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Summary 

 

Tuberous sclerosis is an autosomal dominant genetic disorder characterised by the 
development of benign tumours in multiple organs. It is caused by mutations in the 
TSC1 or TSC2 tumour suppressor gene, leading to hyperactivation of mTOR 
signalling in affected tissues. Rapamycin and its analogues are mTOR inhibitors and 
have been used to treat tuberous sclerosis in both pre-clinical and clinical trials. 
However, tumours usually relapse after drug withdrawal. The aims of this project 
were to identify novel agents and strategies for prevention and therapy of tuberous 
sclerosis using mouse models. 

 

First T2 weighted MRI was evaluated for assessment of renal lesions in Tsc1+/- and 
Tsc2+/- mouse models. MRI identified all types of Tsc-associated renal lesions in both 
Tsc mouse models. The smallest detectable lesions were <0.1 mm3. Eighty five 
percent of all renal lesions detected in a first scan at 12 months of age were re-
identified in a second scan 2 months later. Between the two scans, MRI revealed a 
significant increase in the total number and volume of lesions in 9 untreated mice. 
Compared to histological analysis, MRI detected most cysts and papillary tumours 
(64%) but only a minority of solid tumours (30%).  

 

Metformin is a mild inhibitor of mTOR. The therapeutic effect of metformin on renal 
lesions in Tsc1+/- mice was investigated using T2 weighted MRI and histological 
analysis. Metformin treatment for 9 months had no significant effect on renal lesions 
in these mice.  

 

Finally, the preventive effects on renal lesions in Tsc2+/- mice of rapamycin, 
metformin or both agents in combination were assessed using histological analysis. 
Treatment started from one month of age and continued for 7 to 9 months. 
Rapamycin or rapamycin plus metformin but not metformin alone effectively blocked 
the development of renal lesions including cysts, adenomas and carcinomas through 
the inhibition of mTOR signalling. These findings suggest that mTOR inhibition may 
be an effective strategy for preventing emergence of disease manifestations in 
tuberous sclerosis. 
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CHAPTER ONE 

General Introduction 

 

1.1   Tuberous sclerosis  

Tuberous sclerosis (TSC) is an autosomal dominant genetic disorder characterised 

by the development of hamartomatous growths in multiple organs.  

 

1.1.1 History of the disease 

Pierre Franҫois Rayer (1835) published an atlas of skin disorders including a 

drawing of a patient with numerous facial erythematous papules these are now 

thought to have been TSC associated facial angiofibromas. The first official report of 

TSC was published by Friedrich Daniel von Recklinghausen in 1862. He described a 

newborn presenting with cardiac tumours referred to as “myomata” and numerous 

cerebral “scleroses” (von Recklinghausen, 1862). Désiré-Magloire Bourneville in 

1879 first described “sclérose tubéreuse des circonvolutions cérébrales” (“tuberous 

sclerosis of the cerebral convolutions”) after the death of a 15-year-old mentally 

subnormal female who suffered seizures and facial angiofibromas (Bourneville, 

1880). Two years later, Bourneville and Brissaud (1881) reported a 4-year-old boy 

with seizures who presented with similar cortical manifestations (later called 

subependymal nodules) and died. The term “tuberous sclerosis complex” was first 

coined by Moolten (1942) to define a multi-systemic disorder  involving not only the 

brain but also other organ systems such as the skin, heart, lungs, kidneys and eyes.  

 

In 1905 Gaetano Perusini started to correlate the cardiac, renal, cerebral and dermal 

lesions observed in patients with TSC and later on, Heinrich Vogt (1908) suggested 

that the triad of seizures, mental retardation and adenoma sebaceum (facial 

angiofibromas) be used in the diagnosis of TSC. By 1920, van der Hoeve identified 

phakomas (retinal hamartomas) which occur in TSC, neurofibromatosis and von 

Hippel-Lindau diseases. Critchley and Earl (1932) published a detailed clinical review  
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of TSC, after examination of 29 TSC patients and emphasised the prevalence of 

hypomelanotic skin macules among the patients.  

 

The invention of computed tomography (CT) for the head (1974), echocardiography 

and renal ultrasound scanning (1982) and magnetic resonance imaging (1984) 

provided non-invasive investigation into the pathology of TSC and enhanced its 

diagnosis, especially in patients not exhibiting Vogt’s diagnostic triad (Lagos et al. 

1967). Gomez (1988) later estimated that only 29% of TSC patients fulfilled Vogt’s 

diagnostic criteria, 45% of patients presented with normal intelligence and 6% of 

patients analysed had none of the triad’s features. By 1987, Fryer and colleagues 

localised a TSC gene, (later termed TSC1), chromosome 9q34.3 (Fryer et al. 1987), 

then in 1992; Kandt et al. reported the chromosomal localisation of a second TSC 

gene, TSC2, linked to chromosome 16p13.3 (Kandt et al. 1992). Cloning of the 

TSC2 (The European Chromosome 16 Tuberous Sclerosis Consortium, 1993) and 

TSC1 genes (van Slegtenhorst et al. 1997) revealed 198kDa and 130kDa predicted 

protein products which were named tuberin and hamartin respectively. A timeline 

illustrating the history of TSC is indicated in Table 1.1. 
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Table 1.1 Key events in the history of tuberous sclerosis (adapted from Gomez et al. 

1999 and Kwiatkowski et al. 2010). 

Year Authors Contribution 

1835 Rayer Published an atlas of facial skin lesions (possibly facial angiofibromas). 

1862 Von Recklinghausen Reported a case of a newborn with cardiac “myomata” and cerebral 
“scleroses”.  

1880 Bourneville Discovered cortical “tuberosities”. 

1881 Hartdegen Reported TSC cortical pathology. 

1885 

1890 

Balzer & Menetrier, 

Pringle 

Reported and named “adenoma sebaceum”. 

1901 Pellizzi Underlined the dysplastic nature of TSC cerebral lesions. 

1905 Perusini Associated cerebral, renal, cardiac and dermal lesions in TSC patients. 

1908 Vogt Suggested the clinical “triad” in diagnosis of TSC. 

1910 

1913 

Kirpicznik, 

Berg 

Reported on the hereditary nature of TSC. 

1914 Schuster Found TSC patients lacking pathological characteristics of Vogt’s triad 
(forme fruste). 

1918 Lutenbacher Referred to the involvement of the lung in TSC.  

1920 Van der Hoeve Identified TSC retinal phakomas. 

1924 Marcus Radiographic findings. 

1932 Critchley & Earl Reviewed clinical aspects of TSC and discovered hypomelanotic macules. 

1942 Moolten Applied the term “Tuberous Sclerosis Complex”. 

1967 Lagos & Gomez 38% of TSC patients exhibited normal intelligence. 

1974  Development of computed tomography (CT) for the head. 

1979 Gomez Introduced new diagnostic criteria and declined Vogt’s triad. 

1982  Introduction of renal ultrasound and echocardiography. 

1984  Demonstration of cortical tubers by Magnetic resonance imaging (MRI). 

1987 Fryer et al. Identification of the first TSC gene (TSC1) linked to 9q34.3. 

1992 Kandt et al. Identification of the second TSC gene (TSC2) linked to 16p13.3. 

1993 The European 
Chromosome 16 TSC 
Consortium 

Cloning of TSC2. The 198 kDa protein product named tuberin. 

1994 Green et al., 

Carbonara et al. 

Loss of heterozygosity revealed in renal angiomyolipomas, cardiac 

rhabdomyoma and giant cell astrocytomas. 

1997 Van Slegtenhorst et 
al.  

Cloning of TSC1. The 130 kDa protein product named hamartin. 

2003 Tee et al. Indicated that tuberin and hamartin interact to form a complex that 
negatively regulates mTOR signalling pathway. 

2005 Kenerson et al., 

 Lee et al. 

Sirolimus suppress the growth of renal lesions in Eker rats and mouse 

models. 

2006 Franz et al. Sirolimus treatment resulted in regression of subependymal giant cell 
astrocytomas. 

2008 Bissler et al. Sirolimus reduced the volume of renal angiomyolipoma. 
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1.1.2  Epidemiology of the disease 

The use of the clinical ‘triad’ by Heinrich Vogt (1908) for TSC diagnosis resulted in a 

dramatic under estimation of the frequency of TSC. Based on this clinical ‘triad’, it 

was initially estimated to occur at a frequency of 1:100 000 live births. However, the 

disease extends beyond seizures, mental retardation and facial angiofibromas. 

Additionally, previous studies focused on TSC patients admitted to hospitals or 

asylums which would only have included the more severely affected patients 

(Brushfield and Wyatt, 1926). Further studies attempted to estimate not only the 

incidence (Ferraro and Doolittle, 1936; Penrose, 1938; Gastaut et al. 1965) but also 

the prevalence of TSC in the general population (Ross and Dickerson, 1943; 

Dawson, 1954; Paulson and Lyle, 1966; Zaremba, 1968). Gunther and Penrose 

(1935) found that the incidence of TSC in five hospitals for the mentally handicapped 

was 1:300 and the estimated prevalence of the disease in the general population 

was 1:30,000. Gunther and Penrose diagnosed TSC in mentally retarded individuals 

by looking mainly at facial angiofibromas. Dawson in 1954 and Zaremba in 1968 

estimated a prevalence of 1:150,000 and 1:23,000 of TSC cases in the general 

population, respectively. In 1960, Crome reported diagnostic TSC brain pathology in 

7 out of 282 mentally retarded individuals. In another study, Donegani et al. (1972) 

observed TSC cerebral pathologies in 6 out of 49,000 autopsies and estimated the 

incidence of the disease at 1:10,000.  

 

Stevenson and Fischer (1956), Nevin and Pearce (1968) and Singer (1971) carried 

out the earliest population-based studies and determined the prevalence of TSC at 

1:150,000, 1:100,000 and 1:70,000 respectively. Technological advances in the mid-

1970s expanded the diagnostic criteria for the TSC diagnosis and thus increased the 

reported number of cases. Additionally introduction of major and minor diagnostic 

criteria by Gomez in 1979 and (revised in 1988) improved diagnosis of TSC and the 

accuracy of population-based studies (Hunt and Lindenbaum, 1984; Sampson et al. 

1989, Shepherd et al. 1991, Webb et al. 1996, Wiederholt et al. 1985). The currently 

estimated prevalence of TSC is 1:6000 to 1:12,500 live births (Osborne et al. 1991, 

O’Callaghan et al. 1998). 
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1.1.3 Clinical manifestations of TSC 

The clinical manifestations of TSC are very variable in patients although they usually 

involve multiple organs. The Central Nervous System (CNS), skin, kidneys and heart 

are most commonly affected. About 96% of TSC patients have skin lesions, 90% 

have cerebral pathology, 84% have seizures, 80% have renal pathology and nearly 

50% have retinal hamartomas (Gomez et al. 1999, Kwiatkowski et al. 2010). The age 

of onset varies in terms of symptoms and complications of TSC. For example cardiac 

rhabdomyomas (CRs) appear in foetal life and usually disappear in infancy, while 

renal angiomyolipomas (AMLs) appear later in life, often during the second decade 

(Roach and Sparagana, 2004). 

 

1.1.3.1   Manifestations in CNS 

Tubers, subependymal nodules (SENs) and subependymal giant cell astrocytomas 

(SEGAs) are hallmark structural malformations found in the brain of TSC patients. 

Both tubers and SEGAs are included in the diagnostic criteria for TSC. Tubers are 

hypomyelinated hamartomas usually located on the cerebral cortex and sometimes 

extending into the underlying white matter (Figure 1.1). Tubers are often numerous 

with size ranging from a few millimetres to several centimeters. They are firm, 

smooth, frequently paler than the surrounding cortex and can be restricted to one 

gyrus or more (Kwiatkowski et al. 2010). Cortical tubers can be distinguished 

prenatally by MRI in 20 week gestation foetuses (Levine et al. 2000, Park et al. 1997, 

Wortmann et al. 2008).  They are associated with autism, epilepsy and cognitive 

disability in patients with TSC depending upon their size and location (Kwiatkowski et 

al. 2010). They vary in cellularity and feature both neurons and characteristic large 

cells (Gomez et al. 1999).  
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Figure 1.1 Clinical features of TSC. (A) Axial brain MRI showing cortical tubers. (B) 

MRI showing renal angiomyolipoma. (C) High resolution chest CT showing the lungs 

of an individual with TSC who has lymphangioleiomyomatosis. (D) Fetal 

echocardiogram showing a cardiac rhabdomyoma (arrows in the left ventricle of the 

heart of a fetus with TSC). LV, left ventricle; RV, right ventricle; LA, left atrium; RA, 

right atrium. (E) Typical distribution of angiofibromas. (F) Dental pits. 

 

 

 

(A) (B) 

(C) (D) 

(E) (F) 
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SENs are usually asymptomatic lesions of the brain, they occur in approximately 70-

80% of individuals with TSC. They are located along the outer walls of the lateral 

ventricles (Kwiatkowski et al. 2010, Mizuguchi and Takashima, 2001; Vinters and 

Miyata, 2006). Multiple lesions usually develop prenatally and are less than 1 cm in 

size (Houser and Nixon, 1988). SENs are extensively vascular, covered by a layer of 

ependymal and are described as “candle gutterings”. SEN degeneration and 

calcification are frequently observed (Hosoya et al. 1999).  

 

SEGAs, also referred to as subependymal giant cell tumours (SGCTs) are present in 

5-20% of TSC patients, occur equally in both genders and are histologically identical 

to SENs but are classified on the basis of their larger size (1-10 cm in size) 

(Shepherd et al. 1991). It is thought that SEGAs develop from the excessive growth 

of SENs (Kim et al. 2001).  

 

The CNS manifestations associated with TSC can be very debilitating. Patients may 

suffer from epilepsy, behavioural problems, psychiatric, intellectual or 

neuropsychological abnormalities (Ehninger et al. 2009). Intellectual disability affects 

around 50% of patients and approximately 30% of individuals with TSC develop a 

very low intelligence quotient (IQ) (severe to profound phenotype) (Joinson et al. 

2003, Prather and de Vries, 2004). However, TSC patients with normal IQ often 

exhibit specific neuropsychological impairments, for example, long-term memory and 

attentional deficits (Ehninger et al. 2009, Harrison et al. 1999, Prather and de Vries, 

2004). Neurodevelopmental disorders such as autism (in 20-60% of patients), 

attention deficit hyperactivity disorder (ADHD) (in ~50% of patients), and aggressive 

and disruptive behaviour are common CNS related manifestations of TSC (Bolton et 

al. 2002, de Vries et al. 2009, Prather and de Vries, 2004; Smalley, 1998). Epilepsy 

affects approximately 70-80% of TSC patients during life (Webb et al. 1996, Joinson 

et al. 2003). Depressive and anxiety disorders, predisposition to self-harm and 

psychological distress are also commonly seen in adults with TSC (Ehninger et al. 

2009). 
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1.1.3.2   Renal manifestations 

The common renal lesions found in TSC include angiomyolipomas (AMLs) and 

cysts. Oncocytomas and renal cell carcinomas are rare. These renal tumours 

together were seen in over 80% of patients with TSC (Kwiatkowski et al. 2010). 

 

1.1.3.2.1   AMLs  

AMLs are the most common renal lesion arising in TSC patients (Figure 1.1). A 

longitudinal renal surveillance study indicated the development of renal tumours in 

80% of 10.5 year-old children with TSC (Ewalt et al. 1998). AML and cysts 

accounted for 75% and 17% (respectively) of renal lesions. Bernstein and Robbins 

(1991) found AML in 67% of individuals with TSC following post-mortem 

examination. Similarly, a more recent retrospective review of clinical and 

radiographic records of TSC patients suggested that approximately 85% of patients 

develop renal AMLs (Rakowski et al. 2006). 

 

AMLs are either classified as hamartomas, choristomas or perivascular epithelioid 

cell tumours (PEComas) (Dickinson et al. 1998; Fischer, 1911). They are 

mesenchymal tumours probably derived from a single progenitor cell (El-Hashemite 

et al. 2003, Karbowniczek et al. 2003), and consist of vascular, smooth muscle and 

adipose tissue. The composition of the lesions is highly variable, even within the 

same kidney (Farrow et al. 1968, Karbowniczek et al. 2003, Kwiatkowski et al. 2010, 

Lin et al. 1994, Tweedale et al. 1955, Wong et al. 1981). Although often developing 

during childhood in TSC patients (Ewalt et al. 1998) AMLs may continue to grow until 

later life (Kennelly et al. 1994, Lemaitre et al. 1995, Steiner et al. 1993). 

 

Patients with AMLs are at risk of developing life-threatening retroperitoneal 

haemorrhage as a result of aneurysm rupture (Bissler et al. 2002, Chesa Ponce et 

al. 1995, Ou et al. 1991) or to chronic renal failure and end-stage renal impairment 

(Clarke et al. 1999, Schillinger and Montagnac, 1996). The risk of haemorrhage is 

increased in larger AMLs and is proportional to the size of the aneurysm (Yamakado 
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et al. 2002). According to a survey of the members of the European Dialysis and 

Transplant Association, 1% of TSC patients of normal intellect required a renal 

transplant (Clarke et al. 1999). Malignant AMLs or even epithelioid AMLs are also 

reported in TSC. Epithelioid AMLs are lesions with minimal fat accumulation. These 

are often aggressive and can be fatal (Bjornsson et al. 1996, Eble, 1998; Eble et al. 

1997, Hardman et al. 1993). 

 

1.1.3.2.2   Renal cystic disease 

Benign epithelial cysts are the second most common renal manifestations in TSC 

patients (Bernstein et al. 1986, Bernstein and Robbins, 1991). At least nine percent 

of female and 20% of male TSC patients have cysts (Torres et al. 1995). In a small 

proportion of cases severe renal cystic disease develops prenatally or in infants. 

Cystic disease may cause hypertension or impairment of kidney function (Miller et al. 

1989, Moss and Henry, 1988). TSC-associated cysts originate in the nephron, form 

clusters within the renal cortex and then spread into the medulla (Bernstein and 

Robbins, 1991; Saguem et al. 1992). The co-occurrence of cysts and AMLs in the 

kidneys during adulthood may indicate TSC. Renal cysts are found in patients 

carrying either TSC1 or TSC2 mutations (Dabora et al. 2001). Severe and early 

onset polycystic kidney disease can arise as a result of deletions that involve both 

TSC2 and the adjacent polycystic kidney disease (PKD1) gene on chromosome 

16p13.3 (Brook-Carter et al. 1994); contiguous gene syndrome. Twenty three out of 

28 patients with both TSC and severe renal cystic disease had genomic deletions 

affecting the PKD1 gene in addition to TSC2 (Sampson et al. 1997). 

 

1.1.3.2.3   Oncocytomas 

Oncocytomas have been reported in several cases of TSC (Jimenez et al. 2001). 

Renal oncocytomas are benign renal neoplasms that originate from the collecting 

duct (Eble and Hull, 1984; Zerban et al. 1987) and account for 3-5% of renal 

parenchymal tumours (Siracusano et al. 1998). 
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1.1.3.2.4   Renal cell carcinomas (RCCs) 

The exact prevalence of RCCs in patients with TSC is not known yet. It is estimated 

that less than 2% of TSC patients develop RCC (Kwiatkowski et al. 2010). RCCs 

tend to be present at a younger age in TSC patients than in the general population 

(Lendvay et al. 2002). The average age for the development of TSC-associated 

RCCs is 28 years old. There have been several reports of RCCs in children (Al-

Saleem et al. 1998, Robertson et al. 1996) and also in a 9-month old infant (Breysem 

et al. 2002). It is thought that these renal lesions arise from the lining of cysts rather 

than from AMLs (Robertson et al. 1996). However sporadic RCCs occur in patients 

of an average age of 53 years (Al-Saleem et al. 1998).  

 

1.1.3.2.5   Imaging renal lesions 

Monitoring renal lesions is essential for disease management and control as well as 

assessment of therapy in TSC patients. At present, there are no non-invasive 

diagnostic techniques available for reliably differentiating minimal-fat containing 

AMLs from renal cell carcinomas. Previously, ultrasonography was used for renal 

imaging in TSC, however it is not effective for detecting solid lesions. CT and MRI 

scans are now frequently used for detecting and monitoring renal lesions in TSC 

patients (Kwiatkowski et al. 2010). 

 

1.1.3.3   Hepatic manifestations 

Hepatic AMLs occur in approximately 16-24% of patients with TSC (Fleury et al. 

1987, Jóźwiak et al. 1992) and at higher incidence during adulthood. Jóźwiak et al. 

(1992) and Fricke et al. (2004) reported a higher incidence of multiple hepatic AMLs 

in women with TSC as opposed to men. Hepatic AMLs are usually asymptomatic. 

However, Huber et al. (1996) reported haemorrhage from a spontaneously ruptured 

hepatic AML. In addition, some cases of racemose angioma (Feriz, 1930), liver 

adenomas (Inglis, 1950), lipomyomas (Hallervorden and Krucke, 1956) and fatty 

mesenchymatous tumours (Cares, 1958) have been found in TSC patients. Yang et 

al. (2008) also found a hepatocellular carcinoma in a female TSC patient with liver 
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AMLs. Liver AMLs are usually diagnosed using imaging methods such as ultrasound 

and CT scanning (Kwiatkowski et al. 2010). 

 

1.1.3.4   Pulmonary manifestations 

The most common pulmonary manifestation affecting TSC patients is 

lymphangioleiomyomatosis (LAM) (Figure 1.1). LAM is caused by infiltration and 

proliferation of abnormal smooth muscle cells in the lungs in combination with the 

development of multiple thin-walled cysts resulting in gradual destruction of the lungs 

(Kwiatkowski et al. 2010). The majority of TSC patients with LAM are women 

suggesting a link between oestrogen and LAM pathogenesis (Uzzo et al. 1994). 

There are reports of LAM occurring in men with TSC but their presentation appears 

to be less severe (Aubry et al. 2000, Kim et al. 2003, Miyake et al. 2005). LAM can 

occur in association with TSC or sporadically and according to the LAM foundation 

patient records, only 11-15% of individuals with LAM also have TSC. Pulmonary 

TSC may cause death in young women (Castro et al. 1995, Lie, 1991; Shepherd et 

al. 1991). Multinodular multifocal pneumocyte hyperplasia (MMPH) is also seen in 

both female and male patients with TSC and can occur with or without LAM (Franz et 

al. 2001, Muir et al. 1998). High-resolution computed tomography scan (HRCT) of 

the chest is required to reliably detect any cystic lung changes. Anti-oestrogen 

therapy and lung transplantation may expand the life span of TSC patients with LAM, 

however the disease eventually reoccurs even after lung transplantation, suggesting 

characteristics of malignancy (Castro et al. 1995, Taylor et al. 1990, Urban et al. 

1992). 

 

1.1.3.5   Dermatologic manifestations 

A cross-sectional study of age-related prevalence of the cutaneous features of TSC 

reported the incidence of skin lesions in 126 of 131 patients (96%) (Webb et al. 

1996). The most common dermatologic features of TSC include hypomelanotic 

macules, facial angiofibromas, forehead plagues, shagreen patches and ungual 

fibromas (Kwiatkowski et al. 2010). Hypomelanotic macules occur in almost all 

individuals with TSC (Fitzpatrick, 1991; Jimbow, 1997; Jóźwiak et al. 1998, Webb et 
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al. 1996) and are often reported in neonates and infants (Fitzpatrick, 1991; Hunt, 

1983; Jóźwiak et al. 1998). The lesions are 0.5-3 cm diameter, polygonal or oval 

shape and an off-white colour (white patches) due to reduced pigmentation in the 

skin (Jimbow, 1997; Kwiatkowski et al. 2010). The occurrence of hypomelanotic 

macules on the scalp, eyelashes and eyebrows may result in poliosis (McWilliam 

and Stephenson, 1978).  

 

Facial angiofibromas occur less frequently than hypopigmented macules and 

presented in approximately 75-90% of TSC patients (Figure 1.1) (Kwiatkowski et al. 

2010, Weiner et al. 1998). Angiofibromas start to appear from 2-5 years old and 

continue to grow in a progressive manner until adulthood (Dabora et al. 2001, Hunt, 

1983; Jóźwiak et al. 1998, Nickel and Reed, 1962; Webb et al. 1996). These skin 

lesions (1-4 mm diameter) are pink to reddish brown papules or nodules with a 

smooth surface. Patients can present with in excess of 100 angiofibromas, they are 

usually distributed bilaterally over the centrofacial areas (Jóźwiak et al. 1998, 

Kwiatkowski et al. 2010, Webb et al. 1996). 

 

Forehead plaques also called fibrous facial plaques, can be present at any age but 

they occur in the majority of patients at birth or early infancy (Fryer et al. 1987, 

Jóźwiak et al. 1998, Nickel and Reed 1962). They affect 20-40% of individuals with 

TSC and are described as soft or hard lesions with pink to yellowish brown colour 

(Dabora et al. 2001, Jóźwiak et al. 1998, Webb et al. 1996). These skin lesions 

appear as plaques with a stable-irregular shape that thickens over time (Jóźwiak et 

al. 1998). Single or multiple fibrous facial plaques may be distributed on the 

forehead, scalp or on any other region of the face (Kwiatkowski et al. 2010).   

 

Shagreen patches affect approximately 50% of patients and frequently occur in 

individuals within the first decade of life (Dabora et al. 2001, Hunt, 1983; Jóźwiak et 

al. 1998, Webb et al. 1996). They are firm yellow-brown or pink hamartomatous 

growth of the connective tissue. They also have an irregular shape and vary in size 

from few millimetres up to 10 cm. They occur on the dorsal body surfaces, more 
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often on the lower back (Jóźwiak et al. 1998, Nickel and Reed, 1962; Webb et al. 

1996). 

 

Ungual fibromas appear after the first 10 years of life and gradually increase in size 

(Jóźwiak et al. 1998, Webb et al. 1996). Webb et al. (1996) reported ungual fibromas 

in 88% of TSC patients over 30 years old. These characteristic lesions are pink to 

red papules and nodules that vary in size between 1 mm to 1 cm. They occur 

adjacent to or underneath the nails but are more frequently located on the toenails 

(Kwiatkowski et al. 2010). Other less common skin lesions present in TSC patients 

include molluscum fibrosum pendulum, military fibromas and pachydermodactyly 

(Bardazzi et al. 1996, Jóźwiak et al. 1998, Lo and Wong, 1993). 

 

1.1.3.6   Cardiac manifestations 

Cardiac rhabdomyomas (CRs) are cardiac tumours that are commonly detected in 

neonates with TSC (Figure 1.1) (Tworetzky et al. 2003). Around 50% of TSC patients 

present with CR at birth (Bass et al. 1985, Nir et al. 1995, Smith et al. 1989). 

According to Jóźwiak’s report, multiple CRs were seen more frequently in children 

with TSC who are less than 2 years old (66%) or in the 12-15 years age bracket 

(54%) (Jóźwiak et al. 2006). Patients often develop multiple CRs usually 5-15 mm in 

diameter in any of the four cardiac chambers, most commonly in the ventricles than 

in the atria (Bass et al. 1985, Nir et al. 1995). CRs represent the earliest detectable 

hamartoma in TSC and include the only lesion in TSC that often regress or even 

disappear completely with time (Curatolo, 2003). CRs are often asymptomatic, with 

complications arising in no more than 29 out of 74 TSC children with CRs (Jóźwiak 

et al. 2006). Echocardiography including prenatal screening ultrasound has become 

the standard procedure in the diagnosis of CRs (Czechowski et al. 2000, Gushiken 

et al. 1999, Hata et al. 2007, Jóźwiak et al. 2006). A report also suggested the use of 

cardiac MRI (T1 and T2 MRI sequences) in detecting CRs (Kiaffas et al. 2002). 
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1.1.3.7   Ophthalmologic manifestations 

Angiofibromas of the eye, for example of the eyelids affects an estimated 39% of 

individuals with TSC (Mencía-Gutiérrez et al. 2004, Rowley et al. 2001). 

Hamartomas of the retina are seen in around 30-50% of TSC patients (Au et al. 

2007, Franz, 2004; Rosser et al. 2006). Retinal hamartomas may often develop in 

utero (Shami et al. 1993) and in rare cases can cause loss of vision and increased 

growth can result in necrosis or haemorrhage (Mennel et al. 2007, Rosser et al. 

2006). Chorioretinal hypopigmented lesions have also been reported in 39% of new-

borns and adults with TSC (Franz, 2004; Robertson, 1991; Rowley et al. 2001) and 

in some cases, papilloedema develops as a complication of SEGAs (Chong et al. 

2007, Goh et al. 2004). 

 

1.1.3.8   Gastrointestinal manifestations 

Dental enamel pits are very common in TSC patients and develop in both deciduous 

and permanent teeth (Figure 1.1). Sparling et al. (2007) detected dental pits in 56 out 

of 58 (97%) individuals with TSC. Oral fibromas are also a common manifestation of 

TSC. Sparling et al. (2007) detected oral fibromas in 69% of TSC patients. 

Fibroadenomatous polyps and AMLs occur rarely in the esophagus and stomach of 

TSC patients (Hizawa et al. 1994, Kim et al. 2000). Additionally, an association 

between TSC and polyps in the small intestine, large intestine and rectum has also 

been reported (Gould, 1991; Hizawa et al. 1994, Kim et al. 2000). In another report 

published by Goh et al. (2001), PEComas were found in the large bowel of a 30-

years old TSC patient. 

 

1.1.3.9   Additional manifestations of TSC 

Other rare manifestations of TSC can be seen in other organs or systems such as 

the endocrine system (thyroid, pancreas, pituitary) gonads, hypothalamus and the 

spleen (Gomez et al. 1999). 
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1.1.4 Diagnosis of TSC 

Diagnosis of TSC can be difficult due to the variation in phenotypes. Some patients 

may be diagnosed during late childhood or adolescence if clinical findings are subtle 

(Au et al. 2007, Jóźwiak et al. 2000). Gomez (1979) and Roach et al. (1992) 

proposed specific TSC diagnostic criteria. In 1998, a panel of experts at the 

Tuberous Sclerosis Complex Consensus Conference in Annapolis, Maryland, 

reported updated consensus diagnostic criteria (Hyman and Whittemore, 2000; 

Roach et al. 1998). In 2004, a revised version was published (Roach and 

Sparagana, 2004) and a further revision from a 2012 consensus conference is 

currently in press. 

  

Clinical manifestations of TSC are divided into two categories, the major and minor 

features (Table 1.2). Clinicians can confirm a definite, probable or possible diagnosis 

of TSC based upon the clinical manifestations of each individual patient (Roach et al. 

1998). A definite diagnosis is confirmed if the individual presents with either two 

major features or one major plus two minor features, probable TSC is diagnosed if 

the individual has one major plus one minor feature and possible TSC if one major 

feature or two or more minor features are present. Mutational analysis of the TSC1 

or TSC2 genes complements the clinical diagnosis of TSC and allows in some 

cases, prenatal diagnosis. A patient exhibiting TSC-associated manifestations but 

with no mutation in TSC1 or TSC2 genes (no mutation identified- NMI) does not 

eliminate the possibility of TSC. Possible explanations could be a lack of sensitivity 

in the mutation detection, mosaicism, or mutation to another undiscovered disease-

causing TSC gene. 
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Table 1.2   Diagnostic criteria for tuberous sclerosis (adapted from Roach et al. 

