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Abstract

Inspired by retinex theory, we propose a novel method for seleatig key points from a depth
map of a 3D freeform shape; we also use these key points as a basis for shapgistration. To
nd key points, rst, depths are transformed using the Hotelling method and normalized to reduce
their dependence on a particular viewpoint. Adaptive smoothing is hen applied using weights which
decrease with spatial gradient and local inhomogeneity; this presengelocal features such as edges
and corners while ensuring smoothed depths are not reduced. Key pus are those with locally
maximal depths, faithfully capturing shape. We show how such key pints can be used in an e cient
registration process, using two state-of-the-art iterative closespoint variants. A comparative study
with leading alternatives, using real range images, shows that our approdcprovides informative,
expressive, and repeatable points leading to the most accurate regisition results.

Keywords : Retinex; Key point; Freeform shape; Adaptive smoothing; Registratbn

1 Introduction

Laser scanning systems can quickly capture the surfaces of 3D shapestharesults like those in Figure 1.
Since scanners have a limited eld of view, and one part of the shape nyaocclude others, multiple
datasets must be captured from di erent viewpoints to obtain (approximately) full coverage of the
shape of interest. These datasets are in the form alepth mapsin local scanner-centric coordinates. In
order to fuse the information in these datasets to give a single completsurface, they must be brought
into a single global coordinate system byregistration, which aims to nd pairwise transformations that
align one dataset with another. Prior knowledge of the underlying transbrmation may be lacking, and
furthermore, occlusion causes appearance and disappearance of pointgirerent datasets. Registration
is thus a challenging problem which has attracted attention in various dsciplines, such as computer



vision, pattern recognition, computer graphics, and medical imaging. It nds applications in such
areas as object recognition, quality assurance, computer aided design, dieal diagnosis, and therapy
planning. Many algorithms have been developed for registration of overlaping 3D freeform shapes [5,
7,9, 10, 18, 23]. In this paper, our main concern is the detection déey points for faithful representation

and e cient registration of 3D freeform shapes.

1.1 Previous work

The detection of key points which capture the important features of a feeform shape is of great interest,
since they provide a compact alternative to the original geometry, and nay be used in its place in various
tasks such as shape registration, data transmission, rendering and viglisation. Various methods have
been proposed for the detection of key points. They should capture botlsigni cant local details of the
shape and its overall geometry. Their determination should be repeatdle and they should represent
intrinsic features, i.e. key points detected from one viewpoint Bould ideally be the same as those
detected from another. Key points should also be resistant to imaging aise and resolution, and robust
in the presence of occlusion of parts of the object. Finally, their deection should be computationally
e cient.

Normal space sampling (NSS) was proposed in [20] as a way of sampling informagiypoints. It calculates
angles between the normal vectors at a point of interest and its neighborsand uses these angles as a basis
for sampling. More points are sampled in areas where normal vectors change neorapidly. A relevance
based sampling scheme was proposed in [28], which de nes the distihneness of a point in terms of a
surrounding area having similar normal vectors. The larger the area, tle less distinct the point. To
address the issue of di erent densities of point sampling due to vaations in the distance between the
object and the scanner, a spherical subsampling method was proposeat[iL2]: instead of sampling points
from regularly gridded data, it considers the scanner's angular resolutin. In [13], a Hotelling transform
is rst performed over the points; feature points are detected as tlose with the largest di erence between
the ranges spanned by thex and y coordinates in the transform. A supervised learning method was
proposed in [3] for feature point localization within human faces. Gaussin mixture models (GMMs)
are used to approximate the distribution of candidate feature points; a 3D model of feature points
is built which enforces constraints on localization. Another learningmethod was proposed in [4] for
detecting key points in faces. A face is represented using 14 landarks. Statistical distributions of their
descriptors, and weights used for linear combination, are learnt from taining data. For a given face
mesh, a number of descriptor maps are computed and matched against the 1ddrnt ones, and combined
using the learnt weights. The key points are determined as strong lcal maxima above a threshold of
the combined values using the 14 landmark dictionary shapes. The clagsl Harris corner detector for
2D images was adapted in [22] to 3D meshes. Principal component analysis isst performed over local
patches, then all points on a patch are transformed so that its normal veabr is a local z axis, so that
the points lie close to thex-y plane. A paraboloid is tted to these transformed points, allowing x andy
derivatives to be computed. To address the di erence between dicrete images and continuous patches,
derivatives are convolved with a Gaussian function. An autocorrelation natrix is used to estimate the
local corner strength. A technique called accumulative geodesic égrema (AGEX) was proposed in [19]
for human body feature point detection. Key points are those with the longest distances on the surface
mesh from its geodesic centroid, distances being computed usinartest geodesic paths.

The Gram matrix was analysed in [14] as a means of geometric corner detectio’\ set of corner points
at each scale is found by searching for local spatial maxima of corner deter responses. Corners lying
along edge points are pruned by thresholding the variance of the secoratder partial derivatives. An



octave method of salient point detection was proposed in [2], based on éhprojection of the di erence
of the weighted averages of the points inside spheres of varying radii ¢mthe weighted average of the
normal vectors of those points inside a sphere with smaller radius. A wmitiscale feature extraction
method was proposed in [17] based on principal component analysis, usin@e ratio of the resulting
eigenvalues as an indicator of saliency. Multiscale analysis is also perfed in [11] for key point
detection in a range image. It rst segments the range image to isolate each amn of interest, then
depth is normalized to a global average of zero and a standard deviation of 1. Miiscale Gaussian and
di erence of Gaussian (DoG) analysis is performed over these normaled depth values. A key point is
one at a local extremum in the DoG space, larger than a threshold. Key poits are detected in [26] from
regions with signi cant variation in mean curvature. A structure tens or is rst constructed for each
local region as a function of the local mean curvatures and normal vectorst is invariant with respect
to sampling density. Corners are detected at the spatial extrema of ie determinant of the structure
tensor; spurious key points with low response, an edge response, orango a depth discontinuity are
rejected. A variant of the Laplacian of Gaussian method was proposed in [25] fokey point detection.
The depth gradient is rst calculated in both x and y directions, and normalized taking into account
the angular resolution of the range image. The second order derivative is ated from the normalized
depth gradient, yielding the magnitude of the gradient in the unit interval. A high magnitude marks a
possible key point with high curvature, while spurious points are Itered by occlusion analysis and linear
structural analysis. Another salient point detector was proposed by thesame author in [24] which rst
uses principal component analysis to estimate the local surface variain at a particular point and its
main direction. Key point strength is calculated by considering howmuch the main directions change
from each other and how stable this point is on the surface. These valuesre smoothed over the whole
image, and points with local maxima larger than a threshold are selected akey points. In [23], given
an intensity image associated with a range map, an image mesh is generated asdthoothed using a
multi-scale bilateral lter, then the gradient at each vertex is estimated using the Laplace-Beltrami
operator (LBO). Points with locally extremal gradients are ltered by t hresholding their LBO response
and suppressed by a nhon-maximal scheme to nally detect key points.

The above methods fall into two main categories, using single scale or uti-scale analysis. While the
former are usually more computationally e cient, the latter are more robu st to imaging noise, changes
in resolution, and occlusion. They often involve the computation of seond order derivatives of shape,
Itering spurious salient points, and sometimes, learning. Unfortunately, second order derivatives are
sensitive to occlusion, depth discontinuities, changes in samjplg resolution and imaging noise. Thresh-
olds are dicult to select and data dependent, while learning requires many representative samples
which may be di cult or impossible to collect. The detection of key points from 3D freeform shapes is
challenging and still remains open.

If salient key points can be reliably found, subsequent range image anadys may be simpler and more
e cient. Conversely, such range image analysis results may providean e ective tool to quantitatively
evaluate the extent to which useful key points have been reliablydetected.

