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Abstract—In many power systems, in particular in Great
Britain (GB), significant wind generation is anticipated and
gas-fired generation will continue to play an important role.
Gas-fired generating units act as a link between the gas and
electricity networks. The variability of wind power is, therefore,
transferred to the gas network by influencing the gas demand for
electricity generation. Operation of a GB integrated gas and elec-
tricity network considering the uncertainty in wind power forecast
was investigated using three operational planning methods: de-
terministic, two-stage stochastic programming, and multistage
stochastic programming. These methods were benchmarked
against a perfect foresight model which has no uncertainty
associated with the wind power forecast. In all the methods,
thermal generators were controlled through an integrated unit
commitment and economic dispatch algorithm that used mixed
integer programming. The nonlinear characteristics of the gas
network, including the gas flow along pipes and the operation of
compressors, were taken into account and the resultant nonlinear
problem was solved using successive linear programming. The
operational strategies determined by the stochastic programming
methods showed reductions of the operational costs compared to
the solution of the deterministic method by almost 1%. Also, using
the stochastic programming methods to schedule the thermal
units was shown to make a better use of pumped storage plants to
mitigate the variability and uncertainty of the net demand.

Index Terms—Integrated gas and electricity network, stochastic
programming, wind power forecast uncertainty.

NOMENCLATURE

Constants

Gas constant for natural gas (518 J/kgK).

Gas compressibility factor (0.95).

Reynolds number.

Superscripts

Gas injection.

Gas withdrawal.
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Wind power.

Spot price.

Unserved electricity.

Unserved gas.

Startup.

Shutdown.

Fuel cost of power generation.

Variable (nonfuel) cost of power generation.

Scenarios.

Average value of a variable.

Standard condition for gas.

Subscripts

Time.

Gas storage facility.

Electrical busbar.

Power generator.

Gas node.

Gas pipe.

Gas terminal.

Gas compressor.

Transmission line.

Thermal generator.

Parameters

Cross-sectional area of a pipe m .

Diameter of a pipe (m).

The probability of a wind power forecast scenario
(%).

Cost .

Gas temperature .

Gas density, assuming standard conditions
kg/m .

Friction factor in a pipe.

Volume of a pipe m .

Polytropic exponent of a gas compressor (1.27).

Gas turbine fuel rate coefficient of a compressor
(0.084 m MJ).
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Efficiency (%).

Expected value of a function.

Maximum generation capacity of a unit (MW).

Minimum power generation of a unit (MW).

Cool-down time .

Maximum cold startup cost .

Percentage of wind generation contributing to
spinning reserve requirements (%).

Minimum reserve requirement to support
generators outages and forecast errors in electricity
demand (MW).

Minimum uptime for thermal units .

Minimum downtime for thermal units .

Maximum power ramp-up (MW/h).

Maximum power ramp-down (MW/h).

Compressor pressure ratio.

Gas heating value (39 MJ/m ).

Variables

Electrical power (MW).

Gas pressure (Pascal).

Volumetric gas flow rate m s .

Linepack changes m s .

Gas linepack m .

Amount of gas tapped by a compressor m s .

Gas storage level .

ON/OFF state of a thermal unit (1/0).

Spinning reserve (MW).

Stored energy in a pumped storage unit (MWh).

I. INTRODUCTION

A S THE fraction of wind power generation in a power
system increases, it becomes important to take account of

the wind variability and the uncertainty in the forecasts of wind
power.
Several studies have examined the effect of uncertainty in

wind power forecasts on unit commitment. Carpentier et al.
[1] presented a stochastic decomposition method to deal with
large-scale unit commitment. Wang et al. [2] presented a secu-
rity-constrained unit commitment algorithm to take into account
the intermittency and uncertainty of wind power generation. In
[3], a particle swarm optimization technique was used to solve a
stochastic cost model considering load and wind power uncer-
tainties. Gonzalez et al. [4] formulated a two-stage stochastic
programming model to optimize the combined operation of a
wind farm and a pumped storage facility in a market environ-
ment with wind generation and electricity price uncertainties.
Bouffard and Galiana [5] formulated a short-term forward elec-
tricity market-clearing model for nondispatchable and variable
wind power generation sources. Tuohy et al. [6] examined the

