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SUMMARY 

Ryanodine receptors (RyRs) are the largest known ion channels composed of four 

identical subunits. Interactions between structural/functional domains have been 

proposed to regulate channel activity and play an important role in the pathogenesis 

of RyR-associated disorders. RyR2 mediates the release of calcium form 

sarcoplasmic reticulum of cardiac myocytes and its dysfunction is associated with 

life-threatening arrhythmias. 

The principal aim of this study was to characterise the self-association of the RyR2 

N-terminus biochemically and evaluate its impact on channel function. Moreover, its 

role in channel dysfunction observed in arrhythmia-susceptible individuals was tested 

together with dantrolene’s ability to rescue the disease phenotype. 

RyR2 N-terminus self-association is mediated by multiple sites with two critical 

oligomerisation determinants located in the loops connecting strands β8-β9 and β20-

β21, predicted to reside at the inter-subunit interface. N-terminus self-association is 

further stabilised by disulphide bonds most likely involving multiple cysteine 

residues with cysteine 361 contributing to this process.  

Normal N-terminal inter-subunit interactions within the full-length RyR2 appear to 

prevent spontaneous activation of the channel at diastolic calcium. Channel 

hypersensitivity is a common feature of the arrhythmia-associated phenotype 

suggesting that abnormal N-terminus self-interaction might be involved in RyR2 

pathology. Indeed the presence of arrhythmia-linked mutations (L433P and R176Q) 

compromises the ability of the RyR2 N-terminus to oligomerise. 

Defective N-terminus self-association appears to underlie the functional impairment 

of RyR2
L433P

.  The mutated channel displays compromised [
3
H]ryanodine binding 

and reduced stability of tetrameric assembly, both of which can be rescued by 

dantrolene at clinically relevant concentrations. Notably, dantrolene’s primary mode 

of action appears to involve stabilisation of the N-terminal inter-subunit interactions. 

In summary, the work presented here provides important insights into a novel 

domain-domain interaction and its role in the regulation of RyR2 function.   



V 

 

Contents 
 

Title…………………………………………………………………………………. I 

Declaration………………………………………………………………………….. II 

Acknowledgements……………………………………………………………….... III 

Summary…………………………………………………………………………..... IV 

Table of contents……………………………………………………………………. V 

 

Table of contents 
 

1 General Introduction .............................................................................................. 2 

1.1 Calcium signalling components ..................................................................... 2 

1.2 Ryanodine receptor isoforms .......................................................................... 6 

1.3 Ryanodine receptor structure .......................................................................... 8 

1.3.1 Primary sequence motifs ......................................................................... 9 

1.3.2 Three-dimensional architecture ............................................................. 12 

1.3.3  Transmembrane domains and the pore region ...................................... 14 

1.4 RyR and excitation-contraction coupling ..................................................... 16 

1.5  RyR regulation ............................................................................................. 19 

1.5.1 Calcium, magnesium and ATP ............................................................. 19 

1.5.2 Calmodulin ............................................................................................ 22 

1.5.3 Other EF-hand proteins: sorcin and S100A1 ........................................ 23 

1.5.4 SR proteins: calsequestrin, triadin and junctin ...................................... 24 

1.5.5 FK506-Binidng Proteins (FKBP) .......................................................... 25 

1.5.6 Phosphorylation .................................................................................... 27 



VI 

 

1.5.7 Redox modifications ............................................................................. 28 

1.5.8 Pharmacological modulation of RyR .................................................... 33 

1.6 RyR-associated disorders ............................................................................. 37 

1.6.1 RyR1-associated disorders .................................................................... 37 

1.6.2 RyR2-associated disorders .................................................................... 41 

1.6.2.1 Mechanism of channel dysfunction ............................................... 50 

1.6.2.2 Existing therapies ........................................................................... 54 

1.7 RyR – an allosteric protein ........................................................................... 57 

1.7.1 N-terminal – central domain interactions .............................................. 58 

1.7.2 Interactions within central domains ...................................................... 61 

1.7.3 Central and C-terminal domain interface .............................................. 62 

1.7.4 Interaction within C-terminal domains ................................................. 64 

1.7.5 Interaction between RyR tetrameric complexes ................................... 66 

1.8 Hypothesis and Aims .................................................................................... 68 

2 Materials and Methods......................................................................................... 71 

2.1 Materials ....................................................................................................... 71 

2.1.1 Molecular biology ................................................................................. 71 

2.1.2 Protein biochemistry ............................................................................. 72 

2.1.2.1 Sucrose density gradient ultracentrifugation ................................. 74 

2.1.2.2 [
3
H]ryanodine binding ................................................................... 74 

2.1.3 Yeast culture.......................................................................................... 75 

2.1.4 Bacterial culture .................................................................................... 76 

2.1.5 Mammalian cell culture......................................................................... 76 

2.1.6 Oligonucleotides ................................................................................... 77 

2.1.7 Plasmid Vectors .................................................................................... 77 

2.2 Methods ........................................................................................................ 86 

2.2.1 Molecular biology methods .................................................................. 86 



VII 

 

2.2.1.1 Standard PCR ................................................................................. 86 

2.2.1.2 DNA sequencing ............................................................................ 87 

2.2.1.3 DNA digestion with restriction endonucleases .............................. 88 

2.2.1.4 DNA ligation.................................................................................. 88 

2.2.1.5 Agarose gel electrophoresis ........................................................... 89 

2.2.1.6 Mutagenesis ................................................................................... 89 

2.2.1.7 Introducing deletions into plasmid DNA ....................................... 90 

2.2.1.8 Electroporation of bacteria............................................................. 93 

2.2.1.9 Chemical transformation of bacteria.............................................. 94 

2.2.1.10 Colony screen and plasmid isolation ............................................. 94 

2.2.2 Protein Biochemistry Methods .............................................................. 95 

2.2.2.1 Mammalian cell homogenisation ................................................... 95 

2.2.2.2 Determination of protein concentration ......................................... 96 

2.2.2.3 Chemical crosslinking.................................................................... 96 

2.2.2.4 Polyacrylamide gel electrophoresis ............................................... 96 

2.2.2.5 Western blotting ............................................................................. 98 

2.2.2.6 Sub-cellular fractionation .............................................................. 98 

2.2.2.7 Co-immunoprecipitation ................................................................ 99 

2.2.2.8 Sucrose density gradient ultracentrifugation ................................. 99 

2.2.2.9 [
3
H]ryanodine binding ................................................................. 100 

2.2.3 Yeast two-hybrid system ..................................................................... 101 

2.2.3.1 Yeast Culture ............................................................................... 101 

2.2.3.2 Yeast transformation .................................................................... 101 

2.2.3.3 β-galactosidase colony-lift filter assay ........................................ 102 

2.2.3.4 Quantitative liquid β-galactosidase assay .................................... 102 

2.2.3.5 Cell homogenisation and protein extraction ................................ 103 

2.2.4 Bacterial Culture ................................................................................. 104 



VIII 

 

2.2.4.1 Culture maintenance .................................................................... 104 

2.2.4.2 Liquid cultures for plasmid isolation ........................................... 104 

2.2.4.3 Generation of electrocompetent cells .......................................... 105 

2.2.5 Mammalian Cell Culture ..................................................................... 105 

2.2.5.1 HEK293 cell maintenance ........................................................... 105 

2.2.5.2 Transfection ................................................................................. 106 

2.2.5.3 Long term storage ........................................................................ 106 

3 Identification of cysteines involved in the tetramerisation of the RyR2 N-

terminus ..................................................................................................................... 109 

3.1 Introduction ................................................................................................ 109 

3.2 Methods ...................................................................................................... 115 

3.2.1 Site-directed mutagenesis approach .................................................... 115 

3.2.1.1 Chemical crosslinking.................................................................. 117 

3.2.2 Mass spectrometry approach ............................................................... 118 

3.2.2.1 Immunoprecipitation .................................................................... 118 

3.2.2.2 Sample preparation for mass spectrometry .................................. 120 

3.3 Results ........................................................................................................ 121 

3.3.1 Site-directed mutagenesis.................................................................... 121 

3.3.1.1 Cysteines: 36, 244, 548, 577, 633, 736, 757 and 758 are not 

involved in disulphide bond formation .......................................................... 122 

3.3.1.2 Cysteines mutants BT4L
C361S

, BT4L
C501S

 and BT4L
C615/618/620S 

display variable behaviour ............................................................................. 124 

3.3.1.3 The combined mutants suggest an important role of cysteine 361 in 

the formation of disulphide bond-mediated tetramers ................................... 124 

3.3.1.4 Chemical crosslinking of BT4L
C361S

 suggests additional disulphide-

independent role of cysteine 361in tetramer formation ................................. 126 

3.3.2 Mass spectrometry .............................................................................. 128 

3.3.2.1 Immunoprecipitation .................................................................... 128 



IX 

 

3.3.2.2 Spectral analysis .......................................................................... 131 

3.4 Discussion .................................................................................................. 134 

3.4.1 Cysteines involved in disulphide bond formation do not reside in the 

BT4L N- and C-terminus ................................................................................... 134 

3.4.2 The elusive role of cysteine 361 in the oligomerisation process ........ 135 

3.4.3 DTT-sensitive tetramers – alternative models of interaction .............. 136 

3.4.4 Location of putative cysteine residues – feasibility of disulphide bond 

formation ............................................................................................................ 138 

3.4.5 Disulphide bond formation – experimental artifact? .......................... 141 

3.4.6 Concluding remarks ............................................................................ 143 

4 Determinants of RyR2 N-terminus tetramerisation ........................................... 145 

4.1 Introduction ................................................................................................ 145 

4.2 Methods ...................................................................................................... 151 

4.2.1 Generation of the truncated BT4Δ12 construct................................... 151 

4.2.2 Generation of internal deletion mutants .............................................. 152 

4.2.3 Chemical crosslinking ......................................................................... 152 

4.2.4 Co-immunoprecipitation ..................................................................... 153 

4.3 Results ........................................................................................................ 154 

4.3.1 The BT4Δ12 displays a unique oligomerisation pattern ..................... 155 

4.3.2 Deletion of the SPRY β5-β6 loop has no effect on the tetramerisation 

process 156 

4.3.3 Deletion of the β22-β23 loop has no effect on the tetramerisation 

process 157 

4.3.4 Deletion of the β8-β9 loop impairs oligomerisation ........................... 159 

4.3.5 Deletion of the β20-β21 loop changes oligomerisation pattern .......... 162 

4.4 Discussion .................................................................................................. 163 

4.4.1 The elusive role of SPRY domain in the inter-subunit interaction ..... 164 

4.4.2 Oligomerisation intermediates ............................................................ 166 



X 

 

4.4.3 The role of the loops located at the putative inter-subunit interface ... 167 

4.4.4 Final remarks ....................................................................................... 169 

5 Dissecting the role of N-terminus in RyR2 function ......................................... 172 

5.1 Introduction ................................................................................................ 172 

5.2 Methods ...................................................................................................... 173 

5.2.1 Sub-cellular fractionation .................................................................... 173 

5.2.2 [
3
H]ryanodine binding assay ............................................................... 174 

5.3 Results ........................................................................................................ 175 

5.3.1 The BT4L fragment interacts with the full length RyR2 .................... 175 

5.3.2 The BT4L fragment activates RyR2 at diastolic Ca
2+

 ............................ 176 

5.4 Discussion .................................................................................................. 177 

6 The effect of arrhythmia-linked mutations on RyR2 N-terminus self-association

 181 

6.1 Introduction ................................................................................................ 181 

6.2 Methods ...................................................................................................... 185 

6.2.1 Generation of the BT4L
R176Q 

and the BT4L
L433P

 ................................ 185 

6.2.2 Chemical crosslinking ......................................................................... 186 

6.2.3 Co-immunoprecipitation ..................................................................... 187 

6.2.4 Yeast two-hybrid system ..................................................................... 187 

6.2.5 Sub-cellular fractionation .................................................................... 188 

6.3 Results ........................................................................................................ 189 

6.3.1 Arrhythmia-linked mutations reduce N-terminus self-association ..... 190 

6.3.2 The formation of mixed oligomers is severely compromised in the 

presence of the L433P mutation ........................................................................ 193 

6.3.3 The L433P mutation perturbs RyR2 N-terminus oligomerisation in situ 

(yeast two-hybrid system) .................................................................................. 195 

6.3.4 Dantrolene partially reverses the effects of the L433P mutation ........ 198 



XI 

 

6.3.5 Arrhythmia-linked mutations affect BT4L interaction with the full 

length channel .................................................................................................... 202 

6.4 Discussion .................................................................................................. 204 

6.4.1 Oligomerisation of RyR2 N-terminus is affected by arrhythmia-linked 

mutations ............................................................................................................ 205 

6.4.2 Dantrolene ........................................................................................... 208 

6.4.3 Compromised association between exogenous N-terminus and RyR2 

containing arrhythmia-linked mutations ............................................................ 210 

6.4.4 Final remarks ....................................................................................... 210 

7 Further insights into the L443P mutation .......................................................... 213 

7.1 Introduction ................................................................................................ 213 

7.2 Methods ...................................................................................................... 214 

7.2.1 [
3
H]ryanodine binding assay – RyR2

WT
 versus RyR2

L433P
 ................. 214 

7.2.2 [
3
H]ryanodine binding assay – evaluating the effect of the BT4L 

fragment 215 

7.2.3 Sucrose density gradient ultracentrifugation ....................................... 215 

7.2.4 [
3
H]ryanodine binding assay - dantrolene effect ................................. 216 

7.3 Results ........................................................................................................ 216 

7.3.1 RyR2
L433P

 displays unique calcium dependence of [
3
H]ryanodine 

binding 216 

7.3.2 RyR2
L433P

 calcium sensitivity remains unchanged in the presence of the 

BT4L fragment .................................................................................................. 219 

7.3.3 RyR2
L433P

 channels dissociate into monomers upon sucrose density 

gradient centrifugation ....................................................................................... 221 

7.3.4 Dantrolene increases tetramer stability ............................................... 222 

7.3.5 Dantrolene changes RyR
L433P

 ryanodine binding profile .................... 224 

7.4 Discussion .................................................................................................. 225 

8 Closing remarks ................................................................................................. 229 



XII 

 

I Appendix: List of abbreviations ........................................................................ 235 

II Appendix: Bibliography ........................................................................................ 239 

 



1 

 

Chapter 1 

 

General Introduction 

 

 

 

 

 

  



2 

 

1 General Introduction 

Calcium ions (Ca
2+

) constitute one of the most versatile signalling molecules in living 

systems. The ability of Ca
2+ 

to fulfil its diverse functions lies upon the fact that its 

concentration exhibits high level of spatial and temporal dynamics within the cell. In 

multicellular organisms, the versatility of calcium signals is further expanded by a 

unique expression profile of calcium signalling proteins within each cell type. 

Physiological signals involving calcium are characterised by brief pulses of Ca
2+

 

generated in the cytoplasm by ion fluxes from the extracellular medium and/or 

intracellular stores. Transient increase in the cytoplasmic calcium triggers a signalling 

cascade which regulates many different cellular functions (Berridge et al. 2003). The 

triggered response directly depends on the duration, amplitude, frequency and the 

location of the calcium transient (Taylor and Tovey 2010). The ultimate challenge is 

to assure that calcium levels are under rigorous control. This is pivotal for calcium to 

perform its signalling role and to prevent cell damage associated with prolonged 

calcium elevation.  

1.1 Calcium signalling components 

The extracellular medium of multicellular organism contains free calcium at the 

concentration four orders of magnitude higher that the level found within the cell 

cytoplasm. The low intracellular level of Ca
2+

 prevents its precipitation in the form of 

phosphate salts and allows small changes of calcium levels to fulfil its signalling role 

with minimal expenditure of cell energy.  

Eukaryotic cells contain a number of molecules which are able to bind calcium ions 

and therefore regulate its intracellular concentration. These include non-specific 

calcium buffers such as membrane phospholipids and inorganic phosphates and a 

discrete group of proteins evolved to bind calcium in a highly selective manner. 

Within this specialised class of proteins, only a small minority function as calcium 

buffers per se (e.g. paravalbumin, calbindin. calretinin (Krebs and Michalak 2007)), 

the majority regulates calcium levels by actively transporting the ions between 

extracellular and intracellular compartments. The removal of Ca
2+

 from the cytoplasm 
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into the extracellular space or/and intracellular stores is performed by calcium pumps 

and exchangers. Calcium ATPase pumps are characterised by relatively low transport 

rates but high affinities allowing them to respond to modest elevations in Ca
2+ 

levels 

(Berridge et al. 2003). These pumps reside in the plasma membrane (PMCA, plasma 

membrane Ca
2+

-ATPase), in the membrane of sarco/endoplasmic reticulum (SERCA, 

sarco/endoplasmic reticulum Ca
2+

-ATPase) and in the Golgi membranes (SPCA, 

secretory pathway Ca
2+

-ATPase) (Krebs and Michalak 2007). In the circumstances 

when large quantities of calcium are released in the cytoplasm, Ca
2+ 

removal is 

undertaken by plasma membrane sodium/calcium exchanger (NCX) which exhibits a 

low affinity for Ca
2+

 but a very high transport rate (Berridge 2012). NCX extrudes 

one calcium ion in exchange for three sodium ions; however, in specific conditions 

such as high cytoplasmic sodium concentration and positive membrane potential, the 

exchanger can work in an opposite direction allowing calcium inward transient (Bers 

2002). Calcium influx is also mediated by a distinct type of sodium/calcium 

exchanger (NCLX; sodium/calcium/lithium exchanger) located in the inner 

membrane of mitochondria and suggested to  be critically involved in calcium 

shuttling between intracellular compartments (Palty et al. 2012). Calcium influx into 

mitochondria is supported by mitochondrial calcium uniporter (MCU) which has 

been proposed to have a substantial contribution into Ca
2+

 extrusion pathway in the 

event of prolong and superphysiological Ca
2+

 elevations (Williams et al. 2013). 

The rise in cytoplasmic calcium triggers a number of cellular responses and therefore 

in physiological conditions, calcium influx is rigorously controlled and occurs only in 

response to a specific stimulus. One of such stimuli is a change in the cell membrane 

potential which activates calcium channels located in the plasma membrane (VGCC, 

voltage-gated calcium channels). These channels transfer Ca
2+ 

from extracellular 

space and regulate a number of downstream events including cell excitability, 

contraction, hormonal secretion and gene transcription. Voltage-gated calcium 

channels are divided into five groups displaying not only different pharmacological 

and biophysical properties but also developmental and tissue-specific expression 

pattern (Krebs and Michalak 2007). The L-type Ca
2+

 channels, which are activated by 

high voltage, are major players in the excitation-contraction (EC) coupling triggering 

the release of calcium from sarcoplasmic reticulum of skeletal and cardiac myocytes 

thus enabling muscle contraction. In some cell types however the primary role of L-
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type channels is to provide an inward calcium transient for the generation and/or 

regulation of action potentials (Krebs and Michalak 2007). T-type Ca
2+

 channels are 

characterised by low voltage activation profile, transient nature and small amplitude 

of the produced calcium current. They significantly contribute to cardiac 

automaticity, excitation-contraction coupling and have been shown to play a crucial 

role in cardiac hypertrophy (Ono and Iijima 2010). The remaining three groups, i.e. 

N, P/Q, and R-type channels are primarily expressed in neurons and regulate 

neurotransmitter release (Catterall 2000). 

Calcium entry via plasma membrane is also triggered by signalling molecules 

including extracellular ligands binding to receptor-operated channels and internal 

messengers which activate second-messenger-operated channels (Berridge et al. 

2003). The influx of calcium from the extracellular space remains tightly coupled to 

the intracellular availability of Ca
2+ 

in internal stores, i.e. sarcoplasmic/endoplasmic 

reticulum (ER/SR). This so called store-operated Ca
2+ 

entry (SOCE) is the major 

mechanism of calcium entry in nearly all non-excitable cells which primary role is to 

rapidly refill depleted ER (Collins et al. 2013). However, SOCE has been now 

recognised to exist in excitable cells and proposed to play an important role in 

skeletal and cardiac muscle pathologies (Hunton et al. 2002; Eltit et al. 2013). The 

two components of SOCE pathway include stromal interaction protein 1 (STIM1) 

which resides in the SR/ER and Orai1 forming a highly selective calcium channel 

within the plasma membrane (Muik et al. 2012). Upon internal store depletion, 

STIM1 oligomerises and translocates to the cell periphery in close proximity to the 

plasma membrane where it activates Orai channels. 

In addition to the extracellular medium, cells also use internal sources for calcium 

signalling. The principal intracellular calcium store is located in the 

endoplasmic/sarcoplasmic reticulum, where total Ca
2+ 

is estimated to be in excess of 

2mM. The free calcium concentration is considerably lower due to the buffering 

properties of ER/SR-resident proteins including calreticulin, glucose–regulated 

protein 94, immunoglobulin binding protein and calsequestrin (Krebs and Michalak 

2007). Calcium release is mediated through two types of calcium-sensitive channels: 

inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR). The two 

types of receptors, although only ~30% identical in primary sequence, share 

substantial structural homology and display surprisingly high conservation of 
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structure-function relationship (Seo et al. 2012).  Ryanodine receptors, which exist as 

large homotetrameric complexes, are essential determinants of excitation-contraction 

coupling in skeletal and heart muscle and will be discussed in detail in subsequent 

sections. IP3 receptors are ubiquitously expressed and control a variety of calcium-

dependent processes including cell proliferation and differentiation, fertilisation, 

immune responses, brain function etc. (Mikoshiba 2007). IP3 receptors are activated 

by inositol 1,4,5 triphosphate (IP3) produced by phospholipase C in response to the 

stimulation of G protein-coupled receptors or tyrosine kinase receptors located at the 

plasma membrane (Patterson et al. 2004).  The binding of IP3 increases the sensitivity 

of the receptor to calcium and triggers Ca
2+

 release from the ER further stimulating 

the channel. However, eventually IP3R-mediated Ca
2+

 release leads to channel 

inactivation as high calcium concentration inhibits the receptor (Berridge et al. 2003). 

The release of calcium from ER has also been suggested to be coupled to the 

activation of the two-pore channels (TPC) located on acidic organelles such as 

lysosomes (Patel and Brailoiu 2012). It has been proposed that TP channels respond 

to NAADP (nicotinic acid dinucleotide phosphate) by releasing Ca
2+

 from acidic 

stores (Patel et al. 2011). This is thought to lead to the local increase in calcium 

concentration which stimulates RyR and IP3R located in close proximity triggering 

larger Ca
2+

 release events (Kilpatrick et al. 2013). 

The intracellular rise in calcium regulates a number of distinct cellular processes. The 

end effect of Ca
2+

 signal is defined by its spatiotemporal characteristics and by the 

expression profile of proteins involved in signal processing. These proteins fulfil 

three functions essential for the activation of downstream processes, i.e. they bind 

calcium, decode the information and convey the signal to respective targets.  The 

most prevalent calcium binding motif is composed of helix-loop-helix motif also 

known as EF-hand and is found in proteins such as calmodulin, troponin C, S100 and 

many others. Most EF-hand proteins contain an even number of EF-hands which 

occur in pairs as tandem repeats, however some exceptions from this rule exist such 

as in the recently identified penta-EF subfamily (Krebs and Michalak 2007). 

Moreover, some calcium sensors such as annexins do not contain the canonical EF-

hand motif all together but bind calcium using unique and discontiguous calcium-

coordinating residues contained within internally repeated α-helical domain (Morgan 

et al. 2004). 
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Calcium is one of the most versatile signalling molecules involved in diverse 

signalling pathways. It is indispensable for every cell to fulfil its function, to react to 

and integrate stimuli originating from within and outside the cell, ultimately being 

responsible for organism survival. However, calcium has an ambivalent nature; while 

being essential for life in particular and extreme circumstances it might become a 

death signal. Moreover, even subtle alterations in calcium signalling result in 

pathological conditions and have been linked to some of the major diseases in 

humans. For example abnormal function of ryanodine receptors is associated with 

heart failure, cardiac myopathies and life-threatening arrhythmias (Marx et al. 2000; 

Priori et al. 2001; Tang et al. 2012). 

1.2 Ryanodine receptor isoforms 

There are three known mammalian isoforms of RyRs: RyR1, RyR2 and RyR3. The 

alternative nomenclature of those receptors directly corresponds to the location of 

their primary identification, i.e.; RyR1 is alternatively called skeletal isoform and was 

first detected in skeletal muscle (Takeshima et al. 1989), RyR2 is also known as 

cardiac isoform as it was initially found in the cardiac muscle (Nakai et al. 1990). 

RyR3 cDNA was primarily isolated from a brain tissue and, as expected, this isoform 

was named accordingly (Hakamata et al. 1992). An extensive analysis of ryanodine 

receptor expression pattern revealed that in fact the most abundant isoform in the 

brain is RyR2 while RyR3 was shown to be widely expressed at relatively low levels 

in many tissues (Giannini et al. 1995; Murayama and Ogawa 1996). Interestingly, 

different RyR isoforms were reported to be often simultaneously present in the same 

cell, e.g. RyR2 and RyR3 in cardiomyocytes (Gorza et al. 1997), RyR1 and RyR3 in 

neonatal mammalian skeletal muscles (Yang et al. 2001). A concomitant expression 

of all three isoforms was shown to take place in smooth muscle cells (Löhn et al. 

2001).  Those findings raised the possibility that ryanodine receptors may in fact exist 

as heterotetrameric channels similar to IP3 receptors (Monkawa et al. 1995). Indeed, 

in a heterologous expression system, RyR2 was capable of forming functional 

heterotetrameric channels with RyR1 and RyR3 while RyR1 failed to interact with 

RyR3, in agreement with earlier observations (Murayama and Ogawa 1997; Flucher 
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et al. 1999; Xiao et al. 2002). However, physiological significance of those findings 

remains to be verified as others did not observe RyR2/RyR3 mixed tetramers in 

native tissues (Murayama and Ogawa 1996). 

The diversity of ryanodine receptors is further extended by the fact that alternatively 

spliced variants of each isoform have been reported (Table 1.1) (Futatsugi et al. 1995; 

Marziali et al. 1996; Tunwell et al. 1996). Alternatively spliced RyR variants do not 

only exhibit tissue- and developmental stage-specific distribution but their unique 

expression patterns have also been linked to pathological conditions (Kimura et al. 

2005; Bruno et al. 2012).  Interestingly, some of the spliced variants, when 

recombinantly expressed, have been reported to form mixed oligomers not only with 

their normally-spliced counterparts but also with other isoforms and modulate their 

function in a dominant negative manner (Jiang et al. 2003; George et al. 2007).  

Genes for the three mammalian isoforms are located on different chromosomes (19q, 

1q and 15q for human RyR1, 2 and 3 respectively) and code for proteins of 

approximately 5000 amino acids which share an overall 65% sequence identity 

(Lanner et al. 2010). The highest degree of sequence diversity maps to three 

divergent regions; D1 which spans residues 4210-4562, D2: located between residues 

1353 and 1397 and D3 containing residues 1852-1890 (coordinates for RyR2). Those 

divergent regions have been suggested to define functional differences between 

isoforms. Notably, the D2 region, which is almost completely absent in RyR3, has 

been suggested to be one of the critical determinants for excitation-contraction 

coupling in skeletal muscle (Perez et al. 2003).  The highest degree of sequence 

homology is located in the extreme C-terminus which contains the pore and is 

essential for the oligomerisation into functional tetramers (Gao et al. 1997; Stewart et 

al. 2003; Lee and Allen 2007). 
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RyR 

isoform 

Splice 

variant 
Details Additional information References 

RyR1 ASI (-) 

deletion of 5 amino 

acids (AGDIQ)  after 

residue 3480 

foetal variant, exhibits lower 

activity, upregulated in 

myotonic dystrophy 1 

(Futatsugi et al. 

1995; Kimura et 

al. 2005; Kimura 

et al. 2007) 

RyR1 ASII (-) 

deletion of 6 amino 

acids (VINRQN)  after 

residue 3864 

 
(Futatsugi et al. 

1995) 

RyR2 24bp 

insertion of 8 amino 

acids (VTGSQRSK) 

after residue 1479 

reduced activity, anti-apoptotic 

properties 

(Tunwell et al. 

1996; George et 

al. 2007) 

RyR2 30bp 

insertion of 10 amino 

acids (FAIDSLCGFG) 

after residue 3715 

reduced activity, highly 

expressed at embryonic stage 

(Tunwell et al. 

1996; George et 

al. 2007) 

RyR3 ASI (-) 

deletion of 5 amino 

acids (AMQVL)  after 

residue 3335 

 
(Marziali et al. 

1996) 

RyR3 ASII (-) 

deletion of 6 amino 

acids (LIVRER)  after 

residue 3710 

 
(Marziali et al. 

1996) 

RyR3 As-8a 
deletion of 29 amino 

acids after residue 4405 

does not form  functional 

channels, exclusively 

expressed in smooth muscles 

(Marziali et al. 

1996; Jiang et al. 

2003) 

 
Table 1.1 Alternatively spliced variants of RyR 

1.3 Ryanodine receptor structure 

Ryanodine receptors are the largest known ion channels composed of four identical 

subunits with the C-terminal part comprising the transmembrane domains that form a 

Ca
2+

-conducting pore. The large N-terminal portion of the protein serves as a scaffold 

for interaction with accessory proteins, ions and other regulatory molecules. The size 

of the receptor constitutes a major challenge in structural analysis.  Our current 

knowledge of RyR structure is still limited, however due to the advances in single-

particle cryo-electron microscopy (cryo-EM), the availability of crystal structures of 

some of the receptor domains and information derived from biochemical and 

spectroscopy-based studies, a more detailed picture of receptor structure is beginning 

to emerge.   
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1.3.1 Primary sequence motifs 

The analysis of the RyR2 primary sequence with the Conserved Domain search tool 

available at the NCBI website (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) 

reveals the presence of structural motifs present in other proteins (Figure 1.1). These 

domains include: two MIR domains, three SPRY domains, two copies of RIH 

domain, one RIH-associated domain, four repeats of RyR domain, a pair of EF hand 

motifs and a domain shared with a putative motility protein. With few exceptions, the 

functional roles of these domains remain unknown. 

SPRY domains are thought to be one of the most common folds in higher eukaryotes, 

however their role and function is poorly understood (Perfetto et al. 2013).  They do 

not possess any enzymatic activity and can be found in proteins of diverse functions. 

At present SPRY domains are generally believed to be implicated in protein-protein 

interactions and have been suggested to function as adaptor domains enabling other 

proteins to be brought into spatial proximity (Woo et al. 2006). In RyR1, the second 

of the three SPRY domains has been shown to bind to the II-III loop of the L-type 

calcium channel and to mediate inter-domain interactions within the channel itself by 

binding to residues located towards RyR1 C-terminus (Tae et al. 2009a; Tae et al. 

2009b; Tae et al. 2011). 
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Figure 1.1 Graphical representation of motifs identified in RyR2 primary sequence (Accession number Q92736) with the NCBI Conserved Domain search 
tool; 
MIR (dark green): Domain found in O-mannosyltransferases, IP3R and RyR, unknown function 
RYDR_ITPR or RIH (light green): the RyR and IP3R Homology domain, unknown function 
SPRY (red): initially identified in Dictyostelium discoidueum kinase sp1A and RyR, found in three copies in all three RyR isoforms  
RyR (yellow): Ryanodine receptor domain, found in four copies in all three RyR isoforms 
RIH_associated (light blue): RyR and IP3R Homology associated 
YjfB_motility protein (purple): putative motility protein domain; in Bacillus subtilis likely to be involved in motility or flagellin production, contains two highly 
conserved asparagine residues 
EF-hand motif (dark blue): EF-hand, calcium binding motif, one pair in RyR  
RR_TM (orange): 4-6 transmembrane domain region  
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Recently, two of the RyR domains located in the central portion of the protein and 

arranged in a tandem repeat, have been crystallised by two independent groups 

(Sharma et al. 2012; Yuchi et al. 2012). Consistent with a tandem arrangement, the 

crystal structure revealed the presence of two symmetrical subdomains connected by 

a long loop. Notably, a significant portion of this loop was shown to be flexible and 

contain two previously identified phosphorylation sites (S2808 and S2814 for RyR2) 

(see Section 1.5.6) thus the proposed name “phosphorylation domain”. Interestingly, 

incubation of this domain  with PKA and CaMKII revealed additional 

phosphorylation sites which, with one exception, were shown to reside in the 

connecting loop or its direct proximity (Yuchi et al. 2012). Notably, this region is also 

targeted by eleven mutations associated with RyR1 dysfunction implying an 

important role of this domain in channel function (see Section 1.6.1). Several 

prokaryotic proteins also contain similar domains corresponding to either single or 

tandem repeats (Yuchi et al. 2012). Based on the reported crystal structure, a pseudo-

atomic model of the two N-terminal  RyR domains was generated (Zhu et al. 2013).  

Following FRET-based experiments and computational docking, the authors 

proposed that those two structurally homologous domains are involved in an inter-

subunit interaction. 

Marx et al. identified three conserved leucine/isoleucine zipper motifs (LZ) in RyR2 

sequence and showed that they mediate interaction with phosphatases (PP1 and 

PP2A) and kinases (PKA) through their respective anchoring proteins (Marx et al. 

2001a). Two of those motifs are also present in RyR1 (Figure 1.2). 

 

 

Figure 1.2 Location of the leucine/isoleucine zipper motifs on RyR2 and RyR1 that bind to 
leucine zipper motifs on adaptor proteins anchoring phosphatases and kinases 
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1.3.2 Three-dimensional architecture  

In the absence of the full length RyR crystal structure, single-particle cryo-EM has 

provided valuable insights into the architecture of RyR oligomeric assembly 

(Serysheva et al. 2005). Considerable advances in instrumentation and image 

processing ultimately led to RyR reconstitution maps which reached sub-nanometre 

resolution allowing to define structural sub-regions within each subunit and predict 

some of the secondary structure elements (Serysheva et al. 2008). Moreover, a 

systematic comparison of images obtained from channels in an open and closed 

conformation shed light on global structural changes associated with receptor gating 

(Samso et al. 2009). A combination of cryo-EM-based techniques with the insertion 

of GFP tags in a defined position within RyR primary sequence allowed assigning the 

three dimensional location to some of the particularly interesting regions including; 

DR1 (Liu et al. 2002), DR2 (Liu et al. 2004), DR3 (Zhang et al. 2003b; Jones et al. 

2008), N-terminal and central domain mutation hot spots (Liu et al. 1994; Liu et al. 

2005; Wang et al. 2007) and two putative PKA phosphorylation sites (Meng et al. 

2007; Jones et al. 2008). However, upon emergence of atomic structures of RyR 

domains determined by X-ray crystallography, it became clear that the location 

assigned by GFP-based differential mapping should be interpreted with caution as 

this method was shown to be error prone. Notably, docking of the N-terminal crystal 

structure into the cryo-EM map of RyR1 (Tung et al. 2010) located its position 60Å 

away from the one assigned with GFP-based differential mapping. Similarly, docking 

of the crystal structure of the phosphorylation domain (central domain RyR motif 

repeat) revealed some discrepancies between locations identified by those two 

techniques (Sharma et al. 2012; Yuchi et al. 2012). 

RyR has a mushroom-like shape with the majority of the protein located in the 

cytoplasm forming a large cytoplasmic assembly connected to the transmembrane 

region by a stalk-like structure (Hamilton and Serysheva 2009) (Figure 1.3). The 

cytoplasmic portion of the functional channel has dimensions of 280 x 280 x 120Å 

and is composed of clamped-shaped regions located at the corners of the assembly 
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which are connected to the central rim and to the stalk-like structures. The 

transmembrane region has dimensions of 120 x 120 x 60Å. 

Docking of the recently crystallised “phosphorylation domain” into the cryo-EM map 

of the full length receptor placed this domain at the edge of the clamp structures while 

the RyR1 N-terminus (residues 1-559, rabbit RyR1) was assigned to the centre of the 

cytoplasmic assembly forming a vestibule around the four-fold axis (Tung et al. 

2010) (Figure 1.3).  Structurally, the crystallised fragment folds into three separate 

domains; domain A and B which form two β-trefoil domains and domain C composed 

of a bundle of five α-helices (Figure 1.4). Notably, the structure of the amino-terminal 

region of the IP3R1 (residues 1-604, rat IP3R1) is strikingly similar to that of RyR1. 

This IP3R1 fragment also folds into three domains which can be individually 

superposed to the corresponding domains of RyR1 (Seo et al. 2012). The 

conservation of the N-terminal region between RyR1 and IP3R1 is further manifested 

in its arrangement in the corresponding full length receptor. Docking of this structure 

into the cryo-EM map of the full length IP3R placed this fragment also in the centre 

of the cytoplasmic assembly forming a vestibule around the four-fold axis. This type 

of arrangement strongly suggests that a physical and functional interaction between 

the N-termini of adjacent subunits is plausible.  

   

 

Figure 1.3 Architecture of RyR tetrameric assembly; top view and side view on left and right 
panel respectively. Location of N-terminal domain and phosphorylation domain (in yellow and 
red respectively) obtained through docking of respective crystal structures into cryo-EM map 
of RyR1. Images created using The PyMOL Molecular Graphic Software (based on (Tung et 
al. 2010; Yuchi et al. 2012) 
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Figure 1.4 Structure of the rabbit RyR1 N-terminus (1-559), the extreme 27 residues of the 
C-terminus are not visible in the structure, other fragments missing correspond to flexible 
parts of the connecting loops. Images created using The PyMOL Molecular Graphic Software 
(Tung et al. 2010) 
 

1.3.3 Transmembrane domains and the pore region 

The RyR channel pore is formed by the C-terminal portion of the protein. A carboxyl 

terminal fragment (~130kDa) containing the putative transmembrane segments was 

shown to form a cation-selective channel which, similarly to the native protein, was 

activated by calcium and modulated by ryanodine (Wang et al. 1996; Bhat et al. 

1997).  As both the N- and C-terminal fragments of RyR were shown to reside on the 

cytoplasmic site, membrane topology models propose an even number of membrane-

spanning segments (Grunwald and Meissner 1995). Initial models predicted as few as 

four and as many as twelve transmembrane domains (Takeshima et al. 1989; Zorzato 

et al. 1990; Brandt et al. 1992). A subsequent model built on empirical evidence and 

proposed by Du and colleagues predicted eight transmembrane helices which, in 

respect to the twelve transmembrane segments suggested earlier by Zorzato and 

colleagues (Zorzato et al. 1990), included segments: M3, M4 (alternatively M4a and 

M4b), M5, M6, M7a, M7b, M8 and M10  (Du et al. 2002a). The putative M9 

segment was suggested to act as a pore-forming helix which does not transverse the 
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membrane. Following analysis of the high resolution cryo-EM RyR map Ludtke and 

colleagues suggested that regions M3 and M4 (M4a/M4b) do not form 

transmembrane segments but a fragment of this sequence forms a helix which is 

oriented parallel to the plane of SR membrane (Ludtke et al. 2005) (Figure 1.5).  

According to a homology model of the RyR pore region based on the crystal structure 

of the bacterial potassium channel, the last two transmembrane helices (M8 and M10) 

correspond to the respective outer and inner helices of the bacterial channel pore 

while the connecting loop (previously assigned as M9 segment) constitutes a short 

pore helix followed by a selectivity filter (Welch et al. 2004). This hypothetical 

model was supported by a number of observations. In an earlier report, Gao et al. 

showed that mutation of highly conserved amino acids located in the luminal loop 

connecting domain M8 with M10 affected channel conductance, calcium dependence 

and ryanodine binding (Gao et al. 2000).  In agreement with this model, a high 

resolution cryo-EM map which enabled definition of some of the secondary structures 

showed a similar arrangement of α-helices around the pore (Samso et al. 2009). 

Moreover, the comparison between an open and closed conformation of the channel, 

revealed that the inner helices (M10) undergo structural changes analogous to those 

of the bacterial potassium channel. 

A combination of experimental and computational methods defined the location of 

critical residues determining channel selectivity and high conductance 

(Ramachandran et al. 2009). Those residues included the putative selectivity filter 

(GGGIG motif), two negatively charged residues located immediately after (D4894-

E4900 in rabbit RyR1) and residues located in the cytosolic side of the inner helix 

(M10) (residues D4938 and D4945 in RyR1). A schematic model of the RyR 

transmembrane segments and the channel pore is presented in Figure 1.5. 
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Figure 1.5 A hypothetical model of the channel pore and transmembrane segments based on 
Ludtke et al. 2005 and Ramachandran et al. 2013. Helical segments assigned on the basis of 
the initial model predicting 10 transmembrane domains, for simplicity only two subunits 
shown; coordinates given for rabbit RyR1 
 
 

1.4 RyR and excitation-contraction coupling  

Ryanodine receptors are key components of excitation-contraction coupling (EC), a 

process which allows for an electrical signal occurring at the plasma membrane to be 

converted into the mechanical activation of a muscle cell. The critical event in this 

process involves mobilisation of calcium ions from intracellular stores which bind to 

myofilament protein troponin C enabling muscle contraction. RyR-mediated release 

of Ca
2+

 is triggered by changes in the sarcolemmal membrane potential, which 

activates the L-type voltage-gated calcium channels also known as dihydropyridine 

receptors (DHPR). Dihydropyridine receptors are composed of five subunits; α1, α2, 

β, γ and δ (Coronado et al. 2004). The DHPR α1 subunit contains four internal 

repeats of six transmembrane domains and forms a channel pore while the β subunit 

controls calcium current. The role of the remaining subunits is not well defined. 

DHPRs and RyRs are located in close proximity at sites where the sarcolemmal 

membrane faces the junctional SR creating a central point where an electrical signal 

is converted into calcium release triggering muscle contraction. The molecular basis 

of RyR activation upon electrical stimulus ultimately depends on the muscle type. In 

cardiac muscle, RyR2 becomes activated upon Ca
2+ 

influx through L-type channels 

triggered by depolarisation of the plasma membrane, a mechanism known as calcium-
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induced calcium release (CICR) (Fabiato 1983). In skeletal muscle, RyR1 is 

physically coupled to DHPR such that a conformational transition in the latter, 

triggered by changes in membrane potential, is directly transmitted to the former 

causing it to open (Numa et al. 1990; Tanabe et al. 1990; Beam et al. 1992; Nakai et 

al. 1998b; Grabner et al. 1999). The tight association between RyR1 and DHPR 

underlies a unique geometrical alignment of two proteins which can be observed by 

electron microscopy (Protasi et al. 1998). In this highly ordered array, a group of four 

DHPR channels (tetrad) directly interacts with alternate ryanodine receptors in such a 

way that one subunit of an underlying RyR1 is physically linked to one DHPR within 

the cluster. Notably, the interaction between those two channels also involves a 

positive feedback response preventing DHPR inactivation (Nakai et al. 1996). 

Moreover, RyR1-mediated Ca
2+

 release  positively regulates the surface expression of 

DHPR (Avila et al. 2001b). 

The functional and physical coupling between RyR1 and DHPR has been extensively 

studied in an attempt to identify residues which are critical for this complex 

interaction. It has been shown that coupling between those two proteins is dictated by 

isoform-specific determinants located in both skeletal L-type channel and skeletal 

isoform of ryanodine receptor  (Nakai et al. 1997) (Tanabe et al. 1990). As a result of 

experiments analysing the effects of expression of DHPR chimeric proteins in 

dysgenic myotubes (lacking the DHPR α1 subunit), the putative cytoplasmic region 

located between transmembrane repeats II and III (loop II-III) in the DHPR α1s 

subunit was proposed to constitute a major determinant responsible for RyR1-DHPR 

interaction (Tanabe et al. 1990). Additional sites supporting physical/functional 

interaction between the two receptors are believed to lie between transmembrane 

repeats III and IV and within the cytoplasmic C-terminal tail of the α1s subunit 

(Sencer et al. 2001; Weiss et al. 2004). Further determinants were proposed to reside 

in the DHPR β1a subunit and account for orthograde signalling (Cheng et al. 2005). 

Expression of chimeric RyR proteins in dyspedic (RyR1-deficient) myotubes resulted 

in the identification of some of the putative regions within the RyR1 sequence. It was 

shown that a fragment between amino acids 1635-2636 containing the D3 region is 

able to sustain orthograde and retrograde signalling whereas residues located 

downstream (2636-3720) underlie retrograde signalling (Nakai et al. 1998a). Within 

those two large fragments, sites responsible for  functional coupling between the two 
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proteins do not fully overlap with those involved in physical association linked to the 

formation of DHPR tetrads (Protasi et al. 2002). As the ability to structurally and 

functionally interact with the calcium L-type channel is a unique feature of the 

skeletal ryanodine receptors isoform, a considerable amount of attention was devoted 

to the regions of highest divergence. Among the three divergent regions, the D2 

represents the site of the most prominent difference among the three RyR isoforms 

and its key role in EC coupling was reported by independent groups (Yamazawa et al. 

1997; Perez et al. 2003). However, chemical crosslinking of the full length RyR1 and 

a short fragment of the II-III loop from DHPR, which was shown to activate the 

channel at low calcium levels, suggested that the interaction site is in fact located 

upstream of the D2 region between residues 450-1400 (Bannister and Ikemoto 2006).  

Subsequently, Cui et al. reported that the II-III loop binds to residues 1085-1208 

which represent the second SPRY domain in RyR1 (Cui et al. 2009). This 

communication was in agreement with previous reports showing that a short region 

within the second SPRY domain (residues 1076-1112) specifically binds to the 

recombinant DHPR II-III loop (Leong and MacLennan 1998a). Interestingly, an 

overlapping site on RyR1 (residues 954-1112) was also proposed to constitute a 

binding determinant for the DHPR III-IV loop (Leong and MacLennan 1998b). The 

C-terminal tail of DHPR was shown to interact with the RyR1 calmodulin-binding 

site (CaM-binding site) and calmodulin-like domain (CaMLD) containing two 

putative EF-hand motifs (Sencer et al. 2001; Xiong et al. 2006). The binding site for 

the DHPR β subunit was proposed to reside between residues 3200-3600 and undergo 

modulation by a basic region located immediately downstream of alternatively 

spliced region I (Cheng et al. 2005). 

In conclusion, coupling between those two proteins is dictated by multiple sites 

spread throughout a considerable portion of RyR1. Since physical contact between 

the two is essential for the functional interaction to occur, discrimination between 

sites fulfilling these specific roles remains challenging. Considering the size of RyR, 

the functional signal from DHPR is most likely transmitted through a number of 

allosteric interactions within RyR itself which further complicates the identification 

of putative regions. 
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1.5 RyR regulation 

RyRs are part of a macromolecular complex composed of FKBP12/12.6, calmodulin, 

triadin, junctin and protein kinases and phosphatases many of which are associated 

with the receptor through adaptor proteins (Berridge et al. 2003; Lanner et al. 2010). 

Most of the modulators interact with the cytoplasmic portion of the protein at 

locations distant from the channel pore suggesting that RyR gating is allosterically 

regulated by a complex network of inter- and intra-subunit interactions.  Despite a 

high degree of sequence identity and almost identical three dimensional architecture 

(cryo-EM based maps), RyRs display an isoform-specific response to some of the 

most important physiological regulators including calcium and magnesium ions, 

calmodulin, ATP and DHPR. 

1.5.1 Calcium, magnesium and ATP 

Calcium plays a central role in the physiological modulation of channel activity. 

RyR1 displays a bell-shaped dependence on Ca
2+

 concentration, i.e. low micromolar 

calcium activates the channel while milimolar levels have an inhibitory effect, a 

phenomenon explained by the presence and cooperation between a high-affinity 

calcium activating site and an inhibitory low-affinity site  (Meissner et al. 1997). 

RyR2 and RyR3 on the other hand were shown to have a decreased sensitivity to 

calcium inhibition and displayed a more potent response to calcium activation, i.e. for 

the same extent of channel activity, RyR1 requires both Ca
2+

 and ATP (Lanner et al. 

2010). It is widely accepted that cytoplasmic levels of calcium are critical for the 

regulation of channel activity; however some reports also suggest an equally 

important role for luminal calcium (Jiang et al. 2004; Diaz-Sylvester et al. 2011). 

Although the impact of the SR Ca
2+

 content on RyR activity has been shown by a 

number of investigators, a precise mechanism of this effect remains under debate. In 

particular, many authors support the notion that luminal calcium controls the activity 

of the channel indirectly, either through the so called “feed-through” mechanism, in 

which Ca
2+ 

released from SR acts via cytoplasmic binding sites (Xu and Meissner 

1998; Laver et al. 2008) or through the calcium-induced dissociation of the accessory 
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protein - calsequestrin (CSQ) from the RyR macromolecular complex (Gyorke et al. 

2004) (see Section 1.5.4). Others however argue that luminal calcium regulates 

channel activity directly via binding to the sites located on the luminal portion of the 

channel (Ching et al. 2000).  

Two presumed EF hand motifs are located in the C-terminal portion of the protein 

and  two additional putative calcium binding sites identified through Ca
2+  

interaction 

with recombinant RyR1 fragments were proposed to reside further upstream (residues 

1861-2094 and 3657-3776) (Chen and MacLennan 1994).  However, other studies 

showed that RyR sensitivity to activation is retained upon expression of the 130kDa 

C-terminal portion of the protein suggesting that the putative sites are in fact located 

in the extreme C-terminus (Bhat et al. 1997). Interestingly, Fessenden et al. reported 

that mutation of critical residues within the two putative EF hand motifs (4081-4092, 

4116-4127) did not change functional responses to agonists and depolarisation in 

intact myotubes suggesting that those regions are not essential for calcium-dependent 

regulation of the channel (Fessenden et al. 2004). However, according to Xiong et al., 

a fragment containing both EF hand motifs (4064-4210) represents a domain which 

folds in a manner similar to calmodulin, binds Ca
2+ 

and modulates channel function 

(Xiong et al. 2006).  Based on mutation of highly conserved acidic amino acids 

located in the RyR C-terminus, others proposed that calcium sensitivity to activation 

is determined by a single residue in all three isoforms (E4032, E3987 and E3885 for 

RyR1, 2 and 3 respectively) (Chen et al. 1998; Du and MacLennan 1998; Li and 

Chen 2001). Hence, the emerging picture strongly suggests that determinants of 

calcium sensitivity are spread over a considerable stretch of residues in the primary 

sequence of the RyR C-terminus. It is likely that these residues are in fact located in 

close proximity in the three dimensional structure. However, until this structure is 

known, the determination of calcium binding sites remains a challenging task because 

the majority of currently used functional assays are not able to discriminate between 

residues which directly bind calcium and those involved in the conduction of 

calcium-triggered signals.    

