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SUMMARY

Cell-to-cell communication coordinates the behavior
of individual cells to establish organ patterning and
development. Although mobile signals are known to
be important in lateral root development, the role of
plasmodesmata (PD)-mediated transport in this pro-
cess has not been investigated. Here, we show that
changes in symplastic connectivity accompany and
regulate lateral root organogenesis in Arabidopsis.
This connectivity is dependent upon callose deposi-
tion around PD affecting molecular flux through the
channel. Two plasmodesmal-localized b-1,3 gluca-
nases (PdBGs) were identified that regulate callose
accumulation and the number and distribution of
lateral roots. The fundamental role of PD-associated
callose in this process was illustrated by the induc-
tion of similar phenotypes in lineswith altered callose
turnover. Our results show that regulation of callose
and cell-to-cell connectivity is critical in determining
the pattern of lateral root formation, which influences
root architecture and optimal plant performance.

INTRODUCTION

The initiation of lateral root primordia (LRP) characterizes post-

embryonic root development. This process uses environmental

information to specify the relative positioning of primordia in

order to maximize the potential for nutrient uptake. Lateral root

emergence and extension then delivers an increase in root

functional capacity underpinning increased plant growth (Péret

et al., 2009; De Smet et al., 2006; Benková and Bielach, 2010).

The molecular mechanisms that determine lateral root (LR)

architecture have significant agronomic relevance but remain

poorly understood. Different from the primary root meristem,

secondary meristems are initiated de novo from xylem-pole

pericycle (XPP) cells in the differentiation zone of the primary

root. This process involves multiple steps of cellular redefinition

and cell proliferation that have been classified into seven stages
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(I to VII) (Malamy and Benfey, 1997). Interconnected signaling

pathways involving both hormone (auxin/cytokinin) transport

and auxin/indole-3-acetic acid proteins (Aux/IAA) have been

shown to regulate the expression of genes required during spec-

ification, dedifferentiation and emergence of the lateral meri-

stems (Aloni et al., 2006; De Rybel et al., 2010; De Smet et al.,

2010; Lucas et al., 2008; Moreira et al., 2013; Van Norman

et al., 2011; Muraro et al., 2013). Oscillating auxin maxima in

the basal meristem and, presumably, the intercellular transport

of other mobile signals (Van Norman et al., 2011; De Smet

et al., 2010;Moreno-Risueno et al., 2010) determines the charac-

teristic spatial patterning of LRs, i.e., a regular distribution along

the main root axis, oriented left-right in an alternating pattern.

The intercellular symplastic movement of signaling molecules

through plasmodesmata (PD) determines embryonic cell fate

and postembryonic organ development (Xu et al., 2011; Xu

and Jackson, 2010; Kim et al., 2002; Nakajima et al., 2001).

Regulation of PD transport can be controlled through the accu-

mulation of the b-1,3 glucan callose in the surrounding wall

causing a constriction of the symplastic channel (Zavaliev

et al., 2011). Callose turnover at PDs affects both targeted

molecular transport (dependent on proteins and cofactors

capable of modifying PD aperture) and nontargeted molecular

flux (diffusion of small molecules such as GFP) (Vatén et al.,

2011; Rinne et al., 2011; Guseman et al., 2010; Benitez-Alfonso

et al., 2009). This regulatory mechanism plays a key role in a

plethora of developmental processes including the specification

of stomatal complexes, dormancy release prior to flowering, the

maintenance of apical meristems, and during the sink-source

transition (Guseman et al., 2010; Levy et al., 2007b; Vatén

et al., 2011; Rinne et al., 2011). It also regulates plant responses

to biotic and abiotic stresses (Benitez-Alfonso et al., 2009, 2011;

Levy et al., 2007a; Lee et al., 2011). In spite of the evidence that

PD are dynamic structures and crucial to plant development and

responses, our understanding of the mechanics of PD function

remains poor. Recently, significant progress has been made in

the identification of novel PD proteins through genetic or prote-

omic screens (Bayer et al., 2006; Fernandez-Calvino et al.,

2011; Simpson et al., 2009; Thomas et al., 2008; Vatén et al.,

2011). These studies have identified proteins involved directly

in callose synthesis and degradation (callose synthases [CALS]

and b-1,3 glucanases [BG]) or indirectly modifying callose
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deposition (e.g., PD-callose binding protein [PDCB]) as PD com-

ponents (Vatén et al., 2011; Fernandez-Calvino et al., 2011; Levy

et al., 2007a; Simpson et al., 2009).

The importance of mobile factors (hormones, peptides,

miRNAs, etc.) in lateral root initiation and emergence is well

recognized (De Smet et al., 2008, 2010; Marin et al., 2010;

Meng et al., 2012; Moreno-Risueno et al., 2010; Péret et al.,

2012). It has been shown that misregulated PD connectivity,

affecting the movement of non-cell-autonomous factors and

the downstream processes they trigger, can have a negative

impact on the development of apical meristems and meriste-

moids (Guseman et al., 2010; Benitez-Alfonso et al., 2009; Kim

et al., 2003; Nakajima et al., 2001; Rinne et al., 2011; VanNorman

et al., 2011; Vatén et al., 2011; Xu et al., 2011). However, the role

of symplastic transport in the formation of lateral root meristems

has not yet been investigated. In this article, we show that sym-

plastic connectivity is critical for both the initiation and posi-

tioning of LR meristems and that this connectivity is regulated

by PD-associated glucanases concomitant with callose as a

regulator of symplastic molecular flux through PD.