1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Major Features Minor Features 

Facial angiofibromas or forehead plaque 

Nontraumatic ungual or periungual fibroma 

Hypomelanotic macules (more than 3) 

Shagreen patch (connective tissue nevus) 

Cortical tuber* 

Subependymal nodule 

Subependymal giant cell astrocytoma 

Multiple retinal nodular hamartomas 

Cardiac rhabdomyoma, single or multiple 

Lymphangioleiomyomatosis** 

Renal angiomyolipoma** 

Multiple randomly distributed pits in dental 

enamel 

Hamartomatous rectal polyps (histologic 

confirmation) 

Bone cysts (radiographic confirmation) 

Cerebral white matter radial migration lines 

(radiographic confirmation)* 

Gingival fibromas 

Non-renal hamartoma (histologic 

confirmation) 

Retinal achromic patch 

“Confetti” skin lesions 

Multiple renal cysts (radiographic 

confirmation) 

Definite: Either two major features or one major feature plus two minor features. 

Probable: One major plus one minor feature. 

Suspect: Either one major feature or two or more minor features. 

 
* When cerebral cortical dysplasia and cerebral white matter migration tracts occur together, 

they should be counted as one rather than two features of tuberous sclerosis. 

** When both lymphangiomyomatosis and renal angiomyolipomas are present, other features 

of tuberous sclerosis should be present before a definite diagnosis is assigned. 
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1.2 TSC genes  

1.2.1 Identification of the TSC genes 

In 1890, Pringle and in 1910, Kirpicznik initially identified TSC as a genetic disorder. 

The autosomal dominant hereditary pattern of TSC was revealed later by Berg 

(1913) and Gunther and Penrose (1935). However, the genes responsible for TSC 

were not isolated until the 1990’s. 

 

1.2.1.1   TSC1 

In 1987, Fryer and colleagues carried out genetic linkage analysis in 19 TSC 

multigenerational families using 26 polymorphic protein markers. Fryer et al. (1987) 

reported linkage between TSC and the ABO blood group locus on chromosome 

9q34. This was the first identification of the TSC locus, later named TSC1 (tuberous 

sclerosis complex type 1). Further analyses excluded linkage to 9q34 in some 

families (locus heterogeneity) and the possible existence of more than one TSC 

locus (Haines et al. 1991, Janssen et al. 1990, Northrup et al. 1987, Northrup et al. 

1992, Sampson et al. 1989, Sampson et al. 1992). The TSC1 candidate region was 

a gene-rich region with more than 30 genes (1.4Mb) (Kwiatkowski et al. 1996). 

However, no mutations were detected initially in these candidate genes in cohorts of 

TSC patients (van Slegtenhorst et al. 1997). To detect the TSC gene, 

comprehensive sequencing of a cosmid contig and heteroduplex analysis of these 

exons in TSC1-linked families and sporadic cases was used (van Slegtenhorst et al. 

1997). Mobility shifts were indicated in the 62nd exon screened, presenting mutations 

in 10 out of 60 patient samples (Gomez et al. 1999). Sequence analysis indicated 

that the mutations in this exon were truncating the TSC1 gene (van Slegtenhorst et 

al. 1997). 

 

The complete sequence of TSC1 (53 284 nucleotides) was revealed following a 

comparison of both genomic and cDNA clone sequences. The TSC1 gene consists 

of 23 exons of which exon 3 to 23 comprise the coding sequence. The 3492bp 

coding region of the gene is translated into a 130 kilodaltons (kDa) protein of 1164 
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amino acids, called hamartin (van Slegtenhorst et al. 1997). In addition to the coding 

region, the TSC1 gene also contains a 4.5kb 3’ untranslated region (3’UTR) and a 

221bp 5’ untranslated region (5’UTR) (Gomez et al. 1999). 

 

1.2.1.2    TSC2 

In 1992, Kandt et al. revealed linkage between TSC and a polymorphic marker 

(D16S283) close to the ADPKD1 locus on chromosome 16p13 in a set of five 

multigenerational TSC families unlinked to chromosome 9 (TSC1).  In 1994, a family 

was reported with both ADPKD and TSC. Whereas mother and daughter were 

carriers of a balanced chromosome translocation in 16p13.3 and presented with a 

typical ADPKD phenotype, the son had an unbalanced karyotype and clinical 

features of TSC including skin and brain involvement, in addition to renal cysts 

(European Polycystic Kidney Disease Consortium, 1994). The son’s TSC was a 

result of deletion of the chromosomal region (chromosome 16) containing the TSC 

gene (The European Chromosome 16 Tuberous Sclerosis Consortium, 1993).  

 

The distal segment of the short arm of chromosome 16 had already been 

investigated due to it’s proximity to both the α-globin (Buckle et al. 1988, Simmers et 

al. 1987) and PKD1 genes (Reeders et al. 1985). A cosmid spanning the 300kb 

candidate region was utilised to generate hybridisation probes which were then used 

to screen the DNA from 260 unrelated TSC patients by pulsed field gel 

electrophoresis (PFGE) and southern blotting. Five TSC-associated constitutional 

interstitial deletions of 30kb-75kb were detected in the candidate region of 

chromosome 16p13.3 by the use of PFGE. These deletions were mapped to the 

same 120kb segment. Four genes were isolated from which only one was disrupted 

by all five deletions.  Further examination of this candidate gene indicated four 

additional intragenic mutations (deletions). These findings confirmed the 

identification of the second TSC locus on chromosome 16p13.3 which was named 

TSC2 (tuberous sclerosis complex type 2) (The European Chromosome 16 

Tuberous Sclerosis Consortium, 1993). TSC2 is comprised 40 723 nt and contained 

42 exons. The 5474bp coding region of the gene is translated into a 198 kDa protein 
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product of 1784 amino acids, which is referred to as tuberin. Further multicenter 

linkage studies indicated that half of the TSC families were linked to chromosome 

9q34 and the rest to 16p13 (Janssen et al. 1994, Povey et al. 1994). 

 

1.2.2 Biochemistry and function of the TSC proteins 

The TSC1 and TSC2 gene products hamartin and tuberin are evolutionary 

conserved proteins which do not show significant structural homology between each 

other but share homology with other vertebrate proteins (Huang et al. 2008). These 

proteins interact with each other forming a functional complex which negatively 

regulates mTOR signalling (Van Slegtenhorst et al. 1998). TSC1-TSC2 complex has 

a molecular size >450 kDa and is predominantly localised to the cytosol (Nellist et al. 

1999) 

 

1.2.2.1   Hamartin 

Hamartin (TSC1) is a hydrophilic protein comprised of 1164 amino acids (aa). 

Northern blotting analysis has shown the 8.6kb TSC1 transcript to be widely 

expressed (Figure 1.2) (Van Slegtenhorst et al. 1997). The existence of a single 

putative transmembrane domain at residues 127 to 144 is consistent with the 

reported localisation of hamartin to the cytoplasmic vesicles membranes (Plank et al. 

1998). Hamartin is also localised to the centrosome (Astrinidis et al. 2006). The 

different regions of hamartin are illustrated in Figure 1.3 and their function is stated in 

Table 1.3. 

 

At present, the cellular function of hamartin is not completely understood. Hamartin 

and tuberin directly bind to each other soon after synthesis and inactivation of either 

the TSC1 or TSC2 gene results in TSC, suggesting that both proteins are of similar 

functional importance and that hamartin is essential for tuberin function (Astrinidis 

and Henske, 2005; Nellist et al. 1999). Hamartin was shown to stabilise tuberin and 

inhibit its ubiquitination (Benvenuto et al. 2000, Chong-Kopera et al. 2006). Three 

kinases have been found to control the activity of hamartin. Hamartin is 
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phosphorylated and inactivated at residues Thr417, Ser584 and Thr1047 by the 

cyclin-dependent kinase 1 (CDK1) (Astrinidis et al. 2003) and at residues Ser487 

and Ser511 by IκB kinase (IKKβ) (Lee et al. 2007). Phosphorylation at Thr357 and 

Thr390 by the glycogen synthase kinase 3 (GSK3) activates hamartin (Mak et al. 

2005).  

 

Hamartin physically interacts with tuberin through a binding domain at aa 302-430 to 

form heterodimers. The complex then acts as a GAP towards the mTORC1 activator 

Rheb (Ras homolog enriched in brain). Binding of tuberin and hamartin may affect 

the subcellular localisation of tuberin or activate the tuberin’s GTPase activating 

protein (GAP) domain (Astrinidis and Henske, 2005). Hamartin also interacts with the 

ezrin-radixin-moesin (ERM) family of actin-binding proteins through the ERM 

interaction domain (aa 881 to 1084). Therefore, any deficiency of hamartin leads to 

disruption of cell-matrix adhesion (Lamb et al. 2000). Oligomerisation of hamartin 

occurs through the carboxyl terminal coiled-coil domain at aa 719 to 998. Hamartin 

self-aggregation is prevented by the presence of tuberin (Nellist et al. 1999). The fact 

that hamartin interacts with members of ERM family (Lamb et al. 2000), together with 

evidence that a region spanning aa 674 to 1164 of hamartin binds to neurofilament-

Light chain (NF-L) (Haddad et al. 2002) could indicate a role of hamartin in the 

localisation of tuberin.  
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Figure 1.2 Gene expression pattern of the (A) TSC1 and (B) TSC2 gene (created by 

AndrewGNF at en.wikipedia (Su et al. 2004)). 

(A) 

(B) 
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Table 1.3 The domains found in hamartin and tuberin proteins. 

 Hamartin  

Domain Location (aa) Function 

Transmembrane 127-144 Induces the localisation of hamartin into the membrane of 

the cytoplasmic vesicles (Plank et al. 1998). 

Rho GTPase 

activating domain 

145-510 

 

Activates the small GTP-binding protein Rho which 

regulates cell adhesion and the actin cytoskeleton 

(Astrinidis et al. 2002, Ridley and Hall, 1992). 

Tuberin binding 302-430 Interacts with aa 1-418 of tuberin to form a functional 

heterodimeric complex that inhibits mTOR (Hodges et al. 

2001). 

NF-L interaction 

domain 

674-1164 Interacts with neurofilament-light chain (NF-L). Allows 

hamartin to anchor neuronal intermediate filaments to the 

actin cytoskeleton (Haddad et al. 2002). 

Coiled coil 719-998 Permits self-aggregation of hamartin. Oligomerisation is 

prevented by the presence of tuberin (Nellist et al. 1999). 

ERM interaction 

domain 

881-1084 Interacts with ezrin-radixin-moesin (ERM) family of actin-

binding proteins. Hamartin is involved in cell-matrix 

adhesion pathways (Lamb et al. 2000). 

   

 Tuberin  

Domain Location (aa) Function 

Hamartin binding 1-418 Interacts with hamartin aa 302-430 of hamartin (Hodges et 

al. 2001). 

Leucine zipper 75-107 Structural motif implicated in protein-protein interactions 

(European Chromosome 16 Tuberous Sclerosis 

Consortium, 1993; Landschulz et al. 1988). 

Coiled coil 

domains 

346-371 

1008-1021 

Mediate the interaction with hamartin (van Slegtenhorst et 

al. 1998). 

Transcriptional 

activation domains 

1163-1259 

1690-1743 

Allow tuberin to act as a transcriptional activator. The first 

domain at residues 1163-1259 exhibit stronger activity level 

than the second one (Tsuchiya et al. 1996). 

GTPase activating 

protein 

1517-1674 Inactivates Rheb through increasing its intrinsic GTPase 

activity (European Chromosome 16 Tuberous Sclerosis 

Consortium, 1993; Tee et al. 2003). 

PATJ interaction 

domain 

1538-1763 

 

Interacts with PATJ which regulate the polarity of the 

epithelial cell and the adhesion between cells (Massey-

Harroche et al. 2007). 

Calmodulin binding 1740-1758 Binding site for calmodulin (CaM). Essential for regulation 

of transcription events (Noonan et al. 2002). 
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1.2.2.2   Tuberin 

The total length of tuberin (TSC2) is estimated to be 1807 aa. Northern blot analysis 

demonstrated the wide expression of the 5.5kb TSC2 transcript in human and rodent 

tissues. Tuberin is highly expressed in the heart, renal tissue and in the central 

nervous system (cerebellum and developing spinal cord) (Figure 1.2) (The European 

Chromosome 16 Tuberous Sclerosis Consortium, 1993; Geist and Gutmann, 1995; 

Yeung et al. 1994). The distribution of tuberin and hamartin is identical in some 

organs whereas in some others the distribution of these proteins is overlapping but 

not identical (Fukuda et al. 2000). The level of expression of hamartin is also higher 

within some tissues including the distal nephron and the endocrine pancreas 

(Johnson et al. 2001). Tuberin localisation to the cytoplasm, especially within the 

stacks of the Golgi apparatus, was reported (Wienecke et al. 1996). TSC2 

translocation to the nucleus has also been reported (Lou et al. 2001). 

 

Several kinases have been found to control the activity of tuberin. Phosphorylation at 

Ser1337 and Ser1341 by GSK3 (Inoki et al. 2006) and at Ser1345 by AMP kinase 

(AMPK) activates tuberin (Inoki et al. 2003). In contrast, phosphorylation at Ser1798 

by the ribosomal S6 kinase 1 (RSK1) (Roux et al. 2004), at Ser1210 by the MAPK-

activated protein kinase 2 (MK2) (Li et al. 2003), at Ser664 by the extracellular 

signal-regulated kinase (ERK) (Ma et al. 2005) and at Ser939, Ser981 and Thr1462 

by AKT (Protein Kinase B (PKB)) (Inoki et al. 2002), inactivates tuberin. The 

structure and function of tuberin’s domains are listed in Figure 1.4 and Table 1.3. 
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1.2.2.2.1   The functional significance of tuberin’s GAP domain 

The existence of a domain at the C-terminus of tuberin which shares homology with 

the GTPase activating protein (GAP) Rap1GAP, suggests that tuberin acts as a GAP 

(The European Chromosome 16 Tuberous Sclerosis Consortium, 1993). This 

domain spans about 160 aa residues within exons 36-40 of the TSC2 gene (Au et al. 

2007, Maheshwar et al. 1997). The GAP domain of tuberin is a target for frequent 

TSC-associated mutations (Maheshwar et al. 1997, Niida et al. 1999), suggesting 

that it is important in tuberin’s function (Jin et al. 1996). The GAP domain negatively 

regulates the activity of ras-related rab1a and rab5a however its GAP activity 

towards these two small G-proteins is modest (Wienecke et al. 1995, Xiao et al. 

1997). This functional domain has major activity for the small GTPase Rheb, a 

potent regulator of mTOR signalling.  Rheb is a downstream target of tuberin. 

Tuberin, when complexed with hamartin, exerts GAP activity toward Rheb (Inoki et 

al. 2003, Rosner et al. 2008) and negatively regulates Rheb-mediated mTORC1 

(mammalian target of rapamycin complex 1) signalling (Tee et al. 2003).  

 

1.2.2.3   The TSC1-TSC2 complex 

The region encoded by aa 302-430 of hamartin (Tuberin binding domain) strongly 

interacts with the region encoded by aa 1-418 of tuberin (Hamartin binding domain) 

(Hodges et al. 2001). The presence of a reciprocal stabilisation mechanism is 

reported for tuberin and hamartin (Benvenuto et al. 2000). The complex blocks the 

ubiquitination and the consequent proteasome-dependent degradation of tuberin by 

preventing its interaction with the HERC1 ubiquitin ligase (Benvenuto et al. 2000, 

Chong-Kopera et al. 2006). Similarly, the association with tuberin stabilises hamartin 

and inhibits its self-aggregation and the formation of homomeric protein complexes 

(Nellist et al. 1999). Recently, Dibble et al. (2012) characterised Tre2-Bub2-Cdc16 1 

domain family, member 7 (TBC1D7) as a stably associated and ubiquitous third core 

subunit of the TSC1-TSC2 complex. Loss of TBC1D7 decreased the association of 

TSC1 and TSC2 leading to decreased Rheb-GAP activity (Dibble et al. 2012).  
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Several kinases have been recognised to phosphorylate hamartin and tuberin at 

different sites leading to either their activation or inactivation. Kinase-mediated 

regulation may cause the disruption or the formation of the complex (Astrinidis and 

Henske, 2005).  Through these phosphorylation events, the TSC1-TSC2 complex 

senses and integrates signals from various cellular pathways and acts as a 

molecular switchboard controlling mTORC1 activity. mTORC1 is a key mediator of 

cellular growth (Figure 1.5) (Huang and Manning, 2008). Tuberin displays optimal 

GAP activity only when it interacts with hamartin and TBC1D7 (Dibble et al. 2012, 

Tee et al. 2003). Regulation of the GAP activity of TSC1-TSC2-TBC1D7 complex 

occurs through phosphorylation of hamartin by CDK1 during the G2/M phase of the 

cell cycle. CDK1-mediated phosphorylation of hamartin at three residues (Thr417, 

Ser584 and Thr1047) interrupts its interplay with tuberin and decrease tuberin’s 

function (Astrinidis et al. 2003). In addition, phosphorylation of hamartin at residues 

Thr357 and Thr390 by GSK3β strengthens the stability of the complex (Mak et al. 

2005). TSC1-TSC2-TBC1D7 complex inhibits Rheb by increasing its intrinsic 

GTPase activity. Hydrolysis of the Rheb-GTP (guanosine 5’-triphosphate) to an 

inactive Rheb-GDP (guanosine 5’-diphosphate) leads to Rheb inactivation (Tee et al. 

2003). The active GTP charged form of Rheb enables activation of mTOR (Avruch et 

al. 2006) (Figure 1.5). 
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Figure 1.5 The critical role of TSC1-TSC2 complex in the modulation of mTORC1.  The TSC1-
TSC2 complex regulates mTORC1 activity in response to upstream signalling pathways. 
Under poor growth conditions, the complex blocks the activation of mTORC1 through its GAP 
activity towards Rheb which facilitates the conversion Rheb-GTP into Rheb-GDP. Under 
favourable growth conditions, GTP-bound state of Rheb activates mTORC1 signalling. 
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1.2.3 Mutations in TSC1 and TSC2 

Around 1076 and 2948 mutations have been reported in hamartin and tuberin 

respectively, resulting in functional inactivation of the complex. Seventy TSC1 and 

192 TSC2 mutations have been functionally tested (updated LOVD- Variant listings 

at 22/01/2014). TSC2 and TSC1 mutations account for 74% and 26% of all TSC 

cases, respectively (4.2:1 ratio) (Cheadle et al. 2000). Sixty percent of TSC cases 

are sporadic (Sampson et al. 1989). TSC1 mutations are seen in a minority (10-15%) 

and TSC2 mutations in the majority of sporadic TSC (70%) (Ali et al. 1998, Jones et 

al. 1997, Kwiatkowska et al. 1998, Niida et al. 1999, Van Slegtenhorst et al. 1997, 

Young et al. 1998). The higher incidence of TSC2 mutations rather than TSC1 

mutations may depend on the larger size and more complex structure of TSC2 gene.  

In addition, TSC1 mutations cause a less severe phenotype and some cases may 

not be diagnosed. TSC2 has longer coding region (1.5 times longer than TSC1) and 

a large number of exons and splice sites which may be prone to mutational changes 

(Cheadle et al. 2000). 

 

The distribution of mutations varies in TSC1 and TSC2. Small deletions and 

nonsense mutations are very common in TSC1. In addition, a small number of 

insertions and splice mutations have also been identified, and a minority of missense 

mutations (Figure 1.6) (Kwiatkowski et al. 2010). Genomic deletions or 

rearrangements are not common in TSC1. Mutations had been identified in all 

coding exons of TSC1, mainly in exons 15 (31%), 17 (14%) and 18 (13%) and rarely 

in exons 3, 16, 22 and 23 (Gomez et al. 1999). 

 

Deletions, nonsense and missense mutations frequently affect TSC2 whereas 

insertion and splice mutations are less common (Figure 1.6) (Kwiatkowski et al. 

2010). Seventeen percent of TSC2 mutations are genomic deletions or 

rearrangements, 59% small deletions, insertions, nonsense or splice mutations and 

24% missense mutations (Gomez et al. 1999). Mutations in coding exons 16, 33 and 

40 of TSC2 are the most common, while mutational changes in exons 2, 25, 31, 41 

are rare (Kwiatkowski et al. 2010). Missense mutations account for the majority of 
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mutations found in the functional GAP-related domain of TSC2 (Maheshwar et al. 

1997). Frequent missense in exons 36-40 encoding the GAP-related domain were 

reported by Au et al. (2007). In other study about 6% of TSC2 mutations were found 

in exon 16 at codon R611 which has an essential role in the regulation of the mTOR 

signalling pathway (Nellist et al. 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

 

F
ig

u
re

 1
.6

 R
e
la

ti
v
e

 f
re

q
u

e
n

c
y
 o

f 
th

e
 d

if
fe

re
n

t 
ty

p
e

s
 o

f 
s
m

a
ll 

m
u

ta
ti
o
n

s
 f

o
u
n

d
 i
n

 T
S

C
1

 a
n

d
 T

S
C

2
 (

a
d

a
p

te
d

 f
ro

m
 K

w
ia

tk
o

w
s
k
i 

e
t 

a
l.
 2

0
1

0
).

  

 



32 
 

1.2.4 Knudson’s two hit hypothesis 

TSC lesions develop as a result of two mutational events involving the tumour 

suppressor genes TSC1 or TSC2 (Knudson, 1971). According to Knudson’s 

hypothesis, two ‘hits’ are required; an inherited germline mutation to a tumour 

suppressor gene in combination with a somatic second hit mutation resulting in 

complete inactivation of the tumour suppressor gene (biallelic inactivation) leading to 

tumourigenesis (Figure 1.7). Second hit mutations causing loss of heterozygosity 

(LOH) are usually large genomic deletions of the normal allele (Carbonara et al. 

1994, Green et al. 1994). LOH is demonstrated using genetic markers (Kwiatkowski 

et al. 2010). LOH has been documented in 66% of renal AMLs (Au et al. 1999, 

Henske et al. 1996, Tucker and Friedman, 2002) and in CRs (Henske et al. 1996), 

TSC-associated LAM (Smolarek et al. 1998) and in SEGAs (Chan et al. 2004, 

Henske et al. 1996). Inactivation of a tumour suppressor results in inappropriate cell 

growth and proliferation and thus leads to tumourigenesis (Tomasoni and Mondino, 

2011). 
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Figure 1.7  Mutational inactivation of tumour suppressor genes in cancer. A) Two somatic 
independent mutational events inactivate both alleles of the same tumour suppressor gene. B) 
Loss of the 2nd allele by a somatic mutational event complements the inactivation of the 1st allele 
caused by a germline inherited mutation in the same tumour suppressor gene. C) Inactivation of 
one of the two copies of the tumour suppressor gene may lead to tumour formation. D) A single 
inherited germline mutation in a tumour suppressor gene may result in tumourigenesis. 
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1.2.5 Mosaicism 

Mosaicism refers to a mutation which is only present in a small proportion of cells 

rather than throughout the organism (Kwiatkowska et al. 1999, Roberts et al. 2004). 

Spontaneous TSC1 or TSC2 mutations may arise during early development in utero 

(Figure 1.8) (Roberts et al. 2004). Generalised somatic and confined gonadal 

(germline) mosaicism for TSC1 and TSC2 mutations are not uncommon in TSC 

(Cheadle et al. 2000). Germline mosaicism occurs when the mutation is only present 

within one of the parents germ cells, this then gets passed on to a child whilst the 

parents are unaffected (Rose et al. 1999, Yates et al. 1997). Somatic TSC 

mosaicism occurs due to the high frequency of de novo mutations (Gomez et al. 

1999) and is seen in around 10% of sporadic cases of TSC (Verhoef et al. 1999).  

Sampson et al. (1997) described somatic mosaicism in 7 out of 27 families (26%) 

affected with TSC and PKD due to deletions of both the TSC2 and PKD1 genes. In 

these cases, the severity of TSC was proportional to the level of mosaicism that was 

present.  

 

When mosaicism affects only a small portion of cells in an organism, there are no 

clinical symptoms. However, if the mutation is present in a large proportion of cells 

(5-50% mosaicism), the severity and the clinical manifestations of TSC may be 

restricted to specific organs containing the mutated cells (Gomez et al. 1999). 

Patients with mosaicism tend to present with a less severe phenotype (Dabora et al. 

2001, Kwiatkowski, 2005; Sancak et al. 2005). Thirteen to 15% somatic mosaicism 

for a TSC2 mutation by denaturing high performance liquid chromatography 

(DHPLC) was associated with mild clinical signs of TSC (Jones et al. 2001). A higher 

degree of mosaicism causes a more severe phenotype, for instance a TSC patient 

with 30% mosaicism for a TSC1 mutation developed a reportedly severe TSC 

phenotype (Kwiatkowska et al. 1999).  

 

The lack of detectable mutations in 15% of individuals with TSC may indicate the 

existence of a third unidentified TSC-causing gene (Kwiatkowski, 2005). 

Alternatively, these patients may have low levels of TSC1 or TSC2 mosaicism 
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making mutation detection difficult even in patients meeting the full diagnostic criteria 

(Dabora et al. 2001, Jones et al. 1999, Roberts et al. 2004, Sancak et al. 2005). In 

some cases, mutational analysis by automated or manual direct sequencing of 

polymerase chain reaction (PCR) products is inefficient in detecting TSC mutations 

(Jones et al. 2001). Qin et al. (2010) applied ultra-deep pyrosequencing to test for 

mosaicism in 38 TSC patients with no confirmed evidence of TSC1 or TSC2 

mutations. Five non-mosaic TSC2 mutations were detected which had been missed 

during the first analysis and two TSC2 mosaic mutations were detected in two 

different patients.  
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Figure 1.8 Somatic mosaicism of TSC. Sporadic TSC1 or TSC2 mutations arise during 
embryogenesis after the first division of the fertilised egg and this can result in a mosaic TSC 
individual. The altered TSC1 or TSC2 gene is present in only a fraction of cells making up an 
organ or tissue of an individual who developed from that embryo. 
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1.2.6 Genotype-phenotype correlations 

1.2.6.1   Contiguous deletion syndrome 

Previous studies have looked for correlation between the location or the type of 

different mutations with the variation in TSC phenotypes. A clear association was 

found between contiguous TSC2 and PKD1 deletions and severe renal cystic 

disease in TSC (Brook-Carter et al. 1994, Sampson et al. 1997). Twenty-seven 

patients with TSC and renal cystic disease were previously tested for mutations and 

22 of them were found to have contiguous deletion syndrome. All 17 non-mosaic 

patients had similar clinical symptoms with enlarged cystic kidneys during infancy 

and radiographic features resembling advanced ADPKD (Sampson et al. 1997). 

 

1.2.6.2   TSC1 versus TSC2 disease 

Many comprehensive genotype-phenotype correlation studies have attempted to find 

correlations between TSC mutations (TSC2 versus TSC1 mutations) and clinical 

features (Au et al. 2007, Dabora et al. 2001, Jones et al. 1999, Sancak et al. 2005). 

Generally, patients with TSC2 mutations tend to present with a more severe 

phenotype than patients with TSC1 mutations. Patients with TSC2 mutations present 

with a higher incidence of renal AMLs and cysts, forehead plaques, SENs, retinal 

phakomas, facial angiofibromas, mental retardation and seizures than those with 

TSC1 mutations (Au et al. 2007, Dabora et al. 2001, Kwiatkowski et al. 2010, Sancak 

et al. 2005). 

 

1.2.6.3   Familial versus sporadic TSC patients 

Differences in the severity of the disease are seen in both familial and sporadic TSC 

cases (Au et al. 2007, Dabora et al. 2001, Sancak et al. 2005). Familial TSC patients 

tend to present with milder phenotypes than sporadic TSC patients. Large scale 

meta-analysis across three studies indicated that seizures, renal AMLs, SENs and 

retinal phakomas are less common in cases of familial rather than sporadic TSC (Au 

et al. 2007, Dabora et al. 2001, Kwiatkowski et al. 2010, Sancak et al. 2005).  
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1.2.6.4   Male versus female TSC patients 

Both Au et al. (2007) and Sancak et al. (2005) reported a higher frequency of clinical 

TSC features among male than female TSC patients. A meta-analysis of these two 

studies indicated that male patients are more prone to cortical tubers, SENs, retinal 

phakomas, renal cysts, ungual fibromas, mental retardation and seizures than 

female patients (Au et al. 2007, Kwiatkowski et al. 2010, Sancak et al. 2005). In 

addition, Smalley et al. (1992) reported a higher incidence of autism and learning 

difficulties in male than female TSC patients. The reason for this remains unknown. 

However it is likely that hormonal, immunologic or additional genetic events may be 

contributing factors (Gomez et al. 1999, Henske, 2005; Yu et al. 2004). 

 

1.2.7 TSC1 or TSC2 haploinsufficiency 

As stated by Knudson, mutation or LOH of tumour suppressor genes causes 

tumourigenesis (Knudson, 1971) (Figure 1.7). LOH was demonstrated in several 

lesions including SEGAs, CRs, LAM, RCCs, AMLs, and RCCs, from TSC patients 

(Carbonara et al. 1994, Green et al. 1994, Henske et al. 1995, Parry et al. 2001, 

Sepp et al. 2006, Smolarek et al. 1998). However, some TSC associated early renal 

cysts, cardiac (rhabdomyomas) and brain lesions (SEGAs, cortical tubers) have 

been reported without evidence of LOH (Henske et al. 1996, Niida et al. 2001, 

Wilson et al. 2006). In 2006, Wilson et al. reported somatic TSC1 mutations in 

around 80% of renal cystadenomas and RCCs and in just 31.6% of renal cysts of 

Tsc1+/- mice. These data indicated that TSC1 haploinsufficiency may promote renal 

tumourigenesis in TSC (Wilson et al. 2006). 

 

TSC1 or TSC2 haploinsufficiency reduces gene dosage and may be sufficient to 

diminish the function of tumour suppressor proteins, resulting in Tsc-associated 

tumourigenic events (Figure 1.7). It has also been reported that haploinsufficiency of 

some tumour suppressors such as p27Kip1, p53, MSH2, MAD2, PTEN and LKB1 can 

result in tumourigenesis (Santarosa and Ashworth, 2004). Compound 

haploinsufficiency may also occur when other genetic changes (oncogenic or 
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haploinsufficient events) cooperate with TSC1/2 haploinsufficiency gene and 

promote tumourigenesis (Santarosa and Ashworth, 2004). 

 

As suggested by Henske et al. (1996) and Niida et al. (2001), some tumours may 

result from TSC1 or TSC2 haploinsufficiency and a secondary different pathogenic 

mechanism. In TSC-associated cardiac or brain lesions in which LOH is absent, the 

expression of wild-type hamartin or tuberin is normal (Jóźwiak et al. 2008). However, 

Han et al. (2004) reported that although hamartin and tuberin were expressed in the 

brain lesions, tuberin was inactivated by a post-translational mechanism. Both Akt 

and mitogen-activated protein kinase (MAPK) pathways were upregulated in TSC 

brain lesions. The single functional TSC2 allele was present in cells, but its product 

was inactivated through this tissue-specific regulation (Han et al. 2004). In normal 

cells, tuberin is directly phosphorylated and inactivated by Akt, preventing its 

interaction with hamartin. Disruption of the TSC complex by Akt-dependent 

phosphorylation leads to mTOR upregulation in response to growth factors (Inoki et 

al. 2003).  