effects of uncertain wind and load on the unit commitment and
dispatch of power systems with high levels of wind power gen-
eration. Methaprayoon et al. [7] developed an artificial neural
network model to generate uncertain wind power forecasts. This
model was integrated into unit commitment scheduling.
Given the strong linkage between gas and electricity net-

works in Great Britain (GB), the ability of the power system to
meet the uncertain net demand is affected by performance of
the gas network [8]–[10]. Although the storage capacity of the
gas transmission network provides a buffer to compensate for
demand variations to a degree, gas supply and pressure in the
network need to be adjusted to cope with more extreme cases.
Therefore, modeling the integrated network using stochastic
programming allows improved unit scheduling decisions to be
made.
An integrated model of gas and electricity networks was de-

veloped to take into account the uncertainty in wind power fore-
cast and fuel availability to gas-fired generators. The uncertainty
in the forecasts of electricity demand is significantly less than
that of wind power; therefore, in this research, only the uncer-
tainty of wind power forecasts are considered.

II. OPERATIONAL PLANNING METHODS TO ADDRESS
UNCERTAINTY IN WIND POWER FORECASTS

The uncertainty in wind power forecast was addressed
using three operational planning methods: deterministic (DM),
two-stage stochastic programming (TSM), and multistage
stochastic programming (MSM). These methods were bench-
marked against a perfect foresight method (PFM) which has
no uncertainty associated with the wind power forecast. The
fundamental theories of stochastic programming are described
within [11].
DeterministicMethod (DM): In the deterministic method, the

decision on the day-ahead unit commitment was made using a
single point wind power forecast. In order to compensate for any
deviation of the wind power outturn from the single point fore-
cast, a predetermined level of spinning reserve was maintained.
Then given the committed units, economic dispatch decisions
were determined for possible outturns of wind power (forecast
scenarios). The reason for using the wind power forecast sce-
narios in making economic dispatch decisions is to take into
account different possibilities of wind power outturn when the
expected cost of operating the system is calculated.
Two-Stage Stochastic Method (TSM): In the two-stage sto-

chastic programming method, probabilistic wind power fore-
cast scenarios were used. In the first stage of decision making,
a unit commitment decision was made for the whole operating
horizon (day-ahead scheduling) considering different possibili-
ties of wind power outturn. Then in the second stage, economic
dispatch decisions were made for the possible outturns of wind
power.
Multistage Stochastic Method (MSM): In the multistage sto-

chastic programming method, probabilistic wind power fore-
cast scenarios were used. The MSM allows for making multiple
day-ahead unit commitment decisions. There is a day-ahead unit
commitment decision for each forecast scenario. Nonanticipa-
tivity constraints ensure that the decisions for different forecast
scenarios are the same for the period when the forecast scenarios
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TABLE I
WIND POWER FORECAST DATA USED BY OPERATIONAL PLANNING METHODS FOR UNIT COMMITMENT AND ECONOMIC DISPATCH DECISION-MAKING PROCESS

have not branched out yet. Therefore, in the MSM for each wind
power forecast scenario, a unit commitment and an economic
dispatch decision were made. In practice, when the uncertain-
ties associated with wind power forecast are gradually observed,
the appropriate unit commitment and economic dispatch deci-
sions, that have already been made, will be adjusted.
The main difference between the above methods is the way

that unit commitment and economic dispatch decisions were
made. Given a single wind power forecast and probabilistic
wind power forecast scenarios, the decision-making process
of a system operator, in the presence of the uncertainty in
wind power, was modeled using different operational planning
methods. The type of wind power forecast (single forecast and
probabilistic forecast scenarios) used by the above operational
planning methods, along with the form of unit commitment and
economic dispatch solutions (single set of solution and multiple
sets of solutions), are shown in Table I.