RESULTS

Symplastic Connectivity Is Regulated during Lateral
Root Development
To address the temporal and spatial regulation of cell-to-cell

connectivity during primordia development, we used stable

transgenic lines expressing reporters for GFP diffusion. For

the purpose of this study, we divided mature roots into three

main regions: meristem (where cell division occurs), basal

meristem (from the end of cell division to the first root hair, con-

taining the region of LR priming), and lateral root forming zone

(LR forming zone; containing stages I–VII and emerged

primordia as defined in other publications) (Figure 1A) (Malamy

and Benfey, 1997). GFP expressed under the control of the

sucrose-proton symporter 2 (SUC2) promoter (active in phloem

companion cells) (Truernit and Sauer, 1995) diffuses freely

across all cell layers in the meristem (Stadler et al., 2005;

Benitez-Alfonso et al., 2009). In the basal meristem and early

LR forming region of 6-day-old roots, we detected GFP signal

in the stele, endodermis, cortex, and epidermis suggesting

that symplastic connectivity between the phloem and the outer

cell layers is maintained in this region (Figure 1B). In contrast,

GFP movement was differentially regulated in the LR forming

zone (Figures 1C–1G). Proximal to stage II and III primordia,

GFP movement was reduced but still diffused to pericycle cells,

into the primordium and the endodermis (Figures 1C and 1D).

However, pSUC2-expressed GFP was excluded from stage

IV–V primordia (notice that diffusion is still detectable in neigh-

boring pericycle cells; Figures 1E and 1F) and fluorescent signal

in the new LR was only restored when a new functional vascular

system was formed (Figure 1G).

The results from the analysis of pSUC2-GFP plants suggest a

block in postphloem symplastic transport in late stages of

primordia development; however, molecules produced within

the primordium might have a different fate. To investigate this

aspect, we generated transgenic plants expressing cyto-

plasmic GFP under the control of the AUX1 promoter. We first

confirmed AUX1 expression in the basal meristem and LR
Deve
forming zone using a translational fluorescent fusion. As

described previously (Marchant et al., 2002), AUX1 expression

in the stele of the basal meristem zone gets restricted to the

new LRP in the LR forming zone (Figures S1M–S1R available

online). Analysis of transgenic Col-0 plants, expressing

pAUX1-GFP, confirmed stage IV and older LRP as domains

with restricted connectivity to external cells. As for pSUC2-

GFP, free GFP diffuses from the stele into the surrounding

tissue in the basal meristem zone (compare Figures S1M and

1H). Similarly, GFP produced in stage I–III primordia diffuses

to neighboring tissues and cortical cells (Figure 1I). However,

GFP produced in stage IV and older primordia was retained

within the primordium (Figures 1J–1L). Emerged primordia

resembled the expression and diffusion profile of the main

meristem (Figures 1M and S1S).

Together, these data point to a dynamic regulation of sym-

plastic transport whereby positive cell-to-cell connectivity

between pericycle cells and early stage primordia and the sur-

rounding tissue becomes restricted in older LRP until emergence

is completed.

Callose Deposition at PD Correlates with the Formation
of Symplastic Domains in Lateral Roots
Symplastic transport is regulated by the synthesis and degrada-

tion of callose at PD neck regions (Levy et al., 2007b; Vatén et al.,

2011). This mechanism has been found to be important in the

maintenance of symplastic permeability in apical meristems

(Chen et al., 2009; Zavaliev et al., 2011; Benitez-Alfonso et al.,

2009; Vatén et al., 2011). Therefore, we analyzed the pattern of

callose deposition during the formation of lateral meristems.

Whole roots, excised from Col-0 seedling 6 days postgermina-

tion (dpg), were fixed and immunolabeled with callose anti-

bodies. Secondary detection with the fluorophore Alexa 488

revealed that callose is deposited in the sieve plates, cell plates,

and in a punctate pattern in the cell wall, reminiscent of PD local-

ization (Figures 2A–2G). The analysis of multiple root sections

revealed differences in the level of callose accumulated in the

basal meristem and LR forming zones. Callose deposition was

detected at low levels at PDs of the basal meristem zone and

in nonlateral root regions within the LR forming zone (Figure 2A).

At early stages of lateral root development, callose gets depos-

ited in the cell-plates and to moderate levels between cell layers

(Figures 2B and 2C). In contrast, in stage IV–V primordia PD and

cell wall labeling between the new meristem, the associated

endodermal/cortical cell layer and the vasculature was signifi-

cantly increased (Figures 2D and 2E). This is coincident with

the reduction in GFP diffusion observed in pSUC2-GFP and

pAUX1-GFP plants (Figures 1E, 1F, and 1J–1L). In the later

stages, and during emergence, callose accumulation decreased

but was still detected in the ruptured cortical and epidermal cells

and in the new division walls within the new LR (Figures 2F and

2G). To quantify these changes in callose accumulation, we

stained a significant number (>20) of wild-type roots with the

callose stain aniline blue and calculated the mean increment in

fluorescence signal (mean gray value) in the cell wall connecting

the new lateral root and the overlying tissue (Figure S2). This

mean gray value was corrected by subtracting the background

fluorescence contained in the same area in the wall opposite

the primordium. The results support our previous conclusions,
lopmental Cell 26, 136–147, July 29, 2013 ª2013 The Authors 137



Figure 1. Symplastic Domains Form during Lateral Root Development

(A) Cartoon showing root developmental regions, LR stages, and tissue organization (qc, quiescent center; Ep, epidermis; C, cortex, E, endodermis; P, pericycle)

as referred to in the text.

