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Abstract

Inspired by retinex theory, we propose a novel method for selecting key points from a depth
map of a 3D freeform shape; we also use these key points as a basis for shape registration. To
find key points, first, depths are transformed using the Hotelling method and normalized to reduce
their dependence on a particular viewpoint. Adaptive smoothing is then applied using weights which
decrease with spatial gradient and local inhomogeneity; this preserves local features such as edges
and corners while ensuring smoothed depths are not reduced. Key points are those with locally
maximal depths, faithfully capturing shape. We show how such key points can be used in an efficient
registration process, using two state-of-the-art iterative closest point variants. A comparative study
with leading alternatives, using real range images, shows that our approach provides informative,
expressive, and repeatable points leading to the most accurate registration results.

Keywords: Retinex; Key point; Freeform shape; Adaptive smoothing; Registration

1 Introduction

Laser scanning systems can quickly capture the surfaces of 3D shapes, with results like those in Figure 1.
Since scanners have a limited field of view, and one part of the shape may occlude others, multiple
datasets must be captured from different viewpoints to obtain (approximately) full coverage of the
shape of interest. These datasets are in the form of depth maps in local scanner-centric coordinates. In
order to fuse the information in these datasets to give a single complete surface, they must be brought
into a single global coordinate system by registration, which aims to find pairwise transformations that
align one dataset with another. Prior knowledge of the underlying transformation may be lacking, and
furthermore, occlusion causes appearance and disappearance of points in different datasets. Registration
is thus a challenging problem which has attracted attention in various disciplines, such as computer
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vision, pattern recognition, computer graphics, and medical imaging. It finds applications in such
areas as object recognition, quality assurance, computer aided design, medical diagnosis, and therapy
planning. Many algorithms have been developed for registration of overlapping 3D freeform shapes [5,
7, 9, 10, 18, 23]. In this paper, our main concern is the detection of key points for faithful representation
and efficient registration of 3D freeform shapes.

1.1 Previous work

The detection of key points which capture the important features of a freeform shape is of great interest,
since they provide a compact alternative to the original geometry, and may be used in its place in various
tasks such as shape registration, data transmission, rendering and visualisation. Various methods have
been proposed for the detection of key points. They should capture both significant local details of the
shape and its overall geometry. Their determination should be repeatable and they should represent
intrinsic features, i.e. key points detected from one viewpoint should ideally be the same as those
detected from another. Key points should also be resistant to imaging noise and resolution, and robust
in the presence of occlusion of parts of the object. Finally, their detection should be computationally
efficient.

Normal space sampling (NSS) was proposed in [20] as a way of sampling informative points. It calculates
angles between the normal vectors at a point of interest and its neighbors, and uses these angles as a basis
for sampling. More points are sampled in areas where normal vectors change more rapidly. A relevance
based sampling scheme was proposed in [28], which defines the distinctiveness of a point in terms of a
surrounding area having similar normal vectors. The larger the area, the less distinct the point. To
address the issue of different densities of point sampling due to variations in the distance between the
object and the scanner, a spherical subsampling method was proposed in [12]: instead of sampling points
from regularly gridded data, it considers the scanner’s angular resolution. In [13], a Hotelling transform
is first performed over the points; feature points are detected as those with the largest difference between
the ranges spanned by the x and y coordinates in the transform. A supervised learning method was
proposed in [3] for feature point localization within human faces. Gaussian mixture models (GMMs)
are used to approximate the distribution of candidate feature points; a 3D model of feature points
is built which enforces constraints on localization. Another learning method was proposed in [4] for
detecting key points in faces. A face is represented using 14 landmarks. Statistical distributions of their
descriptors, and weights used for linear combination, are learnt from training data. For a given face
mesh, a number of descriptor maps are computed and matched against the 14 learnt ones, and combined
using the learnt weights. The key points are determined as strong local maxima above a threshold of
the combined values using the 14 landmark dictionary shapes. The classical Harris corner detector for
2D images was adapted in [22] to 3D meshes. Principal component analysis is first performed over local
patches, then all points on a patch are transformed so that its normal vector is a local z axis, so that
the points lie close to the x-y plane. A paraboloid is fitted to these transformed points, allowing x and y
derivatives to be computed. To address the difference between discrete images and continuous patches,
derivatives are convolved with a Gaussian function. An autocorrelation matrix is used to estimate the
local corner strength. A technique called accumulative geodesic extrema (AGEX) was proposed in [19]
for human body feature point detection. Key points are those with the longest distances on the surface
mesh from its geodesic centroid, distances being computed using shortest geodesic paths.

The Gram matrix was analysed in [14] as a means of geometric corner detection. A set of corner points
at each scale is found by searching for local spatial maxima of corner detector responses. Corners lying
along edge points are pruned by thresholding the variance of the second-order partial derivatives. An
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octave method of salient point detection was proposed in [2], based on the projection of the difference
of the weighted averages of the points inside spheres of varying radii onto the weighted average of the
normal vectors of those points inside a sphere with smaller radius. A multiscale feature extraction
method was proposed in [17] based on principal component analysis, using the ratio of the resulting
eigenvalues as an indicator of saliency. Multiscale analysis is also performed in [11] for key point
detection in a range image. It first segments the range image to isolate each area of interest, then
depth is normalized to a global average of zero and a standard deviation of 1. Multiscale Gaussian and
difference of Gaussian (DoG) analysis is performed over these normalized depth values. A key point is
one at a local extremum in the DoG space, larger than a threshold. Key points are detected in [26] from
regions with significant variation in mean curvature. A structure tensor is first constructed for each
local region as a function of the local mean curvatures and normal vectors; it is invariant with respect
to sampling density. Corners are detected at the spatial extrema of the determinant of the structure
tensor; spurious key points with low response, an edge response, or near to a depth discontinuity are
rejected. A variant of the Laplacian of Gaussian method was proposed in [25] for key point detection.
The depth gradient is first calculated in both x and y directions, and normalized taking into account
the angular resolution of the range image. The second order derivative is estimated from the normalized
depth gradient, yielding the magnitude of the gradient in the unit interval. A high magnitude marks a
possible key point with high curvature, while spurious points are filtered by occlusion analysis and linear
structural analysis. Another salient point detector was proposed by the same author in [24] which first
uses principal component analysis to estimate the local surface variation at a particular point and its
main direction. Key point strength is calculated by considering how much the main directions change
from each other and how stable this point is on the surface. These values are smoothed over the whole
image, and points with local maxima larger than a threshold are selected as key points. In [23], given
an intensity image associated with a range map, an image mesh is generated and smoothed using a
multi-scale bilateral filter, then the gradient at each vertex is estimated using the Laplace-Beltrami
operator (LBO). Points with locally extremal gradients are filtered by thresholding their LBO response
and suppressed by a non-maximal scheme to finally detect key points.

The above methods fall into two main categories, using single scale or multi-scale analysis. While the
former are usually more computationally efficient, the latter are more robust to imaging noise, changes
in resolution, and occlusion. They often involve the computation of second order derivatives of shape,
filtering spurious salient points, and sometimes, learning. Unfortunately, second order derivatives are
sensitive to occlusion, depth discontinuities, changes in sampling resolution and imaging noise. Thresh-
olds are difficult to select and data dependent, while learning requires many representative samples
which may be difficult or impossible to collect. The detection of key points from 3D freeform shapes is
challenging and still remains open.

If salient key points can be reliably found, subsequent range image analysis may be simpler and more
efficient. Conversely, such range image analysis results may provide an effective tool to quantitatively
evaluate the extent to which useful key points have been reliably detected.

