
MACHINE SCHEDULING USING

THE BEES ALGORITHM

A thesis submitted to Cardiff University

for the degree of

Doctor of Philosophy

by

JANYARAT PHRUEKSANANT

Mechanics, Materials and Advanced Manufacturing

School of Engineering

Cardiff University

United Kingdom

July 2013

 i

ABSTRACT

Single-machine scheduling is the process of assigning a group of jobs to a

machine. The jobs are arranged so that a performance measure, such as the total

processing time or the due date, may be optimised. Various swarm intelligence

techniques as well as other heuristic approaches have been developed for machine

scheduling. Previously, the Bees Algorithm, a heuristic optimisation procedure

that mimics honeybee foraging, was successfully employed to solve many

problems in continuous domains. In this thesis, the Bees Algorithm is presented

to solve various single-machine scheduling benchmarks, all of which, chosen to

test the performance of the algorithm, are NP-hard and cannot be solved to

optimality within polynomially-bounded time. To apply the Bees Algorithm for

machine scheduling, a new neighbourhood structure is defined. Several local

search algorithms are combined with the Bees Algorithm.

This work also introduces an enhanced Bees Algorithm. Several additional

features are considered to improve the efficiency of the algorithm such as negative

selection, chemotaxis, elimination and dispersal which is similar to the ‘site

abandonment’ strategy used in the original algorithm, and neighbourhood change.

A different way to deploy neighbourhood procedures is also presented.

 ii

Three categories of machine scheduling problems, namely, single machine with a

common due date, total weighted tardiness, and total weighted tardiness with

sequence-dependent setup are used to test the enhanced Bees Algorithm’s

performance. The results obtained compare well with those produced by the basic

version of the algorithm and by other well-known techniques.

 iii

ACKNOWLEDGEMENTS

I am privileged to have Professor D.T.Pham as my supervisor. The high standard

of his research has always been an inspiration and a goal to me. I am deeply

grateful to him for his consistent encouragement, invaluable guidance and strong

support during the course of this study. His thoughtful advice and constant

support extended to me will always be remembered.

I would like to express my sincere gratitude to my supervisor Dr. Michael

Packianather for his huge support during my academic life in Cardiff. I am also

very grateful to all the members of Manufacturing Engineering Centre, especially

my Cardiff Bay Bees Colleagues for their friendship and support.

I would like to express my grateful appreciations and thanks to the Royal Thai

Government, Thailand for supporting by granting a full PhD scholarship.

I also want to express my warmest thank to Assoc. Prof. Dr. Kittichai

Lavangnananda and his wife for their support and encouragement. I also want to

thank Dr. Mario Javier Gonzalez Romo and Mr. Werachart Jantateimee for

their valuable help and support.

 iv

I wish to express my heartfelt gratitude to my mother, my late father and

grandparents, and my cousins for all the love and support they have given to me.

 v

DECLARATION

This work has not previously been accepted in substance for any degree or award

at this or any other university or place of learning, nor is being submitted

concurrently in candidature for any degree or other award.

  Signed (Janyarat Phrueksanant) Date ……………………

STATEMENT 1

This thesis is being submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy (PhD).  

  Signed (Janyarat Phrueksanant) Date ……………………

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where

otherwise stated. Other sources are acknowledged by explicit references.  

  Signed (Janyarat Phrueksanant) Date ……………………

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying

and for inter-library loan, and for the title and summary to be made available to

outside organisations.  

  Signed (Janyarat Phrueksanant) Date ……………………

 vi

Content

Abstract

Acknowledgements

Declaration

Contents

List of Figures

List of Tables

Abbreviations

List of Symbols

Chapter 1 Introduction

1.1 Motivation

1.2 Research Aims and Objectives

1.3 Research Methodology

1.4 Outline of thesis

Chapter 2 Background

2.1 Job Scheduling

2.2 Job Scheduling Solvers

 2.2.1 Simulated Annealing

 2.2.2 Genetic Algorithms

 2.2.3 Tabu Search Algorithm

i

iii

v

vi

x

xii

xvii

xix

1

1

3

3

4

6

6

11

11

13

15

 vii

 2.2.4 Ant Colony Optimisation 16

 2.2.5 Discrete Particle Swarm Optimisation

 2.2.6 Discrete Differential Evolution

 2.2.7 Exact Algorithm

2.3 Artificial Immune System

2.4 The Honeybees-inspired Algorithm

 2.4.1 The Honeybees in nature

 2.4.2 Artificial Bee Colony Algorithm

 2.4.3 The Bees Algorithm

 2.4.3.1 The Bees Algorithm for continuous domains

 2.4.3.2 The Bees Algorithm for Job Scheduling Problems

2.5 Summary

Chapter 3 The Enhanced Bees Algorithms with Negative Selection

 for Single Machine with a Common Due Date

3.1 Preliminaries

3.2 Earliness and Tardiness penalties in single-machine problem

 with a common due date

 3.2.1 The Earliness and Tardiness Model

 3.2.2 The Restrictive Common Due Date

 3.2.3 Benchmark for single machine with common

 due date problems

 18

20

22

23

26

26

28

30

30

34

36

37

37

38

39

41

42

 viii

3.3 The Enhanced Bees Algorithms for Single Machine with

 Common Due Date

 3.3.1 The enhanced Bees Algorithms’ characteristics

 3.3.1.1 The Discrete Uniform Distribution

3.3.1.2 Neighbourhood Search Procedures

 3.3.1.3 Negative Selection

 3.3.2 The enhanced Bees Algorithms

 3.3.2.1 The Bees Algorithm with Negative Selection:

 Single Swarm

 3.3.2.2 The Bees Algorithm with Negative Selection:

 Two Swarms

3.4 Experimental results

3.5 Summary

Chapter 4 The Bacterial Bees Algorithm to Minimise Total

 Weighted Tardiness on a Machine Scheduling

4.1 Preliminaries

4.2 Single Machine Total Weighted Tardiness Problem

4.3 The Bacterial Bees Algorithm for Single Machine

 Total Weighted Tardiness Problem

4.4 Experimental results

4.5 Summary

43

44

44

47

51

54

54

58

61

87

88

88

89

97

104

120

 ix

Chapter 5 The Adaptive Bees Algorithm for Weighted

 Tardiness Scheduling with Sequence-Dependent Setups

5.1 Preliminaries

5.2 The Weighted Tardiness Scheduling with Sequence-dependent

 Setups Problem

5.3 The Adaptive Bees Algorithm

5.4 Experimental results

5.5 Summary

Chapter 6 Conclusion

6.1 Contributions

6.2 Conclusion

6.3 Future work

Reference

121

121

122

124

131

147

148

148

149

150

152

 x

List of Figures

Figure 2.1 General pseudo code of a Simulated Annealing

 algorithm

Figure 2.2 General pseudo code of a Genetic algorithms

Figure 2.3 The pseudo code of Ant Colony Optimisation

Figure 2.4 The pseudo code of Discrete Particle Swarm

 Optimisation

Figure 2.5 The standard pseudo code of Differential Evolution

 Algorithm

Figure 2.6 The main steps of the ABC algorithm

Figure 2.7 The pseudocode of the Bees Algorithm for continuous

 domains

Figure 2.8 Flowchart of the Bees Algorithm

Figure 2.9 The pseudo-code of the Bees Algorithm for scheduling

 problem

Figure 3.1 Illustration of possible solution sets

Figure 3.2 Double-swap method

Figure 3.3 Two groups-swap method

Figure 3.4 Insert method from early set to tardy set

Figure 3.5 Insert method from tardy set to early set

Figure 3.6 The negative selection algorithm

12

14

17

19

21

29

32

33

35

46

49

49

50

50

52

 xi

Figure 3.7 Pseudo-code of the Bees Algorithm: Single Swarm

Figure 3.8 A set of solution with idle time considered as continuous

 part

Figure 3.9 Pseudo-code of the Bees Algorithm: Two swarms

Figure 4.1 Swapping between two jobs randomly

Figure 4.2 Reversing job order in a selected sub sequence

Figure 4.3 Swapping two groups of jobs

Figure 4.4 Swapping three job positions

Figure 4.5 The pseudo-code of the Bacterial Bees Algorithm

Figure 5.1 The pseudo code of the Adaptive Bees Algorithm

57

59

60

98

98

99

99

103

130

 xii

List of Tables

Table 3.1 Parameters of Bees Algorithms

Table 3.2 Parameters used for idle time neighbourhood search

Table 3.3 Computational results for 10 jobs when h = 0.2

Table 3.4 Computational results for 10 jobs when h = 0.4

Table 3.5 Computational results for 20 jobs when h = 0.2

Table 3.6 Computational results for 20 jobs when h = 0.4

Table 3.7 Computational results for 50 jobs when h = 0.2

Table 3.8 Computational results for 50 jobs when h = 0.4

Table 3.9 Computational results for 100 jobs when h = 0.2

Table 3.10 Computational results for 100 jobs when h = 0.4

Table 3.11 Computational results for 200 jobs when h = 0.2

Table 3.12 Computational results for 200 jobs when h = 0.4

Table 3.13 Computational results for 500 jobs when h = 0.2

Table 3.14 Computational results for 500 jobs when h = 0.4

Table 3.15 Computational results for 1000 jobs when h = 0.2

Table 3.16 Computational results for 1000 jobs when h = 0.4

Table 3.17 Computational results for 10 jobs when h = 0.6

Table 3.18 Computational results for 10 jobs when h = 0.8

Table 3.19 Computational results for 20 jobs when h = 0.2

Table 3.20 Computational results for 20 jobs when h = 0.4

62

62

64

64

65

65

66

66

67

67

68

68

69

69

70

70

73

73

74

74

 xiii

Table 3.21 Computational results for 50 jobs when h = 0.6

Table 3.22 Computational results for 50 jobs when h = 0.8

Table 3.23 Computational results for 100 jobs when h = 0.6

Table 3.24 Computational results for 100 jobs when h = 0.8

Table 3.25 Computational results for 200 jobs when h = 0.6

Table 3.26 Computational results for 200 jobs when h = 0.8

Table 3.27 Computational results for 500 jobs when h = 0.6

Table 3.28 Computational results for 500 jobs when h = 0.8

Table 3.29 Computational results for 1000 jobs when h = 0.6

Table 3.30 Computational results for 1000 jobs when h = 0.8

Table 3.31 Comparison of minimum deviation of computational

 Results: h = 0.2

Table 3.32 Comparison of minimum deviation of computational

 Results: h = 0.4

Table 3.33 Comparison of minimum deviation of computational

 Results: h = 0.6

Table 3.34 Comparison of minimum deviation of computational

 Results: h = 0.8

Table 3.35 Comparison between the enhance Bees Algorithms,

 the basic Bees Algorithm, DPSO and DE

Table 4.1 Optimal and Best-known solutions of 40, 50, and

 100 job problems

75

75

76

76

77

77

78

78

79

79

80

80

81

81

84

92

 xiv

Table 4.2 Parameters of the Bacterial Bees Algorithm

Table 4.3 Comparison of computational times between the basic

 Bees Algorithm and the Bacterial Bees Algorithm:

 Instance 1-25

Table 4.4 Comparison of computational times between the basic

 Bees Algorithm and the Bacterial Bees Algorithm:

 Instance 26-50

Table 4.5 Comparison of computational times between the basic

 Bees Algorithm and the Bacterial Bees Algorithm:

 Instance 51-75

Table 4.6 Comparison of computational times between the basic

 Bees Algorithm and the Bacterial Bees Algorithm:

 Instance 76-100

Table 4.7 Comparison of computational times between the basic

 Bees Algorithm and the Bacterial Bees Algorithm:

 Instance 101-125

Table 4.8 The Bacterial BA’s computational results for 50 job

 problem: Ins 1-50

Table 4.9 The Bacterial BA’s computational results for 50 job

 problem: Ins 51-100

Table 4.10 The Bacterial BA’s computational results for 50 job

 problem: Ins 101-125

108

109

110

111

112

113

114

115

116

 xv

Table 4.11 The Bacterial BA’s computational results for 100 job

 problem: Ins 1-50

Table 4.12 The Bacterial BA’s computational results for 100 job

 problem: Ins 51-100

Table 4.13 The Bacterial BA’s computational results for 50 job

 problem: Ins 101-125

Table 5.1 Parameters of the Adaptive Bees Algorithms to solve

 1-40 instances

Table 5.2 Parameters of the Adaptive Bees Algorithms to solve

 41-120 instances

Table 5.3 Comparison results of the Adaptive Bees Algorithm with

 best-known results from recent research: Ins 1-20

Table 5.4 Comparison results of the Adaptive Bees Algorithm with

 best-known results from recent research: Ins 21-40

Table 5.5 Comparison results of the Adaptive Bees Algorithm with

 best-known results from recent research: Ins 41-60

Table 5.6 Comparison results of the Adaptive Bees Algorithm with

 best-known results from recent research: Ins 61-80

Table 5.7 Comparison results of the Adaptive Bees Algorithm with

 best-known results from recent research: Ins 81-100

Table 5.8 Comparison results of the Adaptive Bees Algorithm with

 best-known results from recent research: Ins 101-120

117

118

119

133

133

134

135

136

137

138

139

 xvi

Table 5.9 Comparison of the average percentage of relation

 deviation: Ins 1-20

Table 5.10 Comparison of the average percentage of relation

 deviation: Ins 21-40

Table 5.11 Comparison of the average percentage of relation

 deviation: Ins 41-60

Table 5.12 Comparison of the average percentage of relation

 deviation: Ins 61-80

Table 5.13 Comparison of the average percentage of relation

 deviation: Ins 81-100

Table 5.14 Comparison of the average percentage of relation

 deviation: Ins 101-120

Table 5.15 Comparison of the average of the average percentage of

 relation deviation of all instances

140

141

142

143

144

145

146

 xvii

Abbreviations

PSO

DPSO

ACO

DE

DDE

BA

SA

GAs

TS

AIS

CLONALG

JIT

ES

TA

TAR

SPV

HTG

HGT

RDD

TF

Particle Swarm Optimisation

Discrete Particle Swarm Optimisation

Ant Colony Optimisation

Differential Evolution

Discrete Differential Evolution

Bees Algorithm

Simulated Annealing

Genetic Algorithms

Tabu Search

Artificial Immune System

Clonal Selection Algorithm

Just In Time

Evolution Search

Threshold Accepting

TA with a back step

Smallest Position Value

Tabu Search + Genetic Algorithms

Genetic Algorithms + Tabu Search

Relative range of due dates

Tardiness Factor

 xviii

BFOA

ATCS

VNS

RVNS

ABA

GVNS

 Bacterial Foraging Optimisation Algorithm

Apparent Tardiness Cost with Setups

Variable Neighbour Search

Reduced Variable Neighbourhood Search

The Adaptive Bees Algorithm

General Variable Neighbourhood Search

 xix

List of Symbols

p

r

d

w

p

r

d

w

m

j

i

Cmax

Lmax

Cj

n

m

e

nsp

nep

ngh

processing time

release date

due date

weight

Processing time

Release date

Due date

Weight

Machine

Job j

Job i

Makespan

Maximum Lateness

Completion time

Probability function

scout bees

number of selected sites

elite site

number of bees recruited for each non-elite site

number of bees recruited for each elite site

neighbourhood size

 xx

E

T

d

S

αi

βi

pj/αj

pj/βj

FeBA

Fref

R

min

max

std

Earliness

Tardiness

Due date

Solution / Sequence

Earliness penalty

Tardiness penalty

increasing ratios

non-decreasing ratios

The fitness function values of the enhanced BA

The reference fitness function

Total number of runs

Minimum percentage of relative deviation

Maximum percentage of relative deviation

Standard deviation of percentage of relative deviation

CHAPTER 1

Introduction

1.1 Motivation

Combinatorial optimisation is optimisation in the case of discrete alternatives.

Being positioned at the interface between mathematics, computer science, and

operations research, the field of combinatorial optimisation has a diversity of

algorithm approaches. Job scheduling, a combinatorial problem, is a process that

is used on a regular basis in many companies. It deals with the allocation of

resources to tasks over a given time period and its goal is to optimise some

performance measure. Job scheduling plays an important role in most

manufacturing and production systems as well as a number of information

processing environments. It is also important in transportation and distribution

settings.

 2

In a manufacturing environment, the scheduling function has to interact with other

decision making methods. Many computational methods such as Discrete Particle

Swarm Optimisation (DPSO), Ant Colony Optimisation (ACO), and Discrete

Differential Evolution (DDE) have been employed to solve job scheduling

problems. More recently, the Bees Algorithm has become a possible new tool for

job scheduling and other combinatorial optimisation problems.

The Bees Algorithm (Pham et al. 2005; Pham et al. 2006a, Pham et al. 2006b,

Pham et al. 2006c, Pham et al. 2006d; Pham et al. 2007a) is an intelligent

optimisation tool which is inspired by the natural foraging behaviour of honey

bees. The algorithm employs a combination of global exploration and local

exploitation. However, the Bees Algorithm was basically developed for solving

continuous problems. In 2007, the use of the Bees Algorithm for a combinatorial

problem was presented (Pham et al 2007). The algorithm successfully solved a

machine scheduling with a common due date.

This work presents a hybrid algorithm. The Bees Algorithm is enhanced to

increase its performance in solving different kinds of machine scheduling

problems. All benchmarks used are known as NP-hard. The motivation for this

research was to test how robust and efficient the Bees Algorithm was at handling

such NP-hard problems.