(B–M) Free GFP expression in pSUC2-GFP (B–G) and pAUX1-GFP (H–M) transgenic roots (10-day-old). Movement of GFP from the phloem (pSUC2-GFP) and

from the pericycle (pAUX1-GFP) is observed into endodermal (E), cortical (C), and epidermal (Ep) cell layers in (B) and (H). GFP diffusion is gradually restricted as

primordia develop (C–F, I–L; position of LRP and approximate stage in brackets are indicated). GFP unloading is normal in emerged lateral roots (G and M).

FM4-64 (red) was used as counterstain. Stages were assigned according to bright-field images. Scale bars represent 20 mm.

See also Figure S1.

Developmental Cell

Symplastic Communication Controls Root Development
i.e., total callose deposited around lateral roots increased pro-

gressively during development reaching a maximum in stage

IV–V primordia (Figure S2F).
138 Developmental Cell 26, 136–147, July 29, 2013 ª2013 The Autho
Insummary,changes insymplastic transportduringLRdevelop-

mentcorrelatewithchanges in callosedeposited suggestinga role

for callose turnover in regulating symplastic connectivity in LRP.
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Figure 2. Callose Deposition Is Regulated during Lateral Root Development and Is Increased in pdbg1,2

Immunofluorescent detection of callose (green) in the basal meristem (A), stage I–II (B), stage III (C), stage IV–V (D and E), stage VII (F), and emerged (G) primordia.

Immunolocalization of callose in nonlateral root (H) and lateral root (I and inset) regions of pdbg1,2 seedlings. Nuclei were stained with DAPI (blue) and bright-field

images were superimposed. Black arrows indicate PD-associated callose. Cell plate- or sieve plate-associated callose, primordium (LRP), cortex (C), endo-

dermis (E), XPP, and stele are also marked in (A), (B), and (I). Note the increase in callose deposited in the stele of pdbg1,2 (H, I, and inset) in comparison to

equivalent regions in wild-type (A and F). Scale bars represent 10 mm.

See also Figures S2 and S4.
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Identification of Callose-Degrading Enzymes
Associated with Lateral Roots and PDs
To identify proteins involved in the metabolism of PD-associ-

ated callose during LR organogenesis, we examined PD prote-

omic data. Thirteen putative callose metabolic enzymes

(1,3-b-D-glucanases and glucan synthases like [GSL]) were

represented in published PD proteomes (Bayer et al., 2006;

Fernandez-Calvino et al., 2011). We used transcriptome data

sets (compiled in the VisuaLRTC) (Parizot et al., 2010) to

screen for genes involved in lateral root initiation (Table S1).

This approach identified At3g13560 as a putative b-1,3-gluca-

nase preferentially expressed in the XPP (LR founder

tissue) and that is induced by auxins in a SOLITARYROOT/

IAA14-dependent manner. To confirm the expression of this

gene in LRs, we analyzed transgenic plants expressing

the b-glucuronidase gene (GUS) downstream of the native

promoter (Figure 3). At3g13560 (subsequently named

plasmodesmal-localized b-1,3-glucanase 1 [PdBG1]) is ex-

pressed at very low levels in the provasculature and vascula-

ture of the basal meristem (Figures 3A and 3B). Interestingly,

PdBG1 was induced in few pericycle cells associated with

the xylem in the early LR forming zone that might correspond
Deve
to sites of incipient primordia (Figure 3C). Expression

increased soon after LR specification reaching a maximum at

stage III primordia (Figures 3D–3F). This expression pattern

was confirmed using a gene-trap insertion line that carries

GUS fused to the N-terminal portion of the protein (Figures

S3A–S3E).

To assess the cellular localization of PdBG1, we stably ex-

pressed an m-Citrine internal fusion (see Supplemental Experi-

mental Procedures) in Arabidopsis. In leaves and roots,

PdBG1-mCitrine accumulated in punctate spots at the cell

periphery reminiscent of PD localization (Figures 3G and 3L).

Confirming PD targeting, these spots colocalized with aniline

blue stained-callose andwithmCherry-PDCB1 (a plasmodesmal

callose binding protein shown to associate with PD) (Simpson

et al., 2009) (Figures 3H, 3I, 3M, and 3N). Supporting potential

PdBG1 activity in callose degradation, wound-induced callose

was reduced in leaves overexpressing PdBG1 (PdBG1OE)

relative to wild-type (Figures 3O and 3P).

b-1,3-glucanases are encoded by a large gene family (Doxey

et al., 2007). Phylogenetic analysis and expression profile data

identified a close evolutionary relationship between PdBG1

and the genes At2g01630 (named PdBG2) and At1g66250
lopmental Cell 26, 136–147, July 29, 2013 ª2013 The Authors 139



Figure 3. PdBG1 Is a Callose-Degrading Enzyme Expressed in PDs of Early Stage Lateral Root Primordia

(A–F) PdBG1 expression as revealed by GUS staining of transgenics expressing pPdBG1-GUS. Expression is higher in potential lateral root founder cells and

stage III LRP (black arrows). Small insets in (A) and (B) indicate the region imaged (square) using as reference the root tip (see also Table S1).