1.2 Our work

Retinex theory [6, 16] considers how brightness and re ectance behay and investigates a computational
model of color constancy: human perception of color is largely independenf illumination conditions.
It shows that a captured 2D image can be decomposed into two subimages: omepends on the re-
ectance properties of the surface of the imaged object, while the othedepends on the illumination
conditions. If such a decomposition can be computed in practice, theerectance image can be used to



Figure 1. Real range images used. Top: valve20, valvel0, valveO, dinosaur72, dinos2f®, dinosaurO,
bottle0, and bottle36; Second: bunny80, bunn60, cow49, cow45, tubby120, and tulgBO. Third: duckO,
duck20, frog0, frog20, lobster0, lobster20, buddhaO, and buddha20. Bottom: angelO, angle, angel40,
bird0, and bird20.

improve reliability of such tasks as face recognition, as this image moreafthfully represents the geo-
metrical properties of the imaged object, while the variable e ects ofillumination have been factored
out. While such image decomposition is an ill-posed problem, various appaches have been proposed
based on Gaussian smoothing [6], adaptive smoothing [16] and minimization ¢fie sum of the rst order
derivatives of the illumination, and the di erence between the illumination and the given image [21, 8].
Two ideas are of particular interest: adaptive smoothing [16] and re ecance inequality [21, 8], where
the re ectance componentR is estimated as the logarithm of the ratio of intensity F of the pixel of
interest and L, that of its neighbors, as the illumination component, satisfying the mnstraint R 1
and thus, F L. Using these ideas, we propose a novel method in this paper for the wetion of
key points on a 3D freeform shape. To this end, depth values are rst tansformed and normalized so
that their dependence on the particular viewpoint can be reduced. Adptive smoothing is then applied
to the normalized depths using weights de ned as decreasing funimns of spatial gradient and local
inhomogeneity. This adaptive smoothing makes sure that local featuresuch as corners and edges are
preserved, while smoothed depths become insensitive to imagingpise, but are not reduced. Finally,
key points are detected as those una ected by the adaptive smoothing iwcess and thus have locally
maximum transformed and normalized depths.

These detected key points are intended for use as proxies to repent the original shape; here, we
investigate whether they can represent the original shape faithfulf and are suitable for solving the
registration problem. If they are, then the computational e ciency of r egistration of overlapping 3D
depth maps can be signi cantly improved. We carry out a comparative study, using three other state-
of-the-art salient point selection methods: the octave algorithm [2] a multi-scale feature extraction
(MSFE) method [17], and the normal space sampling (NSS) method [20]. Thectave and MSFE
methods are multi-scale methods, while NSS is a single scale metthoThis comparative study reveals
which method can best detect informative, expressive and repeatde feature points. To determine the
utility of the detected key points for downstream applications, two state-of-the-art iterative closest point



(ICP) variants, SoftICP [9] and fractional RMSD (FICP) [18], were used for registration. The former is
an extension of the SoftAssign algorithm [5] which applies entropy maximiation to determine weights
for di erent tentative correspondences, then uses a two-way consaint to re ne these weights before
estimating the underlying transformation. To ensure robust resuts, these two steps are embedded in
a deterministic annealing scheme. The FICP algorithm simultaneouly optimizes both the size of the
overlap between depth images, and the transformation parameters.

To assess the performance of the key point detection algorithms, the flmwing measurements were made:
precision and recall rates of detected key points, average and standard deviation e of registration
errors in millimetres for reciprocal correspondences (RCs) [9, 27]expected and estimated rotation
angles and " in degrees of the underlying transformation, and the time taken for autoratic key
point detection and registration. While the precision and recall ratesmeasure the repeatability of the
detected key points [22, 24, 26], the corresponding registration resultsneasure the informativeness
and expressiveness of these key points. As the same registration algdmihs were used in each case,
di erences in their performance come solely from the types of pointaused. The better the registration
results obtained, the more representative we can consider the seked points to be of the shapes.

Figure 2: Key points detected in di erent images using di erent algorithms. Columns, left to right:
valve20, valvel0, valveO, dinosaur72, dinosaur36, dinosaurO, cow49, and cow45. Roway to bottom:
results using our method (RKP), octave, MSFE, and NSS.



In the following, Section 2 describes our key point detection methd, Section 3 presents experimental
results, and Section 4 draws some conclusions and indicates futureovk.

2 A novel method for 3D key point detection

The following notation is used: bold face letters denote vectors, maices, or setsj j denotes the absolute
value of a scalar or the number of elements in a sea b denotes the dot product of vectorsa and b,
ji ji denotes the Euclidean norm of a vector, and superscript denotes the transpose of a vector.

A freeform shape as illustrated in Figure 1 is represented by four aays, each of size oH W: a

ag f, and x, y, and z coordinates. If f (i;j) = 1, then the point at location ( i;j) is valid and is

at position (x(i;j) y(i;j) z(i;j )7, otherwise, it should be ignored. An invalid point is one for which
the scanner determined no reliable coordinates on the imaged objectigface (e.g. because the re ected
signal received was either too weak or too strong due to low re ectane or specular re ection).

We now explain our key point detection method, concentrating on four nain issues: depth normalization,
weight estimation, adaptive smoothing, and key point extraction.

2.1 Depth normalization

Even though the depth information z(i;j ) directly represents the given shape, it is viewpoint dependen
To facilitate key point detection, the Hotelling transform [13] is applied to reduce such viewpoint
dependence. Thus, for each valid pixeli(j ) inside the image of the given shape, all valid neighboring
points inside a window of size ofs s are extracted:

A=fag=f(x(i+kj+Dyi+kj+D)zi+kj+)Tjf(i+kj+1)=1; s=2 k|l s=2g

Let ths centroid of all the points in A be a = P a2a @7A]J. Then their covariance matrix C is:
C= Loa@ a)a a)’. The matrix C is symmetric; its eigenvectorsv; and corresponding
eigenvalues ; can be found using the Jacobi method. Suppose that theg; are sorted in descending order
of ; and are assembled into a matrixv via v = (V1 v, v3). Then the point p = (x(i;j ) y(i;j ) z(i;j )T
at pixel (i;j ) can be transformed to: p = (x(i;j ) ¥(i;j ) 2(i;j ))T = v (p a). Next, assuming that the
range of variance of the transformed depth will be similar for an object fromdi erent viewpoints, which
is likely the case for many objects for viewpoints that are relatively dose together,z€i;j ) is normalized
over the whole image, setting

Zi;j ) =255(2(i;) )  Zmin)=(Zmax  Zmin)

where zrmax and zmin are the maximum and minimum values over the whole image. The resultig 2(i;j )

is used as a normalized viewpoint independent depth for subsequekey point detection. The di erence

betweenp and a removes the e ect of translation, while the dot product betweenv and p a removes
the e ect of rotation. Note, however, that computation of a and v may be a ected by imaging noise,
resolution, and occlusion. As a result, the dependence & en a particular viewpoint is only somewhat
reduced, not completely removed.

2.2 Weight de nition

Key point detection applies an adaptive smoothing operation to the trangormed and normalized depth
values. This operation should preserve local features such as cornemsd edges. To do so, the weights for
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Figure 3: Registration results for di erent shapes using all points anddi erent algorithms. Columns,
left to right: valve20-10, valve10-0, dinosaur72-36, dinosaur36-0, bottle0-36, buni®p-60, cow49-45, and
tubby120-80. Rows, top to bottom: SoftICP, FICP.

smoothing must be appropriately de ned, taking into account the spatial gradient and inhoraogeneity:
the larger these two factors are, the smaller the weight should be. Thé&nction w(r)=1=1+"r),r 0
is used to suppress large spatial gradients and inhomogeneity; it has thiellowing useful properties: (i)
it is continuous, so does not abruptly change given a small change in, and (ii) it decreases withr as
required.
The local spatial gradient g(i;j ) at pixel (i;j) is the square root of the sum of the squares of the
di erences in depths of pixels in horizontal and vertical directions (thus using the L, norm):
q
9(i;j) = gd(ij)+ g3(isj)

where gu(i;j) = 2(i+21;j) Zi 1;j)and gu(i;j) = 2(i;j +1) =2i;j 1). Suppose the average
gradient over the whole image isg. Then the weight wy(i;j ) for the gradient component is set to
Wo(i;j ) =1=(1+ " 0:1g(i;j ) exp(0:1g)).