III. MODELING OF THE GB INTEGRATED GAS AND
ELECTRICITY NETWORK

In this section, the modeling of the GB integrated gas and
electricity network is presented. Themodelingwas implemented
using the Fico Xpress Optimization suite. The structure used for
the model is shown in Fig. 1. This structure consists of two sep-
arate parts: a mixed integer linear programming (MILP) model
for the electricity network (including unit commitment, eco-
nomic dispatch, and load flow) and a nonlinear programming
(NLP)model for the gas network. The electricity networkmodel
is solved first using a branch and bound algorithm. The results
are used to determine the gas demand for electricity generation
for use within the gas model. The gas network problem is then
solved using successive linear programming (SLP).
The solution of the gas network model is then checked to

make sure there is no gas load shedding due to additional gas
demand from gas-fired generators. In the case when gas load
shedding does occur, a heuristic method is used to constrain the
power output from the gas-fired generators, and the electricity
and gas models are run repeatedly until a feasible solution is
obtained. From the optimization perspective, the solution is not
globally optimal, since the optimization problems for gas and
electricity networks are not treated as one problem. However,
the structure replicates the way that the GB gas and electricity
networks are operated. In practice, operation of these networks
are optimized separately with the gas network supplying gas to
gas-fired plants until it is not feasible to do so.

Fig. 1. Structure of the integrated gas and electricity network model.

The mixed integer linear optimization problem of the elec-
tricity network was solved using a branch and bound algorithm.
The nonlinear optimization problem of the gas network was
solved using successive linear programming (SLP).

A. Objective Function

Equation (1) shows the expected operational cost of the
electricity network which consists of fuel and variable costs
of power generation, cost of unserved electricity, startup and
shutdown costs of thermal generating units. Equation (2) shows
the expected operational cost of the gas network which consists
of cost of gas supply from terminals, costs of gas injection into
and withdrawal from gas storage facilities, cost of gas provided
by linepack, and cost of unserved gas.
The objective function is to minimize the summation of the

expected costs of gas and electricity networks (3):

(1)
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(2)

(3)

Superscript represents scenarios of the probabilistic wind
power forecast.

B. Electricity Network

1) Power Balance Constraint: The power balance constraint
requires that the total generation is equal to the total demand
minus the load shed at each time step

(4)

2) Power Generation: Electrical power generation is kept
within the physical limits of the generating units

(5)

3) Ramp Rate Constraints: Power generators cannot ramp
up or ramp down instantaneously. Therefore, the following con-
straints were imposed within the model:

(6)

(7)

4) Power Transmission: The electricity network was mod-
eled using a dc power flow [12], [13]. The power transmission
along each line was constrained by defining a maximum trans-
mission capacity

(8)

5) Startup Cost: The startup cost of a thermal generating unit
depends on its downtime; this will vary from a maximum cold
start value to a much smaller value when the generating unit
is still relatively close to its operating temperature. A typical
startup cost function for a thermal generating unit has an expo-
nential form [14]. Because the time step in this study is discrete,
the exponential startup cost was approximated by using the step-
wise function shown by Fig. 2.
The startup cost of thermal generating units was modeled

using (9), as follows [15]:

(9)

where are fixed cost coefficients
derived from the stepwise form of the startup cost function. The
discretized startup costs for thermal generating units are shown
in Table II, and were assumed to be the same for different tech-
nologies and capacities.
6) Shutdown Cost: A constant shutdown cost of 1000

[16] was assumed for thermal generating units

(10)

to model the waste of fuel when a unit is brought offline [14].

Fig. 2. Discretized startup cost for thermal generating units. The horizontal
axes shows time length in which a thermal generating unit remained OFF, before
starting up.

TABLE II
DISCRETIZED STARTUP COSTS FOR THERMAL GENERATING UNITS [16]

Fig. 3. Linear approximation of part-load efficiency for thermal generating
units.

7) Part-Load Efficiency: The impact of part-load efficiency
on the generation cost of thermal generating units was taken into
account . For the sake of simplicity, the part-load
efficiency was modeled using a linear approximation depicted
in Fig. 3 [17].
It was assumed that efficiency of thermal generating units

vary with their power output. Minimum and maximum efficien-
cies of different thermal generating units are shown in Table III.
8) Spinning Reserve: Spinning reserve is used to control the

frequency and to maintain the balance between power demand
and supply at all times. The amount of available spinning reserve
is equal to the unused capacity of synchronized generatorswhich
can be dispatched immediately upon decision of the system op-
erator. The minimum spinning reserve requirement varies in
different systems. In conventional systems, the required amount
of spinning reserve is usually equal to the capacity of the largest
generator, or a certain percentage of the peak load.
When using a deterministic approach, a higher level of

reserve is required to deal with uncertainties within the wind
power forecast. The reserve requirement equation shown in
(11) consists of two parts representing reserve requirement for
generating unit outages and uncertainty in wind forecast:

(11)



132 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 5, NO. 1, JANUARY 2014

TABLE III
EFFICIENCIES [17] AND COSTS [21] FOR DIFFERENT GENERATION UNITS.