(G–I) PdBG1-mCit (mCitrine is fused in frame to the structural protein at position 452, green, G) and callose deposits revealed by aniline blue staining (false colored

in white in H) colocalize at PD (I).

(J–P) As in leaves, PdBG1-mCit accumulates in a punctate pattern in the cell periphery of roots (J and K; FM4-64 stained cell periphery in red). PdBG1-mCit (L)

also colocalizes withmCherry-PDCB1 (M) at PDs in transgenic leaves (N).Wound-induced callose (W indicates initial wounding site) is reduced in PdBG1OE (P) in

comparison to wild-type (O). Scale bars represent 20 mm.

See also Figure S3 and Table S1.
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(named PdBG3). PdBG2 and PdBG3 m-Citrine-tagged con-

structs also showed PD localization, suggesting that they all

act to control callose deposition at PD (Figures S3G–S3L). More-

over, microarray data indicate that PdBG2 expression is high in

XPP cells suggesting it might be involved in lateral root initiation

(Table S1). To study PdBG2 expression in lateral roots, we

examined a line carrying a gene trap insertion in the first exon.

PdBG2 was upregulated in the stele, the LRP and, sporadically,

in the endodermis associated with putative lateral root-founder

cells (Figures S3M–S3R). This expression pattern partially

overlaps with PdBG1 suggesting that they might be functionally

redundant genes.

The data identify two related callose degrading enzymes

(PdBG1 and PdBG2) that localize at PDs with expression

patterns that implicate them in LR initiation and development.
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PdBG1 and PdBG2 Regulate Callose Deposition and
Symplastic Connectivity during Lateral Root
Development
To determine if PdBG1 and PdBG2 are involved in callose turn-

over during LR development, we examined callose deposition in

pdbg1, pdbg2, and pdbg1,2 double mutants. No significant

difference was detected between single mutants and wild-type

siblings, but the double mutant displayed a visible increase in

fluorescence in the stele and lateral root primordia upon aniline

blue staining (Figures S4A–S4D). Similar results were obtained

using immunoassays: callose antibodies labeled more strongly

pdbg1,2 roots in comparison to wild-type siblings (Figures 2H

and 2I). The differences were more pronounced in the stele of

the basal meristem (Figure 2H) and pericycle associated with

LRP (Figure 2I). Relative quantification of the increment in
rs



Figure 4. Symplastic Transport Is Regulated by PdBG1 and PdBG2

(A–C) GFP accumulation in the early LR forming zone (before any visible primordia) in pdbg1,2 and wild-type siblings expressing pSUC2-GFP. GFP, primarily

expressed in the phloem (Ph), moves (*) to the endodermis (E) and cortex (C) in wild-type roots (A and C). Symplastic movement is blocked in pdbg1,2 roots (B)

and (C, lower panel).

(D and E) SHR-GFP expression and mobility (arrow) in wild-type and pdbg1,2 lateral roots. FM4-64 (red) was used as a counterstain.

(F) Biolistic experiments using mRFP as symplastic probe. Data were collected in three experimental replicas for a total of 97 bombardment sites per genotype.

The graph represents the number of sites that showed movement away from the bombardment target cell to 0 cells, 0–10 cells, 11–30 cells, and >30 cells. Error

bars represent SEM. p < 0.001 calculated by Poisson regression of the data.

(G–I) Dye transport after exposure of wild-type (G) and PdBG1OE (H and I) roots to CFDA. Notice dye loading into PdBG1OE primordia (H and I). Scale bars

represent 20 mm.

See also differences in callose deposition in Figure S4.
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fluorescence signal indicated that pdbg1,2 accumulated

approximately three times more callose than wild-type roots

(Figure S4F). In comparison, aniline blue fluorescencewas signif-

icantly reduced in PdBG1OE (�2-fold decrease), supporting

protein activity in callose degradation (Figures S4E and S4F).

Excessive callose deposition has been found to obstruct PDs

blocking symplastic intercellular transport (Guseman et al.,

2010; Vatén et al., 2011). To test symplastic transport in

pdbg1,2, we studied GFP diffusion in mutants expressing

pSUC2-GFP. In the basal meristem and early LR forming zone,

GFP expressed in the phloem of wild-type siblings was able to

move symplastically into the endodermis and cortex (Figures

1B, 4A, and 4C). Conversely, in pdbg1,2 roots, GFPwas retained

in the phloem (Figures 4B and 4C). This was consistent with the

increase in stele-associated callose observed in pdbg1,2 root

(Figure 2H). Excessive callose deposition has been shown to

affect the transport of the SHORTROOT protein (SHR) from the

stele to the endodermis (Vatén et al., 2011). In pdbg1,2 mutants

transformed with pSHR::SHR-GFP, we could not detect

changes in SHR-GFP transport relative to siblings in the wild-
Deve
type background (Figures 4D and 4E) consistent with the low

level of expression detected for PdBG1 and PdBG2 in emerging

LRP (Figures 3E and 3F).