 3

1.2 Research Aims and Objectives

The overall aim of this research was to develop and improve swarm-based

optimisation algorithms inspired by the foraging behaviour of honeybees and use

the developed algorithms to solve various single machine scheduling problems.

The main research objectives were:

 To survey existing tools used to solve machine scheduling problems

 To study different types of machine scheduling problems and their

characteristics

 To develop and enhance the Bees Algorithm with new features to

overcome the drawbacks of its original version and enable it to solve

machine scheduling problems

 To compare the results obtained with other optimisation methods

1.3 Research Methodology

To achieve the objectives, the following methodology was adopted:

 Literature review: The most relevant papers were reviewed to clarify the

key points in the subject. Their advantages and disadvantages will be

discussed in the thesis.

 A swarm-based optimisation procedure was proposed along with its

enhanced version.

 4

 The performance of the new versions of the algorithm was evaluated on a

number of machine scheduling problems. In each case, performance

measures were computed to assess the effectiveness of the new methods

and comparisons with the original version and other optimisation methods

were also carried out.

1.4 Outline of thesis

Chapter 2: In this chapter, definitions of machine scheduling problems and a

review of the proposed engineering methodologies are given. Intelligence swarm-

based optimisation algorithms including honeybee-inspired algorithms for

combinatorial optimisation and neighbourhood search procedures are also

reviewed.

Chapter 3: The Bees Algorithm to solve the problem of single-machine

scheduling with common due date is introduced. This version is an enhancement

of the basic version focusing on selecting the most promising solutions for the

next generation. More neighbourhood procedures are deployed to increase search

performance. The performances of the basic and improved algorithms are

compared and the differences discussed. Also, the results from the improved

algorithm are compared with those produced by well-known algorithms to show

its performance and robustness.

 5

Chapter 4: This chapter focuses on implementation of the Bees Algorithm to

minimise the total weighted tardiness in single-machine scheduling. The

disadvantages of the basic version are studied and an enhanced algorithm is

proposed. The foraging behaviour of E. coli is used to help the main algorithm

when it is trapped at local minima. The performances of the basic and improved

algorithms are evaluated. Their results are also compared with those of other

optimisation techniques.

Chapter 5: This chapter presents an application of the Bees Algorithm to solve

the problem of scheduling for minimum total weighted tardiness with sequence-

dependent setup times. The Apparent Tardiness Cost with Setups (ATCS)

heuristic is applied to create a reasonably good starting solution. Neighbourhood

change in Variable Neighbourhood Search (VNS) is adapted. The results obtained

are compared with those of other existing optimisation techniques.

Chapter 6: This chapter presents the main contributions of this research and

suggestions for future work in this field.

CHAPTER 2

BACKGROUND

2.1 Job Scheduling

Job scheduling problems involve solving for the optimal schedule under various

objectives, different machine environments and characteristics of the jobs. In the

definitions, job can be made up of any number of tasks. It can be considered as

making a product. Basic information associated with a job are processing time

(pj), release date (rj), due date (dj), and weight (wj). Processing time (pj) represents

the processing time of job j on a machine i. Release date (rj) is the time that the

job arrives at the system. It may also be referred to as the ready date. Due date (dj)

represents the committed shipping or completion date. Completion of a job after

its due date is allowed, but then a penalty is incurred. Weight (wj) represents the

actual cost, which could be a holding or inventory cost.

 7

The main possible machine environments are:

Single machine: only one machine is available to process jobs. Each job has

single task. Every job is processed on the same machine.

Parallel machine: Multiple machines are available to process jobs. A job requires

a single operation and can be processed on any machine.

Flow shop: There are a series of machines (m). Each job has exactly m tasks. The

first task of every job has to be processed on machine 1, then on the machine 2

and so on. Every job goes through all m machines in a unidirectional order.

Job shop: There are m machines and j jobs. Each job has its own predetermined

route to follow. A distinction is made between job shops in which each job visits

each machine at most once and job shops in which a job may visit each machine

more than once.

Examples of possible objective functions to be minimised are:

Makespan (Cmax): The makespan is equivalent to the completion time of the last

job. Cmax is defined as:

 8

Cmax = max (C1, C2, C3, …, Cn) (Eq. 2.1)

The objective of this problem is to minimise Cmax or to minimise the completion

time of the last job to leave the system. This criterion is usually used to measure

the level of utilisation of the machine.

Maximum Lateness (Lmax): The maximum Lateness (Lmax) measures the worst

violation of the due date. It can be defined as:

Lmax = max (L1, L2, L3, …, Ln) (Eq. 2.2)

Total Weighted Completion Time (): Cj denotes the completion time of

the j
th
 job in a batch of n jobs given. The sum of the completion times is often

referred to as the flow time. It is defined as:

 (Eq. 2.3)

Wj denotes the weight assigned to j
th
 job in a batch of n jobs given. The total

weighted completion time is defined as:

 9

 (Eq. 2.4)

The total weighted completion time is then referred to as the weighted flow time.

It gives an indication of the total holding or inventory costs incurred by the

schedule. The objective of this problem is to minimise the total weighted

completion time.

Total Weighted Tardiness (): Total weighted tardiness is a more general

cost function than the total weighted completion time. However, it is one of the

strongly NP-hard problems which can be defined as:

 (Eq. 2.5)

All objective functions mentioned above are so-called regular performance

measures which is a function that is non-decreasing in C1, …, Cn. Recently

objective function that are not regular has been studied. For example, when job j

has a due date dj, it may be subject to an earliness penalty, where the earliness of

job j is defined as:

 10

 (Eq. 2.6)

An objective such as the total earliness plus the total tardiness is defined as:

 (Eq. 2.7)

A more general objective that is not regular is the total weighted earliness plus the

total weighted tardiness:

 (Eq. 2.8)

The weight associated with the earliness of job j may be different from the weight

associated with the tardiness of job j. This problem is harder than the total

tardiness problem (Lenstra 1977; Pinedo 2008; Robert and Vivien 2010).

 11

2.2 Job Scheduling Solvers

This section presents existing techniques that have been successfully applied to

job scheduling problems.

2.2.1 Simulated Annealing

Simulated Annealing (SA) was developed by Kirkpatrick et al. (1983) and Cerny

(1985). The idea of SA algorithm was taken from the simulation of the annealing

of solids. It has been successfully applied to many practical problems as it has a

stochastic component, which facilitates a theoretical analysis of their asymptotic

convergence. General schema for a SA algorithm to solve scheduling problem

starts by generating a starting solution S. Then the neighbourhood of S is chosen

randomly (S’). If the objective function value of S’ is smaller than that of S, the

new solution becomes the actual one and the search process is then continued

from S’. On the other hand, if the objective function value of S’ is greater than S,

then S’ is accepted as the actual solution with probability , where c

represents the actual value of the control parameter (temperature). At the

beginning, the algorithm starts with a relatively high value of c so that most of the

interior neighbourhood solutions are accepted. The c value is usually kept

constant for a number of iterations and then reduced afterwards, so that the

acceptance probability of inferior solution is relatively small in the end phase of

search process. Fig 2.1 shows general pseudo code of a SA algorithm.

 12

Figure 2.1 General pseudo code of a Simulated Annealing algorithm

Step 1: Generate a starting solution S as initial solution Sbest = S

Step 2: Determine a starting temperature c

Step 3: While

 Choose a random neighbour S’ of current solution

 Set Δ = f(S’) – f(S)

 If Δ ≤ 0 then S = S’

 If f(S) < f(Sbest) then Sbest = S

 Else if > random [0,1] then S = S’

 End

 Lower the temperature c

 End

Step 4: If stopping criterion not met then goto step 3

 13

2.2.2 Genetic Algorithms

Genetic Algorithms (GAs) are invented by Holland (1975). The algorithms have

been used for a wild variety of problems including machine learning, game

playing, and combinatorial optimisation. GAs use a population of possible

solutions to conduct a robust search of search space. Initially, a set of solutions is

generated randomly. Each of which is then evaluated by fitness function. The

algorithm then enters a loop. Any iteration in the loop is called a generation,

which consists of two steps: selection and recombination. Holland (1975)

suggested that the solutions with better fitness values should have a higher

probability to be selected for reproduction. In recombination step, the most

common operators are crossover and mutation. Results from recombination

operators are the population for the next generation. The loop continues until a

stopping criteria is met (De Jong 2006; Goldberg 1989; Webster et al 1998).

Figure 2.2 shows general pseudo code of a GAs.

 14

Figure 2.2 General pseudo code of a Genetic algorithms

Step 1: Create an initial population of m parents

Step 2: Compute and save the fitness value f(i) for each individual (i)

Step 3: Define selection probabilities p(i) for each parent i

 So that p(i) is proportional to f(i)

Step 4: Generate m offspring by probabilistically selecting parents to

 produce offspring

Step 5: Select only the offspring to survive

Step 6: Repeat step 2 until a stopping criterion has been met

 15

2.2.3 Tabu Search Algorithm

Tabu search (TS) is a meta-heuristic that guides a local search procedure to

explore the solution space beyond local optimality (Glover and Laguna 1997). In

order to improve the efficiency of the exploration process, local information and

some information related to the exploration process must be memorised. This

adaptive memory usage is an essential feature of TS.

The TS begins by marching to a local minima. To avoid retracting the steps used,

the method records recent moves in one or more tabu lists. The original intent of

the list was not to prevent a previous move from being repeated, but rather to

insure it was not reversed. The tabu lists are historical in nature and form the tabu

search memory. The role of the memory can change as the algorithm proceeds. At

initialisation the goal is to make a coarse examination of the solution space,

known as diversification, but as candidate locations are identified the search is

more focused to produce local optimal solutions in a process of intensification. In

many cases the differences between the various implementations of the tabu

method have to do with the size, variability, and adaptability of the tabu memory

to a particular problem domain.

The TS has traditionally been used on combinatorial optimisation problems. The

technique is straightforwardly applied to continuous functions by choosing a

discrete encoding of the problem. Many of the applications in the literature

 16

involve integer programming problems, scheduling, routing, traveling salesman

and related problems.

2.2.4 Ant Colony Optimisation

Ant Colony Optimisation (ACO) was introduced by Dorigo et al. (1991). The

ACO is a non-greedy population-based meta-heuristic which emulates the

behaviour of real ants. Ants are capable of finding the shortest path from the food

source to their nest using a chemical substance called pheromone, which is used

to guide the exploration. The pheromone is deposited on the ground as the ants

move and the probability that a passing stray ant will follow this trail depends on

the quantity of pheromone laid (Bilchev and Parmee 1995).

Current applications of ACO algorithms fall into the two important problem

classes of static and dynamic combinatorial optimisation problems. The artificial

ants in ACO implement a randomised construction heuristic which makes

probabilistic decisions as a function of artificial pheromone trails and possibly

available heuristic information based on the input data of the problem to be

solved. As such, ACO can be interpreted as an extension of traditional

construction heuristics, which are readily available for many combinatorial

optimisation problems (Dorigo et al. 1999; Dorigo 2004; Bonabeau et al. 1999;

Pan et al. 2010). Figure 2.3 shows the pseudo code of ACO.

 17

Figure 2.3 The pseudo code of Ant Colony Optimisation

Step 1: Initialise pheromone values

Step 2: While (stopping criterion not met) do

Step 3: Create all ants solutions

Step 4: Perform local search

Step 5: Update pheromone values

Step 6: End while

 18

2.2.5 Discrete Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a population based meta-heuristic proposed

by Kennedy and Eberhart (1995). It is based on the social behaviour of groups of

organisations, for example the flocking of birds or the schooling of fish and

originally designed for continuous optimisation domains. PSO deploys the

exploring agents called particles that can adjust their positions in time according

to their own experience and to other particles’ experience (Eberhart and Kennedy

2001).

Discrete Particle Swarm Optimisation (DPSO) was first proposed by Kennedy

and Eberhart (1997). DPSO approach differs both for the way it associates a

particle position with a discrete solution and for the velocity model used. Several

studies have applied the DPSO approach to combinatorial optimisation problem

such as the travelling salesman problem, vehicle routing problem, and job

scheduling problems. The pseudo code of DPSO is given in Fig.2.4.

 19

Figure 2.4 The pseudo code of Discrete Particle Swarm Optimisation

Step 1: Create particles (population)

Step 2: While (stopping criterion not met) do

Step 3: Evaluate each particle’s position according to the objective function

Step 4: Find the personal best

Step 5: Update the personal best

Step 6: Find the global best

Step 7: Update the global best

Step 8: Update particles’ velocities

Step 9: Move particles to their new position according to their velocity

Step 10: Go to step 3 until stopping criterion has been met

 20

2.2.6 Discrete Differential Evolution

Differential Evolution (DE) was introduced by Storn and Price (1997). DE is a

stochastic population-based heuristic that has been applied on many numerical

optimisation problems. The standard DE algorithm is given in Figure 2.5.

Recently, Discrete Differential Evolution Algorithm (DDE) was proposed to solve

complex combinatorial optimisation problems with discrete decision variables

such as the traveling salesman and job scheduling problems. The advantages of

DDE include a simple structure, immediately accessible for practical applications,

ease of implementation, speed to acquire solutions, and robustness. However, the

application of DDE on combinatorial optimisation problems are still considered

limited.

 21

Figure 2.5 The standard pseudo code of Differential Evolution Algorithm

Step 1: Initialise parameters and population

Step 2: Evaluate population

Step 3: Do

Step 4: Obtain mutant population

Step 5: Obtain trial population

Step 6: Evaluate trial population

Step 7: Make selection

Step 8: Apply local search (optional)

Step 9: While (not termination)

 22

2.2.7 Exact Algorithm

In 2008, Tanaka and Fujikuma (2008) have proposed an Exact Algorithm solve

general single machine scheduling without machine idle time problem. It is based

on Successive Sublimation Dynamic Programming (SSDP) method. Its process

starts from a relaxation of the original problem. Thus Langrangian Relaxation

(LR) technique is employed. Three relaxations ,
 and

 are

generated. The algorithm composes of three stages: is solved first,
 is

solved next and then
 is solved. The constrains are successively added for

better relaxations during the main loop of the SSDP method until the gap between

lower and upper bounds becomes zero. Reduction of memory usage is also

performed by network reduction techniques (Tanaka et al 2009; Tanaka and

Fujikuma 2012). Recently, an Exact Algorithm has been successfully applied to

solve several types of single machine scheduling problems such as the single-

machine earliness-tardiness scheduling problem (Tanaka 2012), the precedence-

constrained single-machine scheduling problem (Tanaka and Sato 2013), AND

the single-machine total weighted tardiness problem with sequence-dependent

setup times (Tanaka and Araki 2013).

 23

2.3 Artificial Immune System

The natural immune system is a very complex system with several mechanisms to

defence against pathogenic organisms. However, the natural immune system is

also a source of inspiration for solving optimisation problems. From the

information processing perspective, immune system is a remarkable adaptive

system and can provide several important aspects in the field of computation.

When incorporated with evolutionary algorithms, immune system can improve

the search ability during the evolutionary process. The Artificial Immune Systems

(AIS) are machine-learning algorithms that embody some of the principles and

attempt to take advantages of the benefits of natural immune systems to deal with

complex problem domains. Some of theories primarily used in AIS are briefly

described below:

The Clonal Selection Principle describes the basic characteristics of an adaptive

immune response to an antigenic stimulus. Only those cells that able to recognise

an antigenic stimulus will proliferate and differentiate into effector cells and will

be selected. The main features of clonal selection theory are cloning, elimination

and proliferation (de Castro and Timmis 2002; Aickelin and Dasguta 2005). The

Clonal Selection Algorithm (CLONALG), the most well-known AIS algorithm,

proposed by de Castro and Von Zuben (2002), is one such system inspired by the

clonal selection theory of acquired immunity, which has shown success on broad

range of engineering problem domains.

 24

The Immune Network Theory was proposed by Jerne (1974). The immune

network was introduced as a fundamental idea to explain phenomena like

repertoire selection, tolerance, self/nonself discrimination and memory (Varela

and Coutinho 1991). The hypothesis was that antibody molecule could be

recognised by a set of other antibody molecules. A regulated network of

molecules and cells that recognise one another even in the absence of antigens

composes the immune system.

The Negative Selection describes the process whereby a lymphocyte-antigen

interaction results in the death of that lymphocyte (de Castro and Von Zuben

2002). During the generation of T-cells, T-cells that react against self-proteins are

destroyed. Only T-cells that do not bind to self-proteins are allowed to leave the

thymus then circulate throughout the body to protect the body from foreign

antigen (Aickelin and Dasguta 2005).

The Positive selection serves the purpose of avoiding the accumulation of useless

lymphocytes. In positive selection of T-cells, all T-cells must recognise antigens

associated with self-MHC molecules. Only those of T-cells that capable of

binding to Self-MHC (Major Histocompatibility Complex) molecules can survive.

The positive selection algorithm consists of three main processes: generation of

the potential repertoire of immature T-cells, Affinity evaluation and generation of

available repertoire (de Castro and Timmis 2002; Zhang and QI 2012).

 25

The Danger Theory was proposed by Matzinger (1994). The key why the

immune system is able to distinguish between the nonself-antigens and the self-

antigens is that the nonself-antigens make the body produce biochemical reactions

different from natural rules and the reactions will make the body produce danger

signals of different levels. Thus, the immune system produces danger signals

based on the environmental changes and then leads to the immune responses. In

essence, the danger signal creates a danger zone around itself and immune cells

within this danger zone will be activated to participate in the immune response.

The Danger theory explains the immune response of the human body by the

interaction between antigen presenting cells and various signals (Zhange et al.