 

1.2.8  Existence of TSC3 gene? 

Mutation analysis of TSC1 or TSC2 demonstrated the absence of mutations in about 

15-20% patients with TSC and led to the assumption of the existence of a third TSC 

gene (TSC3) (Kwiatkowski, 2005; Kaczorowska et al. 2006). A third mutated protein 

may exist which is very closely associated with the TSC complex and is involved in 

the dysregulation of the downstream pathway (Jóźwiak et al. 2008). Recently, the 

third component of the TSC1-TSC2 complex was identified TBC1D7 (Dibble et al. 

2012). However, sequencing analyses of samples from TSC patients suggested that 

this component is unlikely to represent TSC3. TBC1D7 is required for the proper 

regulation of Rheb and mTORC1 by cellular growth conditions (Dibble et al. 2012). 
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1.3   mTOR signalling pathway 

The mammalian target of rapamycin or mechanistic target of rapamycin (mTOR) 

(Soliman, 2013), also known as FK506 binding protein 12-rapamycin associated 

protein (FRAP) (Brown et al. 1994) or rapamycin and FKBP12 target-1 protein 

(RAFT1) (Sabatini et al. 1994) is a highly conserved serine/threonine kinase of the 

PIKK (phosphoinositide 3-kinase-related kinase) family (Huang et al. 2008) and is a 

key mediator of cell growth, proliferation, metabolism and survival (Wullschleger et 

al. 2006). The two Tor (Target of rapamycin) genes, TOR1 and TOR2 were first 

identified in budding yeast Saccharomyces cerevisiae after the discovery of the 

immunosuppressive compound rapamycin. The products encoded by these genes 

appeared to respond to rapamycin (Heitman et al. 1991). mTOR is found in two 

functionally distinct multi-protein complexes, the  mTORC1 and  mTORC2. These 

complexes have different downstream substrates and regulate distinct pathways 

(Loewith et al. 2002, Wullschleger et al. 2006, Zoncu et al. 2011). The TSC1-TSC2 

complex, through its GAP activity towards Rheb, is an important negative regulator 

of mTORC1. 

 

1.3.1   mTORC1  

mTORC1 is well characterised and is referred to as the rapamycin sensitive 

complex.  mTORC1 comprises of mTOR, Raptor (regulatory associated protein of 

mTOR), PRAS40 (proline-rich AKT substrate 40 kDa), mLST8 (mammalian lethal 

with Sec-13 protein 8) and DEPTOR (DEP domain TOR-binding protein). This 

complex is involved in the regulation of multiple cellular processes such as growth, 

proliferation, angiogenesis, cell cycle progression, lipid metabolism, glucose 

transport, erythropoiesis and mitochondrial biogenesis (Fingar and Blenis, 2004; Hay 

and Sonenberg, 2004). mTORC1 mediates these processes through 

phosphorylation of multiple downstream substrates, with the ribosomal protein S6 

kinases S6K1 and S6K2, and eukaryotic initiation factor 4E (elF4E)-binding proteins 

4E-BP1 and 4E-BP2 being the best characterised (Fingar and Blenis, 2004; Hay and 

Sonenberg, 2004).  
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mTORC1 directly phosphorylates S6K1 at the Thr389 site (Pearson et al. 1995). This 

priming phosphorylation event is critical for the phosphorylation of other sites 

resulting in full S6K1 activation. S6K1 together with S6K2 which is also regulated by 

mTORC1, are key mediators of protein synthesis. S6K1 and S6K2 are also involved 

in the regulation of mRNA processing and cell growth and survival. The majority of 

their functions are mediated through phosphorylation/activation of the downstream 

ribosomal protein S6 (rpS6 or S6) and eukaryotic translation initiation factor 4B 

(eIF4B) (Fenton and Gout, 2011; Holz et al. 2005, Raught et al. 2004; Ruvinsky and 

Meyuhas, 2006). S6 is activated following sequential phosphorylation of five different 

serine sites within its C-terminus (Ser236, Ser235, Ser240, Ser244, Ser247). 

Phosphorylation at the Ser240/244 residues is S6Ks-mediated (Moore et al. 2009). 

S6 is component of the ribosomal 40s subunit and is required for translation as it 

takes part in binding mRNA (Ruvinsky and Meyuhas, 2006). In addition, S6K1/S6K2 

specifically phosphorylate eIF4B at the Ser422 residue (Raught et al. 2004). elF4B 

assists elF4A in unwinding of mRNA for translation (Rogers et al. 2001). 

 

Normally, eukaryotic translation initiation factor 4G (elF4G) interacts strongly with the 

eukaryotic translation initiation factor 4E (elF4E) for the initiation of cap-dependent 

translation. Hypophosphorylated 4E-BPs supress translation initiation by competing 

for the eIF4G binding site on eIF4E preventing their interaction (Lin et al. 1994, 

Mader et al. 1995). mTORC1-mediated phosphorylation on 4E-BP releases it from 

the cap-bound eIF4E to initiate cap-dependent translation (Gingras et al. 1999). 

mTORC1 directly phosphorylates the translational repressor 4E-BP1 at Thr37, 

Thr46, Ser65 and Thr70 sites with Thr37 and Thr46 being the priming 

phosphorylation sites for subsequent phosphorylation of other residues (Gingras et 

al. 2001, Harris and Lawrence, 2003). mTORC1 also regulates the activation of 

specific transcription factors including Hypoxia-inducible factor 1α  (HIF-1α), Signal 

transducer and activator of transcription 3 (STAT3), Sterol Regulatory Element-

Binding Proteins (SREBPs), Peroxisome proliferator-activated receptor alpha 

(PPARα), Peroxisome proliferator-activated receptor gamma (PPARγ), Yin Yang 1 

peroxisome proliferator-activated receptor gamma coactivator-1α (YY1-PGC1α) and 

Transcription factor EB (TFEB) (Laplante and Sabatini, 2013). 
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1.3.2   mTORC2  

mTORC2 (mammalian target of rapamycin complex 2) consists of mTOR, Rictor 

(rapamycin-insensitive companion of mTOR), mSIN1 (mammalian stress-activated 

protein kinase-interacting protein 1), DEPTOR, PROTOR (protein observed with 

Rictor) and mLST8. Little is known about mTORC2 but is thought to regulate cell 

survival/metabolism and the actin cytoskeleton through modulation of the Rho 

GTPases (Jacinto et al. 2004) and AGC kinases (García-Martínez and Alessi, 2008; 

Guertin et al. 2006, Hresko and Mueckler, 2005; Jones et al. 2009, Sarbassov et al. 

2004, Sarbassov et al. 2005, Yan et al. 2008). mTORC1 is regulated by nutrients 

and growth factors, while mTORC2 responds to insulin and growth factors but is 

considered nutrient-insensitive complex (Jacinto et al. 2004, Loewith et al. 2002, 

Sarbassov et al. 2004).  

 

The serine-threonine kinase Akt is a direct target of mTORC2. Akt is involved in the 

control of cell-cycle progression, cell survival, gluconeogenesis, glucose uptake, 

modulating neuronal synapse activity and activation of mTORC1 (Brazil et al. 2004, 

Huang and Manning, 2009). Rictor knockout in mice indicated that mTORC2 activity 

and Ser473 phosphorylation of Akt are essential for the development of both 

embryonic and extraembryonic tissues (Shiota et al. 2006). Insulin and growth 

factors stimulate Akt activation. Akt is activated by phosphorylation of the carboxyl-

terminal hydrophobic motif (at Ser473) and of the turn motif (at Thr450) by mTORC2 

allowing phosphorylation at Thr308 of the activation loop by phosphoinositide-

dependent kinase 1 (PDK1) (Alessi et al. 1996, Facchinetti et al. 2008, Guertin and 

Sabatini, 2007; Hanada et al. 2004, Hresko and Mueckler, 2005; Ikenoue et al. 2008, 

Manning and Cantley, 2007, Sarbassov et al. 2005). 

 

mTORC2 signalling is not as well characterised as mTORC1 due to lack of mTORC2 

specific inhibitors. Several studies have demonstrated that mTORC2 is insensitive to 

rapamycin inhibition (Jacinto et al. 2004, Loewith et al. 2002, Sarbassov et al. 2005). 

However, more recent studies suggested that prolonged treatment with rapamycin 

suppressed mTORC2 assembly in a subset of cells. This is believed to be due to a 
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reduced pool of ‘free’ mTOR available for mTORC2 assembly (Sarbassov et al. 

2006, Zeng et al. 2007).  

 

1.3.3   mTORC1 activation 

The mTORC1 signalling pathway has been well studied in the last decade and the 

following discussion will focus on this pathway. mTORC1 integrates a wide range of 

upstream signals, including growth factors (insulin or insulin-like growth factor), 

nutrients (amino acids availability), cellular energy depletion and cellular oxygen 

levels to modulate its downstream targets (Figure 1.9) and is regulated by multiple 

feedback loops. 

 

1.3.3.1   Insulin and Growth factors 

Insulin and growth factors stimulate receptor-mediated activation of the PI3K-Akt 

pathway. Tyrosine kinase receptors become activated and auto-phosphorylated 

upon binding to insulin or insulin-like growth factors (IFG). Auto-phosphorylated 

receptors stimulate the recruitment of insulin receptor substrate adaptor proteins 

(IRSs) which activate PI3Ks (Phosphatidylinositide 3-kinases). Active PI3Ks are then 

recruited to the membrane where they convert phosphatidylinositol-4,5-bisphosphate 

(PIP2) to phosphatidylinositol-3,4,5-trisphosphate (PIP3) (Oldham and Hafen, 2003). 

The activity of PI3K is inhibited by the phosphatase and tensin homolog (PTEN) 

which acts as a tumour suppressor and converts PIP3 back to PIP2 (Vogt, 2001). 

PIP3 provides a docking site for Akt promoting its phosphorylation at Ser473 and 

Thr450 by mTORC2 and at Thr308 by PDK1. Akt activates mTORC1 through 

phosphorylation of TSC2 at Ser939 and Thr1462 blocking TSC2 GAP activity 

towards the mTORC1 activator Rheb (Inoki et al. 2002, Manning et al. 2002). Akt 

also activates PRAS40 a negative regulator of mTORC1, causing its dissociation 

from the complex (Haar et al. 2007). 

 

In addition, Ras is also activated upon growth factor stimulation. Ras activates both 

PI3K-Akt and Raf/Mek1 signalling cascades. The Raf/Mek1 signalling cascade then 
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promotes the phosphorylation/inhibition of TSC2 on Ser540 and Ser664 by the 

MAPK ERK1/2 (Extracellular-signal-regulated kinases 1/2) (Ma et al. 2005). ERK1/2 

also phosphorylates and activates p90-RSK1 (Ribosomal protein S6 kinase alpha-1) 

which phosphorylates TSC2 at the Ser1798 site to inactivate the complex (Roux et 

al. 2004). Furthermore, P90-RSK1 phosphorylates Raptor to increase mTORC1 

kinase activity (Summy and Gallick, 2006). 

 

1.3.3.2   Amino acid regulation 

The Rag GTPases (Rag Guanosine Triphosphatases) proteins are critical in 

regulating amino acid signalling to mTORC1. In mammals, there are four Rag 

proteins called RAGA, RAGB, RAGC and RAGD. RAGA or RAGB forms a 

heterodimer with RAGC and RAGD (Sekiguchi et al. 2001). The presence of amino 

acids stimulates the formation of the active RAGA/B•GTP- RAGC/D•GDP complex 

(Jewell et al. 2013). Recently, a model has emerged where amino acids accumulate 

within the lysosome and signal to vacuolar H+-ATPase (v-ATPase). v-ATPase 

promotes the GEF (Guanine Exchange Factor) activity of a complex termed 

‘Ragulator’, resulting in the active RAG GTPase conformation. Activated 

RAGA/B•GTP- RAGC/D•GDP complex then binds to the mTORC1 component 

Raptor and recruits mTORC1 to the lysosome where Rheb is also present, leading to 

mTORC1 activation (Jewell et al. 2013). A new model was also suggested involving 

leucyl-tRNA synthetase (LeuRS) which functions as a direct sensor for the amino 

acid Leu and is implicated in the activation of mTORC1 in the cytoplasm (Bonfils et 

al. 2012, Han et al. 2012). 

 

1.3.3.3    Energy sensing pathway 

AMP-dependent protein kinase (AMPK) is activated by liver-kinase B1 (LKB1), in 

response to ATP depletion (Shaw et al. 2004, Lizcano et al. 2004) and down-

regulates mTORC1 signal transduction. When intracellular ATP levels decrease, 

AMP levels increase and AMPK is activated. Active AMPK phosphorylates TSC2 at 

Ser1345 to promote formation of the TSC1/2 complex and subsequent mTORC1 

inhibition (Inoki et al. 2003). Glycogen synthase kinase 3 beta (GSK3β) also 
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phosphorylates TSC2 at Ser1341 and Ser1337 (Gough et al. 2009). GSK3β acts 

synergistically with AMPK to promote TSC2 activation, as AMPK-mediated TSC2 

phosphorylation is required for GSK3β-mediated TSC2 phosphorylation. This data 

indicates a link between Wnt signalling pathway and mTORC1 (Inoki et al. 2006). In 

addition, AMPK suppresses mTORC1 though direct phosphorylation of Raptor on 

Ser722 and Ser792. This stimulates the binding of the inhibitory 14-3-3 proteins to 

Raptor which leads to suppression of mTORC1 signal transduction (Gwinn et al. 

2008).  

 

1.3.3.4   Hypoxic regulation 

During hypoxia, the cell compensates for the drop in oxygen levels by suppressing 

energy consuming processes such as protein translation. The cell also increases 

expression of HIFs (hypoxia-inducible factors) to promote cellular processes 

including angiogenesis, erythropoiesis and glucose transport (Iyer et al. 1998, 

Semenza, 1996; Wenger and Gassmann, 1997). Hypoxia causes suppression of 

mTORC1 to conserve energy levels via multiple mechanisms. Hypoxia rapidly 

decreases intracellular ATP levels and leads to inhibition of mTORC1 through AMPK 

activation as described in section 1.3.3.3 (Liu et al. 2006). In addition, oxygen 

depletion stimulates stabilisation of HIF-1α and up-regulation of its transcriptional 

target REDD1/2 (Jin et al. 2007). When mTORC1 is active, there is growth factor-

induced association between TSC2 and the inhibitory 14-3-3 proteins (Li et al. 2002, 

Nellist et al. 2003). Under hypoxia, REDD1/2 promotes the suppression of mTORC1 

by binding to TSC2 causing dissociation of the inhibitory 14-3-3 proteins (DeYoung 

et al. 2008). 
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Cell Growth & Proliferation 

Figure 1.9 Activation of mTORC1 signalling. mTORC1 activity is regulated by several external signals 
including growth factors, amino acids and intracellular energy and oxygen levels. The TSC1/TSC2 tumour 
suppressor complex acts as a signal integration point to control cell growth and proliferation. Insulin/Growth 
factor stimulation activates PI3-Akt signalling and subsequently mTORC1 indirectly and directly through 
phosphorylation of TSC2 and PRAS40, respectively. Insulin/Growth factors also activate the Ras/Erk/Rsk1 
signalling cascade. Erk and Rsk1 phosphorylate TSC2 and Raptor and activate mTORC1. Recently, the 
mechanism by which amino acids signal to mTORC1 is defined. Amino acid accumulation promotes the 
activation of Rag GTPases through Ragulator which can then recruit mTORC1 to the lysosome, leading to 
mTORC1 activation. Availability of energy or oxygen increases ATP levels and inhibits AMPK. Under ATP 
depletion, AMPK and Gsk-3 act in synergy to activate TSC2 and subsequently inhibit mTORC1. AMPK also 
suppresses mTORC1 through direct phosphorylation of Raptor. In case of hypoxia, the amount of HIF-1 is 
stabilised and the expression of REDD1/2 which sequester inhibitory 14-3-3 proteins from TSC2 is 
upregulated, leading to mTORC1 suppression. Functional loss of either TSC1 or TSC2 leads to mTORC1 
hyperactivity. mTORC1-mediated phosphorylation of S6K and 4E-BP1 promotes cell growth and 
proliferation.  
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1.3.4   Feedback loops 

S6K1, a direct substrate for mTORC1 is involved in several feedback mechanisms. 

S6K1 induces Ser/Thr phosphorylation on IRS (insulin receptor substrate) proteins, 

suppressing the response to insulin and PI3Kinase activation. This negative 

feedback control mechanism makes cells resistant to insulin (Zick, 2001; Um et al. 

2004). Furthermore, when mTORC1 is active, activated S6K1 markedly reduces the 

expression of PDGFRα and PDGFRβ (platelet derived growth factor receptor) and 

this renders cells resistant to serum and platelet derived growth factor (PDGF) 

stimulation (Zhang et al. 2003). S6K1 was also indicated to inhibit mTORC2-

dependent activation of Akt through phosphorylation of Rictor which is an essential 

component of mTORC2 (Julien et al. 2010, Dibble et al. 2009). In addition, activation 

of mTORC1 promotes negative feedback inhibition of PI3K through phosphorylation 

(at Ser501 and Ser503) and accumulation of a negative regulator of PI3K signalling, 

the growth factor receptor-bound protein 10 (Grb10). Overexpressed Grb10 

suppresses activation of PI3K by inhibiting insulin receptor-dependent 

phosphorylation of IRS and its subsequent recruitment of PI3K (Yu et al. 2011). 

 

Feedback mechanisms are critical in relation to therapeutic strategies for mTORC1 

inhibition since they also become dysregulated when signalling pathways are 

manipulated. mTORC1 inhibition promotes the Ras/Raf signalling cascade while 

S6K1 acts to inhibit activation of the Ras/Raf signalling cascade in response to 

growth factors as described above. Therefore, suppression of mTORC1 by 

rapamycin lessens the S6K1-induced inhibition of Ras/Raf signalling (Carracedo et 

al. 2008). This may result in inappropriate activation of additional pathways 

downstream of Ras/Raf.  

 

1.3.5   mTOR activation in tumour syndromes and sporadic tumours 

mTOR has a central role in regulating cell growth, proliferation and metabolism,  and 

aberrant mTOR activation is implicated in tumourigenesis. Mutations in the TSC1 or 

TSC2 tumour suppressor genes lead to aberrant mTOR activation and the 

development of benign hamartomas in multiple organs. Mutations in other 



48 
 

components of the PI3K/AKT/mTOR signalling pathway result in a group of tumour 

syndromes (Dazert and Hall, 2011; Guertin and Sabatini, 2007; Shaw and Cantley, 

2006) (Table 1.4, adapted from Inoki et al. 2005). mTOR signalling pathway has also 

been reported to be activated in a variety of sporadic cancer such as lung 

adenocarcinomas breast, ovarian, colon cancers and glioblastoma (Shaw and 

Cantley, 2006). 
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Table 1.4 Hamartoma syndromes with a proven or potential link to mTOR (adapted from 

Inoki et al. 2005). 

 

Disease Gene mutated Phenotype 

Tuberous Sclerosis 

Complex 

TSC1 
TSC2 

Hamartomas in multiple organs, 

hypomelanocytic macules,  renal carcinomas 

Peutz-Jeghers 

Syndrome 

STK11 Hamartomas in the gastrointestinal tract, 

lentigenes 

Cowden Disease PTEN Hamartomas in multiple organs, lentigenes 

Bannayan-Riley-

Ruvalcaba Syndrome 

PTEN Hamartomas in multiple organs, lentigenes 

Proteus Syndrome PTEN Hamartomas in multiple organs 

Lhermitte-Duclos 

Disease 

PTEN Hamartomas in brain 

Autosomal dominant 

polycystic kidney 

disease 

PKD1 
PKD2 

Cysts in kidneys 

 

 

Disease Gene mutated Phenotype 

Neurofibromatosis 

type 1 

NF1 Neurofibromas 

Von Hippel-Lindau 

Syndrome 

VHL Angiomas of the retina, hemangioblastomas of 

the central nervous system, renal carcinomas 

Carney Complex PRKAR1A Hamartomas, myxomas, lentigenes 

Birt-Hogg-Dube 

Syndrome 

FLCN Hamartomas in many organs, renal 

carcinomas 

Familial Adenomatous 

Polyposis 

APC Polyps or carcinomas in the gastrointestinal 

tract 

Juvenile Polyposis 

Syndrome 

SMAD4 
BMPR1A 

Hamartomas in the gastrointestinal tract 

 

Syndromes with an established link to mTOR dysregulation 

Syndromes implicated with mTOR dysregulation or with clinical similarities to 

mTOR-related diseases 
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1.4   TSC models 

Genetic models of TSC are available in different species. Drosophila has been used 

as an important model system for understanding the molecular function of hamartin 

and tuberin tumour suppressors. Rodent models have also been invaluable in 

elucidating the mechanisms underlying TSC and in testing potential therapies and 

preventive strategies for the disease. 

 

1.4.1   Insights from Drosophila 

Drosophila is a powerful model system for understanding the function of disease 

causing genes since for 70% of human disease genes there is a counterpart gene in 

Drosophila (Rubin et al. 2000). Genetic and biochemical studies in Drosophila 

models have facilitated our understanding of the role of the Tsc1-Tsc2 complex (Pan 

et al. 2004). Ito and Rubin first reported the existence of TSC1 and TSC2 

orthologues in Drosophila. They demonstrated that mutation to the Tsc2 gene 

resulted in a dramatic increase in cell size (Ito and Rubin, 1999). Further work 

carried out independently by three groups (Gao and Pan, 2001; Tapon et al. 2001, 

Potter et al. 2001) showed a similar effect upon cell size after Tsc1 mutation.  

 

Several genetic studies have demonstrated the involvement of insulin signalling 

components including PI3K (Leevers et al. 1996), IRS (Böhni et al. 1999), Akt (Verdu 

et al. 1999), PTEN (Gao et al. 2000, Goberdhan et al. 1999, Huang et al. 1999), 

PDK1 (Cho et al. 2001, Rintelen et al. 2001) and S6K (Montagne et al. 1999) in the 

regulation of cell size. Mutations in the Tsc1, Tsc2 or PTEN genes of Drosophila 

resulted in similar increase in cell size, indicating a link between TSC1-TSC2 

complex and insulin signalling. It was also noted that mutations of both the Tsc1 and 

PTEN genes caused a greater increase in cell growth compared to mutations of 

either gene alone (Gao and Pan, 2001).  

 

Genetic studies of Drosophila also initially suggested a role for the TSC1-TSC2 

complex in negatively regulating TORC1 signalling (Gao et al. 2002, Oldham et al. 
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2000, Zhang et al. 2000). Rheb was identified as a direct GTPase target of the Tsc2 

GAP domain (Patel et al. 2003, Saucedo et al. 2003, Stocker et al. 2003). The 

inhibitory effect of TORC1 signalling on autophagy was shown in Drosophila (Scott 

et al. 2007). In 2002, Radimerski et al. reported that lack of TSC1-TSC2 in 

Drosophila larvae and cells, resulted in constitutive S6K activation and inhibition of 

Akt, suggesting a negative feedback loop between TORC1 and the insulin pathway 

(Radimerski et al. 2002) which was later confirmed. Additional studies conducted in 

Drosophila were used to characterise amino-acid-mediated TORC1 activation, 

leading to the discovery of the Rag GTPases (Kim et al. 2008, Sancak et al. 2008). 

The relationship between TSC1-TSC2 tumour suppressor complex activity and the 

hypoxia-induced expression of Scylla/Charybdis (the Drosophila homologue of 

REDD1/RTP801) in response to hypoxia was also uncovered using this model 

system (Reiling and Hafen, 2004). 

 

1.4.2   Spontaneously mutated rat model 

In 1954, a genetic animal model with a predisposition for kidney adenoma and 

carcinoma called Eker rat was first described (Eker, 1954). It was later discovered 

that spontaneous germline inactivation of a Tsc2 allele caused this predisposition 

(Eker 1954, Eker et al. 1961, Kobayashi et al. 1997, Pan et al. 2004). This was the 

first rodent model of TSC. Homozygous rats for the mutated Tsc2 exhibited 

embryonic lethality at approximately 10-12 days of gestation, demonstrating the 

essential role of Tsc2 in development (Everitt et al. 1995, Hino et al. 1993). While 

Eker heterozygous rats were born viable, renal lesions including cysts, branching 

cysts and cyst adenomas generally developed within 12 months of age (Eker et al. 

1981). These renal lesions derived from early pre-neoplastic lesions which first 

become evident at 2 months of age (Hino et al. 2002). 

Hemangiomas/hemangiosarcomas of the spleen (23-68% at 14 months- 2 years), 

leiomyomas/leiomyosarcomas of the uterus (47-62% of female at 14 months- 2 

years) (Everitt et al. 1992) and pituitary adenomas (55% at 2 years) (Hino et al. 

1994, Kubo et al. 1994, Kubo et al. 1995) developed in the heterozygous Eker rat 

model in addition to kidney lesions. Brain lesions including subependymal and 
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subcortical hamartomas (Yeung et al. 1997), cortical tuber and anaplastic 

ganglioglioma (Mizuguchi et al. 2000) were also observed.  

 

TheTsc2 gene was mapped to rat chromosome 10q12 (Yeung et al. 1993, Hino et al. 

1993). Kobayashi et al. (1995) and Yeung et al. (1994) detected a germline 6.3kb 

retrotransposon insertion in this Eker rat gene which disrupted codon 1272 and 

caused aberrant RNA expression from the mutant allele, leading to an unstable, 

larger tuberin product. The Pkd1 gene located adjacent to the Tsc2 gene (as in 

humans) is not affected in this model (Kobayashi et al. 1995).  

 

The stages of renal carcinogenesis were analysed in the Eker rat. The renal lesions 

initiated from altered renal tubules and were characterised by partial replacement of 

the tubular epithelium with larger cells exhibiting atypical nuclei. These tubules 

developed into foci of cells with atypical hyperplasia, then into adenomas and finally 

into carcinomas (Hino et al. 2002). These kidney lesions developed in the outer 

cortex and often progressed to carcinomas within the life time of the rodent. A 

minority of lesions became malignant and sometimes metastasised to the lungs, 

pancreas and liver (Eker et al. 1981). Even the earliest pre-neoplastic lesions arising 

from the kidneys of this rat model showed LOH of the wild-type Tsc2 allele. This 

suggested that the second somatic mutation is a rate-limiting step for renal 

carcinogenesis in the Eker rat (Kobayashi et al. 1997). In sporadic renal cell 

carcinoma, 60% of rodents showed loss of the wild-type Tsc2 allele consistent with 

two-hit hypothesis (Kubo et al. 1994). LOH was also demonstrated in renal 

adenomas (40-60%), uterine leiomyomas (36%) and in pituitary adenomas (35%) in 

rat Tsc2+/- model (Kubo et al. 1995, Yeung et al. 1995). 

 

1.4.3   Transgenic mouse models 

1.4.3.1   Conventional transgenic Tsc2+/- mice 

In 1999, two Tsc2+/- mouse models were developed which exhibited identical 

phenotypes. Tsc2 null (-) alleles were developed by a neomycin cassette insertion 
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into coding exon 2 in both models (Table 1.5) (Kobayashi et al. 1999, Onda et al. 

1999) (Table 1.5). Tsc2-/- mice exhibited embryonic lethality and died in utero 

between E10.5-12.5 (Kobayashi et al. 1999, Onda et al. 1999). Tsc2-/- embryos 

displayed developmental delay and delay in neural tube closure in comparison with 

Tsc2+/+ and Tsc2+/- matched littermates. The primary cause of embryonic death 

appeared to be severe liver hypoplasia and cardiac hypertrophy may also contribute 

to embryonic death (Kobayashi et al. 1999, Onda et al. 1999). 

 

By 6-12 months, Tsc2+/- mice developed renal lesions which progressed throughout 

rodent’s life (full penetrance by 15 months) (Kobayashi et al. 1999, Onda et al. 

1999). These renal lesions, called cystadenomas, include pure cysts, cysts with 

papillary growth and solid adenomas (Onda et al. 1999). Cystadenomas were 

observed in the cortical region of the kidney, this is not surprising given that they 

developed from intercalated cells of the cortical collecting duct which share a similar 

gene expression profile. Renal carcinomas were also seen in 5-10% of 18 month-old 

Tsc2+/- mice. Strain-dependent differences in number and volume of these renal 

lesions were observed in Tsc2+/- mice (Onda et al. 1999). 

 

By 18 months of age, 50% of Tsc2+/- mice developed liver hemangiomas 

characterised by smooth muscle cell proliferation and large vascular spaces. The 

incidence of liver hemangiomas in Tsc2+/- 129/SvJae mice was shown to be higher 

than in any other strains. Hemangiosarcomas of the tail, paws or mouth were noted 

in 5% of Tsc2+/- mice at 12 months (Kwiatkowski et al. 2010). LOH was revealed in 

24% of renal cystadenomas and carcinomas, and 50% of liver hemangiomas. These 

data are consistent with the second-hit notion in tumourigenesis (Onda et al. 1999). 

 

During the generation of a conditional allele for Tsc2 as discussed below, a 

hypomorphic allele (Tsc2neo) was made by a neocassette insertion into exon 1 of 

Tsc2 (Table 1.5) (Hernandez et al. 2007). Tsc2neo/neo embryos didn’t exhibit 

exencephaly and some of them survived until embryonic day 17, longer than the 

Tsc2-/- embryos. Also, renal cysts developed in Tsc2+/neo mice after the age of 1 year. 
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Western analysis indicated reduced tuberin expression in the Tsc2neo/neo embryo, 

suggesting that the Tsc2neo allele was hypomorphic (Hernandez et al. 2007).  

 

1.4.3.2   Conventional transgenic Tsc1+/- mice 

Three different transgenic Tsc1+/- mouse models are now available. Kobayashi et al. 

(2001) developed a Tsc1+/- mouse model by insertion of a neocassette and deletion 

of exons 6, 7 and 8 of Tsc1. Kwiatkowski et al. (2002) also produced a Tsc1+/- mouse 

model through deletion of exons 17 and 18 (Table 1.5). Wilson et al. (2005) 

generated another Tsc1+/- mouse model by insertion of a β-Galactosidase 

reporter/neomycin selection cassette, partial deletion of exon 6 and complete 

deletion of exons 7 and 8 (Table 1.5). Homozygous Tsc1 mice from all three groups 

had an embryonic lethal phenotype and were found dead by embryonic days 10.5-

13.5. Tsc1-/- embryos appeared to be developmentally retarded with incomplete 

neural tube closure (Kobayashi et al. 2001, Kwiatkowski et al. 2002, Wilson et al. 

2005). 

 

Although the phenotype of the first two Tsc1+/- mouse models were very similar 

(Kobayashi et al. 2001, Kwiatkowski et al. 2002), Wilson’s model exhibited a more 

severe phenotype (Wilson et al. 2005) (Table 1.5). The differences may be strain-

dependent (Wilson et al. 2005). More Tsc1+/- mice on a C3H background (44%) 

developed macroscopically visible renal lesions in comparison with age matched (3-

6 months old) Tsc1+/- mice on the Balb/c (13%) and C57BL/6 (8%) backgrounds. The 

incidence of renal cell carcinoma was higher (80%) in Tsc1+/- Balb/c mice compared 

with other strains. By 15-18 months, Tsc1+/- mice of all backgrounds exhibited 

microscopically visible lesions. Renal lesions were classified as cysts, atypical cysts, 

branching cysts, mixed cystic/solid carcinomas or solid carcinomas. It was 

demonstrated for the first time using this model that small cysts progress to 

carcinomas (Wilson et al. 2005). LOH analysis in the renal lesions of these Tsc1+/- 

mice indicated second somatic Tsc1 mutations in around 80% of renal 

cystadenomas and RCCs but in just 31.6% of renal cysts suggesting that TSC1 

haploinsufficiency may promote renal cystogenesis (Wilson et al. 2006). 
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The tumours found in Tsc1+/- mice such as kidney cystadenomas and liver 

hemangiomas were similar to those observed in Tsc2+/- mice. However, the 

incidence of renal tumours was higher in Tsc2+/- than in Tsc1+/- mice of the same age 

(Kobayashi et al. 2001, Kwiatkowski et al. 2002). In the Tsc1+/- mouse model 

generated by Kwiatkowski et al. (2002), liver hemangiomas were more common and 

more severe in females than in males leading to higher mortality rate in females. 