RyRs display an isoform-specific calcium inactivation profile, a phenomenon which 

naturally drew attention to regions of highest divergence between isoforms such as 

the D3 region. Nevertheless, the replacement of this region in RyR1 with the 

corresponding RyR2 sequence or deletion of this fragment did not alter calcium 
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dependence (Du and MacLennan 1999). On the contrary, a set of RyR1 chimeras, in 

which the D1 region and fragments of immediate proximity located upstream and 

downstream of D1 were replaced with the corresponding RyR2 sequence, displayed a 

substantially  reduced sensitivity to Ca
2+

-mediated inhibition (Du and MacLennan 

1999). Following further experiments, the D1 region was proposed to modulate 

channel responsiveness to Ca
2+ 

indirectly (Du et al. 2000).    

Magnesium (Mg
2+

) is a potent RyR inhibitor and its role in channel regulation has 

been recently more recognised. Concentration of free Mg
2+

 in the cytoplasm is 1mM, 

which is around 10
4
 times more than calcium concentration during diastole. 

Competitive binding of magnesium to calcium activation and/or inhibitory sites has 

been suggested to constitute the molecular mechanism of  Mg
2+

 effect on channel 

function (Lanner et al. 2010).  Laver et al. suggested that magnesium is in fact the 

key factor controlling RyR activity (Laver and Honen 2008). According to this 

model, the interplay between four distinct binding sites which display the ability to 

bind both cations underlies the mechanism of channel regulation. The luminal 

activating site does not select between calcium and magnesium and the inhibitory 

effect of the latter is a consequence of preventing binding of the former. The 

cytoplasmic activation site exhibits a substantially higher affinity for Ca
2+

 while Mg
2+

 

binding promotes channel closure. Both inhibitory sites are located in the cytoplasm 

and have different affinities for Ca
2+

. The lower affinity site is also able to bind 

magnesium. Notably, an independent group reported similar findings, however in 

addition to the luminal non-selective binding site, Ca
2+ 

selective site on the SR lumen 

was also found (Diaz-Sylvester et al. 2011). Both studies concluded that the RyR 

activity is dynamically modulated by distinct sites with unique binding properties 

which are located in both the cytoplasmic and luminal regions of the channel. 

Among adenine nucleotides, ATP is the most powerful activator of RyR. It has a 

potent effect on RyR1 function and a relatively modest impact on RyR2  (Lanner et 

al. 2010). Since, in the native milieu of the cell, most ATP is in complex with 

magnesium, it has been suggested that under physiological conditions, the observed 

effect of ATP constitutes a combination of two mechanisms, i.e. subtle changes in the 

levels of free Mg
2+

 through formation of  a Mg
2+

/ATP complex and the direct effect 

of this complex on RyR activity.  
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1.5.2 Calmodulin 

In addition to a direct regulation by calcium, RyRs are modulated by those ions 

through interaction with calmodulin. CaM is a dumbbell-shaped Ca
2+

 binding protein 

expressed ubiquitously in all eukaryotic cells. It contains four EF hand motifs, two in 

each globular lobe. Calmodulin regulates RyR in an isoform specific manner, i.e. it 

inhibits RyR2 at all Ca
2+ 

concentrations, while it has a biphasic effect of RyR1, 

inhibitory at micromolar calcium and activating at lower concentrations when it exists 

in a calcium-free form (apoCaM) (Hamilton and Serysheva 2009). Using limited 

tryptic digestion of RyR1, the calmodulin binding site was mapped to residues 3600-

3637 (Moore et al. 1999). Subsequently, it was reported that the above fragment 

exclusively binds the C-terminal lobe of both apoCaM and Ca
2+

/CaM while the N-

terminal lobe binding sequence is located at sites distant in primary sequence from 

the C-lobe-binding residues (Samsó and Wagenknecht 2002; Xiong et al. 2002). The 

binding of calmodulin to RyR was shown to impede the formation of inter-subunit 

disulphide bonds while oxidation prevented CaM interaction with the receptor (Porter 

Moore et al. 1999; Zhang et al. 1999). Based on those findings calmodulin was 

suggested to bind across two subunits within the tetrameric channel. In agreement 

with this model the RyR1 N-terminal fragment identified as an additional CaM-

binding site (1975-1999) is located in immediate proximity of the N-terminal 

sequence containing cysteine involved in the inter-subunit disulphide bond (Zhang et 

al. 2003a). Calmodulin was shown to bind to the corresponding sequence in RyR2 

(residues 3583-3603) implying that the determinants of CaM isoform-specific 

regulation are located somewhere else in the protein (Yamaguchi et al. 2003). 

Notably, Yamaguchi et al. reported that when five non-conserved residues in the C-

terminal flanking region of RyR2 CaM binding site were substituted with those of 

RyR1, the loss of the RyR2-specific inhibition at submicromolar calcium was 

observed (Yamaguchi et al. 2004).  

Recently, defective binding of calmodulin to RyR2 has been implicated in heart 

failure, cardiac hypertrophy and channel dysfunction observed in the presence of 

arrhythmia-associated mutations (Yamaguchi et al. 2007; Ono et al. 2010; Xu et al. 

2010; Gangopadhyay and Ikemoto 2011). Moreover, the addition of a recombinant 

form of calmodulin exhibiting higher binding affinity for RyR2 was able to restore 



23 

 

abnormal calcium handling in failing cardiomyocytes (Hino et al. 2012).  In further 

support of CaM role in the pathogenesis of RyR-associated disorders, a recent 

genome-wide linkage analysis revealed that the disease phenotype can also be 

triggered by mutations in the calmodulin gene (Nyegaard et al. 2012). Notably, one 

of the identified mutants displayed a severely compromised interaction with the 

peptide corresponding to the RyR2 CaM-binding domain at sub-activating calcium 

levels. This would suggest that, at diastole, CaM-mediated inhibition of RyR2 is 

severely disturbed leading to an increase in channel open probability consistent with 

the phenotype observed for RyR2 mutations associated with arrhythmias. 

1.5.3 Other EF-hand proteins: sorcin and S100A1 

Sorcin is another calcium-binding protein which regulates RyR function. It is a 

member of the penta EF-hand motif protein family and has an isoform-specific 

impact on channel function. In vitro, sorcin exhibits an inhibitory effect on RyR2, 

while it stimulates RyR1 (Zissimopoulos and Lai 2007). Although the inhibition of 

RyR2 by sorcin is thought to be calcium-independent, the translocation of sorcin from 

the cytoplasm into membranous compartments prerequisite for the RyR2/sorcin 

interaction to occur, is triggered by an increase in Ca
2+

 level (Lokuta et al. 1997; 

Farrell et al. 2003).
 
In vivo studies reported contradictory results implying that sorcin-

mediated regulation of channel function has a high level of complexity (Meyers et al. 

2003; Suarez et al. 2004; Frank et al. 2005) . Because sorcin binds other proteins 

involved in calcium signalling, the evaluation of its effects on RyR activity in vivo 

remains challenging. In addition to sorcin, other EF-hand proteins have been 

recognised to regulate channel function including calumenin and S100A1 (Lanner et 

al. 2010). S100A1 protein is a symmetric homodimer with each subunit having a low 

affinity pseudo EF-hand motif and a second high affinity canonical EF-hand calcium 

binding domain (Wright et al. 2005). It has been shown that at systolic calcium levels 

S100A1 competes directly with CaM for the same binding site on RyR which would 

explain the mechanism by which S100A1 activates RyR (Wright et al. 2008). 

According to this model, CaM displacement by S100A1 would relieve the channel 

from the inhibitory effect of the former. In agreement with the competition between 
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those two proteins; a mutation of one amino acid within the CaM binding domain, 

which impairs calmodulin binding, abolishes S100A1 binding as well (Yamaguchi et 

al. 2011). In vivo, S100A1 seems to be essential for the physiological response of 

cardiac muscle to acute β-adrenergic stimulation (Du et al. 2002b). 

1.5.4 SR proteins: calsequestrin, triadin and junctin 

 

Calsequestrin is a low-affinity and high capacity calcium-binding protein which 

resides in the lumen of SR and exists as a mixture of monomers and multimers. The  

dynamic linear  polymerisation of CSQ is thought to confer its high Ca
2+

 binding 

capacity (Kim et al. 2007) while monomers appear to be responsible for the 

regulatory function of the protein (Qin et al. 2008; Terentyev et al. 2008b). There are 

two isoforms of calsequestrin; CSQ1 which is found in skeletal muscles and CSQ2 

which is expressed in cardiomyocytes and slow-twitch muscles. The two isoforms are 

nearly identical in their three dimensional structure; however differ in respect to their 

Ca
2+

 binding capacities with the skeletal isoform being able to bind more calcium 

ions (Park et al. 2004). Calsequestrin is believed to modulate RyR activity indirectly 

through binding to anchoring proteins; triadin and/or junctin which are embedded in 

the SR membrane (Lanner et al. 2010). The CSQ2-mediated inhibition of RyR2 

function was proposed to involve binding to triadin/junctin once calcium SR 

concentration drops below a threshold level constituting therefore a luminal calcium 

sensor responsible for termination of Ca
2+ 

release (Gyorke et al. 2004). Consistent 

with a critical role of calsequestrin in cardiac muscle, genetic defects in CSQ2 have 

been linked to stress-induced ventricular arrhythmia (see Section 1.6.2) and CSQ2 

null mice exhibited CPVT-like phenotype (Knollmann et al. 2006). Interestingly, 

these animals retained functional calcium storage maintained by a compensatory 

increase in SR volume and, under basal conditions, displayed normal contractile 

function.  Arrhythmia-associated mutations in the CSQ2 gene were shown to either 

affect protein Ca
2+

 binding capacity or impair CSQ2 ability to modulate RyR2 

function (Kim et al. 2007; Qin et al. 2008; Terentyev et al. 2008b). The fact that 

CSQ2 mutations which cause distinct defects at the molecular level lead to a similar 

CPVT phenotype strongly suggest that Ca
2+

 buffering and CSQ2-mediated regulation 
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of RyR2 activity are equally important for maintaining normal calcium handling in 

cardiomyocytes. Notably, Qin et al. argued that CSQ1 has a minor effect on  RyR1 

function and its physiological role in skeletal muscle is in fact restricted to Ca
2+ 

buffering (Qin et al. 2009).  

Recently, triadin and calsequestrin were suggested to be involved in structural 

organisation of the SR. In particular, triadin ablation was shown to result in a 50% 

reduction in the contacts between junctional SR and T-tubules implying that triadin is 

indispensable for cardiac function through maintenance of calcium release units 

(Chopra et al. 2009). The inter-dependence of protein levels of triadin, junctin and 

calsequestrin (Knollmann 2009) suggests a strong functional cross-talk between those 

proteins making it very difficult to establish their physiological role independently.  

1.5.5 FK506-Binidng Proteins (FKBP) 

FKBPs belong to a family of highly conserved proteins that bind immunosuppressive 

drugs such as FK506 and rapamycin. Those proteins are involved in a number of 

diverse biochemical processes including protein folding, receptor signalling and 

transcription (Lanner et al. 2010). Two isoforms; FKBP12 and FKBP12.6 (also 

known as calstabin 1 and 2 respectively) were shown to physically interact with 

ryanodine receptors and modulate their function (Marx et al. 1998; Ondrias et al. 

1998; Gaburjakova et al. 2001). RyR2 exhibits much higher affinity for FKBP12.6 

while RyR1 binds both isoforms with similar affinity, however a considerably higher 

expression of FKBP12 isoform in skeletal muscle results in the latter being the 

predominant form bound to RyR1 (Chelu et al. 2004). FKBP12 and 12.6 display cis-

trans peptidyl-prolylisomerase activity, nonetheless experimental findings suggest 

that enzymatic activity does not play a role in RyR modulation (Timerman et al. 

1995).  

Binding of FKBP isoforms to their respective targets was proposed to stabilise the 

closed state of the channels and to promote a process of coupled gating between 

adjacent RyR channels (Marx et al. 1998; Ondrias et al. 1998; Marx et al. 2001b). 

Subsequently, a defective association between RyR2 and FKBP12.6 following 
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channel phosphorylation by PKA was proposed to underlie receptor dysfunction 

observed in arrhythmia-associated mutations and heart failure (Marx et al. 2000; 

Wehrens et al. 2003; Yano et al. 2003; Wehrens et al. 2005) (see Section 1.6.2.1). 

This hypothesis was however challenged by many independent groups which failed to 

observe changes in RyR2/FKBP12.6 interaction and the phosphorylation status of the 

channel in pathological conditions (George et al. 2003; Stange et al. 2003; Jiang et al. 

2005; Liu et al. 2006; Hunt et al. 2007; Zissimopoulos et al. 2009). The role of FKBP 

in channel modulation was further examined by Xiao et al. who investigated the 

effect of FKBP12.6 on RyR2 function by three independent techniques, i.e. single 

channel recordings, ryanodine binding assays and calcium imaging (Xiao et al. 2007).  

The authors concluded that the loss of calstabin 2 does not alter channel function. 

More importantly, the same group also showed that FKBP12.6-null mice do not 

exhibit enhanced suseptibility to stress-induced arrhythmia further questioning the 

hypotheis of FKBP-mediated channel dysfunction. The role of FKBP12.6 in the 

physiologically relevant modulation of RyR2 activity remains uncertain since only 

10-20% of RyR2 was shown to be bound to this protein in ventricular myocytes (Guo 

et al. 2010; Zissimopoulos et al. 2012).  

Similar to the disputable function of calstabins in RyR regulation, there is also a 

considerable amount of controversy in respect to the location of the FKBP-binding 

site in the RyR primary sequence. Initially, the FKBP12-binding site was  proposed to 

reside in the central portion of RyR1 and involve one critical residue (V2461) 

(Gaburjakova et al. 2001). Other groups were unable to recapitulate those results 

(Masumiya et al. 2003; Zissimopoulos and Lai 2005a). Zissimopoulos et al. showed 

that FKBP12.6 binding to RyR2 is retained upon recombinant expression of the RyR2 

C-terminus (Zissimopoulos and Lai 2005b). In addition, minor binding was also 

detected in the N-terminal portion of the protein which was in agreement with an 

earlier report by Masumiya  et al. who proposed the N-terminal domain as a main 

determinant for FKBP12.6 binding (Masumiya et al. 2003). In a very recent report it 

has been suggested that both N-terminal and central domains contribute to the 

FKBP12 biniding epitope in RyR1 (Girgenrath et al. 2013) 



27 

 

1.5.6 Phosphorylation 

PKA-mediated phosphorylation of RyR2 was proposed to constitute a physiological 

mechanism by which cardiac muscle meets the demand for increased contractility and 

heart rate during stress or exercise. Consequently, this hypothesis was further 

expanded to pathological conditions, in which hyper-phosphorylation of a single 

residue (S2808, human RyR2) and subsequent dissociation of calstabin 2 was 

proposed to play a major role in RyR2 dysfunction observed during heart failure 

(Marx et al. 2000; Antos et al. 2001; Oda et al. 2005; Yano et al. 2005; Wehrens et 

al. 2006). Similarly, a CaMKII-specific phosphorylation site (S2814, human RyR2) 

was proposed to constitute a mechanism by which an increased heart rate modulates 

RyR2 activity to augment muscle contractility (Kushnir et al. 2010). A decrease in 

CaMKII-mediated RyR2 phosphorylation was suggested to underlie an impaired 

force-frequency relationship observed in heart failure (Wehrens et al. 2004).  

The PKA phosphorylation of S2808 as a mechanism of channel modulation by β-

adrenergic stimulation was disputed by other groups. MacDonnell et al. reported no 

difference in response to sympathetic agonist activation between wild type mice and 

animals carrying an alanine substitution (S2808A) at the putative RyR2 

phosphoryaltion site (MacDonnell et al. 2008). In agreement with this study, 

recombinant expression of RyR1 and RyR2 mimicking constitutively phophorylated 

(aspartate susbtitution) and dephosphorylated channels (alanine susbstitution) (S2843 

and S2809 for rabbit RyR1 and RyR2 respectively), revealed no significant 

differences in channel function (Stange et al. 2003). Furthermore, George and 

colleagues showed that RyR2 global phosphorylation levels are indistiguishable 

between wild type channels and channels carrying arrhythmia-linked mutations in 

both stimulated and unstimulated cardiomyoctes thus undermining the major role of 

increased RyR2 phosphorylation in the pathogenesis of arrhythmia (George et al. 

2003). Moreover, Xiao et al. showed that in fact S2030 is the major PKA 

phosphorylation site in RyR2 and that S2808 remains substantially phosphorylated 

irrespective of the activation of the sympathetic nervous system (Xiao et al. 2006). 

Similarly, the involvment of PKA-mediated hyper-phosphorylation of RyR2 in the 

pathogenesis of heart failure remains controversial (Jiang et al. 2002b). Reasons for 

these discrepanccies are unclear. However, recent work by Huttlin et al. involving 
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large-scale analysis of the phospho-proteome of several mouse organs revealed that 

RyR2 is phosphorylated in vivo at multiple sites (available at 

https://gygi.med.harvard.edu/phosphomouse/index.php) (Huttlin et al. 2010). The 

emerging picture strongly suggests that phosphorylation-dependent modulation of 

channel function might be much more complex that initially believed. The ultimate 

effect of  phosphorylation  would then depend on the modification site and the 

abundance of the modified residues, constituting a possible explanation for the 

amount of controversy associated with the role of phosphorylation in channel 

function.  In agreement with the above, the evaluation of the PKA and CaMKII 

phosphorylation sites in vitro within the recently crystallised phosphorylation domain 

revealed that multiple sites are targeted by those two kinases (Yuchi et al. 2012) (see 

Section 1.3.1). 

1.5.7 Redox modifications 

Redox modifications are widely accepted to constitute an important mechanism 

regulating the function of ryanodine receptors (Aghdasi et al. 1997b; Wu et al. 1997). 

Depending on the isoform, RyR contains 89-100 cysteines, of which up to fifty were 

proposed to be in a reduced state. A set of those residues is believed to be hyper-

reactive enabling the receptor to be covalently modulated by redox compounds and to 

respond to subtle changes in the redox potential within the cellular milieu (Xu et al. 

1998a; Eu et al. 2000; Feng et al. 2000; Sun et al. 2003). The availability of those 

hyper-reactive cysteines for modification, i.e. their redox potential, is in turn 

modulated by channel activators and inhibitors implying a complex mechanism of 

regulation (Xia et al. 2000; Marinov et al. 2007).  

Identification of the cysteines involved in redox-dependent modification of RyR has 

been undertaken by a number of independent groups and those findings are 

summarised in Table 1.2. A number of conflicting observations has been reported, 

however those discrepancies are most likely associated with different experimental 

conditions, e.g. presence of channel regulators or oxygen tension.  A high level of 

complexity in the redox-dependent channel regulation has been further supported by 

experiments performed by Petrocthenko and colleagues who showed that 
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combinatorial mutation of the putative hyper-reactive cysteines is not sufficient to 

eliminate RyR1 response to changes in redox potential  (Petrotchenko et al. 2011).  

Redox modifications of RyR are believed to underlie a physiological mechanism 

controlling muscle performance (Lamb and Posterino 2003; Posterino et al. 2003; 

Wang et al. 2010; Sun et al. 2011; Beigi et al. 2012). In principle, oxidising agents 

activate the channel with a concomitant formation of inter- and intra-subunit 

disulphide bonds while alkylation inhibits the channel and blocks the formation of 

covalent bonds across subunits (Aghdasi et al. 1997b; Wu et al. 1997). Moreover, 

oxidation-induced inter-subunit crosslinking is protected by calmodulin, implying 

that oxidation and calmodulin regulate RyR1 activity by inducing changes at the site 

of an inter-subunit contact. The above mechanism was proposed to involve C3635, 

which is located within the CaM-binding site (Porter Moore et al. 1999; Zhang et al. 

2003a). The same cysteine was shown to be targeted by S-nitrosylation resulting in 

channel activation, an effect exclusively observed in conditions of low physiological 

oxygen tension (Eu et al. 2000; Sun et al. 2001a).  In addition, cysteines other than 

C3635 were shown to determine RyR1 sensitivity to changes in cellular redox 

potential implying a complex mechanism in which a set of specific residues have 

adapted to mediate effects of particular modifications (Sun et al. 2001a; Petrotchenko 

et al. 2011). It has been proposed that redox-sensing cysteines are located within 

highly specialised domains where a unique local microenvironment enhances their 

reactivity (Feng et al. 1999). Thiol groups of redox-sensing cysteines exhibit low 

pKa, which enables formation of highly reactive thiolate anions. These unique 

chemical properties arise from stabilising interactions between the thiolate anion and 

the side chains of neighbouring amino acids (Brandes et al. 2009).  
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Cysteine RyR isoform Endogenous Induced  Additional information  Reference 

36 RyR1 (rabbit) oxidation oxidation, S-GSH  (Aracena-Parks et al. 2006) 

253 RyR1 (rabbit) - S-NO/S-GSH  (Aracena-Parks et al. 2006) 

315 RyR1 (rabbit) S-NO/S-GSH S-NO./ S-GSH  (Aracena-Parks et al. 2006) 

811 RyR1 (rabbit) S-NO/S-GSH S-NO/ S-GSH  (Aracena-Parks et al. 2006) 

906 RyR1 (rabbit) S-NO/S-GSH S-NO/ S-GSH  (Aracena-Parks et al. 2006) 

1040 RyR1 (rabbit) - S-NO/S-GSH 

identified as highly reactive in 

conditions promoting channel closure, 

reactivity dependent on the GSH/GSSG 

ratio  

(Voss et al. 2004; Aracena-Parks et al. 2006; 

Petrotchenko et al. 2011) 

1303 RyR1 (rabbit) - S-NO as above 
(Voss et al. 2004; Aracena-Parks et al. 2006; 

Petrotchenko et al. 2011) 

1591 RyR1 (rabbit) S-NO/S-GSH S-GSH  (Aracena-Parks et al. 2006) 

1781 RyR1 (rabbit) not established not established 
reactivity dependent on the GSH/GSSG 

ratio, involved in redox-sensing 
(Petrotchenko et al. 2011) 

2326 RyR1 (rabbit) 
oxidation,  S-

NO/S-GSH 
oxidation, S-GSH 

reactivity dependent on the GSH/GSSG 

ratio  

(Aracena-Parks et al. 2006; Petrotchenko et al. 

2006; Petrotchenko et al. 2011) 

2363 RyR1 (rabbit) 
oxidation, S-

NO/S-GSH 
oxidation, S-GSH  (Aracena-Parks et al. 2006) 

2436 RyR1 (rabbit) not established not established 

identified as highly reactive in 

conditions promoting channel closure, 

involved in redox-sensing  

(Voss et al. 2004b) (Petrotchenko et al. 2011) 

2565 RyR1 (rabbit) not established not established 
identified as highly reactive in 

conditions promoting channel closure 
(Voss et al. 2004b) 

2606 RyR1 (rabbit) not established not established 

identified as highly reactive in 

conditions promoting channel closure, 

involved in redox-sensing 

(Voss et al. 2004b) (Petrotchenko et al. 2011) 

2611 RyR1 (rabbit) not established not established 
identified as highly reactive in 

conditions promoting channel closure 
(Voss et al. 2004b) 

3193 RyR1 (rabbit) S-GSH S-GSH  (Aracena-Parks et al. 2006) 
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3635 RyR1 (rabbit) 
oxidation and S-

NO/S-GSH 

oxidation, S-NO/S-

GSH 

identified as highly reactive in 

conditions promoting channel closure, 

involved in calmodulin-dependent 

modulation of channel activity, 

nitrosylation affected by pO2  

(Porter Moore et al. 1999; Sun et al. 2001a; Sun 

et al. 2003; Voss et al. 2004; Aracena-Parks et al. 

2006) 

4958 RyR1  oxidation  

proposed to maintain RyR three 

dimensional structure via formation of  

internal disulphide bond, a part of 

CXXC motif  

(Hurne et al. 2005) 

4961 RyR1 oxidation  as above as above 

 
Table 1.2 List of cysteines reported to mediate redox modulation of RyR 
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The mechanism underlying increased sensitivity of the channel to activation in the 

presence of mild oxidising agents is thought to be associated with destabilisation of 

the closed conformation of the channel induced by a shift in the thiol redox state 

without full oxidation of those residues (Petrotchenko et al. 2011). Similarly, 

preferential labelling of hyper-reactive cysteines in the presence of agents decreasing 

RyR activity would be associated with increased availability of domains containing 

critical thiols upon conformation changes triggered by channel closure (Feng et al. 

1999). However others proposed that a reduced number of residues available for 

chemical labelling upon channel activation is in fact associated with oxidation of 

hyper-reactive cysteines to disulphides driven by a drop in channel redox potential  in 

the presence of agents increasing RyR opening probability (Xia et al. 2000). In 

agreement with the former, Sun and colleagues showed that the availability of C3635 

for S-nitrosylation exclusively at physiological low oxygen tension is determined by 

the difference in the receptor conformation and not by cysteine oxidation to 

disulphides at ambient O2 (Sun et al. 2003). Moreover, oxidation of cysteines not 

involved in redox sensing per se is associated with substantial activation of RyR1 

which, upon prolonged exposure becomes irreversibly inactivated (Sun et al. 2001b). 

Notably, some of the cysteines which were shown to be oxidised were also identified 

as targets  for other covalent modifications (Aracena-Parks et al. 2006). Consistent 

with the notion that the same cysteine undergoes different modification depending on 

the conditions, Aghdasi et al. showed that nitric oxide donors prevent oxidation-

induced activation of the channel and block inter-subunit disulphide bond formation 

(Aghdasi et al. 1997a). Moreover, Hurne et al. proposed that some of disulphide 

bonds are indispensable for channel function via stabilisation of the RyR three-

dimensional structure (Hurne et al. 2005). In this study, mutation of two cysteines 

within a conserved CXXC motif, which has been shown to be employed by many 

proteins for formation, isomerisation and reduction of disulphide bonds (Fomenko 

and Gladyshev 2002, 2003), resulted in a dysfunctional RyR1 unable to support EC 

coupling and unresponsive to activators. 

Both RyR1 and RyR2 have been shown to be endogenously nitrosylated (Xu et al. 

1998a; Eu et al. 2000) and alterations in this process have been proposed to underlie 

some of the pathological conditions associated with RyR dysfunction. Neuronal 

NOS-derived nitric oxide has been proposed to exert its protective effect on RyR2 
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function by preventing its excessive oxidation (Gonzalez et al. 2007; Gonzalez et al. 

2010; Cutler et al. 2012). This observation is of particular interest since increased 

levels of RyR oxidation have been reported to accompany heart failure and other 

muscle-associated disorders (Yano et al. 2005; Terentyev et al. 2008a; Belevych et al. 

2009). The protective effect of RyR nitrosylation was however questioned by other 

groups which showed that both RyR1 and RyR2 are excessively S-nitrosylated in 

pathological conditions linked to the increased activation of the channel (Chen et al. 

1993; Bellinger et al. 2008; Bellinger et al. 2009; Fauconnier et al. 2010). However, 

those apparently conflicting findings might be explained by a mechanism in which 

excessive oxidative stress leads not only to the loss of normally S-nitrosylated 

cysteines but, through the formation of peroxynitrate, S-nitrosylates other thiol 

residues which in physiological conditions would remain inaccessible (Gonzalez et al. 

2010). The above mechanism would ultimately lead to the net effect of channel 

hypernitrosylation, as reported by others.  

In summary, a tight interplay between different redox modifications appears to 

determine the ultimate effect on RyR activity. The high complexity of channel 

response to reducing/oxidation agents is governed by multiple factors; availability of 

cysteines which determines the identity and quantity of residues modified, type and 

reactivity of the chemical compounds used and the experimental set up (e.g. 

physiological versus ambient oxygen tension, closed versus open channel, presence 

of other redox active species). The detailed physiological and pathological 

consequences of RyR redox modifications remain unclear. 

1.5.8 Pharmacological modulation of RyR 

Ryanodine receptors are regulated by a number of exogenous compounds. 

Pharmacological agents with current or prospective clinical applications for RyR1 

and RyR2-associated disorders are described in Section 1.6.1 and 1.6.2.2 

respectively. Other compounds that influence gating of the channel either directly or 

indirectly by affecting its interaction with accessory proteins include local 

anaesthetics and immunosuppressive agents, food ingredients, fungicides, insecticides 

and peptide toxins (Table 1.3). 
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Some of those compounds have been widely used to study RyR function with 

ryanodine being the most widely used agent in a laboratory setting. In respect to RyR, 

ryanodine is of particular importance for at least two reasons; firstly, its biological 

properties (i.e. selective binding to RyR) permitted the identification of the channel 

itself and secondly its selective binding to the receptor’s open conformation makes it 

an indispensable tool in RyR functional studies (Sutko et al. 1997). Ryanodine is a 

natural product found in members of the genus Ryania and long before its current 

application it had been appreciated as a source of toxic compounds and later on used 

as an insecticide. Ryanodine has a complex effect on RyR function, i.e. binding of 

this compound to its high affinity site (nanomolar range) activates the channel and 

locks it in a reduced conductance state, while higher concentrations (micromolar) 

inhibit the channel  (Sutko et al. 1997). It is generally believed that each functional 

RyR tetramer contains a single high affinity binding site (Lai et al. 1989; Tanna et al. 

1998). The relationship between high and low affinity binding sites can be described 

by two different models. The first model assumes the existence of four identical (one 

in each subunit) but negatively cooperative binding sites, of which affinity gradually 

decreases as more ryanodine molecules are bound (Pessah and Zimanyi 1991). The 

second model proposes that high and low affinity binding sites are also functionally 

coupled but they are physically distinct (Wang et al. 1993).  

The high affinity binding site for ryanodine has been proposed to reside within the 

RyR C-terminus. This notion is based on a number of findings, i.e. the C-terminal 

portion of RyR1 (~130kDa) forms a cation-selective channel which is regulated by 

ryanodine (Bhat et al. 1997) and ryanodine specifically labels a tryptic fragment 

corresponding to the C-terminal region (~76kDa) (Callaway et al. 1994; Witcher et 

al. 1994). However, the precise location of the high affinity ryanodine binding site 

remains controversial. Some of the features of the  ryanoids interaction with RyR, i.e. 

the accessibility of the binding site from the cytoplasmic side upon channel opening 

(Tanna et al. 1998) and the presence of reduced channel conductance upon ryanodine 

association, would imply that its site is in fact located within the conduction pathway. 

In support of this hypothesis, single amino acid substitutions within the putative pore-

forming segment reduce or abolish high affinity ryanodine binding (Zhao et al. 1999; 

Gao et al. 2000; Wang et al. 2003; Du et al. 2004). Chen et al.  proposed that 

ryanodine binds within the central cavity of the channel pore such that its pyrole ring 
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interacts with the unique sites adjacent to the selectivity filter while the polar side is 

exposed to the pore pathway and contacts the solvent (Chen et al. 2002). Others 

suggested however that ryanodine induces an indirect effect on the channel pore and 

modulates RyR gating allosterically (Fessenden et al. 2001; Bidasee et al. 2003; 

Paolini et al. 2004).  
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Compound 
Primary 

application 
Binding site 

Effects on channel 

gating 
References 

ryanodine 
insecticide, 

toxin 

binding site at the 

RyR C-terminus 

activation followed by 

irreversible 

inactivation at μM 

concentrations 

(Callaway et al. 

1994; Tanna et al. 

1998; Zhao et al. 

1999; Fessenden et 

al. 2001) 

caffeine 

stimulant, 

food 

ingredient 

calcium-

dependent binding 

site proposed to 

reside at the C-

terminus and 

calcium-

independent 

binding site in the 

cytoplasmic 

portion of RyR 

activation by calcium-

dependent mechanism, 

at higher 

concentrations 

(>5mM) activation is 

calcium-independent 

(Sitsapesan and 

Williams 1990; 

Treves et al. 2002) 

ruthenium red 
inorganic 

dye 

multiple binding 

sites identified in 

the RyR primary 

sequence  

inhibition 

(Chen and 

MacLennan 1994; 

Xu et al. 1999) 

procaine and 

tetracaine 

local 

anaesthetics 
not established as above (Xu et al. 1998b) 

halothane 
volatile 

anaesthetic 
as above 

calcium-dependent 

activation, triggers 

muscle contracture in 

MH-susceptible 

patients  

(Bull and Marengo 

1994; Glover et al. 

2004; Liang et al. 

2009) 

4-chloro-meta-

cresol 

fungicide, 

preservative 

binding site 

proposed to reside 

in the cytoplasmic 

portion of RyR  

activation 

(Zorzato et al. 1993; 

Herrmann-Frank et 

al. 1996; Treves et 

al. 2002) 

natrin 
snake venom 

toxin 
not established inhibition (Zhou et al. 2008) 

imperatoxin A 
scorpion 

venom toxin 

proposed to bind 

to the DHPR 

peptide A – 

binding site  

activation 

(Dulhunty et al. 

2004; Lee et al. 

2004) 

FK506 and 

rapamycin 

immunosupp

ressant 

binding to 

FKBP12/12.6 

dissociation of 

FKBP12/12.6 

proposed to activate 

the channel and lead to 

uncoupled gating  

(Ondrias et al. 1998; 

Gaburjakova et al. 

2001; Marx et al. 

2001b) 

tricyclic 

antidepressants, 

phenothiazines 

and 

anthracyclines 

anti-

psychotic 

and 

chemotherap

eutic agents 

binding to CSQ 

activation through the 

mechanism of 

increased  free SR 

Ca
2+ 

 levels due to the 

disruption of CSQ 

polymerisation process   

(Park et al. 2005) 

 
Table 1.3 List of selected agents modulating RyR function  
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1.6 RyR-associated disorders 

Calcium signals operate within a wide temporal range controlling fast and slow 

cellular responses. In myocytes, a rapid release of calcium from internal stores 

through ryanodine receptors triggers muscle contraction.  This mechanism involves 

binding of Ca
2+ 

ions to contractile proteins. Muscle responsiveness to subsequent 

stimuli is determined by its ability to promptly reduce calcium levels back to its 

resting concentration. A tight control of this process is essential for excitation-

contraction coupling and a contractile response which is adequate to any given 

physiological trigger. Because calcium ions play also a central role in regulating slow 

cellular responses such as transcription and translation, any disruption in this control 

might have long-term consequences.  

As ryanodine receptors activity is one of the key factors determining the amount, time 

and frequency of calcium release from the sarcoplasmic reticulum, their dysfunction 

has been associated with a number of muscle-associated disorders. Mutations in RyR 

genes have a direct causative role in skeletal and heart muscle diseases such as 

malignant hyperthermia (MH), central core disease (CCD) and catecholaminergic 

polymorphic ventricular tachycardia (CPVT). RyR-acquired defects have also been 

proposed to underlie other disorders such as heart failure (HF); however the direct 

causative role in the disease progression remains to be established as some authors 

reported normal RyR2 function in HF (Jiang et al. 2002b). 

1.6.1 RyR1-associated disorders 

Mutations in RyR1 are associated with two congenital skeletal muscle disorders; 

malignant hyperthermia and central core disease.  

Malignant hyperthermia is a pharmacogenetic disease inherited in autosomal 

dominant fashion. Susceptible individuals develop a life-threatening generalized 

muscle contracture and a hypermetabolic response following the exposure to volatile 

anaesthetics (e.g. halothane) and depolarising muscle relaxants (e.g. succinylcholine) 

(Betzenhauser and Marks 2010). A related syndrome referred to as porcine stress 
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syndrome was identified in certain lines of domestic swine (Fujii et al. 1991). The 

first MH-associated mutation in humans was identified in the N-terminal part of the 

RyR1 protein and corresponded to the analogous amino acid substitution earlier 

identified in swine (Gillard et al. 1991). Until now, a number of RyR1 mutations have 

been linked to MH phenotype. Interestingly, disease-susceptibility has also been 

associated with mutations in the gene coding for the DHPR α1 subunit (Monnier et 

al. 1997) and has been reported in the CSQ1 knockout mouse (Dainese et al. 2009). 

Although no CSQ1-associated skeletal myopathy has been identified so far, those 

findings suggest that the CSQ1 gene might be a potential candidate for linkage 

analysis in families where mutations in the RyR1 gene are excluded.  

Malignant hyperthermia exhibits a significant clinical overlap with another disorder 

linked to mutations in the RyR1 gene – central core disease. The defining 

characteristic of CCD is the presence of cores of metabolically inactive tissue (devoid 

of mitochondria) in the centre of muscle fibres. The disease symptoms include motor 

developmental delay, a moderate muscle weakness which is mainly affecting lower 

limbs and sometimes MH-like symptoms (Betzenhauser and Marks 2010). The 

classical CCD phenotype has been linked to the RyR1 mutations which tend to cluster 

in the C-terminal portion of the protein and are inherited in a dominant fashion. 

Interestingly, another type of myopathy – multiminicore disease (MmD), which is 

inherited in a recessive manner, has also been linked to the RyR1 gene. At the cellular 

level, the disease is manifested by the presence of multiple minicores in the majority 

of muscle fibres while the clinical phenotype is highly variable, ranging from 

symptoms characteristic for CCD to a general muscle weakness accompanied by a 

respiratory impairment (Zhou et al. 2007). It has been suggested that MmD 

associated with recessive mutations in the RyR1 gene is in fact a pathological subtype 

of CCD (Ferreiro et al. 2002; Duarte et al. 2011). 

Initially, RyR1 mutations were reported to exclusively reside in three defined regions 

of channel’s primary structure, i.e. N-terminal, central and C-terminal, however later 

studies showed that they are in fact spread throughout the entire length of the protein 

(Maclennan and Zvaritch 2011). Until now, around 300 mutations have been 

described and most of them include missense substitutions and small in-frame 

deletions, which are believed to result in altered gating behaviour of the channel. 

Recently, quantitative defects in RyR1 expression leading to substantially reduced 
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protein levels and associated with severe forms of congenital myopathies have been 

also reported (Zhou et al. 2007; Monnier et al. 2008). Notably, some of these 

recessive mutations were shown to be heterozygous at the genomic level, however 

homozygous at the mRNA level due to the epigenetic silencing of the other allele.  

At the cellular level, mutations in the RyR1 gene are believed to result in calcium 

mishandling. Early studies, which analysed the contractile response of muscle 

obtained from affected individuals in the presence of caffeine or halothane, 

established that MH/CCD mutations increase RyR1 sensitivity to activation 

indicating a gain-of-function mechanism (Betzenhauser and Marks 2010). Functional 

studies of MH and CCD mutant channels in heterologous expression systems 

corroborated earlier findings and showed that mutant RyR1 proteins exhibit 

hypersensitivity to activating agents and promote a variable degree of store depletion 

and an increase in intracellular resting calcium (Dirksen and Avila 2002). Expression 

of RyR1 carrying MH mutations in dyspedic myotubes allowed further 

characterisation of defects in a more physiological setting. Yang et al. reported that 

MH channels are hypersensitive to stimulation by direct activators (e.g. caffeine), 

exhibit increased sensitivity to plasma membrane depolarisation, decreased inhibition 

by magnesium and calcium and an increased activity at sub-activating Ca
2+ 

levels 

(Yang et al. 2003). Similarly, MH-associated mutations in the DHPR α1 subunit were 

shown to lead to the analogous phenotype, i.e. enhanced sensitivity of RyR1 to 

endogenous and exogenous activators (Weiss et al. 2004). Results obtained in 

functional studies led to the hypothesis that RyR1 mutations associated with CCD 

result in chronic calcium leak which is responsible for Ca
2+

- mediated destruction of 

mitochondria and subsequent core formation, while in MH-associated mutations, an 

uncontrolled leak leading to muscle contracture is triggered by administration of 

volatile anaesthetics (Betzenhauser and Marks 2010).  

This universal mechanism linking channel dysfunction to the observed phenotype 

does not however apply to all RyR1 mutations. Avila et al. demonstrated that CCD 

mutations located within the RyR1 putative pore region do not result in leaky 

channels but give rise to DHPR-uncoupled channels which lack depolarisation-

induced calcium release (Avila et al. 2003).  Further characterisation of those mutants 

in HEK293 cells revealed that calcium sensitivity and peak amplitude is severely 

compromised in the homozygous scenario,  however, while co-expression with wild 
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type RyR1 rescues the former, it fails to restore normal calcium transients (Du et al. 

2004).   Hence, the emerging picture points towards a distinct mechanism of channel 

dysfunction and consequently a heterogeneous effect on cellular calcium handling 

and EC coupling in mutations associated with three distinct phenotypes: MH only, 

MH/CCD and CCD. In agreement with this notion, Dirksen and Avila showed  that 

both MH and MH/CCD mutations exhibit voltage dependence shifted to a more 

negative potential and display significantly higher incidence of spontaneous Ca
2+

 

oscillations, however only MH/CCD mutations lead to an increase in resting calcium 

levels and reduced SR content (Dirksen and Avila 2004). Similarly, Brini and 

colleagues showed that CCD-mutations but not MH mutations result in SR store 

depletion (Brini et al. 2005). Those studies led to the hypothesis that mutations 

associated solely with the MH phenotype result in moderately hypersensitive 

channels which cause substantial calcium leak only upon stimulation with triggering 

agents and without those, cellular compensatory mechanisms are sufficient enough to 

maintain normal calcium handling. Conversely, mutations which lead to the mixed 

MH/CCD phenotype exhibit a substantial increase in basal activity promoting SR 

store depletion, which leads to diminished calcium release during EC coupling and 

consequently to muscle weakness. Although the mechanism of channel dysfunction in 

CCD-associated mutations which exhibit functional EC-uncoupling is strikingly 

different, those mutations ultimately lead to the same phenotype associated with 

muscle weakness due to reduced depolarisation-induced calcium release (Avila and 

Dirksen 2001; Avila et al. 2003). It was further suggested that the formation of cores 

is determined by reduced Ca
2+

 transients (due to store depletion or EC-uncoupling) 

rather than an increase in resting calcium. Mice expressing one of the CCD-

uncoupling mutations showed many features commonly observed in human patients; 

however the manifestation of the phenotype was highly variable indicating that 

additional factors may contribute to the clinical presentation of the disease (Zvaritch 

et al. 2009).  Notably, others reported that the EC-uncoupled phenotype is 

accompanied by an increase in resting calcium and SR store depletion, an observation 

indicative of leaky channels (Lynch et al. 1999; Brini et al. 2005) 

MH episodes are typically rapid and severe and, if not treated promptly, result in a 

very high mortality rate reaching over 80% (Betzenhauser and Marks 2010).  

Dantrolene, which was synthetized in 1967 as a new class of skeletal muscle relaxant, 
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has been successfully used to manage MH episodes following a multicentre study 

which proved its high efficacy (Snyder et al. 1967; Kolb et al. 1982). At the cellular 

level, dantrolene was found to suppress the depolarisation-induced calcium release 

from SR (Szentesi et al. 2001). The therapeutic effect of dantrolene was subsequently 

linked to its direct effect on RyR1, where it was showed to reduce caffeine-induced 

channel activation and rescue the hypersensitive phenotype associated with MH 

mutations (Zhao et al. 2001). Using photoaffinity labelling, Paul-Petzer et al. 

demonstrated that the dantrolene binding site is located on RyR1 and is composed of 

amino acids 590-609 (Paul-Pletzer et al. 2002). Currently, there is no effective 

therapy for treatment of symptoms associated with RyR1 mutations resulting in CCD. 

As some of those mutations exhibit a partially overlapping phenotype with those 

leading to MH only, one might speculate that in those particular cases dantrolene 

would have the ability to oppose muscle weakness resulting from SR store depletion 

by preventing channel hyperactivation. In those patients, disease management would 

probably require chronic dantrolene administration likely to cause a number of CNS-

linked side effects (Inan and Wei 2010). 

1.6.2 RyR2-associated disorders 

Mutations in the RyR2 gene have been linked to emotional stress and exercise 

induced arrhythmias associated with two diseases displaying partially overlapping 

clinical phenotype: CPVT and arrhythmogenic right ventricular dysplasia (ARVD2). 

In addition, mutations in the RyR2 gene have also been linked to sudden infant death 

syndrome (SIDS) (Tester et al. 2007). 

The first comprehensive clinical evaluation of CPVT patients was described by 

Leenhardt et al. and involved 21 children (Leenhardt et al. 1995). The initial notion 

considered CPVT as a disease exclusively manifesting at a very young age, however 

it was later shown that the first symptoms might also occur at adulthood. The disease 

is associated with episodes of potentially lethal arrhythmias triggered by emotional or 

physical stress. It displays a high mortality rate of up to 50% due to the fact that 

patients usually remain undiagnosed until the first arrhythmic episode occurs 

(Medeiros-Domingo et al. 2009).  Late diagnosis is directly linked to the fact that in 
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the absence of appropriately high β-adrenergic stimuli, CPVT mutations do not cause 

any structural abnormalities in the heart and patients present normal cardiac function 

at rest (Priori et al. 2001). On the other hand, ARVD2, which also puts patients at 

increased risk of arrhythmia, is associated with progressive degeneration with 

fibrofatty replacement of the right ventricle (Tiso et al. 2001).  Because there is 

significant phenotypic overlap between those two disorders and very often mild 

structural abnormalities of the heart are only apparent upon post mortem examination 

but remain undetectable with a standard echocardiography procedure, it has been 

suggested that the two disorders represent variable phenotypic representation of the 

same disease (Bauce et al. 2002; d'Amati et al. 2005). Some of the patients diagnosed 

with CPVT indeed display minor structural abnormalities of the right ventricle 

detected with echocardiography however they do not fulfil the criteria to be included 

in the ARVD2 group.  

CPVT/ARVD2 originating from mutations in the RyR2 gene is inherited in an 

autosomal dominant fashion; however the disease exhibits incomplete penetrance, i.e. 

carriers of the same mutation present different severity of symptoms and some remain 

completely asymptomatic (silent carriers) indicating the involvement of other factors 

(Bauce et al. 2002; Priori et al. 2002; Postma et al. 2005). In support of additional 

determinants influencing the clinical phenotype, males were shown to be at a 

significantly higher risk of cardiac events. Notably, additional factors directly linked 

to RyR2 such as protein expression profile and subunit composition have been 

implicated in the disease severity (Milting et al. 2006). An autosomal recessive form 

of CPVT has been linked to mutations in the calsequestrin 2 gene (Lahat et al. 2001; 

di Barletta et al. 2006). A recessive form of CPVT accompanied by muscle weakness 

has also been reported in two families with mutations in triadin gene (Roux-Buisson 

et al. 2012). In those patients, triadin defects ultimately resulted in the absence of the 

protein (two mutations leading to premature stop codons and one missense mutation 

affecting protein stability). Only recently, a CPVT-like phenotype inherited in a 

dominant fashion and associated with mutations in the calmodulin gene has also been 

reported (Nyegaard et al. 2012). Since both CSQ2 and CaM constitute endogenous 

regulators of RyR2 function while triadin is believed to mediate RyR/CSQ 

interaction, an arrhythmogenic phenotype seems to be ultimately determined by the 

RyR’s inability to maintain normal calcium handling. 
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The direct link between mutations in the RyR2 gene and CPVT/ARVD2 was shown 

in 2001 (Priori et al. 2001; Tiso et al. 2001). Until now, more than 140 mutations in 

the RyR2 gene linked to exercise and emotional stress induced arrhythmia have been 

reported (Table 1.4). The majority of the mutations are missense substitutions, 

however in-frame deletions and duplications have been also found. Interestingly, the 

deletion within exon 3 was shown to result in an unusual phenotype in which typical 

stress-induced arrhythmia is accompanied by depressed left ventricular function and 

dilated cardiomyopathy (Bhuiyan et al. 2007). A comprehensive analysis of patients 

diagnosed with RyR2-associated arrhythmias revealed that mutations exhibit higher 

tendency to cluster in three distinctive regions than those associated with skeletal 

muscle disorders (Medeiros-Domingo et al. 2009).  Those regions include the three 

mutation hot spots described earlier for RyR1; N-terminal domain (residues 77-466), 

central domain (2246-2534) and C-terminal region (3778-4959). Although RyR2 was 

not considered a polymorphic gene, around 10% of missense variants were found in 

control subjects (Medeiros-Domingo et al. 2009).  The three most commonly found 

polymorphic substitutions are: Q2958R, G1886S, and G1885E. Interestingly, the 

concomitant presence of the two latter substitutions (composite heterozygote) was 

reported in an ARVD2 patient and, at the molecular level, was associated with a 

hyperactive channel demonstrating that common polymorphisms may in fact lead to a 

clinical phenotype (Milting et al. 2006). 

The electrographic pattern of ventricular tachycardia closely resembles the 

arrhythmia associated with calcium overload and delayed afterdepolarisation (DAD) 

observed during digitalis toxicity  (Priori et al. 2001). By analogy, the occurrence of 

arrhythmia in RyR2 mutation carriers has been long suspected to involve calcium 

mishandling which becomes apparent during emotional or physical stress associated 

with β-adrenergic stimulation. The degeneration of the right ventricle in ARVD2 

patients was suggested to be triggered by prolonged calcium overload leading to 

mitochondria damage and subsequent apoptosis of cardiomyocytes (d'Amati et al. 

2005). Although the exact molecular mechanism of channel dysfunction remains a 

subject of debate, it is believed that a higher propensity of mutant RyR2 for 

spontaneous openings upon exposure to β-adrenergic stimulation underlies the 

mechanism of delayed afterdepolarisation and triggered arrhythmia. The spontaneous 

calcium release during diastole is thought to activate the sodium/calcium exchanger 
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in the plasma membrane which removes excess calcium at the expense of sodium 

ions entering the cytoplasm. This mechanism of calcium removal with concomitant 

sodium influx was proposed to result in plasma membrane depolarisation during 

diastole, i.e. delayed afterdepolarisation which, if high enough, would trigger an 

action potential leading to triggered arrhythmia (Priori and Chen 2011). Interestingly, 

a number of recent reports suggest that cardiac Purkinje cells exhibit a greater 

propensity to develop abnormalities in calcium handling implying their primary role 

in triggering arrhythmic events in CPVT patients (Herron et al. 2010; Kang et al. 