Given a valid pixel at location (i;j ), its valid neighbors are in: N = f(i + k;j + Djf (i + k;j + 1) =
1, s=2 k;I s=2g. The local inhomogeneity h(i;j ) at pixel (i;j) considers the di erence of depth
between neighboring pixels and is set to the average of the absolute was of these di erences (using
the L1 norm):

. 1 X N
(i) = 3 jzBm;n)  z(i;j)j:
J J(m;n)2N
Then h(i;j ) is normalized using: h%i;j) = (h(i;j)  hmin)=(hmax  hmin) Where hmin and hmax are
the minimum and maximum inhomogeneity over the whole image. To furthe suppress large inho-
mogeneities, hqi;j ) is transformed to: fi(i;j ) = sin( hgi;j ) =2). Finally, the weight wy(i;j ) for the
inhomogenity component is set to: wy(i;j) = 1=(1 + 10ﬁ(i;j ) exp(10h)) where h is the average of
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fi(i;j ) over the whole image.

While the spatial gradient in the L, norm is likely to be dominated by noisy pixels or pixels with large
depth discontinuities, the spatial inhomogeneity in the L1 norm is useful to capture small changes in
depths of pixels along edges or at corners. Combining the weightsg(i;j ) and wy(i;j ) for the spatial
gradient and inhomogeneity components together thus captures both coarse dnne features in the
underlying shape, giving the nal weight w(i;j ) for each valid pixel (i;j ): w(i;j ) = wg(i;j Ywn(i;] ).

2.3 Adaptive smoothing

Once the weightsw(i;j ) have been de ned, adaptive smoothing is performed. Following tie idea used
to estimate the illumination component of an image in retinex theory [16, 21] we assume that the
smoothed depth cannot be smaller than the original depth. Thus, adaptie smoothing is performed
using the following steps:

Initialize the smoothed depth sq(i;j ) = z(i;j ), the number of iterations | = 0, and the maximum
number of iterations | max

While | <1 max, do:

I I +1

If the pixel at location (i;] ) is valid, extract all its valid neighbors:

N="f(@+k;j+Djfi+k;j+1)=1; s=2 k;I s=2g.

Compute the weighted averagesg;j ) of smoothed depthssqgm; n) at pixels (m;n)in N

using weightsw(m; n): 8(i;j ) = (mn)2n So(M;nwW(M;n)= (py2n W(M;N)

Ensure the smoothed depths are non-decreasing (i;j ) = max(’s(i;j ); so(i;j ))
Prepare for the next round: sp(i;j )  si(i;])

The parameter | nax @ ects the number and location of keypoints to be selected; unless dierwise stated,
we setlmax = 30.
2.4 Key point detection

Pulling all the ingredients de ned in the previous sections, our rovel key point detection algorithm may
be summarized as follows:

Initialize window size to s s; unless otherwise stateds = 3
Normalize the depth values of the given range image
Estimate the weight of each valid pixel

Perform adaptive smoothing

Transform the smoothed depthssi(i;j ) to 1i;j ) using a logarithmic operation:
a(i;j ) = log((z(i;j ) + 1) =(sa(i;j ) + 1))

Normalize the logarithmically transformed depths:

b(i;j ) = (0(i;] )  Bnin)=(Omax  Bmin)

where Bnin and Byax are the minimum and maximum of 1(i;j ) over the whole image.
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Table 1: Precision Pre and recall Rec rates of the detected keypoints, the averagee and standard
deviation e of registration errors in millimetres based on RCs, expected and estiated rotation angles

and " in degrees, and registration timet in seconds for di erent algorithms and di erent freeform
shapes.

Shapes Algo. Pre | Rec e e t
(%) | (%) | (mm)  (mm) ()] () [ (9

valve20-10 | SoftICP | 76.70| 84.88| 0.40 | 0.22 | 10 | 10.10| 97
FICP | 76.95| 85.16| 0.40 | 0.22 10.12| 77

valvel0-0 SoftICP | 86.16 | 86.75| 0.38 | 0.21 | 10 | 10.11| 66
FICP | 86.56| 87.16| 0.39 | 0.21 10.11| 45

dinosaur72-36| SoftICP | 60.52| 51.51| 0.62 | 0.87 | 36 | 35.15| 41
FICP | 61.00|51.92| 0.63 | 0.85 35.02| 34

dinosaur36-0 | SoftICP | 63.35| 61.02| 0.56 | 0.54 | 36 | 35.72| 66
FICP | 63.58| 61.24| 0.56 | 0.54 35.66| 50

botttle0-36 | SoftICP | 59.08| 62.14| 0.67 | 0.33 | 36 | 32.68| 31
FICP | 70.91| 74.59| 0.67 | 0.58 3.88 | 30

bunny80-60 | SoftICP | 76.76 | 71.87| 0.22 | 0.11 | 20 | 19.94| 29
FICP | 76.49|7161| 0.22 | 0.11 19.87| 20

cow49-45 | SoftICP | 47.81| 21.36| 0.71 | 0.70 | 40 | 41.30| 26
FICP | 46.95| 20.98| 0.71 | 0.71 41.59| 28

tubby120-80 | SoftiICP | 50.60 | 44.42| 0.25 | 0.16 | 40 | 39.09| 23
FICP | 50.57|44.39| 0.26 | 0.17 39.02| 30

Extract key points as those (x(i;j ) y(i;j ) z(i;j )T for which b(i;j ) = 1.

We call the above algorithm the retinex key point (RKP) algorithm. It has a computational complexity
of O(n) for depth transformation, normalization, and weight estimation, O(l maxn) = O(n) for adaptive
smoothing, and O(n) for key point extraction. Overall, it thus has linear computational comp lexity in
the number n of valid points in the shape. This algorithm has the following property:

Property 1 Detected key points have locally maximal transformed and normakzl depths.

Proof: The de nition of a key point as one satisfying b(i;j ) = 1 means that &(i;j ) = Bnax. The
non-decreasing constraint on depth during adaptive smoothing imples that z(i;j)  si(i;j ) and thus
B(i;j) 0. Consequently,Bnax = 0 and also i(i;j ) = 0, so 2(i;j ) = si1(i;j ). From the initial values of
so(i;j ) = Z(i;j ) and the non-decreasing constraint on smoothed depths;(i;j ) = max(’s(i;j ); so(i;j ),
we have z{i;j ) = max(“s(i;j ); Z(i;j )). Thus, pixel (i;j) has a locally maximal transformed and nor-
malized depth, a property which is una ected by adaptive smoothing. The adaptively smoothed depth
determines whether a point has a locally maximal depth. |

3 Experimental results

In this section, we use real data to demonstrate the utility of our algorthm for key point detection and
its application for e cient registration of overlapping 3D freeform shap es. The detected key points are

9



directly used for registration in two state-of-the-art iterative cl osest point (ICP) variants: SoftICP [9]
and Fractional RMSD (FICP) [18]. The RKP algorithm usually selects around 10% points in the shape,
so to enable a fair comparison in registration, we have also ensured thahe octave, MSFE and NSS
methods all select 10% of the points from the shape.

For each pair of overlapping shapes, we refer to the rst as thedata shape and the second as the
reference shape All real data in Figure 1 were downloaded from [15]. They were captured sging a
Minolta Vivid 700 range camera with a resolution of 200 200. The performance of the algorithm is
measured using the following parameters: the precisioP re and recall Rec rates as a percentage of the
detected keypoints, the average and standard deviation of registration mors of reciprocal correspon-
dences (RCs) [9, 27] between the whole data and reference shapes, theation angle “in degrees of the
estimated transformation, and the time in seconds used for key point deection and registration (KDR).
The data les used encode the rotation angles of the transformations in the lenames, giving ground
truth for evaluation algorithm performance.

