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ABSTRACT: We report the behavior of Au nanoparticles anchored onto a Si(111)
substrate and the evolution of the combined structure with annealing and oxidation. Au
nanoparticles, formed by annealing a Au film, appear to “float” upon a growing layer of
SiO, during oxidation at high temperature, yet they also tend to become partially
encapsulated by the growing silica layers. It is proposed that this occurs largely because of |
the differential growth rates of the silica layer on the silicon substrate between the particles
and below the particles due to limited access of oxygen to the latter. This in turn is due to a
combination of blockage of oxygen adsorption by the Au and limited oxygen diffusion
under the gold. We think that such behavior is likely to be seen for other metal—

semiconductor systems.

B INTRODUCTION

Thin layers and nanoparticles of metals on semiconductor or
oxide surfaces are of great importance in catalysis, semi-
conductor fabrication, sensors, and even in anticancer therapies
and nanotoxicology. In catalysis, for instance, such nano-
particles are often the active phase in the reactions involved and
gold, the subject of this paper, has become a focus of enormous
interest in catalysis in the last 20 years or so. Although it was
previously considered inert, Haruta"”* originally showed that
nanogold supported on TiO, or Fe,O; is the most active
material for low-temperature CO oxidation, and it has recently
been used for other important applications such as peroxide
synthesis3 and selective oxidation reactions.* Furthermore, a
major problem in catalysis is the stability of nanoparticles,
which is limited at elevated temperatures because of a variety of
ripening processes.

However, the behavior of nanoparticles is perhaps of even
greater importance for the huge technological area of
semiconductor devices and their fabrication. In this area, the
move over the last 30 years has been to compress more and
more power into the semiconductor-based chips involved, and
this is done by down-sizing the features well into the nano
regime. The discrete nature of Au nanoparticles also attracts a
lot of interest in the manufacturing of portable diagnostic
devices based on local surface plasmon resonance (LSPR).>® As
in catalysis, the integrity of such fine structures is crucial to
performance, and this integrity becomes more difficult to
maintain as the features become even smaller because of the
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increased relative importance of atomic diffusion and hence loss
of prefabricated structure. The work here relates to the integrity
of structures at the nanoscale and in particular to the effect of
thermal annealing in an oxidative environment on such
integrity. We believe that understanding the effect of thermal
treatment has important consequences for device manufacture
and may represent an opportunity to stabilize such structures
with respect to metal atom migration and sintering.

Previously we reported on the behavior of Au films and
nanoparticles on single-crystal alumina”® and showed that there
was little evidence of sintering, the film behavior being
dominated by dewetting above 400 °C and by thermal
evaporation above 1000 °C. In this work we look at the effect
of changing the substrate to single-crystal Si, and we report very
different behavior, especially in terms of the effect of thermal
treatment which results in partial encapsulation of Au
nanoparticles on the single-crystal Si.

B EXPERIMENTAL SECTION

Si(111) single-crystal of SN purity was used as a substrate and
was cleaned in the normal ways to produce a flat, particle-free
surface with only a native oxide present. The deposition of a
thin layer of Au onto the substrate was achieved by resistive
evaporation: a sample of Au wire was placed in a tungsten
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evaporation boat and mounted in a thermal resistive
evaporator. The film thickness was monitored during the
deposition process using a precalibrated crystal monitor, and
the thickness of the film used here was 15 nm. Heating of these
films was carried out in ambient air for two hours at various
temperatures as described below.

A cross-beam focus ion beam (FIB) system (Carl Zeiss, 1540
XB) was employed for cross-sectional cuts and imaging. It
comprises an ion beam column (OrseyPhysics) and a LEO
Gemini SEM column. The system is equipped with a gas
injection system (GIS) for local deposition or etching, an EDX
detector for compositional analysis, an electron backscattering
detector, scanning TEM detector, and Raith electron beam
lithography software and hardware. This system also has the
capability of real-time SEM observation during ion milling,

To study the morphology of the Au-SiO, film on Si, very fine
FIB cross-sectional cuts were made utilizing a Ga ion beam at
30 kV and 50 pA. To protect the top film surface during the ion
milling, Pt gas injection deposition was applied locally. In fact,
there are two types of deposited Pt (see Figure 3 for instance).
The first Pt layer is deposited by electron beam gas injection.
This is a thin layer, typically 30—80 nm, which serves as a
protective layer for the subsequent much thicker ion beam gas
injection deposition in which Ga ions are likely to cause
sputtering of the substrate. Usually, the electron-beam-
deposited Pt appears darker (because of the increased C
content) than the ion-beam-deposited layer.