2010). CPVT/ARVD2 mutations have been evaluated in mouse knock-in models and 

recapitulated the phenotype of susceptible patients, i.e. ventricular tachycardia 

developed upon exercise or injection of epinephrine. In agreement with the disease 

manifestation in humans, mice carrying CPVT-associated mutations did not exhibit 

any structural heart abnormalities while subtle right ventricular impairment was 

reported for the R176Q mutation associated with the ARVD2 phenotype (Cerrone et 

al. 2005; Kannankeril et al. 2006; Uchinoumi et al. 2010; Suetomi et al. 2011). 

Analysis of calcium handling in cardiac myocytes isolated from mutant mice revealed 

a higher incidence of spontaneous Ca
2+ 

oscillations upon β-adrenergic stimulation in 

agreement with the hypothesis of an uncontrolled leak through RyR2 (Kashimura et 

al. 2010; Uchinoumi et al. 2010; Suetomi et al. 2011). 
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No 
Mutation 

type 

Amino acid 

change 
Domain Phenotype References 

1 

deletion 
1.1kb deletion 

(N57-G91)  

including N-

terminal hot 

spot 

CPVT, DCM, AF, 

LV function 

depressed 

(Bhuiyan et al. 2007) 

2 
deletion 

3.6kb deletion 

(exon 3) 
as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

3 

missense L62F 

upstream of N-

terminal hot 

spot 

CPVT 
(Medeiros-Domingo et 

al. 2009) 

4 
missense A77V 

N-terminal hot 

spot 
CPVT/ARVD2 (d'Amati et al. 2005) 

5 
missense M81L as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

6 missense P164S as above CPVT (Choi et al. 2004) 

7 missense R169Q as above CPVT (Hsueh et al. 2006) 

8 

missense R176Q as above 

ARVD (in 

combination with 

T2504M), CPVT 

(Tiso et al. 2001; 

Haugaa et al. 2010) 

9 missense V186M as above CPVT (Tester et al. 2006) 

10 missense E189D as above CPVT (Jiang et al. 2010) 

11 missense G230C as above CPVT (Meli et al. 2011) 

12 
missense H240R as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

13 
missense E243K as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

14 
missense F329L as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

15 
missense R332W as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

16 
cSNP V377M as above  

(Medeiros-Domingo et 

al. 2009) 

17 
missense G357S as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

18 missense S406L as above CPVT (Jung et al. 2012) 

19 
missense R414C as above CPVT 

(Tester et al. 2005a; 

Creighton et al. 2006) 

20 
missense R414L as above 

SCD associated 

with drowning 
(Choi et al. 2004) 

21 
missense T415R as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

22 missense I419F as above SCD (Choi et al. 2004) 

23 missense R420W as above CPVT/ARVD (Bauce et al. 2002) 

24 
missense R420Q as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

25 missense L433P as above ARVD (Tiso et al. 2001) 
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26 missense P466A as above syncope (Tester et al. 2005b) 

27 

cSNP V507I 

downstream of 

N-terminal hot 

spot 

 
(Medeiros-Domingo et 

al. 2009) 

28 
missense A549V as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

29 missense S616L as above CPVT (Marjamaa et al. 2009) 

30 
missense R739H as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

31 
missense R1013Q as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

32 missense R1051P as above CPVT (Marjamaa et al. 2009) 

33 
cSNP A1136V as above  

(Medeiros-Domingo et 

al. 2009) 

34 
missense T1107M as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

35 missense E1724K as above CPVT (Postma et al. 2005) 

36 
missense E1837K as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

37 

cSNP G1885E 

outside hot 

spots, within D3 

region 

if expressed in 

composite 

heterologous 

fashion with 

G1886S leads to 

ARVD2 

(Milting et al. 2006) 

38 

cSNP G1886S as above 

if expressed in 

composite 

heterologous 

fashion with 

G1885E leads to 

ARVD2 

(Milting et al. 2006) 

39 
missense E2045G 

upstream central 

domain hot spot 
CPVT 

(Medeiros-Domingo et 

al. 2009) 

40 
missense V2113M 

upstream central 

domain hot spot 
CPVT 

(Medeiros-Domingo et 

al. 2009) 

41 missense G2145R as above CPVT/SCD (Marjamaa et al. 2011) 

42 
cSNP Y2156C as above  

(Medeiros-Domingo et 

al. 2009) 

43 
missense H2168Q as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

44 
cSNP E2183V as above  

(Medeiros-Domingo et 

al. 2009) 

45 
missense D2216V as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

46 
missense S2246L 

central domain 

hot spot 
CPVT (Priori et al. 2001) 

47 missense A2254V as above CPVT (Postma et al. 2005) 

48 missense R2267H as above SIDS (Tester et al. 2007) 
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49 
missense E2296Q as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

50 missense V2306I as above CPVT (Laitinen et al. 2003) 

51 
missense F2307L as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

52 missense E2311D as above CPVT (Priori et al. 2002) 

53 missense V2321M as above CPVT (Nishio et al. 2008) 

54 missense P2328S as above CPVT (Laitinen et al. 2001) 

55 missense F2331S as above SCD (Creighton et al. 2006) 

56 missense G2337V as above CPVT (Haugaa et al. 2010) 

57 missense R2359Q as above SCD/CPVT (Aizawa et al. 2007) 

58 
missense N2386I as above CPVT/ARVD 

(Tiso et al. 2001; Bauce 

et al. 2002) 

59 missense A2387T as above syncope (Tester et al. 2005b) 

60 missense A2387P as above CPVT (Bagattin et al. 2004) 

61 
cSNP M2389L as above  

(Medeiros-Domingo et 

al. 2009) 

62 missense Y2392C as above ARVD (Bauce et al. 2002) 

63 missense A2394G as above CPVT (Postma et al. 2005) 

64 missense R2401H as above CPVT (Aizawa et al. 2007) 

65 missense R2401L as above SCD (Creighton et al. 2006) 

66 missense A2403T as above CPVT (Choi et al. 2004) 

67 missense R2404T as above CPVT (Beckmann et al. 2008) 

68 missense R2474S as above CPVT (Priori et al. 2001) 

69 
missense R2420W as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

70 missense V2475F as above CPVT (Tester et al. 2005a) 

71 missense L2487I as above CPVT (Tester et al. 2005b) 

72 missense T2504M as above ARVD  (Tiso et al. 2001) 

73 
missense T2510A as above CPVT 

http://www.fsm.it/card

moc/ 

74 missense L2534V as above CPVT (Hasdemir et al. 2004) 

75 

cSNP Q2958R 

downstream of 

central domain 

hot spot 

 (Tiso et al. 2001) 

76 

missense N3308S as above 

unusual 

phenotype, 

arrhythmia at rest 

(Marjamaa et al. 2009) 

77 

missense R3570W as above 

SCD, 

arrhythmia at rest 

 

(Marjamaa et al. 2011) 

78 
missense L3778F 

C-terminal hot 

spot 
CPVT (Priori et al. 2002) 

79 
missense C3800F as above 

syncope of 

unknown origin 
(Tester et al. 2005b) 
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80 
missense L3879P as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

81 
missense Q3925E as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

82 missense S3938R as above CPVT (Tester et al. 2006) 

83 missense G3946S as above CPVT (Priori et al. 2002) 

84 
missense G3946A as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

85 
missense S3959L as above CPVT 

http://www.fsm.it/card

moc/ 

86 
missense M3972I as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

87 
missense D3973H as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

88 
missense L3974Q as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

89 
missense K3997E as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

90 missense F4020L as above CPVT (Postma et al. 2005) 

91 cSNP V4010M as above  (Tester et al. 2005b) 

92 missense E4076K as above CPVT (Postma et al. 2005) 

93 

missense N4097S 

C-terminal hot 

spot, CaM-like 

domain 

SCD (Tester et al. 2004) 

94 missense N4104K as above CPVT (Priori et al. 2001) 

95 missense N4104I as above CPVT (Postma et al. 2005) 

96 cSNP L4105F as above  (Hasdemir et al. 2008) 

97 missense H4108N as above CPVT (Postma et al. 2005) 

98 missense H4108Q as above CPVT (Postma et al. 2005) 

99 
missense S4124G as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

100 
missense S4124T as above 

syncope of 

unknown origin 
(Tester et al. 2005b) 

101 missense R4144C as above CPVT (Berge et al. 2008) 

102 missense E4146K as above SCD (Tester et al. 2004) 

103 
missense Y4149S as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

104 
missense R4157Q as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

105 missense T4158P as above SCD (Tester et al. 2004) 

106 
missense Q4159P as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

107 
missense N4178S as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

108 
missense E4187Q as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

109 missense T4196A as above CPVT (Tester et al. 2006) 
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110 missense Q4201R as above CPVT (Laitinen et al. 2001) 

111 
cSNP A4282V 

C-terminal hot 

spot, D1 region 
 

(Tester et al. 2005b) 

112 
cSNP R4307C as above  

(Medeiros-Domingo et 

al. 2009) 

113 
cSNP G4315E as above  

(Medeiros-Domingo et 

al. 2009) 

114 missense E4431K as above CPVT (Berge et al. 2008) 

115 

missense R4497C as above 

CPVT, non-

responsive to β-

blockers 

(Priori et al. 2001; 

Cerrone et al. 2005) 

116 missense F4499C as above CPVT (Choi et al. 2004) 

117 missense M4504I as above CPVT (Bagattin et al. 2004) 

118 

missense A4510T 

C-terminal hot 

spot, putative 

M5 domain 

(Fig.1.5) 

CPVT (Choi et al. 2004) 

119 
missense F4511L as above CPVT 

http://www.fsm.it/card

moc/ 

120 

missense A4556T 
C-terminal hot 

spot 

syncope of 

unexplained 

origin 

(Tester et al. 2005b) 

121 missense S4565R as above SIDS (Tester et al. 2007) 

122 missense V4653F as above CPVT (Laitinen et al. 2001) 

123 missense A4607P as above CPVT (Bagattin et al. 2004) 

124 missense E4611K as above CPVT (Berge et al. 2008) 

125 
missense W4645R as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

126 
missense K4650E as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

127 

duplication 

4657-4658 

insertion of 

EY 

as above 

syncope of 

unexplained 

origin 

(Tester et al. 2005b) 

128 missense G4662S as above CPVT (Postma et al. 2005) 

129 missense G4671R as above CPVT (Choi et al. 2004) 

130 missense G4671V as above CPVT (Haugaa et al. 2010) 

131 
deletion N4736 del as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

132 

missense H4762P 

C-terminal hot 

spot, 

M7b/M8 loop 

(S4-S5 linker) 

CPVT 

(Postma et al. 2005) 

133 
missense V4771I 

C-terminal hot 

spot 
CPVT 

(Priori et al. 2002) 

134 

missense R4790Q 

C-terminal hot 

spot, putative 

M8 domain 

CPVT 

(Medeiros-Domingo et 

al. 2009) 



50 

 

135 
missense K4805R 

C-terminal hot 

spot 
CPVT 

(Medeiros-Domingo et 

al. 2009) 

136 

missense R4822H 

C-terminal hot 

spot, pore 

helix/selectivity 

filter 

CPVT 

(Medeiros-Domingo et 

al. 2009) 

137 

missense I4848V 

C-terminal hot 

spot, putative 

M10 domain 

CPVT (Choi et al. 2004) 

138 missense F4851C as above SCD/CPVT (Aizawa et al. 2007) 

139 missense A4860G as above CPVT (Priori et al. 2002) 

140 missense I4867M as above CPVT (Priori et al. 2002) 

141 
missense V4880A 

C-terminal hot 

spot 
CPVT (Bagattin et al. 2004) 

142 missense N4895D as above CPVT (Priori et al. 2002) 

143 missense P4902L as above CPVT (Laitinen et al. 2003) 

144 missense P4902S as above CPVT (Postma et al. 2005) 

145 
missense G4936R as above CPVT 

(Medeiros-Domingo et 

al. 2009) 

146 missense E4950K as above CPVT (Priori et al. 2002) 

147 missense R4959Q as above CPVT (Laitinen et al. 2003) 

 
Table 1.4 List of arrhythmia-linked mutations and SNP as of June 2013 

1.6.2.1 Mechanism of channel dysfunction 

The mechanism underlying RyR2 dysfunction remains under debate. The basic 

question of how mutations located in different domains lead to the same phenotype, 

i.e. increased activity of the channel in circumstances mimicking stress and exercise, 

have been addressed by multiple research groups but a common consensus has not 

been reached. The majority of experiments aiming to dissect the molecular 

mechanism of channel dysfunction were performed using heterologously expressed 

RyR2. The evaluation of the effect of arrhythmia-linked mutations on channel 

function was performed using calcium imaging, single channel recordings and 

[
3
H]ryanodine binding. These studies revealed that the presence of mutations induce 

gain-of-function changes in the RyR2 function which is reflected by an increased 

sensitivity to activation by calcium, caffeine and cAMP-mobilising agents (Jiang et 

al. 2002a; George et al. 2003; Jiang et al. 2004; Thomas et al. 2005). In agreement 

with the fact that the CPVT-associated phenotype becomes unmasked during stress 
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and exercise, most studies reported that in the native environment of a 

cardiomyocyte, calcium handling becomes defective only upon high frequency 

pacing or β-adrenergic stimulation (George et al. 2003; Jung et al. 2012). Those 

experiments established two general features of the CPVT phenotype; first, 

recombinantly expressed channels exhibit increased basal activity and second, in the 

cellular milieu of cardiac cells β-adrenergic stimulation or infusion with activating 

agent is necessary to induce the disease phenotype. Physiologically, β-adrenergic 

stimulation constitutes a major component of the “fight-or-flight response” which 

allows for a rapid increase in heart rate and contractility to fulfil augmented demand 

for blood supply in circumstances of acute stress. Activation of β-adrenergic 

receptors on cardiac myocytes stimulates the production of cAMP which is an 

activator of PKA. PKA phosphorylates numerous substrates involved in EC coupling 

including DHPR, RyR2 and phospholamban. These modifications have positive 

inotropic and chronotropic effect on the heart muscle (Betzenhauser and Marks 

2010).  

It was proposed that phosphorylation of RyR2 by PKA at a specific residue (S2808) 

causes dissociation of FKBP12.6 from the channel complex which results in an 

increased sensitivity for cytosolic Ca
2+

-dependent activation (Marx et al. 2000; Meli 

et al. 2011) (see Section 1.5.6). This physiological mechanism underlying 

cardiomyocyte response following stress and exercise challenge was proposed to be 

dysfunctional in the presence of CPVT mutations.  The authors showed that mutant 

RyR2 channels exhibit reduced affinity for FKBP12.6 and are significantly more 

sensitive to PKA-mediated activation (Wehrens et al. 2003). This hypothesis was 

further extended to explain RyR2 dysfunction in heart failure, where chronic β-

adrenergic stimulation was proposed to lead to channel hyper-phosphorylation and 

subsequent depletion of FKBP12.6 (Marx et al. 2000; Yano et al. 2003; Oda et al. 

2005). The central role of FKBP12.6 in channel dysfunction was reinforced by 

CPVT-like symptoms observed in FKBP12.6 knock-out mice (Wehrens et al. 2003). 

However, other groups failed to observe exercise-induced arrhythmia in the 

FKBP12.6 null mice and were unable to reproduce the majority of previous findings 

supporting the above hypothesis (Xiao et al. 2007). Notably, no difference in 

FKBP12.6 binding was reported between wild type RyR2 and RyR2 carrying 

arrhythmia-associated mutations (Liu et al. 2006; Zissimopoulos et al. 2009). George 



52 

 

et al. corroborated earlier findings showing reduced interaction between FKBP12.6 

and RyR2 following β-adrenergic stimulation, however this effect was 

indistinguishable between mutant and wild type channels (George et al. 2003). 

Furthermore, the notion that  PKA-mediated phosphorylation of RyR2 at a single 

residue (S2808) constitutes a critical component of cardiomyocyte regulation by the 

sympathetic nervous system was questioned since mutation of this residue did not 

change the contractile response to cAMP-mobilising compounds (MacDonnell et al. 

2008). In agreement with the above, Xiao et al. reported that the phosphorylation 

level of S2808 does not substantially increase following β-adrenergic stimulation 

(Xiao et al. 2006). Furthermore, Sedej and colleagues showed that arrhythmogenic 

events in mouse cardiomyocytes with a human CPVT mutation can be effectively 

triggered by calcium overload in the absence of β-adrenergic stimulation suggesting a 

mechanism independent of RyR2 phosphorylation (Sedej et al. 2010). 

An alternative mechanism by which adrenergic stimulation unmasks channel 

dysfunction in CPVT patients was proposed by Jiang and colleagues (Jiang et al. 

2004; Jiang et al. 2005). According to this model, arrhythmia-associated mutations 

increase RyR2 sensitivity to luminal calcium. One of the downstream targets of 

sympathetic signalling is phospholamban, which inhibits SR Ca
2+

 ATPase (SERCA) 

pump. PKA-mediated phosphorylation of phospholamban relieves its inhibition on 

SERCA and thus promotes calcium uptake. The rise in the Ca
2+

 SR content ultimately 

allows for the increase in the strength and frequency of cardiac muscle contraction. 

According to this hypothesis, in the presence of arrhythmia-associated mutations, the 

RyR2 threshold for activation by luminal calcium is reduced. This leads to an 

increased propensity of the channel to open in circumstances of high SR Ca
2+

 load 

such as stress and exercise. This depolarisation independent mechanism of calcium 

discharge has been referred to as store-overload-induced calcium release (SOICR).  In 

support of this hypothesis, the authors showed that in single channel recordings, the 

significant difference in channel activation between wild type and mutant RyR2 can 

be observed upon changes in luminal but not cytosolic calcium levels (Jiang et al. 

2005). Notably, mutations in the major SR calcium buffering protein (CSQ2), which 

lead to an identical arrhythmogenic phenotype, were shown to significantly lower its 

binding capacity for Ca
2+ 

(Kim et al. 2007). Those findings strongly support the role 

of luminal calcium in the pathogenesis of CPVT in agreement with SOICR being a 
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common mechanism of channel dysfunction in arrhythmia linked to CSQ2 and RyR2 

mutations. 

Notably, some groups reported that mutant channels are not only hypersensitive to 

calcium activation but they also possess an impaired sensitivity to calcium and/or 

magnesium-dependent inactivation (Lehnart et al. 2004; Thomas et al. 2005). 

Furthermore, Tang et al. suggested that the reduction in the sensitivity to calcium-

mediated inhibition is a common defect in RyR2 mutations associated with ARVD2 

and dilated cardiomyopathy (Tang et al. 2012). According to the authors, a decrease 

in channel inhibition delays termination of SR Ca
2+ 

release and consequently leads to 

the increase in the cytoplasmic Ca
2+

 transient. Abnormal calcium transients are 

currently recognised as an important factor triggering cardiac remodelling thus 

providing possible explanation for the structural changes occurring in hearts of some 

patients positive for RyR2 mutations. 

The hypotheses presented above propose different mechanisms by which abnormal 

calcium release is triggered by sympathetic stimulation; however they do not provide 

an explanation to how RyR2 mutations located in different parts of the protein lead to 

an almost identical phenotype. Because RyRs constitute one of the biggest channels 

with the majority of protein located in the cytoplasm at a considerable distance from 

the channel pore, it is reasonable to assume that the receptor must be regulated by 

long-distance interactions between discrete structural/functional domains. Most of the 

RyR modulators are believed to bind to the cytoplasmic portion of the protein 

(Sharma et al. 2006; Cornea et al. 2009) therefore an allosteric regulation within the 

receptor would enable it to promptly alter its gating properties in response to changes 

occurring at distant cytoplasmic sites. In support of this view, Samso and colleagues 

reported that multiple, large conformational changes in the receptor structure occur 

during channel opening (Samso et al. 2009). Moreover, the structural rearrangement 

of cytoplasmic domains is tightly coupled to the structural changes in the ion gate 

further supporting the notion of long-range allosteric pathways being in control of 

channel gating. Ikemoto and colleagues proposed that arrhythmia-associated 

mutations interfere with this process (Yamamoto et al. 2000; Uchinoumi et al. 2010). 

In their hypothesis, an aberrant interaction between critical domains destabilises the 

closed state of the channel rendering it more sensitive to stimuli. These stimuli could 

be PKA-mediated phosphorylation of RyR2 triggering dissociation of FKBP12.6 
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or/and increased SOICR. The common phenotype of mutations located in different 

hot spots is determined by the fact that N-terminal, central and C-terminal hot spots 

constitute critical interacting domains involved in channel gating control (Yamamoto 

and Ikemoto 2002a; George et al. 2004; Hamada et al. 2007; Yamamoto et al. 2008). 

A detailed description of current knowledge regarding domain-domain interactions 

and their role in the control of RyR activity will be covered in Section 1.7. 

1.6.2.2 Existing therapies 

Current management of arrhythmia originating from RyR2 mutations involves the use 

of β-blockers combined with exercise restriction (Leenhardt et al. 2012). However, 

the efficacy in preventing arrhythmic episodes is highly variable with some patients 

remaining at very high risk of SCD (Hayashi et al. 2009; Haugaa et al. 2010; Sy et al. 

2011). Patients who do not respond to standard β-blocker therapy are recommended 

to receive implantable cardioverter-defibrillator (ICD); however given the young age 

of patients, the use of defibrillator in disease management remains a challenging 

option. It is clear, that the available therapy for CPVT treatment has substantial 

limitations. Current advances in the understanding of channel function have provided 

some guidance in the development and design of novel therapies. A combination of in 

vitro data and animal studies led to some encouraging results which suggest the 

efficacy of drugs other than β-blockers.  

The efficacy of flecainide in preventing arrhythmia associated with mutations in CSQ 

and RyR2 has been reported in animal models (Watanabe et al. 2009; Liu et al. 

2011a). Notably, the drug was also effective in two patients carrying RyR2 and CSQ2 

mutations who were not responsive to a standard β-blocker therapy (Watanabe et al. 

2009). Flecainide is a sodium channel blocker, however some reports suggested its 

direct action on RyR2 (Hilliard et al. 2010). Liu and colleagues proposed that anti-

arrhythmic effects of flecainide are mediated by preventing sodium entry in response 

to RyR2-mediated calcium leak (Liu et al. 2011a). It is currently however not clear 

whether flecainide acts through sodium channels, RyR channels or both (Watanabe et 

al. 2011; Sikkel et al. 2013a, b).  
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JTV519 (K201) was reported to have a cardio-protective effect in animal models of 

heart failure through a direct action on RyR2 (Kohno et al. 2003). Its effect was 

proposed to involve stabilisation of RyR2/FKBP12.6 complex (Yano et al. 2003). 

Subsequently, JTV519 was shown to prevent SOICR in HEK293 cells expressing one 

of the arrhythmia-associated RyR2 mutants; however its anti-arrhythmic properties 

were proposed to be independent of FKBP12.6 (Hunt et al. 2007). The identification 

of the JTV519-binding site within the cytoplasmic portion of the RyR2 (residues 

2114-2149) brought about an alternative model explaining the cardioprotective 

effects of this drug (Yamamoto et al. 2008). According to this model, JTV519 

promotes stabilisation of inter-domain interactions within cytoplasmic part of the 

RyR channel. In vitro, the drug was shown to reduce diastolic leak and improve 

diastolic function in human cardiomyocytes in conditions of acute calcium overload 

(Sacherer et al. 2012) and to prevent the development of hypertrophy in rat neonatal 

cardiomyocytes (Hamada et al. 2009). In animal models, JTV519 was shown to block 

left ventricle (LV) remodelling and to preserve LV diastolic and systolic function 

thus preventing the development of heart failure (Yano et al. 2003). The fact that 

RyR2 dysfunction in heart failure and CPVT is believed to share the same 

mechanism, i.e. increased sensitivity to activation producing diastolic calcium leak, 

JTV519 was expected to produce a therapeutic effect in the scenario of arrhythmia-

linked mutations. Accordingly, the drug prevented arrhythmic episodes in the 

R2474S knock-in mouse model and was also protective against the destabilising 

effects of an N-terminal domain peptide (Suetomi et al. 2011). However, in the 

knock-in mouse model carrying one of the C-terminal arrhythmia-associated 

mutations (R4496C), JTV519 failed to rescue the disease phenotype either in animals 

or in isolated myocytes (Liu et al. 2006). Moreover, JTV519 did not reduce Ca
2+

 

spark frequency induced by a C-terminal domain peptide and had no effect in the 

S2246L knock-in mouse model (Tateishi et al. 2009; Suetomi et al. 2011). Those 

findings clearly indicate that the drug’s cardio-protective effect is directly dependent 

on the RyR2 mutation site and therefore possess a limited potential in clinical setting. 

Alternatively, JTV519 may have limited efficacy and therefore might be unable to 

prevent arrhythmic events in mutations associated with more severe phenotype. 

Indeed, both mutations, which were resistant to JTV519 treatment were shown to 

result in serious defects in calcium handling, i.e. R4497C patients and knock-in 

animal models were reported to respond very poorly to the standard β-blocker therapy 
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(Cerrone et al. 2005), while the presence of S2246L mutation was shown to  lead to 

unusually high Ca
2+

 spark frequency and low SR content in the absence of 

sympathetic stimulation (Suetomi et al. 2011). 

A number of recent communications reported a protective effect of dantrolene in 

heart failure and CPVT. This is somewhat unexpected in the context of earlier reports 

showing no appreciable effect on RyR2 function (Zhao et al. 2001).  In vitro, 

dantrolene was shown to prevent hypertrophy in neonatal cardiomyocytes (Hamada et 

al. 2009) and eliminate DAD events both in failing cardiomyocytes (Kobayashi et al. 

2009) and in patient-specific stem cell model of CPVT (Jung et al. 2012).  Dantrolene 

has also been proven to prevent arrhythmic episodes in a number of CPVT animal 

models (Kobayashi et al. 2010; Suetomi et al. 2011). More importantly, dantrolene 

was shown to prevent arrhythmogenic calcium release without compromising systolic 

function in heart failure (Maxwell et al. 2012). This finding is of particular 

importance in respect to the potential use of dantrolene in the clinical setting where 

CPVT susceptible patients would most likely have to be on a sustained dantrolene 

treatment. Dantrolene was shown to suppress RyR1-mediated depolarisation-induced 

calcium release from SR (Szentesi et al. 2001) and if a similar effect was to take place 

in case of RyR2, the drug would be expected to result in a substantial compromise of 

heart contractility, a particularly deleterious effect in patients with HF and ARVD2.  

The preservation of systolic function by dantrolene and its efficacy in preventing 

arrhythmic events upon β-adrenergic stimulation strongly supports an earlier notion 

suggesting a conformation sensitive mechanism of dantrolene binding to the RyR2. In 

this report, the authors showed that RyR2 has an intrinsic ability to bind dantrolene in 

vitro, however in the native channel this property is lost (Paul-Pletzer et al. 2005). It 

is plausible that dantrolene binds only to the dysfunctional channel, in which a 

conformation change has been triggered by arrhythmia-associated mutations. 

Kobayashi and colleagues proposed that the binding of dantrolene to residues 601-

620 directly corrects the defective interaction between N-terminal and central 

domains, thus stabilising the channel in its closed conformation (Kobayashi et al. 

2009). However, in light of new findings showing that in the RyR 3D structure, the 

dantrolene binding site is located at a considerable distance away from the central 

domain, the mechanism was refined and proposed to involve an allosteric effect 

involving a number of additional domain-domain contacts (Wang et al. 2011).  
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An increasing body of evidence indicates that manipulation of the CaMKII pathway 

may represent another therapeutic approach for the suppression of Ca
2+

-mediated 

arrhythmias. According to Curran et al. the SR calcium leak triggered by β-

adrenergic stimulation is directly dependent on the phosphorylation of RyR2 by 

CaMKII and remains independent of the PKA activation (Curran et al. 2007). 

Furthermore, Liu et al. showed that CaMKII inhibition prevented arrhythmia in a 

mouse model of CPVT which was accompanied by a decrease in the phosphorylation 

of RyR2 at S2814 (Liu et al. 2011b). In agreement with this study, overexpression of 

CaMKII in a mouse knock-in model of CPVT, resulted in significantly higher 

incidence of ventricular arrhythmia (Dybkova et al. 2011).  

1.7 RyR – an allosteric protein 

Ryanodine receptors constitute one of the largest ion channels. Only a small portion 

of the protein (~10%) forms an ion pore while the remaining part that faces the 

cytoplasm is believed to serve as a scaffold responsible for interaction with 

modulatory agents. The considerable size of the protein (~ 5000 amino acids) and 

substantial distance between channel pore and regulatory binding sites calls for the 

mechanism enabling fast signal transduction between cytoplasmic and membrane-

embedded parts of the protein. The existence of dynamic cross-talk between 

structural/functional domains within RyR has been proposed to modulate channel 

activity. Until now, a number of domains critically involved in channel function 

together with their putative interacting partners have been identified (Figure 1.6).  
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Figure 1.6 Graphical illustration of domain-domain interactions; regions in light brown 
correspond to neighbouring subunits in a homotetrameric complex, for detailed description 
see text in Section 1.7 
 
 
 

1.7.1 N-terminal – central domain interactions 

Initially, the concept of the interaction between N-terminal and central domains was 

purely theoretical and emerged as a consequence of the fact that MH/CCD mutations 

were shown to cluster in those two regions and, irrespective of their location, led to 

the same phenotype. This hypothesis was primarily tested in experiments, where the 

effect of short synthetic peptides corresponding to those critical domains was 

evaluated on channel function in [
3
H]ryanodine binding assays (El-Hayek et al. 1999; 

Yamamoto et al. 2000; Yamamoto and Ikemoto 2002a). Those experiments showed 

that the addition of central domain peptides (residues 2474-2495 and 2442-2477 for 

RyR2 and RyR1 respectively) or N-terminal peptides (residues 601-620 and 590-609 

for RyR2 and RyR1 respectively) activates the channel at low (diastolic) 
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concentrations of calcium. As a result, a more detailed hypothesis was proposed, in 

which a close contact between N-terminal and central domains was claimed to 

stabilize the closed state of the channel. This concept was further supported by 

subsequent experiments, in which a conformation-sensitive probe incorporated into a 

putative domain contact site, showed that peptide-induced channel activation 

coincides with an increase in the domain-domain distance (Yamamoto and Ikemoto 

2002b; Oda et al. 2005). In agreement with the above hypothesis, antibodies raised 

against the central and N-terminal peptides produced an identical effect, i.e. activated 

the channel at low calcium and increased the domain-domain distance (Kobayashi et 

al. 2004).  

Dynamic changes in the interaction between N-terminal and central domains were 

proposed to underlie the physiological activation process of EC-coupling (Yamamoto 

and Ikemoto 2002b; Bannister and Ikemoto 2006). The evidence that physiological 

regulation of RyR changes the interaction between proposed domain interfaces has 

led to the concept that channel dysfunction in disease might originate from defective 

domain-domain interactions. In support of this hypothesis, the presence of domain 

peptides elicited the phenotype observed in channels carrying disease-associated 

mutations (Lamb et al. 2001; Shtifman et al. 2002; Yang et al. 2006). More 

importantly, the introduction of MH/CCD-associated mutations into those peptides 

resulted in a substantial reduction of their activating properties (Yamamoto et al. 

2000; Yamamoto and Ikemoto 2002a; Bannister et al. 2007). In agreement with those 

studies, mutated channels failed to undergo further activation in the presence of 

domain peptides, an observation indicative of a pre-existing defect at the domain 

contact site (Murayama et al. 2007) The increase in the N-terminal – central domain 

distance upon the introduction of disease-associated mutations was confirmed later in 

experiments monitoring changes in the spectroscopic properties of conformation-

sensitive probes (Uchinoumi et al. 2010; Suetomi et al. 2011). Notably, the extent of 

domain “unzipping” in RyR2 was shown to be variable and depend on the mutation 

site, i.e. the R2474S mutation was reported to induce partial domain unzipping which 

became further aggravated in the presence of β-adrenergic agonists, while the S2246L 

mutation was shown to result in a fully unzipped state irrespective of β-adrenergic 

stimulation. In support of the critical involvement of N-terminal – central domain 

interaction in channel dysfunction, the ability of dantrolene to correct the defective 



60 

 

domain - domain association was shown to underlie its therapeutic activity 

(Kobayashi et al. 2005; Suetomi et al. 2011). An analogous mechanism of channel 

dysfunction was proposed to be involved in the pathogenesis of heart failure (Oda et 

al. 2005; Kobayashi et al. 2009).  The increased leak through RyR2 has been 

suggested to result from the defective N-terminal – central domain interaction caused 

by changes in the RyR2 post-translational modifications such as oxidation and hyper-

phosphorylation (Oda et al. 2005; Yano et al. 2005). 

The site-specific labelling of RyR1 using a central domain peptide as a carrier 

identified its binding partner somewhere within the first 600 amino acids (Kobayashi 

et al. 2005).  A subsequent FRET-based study proposed that N-terminal – central 

domain interaction involves regions located across two neighbouring subunits (Liu et 

al. 2010). An additional inter-subunit domain-domain interaction was proposed to 

involve two structurally homologous domains containing a tandem repeat of RyR 

motifs located in the N-terminal and central portion of RyR (Zhu et al. 2013) 

The N-terminal - central domain interface was shown to undergo dynamic changes in 

the presence of the central fragment of the DHPR II-III loop (peptide C) (Bannister 

and Ikemoto 2006). This interaction was proposed to facilitate domain unzipping at 

sub-activating calcium range underlying a mechanism of RyR1 activation in the 

process of EC-coupling. In this study, the peptide C binding site was identified within 

residues 450-1500. Subsequently, the DHPR II-III loop was shown to bind in vitro to 

the second RyR1 SPRY domain (residues 1085-1208) (Cui et al. 2009). Interestingly, 

the determinants mediating II-III loop and SPRY domain interaction were shown to 

be located in the N-terminal portion of the II-III loop (peptide A) which does not 

overlap with the region believed to be critical for EC-coupling, i.e. the central portion 

of the II-III loop (peptide C) (Nakai et al. 1998b). Consequently, the SPRY domain 

was proposed to be nonessential for EC coupling but to influence channel opening by 

means of an inter-domain interaction with residues located in the central portion of 

the protein and containing the developmentally regulated splice region I (ASI) 

(residues 3471-3500) (Tae et al. 2011).  Alternative splicing of this region gives rise 

to two protein variants characterised by the presence or absence of residues 3481-

3485 (ASI+ and ASI- respectively); the latter being the juvenile form which has a 

decreased activity (Kimura et al. 2005). Kimura and colleagues proposed that the 

interaction between the domain encompassing the ASI region and its binding partner 
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stabilises the closed conformation of the channel and that the degree of RyR 

inhibition is modulated by the presence or absence of the ASI residues (Kimura et al. 

2007; Kimura et al. 2009). 

The N-terminal – central domain interaction has been recently shown to be 

allosterically coupled to another central region – the calmodulin-binding domain 

(CaMBD; residues 3583-3603, RyR2) (Oda et al. 2013). In this study, the weakening 

of N-terminal – central domain interaction significantly reduced CaM-binding, while 

the presence of calmodulin stabilised the N-terminal – central domain contact. In 

agreement with this study, reduced binding of CaM to RyR2 has been reported to 

occur in pathologies such as heart failure and CPVT, where a destabilisation of the 

putative domain interaction was shown (Ono et al. 2010; Xu et al. 2010; Hino et al. 

2012). Xu and colleagues reported that CaM binding becomes significantly decreased 

upon β-adrenergic stimulation only in cardiomyocytes expressing RyR2 with a 

CPVT-associated mutation. Notably, dantrolene, which had been earlier shown to 

correct the defective inter-domain interactions, restored CaM binding. Notably, the 

addition of high concentrations of calmodulin was also able to partially attenuate 

disease phenotype however, contrary to dantrolene, calmodulin did not reverse 

domain “unzipping” (Ono et al. 2010). 

1.7.2 Interactions within central domains 

The interaction between two regions located within the central part of RyR2 was 

determined in experiments aiming to identify the binding site of JTV519 (Yamamoto 

et al. 2008). The drug was shown to specifically bind to a short fragment 

encompassing residues 2114-2149. The JTV519-binding site was in turn proposed to 

interact with a long stretch of residues located downstream (2234-2750).  The 

interaction between those newly identified domains was shown to be defective in 

failing cardiomyocytes. Moreover, changes at the interface of those two central 

domains were shown to be directly coupled to the previously described N-terminal – 

central domain interaction in a reciprocal manner, i.e. disruption of the latter induced 

tight association in the former. The disruption of tight association within central 

domains by JTV519 was proposed to restore the defective contact between N-
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terminal and central domain in failing hearts. A similar scenario was suggested to 

explain the therapeutic efficacy of JTV519 in some of the CPVT-associated RyR2 

mutants (Suetomi et al. 2011). Notably, the drug-binding fragment corresponds to the 

domain peptide previously demonstrated to suppress activating effects of the central 

domain peptide routinely used to disturb N-terminal – central domain interface in 

RyR1 (Yamamoto et al. 2000). 

1.7.3 Central and C-terminal domain interface 

The CaMBD (residues 3614-3643) was proposed to modulate RyR1 activity by two 

independent mechanisms: by binding calmodulin and by interaction with another 

putative RyR1 regulatory domain (Rodney et al. 2005). Zhu et al. showed that 

CaMBD contains two functional domains; the N-terminal portion acting as an 

activator and the C-terminal part which possess inhibitory properties (Zhu et al. 

2004). The interaction of these two domains with their putative binding partners in 

RyR1 was proposed to be modulated by CaM in such a manner that binding of 

apoCaM to the C-terminal portion of CaMBD results in channel activation by means 

of masking the inhibitory domain and allowing for protein-protein interaction 

between the activating domain and its binding partner. On the other hand, binding of 

calcium to CaM displaces the Ca
2+

/CaM complex towards the N-terminal portion of 

CaMBD, which in turn exposes the inhibitory domain thus changing CaM from an 

activator to an inhibitor of RyR1.  

The putative binding partner for CaMBD was identified by Xiong and colleagues in 

the C-terminal portion of RyR1 (residues 4064-4210) (Xiong et al. 2006). This 

fragment was proposed to adopt calmodulin-like conformation and showed to possess 

an intrinsic ability to bind Ca
2+

 (Xiong et al. 2006). The interaction between those 

two domains was proposed to underlie a mechanism of calcium-dependent channel 

activation. In the proposed scenario, the CaMBD induces a conformation change in 

the central portion of the calmodulin-like domain (CaMLD) which activates the 

channel. Thus, it is not a tight interaction between these domains per se that 

accompany channel activation but the transmission of conformation signal between 

the two (Gangopadhyay and Ikemoto 2008). This hypothesis is supported by the fact 
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that distinct antibodies raised against either the calmodulin-binding domain or the 

calmodulin-like domain inhibit the channel. Earlier studies showed that synthetic 

peptides corresponding to each of these putative domains exert identical but very 

complex action on RyR1 function, i.e. moderately activate the channel at low calcium 

concentrations, prevent full activation and relieve channel inhibition at higher 

calcium levels (Xiong et al. 2006). Tateishi et al. on the other hand showed that in 

RyR2, a peptide corresponding to CaMLD potentiates channel response to activation 

(Tateishi et al. 2009).  An earlier report proposed that the calmodulin-like domain is 

composed of two functional regions; one being an activating site and the other having 

an inhibitory role (Gangopadhyay and Ikemoto 2006).  

CaMLD lies within a long stretch of residues assigned as a C-terminal mutation “hot 

spot”.  The potential role of this region in the mutation-associated RyR1 dysfunction 

was suggested by Hamada and colleagues who showed that the activating properties 

of the CaMLD synthetic peptide become substantially reduced in the presence of 

MH-linked mutations (Hamada et al. 2007). The defective interaction between CaM-

binding domain and CaM-like domain has been subsequently suggested to underlie 

channel dysfunction in heart failure and arrhythmia-linked mutations (Ono et al. 

2010; Xu et al. 2010). In the model proposed by Hino and colleagues, the reduced 

interaction between RyR2 N-terminal and central domains occurring in heart failure 

or upon β-adrenergic stimulation in the presence of arrhythmia-linked mutations leads 

to an increased interaction between CaMBD and CaMLD which causes aberrant 

channel activation and concomitantly reduces the binding of calmodulin (Hino et al. 

2012). In agreement with this model, the addition of an antibody against CaMBD or 

the expression of the mutant isoform of CaM with increased RyR2-binding affinity, 

restored normal calcium handling (Gangopadhyay and Ikemoto 2011; Hino et al. 

2012). Those observations supported the proposed mechanism, in which both proteins 

would act as “molecular wedges” thus preventing the aberrant interaction between 

those domains. 
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1.7.4 Interaction within C-terminal domains  

An effective transduction of cytoplasmic signals into the channel pore underlies the 

ability of the channel to promptly respond to the binding of channel regulators and 

posttranslational modifications. George and colleagues performed experiments, in 

which they expressed a number of overlapping cytoplasmic fragments in combination 

with the predicted pore-forming segments and assessed their ability to interact and 

form functional receptors (George et al. 2004). Based on this study, a region located 

between residues 3722 and 4610 (designated as “I domain”) was suggested to be 

critically involved in channel regulation. The authors proposed that a number of 

discrete regions located in this domain dynamically interact with one another within 

one subunit in order to functionally integrate cytoplasmic modulatory events with the 

transmembrane assembly. Tateishi and colleagues showed that the I-domain is 

allosterically coupled to the  N-terminal/central domain interface in a manner that 

disruption of the latter triggers changes in the former (Tateishi et al. 2009). In this 

functional interaction, N-terminal – central domain cross-talk seems to play a 

superior role, as the changes in the I-domain do not coincide with alterations at the 

other domain interface. Notably, channel dysfunction resulting from CPVT mutations 

located within this domain or from the addition of the corresponding I-domain 

peptide, displays some unique properties such as resistance to JTV519 (Liu et al. 

2006; Tateishi et al. 2009). Moreover, George and colleagues proposed that the I-

domain mutations substantially differ from central domain mutations in respect to the 

conformational changes  that occur following channel activation (George et al. 2006). 

The I–domain contains the region with CaM-like properties, which was proposed to 

constitute an interacting partner for the CaMBD located in the central portion of RyR 

(see Section 1.7.3). Further studies revealed that this region might also be involved in 

an interaction with other determinants located in the transmembrane region. Hamada 

and colleagues showed that a synthetic peptide corresponding to the M7b-M8 

cytoplasmic loop of RyR1 (Figure 1.5, Section 1.3.3) binds to the I-domain fragment 

that contains the CaMLD (Hamada et al. 2007). Interestingly, this peptide elicited 

complex response at sub-threshold calcium concentrations and activated the channel 

at above-threshold calcium levels.  The authors proposed that an interaction between 

M7b-M8 loop and the CaMLD has an overall inhibitory effect on channel function; 
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however under specific conditions some activating determinants located in the 

CaMLD become unmasked. This hypothesis is in agreement with the earlier 

suggestion that the CaMLD contains both functional determinants (Gangopadhyay 

and Ikemoto 2006). The role of the M7b-M8 loop in channel gating was further 

investigated by Murayama et al. who showed that the N-terminal part of this loop 

forms an α-helix (Murayama et al. 2011). Mutational analysis revealed that the 

formation of this secondary structure is essential for the control of channel gating. 

According to a RyR1 structural model generated using computational and 

electrophysiological methods, the N-terminal part of the loop referred to in the 

Murayama studies, is in fact located in the preceding transmembrane domain; 

however residues located immediately downstream form an α helix (Ramachandran et 

al. 2013). In this model, the M7b-M8 linker is critically involved in channel gating 

through dynamic interactions with the C-terminal region of transmembrane domain 

M10 within the same subunit and domain M8 from an adjacent subunit. Other studies 

proposed that the M7b-M8 linker interacts with the C-terminal tail governing 

tetramerisation of the channel (Lee and Allen 2007).  Interestingly, the analogous 

cytoplasmic loop in the IP3R was suggested to directly interact with the extreme N-

terminus from a neighbouring subunit enabling the transmission of the cytoplasmic 

activation signal, i.e. IP3 binding, to the channel pore (Boehning and Joseph 2000; 

Schug and Joseph 2006).  

The assembly of functional RyR complexes is believed to involve the extreme C-

terminus. Gao and colleagues reported that the deletion of the final 15 amino acids 

gives rise to inactive channels (Gao et al. 1997). In support of this finding, Stewart et 

al. showed that the C-terminal tail of RyR2 (terminal 100 amino acids) is capable of 

self-tetramerisation and this ability is lost upon deletion of the last 15 residues 

(Stewart et al. 2003). Gu and colleagues showed that the deletion of last 15 C-

terminal amino acids from the full-length RyR1 abolishes ryanodine binding and 

results in an inactive channel implying that the formation of a tetrameric complex is 

impaired (Gao et al. 1997). 
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1.7.5 Interaction between RyR tetrameric complexes 

The first notion that multiple RyR tetramers might be physically linked to each other 

came with the analysis of electron microscopy pictures of junctional SR showing that 

RyRs form ordered chequerboard-like arrays, in which receptors associate by a partial 

overlap with their neighbours (Saito et al. 1988; Franzini-Armstrong 1999). Those 

arrays contained a variable number of channel units depending on the type of muscle 

investigated and together with DHPRs were proposed to form functional calcium 

release units (Franzini-Armstrong et al. 1998, 1999). A physical association between 

RyR tetramers was also observed during sucrose density gradient centrifugation 

suggesting an intrinsic ability of both cardiac and skeletal RyR to mediate this 

process (Marx et al. 1998; Marx et al. 2001b). In support of those findings, Yin and 

Lai showed that isolated purified RyRs associate into a large two-dimensional lattice 

(Yin and Lai 2000). These observations further strengthen the notion that physical 

interaction between tetrameric complexes underlies an important physiological 

mechanism regulating the performance of calcium release units. The functional 

coupling between ryanodine receptors was demonstrated by Marx and colleagues, 

who observed simultaneous gating of channels reconstituted into planar bilayers in 

the presence of FKBP12/12.6 (Marx et al. 1998; Marx et al. 2001b). The direct 

physical contact between RyRs was later confirmed by detailed analysis of crystalline 

arrays at 20Å resolution (Yin et al. 2005a; Yin et al. 2005b). Projection of cryo-EM-

based RyR maps on a single RyR within an array suggested that the inter-tetramer 

molecular association is mediated by a region located at the edges of the cytoplasmic 

clamp structure and earlier proposed to represent the three dimensional localisation of 

the D2 region (Liu et al. 2004; Yin et al. 2005a). Additional determinants located 

between residues 2540-3207 involved in this interaction were proposed by Blayney 

and colleagues (Blayney et al. 2004). In principle, a direct conformational coupling 

between RyR tetramers would provide a much faster and efficient Ca
2+ 

release from 

the SR. This mechanism would be highly advantageous in a very fast process such as 

EC-coupling. In support of this hypothesis, the physical and functional interaction 

between RyRs appears to be highly dependent on physiologically relevant regulators 

of channel function such as Ca
2+

, Mg
2+

 and ATP (Porta et al. 2012).  
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An allosteric interaction between RyR tetramers within an array adds another level of 

control ensuring an effective and concerted response to external stimuli. Since 

coupled RyRs exhibit substantial differences in gating behaviour compared to 

individual channels (Porta et al. 2012), this regulatory mechanism  calls for caution in 

the interpretation of data obtained  from single channels recordings. Notably, 

differences in the tetramer-tetramer interaction might in fact underlie some of the 

alterations in RyR function observed in pathological conditions such as heart failure 

and RyR-associated mutations. In agreement with this notion, Liang and colleagues 

reported that purified RyR1 isolated from MH-susceptible porcine skeletal muscles 

show a significantly lower propensity to oligomerise (Liang et al. 2009). 
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1.8 Hypothesis and Aims 

The activity of ryanodine receptors is allosterically controlled by a dynamic cross-talk 

between structural/functional domains. In recent years a great number of such 

domains has been identified and their role in the regulation of channel function has 

been thoroughly investigated (Section 1.7). Moreover, defective domain-domain 

interactions have been proposed to underlie channel dysfunction observed in genetic 

and acquired RyR-associated disorders (Section 1.6). In spite of extensive research, 

our understanding of the receptor structure-function relationship remains very limited 

and awaits further investigation. 

The central hypothesis of this thesis is based on the identification of a novel inter-

subunit domain interaction involving human RyR2 N-terminus (the BT4L fragment, 

residues 1-906). Recombinantly expressed RyR2 N-terminus was shown to 

tetramerise with the concomitant formation of disulphide bonds. It has been 

hypothesised that N-terminus interaction might be involved in the regulation of 

channel activity and that defective N-terminus inter-subunit cross-talk might underlie 

the mechanism of channel dysfunction observed in arrhythmia-susceptible individuals 

carrying CPVT/ARVD2 mutations. Thus, the principal aim of this study was to 

characterise this novel interaction both biochemically and functionally.  

The primary goal was to identify determinants mediating tetramerisation of the RyR2 

N-terminus. The rationale was to design a number of BT4L truncated fragments and 

internal deletion mutants and to investigate their propensity for tetramerisation. As it 

was hypothesised that disulphide bond formation takes place across subunits, it was 

assumed that mutation of putative cysteines would not only expose the identity of 

residues involved in disulphide bridges but also reveal important inter-subunit contact 

sites.  

Functional assays were employed to dissect the role of N-terminus self-association in 

the modulation of channel activity. It was speculated that if the above interaction was 

involved in channel regulation, disruption of endogenous N-terminus interaction 

within full-length RyR2, should trigger changes in its activation profile. Furthermore, 

the defective N-terminus self-association was hypothesized to underlie the 

mechanism of channel dysfunction observed in the presence of arrhythmia-associated 
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mutations.  In this respect the objective was two-fold; first to evaluate the effect of 

such mutations on RyR2 N-terminus tetramerisation properties and channel function 

and second, to assess whether dantrolene, a drug targeting RyR1 and used to treat 

MH symptoms, could rescue the disease phenotype.   
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Chapter 2 

 

Materials and Methods 
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2 Materials and Methods 

2.1 Materials 

All chemicals and reagents were of analytical grade and were obtained from Fisher 

Scientific or Sigma-Aldrich unless stated otherwise. All solutions were prepared in 

the laboratory unless an alternative source is stated.  All equipment for DNA 

electrophoresis, DNA visualisation and image acquisition, protein electrophoresis and 

blotting was obtained from Bio-Rad unless stated otherwise. Antibodies were 

purchased from Santa Cruz Biotechnology unless indicated otherwise, the full list of 

antibodies is provided in Table 2.1.  