 

1.4.3.3   Conditional transgenic mouse models 

1.4.3.3.1   Tissue-specific knockout of Tsc1 or Tsc2 

Conditional Tsc1 and Tsc2 alleles allow targeted loss of these genes in specific 

tissue and organs of interest.  These models allow the generation of homozygous 

deletion of Tsc1 or Tsc2 genes in a given tissues and therefore provide a powerful 

tool to dissect gene functions (Kwiatkowski et al. 2010). Conditional tissue specific 

knockout of Tsc1 or Tsc2 genes may also help minimise suffering of mice compared 

to conventional mouse models.  Meikle et al. (2005) used a conditional, floxed allele 

of Tsc1 and a modified myosin light chain 2v allele expressing the cre recombinase 

(loss of exons 17 and 18) in ventricular myocytes to develop a mouse model of TSC 

rhabdomyomas. Mice with ventricular Tsc1 loss had a median survival of 6 months 

and none of them survived longer than 8 months. These mice showed dilated 

cardiomyopathy and scattered foci of enlarged cardiac myocytes with apparent 

vacuoles. These enlarged cells increased levels of glycogen and p-S6, similar to 

findings in TSC patient rhabdomyoma cells (Meikle et al. 2005). 

 

Mice have also been developed with conditional disruption of Tsc2 in pancreatic β 

cells (βTsc2-/-). These mice displayed decreased blood glucose levels, higher 

concentration of plasma insulin, increased β cell mass and improved glucose 

tolerance (Rachdi et al. 2008, Shigeyama et al. 2008). Rapamycin treatment 

reverted the metabolic phenotype observed in βTsc2-/- mice (Rachdi et al. 2008). By 

40 weeks of age, however, βTsc2-/- mice exhibited progressive hyperglycemia and 
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hypoinsulinemia (Shigeyama et al. 2008). These data suggest that 

TSC1/TSC2/mTOR pathway has a critical role in the regulation of β cell mass and 

function, and targeting this pathway may be an effective therapy for diabetic patients. 

A mutant mouse model with oocyte-specific deletion of Tsc2 (OoTsc2-/- mice) was 

also developed (Adhikari et al. 2009). Deletion of Tsc2 in oocytes caused premature 

activation of all primordial follicles around the time of puberty. This deletion resulted 

in depletion of follicles in early adulthood, causing premature ovarian failure (POF) 

(Adhikari et al. 2009). 

 

Meikle et al. (2007) generated and studied a new brain model of TSC (Tscc-SynICre+ 

mice). Tscc-SynICre+ mice displayed delayed development, median survival of 35 

days, spontaneous seizures, neuropathological abnormalities including ectopic, 

enlarged and aberrant neurons in multiple locations and persistent hypomyelination 

(Meikle et al. 2007). In another pre-clinical study, Ehninger et al. (2008) developed a 

mouse model with homozygous conditional deletion of Tsc1 in the neurons of the 

postnatal forebrain (Tsc1cc-αCaMKII-Cre mice). These mice had a more severe 

phenotype than the Tsc2+/- mice and most of them died within a week of birth. Those 

that survived exhibited extreme macroencephaly due to neuronal hypertrophy as well 

as astrogliosis (Ehninger et al. 2008). Furthermore, astrocyte-specific Tsc1 

conditional knockout mice (Tsc1cc-GFAP-Cre mice) generated by Uhlmann et al. 

(2002), developed epilepsy by 1 month of age, increased astrocyte proliferation by 3 

weeks of age, showed abnormalities in hippocampal neuronal organisation between 

3-5 weeks and typically died at 3-4 months. 

 

Conditional knockout was also used to generate a hypomorphic Tsc2 allele by 

deleting exon 3 (Table 1.5) (Pollizzi et al. 2009). Tsc2del3/del3 embryos survived until 

embryonic day 13.5, longer than the Tsc2-/- embryos. They died as a result of 

underdevelopment of the liver, poor hematopoiesis, aberrant vascular development 

and haemorrhage. The development of renal lesions was markedly reduced (10-15 

fold less) in the Tsc2+/del3 mice in comparison with the Tsc2+/- mice. In addition, 

biochemical analysis of mouse embryonic fibroblast (MEF) cell lines and embryos 

which were homozygous for the del3 allele, showed elevation of mTORC1 and 
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suppression of Akt signalling. This Tsc2-del3 mouse model appeared to be a good 

representative model for hypomorphic TSC2 missense mutations found in individuals 

with TSC (Pollizzi et al. 2009). 

 

1.4.4   Allograft mouse model 

Kidney and liver pathology in transgenic TSC mouse models is age-dependent and 

thus the use of these models in pre-clinical studies is time-consuming. For this 

reason, Lee et al. (2005) generated a nude mouse model for TSC-related lesions by 

transplantation of a Tsc2-/-, Trp53-/- MEF cells though subcutaneous injection. These 

mice developed measurable tumours between days 18-29 (Lee et al. 2005). 
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Table 1.5 Tsc1 and Tsc2 alleles in rodent models (adapted from Kwiatkowski et al. 

2010). 

Species Gene Allele name Exon 
targeted/ 
mutation 

Major features of 
heterozygote animals 

Major 
references 

Rat Tsc2 Eker Intracisternal 
A-particle 
(IAP) element 
insertion into 
codon 1272 

Cystadenomas-carcinomas 
of kidney 
Splenic hemangiomas 
Uterine leiomyomas 
Pituitary adenomas 
Subependymal and 
subcortical hamartomas 

Eker et al. 
1981, Everitt 
et al. 1992, 
Hino et al. 
1993, Yeung 
et al. 1997 

Mouse Tsc2 -, Kwiatkowski Neomycin 
cassette 
insertion into 
exon 2 

Cystadenomas of kidney 
Liver hemangiomas 
Extremity angiosarcomas 

Onda et al. 
1999 

Mouse Tsc2 -, Hino Neomycin 
cassette 
insertion into 
exon 2, 
deletion of 
exons 2-5 

Cystadenomas of kidney 
Liver hemangiomas 

Kobayashi et 
al. 1999 

Mouse Tsc1  -, Hino Neomycin 
cassette 
insertion and 
deletion of 
exons 6-8 

Cystadenomas of kidney 
Liver hemangiomas 

Kobayashi et 
al. 2001 

Mouse Tsc1  -, Kwiatkowski Deletion of 
exons 17 and 
18 

Cystadenomas of kidney 
Liver hemangiomas 

Kwiatkowski 
et al. 2002 

Mouse Tsc1  -, Cheadle Deletion of 
exons 6-8 with 
insertion of 
neomycin 
cassette 

Cystadenomas of kidney 
Liver hemangiomas 
Reduced survival of Tsc1+/- 

when in C57BL/6 strain 
Tsc1+/- kidney cancer in 
BALB/c strain 
 

Wilson et al. 
2005 

Mouse Tsc2 neo, Gambello Neomycin 
cassette 
insertion into 
exon 1 

Hypomorphic allele: renal 
cysts only at 20 months of 
age, and Tsc2neo/neo 

embryos survive to E17 in 
some cases 

Hernandez et 
al. 2007 

Mouse Tsc2 del3,  
Kwiatkowski 

Deletion of 
exon 3 

Hypomorphic allele: 
reduced severity of renal 
tumours, 1-2 day longer 
survival of  Tsc2del3/del3 

embryos 

Pollizzi et al. 
2009 

Mouse Tsc2 KO, Gambello Deletion of 
exons 2-4 

Cystadenomas of kidney 
Little published data 

Hernandez et 
al. 2007 

Mouse Tsc2 -, Kobayashi Deletion of 
exons 3-4 

Little published data Shigeyama 
et al. 2008 
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1.5   Molecularly targeted therapy of TSC 

There is currently no cure for TSC.  TSC therapy was primarily focused on the 

natural mTOR inhibitor rapamycin and its derivatives (Jóźwiak et al. 2006). 

Metformin might also have potential for treatment of TSC patients due to its reported 

anti-tumour activity and inhibitory effect on mTOR signalling (Anisimov et al. 2005, 

Gwinn et al. 2008, Inoki et al. 2003). Other agents tested for candidate therapies for 

TSC include statins. Statins were found to reduce the risk of colon, breast, lungs and 

prostate cancers (Khurana et al. 2005, Kochhar et al. 2005, Poynter et al. 2005, 

Singal et al. 2005).  Atorvastatin was shown to selectively inhibit the proliferation of 

Tsc2-/- MEFs and to inhibit the phosphorylation of S6 kinase, and S6 in Tsc2-/- cells 

and in Tsc2+/- mice (Finlay et al. 2007). However, lesions in Tsc2+/- mice had no 

response to treatment with atorvastatin (Finlay et al. 2009).  

 

1.5.1   Rapamycin 

Rapamycin also called sirolimus, was isolated from the bacterium Streptomyces 

hygroscopicus from the soil of Easter Island in the 1970s (Vézina et al. 1975, Sehgal 

et al. 1975). It was found to have antibiotic, anti-fungal, anti-proliferative, anti-

inflammatory and immunosuppressant properties. This drug has been used to 

prevent rejection in organ transplantation and restenosis following balloon 

angioplasty (Jóźwiak et al. 2006). It is an analogue of the macrolide antibiotic FK506 

(Abraham et al. 1996) and binds to the intracellular receptor protein FKBP12 

(FK506-binding protein 12), a member of the family of FK506-binding proteins. The 

FKBP12-rapamycin complex specifically binds to mTORC1 and inhibits its function 

(Figure 1.10) (Inoki et al. 2005). Since mTORC1 is a key mediator of cell growth and 

proliferation, rapamycin has been tried to treat different cancers. Rapamycin is an 

appealing therapeutic option for TSC since loss of TSC1 or TSC2 leads to 

constitutive activation of mTOR signalling pathway (Tee et al. 2003). 
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The poor solubility of rapamycin in water, its instability and concerns regarding side-

effects have led to the synthesis of three rapamycin analogues with better 

pharmaceutical activities: temsirolimus (CCI-779, cell cycle inhibitor-779) (Wyeth), 

everolimus (RAD001) (Novartis) and ridaforolimus (AP23573) (Ariad 

Pharmaceuticals). The efficacy of these derivatives was tested in several in vitro and 

in vivo systems (Clarkson et al. 2002, Geoerger et al. 2001, Schuler et al. 1997).  

 

1.5.1.1   Anticancer activity of rapamycin 

1.5.1.1.1   Eker rat and rapamycin treatment 

Renal tumours in the Eker rat exhibited mTORC1 activation. Short-term treatment of 

these rats with rapamycin dramatically inhibited mTORC1 activity and cellular 

proliferation (Kenerson et al. 2002). Serial non-invasive ultrasound imaging was 

utilised to monitor the Tsc2-related renal tumour size during rapamycin treatment 

(Kenerson et al. 2005). Treatment of animals for up to 2 months resulted in 

significant reduction in renal tumour volume (more than 90% tumour volume 

regression). Histological analysis confirmed this with the appearance of “tumour 

scars” and clearance of the lesion tissue. Nevertheless, drug resistance was evident 

in a small proportion of renal tumours following prolonged treatment (Kenerson et al. 

2005). Conversely, rapamycin did not prevent tumour development since 

administration of the drug at the time of tumour “initiation” (between 2-4 months of 

age), reduced the development of macroscopic tumours but did not affect the 

number of microscopic precursor lesions (Kenerson et al. 2005). These results 

suggest that, although mTOR activation is essential for lesion progression, other 

signalling pathways are influencing tumourigenesis. Additional beneficial effects of 

rapamycin treatment included increased survival of rats with pituitary tumours. 

Samples of pituitary tumour obtained from treated animals showed activation of 

apoptosis and suppression of mTORC1 activity (Kenerson et al. 2005). 
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1.5.1.1.2   TSC mouse model and rapalogue treatment 

Several pre-clinical studies using TSC mouse models were carried out to evaluate 

the anti-tumour efficacy of rapamycin and analogues (both rapamycin and its 

analogues are referred to as rapalogues). Lee et al. (2005) reported that 3 month 

treatment of Tsc2+/- mice with CCI-779 significantly reduced the number of 

cystadenomas per kidney (62-92% reduction) compared with the untreated group. 

Significant reduction in tumour growth and improved survival was also seen in nude 

mouse models injected with Tsc2-/-, Trp53-/- MEFs after CCI-779 treatment. In 

addition to CCI-779, Lee et al. (2005) tested the effects of interferon gamma (IFN-γ) 

since increased IFN-γ expression is associated with a lower frequency of renal 

tumours in TSC patients, and found similar effects to CCI-779 treatment. However, 

one year later, Lee et al. (2006) showed that although IFN-γ treatment has some 

advantages, it is not as effective as CCI-779 when used as a single agent to treat 

nude mice bearing Tsc2-/- tumours. Additionally, no significant benefit of combination 

therapy of CCI-779 with IFN-γ was seen compared to treatment with CCI-779 alone 

in Tsc2+/- mice (Messina et al. 2007). 

 

Rapamycin was also reported to have significant therapeutic effects for brain and 

neurologic manifestations in TSC mouse models. Treatment of adult Tsc2+/- mice 

with rapamycin improved deficits related to two spatial learning tasks, contextual 

discrimination and abnormal long-term potentiation (LTP) (Ehninger et al. 2008). 

Meikle et al. (2008) demonstrated improvement in median survival (from 33 to >100 

days), weight gain and a neurological phenotype (neurofilament abnormalities, 

myelination and cell enlargement) in Tsc1null-neuron mice following treatment with 

rapamycin or RAD001. These drugs also suppressed mTORC1 and Akt signalling in 

the brain, improved neurofilament abnormalities, myelination and cell enlargement 

but had only modest effects in dendritic spine density and length (Meikle et al. 2008). 

Zeng et al. (2008) used a mouse model with conditional inactivation of the Tsc1 gene 

in glial fibrillary acidic protein (GFAP)-positive cells (Tsc1GFAP CKO mice). 

Rapamycin treatment inhibited the progression of astrocyte proliferation and 

megencephaly whilst increasing expression of astrocyte-specific glutamate 

transporters Glt-1 (glutamate transporter 1) and GLAST (glutamate aspartate 
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transporter). Early treatment with rapamycin, starting at postnatal day 14, prevented 

epilepsy and dramatically improved survival to greater than 6 months in comparison 

with untreated Tsc1GFAP CKO (conditional knockout) mice which usually died by 3 to 

4 months of age. Late rapamycin treatment, started after the onset of seizures (6 

weeks of age), decreased seizures and expanded the life span of the rodents (Zeng 

et al. 2008). Lastly, Rauktys et al. (2008) reported improved survival and reduced 

growth of subcutaneous TSC-related tumours in a nude mouse model following 

topical application of rapamycin. These findings suggest that topical rapamycin may 

be effective in treating TSC skin lesions in TSC patients. 

 

1.5.1.1.3   Use of rapalogues in TSC clinical trials 

Rapalogues have been used in a number of TSC clinical trials. Oral rapamycin 

treatment resulted in regression of all SEGAs in a small scale MRI study involving 5 

subjects (Franz et al. 2006). Similarly, treatment with RAD001 for three months 

reduced seizure frequency and volumes of SEGAs in TSC patients (Krueger et al. 

2010). Bissler et al. (2008) conducted a 24 month trial to determine the efficacy of 

rapamycin on AMLs in TSC patients and sporadic LAM cases. MRI and CT were 

performed to monitor the changes in tumour volumes along with pulmonary-function 

tests. AMLs regressed during the 12 months of rapamycin administration but regrew 

following drug withdrawal. In addition, some LAM patients exhibited improvement in 

lung function following therapy that persisted after treatment (Bissler et al. 2008). In 

another 2 year clinical trial, involving 16 TSC patients, rapamycin caused sustained 

AML shrinkage in all patients (Davies et al. 2011). On the basis of these results, 

randomised control trials have been undertaken to evaluate the therapeutic efficacy 

of rapamycin or analogues in a range of TSC or LAM-related clinical problems 

(Bissler et al. 2013, Davies et al. 2010, Franz et al. 2013). These studies confirmed 

efficacy of everolimus for SEGA and AML and the drug is now approved for 

treatment of these tumours in TSC patients in North America and Europe 

 

 

 



64 
 

1.5.1.1.4   Adverse events associated with rapamycin treatment  

However, there are several concerns regarding rapamycin treatment for TSC. Firstly, 

long term treatment with rapamycin is thought to be unfavourable because of its 

immunosuppressive properties and short term rapamycin treatment may be clinically 

ineffective (Franz et al. 2006). Second, several studies observed an increase in 

tumour volume once treatment was discontinued (Bissler et al. 2008, Franz et al. 

2006). Thirdly, treatment with rapalogues is associated with significant side effects 

including diarrhoea, pyelonephritis, stomatitis, upper respiratory tract infections 

(Bissler et al. 2008) and dose related reduction in blood platelet (PLT) count (Murgia 

et al. 1996).  

 

Another concern is that rapamycin-mediated mTOR inhibition results in a loss of 

negative feedback inhibition towards Akt. Treatment of Tsc1 null and Tsc2 null MEF 

cell lines with rapalogues led to upregulation of Akt due to reduced IRS-1 

degradation (O’Reilly et al. 2006, Sarbassov et al. 2006, Sun et al. 2005, Zhang et 

al. 2003).  Hyperactivation of Akt might promote tumourigenesis (Bhaskar and Hay, 

2007; Manning and Cantley, 2007).  

 

1.5.2  Metformin  

Metformin is a biguanide drug, derived from the French lilac plant (Galega officinallis) 

and has been widely used for lowering blood glucose in type 2 diabetic (T2D) 

patients for over 40 years (Bailey and Turner, 1996; Stumvoll et al. 1995). 

Decreased hepatic glucose production (Hundal et al. 2000, Stumvoll et al. 1995) and 

increased skeletal myocyte glucose uptake (Galuska et al. 1994, Hundal et al. 1992) 

contribute to its glucose-lowering effect. This drug is also used to treat non-alcoholic 

fatty liver disease (NAFLD) (Kaser et al. 2010) and polycystic ovarian syndrome 

(PCOS) (Diamanti-Kandarakis et al. 2010). Long-term treatment with metformin is 

generally well tolerated in diabetic patients with minimal toxicity and no major side-

effects. Studies suggest that metformin prolongs life span in experimental models 

that have been used for investigation of mechanism of aging (Mouchiroud et al. 
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2010, Onken and Driscoll, 2010). Increasing evidence suggests that metformin has 

anti-tumour activities in vitro and in vivo (Pierotti et al. 2013).  

 

1.5.2.1   Anticancer activity of metformin 

1.5.2.1.1   Epidemiological evidence 

A recent meta-analysis combining several studies indicated an increased risk of 

cancer in patients with type 2 diabetes (Vigneri et al. 2009). However, several 

population-based studies reported reduced risk of cancer in diabetic patients 

receiving metformin than those untreated or treated with other drugs (Bowker et al. 

2006, Evans et al. 2005, Landman et al. 2010, Libby et al. 2009). Metformin was also 

reported to decrease risk of prostate and pancreatic cancer in some clinical studies 

(Li et al. 2009, Wright and Stanford, 2009).  

 

1.5.2.1.2   Experimental data in tumour models 

Anti-tumour activity of metformin has been demonstrated using several cancer 

models. In a chemopreventive study, metformin treatment delayed the onset of 

chemically-induced mammary carcinogenesis in female Sprague-Dawley rats 

(Bojkova et al. 2009). In a pre-clinical trial, chronic metformin treatment prolonged 

the mean life span of transgenic female mice carrying the HER-2 oncogene. It also 

significantly decreased the incidence and size of mammary adenocarcinomas and 

delayed tumourigenesis (Anisimov et al. 2005). In another study, oral and 

intraperitoneal (i.p.) administration of metformin prevented tobacco-specific 

carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)- induced lung 

tumourigenesis by 40-50% (oral) and ~75% (i.p.) in A/J mice, respectively (Memmott 

et al. 2010).  

 

In vitro experiments also suggested anti-proliferative action of metformin on breast 

cancer cells (Alimona et al. 2009, Zakikhani et al. 2006). Metformin treatment 

inhibited the growth of breast cancer cells and suppressed mTORC1 activity 
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(Zakikhani et al. 2006). Furthermore, the growth inhibitory effect of metformin was 

demonstrated on prostate and colon cancer cells in vitro through AMPK activation 

(Zakikhani et al. 2008). Liu et al. (2009) reported the effects of metformin upon triple 

negative breast cancer both in vitro and in vivo (nude mice bearing tumour 

xenografts of the TN line MDA-MB-231). Although TN is a very aggressive form of 

cancer, metformin treatment suppressed cell proliferation, colony formation and 

induced apoptosis (Liu et al. 2009). Interestingly, this drug was found to selectively 

target and kill cancer stem cells in four genetically different types of breast cancer. 

Metformin may therefore represent a potential anti-cancer therapeutic (Hirsch et al. 

2009). 

 

1.5.2.2   Molecular mechanisms of mTORC1 inhibition 

Metformin suppresses mTORC1 activity via multiple mechanisms in both AMPK-

dependent and independent manners (Figure 1.10). Previous publications showed 

that metformin stimulates the activity of AMPK in the presence of LKB1 tumour 

suppressor (Zakikhani et al. 2006, Zhou et al. 2001). LKB1 phosphorylates AMPK at 

Thr172 of the activation loop within the catalytic subunit promoting its activation 

(Hong et al. 2003, Woods et al. 2003). AMPK activation leads to attenuation of 

mTORC1 signalling in the presence or absence of functional TSC1-TSC2 complex, 

through two distinct mechanisms as described in section 1.3.3.3 (Gwinn et al. 2008, 

Inoki et al. 2003).  

 

Recent evidences suggest that metformin may suppress mTORC1 activity through 

two additional AMPK-independent mechanisms. Ben Sahra et al. (2011) and 

Kalender et al. (2010) reported metformin-induced mTORC1 inhibition through p53-

mediated REDD1 upregulation and through inhibition of the Rag GTPases, 

respectively. Metformin increases REDD1 expression which normally acts to 

suppress mTORC1 during hypoxia (Ben Sahra et al. 2011). Metformin treatment also 

negatively regulates mTORC1 by inhibiting the ‘Ragulator complex’ (Kalender et al. 

2010).  
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1.6   Project aims 

The main purpose of this project was to identify mTOR inhibitors for prevention and 

therapy of TSC using transgenic mouse models. Specific aims are: 

- To evaluate T2 weighted MRI for assessment of renal lesions using both 

Tsc1+/- and Tsc2+/- mouse models by comparison with histological analysis. 

- To assess the effects of continuous metformin treatment on renal lesions in a 

Tsc1+/- mouse model using T2 weighted MRI and histological analysis. 

- To investigate the preventive effects of long term treatment with rapamycin, 

metformin or both on renal tumours in a Tsc2+/- mouse model using 

histological analysis. 

- To analyse the effects of the different treatments on mTORC1 signalling by 

IHC and Western analysis. 
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CHAPTER TWO 

Materials and methods 

 

2.1 Suppliers 

Materials and equipment used within this study were purchased from the following 

companies: 

Abbott Laboratories Ltd, Maidenhead, UK 

Abcam, Cambridgeshire, UK 

Adam Equipment Co Ltd, Perth, Australia 

Analyze Direct Inc., Overland Park, USA 

Aperio Technologies, Oxford, UK 

Applied Biosystems, Cheshire, UK 

Azer Scientific, Morgantown, USA 

Baxter Healthcare Ltd, Thetford, UK 

Becton Dickinson, Oxford, UK  

Bibby Scientific Ltd, Staffordshire, UK 

Bio-Rad Laboratories Ltd, Hertfordshire, UK 

Bruker, Ettlingen, Germany 

Camlab Ltd, Cambridgeshire, UK 

Cell Signalling Technology, Danvers, MA, USA 

Charles River Laboratories, Kent, UK 

Corning Life Sciences, New York, USA 

DAKO, Cambridgeshire, UK 
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Eurogentec, Hampshire, UK 

GE Healthcare Life Sciences, Buckinghamshire, UK 

Grant Instruments Ltd, Cambridgeshire, UK 

Greiner Bio One Ltd, Gloucestershire, UK 

Invitrogen Life Sciences, Paisley, UK 

Labnet International, Woodbridge, USA 

Labtech International Ltd, East Sussex, UK 

LC Laboratories, Woburn, USA 

Leica Microsystems Ltd, Milton Keynes, UK 

Merck, Darmstadt, Germany 

Merz Hygiene, Frankfurt, Germany 

New England Biolabs, Hertfordshire, UK 

Nikon, Surrey, UK 

Peco Services Ltd, Cumbria, UK 

Prestige Medical Ltd, Blackburn, UK 

Promega, Southampton, UK 

Qiagen, West Sussex, UK 

RelonChem, London, UK 

SAI Inc., Stony Brook, New York, USA 

Sigma-Aldrich Company Ltd, Dorset, UK 

Simport, Beloeil, QC, Canada 

Sony, Hampshire, UK 

Stuart Scientific, Essex, UK 
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Swann-Morton Ltd, Sheffield, UK 

Thermo Fisher Scientific, Surrey, UK 

Ultra-Violet Products Ltd, Cambridgeshire, UK 

VWR International, Leicestershire, UK 

 

2.2  Materials 

2.2.1 Animals 

The Tsc1+/- mouse model was generated in the Institute of Medical Genetics, Cardiff 

University as previously described (Wilson et al. 2005) and the Tsc2+/- mouse model 

was provided by Dr. David J. Kwiatkowski (Onda et al. 1999). The wild type balb/c 

mice were purchased from Charles River (UK). 

 

2.2.2 General chemicals and drugs 

All standard laboratory chemicals were obtained from either Sigma-Aldrich or 

Thermo Fisher Scientific. Chemical Metformin was supplied by Merck (Germany) 

and Metformin (500 mg tablets) by RelonChem (UK). Rapamycin was provided by 

the LC Laboratories (USA). Polyethylene glycol 400 (PEG-400), Tween-80 and 

Dimethyl sulfoxide (DMSO) used for the preparation of vehicle solution were all 

purchased from Sigma-Aldrich. 

 

2.2.3 DNA extraction and purification kit 

Wizard® SV Genomic DNA Purification System was supplied by Promega and 

Proteinase K was obtained from Qiagen. 
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2.2.4 Polymerase chain reaction 

PCR Master Mix (2X) was provided by Promega.  TSC1 and TSC2 Primers were 

synthesized by Eurogentec. PCR tube (0.2 ml) and domed cap strips were supplied 

by Thermo Fisher Scientific.  

 

2.2.5 Agarose gel electrophoresis 

Agarose (molecular biology grade) for standard electrophoresis was obtained from 

Eurogentec and Ethidium bromide solution from Sigma-Aldrich. Gel Loading Dye, 

Blue (6X) was supplied by New England Biolabs. 

 

2.2.6 Anaesthesia  

Isoflurane used for induction of animal anaesthesia was provided from Baxter 

Healthcare.  

 

2.2.7 Exsanguination 

BD Plastipak 1 ml Hypodermic Syringes and BD Hypodermic 0.6 x 25 mm needles 

were supplied by Thermo Fisher Scientific. MiniCollect® K3EDTA 1.0 ml blood 

plasma tubes were obtained from Greiner Bio One. 

 

2.2.8 Tissue collection 

Isopentane used for tissue snap-freezing, Nalgene 15 ml General Long term storage 

cryogenic tubes and Sterilin 30 ml universal containers were provided by Thermo 

Fisher Scientific. 
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2.2.9 Antibodies 

Primary antibodies used against β-actin (#4970), GAPDH (#2118), phospho-S6 

ribosomal protein (Ser235/236) (#2211), phospho-AMPKα (Thr172) (#2535), phospho-

Acetyl-CoA Carboxylase (Ser79) (#3661), phospho-Raptor (Ser792) (#2083), phospho-

Akt (Ser473) (#3787), phospho-4E-BP1 (Thr70) (#9455) and MCM2 (#3619) were all 

supplied by Cell Signalling Technology. Primary antibodies used against Cyclin D1 

(ab134175), Ki67 (ab16667) and MUC1 (ab15481) were supplied by Abcam. 

Secondary horseradish peroxidise-conjugated antibody against rabbit (#7074) was 

purchased from Cell Signalling Technology. 

 

 

2.2.10 DNA and protein size markers 

The 100 bp DNA ladder was supplied by New England Biolabs. Novex® Sharp 

prestained and MagicMark™ XP western protein standards were purchased from 

Invitrogen Life Technologies. 

 

2.2.11  Histology 

Formaldehyde Raymond Lamb tissue fixative, plastic processing cassettes, alcohol, 

xylene, Histoplast paraffin wax,  Mayer’s Haematoxylin stain, 1% w/v Aqueous Eosin 

stain solution, 25 x 75 x 1.0 mm polysine slides, 24 x 40 mm coverslips and DPX 

mountant were all  provided by Thermo Fisher Scientific. Histology tissue mould and 

microtome blades were supplied by Leica Microsystems. 

 

2.2.12  Immunohistochemistry 

EXPOSE Rabbit Specific AP (red) Detection IHC Kit was purchased from Abcam. 

Xylene, DPX mounting medium and 22 x 50 mm cover glass were provided from 

VWR International and wax pen from DAKO. Hematoxylin solution and TWEEN® 20 

viscous liquid were obtained from Sigma-Aldrich and Ethanol 99+% (GLC) absolute 

from Thermo Fisher Scientific. 
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2.2.13 Treatment of  disposable Tissue Ruptor probes 

RNase-free water and RNase Zap solution were supplied by VWR International and 

Applied Biosystems respectively. Disinfectant Pursept-A Xpress was obtained from 

Merz Hygiene. 

 

2.2.14  DNA, RNA and protein extraction from tissues 

AllPrep® DNA/RNA/Protein Mini Kit was supplied by Qiagen and the 14.3 M 2-

Mercaptoethanol and the DL-Dithiothreitol solutions by Sigma-Aldrich. 

 

2.2.15  Western blot 

Hybond ECL Nitrocellulose Membranes and ECL Advance Western Blotting 

Detection Kit were purchased from GE Healthcare Life Sciences. NuPAGE® LDS 

Sample Buffer (4X), NuPAGE® Transfer Buffer (20X) and NuPAGE® MES SDS 

Running Buffer (20X) (for Bis-Tris Gels only) were supplied by Invitrogen Life 

Technologies and 3 MM Whatman filter paper by Thermo Fisher Scientific. 

 

2.3  Equipment 

2.3.1 PCR Thermal Cycler  

MJ Research PTC-225 DNA Engine Tetrad Peltier Thermal Cycler was provided by 

Bio-Rad Laboratories. 

 

2.3.2 Agarose gel electrophoresis apparatus 

Power Source™ 300 V Power Supply and KuroGEL Mini Plus 10 Horizontal gel 

tanks were purchased from VWR International. BioDoc-It® Imaging System was 

obtained from Ultra-Violet Products and Digital UP-895MD Graphic Printer from 

Sony. 
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2.3.3 Magnetic resonance imaging system 

 The BioSpec 94/20 USR Preclinical MRI System was supplied by Bruker. 