Because the double mutant displayed a reduction in symplas-

tic connectivity, overexpression will likely have the reverse

effect. Supporting this hypothesis, we showed that mRFP, pro-

duced from bombarded mRFP cDNA, more frequently moved

further (number of cells showing mRFP) in PdBG1OE leaves in

comparison to wild-type (Figure 4F). Moreover, symplastic diffu-

sion of CFDA (carboxyfluorescein diacetate) in roots exposed for

5 min to the dye, was enhanced in PdBG1OE stage IV–VI

primordia in comparison to wild-type (Figures 4G–4I).

Together these results indicate that PdBGs are necessary and

sufficient to regulate callose and intercellular transport during

development of lateral root primordia.

Changes in Callose Accumulation and PD Flux Affect
Lateral Root Initiation and Distribution
The localization and pattern of expression for the PdBG proteins

suggest that they might play a role in lateral root development.
lopmental Cell 26, 136–147, July 29, 2013 ª2013 The Authors 141



Figure 5. Mutations in PdBG1 and PdBG2 Affect Lateral Root Density by Altering the Spacing between Primordia

(A) Lateral root density was calculated for 6-day-old Col-0, pdbg1, pdbg2, and pdbg1,2 roots. Error bars represent SD (***p < 0.001).

(B) Examples of clustered and fused lateral roots found in pdbg1,2.

(C–F) In comparison to wild-type siblings (C), pdbg1,2 showed extended regions of GATA23 (D) expression. Similarly, spacing between maxima of DR5

expression in the priming region (p, prebranch sites) and in the lateral root forming zone of wild-type siblings (E) is not maintained in the mutant (F). These results

are consistent with the formation of clustered primordia (LRP). Roots were stained with FM4-64 (red). Scale bars represent 20 mm.

See also Figure S5.
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To further investigate this hypothesis, we studied the lateral root

phenotype of PdBG mutants and overexpression lines. Lateral

root density (number of LR initiation events per mm of root)

has been used to characterize defects in LR development (Ben-

ková and Bielach, 2010). pdbg1, pdbg2, and double mutants, in

both Col-0 and Ler backgrounds, showed an increase in the

number of initiated primordia relative to wild-type roots (Figures

5A and S5A). The effect was stronger in pdbg1,2 double mutant

roots, confirming that these genes have partially redundant

functions.

Closer examination of mutant roots showed that primordia

frequently formed adjacent to each other that occasionally led

to the emergence of a fused LR (Figure 5B). To investigate this

phenotype, we created transgenic plants expressing a reporter

for GATA23, a gene that controls LR-founder cell specification

(De Rybel et al., 2010). In wild-type roots, GATA23 peaks of

expression were regularly spaced that was coincident with the

normal distribution of LRP along the main root (Figures 5C and

6B). In contrast, pdbg1,2 had extended domains of GATA23

expression that correlated with the initiation of LR in clusters

(Figure 5D).

It has been reported that the relative position and distance

between lateral roots are marked by periodic pulses of DR5

expression in the oscillatory zone (prebranch sites) (Moreno-

Risueno et al., 2010). Because pdbg1,2 displayed altered callose

deposition and symplastic transport in the basal meristem
142 Developmental Cell 26, 136–147, July 29, 2013 ª2013 The Autho
(which contains the oscillatory zone) and formed fused

primordia, we investigated LR priming by expressing the reporter

pDR5-3xVENUS-N7 (Brunoud et al., 2012) in wild-type and

pdbg1,2 roots. Although the reporter was induced at regular

intervals in the oscillatory zone of wild-type roots (Figure 5E),

priming sites seem clustered together in the mutant (Figure 5F).

DR5 expression overlapped withGATA23 in LRP and, as before,

extended domains of DR5 expression in pdbg1,2 indicated dis-

rupted primordia spatial patterning (compare panels in Figures

5E and 5F).

Consistent with a role for PdBG in lateral root initiation,

PdBG1OE showed the reciprocal effect: a significant decrease

in lateral root density (Figure 6A). In agreement with this observa-

tion, the distance between GATA23-marked initiation sites was

larger in PdBG1OE when compared with wild-type siblings sug-

gesting that primordia are spreadmorewidely in this line (Figures

6B, 6C, and 6F).

Defects in lateral root initiation are often correlated with

impaired maintenance of the apical meristem and/or altered

emergence because these processes share some commonal-

ities in their signaling pathways (Aloni et al., 2006; Lucas et al.,

2008; Péret et al., 2009). To investigate the role of PdBGs in

root meristem development and LR emergence, we quantified

root meristem size and percentage of emergence in pdbg1,2

and PdBG1OE lines. Although double mutant and overex-

pressors had opposite effect on callose and lateral root number,
rs



Figure 6. Callose Deposition Regulates the

Spacing between Lateral Root Initiation

Sites

(A) Lateral root density in PdBG1OE and

PDCB1OE roots (**p < 0.01; ***p < 0.001). Error

bars represent SD.