COMBINED CYCLE GAS TURBINE. OPEN CYCLE GAS TURBINE

TABLE IV
MINIMUM UPTIME/DOWNTIME, COOL-DOWN TIME, AND RAMP UP/DOWN

DATA FOR DIFFERENT THERMAL GENERATING UNITS [17]

where

(12)

In the stochastic programming methods, the uncertainties of
wind forecasts are taken into account implicitly through rep-
resentative wind forecast scenarios. Therefore, the reserve re-
quirement in the stochastic programming methods was consid-
ered only for generating units outages where .
9) Minimum Uptime and Downtime: When a thermal gener-

ating unit is up or down it must remain so for minimum and
periods, respectively. Minimum up/down constraints were

implemented using [15]

(13)

(14)

Minimum up/down time as well as ramp up/down data for
different thermal generating units are shown in Table IV.
10) Pumped Storage Plant: The dynamic behavior of

pumped storage units was modeled by defining the storage
level of equivalent electrical energy

(15)

and by the constraints upon pumped storage power generation

(16)

where is pumping efficiency, is pumping power,
and is the length of time step which is one hour in this study.

C. Gas Network

The components of the gas network modeled were the
pipelines, compressors, storage facilities, and gas terminals.
More details about modeling of a gas network can be found in

[18] and [19]. The balance of total gas supply and demand at
each time step was satisfied

(17)
1) Gas Flow in a Pipe: The gas flow rate within each pipe

was determined by the pressure difference between upstream
and downstream nodes

(18)
where subscripts up and down refer to the upstream and down-
stream nodes of pipe , and is length of the pipe. The “Pan-
handle A” implementation of the friction factor for high
pressure networks Pascal was used.
2) Gas Storage: The amount of gas stored in a storage fa-

cility at each time step was constrained using

(19)

where and are gas withdrawal and injection, and con-
strained through (20) and (21), respectively:

(20)

(21)

3) Gas Compressor: Compressors are used in the gas trans-
mission network to boost network pressure and thus ensure gas
delivery to each demand node. The power required by the com-
pressor prime-mover is calculated by [18]

(22)

where superscripts in and out refer to the inlet and outlet of the
compressor.
In practice, performance of a compressor is restricted by the

pressure ratio (23), flow capacity (24), and maximum power
(25):

(23)

(24)

(25)

The amount of gas tapped by the compressor as fuel was ap-
proximated by [20]

(26)

4) Gas Network Linepack: Linepack refers to the volume
of gas stored within a pipe and is a key factor that affects the
ability of a network to supply gas to demand nodes, i.e., a highly
packed pipe allows fluctuations in demand to be met locally as
gas supply from a distant source will take time (typically hours)
to reach its intended destination.
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The linepack of a pipe when the gas flow is in steady state is
calculated using

(27)

This illustrates that pipe linepack is proportional to the average
pressure within the pipe, so that an increase of average pressure
will increase the linepack and vice versa.
The gas density and gas temperature under stan-

dard condition are 0.713 kg/m and 288 K. Under dynamic
situations, the gas flow into and out of a pipe fluctuates with
changing supply and demand. According to the law of conser-
vation of mass, the change of total gas volume is equal to the
difference between the flow into and out of the pipe. Thus, (27)
is changed to

(28)

where the initial gas stored in the pipe is calculated by
(27) in the steady state condition, and superscripts in and out
refer to gas flows into and out of a pipe.

D. Linkage Between Gas and Electricity Networks

Gas turbine generators link the gas and electricity networks.
For the gas network, a gas turbine was looked upon as a gas
load. Its value depends on the power output of the gas turbine.
In the electricity network, the gas turbine generator is a source.
The relationship between the gas fuel flow and the real electrical
power generated is expressed as

(29)

IV. CASE STUDY

A. Integrated Gas and Electricity Network

The simplified electricity and gas networks for GB, shown in
Figs. 4 and 5, were modeled. The networks are linked together
through gas-fired generators. Electricity and gas demand profile
are shown in Figs. 6 and 7. The capacity of generating units at
different locations are shown in Table V. The capacity of the
power transmission lines are shown in Table VI.
The variable nonfuel operating cost and fuel cost for different

technologies are shown in Table III. For thermal units, fuel cost
data is based on their maximum efficiency.