2013; Lu 2012; Aickelin and Dasguta 2005; Matzinger 2002)

The Artificial Immune system was introduced as a new computational intelligent

paradigm. It is a general framework for a distributed adaptive system and could be

applied to many problem domains such as Network Intrusion Detection problem

(Kim and Bentley 1999), Autonomous Navigation (Watanabe et al 1999),

Computer Network Security (Hofmeyr and Forrest 2000), Job Scheduling (Coello

et al. 2003; Hart and Ross 1999; Lee and Zomaya 2007), Data Analysis and

Optimisation (de Castro and Von Zuben 2001; de Castro and Timmis 2002;

Zhang and QI 2012). It represents a powerful technique that already emerged.

 26

2.4 The Honeybees-inspired Algorithm

2.4.1 The Honeybees in nature

A colony of honeybees can extend itself over long distances and in multiple

directions simultaneously to exploit a large number of food sources (Von Frisch

1967; Seeley 1996). A colony prospers by deploying its foragers to good fields. In

principle, flower patches with plentiful amounts of nectar or pollen that can be

collected with less effort should be visited by more bees, whereas patches with

less nectar or pollen should receive fewer bees (Camazine et al. 2003).

The foraging process begins in a colony by scout bees being sent to search for

promising flower patches. Scout bees move randomly from one patch to another.

During the harvesting season, a colony continues its exploration, keeping a

percentage of the population as scout bees (Seeley 1996).

When they return to the hive, those scout bees that found a patch which is rated

above a certain quality threshold (measured as a combination of some

constituents, such as sugar content) deposit their nectar or pollen and go to the

“dance floor” to perform a dance known as the “waggle dance” (Von Frisch

1967). Source quality can be understood as simply the relation between gain and

cost from a specific nectar source (Von Frisch 1967).

 27

This mysterious dance is essential for colony communication, and contains three

pieces of information regarding a flower patch: the direction in which it will be

found, its distance from the hive and its quality rating (or fitness) (Von Frisch

1967; Camazine et al. 2003). This information helps the colony to send its bees to

flower patches precisely, without using guides or maps. Each individual’s

knowledge of the outside environment is gleaned solely from the waggle dance.

This dance enables the colony to evaluate the relative merit of different patches

according to both the quality of the food they provide and the amount of energy

needed to harvest it (Camazine et al. 2003). After waggle dancing on the dance

floor, the dancer (i.e. the scout bee) goes back to the flower patch with follower

bees that were waiting inside the hive. More follower bees are sent to more

promising patches. This allows the colony to gather food quickly and efficiently.

While harvesting from a patch, the bees monitor its food level. This is necessary

to decide upon the next waggle dance when they return to the hive (Camazine et

al. 2003). If the patch is still good enough as a food source, then it will be

advertised in the waggle dance and more bees will be recruited to that source.

Nectar source selection behaviour is one of the most challenging as well as vital

tasks for honey-bee colonies (Camazine et al. 2003). When a honey-bee colony

becomes overcrowded it needs to be divided for effective source management

(Von Frisch 1967; Camazine et al. 2003). This critical decision making process

works without a central control mechanism. Nectar source selection behaviour

mainly deals with the situation of a colony choosing between several nectar

 28

sources by simply measuring several factors at once and comparing them with

other solutions. The decision is made when all the scout bees are dancing for the

same site and it takes a couple of days before half of the colony moves to a new

hive (Camazine and Sneyd 1991; Camazine et al. 1999: Seeley and Visscher

2003).

2.4.2 Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) is a swarm-based algorithm that was originally

proposed by Karaboga (2005); Karaboga and Basturk (2007). It simulates the

foraging behaviour of a honeybee swarm. In its basic version, honeybees are

classified into three groups namely, employed bees, onlookers, and scouts. An

employed bee is responsible for searching for food source and collecting nectar.

An onlooker waits in the hive and decides on whether a food source is acceptable

or not after watching employed bees perform waggle dance. A scout searches for

new food source randomly. The main steps of the ABC algorithm are given in

Figure 2.6 (Karaboga (2005); Karaboga and Basturk (2007); Karaboga and

Basturk (2008).

 29

Figure 2.6 The main steps of the ABC algorithm

Later a Discrete Artificial Bee Colony (DABC) algorithm was proposed to solve

job scheduling problems for examples, the lot-streaming flow shop scheduling

problem, the multi-objective flexible job-shop scheduling problem with

maintenance activities, and the flexible job-shop scheduling problem (Pan et al.

2010; Li et al. 2013; Thammano and Phu-ang 2013). The DABC algorithm

represents a food source as a discrete job permutation and applies discrete

operators to generate new neighbouring food sources for the employed bees,

onlookers and scouts.

Step 1: Send the scouts onto the initial food sources

REPEAT

Step 2: Send the employed bees onto the food sources and determine their

nectar amounts. Calculate the probability value of the sources with which

they are preferred by the onlooker bees   .

Step 3: Stop the exploitation process of the sources abandoned by the bees

Step 4: Send the scouts into the search area for discovering new food

sources, randomly

Step 5: Memorise the best food source found so far UNTIL (requirements

are met)

UNTIL (requirements are met)

 30

2.4.3 The Bees Algorithm

2.4.3.1 The Bees Algorithm for continuous domains

The Bees Algorithm (BA) was developed by a group of researchers at the

Manufacturing Engineering Centre, Cardiff University (Pham et al. 2005; Pham et

al. 2006a, Pham et al. 2006b, Pham et al. 2006c, Pham et al. 2006d; Pham and

Ghanbarzadeh 2007; Pham et al. 2007a). This algorithm emulated the behaviour

of honeybees in foraging for pollen and nectar. The algorithm required

parameters, namely the number of scout bees (n), number of selected sites (m),

number of top-ranking (elite) sites among the m selected sites (e), number of bees

recruited for each non-elite site (nsp), number of bees recruited for each elite site

(nep), and neighbourhood size (ngh). The optimisation process started with n

scout bees randomly spread across the solution space. Each scout bee was

associated with a possible solution to the problem. The solutions were evaluated

and ranked in descending order of the fitness, and the best m sites were selected

for neighbourhood search.

In the neighbourhood search procedure, more forager bees were sent in the

neighbourhood of the elite (e) sites, and fewer bees around the non-elite (m-e)

sites. According to this strategy, the foraging effort was concentrated on the very

best (i.e., elite) solutions. That is, nep bees were sent to forage around the elite

sites, while the area around the non-elite locations was exploited by nsp bees.

Within the given neighbourhood area (i.e., flower patch size), some of the newly

generated solutions were expected to be better than that found by the scout bees.

 31

In the global search procedure, the unselected scout bees (n-m) were used to

explore at random the solution space. This kind of search was to avoid bees being

trapped at local optima. At the end of each cycle, a new list of scout bees was

formed, comprising the fittest solutions from each neighbourhood (neighbourhood

search results), and the new randomly generated solutions (global search results).

This list would be sorted in the next iteration and used for a new phase of

optimisation. The combination of exploitative (neighbourhood) and explorative

(global) search would be able to capture the best solution quickly and efficiently.

These steps were repeated until the stopping criterion was met (Ghanbarzadeh

2007). The pseudocode of the BA and the algorithm flowchart for continuous

domains is shown in Figures 2.6 and 2.7 respectively (Pham et al. 2006b; Ahmad

2012).

 32

Figure 2.7 The pseudocode of the Bees Algorithm for continuous domains

Step 1: Initialise population with random solutions

Step 2: Evaluate fitness of the population

Step 3: While (stopping criterion not met)

 //Forming new population

Step 4: Select sites for neighbourhood search

Step 5: Recruit bees for selected sites (more bees for best e sites)

 and evaluate the fitness

Step 6: Select the fittest bee from each patch

Step 7: Assign remaining bees to search randomly and evaluate their fitness

Step 8: End While

 33

Figure 2.8 Flowchart of the Bees Algorithm

Start

Initialise a population of n scout bees

Evaluate the fitness of the population

Select m sites for neighbourhood search

Determine the size of the neighbourhood

Recruit bees for the selected sites

Select the representative bee from each patch

Assign remaining bees to random search

New population of scout bees

End

Neighbourhood

search

 34

2.4.3.2 The Bees Algorithm for Job Scheduling Problems

In 2007, the first Bees Algorithm to solve machine scheduling was proposed

(Pham et al. 2007b). This work is the first to report the application of the Bees

Algorithm to a combinatorial problem. The pseudo-code of the Bees Algorithm

for scheduling problem is given in Fig. 2.8. In essence, the algorithm is very

similar to the original algorithm. The main differences here are: in step 5, the

patch idea is replaced by a local search operator to be able to perform a local

search and the, shrinking procedure is also removed from the algorithm. However,

the abandonment procedure is kept to help the algorithm to improve the global

search part.

The main feature of combinatorial domains, unlike continuous domains, is that

there is no mathematical distance definition for the neighbourhood search. Since

the Bees Algorithm was developed for continuous domains, it is necessary to

modify the neighbourhood part by simply replacing the patch with a local search

operator (Koc 2010).

There are several exchange neighbourhood strategies for examples, 2-Opt, 3-Opt,

and Swap operators. 2-Opt was first proposed by Croes 1958 for solving the

traveling salesman problem. The main idea is to break two edges and reconnect

them in other way. There is also 3-Opt approach, a cut of 3 points and reconnect

them in other possible ways. The same problem may have multiple different

neighbourhoods defined on it, local neighbourhood search that involve changing

 35

Figure 2.9 The pseudo-code of the BA for scheduling problem (Koc 2010)

Step 1: Initial population with n random solution; random(Sequence(n)).

Step 2: Evaluate fitness of the population.  

Step 3: While (stopping criterion not met) 

Step 4: Select sites (m) for neighbourhood search.

Step 5: Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the

fittest bee from each site and shrink patches

for (k=1 ; k=e ; k++) // Elite Sites 

for (i=1 ; i= nep ; i++) // More Bees for Elite Sites

 RecruitedBee(k)(i) = NeighbourhoodOperator(Sequence(k)); 

 Evaluate Fitness = RecruitedBee(k)(i);

 //Evalute the fitnees of recruited Bee(i)

 If (Bee(i) is better than Bee(i-1)) RepresentativeBee = RecruitedBee(k)(i);

for (k=e ; k=m ; k++) // Other selected sites (m-e) 

for (Bee=1 ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

 RecruitedBee(k)(i) = NghOperator(Sequence(k));  

 Evaluate Fitness = RecruitedBee(k)(i);

 //Evalute the fitnees of recruited Bee(i)

 If (Bee(i) is better than Bee(i-1)) RepresentativeBee = RecruitedBee(k)(i);

Step 6: If (Iteration > sat) 

If (no improvement on the site)

 Save the Best Fitness;   Abandon the Site; 

 Bee(m) = GenerateRandomValue(All Search Space);

Step 7: Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned

to search randomly into whole solution space

Step 8: End while

 36

up to k components of the solution is often referred to as k-opt. Swap and insert

operators are considered as neighbourhood strategies. They simply change the

position of a randomly selected node to create an altered path. In swap

neighbourhood, two nodes are interchanged whereas in insert neighbourhood, one

node is removed from its current position and then inserted elsewhere (Aarts and

Lenstra 1997). In Pham et al. 2007b, only the exchange, 2-Opt and 3-Opt were

used to modify the Bees Algorithm.

2.5 Summary

This chapter briefly describes job scheduling problems and some existing

techniques applied to solve those problems. It also provides general background

of the Bees Algorithm for combinatorial domains as well as continuous domain.

CHAPTER 3

THE ENHANCED BEES ALGORITHMS WITH

NEGATIVE SELECTION FOR SINGLE

MACHINE WITH A COMMON DUE DATE

3.1 Preliminaries

Scheduling multiple jobs on a machine with a common due date set costs depend

on whether a job is finished before or after the specified due date. Minimising

earliness penalty such as inventory cost and tardiness penalty imposed by

customers pushes the completion time of each job as close as possible to the due

date. If the optimal sequence cannot be constructed without considering the value

of the due date, the common due date is called restrictive. This problem is known

to be intractable (Garey and Johnson 1979).

 38

Two newly developed Bees Algorithm with Negative Selection based Artificial

Immune System (AIS) are presented in this chapter. These algorithms are

enhanced version of their basic counterpart for combinatorial problems to solve

single-machine with common due date problem. The discrete uniform distribution

technique is also used for randomly generating the idle time during initialisation

when needed.

The chapter is organised as follows: Section 3.2 describes the single machine

scheduling problem with a common due date, its model, its well-known properties

and benchmark. Section 3.3 presents the enhanced Bees Algorithms for single

machine with common due date. Their characteristics are also described. Results

are tabulated in Section 3.4 and the summary of this work is in Section 3.5

3.2 Earliness and Tardiness penalties in single-machine

problem with a common due date

Common due date problems have been studied extensively in recent years. Kanet

(1981) is one of the pioneers studying common due date problems. This

contribution has been extended in many directions; see, for examples, Baker and

Scudder (1989a&b), Biskup and Cheng (1999), Hoogeveen and van de Velde

(1991), Feldmann M, and Biskup D (2003), Hino et al. (2005), Pan et al. (2006),

Nearchou (2006), Nearchou (2008), Pham et al. (2007b), and Talebi et al (2009).

 39

This problem became important with the advent of the just in time (JIT) concept

which is a production strategy that strives to improve the business return on

investment by reducing costs. In the JIT scheduling environment, the product

should be finished as close to due date as possible. An early job completion

results in inventory carrying costs, such as storage and insurance costs. On the

other hand, a tardy job completion results in penalties, such as loss of customer

goodwill and damaged reputation. When scheduling on a single machine against

common due date, one job at most can be completed exactly at the due date.

Hence, some of the jobs have to be completed early while other jobs must be

finished late.

3.2.1 The Earliness and Tardiness Model

The concept of earliness and tardiness (E/T) has spawned a rapidly developing

line of research in scheduling area. Because the use of both earliness and tardiness

penalties gives rise to non-regular performance measure, it has led to new

methodological issues in the design of solution procedures. In the E/T problem,

the set of jobs to be scheduled is known in advance and is simultaneously

available. The vast majority of articles on E/T problems also deal with single

machine models.

To describe an E/T model, let n be the number of jobs to be scheduled. Job i is

described by a processing time pi and a due date di. All jobs are assumed to be

available at time Zero. If the completion time Ci of job i is smaller than or equal to

 40

common due date d, which is assumed as given, the jobs’ earliness is Ei = (di. –

Ci). Accordingly, a job i is tardy with tardiness Ti = (Ci -di), if its completion time

is greater than the common due date d. As it is not known in advance whether a

job will be completed before or after due date, earliness and tardiness are

calculated as is Ei = max{0, di. – Ci} and Ti = max{0, Ci -di} for all jobs i = 1, …,

n. The per time unit penalties of the job i for being early or tardy are αi and βi,

respectively.

The basic E/T objective function for a schedule S can be written as f(S),

where

 (Eq. 3.1)

Some of E/T problems have been derived for models in which all jobs have a

common due date (di = d) (Baker and Scudder 1989a; Baker and Scudder 1989b).

 41

3.2.2 The Restrictive Common Due Date

The restrictive and unrestrictive cases are two main approaches to address the

common due date. In the unrestricted case, the optimal schedule (S) can be

constructed without considering the due date, which means it has no influence on

the optimal sequence. However, if the due date is known and it affects the optimal

sequence of jobs, then it is considered restrictive.

The restrictive common due date is NP-hard which has been proven

independently by Hall et al. (1991) and Hoogeveen and Van de Velde (1991).

Three well-known properties that are essential for an optimal schedule in the

restrictive case are as follows:

1. There are no idle times between consecutive jobs (Cheng and Kahlbacher

1991).

2. An optimal schedule has the so-called V-shape property, that is, jobs

finished before the due date are ordered according to non increasing ratios

pj/αj and jobs finished after the due date are ordered according to non-

decreasing ratios pj/βj (Smith 1956).

3. There is an optimal schedule in which either the processing time of the

first job starts at time zero or one job is finished at the due date

(Hoogeveen and Van de Velde 1991)

 42

All potential optimal schedules can be divided into three cases:

1) The first job starts at time zero and the last early job is finished exactly at

time d.

2) The first job starts at time zero and the last early job is finished before d,

here a straddling job exists.

3) The first job does not necessarily start at time zero.

3.2.3 Benchmark for single machine with common due date

problems

Biskup and Feldmann (2001) have developed a set of the restricted single

machine with common due date benchmark. There are seven categories of

problems with 10, 20, 50, 100, 200, 500, and 1000 jobs. Each category contains

10 instances. For each of the jobs, the individual processing times pi , earliness αi

and tardiness βi penalty are given. Four values of parameter h: 0.2, 0.4, 0.6, 0.8,

are used to calculate more or less restrictive common due dates. Therefore this

benchmark has 280 test instances in total. The common due date d is calculated by

 (Eq.3.2)

where round[x] gives the biggest integer, which is smaller than or equal to x

 denotes the sum of the processing times of the n jobs

 43

These instances are available at OR-LIBRARY website: http://people.brunel.

ac.uk/~mastjjb/ jeb/orlib/schinfo.html

3.3 The Enhanced Bees Algorithms for Single Machine

with Common Due Date

In 2007, Pham et al. (2007b) has presented the Bees Algorithm to solve single

machine with common due date. This work is the first to report the application of

the Bees Algorithm to a combinatorial problem. In this basic version, two

neighbourhood search methods, namely simple-swap and insert method are

applied. The search of best idle time is considered as continuous domain. The

computational results show that the Bees Algorithm performed more strongly than

the existing techniques during that period of time.