1.2 Our work

Retinex theory [6, 16] considers how brightness and reflectance behave, and investigates a computational
model of color constancy: human perception of color is largely independent of illumination conditions.
It shows that a captured 2D image can be decomposed into two subimages: one depends on the re-
flectance properties of the surface of the imaged object, while the other depends on the illumination
conditions. If such a decomposition can be computed in practice, the reflectance image can be used to
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Figure 1: Real range images used. Top: valve20, valve10, valve0, dinosaur72, dinosaur36, dinosaur0,
bottle0, and bottle36; Second: bunny80, bunn60, cow49, cow45, tubby120, and tubby80. Third: duck0,
duck20, frog0, frog20, lobster0, lobster20, buddha0, and buddha20. Bottom: angel0, angle20, angel40,
bird0, and bird20.

improve reliability of such tasks as face recognition, as this image more faithfully represents the geo-
metrical properties of the imaged object, while the variable effects of illumination have been factored
out. While such image decomposition is an ill-posed problem, various approaches have been proposed
based on Gaussian smoothing [6], adaptive smoothing [16] and minimization of the sum of the first order
derivatives of the illumination, and the difference between the illumination and the given image [21, 8].
Two ideas are of particular interest: adaptive smoothing [16] and reflectance inequality [21, 8], where
the reflectance component R is estimated as the logarithm of the ratio of intensity F of the pixel of
interest and L, that of its neighbors, as the illumination component, satisfying the constraint R ≤ 1
and thus, F ≤ L. Using these ideas, we propose a novel method in this paper for the detection of
key points on a 3D freeform shape. To this end, depth values are first transformed and normalized so
that their dependence on the particular viewpoint can be reduced. Adaptive smoothing is then applied
to the normalized depths using weights defined as decreasing functions of spatial gradient and local
inhomogeneity. This adaptive smoothing makes sure that local features such as corners and edges are
preserved, while smoothed depths become insensitive to imaging noise, but are not reduced. Finally,
key points are detected as those unaffected by the adaptive smoothing process and thus have locally
maximum transformed and normalized depths.

These detected key points are intended for use as proxies to represent the original shape; here, we
investigate whether they can represent the original shape faithfully and are suitable for solving the
registration problem. If they are, then the computational efficiency of registration of overlapping 3D
depth maps can be significantly improved. We carry out a comparative study, using three other state-
of-the-art salient point selection methods: the octave algorithm [2], a multi-scale feature extraction
(MSFE) method [17], and the normal space sampling (NSS) method [20]. The octave and MSFE
methods are multi-scale methods, while NSS is a single scale method. This comparative study reveals
which method can best detect informative, expressive and repeatable feature points. To determine the
utility of the detected key points for downstream applications, two state-of-the-art iterative closest point
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(ICP) variants, SoftICP [9] and fractional RMSD (FICP) [18], were used for registration. The former is
an extension of the SoftAssign algorithm [5] which applies entropy maximization to determine weights
for different tentative correspondences, then uses a two-way constraint to refine these weights before
estimating the underlying transformation. To ensure robust results, these two steps are embedded in
a deterministic annealing scheme. The FICP algorithm simultaneously optimizes both the size of the
overlap between depth images, and the transformation parameters.

To assess the performance of the key point detection algorithms, the following measurements were made:
precision and recall rates of detected key points, average eµ and standard deviation eσ of registration
errors in millimetres for reciprocal correspondences (RCs) [9, 27], expected and estimated rotation
angles θ and θ̂ in degrees of the underlying transformation, and the time taken for automatic key
point detection and registration. While the precision and recall rates measure the repeatability of the
detected key points [22, 24, 26], the corresponding registration results measure the informativeness
and expressiveness of these key points. As the same registration algorithms were used in each case,
differences in their performance come solely from the types of points used. The better the registration
results obtained, the more representative we can consider the selected points to be of the shapes.

Figure 2: Key points detected in different images using different algorithms. Columns, left to right:
valve20, valve10, valve0, dinosaur72, dinosaur36, dinosaur0, cow49, and cow45. Rows, top to bottom:
results using our method (RKP), octave, MSFE, and NSS.
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In the following, Section 2 describes our key point detection method, Section 3 presents experimental
results, and Section 4 draws some conclusions and indicates future work.

2 A novel method for 3D key point detection

The following notation is used: bold face letters denote vectors, matrices, or sets, |·| denotes the absolute
value of a scalar or the number of elements in a set, a · b denotes the dot product of vectors a and b,
|| · || denotes the Euclidean norm of a vector, and superscript T denotes the transpose of a vector.

A freeform shape as illustrated in Figure 1 is represented by four arrays, each of size of H × W : a
flag f , and x, y, and z coordinates. If f(i, j) = 1, then the point at location (i, j) is valid and is
at position (x(i, j) y(i, j) z(i, j))T , otherwise, it should be ignored. An invalid point is one for which
the scanner determined no reliable coordinates on the imaged object surface (e.g. because the reflected
signal received was either too weak or too strong due to low reflectance or specular reflection).

We now explain our key point detection method, concentrating on four main issues: depth normalization,
weight estimation, adaptive smoothing, and key point extraction.

2.1 Depth normalization

Even though the depth information z(i, j) directly represents the given shape, it is viewpoint dependent.
To facilitate key point detection, the Hotelling transform [13] is applied to reduce such viewpoint
dependence. Thus, for each valid pixel (i, j) inside the image of the given shape, all valid neighboring
points inside a window of size of s× s are extracted:

A = {ai} = {(x(i+ k, j + l) y(i+ k, j + l) z(i+ k, j + l))T | f(i+ k, j + l) = 1,−s/2 ≤ k, l ≤ s/2}.

Let the centroid of all the points in A be ā =
∑

ai∈A ai/|A|. Then their covariance matrix C is:
C =

∑
ai∈A(ai − ā)(ai − ā)T . The matrix C is symmetric; its eigenvectors vi and corresponding

eigenvalues λi can be found using the Jacobi method. Suppose that the vi are sorted in descending order
of λi and are assembled into a matrix v via v = (v1 v2 v3). Then the point p = (x(i, j) y(i, j) z(i, j))T

at pixel (i, j) can be transformed to: p̃ = (x̃(i, j) ỹ(i, j) z̃(i, j))T = v · (p− ā). Next, assuming that the
range of variance of the transformed depth will be similar for an object from different viewpoints, which
is likely the case for many objects for viewpoints that are relatively close together, z̃(i, j) is normalized
over the whole image, setting

z̃(i, j) = 255(z̃(i, j)− z̃min)/(z̃max − z̃min)

where z̃max and z̃min are the maximum and minimum values over the whole image. The resulting z̃(i, j)
is used as a normalized viewpoint independent depth for subsequent key point detection. The difference
between p and ā removes the effect of translation, while the dot product between v and p− ā removes
the effect of rotation. Note, however, that computation of ā and v may be affected by imaging noise,
resolution, and occlusion. As a result, the dependence of z̃ on a particular viewpoint is only somewhat
reduced, not completely removed.

2.2 Weight definition

Key point detection applies an adaptive smoothing operation to the transformed and normalized depth
values. This operation should preserve local features such as corners and edges. To do so, the weights for
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Figure 3: Registration results for different shapes using all points and different algorithms. Columns,
left to right: valve20-10, valve10-0, dinosaur72-36, dinosaur36-0, bottle0-36, bunny80-60, cow49-45, and
tubby120-80. Rows, top to bottom: SoftICP, FICP.

smoothing must be appropriately defined, taking into account the spatial gradient and inhomogeneity:
the larger these two factors are, the smaller the weight should be. The function w(r) = 1/(1+

√
r), r ≥ 0

is used to suppress large spatial gradients and inhomogeneity; it has the following useful properties: (i)
it is continuous, so does not abruptly change given a small change in r, and (ii) it decreases with r as
required.