B. Probabilistic Wind Power Forecasts

Different steps of producing probabilistic wind power fore-
casts are shown in Fig. 8. A single wind power forecast was
calculated using the singular spectrum analysis (SSA) technique
[24]. Given the forecast errors of the aggregated outputs of the
wind farms [25], lower and upper limits were determined for
each time step where the wind power outturn is most likely to

Fig. 4. GB 16 busbars electricity network. The load locates at all the busbars
except Bus8 and Bus11.

fall within this range. Then a large number of random forecasts
were generated within the lower and upper bounds using Monte
Carlo simulation. It is worth noting that using the wider fore-
cast error bounds improves the effectiveness of the stochastic
programming methods.
It is very difficult to numerically obtain a solution for a

stochastic optimization problem using the large number of
wind power forecast scenarios [26]. On the other hand, a
small number of wind power forecast scenarios provides less
information about the possible wind power outturns. In order to
address the above issues, a large number of wind power fore-
cast scenarios were generated, and then a scenario reduction
algorithm was applied to merge the forecast scenarios that are
very close together.
Fig. 9 shows the result of applying the scenario reduction

algorithm [27] on the 1000 initial scenarios. The initial 1000
scenarios were reduced to 5 representative forecast scenarios
shown in Fig. 10.
The stability of the scenario reduction algorithm was tested

using a two-stage stochastic model for electricity network. The
model was run several times with different numbers of fore-
cast scenarios and then the operational costs were compared
(Fig. 11).
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Fig. 5. Simplified GB gas network.

Fig. 6. Hourly electricity demand.

V. RESULTS

A. Level of Spinning Reserve Used in the Deterministic
Method (DM)

Dealing with the wind power uncertainty in the deterministic
model necessitates the allocation of extra spinning reserve.
Spinning reserve requirement for the single point wind power
forecast (Fig. 10) for different values of [see (11)] are shown
in Fig. 12. Impacts of applying different levels of spinning
reserve on the operational cost of the electricity network are
shown in Table VII.

Fig. 7. Hourly gas demand for nonpower sectors.

TABLE V
CAPACITY OF POWER GENERATION AT DIFFERENT LOCATIONS (GW) [22]

TABLE VI
MAXIMUM CAPACITY OF INTERCONNECTING GB TRANSMISSION CIRCUIT

In this research, 20% was considered to be an acceptable
value for , due to providing reliable levels of reserve [28],
[29] at reasonable operational costs. Therefore, results from the
deterministic method with was compared to the re-
sults from the other methods.

B. Power Generation

Energy output from different types of generators for the per-
fect foresight method is shown in Fig. 13. Changes of electrical
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Fig. 8. Algorithm for producing probabilistic wind power forecasts.

Fig. 9. Different number of wind power forecast scenarios derived by applying
the scenario reduction algorithm on 1000 randomly generated scenarios. is
the number of wind power forecast scenarios.

Fig. 10. Probabilistic wind power forecast scenarios and the single point fore-
cast. represents the probability of the th forecast scenario.

energy generation, over the time horizon, from different tech-
nologies for different methods with respect to the results from
the PFM are shown in Fig. 14. In the stochastic programming

Fig. 11. Comparison between operational cost of the electricity network for
different number of forecast scenarios. This comparison was done to test the
stability of a scenario reduction algorithm.

Fig. 12. Spinning reserve requirement for 10%, 20%, and 30%.

TABLE VII
OPERATIONAL COST OF ELECTRICITY NETWORK OVER

A DAY FOR 10%, 20%, AND 30%

methods, the nuclear power plants operate at their maximum ca-
pacity over the time horizon. This is due to the lower generation
costs of these plants. In the deterministic method, the energy
production from nuclear plants was slightly lower than the re-
sults from the other methods. Although, the nuclear plants are
the cheapest option to meet the demand, more thermal genera-
tors came online in order to provide spinning reserve required.
In DM, the electrical energy produced by thermal generation

units was less than the output from the same units in the other
methods. This is because less energy was consumed by pumped
storage plants to fill the reservoirs.
A number of committed thermal units are shown in Fig. 16.