The Bees Algorithm with Negative Selection proposed in this chapter is an

enhanced version which aims to improve the basic Bees Algorithm in choosing

the fittest solutions from selected patch sites after neighbourhood search. The

basic version was studied and observed that keeping the fittest solution from each

patch site might not always be a good option for single machine scheduling

problem. There is a possibility that the algorithm will keep many of the same

solutions which means each selected patch site sometimes might unintentionally

produce the same sequences as other patch sites during neighbourhood search.

 44

Moreover, there is a chance that the second best solution and sometimes as well as

the third best solution from a patch site might have better fitness values than other

sites’ fittest one. Keeping duplicitous solutions for the next generation could

cause high computational time as well as being struggled in local optima.

3.3.1 The enhanced Bees Algorithms’ characteristics

In this section, three key features namely the Discrete Uniform Distribution,

Neighbourhood Search Procedures, and Negative Selection based Artificial

Immune System deployed to improve the Bees Algorithms’ performance are

presented.

3.3.1.1 The Discrete Uniform Distribution

The discrete uniform distribution is the distribution in which all possible values

have equal probabilities. The uniform distribution is characterised as follows:

A discrete random variable R, taking value 1,2,3,…,n such that

 (Eq.3.3)

 45

A random variable R used in this way, associated with the results rather than equal

to them, can be a very useful concept. It is called a dummy variable or an

indicator variable (Clarke and Cooke 2004).

According to Property 3, the search for an optimal schedule should not be

restricted to sequences starting at time Zero. The discrete uniform distribution is

used to randomly generate the idle time, which will be inserted at the beginning of

the schedule only. Fig. 3.1 illustrates possible solution sets. Fig. 3.1 (a) shows a

possible solution when first job starts at time zero. Fig. 3.2 (b) shows a possible

solution with idle time when processing of first job is delayed.

 46

Figure 3.1 Illustration of possible solution sets

 α β

 0

 Early set Tardy set

(a) A possible solution without idle time inserted

 α β

0

 Early set Tardy set Idle time

(b) A possible solution with idle time inserted

 47

3.3.1.2 Neighbourhood Search Procedures

Local search which is a widely used, is a general approach to solving hard

optimisation problems. An optimisation problem has a set of solutions and an

objective function that assigns a numerical value to every solution. Typically,

local search procedures for job scheduling move from feasible schedules to

feasible schedules. A key issue in these procedures is thus to design, or to select,

moves that preserve feasibility in hope of improving an objective function which

measures the quality of solutions to the problem at hand.

A very simple neighbourhood search is the Swap, a well-known local search

method for combinatorial problems (Aarts and Lenstra 1997). In this enhanced

Bees Algorithm’s neighbourhood search step, two different types of swap

methods are deployed. The first procedure is double swap method. Two jobs will

be selected randomly regardless of whether these jobs are in early or tardy set and

then swapped. The same process will repeat once again with two other jobs. Fig

3.2 shows double swap method deployed in neighbourhood search step of the

enhanced Bees Algorithm when the first job starts at time zero. In the second

neighbourhood search procedure shown in Fig. 3.3, two groups of jobs are

selected randomly and then their positions are swapped. Also, early and tardy sets

are not considered.

Another search method deployed in this enhanced Bees Algorithm is insert

method. It is similar to simple-swap but insertion does not work vice versa. A

 48

randomly selected job is simply inserted in a randomly defined position. It is

slightly modified for this problem. Inserting can only occur between early and

tardy sets. Fig 3.4 shows the third procedure deployed. A job from early set is

randomly selected and then inserted into a position in tardy set. Fig 3.5 shows the

fourth procedure. A job from tardy set is randomly selected and then inserted into

a position in another set.

 49

Fig 3.2 Double-swap method

Fig 3.3 Two groups-swap method

 0

 0

 50

Fig 3.4 Insert method from early set to tardy set

Fig 3.5 Insert method from tardy set to early set

α β

 0

α β

 0

 51

3.3.1.3 Negative Selection

In recent years, attention has been drawn to Artificial Immune System (AIS), a

biologically inspired computing paradigm. AIS abstracts and models tackle

challenging problem in dynamic environments. Major AIS model include Positive

Selection, Negative Selection, Clonal Selection, Danger Theory, and Immune

Networks. This soft computing paradigm has been showing potential in job

scheduling as well as other applications (Hart and Ross 1999; Coello et al. 2003;

Aickelin et al. 2004; Chandrasekaran et al. 2006; Chen et al 2012).

A well known artificial Negative Selection scheme was proposed in Forrest et al.

(1994). Three principles of the algorithm presented were defining self, generating

detectors and monitoring the occurrence of anomalies. Fig 3.6 shows the negative

selection algorithm proposed by Forrest et al. (1994). Strings are randomly

generated and placed in a set P of immature T-cells. Then the affinity of all T-

cells in P is determined with all elements of the self-peptides, named self-set S. If

the affinity of an immature T-cell with at least one self-peptide is greater than or

equal to a given cross-reactive threshold, then the T-cell recognises this self-

peptide and has to be eliminated (negative selection), else the T-cell is introduced

into the available repertoire A. The result showed that negative selection

algorithm has been successfully applied to detect changes in computer systems

that lead to improvement of system robustness (de Castro and Von Zuben 2002;

de Castro and Timmis 2002).

 52

Figure 3.6 The negative selection algorithm

Self strings

(S)

Repertoire

 (A)

Repertoire

(P)

Reject

Recognise?

Yes

No

 53

In the basic Bees Algorithms, after neighbourhood search, the fittest bee from

each patch site will be saved for next iteration. In single machine scheduling,

applying this idea often causes keeping duplicitous solutions and this does not

guarantee that all best solutions are chosen as part of the population in the next

generation. Also there is possibility that the second best solution from a selected

site could have better fitness than the best solution from another site. To

overcome this drawback, negative selection model is adapted for the Bees

Algorithm. Two major phases of negative selection algorithm, detector generation

and anomaly monitoring, are thus considered.

After neighbourhood search process, all solutions derived will be sorted and

transferred into repertoire (P). First solution (a sequence) in repertoire (P) will be

copied into Self-strings (S) and repertoire (A). Then next solution in repertoire P

will be considered by matching it with strings in Self-strings. If it is recognised

then it will be eliminated. If not, it will be introduced into repertoire A. In the

opposite sense, if the set of strings in Self-strings (S) does not match with solution

from repertoire (P), then it is eliminated and replaced by the solution from

repertoire (P). Negative Selection process for the Bees Algorithm can be

summarised in two main steps as follows:

1) Step 1: matches a set of solution from repertoire (P) with strings in Self-strings.

If there is no set of strings in Self-strings to match with (Self-strings is empty),

then introduce the solution into Self-strings and repertoire (A).

 54

2) Step 2: matches the next solution from repertoire (P) with strings in Self-

strings. If no match is found, then add the solution into repertoire (A) and update

string in Self-strings. Otherwise eliminate the solution. This step is repeated until

repertoire (A) is full.

3.3.2 The enhanced Bees Algorithms

Two slightly different algorithms are proposed to solve single machine scheduling

with a common due date.

3.3.2.1 The Bees Algorithm with Negative Selection: Single Swarm

The Bees Algorithm with Negative Selection is first developed to solve the

benchmark when h value equals 0.2 and 0.4. In this case, the idle time does not

need to be inserted. It means the optimal schedule can be found in a sequence that

first job starts to be processed at time zero. Fig 3.7. shows its pseudo-code

The algorithm requires a number of parameters to be set, namely: number of scout

bees (n), number of patches selected out of n visited points (m), number of best

patches out of m selected patches (e), number of bees recruited for e best patches

(nep), number of bees recruited for the other (m-e) selected patches (nsp), and the

stopping criterion. The algorithm starts with the n scout bees being placed

randomly in the search space (possible sequences).

 55

In step 2, all jobs of each sequence are classified into two groups : early set and

tardy set. Jobs finished early are in early set and jobs finished later than due date

are in tardy set : Ei = max{0, di. – Ci} and Ti = max{0, Ci -di}.

In step 3, all jobs of both sets are re-sequenced regarding v-shaped property: non-

increasing order of the ratio pj/αj in early set and non-decreasing order of pj/βj in

tardy set.

In step 4, the fitness values of the solutions visited by the scout bees are

evaluated.

In steps 6 and 7, bees with the highest fitness values are chosen as “selected bees”

and those sites that have been visited will be chosen for neighbourhood search.

Then the algorithm conducts searches in the neighbourhood of the selected bees in

terms of more bees for the e best bees. The latter can be chosen directly according

to the fitness values associated with the sites they are visiting. In each search, one

of four neighbourhood search operators is chosen randomly for each recruited bee.

Chance to be chosen is given equally. After the search, the algorithm repeats steps

3 and 4 in order to calculate fitness values.

In steps 9 and 10, the process of negative selection then begins. The maximum

number of best solutions that can be saved in the repertoire (A) is 5 percent of

number of scout bees (n).

 56

At the end of each generation, the colony will have new population from negative

selection process and scout bees assigned to conduct random searches. Steps 4-11

are repeated until the best fitness value has stabilised. At the end of each

generation, the colony will have two parts to its new population. The first part is

the representative from previous generation and the second part is the new

possible solutions conducted by other scout bees.

 57

Figure 3.7 Pseudo-code of the Bees Algorithm: Single Swarm

1. Initial population (sequences) with n random solutions.

2. Classify early and tardy jobs.

3. Re-sequence jobs in early and tardy sets regarding v-shaped property.

4. Evaluate fitness of the population.

5. While (stopping criterion has not been met).

6. Select sites (m) for neighbourhood search.

7. Recruit bees for selected sites: elite sites (e) and other selected sites (m-e).

8. Repeat step 3 and 4.

9. Move all solutions into repertoire (P) and sort them by their fitness values: high to low

10. Select the fittest bees by Negative Selection.

11. Assign remaining bees to search randomly and evaluate their fitness.

12. End while.

 58

3.3.2.2 The Bees Algorithm with Negative Selection: Two Swarms

This section presents the enhanced Bees Algorithm with Negative Selection that

has the use of discrete uniform distribution technique and two swarms of bees to

solve this single machine scheduling with a common due date benchmark when h

value equals 0.6 and 0.8. To find an optimal solution, the idle time has to be

inserted which means first job must not start at time zero.

To solve this dataset, a solution set is divided into two parts: continuous and

combinatorial domains as shown in Fig. 3.8. Idle time is considered as continuous

part. The pseudo-code of this algorithm is shown in Fig.3.9. During initialisation,

the idle time is randomly generated by using discrete uniform distribution and

inserted before the process of first job. In this version, the algorithm performs

neighbourhood search for job sequence first and then performs idle time

neighbourhood search after negative selection process. A group of recruited bees

from a mini swarm is deployed in this process and the fittest bee will be selected

from each site in step11. Then, in step 12, the remaining bees in the population

are assigned randomly around the search space scouting for new potential

solutions. These steps are repeated until a stopping criterion is met.

 59

Figure 3.8 A set of solution with idle time considered as continuous part

 α β

0

 Continuous part
Combinatorial part

 60

Figure 3.9 Pseudo-code of the Bees Algorithm: Two swarms

1. Initial population (sequences) with n random solutions: an idle time follows by a set of

sequence.

2. Classify early and tardy jobs.

3. Re-sequence jobs in early and tardy sets regarding v-shaped property.

4. Evaluate fitness of the population.

5. While (stopping criterion has not been met).

6. Select sites (m) for neighbourhood search.

7. Recruit bees for selected sites: elite sites (e) and other selected sites (m-e).

8. Repeat step 3 and 4.

9. Move all solutions into repertoire (P) and sort them by their fitness values: high to low

10. Select the fittest bees by Negative Selection.

11. Recruit bees from mini smarm for some best selected sites derived from negative

selection to perform idle time neighbourhood search.

12. Repeat step 3 and 4.

13. Assign remaining bees to search for new solution randomly and evaluate their fitness.

14. End while.

 61

3.4 Experimental results

The enhanced Bees Algorithms were implemented in Matlab, a high-level

language, and run on Dell laptop: Intel (R) Core (TM)2 Duo CPU P8600

@2.40GHz, 4 GB RAM and MacBook Pro: Intel Quad Core i7 2.3GHz, 8 GB

RAM. The algorithms have been applied to all 280 instances. Table 3.1 shows the

parameters used for this experiment in search of potential solutions, where as

Table 3.2 shows the parameters used in search of potential idle times.

 62

Table 3.1 Parameters of Bees Algorithms

Parameters
Value

(when n = 10,20,50)

Value

(when n = 100,200,500,1000)

p : Population 200 500

m : Number of selected sites 50 75

e : Number of elites sites 20 30

nep : Number of bees around

elite sites
30 30

nsp : Number of bees around

other selected points
20 20

Table 3.2 Parameters used for idle time neighbourhood search

Parameters
Value

(when n = 10,20,50)

Value

(when n = 100,200,500,1000)

m : Number of selected sites 10 20

e : Number of elites sites 4 10

nep : Number of bees around

elite sites
8 8

nsp : Number of bees around
other selected points

4 4

 63

The performance of the algorithms was quantified by the percentage of relative

deviations (∆) and standard deviation. To obtain the average performance of the

algorithm, 10 runs were carried out for each instance to report the statistics based

on the percentage of relative deviations from the upper bounds in Biskup and

Feldmann (2001). To be more specific, avg was computed as follows:

 (Eq.3.4)

where FeBA, Fref and R are the fitness function values generated by the enhanced

Bees Algorithm in each run, the reference fitness function value generated by

Feldmann and Biskup (2003), and the total number of runs, respectively. For

convenience,
min ,

max and
std denote the minimum, maximum and standard

deviation of percentage of relative deviation in fitness function value over R

runs, respectively.

Tables 3.3-3.16 illustrate the detail results of all seven categories of problems

(when h = 0.2 and h = 0.4) obtained by Feldmann and Biskup (2003), Nearchou

(2006), Pham et al. (2007b), and the enhanced Bees Algorithm with its avg .