(B–E) GATA23 expression (green nuclei) in wild-

type (B), PdBG1OE (C), and in PDCB1OE roots

(D and E). In comparison to wild-type (B), over-

expression of PdBG1 led to a significant increase

in the distance between primordia (C). Conversely,

primordia appear clustered in PDCB1OE (D and

E). (F) The same root represented in (C) at smaller

scale to appreciate the distance between the LRP

and the nearest LR (arrowed). Wild-type roots

were stained with FM4-64 (red) in (B). Cell-walls

fluoresce in green in (C) and (F) due to PdBG1-

mCit expression at PD and in red in (D) and (E) due

to mCherry-PDCB1. Scale bars represent 40 mm

(B, C, and F) and 20 mm (D and E).

See also emergence phenotype in Figure S6.
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they both showed a mild reduction in meristem size in com-

parison to wild-type and were similar in appearance at the whole

plant scale (Figures S5B and S5C). This suggests that these

genes are not main regulators of apical meristem development.

Supporting this conclusion, callose was deposited at similar

levels in wild-type and pdbg1,2 apical root meristem regions

(Figures S5D and S5E).

To complement our observations, we examined the percent-

age of LR emergence in mutant and overexpressing lines. The

percentage of emerged LR was similar in pdbg1, pdbg2 single

and double mutants and wild-type but increased in PdBG1OE

(Figure S6A). Increased emergence in PdBG1OE could be

directly caused by ectopic expression of this cell wall modifying

enzyme (Swarup et al., 2008) or an indirect consequence of the

reduction in primordia initiation (Lucas et al., 2008). To uncouple
Developmental Cell 26, 136–
these developmental processes, we syn-

chronized primordia initiation by applying

a gravitropic stimulus to 3-day-old roots.

Primordia initiate synchronously 12 hr

after root bending and fully emerge

48 hr postgravistimulation (Péret et al.,

2012). We could not detect differences in

the percentage of ‘‘emerging’’ primordia

42 hr postgravistimulation between either

pdbg1,2 or PdBG1OE and wild-type

roots suggesting that emergence is not

directly regulated by these genes (Figures

S6B and S6C).

The phenotypes described in mutant

and overexpression lines suggest that

PdBG1,2 are primarily involved in LR initi-

ation and spatial patterning. To address if

PdBG activity on callose degradation is

directly responsible for these phenotypic

defects, we examined LR density in

a PDCB1 overexpression line. Ectopic

expression of PDCB1 has been shown

to decrease symplastic transport and
increase callose deposition at PD neck regions (Simpson et al.,

2009). We found that similar to pdbg1,2, PDCB1OE showed

increased LR density (Figure 6A) and neighboring primordia

that corresponded with clustered sites of GATA23 expression

(Figures 6D and 6E). This result provides independent evidence

that links callose to the regulation of lateral root patterning.

To further demonstrate the importance of callose regulation in

this process, we studied inducible transgenic lines expressing a

mutated/activated version of PD-located CALS3 (cals3m).

Induction of cals3m has been shown to modify PD-associated

callose and symplastic transport within 48 hr (Vatén et al.,

2011). To express this protein specifically in the XPP (LR com-

petent tissue), we transformed an estradiol-inducible UAS

promoter driving cals3m into the enhancer-trap line J0121 (Fig-

ure 7A) (Parizot et al., 2008). This construct was named
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Figure 7. Altered Lateral Root Distribution Is a Primary Effect of Induced Callose Deposition in the Xylem-Pole Pericycle

(A–C) Pattern of GFP expression in root tissues of the GAL4-GFP enhancer trap line J0121 is associatedwith mature XPP. Aniline blue staining revealed increased

callose deposition after 24 hr estradiol treatment of roots expressing cals3m under an estradiol-inducible UAS promoter in the J0121 background

(J0121>>cals3m) in comparison to noninduced control siblings (B and C). Bright-field superimposed image is also shown for (C).

(D) Lateral root density in control (J0121 and untreated J0121>>cals3m) and estradiol-treated roots calculated 72 hr postinduction (hpi). Error bars represent SD

(***p < 0.001). LR primordia (arrows) are marked by GUS activity in control (E, panels) and induced (48 hpi) J0121>>cals3m (F, panels) transgenics expressing

pGATA23-GUS. Notice the neighboring primordia in (F) panels. Scale bars represent 20 mm.
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J0121>>cals3m. In our conditions, 24 hr of estradiol treatment

was sufficient to produce a significant amount of callose in the

XPP (Figures 7B and 7C). Lateral root density was analyzed in

estradiol-treated and mock-treated lines 72 hr postinduction

(48 hr after increase callose deposition was confirmed). As ex-

pected, the number of initiated primordia was significantly higher

in induced J0121>>cals3m, consistent with a role for PD-associ-

ated callose in lateral root initiation (Figure 7D). We used the

GATA23 promoter to drive GUS expression in the callose induc-

ible lines to monitor LR initiation. Forty-eight hours estradiol

induction of J0121>>cals3m induced the initiation of neigh-

boring LRP and clusters reported by large domains of GATA23

expression (Figures 7E and 7F). This result confirms that callose

regulation of intercellular connectivity between pericycle cells,

founder cells, and the neighboring tissue is important to estab-

lish lateral root patterning in Arabidopsis.