2.1.1 Molecular biology 

TAE, 50x: 2 M Tris, 2 M acetic acid, 50 mM EDTA 

EDTA, 0.5 M: prepared from 0.5 M Na2EDTA, pH 8.0  

DNA loading buffer, 5x: 25% v/v glycerol, 0.25% w/v orange G 

DNA molecular weight markers: 2-Log DNA Ladder obtained from New England 

BioLabs (NEB) and 1kb DNA Ladder Plus obtained from Invitrogen 

Agarose: PeqGold Universal-Agarose obtained from Peqlab   

Ethidium bromide, 1% (w/v) 

Plasmid purification kits: Qiagen Plasmid Maxi Kit obtained from Qiagen and 

Wizard Plus SV Minipreps DNA Purification System obtained from Promega 

PCR purification kit: QIAquick PCR Purification Kit and DyeEx Kit obtained from 

Qiagen 

Gel extraction kit: QIAquick Gel Extraction Kit obtained from Qiagen 
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DNA sequencing kit: BigDye Terminator v3.1 Cycle Sequencing Kit obtained from 

Life Technologies.  

Restriction endonucleases and ligases: obtained from NEB 

DNA polymerases: Pfu DNA Polymerase and Taq DNA Polymerase obtained from 

Promega 

T7 Gene 6 Exonuclease, 50 U/μl: obtained from Affimetrix 

Mutagenesis kit: QuikChange II XL Site-Directed Mutagenesis Kit obtained from 

Agilent Technologies 

2.1.2  Protein biochemistry 

Tris, 0.5 M, pH 6.8 

Tris, 1.5 M, pH 8.8 

SDS, 10% (w/v) 

Ammonium persulphate, 10% (w/v) 

Protein loading buffer, 5x: 0.06 M Tris, 2% (w/v) SDS, 10% (v/v) glycerol, 5 mM 

EDTA, 0.25% (w/v) bromophenol blue 

Reducing protein loading buffer: as above with 10% β-mercaptoethanol 

Electrophoresis running buffer, 10x: 3% (w/v) Tris, 14.4% (w/v) glycine, 1% (w/v) 

SDS 

Protein molecular weight markers: Kaleidoscope Prestained Standards and Precision 

Plus Protein WesternC Standards obtained from Bio-Rad 

Dye-based protein stain: Imperial Protein Stain based on Coomassie Brilliant Blue R-

250 purchased from Thermo Scientific 

Carbonate transfer buffer, 10x: 0.84% (w/v) NaHCO3, 0.318% (w/v) Na2CO3 
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Wet transfer buffer: 20% (v/v) methanol, 1x carbonate transfer buffer, 0.02% (w/v) 

SDS 

Semi-dry transfer buffer: 48 mM Tris, 39 mM glycine, 0.0375% (w/v) SDS with or 

without 20% (v/v) methanol 

TBS, 10x: 200 mM Tris, 1.37 M NaCl, pH 7.4 

TBS-T: 1x TBS, 0.1%, (v/v) Tween-20  

TBS-T Marvel: 1x TBS, 0.1%, (v/v) Tween-20, 5% (w/v) Marvel  

Glutaraldehyde, 25% (v/v) 

DTT, 2 M 

Homogenisation buffer: 5 mM HEPES, 0.3 M sucrose, pH 7.4 

Immunoprecipitation buffer (IP buffer): 150 mM NaCl, 20 mM Tris, 1% (w/v) 

CHAPS, pH 7.4 

Co-immunoprecipitation buffer (co-IP buffer): 150 mM NaCl, 20m M Tris, 0.5% 

(w/v) CHAPS, pH 7.4 

nProtein A and nProtein G Sepharose 4 Fast Flow beads obtained from GE 

Healthcare Life Science 

Protein G Dynabeads obtained from Life Technologies 

Sodium azide, 5% (w/v) 

Protease inhibitors: Protease Inhibitor Cocktail Tablets obtained from Roche  

Acrylamide: 40% acrylamide and bis-acrylamide solution, 37.5:1 obtained from 

BioRad 

TEMED 

Protein assay kit: Pierce BCA Protein Assay Kit obtained from Thermo Scientific 

ECL reagent: Pierce ECL Western Blotting Substrate obtained from Thermo 

Scientific 
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Glass beads: acid-washed, 425-600 μm (30-40 U.S. sieve) obtained from Sigma-

Aldrich 

2.1.2.1 Sucrose density gradient ultracentrifugation 

Hypo-osmotic homogenisation buffer: 20 mM Tris, 1 mM EDTA, pH 7.4  

CHAPS/PC solution: 10% (w/v) CHAPS, 5% (w/v) PCEGTA, 0.1 M 

NaCl, 5 M 

Tris/HEPES solution: 1 M Tris, 2 M HEPES 

CaCl2, 0.1 M 

Gradient buffer: 300 mM NaCl, 25 mM Tris, 50 mM HEPES, 0.3 mM EGTA, 0.1 

mM CaCl2, 0.3% (w/v) CHAPS, 0.15% PC, 2 mM DTT, pH 7.4 

Sucrose solutions, 5, 25 and 45% (w/w) in gradient buffer 

High salt solubilisation buffer: 1 M NaCl, 0.15 mM CaCl2, 0.1 mM EGTA, 25 mM 

PIPES, 0.6% CHAPS, 0.3% PC, 2 mM DTT, pH 7.4 

2.1.2.2  [3
H]ryanodine binding  

Ryanodine Binding buffer: 1 M KCl, 25 mM PIPES, 1 mM EGTA, 1 mM HEDTA, 1 

mM NTA, pH 7.4  

Caffeine, 100 mM 

CaCl2, 20 mM 

Ryanodine, 1 mM 

[
3
H]ryanodine, 1 μM, obtained from PerkinElmer (95 Ci/mmol) 
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2.1.3 Yeast culture 

All glassware, growth media and other solutions used were sterilised. .Sterile plastic 

was obtained from Greiner Bio-One, Fisher Scientific, spreaders were purchased 

from Microspec. 

YPD medium: 2% (w/v) peptone, 1% (w/v) yeast extract, 2% (w/v) glucose, 2% 

(w/v) agar (for plates only) 

Glucose, 20% (w/v) 

DO supplements, 10x: stock solutions lacking Leucine (DO/-Leu) or Tryptophan 

(DO/-Trp) or both amino acids (DO/-Leu-Trp) 

YNB, 10xSD minimal medium: 1x YNB and 1x DO as appropriate, supplemented 

with 2% (w/v), 2% agar (for plates only) 

DMSO 

TE, 10x: 100 mM Tris, 10 mM EDTA, pH 7.5 

LiAc 10x: 1 M CH3COOLi, pH 7.5  

PEG 3350, 50% (w/v) 

PEG/LiAc: 40% (w/v) PEG 3350, 1x TE, 1x LiAc 

TE/LiAc: 1x TE, 1x LiAc 

Z buffer: 100 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, pH 7.0 

X-Gal stock solution, 2% (w/v): X-Gal in DMF 

Z buffer/X-Gal solution: 0.27% (v/v) β-mercaptoethanol, 0.033% (w/v) X-Gal in Z 

buffer 

Z buffer/β-mercaptoethanol: 0.27% (v/v) β-mercaptoethanol in Z buffer Z 

buffer/ONPG: 0.4% (w/v) OPNG in Z buffer/β-mercaptoethanol, pH 7.0 

Na2CO3, 1 M 
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Yeast Protein Extraction buffer: 20 mM Tris, 150 mM NaCl, 1% Triton X-100, pH 

7.4 

2.1.4 Bacterial culture 

All glassware, growth media and antibiotics used were sterile. Antibiotics and 

bacteria broth powder (LB-Broth Lennox) were obtained from Formedium and 

prepared following manufacturer recommendations. Sterile plastic was obtained from 

Greiner Bio-One, Fisher Scientific, spreaders were purchased from Microspec. 

Glucose, 20% (w/v) 

SOC medium: 2% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.05% (w/v) NaCl, 

0.018% (w/v) KCl, 0.095% (w/v) MgCl2·6H2O, 0.4% glucose 

MgCl2, 1 M 

SB medium: 3.2% (w/v) tryptone, 2% (w/v) yeast extract, 0.5% (w/v) NaCl 

SB-Plus medium: 4% (w/v) glucose, 10 mM MgCl2 in SB medium 

Glycerol 

Ampicillin, 10% (w/v) 

Kanamycin, 3% (w/v) 

2.1.5 Mammalian cell culture 

Sterile plasticware was obtained from Greiner Bio-One, Fisher Scientific, Corning 

and BectonDickinson. Basal cell culture media, media supplements, trypsin and FBS 

were purchased from Gibco. Saline and sterile water were provided by Fresenius 

Kabi. 

L-glutamine, 100x 
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FBS, heat inactivated 

Trypsin-EDTA, 1x: 0.05% trypsin, phenol red 

DMEM basal medium: 0.45% (w/v) glucose, phenol red, sodium pyruvate, sodium 

bicarbonate, L-glutamine 

DMEM complete medium: 10% (v/v) FBS, 1x L-glutamine in DMEM basal medium 

Transfection reagent: Express-In, polymer-based transfection reagent purchased from 

Thermo Scientific 

2.1.6 Oligonucleotides 

Oligonucleotides were obtained from Sigma-Aldrich. For standard PCR, primers 

were purified by desalting, modified oligonucleotides and oligonucleotides used in 

mutagenesis were purified by HPLC. Depending on the application, three different 

working solutions were prepared; 20 μM for standard PCR, 3.5 μM for sequencing 

PCR and 125 ng/μl for mutagenesis. The full list of primers used in this study is 

provided in Table 2.2. 

2.1.7 Plasmid Vectors 

Plasmid vectors used in the yeast two-hybrid screen, provided with Clontech 

Matchmaker Gal4 Two-Hybrid System included; 

 pACT2: cloning vector used to generate fusions of protein of interest (referred 

to as prey) with GAL4 AD and HA epitope tag, contains LEU2 nutritional 

selection gene enabling identification of positive yeast clones and ampicillin 

resistance gene for positive selection in E.coli. For a detailed vector map 

please refer to Figure 2.1 

 pGBKT7: cloning vector used to generate fusions of protein of interest 

(referred to as bait) with GAL4 DNA-BD and c-Myc epitope tag, contains 

TRP1 nutritional selection gene enabling identification of positive yeast 
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clones and kanamycin resistance gene for positive selection in E.coli. For a 

detailed vector map please refer to Figure 2.2 

 pVA3-1: positive control used with pTD1-1; encodes a GAL4 DNA-

BD/murine p53 fusion protein 

 pTD1-1: positive control used with pVA3-1; encodes a GAL4 AD/SV40 large 

T-antigen fusion protein 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.1 Restriction sites and a detailed map of pACT2 multiclonin 
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Figure 2.2. Restriction sites and a detailed map of pGBKT7 multicloning site 

 

 

The following plasmid vectors were used for a recombinant protein expression in 

mammalian cells: 

 pcDNA3 (Invitrogen): contains ampicilin resistance gene for positive 

selection in E.coli and neomycin resistance gene allowing selection of stable 

transformed mammalian cells. For a detailed map of this vector please refer to 

Figure 2.3 

 pCR3 (Invitrogen): contains ampicilin resistance gene for positive selection in 

E.coli and kanamycin/neomycin resistance gene allowing selection of stable 

transformed mammalian cells. For a detailed map of this vector please refer to 

Figure 2.4 

 pCR3-c-Myc modified: dervided from pCR3 vector, the original MCS has 

been replaced with the new MCS allowing for expression of c-Myc tagged 

proteins. For a detailed map of this vector please refer to Figure 2.5 



80 

 

 pCR3-HA modified: dervided from pCR3 vector, the original MCS has been 

replaced with the new MCS allowing for expression of HA tagged proteins. 

For a detailed map of this vector please refer to Figure 2.6 

 

 

 

 

Figure 2.3 Restriction sites and MCS of pcDNA3 vector; asterisk indicates restriction sites 
which are not unique to the MCS. 

 

 

 

Figure 2.4 Restriction sites and and a detailed map of pCR3 multicloning site 
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Figure 2.5 Restriction sites and and a detailed map of pCR3-c-Myc multicloning site 
 
 

 

 

Figure 2.5 Restriction sites and and a detailed map of pCR3-HA multicloning site 

  



82 

 

Antibody 

(Ab) 

Epitope/ 

Specificity 
Concentration 

Species/Ab 

class 
Application 

Working 

dilution 

c-Myc 

monoclonal 

Residues 408-439 

of c-Myc of 

human origin 

200 µg/ml Mouse IgG1 Western blot 1:500 

1093 

(antiserum) 

residues 4454-

4474 of human 

RyR2 

 
Rabbit 

serum 
Western blot 1:1000 

HA-probe 

monoclonal 

internal region of 

the influenza 

hemagglutinin 

protein 

200 µg/ml Mouse IgG2a Western blot 1:500 

HA 

polyclonal 

internal region of 

the influenza 

hemagglutinin 

protein 

200 µg/ml Rabbit IgG 
co-IP, IP 

 
1:20, 1:10  

Normal IgG N/A 400 µg/ml Rabbit co-IP 1:40 

Anti-rabbit 

polyclonal 

HRP 

conjugated 

(Sigma-

Aldrich) 

N/A  Goat IgG  WB 1:10000 

Anti-mouse 

HRP 

conjugated 

N/A 400 µg/ml Goat IgG WB 1:5000 

 
Table 2.1 List of antibodies 
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Primer name Sequence (5’ – 3’) Length Tm (°C) GC (%) 
Additional 

information 
Application 

SPREV.2343-62 (R) 
AACCGTCGACATGTTGGTTTGGTGA

GCTTA 
30 76.3 46.6 SalI, 10b mismatch Generation of BT4

Δ12
 construct 

V8.1531-48 (F) GAAGAATCACGCACAGCC 18 62.6 55.6  
Generation of BT4

Δ12
 construct, 

BT4L
L433P

 mutant, sequencing 

RyR2C244S.FOR 
GGACACATGGACGAGAGTCTCACTG

TCCCTTC 
32 78.0 56.2 T→A substitution Generation of BT4L

C244S
 mutant 

RyR2C244S.REV 
GAAGGGACAGTGAGACTCTCGTCCA

TGTGTCC 
32 78.0 56.2 A→T substitution Generation of BT4L

C244S
 mutant 

RyR2C615/618/620SFOR 
GGTTCTGGATGTCTTGTCCTCACTCT

CTGTTTCCCACGGGGTTGCAGTCCG 
52 90.3 56.8 

G→C, G→C, G→C 

substitution 

Generation of BT4L
C615/618/620S 

mutant 

RyR2C615/618/620SREV 

CGGACTGCAACCCCGTGGGAAACA

GAGAGTGAGGACAAGACATCCAGA

ACC 

52 90.3 56.8 
C→G, C→G, C→G 

substitution 

Generation of BT4L
C615/618/620S 

mutant 

RyR2C577SFOR 
GGCATTCTGGAAGTTTTACACTCTG

TTTTAGTAGAAAGTCCAGAAGC 
47 77.4 40.4 G→C substitution Generation of BT4L

C577S
 mutant 

RyR2C577SREV 
GCTTCTGGACTTTCTACTAAAACAG

AGTGTAAAACTTCCAGAATGCC 
47 77.4 40.4 C→G substitution Generation of BT4L

C577S 
mutant 

RyR2C548SFOR 
GGAAATCGTAAAAACTCTGCTCAAT

TTTCTGGCTCCC 
37 77.7 43.2 G→C substitution Generation of BT4L

C548S
 mutant 

RyR2C548SREV 
GGGAGCCAGAAAATTGAGCAGAGT

TTTTACGATTTCC 
37 77.7 43.2 C→G substitution Generation of BT4L

C548S 
mutant 
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RyR2C633SFOR 
CCAGCATCTCATCTCTGACAATCTC

CTACCAGG 
33 76.4 51.5 G→C substitution Generation of BT4L

C633S
 mutant 

RyR2C633SREV 
CCTGGTAGGAGATTGTCAGAGATGA

GATGCTGG 
33 76.4 51.5 C→G substitution Generation of BT4L

C633S
 mutant 

RyR2C361S.FOR 
TACGGTGACTCAGTATCCTATATAC

AACATGTAGACAC 
38 69.7 39.5 G→C substitution 

Generation of 

BT4L
C361/615/618/620S  

mutant 

RyR2C361S.REV 
GTGTCTACATGTTGTATATAGGATA

CTGAGTCACCGTA 
38 69.7 39.5 C→G substitution 

Generation of 

BT4L
C361/615/618/620S 

mutant 

RyR2R176QFOR 
GAAGGAGAAAAAGTACAAGTTGGA

GATGACCT 
32 70.1 40.6 G→A substitution Generation of BT4L

R176Q
 mutant 

RyR2R176QREV 
AGGTCATCTCCAACTTGTACTTTTTC

TCCTTC 
32 70.1 40.6 C→T substitution Generation of BT4L

R176Q
 mutant 

JWREV.2821-40 (R) 
TTGGATCCGGACCATACTGCCAGCC

A 
26 79.3 57.7 

BamHI, 6 base 

mismatch 
Generation of BT4L

L433P
 mutant 

RevB8-9loop 
GTCATCAGAGGC*A*G*G*GTGTATG

GT 
24 58.0 54.1 

4 phophorothioate 

linkages 

Generation of BT4L
β8-β9loop 

deletion mutant 

ForB8-9loop 
GCCTCTGATGAC*C*T*C*ATCTTAGT

T 
24 53.7 45.8 

4 phophorothioate 

linkages 

Generation of BT4L
β8-β9loop 

deletion mutant 

Rev377-385loop 
TATAGATTTCAC*G*T*C*CACAGAC

TG 
24 45.9 41.6 

4 phophorothioate 

linkages 

Generation of BT4L
β22-β23loop 

deletion mutant 

For377-385loop 
GTGAAATCTATA*C*A*A*CGTAAGG

CT 
24 47.7 37.5 

4 phophorothioate 

linkages 

Generation of BT4L
β22-β23loop 

deletion mutant 
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Rev B20-21loop 
TACTGAGGAAGA*C*C*G*GAAGGT

AAATGCTGTTGATTTTACATCAGC 
45 74.7 42.2 

4 phophorothioate 

linkages 

Generation of BT4L
β20-β21loop 

deletion mutant 

For B20-21loop 
TCTTCCTCAGTA*T*G*C*TATATACA

ACATGTAGACACAGGCCTATGG 
45 74.3 42.2 

4 phophorothioate 

linkages 

Generation of BT4L
β20-β21loop 

deletion mutant 

Rev delta12 
GACATCATGTTG*G*T*T*TGGTGAG

CTTACAGTACGAGCAATACAACC 
45 77.8 44.4 

4 phophorothioate 

linkages 

Generation of BT4L
SPRYβ5-β6loop

 

deletion mutant 

For delta12 
CAACATGATGTC*A*T*C*AGTTGCT

GTTTAGATCTGAGTGCCCCAAGC 
45 81.5 46.6 

4 phophorothioate 

linkages 

Generation of BT4L
SPRYβ5-β6loop

 

deletion mutant 

V2(+) (F) GATGAAGACTGCTCAAGGTGG 21 64.2 52.4  Sequencing 

V1(+) (F) CTGTGTCTGTTCATGCAC 18 56.5 50.0  Sequencing 

V1(-) (R) CACGTACTTGTCTGTGTC 18 56.5 50.0  Sequencing 

V6.1999-2016 (F) GCTTCTTCAGGCATTCTG 18 59.2 50.0  Sequencing 

SPFOR.2153-2170 (F) ATGGTGGACCACACAGAG 18 60.1 55.6  Sequencing 

V1.2519-2536 (F) CTGTAAGCTCACCAAACC 18 56.2 50.0  Sequencing 

 
Table 2.2 Full list of primers; restriction site underlined, mutated/mismatch residue shaded, asterisk indicates the location of a phosphorothioate-containing 
bond, (F) and For: forward primer, (R) and Rev: reverse primer 
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2.2 Methods 

General molecular biology and biochemistry techniques were performed according to 

protocols covered in Molecular Cloning (Sambrook et al. 1989) and optimised 

procedures established by other members of staff within the laboratory. When 

applicable, some techniques were performed according to manufacturer’s 

recommendations. All procedures were carried out in agreement with local guidelines 

covered in the WHRI Health and Safety handbooks. 

2.2.1 Molecular biology methods 

2.2.1.1 Standard PCR 

PCR reaction was carried out following the recommendations provided by the 

manufacturer of DNA polymerase. For high fidelity PCR products Pfu DNA 

polymerase was used, Taq DNA polymerase was used for diagnostic purposes. 

Annealing temperature of a PCR reaction was set at approximately 5-10 °C below 

primer melting temperature. Extension time depended on the length of the expected 

PCR product and was calculated assuming 2 min for every 1 kb to be amplified. 

Typical PCR reaction mixture and cycling conditions are presented in Tables 2.3 and 

2.4 respectively. 
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Components Volume (μl) Final concentration 

10x buffer with MgSO4 5 1x 

dNTP (20 mM) 0.5 0.2 mM 

Forward primer (20 μM) 1 0.4 μM 

Reverse primer (20 μM) 1 0.4 μM 

DNA template Variable <0.5 μg/50 μl 

DNA polymerase Variable 1 U/50 μl 

Nuclease-free water to a final volume of 50 μl  

 
Table 2.3 Typical components of a standard PCR reaction 
 
 
 
 

 

Step Temperature (°C) Time (minutes) Number of cycles 

Initial denaturation 95  2 1 

Denaturation 

Annealing  

Extension 

95  

50-65  

72  

1 

1 

variable 

 

30 

Final extension 72  10 1 

Incubation 4  indefinite 1 

 
Table 2.4 Typical cycling conditions of a standard PCR reaction 

2.2.1.2 DNA sequencing  

Sequencing PCR was carried out according to instructions provided with BigDye 

Terminator v3.1 Cycle Sequencing Kit. Briefly, a PCR reaction was set up in 10 μl 

and contained typically 200-500 ng of plasmid DNA and 3.5 pmol of a relevant 

sequencing primer. Cycling conditions are presented in Table 2.5. 

 

Step Temperature (°C) Time Number of cycles 

Initial denaturation 96  2 min 1 

Denaturation 

Annealing 

Extension 

96  

50  

60  

30 sec 

15 sec 

4 min 

25 

Incubation 4  indefinite 1 

 
Table 2.5 Cycling conditions of a sequencing PCR reaction 
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PCR products were purified with DyeEx Kit. Sequencing was performed at the 

Cardiff University CBS DNA sequencing facility. NCBI Basic Local Alignment Tool 

available online at http://blast.ncbi.nlm.nih.gov/ was used for sequence alignment and 

analysis. 

2.2.1.3 DNA digestion with restriction endonucleases 

DNA was digested with appropriate restriction enzymes according to manufacturer’s 

instructions. Typically, a reaction was set in 20 μl and contained 0.5-2 μg of DNA 

depending on the subsequent downstream application. For a double digest performed 

in one step, buffer compatibility was evaluated using NEB Double Digest Finder 

online tool (https://www.neb.com/tools-and-resources/interactive-tools/double-digest-

finder). For a two-step reaction, the second digest was preceded by DNA purification 

using QIAquick PCR Purification Kit. Reactions were incubated at 37 °C for 2 h 

unless otherwise stated. DNA was analysed by agarose gel electrophoresis. For DNA 

cloning, the appropriate fragment was excised from the gel and purified with 

QIAquick Gel Extraction Kit following manufacturer’s recommendations. 

2.2.1.4 DNA ligation 

DNA ligation was conducted according to manufacturer’s instructions. Typically, a 

reaction was set up in 20 μl and contained 20-200 ng of total DNA with 3:1 molar 

ration of insert:vector. Reaction was incubated for 2 h at room temperature. 

Typically, 8 μl of ligation reaction was used to transform electrocompetent E.coli 

DH5α strain (please refer to Section 2.2.1.8 for a detailed description of the 

transformation procedure). 
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2.2.1.5 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to analyse and separate DNA fragments 

following PCR or restriction digest. Agarose was dissolved in 1x TAE by boiling at 

the appropriate concentration depending on the size of DNA fragments to be 

separated (0.9 – 1.2%). Once lukewarm, the agarose solution was supplemented with 

ethidium bromide at 0.01% (w/v) final concentration. DNA samples were loaded in 

1x DNA loading buffer alongside DNA molecular weight markers. Electrophoresis 

was run under constant voltage (typically 80 V) until desirable DNA fragment 

separation was obtained. Gels were visualised under UV illumination using gel 

documentation system (Gel Doc). 

2.2.1.6 Mutagenesis 

Mutagenesis was performed following manufacturer’s recommendations. Briefly, 10-

100 ng of plasmid DNA was subjected to a PCR reaction in the presence of 

complementary primers containing the desired nucleotide substitution. PCR mixture 

components and cycling conditions are presented in Tables 2.6 and 2.7 respectively. 

 

 

Components Volume (μl) Final concentration 

10x buffer with 5 1x 

dNTP mix* 1 n/a 

Forward primer (125 ng/μl) 1 125 ng/50 μl 

Reverse primer (125 ng/μl) 1 125 ng/50 μl 

DNA template Variable ≤100 ng/50 μl 

QuickSolution reagent* 3 unknown 

PfuUltra DNA polymerase 1 2.5 U/50 μl 

Nuclease-free water to a final volume of 50 μl n/a 

 
Table 2.6 Components of a mutagenic PCR reaction; asterisk indicate proprietary 
composition  
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Step Temperature (°C) Time Number of cycles 

Initial denaturation 95 1 min 1 

Denaturation 

Annealing 

Extension 

95 

60 

68 

50 sec 

50 sec 

8 min (1 min/1kb) 

 

18 

Final extension 68 7 min 1 

Incubation 4 indefinite 1 

 
Table 2.7 Cycling conditions of a mutagenic PCR reaction 

 

 

Primers were designed according to the Primer Design Guideline provided with the 

mutagenesis kit. In summary, both forward and reverse primers contained the desired 

mutation and annealed to the same sequence on the opposite strands of the plasmid 

DNA. Oligonucleotides were at least 32 nucleotide bases in length and had a 

relatively high melting temperature (Table 2.2).  

Following PCR, reactions were incubated for 1 h at 37 °C in the presence of 10 U of 

DpnI restriction enzyme, which specifically digests methylated DNA (i.e. parental 

plasmid DNA). DpnI-treated reaction was used to transform 45μl of XL-Gold 

Ultracompetent E.coli cells provided with the kit. Transformation protocol was 

performed following manufacturer’s guidelines. Briefly, bacteria were incubated in a 

14 ml polypropylene tube in the presence of 2 μl of β-mercaptoethanol (provided with 

the kit) on ice for 10 min with gentle agitation every 2 min. Subsequently, 2 μl of 

DpnI-treated DNA was added to the cells. After 30 min incubation on ice, the 

bacteria were subjected to a 42 °C heat pulse for 30 sec. This was followed by 2min 

incubation on ice. Following addition of 0.5 ml SOC medium, cells were incubated at 

37 °C for an hour with shaking at 225 rpm.  Bacterial suspension was plated on two 

LB-agar plates (250 μl each) containing the appropriate antibiotic and incubated 

overnight at 37 °C. 

2.2.1.7 Introducing deletions into plasmid DNA 

Deletions were introduced into plasmid DNA following a slightly modified method 

described earlier (Stoynova et al. 2004). Briefly, primers were designed to contain 

four consecutive phosphorothioate residues located 12 nucleotides from the 5’end of 
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each oligonucleotide allowing a controlled digestion with T7 Gene 6 Exonuclease. 

This step converts a blunt PCR product into 12 nucleotide 3’ overhangs located at 

both ends of the amplified fragment. In addition, the 6 outermost nucleotides of each 

primer are complementary to the 6 nucleotides of the opposite strand primer located 

immediately before the phosphorothioate residues. This feature ensures self-

circularisation of a PCR product immediately after exonuclease treatment. Graphical 

representation of this process describing generation of the BT4L
β8-β9loop 

deletion 

mutant as an example is shown in Figure 2.7. 
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Figure 2.7 Schematic summary of the procedure leading to the generation of the BT4L

β8-β9loop 

deletion mutant; asterisk indicates the location of modified nucleotides 
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PCR reactions were conducted using reagents provided with the mutagenesis kit (for 

PCR mixture components please refer to Table 2.6). PCR cycling conditions followed 

a modified protocol described in section 2.2.1.6 and are shown in Table 2.8. 

 

Step Temperature (°C) Time Number of cycles 

Initial denaturation 95 2 min 1 

Denaturation 

Annealing 

Extension 

95 

52-60 

68 

1 min 

50 sec 

16 min 

 

20 

Final extension 68 7 min 1 

Incubation 4 Indefinite 1 

 
Table 2.8 Typical cycling conditions of a deletion-introducing PCR 

 

Following amplification, samples were treated with 20 U of DpnI enzyme at 37 °C 

for an hour. Digestion with 100 U of T7 Gene 6 Exonuclease was carried out at 37 °C 

for 10min followed by enzyme inactivation at 80 °C for 10 min. Bacteria 

transformation was performed according to the protocol described in section 2.2.1.6. 

2.2.1.8 Electroporation of bacteria  

Bacteria electroporation was carried out with BioRad Genepulser set as follows: 

25F, 200  and 2.5 kV. Prior to transformation, electrocompetent cells (E.coli, 

DH5α strain) were transferred into an electroporation cuvette and incubated on ice 

with 8 μl of a ligation mixture for 5 min. Following an electrical pulse, cells were 

suspended in 800 μl of SOC medium and transferred into a sterile 14 ml 

polypropylene tube which was incubated at 37 °C for an hour with shaking at 225 

rpm.  Transformation reaction (1/10
th

 and 9/10
th

) was plated on two LB-agar plates 

containing the appropriate antibiotic and incubated overnight at 37 °C. 
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2.2.1.9 Chemical transformation of bacteria 

Transformation with large plasmids (i.e. the full length RyR2) was performed using 

chemically competent bacteria as follows; 25 μl of XL-Gold Ultracompetent E.coli 

cells (Agilent Technologies) were incubated in the presence of 1 μl of β-

mercaptoethanol (provided with the kit) on ice for 10 min with gentle agitation every 

2 min. Subsequently, cells were incubated on ice for 30 min in the presence of 1 ng of 

plasmid DNA. The bacteria were then subjected to 42 °C heat pulse for 30 sec 

followed by 2 min incubation on ice. Bacteria were incubated in 1 ml of SOC 

medium at 30 °C for 90 min with shaking at 225 rpm. Transformation reaction (1/10
th

 

and 9/10
th

) was plated on two LB-agar plates containing ampicillin and incubated at 

30 °C for around 18 h. 

2.2.1.10 Colony screen and plasmid isolation 

Following bacteria transformation, a number of colonies were screened for the 

presence of the recombinant plasmid of interest. Whenever possible, the correct 

orientation and size of the DNA insert was confirmed by restriction mapping and 

further verified by sequencing. For identification of positive clones, plasmids were 

isolated from an overnight mini culture (3 ml), which was inoculated with a single 

colony, using Wizard Plus SV Minipreps DNA Purification System. Briefly, 1.5 ml 

of saturated culture was harvested be centrifugation (14 000x g for 1 min) and 

processed for plasmid isolation following the manufacturer’s recommendations. The 

process involved consecutive steps of cell lysis, centrifugation and DNA binding to 

the kit columns followed by two ethanol-based washing steps. Plasmid DNA was 

eluted with 30 μl of water and typically 2-4 μl (8 μl for low copy number plasmids) 

and 1-2 μl was used for restriction mapping and DNA sequencing respectively. 

Verified clones were grown in large volumes (typically 200 ml) overnight and 

processed with Qiagen Plasmid Maxi Kit which uses bacterial alkaline lysis followed 

by binding of plasmid DNA to an anion-exchange resin. Briefly, bacteria were 

harvested by centrifugation at 10 000 xg for 5 min and subjected to cell lysis followed 

by lysate filtration, DNA column binding and washing. Plasmid DNA was eluted 
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from the column and underwent two consecutive steps of precipitation (isopropanol 

followed by 70% ethanol). Air-dried DNA pellet was dissolved in 500 μl of sterile 

deionised water. DNA concentration (absorbance at 260 nm) and quality (ratio of 

absorbance at 260/280 nm) was assessed using a spectrophotometer. Plasmid DNA 

was stored at -20 °C. 

Large plasmids (the full length RyR2 constructs) were isolated from cultures grown 

at 30°C until OD600 of 1 was reached. Typically eight 400ml flasks were processed 

for plasmid isolation. This was performed using Qiagen Plasmid Maxi Kit with a 

modified protocol. Briefly, following cell lysis and prior to lysate filtration, bacterial 

lysate was cleared by centrifugation at 14 000 xg for 10 min. In total, 3.2 litres of 

culture was processed using four filters and two DNA-binding columns provided with 

the kit. DNA pellet was dissolved in 500 μl of sterile deionised water and stored at -

80 °C in small aliquots. 

2.2.2 Protein Biochemistry Methods 

2.2.2.1 Mammalian cell homogenisation 

Cell pellets of HEK293 cells expressing the protein of interest harvested from one 

100 mm Petri dish were re-suspended in ice-cold homogenisation buffer (typically 

500-800 μl) supplemented with protease inhibitors. Cells were homogenised on ice by 

20 passages through a needle (0.6x30 mm) in the presence of approximately 200 μl of 

glass beads (pre-washed in the homogenisation buffer). Cell homogenates were 

subjected to 10min centrifugation at 1500 xg, followed by 10 min centrifugation at 18 

000 xg and the supernatant was saved.  

For cell pellets obtained from 6-well plates, the protocol described above was scaled 

down accordingly. Briefly, cell pellets were re-suspended in 200 μl of ice-cold 

homogenisation buffer supplemented with protease inhibitors. Cell homogenisation 

was performed by three rounds (30 sec each) of vigorous vortexing in the presence of 

glass beads. The remaining steps of cell lysate preparation were as described in the 

previous paragraph. 



96 

 

2.2.2.2 Determination of protein concentration  

Protein concentration was evaluated using the BCA colorimetric assay according to 

the manufacturer’s guidelines. Briefly, duplicates of two dilutions of the original 

sample (typically 1/10 and 1/20) as well as serial dilutions of BSA protein (1000-62.5 

μg/ml) were mixed with the BCA kit reagents and incubated at 37 °C for 30 min. 

Samples’ absorbance was measured at 560nm using a Multiscan EX (Labsystems) 

spectrophotometer and protein concentration was calculated using a standard curve 

produced by known concentrations of BSA.  

2.2.2.3 Chemical crosslinking 

Chemical crosslinking was performed using glutaraldehyde at a final concentration of 

0.0025% (v/v). Prior to chemical crosslinking, cell lysates were divided into two 

aliquots and one aliquot was treated with DTT (10 mM, 1 h, 4 °C). Subsequently, 

both DTT-treated and untreated samples were divided into 8 aliquots each (typically 

20-50 μg of total protein as assessed by the BCA assay) and subjected to crosslinking 

in the following time points: 0 min, 2 min, 5 min, 10 min, 15 min, 20 min, 30 min and 

1 h. The reaction was stopped with the addition of hydrazine (2% final 

concentration). Samples were stored at -20 ºC following the addition of protein 

loading buffer. 

2.2.2.4 Polyacrylamide gel electrophoresis 

Depending on the size of proteins to be separated 4% to 12% SDS polyacrylamide 

mini gels (8x10 cm, 0.75 cm thick) were prepared a day before electrophoresis. Gel 

composition details are presented in Table 2.9. 
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Reagents 

Volume for 2mini gels (μl) 

Separating gel 
Stacking 

gel 

 4% 6% 8% 10% 12% 4% 
Acrylamide/Bis (37.5:1) 

40% 
1000 1500 2000 2500 3000 500 

Water 6345 5845 5345 4845 4345 3170 

Tris-HCl 1.5 M, pH 8.8 2500 2500 2500 2500 2500 - 

Tris-HCl 0.5 M, pH 6.8 - - - - - 1250 

SDS 10% 100 100 100 100 100 50 

Ammonium Persulphate 

10% 
50 50 50 50 50 25 

TEMED 5 5 5 5 5 2.5 

 
Table 2.9 Polyacrylamide gel composition 

 

 

Briefly, the separating gel solution was poured into the assembled gel cassette up to 

approximately 1 cm below the comb teeth.  The solution was overlaid with 70% 

ethanol and allowed to polymerise for at least an hour. Subsequently, ethanol was 

removed and the top of separating gel was dried with paper. Stacking gel mixture was 

poured to the top, the comb was inserted and left to polymerise for at least 2 hours. 

4% polyacrylamide gels were strengthened with 0.5% agarose as follows: 5 ml of 

warm 1% (w/v) solution of agarose was added to a 4% SDS-PAGE gel mixture 

containing 1345 μl instead of 6345 μl of water. The solution was mixed and poured 

into an assembled cold gel cassette up to the top and the comb was inserted. Freshly 

poured gel was placed in an ice-cold bath for 5min for the agarose to solidify and 

allowed to polymerise for 2 hours at room temperature. 

Prior to loading, samples containing 1x protein loading buffer were heated at 85°C 

for 5 min followed by 3 min centrifugation at 12 000 xg. Samples were loaded 

alongside protein molecular weight markers. Electrophoresis was run in 1x 

electrophoresis running buffer under constant current (typically 40 mA for a cell tank 

containing 4 gels) until desirable protein separation was obtained. Following 

electrophoresis gels were either processed for blotting or stained with a dye-based 

protein stain. 
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2.2.2.5 Western blotting 

Proteins separated by electrophoresis were transferred onto PVDF membranes 

(Immobilon-P obtained from Merck Millipore) using either semi-dry or wet 

electroblotting system.  Semi-dry transfer was used to blot the full length RyR2 and 

was performed following manufacturer’s instructions. Briefly, following 

electrophoresis gels were washed in deionised water and incubated in the semi-dry 

transfer buffer together with blotting paper and methanol-activated PVDF 

membranes. The blotting sandwich was then assembled and a semi-dry transfer was 

conducted at constant voltage (24 V) for four hours in the cold room. For wet 

blotting, gels were assembled into a sandwich using blotting paper and methanol-

activated PVDF membranes soaked in the cold wet transfer buffer. Transfers were 

conducted either overnight at 45 V or for two hours at 80 V in the presence of ice 

packs with constant stirring in the cold room.  

Following transfer, PVDF membranes were washed in deionised water and blocked 

for 1 h in the TBS-T Marvel buffer. Blots were then incubated in the presence of 

primary antibody either overnight at 4 ºC or for 2 h at room temperature followed by 

two washing steps in the TBS-T Marvel buffer (10 min each). The incubation with 

the secondary antibody conjugated to horseradish peroxidase was conducted for at 

least an hour in room temperature and was followed by two washes in the TBS-T 

buffer (10 min each). Signal detection was performed using ECL reagents.  X-ray 

films were developed using an automatic X-ray film processor (X-Ograph Compact 

X4 obtained from Xograph Healthcare). Film exposure depended on the signal 

strength but usually did not exceed 10 min.  

2.2.2.6 Sub-cellular fractionation 

HEK293 cells expressing one or more proteins of interest were harvested and 

homogenised as described in Section 2.2.2.1. Cell homogenates were centrifuged at 

1500 xg for 10 min in order to remove unbroken cells and nuclei. Microsomal and 

cytosolic fractions were obtained in the subsequent centrifugation step at 100 000 xg 

for 1 h. Obtained pellets representing crude microsomal fraction were resuspended in 

http://www.millipore.com/life_sciences/flx4/western_blotting&tab1=3&tab2=2
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homogenisation buffer. Alternatively, following the initial 1500 xg spin, an additional 

intermediate centrifugation step at 10 000 xg for 10 min was included to remove 

mitochondria. Protein distribution was evaluated by Western blotting. 

2.2.2.7 Co-immunoprecipitation 

Cell pellets of HEK293 cells expressing two putatively interacting fragments of 

interest harvested from one 100 mm Petri dish were resuspended in ice-cold co-

immunoprecipitation buffer without CHAPS (typically 800 μl) supplemented with 

protease inhibitors and 10 mM DTT. Cells were homogenised as described in Section 

2.2.2.1, subjected to 1500 xg spin and the supernatant was incubated overnight at 4 

°C in the presence of 0.5% CHAPS under rotary agitation. At the same time, Protein 

A beads (pre-washed with the co-IP buffer) were incubated with the relevant antibody 

(typically 30 μl of beads with 2 μg of Ab in 200 μl of co-IP buffer).  As a negative 

control, another set of beads was incubated with normal (non-immune) IgG of the 

same species as the IP antibody. Following overnight solubilisation, cell lysates were 

centrifuged at 18 000 xg for 10 min to remove insoluble material and incubated at 4 

°C for six hours with Ab-bound beads under rotary agitation. Subsequently, beads 

were washed two times with the co-IP buffer for 10 min at 4 °C and collected by 

centrifugation at 1500 xg for 2 min. Proteins were eluted using 20 μl of 2x reducing 

protein loading buffer and processed for Western blotting. 

2.2.2.8 Sucrose density gradient ultracentrifugation 

Cell pellets of HEK293 cells expressing the full length RyR2 harvested typically 

from 8-10 100 mm Petri dishes were subjected to sucrose density gradient 

ultracentrifugation. Briefly, pellets were re-suspended in hypo-osmotic 

homogenisation buffer supplemented with protease inhibitors at an approximate 

concentration of 10
6
 cells/ml. This typically corresponded to 7.5 ml/Petri dish. Cells 

were homogenised on ice using a custom made cell homogeniser allowing for 25 

passages through a needle (0.6x30 mm). Unbroken cells and nuclei were removed by 
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10 min centrifugation at 1500 xg, supernatants were divided into aliquots and 

subjected to centrifugation at 100 000 xg for an hour in order to obtain microsomal 

fractions. Following the spin, one aliquot of pellets was resuspended in a standard 

homogenisation buffer and protein concentration was assessed using BCA assay. This 

allowed for the remaining aliquots to be resuspended at a defined protein 

concentration (2.5 mg/ml) in the high-salt solubilisation buffer supplemented with 

protease inhibitors. The solubilisation process was performed in glass vials at 4 °C for 

an hour with constant stirring. Insoluble material was removed by centrifugation at 16 

000 xg for 10 min and the obtained supernatant was layered onto the sucrose density 

gradient prepared earlier. Briefly, three solutions of sucrose in the gradient buffer 

were prepared: 5%, 25% and 40% (v/v) and allowed to mix by rotary agitation for an 

hour at 4 °C. The gradient was created by peristaltic pump (Masterflex L/S obtained 

from Cole-Parmer) equipped with two interconnected chambers allowing for a 

gradual dilution of the 25% sucrose with the 5% solution. This was slowly poured 

into centrifugation tubes (Polyallomer tubes obtained from Beckmann-Coulter) 

containing 5 ml of 40% sucrose cushion. Gradient centrifugation was performed at 

100 000 xg for 16 h at 4 °C without active braking. 

Fractions (typically 800-1000 μl) were collected and sucrose concentration was 

measured with a refractometer. Protein distribution was analysed by Western blotting. 

2.2.2.9 [3
H]ryanodine binding  

[
3
H]ryanodine binding assay was performed either on microsomal fractions (prepared 

as described in Section 2.2.2.6) or on cell homogenates (following centrifugation 

at1500 xg for 10 min) obtained from HEK293 cells expressing the full length RyR2 

with or without the BT4L fragment.  Prior to the assay, the level of protein expression 

was assessed by Western blotting and the amount of sample subjected to 

[
3
H]ryanodine binding was adjusted accordingly. This allowed to compensate for the 

differences in the RyR2 expression levels between samples. Typically 300-500 μg of 

total protein was incubated at 37 °C for 2 h in the presence of 8 nM [
3
H]ryanodine in 

the ryanodine binding buffer containing the desired amount of free Ca
2+

. Free Ca
2+

 

was calculated using MaxChelator software (http://maxchelator.stanford.edu/) and the 
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following concentrations were used: 50 nM, 100 nM, 250 nM, 1 µM, 5 µM. For 

estimation of non-specific binding, samples were supplemented with 10 μM of 

unlabelled ryanodine. Analysis was performed in three technical replicates for 

specific and two for non-specific binding. For maximum channel activation, 

[
3
H]ryanodine binding was performed in 100 μM free Ca

2+ 
and 10 mM caffeine. 

Samples were filtered (GF/F glass microfiber filters obtained from Whatman), 

washed with the ryanodine binding buffer and incubated overnight in the scintillation 

liquid (Ultima Gold from Perkin Elmer) followed by the measurement of decays per 

minute over a period of 2 min using a scintillation counter (Tri-Carb 2100 TR 

obtained from Packard BioScience). 

2.2.3 Yeast two-hybrid system 

2.2.3.1 Yeast Culture 

Saccharomyces cerevisiae Y190 yeast strain supplied with Matchmaker Two-Hybrid 

System was revived from a frozen stock (stored at -80 °C in the YPD medium 

supplied with 50% glycerol). Briefly, a small portion of yeast stock was streaked on 

YPD agar plate and incubated at 30°C for up to 5 days until distinct colonies 

appeared. This plate was stored for up to one month at 4°C and constituted a viable 

yeast source for downstream applications. 

2.2.3.2 Yeast transformation 

Yeast transformation was performed following the protocol provided with 

Matchmaker Two-Hybrid System. Briefly, 50 ml of YPD medium was inoculated 

with a single fresh colony and was incubated overnight at 30 °C with shaking at 250 

rpm. The overnight culture was then used to refresh 200 ml of culture at OD600 

around 0.2-0.3 and was further incubated until OD600 of around 0.5 was reached. At 

this point, cells were collected by centrifugation (1500 xg for 5 min), washed in 
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sterile deionised water and again recovered by centrifugation. The cell pellet was re-

suspended in 1.6 ml of TE/LiAc solution and used for transformation as follows: 100 

μl of TE/LiAc suspended yeast cells were mixed with 800 ng of each plasmid 

construct (pACT2 and pGBKT7) and 100 μg of herring testes carrier DNA. 

Subsequently, 600 μl of PEG/LiAc solution was added and following vigorous 

mixing, the solution was incubated for 30 min at 30 °C with shaking at 250 rpm. 

Cells were subjected to a heat shock (15 min at 42 °C) in the presence of 10% 

DMSO, followed by 2 min incubation on ice. Cells were collected by centrifugation 

(10 sec at 14 000 xg), resuspended in 200 μl of 1x TE buffer and plated on two 

appropriate SD agar plates. Plates were incubated at 30 °C for up to 5 days until 

distinct colonies appeared. 

2.2.3.3 β-galactosidase colony-lift filter assay 

β-galactosidase colony-lift filter assay was performed following the protocol provided 

with Matchmaker Two-Hybrid System. Briefly, fresh colonies transformed with 

plasmids coding for two proteins to be tested for interaction were transferred from SD 

agar plates onto dry sterile filter paper (Whatman) which was subsequently 

submerged in liquid nitrogen in order to permeabilise the cells. The filter was then 

placed on a second filter paper pre-soaked with Z buffer/X-Gal solution prepared 

earlier. The filters were incubated at 30 °C and systematically inspected for the 

appearance of blue colonies. Cells transformed with pVA3-1 and pTD1-1 were used 

as positive controls. 

2.2.3.4 Quantitative liquid β-galactosidase assay 

Quantitative β-galactosidase assay was performed according to the protocol provided 

with the system. Briefly, an overnight culture, which was inoculated with a single 

transformed colony, was used to obtain 10 ml of culture at OD600 around 0.2-0.3, 

which was further incubated until OD600 of around 0.5 was reached. The exact OD6oo 

was recorded and 500 μl of culture was centrifuged at 14 000 xg for 2 min. Cell 
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pellets were re-suspended in 100 μl of Z buffer and underwent repeated freeze/thaw 

cycles (1 min in liquid nitrogen followed by 3 min at 37 °C) in order to brake the 

cells open. Subsequently, 700 μl of Z buffer/β-mercaptoethanol was added to each of 

the reaction tubes and to the blank tube containing Z buffer only. Tubes were placed 

in the 30 °C incubator following the addition of 160 μl of Z buffer/ONPG and the 

time necessary for a yellow colour to develop was recorded. The tubes in which 

yellow colour was observed were mixed with 400 μl of 1 M Na2CO3 and centrifuged 

at 14 000 xg for 5 min to remove cell debris. The supernatant’s absorbance was 

measured at 420 nm against the blank tube. Units of β-galactosidase defined as the 

amount which hydrolyses 1μmol of ONPG per minute per cell were calculated using 

the following formula: 

β-galactosidase units = 1000 x A420/t x 0.1 ml x 5 x OD600 

where t refers to the incubation time in minutes necessary for the colour change to 

occur 

Five colonies from each transformation were analysed.  

2.2.3.5 Cell homogenisation and protein extraction 

For analysis of protein expression, yeast transformed (as described in Section 2.2.3.2) 

with the construct of interest was grown in SD minimal media. An overnight culture, 

which was inoculated with a single transformed colony, was used to obtain 100 ml of 

culture at OD600 around 0.2-0.3 which was further incubated until OD600 of around 

0.5 was reached. At this point, cells were collected by centrifugation (1500 xg for 5 

min at 4 °C), washed in ice-cold deionised water and again recovered by 

centrifugation. The cell pellet was resuspended in 500 μl of ice-cold protein 

extraction buffer supplemented with protease inhibitors. Cells were homogenised by 

three rounds (1 min each) of vigorous vortexing in the presence of glass beads, which 

were earlier washed three times in the protein extraction buffer. Cell debris was 

removed by centrifugation at 14 000 xg for 5 min. Protein concentration was 

evaluated as described in Section 2.2.2.2. Protein extracts were stored at -80 °C and 

subsequently analysed for protein expression by Western blotting. 
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2.2.4 Bacterial Culture 

2.2.4.1 Culture maintenance 

Untransformed E.coli DH5α cells were stored at -80 °C in LB medium containing 

50% glycerol. Transformed bacterial cells were stored in LB containing 50% glycerol 

and the appropriate antibiotic. Bacteria were recovered from a frozen stock by 

streaking a small portion of glycerol stock on LB agar plate followed by an overnight 

incubation at 37 °C. This plate was stored for up to one month at 4 °C. 