In pattern recognition and information retrieval [29], precision (also caled positive predictive value)
is the fraction of retrieved instances that are relevant, while recdl (also known as sensitivity) is the
fraction of relevant instances that are retrieved. Both precision and ecall are therefore based on an
understanding and measure of relevance. When detecting keypoints the context of registration of
overlapping data and reference shapes, the goal of the keypoint detemt is to repeatably detect any
keypoints in the data shape that have also been detected in the refence shape, taking into account
that only some will be present due to change of view and occlusion. Theverlap of reference and data
shapes is de ned in terms of their reciprocal correspondences (RJ. Because RCs represent correct
correspondences and thus the same points on the object of interest, ¢y characterize the repeatability
of the detected keypoints in the data and reference shapes. Thusghe, precision Pre) and recall (Rec)
rates of the detected keypoints are de ned asN=n; 100% andN=n, 100%, whereN, n; and n, are
the number of RCs and the numbers of detected keypoints in the data ath reference shapes respectively.
Our de nition of recall rate agrees with that in [1].

Such de nitions of precision and recall can be understood from two paits of view:

1. Keypoints in the data and reference shapes can be detected and compdrindividually with some
ground truth, showing the extent to which the detected keypoints are relevant to the ground truth.
In this case, keypoints in the data and reference shapes are equallyetated and play the same role
in representing the ground truth. From this viewpoint, Pre and Rec rates essentially measure the
precision of detected keypoints in the data and reference shapessgectively.

2. The keypoints to be detected in the data shape should agree with th@sdetected in the reference
shape. The precision rate shows the extent to which the detectedeypoints in the data shape
are repeatable and relevant to those in the reference shape. The retahte shows the extent to
which the keypoints in the reference shape are successfully datted and retrieved by those in
the data shape. In this case, the distinction between precision andecall rates lies in that they
distinguish di erent roles played by the keypoints in the data and reference shapes: the former
should reproduce and maximize overlap with the latter; the latter is regarded as ground truth.

It can be seen that the second interpretation is more suitable for keypint detection in a registration
context, since no independent ground truth is available for perfornrance measurement. The data and
reference shapes are closely tied to thdi erences in representation of the geometry of the object of
interest from di erent viewpoints, and the size of their overlap is de ned through registration of the
keypoints in the data shape with those in the reference shape. Thysve have adopted this approach
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throughout this paper.

An experimental study was carried out to evaluate six aspects of the propsed RKP algorithm, as
detailed below: key point detection, reference registration, poih selection from the data shape and
both shapes, window size and the optimal number of iterations for adaptie smoothing. To facilitate
visualization, the estimated transformation was applied to the whole data shape, rather than the key-
points only. Experimental results are presented in Figures 3{10, and Takes 1{7. In Figures 4{8 and
Figure 10, yellow represents the transformed data shape, while greeepresents the reference shape. All
experiments were carried out on a Pentium 1V, 2.8GHz computer with 504MB RAM with unoptimized
code written in Microsoft Visual C++ 6.0.

3.1 Key point detection

In this section, we use real data to demonstrate the detected key pats. To this end, the valve20,
valvel0, valve0, dinosaur72, dinosaur36, dinosaurO, cow49, and cow45 shapes in Feyd were selected;
results are presented in Figure 2. The key points detected are repsented by red plus signs.

The points detected by the proposed RKP algorithm are distributed rdatively evenly over the whole

shapes, yet characterize the main features and details of the valve, mbsaur and cow shapes. In par-
ticular, more key points were detected on the ports of the valve, the kad, belly, toes and tail of the

dinosaur, and the ears, eyes and mouth of the cow. Even though the numbeaf key points varies from

one shape to another, typically around 10% points in the original shape are detted as key points. This
means that around 10% points can be used for a faithful representation of thgeometry and details of
each 3D freeform shape of interest.

In contrast, both the octave and the MSFE methods selected points rainly in areas with depth discon-

tinuities, since points in these areas usually vary signi cantly in normal vector and eigenvalues of the
local covariance matrix. The NSS method sampled points from both depthdiscontinuous and planar
areas, although more points were selected from depth discontinuous areasth larger changes in normal

vector. It is usually di cult to distinguish foreground objects of in terest from the cluttered background

without prior knowledge, but they were treated equally, and thus key points were selected from both.
The RKP and NSS methods provide visually more accurate representatins of the overall geometry and
details for the original valve, dinosaur and cow shapes.

While key point detection typically took under 2s for the RKP, MSFE and NSS methods, the octave
method took up to 30s, since it was designed to operate over point cloudsather than structured range
images. This observation is consistent with their computational complgity: RKP, MSFE, and NSS
methods have linear computational complexity in terms of the numberof points in the shape, while
the octave method has quadratic computational complexity as it depend on computation of interpoint
distances to nd points within a threshold distance of each point of interest.

3.2 Reference registration

We next used the complete sets of points in the original shapes for regiation to provide a performance
baseline, allowing evaluation of the extent to which the selectingkey points accelerate registration and
aect its accuracy. To this end, the valve20-10, valvel0-0, dinosaur72-36, din@ur36-0, bottle0-36,
bunny80-60, cow49-45, and tubby120-80 shape pairs in Figure 1 were selectedxp€rimental results
are presented in Figure 3 and Table 1. The valve, dinosaur, bunny, and toby shapes were accurately
registered by both the SoftICP and FICP algorithms. The estimated rotation angles for the underlying
transformations are close to the ground truths. The transformed data shaps t onto the reference shapes
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perfectly. The bottle0-36 and cow59-45 shapes are challenging to registsince the former includes a
simple cylindrical shape leading to rotational ambiguity in the underlying transformation, while the
latter has a cluttered background, complicating evaluation of the quality of tentative correspondences
established. Nevertheless, such shapes are useful to reveal theid performance of di erent key point
detection techniques. The SoftICP algorithm is more accurate than theFICP algorithm: the latter
registered the dominant bottle body, but not the bottle handle|the pr obabilistic SoftiICP algorithm is
more powerful than the threshold based FICP algorithm.

3.3 Point selection from the data shape

We next investigated di erent point selection techniques applied to the data shapesP only, as was done
in [7]. In this case, registration was performed between the sampledgints in the data shape andall
points in the reference shape; in this case only the precision rate dhe detected key points is de ned,
but not the recall rate. Experimental results are presented in Figues 4 and 5, and Tables 2 and 3. It
can be seen that the proposed RKP algorithm always detected key points ith superior precision to the
octave, MSFE, and NSS methods by as much as 43%, 36%, and 34% respectivelyis higher precision
for the RKP key points carries through to more accurate registration resuts. The SoftICP algorithm
accurately registered points selected from 7 out of the 8 data shapeshé key points selected by our
RKP approach provide a sound basis for registration. In contrast, using ky points generated by the
other methods, the SoftICP algorithm inaccurately registered the valke20, dinosaur36, and bunny80
shapes, and failed to register the points selected by either the ¢ave or MSFE method for the cow49
shape and the points selected by the NSS method for the tubby120 shap&or bottle0-36, all methods
produced inaccurate results as measured by either average registiah error or rotation angle of the
underlying transformation. The proposed RKP algorithm produced a large average registration error
and established 2% more RCs than the other methods. This shows that # simple geometry of the
bottle leads to an ill-posed registration problem, and any registration algoithm is likely to converge
to a local minimum, giving inaccurate results. Over all 8 pairs of ovelapping shapes, the increase in
average registration error compared to using full data without point samgding was 6%, 31%, 29%, and
16% for the RKP, octave, MSFE, and NSS methods respectively.

The octave, MSFE, and NSS methods have reduced precision comparéaithe proposed RKP algorithm
for detection of key points by up to 26%, 45%, and 30% respectively: the kepoints detected by the
former are less repeatably placed and thus less useful as a basis for mgition. While the FICP
algorithm failed to register the points selected by all four methods ér the bottleO shape, it successfully
registered the points selected by our proposed RKP algorithm for all 7 otler shapes. In contrast, it failed
to register the points selected by the octave, MSFE, and NSS methas for the dinosaur72, dinosaur36,
and cow49 shapes, and points selected by the MSFE method for the dataubbyl120 shape. These
registration failures can be seen in the legs of the dinosaur and the head thfe cow in shapes dinosaur72,
dinosaur36, and cow49 relative to the references dinosaur36, dinosaurO, andw45 respectively. Over all
8 pairs of overlapping shapes, the average registration error was increed compared to using full data
without point sampling by 6%, 60%, 116%, and 71% by the RKP, octave, MSFE, andNSS methods
respectively.