The local spatial gradient g(i, j) at pixel (i, j) is the square root of the sum of the squares of the
differences in depths of pixels in horizontal and vertical directions (thus using the L2 norm):

g(i, j) =
√
g2u(i, j) + g2v(i, j)

where gu(i, j) = z̃(i + 1, j) − z̃(i − 1, j) and gv(i, j) = z̃(i, j + 1) − z̃(i, j − 1). Suppose the average
gradient over the whole image is ḡ. Then the weight wg(i, j) for the gradient component is set to
wg(i, j) = 1/(1 +

√
0.1g(i, j) exp(0.1ḡ)).

Given a valid pixel at location (i, j), its valid neighbors are in: N = {(i + k, j + l)|f(i + k, j + l) =
1,−s/2 ≤ k, l ≤ s/2}. The local inhomogeneity h(i, j) at pixel (i, j) considers the difference of depth
between neighboring pixels and is set to the average of the absolute values of these differences (using
the L1 norm):

h(i, j) =
1

|N|
∑

(m,n)∈N
|z̃(m,n)− z̃(i, j)|.

Then h(i, j) is normalized using: h′(i, j) = (h(i, j) − hmin)/(hmax − hmin) where hmin and hmax are
the minimum and maximum inhomogeneity over the whole image. To further suppress large inho-
mogeneities, h′(i, j) is transformed to: ĥ(i, j) = sin(h′(i, j)π/2). Finally, the weight wh(i, j) for the

inhomogenity component is set to: wh(i, j) = 1/(1 +
√

10ĥ(i, j) exp(10h̄)) where h̄ is the average of
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ĥ(i, j) over the whole image.

While the spatial gradient in the L2 norm is likely to be dominated by noisy pixels or pixels with large
depth discontinuities, the spatial inhomogeneity in the L1 norm is useful to capture small changes in
depths of pixels along edges or at corners. Combining the weights wg(i, j) and wh(i, j) for the spatial
gradient and inhomogeneity components together thus captures both coarse and fine features in the
underlying shape, giving the final weight w(i, j) for each valid pixel (i, j): w(i, j) = wg(i, j)wh(i, j).

2.3 Adaptive smoothing

Once the weights w(i, j) have been defined, adaptive smoothing is performed. Following the idea used
to estimate the illumination component of an image in retinex theory [16, 21], we assume that the
smoothed depth cannot be smaller than the original depth. Thus, adaptive smoothing is performed
using the following steps:

Initialize the smoothed depth s0(i, j) = z̃(i, j), the number of iterations I = 0, and the maximum
number of iterations Imax

While I < Imax, do:

I ← I + 1

If the pixel at location (i, j) is valid, extract all its valid neighbors:
N = {(i+ k, j + l) | f(i+ k, j + l) = 1,−s/2 ≤ k, l ≤ s/2}.
Compute the weighted average ŝ(i, j) of smoothed depths s0(m,n) at pixels (m,n) in N
using weights w(m,n): ŝ(i, j) =

∑
(m,n)∈N s0(m,n)w(m,n)/

∑
(m,n)∈Nw(m,n)

Ensure the smoothed depths are non-decreasing: s1(i, j) = max(ŝ(i, j), s0(i, j))

Prepare for the next round: s0(i, j)← s1(i, j)

The parameter Imax affects the number and location of keypoints to be selected; unless otherwise stated,
we set Imax = 30.

2.4 Key point detection

Pulling all the ingredients defined in the previous sections, our novel key point detection algorithm may
be summarized as follows:

Initialize window size to s× s; unless otherwise stated, s = 3

Normalize the depth values of the given range image

Estimate the weight of each valid pixel

Perform adaptive smoothing

Transform the smoothed depths s1(i, j) to b̃(i, j) using a logarithmic operation:
b̃(i, j) = log((z̃(i, j) + 1)/(s1(i, j) + 1)).

Normalize the logarithmically transformed depths:
b̄(i, j) = (b̃(i, j)− b̃min)/(b̃max − b̃min)
where b̃min and b̃max are the minimum and maximum of b̃(i, j) over the whole image.
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Table 1: Precision Pre and recall Rec rates of the detected keypoints, the average eµ and standard
deviation eσ of registration errors in millimetres based on RCs, expected and estimated rotation angles
θ and θ̂ in degrees, and registration time t in seconds for different algorithms and different freeform
shapes.

Shapes Algo. Pre Rec eµ eσ θ θ̂ t
(%) (%) (mm) (mm) (◦) (◦) (s)

valve20-10 SoftICP 76.70 84.88 0.40 0.22 10 10.10 97
FICP 76.95 85.16 0.40 0.22 10.12 77

valve10-0 SoftICP 86.16 86.75 0.38 0.21 10 10.11 66
FICP 86.56 87.16 0.39 0.21 10.11 45

dinosaur72-36 SoftICP 60.52 51.51 0.62 0.87 36 35.15 41
FICP 61.00 51.92 0.63 0.85 35.02 34

dinosaur36-0 SoftICP 63.35 61.02 0.56 0.54 36 35.72 66
FICP 63.58 61.24 0.56 0.54 35.66 50

botttle0-36 SoftICP 59.08 62.14 0.67 0.33 36 32.68 31
FICP 70.91 74.59 0.67 0.58 3.88 30

bunny80-60 SoftICP 76.76 71.87 0.22 0.11 20 19.94 29
FICP 76.49 71.61 0.22 0.11 19.87 20

cow49-45 SoftICP 47.81 21.36 0.71 0.70 40 41.30 26
FICP 46.95 20.98 0.71 0.71 41.59 28

tubby120-80 SoftICP 50.60 44.42 0.25 0.16 40 39.09 23
FICP 50.57 44.39 0.26 0.17 39.02 30

Extract key points as those (x(i, j) y(i, j) z(i, j))T for which b̄(i, j) = 1.

We call the above algorithm the retinex key point (RKP) algorithm. It has a computational complexity
of O(n) for depth transformation, normalization, and weight estimation, O(Imaxn) = O(n) for adaptive
smoothing, and O(n) for key point extraction. Overall, it thus has linear computational complexity in
the number n of valid points in the shape. This algorithm has the following property:

Property 1 Detected key points have locally maximal transformed and normalized depths.

Proof: The definition of a key point as one satisfying b̄(i, j) = 1 means that b̃(i, j) = b̃max. The
non-decreasing constraint on depth during adaptive smoothing implies that z̃(i, j) ≤ s1(i, j) and thus
b̃(i, j) ≤ 0. Consequently, b̃max = 0 and also b̃(i, j) = 0, so z̃(i, j) = s1(i, j). From the initial values of
s0(i, j) = z̃(i, j) and the non-decreasing constraint on smoothed depth, s1(i, j) = max(ŝ(i, j), s0(i, j)),
we have z̃(i, j) = max(ŝ(i, j), z̃(i, j)). Thus, pixel (i, j) has a locally maximal transformed and nor-
malized depth, a property which is unaffected by adaptive smoothing. The adaptively smoothed depth
determines whether a point has a locally maximal depth.

3 Experimental results

In this section, we use real data to demonstrate the utility of our algorithm for key point detection and
its application for efficient registration of overlapping 3D freeform shapes. The detected key points are
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directly used for registration in two state-of-the-art iterative closest point (ICP) variants: SoftICP [9]
and Fractional RMSD (FICP) [18]. The RKP algorithm usually selects around 10% points in the shape,
so to enable a fair comparison in registration, we have also ensured that the octave, MSFE and NSS
methods all select 10% of the points from the shape.

