies spent significantly
more time in the velocity-deficit region (mean 25.3%, s.d.
15.0) compared with females (mean 18.9%, s.d. 12.8), regardless
of standard length (GLM, adjusted R?>=0.032, tr108 = —2.253,
p = 0.026). Parasite infection (prevalence or intensity) and
the interaction terms had no effect on the time spent in the
velocity-deficit region.

Fish spent the least amount of time in the recirculation zone
(Rin figure 2) where the relative turbulence intensity, turbulent
shear stresses and ratio of vertical turbulent length scale to fish
standard length were at their greatest (table 2). Time spent
in the recirculation zone was negatively associated with fish
standard length, with smaller fish spending more time in
this region than their larger counterparts (GLM, adjusted
R%=10.039, tr108 = 2.906, p =0.004; figure 8). Fish sex and
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Figure 8. Host factors significantly affecting the percent time spent by gup-
pies in the recirculation zones around boulders. Black lines represent the
predicted relationship from the GLMs, and dotted grey lines indicate standard
errors of the models.

parasite infection (prevalence or intensity) had no effect on the
time spent in the recirculation region.

4. Discussion

In this study, we identified intraspecific variation in fish
swimming behaviour under different flow conditions in
terms of longitudinal velocity and turbulence within a hetero-
geneous habitat and for the first time demonstrated that
microhabitat use can be affected by parasite infection. With
increasing standard length, fish were more active and spent
more time in areas of high velocity and low velocity. Males
spent more time in the region of low velocity and moderate
turbulence, indicating a trade-off between velocity reduction
and turbulence level increase. When infected, smaller fish
appear to opt for the most stable flow conditions. Although
we are unable to determine whether spatial repartition of
the fish is owing to active habitat selection or is a constraint
owing to energy depletion or insufficient physical ability
to station hold, we discuss possible reasons for the spatial
position of individuals.

Guppies spent most time swimming in the moderate- and
high-velocity regions which were the least spatially and tem-
porally variable providing a more stable and predictable
environment. The least amount of time was spent in the
recirculation region characterized by low velocity, high tur-
bulence and high shear stress, where the spatial variability
of the parameters was also the highest. This reiterates the con-
clusions by Silva et al. [13] who demonstrated a significant
negative correlation between horizontal shear stress and tran-
sit time by L. bocagei in an experimental fishway. Thus, shear
stress could be an important turbulence property to consider
when observing fish behaviour. Additionally, the mean tur-
bulent length scale in the vertical plane (l,) was greater
than two-thirds of the standard length for 28% of the fish
in the recirculation region. As Lupandin [11] proposed this
threshold as being important in affecting fish swimming abil-
ity, this could be an additional reason as to why this region
was avoided by the fish in this study.

The time spent in the high-velocity region increased with [ 9 |

increasing standard length, indicating that larger fish were
better able to tolerate the relatively higher flow velocities
associated with this area compared with the highly three-
dimensional flow field experienced in the recirculation zone
immediately downstream of the boulder wake. Fish standard
length was also associated with time spent in the recirculation
zone which had low velocity, high turbulent and high shear
stress, with smaller guppies spending more time in this
region than their larger counterparts. The size effect of
guppies on swimming behaviour is in line with previous
studies that have shown that smaller fish occupy slow-
moving water, and move to faster moving water as they
become larger [22]. It has also been demonstrated that large
juvenile rainbow trout select channels with high-velocities
and low-turbulence over the low-velocity, high-turbulence
channels [53]. However, small juveniles had no preference
for either channel until the area mean velocity reached
28 cm s~ where they selected the low-velocity and highly
turbulent channel [53]. As discussed by Plaut [54], as fish
grow their swimming ability improves, as there is a positive
correlation between critical swimming speed and body size.
The higher energy requirement of larger fish means that
they will be more able to move out into areas with higher
velocity magnitude, where the chances of food capture are
higher [8].

The size of guppies also correlated with the amount of
movement in the open channel. Large guppies displayed
more frequent movement, between the velocity regions
and swam further distances both up- and downstream. This
increased movement may be owing to the enhanced swimming
ability of bigger fish to tolerate changes in velocity magnitude
and turbulence intensity as they move around the open chan-
nel flume. Fish constantly explore their surroundings to
forage and seek shelter and this has previously been found to
be associated with body size, for example Kramer & Chapman
[55] found a positive relationship between home-range size
and body size in several coral reef fishes. In guppies, there is
a significant positive relationship between fork length and
the amount of movement between natural pools separated by
riffles in a Trinidadian stream [56], which could be owing to
a higher energy requirement of larger fish, interaction between
fish size and reproductive strategy or benefits of dispersal for
colonization by larger individuals [56].