2.2.4.2 Liquid cultures for plasmid isolation 

For liquid overnight cultures, 1 ml of LB medium containing the appropriate 

antibiotic was inoculated with a single colony of transformed bacteria and incubated 

at 37 °C for around 8 hours with shaking at 225 rpm. Subsequently, 1 ml of growing 

culture was transferred into 200 ml of medium (100 ml for high copy number 

plasmids) and incubated overnight at 37 °C with shaking at 225 rpm. This yielded a 

saturated bacterial culture which was centrifuged at 10 000 xg for 10 min the 

following day. Cell pellets were either processed directly for plasmid isolation or 

stored at -80 °C. 

Bacteria transformed with the full length RyR2 plasmids were cultured differently. 

LB medium (4 ml) supplemented with the appropriate antibiotic was inoculated with 

a single colony and incubated overnight at 30 °C with shaking at 225 rpm. The 

following day, 1 ml of the unsaturated culture was transferred into 16 ml of fresh 

antibiotic–containing LB medium and propagated for another 8 hours. The resulting 

culture was used to inoculate (2 ml) eight 400 ml flasks and allowed to grow 

overnight until the OD600 of 1 was reached. Cell pellets were recovered by 

centrifugation at 10 000 xg for 10 min. 
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2.2.4.3 Generation of electrocompetent cells 

A single colony of untransformed E.coli DH5α strain was used to inoculate 5ml of 

SB medium and incubated overnight at 37 °C with shaking at 225 rpm. The following 

day, 2 ml of this culture was used to inoculate 200 ml of SB-Plus medium and 

allowed to grow until an OD600 of 0.7-0.8 was reached. At this point bacteria were 

divided into four aliquots and were placed on ice for 30 min. Subsequently, cells were 

collected by centrifugation (5000 xg for 5 min), washed in 10 ml of 10% glycerol and 

again recovered by centrifugation. This step was then repeated. Collected bacterial 

pellets were resuspended in 1 ml of 10% glycerol, divided into 100 μl aliquots and 

immediately frozen down in isopropanol/dry ice bath. Electrocompetent cells were 

stored at -80 °C. 

2.2.5 Mammalian Cell Culture 

2.2.5.1 HEK293 cell maintenance 

In order to revive HEK293 cells, a frozen aliquot of cells was promptly warmed up in 

the 37 °C water bath and resuspended in complete DMEM medium. Cells were 

recovered by centrifugation at 1000 xg for 3 min, the pellet was resuspended in 5 ml 

of medium and cells were seeded in a T25 flask. The flask was placed in the 37 ºC 

incubator with 5% CO2 and cells were allowed to grow until confluence of around 

90% was reached. At this point, the cells were washed with saline and were detached 

enzymatically (1 ml of trypsin-EDTA solution). Trypsin was inactivated by the 

addition of 5 ml of complete DMEM medium and cells were recovered by 

centrifugation (1000 xg for 3 min). The pellet was resuspended in 10 ml of medium 

and cells were seeded in a T75 flask.   

HEK293 culture was maintained by passaging the cells whenever confluence of 

around 90% was reached. The split ratio depended on the downstream application and 

varied from 1:5 to 1:30. 
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2.2.5.2 Transfection 

A day before transfection approximately 5x10
6
 or 0.6x10

6
 cells were seeded in the 

one 100mm Petri dish or in one well of a six-well plate respectively. Routinely this 

was achieved by allowing cells to grow until 90% confluence on the respective dishes 

and splitting them at 1:5 ratio a day before transfection.  The following day cells were 

subjected to transfection using commercially available transfection reagent Express-

In following the manufacturer’s recommendations. Briefly, for a 100 mm Petri dish, 

12 μg of total plasmid DNA was diluted in 1200 μl of serum-free DMEM. This 

solution was mixed rapidly with 60 μl of Express-In diluted in 1200 μl of serum-free 

DMEM. Following 20 min incubation, 3.6 ml of serum-free DMEM was added to the 

mixture. The old medium was replaced with DNA/Express-In mixture and the cells 

were allowed to incubate for around four hours after which the medium was 

supplemented with 6 ml of 20% FCS-containing DMEM.  

For transfection of cells in a 6-well plate the above protocol was scaled down as 

follows:  2 μg of total DNA and 10 μl of Express-In was diluted in 200 μl of serum-

free DMEM. Following complex formation 600 μl of medium was added to the 

mixture which was used to transfect the cells. After four hours the medium was 

supplemented with 1 ml of 20% FCS-containing DMEM.   

24 h post-transfection cells were washed with 10 ml or 2 ml (for 100 mm Petri dish 

and 6-well plate respectively) saline and enzymatically dethatched (2 ml and 0.5 ml 

of trypsin-EDTA respectively).  Trypsin was inactivated by the addition of complete 

DMEM medium and cells were recovered by centrifugation (1500 xg for 3 min). 

Pellets were re-suspended in saline, centrifuged and allowed to dry. Cell pellets were 

stored at -80 °C. 

2.2.5.3 Long term storage 

For long term storage, 90% confluent HEK293 cells were harvested from T75 flasks. 

Collected pellets were washed in saline, recovered by centrifugation and resuspended 

in FCS supplemented with 10% DMSO (3 ml per T75 flask). Cells, divided into 1ml 
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aliquots, were slowly frozen down at -80 °C and subsequently transferred to liquid 

nitrogen. 
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3 Identification of cysteines involved in the 

tetramerisation of the RyR2 N-terminus 

3.1 Introduction 

It has been generally accepted that the structural determinants required for RyR2 

tetramer formation lie within the RyR2 C-terminus (Gao et al. 1997; Stewart et al. 

2003). Likewise, the determinants for tetramer assembly in the structurally and 

functionally similar IP3R were also mapped to the C-terminal part of the protein  

(Galvan et al. 1999).  However, unpublished findings from our laboratory imply that 

the oligomerisation determinants might not be restricted to the RyR2 C-terminus but 

are also present at the N-terminus. This hypothesis is based on data originating from 

analysis of oligomerisation ability of truncated fragments of the human RyR2 N-

terminus. It has been shown by chemical crosslinking that the N-terminal part of the 

receptor, when expressed in HEK293 cells, possesses an intrinsic ability to 

tetramerise. Moreover, this process was found to involve the formation of disulphide 

bonds, i.e. the tetramer formed by the N-terminus is retained upon non-reducing 

(without DTT) SDS-PAGE in the absence of chemical crosslinking. Notably, upon 

chemical crosslinking, the RyR2 N-terminus also forms tetramers in reducing 

conditions implying that the formation of disulphide-bonds does not constitute a 

prerequisite step for oligomerisation. The summary of unpublished findings is 

presented in Table 3.1 and in Figure 3.1. 
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Figure 3.1 Schematic representation of RyR2 N-terminal fragments; fragments in dark green 
form disulphide-mediated tetramers, BT4C (in red) exclusively forms disulphide-mediated 
dimers   

 

 

 
Oligomers observed in chemical 

crosslinking (MW in kDa) 

DTT-

sensitive 

oligomers  

Construct 
Coordinates 

in RyR2 

No of  

residues 
Monomer Dimer Trimer Tetramer 

 

 

BT4L 1-906 906 101 202 303 404 tetramer 

BT4 1-759 759 85 170 255 340 tetramer 

BT4C 1-654 654 73 146 219 292 dimer 

BT4BL 346-906 560 63 126 189 252 tetramer 

BT4DL 161-906 745 82 164 246 328 tetramer 

 
Table 3.1 Summary of oligomerisation pattern of truncated N-terminal fragments of RyR2 
expressed in HEK293 cells. The dominant type of oligomer formed by chemical crosslinking 
is shown in bold. Oligomers retained upon non-reducing SDS-PAGE (in the absence of 
chemical crosslinking) indicative of the existence of disulphide bonds are shown in the last 
column 
 

 

 

Based on the above findings a working hypothesis of the N-terminus self-interaction 

within the RyR2 tetramer was created. The model assumes the existence of at least 

two distinct interfaces within each subunit involved in the oligomerisation. This type 
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of arrangement would enable the formation of a tetramer around the fourfold 

symmetry axis, and with each subunit potentially providing two independent cysteine 

residues involved in inter-subunit disulphide bond formation. The graphical 

illustration of the model is presented in Figure 3.2. In agreement with the working 

hypothesis, docking of the crystal structure of the N-terminal part of rabbit RyR1 

(residues 1-559) into the cryo-EM map of native RyR1 revealed that this type of 

inter-subunit interaction is indeed plausible (Tung et al. 2010).   

 

 

Figure 3.2 Graphical illustration of the RyR2 N-terminus inter-subunit interaction; cysteine 
residues involved in disulphide bond formation are represented by stars 

 

 

The model implies that in the absence of one of the cysteines the RyR2 N-terminus 

becomes unable to form any type of oligomers by disulphide bonds. Therefore, the 

ability of the BT4C (residues 1-654) fragment to create by disulphide bonds dimers 

and not tetramers (Table 3.1) undermines this hypothesis. If indeed one of the 

cysteines present in the BT4L fragment (residues 1-906) and absent in the shorter 

BT4C fragment was involved in the covalent bond formation between subunits, the 

fragment should not form any disulphide-linked oligomers but remain a monomer. 

However, this apparently discrepant result may have another plausible explanation. 

The shorter BT4C fragment has a substantially reduced self-interaction ability which 

is evident in a chemical crosslinking assay where it forms predominantly dimers with 
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only minor contribution of trimers and tetramers appearing towards longer 

crosslinking time-points. Thus it is speculated that the severely decreased stability of 

higher oligomers may prevent the formation of subsequent disulphide bonds that are 

necessary to hold the tetramer together. 

Having established a hypothetical model of N-terminus self-interaction, the aim was 

to establish the identity of the cysteine residues participating in the inter-subunit 

association. It was presumed that the replacement of a putative cysteine residue 

within the BT4L fragment would deprive it of its ability to form disulphide-linked 

tetramers; however the ability to form oligomers following chemical crosslinking 

would be retained. On the other hand, if the replaced cysteine was not involved in the 

formation of inter-subunit covalent bonds, the fragment would retain its ability to 

form disulphide bond-mediated tetramers which would be present following 

separation with non-reducing SDS-PAGE.  

Amino acid replacement by site-directed mutagenesis constitutes a valuable and 

widely accepted investigative tool used to study the relationship between protein 

structure and function such as the involvement of specific amino acids in enzymatic 

activity or exploring key residues which mediate protein-protein interactions.  In our 

experimental setting, this technique was used with the intention to determine the 

identity of cysteines involved in the inter-subunit covalent bonds.  In circumstances 

when the amino acid role is investigated in respect to its function (in our case the 

ability to mediate the formation of disulphide bonds), the substitution should be 

restricted to an amino acid of similar size and physical properties. This approach aims 

to assure that the phenotype of the mutant can be correlated to the loss/gain of 

function rather than to the disruption of local/global structure of the protein under 

investigation. For this reason, in our experiments, cysteines were replaced with 

serines (Figure 3.3). 

 



113 

 

                                                              

 

Figure 3.3 The chemical structure of cysteine and serine. The replacement of G with C at the 
second position of two cysteine codons alters the DNA sequence to code for serine  

 

 

The BT4L fragment contains 20 cysteines (Figure 3.4) which, according to the 

proposed concept, would require to be tested as single mutants. However, in order to 

increase experimental throughput, cysteines located in close proximity of one another 

such as C615/618/620 and C757/758 were tested together as triple and double 

mutants respectively. In addition, some of the cysteines were excluded from the 

analysis. This decision was based on the results of previous experiments showing that 

all truncated versions of the BT4L fragment are able to form DTT-sensitive 

oligomers (Table 3.1, Figure 3.1). It was speculated that cysteines in the extreme part 

of the N-terminus encompassing residues 1-345 (C24, C36, C47, C65, C131/2, C158, 

and C244) and C-terminus within residues 760-906 (C822) were most likely not 

involved in the disulphide bond formation as fragments lacking those residues 

retained the ability to form DTT-sensitive oligomers (BT4BL and BT4). For this 

reason two of those residues were used as negative controls (C36 and C244).  

 

 

Figure 3.4 Graphical representation of the cysteine location within the BT4L fragment 
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In summary, five new cysteine BT4L mutants (BT4L
C244S

, BT4L
C548S

, BT4L
C577S

, 

BT4L
C615/618/620S 

and BT4L
C633S

) were created and tested together with five previously 

prepared (BT4L
C36S

, BT4L
C361S

, BT4L
C501S

, BT4L
C736S

 and BT4L
C757/758S

). HEK293 

cells were used to express all recombinant fragments, as those cells do not 

endogenously express RyR2. Furthermore, in the course of this investigation and as a 

result of difficulties in data interpretation, additional mutants containing a 

combination of multiple cysteine substitutions were generated and analysed 

(BT4L
C361/501S

, BT4L
C361/615/618/620S 

and BT4L
C501/615/618/620S

). 

Concomitantly, a second independent experimental approach to address the identity 

of cysteines involved in the tetramerisation of the BT4L fragment was undertaken, 

i.e. mass spectrometry. The fundamental concept of this procedure was based on 

consecutive steps of chemical reactions allowing for selective labeling of putative 

cysteines followed by protein immunoprecipitation and mass spectrometry-based 

analysis (Aracena-Parks et al. 2006; Petrotchenko et al. 2006). For a detailed 

description of the experimental rationale please refer to Figure 3.5.  

 

Figure 3.5 Scheme describing site-specific labelling of sulphydryl residues with 
monobromobimane for mass spectrometry-based identification of cysteines involved in 
disulphide bond formation 
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Current advances in mass spectrometry such as the development of soft ionisation 

techniques allowing for ionisation of macromolecules without their fragmentation, 

design of sophisticated mass analysers and construction of complex multistage 

instruments has put this field in the centre of protein research. In principle, commonly 

used mass spectrometry instruments are able to analyse a complex mixture of 

biomolecules and provide a researcher with information concerning the identity, 

quantity and post-translational modification of a given protein. However, in practice 

this type of analysis is extremely complicated and quite often not possible to perform. 

In respect to the experimental goal, it was pivotal to ascertain that the obtained 

peptide spectrum contains fragments with cysteines of interest. In addition there were 

concerns about the ultimate amount of monobromobimane-labelled residues as it was 

expected it to be relatively low. The reasoning was based on three factors; firstly, it 

was expected that a limited amount of diamide-induced disulphides would be formed, 

which in turn would affect the number of residues labelled with monobromobimane. 

Secondly, there were concerns about the efficiency of the labelling reaction and 

thirdly some portion of the monobromobimane moiety was anticipated to be cleaved 

under ionisation conditions as reported earlier (Petrotchenko et al. 2006). In the 

context of the above, the prerequisite step for this experimental approach to work was 

to obtain a sufficient quantity of the pure BT4L fragment. This task was addressed by 

means of immunoprecipitation of the BT4L fragment expressed in HEK293 cells. 

Thus, the aim of the study presented in this Chapter was to identify cysteine residues 

involved in disulphide-mediated oligomerisation of the RyR2 N-terminus by two 

independent techniques: mutagenesis and mass spectrometry. 

3.2 Methods 

3.2.1 Site-directed mutagenesis approach 

Site-directed mutagenesis of the BT4L construct (pCR3-c-Myc vector containing the 

BT4L coding sequence) was performed as described in Section 2.2.1.6. Following 
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sequence verification of mutagenesis-obtained constructs, DNA fragments containing 

the desired mutation were subcloned into the wild type BT4L plasmid in order to 

reduce the risk of spontaneous mutations introduced in a random location within the 

plasmid during mutagenic PCR. This was performed as follows; the verified mutant 

plasmid and the destination plasmid were digested with appropriate restriction 

endonucleases, separated by agarose gel electrophoresis and subjected to DNA 

ligation using the gel extracted DNA fragments of interest (described in detail in 

Section 2.2.1.3, 2.2.1.4 and 2.2.1.5). For restriction enzymes used in subcloning of 

DNA fragments for each BT4L cysteine mutant please refer to Table 3.2. 

Subsequently, the ligation reaction product was used to transform bacteria by means 

of electroporation (Section 2.2.1.8). Obtained colonies were screened as described in 

Section 2.2.1.10. The positive clones were sequenced further to cover the length of 

the whole subcloned DNA fragment and once the sequence was verified, large 

volume overnight bacterial cultures were set up for plasmid isolation as described in 

Section 2.2.1.10. 

 

Construct 

Mutagenic 

PCR template 

plasmid 

Restriction 

endonucleases 

Double (D) 

or 

sequential 

(S) digest 

Coordinates of the 

subcloned 

fragment (bp) 

BT4L
C244S 

 BT4L PmlI, BspEI S 727 – 1377 

BT4L
C548S

  BT4L BspEI, SalI D 

1377 - downstream of 

the last residue of the  

BT4L fragment 

(2839) 

BT4L
C577S

  BT4L BspEI, SalI D as above 

BT4L
C615/618/620S 

 BT4L BspEI, SalI D as above 

BT4L
C633S 

 BT4L BspEI, SalI D as above 

BT4L
C361/615/618/620S 

 BT4L
C615/618/620S

 PmlI, SalI S 
727- downstream 

2893 

BT4L
C501/615/618/620S 

 BT4L
C501S

 BspEI, SalI D 
1377 – downstream 

2893 

 
Table 3.2 List of restriction endonucleases used in subcloning. Coordinates correspond to 
the human RyR2 mRNA, accession number: X98330 
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Obtained plasmids were used to transfect HEK293 cells growing on six-well plates as 

described in Section 2.2.5.2. Each experiment involving cysteine mutants was 

performed with concomitant transfection of cells with the wild-type BT4L.  Cell 

pellets obtained 24 hours after transfection were homogenised (Section 2.2.2.1) and 

half of the sample was treated with DTT (4 °C, 1 h, 10 mM). Total protein 

concentration was evaluated using BCA colorimetric assay and, depending on the 

experiment, 20-50 μg of total protein from DTT-treated and untreated samples were 

subjected to SDS-PAGE and Western blotting (for details please refer to Section 

2.2.2.3.and 2.2.2.4). The BT4L fragment expressed from a pCR3-c-Myc vector 

contains an N-terminal c-Myc epitope. This allows for the protein to be detected by a 

c-Myc antibody (Table 2.1). The secondary anti-mouse HRP-conjugated Ab was used 

for protein visualisation using ECL-based detection kit. 

3.2.1.1 Chemical crosslinking 

HEK293 cells growing on 100 mm Petri dishes were transfected with the BT4L
C361S 

construct as described in Section 2.2.5.2. Each experiment was performed with a 

concomitant transfection of cells with the wild-type BT4L plasmid serving as a 

positive control.  Cell pellets obtained 24 hours after transfection were homogenised 

(Section 2.2.2.1) and one aliquot was treated with DTT (4 °C, 1 h, 10 mM). Total 

protein concentration was evaluated using BCA colorimetric assay and depending on 

the experiment 20-50 μg of total protein was subjected to glutaraldehyde crosslinking 

in a time-dependent manner (Section 2.2.2.2). Proteins were separated by SDS-PAGE 

and subsequently blotted onto PVDF membranes (for details please refer to Section 

2.2.2.3.and 2.2.2.4). The c-Myc antibody and anti-mouse HRP-conjugated Ab were 

used to detect protein presence (Table 2.1). Tetramer to monomer ratio was 

determined by performing densitometry analysis using BioRad Quantity One 

software. Percentage of tetramer was calculated as follows 

%T=ODT/(ODT+ODM)x100 where ODT and ODM corresponds to optical density 

obtained within one time point for tetramer and monomer bands respectively. 

Statistical analysis was carried out using paired, 2-tailed Student’s t test to test mean 
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of difference in tetramer formation between BT4L
C361S 

and wild-type BT4L within 

each time-point studied. 

3.2.2 Mass spectrometry approach 

3.2.2.1 Immunoprecipitation 

The immunoprecipitation of the RyR2 N-terminus (residues 1-906) expressed in 

HEK293 cells was performed using a diverse set of experimental conditions aiming 

to optimise the final result. For details of each experimental setting please refer to 

Table 3.3. The optimised version was performed as follows: HEK293 cell pellets 

obtained from five 100mm Petri dishes transfected with AD4L construct (the pCR3 

vector encoding RyR2 residues 1-906 with N-terminal HA epitope) were 

homogenised in 4ml of immunoprecipitation buffer without CHAPS but 

supplemented with protease inhibitors. Cells were homogenised as described in 

Section 2.2.3.5 and subjected to 1500 xg spin followed by overnight incubation of the 

supernatant at 4 °C in the presence of 1% CHAPS under rotary agitation. Following 

overnight solubilisation, cell lysates were centrifuged at 18 000 xg and the 

supernatant was incubated at 4 °C for six hours with Protein A beads (100 μl of pre-

washed beads was used for 1 ml of cell lysate). This step aimed to pre-clear the cell 

lysate in order to decrease the non-specific binding and was repeated overnight and 

again for six hours the following day. Concurrently, two 25 μl aliquots of pre-washed 

Protein A beads were incubated with 4 μg of HA polyclonal antibody (Table 2.1) in 

200 μl of the IP buffer. Following the three rounds of pre-clearing, cell lysate was 

incubated with HA Ab-bound beads (1 ml of lysate with 25 μl of beads) at 4 °C for 

six hours. Subsequently beads were recovered by centrifugation and incubated with 

the remaining volume of the cell lysate overnight. The following day, beads were 

washed with the IP buffer three times for 10 min at 4 °C and collected by 

centrifugation at 1500 xg for 2 min. Proteins were eluted using 20 μl of 2x reducing 

protein loading buffer, two samples were combined and loaded into one well of 12% 

SDS-polyacrylamide gel. Following the electrophoresis, the gel was washed in 
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deionised water, placed in 1% acetic acid and immediately transported to the Cardiff 

University CBS Mass Spectrometry Facility for further processing. 

 

 

Exp. Matrix 
Protein 

fragment 
IP buffer 

Pre-

clearing 

steps 

Antibody 

Final 

washing 

step 

I 
Protein G 

Dynabeads (20-

40 μl) 

BT4L 

homogenisation 

buffer with 

0.4% CHAPS 

no 
1-2 μg of c-

Myc Ab 

2x10 min 

at 4 °C 

II As above As above 

homogenisation 

buffer with 1% 

CHAPS 

O/N with 

40 μl of 

beads 

(1x) 

As above As above 

III 
100 μl of Protein 

G Dynabeads 
As above As above 

O/N with 

100 μl of 

beads 

(1x) 

2 μg of cMyc As above 

IV 
100 μl of Protein 

A Sepharose 

beads 

AD4L As above As above 
2 μg of HA 

polyclonal Ab 
As above 

V 
50 μl of Protein 

G Sepharose 

beads 

BT4L As above As above 
4 μg of c-Myc 

Ab 

3x10 min 

at 4 °C 

VI 
100 μl of Protein 

A Sepharose 

beads 

AD4L 

homogenisation 

buffer with 1% 

CHAPS and 

BSA at 200 

μg/ml 

As above 
2 μg of HA 

polyclonal Ab 
As above 

VII 
25 μl of Protein 

A Sepharose 

beads 

As above IP buffer  

6 h with 

100 μl of 

beads 

(3x) 

As above As above 

VIII 
2 aliquots of 25 

μl of Protein A 

Sepharose beads 

AD4L 

(4 Petri 

dishes 

transfected) 

As above 

6 h with 

100 μl of 

beads per 

Petri dish 

(3x) 

2 aliquots of 4 

μg of HA 

polyclonal Ab 

As above 

 
Table 3.3 A summary of experimental conditions undertaken in the immunoprecipitation 
process 
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3.2.2.2 Sample preparation for mass spectrometry 

All techniques used at the Mass Spectrometry Unit were conducted following local 

standard operating procedures.  Briefly, upon arrival the gel was stained with 

Coomassie using the Colloidal Coomassie Blue Staining Kit (Invitrogen) following 

manufacturer’s recommendations. The following day, three plugs corresponding to 

the immunoprecipitated protein were removed from the stained band and placed on a 

96-well plate. Additionally, a plug from a band equivalent to the antibody heavy 

chain or one of the protein markers (β-galactosidase or BSA) was taken. This served 

as a positive control and allowed for assessment of quality of downstream procedures 

including protease digestion and equipment performance. Obtained plugs were 

dehydrated using a solution of acetonitrile (50% in 0.1% trifluoroacetic acid) and 

destained with 50% acetonitrile in 25 mM ammonium bicarbonate. Subsequently, 

plugs were washed in 25 mM ammonium bicarbonate until Coomassie stain was 

removed completely, dehydrated with acetonitrile solution and dried in the oven. 

Following reduction and alkylation, samples were dehydrated as described above and 

subjected to protease digestion. Depending on the experiment, different enzymes 

alone or in combination were used. For details of proteases and digestion conditions 

please refer to Table 3.4. 

 

Experiment Protease Conditions (per gel plug) 

I trypsin (Promega) 
62.5 ng trypsin in  25 mM ammonium 

bicarbonate, 37 °C for 4 h 

II chymotrypsin (Promega) 

62.5 ng chymotrypsin in 100mM Tris buffer, pH 

8, room temperature for 3h, sample was cleaned 

up and concentrated using ZipTip resin 

III trypsin/chymotrypsin 
Sequential procedure using optimal conditions for 

trypsin and chymotrypsin respectively 

IV 
V8 protease (ProteaBio 

Europe SAS) 

62.5 ng of V8 protease in 25 mM ammonium 

bicarbonate, 37 °C for 4 h 

V V8 protease/trypsin 
62.5 ng of each 25 mM ammonium bicarbonate, 

37 °C for 4 h 

 
Table 3.4 Summary of proteases and digestion conditions used prior to mass spectrometry 
analysis 
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Following digestion, plugs were placed in an ultrasonic water bath to facilitate 

peptide extraction from gel plugs. The buffer surrounding the plug was transferred to 

a clean plate, dried in the oven and subsequently stored at -20 °C. On the day of the 

analysis, dried peptides were dissolved in the acetonitrile solution and around 10% of 

the initial sample was loaded onto a 384 well MALDI target plate and mixed with the 

appropriate matrix. If necessary, additional 20% of sample was loaded into the well 

and the remaining amount was kept at -20 °C should further analysis be needed.  

Samples were run on the ABI 4800 MALDI TOF/TOF Analyser. 

3.3 Results 

3.3.1 Site-directed mutagenesis 

All plasmid DNA constructs designed to express BT4L containing the desired 

cysteine to serine substitution were successfully generated and their DNA sequence 

was confirmed. A typical set of results representing intermediate steps of the 

mutagenesis process is shown in Figure 3.6.  
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Figure 3.6 Intermediate steps of the experimental procedure generating the BT4L
C577S

 
construct; A: DNA gel showing the amplification product obtained in the mutagenic PCR, B: 
indicative digest of clones following bacteria transformation with the mutagenesis product (1-
3: plasmid DNA obtained from three clones and cut with BspEI/SalI, 1a-3a cut with HindIII), 
C: restriction digest (BspEI/SalI) of the positive clone verified by sequencing, the lower band 
(~1.5 kb) corresponding to the fragment containing cysteine 577 substitution was cut out of 
the gel and subcloned into the native BT4L fragment, D: indicative digest of three clones 
obtained in the subcloning step (1-3: plasmid DNA obtained from three clones and cut with 
HindIII, 1a-3a cut with BspEI/SalI) 

 

3.3.1.1 Cysteines: 36, 244, 548, 577, 633, 736, 757 and 758 are not 

involved in disulphide bond formation 

Wild-type BT4L (RyR2 residues 1-906) expressed in mammalian HEK293 cells 

produces a protein band of ~100 kDa representing BT4L monomers (Figure 3.7). In 

non-reducing conditions, an additional high molecular weight band corresponding to 

an oligomeric form is also observed. This band is no longer present when samples are 

treated with the reducing agent DTT suggesting that BT4L oligomerisation involves 

formation of disulphide bonds between cysteine residues. Based on the molecular 

weight of a BT4L monomer, a tetramer is predicted to appear as a ~400 kDa band.  

However, as evident in Figure 3.7 the high molecular weight band exhibits somewhat 

smaller size. This apparent reduced molecular weight is consistent with a compact 

arrangement of a tetrameric assembly which would be expected to experience less gel 

retardation than a corresponding linear form. Thus the high molecular weight band 
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evident in Figure 3.7 corresponds to the DTT-sensitive oligomer composed of four 

BT4L monomers.   

In concert with the results previously obtained (Table 3.1), the substitution of 

cysteines 36 and 244 did not affect disulphide bond-mediated tetramerisation of the 

BT4L fragment (Figure 3.7; A and B). Similarly, the ability to form DTT-sensitive 

tetramers was retained by two other mutants BT4L
C736S

 and BT4L
C757/578S 

(Figure 3.7; 

F). These findings are in agreement with the previously proposed explanation of the 

BT4C fragment’s inability to form DTT-sensitive tetramers as discussed in Section 

3.1. Likewise, disulphide bond-mediated oligomers were formed by cysteine mutants 

BT4L
C548S

, BT4L
C577S

 and BT4L
C633S 

(Figure 3.7, E and G). 

 

 

Figure 3.7 Representative blots of cysteine mutants; +/- DTT-treated and untreated samples 
respectively. Each mutant was tested concomitantly with the wild-type BT4L fragment in at 
least five independent experiments. Putative candidates in circles. Monomer and tetramer 
indicated by arrows 
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3.3.1.2 Cysteines mutants BT4L
C361S

, BT4L
C501S

 and BT4L
C615/618/620S 

display variable behaviour 

In contrast to the mutants discussed in the preceding section, which were consistently 

indistinguishable from the wild-type BT4L fragment, the substitution of cysteines 

361, 501 and 615/618/620 led to ambiguous results. All three mutants, i.e. two single 

and one triple substitution, displayed either severely reduced cysteine-mediated 

tetramer formation or a complete absence of oligomers in DTT-free samples (Figure 

3.7; A-F, indicated by orange circles). However, the extent to which tetramers were 

reduced or absent was not reproducible; varied between mutants and between 

experiments. Those results were not readily interpretable in respect to the proposed 

model which assumed an “all or nothing” scenario. It should be emphasised that, in 

theory, the removal one of the two cysteines involved in the disulphide bond, should 

result in complete ablation of disulphide bond-mediated tetramers.  Hence, it was 

speculated that the partial, non-reproducible ability of mutants BT4L
C361S

 BT4L
C501S 

and BT4L
C615/618/620S 

to form DTT-sensitive tetramers may arise from the formation of 

alternative disulphide bonds, in which the missing residue is compensated for by 

other cysteine located in spatial proximity, a phenomenon which was observed by 

others (Zha et al. 2009) . In the context of the above, it was speculated that the 

generation of additional mutants containing a combination of the aforementioned 

cysteine substitutions would help to resolve this issue.  

3.3.1.3 The combined mutants suggest an important role of cysteine 361 

in the formation of disulphide bond-mediated tetramers  

Contrary to expectations, the generation and testing of BT4L constructs containing 

multiple cysteine substitutions did not produce a definitive conclusion in respect to 

the identity of residues involved in disulphide bond formation. All three BT4L 

mutants; BT4L
C361/501S

, BT4L
C361/615/618/620S

 and BT4L
C501/615/618/620S

, displayed either 

severely reduced cysteine-mediated tetramer formation or complete absence of 

oligomers in DTT-free samples (Figure 3.8). This partial ability of tetramerisation 

was in disagreement with the assumptions of the model. Furthermore, experiment to 
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experiment variability remained an unresolved issue. However, some important 

observations were made; the ability to form DTT-sensitive tetramers decreased in the 

following order: BT4L
C501/615/618/620S 

> BT4L
C361/615/618/620S 

> BT4L
C361/501S 

clearly 

indicating an additive effect of cysteine mutations. In particular the propensity to 

create cysteine-mediated oligomers was critically reduced in mutants lacking cysteine 

361 and almost completely abolished in the double mutant BT4L
361/501

. However, 

mutation of cysteine 501 alone or in combination with residues 615/618/620 had a 

rather moderate effect on disulphide-mediated oligomerisation. 

 

 

Figure 3.8 Representative blots of combined cysteine mutants; +/- DTT-treated and 
untreated samples respectively. Each mutant was tested concomitantly with the wild-type 
BT4L fragment in at least seven independent experiments. Monomer and tetramer indicated 
by arrows 
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3.3.1.4 Chemical crosslinking of BT4L
C361S

 suggests additional 

disulphide-independent role of cysteine 361in tetramer formation 

The involvement of cysteine 361 in the oligomerisation of the RyR2 N-terminus was 

investigated further. The principal aim was to determine whether the severely reduced 

ability of this mutant to tetramerise in a DTT-sensitive manner is solely dependent on 

the fact that cysteine 361 is involved in disulphide bond formation or whether this 

residue is also taking part in a non-covalent type of inter-subunit interaction. The 

above task was performed using time-dependent chemical crosslinking, a chemical 

reaction that creates covalent bonds between interacting molecules and therefore 

enables preservation of the oligomeric status of the interacting protein partners during 

SDS-PAGE. It was anticipated that comparison of the oligomerisation propensity 

between wild-type BT4L and BT4L
C361S

 in DTT-treated samples (where there are no 

disulphide-mediated interactions) would help to clarify the role of cysteine 361.  

Glutaraldehyde crosslinking of BT4L
C361S 

was performed with the concomitant 

crosslinking of the wild type fragment transfected on the same day as the mutant. 

Since our experimental set up involved a multistep procedure with many factors 

affecting the final outcome including transfection efficiency, protein expression, 

crosslinking conditions and protein transfer, the inclusion of BT4L
WT

 enabled us to 

evaluate the tetramerisation propensity of the BT4L
C361S

 relative to its wild-type 

counterpart within each experiment. With this approach the effect of experimental 

variability in our analysis was substantially reduced.  

Representative blots showing chemical crosslinking of BT4L
WT 

and BT4L
C361S

 are 

presented in Figure 3.9. Time-dependent tetramer formation is reflected by the 

presence of ~400 kDa band which becomes more pronounced as the duration of 

chemical crosslinking increases. At ambient conditions (in the absence of DTT), there 

is a clear reduction in tetramer levels formed by the BT4L
C361S

 mutant compared to 

its wild-type counterpart. (Figure 3.9; left panel). Cumulative data (n=9) following 

densitometry analysis are presented in the left panel in Graph 3.1. In the presence of 

the C361S mutation, the amount of tetramers observed prior to glutaraldehyde 

addition (0 time-point) and indicative of disulphide bond-mediated oligomers, is 

reduced by 60%. The difference in the oligomerisation propensity between the mutant 
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and the wild-type fragment decreases towards longer crosslinking time-points. The 

effect is statistically significant in every time point studied. 

 Qualitatively, the crosslinking performed in the presence of DTT did not reveal 

major alterations in the BT4L tetramerisation propensity induced by cysteine 361 

substitution (Figure 3.9; right panel). However, quantitative analysis (n=7) following 

densitometry measurements revealed that the BT4L
C361S

 fragment displays a reduced 

ability to tetramerise compared to the wild-type fragment in reducing conditions as 

well (Graph 3.1; right panel). The presence of the C361S reduced oligomerisation on 

average by 70%, however the effect was statistically significant only for some of the 

time-points studied. The fact that the above mutant exhibited reduced oligomerisation 

under conditions where disulphide bonds are absent (DTT addition), implies that 

cysteine 361 is also involved in non-covalent protein-protein interactions mediating 

RyR2 N-terminus tetramerisation.  However, additional effects originating from the 

substitution of cysteine with more polar serine residue cannot be excluded. 

 

 

 

Figure 3.9 Representative blots of chemical crosslinking experiments illustrating time-
dependent tetramer formation of BT4L

C361S
 and BT4L

WT
 fragments in the presence and 

absence of DTT (right and left panel respectively). Time-points in minutes as indicated. 
Tetramer and monomer indicated by arrows 
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Graph 3.1 Densitometry analysis of BT4L
WT

 and BT4L
C361S

 tetramer formation in chemical 
crosslinking assay at ambient and reducing conditions. Percentage of tetramer calculated as 
described in Section 3.2.1.1. Data are shown as mean +/-SEM, n=9 and n=7 for ambient and 
reducing conditions respectively; * statistical significance at p<0.05 calculated using paired, 
2-tailed Student’s t test 
 
 

3.3.2 Mass spectrometry 

3.3.2.1 Immunoprecipitation 

The task of obtaining sufficient quantities of the pure N-terminal fragment by 

immunoprecipitation proved to be very difficult. The initial approach using Protein G 

Dynabeads with c-Myc Ab failed to precipitate the BT4L protein and showed 

relatively high levels of non-specific binding (Table 3.3; experiments I-II). Western 

blot analysis revealed that the level of captured protein is hardly detectable. In a 

subsequent experiment the performance of Protein G Dynabeads with Protein A 

Sepharose beads was compared (Table 3.3; experiment III-IV). As Protein A exhibits 

very low affinity for mouse IgG1 (which is mouse monoclonal c-Myc Ab isotype), for 

this particular experiment cells were transfected with the AD4L construct (HA-tagged 

RyR2 residues 1-906). This enabled the use of Protein A compatible antibody, i.e. 

rabbit HA Ab. While the AD4L fragment was immunoprecipitated with Protein A 

Sepharose beads, the use of Protein G Dynabeads proved again to be unsuccessful 

(Figure 3.10). Western blot analysis revealed that with moderate levels of c-Myc Ab 

bound to the beads, the amount of immunoprecipitated BT4L protein remained hardly 

detectable. Thus the failure of this particular approach was determined by two factors: 
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low binding affinity of c-Myc Ab for Protein G Dyanbeads and the inability of the c-

Myc Ab to bind to its epitope on the BT4L fragment. However, since the non-specific 

binding of Protein A beads was considerable and the level of immunoprecipitated 

protein was very low, an additional experiment using c-Myc Ab in combination with 

new Protein G Sepharose beads was performed (Table 3.3; experiment V). Those 

beads however exhibited extremely high non-specific binding and at this point this 

experimental approach was not pursued any further (Figure 3.11). Instead the focus 

was shifted back to Protein A Sepharose beads and the HA-tagged AD4L construct. 

 

 

Figure 3.10 Coomassie stained gel of the RyR2 N-terminus precipitation with Protein A 
Sepharose beads and Protein G Dynabeads in lanes 1A-3A and 1G-3G respectively. Lanes: 
M; molecular weight markers, 1; material eluted from beads used in pre-clearing step, 2; 
material eluted from beads incubated with the relevant antibody (HA for Protein A and c-Myc 
for Protein G beads), 3; material eluted from beads without Ab. Red arrow indicates the 
immunoprecipitated AD4L fragment. 

 

 

 

Figure 3.11 Coomassie stained gel of the immunoprecipitation of the BT4L fragment with 
Protein G Sepharose beads. Lanes: M; molecular weight marker, 1G; material eluted from 
beads incubated with c-Myc Ab, 2G; material eluted from beads used in pre-clearing step. 

 



130 

 

Protein A Sepharose beads were used in the subsequent experiment where AD4L 

immunoprecipitation was performed in the presence of BSA (Table 3.3; experiment 

VI) however non-specific binding remained high. In the following experiment, this 

issue was addressed by two modifications: switching to salt containing buffer (150 

mM NaCl); i.e. the previously used homogenisation buffer was substituted with the 

IP-buffer (for composition details please refer to Section 2.1.2) and increasing the 

number of pre-clearing steps. This modification allowed for a successful 

immunoprecipitation of the AD4L fragment with minimal amount of non-specific 

material (Table 3.3; experiment VII). The identity and quality of the protein was 

confirmed by mass spectrometry. However, at this point there were still concerns 

about the relatively low amount of purified protein which would constitute a 

considerable difficulty in pursuing the experimental approach as discussed earlier in 

Section 3.1. In order to address this issue, in the subsequent experiment (Table 3.3; 

experiment VIII) four times as much cell material as before was processed and 

increased amount of HA Ab was used (Table 3.3; experiment VIII). This 

modification allowed for a satisfactory level of the AD4L fragment to be obtained 

(Figure 3.12). 

 

 

Figure 3.12 Coomassie stained gel of the RyR2 N-terminus precipitation with Protein A 
Sepharose beads. Lanes: M; molecular weight markers, 1A-3A; material eluted from the 
beads used in three consecutive pre-clearing steps, 4A material eluted from beads incubated 
with the HA Ab. Red arrow indicates immunoprecipitated AD4L fragment with gel plugs 
removed for a downstream mass spectrometry analysis. 
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3.3.2.2 Spectral analysis 

The peptide spectrum obtained from purified AD4L protein samples, which 

underwent a standard trypsin digestion, was analysed in respect to the presence of 

particular peptides. This was performed by comparison of the peaks present in the 

sample spectrum with peptide masses obtained following in silico trypsin digestion of 

the RyR2 sequence encompassing residues 1-906 (Table 3.5). 

 

Position in 

the fragment 
Mass 

Cysteine 

residues 
Peptide sequence 

Presence in 

the 

spectrum 

16-30 1729.8425 C24 TDDEVVLQCTATIHK No 

35-45 1207.5888 C36 LCLAAEGFGNR Yes 

46-56 1285.6093 C47 LCFLESTSNSK Yes 

57-76 2274.1798 C65 NVPPDLSICTFVLEQSLSVR No 

123-137 1821.7717 C131/132 HSYSGMYLCCLSTSR No 

143-167 2832.3297 C158 LAFDVGLQEDTTGEACWWTIHPASK No 

236-257 2531.1401 C244 LLHGHMDECLTVPSGEHGEEQR No 

356-380 2946.3978 C361 YGDSVCYIQHVDTGLWLTYQSVDVK No 

486-504 2321.1264 C501 QNLFQEEGMINLVLECIDR No 

547-561 1753.8326 C548 NCAQFSGSLDWLISR No 

565-590 2833.5379 C577 LEASSGILEVLHCVLVESPEALNIIK No 

610-626 1956.9816 C615/18/20 VLDVLCSLCVCHGVAVR No 

627-640 1636.8224 C633 SNQHLICDNLLPGR Yes 

695-739 4780.1109 C736 
VGWASTEGYSPYPGGGEEWG 

GNGVGDDLFSYGFDGLHLWSGCIAR 
No 

751-769 2155.9998 C757/8 TDDVISCCLDLSAPSISFR Yes 

813-829 1918.9771 C822 FLPPPGYAPCYEAVLPK No 

 
Table 3.5 A summary of the spectral analysis of trypsin-digested sample with mass 
acquisition set between 700-3000 MW.  In silico digest was performed using online 
PeptideMass tool available at http://web.expasy.org.  
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Unfortunately, most of the cysteine-containing peptides failed to appear in the 

spectrum. At this point this result was attributed to the fact that most of those 

fragments were of high molecular weight. This problem was addressed in the 

subsequent set of experiments where the purified AD4L protein was subjected to 

digestion using a combination of proteases (Table 3.4; experiment III and V). While a 

combined digestion with trypsin and chymotrypsin did not produce any valid data, the 

combination of trypsin and V8 protease resulted in a good quality spectrum (Table 

3.6). However, this modification failed to significantly enrich the spectrum in 

cysteine-containing peptides.  
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Position in the 

fragment 
Mass 

Cysteine 

residue 
Peptide sequence 

Presence in 

the 

spectrum 

20-30 1269.6983 C24 VVLQCTATIHK Yes 

35-40 676.3334 C36 LCLAAE Yes 

46-50 681.3276 C47 LCFLE No 

57-70 1603.8036 C65 NVPPDLSICTFVLE No 

123-137 1821.7717 C131/132 HSYSGMYLCCLSTSR No 

157-167 1356.6517 C158 ACWWTIHPASK No 

244-251 862.3975 C244 CLTVPSGE No 

356-380 2946.3978 C361 
YGDSVCYIQHVDTGLWLTYQSV

DVK 
No 

501-504 563.2606 C501 CIDR No 

547-561 1753.8326 C548 NCAQFSGSLDWLISR No 

574-580 968.5233 C577 VLHCVLVE Yes 

610-626 1956.9816 C615/18/20 VLDVLCSLCVCHGVAVR No 

627-640 1636.8224 C633 SNQHLICDNLLPGR Yes 

713-739 2956.3471 C736 
WGGNGVGDDLFSYGFDGLHLWS

GCIAR 
No 

751-769 2155.9998 C757/8 TDDVISCCLDLSAPSISFR Yes 

813-824 1410.6398 C822 FLPPPGYAPCYE No 

 
Table 3.6 Summary of the spectral analysis of trypsin/V8 protease-digested sample with 
mass acquisition not restricted.  In silico digest was performed using online PeptideMass tool 
available at http://web.expasy.org.  

 

 

Due to this inability to produce a relevant set of spectral data, the mass spectrometry-

based approach to identify cysteines participating in RyR2 N-terminus disulphide 

bond formation was not pursued further.  
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3.4 Discussion 

The principal aim of the study presented in this Chapter was to identify cysteines 

involved in RyR2 N-terminus disulphide bond formation. Two independent 

techniques were used; amino acid mutagenesis and mass spectrometry-based 

approach. The latter was not pursued beyond the optimisation phase as the 

fundamental condition for this approach to work, i.e. detection of peptides containing 

candidate cysteine residues, was not accomplished. The failure to produce 

experimentally relevant peptide spectrum might be influenced by many factors. It is 

well established that the nature of peptide spectra depends highly on the length of 

peptide fragments generated and their amino acid composition (Medzihradszky et al. 

2000). The use of different digestion conditions enables to manipulate the type of 

fragments generated, however, the identity of fragments appearing in the spectrum 

depends on a number of factors and remains very hard to predict. The low probability 

of some peptide fragments to be ionised combined with the relatively low quantity of 

protein (obtained from an eukaryotic expression system and purified by 

immunoprecipitation) are likely to be the main factors accounting for the inability to 

perform cysteine identification by means of mass spectrometry.  

3.4.1 Cysteines involved in disulphide bond formation do not 

reside in the BT4L N- and C-terminus  

The design of cysteine mutants was primarily based on the results of previous 

experiments involving truncated BT4L fragments (Table 3.1) which suggested that 

disulphide-mediated oligomerisation of the RyR2 N-terminus involves cysteines 

located in the centre of the BT4L fragment i.e. within residues 346-759. This 

reasoning was based on the fact that constructs lacking the first 345 and the last 147 

residues (BT4BL and BT4 respectively) retained the ability to tetramerise in a DTT-

sensitive manner. In agreement with this hypothesis, both mutants BT4L
C36S

 and 

BT4L
C244S

 serving as negative controls, were indistinguishable from the wild-type 

fragment, i.e. oligomerised into tetramers unless treated with DTT (Figure 3.6). 

Similarly both constructs with substitutions of cysteines present in the BT4 fragment 
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and absent in the BT4C fragment (BT4L
C736S

 and BT4L
C757/758S

) retained the ability 

to form DTT-sensitive tetramers (Figure 3.6). This finding is in agreement with the 

earlier proposed interpretation of the BT4C fragment (residues 1-654) forming 

disulphide-mediated dimers rather than tetramers. Assuming that the hypothetical 

model of interaction is correct, if one of the above three cysteines (present in the BT4 

fragment forming disulphide-mediated tetramers) was involved in disulphide bond 

formation, there should be no oligomers formed.  Since mutation of those three 

cysteines in the BT4L fragment did not affect the ability to form DTT-sensitive 

tetramers, the formation of disulphide-mediated dimers by BT4C results from its 

severely compromised oligomerisation ability. 

3.4.2 The elusive role of cysteine 361 in the oligomerisation 

process 

Further investigation of cysteines within residues encompassed by the coordinates of 

BT4C and BT4BL fragments (346-654) did not provide a definite answer to the 

query. Firstly, the possibility that cysteines 548, 577 and 633 might be involved in the 

formation of disulphide bonds was excluded as all three mutants retained the ability 

to tetramerise in DTT-free samples (Figure 3.7). In contrast to the above, the data 

obtained from constructs containing substitutions of the remaining cysteines 361, 

501, 615/618/620 was not conclusive (Figure 3.7). Generation of mutants containing 

a combination of serine substitution for the above cysteine residues did not resolve 

this issue completely. However, those results indicated that mutation of cysteine 361 

has the most profound effect on the formation of DTT-sensitive tetramers (Figure 

3.8).  

If cysteine 361 is involved in the formation of disulphide bonds what is the identity of 

its partner and why did the mutants retain the ability to form tetramers? Tetramer 

formation, although severely compromised, is difficult to interpret in the context of 

our model which predicts “all or nothing” scenario. Assuming that the proposed 

hypothesis is correct, one possible explanation is that none of those five cysteines (i.e. 

361, 501 and 615/618/620) mediates formation of disulphide bonds. Instead they 

participate in non-covalent inter-subunit protein-protein association either directly or 
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indirectly via allosteric effects. Indeed, chemical crosslinking experiments revealed 

that cysteine 361 affects tetramer formation even in the presence of the reducing 

agent DTT, which implies its role in the disulphide-independent interaction (Figure 

3.9, Graph 3.1).  

3.4.3 DTT-sensitive tetramers – alternative models of 

interaction 

If cysteine 361 mediates self-association of the BT4L fragment into tetramers in a 

manner independent of disulphide bonds, then which cysteines participate in 

disulphide bond formation? As all the putative residues within the BT4L fragment 

were mutated, the list of possible other candidates is empty. This then brings another 

question; if one assumes that none of the cysteines within the BT4L fragment is 

involved in the disulphide-mediated N-terminus association, why are the oligomers 

sensitive to DTT-treatment? In principle, following SDS-PAGE all non-covalent 

interactions should be destroyed and in the absence of inter-subunit disulphide bonds 

one would expect the BT4L fragment to be solely in a monomeric form, which is 

clearly not the case. Thus, one should consider the possibility of formation of SDS-

resistant oligomers, a phenomenon well documented in the literature (Rotem et al. 