SEM was employed for detailed observation of the evolution
of the Au-SiO, film. Because of the film (electron) sensitivity
and its poor conductivity, a low electron energy of 3 kV was
applied. The unique SEM “in lens” detector provided an
excellent (compositional and morphological) contrast, which
further facilitated this investigation. All SEM images are taken
at 36 degree tilt. For all measurements in the z direction, the tilt
compensation option of the SmartSEM software was applied to
obtain the correct measured values (e.g., the film depth).

AFM images were obtained using a Veeco Multimode with
Nanoscope IIla controller, with a contact mode tip, as the Si
surfaces were hard enough to withstand the force exerted by
this mode of operation. Image processing was carried out using
the WSxM package.”

B RESULTS AND DISCUSSSION

The gold was deposited by thermal evaporation onto a Si wafer,
covering it to a thickness of ~15 nm. X-ray photoelectron
spectra (XPS) analysis of the Si wafer without Au showed the
presence of the well-known native oxide layer'® on the surface
of the Si at ambient temperature. From the relative Si(IV):Si(0)
ratio in XPS, and an inelastic mean free path of 3 nm'® we can
estimate the thickness of this layer'' as ~1 nm, in agreement
with the literature.'> This layer is little changed by heating to
500 °C for two hours in ambient air, but at higher temperature
the oxidized layer begins to grow in thickness (this behavior can
also be seen in Figure 1).

The XPS from the Au-coated, unheated sample is shown in
Figure 1; the very weak Si(2p) signal is consistent with the
presence of a thick layer of Au with few pinholes. Insignificant
changes are observed with annealing up to 400 °C, but by 500
°C, the Au dewets from the silicon surface, as evidenced by the
appearance of the Si signal in the XPS data and the AFM data
shown below. Note that at this point the Si surface is still only
partially oxidized and is similar to the native oxide layer. The
spectrum changes after heating to 700 °C (Figure 1) with only
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Figure 1. X-ray photoelectron spectra of the Au-coated silicon sample
before and after the heating experiments, showing the Au(4f) and the
Si(2p) regions. There is only a very small Si signal before heating to
400 °C, indicating near complete coverage of the Si sample by Au, but
the substrate Si” signal appears at 500 °C, and is subsequently lost as it
is oxidized at higher temperatures, forming a thick SiO, interface.

a small Si(0) peak remaining at 99 eV and a large peak at 103
eV for Si(IV), indicating an oxide thickness of ~9 nm. By 900
°C, even this small Si(0) signal has disappeared because of
further thickening of the silica layer; however, the Au:total Si
peak height ratio is little changed, showing that minimal
changes in the Au film have occurred compared with the
sample annealed at 500 °C. However, large changes in this ratio
are seen in Figure 1 after heating to 1100 °C, with a significant
reduction in the relative Au signal. Resolving whether this is
due to (i) loss of Au from the surface, (i) sintering, or (iii)
some other cause is aided by the AFM imaging presented
below.