 

2.3.4 Photography 

Nikon Coolpix 4500 Digital Camera was bought from Nikon UK. 

 

2.3.5 Animal dissecting kit 

Highland™ Portable Precision Balance used for animal weight measurement was 

provided by Adam Equipment Co Ltd. Disposable Sterile Scalpels were obtained 

from Swann-Morton Ltd and dissection set from VWR International. Long forceps for 

handling samples in freezing bath were supplied by Thermo Fisher Scientific. 

 

2.3.6 Histology 

Tissue dehydration, clearing and paraffin impregnation steps were facilitated by 

LEICA TP1050 tissue processor, LEICA EG1150 H and LEICA EG1150 C machines. 

LEICA RM2235 microtome (Leica Microsystems Ltd, UK) and Raymond Lamb Stain 

mate machine were supplied by Thermo Fisher Scientific. 

 

2.3.7 Immunohistochemistry (IHC) 

The Slide Staining Tray System was obtained from Azer Scientific and the 

EasyDip™ Slide Staining Rack from Simport. An Advanced Ergonomic System 

Microscope with 100W Illumination Leica DM2500 was provided by Leica. 

 

 

 

 

http://www.google.co.uk/url?sa=t&rct=j&q=nikon%20coolpix%204500&source=web&cd=6&ved=0CEEQFjAF&url=http%3A%2F%2Fwww.amazon.co.uk%2FN
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2.3.8 Slide scanning 

Histological and immunohistochemical slides were scanned to create digital slides 

using the Scanscope® CS slide scanner which was provided by Aperio 

Technologies. 

 

2.3.9 Tissue disruption and homogenation 

TissueRuptor and TissueRuptor Disposable Probes were obtained from Qiagen. 

 

2.3.10  DNA, RNA and protein quantification 

NanoDrop® 8-sample Spectrophotometer (ND8000) provided by Labtech 

International was used to measure DNA, RNA and protein concentration. 

 

2.3.11  Western blot equipment 

XCell SureLock® Mini-Cell Electrophoresis system, XCell II™ Blot Module, 

PowerEase® 500 Power Supply (220/240 VAC 50/60 Hz), NuPAGE® Novex 4-12% 

Bis-Tris Gels 1.0 mm (12-Well, 15-well, 17-well)  and sponge pads for blotting were 

all supplied by Invitrogen Life Technologies. Stuart Orbital shaker SSM1 was 

obtained from Bibby Scientific Ltd. BioSpectrum® Imaging System was purchased 

from Ultra-Violet (UV) Products and Digital UP-895MD Graphic Printer from Sony. 

 

2.4  Buffers and solutions 

10X DNA agarose gel loading buffer 

1.5 g Ficoll  

2 ml 0.5M EDTA  

1 ml 10% SDS  

http://www.google.co.uk/url?sa=t&rct=j&q=stuart%20mini%20orbital%20shaker&source=web&cd=1&ved=0CD4QFjAA&url=http%3A%2F%2Fwww.stuart-e
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0.025 g Bromophenol  

First dissolve Ficoll (1.5 g) in 5 ml dH2O in 50°C (water bath) before adding other 

chemicals. Add dH2O up to 10 ml. 

 

50X TAE Buffer 

To produce 1 litre solution: 

242 g Tris Base (121.1 MW) 

57.1 ml Glacial Acetic Acid 

100 ml 0.5 M EDTA 

Dissolve Tris in about 600 ml of ddH2O and then add EDTA and Acetic Acid. Add 

ddH2O up to 1 L. 

 

Protein resuspension buffer 

1 ml ALO 

8 mg DTT 

Add Dithiothreitol (DTT) into ALO buffer before use. 

 

10X Tris Buffered Saline (TBS) 

To produce 1 litre solution:  

24.2 g 1 M Tris HCI (pH 7.6) 

80 g NaCI 

Add dH2O up to 1 L (pH to 7.6 with 1N HCI). 
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1X TBS-T 

100 ml 10X TBS 

900 ml dH2O 

1 ml Tween-20 (0.1%) 

 

10 mM sodium citrate buffer  

To produce 1 litre solution:  

2.94 g Tri-sodium citrate dihydrate 

Add dH2O up to 1 L (pH to 6.0 with 1N HCI) 

 

Stripping buffer (25 ml) 

175 μl 2-mercaptoethanol (MW 78.13) 

5 ml 10% SDS 

12.5 ml 125 mM Tris.HCI (MW 121.14) 

7.325 ml dH2O 

 

Vehicle solution 

2.5% PEG-400 

2.5% Tween-80 

2.5% DMSO 

 

Rapamycin solution 

Two mg/ml Rapamycin was prepared in a vehicle solution containing: 
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2.5% PEG-400 

2.5% Tween-80 

2.5% DMSO. 

 

2.5 Methodology 

2.5.1 Animal husbandry 

Mice used in this study were kept under standard laboratory conditions in the Animal 

research facility of the School of Biosciences, Cardiff University, in open topped 

cages and provided with standard rodent diet and de-chlorinated water. All cages 

were held in a 19-23°C room temperature, 55+/- 10% room relative humidity and 

provided with 12 hour light and 12 hour dark cycle (8:00am- 20:00pm each day). 

Tsc1+/- and Tsc2+/- mouse models were backcrossed on the background of the balb/c 

strain at least 10 times to produce Tsc1+/- balb/c and Tsc2+/- balb/c mice respectively. 

All animals used in trials of this study were randomly allocated into different 

treatment groups with balanced sex, age and litter mates using Graphpad 

(http:/www.graphpad.com/welcome.htm). All animal procedures were carried out in 

accordance with the UK Home Office guidelines. Animals were monitored by trained 

technicians for animal work. Body weight of the animals was one of the major factors 

we look for that might be affected by treatment. Body weight was monitored every 

week. The animals were humanely sacrificed if additional clinical signs such as less 

active behaviour and piloerection appeared following treatment. 

 

2.5.2 Genotyping 

2.5.2.1 DNA extraction 

DNA was extracted from mouse ear punches (1-2 mm ear punch) to determine 

genotype for breeding and further experiments. DNA was purified using Wizard® SV 

Genomic DNA Purification System. Briefly, ear punches were removed from each 

mouse, placed in 1.5 ml eppendorf tubes and kept frozen at -20°C. After thawing, 

68.75 μl digestion solution (50 μl Nuclei Lysis solution, 12.5 μl 0.5 M EDTA pH 8.0, 5 
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μl 20mg/ml Proteinase K, 1.25 μl 4 mg/ml RNase A) was added into each sample. 

Samples were then incubated in a 55°C water bath overnight (16-18 hours). Each 

sample was then immersed in 62.5 μl Wizard® SV Lysis buffer and mixed. Sample 

lysate was subsequently transferred into a Wizard® SV Minicollumn and centrifuged 

at 13,000 rpm for 3 minutes (min). Three-hundred microliters of Wizard® SV Wash 

solution was then added to each sample and the assembly was centrifuged at 

13,000 rpm for 1 min. Following centrifugation, the flow-through was discarded and 

three washes with 150 μl wash solution were carried out by spinning at 13,000 rpm 

for 1 min. The flow-through was discarded after each wash and an extra 2 min 

centrifugation at 13,000 rpm was performed to remove any residual wash solution. 

The minicolumn was finally transferred into a fresh 1.5 ml eppendorf tube along with 

100 μl Nuclease-Free water, incubated for 3 min at room temperature and 

centrifuged at 13,000 rpm for 1 min to collect DNA samples. 

 

2.5.2.2 Polymerase chain reaction  

DNA extracted from the mouse ear punches was used for genotyping by PCR. PCR 

reaction was performed in a total volume of 10 μl solution containing 4.5 μl template 

DNA (25-50 ng), 5 μl PCR master mix (2X) (50 units/ml of Taq DNA polymerase pH 

8.5, 400 µM dATP, 400 µM dGTP, 400 µM dCTP, 400 µM dTTP, 3 mM MgCl2) and 

0.5 μl 100 μM primer mix (20X). Primers used for genotyping the Tsc1 mouse model, 

were TSC1Intron8WT1F 5’TGGGACTACTGGGATGAGAGTT3’, 

TSC1Intron8LoxP1F 5’TCGCCTTCTTGACGAGTTCT3’ and TSC1Intron8WT1R 

5’GGCAATGCTACAGCAAGACA3’. Primers for genotyping the Tsc2 mouse model, 

were TSC2W-F 5’AATCGCATCCGAATGATAGG3’, TSC2W-R 

5’GTTTAATGGGCCCTGGATCT3’ and TSC2M-R 

5’GGATGATCTGGAGGAAGAGC3’.  

 

Following an initial step of 95˚C for 2 min, 35 cycles of PCR reaction was conducted 

at 94˚C for 30 seconds (sec) (Tsc1) or 94˚C for 40 sec (Tsc2), 52˚C for 30 sec 

(Tsc1) or 56˚C for 40 sec (Tsc2) and 72˚C for 30 sec (Tsc1) or 72˚C for 1 min (Tsc2) 

with a final extension step of 72˚C for 5 min. 
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2.5.2.3 Agarose gel electrophoresis  

Following PCR, agarose gels of 1.5% (w/v) concentration were prepared using 1X 

TAE buffer to screen for the heterozygous Tsc1+/− and Tsc2+/− mice. Ethidium 

bromide (0.05 μg/ml) was added to gels for viewing DNA bands under UV light. Ten 

microliters of PCR product mixed with 2 μl Gel Loading Dye (6X) were loaded into 

each gel well. Gels were submerged in 1X TAE buffer and run at 80 Volts for 

approximately an hour. DNA products were visualised through UV exposure using 

BioDoc-It® Imaging System and fragment sizes were compared with 1kb DNA 

fragment ladder run on the same gel in a separate well. Gel images were captured 

using a Digital UP-895MD Graphic Printer. 

 

2.5.3 Drug treatment 

2.5.3.1 Metformin treatment  

Metformin used for mouse treatment in this thesis, was either provided in drinking 

water or by gavage. Daily dosage of chemical metformin (Merck, Germany) in 

drinking water was 150-600 mg/kg body weight, assuming that a mouse consumes 

15 ml water per 100 g body weight a day. Metformin solution (in drinking water) was 

changed every 3 days. Metformin (500 mg) tablets (RelonChem, UK) were diluted in 

water at 30 mg/ml and delivered by gavage. Metformin alone was given at 300 

mg/kg 5 times a week. 

 

2.5.3.2 Rapamycin treatment 

R-5000 Rapamycin (LC Laboratories, USA) was prepared at 2 mg/ml in vehicle 

solution (2.5% PEG-400, 2.5% Tween-80 and 2.5% DMSO). Mice were treated with 

5-10 mg/kg rapamycin via intra-peritoneal injection (i.p.) five times a week. Dosage 

was decreased accordingly if mice were found sick or rapid loss of body weight was 

observed. In the prevention study, rapamycin was given once a week for the last 

month. 
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2.5.3.3 Combination drug treatment 

For combination drug treatment, R-5000 rapamycin was given at 2.5-4 mg/kg five 

times a week by intra-peritoneal injection and metformin (500 mg tablets) at 150 

mg/kg five times a week by gavage.  Dosage was decreased accordingly if mice 

were found sick or rapid loss of body weight was observed. In the prevention study, 

rapamycin was given once a week for the last month. 

 

2.5.4 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) scans were carried out at the Experimental MRI 

Centre (EMRIC) at Cardiff University 

(http://www.cardiff.ac.uk/biosi/researchsites/emric/facilities.html) using a high-field 

(9.4 T) small bore (20 cm) Bruker Biospec 94/20 MRI/MRS spectrometer equipped 

with S116 high performance gradient insert and avance II electronics. Scans were 

acquired using a 72 mm id transmit/receive quadrature polarised birdcage rf coil.  

 

Mice were anaesthetised with 5% isoflurane in a 40% O2/air mix at 1.2 L/min, 

injected with 2 x 0.2 ml of 4% glucose/0.18% saline solution subcutaneously and 

transferred to specialist MRI bed model #T10532 (Bruker, Germany) with integrated 

circulating heated water and anaesthetic nose cone. Isoflurane was reduced to ∼1.5 

to 2% for the maintenance of anaesthesia during scanning. Body temperature, 

breathing rate and heart rate were monitored throughout using the Model 1025 

Monitoring and Gating System (SAI Inc., New York). Body temperature was 

maintained during recovery in a warm air V1200 recovery chamber (Peco Services 

Ltd, UK) set at 27°C.  

 

T2 weighted, respiratory gated, fat suppressed RARE scans were performed with an 

FOV of 10.0 x 4.0 cm, a matrix of 640 x 256, and 64 x 0.5 mm coronal slices, a TEeff 

of 26 ms, a TR of 4100 ms, a RARE factor of 4, a BW of 100 kHz. Proton density 
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weighted, respiratory gated, FLASH scan was performed with an FOV of 10.0 x 4.0 

cm, a matrix of 480 x 192, and 64 x 0.5 mm coronal slices,  a TR/TE of 675/4.25 ms, 

a FA of 30° and  BW of 200 kHz, NEX 4. T2* (Proton density) weighted, respiratory 

gated, FLASH scan was performed with an FOV of 10.0 x 4.0 cm, a matrix of 480 x 

192, and 64 x 0.5 mm coronal slices,  a TR/TE of 860/7 ms, a FA of 30° and  BW of 

200 kHz, NEX 4. 

 

T2 weighted MRI images obtained from the MRI scans were used to assess the 

renal lesions using the software Analyze 9.0 (Analyze Direct Inc., USA). All lesions 

detected by MRI were counted and their volumes were measured for each mouse. 

The total volume measurement of each lesion (mm3) was calculated by adding lesion 

volumes of all slices. The lesion type (cystic, papillary and solid) was documented 

and whole kidney volumes were also measured. The measurement was conducted 

blindly in terms of treatment information. Finally, to evaluate the efficiency and the 

detection rate of renal lesions by T2 weighted MRI, MRI analysis was compared and 

confirmed with findings by histological analysis.  

 

2.5.5 Animal dissection 

2.5.5.1 Exsanguination 

Mice were anaesthetised and blood was collected from the heart via exsanguination 

(cardiac puncture). Blood samples were obtained following the end of each drug 

treatment. Induction of anaesthesia was achieved by placing the animal in the 

inhalation chamber and by setting oxygen level at 2 L/min and Isoflurane (inhalation 

anaesthetic) at 5 units. 

 

Anaesthesia was maintained by transferring the animal to the inhalation mouth 

adapter and by setting Isoflurane at 2.5 units. The animal was laid down on its back 

and pain response was tested by pinching tails and toes. If pain was detected, the 

inhalation level was increased. Blood was collected from heart using a 1 ml syringe 

with a needle (23g/1”) just behind the xiphoid cartilage and by a gentle aspiration of 
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the blood into the syringe. In order to reach the heart; the needle was entered at 10-

30 degrees from the horizontal axis of the sternum. Around 0.5 ml of blood was 

collected from each mouse and kept in MiniCollect® K3EDTA 1.0 ml blood plasma 

tube. Blood samples were left for 2 hours at room temperature and centrifuged for 5 

min at 8,000 rpm. Plasma aliquots were prepared into 50 or 100 μl and stored at -

80°C. 

 

2.5.5.2 Necropsy analysis 

Following exsanguination, oxygen and Isoflurane were turned off and mice were 

killed by cervical dislocation, and dissected. Necropsy analysis included macroscopic 

examination which allowed the internal organs to be inspected. The spleen, the 

kidneys, the liver, the heart, the lungs and the brain were examined carefully and any 

signs of lesions were recorded. 

 

2.5.5.3 Tissue collection 

During dissection, half of the brain, a portion of the large lope of the liver and kidneys 

were harvested from each animal, fixed in 10% buffered formalin saline (pH 7.0) for 

24 hours, processed and embedded in paraffin according to standard histological 

procedures (see details in 2.5.6.1). The rest part of the liver and brain, the heart, the 

lungs, the spleen and the tail, were snap frozen. Briefly, fresh tissues were placed in 

a 1-litre glass beaker containing cold isopentane, to prevent the formation of ice 

crystals in tissues. The glass beaker was embedded in a larger container filled with 

liquid nitrogen. The samples were left in isopentane until they became frozen and 

removed with long metal forceps. These frozen tissues were then stored in cryotubes 

at -80°C for use in further molecular analysis. 

 

2.5.6 Histology 

2.5.6.1 Tissue fixation, embedding and sectioning 
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Fixed tissues were placed into tissue prep cassettes for dehydration, clearing and 

embedding; all these processes carried out in LEICA TP1050 tissue processor. 

Tissues were subjected to dehydration in 70% ethanol (1 hour), 95% ethanol (1 

hour), 100% ethanol (1 hour) x 2, 100% ethanol (1.5 hours) and to clearing by two 

changes of immersions in xylene; first immersion for 45 minutes and a second one 

for 1 hour. This was followed by three immersions in molten paraffin wax (60°C) for 1 

hour x 2 and 1.5 hours.  

 

During the final embedding stage, each specimen was embedded into a mold filled 

with molten paraffin wax, allowed to set and hardened onto a cold plate. Both 

processes were accomplished on LEICA EG1150 H and LEICA EG1150 C 

machines. The firm paraffin block was then popped out of the mould and paraffin 

embedded kidneys were sectioned at 5 µm (with or without interruption at 200 µm 

intervals) using the LEICA RM2235 microtome and then placed in a 45°C water bath 

and collected onto 25 x 75 x 1.0 mm polysine slides. Sections were transferred on a 

hot plate, allowed to dry and then moved to a 45°C oven and left overnight (12 

hours). 

 

2.5.6.2 Haematoxylin and eosin staining 

Paraffin embedded kidney sections were H&E stained using the following protocol: 

xylene (2 min) x 3, 100% ethanol (1 min) x 3, 95% ethanol (1 min), 70% ethanol (1 

min), running water (1 min), Mayer’s Haematoxylin (2 min), running water (5 min), 

1% Aqueous Eosin (10 min), running water (15 sec), 70% ethanol (15 sec), 95% 

ethanol (30 sec), 100% ethanol (1 min), 100% ethanol (2 min) x 2, xylene (2 min) x 

3. Haematoxylin stained the nuclei of cells blue/black, whilst Eosin coloured cell 

cytoplasm and most connective tissue fibres pink. Sections were then mounted 

under a coverslip using DPX mountant and left to dry.  
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2.5.7 IHC  

Slides containing paraffin embedded 5 micron thick sections of Tsc1+/- and Tsc2+/- 

mouse kidneys, were deparaffinised and rehydrated in xylene x 3, 100% ethanol, 

70% ethanol, 50% ethanol and water for 5 min each. For pre-staining treatment, 

sections were placed in a plastic slide rack and boiled in a microwave oven, in a 1-

litre glass beaker containing 10 mM Citrate buffer (pH 6.0) for 10 min. Slides were 

cooled for 10 min at room temperature and immersed in water and in 1X TBS-T x 3 

for 5 min per wash.  The EXPOSE Rabbit Specific AP (red) Detection IHC Kit was 

used to immunostain the paraffin sections. This kit contains AP Conjugate, Co-factor 

(Enhancer), Fast Red Chromogen, Napthol Phosphate and Protein block. Sections 

were circled with a wax pen and placed in a humidified chamber. Following 10 min 

incubation with 4 drops of Protein block at room temperature to block non-specific 

background staining, each section was incubated overnight with diluted primary 

antibody (1:200 rabbit anti-PS6 in diluted Blocking solution- 30 μl Normal blocking 

goat serum plus 2 ml 1X TBS-T) at 4°C according to the manufacturer’s protocol. 

The next morning, slides were washed in 1X TBS-T for 5 min x 3, exposed to the 

alkaline phosphatase (AP) secondary antibody conjugate (4 drops) for 30 min at 

room temperature and rinsed again in 1X TBS-T buffer x 4. One hundred and fifty 

microliters of Enhancer was then applied to each slides and incubated for 4 min at 

room temperature. An equal volume of Naphthol Phosphate and Fast Red was 

mixed just before use. One hundred and fifty microliters of the mixture were added 

onto each slide with Enhancer and incubated for around 8 min at room temperature. 

After another 4 rinses in 1X TBS-T followed by water, slides were counter-stained 

with haematoxylin for 2 min and rinsed about 5 min in tap water. Sections were 

dehydrated and cleared in 50% ethanol, 70% ethanol, 100% ethanol and xylene for 5 

min each. DPX was used to mount slides with a cover slip and sections were left to 

dry. Immunohistochemical slides were viewed using an Advanced Ergonomic 

System Microscope with 100W Illumination Leica DM2500 and scanned using a 

Scanscope™ CS slide scanner. 
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2.5.8 Slide scanning 

The resulting haematoxylin and eosin (H&E) stained and IHC slides were scanned 

(40x magnification) using the ScanScope® CS microscope slide scanner (Aperio 

Technologies, UK) and the digital slides created (.svs files), were viewed using the 

Aperio ImageScope™. 

 

2.5.9  Histological analysis 

The digitised images of previously scanned H&E stained kidney sections using the 

Aperio system (http://www.aperio.com/?gclid=CNXN- 8by4aUCFcINfAods3eg1w), 

were used to take photographs of individual renal lesions on its maximum size with a 

reference scale length. Lesion photographs were subsequently exported to ImageJ 

(http://rsbweb.nih.gov/ij) for analysis. Each renal lesion was assessed by calculating 

the maximum cross-sectional whole lesion area (lesion size) and cellular area 

(excluding fluid filled cystic areas). In addition, lesion location and type (cystic, 

papillary or solid) were recorded, and total lesion number and volume per animal 

were measured and compared between different groups of treated mice. Histological 

analyses were conducted blindly in terms of treatment status of mice. 

 

2.5.10 RNA, DNA and protein extraction from tissues 

2.5.10.1 Tissue disruption and homogenation 

RNA, DNA and proteins were extracted from frozen tissues using AllPrep® 

DNA/RNA/Protein Mini Kit (Qiagen). Briefly, samples previously stored in -80°C were 

cut in a sterile liquid nitrogen cold plastic dish in a mortar. Tissues were immediately 

transferred into a round-bottom tube containing 600 μl RLT and homogenised as 

quickly as possible using TissueRuptor (30-45s operation). Samples were 

centrifuged for 3 min at 12,000 rpm and the supernatant was stored at -80°C for 

future use or transferred to ALLPrep DNA spin column placed in a new 2 ml 

collection tube and centrifuged for 30 sec at 12,000 rpm. The ALLPrep DNA spin 

column was placed in a new 2 ml collection tube and stored at 4°C for later DNA 

purification. 
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2.5.10.2 RNA purification 

The flow-through was combined with 430 μl 100% ethanol, mixed well and up to 700 

μl of the sample was transferred to an RNeasy spin column placed in a 2 ml 

collection tube, centrifuged for 15 sec at 12,000 rpm and the flow-through was kept 

at 4°C for later protein purification (transferred into a capped tube). Successive 

centrifugations were carried out in the same RNeasy spin column if the sample 

volume exceeded 700 μl. The RNeasy spin column was placed in a fresh collection 

tube, where 700 μl of Buffer RW1 was added and the solution was centrifuged for 15 

sec at 12,000 rpm. The filtrate was discarded and another two washes were 

performed to wash the spin column membrane, using 500 μl of Buffer RPE and 

spinning for 15 sec at 12,000 rpm. The flow-through was discarded after each wash 

and an extra 2 min of centrifugation at 12,000 rpm was performed to remove any 

residual buffer. The RNeasy spin column was placed in a new 1.5 ml collection tube 

and the RNA was eluted by adding 30-50 μl RNase-free water directly into the spin 

column membrane and by spinning for 1 min at 12,000 rpm. The last step was 

repeated If the expected RNA yield was >30 μg, using another 30-50 μl of RNase-

free water. RNA samples were stored at -80°C. 

 

2.5.10.3 Protein purification 

One volume of Buffer APP was added to the flow-through (kept previously at 4°C) 

and the solution was mixed vigorously, incubated for 10 min at room temperature to 

precipitate proteins, and centrifuged for 10 min at full speed. The supernatants were 

removed carefully and 500 μl of 70% ethanol was added into the tube containing the 

protein pellet. Samples were centrifuged for 1 min at 12,000 rpm. Supernatants were 

removed again and protein pellets were dried at room temperature for 10 min. 

Protein pellets were resuspended in around 150 μl Buffer ALO. DTT was added to 

Buffer ALO before use (8 mg DTT/ 1 ml ALO). Protein solutions were incubated for 5 

min at 95°C, cooled down to room temperature and centrifuged for 1 min at 13,000 

rpm. Aliquots of the supernatants (10-30 μl each) were stored at -80°C and used for 

western analysis. 
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2.5.10.4 DNA purification 

Five hundred microliters of Buffer AW1 was added into an ALLPre DNA spin column 

and the column was centrifuged for 15 sec at 12,000 rpm. The flow-through was 

discarded and a second wash was performed using 500 μl of Buffer AW2 and 

spinning for 15 sec at 12,000 rpm. The flow-through was discarded again and 

followed by an extra 2 min of centrifugation at full speed to remove any residual 

buffer from the washes. Finally, the ALLPrep DNA spin column was placed in a new 

1.5 ml collection tube and the DNA was eluted in 100 μl EB Buffer (preheated to 

70°C) after incubation for 2 min at room temperature and centrifugation for 1 min at 

12,000 rpm. The resulting DNA samples were stored at -20°C. 

 

2.5.11 Nucleic acid and protein quantification 

Nucleic acid (ng/μl) and protein (mg/ml) concentration was determined with UV 

spectrophotometry at 260nm and 280nm wavelengths respectively, using the 

ND8000 8-sample NanoDrop Spectrophotometer. 

 

2.5.12 Treatment of disposable Tissue Ruptor probes 

Following usage of Tissue Ruptor probes, they were submersed and quickly spun 

twice in 500 ml fresh dH2O using the tissue Ruptor (~30 sec operation). Probes were 

subsequently rinsed and washed four times  in 500 ml fresh dH2O (3 min/wash) on 

an orbital shaker, dipped into RNase Zap solution and rinsed with 500 ml ddH2O x 3. 

Finally, they were rinsed in RNase-free H2O, wrapped with foil, autoclaved and dried 

in an oven of 60 °C. Probes can be used for 5-10 times. 

 

2.5.13  Western blot analysis 

2.5.13.1 Electrophoresis and blotting 

Electrophoresis was performed using Invitrogen Novex XCell SureLock™ Mini-Cell 

Electrophoresis system according to manufacturer’s protocol. NuPAGE Novex 4-
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12% Bis-Tris Gels (1.0 mm) of 12, 15 and 17 wells were used for the separation of 

small to medium sized proteins. Protein samples were diluted in distilled water if 

necessary, and then in NuPAGE LDS Sample Buffer (1X) in a total volume of 10 μl. 

These samples were briefly spun, incubated at 70°C for 10 min and briefly spun 

again before loading into the wells. Four-12% Bis-Tris gels were run with 1X 

NuPAGE MES SDS Running Buffer at 200 V constant for 35 min. Proteins were then 

transferred to a Hybond ECL membrane at 30V constant for 1 hour in 1X NuPAGE 

Transfer Buffer using the Invitrogen XCell II™ Blot Module; accordingly with 

manufacturer’s protocol. The filter paper and the blotting pads were pre-soaked in 

transfer buffer before blotting. Membrane (9 cm x 8.5 cm) was firstly immersed in 

distilled water and equilibrated in transfer buffer for around 10 min before use. 

 

2.5.13.2 Blocking and incubation 

After protein blotting, the membrane was immersed into 10 ml of 1X TBS-T plus 2% 

(w/v) ECL Advance Blocking Agent for 1 hour at room temperature on an orbital 

shaker, to block any non-specific binding and rinsed with two changes of 15 ml 1X 

TBS-T buffer. Primary antibody was diluted (dilution factor determined empirically for 

each antibody) with 10 ml 1X TBS-T supplemented with 2% (w/v) ECL Advance 

Blocking Agent. Membranes were incubated in the diluted primary antibody for 1 

hour at room temperature on an orbital shaker, rinsed with 15 ml 1X TBS-T twice 

and washed in 30 ml 1X TBS-T, firstly for 15 min and then for 5 min x 3 with fresh 1X 

TBS-T at room temperature on an orbital shaker. Membranes were then incubated in 

secondary antibody (conjugated with horse radish peroxidase- HRP; diluted 1:10000 

in 10 ml 1X TBS-T supplemented with 2% (w/v) ECL Advance Blocking Agent) for 1 

hour at room temperature on an orbital shaker. Membranes were rinsed with 15 ml 

1X TBS-T twice, washed in 30 ml 1X TBS-T for 15 min and washed again for 5 min x 

3 with fresh 1X TBS-T. All washes were carried out at room temperature on an 

orbital shaker. The ECL detection reagents were allowed to equilibrate to room 

temperature from 4°C. An equal volume of detection solution 1 was mixed with 

detection solution 2 to cover the membranes (~2 ml total volume/membrane). The 

washed membrane was drained well to remove any excess TBS-T, placed in a clean 

plastic square plate with protein side up and covered with the prepared mixture of 
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detection reagents. After 5 min of incubation at room temperature, the membrane 

was drained and wrapped with cling film. BioSpectrum Imaging System was used to 

visualise chemiluminescent signals and photos of scanned images were obtained 

using the Digital UP-895MD Graphic Printer. Different exposure settings were used 

(2 sec up to 5 min) to optimise the exposure conditions for data collection.  Scanned 

images were displayed and further analysed for densitometry using the ImageJ 

image processing program. 

 

2.5.14 Statistics 

Wilcoxon signed-rank test, Wilcoxon rank-sum (Mann-Whitney) test and Kruskal-

Wallis equality-of-populations rank test were used in MRI and Histological analyses 

for comparisons between different treatment groups. Two tailed Student’s t-Test was 

used for comparison of Western analysis. P ≤ 0.05 was considered to be statistically 

significant. 
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CHAPTER THREE 

Evaluation of T2 weighted MRI for assessing renal lesions in Tsc1+/- and Tsc2+/- 

mouse models 

 

3.1 Introduction 

T2 weighted MRI has been used to detect renal lesions for assessment of 

therapeutic effects of chemicals in Tsc2 knockout mouse models in several 

preclinical trials (Brown et al. 2005, Lee et al. 2005).  Nevertheless, no preclinical 

studies have used MRI to follow-up renal lesions in vivo or have managed properly 

to assess the detection rate of renal lesions by MRI in these models. In this study, 

we evaluated T2 weighted small bore MRI for assessing renal lesions in both Tsc1+/- 

and Tsc2+/- mouse models by comparison with histological analysis.  

  

3.2 Materials and methods 

3.2.1 DNA extraction and genotyping  

As outlined in section 2.5.2.1, DNA was extracted from mouse ear punches, using 

the Wizard® SV Genomic DNA Purification System. Briefly, ear tissues were 

digested in 68.75 μl digestion solution (50 μl Nuclei Lysis solution, 12.5 μl 0.5 M 

EDTA pH 8.0, 5 μl 20mg/ml Proteinase K, 1.25 μl 4 mg/ml RNase A) for 16-18 hours 

at 55˚C and samples were subsequently immersed in Wizard® SV lysis buffer, 

applied to a spin column, centrifuged, washed and dissolved in 100 μl nuclease-free 

water. Genotyping was determined by PCR as described in section 2.5.2.2. Results 

were visualised using gel electrophoresis on 1.5% agarose gels. 