2010) and also encountered in this study on some occasions. Notably, resistance of 

protein oligomers to a combination of denaturants such as SDS and urea was reported 

by others (Bai et al. 2010).  Nevertheless, if the retention of an oligomeric form is 

indeed due to SDS-resistance, one should not observe any difference between 

samples treated or not treated with DTT. The dependence of BT4L tetramer 

formation on the presence of a reducing agent clearly points out towards the 

involvement of disulphide bonds. One possible explanation to account for the effect 

of DTT is the presence of intra-subunit disulphide bonds (between cysteine residues 

located within the same subunit) that confers SDS-resistance by means of structural 

changes within the fragment allowing it to interact much more effectively within a 

tetramer. In fact, major alterations in protein structure as well as changes in the 

resistance of protein oligomers to chemical and physical protein denaturants upon 

formation of intra-molecular disulphide bonds have been reported by others (Grande 
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et al. 2002; Brandes et al. 2009).  Moreover, in RyR1, allosteric effects of covalent 

modifications of N-terminal cysteines were described by Wu and colleagues (Wu et 

al. 1997).  In this study, the authors showed that the alkylation of sulfhydryls located 

within the RyR1 N-terminus prevents the formation of inter-subunit disulphide bonds 

involving residues located in distant fragments of the protein. Thus the experimental 

variability observed for some of the cysteine mutants investigated in the course of this 

work i.e. their remaining ability to form DTT-sensitive oligomers might originate 

from partial SDS-resistance conferred by the presence of multiple intra-subunit 

disulphide bonds.  

There is also an alternative scenario. Assuming a more complex model of N-terminus 

association, where the inter-subunit covalent interaction is mediated by multiple 

disulphide bonds, i.e. involving more than two cysteines per subunit, identification of 

putative candidates by mutagenesis becomes clearly unfeasible. This above 

possibility would also explain why the ability to tetramerise is retained even in 

mutants containing multiple cysteine substitutions. 

Finally, one should consider a prominent flexibility of biological systems to 

compensate for missing components. In respect to this study, it would mean 

formation of alternative disulphide bonds between the remaining cysteine and other 

cysteines located close enough to replace the mutated residue. Notably, this 

phenomenon has been observed by others using equivalent experimental approach, 

i.e. mutagenesis (Zha et al. 2009). Formation of disulphide bonds is strictly dependent 

on the reactivity of a given cysteine and the distance between its putative partners. 

Most cytoplasmic thiols have pKa values greater than 8 which make them largely non-

reactive. The lower pKa values of cysteines involved in covalent modifications are 

defined by their surrounding microenvironment. Thus in order for one cysteine to 

compensate for the other, two conditions must be fulfilled: the residue should be 

close enough and it should also possess unique chemical properties rendered by 

neighboring amino acids. Although challenging, this type of compensation has been 

well documented. In a study aiming to characterize a single-cysteine thioredoxin A 

mutant, the authors showed that substitution of a so called “attacking” cysteine with 

unique chemical properties resulted in its role being undertaken by a neighboring 

residue normally lacking those properties in the wild-type protein (Kouwen et al. 

2008). More importantly, the new role is fulfilled by substantial conformational 
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changes within the protein structure. Therefore, the potential ability of other cysteines 

to compensate for the missing residue further complicates data interpretation obtained 

by mutagenesis. 

3.4.4 Location of putative cysteine residues – feasibility of 

disulphide bond formation 

In the course of this study, the crystal structure of the rabbit RyR1 N-terminus 

(residues 1-559) was published (Tung et al. 2010). This enabled to visualize the 

tertiary arrangement of cysteine residues conserved between RyR1 and RyR2 and 

assess their location in the broad context of disulphide bond formation. More 

importantly, the docking of the above structure into the full length of RyR1 cryo-EM 

map revealed potential sites of inter-subunit interaction which were of our primary 

interest.  

RyR1 cysteine 346 which is equivalent to residue 361 in RyR2 is located at the 

boundary of β20-21 loop and β-strand 21. This loop lies near an inter-subunit contact 

site and was suggested to be involved in the inter-subunit salt bridge. Notably, based 

on the docking of the crystal structure obtained for a highly similar IP3R N-terminus 

into the cryo-EM map of the full length channel, the β20-β21 loop together with the 

β8-β9 loop constitutes the major contact point between adjacent subunits (Seo et al. 

2012). 

However according to the docking, cysteine 361, which substitution appears to have  

the most profound effect on the formation of DTT-sensitive tetramers,  is relatively 

far away from the suggested inter-subunit interface and is also buried by part of the 

β20-21 loop (Figure 3.13). The above would suggest that this residue is unlikely to be 

accessible for any type of disulphide bond formation (intra- or inter-subunit). 

However three points should be noted. Firstly, according to the crystal structure, a 

different residue - cysteine 36 is also buried; nevertheless in the full length RyR1, it 

was shown to undergo oxidation to disulphides (Aracena-Parks et al. 2006). 

Secondly, the RyR1 N-terminal fragment whose structure was determined represents 

only 60% of the size of the BT4L construct. It is plausible that the presence of the 
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remaining residues affects conformation of the shorter fragment.  This point is further 

supported by the fact that while the BT4L fragment exhibits ability to tetramerise, no 

oligomerisation was detected in case of the crystallised, shorter RyR1 fragment (Tung 

et al. 2010). Thirdly, since the RyR1 N-terminus shares only 71% sequence identity 

within the first 906 amino acids with human RyR2, one might expect isoform-

specific, local differences in the tertiary arrangement. This difference is further 

reinforced by the fact that the corresponding RyR1 fragment contains 26 cysteines 

while there are only 20 cysteines in RyR2. Moreover, out of four cysteines reported 

to undergo redox modifications within this region in RyR1 (cysteine 36, 253, 315 and 

811), only two are present in RyR2 (cysteine 36 and 811) (Aracena-Parks et al. 2006). 

Despite a high degree of sequence homology between cardiac and skeletal isoforms, 

the two substantially differ in their response to some of the physiological and 

pharmacological modulators. The subtle local differences in the protein structure are 

for example speculated to account for the inability of RyR2 to bind a skeletal muscle 

relaxant dantrolene in spite of its putative binding site (residues 601-620) being 

present in RyR2 (Paul-Pletzer et al. 2005).  

 

 

Figure 3.13 Docking of the RyR1 N-terminus (1-559) into cryo-EM map of the full length 
RyR1 (Tung et al. 2010). All cysteines located in the fragment shown as yellow spheres, 
residues corresponding to cysteine 501 and 361 in the RyR2 in blue and red respectively, 
β20-21 loop in orange. Predicted subunit boundary indicated with purple line. Images created 
using The PyMOL Molecular Graphic Software 
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The publication of the N-terminus crystal structure also allowed us to visualize the 

location of another candidate residue – cysteine 501. As seen in Figure 3.13 cysteine 

501 lies not only far away from the predicted inter-subunit boundary but is also 

located within an α-helix which constitutes part of a five α-helix bundle domain. 

Based on its location, cysteine 501 seems rather unlikely to be involved in the 

formation of disulphide bonds. The observed reduced ability of C501 mutants to form 

disulphide-mediated tetramers might originate from a local disturbance of the helix 

bundle induced by the more polar serine residue rather than its direct participation in 

disulphide bonds.  

The location of cysteines substituted in the third mutant under investigation, i.e. 

BT4L
C615/618/620S 

could not be visualized as the published crystal structure did not 

include those residues. The possibility of these cysteines to be involved in disulphide 

bond formation would be very intriguing in respect to the fact that they lie within the 

putative dantrolene binding site. Dantrolene has been used to treat symptoms of 

malignant hyperthermia, a life-threatening disorder caused by mutations in RyR1. As 

mentioned earlier, in spite of the presence of the dantrolene-binding sequence in 

RyR2, the full-length RyR2 was shown to be a very weak target for this drug. 

However, a growing number of reports suggest a therapeutic effect of dantrolene in 

cardiac disorders associated with RyR2 dysfunction such as CPVT (Kobayashi et al. 

2010; Jung et al. 2012) and heart failure (Kobayashi et al. 2009; Maxwell et al. 2012). 

Since RyR2 defective activity is thought to be correlated with substantially increased 

levels of oxidative stress in heart failure, it would be intriguing to speculate that the 

therapeutic effect of dantrolene lies upon its ability to modulate covalent 

modifications of those putative cysteines. This scenario however remains to be 

verified. Interestingly, cysteines 615 and 618 constitute the CXXC motif, which was 

shown to be employed by a number of redox-sensitive proteins for formation, 

isomerization and reduction of disulphide bonds (Fomenko and Gladyshev 2003). 

The CXXC motif gives rise to a number of CxxC-derived motifs where one of the 

cysteines is replaced by serine or threonine (TXXC, SXXC, CXXT and CXXS). 

Notably, C618 is the only conserved cysteine between RyR2, RyR1, RyR3 and all 

three isoforms of IP3R within residues encompassing the BT4L fragment (Figure 

3.14). Moreover, C615 which is conserved between ryanodine receptors is replaced 
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by serine in inositol trisphosphate receptors thus retaining the arrangement 

characteristic for CXXC-derived motifs. 

 

 

Figure 3.14 Sequence alignments of human RyR and IP3R isoforms. Multiple alignments 
were performed with NCBI Constraint-based Multiple Alignment Tool available online at 
http://www.ncbi.nlm.nih.gov /tools/cobalt. 

 

3.4.5 Disulphide bond formation – experimental artifact? 

In order to eliminate the possibility that disulphide-mediated tetramers constitute an 

artifact of the experimental approach undertaken in this study, additional experiments 

were performed using NEM (a compound which alkylates sulphydryl groups). Cell 

suspension was treated with this agent prior to cell lysis to alkylate free sulphydryl 

groups.  Since DTT-sensitive oligomers were also observed in samples treated with 

NEM (Figure 3.15), the observed disulphide-linked tetramers are unlikely to result 

from air oxidation during sample processing.  

 

 

Figure 3.15 Representative blots of cysteine mutants. Cell pellets were suspended in the 
homogenisation buffer containing 50 mM NEM and processed as described earlier; +/- DTT-
treated and untreated samples respectively 
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In addition, the above experiment revealed one exceptionally relevant detail, i.e. there 

was an apparent difference in the electrophoretic mobility of bands corresponding to 

monomers between samples treated and not treated with DTT with the latter 

migrating faster (Figure 3.16).  Cysteine alkylation of the BT4L fragment with NEM 

would be expected to increase the electrophoretic mobility of the fragment of around 

0.12 kDa per bound molecule; assuming alkylation of all cysteines that would give a 

difference of around 2.4 kDa, an effect on the border of detection on a 6% gel. As 

DTT was added after NEM treatment, it not only reduced disulphide bonds but also 

reacted with NEM, minimizing the possibility of NEM being able to alkylate freshly 

DTT-reduced thiols. Thus, the increased mobility of a non-reduced monomer would 

originate solely from the intra-monomer disulphide bond or bonds which make 

protein conformation more compact and allow it to migrate faster. However if this 

was the case, the difference in the mobility between DTT treated and non-treated 

samples would be detectable without treatment with NEM. Since this is not the case, 

one might speculate that DTT treatment reduces internal disulphide bonds which are 

further alkylated by NEM. This is possible because NEM is present in substantial 

molar excess (50 mM versus 10 mM DTT). In the above scenario, the reduction of 

disulphide bonds would lead to changes in the protein structure making previously 

buried thiols exposed and therefore able to react with NEM, further increasing an 

apparent molecular weight of the BT4L fragment in reducing conditions. Thus, the 

observed increased mobility of a non-reduced monomer would originate from two 

additive factors; the intra-monomer disulphide bond or bonds which make protein 

conformation more compact and the labeling of a limited number of cysteines which 

are accessible in a non-reduced conformation. Notably, dramatic changes in the 

reactivity of protein thiols with NEM associated with alterations in protein structure 

has been reported by others (Bednar 1990). The explanation presented above would 

support the notion that there is at least one internal disulphide bond within the BT4L 

fragment. However, in order to confirm this hypothesis further experiment involving 

high-resolution SDS-PAGE and thiol-specific labeling using compounds of higher 

molecular weight than NEM would be required.    
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Figure 3.16 Representative blots of cysteine mutants showing differences in the 
electrophoretic mobility of NEM-alkylated monomers revealed upon treatment with DTT; +/- 
DTT-treated and untreated samples respectively 

 

3.4.6 Concluding remarks 

While the identity of cysteines involved in the formation of DTT-sensitive tetramers 

was not conclusively determined, the results obtained in this study strongly suggest 

that disulphide bond formation within the RyR2 N-terminus is a physiologically 

relevant phenomenon. The fact that the BT4L fragment retains the ability to 

oligomerise upon DTT-treatment suggests that those bonds are not essential for N-

terminus self-interaction. Consequently, this implies that oxidation to disulphides 

might constitute a regulatory mechanism. Indeed, covalent modifications of cysteines 

have been reported to control not only physiological aspects of muscle performance 

(Wang et al. 2010; Sun et al. 2011) but have been also implicated in the pathogenesis 

of RyR-associated disorders (Terentyev et al. 2008a; Belevych et al. 2009; Cutler et 

al. 2012).  

The cumulative data obtained in this study call for the proposed model of interaction 

to be reconsidered. It is rather unlikely that DTT-sensitive oligomers originate from a 

single disulphide bond across subunits. The amended model of N-terminus 

association proposes the involvement of multiple cysteines in the formation of intra 

and/or inter-subunit disulphide bonds. 
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Chapter 4 

 

Determinants of RyR2  

N-terminus tetramerisation 
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4 Determinants of RyR2 N-terminus 

tetramerisation 

4.1 Introduction 

Based on the tetramerisation pattern of truncated BT4L fragments (unpublished 

findings, Table 4.1.) the core of the N-terminus association was proposed to lie in the 

centre of the fragment with both N-terminal and C-terminal residues contributing to 

the overall oligomer stability. Those studies provided general insights into N-

terminus self-association process; however detailed information regarding the 

location of residues essential for tetramerisation was missing.  Moreover, further 

truncation of the BT4L fragment led to the complete loss of the oligomerisation 

ability (Table 4.1) suggesting that fragments containing less than 50% of the original 

BT4L sequence are most likely inappropriately folded. Thus the principal goal of this 

study was to identify sites of the inter-subunit contact using an alternative approach.   

 

Construct Coordinates in RyR2 
No of  

residues 
Oligomer formation 

BT4L 1-906 906 tetramer (strong) 

BT4 1-759 759 tetramer (moderate) 

BT4C 1-654 654 dimer/trimer/tetramers (minor species) 

BT4BL 346-906 560 tetramer (moderate/weak) 

BT4DL 161-906 745 tetramer (moderate/strong) 

BT4A2 1-418 418 no 

BT4B 346-759 413 no 

BT4EL 565-906 341 no 

 
Table 4.1 Summary of chemical crosslinking of truncated BT4L fragments expressed in 
HEK293 cells.  

 

 

The experimental design undertaken in this study aimed to focus on relatively short 

stretches of residues exhibiting the potential to be involved in protein-protein 



146 

 

interactions. Computational methods used for identification of such interfaces have 

evolved rapidly in recent years. Those approaches are mostly structure-dependent and 

therefore rely heavily on the existence of protein tertiary information.  The structure-

independent methods which are based on factors such as conservation of gene context 

and phylogenetic tree analysis are used to discover novel interactions between 

different gene products and therefore are not applicable to the experimental goal of 

this study (Szilágyi et al. 2005).  The concept that a protein primary sequence alone 

can be used to predict protein-protein interaction interfaces remains somewhat 

controversial.  A primary sequence is however sufficient to predict a local secondary 

structure which was shown to exhibit unique distribution at sites of protein-protein 

association. The detailed structural analysis of protein interfaces involved in homo- 

versus hetero-oligomerisation revealed for example that regular secondary structures 

as opposed to non-regular structures prevail in the former (Guharoy and Chakrabarti 

2007). Nevertheless, application of those findings to the experimental approach 

undertaken in this study would in fact require the knowledge of the N-terminus 

tertiary structure to establish which of the putative secondary elements are located on 

the protein surface and thus remain physically accessible for the interaction to take 

place.  

In the absence of such information at that time, the experiments were rationalised on 

the findings of the formerly conducted crosslinking experiments. As a result, the 

attention was drawn to the region located between residues 654 and 759. The 

substantial difference in the oligomerisation patterns between fragments BT4 and 

BT4C (Table 4.1) implied that at least some part of the sequence absent in the BT4C 

construct (residues  655-759) must be involved in the oligomerisation process. While 

the BT4 fragment (1-759) displays a slightly reduced ability to form tetramers when 

compared to the BT4L fragment, chemical crosslinking of the BT4C (1-654) 

fragment resulted in all types of oligomers including dimers, trimers and tetramers. 

Structure-based sequence analysis with the NCBI Conserved Domain Search Tool 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/) revealed that this RyR2 sequence 

contains a SPRY domain which aligns with the human pyrin SPRY domain (Figure 

4.1). 
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Figure 4.1 Structure-based sequence alignment of the human pyrin SPRY domain with the 
BT4L sequence using the Conserved Domain Tool; red font indicates high degree of 
conservation, blue indicates less conserved residues, unaligned residues in grey, β-strands 
highlighted in grey (based on (Weinert et al. 2009). 

 

 

SPRY domains generally function as protein-protein interaction motifs (Perfetto et al. 

2013). In ryanodine receptors SPRY domains are present in three copies; however 

their exact role remains unknown. Structurally they are composed of two antiparallel 

β-sheets with β-strands connected by unstructured or α-helical linkers. In the case of 

pyrin the SPRY domain contains two five-stranded β-sheets in a sandwich like 

arrangement (Weinert et al. 2009) (Figure 4.2).  

 

 

Figure 4.2 Crystal structure of pyrin SPRY domain (PDB ID; 2WL1_A); Residues 
corresponding to the amino acids present in the BT4L but absent in the BT4 fragment in light 
grey (upper panel, image created using The PyMOL Molecular Graphic Software). Sequence 
alignment of BT4L and BT4 fragments with the part of the human pyrin SPRY domain (lower 
panel); dark grey boxes indicate β-strands 
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The BT4C fragment, which forms dimers, trimers and tetramers, lacks the whole 

SPRY domain. However, the absence of this domain per se cannot fully account for 

the observed BT4C behavior as the BT4 fragment also lacks a substantial part of 

SPRY domain; i.e. three full β-strands from one β-sheet and one strand from another 

β-sheet (Figure 4.2), while its tetramerisation ability is only slightly compromised as 

compared to the BT4L fragment. The extent of missing residues in the above 

fragment would be predicted to cause a serious misfolding of the domain as a whole. 

Hence, it was speculated that the presence of an intact SPRY domain is not essential 

for the process of oligomerisation; however some parts of this domain are likely to 

mediate N-terminus self-association. In order to identify those determinants, β-strand 

6 and part of the preceding loop were removed. The above approach resulted in the 

generation of the BT4Δ12 construct, which lacks 12 amino acids from the BT4 C-

terminus (Figure 4.3). The BT4Δ12 fragment was expressed in HEK293 cells, which 

lack endogenous RyR2 expression, and its ability to oligomerise was assessed by 

chemical crosslinking. The obtained results prompted us to investigate the role of the 

SPRY β5-β6 loop in the context of the larger BT4L fragment. This approach was 

undertaken by generating an internal deletion mutant BT4L
SPRYβ5-β6loop

 which lacks 5 

residues within the β5-β6 loop of the SPRY domain (Figure 4.3) 

 

 

Figure 4.3 Coordinates of the BT4Δ12 and BT4L
SPRYβ5-β6loop

 constructs in respect to the pyrin 
sequence. Grey boxes indicate β-strands 5 and 6, dashed lines indicate deleted residues. 

 

 

In the course of our experiments, the crystal structure of the RyR1 N-terminus was 

published (Tung et al. 2010). This was followed by a deposition of the IP3R1 N-

terminus structure, which revealed that both N-termini display nearly identical 

conformation, i.e. the three structural domains of IP3R1 can be individually 

superimposed on the corresponding domains in the RyR1. Those domains were also 
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shown to exhibit nearly identical relative orientation with similar domain interfaces 

(Seo et al. 2012). More importantly, docking of both structures into the cryo-EM 

maps of the corresponding full length proteins revealed a comparable arrangement of 

N-termini around the four-fold symmetry axis and exposed the putative sites of inter-

subunit interactions. For the RyR1, those sites included flexible loops connecting β-

strand 13 and 14, β-strand 22 and 23 and a part of loop connecting β-strand 8 and 9. 

In addition, the docking showed the putative inter-subunit pairing of two oppositely 

charged residues located within the loop connecting β-strand 20 and 21 (Figure 4.4). 

Interestingly, the docking of the IP3R1 N-terminus in the cryo-EM map of the full 

length receptor revealed only two prospective sites of the inter-subunit contact; loop 

β8-β9 and β20-β21. 

 

 

Figure 4.4 Relative orientation of the RyR1 N-terminus docked into two subunits of the cryo-
EM map of the full length receptor; line indicates predicted subunit boundary, loop β8-β9 in 
blue, loop β20-β21 in orange with two putative residues involved in a salt bridge shown as 
orange lines, beginning and the end of the loop β13-β14 and β22-β23 in red and pink 
respectively, large parts of both loops missing indicating high flexibility of those fragments 
 
 

 

In order to explore the contribution of these putative loops in the process of N-

terminus self-association, a series of internal BT4L deletion mutants was generated. 

Constructs were expressed in HEK293 cells and tested for their oligomerisation 

properties by chemical crosslinking. The size of the deletion in each loop was 
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dictated by the relative distance of the preceding and the following β-strands. The 

preservation of the three dimensional structure was imperative to evaluate the direct 

role of each loop in the inter-subunit interaction. Hence, only a subset of amino acids 

was removed from each loop assuring that a sufficient number of residues was 

available to bridge the gap between the two β-strands without imposing any structural 

constraints. Due to the above, it was not feasible to introduce a significant deletion in 

the loop β13-14 which is only four residues long. The list of the generated deletion 

mutants with detailed information concerning the sequence and coordinates of the 

removed residues is presented in Table 4.2. The location of secondary structure 

elements and loops in the primary sequence of RyR2 is presented in Figure 4.5. A 

summary diagram showing positions of all deletions tested is presented in Figure 4.6. 

 

Deletion 

mutant 
Removed sequence 

Deletion 

coordinates 

Predicted MW 

(kDa) 

for a monomer 

BT4L
β8-β9loop

 KQRSEGEKVRVG 167-178 100 

BT4L
β20-β21loop

 KEKLDVGVRKEVDGMGTSEIKYGD 335-358 99 

BT4L
β22-β23loop

 SVRMG 381-385 101 

BT4L
SPRYβ5-β6loop

 LLRTD 748-752 101 

 
Table 4.2 List of generated deletion mutants showing the coordinates and primary sequence 
of removed fragments 

 

 
 
Figure 4.5 Location of secondary structure elements in the primary sequence of RyR2; β-
strands in grey, α-helices in red (based on the RyR1 N-terminus crystal structure (Tung et al. 
2010) and shown for residues encompassing strands β1-β23) 
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Figure 4.6 Graphical summary of the BT4L deletion fragments tested  
 

4.2 Methods 

4.2.1 Generation of the truncated BT4Δ12 construct 

The BT4Δ12 construct was generated by cloning a specific DNA fragment obtained 

in a standard PCR reaction (Section 2.2.1.1) into the BT4L plasmid. The PCR 

reaction was performed in the presence of forward and reverse primers (V8.1531-48 

and SPREV.2343-62 respectively; Table 2.2) and the BT4L plasmid as a template. 

The PCR product (1 kb) contained a new SalI restriction site at the 3’ end introduced 

by the reverse primer. The new DNA fragment (PCR product) and the destination 

plasmid were digested with BspEI and SalI restriction enzymes, separated by agarose 

gel electrophoresis and subjected to ligation following gel extraction of the fragments 

of interest (described in detail in Section 2.2.1.3, 2.2.1.4 and 2.2.1.5). Subsequently, 

the ligation reaction was used to transform bacteria by means of electroporation 

(Section 2.2.1.8). Obtained colonies were screened as described in Section 2.2.1.10. 
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The positive clone was sequenced further to cover the length of the whole subcloned 

DNA fragment and once the sequence was verified, large volume overnight bacterial 

culture was set up for plasmid isolation as described in Section 2.2.1.10. 

4.2.2 Generation of internal deletion mutants 

Deletions were introduced into the BT4L construct as described in Section 2.2.1.7. 

The removal of relevant residues was verified by DNA sequencing. DNA fragments 

containing the desired deletions were subcloned into the wild type BT4L construct 

following the approach described for cysteine mutants in Section 3.2.1. Detailed 

information concerning restriction enzymes used in the subcloning of DNA fragments 

can be found in Table 4.3.  

 

Construct 
Restriction 

endonucleases 

Double (D) or 

sequential (S) 

digest 

Coordinates of the subcloned 

fragment (bp) 

BT4L
β8-β9loop

 HinDIII n/a Upstream of the start codon - 1818 

BT4L
β20-β21loop

 PmlI, BspEI S 727 - 1377 

BT4L
β22-β23loop

 PmlI, SalI S 
727 – downstream of the last residue of the  

BT4L fragment (2839) 

BT4L
SPRYβ5-β6 

BspEI, SalI D 1377- downstream 2839 

 
Table 4.3 List of restriction endonucleases used in subcloning. Coordinates correspond to 
the human RyR2 mRNA, accession number: X98330 
 
 

4.2.3 Chemical crosslinking 

Obtained plasmids were used to transfect HEK293 cells growing on 100 mm Petri 

dishes as described in Section 2.2.5.2. Each experiment was performed with a 

concomitant transfection of cells with the wild-type BT4L plasmid serving as a 

positive control.  Cell pellets obtained 24 hours after transfection were homogenised 

(Section 2.2.2.1) and one aliquot was treated with DTT (4 °C, 1 h, 10 mM). Total 
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protein concentration was evaluated using BCA colorimetric assay and depending on 

the experiment 20-50 μg of total protein was subjected to glutaraldehyde crosslinking 

in a time-dependent manner (Section 2.2.2.2). Proteins were separated by SDS-PAGE 

and subsequently blotted onto PVDF membranes (for details please refer to Section 

2.2.2.3.and 2.2.2.4). The c-Myc antibody and anti-mouse HRP-conjugated Ab were 

used to detect protein presence (Table 2.1). Tetramer to monomer ratio was 

determined by performing densitometry analysis using BioRad Quantity One 

software. Percentage of tetramer was calculated as follows 

%T=ODT/(ODT+ODM)x100 where ODT and ODM corresponds to optical density 

obtained within one time point for tetramer and monomer bands respectively. 

Statistical analysis was carried out using paired, 2-tailed Student’s t test to test mean 

of difference in tetramer formation between fragments containing internal deletion 

and wild-type BT4L within each time-point studied. 

4.2.4 Co-immunoprecipitation 

Co-immunoprecipitation assays were performed to confirm our findings from 

chemical crosslinking experiments. To assess the interaction between the wild-type 

BT4L and the fragment containing the β8-β9 loop deletion HEK293 cells were co-

transfected with two constructs: the BT4L
β8-β9loop 

(c-Myc-tagged) and the AD4L 

construct (HA-tagged BT4L fragment). In parallel experiments, AD4L was co-

expressed with the wild-type BT4L which served as positive control. Co-

immunoprecipitation was performed as described in Section 2.2.2.6. Polyclonal HA 

antibody (Table 2.1) and protein A Sepharose beads were used to immunoprecipitate 

the AD4L fragment. The c-Myc Ab was used in Western blot to detect the presence 

of co-precipitated BT4L proteins.  

The level of co-precipitated BT4L proteins was determined by densitometry. In order 

to correct for the differences in the expression level between BT4L
WT

 and BT4L
β8-

β9loop
 (protein input), the optical density values obtained for the co-

immunoprecipitated, specifically bound protein were normalised against the amount 

of the input protein in the lysate. The average amount of protein in the lysate was 

calculated as follows: (OD1*50 + OD2*200)/2, where OD1 and OD2 represent optical 
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density obtained for bands corresponding to the 1/50
th

 and 1/200
th

 of the lysate 

volume processed in the co-immunoprecipitation respectively. In cases where some 

extent of non-specific binding occurred, the values obtained for specific binding were 

corrected accordingly. Statistical analysis was carried out using paired, 2-tailed 

Student’s t test to test mean of difference in the amount of co-precipitated protein 

between BT4L
WT  

 and BT4L
β8-β9loop

. 

4.3 Results 

All deletion constructs (i.e. BT4L
SPRYβ5-β6loop

, BT4L
β8-β9loop

, BT4L
β20-β21loop

, BT4L
β22-

β23loop
) and the truncated version of the BT4 fragment (i.e. BT4Δ12) were successfully 

generated and their DNA sequence was confirmed. A typical set of results 

representing intermediate steps of construct generation are shown in Figure 4.7.  

 

 

Figure 4.7 Intermediate steps of the experimental procedure generating the BT4L
β20-β21loop

 
construct; A: DNA agarose gel showing the amplification product obtained in the PCR with 
deletion-introducing primers, B: indicative digest of clones following bacteria transformation 
with the PCR product treated with T7 Gene 6 Exonuclease (1-7: plasmid DNA obtained from 
seven clones and cut with HindIII); faster mobility of some of the lower bands indicates 
putative clones containing the deletion, C: restriction digest (PmlI/BspEI) of the positive clone 
verified by sequencing, the lower band (~0.6 kb, indicated by an orange arrow) 
corresponding to the fragment containing the 72 bp deletion was cut out of the gel and 
subcloned into the full length BT4L 
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4.3.1 The BT4Δ12 displays a unique oligomerisation pattern 

Chemical crosslinking of the BT4Δ12 construct (residues 1-747) revealed a 

distinctively different oligomerisation pattern as compared to the BT4L and the BT4 

fragments. While the BT4L fragment associates into tetramers in a time dependent 

manner with minimal amount of dimers appearing only towards longer crosslinking 

time-points (analogous behaviour is exhibited by BT4, however the amount of 

tetramer formed is slightly lower), the BT4Δ12 construct created mostly dimers and 

tetramers with a minor contribution of trimers (Figure 4.8). In the absence of DTT, 

the predominant oligomeric species present at the beginning of chemical crosslinking 

was a dimer as reflected by the presence of ~164 kDa band. As the reaction 

proceeded in time, the amount of dimer gradually decreased with the concomitant 

increase in tetramer formation (~330 kDa) which became a major oligomeric form 

present at the 60 min time-point. In some instances a faint band corresponding to a 

trimer was also evident (~246 kDa). Interestingly, in reducing conditions (10 mM 

DTT) BT4Δ12 formed mostly trimers and tetramers. Due to the presence of 

intermediate oligomeric species (i.e. dimers and trimers), densitometry-based analysis 

of tetramer to monomer ratio was not performed. 

 

Figure 4.8 Representative blots of chemical crosslinking experiments illustrating time-
dependent oligomer formation of BT4Δ12 and BT4L

WT
 fragments in the presence and 

absence of DTT (right and left panel respectively). Time-points in minutes as indicated. 
Oligomeric species depicted by arrows 
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4.3.2 Deletion of the SPRY β5-β6 loop has no effect on the 

tetramerisation process 

The BT4Δ12 construct (1-747) oligomerised in a manner highly similar to the 

considerably shorter BT4C fragment (residues 1-654). It also behaved substantially 

different from the BT4 fragment (1-759) which is only 12 residues longer. These 

findings triggered further investigation into the role of the residues missing in the 

BT4Δ12 construct. Based on the alignment with the human pyrin SPRY domain, this 

short stretch of residues contains the β-strand 6 and part of the loop connecting β-

strands 5 and 6. It has been suggested that SPRY domains bind to their targets 

through a canonical interface formed by variable loops (James et al. 2007). 

Consequently, in order to evaluate the role of the β5-β6 loop in BT4L oligomerisation 

process, a new construct, i.e. BT4L
SPRYβ5-β6loop

 was generated. Chemical crosslinking 

of BT4L
SPRYβ5-β6loop

 did not however reveal any major differences in its 

oligomerisation properties as compared to the full length construct (Figure 4.9). 

Similarly to BT4L
WT

, BT4L
SPRYβ5-β6loop

 formed tetramers in both reducing and non-

reducing conditions.  

Figure 4.9 Representative blots of chemical crosslinking experiments illustrating time-
dependent tetramer formation of BT4L

SPRYβ5-β6loop
 and BT4L

WT
 fragments in the presence and 

absence of DTT (right and left panel respectively). Time-points in minutes as indicated. 
Tetramer and monomer depicted by arrows 
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BT4L
SPRYβ5-β6loop

 tetramerisation propensity was determined by densitometry. As 

chemical crosslinking was carried out concomitantly on the BT4L
WT 

fragment, 

BT4L
SPRYβ5-β6loop

 tetramer formation was assessed relative to its full-length 

counterpart, i.e. we tested the mean of difference between the levels of tetramer 

formed by both fragments for every time-point studied. Cumulative data are 

presented in Graph 4.1. In ambient conditions, the BT4L
SPRYβ5-β6loop

 deletion mutant 

displays slightly reduced tetramerisation ability with statistically significant results 

obtained for only two time-points. Similarly, in reducing conditions the new construct 

exhibits a minor and statistically insignificant reduction in the propensity to form 

tetramers. 

 

 

Graph 4.1 Densitometry analysis of BT4L
WT

 and BT4L
SPRYβ5-β6loop

 tetramer formation in 
chemical crosslinking assay at ambient and reducing conditions. Percentage of tetramer 
calculated as described in Section 4.2.3. Data are shown as mean +/-SEM, n=6; * statistical 
significance at p<0.05 calculated using paired, 2-tailed Student’s t test 
 
 
 

4.3.3 Deletion of the β22-β23 loop has no effect on the 

tetramerisation process  

The partial deletion of the β22-β23 loop did not change BT4L oligomerisation 

pattern, i.e. the BT4L
β22-β23loop

 deletion mutant formed tetramers similar to the full-

length construct as evident by the presence of ~400 kDa band in Figure 4.10. Those 

observations were confirmed by densitometry analysis of cumulative data (Graph 

4.2). 
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Figure 4.10 Representative blots of chemical crosslinking experiments illustrating time-
dependent tetramer formation of BT4L

β22-β23loop 
and BT4L

WT
 fragments in the presence and 

absence of DTT (right and left panel respectively). Time-points in minutes as indicated. 
Tetramer and monomer depicted by arrows 
 
 
 
 
 
 
 
 

 
 

Graph 4.2 Densitometry analysis of BT4L
WT

 and BT4L
β22-β23loop

 tetramer formation in 
chemical crosslinking assay at ambient and reducing conditions. Percentage of tetramer 
calculated as described in Section 4.2.3. Data are shown as mean +/-SEM, n=5 and n=8 for 
ambient and reducing conditions respectively 
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4.3.4 Deletion of the β8-β9 loop impairs oligomerisation 

The partial removal of the β8-β9 loop in the BT4L fragment severely impaired its 

ability to self-associate into tetramers both in ambient and reducing conditions as 

assessed by chemical crosslinking (Figure 4.11). 

 

 

Figure 4.11 Representative blots of chemical crosslinking experiments illustrating time-
dependent tetramer formation of BT4L

β8-β9loop 
and BT4L

WT
 fragments in the presence and 

absence of DTT (right and left panel respectively). Time-points in minutes as indicated. 
Tetramer and monomer depicted by arrows 

 

 

The results of densitometry analysis are presented in Graph 4.3. In ambient 

conditions, the amount of tetramer formed by the BT4L
β8-β9loop 

deletion mutants 

compared to the BT4L
WT

 fragment was reduced by 30% prior to glutaraldehyde 

addition (0 time-point). The difference in the ability to tetramerise significantly 

increased as crosslinking progressed in time. The reduced tetramer formation of 

BT4L
β8-β9loop

 was even more evident in reducing conditions. 
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Graph 4.3 Densitometry analysis of BT4L
WT

 and BT4L
β8-β9loop

 tetramer formation in chemical 
crosslinking assay at ambient and reducing conditions. Percentage of tetramer calculated as 
described in Section 4.2.3. Data are shown as mean +/-SEM, n=7 and n=6 for ambient and 
reducing conditions respectively; * indicates statistical significance at p<0.05 calculated using 
paired, 2-tailed Student’s t test 
 

 

 

As assessed by chemical crosslinking, BT4L
β8-β9loop

 exhibited severely compromised 

ability to self-associate into tetramers. The effect of the β8-β9 deletion was further 

investigated in the co-immunoprecipitation assay. The aim was to determine whether 

the deletion of the β8-β9 loop impairs the formation of mixed oligomers, i.e. 

composed of both fragments: BT4L
β8-β9loop 

and BT4L
WT

. As described in Section 

4.2.4, the AD4L fragment (HA-tagged BT4L) co-expressed with either BT4L
β8-β9loop 

or BT4L
WT

 was immunoprecipitated using HA Ab and the presence of co-precipitated 

BT4L proteins was analysed by immunoblotting with c-Myc Ab. As seen in Figure 

4.12, the amount of recovered protein is substantially lower for the BT4L
β8-β9loop 

fragment than for its full-length counterpart while the expression of two constructs is 

at comparable levels (lane 1 and 2 depicted as lysate in Figure 4.12). Cumulative 

results were further quantitatively evaluated by densitometry as described in Section 

4.2.4.  This analysis revealed that the deletion of the β8-β9 loop results in 45% 

reduction in the formation of mixed oligomers, i.e. in the interaction between BT4L
β8-

β9loop
 and BT4L

WT
 (Graph 4.4). 
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Figure 4.12 Co-immunoprecipitation of the RyR2 N-terminus (AD4L) with BT4L
β8-β9loop

 or 
BT4L

WT
 following co-expression in mammalian HEK293 cells. Blots in the upper panel were 

probed with cMyc Ab; lane 1 and 2: 1/50
th
 and 1/200

th
 of cell lysate respectively, lane Ab

HA
 

and IgG: specific and non-specific binding respectively. Blots in lower panel were probed with 
HA Ab; lane 1 and 2: 1/10

th
 and 1/50

th
 of cell lysate, lane Ab

HA
 and IgG: specific and non-

specific binding respectively 
 

 

 

 

 

Graph 4.4 Cumulative co-IP data following densitometry analysis showing the effect of the 
β8-β9 loop deletion on the interaction with the full-length fragment. Results corrected for the 
difference in expression levels and non-specific binding are presented relative to protein 
recovered for the wild-type BT4L. Data given as mean values +/-SEM, n=4 * statistical 
significance at p<0.05 using paired, 2-tailed Student’s t test 
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4.3.5 Deletion of the β20-β21 loop changes oligomerisation 

pattern 

The deletion of the β20-β21 loop in the BT4L fragment triggered substantial changes 

in the oligomerisation pattern of the N-terminal fragment (Figure 4.13). Chemical 

crosslinking of the BT4L
β20-β21loop 

in ambient conditions revealed the presence of 

dimers, tetramers and higher oligomers. This fragment was also more prone to form 

non-specific aggregates, which size prevented them from entering the separating gel. 

In addition, these higher oligomers and aggregates displayed unusual resistance to 

SDS as they were occasionally observed even in samples treated with DTT and not 

subjected to chemical crosslinking (data not shown). This would suggest that the 

BT4L
β20-β21loop 

deletion mutant has a somewhat perturbed conformation leading to 

aggregation of this protein. Moreover, on many occasions oligomers formed by the 

BT4L
β20-β21loop 

fragment
 
were not easily resolved by SDS-PAGE, i.e. migrated as a 

smear with no distinctive bands observed.  In reducing conditions, mostly trimers and 

tetramers were formed, also some higher oligomers were also observed. The 

substantial difference in the BT4L
β20-β21loop 

oligomerisation pattern prevented 

quantitative densitometry analysis and comparison with the BT4L fragment.  
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Figure 4.13 Representative blots of chemical crosslinking experiments illustrating time-
dependent tetramer formation of BT4L

β20-β21loop 
and BT4L

WT
 fragments in the presence and 

absence of DTT (right and left panel respectively). Time-points in minutes as indicated. 
Oligomeric forms depicted by arrows 

 

4.4 Discussion 

The goal of this work was to identify the sites mediating self-tetramerisation of the 

RyR2 N-terminus. Based on the recently published crystal structure of the RyR1 N-

terminus and computational docking into the cryo-EM map of the full length protein 

(Tung et al. 2010), three deletion mutants lacking loops located at the putative inter-

subunit contact site were generated (BT4L
β8-β9loop

, BT4L
β20-β21loop

, BT4L
β22-β23loop

). 

Two additional constructs, i.e. BT4Δ12 and BT4L
SPRYβ5-β6loop

, were generated in 

order to test the contribution of SPRY domain in the inter-subunit interaction which 

was based on previous finings (Table 4.1). Constructs were expressed in HEK293 

cells and tested for their oligomerisation properties by chemical crosslinking. 
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4.4.1 The elusive role of SPRY domain in the inter-subunit 

interaction 

The BT4Δ12 construct (residues 1-747) was generated on the basis of the following 

observation: the BT4 fragment (residues 1-759) which lacks part of the SPRY domain 

(the four C-terminal β strands), forms tetramers with very little dimer formation, thus 

has properties similar to the longer BT4L fragment while the BT4C (residues 1-654) 

which lacks the whole SPRY domain, forms predominantly dimers (previous 

findings, Table 4.1). Chemical crosslinking of the new BT4Δ12 construct revealed 

that further removal of the last 12 residues which contain part of the SPRY β5-β6 

loop and β-strand 6, has a profound effect on the oligomerisation pattern as observed 

in Figure 4.8. Unlike BT4L and BT4, BT4Δ12 showed preferential formation of 

dimers, at least in the early stages of the crosslinking reaction; similar to the BT4C 

construct (graphical summary of these findings is presented in Figure 4.14). Since 

BT4 and BT4L fragments exhibit similar oligomerisation properties and BT4Δ12 

behaves strikingly different, it seems that residues 748-759, are involved in the 

tetramerisation process. However, the removal of residues 748-752 in the context of 

the BT4L construct (BT4L
SPRYβ5-β6loop

)
 
containing SPRY β5-β6 loop resulted in a 

surprisingly minor effect (Figure 4.9, Graph 4.1). These findings suggest that the 

SPRY β5-β6 loop is not a major tetramerisation determinant, contrary to the 

indication obtained from the BT4Δ12 construct.  
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Figure 4.14 Graphical summary of RyR2 N-terminal fragments; SPRY domain indicated in 
orange with brown boxes representing β-strands. Fragments forming predominantly 
tetramers in dark green, fragments forming predominantly dimers in red 
 
 

 

It has been suggested that SPRY domains are involved in protein-protein interactions 

(Perfetto et al. 2013). Analysis of conserved residues among twenty SPRY domains 

of diverse proteins showed that they are mainly buried between two β-sheets and 

therefore they are most likely implicated in the maintenance of the tertiary structure 

rather than interaction with binding partners (Woo et al. 2006).  The crystal structure 

of a SPRY domain in complex with its binding partner revealed that the binding 

surface is mainly composed of highly diverse loops rather than conserved β-strands 

(James et al. 2007). It was proposed that the diversification of those loops is 

responsible for the functional variability of proteins containing SPRY domains. 

Interestingly, the proposed protein-protein contact sites, i.e. β2-β3, β3-β4, β4-β5 and 

β5-β6 loops are all present in the BT4 fragment which tetramerise in a similar manner 

to the BT4L. A half of loop β5-β6 is absent in BT4L
SPRYβ5-β6loop

 and a part of this loop 

is also missing in BT4Δ12; however the latter lacks also the remaining part of SPRY 

domain, i.e. β-strands 6-10 (Figure 4.14). Thus, there are two equally possible 

explanations for the observed discrepancy in the oligomerisation properties between 

BT4L
SPRYβ5-β6loop

 and BT4Δ12. Assuming that N-terminus self-association is 

mediated by multiple sites located throughout BT4L, the removal of the SPRY β5-β6 

loop in the context of the full fragment might not be sufficient to cause an effect due 

to the presence of remaining interaction determinants. Alternatively, if multiple sites 

within SPRY domain participate in the oligomerisation process, the spatial 
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arrangement of those determinants would be critical. Therefore, it is likely the 

removal of the SPRY β5-β6 loop and strand β6 in BT4Δ12 has a detrimental effect on 

the structure of the whole SPRY domain, and therefore affect tetramerisation 

indirectly without being an actual inter-subunit contact site. However, in order to 

conclusively confirm any of the mechanism mentioned above, further experiments are 

needed. 

4.4.2 Oligomerisation intermediates 

Since the functional ryanodine receptor is composed of four subunits, a tetramer 

would be expected to be the physiologically relevant oligomeric form of the RyR2 N-

terminus. The fact that BT4Δ12 preferentially forms dimers while tetramers become 

only more apparent towards longer crosslinking times implies that intermediate steps 

of the oligomerisation process are affected. In general, there could be two different 

pathways of tetrameric assembly; either a formation of dimers which then assemble 

further to form tetramers or a sequential addition of monomers through dimers and 

trimers. Based on the observations obtained in this work, the latter pathway is 

favoured. While there are predominantly dimers and tetramers in non-reducing 

conditions, trimers become apparent when BT4Δ12 is pre-treated with DTT (Figure 

4.8). The fact that the longer BT4L fragment almost exclusively gives rise to 

tetramers indicates that their formation is an extremely fast process in which 

intermediates are not captured with the crosslinking technique used in this study. It is 

well established that reaction intermediates only accumulate to a significant extent if 

they precede a slow or rate-determining step in the overall reaction. The fact that 

BT4Δ12 predominantly gives dimers in ambient conditions strongly argues that the 

formation of oligomers higher than dimers becomes more difficult.  The stability of 

protein complexes is determined by two components; the rate of association and the 

rate of dissociation. It has been suggested that the reduction in the stability of protein 

complexes observed upon mutation of critical residues usually reflect an increase in 

complex dissociation rate (Castro and Anderson 1996). However, some mutations 

have been shown to perturb a particular step along the association pathway (Spoerner 

et al. 2001) as we observe for the BT4Δ12 fragment, i.e. formation of dimers over 



167 

 

tetramers. Interestingly, in reducing conditions BT4Δ12 does not form dimers but 

instead gives mostly trimers and tetramers.  This obvious difference in the 

oligomerisation pattern in reducing versus non-reducing conditions strongly suggests 

the involvement of disulphide bond formation in the process of RyR2 N-terminus 

tetramerisation.  

4.4.3 The role of the loops located at the putative inter-subunit 

interface  

Expression of the BT4L
β20-β21loop 

deletion mutant in HEK293 cells resulted in SDS-

resistant higher oligomers and aggregates evident mostly in ambient conditions 

(Figure 4.13) suggesting that this mutant may have perturbed conformation leading to 

non-specific aggregation. While, physiologically relevant oligomers such as dimers, 

trimers and tetramers were observed, they were very often difficult to resolve as they 

tend to migrate as a smear upon SDS-PAGE. For those reasons the involvement of 

the β20-β21 loop in RyR2 N-terminus self-association could not be unambiguously 

established, however this loop appears to be critical for maintaining the tertiary 

structure of the RyR2 N-terminus.  

According to the docking of the RyR1 N-terminus crystal structure into the pseudo-

atomic map of the full length protein, the β20-β21 loop is involved in a salt bridge 

between two adjacent subunits. In addition, there are two arrhythmia-associated 

mutations within this loop R332W and G357S. The extreme C-terminal end of this 

loop also contains cysteine 361 which was earlier shown (Chapter 3) to affect 

tetramer formation in reducing conditions implying an additional disulphide-

independent role of this site in the inter-subunit interaction. The β20-β21 loop was 

also suggested to be one of the two inter-subunit contact sites for N-terminus 

association in IP3R (Seo et al. 2012). In light of the cumulative data presented in 

Chapter 3 and 4, residues within the β20-β21 loop are likely to constitute important 

determinants of oligomerisation.  

Deletion of the β8-β9 loop had a pronounced impact on N-terminus oligomerisation. 

In chemical crosslinking, BT4L
β8-β9loop 

formed significantly fewer tetramers
 
than the 
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full-length BT4L fragment in both ambient and reducing conditions indicating a 

substantial decline in the stability of the oligomerisation products (Figure 4.11, Graph 

4.3). Moreover, BT4L
β8-β9loop 

displayed significantly diminished association with the 

full length BT4L fragment as assessed by co-immunoprecipitation assay (Figure 4.12, 

Graph 4.4) suggesting that deletion of the β8-β9 loop also disrupts formation of 

mixed oligomers. The β8-β9 loop contains three arrhythmia associated mutations 

(P164S, R169Q and R176Q) implying the functional importance of residues 

contained within this loop. Interestingly, it was reported that none of these mutations 

altered thermal stability of the N-terminal domain (Lobo and Van Petegem 2009). 

Further to this, it was proposed that these mutations affect the association between 

subunits allowing the channel to be more prone to open (Kimlicka et al. 2013).  In 

agreement with the functional role of this loop, a short peptide encompassing the β8-

β9 loop (residues 165-195) was capable of inducing SR Ca
2+ 

leak and increased the 

frequency of Ca
2+ 

sparks in cardiomyocytes (Tateishi et al. 2009).  Further evidence 

for the functional importance of the β8-β9 loop comes from studies of IP3R. The 

strong structural and functional evolutionary relationship between the two receptors is 

supported by the fact that the extreme N-terminal domain of the IP3R1, i.e. a 

suppressor domain, can be functionally substituted by the homologous RyR domain 

(Seo et al. 2012). Comparison of the crystal structures of the IP3R1 N-terminus with 

and without its ligand bound revealed that the β8-β9 loop moves substantially upon 

InsP3 binding further implying its role in channel gating (Seo et al. 2012). Although 

there are no disease-associated mutations in IP3R1, the substitution of a single residue 

(Y167) is sufficient to abolish channel activity (Yamazaki et al. 2010). In light of the 

results obtained in this study, the β8-β9 loop is proposed to constitute a critical 

determinant of N-terminus self-association contributing towards tetramer stability. 

The β22-β23 loop was previously suggested to constitute one of the major inter-

subunit contact points between adjacent RyR1 N-termini (Tung et al. 2010). The 

findings obtained in this study however suggest that it has a minimal, if any, effect on 

N-terminus self-association as there was no significant difference in the 

oligomerisation propensity between the BT4L
β22-β23loop

 deletion mutant and the full-

length BT4L fragment (Figure 4.10, Graph 4.2). Since only a part of this loop was 

removed in this study, it is plausible that the remaining residues are sufficient to 

mediate the association with the neighbouring subunit in a manner undistinguishable 
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from that of the full length loop. Alternatively, isoform-specific, local structural 

differences between RyR1 and RyR2 might account for the discrepant results. 