In the PFM, fewer units are committed since there is no need
to provide reserve to compensate for the uncertainty associated
with the wind power forecast.



136 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 5, NO. 1, JANUARY 2014

Fig. 13. Power output from different types of generator for the perfect foresight
method. Including Biomass, CHP, and Hydro. Pumped Storage.

Fig. 14. Changes in expected electrical energy production from different types
of generation units in various methods with respect to the energy production in
PFM.

Fig. 15. Total electrical energy used for water pumping, and electrical energy
produced by pumped storages units in the PFM.

Provision of spinning reserve capacity to compensate for the
uncertainty of wind power forecast resulted in a larger number
of committed thermal units in DM. Total electrical energy
output, pumping energy, and level of storage for pumped
storage plants in the perfect foresight method is shown in
Fig. 15.
For the multistage stochastic programming method, there is a

unit commitment solution for each forecast scenario (Fig. 17).

Fig. 16. Number of committed thermal units obtained from PFM, DM, and
TSM.

Fig. 17. Number of committed thermal units in various scenarios of the MSM.

C. Gas Network Operation

The analysis of operation of the gas network showed that no
load shedding occurred in any of the methods applied. However,
in order to deal with the uncertainty of gas demand for power
generation, in the deterministic method, higher gas pressure was
maintained in the network to increase the linepack [see (27)] and
make the network capable of meeting any deviation from the
expected gas demand for power generation, locally. The higher
pressure of the gas network is the result of the excessive opera-
tion of the compressors and has cost implications. The average
linepack of the gas network and the total gas consumption by
compressors are shown in Table VIII.
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TABLE VIII
AVERAGE LINEPACK OF THE GAS NETWORK AND THE TOTAL GAS

CONSUMPTION BY COMPRESSORS (MCM)

Fig. 18. Operational costs of the electricity network.

Fig. 19. Total operational costs of the combined network.

TABLE IX
COMPUTATIONAL TIME AND MIP GAP FOR DIFFERENT

OPERATIONAL PLANNING METHODS

D. Operational Costs of the Integrated Network

The operational costs obtained from different methods are
shown in Figs. 18 and 19, for the electricity network and the in-
tegrated network, respectively. Operational cost of the gas net-
work contributed almost 60% of the total cost. In addition to
the gas supplied to the gas-fired generators, 275 mcm gas was
supplied to the nonpower sectors. The expected value of perfect
information (EVPI) was approximated to be equal to 1 mil-
lion for DM. The value of the stochastic solution (VSS) for TSM
and MSM are 0.7 million and 0.8 million pounds, re-
spectively. The operational costs saving due to application of
stochastic methods to schedule the GB gas and electricity net-
work was calculated to be at least 255 million pounds in a year.
The computational times for each method are shown in

Table IX. The experiments were executed on a laptop with
i7-2640M CPU @ 2.80 GHz and 8 GB RAM. The mixed
integer programming gap (MIP gap) of 0.8% was achieved in
all the methods.

VI. CONCLUSION

Operation of the GB integrated gas and electricity network
considering the uncertainty in wind power forecast was investi-
gated using three operational planning methods: deterministic,
two-stage stochastic programming, and multistage stochastic
programming. These methods were benchmarked against a per-
fect foresight model which has no uncertainty associated with
wind power forecast.
Comparison between the results obtained from different

methods showed better performance of the integrated networks
occurs when the stochastic programming methods were used.
The use of the stochastic methods reduced the operational costs
of the gas and electricity networks by almost 1%.
Gas supply constraints to the gas-fired generation units were

taken into account through integrating a detailed gas network
model to a unit commitment-electricity load flow model. The
integrated gas and electricity network was also useful to analyze
the impacts of wind forecast uncertainty on performance of the
gas network.
The multistage stochastic programming, two-stage stochastic

programming, and deterministic methods proposed the least ex-
pensive operational strategies for the integrated gas and elec-
tricity networks, respectively. The multistage stochastic pro-
gramming method allows a system operator to improve the unit
commitment and economic dispatch decisions at every time step
given the constraints link the current state of the systems to the
previous’ and also take into account the remaining future un-
certainties. This characteristic makes this method a useful ap-
proach for scheduling thermal generating units and operating
the system in a day-ahead and intraday electricity markets.
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