 

3.2.2 Animals and procedures 

Five Tsc1+/- (Wilson et al. 2005), 4 Tsc2+/- (Onda et al. 1999) and 5 wild type balb/c 

mice were used in this trial. Both mouse models were backcrossed with the balb/c 

strain (Charles River, UK) at least 10 times. Mice were first scanned with MRI at the 
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age of 12 months followed by a second scan two months later. After the second MRI 

scan, mice were killed humanely (detailed protocol was outlined in section 2.5.5). 

Necropsy was performed involving macroscopic examination of the spleen, kidneys, 

liver, heart, lungs and brain in all animals. Kidney tissues were collected for further 

histological analysis. 

 

3.2.3 MRI 

A detailed MRI procedure is outlined in section 2.5.4. The volumes of renal lesions 

were measured using the software Analyze 9.0. The measurement was conducted 

blindly in triplicate. The lesion types were confirmed by histology. 

 

3.2.4 Histology  

Kidneys were harvested from animals and fixed in 10% buffered formalin saline (pH 

7.0) for 24 hours at RT. Kidney sections were prepared as follows. Fixed kidney 

samples were processed for dehydration, clearing and embedding in molten paraffin 

wax (60°C). Paraffin embedded kidneys were sectioned at 5 µm (at 200 µm 

intervals) and series of microscope slides were H&E stained. H&E stained slides 

were scanned to create virtual slides using the Aperio ScanScope® CS scanner. 

Virtual slides were viewed using the Aperio ImageScope™ and used to take 

photographs of individual renal lesions with a reference length for subsequent scale 

setting. Photos were subsequently exported to ImageJ for analysis as described in 

section 2.5.9. 

 

3.2.5 Statistical analysis 

The Wilcoxon signed-rank test was performed for all comparisons as indicated in 

Tables 3.1 and 3.2 (Stata software, version 11). Student’s t-test was used for 

comparison of total lesion number between the Tsc1 and Tsc2 mouse models. P ≤ 

0.05 was considered to be statistically significant. An Altman-Bland plot was used to 

show differences in total volumes of “follow up” lesions between the first and second 
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MRI scan. “Follow-up” lesions refer to those that were identified in both the first and 

second scans.  

 

3.3. Results  

3.3.1. Genotyping  

PCR based genotyping was carried out for Tsc1 and Tsc2 in mice. PCR products 

were analysed by electrophoresis on 1.5% agarose gels followed by staining with 

ethidium bromide. Mutant and wild-type alleles were 283 base pairs (bp) and 352 bp 

for Tsc1 and 658 bp and 849 bp for Tsc2, respectively (Figure 3.1). 
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3.3.2. T2 weighted MRI 

3.3.2.1 Detection of renal lesions in vivo using T2 weighted MRI 

T2 weighted small bore MRI scans were performed on 5 Tsc1+/-, 5 Tsc2+/- and 5 wild 

type mice firstly at 12 months and then at 14 months of age. Sixty four coronal slices, 

0.5 mm each, were acquired spanning each animal (Figure 3.2). The images 

obtained from the MRI scans were used for ascertaining the number of renal lesions 

and measurement of volumes of renal lesions using the Analyze 9.0 software.  

 

Different types of renal lesions were detected after examination of the T2 weighted 

MRI scans. We termed these lesions cystic, papillary and solid lesions for practical 

purposes (Figure 3.3). Renal lesions appeared as regular/irregular spherical 

structures that varied from bright lesions (cysts) to bright but with grey/dark area 

lesions (papillary), to solid lesions. Cysts were the most easily detectable renal 

lesions consistent with their fluid-filled nature which had high signal intensity on T2 

weighted images. Solid lesions were recognised by their darker colour or by 

morphological changes between the kidney tissue and the solid lesion which caused 

deformed kidneys. Renal lesions were detected in all Tsc1+/- and Tsc2+/- mice and 

varied in number, size, type, morphology and location.  As expected, no renal lesions 

were found in wild-type balb/c mice in either the first or second MRI scan.  

 

The type (cystic, papillary or solid lesion) and location of each renal lesion were 

recorded and all lesions were counted in each animal. The volume of individual 

lesions was measured slice by slice from MRI scans. By summing the volumes 

obtained from the first to the last contiguous slices containing the particular lesion, 

the final volume of that lesion was determined (e.g. total lesion volume detected in 

one of the Tsc1+/- mice (labelled as TSC1-1) by the first MRI was 8.86mm3) (Table 

3.1, Figure 3.3). The first MRI scan revealed a total number of 226 renal lesions in all 

9 mice of both models (Table 3.1). The smallest lesion detected in the kidneys 

tissues by T2 weighted MRI was < 0.1 mm3. 
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Lesions 

Figure 3.2 T2 weighted MRI (full length coronal views) for Tsc1+/- mice. (a)  
Anatomical landmarks. (b) Renal lesions detected in the right kidney of a Tsc1+/- 
mouse.  
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Figure 3.3 T2 weighted MRI analysis. (A) Different types of Tsc-associated mouse renal 
lesions detected by T2 weighted MRI (see arrowheads). (B) Contiguous 0.5 mm-thick MRI 
slices from anterior (Slice 1) to posterior (Slice 5), showing the volume measurement (mm3) 
of a solid tumour in a Tsc mouse kidney. A total volume of a lesion is the sum of volumes 
measured from all individual slices containing the lesion.  
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3.3.2.2 “Following up” renal lesions using T2 weighted MRI 

A second T2 weighted MRI scan was performed to test whether the lesions detected 

in the first scan could be re-identified (“followed up”) two months later. This also 

allowed us to monitor any changes in lesion size and number in vivo. Any changes in 

lesion type and size such as tumour growth from the first to the second MRI scan 

were recorded.  

 

Two hundred and seventy three renal lesions were detected in the second scan in all 

9 Tsc1+/- and Tsc2+/- mice. One hundred and ninety two of these renal lesions were 

similarly detected in the first MRI scan (192/226), indicating that 85% of the renal 

lesions identified in the first scan were detected in the second scan (Table 3.1). 

“Follow up” renal lesions revealed significant differences in lesion size between the 

two scans (P= 0.008), with a significant lesion growth in the 9 untreated animals, 

from 341.95 mm3 to 516.22 mm3 (Figure 3.4). 

 

In addition, there were significant differences in the total lesion number (P= 0.009) 

and volume (mm3) (P= 0.008) in all mice, between the two scans (Table 3.1). The 

total number of all renal lesions identified in mice was increased from 226 to 273 in 

the second scan (Table 3.1). Furthermore, the total volume of renal lesions was 

considerably increased in all animals, from 361.56 mm3 in the first scan to 539.46 

mm3 in the second scan. However, no significant differences were seen in total 

kidney volumes between the two scans (P= 0.925) (Table 3.1). 
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Figure 3.4 Growth of renal lesions detected by T2 weighted MRI. (A) T2 weighted MRI 
images showing lesion growth (no treatment). (B) Altman-Bland plot showing lesion growth in 
9 animals. The total lesion volumes were obtained from “follow-up” lesions that were detected 
in both the first and second MRI scans (see also Table 3.1). Difference of total lesion 
volumes = total lesion volumes from the second MRI scan – total lesion volumes from the first 
MRI scan. 
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3.3.3 Histological analysis 

3.3.3.1 Renal lesions detection by histological analysis  

All animals were killed for further analysis shortly after the second MRI scan. The 

kidneys from all 14 months old mice were removed, fixed in 10% buffered formalin 

saline overnight, processed and embedded into paraffin wax for sectioning. A series 

of 5 μm sections were prepared with 200 μm interval from each kidney. Sections 

were then H&E stained. Slides were scanned to make virtual slides for image 

acquisition and lesion evaluation. Virtual slides were examined and used to take 

photographs of individual renal lesions with a reference scale length. Lesion photos 

were subsequently exported to ImageJ for analysis. The type and location of each 

renal lesion were recorded, the total lesion number was counted and the total 

volume was measured per animal (Table 3.2). Each renal lesion was assessed by 

calculating the maximum cross-sectional whole lesion area and cellular area (mm2) 

(Figure 3.5). 

 

Renal lesions identified by histology ranged from pure cysts, through papillary to 

solid lesions and varied in number, size, shape and location (Figure 3.6). Cystic 

lesions were lesions with a single epithelial cell lining (pure cysts) and papillary 

lesions were described as cysts with papillary projections into the lumen. Solid 

lesions had a more dense cellular architecture, filled with hyperplastic epithelial cells 

(Figure 3.6). Renal lesions with <25% of cellular content were considered as cystic, 

lesions with >25% and <90% cellular content as papillary and tumours with >90% 

cellular content as solid (Figure 3.6).  

 

By the age of 14 months, both mouse models had developed multiple renal lesions. 

A total number of 444 lesions were detected on HE renal sections of all animals (n= 

9) (Table 3.2). Four hundred and eleven out of the 444 renal lesions identified were 

either cystic or papillary and all the rest (33 lesions) were solid lesions. The total 

whole and cellular areas of all renal lesions were 243.58 mm2 and 114.57 mm2, 

respectively (Table 3.2). The smallest lesion identified by histological analysis was < 
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0.02 mm2. None of the wild-type mice had any macroscopic or microscopic kidney 

lesions. 

 

The histologic features of renal lesions identified in Tsc1+/- mice were similar to those 

seen in Tsc2+/- mice. However, Tsc1+/- mice had a milder renal phenotype with lower 

incidence of kidney tumours in comparison with age-matched Tsc2+/- mice. We found 

that Tsc2+/- mice (n= 4) had significantly more renal lesions (77 lesions per mouse) 

than Tsc1+/- mice (n= 5) (27 lesions per mouse) (P= 0.0078). In terms of lesion type, 

Tsc2+/- mice had considerably more cystic/papillary (P= 0.0098) and solid lesions (P= 

0.0492) than Tsc1+/- mice. Power calculations based on histological data for different 

drug effect sizes are shown on Tables 3.3 and 3.4. 
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Table 3.3 Estimation of sample size for metformin treatment of renal tumours using a 

Tsc1+/- mouse model. 
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Table 3.4 Estimation of sample size for prevention of renal tumours using a Tsc2+/- 

mouse model. 
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3.3.4 Comparison of T2 weighted MRI and histological analysis in renal lesion 

detection 

T2 weighted MRI scans provided a series of coronal slices spanning each mouse for 

comparison with histology. Data obtained from MRI analysis were confirmed by 

histological analysis (Figure 3.7). Two hundred and seventy three out of 444 renal 

lesions (61%) detected by histological analysis, were clearly identified by T2 

weighted MRI (P= 0.008) (Table 3.2). MRI identified 64% of cystic/papillary (263/411, 

P= 0.009) and 30% of solid renal lesion (10/33, P= 0.009). All cystic lesions found on 

histological slides with cross sectional areas of less than 0.02 mm2 (we termed these 

lesions as “microlesions”) were below the limit of resolution of T2 weighted MRI 

(Figure 3.8). When microlesions were excluded, the detection rate by MRI increased 

from 61% to 76%. 

 

To further compare T2 weighted MRI and histological analysis, the total number of 

lesions detected by MRI was plotted against the total number of lesions detected by 

histological analysis indicating that MRI is less sensitive than histological analysis 

(Figure 3.9). In addition, whole lesion volumes determined by MRI were converted 

from mm3 to mm2 (area= 3V/R/4, where V= volumes and R= radius) for subsequent 

comparison with histological data (mm2) assuming that lesions were spherical. Good 

agreement was found between the estimated cross-sectional areas by MRI and 

histology for small lesions (< 20 mm2) but not for bigger renal lesions (P= 0.0926) 

(Figure 3.9).  
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Figure 3.7  Detection of different types of mouse kidney lesions by T2 weighted MRI. 
Tsc mouse kidney lesions were identified in vivo by T2 weighted MRI and then confirmed 
by histological analysis as cystic, papillary and solid tumours. 
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Figure 3.9 Comparison of T2 weighted MRI and histological analysis in renal lesion 
detection. (A) Total number of lesions detected by T2 weighted MRI at 14 months of 
age (second scan) and by histological analysis (see Table 3.2). (B) Maximum cross-
sectional areas of renal lesions estimated by T2 weighted MRI and by histological 
analysis (see Table 3.2). 
 



112 
 

3.4. Discussion  

MRI is a noninvasive technique that has been used for detection of tumours in 

animals and patients (Cha et al. 2003, Chalifoux et al. 2013). A high-field (9.4 T) 

Bruker Biospec 94/20 MRI/MRS spectrometer with a small diameter bore (20 cm) is 

suitable for small animals. Using this facility, we have evaluated T2 weighted MRI for 

the assessment of renal lesions in two transgenic mouse models of TSC by 

comparison with histological analysis. We compared MRI with histology indirectly 

since it was not feasible to compare directly T2 weighted MRI slices with the 

corresponding H&E renal sections for a number of reasons. First, the T2 weighted 

MRI and histological analyses had different resolutions. Second, it was difficult to 

match exactly the orientation of T2 weighted MRI slices obtained in vivo to the renal 

H&E sections. Third, other factors might also affect the comparison, such as the 

dissection and fixation of the organs.  

 

We demonstrated that high resolution T2 weighted MRI (0.5 mm slice thickness) 

could detect cysts, papillary and solid tumours. Sensitivity for the detection of solid 

tumours was poor as only 30% of lesions found histologically were also detected by 

the T2 weighted MRI. In comparison MRI detected 64% of cystic and papillary 

lesions. Cystic and papillary renal lesions were more easily detectable due to the 

high contrast between normal kidney tissue and fluid-filled cysts and papillary 

lesions.    In addition, histological analysis revealed many microscopic early lesions 

(area < 0.02 mm2) that were below the resolution of the MRI modality used here, and 

excluding these lesions 76% of all renal lesions were detected by MRI.  

 

Eighty five percent of lesions detected on a first MRI scan could be re-identified 

unambiguously in a second scan undertaken two months later, even when they had 

grown or shrunk. There might be a number of possible reasons for the failure to re-

identify some of the lesions in the second scan in the untreated mice. First, there 

might be changes in lesion type from the first to the second scan; for example a 

cystic or papillary lesion in the first scan might have developed to be a solid lesion in 

the second scan that might not be detectable. Second, it is sometimes difficult to 
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distinguish new lesions from old ones in the second scan because of differences in 

animal orientation during scanning, particularly if lesions were close to one another. 

Finally, spontaneous shrinkage of some renal lesions following the first scan might 

also happen. 

 

More lesions were identified in the second scan for both TSC1+/- and TSC2+/- mice. 

This indicates that either some lesions developed de novo during the follow-up 

period and/or that some lesions were too small in the first scan for detection, but big 

enough in the second scan. These results suggest that T2 weighted MRI could be 

useful for monitoring renal lesions in vivo.   

 

Cross sectional areas of lesions assessed by the T2 weighted MRI and histological 

analysis showed good agreement for small lesions but poor agreement for large 

lesions. The lesion areas by T2 weighted MRI were estimated by conversion of 

lesion volumes with an assumption that renal lesions were spherical. Some large 

lesions do, however, appear to be of irregular shape. It could not be excluded that 

the difference in agreement for small and large lesions might be caused by the 

different resolutions between the T2 weighted MRI and histological analysis.  

 

Brown et al. (2005) performed T2 weighted MRI (1-1.5 mm slice thickness) to detect 

lesions in the liver, kidneys and lungs of Tsc2+/- mice for evaluation of cell based 

therapy.  Lee et al. (2005) used T2 weighted MRI (0.75 mm slice thickness) to 

determine the number of lesions in kidneys following treatment, using the same 

Tsc2+/- mouse model. While both studies showed that T2 weighted MRI could detect 

different types of lesions in the kidneys of Tsc2+/- mice, none of these studies 

performed two successive MRI scans and presented MRI follow-up data or 

evaluated the total volume of renal lesions. In addition, these studies have not 

addressed the actual detection rate of renal lesions by T2 weighted MRI properly in 

comparison to histological analysis (Brown et al. 2005, Lee et al. 2005). Our study is 

the first report of T2 MRI analysis that has presented follow-up data, evaluated total 

lesion volumes and the utility of MRI for assessing lesions by giving the actual 
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detection rate in comparison to histological findings. In a recent study that compared 

micro-CT (micro-computed tomography) and T2 weighted MRI for monitoring 

metastasis of mouse pheochromocytoma, a kidney lesion of 0.203 mm3 was 

detected by T2 weighted MRI (Martiniova et al. 2009). In the current report, we show 

that the smallest T2 weighted MRI-detectable renal lesions were <0.1 mm3 but that 

sensitivity of the T2 weighted scans is much better for cystic than solid lesions. 

Wallace et al. (2008) monitored the volume of PKD mouse kidneys over time by T2 

weighted MRI (0.5mm slice thickness), and suggested that T2 weighted MRI can be 

used to evaluate the effectiveness of therapeutic agents to treat the disease. By 

contrast, in Tsc1+/- and Tsc2+/- mice we found that total kidney volumes did not 

change significantly over a period of two months while the numbers and volumes of 

renal lesions were significantly increased in all mice. 

 

In conclusion, T2 weighted MRI is a potentially useful tool for assessing renal lesions 

in pre-clinical studies using Tsc mouse models. As measures can be repeated, T2 

weighted MRI enables longitudinal studies to be undertaken in vivo with the potential 

to reduce the numbers of animals required. Technical challenges remain, notably 

development of protocols that will improve T2 weighted MRI sensitivity for solid renal 

lesions. Alternatively, MRI modalities other than T2 weighted may be explored for 

detecting solid renal lesions in Tsc mouse models. 
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CHAPTER FOUR 

Effect of metformin on renal tumours and mTORC1 signalling in a Tsc1+/- 

mouse model 

 

4.1 Introduction 

Rapamycin and its analogues such as CCI-779, RAD001, AP23576 are potent 

inhibitors of mTORC1 signalling (Easton and Houghton, 2006). Clinical trials have 

demonstrated that rapalogues can shrink or stabilise tumours such as SEGAs 

(Krueger et al. 2010, Franz et al. 2006, Koenig et al. 2008), renal AMLs (Davies et al. 

2011, Bissler et al. 2008, Dabora et al. 2011), LAM (Bissler et al. 2008, Taillé et al. 

2007) and facial angiofibromas (Hofbauer et al. 2008). However, the beneficial 

effects on TSC-associated tumours were reversed and tumour regrowth occurred 

once the drug was discontinued. Additionally, treatment with these drugs is 

associated with frequent adverse events consistent with their known metabolic and 

immunosuppressive properties including respiratory infections, stomatitis, leukopenia 

and sinusitis. One additional concern is that rapamycin treatment is thought to 

promote Akt activation due to loss of negative feedback towards IRS-1 loop. This 

suggests that long-term treatment with rapamycin might increase tumour progression 

in individuals with TSC (Zakikhani et al. 2010).  

 

Metformin may be a possible candidate for treatment of TSC since it is suggested to 

suppress mTORC1 activity via multiple mechanisms (described in detail in section 

1.5.2.2). More importantly, metformin treatment not only attenuated mTORC1 activity 

in preclinical studies but also decreased Akt activity through AMPK phosphorylation 

of IRS-1Ser789, leading to greater apoptotic and anti-proliferative effect than 

rapamycin (Zakikhani et al. 2010). 

 

Here, we assessed the effect of long term treatment with metformin on renal tumours 

using Tsc1+/- mice. Tsc mouse models have pathophysiological features that match 

some aspects of the disease in TSC patients. Tsc1+/- mice develop tumours in 
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multiple organs including the kidneys, liver and lungs and these tumours exhibit 

aberrant activation of mTORC1 (Chan et al. 2004, El-Hashemite et al. 2003). In 

chapter 3, T2 weighted MRI was demonstrated to be useful for in vivo examination of 

renal tumours. This chapter investigates therapeutic efficiency of metformin on TSC-

associated renal lesions using both T2-weighted MRI and histological analysis. 

mTORC1 signalling was also analysed in kidney tissues and renal tumours of Tsc1+/- 

mice after treatment with metformin. 

 

4.2 Materials and methods 

4.2.1 DNA extraction and genotyping 

As outlined in section 2.5.2.1, DNA was extracted from mouse ear punches, using 

the Wizard® SV Genomic DNA Purification System. Genotyping was determined by 

PCR as described in section 2.5.2.2. PCR products were 352 bp (wild-type) and 283 

bp (mutant), and were analysed on 1.5% agarose gels. 

 

4.2.2 Animals and procedures 

All animal procedures were carried out under the UK Home Office guidelines, 

outlined in sections 2.5.1 to 2.5.5. The Tsc1+/- mouse model was generated by the 

Institute of Medical Genetics (Cardiff University) (Wilson et al. 2005) and 

backcrossed on the background of the balb/c strain (Charles River, UK) more than 

10 times. Twenty Tsc1+/- mice at the age of six months were randomly allocated into 

two different treatment groups (n= 10 per group) with balanced sex, age and litter 

number using Graphpad (http:/www.graphpad.com/welcome.htm). One group was 

treated with metformin (Merck, Germany) in drinking water and the other as a control 

group with normal drinking water. The treatment lasted for 9 months and metformin 

was provided with a daily dosage of 150 mg/kg body weight for the first 7 months 

and 600 mg/kg body weight for the last two months, assuming that a mouse 

consumes 15 ml water per 100 g body weight a day. New metformin solution was 

replaced every 3 days. One of the animals treated with metformin died unexpectedly 

during the treatment and was excluded from this trial.  Animal body weight was 
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checked every week. Once the treatment was finished, mice of 15 months old were 

scanned by T2 weighted MRI and then humanely killed for tissue collection and 

histological and immunohistological analyses. Necropsy was performed involving 

macroscopic examination of the kidneys, spleen, liver, heart, lungs and brain. Six 

additional 14-15 month old Tsc1+/- balb/c mice were used for further molecular 

analysis. Three of them were treated with 600 mg/kg body weight and the rest with 

drinking water for 2 weeks. At the end of the treatment all 6 mice were killed and 

kidney tissues and renal tumours were collected. 

 

4.2.3 MRI 

A detailed MRI procedure is outlined in section 2.5.4. The same protocol was used 

as in Chapter 3.  

 

4.2.4 Histology 

The same protocol was used as described in Chapter 3, section 3.2.4. The 

assessment was conducted blindly with respect to treatment status.  

 

4.2.5 IHC 

EXPOSE Rabbit specific AP (red) detection IHC Kit was used to stain the antigen. 

Briefly, paraffin-embedded mouse renal sections were deparaffinised and 

rehydrated. Sections were boiled for 10 min in 10 mM sodium citrate buffer (pH 6.0) 

to unmask antigens. After cooling down in room temperature and 3 washes in TBST, 

sections were blocked in 1.5% goat serum for 10 minutes at room temperature. 

Antigen staining was performed according to the kit supplier’s instructions as 

described in section 2.5.7. Antibody against phosphor-S6 ribosomal protein 

(Ser235/236) (pS6Ser235/236) was used in 1:200 dilutions. Virtual sections of the 

immunohistochemical slides were created using the Scanscope™ CS slide scanner. 
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4.2.6 Western analysis 

Kidneys and renal tumours were harvested during dissection of Tsc1+/- mice and 

snap frozen. Proteins were purified from the frozen kidney and tumour samples 

according to the supplier’s protocol using TissueRuptor and AllPrep 

DNA/RNA/Protein Mini Kit as described in section 2.5.10. NuPAGE Novex 4-12% 

Bis-Tris Gels were used for protein separation (25 μg protein loading amount) and 

proteins were then transferred to Hybond ECL membranes (see section 2.5.13). 

Membranes were blocked with 1X TBS-T plus 2% (w/v) ECL Advance Blocking 

Agent and incubated with primary antibodies against pS6Ser235/236 (1:1000), phospho-

AMPKα (Thr172) (pAMPKThr172) (1:1000), phospho-Acetyl-CoA Carboxylase (Ser79) 

(pACCSer79) (1:1000), phospho-Akt (Ser473) (pAktSer473) (1:1000) and phospho-

Raptor (Ser792) (pRaptorSer792) (1:1000). Membranes were then incubated in 

horseradish peroxidase-conjugated secondary antibody against rabbit (1:10000). 

Protein signals were detected using ECL Advance Western Detection Kit and 

Autochemi Imaging System (UVP). -actin was used as loading control. Relative 

intensity of protein signals were obtained using ImageJ (http://rsbweb.nih.gov/ij). 

 

4.2.7 Statistical analysis 

The Wilcoxon rank-sum (Mann-Whitney) test was performed for comparisons of 

metformin effect on mouse renal lesions as indicated in Tables 4.1 and 4.2 using the 

software Stata (version 11). Two tailed Student’s t-Test was used for comparison of 

Western analysis and mouse body weight. P ≤ 0.05 was considered to be statistically 

significant. 

 

4.3 Results 

4.3.1 Metformin was well-tolerated in the Tsc1+/- mouse model 

Ten 6-month old Tsc1+/- mice were treated with metformin and another 10 age 

matched Tsc1+/- mice with drinking water for 9 months. One of the mice treated with 

metformin died before the experiment was completed and was excluded from final 

analysis. Animals treated with metformin generally looked healthy. Mouse weight 
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was monitored once a week. No significant difference in body weight change was 

found between the metformin treated (+2.26 g) and control (+2.30 g) groups (P= 

0.97138). These results suggest that long term metformin treatment was well-

tolerated in Tsc1+/- mice. 

 

4.3.2 Metformin had no effect on Tsc1-associated renal lesions  

4.3.2.1 In vivo analysis of renal tumours in Tsc1+/- mice by T2 weighted MRI 

following metformin treatment 

After 9 months of treatment with either metformin or water, all Tsc1+/- mice (n=19) 

were subjected to in vivo T2 weighted MRI and the effect of metformin on Tsc1-

associated renal lesions was assessed (Table 4.1). MRI identified different types of 

renal lesions including cystic, papillary and solid lesions (Figure 4.1). Renal lesions 

were visible in all animals of both treatment groups and varied in number, size, 

morphology and location.  All lesions were counted and lesion volumes (mm3) were 

obtained using Analyze 9.0 software as previously described in Chapter 3, section 

3.3.2.1.  

 

No significant differences were found in total renal lesion number per mouse (P= 

0.5927) or in type-specific renal lesion numbers per mouse (P= 0.3385, P= 0.6495, 

P= 0.3713 for cystic, papillary and solid lesions, respectively), between the two 

treatment groups (Figure 4.2). Likewise, no significant differences were seen in total 

volume of all renal lesions per mouse (P= 0.1025), the mean volume per lesion per 

mouse (P= 0.1025) and the sizes of type-specific lesions (P= 0.9025, P= 0.8703, P= 

0.1334 for cystic, papillary and solid lesions, respectively), between metformin 

treated and control Tsc1+/- mice (Figure 4.2). 
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Table 4.1 T2 weighted MRI analysis of Tsc1-associated renal lesions. 
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4.3.2.2 Assessment of metformin effects on Tsc1-associated renal tumours by 

histological analysis 

All animals (n=19) were humanely killed following MRI scan and an overall 

assessment of Tsc1-associated renal tumours was correspondingly performed by 

histological analysis (Table 4.2). Renal lesions were characterised, counted and their 

maximum cross-sectional whole lesion area and cellular area (mm2) (cellular area= 

whole lesion area- fluid filled cystic area) were calculated using the ImageJ software 

as described in Chapter 3, section 3.3.3.1 (Table 4.2). Different types of mouse renal 

lesions were observed following H&E staining, as shown in Figure 4.3. 

Microscopically, all animals had multiple renal lesions by the age of 15 months that 

varied in size, morphology and location on the kidney. Histological features of renal 

lesions such as lesion size and shape identified in control Tsc1+/- mice were similar 

to those seen in metformin treated Tsc1+/- mice.  

 

No significant differences were seen in total (P= 0.7125) or type-specific renal lesion 

numbers (P= 0.9023, P= 0.8683, P= 0.8026 for cystic, papillary and solid lesions, 

respectively) between the two treatment groups (Figure 4.4, Table 4.2). Similarly, 

there were no significant differences in the total lesion size (total whole lesion area) 

per mouse (P= 0.3691), the mean lesion size per lesion per mouse (P= 0.327) or 

lesion size of type-specific lesions per mouse (P= 0.568, P= 0.5136, P= 0.5118 for 

cystic, papillary and solid lesions, respectively) between the control and metformin 

treated mice (Figure 4.4). Additionally, no significant differences were found between 

the two groups in total cellular area of lesions per mouse (P= 0.4624), the mean 

cellular area per lesion per mouse (P= 0.4142), or cellular area of type-specific 

lesions per mouse (P= 0.6242, P= 0.5136, P= 0.5118 for cystic, papillary and solid 

lesions, respectively) (Figure 4.4). Taken together, both MRI and histological 

analyses, suggested that metformin appeared ineffective for treating renal lesions in 

Tsc1+/- mice.  
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Figure 4.3 Different types of lesions (cystic, papillary, and solid) detected by histology in 
the kidneys of Tsc1+/- mice. Series of 5 μm coronal renal sections at 200 μm intervals 
were H&E stained and scanned. Scale bars: 200 μm.  
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Figure 4.4 Analysis of renal lesions by histology. Tsc1+/- mice were sacrificed after 
an MRI scan following 9 months’ treatment with drinking water (filled triangles) or 
metformin (filled circles). Mouse kidneys were fixed, processed and paraffin-
embedded. Microscope slides were prepared with a series of 5 μm coronal sections 
(at 200 μm intervals), H&E stained and scanned to create virtual H&E slides. The 
virtual slides were used to measure the maximum cross-sectional whole area and 
cellular areas of renal lesions respectively with ImageJ. (A) Comparison of renal 
lesion numbers. No significant difference in lesion numbers was observed between 
control (drinking water) and metformin treated Tsc1+/- mice (based on Table 4.2). (B) 
Comparison of whole areas of renal lesions. No significant difference in whole areas 
of renal lesions was observed between control (drinking water) and metformin 
treated Tsc1+/- mice (based on Table 4.2). (C) Comparison of cellular areas of renal 
lesions. No significant difference in cellular areas of renal lesions was observed 
between control (drinking water) and metformin treated Tsc1+/- mice (based on Table 
4.2). 
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4.3.3 Metformin suppresses mTORC1 activity in kidney tissues but not in renal 

lesions of Tsc1+/- mice 

4.3.3.1 IHC analysis of kidney tissues and renal tumours in metformin treated and 

control Tsc1+/- mice 

IHC was used to examine mTORC1 activity in kidney tissues and renal lesions of 

Tsc1 mouse model. IHC was performed on 5 μm thick sections of kidney tissues and 

renal tumour samples of both metformin treated and control mice. The 

phosphorylation status of ribosomal protein S6 (Ser235/236) (rpS6Ser235/236) was 

assessed as a readout for mTORC1 signalling. IHC analysis showed a slight 

decrease in the phosphorylation of S6Ser235/236 in kidney tissues of mice treated with 

metformin in comparison to the kidney tissues of control mice (Figure 4.5). However, 

no obvious differences in pS6Ser235/236 phosphorylation levels were seen in renal 

tumours between metformin treated and control mice (Figure 4.5). mTORC1 

signalling could be quantified by quantitative immunofluorescence technique such 

Automated Quantitative Analysis (AQUA) (Camp RL, Chung GG, Rimm DL (2002), 

Automated subcellular localization and quantification of protein expression in tissue 

microarrays (Nat Med 8:1323-1327), however this was not feasible due to time 

limitation. 