 64

Table 3.3 Computational results for 10 jobs when h = 0.2

Table 3.4 Computational results for 10 jobs when h = 0.4

n

instance

h = 0.2

UB Cost DE Basic BA Enhanced BA avg

10 1 1936 1936 1936 1936 0.00

 2 1042 1042 1042 1042 0.00

 3 1586 1586 1586 1586 0.00

 4 2139 2139 2139 2139 0.00

 5 1187 1187 1187 1187 0.00

 6 1521 1521 1521 1521 0.00

 7 2170 2170 2170 2170 0.00

 8 1720 1720 1720 1720 0.00

 9 1574 1574 1574 1574 0.00

 10 1869 1869 1869 1869 0.00

n

instance

h = 0.4

UB Cost DE Basic BA Enhanced BA avg

10 1 1025 1025 1025 1025 0.00

 2 615 615 615 615 0.00

 3 917 917 917 917 0.00

 4 1230 1230 1230 1230 0.00

 5 630 630 630 630 0.00

 6 908 908 908 908 0.00

 7 1374 1374 1374 1374 0.00

 8 1020 1020 1020 1020 0.00

 9 876 876 876 876 0.00

 10 1136 1136 1136 1136 0.00

 65

Table 3.5 Computational results for 20 jobs when h = 0.2

Table 3.6 Computational results for 20 jobs when h = 0.4

n

instance

h = 0.2

UB Cost DE Basic BA Enhanced BA avg

20 1 4431 4394 4398 4394 -0.84

 2 8567 8430 8430 8430 -1.60

 3 6331 6210 6210 6210 -1.91

 4 9478 9188 9188 9188 -3.06

 5 4340 4215 4215 4215 -2.88

 6 6766 6527 6527 6527 -3.53

 7 11101 10455 10455 10455 -5.82

 8 4203 3920 3920 3920 -6.73

 9 3530 3465 3465 3465 -1.84

 10 5545 4979 4979 4979 -10.21

n

instance

h = 0.4

UB Cost DE Basic BA Enhanced BA avg

20 1 3066 3066 3067 3066 0.00

 2 4897 4847 4847 4847 -1.02

 3 3883 3838 3841 3838 -1.16

 4 5122 5118 5118 5118 -0.08

 5 2571 2495 2501 2495 -2.96

 6 3601 3582 3582 3582 -0.53

 7 6357 6238 6238 6238 -1.87

 8 2151 2145 2145 2145 -0.28

 9 2097 2096 2096 2096 -0.05

 10 3192 2925 2925 2925 -8.36

 66

Table 3.7 Computational results for 50 jobs when h = 0.2

Table 3.8 Computational results for 50 jobs when h = 0.4

n

instance

h = 0.2

UB Cost DE Basic BA Enhanced BA avg

50 1 42363 40697 40704 40697 -3.93

 2 33637 30613 30613 30613 -8.99

 3 37641 34435 34425 34425 -8.54

 4 30166 27755 27760 27755 -7.99

 5 32604 32307 32307 32307 -0.91

 6 36920 34993 34970 34969 -5.28

 7 44277 43136 43136 43134 -2.58

 8 46065 43839 43840 43839 -4.83

 9 36397 34228 34228 34228 -5.96

 10 35797 32958 32961 32958 -7.93

n

instance

h = 0.4

UB Cost DE Basic BA Enhanced BA avg

50 1 24868 23792 23792 23792 -4.33

 2 19279 17910 17907 17907 -7.12

 3 21353 20500 20502 20500 -3.99

 4 17495 16657 16657 16657 -4.79

 5 18441 18007 18007 18007 -2.35

 6 21497 20385 20397 20385 -5.17

 7 23883 23038 23042 23038 -3.54

 8 25402 24888 24888 24888 -2.02

 9 21929 19984 19984 19984 -8.87

 10 20048 19167 19167 19167 -4.39

 67

Table 3.9 Computational results for 100 jobs when h = 0.2

Table 3.10 Computational results for 100 jobs when h = 0.4

n

instance

h = 0.2

UB Cost DE Basic BA Enhanced BA avg

100 1 156103 145631 145516 145516 -6.78

 2 132605 124964 124916 124916 -5.80

 3 137463 129838 129800 129800 -5.57

 4 137265 129632 129584 129584 -5.60

 5 136761 124368 124351 124351 -9.07

 6 151938 139196 139193 139193 -8.39

 7 141613 135027 135026 135026 -4.65

 8 168086 160198 160147 160147 -4.72

 9 125153 116528 116522 116522 -6.90

 10 124446 118971 118913 118913 -4.45

n

instance

h = 0.4

UB Cost DE Basic BA Enhanced BA avg

100 1 89588 85897 85884 85884 -4.13

 2 74854 73002 72982 72981 -2.50

 3 85363 79690 79598 79598 -6.75

 4 87730 79405 79405 79405 -9.49

 5 76424 71334 71275 71275 -6.74

 6 86724 77789 77789 77789 -10.30

 7 79854 78250 78244 78244 -2.02

 8 95361 94365 94365 94365 -1.04

 9 73605 69527 69457 69457 -5.64

 10 72399 71951 71850 71850 -0.76

 68

Table 3.11 Computational results for 200 jobs when h = 0.2

Table 3.12 Computational results for 200 jobs when h = 0.4

n

instance

h = 0.2

UB Cost DE Basic BA Enhanced BA avg

200 1 526666 498653 498653 498653 -5.32

 2 566643 541181 541180 541180 -4.49

 3 529919 488732 488665 488665 -7.78

 4 603709 586294 586257 586257 -2.89

 5 547953 513396 513217 513217 -6.34

 6 502276 478059 478019 478019 -4.83

 7 479651 454757 454757 454757 -5.19

 8 530896 494348 494276 494276 -6.90

 9 575353 529388 529275 529275 -8.01

 10 572866 538389 538332 538332 -6.03

n

instance

h = 0.4

UB Cost DE Basic BA Enhanced BA avg

200 1 301449 295767 295684 295684 -1.91

 2 335714 319212 319199 319199 -4.92

 3 308278 293980 293886 293888 -4.67

 4 360852 353113 353034 353034 -2.17

 5 322268 304666 304668 304666 -5.46

 6 292453 279982 279920 279920 -4.29

 7 279576 275095 275024 275024 -1.63

 8 288746 279323 279172 279172 -3.32

 9 331107 310558 310402 310402 -6.25

 10 332808 323325 323085 323085 -2.92

 69

Table 3.13 Computational results for 500 jobs when h = 0.2

Table 3.14 Computational results for 500 jobs when h = 0.4

n

instance

h = 0.2

UB Cost DE Basic BA Enhanced BA avg

500 1 3113088 2954864 n/a 2954852 -5.08

 2 3569058 3365958 n/a 3365953 -5.69

 3 3300744 3103108 n/a 3103107 -5.99

 4 3408867 3221273 n/a 3221260 -5.50

 5 3377547 3114923 n/a 3114914 -7.78

 6 3024082 2792248 n/a 2792239 -7.67

 7 3381166 3172733 n/a 3172714 -6.17

 8 3376678 3122332 n/a 3122318 -7.53

 9 3617807 3364823 n/a 3364823 -6.99

 10 3315019 3120383 n/a 3120383 -5.87

n

instance

h = 0.4

UB Cost DE Basic BA Enhanced BA avg

500 1 1839902 1787906 n/a 1787899 -2.83

 2 2064998 1994930 n/a 1994915 -3.39

 3 1909304 1864827 n/a 1864685 -2.34

 4 1930829 1887781 n/a 1887604 -2.24

 5 1881221 1807272 n/a 1807251 -3.93

 6 1658411 1610343 n/a 1610188 -2.91

 7 1971176 1902962 n/a 1902833 -3.47

 8 1924191 1819358 n/a 1819355 -5.45

 9 2065647 1973837 n/a 1973780 -4.45

 10 1928579 1837530 n/a 1837485 -4.72

 70

Table 3.15 Computational results for 1000 jobs when h = 0.2

Table 3.16 Computational results for 1000 jobs when h = 0.4

n

instance

h = 0.2

UB Cost DE Basic BA Enhanced BA avg

1000 1 15190371 14056103 n/a 14055942 -7.47

 2 13356727 12296728 n/a 12296689 -7.94

 3 12919259 11974907 n/a 11974875 -7.31

 4 12705290 11805221 n/a 11805204 -7.08

 5 13276868 12457810 n/a 12457788 -6.17

 6 12236080 11653395 n/a 11653258 -4.76

 7 14160773 13286055 n/a 13286027 -6.18

 8 13314723 12279652 n/a 12279489 -7.78

 9 12433821 11764788 n/a 11764472 -5.38

 10 13395234 12433037 n/a 12433015 -7.18

n

instance

h = 0.4

UB Cost DE Basic BA Enhanced BA avg

1000 1 8570154 8113004 n/a 8112904 -5.34

 2 7592040 7273409 n/a 7273368 -4.20

 3 7313736 6988905 n/a 6988904 -4.44

 4 7300217 7025750 n/a 7025544 -3.76

 5 7738367 7366803 n/a 7366619 -4.80

 6 7144491 6928294 n/a 6928077 -3.03

 7 8426024 7862538 n/a 7862431 -6.69

 8 7508507 7223809 n/a 7223732 -3.79

 9 7299271 7059399 n/a 7059358 -3.29

 10 7617658 7277199 n/a 7276948 -4.47

 71

Tables 3.17-3.30 illustrate the detail results when h = 0.6 and h = 0.8 (with idle

time inserted). Note that some of the results from the basic Bees Algorithm are

not applicable.

The results obtained by the enhanced Bees Algorithm were compared with the

results from Pham et al. (2007), Biskup and Feldmann (2001), Feldmann M, and

Biskup D (2003), Hino et al. (2005), Pan et al. (2006), Nearchou (2006) and

Talebi et al (2009). In Biskup and Feldmann (2001), the average percentage

improvements and their standard deviations are given using the best solution

among all the heuristics, namely, evolution search (ES), simulated annealing

(SA), threshold accepting (TA) and TA with a back step (TAR). Since the

enhanced Bees Algorithm is stochastic, its minimum, maximum, average and

standard deviation of runs should be given to evaluate its performance. However,

Hino et al. (2005) conducted 10 runs and selected the best out of 10 runs even

updating the idle time. For this reason, the minimum percentage of relative

deviation () of the enhanced Bees Algorithms was compared to Pham et al

(2007), Hino et al. (2005) and Pan et al. (2006). Tables 3.31-3.34 summarise

of the computational results to be compared to Hino et al. (2005), Pan et al. (2006)

and Pham et al (2007) with regard to h value respectively. As seen in Tables 3.31

and 3.32 when h = 0.2 and 0.4 there is not a large difference. In the average of all

results when h = 0.2, the basic Bess Algorithm (BA) performed slightly better

than the enhance Bees Algorithm but when h = 0.4 the enhanced Bees Algorithm

performed vice versa. For h = 0.6 and h = 0.8, the enhanced Bees Algorithm

outperformed other algorithms. See Tables 3.33-3.34, there is a great deal of

min

min

 72

difference especially for 100 jobs. The enhanced Bees Algorithm, the BA, discrete

particle swarm optimisation (DPSO) and GA have a similar tendency to yield

negative percentage of relative deviations (), which means they outperformed

Biskup and Feldmann (2001). However, Tabu Search (TS), HTG (TS+GA) and

HGT (GA+TS) show a tendency to diverge after 100 jobs and give positive

percentage of relative deviations (), which means they are inferior to Biskup

and Feldmann (2001).

min

min

 73

Table 3.17 Computational results for 10 jobs when h = 0.6

Table 3.18 Computational results for 10 jobs when h = 0.8

n

instance

h = 0.6

UB Cost DE Basic BA Enhanced BA avg

10 1 841 841 841 841 0.00

 2 615 615 615 615 0.00

 3 793 793 793 793 0.00

 4 815 815 815 815 0.00

 5 521 521 521 521 0.00

 6 755 755 755 755 0.00

 7 1101 1101 1101 1101 0.00

 8 610 610 610 610 0.00

 9 582 582 582 582 0.00

 10 710 710 710 710 0.00

n

instance

h = 0.8

UB Cost DE Basic BA Enhanced BA avg

10 1 818 818 818 818 0.00

 2 615 615 615 615 0.00

 3 793 793 793 793 0.00

 4 803 803 812 803 0.00

 5 521 521 521 521 0.00

 6 755 755 755 755 0.00

 7 1083 1083 1088 1083 0.00

 8 540 540 540 540 0.00

 9 554 554 554 554 0.00

 10 671 671 671 671 0.00

 74

Table 3.19 Computational results for 20 jobs when h = 0.6

Table 3.20 Computational results for 20 jobs when h = 0.8

n

instance

h = 0.6

UB Cost DE Basic BA Enhanced BA avg

20 1 2986 2986 2987 2986 0.00

 2 3260 3206 3206 3206 -1.66

 3 3600 3583 3583 3583 -0.47

 4 3336 3317 3317 3317 -0.57

 5 2206 2173 2173 2173 -1.50

 6 3016 3010 3010 3010 -0.20

 7 4175 4126 4126 4126 -1.17

 8 1638 1638 1638 1638 0.00

 9 1992 1965 1965 1965 -1.36

 10 2116 2110 2116 2110 -0.28

n

instance

h = 0.8

UB Cost DE Basic BA Enhanced BA avg

20 1 2986 2986 2987 2986 0.00

 2 2980 2980 2980 2980 0.00

 3 3600 3583 3583 3583 -0.47

 4 3040 3040 3040 3040 0.00

 5 2206 2173 2173 2173 -1.50

 6 3016 3010 3010 3010 -0.20

 7 3900 3878 3878 3878 -0.56

 8 1638 1638 1638 1638 0.00

 9 1992 1965 1965 1965 -1.36

 10 1995 1995 1995 1995 0.00

 75

Table 3.21 Computational results for 50 jobs when h = 0.6

Table 3.22 Computational results for 50 jobs when h = 0.8

n

instance

h = 0.6

UB Cost DE Basic BA Enhanced BA avg

50 1 17990 17969 17969 17969 -0.12

 2 14231 14050 14050 14050 -1.27

 3 16497 16497 16497 16497 0.00

 4 14105 14080 14080 14080 -0.18

 5 14650 14605 14605 14605 -0.31

 6 14251 14275 14251 14251 0.00

 7 17715 17616 17616 17617 -0.55

 8 21365 21329 21329 21329 -0.17

 9 14298 14202 14202 14202 -0.67

 10 14377 14366 14366 14366 -0.08

n

instance

h = 0.8

UB Cost DE Basic BA Enhanced BA avg

50 1 17990 17934 17934 17934 -0.31

 2 14132 14040 14040 14040 -0.65

 3 16497 16497 16497 16497 0.00

 4 14105 14080 14080 14081 -0.17

 5 14650 14605 14605 14605 -0.31

 6 14075 14066 14066 14066 -0.06

 7 17715 17616 17616 17616 -0.56

 8 21367 21335 21329 21329 -0.18

 9 13952 13948 13942 13942 -0.07

 10 14377 14363 14363 14363 -0.10

 76

Table 3.23 Computational results for 100 jobs when h = 0.6

Table 3.24 Computational results for 100 jobs when h = 0.8

n

instance

h = 0.6

UB Cost DE Basic BA Enhanced BA avg

100 1 72019 72017 72017 71688 -0.46

 2 59351 59230 59230 59175 -0.30

 3 68537 68540 68537 68537 0.00

 4 69231 68774 68759 68759 -0.68

 5 55291 55345 55286 54887 -0.73

 6 62519 62411 62399 62278 -0.39

 7 62213 62204 62197 62187 -0.04

 8 80844 80713 80708 80351 -0.61

 9 58771 58730 58727 58729 -0.07

 10 61419 61366 61361 60966 -0.74

n

instance

h = 0.8

UB Cost DE Basic BA Enhanced BA avg

100 1 72019 72018 72017 71814 -0.28

 2 59351 59230 59230 59230 -0.20

 3 68537 68537 68537 68538 0.00

 4 69231 68772 68759 68760 -0.68

 5 55277 55103 55103 55103 -0.31

 6 62519 62407 62399 62399 -0.19

 7 62213 62197 62197 62197 -0.03

 8 80844 80713 80708 80713 -0.16

 9 58771 58727 58727 58466 -0.52

 10 61419 61361 61361 61341 -0.13

 77

Table 3.25 Computational results for 200 jobs when h = 0.6

Table 3.26 Computational results for 200 jobs when h = 0.8

n

instance

h = 0.6

UB Cost DE Basic BA Enhanced BA avg

200 1 254268 255566 n/a 254259 0.00

 2 266028 267002 n/a 266002 -0.01

 3 254647 255337 n/a 254488 -0.06

 4 297269 298230 n/a 297109 -0.05

 5 260455 260981 n/a 260278 -0.07

 6 236160 236942 n/a 235702 -0.19

 7 247555 247450 n/a 246330 -0.49

 8 225572 226301 n/a 225215 -0.16

 9 255029 255519 n/a 254659 -0.15

 10 269236 268759 n/a 268353 -0.33

n

instance

h = 0.8

UB Cost DE Basic BA Enhanced BA avg

200 1 254268 255697 n/a 254259 0.00

 2 266028 267315 n/a 266002 -0.01

 3 254647 254911 n/a 254476 -0.07

 4 297269 297981 n/a 297109 -0.05

 5 260455 261458 n/a 260278 -0.07

 6 236160 236462 n/a 235702 -0.19

 7 247555 247450 n/a 246313 -0.50

 8 225572 225529 n/a 225215 -0.16

 9 255029 255675 n/a 254637 -0.15

 10 269236 269042 n/a 268354 -0.33

 78

Table 3.27 Computational results for 500 jobs when h = 0.6

Table 3.28 Computational results for 500 jobs when h = 0.8

n

instance

h = 0.6

UB Cost DE Basic BA Enhanced BA avg

500 1 1581233 1617712 n/a 1579140 -0.13

 2 1715332 1741211 n/a 1712429 -0.17

 3 1644947 1680763 n/a 1641706 -0.20

 4 1640942 1684516 n/a 1640785 -0.01

 5 1468325 1477669 n/a 1468256 0.00

 6 1413345 1450456 n/a 1411867 -0.10

 7 1634912 1671889 n/a 1634330 -0.04

 8 1542090 1562208 n/a 1540458 -0.11

 9 1684055 1705411 n/a 1680486 -0.21

 10 1520515 1527515 n/a 1519215 -0.09

n

instance

h = 0.8

UB Cost DE Basic BA Enhanced BA avg

500 1 1581233 1610769 n/a 1579109 -0.13

 2 1715322 1733575 n/a 1712466 -0.17

 3 1644947 1653140 n/a 1641718 -0.20

 4 1640942 1653346 n/a 1640784 -0.01

 5 1468325 1481320 n/a 1468263 0.00

 6 1413345 1426017 n/a 1411841 -0.11

 7 1634912 1649639 n/a 1634330 -0.04

 8 1542090 1560903 n/a 1540470 -0.11

 9 1684055 1707100 n/a 1680647 -0.20

 10 1520515 1529451 n/a 1519205 -0.09

 79

Table 3.29 Computational results for 1000 jobs when h = 0.6

Table 3.30 Computational results for 1000 jobs when h = 0.8

n

instance

h = 0.6

UB Cost DE Basic BA Enhanced BA avg

1000 1 6411581 6421773 n/a 6411260 -0.01

 2 6112598 6158588 n/a 6110369 -0.04

 3 5985538 6078028 n/a 5983589 -0.03

 4 6096729 6198005 n/a 6088472 -0.14

 5 6348242 6448069 n/a 6342433 -0.09

 6 6082142 6230516 n/a 6079207 -0.05

 7 6575879 6608387 n/a 6574569 -0.02

 8 6069658 6153974 n/a 6067688 -0.03

 9 6188416 6280472 n/a 6185834 -0.04

 10 6147295 6230598 n/a 6146054 -0.02

n

instance

h = 0.8

UB Cost DE Basic BA Enhanced BA avg

1000 1 6411581 6611622 n/a 6411352 0.00

 2 6112598 6365048 n/a 6110400 -0.04

 3 5985538 6077715 n/a 5983430 -0.04

 4 6096729 6239392 n/a 6089268 -0.12

 5 6348242 6488538 n/a 6342525 -0.09

 6 6082142 6321170 n/a 6079243 -0.05

 7 6575879 6717260 n/a 6574465 -0.02

 8 6069658 6155240 n/a 6067727 -0.03

 9 6188416 6434096 n/a 6185813 -0.04

 10 6147295 6337246 n/a 6145999 -0.02

 80

Table 3.31 Comparison of minimum deviation of computational results: h = 0.2

Table 3.32 Comparison of minimum deviation of computational results: h = 0.4

n

h = 0.2

DPSO TS GA HTG HGT Basic BA Enhanced BA

10 0.00 0.25 0.12 0.12 0.12 0.00 0.00

20 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84

50 -5.70 -5.70 -5.68 -5.70 -5.70 -5.70 -5.70

100 -6.19 -6.19 -6.17 -6.19 -6.19 -6.19 -6.19

200 -5.78 -5.76 -5.74 -5.76 -5.76 -5.78 -5.78

500 -6.42 -6.41 -6.41 -6.41 -6.41 -6.43 -6.43

1,000 -6.76 -6.73 -6.75 -6.74 -6.74 -6.76 -6.72

AVG -4.96 -4.91 -4.92 -4.93 -4.93 -4.96 -4.95

n

h = 0.4

DPSO TS GA HTG HGT Basic BA Enhanced BA

10 0.00 0.24 0.19 0.19 0.19 0.00 0.00

20 -1.63 -1.62 -1.62 -1.62 -1.62 -1.63 -1.63

50 -4.66 -4.66 -4.60 -4.66 -4.66 -4.66 -4.66

100 -4.94 -4.93 -4.91 -4.93 -4.93 -4.94 -4.94

200 -3.75 -3.74 -3.75 -3.75 -3.75 -3.75 -3.75

500 -3.56 -3.57 -3.58 -3.58 -3.58 -3.57 -3.57

1,000 -4.37 -4.39 -4.40 -4.39 -4.39 -4.35 -4.38

AVG -3.27 -3.24 -3.24 -3.25 -3.25 -3.27 -3.28

 81

Table 3.33 Comparison of minimum deviation of computational results: h = 0.6

Table 3.34 Comparison of minimum deviation of computational results: h = 0.8

n

h = 0.6

DPSO TS GA HTG HGT Basic BA Enhanced BA

10 0.00 0.10 0.03 0.03 0.01 0.00 0.00

20 -0.72 -0.71 -0.68 -0.71 -0.71 -0.72 -0.72

50 -0.34 -0.32 -0.31 -0.27 -0.31 -0.34 -0.33

100 -0.15 -0.01 -0.12 0.08 0.04 -0.15 -0.40

200 -0.15 -0.01 -0.13 0.37 0.07 -0.15 -0.15

500 -0.11 0.25 -0.11 0.73 0.15 -0.11 -0.11

1,000 -0.06 1.01 -0.05 1.28 0.42 -0.05 0.05

AVG -0.22 0.04 -0.20 0.22 -0.05 -0.22 -0.24

n

h = 0.8

DPSO TS GA HTG HGT Basic BA Enhanced BA

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 -0.41 -0.41 -0.28 -0.41 -0.41 -0.41 -0.41