After taking into account standard length of the fish, male
guppies were found to occupy the region of velocity deficit
more frequently than females. Guppies are sexually dimorphic,
with males being smaller in size, more colourful and have
longer dorsal and caudal fins. Although longer fins serve as
a secondary sex characteristics in guppies [27,57], for a given
velocity a fish with larger fins experience increased drag
compared with smaller finned counterparts [25]. Indeed
several studies have attributed reduced guppy swimming
performance and predator escape response [28] to the larger
fin size [28,35]. In a study where the surface area of three
shapes of caudal fins of guppies did not differ, there was no
observed difference in swimming ability [24]. Therefore, it
appears that the longer tails in guppies are a trade-off between
sexual selection and natural selection. Differences in micro-
habitat selection between sexes have also been observed in
wild guppies, for example with regard to shallow water
usage [58]. In the wild, male guppies are found more com-
monly in shallower habitats [36] and slower moving water

PL80EL07 1L paiuy 205 'y T Bio‘Buiysygndiaosieforys)


http://rsif.royalsocietypublishing.org/
http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on April 7, 2014

[28], with females occurring in deeper water [36]. This leads us
to question whether the longer tail fins in male guppies also
cause a reduction in tolerance to turbulence and shear stresses
in the wild.

Even after a relatively short infection period, G. turnbulli
caused behavioural changes in guppies, with increasing time
spent in the regions of moderate velocity magnitude with
increasing parasite intensity, but this relationship was only
apparent in small fish. The moderate-velocity regions had the
lowest turbulent kinetic energy, relative turbulence intensity,
turbulent shear stresses and the lowest spatial variability of
these measures, making these regions the most stable and pre-
dictable. A small infected fish may seek these stable areas in
order to offset energetic costs associated with the parasite
infection. Although the influence on habitat structure on the
transmission of parasites is not a new concept (see review by
Sousa & Grosholz, [59]), few studies have focused on the
aquatic environment (e.g. [60]). Extreme flow events during
spate conditions are important in affecting guppy swimming
ability when parasitized [61] and previous studies have
reported fin clamping associated with late stages of gyrodacty-
lid infection [37], which would inevitably result in decreased
swimming performance. By affecting the swimming behav-
iour, and therefore foraging ability of their hosts, parasites
may exert strong selection pressures by population control.
Host—parasite interactions may be affected by habitat hetero-
geneity in several ways: (i) the habitat may cause spatial
segregation of the hosts, thus affecting parasite transmission
opportunities; (ii) the habitat may cause spatial segregation
of the parasites, whether free living or via intermediate hosts
or vectors or (iii) the parasites themselves may affect host be-
haviour, and thus affecting spatial positioning and further
transmission opportunities for the parasite.

In summary, we demonstrate that fish of the same species
but of varying size, sex and parasite intensity have different
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requirements in terms of microhabitat use around boulders
in relation to velocity magnitude, turbulence and turbulent
shear stress. Smaller and male fish (characterized by having
larger fins than females) spent more time in the region of
low-velocity magnitudes, whereas larger fish more frequently
swam in the region of increased velocity magnitude. Small gup-
pies infected with an increasing number of G. turnbulli worms
spent more time in the moderate-velocity, low-turbulence
and low turbulent shear stress regions, where the spatial and
temporal variability of the velocity field was the lowest. This
demonstrates the importance of flow heterogeneity within
a river system for fish species populations, to provide shel-
ter for weaker or smaller individuals or those at different
life stages. In the natural environment, guppies are further
restricted in microhabitats not only owing to velocity and tur-
bulence tolerances, but also due to exclusion by predators and
competitive exclusion from larger or more dominant individ-
uals. Headwater stream habitats are devoid of predators and
guppies are found to be more widely distributed compared
with the downstream populations where they are restricted
to shallower, slow-moving waters owing to the presence of
predators in deeper water [62]. Although boulder placement
is commonly employed to encourage habitat diversity in river
restoration schemes, the success in improving fish populations
has been variable [2,3]. Relatively few studies have bridged
the gap between field observations and the use of static flow
tanks (e.g. [2,19] and this study), particularly with regard to
intraspecific variation in fish behaviour.
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