For each pair of overlapping shapes, we refer to the first as the data shape, and the second as the
reference shape. All real data in Figure 1 were downloaded from [15]. They were captured using a
Minolta Vivid 700 range camera with a resolution of 200 × 200. The performance of the algorithm is
measured using the following parameters: the precision Pre and recall Rec rates as a percentage of the
detected keypoints, the average and standard deviation of registration errors of reciprocal correspon-
dences (RCs) [9, 27] between the whole data and reference shapes, the rotation angle θ̂ in degrees of the
estimated transformation, and the time in seconds used for key point detection and registration (KDR).
The data files used encode the rotation angles θ of the transformations in the filenames, giving ground
truth for evaluation algorithm performance.

In pattern recognition and information retrieval [29], precision (also called positive predictive value)
is the fraction of retrieved instances that are relevant, while recall (also known as sensitivity) is the
fraction of relevant instances that are retrieved. Both precision and recall are therefore based on an
understanding and measure of relevance. When detecting keypoints in the context of registration of
overlapping data and reference shapes, the goal of the keypoint detector is to repeatably detect any
keypoints in the data shape that have also been detected in the reference shape, taking into account
that only some will be present due to change of view and occlusion. The overlap of reference and data
shapes is defined in terms of their reciprocal correspondences (RCs). Because RCs represent correct
correspondences and thus the same points on the object of interest, they characterize the repeatability
of the detected keypoints in the data and reference shapes. Thus, here, precision (Pre) and recall (Rec)
rates of the detected keypoints are defined as: N/n1× 100% and N/n2× 100%, where N , n1 and n2 are
the number of RCs and the numbers of detected keypoints in the data and reference shapes respectively.
Our definition of recall rate agrees with that in [1].

Such definitions of precision and recall can be understood from two points of view:

1. Keypoints in the data and reference shapes can be detected and compared individually with some
ground truth, showing the extent to which the detected keypoints are relevant to the ground truth.
In this case, keypoints in the data and reference shapes are equally treated and play the same role
in representing the ground truth. From this viewpoint, Pre and Rec rates essentially measure the
precision of detected keypoints in the data and reference shapes respectively.

2. The keypoints to be detected in the data shape should agree with those detected in the reference
shape. The precision rate shows the extent to which the detected keypoints in the data shape
are repeatable and relevant to those in the reference shape. The recall rate shows the extent to
which the keypoints in the reference shape are successfully detected and retrieved by those in
the data shape. In this case, the distinction between precision and recall rates lies in that they
distinguish different roles played by the keypoints in the data and reference shapes: the former
should reproduce and maximize overlap with the latter; the latter is regarded as ground truth.

It can be seen that the second interpretation is more suitable for keypoint detection in a registration
context, since no independent ground truth is available for performance measurement. The data and
reference shapes are closely tied to the differences in representation of the geometry of the object of
interest from different viewpoints, and the size of their overlap is defined through registration of the
keypoints in the data shape with those in the reference shape. Thus, we have adopted this approach

10



throughout this paper.

An experimental study was carried out to evaluate six aspects of the proposed RKP algorithm, as
detailed below: key point detection, reference registration, point selection from the data shape and
both shapes, window size and the optimal number of iterations for adaptive smoothing. To facilitate
visualization, the estimated transformation was applied to the whole data shape, rather than the key-
points only. Experimental results are presented in Figures 3–10, and Tables 1–7. In Figures 4–8 and
Figure 10, yellow represents the transformed data shape, while green represents the reference shape. All
experiments were carried out on a Pentium IV, 2.8GHz computer with 504MB RAM with unoptimized
code written in Microsoft Visual C++ 6.0.

3.1 Key point detection

In this section, we use real data to demonstrate the detected key points. To this end, the valve20,
valve10, valve0, dinosaur72, dinosaur36, dinosaur0, cow49, and cow45 shapes in Figure 1 were selected;
results are presented in Figure 2. The key points detected are represented by red plus signs.

The points detected by the proposed RKP algorithm are distributed relatively evenly over the whole
shapes, yet characterize the main features and details of the valve, dinosaur and cow shapes. In par-
ticular, more key points were detected on the ports of the valve, the head, belly, toes and tail of the
dinosaur, and the ears, eyes and mouth of the cow. Even though the number of key points varies from
one shape to another, typically around 10% points in the original shape are detected as key points. This
means that around 10% points can be used for a faithful representation of the geometry and details of
each 3D freeform shape of interest.

In contrast, both the octave and the MSFE methods selected points mainly in areas with depth discon-
tinuities, since points in these areas usually vary significantly in normal vector and eigenvalues of the
local covariance matrix. The NSS method sampled points from both depth discontinuous and planar
areas, although more points were selected from depth discontinuous areas with larger changes in normal
vector. It is usually difficult to distinguish foreground objects of interest from the cluttered background
without prior knowledge, but they were treated equally, and thus key points were selected from both.
The RKP and NSS methods provide visually more accurate representations of the overall geometry and
details for the original valve, dinosaur and cow shapes.

While key point detection typically took under 2s for the RKP, MSFE and NSS methods, the octave
method took up to 30s, since it was designed to operate over point clouds, rather than structured range
images. This observation is consistent with their computational complexity: RKP, MSFE, and NSS
methods have linear computational complexity in terms of the number of points in the shape, while
the octave method has quadratic computational complexity as it depends on computation of interpoint
distances to find points within a threshold distance of each point of interest.

3.2 Reference registration

We next used the complete sets of points in the original shapes for registration to provide a performance
baseline, allowing evaluation of the extent to which the selecting key points accelerate registration and
affect its accuracy. To this end, the valve20-10, valve10-0, dinosaur72-36, dinosaur36-0, bottle0-36,
bunny80-60, cow49-45, and tubby120-80 shape pairs in Figure 1 were selected. Experimental results
are presented in Figure 3 and Table 1. The valve, dinosaur, bunny, and tubby shapes were accurately
registered by both the SoftICP and FICP algorithms. The estimated rotation angles for the underlying
transformations are close to the ground truths. The transformed data shapes fit onto the reference shapes
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perfectly. The bottle0-36 and cow59-45 shapes are challenging to register since the former includes a
simple cylindrical shape leading to rotational ambiguity in the underlying transformation, while the
latter has a cluttered background, complicating evaluation of the quality of tentative correspondences
established. Nevertheless, such shapes are useful to reveal the true performance of different key point
detection techniques. The SoftICP algorithm is more accurate than the FICP algorithm: the latter
registered the dominant bottle body, but not the bottle handle—the probabilistic SoftICP algorithm is
more powerful than the threshold based FICP algorithm.

3.3 Point selection from the data shape

We next investigated different point selection techniques applied to the data shapes P only, as was done
in [7]. In this case, registration was performed between the sampled points in the data shape and all
points in the reference shape; in this case only the precision rate of the detected key points is defined,
but not the recall rate. Experimental results are presented in Figures 4 and 5, and Tables 2 and 3. It
can be seen that the proposed RKP algorithm always detected key points with superior precision to the
octave, MSFE, and NSS methods by as much as 43%, 36%, and 34% respectively. This higher precision
for the RKP key points carries through to more accurate registration results. The SoftICP algorithm
accurately registered points selected from 7 out of the 8 data shapes: the key points selected by our
RKP approach provide a sound basis for registration. In contrast, using key points generated by the
other methods, the SoftICP algorithm inaccurately registered the valve20, dinosaur36, and bunny80
shapes, and failed to register the points selected by either the octave or MSFE method for the cow49
shape and the points selected by the NSS method for the tubby120 shape. For bottle0-36, all methods
produced inaccurate results as measured by either average registration error or rotation angle of the
underlying transformation. The proposed RKP algorithm produced a larger average registration error
and established 2% more RCs than the other methods. This shows that the simple geometry of the
bottle leads to an ill-posed registration problem, and any registration algorithm is likely to converge
to a local minimum, giving inaccurate results. Over all 8 pairs of overlapping shapes, the increase in
average registration error compared to using full data without point sampling was 6%, 31%, 29%, and
16% for the RKP, octave, MSFE, and NSS methods respectively.