DISCUSSION

Lateral root formation has been attributed to auxin gradients that

trigger initiation events in the root pericycle. This causes rediffer-

entiation of lateral root founder cells and the formation of new

meristems.Mobile signals (including, but not restricted to auxins)

have been proposed to play a role in the relative positioning of

primordia and the emergence phase of lateral root development
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(De Smet et al., 2008; Péret et al., 2012; Moreno-Risueno et al.,

2010; Van Norman et al., 2011; Marin et al., 2010; Meng et al.,

2012). We have identified that symplastic domains are regulated

around LRP, through a mechanism that involves the deposition

of PD-associated callose. This process regulates intercellular

signaling and is fundamental to the definition of LR spatial

patterning.

Our data indicate that prior to and during LRP specification all

cells are symplastically connected to the pericycle. Hence GFP

diffuses readily through the cells of the stele and outer tissues

(Figure 1). Following the first pericycle cell divisions, symplastic

connectivity is reduced, which correlates with an increase in

callose deposited around stage IV–V primordia. In agreement

with our results, previous studies using dye loading experiments

reported that symplastic continuity between the emerging

primordia and the phloem of the primary root is lost and only

reestablished when a new phloem connection is formed (Oparka

et al., 1995). The reasons behind this late downregulation in sym-

plastic transport might lie in the need to maintain water pressure

(and tissue hydraulics) relevant during the emergence phase

(Péret et al., 2012), but questions remain regarding the role of

symplastic regulation early in LRP development.

PdBG1 and PdBG2 are PD-located callose degrading

enzymes expressed in the stele and early stages primordia.

PdBG1 and PdBG2 are induced in auxin-treated roots but not
rs
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in the mutant solitary root1, suggesting that they are potential

targets of the auxin signaling pathway that regulates lateral

root initiation (Vanneste et al., 2005). Interestingly, PdBG ortho-

logs in Populus are upregulated during dormancy release

suggesting a role for these enzymes in shoot meristem develop-

ment (Rinne et al., 2011).

We demonstrated that symplastic connectivity in the basal

meristem and lateral root-forming zone depend on PdBG1/

PdBG2 activity. Moreover, these enzymes influence LR initiation

and positioning. Double mutants pdbg1,2 are impaired in callose

degradation and exhibit restricted PD transport, higher LR den-

sity, and distorted primordia patterning (Figures 2, 4, and 5). LR

phenotypes caused by the absence of PdBG1 and/or PdBG2

are associated with the function of these proteins during LR

initiation and not emergence (Figure S6). As expected, overex-

pression of PdBG1 produced the opposite effect with respect

to LR density and patterning. Interestingly, the auxin-response

factor DR5 is induced in neighboring pericycle cells in the basal

meristem of pdbg1,2 that implicates symplastic connectivity in

the establishment of prebranching sites. Temporal and spatial

distribution of LRs is established by the oscillating expression

of genes that determine periodic root branching and bending

(Moreno-Risueno et al., 2010). Cell-to-cell connectivity might

regulate the mobility of factors that originate in primed cells to

repress lateral root initiation in adjacent pericycle cells or the

transport of a LR inhibitory signal from neighboring tissues into

the XPP (Traas and Vernoux, 2010). Both models predict an in-

crease in the number of lateral root initiated when reducing sym-

plastic communication in the XPP. Supporting this hypothesis,

increasing callose deposition by expressing ectopically PDCB1

or CALS3 in the XPP (in estradiol-treated J0121>>cals3m)

increased LR density and reduced the spacing between initiated

primordia (Figures 6 and 7).

We propose that regulated intercellular connectivity plays a

central role in LR development specifically by influencing the

number and spatial organization of pericycle cells forming lateral

roots. This adds a facet to our understanding of LR organogen-

esis and patterning beyond the well-studied role of hormones. In

identifying that regulation of symplastic connectivity, by callose

turnover, is essential to LR patterning these data raise intriguing

questions relating to the nature of crosstalk between hormone

signaling and symplastic communication. PD connectivity might

regulate the non-cell-autonomous activity of auxin-inducible

factors, such as Target of MONOPTEROS 7 (Schlereth et al.,

2010). Interestingly, a role for MONOPTEROS/ARF5-dependent

pathways in the control of cell division and identity in the peri-

cycle has previously been described (De Smet et al., 2010).

Future work will address the intricacies of these mechanisms

that are fundamental to the establishment of optimal root archi-

tecture and for general plant performance.

EXPERIMENTAL PROCEDURES

Plant Material

Arabidopsis thaliana Columbia (Col-0) knockout lines were obtained for

PdBG1 (SAIL_389_H11), PdBG2 (SALK_046127), and PdBG3 (SALK_14587)

from the Nottingham Arabidopsis Stock Centre. We also obtained transposon

insertional mutants (insertions in the same orientation of the gene) in Ler

background from the Cold Spring Harbor Laboratory (http://genetrap.cshl.

edu/) and John Innes Centre SM lines collection for PdBG1 (GT_5_41639),
Deve
PdBG2 (GT10161), and PdBG3 (ET82). The pdbg1,2 double mutant, in Col

and Ler background, was generated by crossing the single mutant lines.

Primers for genotyping are in the Supplemental Experimental Procedures.