When gold is deposited, the AFM images show a smooth but
polycrystalline film on the surface (see Figure 1 of the
Supporting Information), and annealing the material to 400 °C
has little effect on this surface layer. However, once heated to
500 °C, the Au film dewets from the surface of the Si and forms
an array of nanoparticles. This layer is then reasonably stable,
showing little evident change in particle size distribution, even
up to 900 °C (Figure 2a), consistent with the minimal change
in Au:Si ratio in the XPS. The particles in Figure 2a have an
average size of ~300 nm (see Figure 2 of the Supporting
Information for the particle size distribution (PSD) analysis)
and are relatively flat-topped (see Figure 3 of the Supporting
Information for line profiles of the particles). However,
dramatic changes occur after heating to 1100 °C, as shown in
Figure 2b. At first glance, there appear to be far fewer particles
in the wide scan image, and they are apparently much smaller
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Figure 2. (a) AFM images of the sample that was annealed to 900 °C, showing the dewetting of the substrate to form Au nanoparticles. Image sizes
are 8.0 X 8.0 ym for the left panel and 3.3 X 3.3 um for the right panel. (b) AFM images of the sample which was annealed to 1100 °C, showing the
formation of the unusual structures. Image sizes are 10 X 10 gm for the left panel, 3.3 X 3.3 ym for the middle, and 1.1 X 1.1 gm for the right panel.
(c) 3D image of the surface annealed to 1100 °C (2.9 X 2.9 ym, maximum vertical height difference is 70 nm) showing both nanoparticles and raised

rampart structures.

than at the lower temperature. If we go to higher magnification,
however, we can discern that things are not so simple; the
presence of particles, doughnut shapes, and pits of various sizes
are seen dotted around the surface. In fact, when we examine
the image at size 3.3 ym we can determine that the number of
such features in the image is approximately the same as the
particles in the image of Figure 2a. Figure 2c shows a three-
dimensional (3D) representation of part of the surface, showing
the presence of “volcano-like” structures; line scans of some of
these structures are shown in Figure 4 of the Supporting
Information, confirming these structural features. However, we
must remember that AFM images of this sort exaggerate the z-
direction because of the z-sensitivity of SPM techniques used to
represent surface profiles at the ultrananoscale, so in reality
these are more like central depressions in the surface
surrounded by nanosized ramparts. In many cases there are
raised regions inside the rampart, which equate with the
presence of nanoparticles. The presence of gold nanoparticles is
confirmed from the significant Au signal in the XPS spectrum
after heating to 1100 °C (Figure 1). Note that this behavior is

quite different from that observed on single-crystal alumina,
which does not oxidize upon heating.”®

To understand more fully the changes that have occurred on
the surface and especially beneath the surface after annealing
we employed SEM. This is carried out within the SEM/FIB
system described above. Figure 3a shows an SEM image of the
surface after annealing to 1100 °C. The difference between this
and the AFM image is that more Au nanoparticles are evident
(the bright features) because of the differences in the imaging
mechanism, as described below. It is quite clear that the
particles are generally in a “pit”, and the silica surface is raised
around the pit openings. Note that this image was taken with
an angle between the electron beam and the surface of 36° with
respect to the surface normal. This gives the image a somewhat
strange appearance—that is, many particles appear to be in the
side-wall of the pit. This is because the electron beam
penetrates the pit-wall and can “see” the nanoparticle inside,
giving a ghost image of the particle inside the hole. Note that
the penetration depth (the inelastic mean free path) of the
electron beam at these energies (3 keV) is ~7 nm (ref 10), and
so particles can scatter the beam through parts of the wall of
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Figure 3. SEM images of the surface after annealing to 1100 °C. The
top left image (a) is a standard one, whereas the top right image (b) is
of a section of the surface cut from the sample using FIB and then
raised above the original surface level for inspection. The lower image
() is a magnification of part of the upper right image. In the latter, the
two different layers of Pt described in the Experimental Section can be
seen above the SiO, interface; these are deposited to aid in the
fabrication process.

about this thickness and lower. These data indicate that there is
neither a significant loss of Au from the surface, nor is sintering
very evident. Therefore, option (iii) above applies, that is, there
is some other cause for the reduction in Au signal in XPS after
annealing to 1100 °C. The reduction in Au signal in the XPS
between 900 and 1100 °C is likely to be due to the partial
encapsulation of the Au particles