The above analysis shows that sampling around 10% points using the RKP algi@hm has little e ect on
the registration accuracy for overlapping 3D freeform shapes, especlgiwhen using the FICP algorithm.
The octave, MSFE, and NSS methods do not perform as well. We believthis is because they estimate
guantities based on second-order derivatives of the discrete range dat such as normal vectors and
eigenvalues of the local covariance matrix, and these are sensitive timaging noise, occlusion, and
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Table 2. The precision Pre rate of the detected keypoints, the averagee and standard deviation
e of registration errors in millimetres based on RCs, expected and estiated rotation angles and
“in degrees, and KDR timet in seconds for key points selected from the data shape using di erén
algorithms, registered using the SoftICP algorithm.

Image Algo. | Pre e e t
(%) [ (mm) [ (mm) [ ()] () |(9)

valve20-10 RKP | 83.85| 0.42 | 0.23 | 10| 10.08| 9
octave | 75.90| 0.43 0.22 994 | 11

MSFE | 64.10| 0.50 | 0.24 9.71 | 13

NSS | 63.32| 0.46 | 0.23 9.87 | 17

valve10-0 RKP | 94.06| 0.39 | 0.20 | 10| 10.14| 5
octave | 89.44| 0.40 0.21 10.09| 16

MSFE | 86.46| 0.39 | 0.20 10.04| 5

NSS | 81.30| 0.40 | 0.20 10.07| 4
dinosaur72-36| RKP | 74.08| 0.64 | 0.85 | 36 | 35.32| 4
octave | 64.93| 0.76 0.84 3445 4

MSFE | 55.63| 0.74 | 0.88 34.08| 6

NSS | 50.14| 0.64 | 0.85 3486 7

dinosaur36-0 | RKP | 78.30| 0.59 | 0.54 | 36 | 35.45| 8
octave | 63.87| 0.60 0.55 3558| 7

MSFE | 55.38| 0.72 | 0.58 35.22| 19

NSS | 51.55| 0.68 | 0.56 34.83| 9

bottle0-36 RKP | 80.08| 0.78 | 0.47 | 36 | 29.84| 3
octave | 71.75| 0.68 0.34 32.70| 4

MSFE | 63.51| 0.67 | 0.33 33.32| 5

NSS | 78.07| 0.68 | 0.36 32.63| 3

bunny80-60 RKP |90.88| 0.23 | 0.11 | 20| 20.07| 4
octave | 71.36| 0.27 | 0.12 19.22| 4

MSFE | 78.02| 0.24 | 0.11 1951 4

NSS | 65.32| 0.28 | 0.14 18.76| 4

cow49-45 RKP | 70.25| 0.74 | 0.70 | 40| 40.92| 3
octave | 24.76| 1.57 | 2.61 91.39| 5

MSFE | 22.22| 131 | 2.85 62.61| 4

NSS | 4254| 0.96 | 0.98 41.77| 4

tubby120-80 | RKP | 79.07| 0.26 | 0.18 | 40 | 38.86| 4
octave | 61.78| 0.28 | 0.16 38.64| 15

MSFE | 52.62| 0.38 | 0.23 38.02| 4

NSS | 52.62| 0.34 | 0.22 29.04| 3
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Table 3. The precision Pre rate of the detected keypoints, the averagee and standard deviation
e of registration errors in millimetres based on RCs, expected and estiated rotation angles and
“in degrees, and KDR timet in seconds for key points selected from the data shape using di erén
algorithms, registered using the FICP algorithm.

Image Algo. | Pre e e t
(%) [ (mm) [ (mm) [ ()] () |(9)

valve20-10 RKP | 83.63| 0.42 | 0.23 | 10| 10.10| 5
octave | 76.11| 0.42 | 0.22 10.07| 5

MSFE | 63.32| 0.45 | 0.23 989 | 7

NSS | 63.11| 0.44 | 0.23 9.93 | 17

valve10-0 RKP | 9361 0.39 | 0.21 | 10| 10.16| 4
octave | 89.51| 0.39 0.21 10.07| 4

MSFE | 85.68| 0.39 | 0.20 10.07| 3

NSS | 83.72| 0.45 | 0.20 9.83 | 3
dinosaur72-36| RKP | 75.31| 0.71 | 0.84 | 36 | 34.14| 3
octave | 46.33| 1.19 1.01 22.11| 2

MSFE | 3451| 1.17 | 0.78 16.05| 4

NSS | 35.07| 1.23 1.02 18.59| 4

dinosaur36-0 | RKP | 78.30| 0.60 | 0.55 | 36 | 35.35| 5
octave | 41.50| 1.44 | 1.27 1142 7

MSFE | 28.47| 1.30 | 1.20 938 | 5

NSS | 39.47| 1.46 1.29 1474 5

bottle0-36 RKP | 80.49| 0.70 | 047 | 36| 9.88 | 4
octave | 73.51| 0.75 0.69 21.28| 3

MSFE | 26.14| 2.78 | 3.30 36.01| 5

NSS | 77.89| 0.80 | 0.66 25.85| 4

bunny80-60 RKP |90.37| 0.23 | 0.11 | 20| 20.11| 4
octave | 70.59| 0.28 | 0.13 19.43| 3

MSFE | 77.71| 0.25 | 0.11 19.17| 3

NSS | 66.25| 0.32 | 0.17 18.30| 3

cow49-45 RKP | 68.46| 0.74 | 0.70 | 40 | 40.73| 4
octave | 23.81| 1.30 1.71 76.52| 4

MSFE | 12.38| 1.29 1.63 30.67| 3

NSS | 26.34| 1.44 | 141 31.64| 3

tubby120-80 | RKP | 78.49| 0.27 | 0.18 | 40 | 38.83| 3
octave | 58.38| 0.38 | 0.17 37.94| 3

MSFE | 28.27| 0.68 | 0.59 41.15| 3

NSS | 55.76| 0.43 | 0.28 2550| 3
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Figure 4: Registration results using the SoftICP algorithm for various shapes with key points selected
from the data shape using di erent algorithms. Rows, top to bottom: RKP, octave, MSFE, and NSS.
Columns, left to right: valve20-10, valvel0-0, dinosaur72-36, dinosaur36-0, bott36, bunny80-60,
cow49-45, and tubby120-80.

appearance and disappearance of points. In contrast, the RKP algorithm emplys adaptive smoothing
and rst order derivatives, and thus is more robust. The adaptive smoothing operation provides a
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Figure 5: Registration results using the FICP algorithm for various shape with key points selected
from the data shape using di erent algorithms. Rows, top to bottom: RKP, octave, MSFE, and NSS.

Columns, left to right: valve20-10, valvel0-0, dinosaur72-36, dinosaur36-0, botte36, bunny80-60,
cow49-45, and tubby120-80.

reliable reference for the RKP algorithm to select key points as locamaxima.
Comparing Tables 2 and 3 with Table 1, it can be seen that the SoftICP algorihm is more accurate than
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the FICP algorithm. Both algorithms produce worse results when usingpoint sampling, as might be
expected. The FICP algorithm is more sensitive to use of point sampiig than the SoftICP algorithm.
This is because the entropy maximisation principle, the two-way comstraint, and the deterministic
annealing scheme in the SoftICP algorithm provide a powerful probaHbistic framework for weighting the
tentative correspondences established, while the FICP algorithm hs di culty in de ning the quality of
tentative correspondences and thus in rejecting outliers. The FCP algorithm is slightly more e cient
than the SoftICP algorithm, but it usually converges prematurely, producing inaccurate registration
results. While all registration results are slightly worse when samping, the time needed for registration
is reduced by as much as 78% using point sampling and registration by the RP algorithm. Detecting
key points speeds up registration without signi cant loss of accuracy.