50 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24 -0.24

100 -0.18 -0.15 -0.12 -0.08 -0.11 -0.18 -0.25

200 -0.15 -0.14 -0.14 0.26 0.07 -0.15 -0.15

500 -0.11 0.21 -0.11 0.73 0.13 -0.11 -0.10

1,000 -0.06 1.13 -0.05 1.28 0.40 -0.05 -0.05

AVG -0.16 0.07 -0.13 0.22 -0.02 -0.16 -0.17

 82

Table 3.35 shows comparative results for the Enhanced Bees Algorithm, BA and

DPSO in terms of minimum, maximum and average percentage of relative

deviations and standard deviations. The minimum percentage of relative

deviations () of the enhanced Bees Algorithm was compared to the Scatter

Search Algorithm (SS) (Talebi et al. 2009), the BA, and the DPSO. The average

percentage of relative deviation () of the enhanced Bees Algorithm was

compared to the BA, the DPSO and differential evolution (DE). It was found that

the enhanced Bees Algorithm outperforms these four algorithms. It can be seen

from the total minimum, that the enhanced Bees Algorithm is slightly better than

the BA and the DPSO at -2.15 and much better than the SS at 2.15, which is

inferior to Biskup and Feldmann (2001).

For 100 jobs when h = 0.6 or 0.8, the enhanced Bees Algorithm is superior to the

BA and DPSO which can perform better than the DE. As can be seen, the

standard deviation for both the enhanced Bees Algorithm are nearly zero, which

means that it is slightly more robust than DPSO. All the statistics obtained show

that the performance of the enhanced Bees Algorithm is better than the basic BA

and is superior to all existing approaches considered in this study.

In term of runtime, the stopping criteria of the BA is 1,000 iterations or 2,000

iterations in some difficult instances whereas the stopping criteria of the enhanced

Bees Algorithm is set to stop when the solution found was less than or equal to

the upper bound or it is reached 1,000 iterations. In many cases especially when

min

avg

 83

solving 10 jobs, the enhanced Bees Algorithm found the optimum after

performing not more than 10 or 20 iterations.

 84

Table 3.35 Comparison between the enhance Bees Algorithms, the basic Bees Algorithm, DPSO and DE

n h
Dmin

 Dmax

avg Dstd

SS DPSO BA eBA DPSO BA eBA DPSO DE BA eBA DPSO BA eBA

10

0.2 0.33 0.00 0.00 0.00 0.11 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00

0.4 0.19 0.00 0.00 0.00 0.15 0.00 0.00 0.02 0.00 0.00 0.00 0.05 0.00 0.00

0.6 1.54 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.8 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20

0.2 -3.57 -3.84 -3.84 -3.84 -3.79 -3.83 -3.84 -3.83 -3.84 -3.84 -3.84 0.02 0.00 0.00

0.4 -0.85 -1.63 -1.63 -1.63 -1.57 -1.63 -1.63 -1.62 -1.63 -1.63 -1.63 0.02 0.00 0.00

0.6 -2.9 -0.72 -0.72 -0.72 -0.66 -0.72 -0.72 -0.71 -0.72 -0.72 -0.72 0.03 0.00 0.00

0.8 -6.82 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 0.00 0.00 0.00

50

0.2 -5.23 -5.70 -5.70 -5.70 -5.61 -5.69 -5.70 -5.68 -5.69 -5.70 -5.70 0.03 0.00 0.00

0.4 -4.05 -4.66 -4.66 -4.66 -4.52 -4.66 -4.66 -4.63 -4.66 -4.66 -4.66 0.05 0.00 0.00

0.6 -1.62 -0.34 -0.34 -0.33 -0.23 -0.34 -0.33 -0.31 -0.32 -0.34 -0.33 0.04 0.00 0.00

0.8 -3.13 -0.24 -0.24 -0.24 -0.24 -0.22 -0.24 -0.24 -0.24 -0.24 -0.24 0.00 0.01 0.00

 85

Table 3.35 Comparison between the enhance Bees Algorithms, the basic Bees Algorithm, DPSO and DE (continued)

n h

Dmin
 Dmax

avg Dstd

SS DPSO BA eBA DPSO BA eBA DPSO DE BA eBA DPSO BA eBA

100 0.2 -5.82 -6.19 -6.19 -6.19 -6.15 -6.19 -6.19 -6.18 -6.17 -6.19 -6.19 0.02 0.00 0.00

0.4 -4.28 -4.94 -4.94 -4.94 -4.82 -4.93 -4.94 -4.90 -4.89 -4.94 -4.94 0.04 0.00 0.00

0.6 -0.27 -0.15 -0.15 -0.40 0.26 -0.14 -0.40 -0.09 -0.13 -0.14 -0.40 0.14 0.00 0.00

0.8 0.37 -0.18 -0.18 -0.25 -0.18 -0.17 -0.25 -0.18 -0.17 -0.18 -0.25 0.00 0.00 0.00

200 0.2 -5.37 -5.78 -5.78 -5.78 -5.74 -5.77 -5.78 -5.77 -5.77 -5.78 -5.78 0.01 0.00 0.00

0.4 -3.12 -3.75 -3.75 -3.75 -3.68 -3.74 -3.75 -3.72 -3.72 -3.75 -3.75 0.02 0.01 0.00

0.6 0.19 -0.15 -0.15 -0.15 0.56 -0.15 -0.15 -0.03 0.23 -0.15 -0.15 0.27 0.00 0.00

0.8 0.43 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 0.20 -0.15 -0.15 0.00 0.00 0.00

500 0.2 -5.93 -6.42 -6.43 -6.43 -6.40 -6.42 -6.43 -6.41 -6.43 -6.43 -6.43 0.01 0.00 0.00

0.4 -3.06 -3.56 -3.57 -3.57 -3.51 -3.56 -3.57 -3.54 -3.57 -3.57 -3.57 0.01 0.00 0.00

0.6 0.31 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 1.72 -0.11 -0.11 0.00 0.00 0.00

0.8 0.38 -0.11 -0.11 -0.10 -0.11 -0.11 -0.10 -0.11 1.01 -0.11 -0.10 0.00 0.00 0.00

 86

Table 3.35 Comparison between the enhance Bees Algorithms, the basic Bees Algorithm, DPSO and DE (continued)

n h

Dmin
 Dmax

avg Dstd

SS DPSO BA eBA DPSO BA eBA DPSO DE BA eBA DPSO BA eBA

1000 0.2 -6.18 -6.76 -6.76 -6.72 -6.73 -6.74 -6.72 -6.75 -6.75 -6.72 -6.72 0.01 0.01 0.00

0.4 -3.76 -4.37 -4.35 -4.38 -4.32 -4.33 -4.38 -4.35 -4.34 -4.38 -4.38 0.01 0.01 0.00

0.6 0.71 -0.06 -0.05 -0.05 -0.03 -0.05 -0.04 -0.04 1.29 -0.05 -0.05 0.01 0.01 0.01

0.8 0.71 -0.06 -0.05 -0.05 -0.06 -0.05 -0.04 -0.06 2.79 -0.05 -0.05 0.00 0.00 0.01

AVG 2.15 -2.15 -2.15 -2.16 -2.07 -2.15 -2.16 -2.14 -1.87 -2.15 -2.16 0.03 0.00 0.00

 87

3.5 Summary

In this chapter, the enhanced Bees Algorithm is proposed. The aim is to improve

the basic Bees Algorithm’s performance in solving single machine with common

due date problem. Negative Selection is embedded into the basic Bees Algorithm

to overcome its drawback. The results are compared to those obtained by the basic

Bees Algorithm and by some other well-known algorithms to be found in the

literatures. The results obtained show that the enhanced Bees Algorithm performs

better than the basic version and any other well-known algorithms considered for

this problem.

CHAPTER 4

THE BACTERIAL BEES ALGORITHM TO

MINIMISE TOTAL WEIGHTED TARDINESS

ON A MACHINE SCHEDULING

4.1 Preliminaries

Single machine total weighted tardiness problem is one of the well-known

scheduling problems. It is known to be NP-hard (Lenstra et al. 1977) that consists

of one machine and a number of independent jobs. The objective of this

scheduling problem is to find a processing order of all jobs that minimise the sum

of the weighted tardiness. In the first phase of this research, the Bees Algorithm

with four different neighbourhood search procedures has been developed. It could

solve 122 out of 125 instances of 40 job problem benchmark (Pham et al 2012).

 89

However, it struggled to find optimal solutions of many instances of 50 and 100

job problems. In the second phase of this research, bacterial foraging technique

was adapted and embedded into the Bees Algorithm to improve its performance.

The chapter is organised as follows: Section 4.2 describes single machine total

weighted tardiness problem and benchmark used in this study. Section 4.3

presents the Bacterial Bees Algorithm developed to solve this problem. Its

characteristics are described. In section 4.4, results are compared with the results

derived from the first Bees Algorithm developed to solve this benchmark and

other existing works to show the improvement. The summary of this work is in

Section 4.5.

4.2 Single Machine Total Weighted Tardiness Problem

The single machine total weighted tardiness problem is to schedule n jobs on a

machine. A set of jobs is to be processed without interruption on a machine that

can handle one job at a time. Each job i is available for processing at time zero

and has a processing time pi, a weight wi, and a due date di by which it should

ideally be finished. The tardiness of a job i can be defined as Ti = max {0, Ci –di},

where Ci is the completion time of job i. The objective of this scheduling problem

is to find a processing order of all jobs that minimise the sum of the weighted

tardiness given by :

 90

 (Eq.4.1)

The benchmark data used in this study can be obtained at OR-LIBRARY

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html. 125 test instances are

available for each problem size n = 40, n = 50 and n = 100 where n is number of

jobs. The instances were randomly generated as follows:

 For each job i (i = 1 ,..., n), an integer processing time pi was generated

from the uniform distribution (1,100) and integer processing weight wi was

generated from the uniform distribution (1,10). Instance classes of varying

hardness, the due dates, were generated by using different uniform

distributions.

 For a given relative range of due dates (RDD) = 0.2, 0.4, 0.6, 0.8, 1.0 and

a given average tardiness factor (TF) = 0.2, 0.4, 0.6,0.8,1.0, an integer due

date di for job i was randomly generated from the uniform distribution

[P(1-TF-RDD/2), P(1-TF+RDD/2)], where

http://people.brunel.ac.uk/

 91

 (Eq.4.2)

The optimal values for 40 and 50 job problems and best-known optimal values for

100 job problem are known and also available at OR-LIBRARY. Those optimal

values of 40 and 50 job problems are from Crauwels et al. (1996) and of 100 job

problem is from Congram et al. (1998). Table 4.1 shows optimal values for 40 and

50 job problems, and best-known for 100 job problems respectively.

 92

Table 4.1 Optimal and Best-known solutions of 40, 50, and 100 job problems

Instance Optimum for 40 jobs Optimum for 50 jobs Best-known for100 jobs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

913

1225

537

2094

990

6955

6324

6865

16225

9737

17465

19312

29256

14377

26914

72317

78623

74310

77122

63229

77774

100484

135618

119947

128747

2134

1996

2583

2691

1518

26276

11403

8499

9884

10655

43504

36378

45383

51785

38934

87902

84260

104795

89299

72316

214546

150800

224025

116015

240179

5988

6170

4267

5011

5283

58258

50972

59434

40978

53208

181649

234179

178840

157476

172995

407703

332804

544838

477684

406094

898925

556873

539716

744287

585306

 93

Table 4.1 Best-known solution values of 40, 50, and 100 job problem (continued)

Instance 40 jobs 50 jobs 100 jobs

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

108

64

15

47

98

6575

4098

5468

2648

5290

19732

17349

24499

19008

19611

57640

81462

65134

78139

66579

64451

113999

74323

110295

95616

2

4

755

99

22

9934

7178

4674

4017

6459

34892

22739

29467

49352

26423

71111

90163

84126

123893

79883

157505

133289

191099

150279

198076

8

718

27

480

50

24202

25469

32964

22215

19114

108293

181850

90440

151701

129728

462324

425875

320537

360193

306040

829828

623356

748988

656693

599269

 94

Table 4.1 Best-known solution values of 40, 50, and 100 job problem (continued)

Instance 40 jobs 50 jobs 100 jobs

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

0

0

0

0

0

2099

2260

4936

3784

3289

20281

13403

19771

24346

14905

65386

65756

78451

81627

68242

90486

115249

68529

79006

98110

0

0

0

0

0

1258

3679

2522

3770

5904

25212

17337

30729

18082

25028

76878

85413

92756

77930

74750

150580

131680

98494

135394

135677

0

0

0

0

0

9046

11539

16313

7965

19912

86793

87067

96563

100788

56510

243872

401023

399085

309232

222684

640816

611362

623429

584628

575274

 95

Table 4.1 Best-known solution values of 40, 50, and 100 job problem (continued)

Instance 40 jobs 50 jobs 100 jobs

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

0

0

0

0

0

684

172

798

617

776

10262

18646

10021

25881

8159

47683

43004

55730

59494

42688

126048

114686

112102

98206

157296

0

0

0

0

0

816

4879

973

508

3780

20751

36053

28268

28846

15451

89298

66340

61060

42453

56522

177909

139591

148906

179264

120108

0

0

0

0

0

1400

317

1146

136

284

66850

84229

55544

54612

75061

248699

311022

326258

273993

316870

495516

636903

680082

622464

449545

 96

Table 4.1 Best-known solution values of 40, 50, and 100 job problem (continued)

Instance 40 jobs 50 jobs 100 jobs

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

0

0

0

0

0

0

516

3354

0

0

31478

21169

27077

19648

13774

46770

50364

25460

66707

69019

122266

82456

75118

73041

104531

0

0

0

0

0

0

1717

0

6185

1295

27310

15867

35106

15467

10574

35727

71922

65433

106043

101665

78315

119925

101157

139488

110392

0

0

0

0

0

0

1193

0

232

0

159138

174377

91171

168297

70190

370631

324437

246243

293576

267326

471214

570459

397029

431115

560754

 97

4.3 The Bacterial Bees Algorithm for Single Machine

Total Weighted Tardiness Problem

The Bees Algorithm was successfully developed to solve 40 job problem (Pham

et al 2012). In this basic version, four different neighbourhood search procedures

were deployed randomly. Figures 4.1-4.4 display neighbourhood search

procedures deployed for the Bees Algorithm. Figure 4.1 shows 1
st
 procedure:

swap between two jobs selected randomly. Two pairs of jobs will be done in this

process. Figure 4.2 shows 2
nd

 procedure: reverse job order in a selected sub

sequence. Two positions are selected randomly then job positions between these

two positions are reversed. Figure 4.3 shows 3
rd

 procedure: swap between two sub

sequences. Position one and two are selected randomly first and then position

three and four. Provided these selections do not overlap then job sequence

between position one and two and job sequence between position three and four

are swapped. Figure 4.4 shows 4
th
 procedure: swap between three jobs. Three

positions are selected and then swapped. The job at selected position one will be

moved to selected position two, the previous job at selected position two will be

moved to position three, and the job at position three will be moved to selected

position one.