Figure 3b shows an SEM image of a surface cross-sectional
profile. An FIB slicing cut was made at 90 degrees toward the
surface, and the subsequent SEM imaging was taken at 36
degrees (toward the surface) allowing observation of the
produced cross sections. Because the tilt compensation option
of SmartSEM software was applied, there is no distortion of the
cross-sectional images. Here we can get further insight into the
processes taking place in the solid when annealing in air. We
can see the thickness of the silica layer produced by oxidation at
1100 °C is ~230 nm, fitting in very well with the original data
of Deal and Grove'? for Si oxidation. This is much greater than
the inelastic mean free path of the Si(2p) photoelectrons,
explaining why no Si(0) signal is seen in Figure 1 after
annealing to 1100 °C; this layer is evidently already thickening
by 900 °C. It is clear from Figure 3b that the Au particles have
become surrounded, to varying degrees, by SiO, and that this
tends to grow around the particle, as illustrated in Figure 4. It
appears, perhaps unsurprisingly, that smaller particles are more
“buried” by SiO,. However, also note that none of the particles
in these images ever seem to be fully covered; a channel always
remains to the outer surface. As impressive Figure 3b is, we
must remember that it is a slice through a random arrangement
of particles, that is, the cross sections of the particles we see are
not likely to be through the exact center of the particles imaged.

Clearly, SiO, is growing on the original surface during
oxidation as seen by the increase in the Si(2p) signal for Si(IV)
at 103 eV. Note that the density of Si and SiO, are almost
identical (2.33 and ~2.4 g cm™>, respectively).'* As a result of
the oxidation, there is a volume expansion of 2.16 because the
molecular density of SiO, is 2.3 X 10** molecules/cm® and the
atomic density of Si is 5.0 X 10** atoms/cm?; this growth is
illustrated in Figure 4a. It is known that the oxidation of Si
proceeds by diffusion of oxygen through the already-present
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Figure 4. Schematic diagram of the oxidation of the Si crystal (shown
in red) in the absence (a) and presence (b) of Au nanoparticles. In (a),
as oxidation proceeds, the SiO, layer (shown in green) grows, and this
must occur by net transport of Si outward from the original surface.
Because the density of the two phases is similar, but the SiO, layer is
about 50% as dense in Si as the Si crystal itself, the SiO, layer grows
both out from the original surface plane and down from that layer into
the bulk. When nanoparticles are present (b), here showing a smaller
and a larger nanoparticle, then the tendency is for them to “float” on
the growing SiO, and also to become encapsulated to different
degrees. However, the real situation with the particles is even more
complicated than this simple picture (see text and Figure S below).

oxide layer to the interface with the underlying Si where
reaction takes place.'>'® So we need to consider what happens
to the Au particles when they are present on the surface as we
oxidize the sample. A priori we might have imagined three
scenarios: (1) the Au floats on top of the growing SiO, layer
and remains entirely at the surface; (2) the Au remains
anchored close to the original Si surface and becomes buried by
growing SiO, (Figure 4b); (3) some mixture of these behaviors.
At first, it might appear that possibility (1) is eliminated
because of the evidence of the partial burial of the nanoparticles
seen in AFM and SEM images. It would seem therefore that
possibility (2) is the correct explanation. However, if that were
the case, the particles should be located at approximately the
original surface level, that is, about half-way through the oxide,
because the particles were originally formed near this surface. It
is apparent that the particles are much nearer to the surface of
the oxide than that, yet they are at least partly buried in oxide.
The amount of oxide under the Au particles is ~200 nm,
whereas there is ~35 nm above the bottom of the particles.
Thus, it appears that possibilty (3) is the case, though with
behavior of (1) playing the dominant role.

Oxidation of the Si surface occurs at the interface between
the two by the diffusion of oxygen through the oxide layer as
described in the seminal paper by Deal and Grove in which
they derived the widely accepted model for this process.'> The
oxide builds in a layer-by-layer fashion, from the interface,
leading to contraction of the Si/SiO, interface inward and the
expansion of the oxide surface outward, with each new oxide
layer underpinning the ones formed before (above) it.
Effectively, there is a net flux of Si upward toward the growing
surface and net transport of oxygen inward below the original
surface layer, as schematically illustrated in Figure 4. Thus, a Au
nanoparticle remains anchored to the oxide layer to which it
was originally attached, and so does indeed float on the growing
layers, emanating from the Si interface underneath (Figure 4b).
How then do we explain the fact that the particles become
buried (at least partially)? We believe that this occurs because
of simple blocking of oxygen adsorption onto the surface by the
presence of the gold particles. It is known that gold does not
readily oxidize with molecular oxygen because of the only
weakly exothermic heat of formation of gold oxide'®'"” and its
endergonic free energy of formation. This results in a normal
growth rate of SiO, in the parts of the surface which are
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exposed to the gas phase, but a reduced growth directly
underneath the particles themselves, as illustrated in Figure S.