Nevertheless, an important point should be made. The concept of the β22-β23 loop 

involvement in the inter-subunit interaction is solely inferred from computational 

analysis, whereas the observed lack of effect on tetramer formation by the β22-β23 

loop is based on empirical evidence, and it might in fact reflect an authentic 

phenomenon.  

4.4.4  Final remarks 

In conclusion, two types of domains important for N-terminus association were 

identified in this study. Both regions reside in loops suggested earlier to be located at 

the N-terminal inter-subunit interface. Based on the findings, the β8-β9 loop is 

essential to maintain the stability of the RyR2 N-terminus tetrameric assembly. The 

removal of β20-β21 loop resulted in the formation of oligomers higher than tetramers 

and protein aggregates implying the role of this loop in the maintenance of the N-

terminus tertiary structure. However, in light of findings presented in Chapter 3, i.e. 

mutation of a single residue (C361) within this loop compromises tetramer formation, 

the β20-β21 loop is proposed to constitute another important determinant of N-

terminus self-association. Since the absence of those two loops does not completely 

abolish N-terminus tetramer formation, additional, secondary inter-subunit contact 

sites must exist. Thus, N-terminus self-association appears to be governed by multiple 

sites which act in a synergistic manner to promote tetramer formation. One such site 

might be located in the N-terminal part of the SPRY domain.  

The BT4L fragment forms oligomers; however monomers represent a predominant 

form of the RyR2 N-terminus with tetramers remaining a minor species even at the 

60 min crosslinking time-point (below 25%). The failure to convert all BT4L proteins 

into tetramers by chemical crosslinking might indicate that BT4L oligomers undergo 

dynamic dissociation and association.  Notably, this phenomenon was observed for 

other oligomeric proteins (Gu et al. 2002; Abulimiti et al. 2003). A dynamic 

association/dissociation between N-termini across subunits would potentially enable 
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this interaction to regulate RyR2 function. The role of N-terminus self-association in 

RyR2 function is tested in Chapter 5.  
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Chapter 5 

 

Dissecting the role of N-terminus 

in RyR2 function 
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5 Dissecting the role of N-terminus in RyR2 

function 

5.1 Introduction 

It is believed that RyR activity is controlled by a complex network of inter- and intra-

subunit interactions which constitute a critical link between changes induced by 

modulators binding to its large N-terminal cytoplasmic part and the opening of the 

channel pore located at the C-terminus. It has been proposed that interaction between 

critical functional domains is pivotal for the channel to perform its function in a 

physiological manner (Yamamoto et al. 2000; Shtifman et al. 2002; Murayama et al. 

2005). The disruption of domain cross-talk has been implied in RyR dysfunction 

observed in skeletal muscle and heart disorders (Oda et al. 2005; Murayama et al. 

2007; Yamamoto et al. 2008; Hamada et al. 2009). A considerable number of 

functional and biochemical evidence suggested that the inter-subunit interaction 

between RyR N-terminal and central domain is critically involved in the regulation of 

channel function (Yamamoto and Ikemoto 2002a; Yang et al. 2006; Liu et al. 2010). 

Similarly it has been reported that the interaction within central domains involving 

calmodulin binding domain and calmodulin-like domain controls channel gating 

(Gangopadhyay and Ikemoto 2006; Xiong et al. 2006). Other regions suggested to 

transmit cytoplasmic changes to the channel pore included so called “Interacting” 

domain encompassing the CaMLD and residues predicted to constitute the first two 

transmembrane domains (Du et al. 2002a; George et al. 2004). Moreover, the 

CaMLD was also proposed to interact with the loop connecting transmembrane 

domains 4 and 5 (Hamada et al. 2007). For a comprehensive description of domain-

domain interactions within RyR please refer to Section 1.6. 

Biochemical evidence showing a novel inter-subunit interaction involving RyR2 N-

terminus was presented in previous chapters. It was speculated that BT4L 

oligomerisation might be involved in the modulation of RyR2 activity. Thus, the 

principal goal of this study was to test the hypothesis that N-terminus inter-subunit 

interaction is involved in channel regulation.  
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In order to gain insights into the role of N-terminus self-association in RyR2 function, 

[
3
H]ryanodine binding assays were performed. The experimental approach involved 

comparison of RyR2
 
activation in the presence and absence of the BT4L fragment in 

a wide range of calcium concentrations. The reasoning behind this approach was that 

the exogenous BT4L fragment could compete for N-terminus binding sites presumed 

to exist in the native RyR2 tetramer and disrupt endogenous N-terminal inter-subunit 

interactions. Thus, if N-terminus oligomerisation was involved in the regulation of 

RyR2 activity, co-expression of the BT4L fragment with the full length channel 

should alter its function. Because ryanodine preferentially binds to the open channel, 

the use of this compound would enable to detect any alterations in channel activity. In 

order to rationalise the functional assay it was essential to first assess whether the 

BT4L fragment is able to physically interact with the full length RyR2. RyR2 

constitutes an integral protein of sarcoplasmic/endoplasmic reticulum. However in 

the absence of transmembrane domains, the truncated protein is exclusively found in 

the cytoplasm (George et al. 2004). Thus, upon expression in HEK293 cells, the 

BT4L fragment should be located in the cytoplasm, while RyR2 should be restricted 

to the microsomal fraction.  However, if the two proteins physically interact, the sub-

cellular distribution of the BT4L fragment should change upon co-expression with 

RyR2. This possibility was tested by sub-cellular fractionation. 

5.2 Methods 

5.2.1 Sub-cellular fractionation 

HEK293 cells were transfected with the BT4L construct either in combination with 

the empty pcDNA3 vector or with pcDNA3 containing the cDNA for the full length 

RyR2. Transfection was performed on cells growing on 100 mm Petri dishes as 

described in Section 2.2.5.2. The sub-cellular fractionation involved two sequential 

centrifugation steps at 1500 xg and 100 000 xg (Section 2.2.2.5). Protein content in 

the homogenate, microsomal and cytoplasmic fractions (1500 xg supernatant, 100 

000 xg pellet and supernatant respectively) was evaluated using the BCA assay. 
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Typically 20-50 μg of total protein was subjected to Western blotting and probed with 

c-Myc Ab to assess sub-cellular BT4L distribution. Simultaneously, fractions were 

run on a separate 4% SDS-PAGE, agarose-containing gel, separated proteins were 

transferred using a semi-dry transfer system and probed with the 1093 antiserum 

(Table 2.1) to detect the expression of RyR2. For detailed description of Western 

blotting procedure please refer to Section 2.2.24. 

5.2.2  [
3
H]ryanodine binding assay 

For a typical [
3
H]ryanodine binding assay, ten 100 mm Petri dishes were transfected 

with the full length RyR2 alone or in combination with the BT4L fragment. 24 hour 

post-transfection, cells were homogenised on ice using a custom-made cell 

homogeniser allowing for 25 passages through a needle (0.6x30 mm). Microsomal 

fractions were obtained as described previously and total protein content was 

measured with the BCA assay. BT4L expression was confirmed by Western blots. 

RyR2 expression was evaluated on two levels; initially by densitometry-based 

analysis of Western blotted fractions and subsequently by [
3
H]ryanodine binding 

assay performed in conditions promoting maximum channel activation (and therefore 

leading to measurement of total RyR2 content). In order to have an equal amount of 

RyR2 protein in samples expressing RyR2 alone versus RyR2 plus BT4L, the amount 

of microsomes used was adjusted accordingly. Microsomes from untransfected 

HEK293 cells were used to equate total protein levels between RyR2 alone versus 

RyR2 plus BT4L samples. Dose-response curves were fitted with GraphPad Prism 

using four-parameter logistic model with bottom and top constrained to 0 and 1 

respectively. Curves were compared statistically using the extra-sum of squares F test 

(GraphPad Prism).  
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5.3 Results 

5.3.1 The BT4L fragment interacts with the full length RyR2 

BT4L expressed on its own can be found almost exclusively in the cytoplasm (Figure 

5.1, right panel). RyR2 is present in the microsomal but absent in the cytoplasmic 

fraction (Figure 5.1, lower panel). Upon co-expression with the full length RyR2, a 

considerable proportion of the BT4L fragment translocates to the microsomal fraction 

(Figure 5.1, left panel). This finding indirectly suggests that the physical interaction 

between the exogenous RyR2 N-terminus represented by BT4L and the full length 

channel takes place. 

  

 

Figure 5.1 Sub-cellular fractions obtained from cells expressing the BT4L fragment with and 
without the full length RyR2 (left and right panel respectively). Blots in upper panel were 
probed with c-Myc Ab and represent BT4L distribution over the following fractions; H: 
homogenate, M: microsomes, C: cytosol. Blots in lower panel were probed with 1093 serum 
and represent RyR2 distribution 
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5.3.2
 The BT4L fragment activates RyR2 at diastolic Ca

2+ 

The presence of co-expressed BT4L did not affect [
3
H]ryanodine binding at Ca

2+ 
≥ 1 

μM (Graph 5.1). In contrast, at low calcium concentrations BT4L promoted on 

average 40% increase in RyR2 activity, which was statistically significant (Graph 

5.1) implying that BT4L-trigerred channel activation occurs exclusively at diastolic 

levels of Ca
2+

. Comparison of the dose response curves fitted with GraphPad showed 

that the BT4L presence results in a statistically significantly shifts of the Ca
2+ 

activation curve to the left (EC50 668 nM [Ca
2+

] for RyR2 alone versus 451 nM for 

RyR2/BT4L, p=0.026) as presented in Graph 5.2.  

 

 

 

Graph 5.1 Graph summarising the effect of the BT4L fragment on RyR2 function as 
assessed in [

3
H] ryanodine binding assay in three separate experiments each performed at 

least in duplicate. Data are normalised to the value measured under maximum binding 
conditions and shown as mean +/-SEM, * statistical significance at p<0.05 calculated using 
unpaired, 2-tailed Student’s t test 
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Graph 5.2 Dose-response curve of RyR2 and RYR2/BT4Lfitted with GraphPad Prism using 
four-parameter logistic model with bottom and top constrained to 0 and 1 respectively. Best-fit 
values shown in the table; n/a (non-applicable), ns (not significant)  

 

5.4 Discussion 

The principal goal of this study was to investigate the role of the RyR2 N-terminus 

self-association in the regulation of channel activity by using exogenous BT4L to 

disrupt N-terminal inter-subunit interaction within the RyR2 tetrameric assembly. 

This experimental approach was based on numerous literature reports which 

described the use short peptides to disrupt putative domain-domain interactions 

within RyR. Peptide-induced effects on channel activity were evaluated in 

[
3
H]ryanodine binding assays (Yamamoto et al. 2000; Yamamoto and Ikemoto 

2002a) or by performing calcium imaging in cells (Yang et al. 2006). The BT4L 

fragment used in this study is much longer compared to peptides used by other groups 

and, as shown previously (Chapter 3 and 4), displays strong self-association 

properties.  However, it was assumed that its interaction with the full-length RyR2 

would be still possible upon simultaneous expression in HEK293 cells. This was 

based on two important observations; the BT4L self-association appears to be a 

dynamic process (Chapter 4) and based on the docking of the RyR1 N-terminus in the 

pseudo-atomic model of the full-length receptor, it is readily accessible (Tung et al. 

2010). Indeed, as assessed by subcellular fractionation, BT4L translocates from the 

cytoplasmic into predominantly microsomal fraction exclusively upon co-expression 

with the full length RyR2 (Figure 5.1) suggestive of physical interaction between 

BT4L and the full-length protein. 
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[
3
H]ryanodine binding revealed that exogenous BT4L changes the RyR2 sensitivity 

towards calcium, i.e. promotes channel activation at sub-threshold Ca
2+

. It was 

speculated that the observed effect is a consequence of the BT4L fragment disrupting 

N-terminus interactions occurring between subunits in the channel as explained in 

Section 5.1. Thus, the tight inter-subunit association of the N-terminal part of RyR2 

seems to play an important role in channel gating most likely serving to stabilise the 

closed conformation. However, at this stage it is not possible to discriminate whether 

N-terminus dissociation constitutes a primary step triggering a set of structural 

changes promoting channel opening or whether it remains one of many downstream 

allosteric events prompted by physiological agonists. In the course of experiments 

undertaken in this study, an extensive investigation into the structural changes 

triggered by arrhythmia-associated mutations in RyR1 N-terminus, led the authors to 

suggest analogous hypothesis, according to which a direct N-terminal inter-subunit 

contact undergoes a drastic disruption or alteration upon channel opening (Kimlicka 

et al. 2013). Further to the above, this interaction was proposed to impose an 

energetic barrier that needs to be overcome to allow RyR to open. A similar scenario 

was proposed for the IP3R, where IP3 binding induces N-terminus rearrangement at 

the inter-subunit contact again implying that this type of association plays a pivotal 

role in channel opening (Seo et al. 2012).  

Interestingly, the sensitisation effect produced by the BT4L fragment resembles the 

phenotype observed for recombinantly expressed RyR2 containing arrhythmia-

associated mutations (Jiang et al. 2002a; Jiang et al. 2004). Since many of those 

mutations map to the N-terminus inter-subunit interface, it seems plausible that their 

presence might result in the disruption of this inter-subunit contact in a similar way to 

the effect produced by the BT4L fragment. Thus, arrhythmia-linked mutations are 

proposed to disrupt RyR2 N-terminus self-association. The reduced inter-subunit 

contact would lower the barrier for channel opening, thereby leading to sensitisation 

towards calcium activation. Notably, Tang and colleagues reported that the deletion 

of the RyR2 N-terminus (the first 305 amino acids) results in channels which are 

more sensitive to calcium activation and exhibit a marked reduction in the 

termination threshold of calcium release (Tang et al. 2012). Moreover, the authors 

showed that analogous changes in channel activity occur in the presence of N-

terminal arrhythmia-associated mutations suggesting that this region might be 
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involved in the regulation of channel gating. The hypothesis of disrupted RyR2 N-

terminus self-association in the presence of arrhythmia-linked mutations is tested in 

Chapter 6.  
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Chapter 6 

 

The effect of arrhythmia-linked 

mutations on N-terminus self-

association  
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6 The effect of arrhythmia-linked mutations on 

RyR2 N-terminus self-association  

6.1 Introduction 

The work described in Chapter 4 provided evidence that the effective self-association 

of the RyR2 N-terminus is highly dependent on residues contained within loops 

predicted to occupy the inter-subunit boundary. Notably, some of those loops are also 

targeted by arrhythmia-linked mutations. In addition, the evidence supporting the role 

of N-terminus self-interaction in channel regulation was presented in Chapter 5. It 

was shown that in the presence of exogenous BT4L, RyR2 becomes hypersensitive to 

diastolic concentration of calcium. This phenomenon was proposed to be a direct 

consequence of the disruption of N-termini interaction across subunits. Interestingly, 

RyR2 hypersensitivity observed in the presence of the BT4L fragment recapitulates 

some of the hallmarks of RyR2 dysfunction observed in mutations leading to life-

threatening arrhythmias. Hence, the aim of this study was to investigate whether the 

presence of a particular mutation, identified in arrhythmia-susceptible patients is able 

to affect the RyR2 N-terminus self-association. Moreover, to gain further insights into 

RyR2 structure-function relationship, the effect of arrhythmia-linked mutations was 

also evaluated in respect to their ability to influence N-terminus domain interaction 

with the full length channel.  

Until now, more than 140 mutations in the RyR2 gene have been associated with 

episodes of stress- and exercise- induced cardiac arrhythmia (Table 1.4). Those 

mutations represent mostly single amino-acid substitutions and only in rare cases 

involve deletions or sequence duplication. Mutations in the N-terminal “hot spot” 

(residues 77-466) account for less than 20% of all cases reported (Priori and Chen 

2011). Since this mutation cluster has been extensively studied it seems unlikely that 

this relatively low frequency of N-terminal mutations can be attributed to a 

sequencing bias. In theory, a low number of arrhythmia-associated mutations in the 

RyR2 N-terminus might indicate that mutations within this domain are tolerated and 

do not result in the arrhythmogenic phenotype thus remain undetected. On the other 
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hand, a low number of reported cases could also be explained by a high mortality 

rate. This in turn would suggest that the preservation of structural and functional 

attributes within the N-terminus remains essential for the channel to perform its 

physiological role. 

There are 27 missense mutations located in the first 1000 residues of RyR2 

(http://www.fsm.it/cardmoc/ as of April 2013) and two of those (R176Q and L433P) 

were investigated in this study. These two amino acid substitutions were identified in 

Italian families, where symptoms of right ventricle partial degeneration, electrical 

instability and cases of sudden death were reported (Tiso et al. 2001). Notably, in 

those patients, the genetic picture was more complicated, i.e. R176Q co-segregated 

with a central domain mutation (T2504M) and L433P was accompanied by the 

presence of a common SNP (G1885E). However, the R176Q mutation was later 

reported to result in the CPVT phenotype in two patients negative for T2504M 

(Haugaa et al. 2010). Moreover, the T2504M substitution, when  independently 

identified in another family, was shown to result in a considerably milder disease 

phenotype in the absence of R176Q implying that the latter has a prevailing role in 

the clinical outcome (Bauce et al. 2002) (Table 6.1). A direct link between stress-

induced arrhythmia and R176Q was also confirmed in animal models (Kannankeril et 

al. 2006; Mathur et al. 2009). 

 

Family Mutation 
SCD 

episodes 

Carriers with 

arrhythmic 

symptoms 

Carriers with kinetic 

alterations in  right 

ventricle  

115 R176Q/T2504M 3 100% 2/3 

129 T2504M 1 29% 0 

122 L433P 1 80% 1/5 

X R176Q 
not 

reported 
not reported 0 

 
Table 6.1 Table summarising clinical symptoms in patients carrying RyR2 mutations (Bauce 
et al. 2002; Haugaa et al. 2010) 
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Heterologously expressed RyR2
R176Q 

displays hyper-sensitised caffeine activation 

(Thomas et al. 2004) and enhanced sensitivity to calcium (Jiang et al. 2005), 

prevalent features of arrhythmia-linked RyR2 dysfunction. However, the phenotype 

associated with the L433P mutation remains under debate. Jang and colleagues 

showed that recombinant expression of RyR2
L433P 

leads to the effects 

undistinguishable from other arrhythmia-associated mutations (Jiang et al. 2005) 

while others reported that the L433P substitution leads to a substantially desensitised 

response (Thomas et al. 2004). Those findings are intriguing as both mutations lead to 

a similar clinical phenotype while having seemingly opposite effects on RyR2 

activity. The principal goal of this study was to evaluate whether those two particular 

mutations alter N-terminus oligomerisation. In light of apparently different 

mechanisms of channel dysfunction associated with L433P and R176Q it was of 

particular interest to test whether the presence of those mutations exerts comparable 

effects on N-terminus self-interaction.  

The effect of arrhythmia-linked mutations on the RyR2 N-terminus oligomerisation 

was evaluated by three different experimental techniques. Tetramerisation of the 

BT4L fragment carrying arrhythmia-linked mutations was investigated in a chemical 

crosslinking assay following expression in HEK293 cells. The propensity to form 

mixed oligomers, i.e. composed of mutation-containing fragments and BT4L
WT

 was 

evaluated by co-immunoprecipitation. Those techniques assessed the effect of R176Q 

and L433P mutations on the N-terminus oligomerisation in vitro, i.e. outside the 

cellular environment. For the above reason, a complementary approach capable of 

detecting protein interactions in situ, was undertaken (yeast two-hybrid system). 

The yeast two-hybrid technique was designed and developed in 1989 and it is one of 

the most widely used in protein-protein interaction studies (Fields and Song 1989). 

The system takes advantage of the fact that the yeast transcription factor GAL4 is 

composed of two physically separable and functionally independent domains, i.e. the 

DNA-binding domain (DNA-BD) and the activating domain (AD). Those domains, if 

physically separated, lose their ability to activate the GAL4 responsive genes. 

However if the two GAL4 domains are fused to two interacting proteins they are 

brought together in close physical contact regaining their capacity for transcription 

activation. Restoration of GAL4 transcription factor activity controls the expression 

of the LacZ reporter gene which codes for the β-galactosidase enzyme. The use of a 
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substrate, which upon β-galactosidase enzymatic activity is turned into a product of 

intense colour, allows for visualisation of GAL4 transcriptional activity. The colour 

intensity directly reflects the strength of the association between the two interacting 

proteins (Figure 6.1). 

 

 

Figure 6.1 Schematic overview of yeast two-hybrid assay; A: regular GAL4-dependent 
transcription of a reporter gene, B: GAL4 DNA-binding domain and activating domain are 
physically separated and fused to two proteins called bait and prey respectively, the two 
proteins do not interact and transcription of the report gene does not proceed, C: the 
interaction between bait and prey proteins brings the DNA-BD and AD in close contact 
activating the transcription of a reporter gene 

 

 

Earlier, in the course of this study (Chapter 5), it was shown that sub-cellular 

fractionation is a valuable tool to gain insights whether two proteins located in two 

different cellular compartments (cytoplasm and ER for the BT4L and RyR2 
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respectively), have the potential to interact. Hence, the same approach was 

undertaken to investigate whether the presence of arrhythmia-linked mutations in the 

full length RyR2 alters the sub-cellular distribution of the BT4L fragment (implying 

altered RyR2/BT4L interaction). 

The second aim of this study was to explore whether mutation-associated changes in 

the oligomerisation of the RyR2 N-terminus can be reversed. In light of accumulating 

evidence showing that dantrolene – a skeletal muscle relaxant, has the ability to 

rescue the RyR2 mutation-associated phenotype (Kobayashi et al. 2009; Suetomi et 

al. 2011; Jung et al. 2012) and the fact that the drug’s binding site is located in the N-

terminal portion of the protein (residues 601-620) (Paul-Pletzer et al. 2005), 

dantrolene’s capability to modify mutation-induced changes in the BT4L 

oligomerisation was investigated.  

6.2 Methods 

6.2.1 Generation of the BT4L
R176Q 

and the BT4L
L433P

 

The BT4L
R176Q 

mutant was generated by site-directed mutagenesis of the BT4L 

construct (please refer to Section 2.2.1.6. and Table 2.2 for detailed description of the 

mutagenesis process and primers used respectively). The DNA fragments containing 

the desired mutation, which presence was verified by sequencing, was subcloned into 

the wild type BT4L. This was performed as follows; both plasmids were digested 

with HindIII, separated by agarose gel electrophoresis and subjected to ligation 

following gel extraction of the fragments of interests (described in detail in Section 

2.2.1.3, 2.2.1.4 and 2.2.1.5). The ligation reaction was used to transform bacteria 

(Section 2.2.1.8). The orientation of subcloned fragments was assessed by indicative 

digest with BspEI and SalI and a positive clone was sequenced further to cover the 

whole length of the subcloned DNA fragment. Once verified, large volume overnight 

bacteria cultures were set up for plasmid isolation as described in Section 2.2.1.10. 
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The BT4L
L433P

 construct was generated by cloning a specific DNA fragment obtained 

in a standard PCR reaction (Section 2.2.1.1) into the BT4L plasmid. The reaction was 

performed in the presence of forward and reverse primers (V8.1531-48 and 

JWREV.2821-40 respectively; Table 2.2) and using the full length RyR2 plasmid 

containing the L433P as a template. The PCR product (~1.5 kb) and the destination 

plasmid were digested with a combination of BglII and BspEI restriction enzymes, 

separated by agarose gel electrophoresis and subjected to ligation following gel 

extraction of the fragments of interests (described in detail in Section 2.2.1.3, 2.2.1.4 

and 2.2.1.5). Subsequently, the ligation reaction was used to transform bacteria by 

means of electroporation (Section 2.2.1.8). Obtained colonies were screened as 

described in Section 2.2.1.10. A positive clone was sequenced further to cover the 

length of the whole subcloned DNA fragment and once the sequence was verified, 

large volume overnight bacteria culture was set up for plasmid isolation as described 

in Section 2.2.1.10. 

6.2.2 Chemical crosslinking 

Obtained plasmids were used to transfect HEK293 cells growing on 100 mm Petri 

dishes as described in Section 2.2.5.2. Each experiment was performed with a 

concomitant transfection of cells with the wild-type BT4L plasmid serving as a 

positive control.  Cell pellets obtained 24 hours after transfection were homogenised 

(Section 2.2.2.1) and one aliquot was treated with DTT (4 °C, 1 h, 10 mM). Total 

protein concentration was evaluated using the BCA colorimetric assay and depending 

on the experiment 20-50 μg of total protein was subjected to glutaraldehyde 

crosslinking in a time-dependent manner (Section 2.2.2.2). Proteins were separated 

by SDS-PAGE and subsequently blotted onto PVDF membranes (for details please 

refer to Section 2.2.2.3.and 2.2.2.4). The c-Myc Ab and anti-mouse HRP-conjugated 

Ab were used to detect the BT4L protein presence (Table 2.1). Tetramer to monomer 

ratio was determined by performing a densitometry analysis using BioRad Quantity 

One software as described in Section 4.2.3 
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For the evaluation of the dantrolene effect on the oligomerisation properties of the 

mutants, cell homogenates were incubated with 1 μM dantrolene for 1 h at 37 °C 

prior to glutaraldehyde crosslinking. 

6.2.3 Co-immunoprecipitation 

The interaction between mutation-containing fragments and the wild-type RyR2 N-

terminus was evaluated in co-immunoprecipitation assays. HEK293 cells were co-

transfected with the following combinations of constructs: BT4L
R176Q

 and the AD4L 

construct (HA-tagged BT4L fragment), BT4L
L433P

 and AD4L as well as BT4L
WT

 and 

AD4L which served as positive control. Co-immunoprecipitation was performed as 

described in Section 2.2.2.6. Polyclonal HA antibody (Table 2.1) and protein A 

Sepharose beads were used to immunoprecipitate the wild type HA-tagged N-

terminal fragment (AD4L) and the c-Myc Ab was used to detect co-precipitating 

BT4L proteins. The level of co-precipitated proteins was determined by densitometry 

as described in Section 4.2.4. 

6.2.4 Yeast two-hybrid system 

The effect of R176Q and L433P mutations on RyR2 N-terminus interactions in vivo 

was assessed using the yeast two-hybrid system. The bait plasmid (BD-BT4L
WT

) 

containing the BT4L fragment (RyR2, residues 1-906) fused to the GAL4 DNA-BD 

and c-Myc epitope (in pGBKT7 vector),  and the prey plasmid (AD-BT4L
WT

) 

containing the same N-terminal RyR2 fragment expressed as fusion protein with 

GAL4 AD and HA epitope (in pACT2 vector) were generated earlier. For BD-

BT4L
L433P 

and BD-BT4L
R176Q

, the cDNA coding for RyR2 N-terminus (residues 1-

906) was sub-cloned from the previously made  plasmids for mammalian expression 

(section 6.2.1). The ~2.7 kb DNA fragments obtained following digestion with 

BamHI and NdeI restriction enzymes were separated by agarose gel electrophoresis, 

purified and ligated (Section 2.2.1.3, 2.2.1.4 and 2.2.1.5) with the empty pGBKT7 

vector previously digested with the same combination of restriction enzymes The 
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ligation reaction was used to transform bacteria (Section 2.2.1.8). Colonies were 

screened as described in Section 2.2.1.0.  

For AD-BT4L
L433P

 and AD-BT4L
R176Q

, the RyR2 cDNA was sub-cloned into the 

empty pACT2 vector from the previously made plasmids for mammalian expression 

(section 6.2.1) using a combination of BamHI and NcoI restriction enzymes. 

Subsequent steps of the subcloning procedure were performed as described earlier for 

bait plasmids. 

β-galactosidase colony-lift filter assay and quantitative liquid β-galactosidase assay 

were performed as described in Section 2.2.3.3 and 2.2.3.4 respectively. Mutation 

effect on the interaction was tested in the following combinations: BD-BT4L
L433P

 

with AD-BT4L
L433P

, BD-BT4L
L433P

 with AD-BT4L
WT

 and BD-BT4L
WT 

with AD-

BT4L
L433P

 (R176Q mutation was tested analogously). The interaction between pVA3-

1 coding for a DNA-BD/murine p53 fusion protein and pTD1-1 coding for an 

AD/SV40 large T-antigen fusion protein was used as assay quality positive control. 

Data obtained for the mutants were expressed relative to the interaction between the 

wild-type fragments, i.e.  BD-BT4L
WT 

with AD-BT4L
WT

. 

6.2.5 Sub-cellular fractionation 

HEK293 cells were transfected with the BT4L fragment in combination with 

RyR2
WT

, RyR2
L433P

 or RyR2
R176Q

. Subsequent steps were undertaken as described 

earlier for the sub-cellular fractionation of the BT4L fragment expressed with or 

without RyR2 (Section 5.2.1). Quantitative distribution of the BT4L fragment in the 

microsomal versus cytosolic fraction was determined following densitometry 

analysis. 
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6.3 Results 

Two mammalian expression constructs (BT4L
R176Q

 and BT4L
L433P

) and four yeast 

plasmids (BD-BT4L
L433P

, AD-BT4L
L433P

, BD-BT4L
R176Q

, AD-BT4L
R176Q

) were 

successfully generated (Figure 6.2 and 6.3). 

 

Figure 6.2 Intermediate steps of the experimental procedure generating the BT4L
L433P

 
construct; A, lane 1: DNA gel showing the amplification product  (~1.5 kb) obtained in a 
standard PCR performed on the RyR2

L433P
, lane 2: PCR product digested with BglII and 

BspEI restriction enzymes,  B: restriction digest of the BT4L
WT 

plasmid (BglII/BspEI), the 
upper band was purified from the gel and ligated with the purified PCR product from lane 2 in 
panel A, C, lanes 1-5:  indicative digest (BglII/BspEI) of clones obtained after bacteria 
transformation following the subcloning procedure 

 

 

 

Figure 6.3 Intermediate steps of the experimental procedure generating one of the yeast 
expression vectors – BD-BT4L

R176Q
; A, lane 1: empty pGBKT7 digested with NdeI and BamHI 

restriction enzymes, lane 2: restriction digest of BT4L
R176Q

 (NdeI/Bam    generating   2.8kb 
fragment which was purified from the gel and cloned into purified pGBKT7 from lane 1, B, 
lanes 1-4:  indicative digest (NdeI/BamHI) of clones obtained after bacteria transformation 
following the subcloning procedure 
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6.3.1 Arrhythmia-linked mutations reduce N-terminus self-

association 

In chemical crosslinking, BT4L
R176QR

 and BT4L
L433P

 retained the ability to form 

tetramers as reflected by the presence of ~400 kDa band (Figure 6.4 and 6.5). 

However, compared to the BT4L
WT

 fragment, both mutants displayed severely 

compromised oligomerisation both in ambient and reducing conditions.  

 

 

Figure 6.4 Chemical crosslinking experiments illustrating time-dependent tetramer formation 
of BT4L

R176Q
 and BT4L

WT
 fragments in the presence and absence of DTT (right and left panel 

respectively). Time-points in minutes as indicated. Tetramer and monomer depicted by 
arrows 
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Figure 6.5 Chemical crosslinking illustrating time-dependent tetramer formation of BT4L
L433P

 
and BT4L

WT
 fragments in the presence and absence of DTT (right and left panel 

respectively). Time-points in minutes as indicated. Tetramer and monomer depicted by 
arrows 

 

 

Cumulative data following densitometry analysis are presented in Graph 6.1 and 6.2 

for BT4L
R176Q 

and BT4L
L433P 

respectively. In ambient conditions, the introduction of 

the R176Q substitution in the BT4L fragment resulted in on average 60% reduction in 

tetramer formation and the effect was a statistically significant for all time points 

studied (Graph 6.1, left panel). In reducing conditions, BT4L
R176Q

 ability to self-

associate was compromised by on average 70% with statistically significant effect for 

the majority of time points (Graph 6.1, right panel).  The presence of the L433P 

mutation on average reduced BT4L oligomerisation propensity by 40% at ambient 

conditions and 60% in reducing conditions (Graph 6.2). The effect was statistically 

significant for the majority of time-points studied. 
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Graph 6.1 Densitometry analysis of BT4L
WT 

and BT4L
R176Q

 tetramer formation in chemical 
crosslinking assay at ambient and reducing conditions. Percentage of tetramer calculated as 
described earlier (Section 4.2.3). Data are shown as mean +/-SEM, n=7 and n=6 for ambient 
and reducing conditions respectively; * statistical significance at p<0.05 calculated using 
paired, 2-tailed Student’s t test 
 

 

.  
 
 

 
 

Graph 6.2 Densitometry analysis of BT4L
WT 

and BT4L
L433P

 tetramer formation in chemical 
crosslinking assay at ambient and reducing conditions. Percentage of tetramer calculated as 
described earlier (Section 4.2.3). Data are shown as mean +/-SEM, n=7 and n=8 for ambient 
and reducing conditions respectively; * and ** statistical significance at p<0.05 and p<0.01 
respectively calculated using paired, 2-tailed Student’s t test 
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6.3.2 The formation of mixed oligomers is severely 

compromised in the presence of the L433P mutation  

The impact of both mutations on the formation of mixed oligomers was investigated 

by co-immunoprecipitation. HA-tagged RyR2 N-terminus (AD4L) was 

immunoprecipitated from HEK293 cell lysates co-expressing this protein together 

with (cMyc-tagged) BT4L
R176Q

 or BT4L
L433P

, and the presence of co-precipitated 

mutant proteins was analysed by Western blotting using Ab cMyc. The R176Q 

substitution resulted in a minor reduction of association with the wild-type fragment, 

while the effect of L433P mutation was unexpectedly remarkable (Figure 6.6 and 

6.7).  

 

 

Figure 6.6 Co-immunoprecipitation of the RyR2 N-terminus (AD4L) with BT4L
R176Q

 or BT4L
WT

 
following co-expression in mammalian HEK293 cells. Blots in the upper panel were probed 
with cMyc Ab; lane 1 and 2: 1/50

th
 and 1/200

th
 of cell lysate respectively, lane Ab

HA
 and IgG: 

specific and non-specific binding respectively. Blots in lower panel were probed with HA Ab; 
lane 1 and 2: 1/10

th
 and 1/50

th
 of cell lysate, lane Ab

HA
 and IgG: specific and non-specific 

binding respectively 
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Figure 6.7 Co-immunoprecipitation of the RyR2 N-terminus (AD4L) with BT4L
L433P

 or BT4L
WT

 
following co-expression in mammalian HEK293 cells. Blots in the upper panel were probed 
with cMyc Ab; lane 1 and 2: 1/50

th
 and 1/100

th
 of cell lysate respectively, lane Ab

HA
 and IgG: 

specific and non-specific binding respectively. Blots in lower panel were probed with HA Ab; 
lane 1 and 2: 1/10

th
 and 1/50

th
 of cell lysate, lane Ab

HA
 and IgG: specific and non-specific 

binding respectively 

 

 

Densitometry-based analysis was performed as described in Section 4.2.4 to 

quantitatively evaluate the impact of each mutation on the amount of recovered co-

precipitated mutant (Graph 6.3). The presence of R176Q mutation produced a small 

(18%), but not statistically significant, decline in the interaction propensities between 

the mutant and the wild-type fragment (Graph 6.3, left panel). On the other hand, the 

L433P substitution resulted in 59% (p<0.05) reduction in the amount of mutant 

protein recovered after co-immunoprecipitation relative to wild-type (Graph 6.3, right 

panel).  
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Graph 6.3 Bar chart summarising co-immunoprecipitation results for BT4L
R176Q

 and 
BT4L

L433P
 determined following densitometry analysis (left and right panel respectively). 

Results for co-precipitated mutant proteins are presented relative to the wild-type fragment. 
Data shown as mean +/-SEM, n=4 and n=5 for BT4L

R176Q
 and BT4L

L433P
 respectively; * 

statistical significance at p<0.05 using paired, 2-tailed Student’s t test 
 
 
 

6.3.3 The L433P mutation perturbs RyR2 N-terminus 

oligomerisation in situ (yeast two-hybrid system) 

The findings described in the previous sections, indicated that arrhythmia-linked 

mutations disrupt N-terminus self-association. Those experiments tested RyR2 N-

terminus oligomerisation in cell lysates, an environment which substantially differs 

from the tightly controlled and intact cellular milieu. The yeast two-hybrid system, 

where detection of protein-protein interactions takes place in living yeast, was 

employed to evaluate whether the in situ observed effects can be reproduced in in 

vivo conditions.  For this purpose, BT4L
R176Q 

and the BT4L
L433P 

were co-expressed in 

yeast with the wild-type fragment as recombinant proteins fused to GAL4 AD or 

DNA-BD (bait and prey respectively). The interaction of two mutants with 

themselves was investigated by expressing both bait and prey proteins as mutation-

containing fragments. The expression of all six constructs used in this study (BD-

BT4L
WT

, BD-BT4L
R176Q

, BD-BT4L
L433P

, and AD-BT4L
WT

, AD-BT4L
R176Q

, AD-

BT4L
L433P

) was investigated as substantial differences in protein levels would affect 

the outcome of the assay. As shown in Figure 6.8, all recombinant proteins were 

expressed at comparable levels. 
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Figure 6.8 Western blotting showing expression levels of recombinant proteins tested in 
yeast two-hybrid system; left pane: recombinant proteins fused with DNA-BD and tagged with 
c-Myc epitope, right panel: recombinant proteins fused with GAL4 AD and tagged with HA 
epitope  

 

β-galactosidase colony-lift filter assay confirmed that the RyR2 N-terminus self-

association (AD-BT4L
WT

/BD-BT4L
WT

) indeed takes place in vivo (Table 6.2). The 

wild-type interaction with itself is very strong, comparable to the interaction between 

the p53 protein (pVA3) and large T antigen (pTD1), which is a positive control 

commonly used in the yeast two-hybrid system. This rather qualitative assay allowed 

for some preliminary conclusions concerning the effect of L433P and R176Q 

mutations to be drawn (Table 6.2).  

 

Bait construct Prey construct 
Expression of β-galactosidase (conversion of X-gal 

into a blue product) 

pVA3 pTD1 strong  

BD-BT4L
WT

 AD-BT4L
WT

 strong 

BD-BT4L
WT

 AD-BT4L
R176Q

 strong 

BD-BT4L
R176Q

 AD-BT4L
WT

 strong/moderate 

BD-BT4L
R176Q

 AD-BT4L
R176Q

 moderate 

BD-BT4L
WT

 AD-BT4L
L433P

 moderate/weak 

BD-BT4L
L433P

 AD-BT4L
WT

 weak 

BD-BT4L
L433P

 AD-BT4L
L433P

 no colour change 

 
Table 6.2 Summary of β-galactosidase colony lift assay; strong, moderate and weak reflect 
the relative strength of colour change in time 
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Quantitative data was obtained using β-galactosidase liquid assay are presented in 

Graph 6.4. In agreement with the co-immunoprecipitation results, the R176Q 

mutation did not substantially affect the interaction with the wild-type fragment (BD-

BT4L
R176Q

/AD-BT4L
WT 

and (BD-BT4L
WT

/AD-BT4L
R176Q

) (Graph 6.4, left panel). 

As expected from the chemical crosslinking experiments, a compromised self-

association was observed; however the effect was statistically insignificant (BD-

BT4L
R176Q

/AD-BT4L
R176Q

). The impact of the L433P substitution in situ 

recapitulated all our previous in vitro findings (Graph 6.4, right panel). The presence 

of the L433P mutation in one of the interacting partners (mixed oligomers; BD-

BT4L
L433P

/AD-BT4L
WT 

or BD-BT4L
WT

/AD-BT4L
L433P

) compromised the association 

by over 85% relative to the interaction between the wild-type fragments (BD-

BT4L
WT

/AD-BT4L
WT

). Notably, the effect of this mutation was synergistic; i.e. when 

the L433P substitution was present in both bait and prey proteins, the interaction was 

further reduced by 80%. 

 

 
 

 
 

Graph 6.4 Bar chart summarising the results of liquid β-galactosidase assay evaluating the 
effect of the R176Q and the L433P mutation on the N-terminus oligomerisation in vivo (left 
and right panel respectively). Results presented relative to the value obtained for self-
association of the wild-type fragment (BD-BT4L

WT
/AD-BT4L

WT
). Data shown as mean +/-

SEM, n=5; * and **asterisks indicate statistical significance at p<0.05 and p<0.01 respectively 
calculated using unpaired, 2-tailed Student’s t test 
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6.3.4 Dantrolene partially reverses the effects of the L433P 

mutation 

The evidently reduced tetramerisation ability of the BT4L fragments containing 

arrhythmia-linked mutations observed in chemical crosslinking (Section 6.3.1) was 

investigated in the presence of dantrolene (1μM). The principal goal was to establish 

whether dantrolene can rescue the disease phenotype. Initially, it was investigated 

whether dantrolene treatment prior to chemical crosslinking is able to influence 

tetramerisation of the wild-type BT4L fragment. In agreement with the literature 

reporting no effects of the drug on RyR2, in the absence of the arrhythmia-linked 

mutations, dantrolene did not produce any appreciable changes on the tetramerisation 

propensity of the wild-type N-terminus (Figure 6.9, Graph 6.5). 

 

 

Figure 6.9 Chemical crosslinking illustrating time-dependent tetramer formation of the 
BT4L

WT
 fragment in the presence and absence of dantrolene (1μM  at ambient and reducing 

conditions (left and right panel respectively). Time-points in minutes as indicated. Tetramer 
and monomer depicted by arrows 
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Graph 6.5 Densitometry analysis of BT4L

WT 
tetramer formation in chemical crosslinking 

assay in the presence and absence of dantrolene (1μM  at ambient and reducing conditions. 
Percentage of tetramer calculated as described earlier (Section 4.2.3). Data are shown as 
mean +/-SEM, n=7 and n=6 for ambient and reducing conditions respectively 

 

 

Subsequently, chemical crosslinking of BT4L
R176Q

 and BT4L
L433P

 following pre-

treatment with 1μM dantrolene was performed.  Dantrolene produced an apparent 

increase in the tetramer formation for BT4L
R176Q

; however the effect was statistically 

significant only for two time-points at ambient conditions (Figure 6.10, Graph 6.6).  

Remarkably, dantrolene substantially increased tetramer formation of the BT4L
L433P

 

fragment (Figure 6.12). Analysis of cumulative data by densitometry revealed that 

under ambient conditions the drug promoted on average 35% increase in tetramer 

formation and this effect was statistically significant for the majority of time-points 

studied (Graph 6.7, left panel).  In reducing conditions, the effect of the drug was also 

evident; however, it was statistically significant only at 60 min time-point (Graph 6.7, 

right panel).   
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Figure 6.10 Chemical crosslinking illustrating time-dependent tetramer formation of the 
BT4L

R176Q
 fragment in the presence and absence of dantrolene (1μM  at ambient and 

reducing conditions (left and right panel respectively). Time-points in minutes as indicated. 
Tetramer and monomer depicted by arrows 

 

 

 

 

 

Graph 6.6 Densitometry analysis of BT4L
R176Q 

tetramer formation in chemical crosslinking 
assay in the presence and absence of dantrolene (1μM  at ambient and reducing conditions. 
Percentage of tetramer calculated as described earlier (Section 4.2.3). Data are shown as 
mean +/-SEM, n=5 and n=3 for ambient and reducing conditions respectively, * statistical 
significance at p<0.05 calculated using paired, 2-tailed Student’s t test 
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Figure 6.11 Chemical crosslinking illustrating time-dependent tetramer formation of the 
BT4L

L433P
 fragment in the presence and absence of dantrolene (1μM  at ambient and 

reducing conditions (left and right panel respectively). Time-points in minutes as indicated. 
Tetramer and monomer depicted by arrows 
 
 
 
 
 
 
 
 

 
 

Graph 6.7 Densitometry analysis of BT4L
L433P 

tetramer formation in chemical crosslinking 
assay in the presence and absence of dantrolene (1μM  at ambient and reducing conditions. 
Percentage of tetramer calculated as described earlier (Section 4.2.3). Data are shown as 
mean +/-SEM, n=6 and n=7 for ambient and reducing conditions respectively, * statistical 
significance at p<0.05 calculated using paired, 2-tailed Student’s t test 
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6.3.5 Arrhythmia-linked mutations affect BT4L interaction with 

the full length channel 

The co-expression of the BT4L fragment with the full-length RyR2 in HEK293 cells 

results in the translocation of the former from the cytoplasmic into the microsomal 

fraction (Chapter 5, Section 3.5.1). The same technique was used to analyse whether 

the presence of R176Q or L433P mutation in the full length channel alters BT4L sub-

cellular distribution, i.e. whether the interaction between the BT4L fragment and the 

mutant channel is disrupted. Indeed, both mutations  reduced the amount of the BT4L 

fragment in the microsomal versus cytosolic fraction as compared to the level 

observed upon co-expression with the wild-type RyR2  (Figure 6.12 and 6.13, upper 

panels).  This effect was not due to the differences in the expression level between 

mutant and wild-type RyR2 as the amount of protein was comparable (Figure 

6.12.and 6.13, lower panels).  

 

 

Figure 6.12 Sub-cellular fractions obtained from cells expressing the BT4L fragment with and 
without the wild-type full length RyR2 or with RyR2

R176Q
 (left and right panel respectively). 

Blots in the upper panel were probed with c-Myc Ab and represent BT4L distribution over the 
following fractions; H: homogenate, M: microsomes, C: cytosol. Blots in the lower panel were 
probed with 1093 serum and represent RyR2 distribution 
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Figure 6.13 Sub-cellular fractions obtained from cells expressing the BT4L fragment with and 
without the wild-type full length RyR2 or with RyR2

L433P
 (left and right panel respectively). 

Blots in the upper panel were probed with c-Myc Ab and represent BT4L distribution over the 
following fractions; H: homogenate, M: microsomes, C: cytosol. Blots in the lower panel were 
probed with 1093 serum and represent RyR2 distribution 

 

 

The distribution of the BT4L fragment in the microsomal versus cytosolic fraction 

upon co-expression with full-length RyR2 containing arrhythmia-associated 

mutations was quantitatively analysed by densitometry and expressed relative to the 

distribution observed for RyR2
WT

/BT4L (Graph 6.8). This analysis confirmed the 

initial observations; indeed both mutations resulted in statistically significant decline 

in the amount of BT4L in microsomal fraction implying that the presence of R176Q 

and L433P mutations perturbs the physical association of the BT4L fragment with the 

full length channel. While the introduction of the R176Q mutation induced a 

relatively small drop in the amount of the BT4L fragment being translocated into 

microsomes (Graph 6.8, left panel), the effect of L433P mutation was considerably 

more pronounced (27% reduction) (Graph 6.8, right panel). 
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Graph 6.8 Sub-cellular distribution of the BT4L fragment upon co-expression with RyR2
R176Q

 
and RyR2

L433P 
relative to

 
the distribution of BT4L co-expressed with RyR2

WT
 (left and right 

panel respectively). Results presented as microsomes/cytosol ratio calculated using 
densitometry. Data shown as mean +/-SEM, n=6 and n=4 for RyR2

R176Q
 and RyR2

L433P 

respectively, * and ** statistical significance at p<0.05 and at p<0.01 respectively calculated 
using paired, 2-tailed Student’s t test 
 
 

6.4 Discussion 

The goal of the study presented in this Chapter was to evaluate the effect of two N-

terminal arrhythmia-linked mutations on RyR2 N-terminus oligomerisation. This task 

was performed using three independent techniques; chemical crosslinking, co-

immunoprecipitation and yeast two-hybrid system.  Moreover, tetramerisation of 

BT4L
WT

 and the two mutants (BT4L
R176Q

 and BT4L
L433P

) was investigated in the 

presence of dantrolene. In addition, the effect of arrhythmia-linked mutations on the 

interaction between the full length RyR2 and the BT4L fragment was assessed. 

RyR2 mutations are associated with episodes of life-threatening arrhythmias. A 

disease phenotype becomes apparent upon β-adrenergic stimulation and on a cellular 

level is considered to result from abnormal calcium handling during diastole 

(Betzenhauser and Marks 2010). While elevated calcium levels are clearly a 

consequence of RyR2 dysfunction, the molecular mechanism behind abnormal 

channel gating remains elusive and controversial. Currently proposed theories for 

RyR2 dysfunction have been mainly based on data obtained in experiments 

performed on heterologously expressed channels and evaluation of animal models. At 

present there are a few working hypotheses including abnormal RyR2 binding of 

FKBP12.6 (Wehrens et al. 2003), reduced threshold for store-overload-induced 
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calcium release (Jiang et al. 2005) and RyR2 N-terminal – central domain unzipping 

(Uchinoumi et al. 2010). The involvement of the N-terminus inter-subunit interaction 

in RyR1 function and its putative disruption by MH/CCD-associated mutations has 

been very recently proposed (Kimlicka et al. 2013). Based on the docking of the 

RyR1 N-terminus structure into the cryo-EM map of the full-length RyR1 in an open 

versus closed conformation, it was suggested that the N-terminus inter-subunit 

contact is disrupted upon channel opening. The authors also solved crystal structures 

of several disease mutants and proposed that MH-associated mutations weaken 

interactions at the N-termini inter-subunit contact site rendering the channel more 

prone to activation (Kimlicka et al. 2013). However, their model of N-terminus self-

association was based on in silico
 
data.  

6.4.1 Oligomerisation of RyR2 N-terminus is affected by 

arrhythmia-linked mutations 

The biochemical data presented in this Chapter clearly indicate that RyR2 N-terminus 

self-association is reduced in the presence of arrhythmia-linked mutations. The two 

mutations investigated in this study R176Q and L433P, were initially identified in 

patients diagnosed with ARVD2, a condition, which in addition to stress-induced life-

threatening arrhythmia, is characterised by a progressive degeneration of the right 

ventricle (Tiso et al. 2001). However, they were later found in individuals with a 

typical CPVT phenotype (Tester et al. 2005b; Haugaa et al. 2010). In chemical 

crosslinking, both mutations severely compromised the ability of the BT4L fragment 

to tetramerise (Figure 6.4 and 6.5, Graph 6.1. and 6.2). According to the docking of 

the RyR1 N-terminus into the cryo-EM map of the full-length channel (Tung et al. 

2010), R176Q is located at the proposed inter-subunit interface (Figure 6.14). 