The octave, MSFE, and NSS methods have reduced precision compared to the proposed RKP algorithm
for detection of key points by up to 26%, 45%, and 30% respectively: the key points detected by the
former are less repeatably placed and thus less useful as a basis for registration. While the FICP
algorithm failed to register the points selected by all four methods for the bottle0 shape, it successfully
registered the points selected by our proposed RKP algorithm for all 7 other shapes. In contrast, it failed
to register the points selected by the octave, MSFE, and NSS methods for the dinosaur72, dinosaur36,
and cow49 shapes, and points selected by the MSFE method for the data tubby120 shape. These
registration failures can be seen in the legs of the dinosaur and the head of the cow in shapes dinosaur72,
dinosaur36, and cow49 relative to the references dinosaur36, dinosaur0, and cow45 respectively. Over all
8 pairs of overlapping shapes, the average registration error was increased compared to using full data
without point sampling by 6%, 60%, 116%, and 71% by the RKP, octave, MSFE, and NSS methods
respectively.

The above analysis shows that sampling around 10% points using the RKP algorithm has little effect on
the registration accuracy for overlapping 3D freeform shapes, especially when using the FICP algorithm.
The octave, MSFE, and NSS methods do not perform as well. We believe this is because they estimate
quantities based on second-order derivatives of the discrete range data, such as normal vectors and
eigenvalues of the local covariance matrix, and these are sensitive to imaging noise, occlusion, and
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Table 2: The precision Pre rate of the detected keypoints, the average eµ and standard deviation
eσ of registration errors in millimetres based on RCs, expected and estimated rotation angles θ and
θ̂ in degrees, and KDR time t in seconds for key points selected from the data shape using different
algorithms, registered using the SoftICP algorithm.

Image Algo. Pre eµ eσ θ θ̂ t
(%) (mm) (mm) (◦) (◦) (s)

valve20-10 RKP 83.85 0.42 0.23 10 10.08 9
octave 75.90 0.43 0.22 9.94 11
MSFE 64.10 0.50 0.24 9.71 13
NSS 63.32 0.46 0.23 9.87 17

valve10-0 RKP 94.06 0.39 0.20 10 10.14 5
octave 89.44 0.40 0.21 10.09 16
MSFE 86.46 0.39 0.20 10.04 5
NSS 81.30 0.40 0.20 10.07 4

dinosaur72-36 RKP 74.08 0.64 0.85 36 35.32 4
octave 64.93 0.76 0.84 34.45 4
MSFE 55.63 0.74 0.88 34.08 6
NSS 50.14 0.64 0.85 34.86 7

dinosaur36-0 RKP 78.30 0.59 0.54 36 35.45 8
octave 63.87 0.60 0.55 35.58 7
MSFE 55.38 0.72 0.58 35.22 19
NSS 51.55 0.68 0.56 34.83 9

bottle0-36 RKP 80.08 0.78 0.47 36 29.84 3
octave 71.75 0.68 0.34 32.70 4
MSFE 63.51 0.67 0.33 33.32 5
NSS 78.07 0.68 0.36 32.63 3

bunny80-60 RKP 90.88 0.23 0.11 20 20.07 4
octave 71.36 0.27 0.12 19.22 4
MSFE 78.02 0.24 0.11 19.51 4
NSS 65.32 0.28 0.14 18.76 4

cow49-45 RKP 70.25 0.74 0.70 40 40.92 3
octave 24.76 1.57 2.61 91.39 5
MSFE 22.22 1.31 2.85 62.61 4
NSS 42.54 0.96 0.98 41.77 4

tubby120-80 RKP 79.07 0.26 0.18 40 38.86 4
octave 61.78 0.28 0.16 38.64 15
MSFE 52.62 0.38 0.23 38.02 4
NSS 52.62 0.34 0.22 29.04 3
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Table 3: The precision Pre rate of the detected keypoints, the average eµ and standard deviation
eσ of registration errors in millimetres based on RCs, expected and estimated rotation angles θ and
θ̂ in degrees, and KDR time t in seconds for key points selected from the data shape using different
algorithms, registered using the FICP algorithm.

Image Algo. Pre eµ eσ θ θ̂ t
(%) (mm) (mm) (◦) (◦) (s)

valve20-10 RKP 83.63 0.42 0.23 10 10.10 5
octave 76.11 0.42 0.22 10.07 5
MSFE 63.32 0.45 0.23 9.89 7
NSS 63.11 0.44 0.23 9.93 17

valve10-0 RKP 93.61 0.39 0.21 10 10.16 4
octave 89.51 0.39 0.21 10.07 4
MSFE 85.68 0.39 0.20 10.07 3
NSS 83.72 0.45 0.20 9.83 3

dinosaur72-36 RKP 75.31 0.71 0.84 36 34.14 3
octave 46.33 1.19 1.01 22.11 2
MSFE 34.51 1.17 0.78 16.05 4
NSS 35.07 1.23 1.02 18.59 4

dinosaur36-0 RKP 78.30 0.60 0.55 36 35.35 5
octave 41.50 1.44 1.27 11.42 7
MSFE 28.47 1.30 1.20 9.38 5
NSS 39.47 1.46 1.29 14.74 5

bottle0-36 RKP 80.49 0.70 0.47 36 9.88 4
octave 73.51 0.75 0.69 21.28 3
MSFE 26.14 2.78 3.30 36.01 5
NSS 77.89 0.80 0.66 25.85 4

bunny80-60 RKP 90.37 0.23 0.11 20 20.11 4
octave 70.59 0.28 0.13 19.43 3
MSFE 77.71 0.25 0.11 19.17 3
NSS 66.25 0.32 0.17 18.30 3

cow49-45 RKP 68.46 0.74 0.70 40 40.73 4
octave 23.81 1.30 1.71 76.52 4
MSFE 12.38 1.29 1.63 30.67 3
NSS 26.34 1.44 1.41 31.64 3

tubby120-80 RKP 78.49 0.27 0.18 40 38.83 3
octave 58.38 0.38 0.17 37.94 3
MSFE 28.27 0.68 0.59 41.15 3
NSS 55.76 0.43 0.28 25.50 3
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Figure 4: Registration results using the SoftICP algorithm for various shapes with key points selected
from the data shape using different algorithms. Rows, top to bottom: RKP, octave, MSFE, and NSS.
Columns, left to right: valve20-10, valve10-0, dinosaur72-36, dinosaur36-0, bottle0-36, bunny80-60,
cow49-45, and tubby120-80.

appearance and disappearance of points. In contrast, the RKP algorithm employs adaptive smoothing
and first order derivatives, and thus is more robust. The adaptive smoothing operation provides a
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Figure 5: Registration results using the FICP algorithm for various shapes with key points selected
from the data shape using different algorithms. Rows, top to bottom: RKP, octave, MSFE, and NSS.
Columns, left to right: valve20-10, valve10-0, dinosaur72-36, dinosaur36-0, bottle0-36, bunny80-60,
cow49-45, and tubby120-80.

reliable reference for the RKP algorithm to select key points as local maxima.

Comparing Tables 2 and 3 with Table 1, it can be seen that the SoftICP algorithm is more accurate than
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the FICP algorithm. Both algorithms produce worse results when using point sampling, as might be
expected. The FICP algorithm is more sensitive to use of point sampling than the SoftICP algorithm.
This is because the entropy maximisation principle, the two-way constraint, and the deterministic
annealing scheme in the SoftICP algorithm provide a powerful probabilistic framework for weighting the
tentative correspondences established, while the FICP algorithm has difficulty in defining the quality of
tentative correspondences and thus in rejecting outliers. The FICP algorithm is slightly more efficient
than the SoftICP algorithm, but it usually converges prematurely, producing inaccurate registration
results. While all registration results are slightly worse when sampling, the time needed for registration
is reduced by as much as 78% using point sampling and registration by the RKP algorithm. Detecting
key points speeds up registration without significant loss of accuracy.