 

4.3.3.2 Western analysis of kidney tissues and renal tumours in metformin treated 

and control Tsc1+/- mice  

As in IHC, we analysed the mTORC1 signalling for phosphorylated S6Ser235/236 by 

Western blotting. We also investigated the phosphorylation levels of pAMPKThr172, 

pACCSer79, pAktSer473 and pRaptorSer792 which are the main molecular targets of 

metformin (Gwinn et al. 2008, Zakikhani et al. 2010, Zhou et al. 2001). Western blot 

analysis showed a decrease in the phosphorylation of pS6Ser235/236 (P= 0.028) and an 

increase in the phosphorylation of both AMPKThr172 (P= 0.049) and ACCSer79 (P= 

0.046) in kidney tissues of metformin treated mice (Figure 4.6). However, no 

significant differences were seen in the phosphorylation levels of AktSer473 (P= 0.299) 

or RaptorSer792 (P= 0.705) in the kidney tissues between metformin treated and 

control mice (Figure 4.6). 
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In contrast, no significant differences were found in the phosphorylation levels of 

pS6Ser235/236 (P= 0.579), AMPKThr172 (P= 0.770), ACCSer79 (P= 0.830), AktSer473 (P= 

0.327) and RaptorSer792 (P= 0.794) in renal lesions of control and metformin treated 

groups (Figure 4.6). These results suggest that metformin can attenuate mTORC1 

activity in Tsc1+/- mouse kidney tissues, but not in Tsc1-associated renal tumours. 
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Figure 4.5 Immunohistochemical analysis of renal tissues and tumours. Paraffin-
embedded sections from kidney tissues and tumours of Tsc1+/- mice were stained with an 
antibody against pS6Ser235/236 using EXPOSE Rabbit specific AP detection IHC kit. (A) 
Phospho-S6Ser235/236 (red) in kidney tissues of Tsc1+/- mice. The level of Phospho-
S6Ser235/236 is slightly lower in kidney tissues of metformin treated mice than controls. (B) 
Phospho-S6Ser235/236 (red) in renal tumours of Tsc1+/- mice. No obvious difference was 
observed between control (drinking water) and metformin treated Tsc1+/- mice. 
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Figure 4.6 Western analysis of renal tissues and tumours. (A) Western analysis of 
renal tissues of Tsc1+/- mice. Metformin increased the phosphorylation of AMPK at 
Thr172 and ACC at Ser79 and decreased the phosphorylation of S6 at Ser235/236. 
Phosphorylation of Raptor Ser792 and Akt at Ser473 was not significantly affected 
by metformin. (B) Western analysis of renal tumours of Tsc1+/- mice. No significant 
difference in phosphorylation of any of the proteins at specific amino acid residuals 
was observed. Standard error bars are included. 
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4.4 Discussion 

In this study, we assessed the effect of metformin on renal tumours of a Tsc1+/- 

mouse model. We compared lesion number, size (area by histology and volume by 

MRI), and cellular content (by histology) between metformin treated and control 

mice. Long term treatment with metformin was well tolerated in these mice. 

However, metformin treatment had no effect on TSC-associated renal lesions. Our 

results are consistent with findings reported in a recent study by Auricchio et al. 

(2012). Auricchio and colleagues used Tsc2+/- A/J mice to examine the potential 

benefit of metformin treatment for renal lesions. Metformin was provided to the mice 

in their drinking water at 300mg/kg per day for a period of 4 months (from age 1 

month to age 5 months). Similar to our findings, this study reported that metformin 

treatment was well tolerated with no apparent toxicity but had no significant effect on 

renal lesions as demonstrated by quantitative tumour volume measurement. 

However, these results are not expected. An anti-tumour activity has been proposed 

for metformin, based upon epidemiological studies and preclinical data, prompting 

clinical trials in a variety of cancers (Jalving et al. 2010). Recent advances in 

understanding the molecular targets of metformin, particularly its inhibitory activity on 

mTORC1 have led to speculation that it may also be a candidate therapy for TSC. 

Our findings, together with those by Auricchio and colleagues, suggest, however, 

that metformin is not effective in the treatment of renal lesions when administered 

from 1 or 6 months of age for 4 or 9 months in two different mouse models on 

different genetic backgrounds. 

 

 

We also examined the effect of metformin treatment on mTORC1 signalling in the 

kidney tissues and paired renal tumours of Tsc1+/- mice. Attenuation of mTORC1 

signalling by metformin was observed by both IHC and Western analysis in normal 

Tsc1+/- mouse kidney tissues. Metformin increased the phosphorylation of 

AMPKThr172 and ACCSer79 (by Western analysis), and decreased the phosphorylation 

of S6Ser235/236 (by both IHC and Western analysis) in kidney tissues. Neither method 

demonstrated attenuation of mTORC1 signalling in Tsc1-associated renal tumours.  

Auricchio et al. (2012) showed induction of AMPK activation, indicated by the 

increased phosphorylation levels of ACCSer79 in kidney lysates and Tsc2-associated 
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tumour samples and RaptorSer792 in kidney lysates in response to metformin 

treatment. However, no significant differences were seen in the phosphorylation 

levels of S6Ser235/236 in either kidney tissues or Tsc2-associated renal tumours 

between metformin treated and control mice (Auricchio et al. 2012). Discrepancy 

between this study and Auricchio et al.’s might be explained by several factors, 

particularly differences in mouse strain and model systems used. We used Tsc1+/- 

mice backcrossed on balb/c background while Auricchio et al.  used Tsc2+/- mice of 

the A/J strain. The A/J strain was generated by an insertion of ETn retrotransposon 

(5-6kb) in intron 4 of the dysferlin gene and is highly immunocompromised. 

 

Multiple factors might contribute to the lack of efficacy by metformin treatment on 

Tsc-associated renal tumours. First, a functional TSC1/TSC2 complex may be 

required for action of metformin in vivo. In fact, somatic loss of the second Tsc1 

allele in renal tumours was frequently observed in this Tsc1+/- mouse model (Wilson 

et al. 2005). Consistently, metformin reduced mTORC1 activity in normal kidney 

tissues but not renal tumours in this study. Furthermore, Dowling et al. (2007) 

showed that treatment of Tsc2-deficient MEF cells in vitro with metformin had no 

effect on mTORC1 inhibition. Failure of metformin to regulate mTORC1 signalling in 

these cells indicates the highly important synergistic role of TSC2 in the inhibitory 

activity of metformin. In contrast, Kalender et al. (2010) have demonstrated inhibition 

of mTORC1 by metformin in Tsc2 deficient MEF cells in vitro through a TSC1/TSC2-

independent mechanism. As Kalender et al. (2010) suggested, density of cells in 

culture may affect sensitivity of mTORC1 signalling to metformin in Tsc2-deficient 

cells. Further studies are needed to clarify effect of metformin on mTORC1 in cells 

with different genotypes of Tsc1 or Tsc2.    

 

The treatment dose may also affect the efficacy of metformin. The daily drug dose 

administered in this was higher than that used for the treatment of diabetes in human 

patients (by over ten times in last two months of treatment). Therefore, the 

ineffectiveness of metformin on Tsc1-associated renal lesions is unlikely to be 

caused by low drug dose in this current trial. 
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Other factors affecting efficacy of metformin may include drug distribution, 

metabolism, uptake and excretion. Metformin is not metabolised but is cleared 

mainly by tubular secretion in the kidneys (Graham et al. 2011). Metformin is a 

substrate of several poly-specific organic cation transporters (OCTs) which have a 

highly important and critical role in the overall function of metformin (Graham et al. 

2011). OCTs are responsible for the oral absorption, hepatic and renal uptake and 

renal secretion of metformin. Metformin is readily filtered at the glomerulus (Graham 

et al. 2011). SLC22A1 and SLC22A3 transport metformin between the blood supply 

into the liver (Chen et al. 2010, Sogame et al. 2009). ABC transporters such as 

ABCB1, ABCC1 and ABCG2 are usually highly expressed in the human placental 

tissue and are responsible for the placental disposition of oral hypoglycemic drugs 

including metformin. According to Hemauer et al. (2010), ABCBA1 and ABCG2 but 

not ABCC1 placental transporters are involved in the efflux of metformin in human. 

SLC22A2 is the major known transporter responsible for the renal uptake of 

metformin from blood (Graham et al. 2011). SLC47A1, SLC47A2 and SLC22A1 are 

present in the kidney and mediate the tubular secretion of metformin into the urine 

(Tanihara et al. 2007). SLC22A1 also involved in cellular uptake of metformin in the 

kidneys. There are species differences in the tissue distribution of different OCTs. 

However, the characteristics of human OCTs are to some extent similar to mouse. 

The tissue distribution of SLC22A1, SLC22A2, SLC22A3 and SLC47A1 is similar in 

both humans and mice. Slc22a3 is clustered with Slc22a1 and Slc22a2 on mouse 

chromosome 17 and is expressed in the kidneys. However, SLC47A2 is not 

expressed in mouse kidneys (Yonezawa and Inui, 2011).   

 

Effective cellular uptake of metformin from the blood supply into the kidney and renal 

tumour cells is highly important for its efficient anti-cancer activity. My colleagues in 

our lab have extensively investigated OCTs expression in normal kidney tissues and 

renal tumours using quantitative polymerase chain reaction (q-PCR) (Yang et al. 

2012).  The expression of the organic cation transporter genes Slc22a1, Slc22a2 

and Slc22a3 was highly suppressed in renal tumours in comparison to kidney tissues 

in Tsc1+/- mice. Treatment of cultured cells derived from a Tsc1-associated renal 
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tumour with 5-aza-2-deoxycytidine (5-aza-2-dC) or trichostatin A (TSA) which inhibit 

DNA methyltransferase and histone deacetylase, respectively, greatly increased 

expression of these genes. These data suggest that epigenetic suppression of the 

organic cation transporters responsible for cellular uptake of metformin occurs in 

Tsc-associated mouse renal tumours and may contribute to the lack of response to 

metformin treatment. This finding was also consistent with our observation that 

metformin appeared to attenuate mTORC1 signalling in kidney tissues but not in 

renal tumours of Tsc1+/- mice. 

 

Tsc1+/- or Tsc2+/- mouse models share some disease features with TSC patients but 

both recognised and unrecognised differences are likely. Therefore, although our 

findings together with others’ (Auricchio et al. 2012) suggest that metformin is not 

effective for treating renal lesions in Tsc1+/- balb/c or Tsc2+/- A/J mice it may be 

worthwhile to investigate whether metformin treatment has any effect on TSC-

associated tumours in patients.  

 

In conclusion, this study suggests that metformin is not effective for the treatment of 

renal cysts, papillary cyst-adenomas or solid tumours in a Tsc1+/- mouse model. 

Metformin did not consistently reduce mTORC1 signalling activity in Tsc1-associated 

renal tumours in this model, although some attenuation of signalling was observed in 

heterozygous Tsc1 kidney tissues. It may be worthwhile to test whether metformin 

alone or in combination with other mTORC1 inhibitors have efficacy in prevention 

rather than treatment of renal lesions in further preclinical trials using Tsc mouse 

models.  
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CHAPTER FIVE 

Long term inhibition of mTOR complex 1 by rapamycin prevents renal 

tumourigenesis 

 

5.1 Introduction 

The PI3K/Akt/mTOR signalling pathway is frequently deregulated in many human 

cancers due to mutations or epigenetic changes of its components (Dazert and Hall, 

2011; Guertin and Sabatini, 2007). These mutations result in activation of oncogenes 

or loss of function of tumour suppressor genes, giving rise to tumourigenesis and 

providing potential targets for tumour therapy (Bjornsti and Houghton, 2004; Shaw 

and Cantle, 2006; Vivanco and Sawyers, 2002). As discussed before, mutations of 

either TSC1 or TSC2 tumour suppressor upstream of mTOR cause TSC (The 

European Chromosome 16 Tuberous Sclerosis Consortium, 1993; van Slegtenhorst 

et al. 1997). TSC-associated tumours show constitutive activation of mTORC1 

signalling in both patients and animal models. Rapalogues have been shown to 

inhibit mTORC1 signalling and suppress the growth of TSC lesions in several clinical 

and preclinical trials (Bissler et al. 2008, Kenerson et al. 2005, Krueger et al. 2010, 

Lee et al. 2005, Pollizzi et al. 2009). However, rapamycin does not cause complete 

regression of disease in most cases, and cessation of treatment can lead to regrowth 

of TSC-associated tumours in addition to its side effects. Rapalogues may be 

effective for prevention of TSC-associated tumours. As yet, no properly designed 

prevention studies have been reported in TSC patients or animal models. 

 

As stated in Chapter 4, long term treatment with metformin, a less potent mTORC1 

inhibitor, had no therapeutic effect upon the renal lesions of Tsc1+/- mouse model. 

Nevertheless, metformin has been shown to reduce cancer risk in diabetic patients 

and to prevent tumourigenesis in mouse models (Evans et al. 2005, Huang et al. 

2008, Memmott et al. 2010). It remains to be determined whether metformin can 

prevent tumourigenesis in TSC patients and animal models.   
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In this study, we tested the preventive efficacy of long term treatment with 

rapamycin, metformin, or both in combination, on tumourigenesis in the kidneys of 

Tsc2+/- mice. We also examined mTORC1 activity in renal lesions of these mice. 

Finally, we assessed the effect of these agents on mTORC1 signalling in normal 

renal and liver tissues of this animal model. 

 

5.2 Materials and methods 

5.2.1 DNA extraction and genotyping  

As outlined in section 2.5.2.1, DNA was extracted from mouse ear punches, using 

the Wizard® SV Genomic DNA Purification System. Genotyping was determined by 

PCR as described in section 2.5.2.2. PCR products were 849 bp (wild-type) and 658 

bp (mutant), and were analysed on 1.5% agarose gels. 

 

5.2.2 Animals and procedures 

Mice were maintained at Cardiff University (School of Biosciences) animal research 

facility under standard conditions (described in section 2.5.1) and all animal 

procedures were performed in accordance with the UK Home Office guidelines. The 

Tsc2+/- mice were described previously (Onda et al.1999) and backcrossed to balb/c 

strain for over 10 times. Following genotyping, 80 Tsc2+/- mice were randomly 

divided into 4 treatment groups: vehicle, rapamycin, metformin and rapamycin plus 

metformin. All treatments were started at the age of one month and continued until 

sacrifice at 8 months or 10 months of age. Rapamycin (LC Laboratories, Woburn, 

USA) was prepared at 2 mg/ml in vehicle solution (2.5% PEG-400, 2.5% Tween-80 

and 2.5% DMSO). Metformin (RelonChem, London) was prepared at 30 mg/ml in 

water. Rapamycin alone was given at 5 mg/kg 5 times a week initially and twice a 

week for the last 6 weeks by i.p. injection. Metformin alone was given at 300 mg/kg 5 

times a week by gavage.  For combination treatment, rapamycin was given at 4 

mg/kg 5 times a week and metformin at 150 mg/kg 5 times a week for the first 3 

months. The rapamycin dose was then reduced to 2.5 mg/kg. Both agents were 
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given only twice a week for the last 6 weeks. The reductions in dosages and 

treatment frequency were made because of concerns over weight loss. Mouse body 

weight was monitored once a week. At the end of treatment, animals were humanely 

sacrificed for tissue collection, and subsequent histological and molecular analysis.  

 

5.2.3 Histology 

The same protocol was used as in Chapter 3, Section 3.2.4. Microscope slides were 

prepared with a series of 5 μm coronal sections taken with or without interruption at 

200 μm intervals from each kidney. They were H&E stained and scanned to create 

virtual H&E slides. The virtual slides were used for lesion quantification and analysis 

using ImageJ. The assessment was conducted blindly with respect to treatment 

status. 

 

5.2.4 IHC 

Paraffin-embedded mouse kidney sections (5 μm thick) taken from the Tsc2+/- mice, 

were processed for IHC using the EXPOSE Rabbit specific AP detection IHC kit, 

according to the protocol outlined in section 2.5.7.  Primary antibodies used were at 

the indicated dilution against: phosphor-S6 (Ser235/236) (1:200), MCM2 (1:200), 

Cyclin D1 (1:100), Ki67 (1:200) and MUC1 (1:100).  

 

5.2.5 Western analysis 

Western blotting was carried out as described in section 2.5.13. Primary antibodies 

used for Western analysis were against β-actin (1:2000 dilution), GAPDH (1:60000) 

phosphorylated S6 (Ser235/236) (1:1000 dilution) and 4EBP1 (T70) (1:1000 dilution). 

Secondary antibody was horseradish peroxidise-conjugated antibody against rabbit. 

Extracts of mouse liver tissues were prepared using AllPrep DNA/RNA/Protein Mini. 

Proteins were purified according to the kit supplier’s instruction (outlined in section 

2.5.10), separated on NuPAGE 4-12% Bis-Tris Gels and transferred onto Hybond 

ECL Membranes. Blots were analysed with ECL Advance Western Detection Kit and 
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signals were detected using Autochemi Imaging System. Relative intensity of blot 

signals was determined using ImageJ (http://rsbweb.nih.gov/ij). 

 

5.2.6 Statistical analysis 

Non-parameter statistical analysis was used for renal lesion comparison because 

Kurtosis tests indicated that the distribution of the lesion number and size in the 

Tsc2+/- mice was skewed in some treatment groups.  The Wilcoxon rank-sum (Mann-

Whitney) test was performed  for comparison between two groups and Kruskal-

Wallis equality-of-populations rank test for comparison of more than two groups 

using the software Stata (version 11). Two tailed unpaired Student’s t-Test was used 

for comparison of Western analysis results. P < 0.05 was considered to be 

statistically significant.         

 

5.3. Results  

5.3.1 Renal tumourigenesis and mTORC1 signalling in a Tsc2+/- mouse model 

5.3.1.1 Assessment of renal tumourigenesis in Tsc2+/- mice by histological analysis 

Genetically engineered Tsc2+/- mouse models, provided by Prof David J. 

Kwiatkowski (Onda et al.1999), were backcrossed to the balb/c strain over 10 times. 

In order to establish the earliest time at which renal lesions develop on this genetic 

background, we examined by microscopy H&E stained consecutive 5 μm kidney 

sections from 6 mice at the age of 15 days, 30 days, 45 days and 60 days, 

respectively. No renal lesions were observed in Tsc2+/- mice sacrificed prior to 45 

days of age. However, small cysts and microscopic solid dysplastic growths that 

have not been previously described were seen in mice at 60 days of age (Figure 

5.1). Large cysts, papillary and solid tumours were observed in the kidney tissues of 

older animals (Figure 5.2).  

 

 

http://rsbweb.nih.gov/ij
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Figure 5.2 Renal lesions of the Tsc2+/- mice. Kidney sections were prepared from Tsc2+/- 
mice of 10 months old and HE-stained. Top panel: Gross views of kidney sections with 
various types of lesions. Middle panel: microscopic views of cystic, papillary and solid renal 
lesions from the corresponding kidney sections in the top panel. Bottom panel: magnified 
microscopic views showing the boundaries between the tumours and normal tissues. 
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5.3.1.2 Examination of mTORC1 signalling in Tsc2-associated renal lesions by IHC 

IHC analysis was performed on kidney sections to determine mTORC1 activity in 

renal lesions of 10 month old Tsc2+/- mice. Phosphorylated ribosomal protein S6 at 

serine 235/236 was used as a marker of mTORC1 activation. All lesions including 

the smallest microscopic dysplasias and cysts showed activation of mTORC1 (Figure 

5.3). These results are consistent with the notion that mTORC1 is required for renal 

tumourigenesis in the Tsc2+/- mouse model.  

 

5.3.2 Increased cell proliferation in Tsc2-associated renal tumours 

To further characterise these lesions, antibodies against Mcm2, Ki67, Cyclin D1 and 

Muc1 were used to determine proliferation status of renal lesions by IHC on kidney 

sections. All these proteins were highly expressed, indicating increased cell 

proliferation in renal tumours of Tsc2+/- mice (Figure 5.4).  
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p-S6 (Ser235/236) 

Figure 5.3  mTORC1 signalling in renal lesions of Tsc2+/- mice. Kidney sections 
from Tsc2+/- mice of 10 months old were prepared and stained in red with antibody 
against phosphorylated S6 (Ser235/2360). S6 was highly phosphorylated in all 
lesions. Scale bars: 100 μm. 
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Figure 5.4 Increased cell proliferation in renal tumours of Tsc2+/- mice. Kidney 
sections from Tsc2+/- mice of 10 months old were prepared and stained by IHC 
with antibodies against MCM2, Ki67, Cyclin D1 and MUC1. Representative 
kidney sections were presented showing increased cell proliferation in renal 
tumours. Scale bars: 100.1 μm. 
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5.3.3 Rapamycin but not metformin alone prevents renal tumourigenesis in 

Tsc2+/- mice 

We treated 4 groups of Tsc2+/- mice, each of 20 animals (Table 5.1). Group 1 

received vehicle (control group), group 2 metformin, group 3 rapamycin and group 4 

both rapamycin and metformin. All treatments were commenced at 1 month of age 

(+/- 1 day) and were continued until mice were sacrificed. Half of each group was 

sacrificed at the age of 8 months and the remainder at the age of 10 months. Three 

mice died unexpectedly before the end of the experiment, 1 from the rapamycin 

group and 2 from the rapamycin plus metformin group. No lesions were observed in 

kidney tissues by histological analysis. These mice were excluded from final analysis 

(Table 5.1). To analyse treatment efficacy, a series of coronal sections were 

prepared at 200 µm intervals through each whole kidney for histopathological 

assessment. Histological analysis was conducted blindly to treatment status and 

confirmed by an experienced renal pathologist, Dr David Griffiths. 

 

All macroscopically and microscopically observed lesions were counted, 

characterised as cystic, papillary or solid, and quantified by measuring both their 

maximum cross-sectional areas (lesion size) and also the areas representing only 

their solid cellular components (excluding cyst lumens), as described earlier 

(Chapter 3, section 3.3.3). At sacrifice, the mice that had been treated with vehicle 

alone all had multiple bilateral renal lesions including microcystic, dysplastic, cystic, 

papillary and solid lesions (Figures 5.1, 5.2). Similarly, metformin treated mice also 

exhibited multiple renal tumours. No significant differences were found in the number 

(P= 0.5705 and P= 0.7620 for 7 and 9 months treatment, respectively), volume (P= 

0.6501 and P= 0.3643 for 7 and 9 months treatment, respectively) and cellular 

content (P= 0.7055 and P= 0.2899 for 7 and 9 months treatment, respectively) of all 

lesions detected, between the metformin treated and control group (Tables 5.2, 5.3, 

Figures 5.5, 5.6). By contrast, of 9 mice treated with rapamycin alone only 1 showed 

2 microscopic cysts at 8 months (P <0.0001, Table 5.2, Figure 5.5) and no lesions 

were seen in any of 10 mice at 10 months (P <0.0001, Table 5.3, Figure 5.6). In 

addition, none of the mice treated for 7 months with rapamycin plus metformin (n= 9) 

exhibited renal lesions (Table 5.2, Figure 5.5) and only 1 microscopic cyst was 
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observed among 9 mice treated with both agents for 9 months (Table 5.3, Figure 

5.6). No significant differences were found in number (P= 0.3173 and P= 0.2918 for 7 

and 9 months treatment, respectively), volume (P= 0.3173 and P= 0.2918 for 7 and 9 

months treatment, respectively) and cellular content (P= 0.3173 and P= 0.2918 for 7 

and 9 months treatment, respectively) of all lesions detected, between the rapamycin 

and rapamycin plus metformin treatment groups (Tables 5.2, 5.3, Figures 5.5, 5.6). 

These data demonstrated the effectiveness of rapamycin in blocking tumourigenesis 

in the kidneys of Tsc2+/- mice. 
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Table 5.1 Summary of animal treatment. 

Treatment 
Group 

Total 
number 
of mice 

Number 
of males 

Number 
of 
females 

Treatment 
start age 
(months) 

Treatment 
end age 
(months) 

Number of 
animals 
died before 
end* 

Vehicle 10 5 5 1 8 0 

Metformin 10 5 5 1 8 0 

Rapamycin 10 5 5 1 8 1 

Rap+Met** 10 5 5 1 8 1 

Vehicle 10 5 5 1 10 0 

Metformin 10 5 5 1 10 0 

Rapamycin 10 5 5 1 10 0 

Rap+Met 10 5 5 1 10 1 

 
*These animals were excluded from final analysis. 
**Rap+Met= rapamycin plus metformin. 
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Figure 5.5  Rapamycin prevents renal tumourigenesis in Tsc2+/- mice. Tsc2+/- mice 
were treated from one month old until sacrifice at the age of 8 months (vehicle, n=10; 
metformin, n=10; rapamycin, n=9; rapamycin in combination with metformin, n=9). 
Kidney sections were prepared for histological assessment of treatment effect. 
Lesion number, size (area) and cellular area were compared. All the mice treated 
with vehicle or metformin developed multiple lesions and no significant difference in 
lesion number, size or cellular area was observed between vehicle and metformin 
treated mice. In contrast, only two small cysts were observed in one of the 
rapamycin treated mice at the age of 8 months. Bars indicate a median.  Detailed 
statistical analysis was given in Tables 5.2. 
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Figure 5.6  Rapamycin prevents renal tumourigenesis in Tsc2+/- mice. Tsc2+/- mice 
were treated from one month old until sacrifice at the age of 10 months (vehicle, 
n=10; metformin, n=10; rapamycin, n=10; rapamycin in combination with metformin, 
n=9). Kidney sections were prepared for histological assessment of treatment effect. 
Lesion number, size (area) and cellular area were compared. All the mice treated 
with vehicle or metformin developed multiple lesions and no significant difference in 
lesion number, size or cellular area was observed between vehicle and metformin 
treated mice. In contrast, only one small cyst was observed in one of the mice 
treated with rapamycin plus metformin at the age of 10 months. Bars indicate a 
median.  Detailed statistical analysis was given in Table 5.3. 
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5.3.4 Rapamycin inhibits mTORC1 in renal and liver tissues of Tsc2+/- mice  

5.3.4.1 Evaluating the effects of metformin, rapamycin and rapamycin plus metformin 

treatments on mTORC1 signalling in kidney tissues of Tsc2+/- mice by IHC 

IHC was used to demonstrate the efficacy of metformin, rapamycin and rapamycin 

plus metformin on mTORC1 activity in the kidney tissues of Tsc2+/- mice. The 

phosphorylation of S6 at Ser235/236 was tested on 5 µm thick kidney sections 

obtained from Tsc2+/- mice sacrificed after 9 months treatment with either one of the 

aforementioned treatments. IHC analysis showed a significant decrease in the 

phosphorylation of S6 at Ser235/236 in kidney tissues of mice treated with 

rapamycin or rapamycin plus metformin and a slight decrease in phosphorylated S6 

at Ser235/236 in kidney tissues of metformin treated mice (Figure 5.7). These results 

indicate significant inhibition of mTORC1 by rapamycin or rapamycin plus metformin 

and a slight suppression of mTORC1 by metformin alone. mTORC1 signalling could 

be quantified by quantitative immunofluorescence technique such Automated 

Quantitative Analysis (AQUA) (Camp RL, Chung GG, Rimm DL (2002), Automated 

subcellular localization and quantification of protein expression in tissue microarrays 

(Nat Med 8:1323-1327), however this was not feasible due to time limitation. 

 

5.3.4.2 Assessing the effect of rapamycin, metformin and rapamycin plus metformin 

treatments on mTORC1 signalling in liver tissues of Tsc2+/- mice by Western analysis 

Western analysis was used to evaluate the effect of rapamycin, metformin and 

rapamycin plus metformin on mTORC1 activity in the liver tissues of Tsc2+/- mice 

sacrificed after 9 months treatment. mTORC1 activity was assessed by examining 

the phosphorylation levels of its downstream substrates S6 (Ser235/236) and 4EBP1 

(Thr70). Densitometry analysis of Western Blotting was carried out using ImageJ 

software. The phosphorylation of S6 at Ser235/236 was reduced in liver tissues of 

mice treated with rapamycin or rapamycin plus metformin (Figure 5.8). Rapamycin 

plus metformin but not rapamycin alone significantly reduced phosphorylation of 

4EBP1 (T70) (Figure 5.8). In contrast, metformin had no effect on phosphorylation of 

any of the proteins tested (Figure 5.9). 
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A 

B 

Figure 5.8 Rapamycin inhibits mTORC1 in the liver of Tsc2+/- mice. Tsc2+/- mice were 
treated from one month old for 9 months with vehicle (n=4), rapamycin (n=5) or 
rapamycin in combination with metformin (n=5). The mice were then sacrificed and liver 
protein was prepared for Western analysis. (A) Western analysis.  (B) Relative density 
analysis of the p-S6 (Ser235/236) and 4EBP1 (Thr70) protein bands. Gapdh and β-actin 
were used as loading controls. Rapamycin or rapamycin plus metformin significantly 
reduced phosphorylation of S6 (Ser235/236). Rapamycin plus metformin but not 
rapamycin alone significantly reduced phosphorylation of 4EBP1 (Thr70). 
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Figure 5.9 No effect of metformin on mTORC1 signalling in the liver tissues of 
Tsc2+/- mice. Tsc2+/- mice were treated from one month old for 9 months with vehicle 
(n=4) or metformin (n=5). The mice were sacrificed and liver protein was prepared 
for Western analysis.  (A) Western analysis.  (B) Relative density analysis of the p-
S6 (Ser235/236) and 4EBP1 (Thr70) protein bands. Gapdh and β-actin were used as 
loading controls. Metformin had no effect on phosphorylation of any of the proteins 
tested.  
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5.3.5 Effect of rapamycin on body weight of Tsc2+/- mice 

Mouse weight was monitored once a week. No significant difference was observed in 

body weight between metformin and vehicle treated mice.  However, poor weight 

gain in the early stages of treatment and weight loss later were observed in Tsc2+/- 

mice treated with rapamycin or rapamycin plus metformin (Figure 5.10).  
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Figure 5.10 Effect of rapamycin on body weight of Tsc2+/- mice. The body 
weight of Tsc2+/- mice treated with vehicle or corresponding drugs was weekly 
monitored. Poor body weight gain in the early stage of treatment and weight 
loss later were observed in both rapamycin alone and rapamycin plus metformin 
treated mice. 
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5.4 Discussion 

To evaluate the preventive efficacy of rapamycin, and metformin on tumourigenesis 

in the kidneys of the Tsc2+/- mouse model, we first established the earliest time at 

which renal tumourigenesis occurs on the balb/c background by histological analysis. 

No lesions were observed in Tsc2+/- mice until the age of 45 days. These mice 

started to show microscopic dysplasias and cysts at the age of 60 days. Renal 

tumours grew and continuously developed as dysplasias, cysts, papillary and solid 

lesions in the kidneys in an age dependent manner. In contrast to the usually benign 

features of AMLs in human TSC (Gomez et al. 1999), Tsc2+/- mice developed 

frequent renal cell carcinomas.   

 

We have examined the mTORC1 signalling in renal lesions of Tsc2+/- mice.  All of the 

Tsc2-associated mouse renal lesions, including the smallest microscopic dysplasias 

and cysts, showed activation of mTORC1 signalling as determined by 

phosphorylation of S6 at Ser235/236. Our findings suggest that aberrant activation of 

mTORC1 is crucial to the earliest stages of renal lesion development in Tsc2+/- mice. 