 98

Figure 4.1 Swapping between two jobs randomly

a) before

b) after

Figure 4.2 Reversing job order in a selected sub sequence.

 0

1 2 3

4

 0

4 3 2

1

 0

 99

Figure 4.3 Swapping two groups of jobs

Figure 4.4 Swapping three job positions

 0

 0

1

2

3

 100

The experimental results showed that the Bees Algorithm could find 122 optimal

values out of 125 instances for 40 job problem. The full result details will be

shown and discussed in Section 4.3. The result showed that it was struggling to

find optimal values of many instances of 50 and 100 job problems. Hence the

Bacterial foraging technique is considered for enhancing the Bees Algorithm’s

performance in this task.

In 2002, Passino proposed Bacterial Foraging Optimisation Algorithm (BFOA)

for Distributed Optimisation and Control. Foraging behaviour of E. coli, which is

a common type of bacteria living in human intestine, was considered. BFOA

consists of three events namely chemotaxis, reproduction, and elimination and

disposal. The idea is to find the minimum of J(θ) where θ is the position of a

bacterium and J(θ) represents the combine affects of attractants and repellents

from environment. J(θ) <0, J(θ) =0, and J(θ) >0 represent that the bacterium at

location θ is in nutrient-rich, neutral, and noxious environments, respectively.

Basically, chemotaxis is a foraging behaviour that implements a type of

optimisation where bacteria try to climb up the nutrient concentration and avoid

noxious substances. It implements a type of biased random walk. Normally, each

bacterium can move in two different ways. It can swim for a period of time in the

same direction, or it may tumble, and alternate between these two modes of

operation for the entire lifetime (Zhong et al 2011).

After a period of food search, the foraging strategies of some bacteria appear

inferior evidently. To avoid noxious substances, last half of bacteria with high

 101

cost are considered unhealthy and removed out of population. Healthiest bacteria

each split into two bacteria to keep the population size constant. It is also possible

that the local environment where a population of bacteria live changes either

gradually or suddenly due to some other influence. For example, the sudden

increase of temperature can kill a population of bacteria that are currently in a

region with a high concentration of nutrients. This event is called elimination and

dispersal and it is triggered with probability. If a certain individual satisfies the

dispersal condition, it should be deleted and a new individual should be generated.

 Chemotaxis and elimination and dispersal have been adapted and embedded into

the Bees Algorithm in this research. These two techniques are re-designed to suit

the Bees Algorithm for combinatorial optimisation problem. This new version is

called ‘the Bacterial Bees Algorithm’. The pseudo-code of the Bacterial Bees

Algorithm is given in Fig 4.5. This algorithm starts with the bee foraging part.

Initial population of n scout bees are randomly generated. Each bee presents a

sequence of jobs. In step 2, the fitness computation process is carried out. In step

4, the m sites with highest fitness are selected for neighbourhood search. In step 5,

the algorithm conducts searches around the selected site, assigning more bees to

search in the surrounding area of the best ‘e’ sites. Each bee randomly chooses to

perform one of four neighbourhood search procedures. The fitness values are

evaluated. For the first iteration, the fittest value is saved. In other iteration, the

best fitness solution is compared with the saved one. If its value is less than the

saved one, then overwrite the value and update J(θ). In this case J(θ) = 0 which

means J(θ) is in nutrient rich environment. In step 7, a small number of best

 102

solutions (s) will be carried out for next iteration. Then only half of n including s

is produced as new population for next generation. This is to reduce

computational time from calculating fitness values. The Algorithm will repeat

steps 2 to 6 until the best fitness is equal to the saved one which means J(θ) > 0

and is in neutral environment, and then goto step 8. When this happens, to avoid

local optimum the algorithm will do reproduction by keeping small number of

best solution and clone them and move first or last job and insert it into a new

random position to create new solution and then repeat steps 2 to 6 but in step 5,

some of recruited bees will randomly perform chemotactic step. This study has

adapted chemotactic step to a neighbourhood search procedure. The recruited bee

will randomly choose and perform two neighbourhood search procedures with

probability 0.25. If the algorithm could not improve the fitness value in a certain

time, the best solution is save and the algorithm will perform elimination and

dispersal event by ignoring all solutions and reproducing n-1 possible solutions in

step 9. Then repeat steps 2-6 without chemotactic step.

 103

Figure 4.5 The pseudo-code of the Bacterial Bees Algorithm

1. Initial population (θ) with n random solutions.

2. Evaluate fitness of the population.

3. While (stopping criterion has not been met).

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites: elite sites (e) and other selected sites (m-e).

6. Evaluate the fittest values and for 1
st
 iteration, save the best fittest (Fi) otherwise update

J(θ) as follows:

 If Fi < Fi-1

Then J(θ) is in nutrient rich environtment. Update best fitness and go to step (7)

 Else if Fi = Fi-1 and less than T times

 Then J(θ) is in neutral environtment. Go to step (8)

 Else go to step (9).

7. Keep a small number of best solutions (s) and assign remaining bees to search for new

possible solutions (p) where p = (n/2)-s. Then repeat step (2)-(6).

8. Keep a small number of best solutions, perform reproduction, and assign remaining

bees to search for new possible solution (np) where np = (n/2)-2s. Then repeat step (2)-(6)

with Chemotactic event in step (5).

9. Save the best solution (F) and perform elimination and dispersal event. Then reproduce

n-1 possible solutions randomly.

10. End while.

 104

4.4 Experimental results

The first Bees Algorithm was implemented in Matlab and run on a cluster called

Merlin provided by ARCCA, Cardiff University. The configuration and features

for compute nodes are Xeon E5472 3.0GHz, 1600MHz FSB, 16 GB RAM, 12

MB L2 cache, 160 GB@ 7.2k RPM SATA HDD local disk. For the computation

results, the Bees Algorithm was able to find 122 optimal solutions out of 125

instances. Three instances where the Bees Algorithm could not find the optimums

are instance 62, 85, and 112.

The Bacterial Bees Algorithm is introduced to increase the performance. The 10

time experiment has been carried out on Dell laptop: Intel (R) Core (TM) 2 Duo

CPU P8600 @2.40GHz 4 GB RAM and MacBook Pro: Intel Quad Core i7

2.3GHz. 6 GB RAM. This enhanced version of the Bees Algorithm found 125

optimal solutions out of 125 instances. Table 4.2 shows the parameters used and

for the maximum number of being in neutral medium or trapping in local optima

is normally set to 3 but only at some difficult instances, this parameter was set to

6 or 9. Table 4.3-4.7 show the comparison of running times between the basic

Bees Algorithm and the Bacterial Bees Algorithm. The performance of the new

algorithm was quantified by the average percentage of relative deviations (avg)

from 10 runs. The minimum of the average percentage of relative deviations

of

computational runtime is -50.37. It performed 2 times faster than the basic Bees

Algorithm on 13
th

 instance. The maximum of the average percentage of relative

 105

deviations

of computational time is -99.80. It found optimum 495 times faster

than the basic Bees Algorithm on 87
th
 instance.

Table 4.8-4.10 show the computational time of the Bacterial Bees Algorithm for

50 jobs problem. It could find 120 optimal solutions out of 125 instances. The

minimum average runtime that it could find the optimum is 0.70 seconds on 103
rd

instance, whereas the maximum average runtime is at 1228.14 seconds on 107
th

instance. Table 4.11-1.13 show the computational time of the Bacterial Bees

Algorithm for 100 job problem. It could find only 98 optimal solutions out of 125

instances. The minimum average runtime that it could find the optimum is 2.49

seconds on 77
th

 instance, whereas the maximum average runtime is at 63427.00

seconds on 100
th
 instance.

There are many existing research that had applied varied techniques to solve this

benchmark. However, this study could not show and compare the results from the

Bacterial Bees Algorithm with those existing work in detail as none of them

reported or has showed results in detail. Some works used only some instances of

each dataset problem to be tested on their techniques. Some works used only one

or two dataset problems for their research.

Nearchou (2004) has applied a Simulated Annealing Algorithm on 40 and 50 jobs

problems. 5 run were carried out. This algorithm solved to optimality 91 out of

test instances for 40 jobs problem and 73 out of 125 test instance for 50 job

problem. In 2006, Huang and Tung have introduced Discrete Particle Swarm

Optimisation called MPSO to solve the two dataset. However, only 10 instances

of each dataset were used to test the algorithm. Those instances are 1, 11, 21, 31,

 106

46, 56, 71, 91,101, and 116. MPSO could solve all 10 instances of both dataset.

Its performance was compared with previous work by Cagnina et al (2004) who

applied a hybrid PSO which could solve only 5 out of 10 instances for 40 jobs

problem and 4 out of 10 instances.

In 2006, Ferrolho and Crisostomo proposed Genetic Algorithm to solve some of

test instances of 40, 50 and 100 jobs problems. For 40 jobs problem, 2
nd

, 7
th
, and

31
st
 instances were used. The average runtimes were 190.00, 362.40, 319.70

seconds respectively where as the Bacterial Bees Algorithm’s average runtimes

for these instances were 16.35, 8.48, and 14.78 seconds respectively. For 50 jobs

problem, 1
st
 , 30

th
, and 33

rd
 instances were used. The average runtimes were

88.30, 45.50, 573.60 seconds respectively where as the Bacterial Bees

Algorithm’s average runtimes for these instances were 4.42, 3.84, and 28.25

seconds respectively. For 100 jobs problem, 1
st
, 4

th
 , and 26

th
 instances were used.

The average runtimes were 2406.01, 2428.10, 523.90 seconds respectively where

as the Bacterial Bees Algorithm’s average runtimes for these instances were

64.10, 31.33, and 50.56 seconds respectively. However, both techniques were

tested on different types of computers.

Kellegoz et al. (2008) selected first five instances of each job problem to compare

the performances of 11 crossover operators to solve this total weighted tardiness

problem. For 40 jobs problem, none of 11 crossover operators could find the

optimums of 1
st
 – 4

th
 instances. Only 4 operators could find the optimum of 5

th

instance. For 50 and 100 jobs problems, none of those operators could find the

optimums of selected instances.

 107

Tasgetiren et al (2004) proposed PSOspv to solve this benchmark. A heuristic rule

called Smallest Position Value (SPV) rule was developed to enable PSO to solve

this combinatorial problem. PSOspv was able to find 120 optimal solution out of

125 instances for 40 jobs problem, 110 optimal solution out of 125 instances for

50 jobs problem, and 51 best known solutions out of 125 instances for 100 jobs

problem which is the most difficult one. It seems that the basic Bees Algorithm

performed better in solving 40 jobs problem and Bacterial Bees Algorithm could

perform better in all problems. However, this work set has limited runtime to 5

seconds for 40 jobs problem, 10 seconds for 50 jobs problem, and 100 seconds for

100 jobs problem. In term of runtime comparison, PSOspv performed better than

the Bees Algorithms.

In 2000, Besten et al presented the Ant Colony Optimisation (ACO) to solve this

benchmark. Their results are superior to the Bacterial Bees Algorithm’s. The

ACO found all optimal solutions for 40 and 50 jobs problems and found 113 out

of 125 instances for 100 jobs problem.

 108

Table 4.2 Parameters of the Bacterial Bees Algorithms

Parameters
Value

p : Population 300

m : Number of selected sites 30

e : Number of elites sites 10

nep : Number of bees around elite sites 20

nsp : Number of bees around other
selected points

10

Probability of Chemotaxis 0.25

Max of time to be in Neutral Medium 3,6,9

 109

Table 4.3 Comparison of computational times between the basic Bees Algorithm

and the Bacterial Bees Algorithm: Instance 1-25

Instance Optimum

The basic Bees

Algorithm’s

running time (sec)

The Bacterial Bees

Algorithm’s running

time (sec)
avg

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

913

1225

537

2094

990

6955

6324

6865

16225

9737

17465

19312

29256

14377

26914

72317

78623

74310

77122

63229

77774

100484

135618

119947

128747

84.93

93.27

372.86

79.22

18.84

162.12

183.48

89.84

218.92

236.08

268.28

420.22

836.41

363.51

744.05

2793.78

1463.90

4218.73

2683.74

3164.42

8265.32

5058.46

5091.31

12187.37

8018.63

5.64

8.48

34.26

8.76

2.37

11.94

14.78

8.61

13.48

28.61

19.66

22.10

415.14

100.32

32.84

99.75

164.46

184.20

189.84

413.02

501.64

821.04

513.36

920.15

421.20

-93.35

-90.90

-90.81

-88.95

-87.44

-92.64

-91.94

-90.41

-93.84

-87.88

-92.67

-94.74

-50.37

-72.40

-95.59

-96.43

-88.77

-95.63

-92.93

-86.95

-93.93

-83.77

-89.92

-92.45

-94.75

 110

Table 4.4 Comparison of computational times between the basic Bees Algorithm

and the Bacterial Bees Algorithm: Instance 26-50

Instance Optimum

The basic Bees

Algorithm’s

running time (sec)

The Bacterial Bees

Algorithm’s running

time (sec)
avg

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

108

64

15

47

98

6575

4098

5468

2648

5290

19732

17349

24499

19008

19611

57640

81462

65134

78139

66579

64451

113999

74323

110295

95616

26.23

49.87

9.70

28.42

21.81

16.35

6.46

20.52

24.71

13.45

91.98

35.92

49.21

160.75

56.36

186.06

703.61

352.30

349.72

1071.16

715.55

840.03

1087.91

642.71

614.53

1.51

1.76

0.56

0.85

1.99

16.35

6.46

20.52

24.71

13.45

91.98

35.92

49.21

160.75

56.36

186.06

703.61

352.30

349.72

1071.16

715.55

840.03

1087.91

642.71

614.53

-94.25

-96.48

-94.23

-97.00

-90.89

-94.82

-96.59

-95.72

-86.47

-95.69

-93.29

-95.16

-94.73

-84.58

-97.39

-89.09

-93.90

-94.67

-97.51

-83.68

-87.40

-89.56

-90.39

-91.12

-90.83

 111

Table 4.5 Comparison of computational times between the basic Bees Algorithm

and the Bacterial Bees Algorithm: Instance 51-75

Instance Optimum

The basic Bees

Algorithm’s

running time (sec)

The Bacterial Bees

Algorithm’s running

time (sec)
avg

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

0

0

0

0

0

2099

2260

4936

3784

3289

20281

13403

19771

24346

14905

65386

65756

78451

81627

68242

90486

115249

68529

79006

98110

69.47

9.58

9.68

7.23

11.96

600.86

6608.07

879.75

391.77

315.44

6719.99

-

8178.16

3606.48

768.62

9918.82

14290.57

7351.29

6685.56

5340.08

5524.07

7296.84

6413.35

10390.73

5371.25

2.69

0.34

0.34

0.30

0.58

20.77

42.33

64.06

32.81

38.12

28.08

44.89

48.76

38.65

30.01

46.52

78.06

46.81

55.16

48.21

32.52

28.64

32.04

29.15

29.24

-96.12

-96.44

-96.53

-95.87

-95.11

-96.54

-99.36

-92.72

-91.63

-87.92

-99.58

-

-99.40

-98.93

-96.10

-99.53

-99.45

-99.36

-99.17

-99.10

-99.41

-99.61

-99.50

-99.72

-99.46

 112

Table 4.6 Comparison of computational times between the basic Bees Algorithm

and the Bacterial Bees Algorithm: Instance 76-100

Instance Optimum

The basic Bees

Algorithm’s

running time (sec)

The Bacterial Bees

Algorithm’s running

time (sec)
avg

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

0

0

0

0

0

684

172

798

617

776

10262

18646

10021

25881

8159

47683

43004

55730

59494

42688

126048

114686

112102

98206

157296

7.22

9.76

4.94

14.34

21.47

1712.20

242.46

536.20

759.82

-

2023.87

35266.67

4322.38

6875.27

4970.31

16140.77

8827.16

5041.33

5168.17

16425.03

7291.68

4035.00

6259.16

7351.92

12608.67

0.45

0.38

0.17

0.41

0.88

109.90

12.21

24.05

50.51

69.54

73.88

71.24

34.97

68.23

134.19

67.32

26.67

47.46

44.05

51.44

32.46

28.56

25.17

34.27

30.82

-93.71

-96.11

-96.52

-97.14

-95.90

-93.58

-94.96

-95.51

-93.35

-

-96.35

-99.80

-99.19

-99.01

-97.30

-99.58

-99.70

-99.06

-99.15

-99.69

-99.55

-99.29

-99.60

-99.53

-99.76

 113

Table 4.7 Comparison of computational times between the basic Bees Algorithm

and the Bacterial Bees Algorithm: Instance 101-125

Instance Optimum

The basic Bees

Algorithm’s

running time (sec)

The Bacterial Bees

Algorithm’s running

time (sec)
avg

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

0

0

0

0

0

0

516

3354

0

0

31478

21169

27077

19648

13774

46770

50364

25460

66707

69019

122266

82456

75118

73041

104531

2.52

23.97

52.76

12.05

14.48

116.55

2371.98

3960.22

47.61

78.43

6447.61

-

10165.80

5685.70

16498.10

19830.87

11686.70

6249.10

8363.85

11290.97

3994.61

14371.13

10906.37

7879.30

9016.24

0.39

0.87

3.06

0.36

0.64

4.22

45.01

42.14

1.63

2.95

32.97

2715.94

47.69

41.38

77.32

120.20

50.40

56.16

27.74

88.94

45.92

35.28

78.39

43.35

31.20

-84.45

-96.38

-94.21

-97.02

-95.57

-96.38

-98.10

-98.94

-96.57

-96.24

-99.49

-

-99.53

-99.27

-99.53

-99.39

-99.57

-99.10

-99.67

-99.21

-98.85

-99.75

-99.28

-99.45

-99.65

 114

Table 4.8 The Bacterial BA’s computational results for 50 job problem: Ins 1-50

Instance Optimum Time (sec) Instance Optimum Time (sec)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2134