3.4 Point selection from both shapes

In the previous experiments, only the data shapes were sampled with key points. Here, we sample
both data and reference shapes and again perform registration using SoftICP and FICP. Such sampled
points are more challenging to register, since they are less likely to correspond to exactly the same
points on the shapes, and failure to robustly choose identical key points will be apparent. For accurate
registration, the sampled points should faithfully represent the geometry and details of the shapes of
interest from any viewpoint, and should reliably represent the original shapes from different viewpoints.
Our experimental results are presented in Figures 6 and 7 and Tables 4 and 5. It can be seen that the
precision rate of the RKP algorithm is always higher than for other algorithms, and its recall rate is also
higher except for the valve10-0 and tubby120-80 shape pairs, where they are similar to those produced
by the MSFE method. Over all 8 pairs of overlapping shapes, the proposed RKP algorithm had better
precision and recall rates compared to the octave, MSFE, and NSS methods on average by as much as
68%, 55%, 19%, 13%, 36%, and 26% respectively, showing that the key points detected by the RKP
method are more representative of the underlying geometry.

The higher precision and recall rates of these key points are confirmed by the registration results.
The SoftICP algorithm accurately registered the points sampled by the proposed RKP method with
the average error increasing by as little as 7%, even though both the data and reference shapes were
sampled, reducing time by up to 90%. In contrast, point sampling by the octave, MSFE, and NSS
methods increased errors by up to 46%, 51%, and 52% respectively. Even when sampling both shapes
by the RKP algorithm, good registration can be achieved, and all overlapping shapes were brought into
accurate alignment with each other. In contrast, the sampled points from the octave, MSFE, and NSS
methods proved less useful for registration; the transformed valve20, dinosaur72 and tubby120 shapes
are displaced in 3D space with respect to the valve10, dinosaur36 and tubby80 shapes respectively.

When performing registration with the FICP algorithm, again the RKP algorithm produced the highest
precision and recall rates of any key point selection method for every case, except for the result for the
valve10-0 pair produced by the MSFE method. This shows that the MSFE method can produce good
results, but is not as reliable as the proposed RKP method. The RKP algorithm is better than the
octave, MSFE, and NSS methods for the detection of key points in the sense of precision and recall
rates by as much as 88%, 76%, 44%, 39%, 51%, and 43% respectively. These remarkable results show
that out of these methods, the RKP method detected key points most closely representing the geometry
and details of the original shapes, providing the best registration results. Even though point sampling
by the octave, MSFE, and NSS methods increased the average registration error significantly, by as
much as 85%, 89%, and 97% respectively, for the RKP method it increased by just 13%. While the
FICP algorithm failed to register the points sampled by the octave, MSFE, and NSS methods, causing
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Table 4: Precision Pre and recall Rec rates for detected keypoints, the average eµ and standard deviation

eσ of registration errors in millimetres based on RCs, expected and estimated rotation angles θ and θ̂ in
degrees, and KDR time t in seconds, for key points selected from both shapes using various algorithms
and registered using the SoftICP algorithm.

Image Algo. Pre Rec eµ eσ θ θ̂ t
(%) (%) (mm) (mm) (◦) (◦) (s)

valve20-10 RKP 48.45 59.13 0.41 0.22 10 10.08 5
octave 35.62 39.43 0.44 0.23 10.08 6
MSFE 45.86 50.78 0.47 0.23 9.86 6
NSS 40.71 45.07 0.47 0.23 9.91 6

valve10-0 RKP 59.04 55.08 0.40 0.21 10 10.01 4
octave 42.80 43.07 0.41 0.20 10.09 5
MSFE 57.51 57.87 0.40 0.20 10.04 7
NSS 53.52 53.85 0.39 0.20 10.07 7

dinosaur72-36 RKP 39.88 35.71 0.65 0.86 36 35.04 6
octave 25.63 21.77 0.67 0.86 34.95 6
MSFE 34.65 29.42 0.73 0.84 34.75 4
NSS 30.56 25.96 1.11 1.01 31.21 4

dinosaur36-0 RKP 42.58 39.14 0.59 0.54 36 35.45 8
octave 25.71 24.77 0.61 0.55 35.33 4
MSFE 29.07 27.99 0.69 0.57 36.00 4
NSS 31.94 30.76 0.89 0.65 33.68 4

bottle0-36 RKP 42.91 43.27 0.75 0.32 36 34.80 3
octave 26.31 27.62 0.82 0.72 20.94 3
MSFE 27.54 28.91 1.85 1.42 32.43 4
NSS 25.44 26.70 0.88 0.65 26.13 3

bunny80-60 RKP 53.21 50.16 0.23 0.11 20 19.91 4
octave 25.54 23.91 0.31 0.13 19.53 3
MSFE 51.08 47.83 0.26 0.11 19.52 3
NSS 41.02 38.40 0.31 0.14 18.86 3

cow49-45 RKP 39.43 15.99 0.79 0.88 40 40.38 3
octave 9.21 4.09 1.93 3.00 79.78 3
MSFE 21.90 9.73 0.91 1.28 51.83 2
NSS 7.94 3.53 1.29 2.41 104.81 3

tubby120-80 RKP 34.59 28.54 0.28 0.18 40 39.06 2
octave 22.77 20.00 0.40 0.21 39.70 2
MSFE 32.98 28.96 0.45 0.30 37.49 2
NSS 31.94 28.05 0.47 0.34 29.43 4
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Table 5: Precision Pre and recall Rec rates for the detected keypoints, the average eµ and standard
deviation eσ of registration errors in millimetres based on RCs, expected and estimated rotation angles
θ and θ̂ in degrees, and KDR time t in seconds for key points selected from both shapes using different
algorithms, and registered using the FICP algorithm.

Image Algo. Pre Rec eµ eσ θ θ̂ t
(%) (%) (mm) (mm) (◦) (◦) (s)

valve20-10 RKP 48.67 59.40 0.42 0.23 10 10.02 4
octave 36.11 39.98 0.45 0.23 10.12 4
MSFE 45.94 50.86 0.44 0.22 10.04 4
NSS 38.43 43.66 0.55 0.28 10.03 5

valve10-0 RKP 58.95 54.99 0.40 0.20 10 9.97 3
octave 42.95 43.22 0.43 0.20 10.12 4
MSFE 57.35 57.71 0.39 0.21 10.07 4
NSS 52.82 53.15 0.41 0.21 10.07 5

dinosaur72-36 RKP 39.26 35.16 0.66 0.87 36 35.20 4
octave 18.87 16.03 1.19 0.91 22.24 2
MSFE 16.90 14.35 1.19 1.01 22.70 3
NSS 19.44 16.51 1.23 0.97 19.87 3

dinosaur36-0 RKP 42.44 39.01 0.60 0.55 36 35.35 6
octave 15.55 14.97 1.51 1.31 8.72 4
MSFE 11.12 10.71 1.48 1.13 8.53 4
NSS 22.49 21.65 1.33 1.26 14.09 4

bottle0-36 RKP 44.15 44.51 0.87 0.58 36 19.72 3
octave 24.21 25.41 1.09 0.61 23.36 3
MSFE 24.21 25.41 2.11 1.62 27.42 2
NSS 23.50 24.68 1.44 0.80 20.19 3

bunny80-60 RKP 53.21 50.16 0.27 0.13 20 18.82 2
octave 25.70 24.06 0.31 0.14 19.34 2
MSFE 52.01 48.69 0.25 0.12 18.76 3
NSS 39.16 36.67 0.36 0.19 18.30 3

cow49-45 RKP 39.78 16.13 0.85 0.85 40 44.01 3
octave 6.98 3.10 1.72 1.20 75.27 3
MSFE 22.86 10.15 0.78 0.90 45.01 3
NSS 11.43 5.08 1.60 1.41 34.86 3

tubby120-80 RKP 34.01 28.06 0.29 0.18 40 38.45 3
octave 21.20 18.62 0.43 0.22 40.04 3
MSFE 19.63 17.24 0.64 0.42 30.58 3
NSS 30.37 26.67 0.67 0.37 29.67 4
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Figure 6: Registration results using the SoftICP algorithm for various shapes using key points selected
from both shapes by different algorithms. Rows, top to bottom: RKP, octave, MSFE, and NSS. Columns,
left to right: valve20-10, valve10-0, dinosaur72-36, dinosaur36-0, bottle0-36, bunny80-60, cow49-45, and
tubby120-80.