Moreover, this residue is located in the β8-β9 loop previously suggested to be 

involved in the gating of IP3R (Seo et al. 2012). Notably, the reduced ability of 

R176Q to form tetramers corroborated earlier findings presented in Chapter 4, i.e. the 

severely impaired oligomerisation of the BT4L
β8-β9loop 

deletion mutant, in which 

residues 167-178 are missing. The L433P mutation, which also compromised BT4L 

oligomerisation, does not reside at the inter-subunit boundary (Figure 6.14).  
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However, the L433P constitutes part of an α-helix which would be expected to be 

severely disrupted upon mutation to a rigid proline. This could in turn trigger long-

distance alterations at the inter-subunit contact site, in agreement with the model 

proposed by Kimlicka and colleagues, in which MH-associated mutations that do not 

directly map to the inter-subunit interface have the ability to exert allosteric changes 

which eventually affect this interface in RyR1 (Kimlicka et al. 2013). 

 

 

Figure 6.14 Image showing the location of two arrhythmia-associated mutations (R176Q and 
L433P in red and purple respectively) relative to the predicted inter-subunit interface 
(depicted by a line ; loop β8- β9 in blue 
 
 
 
 
 

Mutations in RyR2 associated with life-threatening ventricular arrhythmia have been 

shown to have a dominant phenotype. Hence, the observations obtained in chemical 

crosslinking experiments do not directly reflect the situation in patients where both 

wild-type and mutated forms of RyR2 are expected to be present. To imitate the 

heterozygous scenario, a co-immunoprecipitation assay between the wild-type RyR2 

N-terminus (AD4L) and mutation-containing BT4L fragments (BT4L
R176Q

 and 

BT4L
L433P

) was performed. Interestingly, in this assay BT4L
R176Q

 did not exhibit a 

significantly reduced ability to interact with its wild-type counterpart while the L433P 

substitution still had a profound effect (Figure 6.6 and 6.7, Graph 6.3). In agreement 

with the above findings, yeast two-hybrid system analysis yielded similar results; the 

R176Q mutant interaction with the BT4L fragment was negligibly affected, while the 

self-association process was impaired (Graph 6.4, left panel). Although in the latter 
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case, the reduction did not reach statistical significance, in combination with the 

crosslinking data, this outcome suggests a biologically significant phenomenon.  

Although the yeast two-hybrid system has an invaluable advantage over biochemical 

assays in respect to its ability to evaluate protein-protein interactions in vivo an 

additional note should be made. An unquestionable drawback of this method is the 

rate of false-positives and false-negatives, which in most cases is believed to originate 

from the fact that the proteins under investigation are fused to yeast proteins (GAL4 

DNA-BD and AD). This has the potential to introduce conformational changes in 

both, i.e. proteins of interest and yeast proteins resulting in altered propensity for 

protein-protein interaction and the ability to activate transcription, respectively. 

Secondly, physiologically relevant species formed by the BT4L fragment are 

tetramers, while the interaction in yeast is evaluated at the level of a dimer. 

Nevertheless, the in vivo data are consistent with earlier observations from 

biochemical experiments, i.e. the R176Q mutation reduces N-terminus 

oligomerisation in a homozygous scenario, however its effect seems to be 

insignificant in the heterozygote case, at least in yeast. 

In agreement with the results obtained in co-immunoprecipitation, the presence of the 

L433P mutation profoundly impaired the formation of mixed oligomers in the yeast 

two-hybrid system (Graph 6.4, right panel).  Notably, in in vivo conditions, the effect 

of this mutation was much more pronounced than in the biochemical assay, i.e. the 

association between BT4L
L433P 

and the wild-type fragment was reduced by 87% 

while the interaction with itself was reduced to 2.6% of the wild-type self-association. 

The biochemical and in vivo data obtained in this study strongly imply that N-

terminus association becomes impaired upon introduction of mutations linked to 

ventricular arrhythmia in patients. Thus, defective N-terminus oligomerisation might 

underlie the molecular mechanism leading to abnormal RyR2 channel function. 

Moreover, the severity of the disease phenotype, i.e. the weakening of the RyR2 N-

termini inter-subunit interaction, depends on the mutation site as seen with R176Q 

and L433P investigated here. A substantial functional heterogeneity between R176Q 

and L433P mutations was shown upon heterologous expression in HEK293 cells 

(Thomas et al. 2004). The presence of the R176Q substitution resulted in enhanced 

sensitivity to caffeine activation and augmented peak calcium release, a phenomenon 



208 

 

well documented for RyR2 mutations associated with cardiac arrhythmias. 

Unexpectedly, the L433P mutant channel exhibited significantly desensitised 

caffeine-activation profile with concomitant increase in the calcium release rate and 

transient duration. Since the decreased activation sensitivity of this particular mutant 

was counterbalanced by an increase in the calcium release rate and duration it is not 

surprising that on a global level both mutations resulted in a similar phenotype. 

However, other groups reported that the L433P substitution leads to effects 

indistinguishable from other arrhythmia-linked mutations, i.e. increased sensitivity to 

luminal calcium and to caffeine activation (Jiang et al. 2005). The reason for these 

conflicting findings is not clear as both groups used the HEK293 cell system to study 

the functional effects of this mutation. Thus the results obtained in this study confirm 

substantial heterogeneity of arrhythmia-associated mutations despite nearly identical 

clinical symptoms. A clear difference in the precise mechanism behind RyR2 

pathology, which at the cellular level ultimately results in elevated diastolic calcium, 

is further supported by an inconsistency observed in the response to drug treatments, 

e.g. JTV519 was shown to be effective only in selective cases of genetic or acquired 

defects in RyR2 (Yano et al. 2003; Liu et al. 2006; Hunt et al. 2007; Hamada et al. 

2009; Suetomi et al. 2011; Sacherer et al. 2012). 

6.4.2 Dantrolene  

 Having established that arrhythmia-linked mutations disrupt N-terminus self-

association, it was investigated whether defective RyR2 N-terminal inter-subunit 

interactions can be restored by dantrolene. This compound was used as its putative 

binding site is located in the RyR2 N-terminus (residues 601-620) (Paul-Pletzer et al. 

2005). Dantrolene was synthesised in 1967 as a new class of skeletal muscle relaxant 

and since 1977 has been widely used to treat MH, a pharmacogenetic disorder 

associated with RyR1 mutations (Inan and Wei 2010). Although RyR1 and RyR2 

share a consensus sequence for its binding, the latter showed to be unaffected by 

dantrolene both in native cardiomyocytes and when heterologously expressed in 

HEK293 cells (Zhao et al. 2001). In agreement with these findings, tetramerisation of 
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the wild-type BT4L fragment in the presence of this drug remained unchanged 

(Figure 6.9, Graph 6.5).  

It was later suggested that the dantrolene-binding site is conformation-sensitive 

becoming accessible in dysfunctional RyR2. This hypothesis was supported by a 

number of reports showing a therapeutic effect of this drug in RyR2-associated 

disorders (Uchinoumi et al. 2010; Xu et al. 2010). So far the therapeutic effect of 

dantrolene was investigated in animal models for mutations located in the central 

portion of the protein (Kobayashi et al. 2010) and RyR2 dysfunction associated with 

heart failure (Kobayashi et al. 2009; Maxwell et al. 2012). A relatively recent report 

presented convincing evidence for dantrolene’s ability to rescue the arrhythmic 

phenotype in cardiomyocytes derived from patient-specific, induced pluripotent stem 

cells carrying a RyR2 N-terminal mutation (S406L) (Jung et al. 2012).  

The molecular mechanism underlying the dantrolene effect on RyR2 has been 

suggested to involve stabilisation of N-terminal – central domain interactions across 

subunits (Kobayashi et al. 2010; Uchinoumi et al. 2010; Suetomi et al. 2011). 

However, a more recent FRET-based study proposed that dantrolene does not bind at 

the N-terminal – central domain interface but it stabilises it via allosteric effects 

involving a number of additional domain-domain contacts (Wang et al. 2011).  

The present study sheds new light on the dantrolene mechanism of action. In 

chemical crosslinking dantrolene promoted tetramer formation of RyR2 N-terminus 

carrying the L433P mutation (Figure 6.11 and Graph 6.7). Similar observations were 

made for the R176Q mutation, although data did not reach statistical significance 

(Figure 6.10 and Graph 6.6). As the dantrolene effect on oligomerisation of the RyR2 

N-terminus is evident in the absence of other putative domains, dantrolene’s primary 

mode of action might involve stabilisation of mutation-induced, defective N-terminus 

self-interaction across subunits. This effect appears to be mutation-dependent as there 

is a significant rescue of aberrant N-terminus self-association in the case of L433P 

mutant but a less pronounced effect for R176Q. Notably, the R176Q mutation  

corresponds to the RyR1 MH-associated mutation (R163C), which symptoms were 

shown to be attenuated by dantrolene (Cherednichenko et al. 2008). Thus, the 

reduced ability of dantrolene to increase tetramer formation in the presence of R176Q 

in a biochemical assay does not preclude the possibility that this effect is sufficient to 
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be of biological significance. Interestingly, dantrolene efficacy was mostly 

statistically insignificant in reducing conditions, indicating that disulphide bonds 

might have a role in maintaining this type of inter-subunit interaction. 

6.4.3 Compromised association between exogenous N-terminus 

and RyR2 containing arrhythmia-linked mutations 

The presence of arrhythmia-linked mutations in the full length channel, reduce its 

interaction with the BT4L fragment (Figure 6.12 and 6.13, Graph 6.8). Again, this 

reduction in association is mutation dependent with L433P having a more pronounced 

effect. The reduced interaction of the exogenous wild-type N-terminal fragment 

(BT4L) with the mutant RyR2 channel might be interpreted as BT4L having a higher 

affinity for self-interaction rather than forming weaker, “mixed” interactions with the 

mutant N-terminus domain of full-length channels. Further to the above, it would also 

imply that the presence of the R176Q mutation has the ability to compromise N-

terminus interaction in a heterozygote scenario, an effect that was beyond detection in 

the yeast two-hybrid system. Thus, these findings further support the proposed 

hypothesis that disruption of the N-terminal inter-subunit interface by arrhythmia-

associated mutations might underlie the molecular mechanism of channel dysfunction 

that directly links to the disease phenotype.  

6.4.4 Final remarks 

The study presented in this Chapter provided evidence that the presence of 

arrhythmia-linked mutations disrupts N-terminus self-association and that mutation-

induced defective tetramerisation can be restored by dantrolene. In Chapter 5, it was 

shown that the exogenous BT4L fragment activates RyR2 at diastolic calcium 

concentrations imitating the effects produced by arrhythmia-linked mutations. It was 

speculated that this phenomenon is a consequence of the BT4L fragment disrupting 

N-terminus interactions occurring between subunits in the full-length channel. Thus, 
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these observations suggest that mutation-induced defective N-terminus interactions 

might constitute a direct link to RyR2 increased activity at diastolic calcium levels. 
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Chapter 7 

 

Further insights into the L433P 

mutation 
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7 Further insights into the L443P mutation 

7.1 Introduction 

The findings presented in the previous Chapter indicate that the L433P mutation 

severely disrupts N-terminus self-association. This effect was consistently observed 

in experiments based on three independent techniques including chemical 

crosslinking, co-immunoprecipitation and in vivo assay using the yeast two-hybrid 

system. Notably, a significant rescue of the mutation-induced phenotype was 

observed in the presence of dantrolene, which has pronounced implications for the 

potential use of this drug in the treatment of RyR2 dysfunction. In order to further 

validate those findings, a detailed study into the oligomerisation properties of this 

mutation in the context of the full length RyR2 was undertaken. For this purpose, 

microsomal fractions obtained from HEK293 cells expressing RyR2
L433P

 and RyR2
WT

 

were subjected to sucrose density gradient centrifugation. This method separates 

molecules primarily on the basis of their size under non-denaturing conditions 

therefore allowing for non-covalent interactions to be retained.  Functional 

characterisation of RyR2
L433P

 was performed using [
3
H]ryanodine binding assay to 

underpin the mechanism of channel dysfunction. Moreover, the hypothesis of the 

mutation-induced disruption of the N-terminus inter-subunit interactions in the full 

length channel was tested. For this purpose, [
3
H]ryanodine binding was employed to 

evaluate whether the presence of the exogenous BT4L fragment is able to alter 

channel properties in a manner similar to the one observed for wild-type RyR2. The 

reasoning behind this experimental approach was that if the N-terminus interaction 

was already defective in RyR2
L433P

 leading to the hypersensitive phenotype, BT4L 

should not promote channel activation. RyR2
L433P 

oligomerisation and function were 

further tested in the presence of dantrolene. 
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7.2 Methods 

7.2.1 [
3
H]ryanodine binding assay – RyR2

WT
 versus RyR2

L433P
 

[
3
H]ryanodine binding was performed on cell homogenates instead of microsomes. 

The rationale behind the use of cell homogenates as opposed to microsomes was 

based on the fact that in subsequent assays we aimed to test whether the co-

expression of the BT4L fragment with full length RyR2
L433P

 affects channel activity. 

Since it was earlier showed that the majority of the BT4L fragment remains in the 

cytosol when co-expressed with RyR2
L433P

 (Chapter 6), there was a possibility that 

the reduced BT4L levels (compared to when BT4L is co-expressed with RyR2
WT

) in 

the microsomal fraction might be too low to mediate any functional effects. Briefly, 

for a typical [
3
H]ryanodine binding assay ten 100mm Petri dishes were transfected 

with either RyR2
WT

 or RyR2
L433P

. 24 hour post-transfection, cells were homogenised 

on ice using a custom-made cell homogeniser allowing for 25 passages through a 

needle (0.6x30 mm). Assays were performed on cell homogenates obtained following 

a 1500 xg centrifugation step. Total protein content was evaluated using the BCA 

assay. RyR2
WT

 and RyR2
L433P

 expression was evaluated on two levels; initially by 

densitometry-based analysis of Western blotted fractions and subsequently by 

[
3
H]ryanodine binding assay performed in conditions promoting maximum channel 

activation and therefore leading to the measurement of total RyR2 content. Cell 

homogenates obtained from untransfected HEK293 cells were used to ascertain equal 

total protein content between samples. [
3
H]ryanodine binding was performed as 

described in Section 2.2.2.8. Dose response curves were fitted with GraphPad Prism 

using four-parameter sigmoidal model. Statistical analysis was performed using the 

extra-sum of squares F test (GraphPad Prism).  
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7.2.2 [
3
H]ryanodine binding assay – evaluating the effect of the 

BT4L fragment 

[
3
H]ryanodine binding was performed on cell homogenates obtained from HEK 293 

cells transfected with the full length RyR2
L433P

 or RyR2
WT

 alone or in combination 

with the BT4L fragment. The procedure was carried out as described in Section 7.2.1.  

7.2.3 Sucrose density gradient ultracentrifugation 

For sucrose density gradient ultracentrifugation cell pellets of HEK293 cells 

expressing RyR2
WT

 or RyR2
L433P

 were typically harvested from 8-10 100 mm Petri 

dishes and processed as described in Section 2.2.2.7. Dantrolene effect was evaluated 

in separate experiments. Briefly, homogenised cells were centrifuged at 1500 xg for 

10 min to remove unbroken cells and nuclei. Supernatants, divided into three aliquots 

and treated with or without dantrolene (1 μM), were subjected to centrifugation at 100 

000 xg for an hour in order to obtain microsomal fractions. One of the microsomal 

pellet aliquots was used to evaluate protein concentration by the BCA assay.  The 

remaining two pellets (one of them dantrolene-treated) were re-suspended at a protein 

concentration of 2.5 mg/ml in the high-salt solubilisation buffer and the dantrolene-

treated sample was additionally supplemented with dantrolene to 1 μM final 

concentration. Following solubilisation and subsequent centrifugation to remove the 

insoluble material, the supernatant was layered onto the sucrose density gradient 

prepared as described in section 2.2.2.7. For dantrolene-containing samples separate 

sucrose gradients were prepared which were supplemented with dantrolene (1 μM).  

RyR2 distribution was evaluated by Western blotting. Quantitative analysis was 

performed using densitometry. 
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7.2.4 [
3
H]ryanodine binding assay - dantrolene effect 

Microsomal fractions obtained from HEK293 cells expressing RyR2
L433P

 were 

subsequently subjected to [
3
H]ryanodine binding assays for the evaluation of 

dantrolene effect. Prior to the actual assay, 115-125 μg of microsomes were incubated 

with or without dantrolene for an hour at room temperature in the ryanodine binding 

buffer with free Ca
2+

 concentrations adjusted to 100 nM, 1 μM and 100 μM. 

[
3
H]ryanodine binding was performed as described before.  

7.3 Results 

7.3.1 RyR2
L433P

 displays unique calcium dependence of 

[
3
H]ryanodine binding 

As described in Methods (Section 7.2.1), it was assured that equal amounts RyR2
WT

 

and RyR2
L433P

 were subjected to [
3
H]ryanodine binding. The expression level of the 

two proteins, assessed by Western blotting was found to be comparable (Figure 7.1). 

Protein expression was further quantified by densitometry and the amount of cell 

homogenate was adjusted accordingly and subjected to [
3
H]ryanodine binding in 

conditions promoting maximum channel activation (100 μM Ca
2+

, 10 mM caffeine). 

Typically, this step enables to evaluate the capacity of cell preparations for maximum 

[
3
H]ryanodine binding which reflects the total amount of functional RyR2 protein 

expressed. This is necessary to normalise the data for comparison between samples of 

different origin.  

It has been shown that arrhythmia-linked mutations enhance the basal level of [
3
H] 

ryanodine binding, i.e. the differences between native and mutated channels can be 

primarily observed at sub-activating Ca
2+

 levels (Jiang et al. 2004). This observation 

implies that in conditions promoting maximum activation of RyR2, mutation-

associated differences in channel behaviour are eliminated. Therefore, evaluation of 
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maximum binding is considered an appropriate and valuable tool to obtain 

information concerning total amount of receptors present in the sample. However, 

there was no substantial [
3
H]ryanodine binding observed for RyR2

L433P
 at any of the 

activating calcium concentration tested (Graph 7.1). Maximum [
3
H]ryanodine 

binding levels did not reach those observed for wild-type RyR2, even when we used 

twice as much material as the protein expression levels would imply.  

 

Figure 7.1 Western blotting showing protein levels of RyR2
WT

 and RyR2L
433P

 upon 
heterologous expression in HEK293 cells. 
 
 
 
 
 
 
 

 

Graph 7.1 [
3
H]ryanodine binding assays of HEK293 cell homogenates expressing RyR2

WT 

and RyR2
L433P

 over a range of free Ca
2+ 

concentrations . Data presented relative to maximum 
binding obtained for the wild-type RyR2 at 100μmol/l Ca

2+
. Data shown as mean +/-SEM, n=5 

for 50-250 nM and n=3 for 1-100 μM Ca
2+

 each performed at least in duplicate, ** statistical 
significance at p<0.01 calculated using unpaired, 2-tailed Student’s t test 
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The results presented in Graph 7.1 summarise the data obtained for calcium 

dependence of [
3
H]ryanodine binding for RyR2

L433P
 relative to RyR2

WT
. Dose-

response curves of the above results are presented in the left panel in Graph 7.2. As 

shown in Graph 7.1, RyR2
L433P

 activation is significantly diminished relative to 

RyR2
WT

 (below 40 % of wild-type RyR2 at 100 μM Ca
2+

).  As the equal amount of 

recombinant proteins was used, the reduced [
3
H]ryanodine binding in conditions 

promoting channel activation, implies that either  RyR2
L433P

 is unresponsive to Ca
2+

 

or exhibits reduced binding affinity for ryanodine. As high-affinity ryanodine-binding 

requires RyR2 tetramer (Lai et al. 1989; Tanna et al. 1998), the latter explanation 

would suggest that in the presence of the L433P mutation tetramer arrangement might 

be compromised.  Moreover, contrary to the well accepted hypersensitisation to 

diastolic calcium exhibited by RyR2 in the presence of arrhythmia-linked mutations 

(Jiang et al. 2002a; Jiang et al. 2004; Fernández-Velasco et al. 2009), the RyR2
L433P

 

channel did not exhibit increased basal activity, i.e. no enhanced [
3
H]ryanodine 

binding at low Ca
2+

 concentrations was observed (Graph 7.1). However, this apparent 

disagreement with the gain-of-function phenotype observed for other CPVT/ARVD2-

assoaciated mutations, might in fact originate from the manner in which data are 

normalised. In the left panel in Graph 7.2 the data for both RyR2
WT

 and RyR2
L433P

 

are presented relative to the maximum value obtained for the wild-type channel at 

100 μM Ca
2+

. However, when the RyR2
L433P

 data are normalised to its own 

[
3
H]ryanodine maximum binding as presented in the right panel of Graph 7.2, it 

becomes clear that RyR2
L433P

 is in fact hypersensitive to calcium-mediated activation 

with a significantly lower EC50  (RyR2
L433P

 EC50=118.6 nM Ca
2+

  versus 454.8 nM 

Ca
2+

 for RyR2
WT

, p=0.003). Nevertheless, it is important to point out that the direct 

comparison of EC50 between RyR2
L433P

 and RyR2
WT

 masks important aspects of the 

functional impairment of this mutant. In addition, the presence of L433P substitution 

resulted in a slight inhibition of the channel at 5μM calcium, a phenomenon that was 

consistently observed throughout the experiments.  
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Graph 7.2 Dose-response curves for RyR2

WT
 and RYR2

L433P
 of the [

3
H]ryanodine binding 

data (obtained as described in Graph 7.1) fitted with GraphPad Prism using four-parameter 
logistic model. Best-fit values shown in the table; n/a (non-applicable), ns (not significant). 
Statistical analysis performed on data where RYR2

L433P
 results are normalised to its own 

maximum binding (100 μM Ca
2+

), right panel.  
 
 
 

7.3.2 RyR2
L433P

 calcium sensitivity remains unchanged in the 

presence of the BT4L fragment 

In the study presented in Chapter 5, the co-expression of the BT4L fragment with 

RyR2
WT

 promoted channel activation at sub-threshold Ca
2+

 thus imitating the effect 

of arrhythmia-linked mutations. It was speculated that the increased activity of the 

channel in the presence of exogenous BT4L is due to the disruption of “endogenous” 

N-terminus self-association within the RyR2
WT

 tetrameric assembly. Thus, it was 

next investigated whether the observed RyR2
L433P

 channel dysfunction is due to 

defective N-terminal inter-subunit interactions. If the above hypothesis was correct, 

the presence of the exogenous (BT4L) N-terminus should have no effect on 

RyR2
L433P

 function. Since these experiments were performed on cell homogenates as 

opposed to microsomal fractions (Chapter 5) for reasons explained in Section 7.2.1, 

the effect of the exogenous BT4L on RyR2
WT

 was tested again. In agreement with the 

notion that N-terminus self-association is already disrupted in the mutated channel, 

the RyR2
L433P

 calcium dose response curve did not significantly change in the 
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presence of the BT4L fragment (Graph 7.3, right panel). These observations are also 

in agreement with the substantially reduced interaction of the RyR2
L433P

 mutant with 

the BT4L fragment as we showed earlier (Chapter 6). Notably, there was a significant 

left-shift of the dose-response curve for the wild-type RyR2 in the presence of the 

exogenous BT4L (RyR2
WT

 EC50=470.9 nM Ca
2+

 versus 280.6 nM Ca
2+

 for 

RyR2
WT

/BT4L, p=0.0247) (Graph 7.3, left panel) which corroborated earlier findings 

obtained in [
3
H]ryanodine binding assay performed on microsomal fractions (Chapter 

5). These results suggest that the disruption of RyR2 N-terminus self-association 

might underlie the mechanism by which the L433P mutation triggers channel 

dysfunction. 

 

 

Graph 7.3 Dose-response curves of [
3
H]ryanodine binding data for RyR2

WT
 (left panel) and 

RYR2
L433P

 (right panel) expressed alone or in combination with the BT4L fragment fitted with 
GraphPad Prism using four-parameter logistic model with bottom and top constrained to 0 
and 1 respectively and normalised to each maximum binding obtained at 100 μM Ca

2+
. Best-

fit values shown in the table; n/a (non-applicable), ns (not significant). Data shown as mean 
+/-SEM, n=5 for 100-250 nM and n=3 for 1-100 μM Ca

2+
 each performed at least in duplicate 
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7.3.3 RyR2
L433P

 channels dissociate into monomers upon 

sucrose density gradient centrifugation 

The substantially reduced [
3
H]ryanodine binding of RyR2

L433P
 under conditions of 

maximal activation prompted investigation into the oligomerisation properties of this 

mutant channel, since ryanodine requires RyR tetrameric assembly to bind.  This was 

performed by sucrose density gradient centrifugation, a technique that separates 

proteins according to their size under non-denaturing conditions, thereby allowing 

protein oligomers to be retained. Indeed, wild-type RyR2 was almost exclusively 

present in “heavy “sucrose fractions between 23-31% implying that RyR2
WT

 is 

retained as a tetramer (Figure 7.2, upper panel).  The RyR2
L433P

 distribution however 

did not follow the same pattern, i.e. the protein was in fact spread over almost the 

entire sucrose fractions (Figure 7.2, lower panel). Moreover, mutated channel seemed 

to be slightly enriched in “light” sucrose fractions most likely representing RyR2
L433P

 

monomer. This phenomenon was observed in three independent experiments. 

Cumulative data following densitometry analysis of protein distribution are presented 

in Graph 7.4. These findings imply that the presence of the L433P substitution 

considerably destabilises the channel and promotes subunit dissociation upon 

solubilisation and subsequent sucrose density gradient centrifugation.  

.  

 

Figure 7.2 Distribution of RyR2
WT

 (upper panel) and RyR2
L433P

 (lower panel) channels in 
fractions obtained following sucrose density gradient centrifugation. Sucrose concentration as 
indicated, M: microsomes (25 μg  
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Graph 7.4 Cumulative data following densitometry analysis (n=3). Left panel: protein 
distribution in all sucrose fractions tested (14-35%) for RyR2

WT
 and RyR2

L433P 
(data 

presented as mean +/-SEM), right panel: relative protein content in high (20-35%) and low 
(14-19%) sucrose fractions for RyR2

WT
 and RyR2

L433P
  

 
 

7.3.4 Dantrolene increases tetramer stability 

In follow-up experiments, it was tested whether dantrolene would reverse the 

destabilisation of the RyR2
L433P

 tetramer. The rationale behind those experiments was 

based on the fact that dantrolene was able to rescue the reduced N-terminus self-

association of the BT4L
L433P

 fragment (Chapter 6). Remarkably, dantrolene promoted 

a substantial redistribution of RyR2
L433P 

protein (Figure 7.3). In fact, dantrolene 

promoted a pattern almost identical to that observed for wild-type channels, i.e. 

reduced the spread of RyR2
L433P

 and increased its presence concentration in “heavy” 

sucrose fractions. Cumulative data are summarised in Graph 7.4. 
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Figure 7.3 Distribution of RyR2
L433P

 channels in the presence and absence of dantrolene 
(lower and upper panel respectively) in fractions obtained following sucrose density gradient 

centrifugation. Following cell homogenisation, 1 M dantrolene was included in all buffers 
used in the assay. Sucrose concentration as indicated, M: microsomes (25 μg  
 
 
 
 
 
 
 
 
 

 

 

Graph 7.5 Cumulative data following densitometry analysis (n=3). Left panel: protein 
distribution in all sucrose fractions tested (14-35%) for RyR2

L433P
 in the presence and 

absence of dantrolene (data presented as mean +/-SEM), right panel: relative protein content 
in high (20-35%) and low (14-19%) sucrose fractions for RyR2

L433P
 (with and without 

dantrolene) 
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7.3.5 Dantrolene changes RyR
L433P

 ryanodine binding profile 

The substantial redistribution of RyR2
L433P

 channels into “heavy” sucrose fractions in 

the presence of dantrolene suggests that dantrolene stabilises the RyR2
L433P

 tetrameric 

assembly. It was earlier shown that RyR2
L433P

 displays atypical calcium dependence 

of [
3
H]ryanodine binding (section 7.3.1) which was speculated to reflect reduced 

affinity for ryanodine due to the compromised tetrametric assembly of the mutant 

channel. Indeed, the findings from sucrose gradient centrifugation implied that 

RyR2
L433P 

forms tetramers of
 
decreased stability. Thus if the reduced [

3
H]ryanodine 

binding observed for RyR2
L433P

 is directly correlated to the disrupted association 

between channel subunits, dantrolene should also increase [
3
H]ryanodine binding.   

Indeed, dantrolene promoted a substantial and statistically significant increase in 

[
3
H]ryanodine binding in the activating calcium range (1 and 100 μM) while it had a 

negligible effect at diastolic calcium (Graph 7.6).  

 

 

Graph 7.5 Graph illustrating the functional effect of dantrolene (1μM  on RyR2
L433P

 as 
assessed by [

3
H] ryanodine binding. Results presented relative to the maximum binding 

obtained without the drug. Data shown as mean +/-SEM, n=3 each performed at least in 
duplicate, single and double asterisks indicate statistical significance at p<0.05 and p<0.01 
respectively calculated using 2-tailed Student’s t test 
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7.4 Discussion 

Evidence that arrhythmia-associated mutations disrupt the self-association of the 

RyR2 N-terminus was presented in Chapter 6. In Chapter 5 it was shown that, in the 

full-length channel, a tight inter-subunit interaction of the N-terminus is likely to 

prevent its spontaneous activation at diastolic calcium levels. In this Chapter the 

effects of one particular missense mutation L433P were evaluated further in respect to 

RyR2 function and tetramer stability. It was shown that the exogenous BT4L 

fragment has no effect on [
3
H]ryanodine binding of RyR2

L433P
 contrary to the hyper-

sensitising effect it has on wild-type RyR2 (Graph 7.3). This finding supports the 

hypothesis that N-terminus self-association is already defective in the mutated 

channel and that defective interaction within this interface is most likely the 

mechanism by which the L433P mutation triggers channel dysfunction. In Chapter 6 

it was shown that the presence of L433P in the full-length channel impairs its 

interaction with the BT4L fragment (Graph 6.8). Thus one might argue that the lack 

of functional effect on RyR2
L433P

 might in fact result arise solely from the reduced 

association between the two. However, the cumulative data strongly imply that it is 

the pre-existing defect in the N-terminus self-interaction within the mutated channel 

that determines the BT4L failure to promote hypersensitisation of RyR2
L433P

.  This 

notion is supported by the following findings: the presence of the L433P mutation 

impairs N-terminus self-association (Chapter 6), inter-subunit interactions within full-

length RyR2
L433P 

are compromised as shown by tetramer dissociation in sucrose 

density gradient centrifugation (Section 7.3.3). Moreover, based on data obtained in 

the yeast two-hybrid assay (Graph 6.4), one would expect the endogenous self-

association of RyR2
L433P 

N-terminus (i.e. homozygote scenario) to be much more 

compromised than formation of “mixed interaction” between the exogenous BT4L 

and endogenous N-terminus. This is further supported by the observations that 

although reduced, the interaction between BT4L and RyR2
L433P 

still takes place as 

assessed in sub-cellular fractionation experiments (Section 6.3.5).  

The molecular mechanism of channel dysfunction was further investigated in 

[
3
H]ryanodine binding assays. Quite unexpectedly, RyR2

L433P
 channels displayed 

substantially reduced ryanodine binding (Graph 7.1).  Notably, similar observations 

were made for some of the disease-associated RyR1 mutants expressed in 
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heterologous systems as homotetramers (Gao et al. 2000; Du et al. 2004). Further 

analysis of these mutants in cell based assays revealed a substantially reduced 

calcium sensitivity, which was restored upon co-expression with the wild-type protein 

(Du et al. 2004). Thus, the inability to obtain a considerable increase in ryanodine 

binding for RyR2
L433P

 channels within systolic calcium range might reflect their 

inability to respond to calcium. However, in the course of this study, it was 

determined that RyR2
L433P

 channels exhibit remarkably reduced stability of tetramers 

which dissociate upon solubilisation and sucrose density gradient centrifugation 

(Figure 7.2, Graph 7.4). This is a novel observation that was not previously reported 

for other arrhythmia-associated mutations and one that has paramount implications on 

the interpretation of the functional data obtained in this study. [
3
H]ryanodine binding 

assay is an indirect measurement of channel activity as ryanodine binds preferentially 

to the open-state channel. The assay is valid under the assumption that a given 

mutation does not affect high-affinity ryanodine binding site and/or does not impair a 

tetrameric arrangement as there is a single high-affinity ryanodine-binding site per 

RyR tetramer (Pessah and Zimanyi 1991). This is clearly not the case for RyR2
L433P 

as shown in sucrose density gradient centrifugation. Thus it is argued that the reduced 

[
3
H]ryanodine binding observed in this study for RyR2

L433P
 is a consequence of 

compromised stability of RyR
L433P 

oligomers and not reduced sensitivity to calcium 

activation. Moreover, when the RyR2
L433P

 data are normalised to its own 

[
3
H]ryanodine maximum binding, it becomes apparent the L433P mutant is 

hypersensitive to calcium activation (Graph 7.2, right panel). Interestingly, the L433P 

mutation was also characterised by Jang and colleagues who failed to observe any 

significant shift in the calcium-dependence of [
3
H]ryanodine binding compared to the 

wild-type receptor but reported increased propensity for SOCIR and increased 

sensitivity to caffeine activation (Jiang et al. 2005).. On the other hand, Thomas and 

colleagues reported a desensitised response of this mutant to caffeine activation 

accompanied by an increase in the calcium release rate and prolonged calcium 

transient and loss of Ca
2+

-dependent inhibition (Thomas et al. 2004; Thomas et al. 

2005). The reason for these discrepancies is unclear since all studies used HEK 

expression system, however the difference in mutation-induced effects might be 

species-dependent (human versus mouse in Jiang study).  
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Notably, dantrolene was shown to promote the stability of RyR2
L433P 

tetramers 

(Figure 7.3, Graph 7.5). Moreover, in agreement with the notion that decreased 

ryanodine binding observed for the mutant channel reflects an altered tetrameric 

arrangement, dantrolene also increased ryanodine binding at calcium concentrations 

that are known to mediate channel activation (Graph 7.6). Therefore when the 

tetramer is stabilised by dantrolene the ability of ryanodine binding is restored which 

implies that RyR2
L433P

 does not display desensitised response to calcium. These 

results also suggest that the mutant channel might be hypersensitive to calcium-

mediated activation as presented in the right panel in Graph 7.2, a feature that is 

obscured by the limitations of the experimental technique used.  

The extreme impact of this mutation in the experimental setting of this study might be 

due to the fact that RyR2
L433P

 channels were investigated mimicking a “homozygous” 

scenario, which is not the case in human patients. Thus, the severity of the L433P 

mutation is most likely masked in the heterozygous scenario and by additional 

compensating mechanisms present in the native environment of cardiomyocytes. A 

discrepancy between data obtained from heterologous expression systems and those 

obtained in the context of a muscle cell has been observed by others. Notably, some 

of the CCD-linked RyR1 mutations, exhibited a desensitised response in the native 

environment of skeletal muscle (Avila and Dirksen 2001; Avila et al. 2001a), 

however upon heterologous expression in HEK293 cells it recapitulated a common 

leaky-channel phenotype characteristic for most MH/CCD mutants (Lynch et al. 

1999). 

In conclusion, the L433P mutation appears to severely impair the stability of the 

RyR2 homotetramer which is most likely responsible for the functional impairment of 

this mutant.  Dantrolene reverses mutation-triggered effects at both the structural and 

functional level. Based on the findings obtained earlier (Chapter 6) showing the 

ability of dantrolene to rescue mutation-induced decline in the N-terminus self-

association, stabilisation of the N-terminus inter-subunit interface might be 

dantrolene’s primary mode of action. A number of evidence suggests that the RyR C-

terminus is the primary oligomerisation determinant (Gao et al. 1997; Stewart et al. 

2003). However, in the context of the data obtained in this study, i.e. dissociation of 

RyR2
L433P 

tetramers, the RyR N-terminus might constitute an important 

oligomerisation determinant. Alternatively, the dissociation of the RyR2 tetramer 
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might not be a direct consequence of the reduced N-terminus self-association in 

RyR2
L433P

 but rather reflect long distance alterations in the protein tertiary structure 

which affect oligomerisation determinants located elsewhere. Given the limitations of 

the experimental approach undertaken in this study, it is not possible to precisely 

determine underlying defects in RyR2
L433P

 channels.  
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8 Closing remarks 

The principal aim of this thesis was to characterise inter-subunit interactions 

involving the RyR2 N-terminus. This interaction was characterised biochemically in 

Chapter 3 and 4. The process of N-terminus self-association appears to be mediated 

by multiple sites. The two important oligomerisation determinants are located in the 

loops connecting strands β8-β9 and β20-β21, which according to the docking of the 

RyR1 N-terminus crystal structure into the cryo-EM map of the full-length receptor, 

reside at the inter-subunit interface (Tung et al. 2010). However, due to the 

limitations of the experimental approach undertaken, it was not feasible to determine 

the role of other potential sites of inter-subunit interaction. The technique used in this 

study, i.e. generation and testing of deletion mutants is mostly restricted to protein 

segments with known tertiary structure and is only able to determine the role of 

fragments which removal would not substantially change protein conformation. This 

means that the deletion within the loop is dictated by the relative distance of the 

preceding and the following secondary structure elements.  Due to the latter, the role 

of the short loop connecting β strand 13 and 14 could not be explored while the 

former limited investigation to residues encompassing the published RyR1 N-

terminus crystal structure. Moreover, the removal of some residues might have 

additional and impossible to predict consequences on the protein structure in spite of 

a careful and rationalized deletion design as it was observed when part of the β20-β21 

loop was removed. In such circumstances it is very difficult to attribute observed 

effects to the absence of a particular fragment, as global change of conformation will 

ultimately affect other oligomerisation determinants. In order to gain further insight 

into the role of additional inter-subunit contact sites in the N-terminus self-

tetramerisation and to validate findings of this study, a complementary experimental 

technique would be highly valuable. In fact, an alternative approach involving the use 

of synthetic peptides encompassing putative inter-subunit contact sites and evaluation 

of their effects on BT4L tetramerisation properties has been already undertaken. 

In the course of this study, it was also shown that N-terminus self-association is 

further stabilised by disulphide bonds most likely involving multiple cysteine 

residues with cysteine 361 being implicated in this process. However, disulphide 

bonds are not essential for oligomerisation as tetramers are also formed in conditions 
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precluding cysteine oxidation (reducing conditions). Moreover, it appears that 

oxidation process involves the formation of internal disulphide bonds (residing within 

a monomer). This finding calls for further investigation as it might be possible that 

disulphide bridges between cysteines within a single monomer rather than across 

subunits confers BT4L tetramers resistant to SDS. In order to explore this possibility, 

experiments using thiol-specific reagents with high molecular weight should be 

conducted. Moreover, additional efforts determining whether BT4L tetramers are in 

fact resistant to SDS rather than held by disulphide bonds, such as combined use of 

SDS, urea/guanidine chloride and salt, should be undertaken. 

N-terminus self-association appears to be involved in the regulation of channel 

function. Inter-subunit interactions involving the RyR2 N-terminus were 

characterised functionally in Chapter 5. It was shown that stable N-terminus self-

interaction within the full-length RyR2 is likely to prevent spontaneous activation of 

the channel at diastolic calcium levels. Notably, the disruption of the N-terminus self-

association, which results in channel hypersensitivity, shares common features with 

the phenotype observed for recombinantly expressed RyR2 containing arrhythmia-

associated mutations.  

The role of the RyR2 N-terminus inter-subunit interaction in RyR2 pathology was 

investigated in Chapters 6 and 7. It was shown that the presence of arrhythmia-linked 

mutations compromises the ability of the RyR2 N-terminus to oligomerise, however 

this effect was not uniform and depended on the mutation itself. These findings 

suggest that defective N-terminus self-association might underlie the mechanism by 

which some of the CPVT/ARVD2 mutations promote RyR2 hyperactivity at diastolic 

calcium levels. This hypothesis was further tested in Chapter 7. It was shown that in 

the presence of an arrhythmia-linked mutation (L433P), endogenous N-terminus self-

association in the full-length channel appears to be defective leading to the functional 

impairment. Although this observation is supported by a number of cumulative 

evidence, additional studies would be necessary to validate this hypothesis. In order 

to further verify postulated disruption of endogenous N-terminus interaction within 

the native channel by mutation and/or the exogenous BT4L fragment, calcium 

dependence of RyR2 ryanodine binding should be also performed in presence of 

BT4L containing arrhythmia-associated mutations. If the proposed hypothesis is 
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correct, the presence of the mutant fragment should not affect wild-type RyR2 

activation profile. 

This study also provided evidence that homotetramers formed by RyR2
L433P 

exhibit 

compromised stability, which has profound implications on functional assays 

employed to study RyR channels in vitro. It must be pointed out that reduced tetramer 

stability would not only affect [
3
H]ryanodine binding, the method used in this study, 

but also other functional assays like electrophysiological single channel recordings, 

which require RyR2 channels purified using solubilisation and sucrose density 

gradient centrifugation. Notably, since defective tetrameric assembly of RyR2
L433P 

impeded conclusive determination of channel functional impairment in the 

[
3
H]ryanodine binding assay (non-responsive versus hypersensitive phenotype), 

alternative techniques should be employed. Recombinant expression of this mutant in 

HEK293 cells followed by the evaluation of calcium-induced Ca
2+

 transients should 

shed more light on this matter.    

One of the more remarkable findings of this study is the ability of dantrolene to 

rescue the mutation-triggered effects at a clinically relevant concentration. This 

observation is in agreement with a number of recent reports showing that dantrolene 

might be an effective therapeutic agent in RyR2-associated disorders. Notably, results 

presented in this thesis provide new insights into dantrolene’s mechanism of action 

which was previously proposed to involve stabilisation of N-terminal – central 

domain interactions (Kobayashi et al. 2009; Kobayashi et al. 2010; Uchinoumi et al. 

2010; Suetomi et al. 2011).  Findings reported here suggest that dantrolene’s primary 

mode of action involves stabilisation of N-terminus self-association.  

Dantrolene holds great promise for treatment of RyR2-associated disorders. It has a 

great advantage over other experimental compounds that regulate RyR as its safety 

has been proven during long clinical use of this compound in the management of MH 

episodes. More importantly, dantrolene has no effect on the wild-type RyR2 which 

has been confirmed in experiments performed in this work. This phenomenon is of 

particular significance for any potential clinical application of this drug in treatment 

of RyR2-assossiated disorders where a long-term dantrolene administration would be 

most likely required. Dantrolene supresses RyR1-mediated depolarisation-induced 

calcium release from SR (Szentesi et al. 2001) and the same effect of dantrolene on 
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the RyR2 function would be expected to result in a substantial decline of heart 

contractility, a particularly deleterious effect in patients with HF and ARVD2. 

However and in agreement with the notion that binding of dantrolene to RyR2 takes 

place only in particular settings,  dantrolene was shown to prevent arrhythmogenic 

calcium release without compromising systolic function in heart failure (Maxwell et 

al. 2012). 

The existence of dynamic cross-talk between structural/functional domains within 

RyR has been proposed to modulate channel activity and a number of such domains 

has been identified (Yamamoto et al. 2000; Yamamoto and Ikemoto 2002a; George et 

al. 2004; Gangopadhyay and Ikemoto 2006). This work further supports the notion 

that RyR is an allosteric protein where a number of critical domains are involved in 

the transmission of signals regulating channel function. The novel inter-subunit 

interaction characterised in this study further extends our understanding of the role of 

defective domain-domain interactions in RyR2 pathology and provide important 

insights into the mechanism of conformation-linked RyR2 dysfunction and the 

disruptive role of arrhythmia-associated mutations. The destabilisation of domain-

domain interactions by arrhythmia-associated mutations have been long proposed to 

underlie the mechanism of RyR dysregulation (Oda et al. 2005; George et al. 2006; 

Uchinoumi et al. 2010). Moreover, a number of drugs including dantrolene, JTV519 

and antioxidant agents, which were reported to rescue the disease phenotype, were 

proposed to exert their beneficial effects through stabilisation of domain-domain 

interfaces (Kobayashi et al. 2005; Yano et al. 2005; Mochizuki et al. 2007; 

Yamamoto et al. 2008). The study presented here provides evidence that stabilisation 

of RyR2 N-terminus self-oligomerisation might constitute another therapeutic 

approach against RyR2-associated disorders and thus become a novel target for the 

design of anti-arrhythmic drugs. However, CPVT/ARVD2-associated mutations are 

not restricted to the N-terminal portion of the protein thus it cannot be determined 

whether disruption of the N-terminal inter-subunit contact underlies a common 

mechanism of channel dysfunction. Rather, the results presented here complement 

findings reported by other groups where a number of additional domain-domain 

interfaces are involved in the tuning of RyR activity (Xiong et al. 2006; Hamada et al. 

2007; Tateishi et al. 2009; Suetomi et al. 2011) . It is not possible to predict whether 

stabilisation of the N-terminal inter-subunit interaction will be an effective strategy 
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for RyR2 dysfunction observed in other arrhythmia-associated mutations located 

outside the N-terminus. In fact, correction of particular domain-domain interactions 

by JTV519 has been shown to be effective only for mutations occurring at particular 

loci (Liu et al. 2006; Suetomi et al. 2011). 

The N-terminus inter-subunit interaction identified and characterised here provides 

important insights into the regulation of RyR2 function, however general limitations 

of this study should be considered. This work determined RyR2 N-terminus self-

association biochemically and independent of other structural determinants present in 

the full-length channel. This is a clear disadvantage in respect to the extrapolation of 

this data to the full-length RyR. However, if the stabilisation of N-terminus self-

association was to be an effective therapy for RyR2-associated disorders, a simple 

biochemical assay used in this study (chemical crosslinking) might be employed for a 

robust screening of potential anti-arrhythmic compounds. Moreover, this work 

determined functional and structural impairment of RyR
L433P 

outside the cell in a 

homozygous scenario which does not represent a physiologically relevant setting. 

Thus the mechanism of channel dysfunction in the presence of arrhythmia-associated 

mutations and dantrolene rescue of disease phenotype requires further investigation. 

The role of N-terminus association in channel function should be evaluated in 

heterozygous scenario within the context of living cells and ideally within human 

cardiomyocytes where other cardiac-specific proteins are present. Current 

development in the generation of patient-specific iPSC-derived cardiomyocytes (Jung 

et al. 2012; Novak et al. 2012; Guo et al. 2013; Li et al. 2013) and advances in 

techniques allowing for in vitro site-specific incorporation of unnatural amino-acids 

combined with bioorthogonal labelling using FRET-compatible molecules (Ye et al. 

2008; Huber et al. 2013; Naganathan et al. 2013) may provide new methodology to 

study the role of domain-domain interactions in RyR2 dysfunction in a more 

physiological setting.  
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I Appendix: List of abbreviations 

Ab antibody 

AD activating domain 

AF atrial fibliration 

BCA bicinchoninic acid  

BSA bovine serum albumin 

CaM calmodulin 

CaMKII Ca
2+/

calmodulin-dependent protein kinases II 

CCD central core disease 

CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate 

CPVT catecholaminergic polymorphic ventricular tachycardia 

Cryo-EM cryo-electron microscopy 

CSQ calsequestrin 

DCM dilated cardiomyopathy 

DHPR dihydropyridine receptors 

DMEM Dulbecco's Modified Eagle Medium 

DMF N,N-dimethylformamide 

DMSO dimethyl sulfoxide 

DNA-BD DNA binding domain 

Dpm decays per minute 

DTT dithiothreitol 

ECL enhanced luminescence 

http://en.wikipedia.org/wiki/Bovine_serum_albumin
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EDTA ethylenediaminetetraacetic acid 

EGTA ethylene glycol tetraacetic acid 

ER endoplasmic reticulum 

FBS foetal bovine serum 

FKBP FK506- Binding Protein  

FRET Förster resonance energy transfer 

GAL4 AD activating domain of GAL4 transcriptional activator 

GAL4 BD DNA binding domain of GAL4 transcriptional activator 

HEPES 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 

HPLC high performance/pressure liquid chromatography 

HRP horseradish peroxidase 

ICD implantable cardioverter-defibrillator 

IP3R inositol 1,4,5-trisphosphate receptor 

iPSC induced pluripotent stem cells 

LiAc lithium acetate 

LV left ventricle 

LZ leucine/isoleucine zipper 

MCS multi cloning site 

MCU mitochondrial calcium uniporter 

MH malignant hyperthermia 

MIR O-mannosyltransferases, IP3R and RyR domain 

NAADP nicotinic acid dinucleotide phosphate 

NCX sodium/calcium exchanger 
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NCLX sodium/calcium/lithium exchanger NEM N-ethylmaleimide 

OD optical density 

ONPG o-nitrophenyl-β-D-galactopyraniside 

PC phosphatidylcholine 

PCR polymerase chain reaction 

PIPES piperazine-N,N′-bis(2-ethanesulfonic acid) 

PKA protein kinase A (cAMP-dependent protein kinase) 

PMCA plasma membrane Ca
2+

-ATPase 

PP1 protein phosphatase 1 

PP2A protein phosphatase 2A 

PVDF polyvinylidene difluoride 

RIH ryanodine receptor and IP3R homology domain 

RyR ryanodine receptor 

SB super broth 

SD selective dropout medium  

SDS sodium lauryl sulfate 

SERCA sarco(endo)plasmic reticulum Ca
2+

-ATPase SIDS sudden infant death 

syndrome 

SNP single nucleotide polymorphism 

SOCE store-operated Ca
2+ 

entry 

SPCA secretory pathway Ca
2+

-ATPase 

SPRY SP1A kinase of Dictyostelium discoidueum and ryanodine receptor domain 
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SR sarcoplasmic reticulum (specialized compartment of ER in smooth and striated 

muscle) 

STIM1 stromal interaction protein 1 

TAE Tris-acetate-EDTA buffer 

TBS Tris-buffered saline 

TE Tris-EDTA buffer 

TEMED N,N,N′,N′-tetramethylethane-1,2-diamine 

Tm melting temperature 

TPC two-pore channel  

Tris 2-amino-2-hydroxymethyl-propane-1,3-diol 

VGCC voltage-gated calcium channel 

X-Gal 5-bromo-4-chloro-indolyl-β-D-galactopyranoside 

YNB Yeast Nitrogen Base medium 

YPD Yeast Extract Peptone Dextrose medium 
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