3.4 Point selection from both shapes

In the previous experiments, only the data shapes were sampled witkey points. Here, we sample
both data and reference shapes and again perform registration using Soft’Zand FICP. Such sampled
points are more challenging to register, since they are less likelyot correspond to exactly the same
points on the shapes, and failure to robustly choose identical key pois will be apparent. For accurate
registration, the sampled points should faithfully represent the g@metry and details of the shapes of
interest from any viewpoint, and should reliably represent the orighal shapes from di erent viewpoints.
Our experimental results are presented in Figures 6 and 7 and Table4 and 5. It can be seen that the
precision rate of the RKP algorithm is always higher than for other algorithms, and its recall rate is also
higher except for the valvel0-0 and tubby120-80 shape pairs, where they asimilar to those produced
by the MSFE method. Over all 8 pairs of overlapping shapes, the propad RKP algorithm had better
precision and recall rates compared to the octave, MSFE, and NSS metlis on average by as much as
68%, 55%, 19%, 13%, 36%, and 26% respectively, showing that the key points deted by the RKP
method are more representative of the underlying geometry.

The higher precision and recall rates of these key points are con rmed Yo the registration results.
The SoftICP algorithm accurately registered the points sampled by theproposed RKP method with
the average error increasing by as little as 7%, even though both the data ahreference shapes were
sampled, reducing time by up to 90%. In contrast, point sampling by the octave, MSFE, and NSS
methods increased errors by up to 46%, 51%, and 52% respectively. Everhan sampling both shapes
by the RKP algorithm, good registration can be achieved, and all overlappng shapes were brought into
accurate alignment with each other. In contrast, the sampled points fromthe octave, MSFE, and NSS
methods proved less useful for registration; the transformed valv0, dinosaur72 and tubby120 shapes
are displaced in 3D space with respect to the valvel0, dinosaur36 and tugBO shapes respectively.

When performing registration with the FICP algorithm, again the RKP algori thm produced the highest
precision and recall rates of any key point selection method for everyase, except for the result for the
valvel0-0 pair produced by the MSFE method. This shows that the MSE method can produce good
results, but is not as reliable as the proposed RKP method. The RKP algathm is better than the
octave, MSFE, and NSS methods for the detection of key points in the ense of precision and recall
rates by as much as 88%, 76%, 44%, 39%, 51%, and 43% respectively. These remarkabkilts show
that out of these methods, the RKP method detected key points most tosely representing the geometry
and details of the original shapes, providing the best registration reglts. Even though point sampling
by the octave, MSFE, and NSS methods increased the average registiah error signi cantly, by as
much as 85%, 89%, and 97% respectively, for the RKP method it increased bjst 13%. While the
FICP algorithm failed to register the points sampled by the octave, MSFE, and NSS methods, causing
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Table 4: PrecisionPre and recall Recrates for detected keypoints, the average and standard deviation
e of registration errors in millimetres based on RCs, expected and estiated rotation angles and " in
degrees, and KDR timet in seconds, for key points selected from both shapes using various algibnins
and registered using the SoftICP algorithm.

Image Algo. | Pre | Rec e e t
(%) | (%) | (mm) [ (mm) | ()| () |(9)

valve20-10 RKP | 48.45|59.13| 041 | 0.22 | 10| 10.08 | 5
octave | 35.62| 39.43| 0.44 | 0.23 10.08 | 6

MSFE | 45.86| 50.78 | 0.47 | 0.23 9.86 6

NSS | 40.71| 45.07| 0.47 | 0.23 9.91 6

valve10-0 RKP |59.04|55.08| 040 | 0.21 | 10| 10.01 | 4
octave | 42.80| 43.07| 0.41 | 0.20 10.09 | 5

MSFE | 57.51| 57.87| 0.40 | 0.20 10.04 | 7

NSS | 53.52| 53.85| 0.39 | 0.20 10.07 | 7
dinosaur72-36| RKP | 39.88| 35.71| 0.65 | 0.86 | 36 | 35.04 | 6
octave | 25.63| 21.77| 0.67 | 0.86 3495 | 6

MSFE | 34.65| 29.42| 0.73 | 0.84 3475 | 4

NSS | 30.56| 25.96| 1.11 | 1.01 31.21 | 4

dinosaur36-0 | RKP | 4258| 39.14| 059 | 054 | 36 | 3545 | 8
octave | 25.71| 24.77| 0.61 | 0.55 3533 | 4

MSFE | 29.07| 27.99| 0.69 | 0.57 36.00 | 4

NSS | 31.94| 30.76| 0.89 | 0.65 33.68 | 4

bottle0-36 RKP |4291|43.27| 075 | 0.32 | 36 | 3480 | 3
octave | 26.31| 27.62| 0.82 | 0.72 2094 | 3

MSFE | 27.54| 28.91| 185 | 1.42 3243 | 4

NSS | 25.44| 26.70| 0.88 | 0.65 26.13 | 3

bunny80-60 | RKP | 53.21|50.16| 0.23 | 0.11 | 20| 1991 | 4
octave | 25.54| 23.91| 0.31 | 0.13 1953 | 3

MSFE | 51.08 | 47.83| 0.26 | 0.11 1952 | 3

NSS | 41.02| 38.40| 0.31 | 0.14 18.86 | 3

cow49-45 RKP |39.43| 1599| 0.79 | 0.88 | 40 | 40.38 | 3
octave | 9.21 | 4.09 | 1.93 | 3.00 79.78 | 3

MSFE | 21.90| 9.73 | 091 | 1.28 51.83 | 2

NSS | 794 | 353 | 1.29 | 241 104.81| 3

tubby120-80 | RKP | 34.59| 28.54| 0.28 | 0.18 | 40 | 39.06 | 2
octave | 22.77| 20.00| 0.40 | 0.21 39.70 | 2

MSFE | 32.98| 28.96| 0.45 | 0.30 3749 | 2

NSS | 31.94| 28.05| 0.47 | 0.34 2943 | 4
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Table 5: Precision Pre and recall Rec rates for the detected keypoints, the averagee and standard
deviation e of registration errors in millimetres based on RCs, expected and estiated rotation angles

and " in degrees, and KDR timet in seconds for key points selected from both shapes using di erent
algorithms, and registered using the FICP algorithm.

Image Algo. | Pre | Rec e e t
(%) | (%) | (mm) | (mm) | ()] () |(s)

valve20-10 RKP | 48.67|59.40| 0.42 | 0.23 | 10 | 10.02| 4
octave | 36.11| 39.98| 0.45 0.23 10.12| 4

MSFE | 45.94| 50.86| 0.44 | 0.22 10.04| 4

NSS | 38.43| 43.66| 0.55 | 0.28 10.03| 5

valve10-0 RKP | 58.95|54.99| 0.40 | 0.20 | 10 | 9.97 | 3
octave | 42.95| 43.22| 0.43 | 0.20 10.12| 4

MSFE | 57.35| 57.71| 0.39 | 0.21 10.07| 4

NSS | 52.82| 53.15| 0.41 | 0.21 10.07| 5
dinosaur72-36| RKP | 39.26| 35.16| 0.66 | 0.87 | 36 | 35.20| 4
octave | 18.87| 16.03| 1.19 | 0.91 22.24| 2

MSFE | 16.90| 14.35| 1.19 | 1.01 22.70| 3

NSS | 19.44| 16.51| 1.23 | 0.97 19.87| 3

dinosaur36-0 | RKP | 42.44| 39.01| 0.60 | 0.55 | 36 | 35.35| 6
octave | 15.55| 14.97| 151 | 1.31 872 | 4

MSFE | 11.12| 10.71| 1.48 | 1.13 853 | 4

NSS | 22.49| 21.65| 1.33 | 1.26 14.09| 4

bottle0-36 RKP | 44.15| 4451| 0.87 | 0.58 | 36 | 19.72| 3
octave | 24.21| 25.41| 1.09 0.61 23.36| 3

MSFE | 24.21| 25.41| 2.11 | 1.62 27.42| 2

NSS | 23.50| 24.68| 1.44 | 0.80 20.19| 3

bunny80-60 RKP | 53.21|50.16| 0.27 | 0.13 | 20 | 18.82| 2
octave | 25.70| 24.06| 0.31 | 0.14 19.34| 2