the transformed dinosaur72, dinosaur36, cow49, and tubby120 shapes to mismatch the dinosaur36,
dinosaur0, cow45, and tubby80 shapes respectively, it successfully registered the points sampled by the
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Figure 7: Registration results using the FICP algorithm for various shapes using key points selected from
both shapes by different algorithms. Rows, top to bottom: RKP, octave, MSFE, and NSS. Columns,
left to right: valve20-10, valve10-0, dinosaur72-36, dinosaur36-0, bottle0-36, bunny80-60, cow49-45, and
tubby120-80.

RKP algorithm and brought all the overlapping shapes into accurate alignment, except for the bottle0-36
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pair, which was more challenging to register due to the previously mentioned cylindrical ambiguity.

The SoftICP algorithm exhibited similar behavior for the registration of points sampled from both data
and reference shapes by the RKP, octave, and MSFE methods to the case when the data shape only
was sampled, but it produced worse results when registering points sampled by the NSS method. The
repeatability of points sampled by the NSS method is worse due to the random nature of its sampling.
The FICP algorithm is more sensitive to the choice of point sampling method.

Figure 8: Registration results of different algorithms using the RKP algorithm to select keypoints from
both shapes, using different window sizes. Rows, top to bottom: 3× 3, 7× 7 windows. Models, left to
right: duck0-20, frog0-20, lobster0-20, and buddha0-20. Odd columns: SoftICP; even columns: FICP.

3.5 Window size

Elsewhere, when using the RKP algorithm, we set the window size to 3× 3 for neighbor detection and
adaptive smoothing. In this section, we experimentally investigate whether this is a good option and
consider window sizes from 3× 3 to 7× 7, using the new duck0-20, frog0-20, lobster0-20, and buddha0-
20 shape pairs illustrated in Figure 1. Both data and reference shapes were sampled and registered
using both the SoftICP and FICP algorithms. The experimental results are presented in Figure 8 and
Table 6. A larger window size usually decreases the precision and recall rates of the detected key points
registered by the SoftICP algorithm on average by 7% and 10%, and by the FICP algorithm by 9% and
12% respectively. A larger window size results in less reliable key points, because it blurs local features
and thus makes key point detection harder. This conclusion is confirmed by the registration results.
A larger window size of 7 × 7 usually produces slightly worse results than 3 × 3; the rotation angle
of the estimated transformation is close to the ground truth. Significantly worse results are obtained
when registering the buddha0-20 pair using the SoftICP algorithm: the nose, eyes, and ears in the
transformed data buddha0 and reference buddha20 shapes are clearly displaced in 3D space with the
average error being increased by as much as 45%. Thus, a window size of 3 × 3 is suggested for key
point detection.
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Table 6: Precision Pre and recall Rec rates for detected keypoints, the average eµ and standard deviation

eσ of registration errors in millimetres based on RCs, expected and estimated rotation angles θ and θ̂ in
degrees, and KDR time t in seconds for key points selected from both shapes using the RKP algorithm
and different window sizes,d registered by different algorithms.

Image Size Algo. Pre Rec eµ eσ θ θ̂ t
(%) (%) (mm) (mm) (◦) (◦) (s)

3× 3 SoftICP 52.00 52.20 0.41 0.29 20 18.99 4
FICP 51.11 51.30 0.41 0.26 18.69 5

duck0-20 7× 7 SoftICP 44.34 44.51 0.44 0.27 18.33 5
FICP 45.08 45.24 0.47 0.30 16.39 5

3× 3 SoftICP 40.71 49.15 0.31 0.16 20 19.40 4
FICP 41.14 49.67 0.32 0.17 18.71 3

frog0-20 7× 7 SoftICP 39.87 45.82 0.32 0.16 19.14 4
FICP 40.65 46.72 0.34 0.18 18.47 3

3× 3 SoftICP 50.80 54.40 0.38 0.23 20 19.17 4
FICP 50.80 54.40 0.41 0.25 18.44 3

lobster0-20 7× 7 SoftICP 47.34 47.69 0.38 0.24 19.22 4
FICP 47.20 47.54 0.40 0.26 18.50 3

3× 3 SoftICP 56.17 54.10 0.60 0.24 20 19.88 6
FICP 50.57 48.70 0.94 0.57 8.07 4

buddha0-20 7× 7 SoftICP 53.68 48.88 0.87 0.50 13.33 16
FICP 42.83 39.00 0.88 0.50 13.21 6
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3.6 Maximum number of iterations for adaptive smoothing

In this section, we investigate a suitable value for the maximum number (Imax) of iterations used for
adaptive smoothing in our RKP algorithm. We considered three possibilities: 10, 30, and 50. The new
free form shapes angel0, angle20, angle40, bird0, and bird20 illustrated in Figure 1 were selected for the
experiments, with point sampling applied to both shapes which again were registered using both the
SoftICP and FICP algorithms. The experimental results are presented in Figures 9 and 10 and Table 7.

Figure 9: Keypoints detected by the RKP algorithm with the parameter Imax taking different values.
Rows, top to bottom: Imax=10, 30, and 50. Models, left to right: angel0, angel20, angel40, bird0 and
bird20.

Figure 10: Registration results for different algorithms using keypoints selected from both shapes by
the RKP algorithm with the parameter Imax taking different values. Rows, top to bottom: SoftICP
and FICP. Models, left three: angel0-20; Middle three: angel20-40; Right three: bird0-20. Columns 1,
4, and 7: Imax=10; Columns 2, 5, and 8: Imax=30; Columns 3, 6, and 9: Imax=50.

Figure 9 and Table 7 show that the larger the maximum number of iterations used for adaptive smooth-
ing, the fewer keypoints the RKP algorithm detects. This is because when the maximum number of
iterations is small, 10, for example, the smoothing operation has mainly a local effect, leading points to
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Table 7: Precision Pre and recall Rec rates for detected keypoints, the average eµ and standard deviation

eσ of registration errors in millimetres based on RCs, expected and estimated rotation angles θ and θ̂
in degrees, and KDR time t in seconds for keypoints selected from both shapes by the proposed RKP
algorithm with the parameter Imax taking different values and registered by different algorithms. n1
and n2 are the numbers of the detected key points in the data and reference shapes respectively.