Lo AL

Figure 5. Schematic of the overgrowth mechanism of SiO, over the Au
nanoparticles. Partial burial of the nanoparticles is due to the reduced
supply of oxygen to the area underneath the nanoparticle (1). The
“ramparts” (2) around the gold nanoparticles are due to the increased
flux of oxygen at the edges of the particles by scattering from the gold
(3). The SiO, layer appears not to wet the Au nanoparticles
completely (4); the reasons for the holes being left in the surface
above the small nanoparticles is discussed in the text.

Hence, the silica layer grows around and over the particles.
However, the growth rate is only partly reduced, because the
Au particles are lifted a considerable distance from the original
surface position on the silica layer growing underneath them.
This implies that there is significant lateral oxygen diffusion, so
that it can access the regions underneath the particle, but that
the flux there is reduced somewhat. It is likely that the effect is
most marked at the beginning of oxidation (when there is little
space for lateral diffusion of oxygen underneath the Au
particles). The difference in oxidation rates between areas
remote from the particle and directly under the particle
probably diminishes as oxidation proceeds because the
difference in vertical displacement of the top SiO, layers
away from the Si interface and that same distance underneath
the Au becomes small.

There are a couple questions that require further
consideration. (i) Why are there raised areas of oxide at the
periphery of the Au particles? (ii) Why are there holes above
even the smallest Au particles?

Regarding (i), it is likely due to the process illustrated in
Figure 5, that is, the net flux of oxygen from the gas phase in
the immediate vicinity of the Au particle is a little higher than
that elsewhere because of an enhanced scattering flux from the
Au particles in that area. In other words, the effective pressure
adjacent to the particles is higher than that further away from
them. This process is also illustrated in Figure 5. There also
appears to be a negative interaction between the SiO, and the
Au, indicated by the acute wetting angle, which leads to a
depletion of SiO, immediately next to the particle. Therefore,
additional oxidized material is built up slightly further from the
particle, leading to the distinctive doughnut shapes seen in the
AFM images of Figure 2 and SEM images of Figure 3.

Question (ii) above is rather more difficult to understand.
Complete burial of the particles does not occur, as seen in the
SEM and AFM images. On the contrary, there is a lot of
evidence of the “ring and ditch” structures with Au particles
present in the middle of holes in the surface, which is especially
evident in the SEM images. So why is this hole always left? It
could be related to the nonwettability of the Au surface with
respect to the silica mentioned above. Alternatively, it may
simply be that the silica growth occurs generally in a linear
manner with the growth mainly in the vertical direction, so a
hole is left where this cannot occur. Again, this may be
especially important in the initial stages of growth in which the
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oxidation is driven by large potential difference gradients
perpendicular to the surface, as described originally by Cabrera
and Mott,"* which slow the process considerably after that
stage, leaving the particle in a hole. At present we cannot say
which of these processes is dominant.

These findings would benefit from an extension to other
metal nanoparticle—oxide growth systems. We believe it will be
discovered for a number of other metal-oxide—semiconductor
junctions for which the semiconductor can be oxidized (e.g.,
Pt—GaAs). These phenomena are of considerable relevance to
the semiconductor fabrication industry, especially at a time
when devices, and especially metal contacts and wires, are
becoming ever smaller in the nanosize range. Si oxidation
processes occur around such structures. The processes
described here may represent an opportunity for the controlled
stabilization of nanostructures of this kind. Even for catalysis,
where the nanoparticles used are generally much smaller than
those discussed here, such partial encapsulation could represent
a way of stabilizing small particles against sintering.

B ASSOCIATED CONTENT
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AFM images with line scans over particles and particle size
distributions, linking with the figures and discussions in the
main text. This material is available free of charge via the
Internet at http://pubs.acs.org.
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