MSFE | 52.01| 48.69| 0.25 | 0.12 18.76| 3

NSS | 39.16| 36.67| 0.36 | 0.19 18.30| 3

cow49-45 RKP | 39.78| 16.13| 0.85 | 0.85 | 40 | 44.01| 3
octave | 6.98 | 3.10 | 1.72 1.20 75.27| 3

MSFE | 22.86| 10.15| 0.78 | 0.90 4501 3

NSS | 11.43| 5.08 | 1.60 | 1.41 34.86| 3

tubby120-80 | RKP | 34.01| 28.06| 0.29 | 0.18 | 40 | 38.45| 3
octave | 21.20| 18.62| 0.43 | 0.22 40.04| 3

MSFE | 19.63| 17.24| 0.64 | 0.42 30.58| 3

NSS | 30.37| 26.67| 0.67 | 0.37 29.67| 4
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Figure 6: Registration results using the SoftICP algorithm for various stapes using key points selected
from both shapes by di erent algorithms. Rows, top to bottom: RKP, octave, MSFE, and NSS. Columns,
left to right: valve20-10, valvel0-0, dinosaur72-36, dinosaur36-0, bottle0-36, buni®p-60, cow49-45, and

tubby120-80.

the transformed dinosaur72, dinosaur36, cow49, and tubbyl120 shapes to mismatdhe dinosaur36,
dinosaur0, cow45, and tubby80 shapes respectively, it successfullggistered the points sampled by the
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Figure 7: Registration results using the FICP algorithm for various shape using key points selected from
both shapes by di erent algorithms. Rows, top to bottom: RKP, octave, MSFE, and NSS. Columns,
left to right: valve20-10, valve10-0, dinosaur72-36, dinosaur36-0, bottle0-36, buni®p-60, cow49-45, and

tubby120-80.

RKP algorithm and brought all the overlapping shapes into accurate alignment, except for the bottle0-36
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pair, which was more challenging to register due to the previously metioned cylindrical ambiguity.

The SoftICP algorithm exhibited similar behavior for the registration of points sampled from both data
and reference shapes by the RKP, octave, and MSFE methods to thease when the data shape only
was sampled, but it produced worse results when registering poistsampled by the NSS method. The
repeatability of points sampled by the NSS method is worse due to theandom nature of its sampling.
The FICP algorithm is more sensitive to the choice of point sampling méhod.

Figure 8: Registration results of di erent algorithms using the RKP algorithm to select keypoints from
both shapes, using di erent window sizes. Rows, top to bottom: 3 3,7 7 windows. Models, left to
right: duck0-20, frog0-20, lobster0-20, and buddha0-20. Odd columns: SoftICP; en columns: FICP.

3.5 Window size

Elsewhere, when using the RKP algorithm, we set the window sizea 3 3 for neighbor detection and
adaptive smoothing. In this section, we experimentally investigatewhether this is a good option and
consider window sizes from 3 3to 7 7, using the new duck0-20, frog0-20, lobster0-20, and buddhaO-
20 shape pairs illustrated in Figure 1. Both data and reference shapes we sampled and registered
using both the SoftIiCP and FICP algorithms. The experimental results are presented in Figure 8 and
Table 6. A larger window size usually decreases the precision and retahtes of the detected key points
registered by the SoftICP algorithm on average by 7% and 10%, and by the FICP gorithm by 9% and
12% respectively. A larger window size results in less reliable kepoints, because it blurs local features
and thus makes key point detection harder. This conclusion is con rmeé by the registration results.
A larger window size of 7 7 usually produces slightly worse results than 3 3; the rotation angle
of the estimated transformation is close to the ground truth. Signi cantly worse results are obtained
when registering the buddha0-20 pair using the SoftICP algorithm: thenose, eyes, and ears in the
transformed data buddhaO and reference buddha20 shapes are clearly pliaced in 3D space with the
average error being increased by as much as 45%. Thus, a window size of 3 is suggested for key
point detection.
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Table 6: PrecisionP re and recall Recrates for detected keypoints, the average and standard deviation
e of registration errors in millimetres based on RCs, expected and estiated rotation angles and " in
degrees, and KDR timet in seconds for key points selected from both shapes using the RKP algdim
and di erent window sizes,d registered by di erent algorithms.

Image Size | Algo. Pre | Rec e e

(%) | (%) | (mm) | (mm) | ()| ()
3 3| SoftiCP | 52.00| 52.20| 0.41 | 0.29 | 20 | 18.99

t

(s)

4

FICP 51.11|51.30| 041 0.26 18.69| 5

duck0-20 |7 7 | SoftICP | 44.34| 4451 | 0.44 0.27 18.33| 5
FICP 45.08 | 45.24| 0.47 0.30 16.39| 5

3 3| SoftICP | 40.71| 49.15| 0.31 0.16 | 20 | 19.40| 4

FICP 41.14| 49.67| 0.32 0.17 18.71| 3

frog0-20 7 7| SoftiICP | 39.87| 45.82| 0.32 0.16 19.14| 4
FICP 40.65| 46.72| 0.34 0.18 18.47| 3

3 3| SoftICP | 50.80| 54.40| 0.38 0.23 | 20| 19.17| 4

FICP 50.80| 54.40| 0.41 0.25 18.44| 3

lobster0-20 | 7 7 | SoftICP | 47.34| 47.69| 0.38 0.24 19.22| 4
FICP 47.20| 47.54| 0.40 0.26 18.50| 3

3 3| SoftICP | 56.17| 54.10| 0.60 0.24 | 20| 19.88| 6

FICP 50.57| 48.70| 0.94 0.57 8.07 | 4

buddha0-20| 7 7 | SoftICP | 53.68 | 48.88| 0.87 0.50 13.33| 16
FICP 42.83| 39.00| 0.88 0.50 13.21| 6
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3.6 Maximum number of iterations for adaptive smoothing

In this section, we investigate a suitable value for the maximum numier (I nax) of iterations used for

adaptive smoothing in our RKP algorithm. We considered three possibities: 10, 30, and 50. The new
free form shapes angel0, angle20, angle40, birdO, and bird20 illustrated in Figei 1 were selected for the
experiments, with point sampling applied to both shapes which again wre registered using both the
SoftICP and FICP algorithms. The experimental results are presente in Figures 9 and 10 and Table 7.

Figure 9: Keypoints detected by the RKP algorithm with the parameter | .« taking di erent values.
Rows, top to bottom: |max=10, 30, and 50. Models, left to right: angelO, angel20, angel40, bird0 and
bird20.

Figure 10: Registration results for di erent algorithms using keypoints selected from both shapes by
the RKP algorithm with the parameter |y taking di erent values. Rows, top to bottom: SoftICP
and FICP. Models, left three: angel0-20; Middle three: angel20-40; Righthree: bird0-20. Columns 1,
4, and 7: | max=10; Columns 2, 5, and 8: | 112x=30; Columns 3, 6, and 9: | ax=50.

Figure 9 and Table 7 show that the larger the maximum number of iterationsused for adaptive smooth-
ing, the fewer keypoints the RKP algorithm detects. This is becausewvhen the maximum number of
iterations is small, 10, for example, the smoothing operation has mainly adcal e ect, leading points to
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Table 7: PrecisionPre and recall Recrates for detected keypoints, the average and standard deviation

e of registration errors in millimetres based on RCs, expected and estiated rotation angles and "
in degrees, and KDR timet in seconds for keypoints selected from both shapes by the proposed RKP
algorithm with the parameter |,ax taking di erent values and registered by di erent algorithms. nj
and n, are the numbers of the detected key points in the data and referencshapes respectively.