Image Imax Algo. Pre Rec eµ eσ θ θ̂ t
(n1, n2) (%) (%) (mm) (mm) (◦) (◦) (s)

10 SoftICP 54.29 50.37 0.49 0.26 20 20.52 7
(2365, 2549) FICP 54.04 50.14 0.50 0.25 20.48 3

angel0-20 30 SoftICP 50.34 45.84 0.50 0.26 20.48 4
(1301, 1429) FICP 50.65 46.12 0.52 0.26 20.34 2

50 SoftICP 49.95 44.62 0.50 0.26 20.54 4
(989, 1107) FICP 50.05 44.71 0.51 0.27 20.42 2

10 SoftICP 46.72 54.99 0.54 0.34 20 20.35 6
(2549, 2166) FICP 46.92 55.22 0.55 0.34 20.22 4

angel20-40 30 SoftICP 45.55 53.14 0.55 0.34 20.35 4
(1429, 1223) FICP 45.91 53.55 0.57 0.34 20.21 2

50 SoftICP 43.00 50.64 0.55 0.34 20.34 3
(1107, 940) FICP 43.54 51.28 0.59 0.34 20.10 3

10 SoftICP 43.17 56.13 0.29 0.12 20 19.56 4
(1538, 1183) FICP 42.52 55.28 0.34 0.13 19.04 4

bird0-20 30 SoftICP 39.75 53.51 0.30 0.13 19.67 3
(883, 656) FICP 40.09 53.96 0.39 0.15 18.15 3

50 SoftICP 38.23 50.29 0.32 0.13 19.79 3
(667, 507) FICP 39.73 52.27 0.45 0.19 17.68 3
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be compared in a small area, and thus more points to be depth maxima and hance selected as keypoints.
In contrast, when the number is large, 50, for example, the smoothing operation propagates local infor-
mation from one region to another, enabling comparison of points over a larger area, leading to fewer
points being selected as keypoints having maximal depth. Figure 10 and Table 7 show that while a
large number of points takes more time to process and register, they tend to produce more accurate
registration results, with increased precision and recall rates for the detected keypoints: they describe
the geometry and details of the underlying shapes more faithfully. In contrast, a smaller number of
points leads to more computationally efficient registration, but usually produces larger registration er-
rors, as fewer points less well characterize the geometry. This observation is demonstrated by the fact
that the FICP algorithm superimposes the transformed bird0 shape over the bird20 shape with less
inter-penetration through each other, and increases the average error when Imax = 10 by as much as
32%; the number of the detected keypoints drops rapidly by 58% and 59% in the angel0 and angel20
shapes as the maximum number of iterations for adaptive smoothing increases from 10 to 50, while the
drop in the precision and recall rates is less serious, just 8% and 11% for the SoftICP algorithm with a
gain of 42% in overall time. These results show that the proposed RKP method: (i) can flexibly detect
varying numbers of keypoints as required by controlling the value of Imax, and (ii) can stably detect
repeatable key points. Imax = 30 is recommended as a good compromise between registration accuracy
and computational efficiency.

4 Conclusions

While the latest laser scanners enable fast and affordable capture of depth maps and shapes of interest,
multiple views must be registered to form complete models. Registration is a costly process, and in
this paper, we show to significantly reduce this cost using a sampling method based on a novel way of
selecting key points. Our contributions can be summarized as follows.

• Inspired by retinex theory [6, 16], we have proposed a novel method of key point detection using
adaptive smoothing. This operation suppresses the impact of points in depth discontinuous re-
gions, and all points unaffected by smoothing are selected as key points. Key points have locally
maximal transformed and normalized depth. The method is easy to implement. This appears to
be the first time that retinex theory has been adapted from 2D image enhancement for application
in 3D key point analysis and detection.

• The detected key points have been shown to be useful for efficient registration of overlapping
3D freeform shapes. No matter whether key points are selected from just one or both shapes,
accurate results are obtained, with registration being up to 20 times faster than when using un-
sampled shapes. This is a significant improvement in computational efficiency without sacrificing
registration accuracy. The reason why our proposed RKP algorithm works well in this context
is that the smoothed depths provide a reliable reference for the judgment of whether a point is
a key point. Existing methods detect salient points in an ad hoc way, while the proposed RKP
method guarantees that the detected points are locally highest after normalization and adaptive
smoothing.

• A comparative study has been performed between our proposed key point detection method and
three other state-of-the-art methods, using real depth images. It shows that it is feasible to
apply ICP variants to directly register key points as long as they are informative, expressive, and
repeatable enough. The precision and recall rates of the key points detected by the proposed
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RKP method are usually higher than those for the selected competitors, in one extreme case by as
much as 88% and 76%. RKP sampling of both shapes increases the average registration error by
as little as 7%, while for other selected state-of-the-art methods it increases by as much as 52%.

Our proposed RKP method is a powerful approach to key point detection. The detected key points
are useful in the context of registration, and with direct application of ICP variants, they can produce
accurate registration results with significantly improved computational efficiency. Future research will
investigate the similarity between the shapes defined by these key points and the original complete point
sets, how the detected key points can be applied for the generation of levels of detail for efficient data
transmission, rendering and visualization, and how the detected points can be incorporated into feature
extraction and matching methods [7, 23] for applications such as registration.
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[28] A. Torsello, E. Rodolà, and A. Albarelli. Sampling relevant points for surface registration. Proc.
3DIMPVT, pp. 290-295, 2011.

[29] Precision and recall. http://en.wikipedia.org/wiki/Precision and recall

Responses to the comments from reviewers

Reviewer #1

Q P6 — The technique described in section 2.1 on depth normalization implicitly assumes that the
range of variance will be similar for an object for different viewpoints. While this is likely the
case for many objects and for viewpoints that are relatively close together, it is easy to imagine
shapes and situations where this does not work. Some mention of this would be beneficial.

A Done. Thanks for this very good point.

Q P10 — The definition of Precision and Recall is not traditional. While its use here is fully described
and unambiguous, the redefinition of these terms does not match with their standard definitions.
I see no reason why different terminology than Precision and Recall should not be used here to
denote N/n1 and N/n2.

A We believe that these definitions are still in agreement with the traditional definitions, with a
particular emphasis on the different roles played by different shapes in the process of registration
of overlapping shapes: one is used as a data shape, the other is used as a reference shape. Such
context is used for the definition of Precision and Recall.

Q P12 — It’s not clear to me that a higher value of N/n1 necessarily is a measure of superior perfor-
mance. It may simply mean a smaller value of n1, which after a threshold could be detrimental.
Displaying in Table 2 the values of n1 for each of the techniques (RKP, octave, MSFE, and NSS)
would be interesting.

A A smaller value of n1 means that fewer key points were detected. In such cases, these key points
poorly characterize the geometry of a free from shape and thus causes registration problems,
leading to poor registration results. As discussed in Section 3.1, all methods detected around 10%
of the original points as keypoints. In this case, (1) n1 cannot be too small; and (2) it is almost
constant, and thus is worth tabulating. The relative ratio shows the extent to which the detected
key points in the data shape really find correspondents in the reference shape, and thus shows the
performance of the algorithms in the sense of detecting repeatable and relevant key points for the
definition of the registration problem.

Q P12 — It is stated that ”the key points detected by the former are less reputably placed.” This
is inferred and has not been shown directly. The statement should either be modified as such, or
more direct evidence presented to support it.

A The statement is inferred from two considerations: (1) registration results, in the sense of both
average registration errors and the precision rates of the detected key points, (2) Figure 2, in
which it can be observed that the proposed method tends to detect salient and feature points as
key points, while the competitors usually detect either points at depth and orientation disconti-
nuities, or random points, as key points. A careful analysis shows that the key points detected
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by the former are more repeatable and relevant for representing the geometry of free form shapes
independently of viewpoint, and for defining registration between overlapping shapes.

Q P13 — For bottle0-36, eµ and eσ are reported as being higher for RKP than the other techniques.
This poorer performance, while spurious, should be commented on in the text.

A Done.

Q P19 — In Table 5, for valve10-0, the Recall is superior for the MSFE method than for RKP. This
should be commented on in the text.

A Done.

Q P26 — Given the above, the statement that ”The precision and recall rates of the key points
detected by the proposed RKP method are better than those for the selected competitors .”
should be qualified and moderated.

A Done.

Reviewer #2

No questions were raised.
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