Consistently increased mTORC1-mediated cell proliferation was seen in all renal 

tumours of Tsc2+/- mice. Wilson et al. (2005) showed increased levels of 

phosphorylated mTOR and phosphorylated S6 in the renal lesions derived from 

Tsc1+/- mice. Likewise, Kwiatkowski et al. (2002) and Zhang et al. (2003) reported 

hyperphosphorylation of S6 in renal cystadenomas of Tsc1+/- and Tsc2+/- mice, 

respectively. In addition, Kenerson et al. (2002) demonstrated that primary renal 

tumours from the Eker rat model had elevated phosphorylation of mTOR and its 

effectors p70S6K, S6, 4E-BP1, and eIF4G and suggested that the mTOR pathway is 

activated in the primary stages of renal tumourigenesis in this rat model. mTORC1 

activation have been suggested to play a role in tumourigenesis of other mouse 

models. In a mouse model of liver-specific Tsc1 knockout, chronic activation of 

mTORC1 was sufficient to cause hepatocellular carcinoma. Rapamycin treatment 

blocked tumourigenesis in this liver-specific Tsc1 knockout mouse model (Menon et 

al. 2012). In a mouse model of acute myeloid leukemia (AML) mTORC1 was 

essential for leukemia initiation (Hoshii et al. 2012).   
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We have demonstrated that long term treatment of Tsc2+/- mice with rapamycin from 

1 month of age blocked the development of all types of kidney lesions at 8-10 

months of age. However, metformin alone did not show any preventive effect 

compared to vehicle treated mice. These results are consistent with the suggestion 

that mTORC1 activity is required for tumour development in these mice. Rapalogues 

have been used to treat various types of cancer and TSC-associated tumours in pre-

clinical and clinical trials, and show anti-tumour effect by suppressing cell 

proliferation and promoting apoptosis (Bissler et al. 2008, Krueger et al. 2010, Lee et 

al. 2005, Pollizzi et al. 2009). However, no properly designed study has been 

reported using rapalogues for prevention of Tsc-associated renal tumours. This 

study provides the first proof of concept that Tsc-associated renal tumours are 

preventable by rapamycin.  

 

We have also examined the effects of different treatments on mTORC1 signalling in 

Tsc2+/- mouse kidneys by IHC and in the liver by Western analysis. In mice sacrificed 

after 9 months treatment with rapamycin or rapamycin plus metformin, mTORC1 

signalling was greatly attenuated in both tissues as indicated by the decreased 

phosphorylation of S6 at Ser235/236. Similarly, Lamming et al. (2012) reported 

reduced phosphorylation of both S6K1 Thr389 and S6 in the livers of rapamycin-

treated wild type mice. Interestingly, treatment with rapamycin plus metformin but not 

rapamycin alone significantly reduced phosphorylation of 4EBP1 (Thr70) in the liver 

tissues. Treatment with metformin alone appeared to be associated with a slight 

decrease in phospho-S6 staining in the kidneys but no effect could be detected by 

Western analysis in liver.  Different effects may be a result of differences in tissue 

origin. 

 

More recent studies have indicated a role of mTORC2 in tumour development. 

Guertin et al. (2009) showed that mTORC2 signalling is involved in the development 

of prostate cancer caused by Pten loss but it is not essential for non-cancerous 

prostate epithelial cells. Hietakangas and Cohen (2008) reported a significant role of 

mTORC2 in proliferation and anchorage-independent growth of MCF7 breast cancer 

and PC3 prostate cancer cells, and suggested that inhibition of mTORC2 may be 
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promising in the prevention of cancer cell proliferation and growth. Interestingly, long 

term treatment with rapamycin was shown not only to supress mTORC1 activity, but 

also mTORC2 activity in recent studies (Sarbassov et al. 2006, Zeng et al. 2007). 

However, Huang and colleagues found that TSC1/2 complex promotes the activity of 

mTORC2 and loss of the TSC tumour suppressors results in elevated mTORC1 

signalling and attenuated mTORC2 signalling in kidney tumours from both Tsc2+/- 

mice and TSC patients (Huang et al. 2008, Huang et al. 2009).  Our group have 

recently investigated the mTORC2 signalling extensively in renal tumours of Tsc2+/- 

mice and found that both mTORC1 and mTORC2 are activated in these lesions 

(unpublished data).  Hyper-activation of mTOR was evidenced by increased 

phosphorylation of mTOR at Ser2448 and Ser2481 as well as increased 

phosphorylation of S6K at Thr389, S6 at Ser235/236, and 4EBP1 at Thr37/46, Ser65 

and Thr70. Therefore, to confirm these findings it is worthwhile to fully investigate 

mTORC2 in both TSC-associated animal models and human TSC patients. 

 

We found that the rapamycin dosage used here caused initial poor body weight gain 

and later weight loss. This adverse effect is likely to be a result of high rapamycin 

dose, long treatment duration as well as high treatment frequency. It may be 

worthwhile to investigate whether lower doses of rapamycin are effective in 

preventing renal tumourigenesis and less toxic in Tsc2+/- mice. 

 

In conclusion, our findings showed that rapamycin or rapamycin in combination with 

metformin but not metformin alone is effective in preventing renal tumourigenesis in 

a Tsc2+/- mouse model. All renal lesions including the earliest detectable ones 

exhibited mTORC1 activation and long term treatment with rapamycin inhibited 

mTORC1 signalling consistent with the notion that mTORC1 is required for renal 

tumourigenesis in Tsc2+/- mice. In TSC many growth-related disease complications 

develop during childhood or early adult life and may be amenable to prevention by 

mTORC1 inhibition. Rapalogues are already in clinical use for long term 

immunosuppression to prevent organ rejection in transplant patients and long term 

or even lifetime medication with these agents may be safe and acceptable for 
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patients with TSC. However, it will be important to establish whether lower doses are 

also effective before translation to clinical trials.  
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CHAPTER SIX 

General discussion 

 

6.1 Mouse models for Tsc-associated tumour research 

Mouse models have been widely used in cancer research and have hugely 

contributed to the progress made in this field (Frese and Tuveson, 2007; van 

Miltenburg and Jonkers, 2012; Walrath et al. 2010). Mouse models provide useful 

tools to investigate the mechanisms of tumourigenesis in ways that are impossible to 

do in humans. They are also useful for testing potential preventive and therapeutic 

interventions for cancer before translation to clinical trials. Mouse models share 

many molecular and pathological features of tumourigenesis with humans. The 

contribution of genetic backgrounds to tumour development can be analysed in 

mouse models more easily than in human. Tumour samples can be regularly 

collected from mouse models for detailed molecular and cellular analysis. However, 

species difference in tumourigenesis between mouse and human represent a big 

concern about using mouse models in cancer research. Tumours developed in 

mouse models do not recapitulate all aspects of those in patients (Frese and 

Tuveson, 2007). Some agents show anti-tumour efficacy in mice but may not have 

any effect on human tumours. Therefore, caution should be taken when results 

obtained from mouse models are interpreted.    

 

Different types of mouse tumour models have been developed including xenograft, 

carcinogen-induced and genetically engineered models. Xenograft mouse models 

are generated by transplanting human tumours or tumour cells into immunodeficient 

mouse (Becher and Holland, 2006). These models are easy to use, economical and 

reproducible. Lesion progression can be easily monitored and treatment can be 

started once the lesions are of an optimal size. Xenografts develop tumours rapidly 

and only a small number of animals are needed in studies testing therapeutic 

efficacy of drugs. However, human tumours or tumour cells need to be injected into 

an immunodeficient mouse. Some tumour cell lines may not represent original 

tumours in their native state since they have been passaged in culture for years. In 
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addition, the microenvironment for tumours in xenograft mouse models are different 

from those developed spontaneously (Becher and Holland, 2006).  

 

Carcinogens have been used to induce tumourigenesis in mice for many years 

(Memmott et al. 2010, Rosenberg et al. 2009). Some carcinogens can induce certain 

tumours rapidly and reproducibly in mice but mutations induced by carcinogens are 

usually widespread in the genome and some phenotypes generated may not be 

wanted. Technical progress in genetic engineering has allowed successful 

generation of mouse models with defined genetic changes for cancer research. The 

major advantages of these genetically engineered models (GEM) are the 

development of spontaneous tumours in situ and the knowledge of genetic lesions 

with a normal immune system. However, tumours in these models show 

heterogeneity with regards to frequency, latency and growth (Becher and Holland, 

2006). The spontaneous tumours in these models also generally take longer time to 

develop and thus cost more. 

 

Several mouse models of Tsc1 and Tsc2 have been generated using gene targeting 

(Kobayashi et al. 1999; 2001, Kwiatkowski et al. 2002, Onda et al. 1999, Wilson et 

al. 2005). One hundred percent of the Tsc2+/- mice generated by Onda et al. (1999) 

developed renal cystadenomas, 50% hepatic hemangiomas, and 32% lung 

adenomas by 15 months of age. Around 10% of these mice also displayed 

progression to renal carcinoma and extremity angiosarcomas (Onda et al. 1999). 

Sixty-four percent of the Tsc1+/- mice generated by Kobayashi et al. (2001) 

developed renal cystadenomas and 71% hepatic hemangiomas by the age of 15-18 

months. The incidence of hepatic hemangiomas in Tsc1+/- mice resembled that of 

Tsc2+/- mice at a similar age (~80%) (Kobayashi et al. 1999).  Wilson et al. (2005) 

generated a Tsc1+/- mouse model with a more severe renal phenotype than the 

Tsc1+/- models previously described (Kobayashi et al. 2001, Kwiatkowski et al. 2002). 

It is notable that both Tsc1+/- and Tsc2+/- mouse models frequently developed renal 

carcinomas on different genetic backgrounds but in TSC patients renal lesions are 

generally benign and renal carcinomas develop only rarely. This suggests that the 

mechanisms of tumourigenesis are not the same between mouse and human.    
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Conditional alleles of Tsc1 and Tsc2 have also been generated in mice and allowed 

targeted loss of Tsc1 or Tsc2 in specific organ systems or cell types to model human 

TSC phenotypes more accurately (Meikle et al. 2005, Rachdi et al. 2008, Shigeyama 

et al. 2008). For example, Menon et al. (2012) found that mice with liver-specific KO 

of Tsc1 developed sporadic hepatocellular carcinoma.   Xenograft mouse models 

were also generated by transplantation of a Tsc2-/-, Trp53-/- MEF cells (Lee et al. 

2005). Most of these Tsc models have been used to test therapeutic agents in pre-

clinical trials (Lee et al. 2005, Meikle et al. 2008, Messina et al. 2007, Rauktys et al. 

2008, Zeng et al. 2008).  

 

Tsc1+/- mice showed milder phenotype in terms of renal tumour development than 

that in Tsc2+/- mice on the same genetic background (Kobayashi et al. 2001, 

Kwiatkowski et al. 2002). Similarly, we found that our Tsc1+/- mice experienced a 

milder renal phenotype with lower incidence of renal tumours in comparison with 

age-matched Tsc2+/- mice.  Differences in the severity of the disease are also seen 

between TSC patients associated with TSC1 and TSC2 mutations. For example, 

Dabora et al. (2001) reported that patients with TSC1 mutations had milder disease 

in comparison with patients with TSC2 mutations.  

 

Genetic background is one of the major factors affecting tumourigenesis. Hunter 

(2012) reported that different genetic backgrounds display significantly different 

susceptibilities to cancer. The Tsc1+/- mice on the balb/c and C57BL/6 backgrounds 

had a less dramatic phenotype of renal lesions in comparison with the C3H 

background (Wilson et al. 2005).  In addition, Tsc1+/- mice on a C3H background had 

significantly more cystic lesions compared to mice on a C57BL/6 background.  The 

Tsc1+/- mice on a balb/c background also had significantly more solid lesions 

compared to mice on C3H or C57BL/6 backgrounds (Wilson et al. 2005). In this 

study, we have chosen to use Tsc1+/- and Tsc2+/- balb/c mice as they frequently 

develop renal tumours with an otherwise relatively healthy condition. Recently, 

Auricchio et al. (2012) used Tsc2+/- A/J mice to examine the therapeutic effect of 
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metformin and bortezomib on renal lesions. The Tsc2+/- A/J mice develop tumours 

rapidly and may represent a cost-effective mouse model but this strain displays 

abnormal phenotypes in multiple systems including the immune system (Auricchio et 

al. 2012, Woodrum et al. 2010). These additional abnormalities may further 

complicate the interpretation of results obtained in preclinical trials.  

 

In the future, more defined conditional mouse models of TSC with simultaneous 

multiple genes disruption should be very useful in elucidating mechanisms of 

tumourigenesis in the kidneys. For example, by conditional knockout of both Tsc1 

and rictor in the kidneys, we could investigate whether mTORC2 is essential to the 

initiation and progression of renal lesions in vivo.  

 

6.2   In vivo imaging of renal lesions in TSC associated mouse models by MRI 

Several techniques for in vivo imaging of tumours in mouse models have been 

developed such as MRI, positron emission tomography (PET), single photon 

emission computed tomography (SPECT), bioluminescence imaging (BLI), 

fluorescence imaging, computed tomography (CT), ultrasound and intra-vital 

microscopy (Lyons, 2005). These techniques are particularly useful in anti-tumour 

pre-clinical trials and help reduce the numbers of animals used significantly.   

 

Each imaging modality has certain strengths and limitations as shown in Table 6.1 

(Lyons, 2005). Micro-CT and MRI are the most widely used methods with high 

spatial resolution and whole anatomical picture of the internal mouse body in pre-

clinical trials. However, micro-CT requires contrast agents to provide adequate intra-

organ contrast, high doses of radiation exposure (70-220mSv per scan) and longer 

scanning periods up to 20-30 minutes per scan (Martiniova et al. 2009, Weber et al. 

2004). In serial micro-CT imaging studies, high radiation exposure might cause 

secondary effects in animals which might interfere with results in a treatment study. 

In addition, longitudinal studies using micro-CT must be carefully carried out as the 

time of contrast excretion needs to be considered in order to avoid any influence on 
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signal intensities (Suckow and Stout, 2008). In contrast, the use of MRI in small 

animals poses fewer challenges. MRI has higher resolution with shorter scanning 

time up to 5-7 minutes per scan, no exposure of the animals to ionising radiation and 

no requirement of intravenous contrast media in many cases (Martiniova et al. 2009). 

Martiniova et al. (2009) described that T2 weighted MRI appeared to be more 

sensitive than micro-CT in detecting lung, adrenal, ovarian and renal lesions in a 

mouse model of metastatic cancer.  

 

We have used a high-field (9.4 T) small bore MRI/MRS spectrometer to detect renal 

lesions in Tsc1+/- and Tsc2+/- mouse models. Before initiating this investigation, a 

pilot study was performed to test different MRI protocols in the detection of mouse 

kidney lesions such as T1 weighted, T2 weighted, T2* weighted and proton density 

weighted MRI sequences. T2 weighted MRI with long TR (repetition time) and long 

TE (echo time) sequence was found to be the most consistent protocol in terms of 

resolution and specificity in detecting renal lesions in the Tsc1+/- and Tsc2+/- mice. T2 

weighted MRI has been successfully used in a variety of mouse models for in vivo 

detection of tumours in various locations such as the brain (Cha et al. 2003), breast 

(Galiè et al. 2004), prostate (Arbab et al. 2011), colon (Zhang et al. 2013) and 

kidneys (Flores et al. 2013), as well as metastatic tumours (Gauvain et al. 2005, 

Pandit et al. 2013).     

 

Brown et al. (2005) evaluated the efficiency of T2 weighted MRI in detecting 

spontaneous lesions in a Tsc2+/- mouse model for subsequent assessment of cell-

based gene therapy. Using T2 weighted MRI, these authors detected renal 

cystadenomas and renal cell carcinomas in 100% of the Tsc2+/- mice. They also 

detected hepatic hemangiosarcomas and lung adenocarcinomas in 75% and 33% of 

the Tsc2+/- mice respectively. Lee et al. (2005) used T2 weighted MRI to quantitate 

renal cystadenomas in the same mouse model for assessment of treatment efficacy 

with CCI-779 or IFN-γ. However, neither study reported T2 weighted MRI follow-up 

data or measured total volumes of renal lesions. Furthermore, previously published 

data have not addressed the detection rate of renal lesions by T2 weighted MRI 

appropriately in comparison to histological analysis in Tsc mouse models. 
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In this project, we have evaluated T2 weighted MRI for the assessment of renal 

lesions in both Tsc1+/- and Tsc2+/- mouse models. We also used T2 weighted MRI to 

monitor tumour growth or shrinkage. T2 weighted MRI is a potentially useful tool for 

assessing renal lesions in pre-clinical studies using Tsc mouse models. However, 

technological advances are required to improve T2 weighted MRI sensitivity for solid 

renal lesions. As at present no single imaging modality provides all features, a 

combination of two imaging modalities may improve detection sensitivity, particularly 

for solid lesions. For example, T2 weighted MRI might be used in combination with 

PET for detection of renal lesions in Tsc mouse models. In addition, MRI modalities 

other than T2 weighted may be modified and explored for detection of Tsc-

associated solid lesions in these mouse models. 
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6.3   Targeting mTOR signalling pathway for prevention and therapy of TSC 

Tumours from TSC patients demonstrate aberrant activation of mTOR signalling 

including renal AMLs (El-Hashemite et al. 2003), SEGAs (Chan et al. 2004), skin 

hamartomas (Li et al. 2008), LAM (Yu and Henske, 2010) and RCCs (Kenerson et 

al. 2002). Tsc-associated tumours from the Eker rat model and mouse models also 

demonstrate aberrant activation of mTOR signalling such as renal cystadenomas 

and RCC (Kwiatkowski et al. 2002, Wilson et al. 2005). In addition, Tsc1 and Tsc2 

null MEF cells showed activation of mTOR (Kwiatkowski et al. 2002) and rapamycin 

could inhibit mTOR signalling in these cells (Zhang et al. 2003). Rapalogues were 

used to treat Tsc-associated tumours in several preclinical studies using TSC rodent 

models and were very effective in blocking tumour growth (Kenerson et al. 2002, 

Kenerson et al. 2005, Lee et al. 2005, Meikle et al. 2008, Messina et al. 2007, 

Pollizzi et al. 2009, Rauktys et al. 2008, Zeng et al. 2008). Clinical trials have also 

demonstrated that rapalogues have anti-tumour effects in TSC patients. By inhibiting 

mTOR signalling these drugs result in shrinkage or stabilisation of renal AMLs 

(Bissler et al. 2008, Herry et al. 2007, Wienecke et al. 2006), SEGAs (Franz et al. 

2006, Koenig et al. 2008, Krueger et al. 2010), facial angiofibromas (Hofbauer et al. 

2008) and LAM (Bissler et al. 2008, Morton et al. 2008, Taillé et al. 2007). 

Rapalogues suppress tumour growth by inhibiting cell proliferation and promoting 

apoptosis (Kenerson et al. 2002).  

 

However, TSC-associated tumours including AMLs and SEGAs exhibit only partial 

and reversible responses to rapamycin and everolimus (Bissler et al. 2008, Krueger 

et al. 2010, Lee et al. 2005, Pollizzi et al. 2009, Wienecke et al. 2006). Furthermore, 

the tumours tended to re-grow after drug withdrawal. A number of factors may affect 

the treatment efficacy of these mTOR inhibitors. For example, rapalogues normally 

inhibit mTORC1 but not mTORC2 and thus lead to limited anti-tumour efficacy 

(Jacinto et al. 2004, Loewith et al. 2002, Sarbassov et al. 2004). Rapalogues may 

also cause a loss of negative feedback inhibition of Akt and activated Akt may 

promote tumour cell survival, proliferation and growth (Harrington et al. 2005, 

Manning, 2004; O'Reilly et al. 2006). Nevertheless, prolonged treatment with 

rapamycin has been shown to inhibit Akt in tumour cells in a cell type dependent 
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manner, and inhibition of Akt may contribute to its anti-tumour effect in vivo 

(Sarbassov et al. 2006). Many dual inhibitors of mTORC1 and mTORC2 have been 

developed and extensive test of these inhibitors are needed in Tsc mouse models to 

determine their anti-tumour effects in vivo by overcoming the problem caused by loss 

of feedback inhibition when rapalogues are used. 

 

Recent studies have reported that metformin attenuates mTORC1 signalling in the 

presence or absence of a functional TSC1/TSC2 complex through multiple 

mechanisms (Ben Sahra et al. 2011, Gwinn et al. 2008, Inoki et al. 2003, Kalender et 

al. 2010) (described in Chapter 1, section 1.5.2.2). The anti-tumourigenic effect of 

metformin has been demonstrated in several in vitro and in vivo studies on many 

mouse models of cancer such as endometrial (Cantrell et al. 2010), ovary (Gotlieb et 

al. 2008), pancreatic (Kisfalvi et al. 2009), lung (Memmott et al. 2010), prostate (Ben 

Sahra et al. 2008), breast (Zakikhani et al. 2006) and colon cancer (Buzzai et al. 

2007), acute myeloid leukemia (Green et al. 2010) and glioma (Isakovic et al. 2007). 

These observations suggest that metformin could have therapeutic potential for TSC. 

In this study, we assessed the therapeutic effects of metformin on renal lesions of 

Tsc1+/- mouse model using both T2 weighted MRI and histological analysis. Nine-

month metformin treatment was well tolerated but had no effect on renal lesions. We 

also examined the effect of metformin treatment on mTORC1 signalling in Tsc1+/- 

kidney tissues and Tsc1-associated renal tumours. Although metformin appeared to 

attenuate mTORC1 signalling in normal Tsc1+/- kidney tissues,   it had no significant 

effect on Tsc1-associated renal tumours. These results are consistent with findings 

reported by Auricchio et al. (2012) who treated Tsc2+/- mice with metformin for up to 

4 months and found no significant difference in renal tumour size compared to 

controls. A functional Tsc1/Tsc2 complex may be required for full action of metformin 

on mTORC1 signalling and loss of the complex in Tsc1-associated tumours may 

compromise the treatment efficacy (Dowling et al. 2007). More recently epigenetic 

suppression of the OCTs, Slc22a1, Slc22a2 and Slc22a3, responsible for cellular 

uptake of metformin was observed in Tsc1-associated mouse renal tumours in our 

group (Yang et al. 2012), probably partly contribute to the lack of treatment response 

to metformin.  
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Rapalogues may be more effective for prevention of TSC-associated tumours than 

therapy. In this project, we have demonstrated that long term treatment with 

rapamycin from 1 month of age inhibits mTORC1 and effectively blocks the 

development of all types of kidney lesions at 8-10 months of age in a Tsc2+/- mouse 

model. Rapamycin greatly attenuated mTORC1 signalling in both kidney and liver 

tissues of Tsc2+/- mice as indicated by the decreased phosphorylation of S6 at 

Ser235/236. We also tested whether metformin alone or in combination with 

rapamycin was effective in prevention of Tsc-associated renal lesions. We observed 

that 9 month treatment with metformin had no preventive effect. Metformin slightly 

decreased phosphorylation of S6 at Ser235/236 in the kidneys but had no effect in 

the liver. In contrast, 9 month treatment with rapamycin plus metformin prevented the 

development of renal tumours in Tsc2+/- mice and attenuated mTORC1 signalling in 

both tissues as determined by decreased phosphorylation of S6 at Ser235/236 and 

4EBP1 at Thr70. These results strongly suggest that Tsc-associated tumours may 

be preventable by inhibiting mTORC1 using rapalogues. It is notable that the high 

dose of rapamycin used in the current study caused initial poor weight gain and later 

weight loss. Further preclinical trials are needed to test whether low doses of 

rapalogues alone or in combination with less potent inhibitors (more discussion in 

section 6.4 of this chapter) can effectively prevent Tsc-associated tumours but with 

no significant adverse effect.   

 

Our work provided the first proof of the concept that Tsc-associated tumours are 

preventable by inhibiting mTORC1. No preclinical or clinical trials for prevention of 

TSC had been documented when we started the project. Kotulska et al. (2013) have 

recently reported that early mTOR inhibition in TSC patients may prevent the 

development of TSC lesions. They treated one of monozygotic twin sisters affected 

with TSC2 with everolimus for two years from 4 years old and left the other without 

treatment. They found a significant reduction of SEGA volume and absence of facial 

angiofibromas and renal AMLs in the everolimus treated patient while her untreated 

sister developed significant facial angiofibromas and renal AMLs in addition to a 
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stable brain tumour. These results are very promising but more defined clinical trials 

are required to confirm these results for prevention of TSC using rapalogues. 

   

6.4 Development of new mTOR inhibitors for prevention and therapy of TSC  

Rapalogues provide the first generation of inhibitors of mTOR signalling. Although 

these drugs are still useful, their limitations as described above have triggered huge 

efforts to develop new agents and strategies for prevention and therapy of TSC. 

Farnesyltransferase inhibitors (FITs) and angiogenesis inhibitors were considered as 

possible treatments for TSC (Kwiatkowski, 2003). FITs are attractive agents since 

they are capable of supressing mTOR by inhibiting Rheb. FITs were shown to inhibit 

constitutive activation of mTOR/S6K signalling and block the growth of Tsc1-/- and 

Tsc2-/- MEF cells derived from Tsc1 and Tsc2 knockout mice respectively (Gau et al. 

2005). Angiogenesis inhibitors could be valuable since TSC hamartomas are 

characterised by aberrant vascular channels, likely associated with increased 

expression of vascular endothelial growth factor (VEGF) (El-Hashemite et al. 2003, 

Kwiatkowski, 2003). Angiogenesis inhibitors can be used alone or in combination 

with mTOR inhibitors for the treatment of TSC-related tumours. Woodrum et al. 

(2010) reported that angiogenesis inhibitors, sunitinib and bevacizumab, reduced 

tumour growth in Tsc2-/- subcutaneous tumour mouse model although these drugs 

were not as effective as rapamycin. Lee et al. (2009) showed that the combination of 

sorabenib and rapamycin was more effective than either agent alone in Tsc2-/- 

subcutaneous tumour mouse model. Lee et al. (2006) showed that combination 

therapy with rapamycin analogue CCI-779 and IFN-γ was more effective than single 

agent therapy in reducing tumour growth and improving survival in a Tsc2-/- tumour-

bearing nude mouse model (Lee et al. 2006). However, in another trial from the 

same group later, short term treatment of CCI-779 plus IFN-γ did not signficiantly 

decrease kidney disease in Tsc2+/- mice (Messina et al. 2007). 

 

Many new ATP-competitive mTOR inhibitors have recently been developed such as 

Torin1, PP242, PP30, Ku-0063794, WAY-600, WYE-687, WYE-354, INK128, 

AZD8055, and OSI-027. These chemicals inhibit both mTORC1 and mTORC2 by 
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targeting the mTOR kinase domain and competing with ATP in vitro (Feldman et al. 

2009). Some of these inhibitors have been tested in mouse cancer models. For 

example, in U87-MG glioblastoma and A549 lung cancer mouse xenografts, 

AZD8055 reduced phosphorylation of S6 at Ser225/236 and AKT at Ser473 and 

inhibited tumour growth (Chresta et al. 2010). AZD8055 also resulted in significant 

growth inhibition and/or regression in other tumour xenograft mouse models 

(Chresta et al. 2010). Similarly, OSI-027 was well tolerated in vivo and showed 

robust anti-tumour activity in several tumour xenograft mouse models (Bhagwat et al. 

2011). More importantly, OSI-027 demonstrated greater inhibition of tumour growth 

in COLO 205 and GEO colon cancer xenograft mouse models than rapamycin 

(Bhagwat et al. 2011). In a recent phase 1 clinical trial, OSI-027 has been used to 

treat advanced solid tumours and lymphoma and were well tolerated in patients (Tan 

et al. 2010). However, these mTOR inhibitors have not been used for any clinical 

trials for TSC patients and only one (INK128) was tested in an A/J Tsc2+/− mouse 

model (Guo and Kwiatkowski, 2013). Compared to rapamycin, INK128 appeared to 

have similar therapeutic benefit in suppressing renal tumour development in these 

mice despite its inhibitory effect on both mTORC1 and mTORC2 (Guo and 

Kwiatkowski, 2013).  

 

Efforts have also made to develop ATP-competitive dual inhibitors of PI3K and 

mTOR such as PI-103, GNE-477, NVP-BEZ235, BGT226, XL765, SF-1126, and 

WJD008. PI3K/mTOR dual inhibitors simultaneously target the ATP binding sites of 

PI3K and mTOR (Heffron et al. 2010, Li et al. 2010, Maira et al. 2008, Molckovsky 

and Siu, 2008; Zou et al. 2009). PI-103 was well tolerated and was highly effective in 

blocking tumour growth in a glioma xenograft mouse model (Fan et al. 2006). In 

BT474 H1047R breast cancer xenografts, NVPBEZ235 had potent anti-tumour 

activity (Serra et al. 2008). Pollizzi et al. (2009) reported that NVP-BEZ235 and 

RAD001 showed equivalent anti-tumour effects although NVP-BEZ235 reduced 

activity of both mTORC1 and Akt in a Tsc2+/- mouse model.  

 

These new inhibitors, ether dual inhibitors of PI3K/mTOR or mTORC1/mTORC2, are 

expected to be more effective in blocking tumourigenesis since they could overcome 
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the potential problem caused by loss of negative feedback after rapamycin treatment 

(Yu et al. 2009, Zhang et al. 2011, Zhou and Huang, 2012). However, these 

chemicals may also cause more severe adverse effects partly by inhibiting multiple 

kinases at therapeutic concentration (Zhang et al. 2011). For example, PI-103 was 

used to treat melanoma in a mouse model and was found to promote    

immunosuppression and tumour growth (López-Fauqued et al. 2010). The use of 

PI3K/mTOR dual inhibitors could lead to metabolic disturbances such as 

hyperglycemia and glucose intolerance (Ihle and Powis, 2009; Yap et al. 2008). 

Extensive investigation of these inhibitors is, therefore, required to determine 

whether they are useful for treating and preventing TSC-associated tumours in 

animals and patients. 

 

Combinational treatment using two or more medicines can be an attractive strategy 

for cancer prevention and therapy (Al-Lazikani et al. 2012). Combinational therapy 

may also be considered for treating Tsc-associated tumours. As mentioned above, 

combination of CCI-779 and IFN-γ was used to treat renal tumours in Tsc2 mouse 

models but obtained contradicted results (Lee et al. 2006, Messina et al. 2007). We 

used rapamycin and metformin to prevent tumourigenesis in the kidneys of a Tsc2+/- 

mouse model (Chapter 5). Treatment with either rapamycin alone or rapamycin with 

metformin nearly completely blocked renal tumourigenesis. These results indicate 

that the high efficacy of rapamycin might mask a potential synergistic effect or that 

the combination did not add more anti-tumour effects. However, Western analysis 

demonstrated that combination of rapamycin and metformin but not rapamycin alone 

reduced phosphorylation of 4E-BP1 at Thr70. This may allow use of lower dosage of 

rapamycin, thus being less toxic when combination of rapamycin and metformin is 

used in vivo.  Rapalogues or ATP-competitive inhibitors may also be combined for 

treating Tsc-associated tumours with less potent mTOR inhibitors.  Resveratrol and 

curcumin are natural polyphenols well known for their anticancer effects, roles in 

extension of life span and low toxicity. These polyphenols exert pleiotropic actions 

with multiple potential beneficial effects via modulating diverse signalling pathways 

(Corson and Crews, 2007; Smoliga et al. 2011). They have been recently found to 

inhibit both mTORC1 and mTORC2 (Liu et al. 2010, Sun et al. 2011). Combinational 

treatment using these polyphenols with more specific mTOR inhibitors may help 
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minimise adverse effects while achieving satisfactory preventive and therapeutic 

efficacy for TSC.  
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