N

Image | max Algo. Pre Rec e e t
(ng;n2) (%) | (%) | (mm) | (mm) | ()] () [(s)

10 SoftICP | 54.29| 50.37| 0.49 | 0.26 | 20 | 20.52| 7

(2365, 2549)| FICP 54.04| 50.14| 0.50 | 0.25 20.48| 3

angel0-20 30 SoftICP | 50.34| 45.84| 0.50 | 0.26 20.48| 4
(1301, 1429)| FICP 50.65| 46.12| 0.52 | 0.26 20.34| 2

50 SoftICP | 49.95| 44.62| 0.50 | 0.26 2054 | 4

(989, 1107) | FICP 50.05| 44.71| 0.51 | 0.27 20.42| 2

10 SoftICP | 46.72| 54.99| 0.54 | 0.34 | 20 | 20.35| 6

(2549, 2166)| FICP 46.92| 55.22| 055 | 0.34 20.22| 4
angel20-40 30 SoftICP | 45.55| 53.14| 0.55 | 0.34 20.35| 4
(1429, 1223)| FICP 4591 | 53.55| 057 | 0.34 20.21| 2

50 SoftICP | 43.00| 50.64| 0.55 | 0.34 20.34| 3

(1107, 940) | FICP 4354| 51.28| 0.59 | 0.34 20.10| 3

10 SoftICP | 43.17| 56.13| 0.29 | 0.12 | 20| 19.56| 4

(1538, 1183)| FICP 4252 | 55.28| 0.34 | 0.13 19.04| 4

bird0-20 30 SoftICP | 39.75| 53.51| 0.30 | 0.13 19.67| 3
(883, 656) FICP 40.09| 53.96| 0.39 | 0.15 18.15| 3

50 SoftICP | 38.23| 50.29| 0.32 | 0.13 19.79| 3

(667, 507) FICP 39.73| 52.27| 0.45 | 0.19 17.68| 3
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be compared in a small area, and thus more points to be depth maxima and haecselected as keypoints.
In contrast, when the number is large, 50, for example, the smoothing ogation propagates local infor-
mation from one region to another, enabling comparison of points over a larger &a, leading to fewer
points being selected as keypoints having maximal depth. Figure 10 ahTable 7 show that while a
large number of points takes more time to process and register, they tal to produce more accurate
registration results, with increased precision and recall rates for he detected keypoints: they describe
the geometry and details of the underlying shapes more faithfully. Incontrast, a smaller number of
points leads to more computationally e cient registration, but usually produces larger registration er-
rors, as fewer points less well characterize the geometry. This obseation is demonstrated by the fact
that the FICP algorithm superimposes the transformed bird0 shape ove the bird20 shape with less
inter-penetration through each other, and increases the average error ken | ax = 10 by as much as
32%; the number of the detected keypoints drops rapidly by 58% and 59% in th angel0 and angel20
shapes as the maximum number of iterations for adaptive smoothing incr@ses from 10 to 50, while the
drop in the precision and recall rates is less serious, just 8% and 11% foné SoftiICP algorithm with a
gain of 42% in overall time. These results show that the proposed RKP mdtod: (i) can exibly detect
varying numbers of keypoints as required by controlling the value ofl max, and (ii) can stably detect
repeatable key points. | nax = 30 is recommended as a good compromise between registration accuracy
and computational e ciency.

4 Conclusions

While the latest laser scanners enable fast and a ordable capture of dept maps and shapes of interest,
multiple views must be registered to form complete models. Regigtion is a costly process, and in
this paper, we show to signi cantly reduce this cost using a samplig method based on a novel way of
selecting key points. Our contributions can be summarized as follos:

Inspired by retinex theory [6, 16], we have proposed a novel method dfey point detection using
adaptive smoothing. This operation suppresses the impact of points in epth discontinuous re-
gions, and all points una ected by smoothing are selected as key pointskey points have locally
maximal transformed and normalized depth. The method is easy to impleent. This appears to
be the rst time that retinex theory has been adapted from 2D image enhanement for application
in 3D key point analysis and detection.

The detected key points have been shown to be useful for e cientregistration of overlapping
3D freeform shapes. No matter whether key points are selected from juone or both shapes,
accurate results are obtained, with registration being up to 20 times dster than when using un-
sampled shapes. This is a signi cant improvement in computational e ciency without sacri cing

registration accuracy. The reason why our proposed RKP algorithm works wellin this context

is that the smoothed depths provide a reliable reference for theydgment of whether a point is
a key point. Existing methods detect salient points in an ad hoc way while the proposed RKP
method guarantees that the detected points are locally highest after armalization and adaptive
smoothing.

A comparative study has been performed between our proposed key pointetection method and
three other state-of-the-art methods, using real depth images. It Bows that it is feasible to
apply ICP variants to directly register key points as long as they are irformative, expressive, and
repeatable enough. The precision and recall rates of the key points detted by the proposed
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RKP method are usually higher than those for the selected competitorsin one extreme case by as
much as 88% and 76%. RKP sampling of both shapes increases the average regison error by
as little as 7%, while for other selected state-of-the-art methods itincreases by as much as 52%.

Our proposed RKP method is a powerful approach to key point detection The detected key points
are useful in the context of registration, and with direct application of ICP variants, they can produce
accurate registration results with signi cantly improved computati onal e ciency. Future research will

investigate the similarity between the shapes de ned by these kg points and the original complete point
sets, how the detected key points can be applied for the generation oéVels of detail for e cient data

transmission, rendering and visualization, and how the detected paits can be incorporated into feature
extraction and matching methods [7, 23] for applications such as registratin.
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Responses to the comments from reviewers

Reviewer #1

Q P6 | The technique described in section 2.1 on depth normalization implicitly assumes that the
range of variance will be similar for an object for di erent viewpoints. While this is likely the
case for many objects and for viewpoints that are relatively close togetherit is easy to imagine
shapes and situations where this does not work. Some mention of this walibe bene cial.

A Done. Thanks for this very good point.

Q P10 | The de nition of Precision and Recall is not traditional. Whileit s use here is fully described
and unambiguous, the rede nition of these terms does not match with their standard de nitions.
| see no reason why di erent terminology than Precision and Recall shoul not be used here to
denote N/nl and N/n2.

A We believe that these de nitions are still in agreement with the traditional de nitions, with a
particular emphasis on the di erent roles played by di erent shapes in the process of registration
of overlapping shapes: one is used as a data shape, the other is used asterence shape. Such
context is used for the de nition of Precision and Recall.

Q P12 It's not clear to me that a higher value of N/nl necessarily is a measure of superior perfor-
mance. It may simply mean a smaller value of nl1, which after a thresholdcould be detrimental.
Displaying in Table 2 the values of nl for each of the techniques (RKPoctave, MSFE, and NSS)
would be interesting.

A A smaller value of n1 means that fewer key points were detected. Inwgh cases, these key points
poorly characterize the geometry of a free from shape and thus causes rsgation problems,
leading to poor registration results. As discussed in Section 3.1, all sthods detected around 10%
of the original points as keypoints. In this case, (1)nl cannot be too small; and (2) it is almost
constant, and thus is worth tabulating. The relative ratio shows the extent to which the detected
key points in the data shape really nd correspondents in the referace shape, and thus shows the
performance of the algorithms in the sense of detecting repeatable anatlevant key points for the
de nition of the registration problem.

Q P12 | It is stated that "the key points detected by the former are less reputably placed.” This
is inferred and has not been shown directly. The statement shouldither be modi ed as such, or
more direct evidence presented to support it.

A The statement is inferred from two considerations: (1) registration results, in the sense of both
average registration errors and the precision rates of the detected kepoints, (2) Figure 2, in
which it can be observed that the proposed method tends to detect s@nt and feature points as
key points, while the competitors usually detect either points at depth and orientation disconti-
nuities, or random points, as key points. A careful analysis shows that tie key points detected
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by the former are more repeatable and relevant for representing the geostry of free form shapes
independently of viewpoint, and for de ning registration between overlapping shapes.

Q P13 | For bottle0-36, e and e are reported as being higher for RKP than the other techniques.
This poorer performance, while spurious, should be commented on irhe text.

A Done.

Q P19 | In Table 5, for valve10-0, the Recall is superior for the MSFE method than for RKP. This
should be commented on in the text.

A Done.

Q P26 | Given the above, the statement that "The precision and recall rat es of the key points
detected by the proposed RKP method are better than those for the selcted competitors ."
should be quali ed and moderated.

A Done.

Reviewer #2

No questions were raised.
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