Seeds were sterilized and germinated in long day conditions on plates con-

taining MS medium. For estradiol induction, seedlings were germinated in

MSO (MSwithout sucrose) and transferred after 6 days to MSO supplemented

with 10 mM 17 b-estradiol. Lateral root phenotypes were evaluated at 24 hr,

48 hr, and 72 hr after treatment.

Generation of Transgenics

Transgenic seeds expressing pGATA23::GUS-nlsGFP, pSHR::SHR:GFP,

pSUC2::mGFP6, pAUX1::AUX1:YFP, and pDR5::3xVENUS were requested

(De Rybel et al., 2010; Brunoud et al., 2012; Benitez-Alfonso et al.,

2009; Nakajima et al., 2001; Swarup et al., 2004). Construction of the

p35S::mCherry-PDCB1 (PDCB1OE) has been described before (Simpson

et al., 2009). In all cases, expression of the constructs in mutant or overexpres-

sion background was achieved by crossing transgenic lines.

The inducible line J0121>>icals3m was obtained by introducing the

p6xUAS::icals3m expressed in a modified version of pER8 (an estrogen-

receptor-based chemical-inducible system) in the enhancer trap line J0121

(http://www.plantsci.cam.ac.uk/Haseloff/) as described elsewhere (Vatén

et al., 2011).

The syntheses of pAUX1-GFP as well as m-Citrine tagged constructs for

PdBG1 (At3g13560, accession number NM_202574), PdBG2 (At2g01630,

accession number NM_126224.2), and PdBG3 (At1g66250, accession number

NM_105296.2) are described in the Supplemental Experimental Procedures.

Construction of pPdBG1-GUS and pPdBG1-PdBG1-mCit are also described.

GUS Staining and Dye Loading

Standard protocols were used for GUS assays (Simpson et al., 2009). Stained

roots were mounted in chloral hydrate solution (1.3 g/ml chloral hydrate, 33%

glycerol) and visualized in a Leica DM 6000.

To assess symplastic permeability, 10-day-old roots were exposed to

50 mg/ml carboxyfluorescein diacetate (CFDA, Sigma) for 5 min and 30 min

and thoroughly washed with water before microscopy. Differences in dye

loading between PdBG1OE and wild-type were evident after 5 min staining.

Callose Staining, Immunolocalization, and Quantification

Protocols for callose detection using immunolocalization or aniline blue stain-

ing are provided in the Supplemental Experimental Procedures.

To analyze wound-induced callose, leaves were pierced with tweezers and

immediately infiltrated with aniline blue solution. For quantification, confocal

images of aniline blue-stained roots were taken at the same resolution

(pinhole) avoiding over-exposure. Regions of interest (ROI) were drawn in

comparable developmental areas containing LRP and/or immediately adja-

cent tissue and the mean gray value was determined using LAS AS Lite

Software. At least three independent replicates were used to calculate each

average and SD using M. Excel package.

Microscopy

For counterstaining, roots were briefly exposed to 0.1 mg/ml FM4-64

(Invitrogen) before microscopy. Confocal analysis was performed on a Leica

SP5 or Zeiss LSM510 confocal microscopes using a 488 nm excitation laser

for GFP, m-Citrine, and Alexa 488, the 405 nm laser for aniline blue fluoro-

chrome and DAPI, and 561 nm (DPSS) laser for mRFP and mCherry.

For anatomical, histological, and reporter gene analyses, 10-day-old roots

from vertically grown seedlings were used. Images were captured digitally

with a Leica DM6000 equipped with Nomarski optics (DIC) and analyzed

with the ImageJ software (http://rsbweb.nih.gov/ij).

Microprojectile Bombardment

Microprojectile bombardment assays were performed as described (Thomas

et al., 2008). Expanded 4- to 6-week-old leaves of relevant Arabidopsis lines

were bombarded with gold particles coated with pB7WG2.0.mRFP using a

Bio-Rad Biolostic PDS-1000/He Particle Delivery System. Bombardment sites

were imaged 24 hr postbombardment by confocal microscopy. Data were

collected for a total of 97 bombardment sites for each genotype from at least

three independent bombardment experiments, each of which consisted of
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leaves from at least two individual plants. Statistical Poisson regression

analysis was performed using GraphPad Prism version 5.04.

Statistical Analysis of Meristem Size, Lateral Root Density, and

Emergence Phenotypes

Cleared root preparations were characterized as described (Dubrovsky and

Forde, 2012). We recorded the total number of primordia and emerged lateral

roots (new meristems sticking out the main root) as well as total root length in

10-day-old seedlings to calculated density (number of lateral root initiation

events per mm of main root) and emergence (percentage of emerged lateral

roots from the total number of lateral root initiation events). To investigate

emergence phenotypes, we synchronized lateral root initiation by applying a

gravitropic stimulus (90� rotation of plates) to 3-day-old seedlings grown

vertically on 0.53 MS plates (Péret et al., 2012) and counted the number of

emerging (stage VII) primordia, in the outer edge of the bend, 42 hr after

gravistimulation. We measured root meristem size as the distance from the

QC to the end of cell division. p value was calculated using two-tailed

Student’s t test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.devcel.2013.06.010.
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Péret, B., De Rybel, B., Casimiro, I., Benková, E., Swarup, R., Laplaze, L.,
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