1996

2583

2691

1518

26276

11403

8499

9884

10655

43504

36378

45383

51785

38934

87902

84260

104795

89299

72316

214546

150800

224025

116015

240179

4.42

37.17

4.39

4.21

15.61

25.70

18.45

24.69

16.75

12.55

35.77

108.26

31.93

100.15

20.81

45.27

-

110.84

91.88

81.63

104.20

71.04

80.51

75.30

79.30

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

2

4

755

99

22

9934

7178

4674

4017

6459

34892

22739

29467

49352

26423

71111

90163

84126

123893

79883

157505

133289

191099

150279

198076

6.13

1.78

35.20

15.47

3.84

59.99

157.57

28.25

41.71

105.46

82.40

48.44

103.55

70.42

63.20

100.31

80.56

136.60

213.70

99.61

90.09

64.11

69.15

84.44

72.16

 115

Table 4.9 The Bacterial BA’s computational results for 50 jobs: Ins 51-100

Instance Optimum Time (sec) Instance Optimum Time (sec)

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

0

0

0

0

0

1258

3679

2522

3770

5904

25212

17337

30729

18082

25028

76878

85413

92756

77930

74750

150580

131680

98494

135394

135677

2.03

1.05

0.80

1.76

1.11

30.42

166.67

27.12

112.66

108.53

110.53

136.06

801.66

220.47

-

345.07

247.89

253.95

237.34

235.40

120.25

140.74

248.18

119.88

202.20

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

0

0

0

0

0

816

4879

973

508

3780

20751

36053

28268

28846

15451

89298

66340

61060

42453

56522

177909

139591

148906

179264

120108

2.21

2.42

0.74

1.39

2.62

168.94

147.27

456.12

33.55

-

1117.18

917.55

286.95

128.34

619.72

399.84

228.07

308.16

342.25

380.86

71.45

83.08

148.30

79.04

85.52

 116

Table 4.10 The Bacterial BA’s computational results for 50 jobs: Ins 101-125

 Instance Optimum Time (sec)

 101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

0

0

0

0

0

0

1717

0

6185

1295

27310

15867

35106

15467

10574

35727

71922

65433

106043

101665

78315

119925

101157

139488

110392

1.16

1.08

0.70

1.33

8.27

3.83

1228.14

7.73

-

551.41

141.93

124.66

239.44

-

196.75

129.03

308.46

139.12

195.25

763.26

178.43

110.67

193.80

268.94

113.13

 117

Table 4.11 The Bacterial BA’s’s computational results for 100 jobs: Ins 1-50

Instance Optimum Time (sec) Instance Optimum Time (sec)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

5988

6170

4267

5011

5283

58258

50972

59434

40978

53208

181649

234179

178840

157476

172995

407703

332804

544838

477684

406094

898925

556873

539716

744287

585306

64.10

157.76

58.91

50.56

56.07

257.42

189.18

232.80

610.87

658.07

1952.42

1751.46

1229.41

7311.54

1553.44

1812.34

1915.74

1675.21

5713.15

6641.12

1295.57

2016.39

4604.94

1710.34

1271.63

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

8

718

27

480

50

24202

25469

32964

22215

19114

108293

181850

90440

151701

129728

462324

425875

320537

360193

306040

829828

623356

748988

656693

599269

31.33

618.15

58.47

536.29

31.66

620.47

816.09

3853.48

-

1493.04

1982.21

3205.19

1668.15

3298.23

1669.68

4120.01

21861.07

8515.39

-

-

2373.19

2531.77

2928.70

1589.95

3457.98

 118

Table 4.12 The Bacterial BA’s computational results for 100 jobs: Ins 51-100

Instance Optimum Time (sec) Instance Optimum Time (sec)

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

0

0

0

0

0

9046

11539

16313

7965

19912

86793

87067

96563

100788

56510

243872

401023

399085

309232

222684

640816

611362

623429

584628

575274

3.73

3.60

3.36

5.28

3.33

-

553.83

3281.77

479.28

1140.13

-

17957.30

-

-

-

-

8698.46

-

-

1182.16

3431.82

18813.50

2445.46

6492.95

4910.05

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

0

0

0

0

0

1400

317

1146

136

284

66850

84229

55544

54612

75061

248699

311022

326258

273993

316870

495516

636903

680082

622464

449545

5.75

2.49

5.11

4.39

4.15

5896.30

927.67

1334.17

42.30

452.16

-

-

-

4050.92

-

4867.05

-

-

-

10126.80

9144.44

6966.12

8621.40

5766.41

63427.00

 119

Table 4.13 The Bacterial BA’s computational results for 100 jobs: Ins 101-125

 Instance Optimum Time (sec)

 101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

0

0

0

0

0

0

1193

0

232

0

159138

174377

91171

168297

70190

370631

324437

246243

293576

267326

471214

570459

397029

431115

560754

3.84

3.05

3.73

5.29

3.15

19.09

1914.77

97.45

428.21

302.39

15012.82

-

-

-

-

-

-

-

6265.52

-

5411.93

4136.22

19223.10

11192.80

-

 120

4.5 Summary

In this chapter, the Bees Algorithm is implemented to solve the single machine

total weighted tardiness problem. A benchmark from the OR-LIBRARY is chosen

to test its performance. The results show that the Bees Algorithm could

successfully solve the 40 jobs benchmark. Also an enhanced Bees Algorithm

called the Bacterial Bees Algorithm was proposed to improve the Bee

Algorithm’s performance. The computational results show that the enhanced

algorithm could perform better than the basic one and some other well-known

algorithms in the literature considered in this study.

CHAPTER 5

THE ADAPTIVE BEES ALGORITHM FOR

WEIGHTED TARDINESS SCHEDULING WITH

SEQUENCE-DEPENDENT SETUPS

5.1 Preliminaries

In this chapter, the Adaptive Bees Algorithm is proposed for solving machine

total weighted tardiness with sequence-dependent setup times. Apparent Tardiness

Cost with Setups (ATCS) heuristic is used to create a reasonably good starting

solution together with a set of random solutions. The algorithm also adapts the

idea of Neighbourhood change in Variable Neighbourhood Search (VNS), a meta-

heuristic or framework for building heuristics.

 122

The chapter is organised as follows: Section 5.2 describes single machine total

weighted tardiness with sequence-dependent setup times and benchmark used in

this study. Section 5.3 presents the Bees Algorithm enhanced to solve this

problem. Its characteristics are described. In section 5.4, results are compared

with the results derived from some existing research. The summary of this work is

in Section 5.5.

5.2 The Weighted Tardiness Scheduling with Sequence-

dependent Setups Problem

The objective of minimising the total weighted tardiness has been the subject of a

very large amount of literature on scheduling, although sequence-dependent

setups have not been so frequently considered. Setups usually correspond to

preparing the production resources for the execution of the next job, and when the

duration of such operations depends on the type of last completed job, the setups

are called sequence-dependent. The presence of sequence-dependent setups

greatly increases the problem difficulty since it prevents the application of

dominance conditions used for simpler tardiness problems (Rubin and Ragatz

1995).

The Weighted Tardiness Scheduling with Sequence-dependent Setups problem

corresponds to the scheduling of n independent jobs on a single machine. All jobs

 123

are ready at time zero and released simultaneously. The machine is continuously

available and can process only one job at a time. For each job j= 1,2,3,…,n, a

processing time pj, a due date dj, and a weight wj are given. A sequence-dependent

setup time sij must be waited before starting the processing of job j if it is

immediately sequenced after job i. The tardiness of a job j is defined as Tj = max

{0, Cj –dj}, where Cj is the completion time of job j. The objective of this

scheduling problem is to find a processing order of all jobs that minimise the sum

of the weighted tardiness

In 2003, Circirello (2003) has proposed a set of benchmark for the Weighted

Tardiness Scheduling with Sequence-dependent Setups Problem. The version of

the problem without setup time is NP-hard. The problem is further complicated by

the fact that it takes variable amounts of time to setup the machine when

switching between any two jobs. The completion time cj of a job can be defined as

:

 (Eq 5.1)

where pi, sk,i are the processing time of job i and the setup time of job i if it

immediately follows job k, respectively. Predecessors(j) is the set of all jobs that

come before job j in the sequence and previous(i) is the single job that

immediately precedes job i. Three parameters characterising each problem

 124

instance are the due date tightness factor τ, the due date range factor δ and the set

up time severity factor η. The benchmark set is formed by the following

parameter values: τ = {0.3, 0.6, 0.9}, δ = {0.25, 0.75} and η = {0.25, 0.75}. For

each of the twelve combinations of parameter values, 10 problem instances with

60 jobs are generated. These 12 problem sets cover a spectrum from loosely to

tightly constrained problem instances. The benchmark instances can be obtained

at http://www.ozone.ri.cmu.edu/benchmarks.html

Recently, several approaches have been adopted to solve this benchmark dataset

see, for examples, Simulated Annealing, Genetics Algorithms, and Tabu Search

by Lin and Ying (2007), Ant Colony Optimisation Algorithm and Discrete

Particle Swarm Optimisation Algotithm by Anghinolfi and Paolucci (2008),

Discrete Differential Evolution Algorithm by Tasgetiren et al. (2009), Discret

Electromagnetism-like Machanism by Chao and Liao (2012), General Variable

neighbourhood serach by Kirlik and Oguz (2012), Scater Search by Guo and Tang

(2011) and Exact Algorithm by Tanaka and Araki (2012).

5.3 The Adaptive Bees Algorithm

Apparent Tardiness Cost with Setups (ATCS) heuristic consists of two stages.

The first stage is to estimate due date tightness, due date range, and setup time

severity factors. These three factors define the problem instances and their

respective makespan value. Next, two look-ahead parameter values (k1 and k2) are

 125

calculated by using those three estimated values derived from first stage and then

used to calculate a priority index, which determines the sequence of the jobs.

The due date tightness , due date range , and setup time severity factors can

be calculated as follows:

 (Eq. 5.2)

 (Eq. 5.3)

 (Eq. 5.4)

Cmax is the completion time after finishing processing last job added into the

sequence, is the average of the due dates, dmax and dmin represent the maximum

 126

and the minimum of due dates, respectively, denotes the average setup time and

 denotes the average processing time.

Due to the sequence dependent setup times, the determining the maximum of the

completion time beforehand is very difficult. An estimated Cmax can be obtained

by correlating the Cmax value with the average processing time, the average setup

time and a coefficient :

 (Eq. 5.5)

Variability of setup times and the number of jobs in the instance would affect the

value of . By using the estimates of and , the parameters k1 and k2 can be

calculated as follows:

 (Eq. 5.6)

 127

 (Eq. 5.7)

Finally, the priority index is determined with the following equation:

 (Eq. 5.8)

The above equation, t denotes, the current time, and I is the index of the job that is

just processed. The ATCS rule separates the effect of the setup time. The priority

of a job given by weighted shortest processing time ratio is exponentially

discounted twice, once based on the slack and again based on the setup time.

These two effects are scaled separately by the parameters k1 and k2, which jointly

provide the look-ahead capabilities of the ATCS rule. The values of the

parameters depend on the problem instance as they essentially perform the scaling

(Lee at al. 1997; Kirlik and Oguz 2012).

According to Mladenovic and Hansen (1997), Hansen and Mladenovic (2001) and

Hansen and Mladenovic (2003), Variable Neighbourhood Search (VNS) exploits

systematically the following facts: A local minimum with respect to one

neighbourhood structure is not necessarily so for another, a global minimum is a

local minimum with respect to all possible neighbourhood structure, and for many

 128

problems, local minima with respect to one or several neighbourhoods are

relatively close to each other.

The last observation implies that a local optimum often provides some

information about the global one. There might be several variables with the same

value in both. However, it is usually not known which ones are such. A study of

the neighbourhood of this local optimum is therefore in order, until a better one is

found.

Reduced Variable Neighbourhood Search (RVNS) is a simple application of

VNS. It is a pure stochastic search method. A set of neighbourhood structures

N1(x), N2(x), …, Nkmax(x) will be considered around the current point x. Usually,

these neighbourhood structures will be nested. Then a point is chosen at random

in the first neighbourhood. If its fitness value is lower than that of the incumbent,

the search is recentered there. Otherwise, one proceeds to the next neighbourhood.

After all neighbourhoods have been considered, one begins again with the first,

until the stopping criteria is met. The description of the steps of the RVNS is as

follows:

1) Find an initial solutions x and choose a stopping condition

2) Repeat the following until a stopping condition is met:

2.1) k 1

2.2) Repeat the following steps until k = kmax

 Shake: take a solution randomly from Nk (x)

 129

 If this point is better than the incumbent, move there (x x’), and

continue the search with N1(k 1); otherwise, set k k+1

This study has used ATCS to generate a starting solution for the Adaptive Bees

Algorithm. The Algorithm itself also generates a set of solutions randomly and

adapts the idea of neighbourhood change within the search in VNS to find better

solution and/or escape from local optima. During Neighbourhood search, the Bees

Algorithm randomly generates the order of the neighbourhood search procedures.

Six different procedures are used which are (See details in chapter 3 and 4):

1) Swapping between two jobs

2) Reversing job order

3) Swapping two groups of jobs

4) Swapping three job positions

5) Inserting first job to a new random position

6) Inserting last job to a new random position

After neighbourhood search, if the Bees Algorithm could find a better solution

then it will apply the same neighbour hood procedure for the next iteration.

Otherwise it will use the next procedure in the order. If the algorithm could not

find a better solution in a certain times, it will abandon the site and create new

potential solution randomly. The pseudo code of the Adaptive Bees Algorithm is

given in Fig 5.1.

 130

Figure 5.1 The pseudo code of the Adaptive Bees Algorithm

1. Initial population (θ) with p-1 random solutions plus a solution by ATCS.

2. Evaluate fitness of the population.

3. While (stopping criterion has not been met).

4. Randomly create an order of neighbourhood procedures (kn)

5. Select sites (m) for neighbourhood search.

6. Recruit bees for selected sites: elite sites (e) and other selected sites (m-e).

7. Evaluate the fittest values, if no improvement then changes the neighbourhood procedure

to the next one in the order for next iteration. Otherwise perform the same procedure.

8. If no improvement for a certain time, save the best fitness and search for new potential

solution; solution.

9. End while.

 131

5.4 Experimental results

The Adaptive Bees Algorithm was implemented in Matlab. The 10 time

experiment has been carried out on Dell laptop: Intel (R) Core (TM) 2 Duo CPU

P8600 @2.40GHz 4 GB RAM and MacBook Pro: Intel Quad Core i7 2.3GHz. 6

GB RAM. Table 5.1 shows the parameters used for experiments for problem

instance 1-40 and Table 5.2 shows the parameters used for experiments for

problem instance 41-120. Table 5.3 - 5.8 show the results derived from the

Adaptive Bees Algorithm (ABA), OBK which is the best-known solutions

composed of the solutions generated by Simulated Annealing, Genetics

Algorithms and Tabu Search by Lin and Ying (2007), ACO by Anghinolfi and

Paolucci (2008), DPSO by Anghinolfi and Paolucci (2009), DDE by Tasgetiren et

al. (2009), DEM by Chao and Liao (2012), GVNS by Kirlik and Oguz (2012), SS

by Guo and Tang (2011), and EXACT by Tanaka and Araki (2012).

Performance of the algorithm was quantified by the average percentage of relation

deviations which was computed as follows:

 (Eq. 5.9)

 132

Table 5.9 - 5.14 show the average percentage of relation deviations of ABA,

ACO, DPSO, DDE, DEM, GVNS, SS, and EXACT. The results show that the

Adaptive Bees Algorithm was able to find 23 better solutions out of 120 instances

than OBK and the same as DPSO, DDE, DEM, GVNS, and SS whereas ACO

found only 22 better solutions. However, EXACT found 24 better solutions.

There are 97 instances in total that the Adaptive Bees Algorithm could not

performed better than OBK. Results of 94 out of those 97 instances were equal.

Table 4.5 shows the average of the average percentage of relation deviations of all

instances. It can be seen that the proposed algorithm could perform much better

than ACO and DPSO and slightly better than GVNS. However, the EXACT

perform better than other existing techniques including the Bees Algorithm.

 133

Table 5.1 Parameters of the Adaptive Bees Algorithms to solve 1-40 instances

Parameters

Value

p : Population 400

m : Number of selected sites 50

e : Number of elites sites 10

nep : Number of bees around elite sites 30

nsp : Number of bees around other

selected points
10

Table 5.2 Parameters of the Adaptive Bees Algorithms to solve 41-120 instances

Parameters

Value

p : Population 600

m : Number of selected sites 50

e : Number of elites sites 10

nep : Number of bees around elite sites 30

nsp : Number of bees around other
selected points

15

 134

Table 5.3 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 1-20

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

684

5082

1792

6526

4662

5788

3693

142

6349

2021

3867

0

5685

3045

1458

4940

204

1610

208

2967

513

5083

1769

6286

4263

7027

3598

129

6094

1931

3853

0

4597

2901

1245

4482

128

1237

0

2545

531

5088

1609

6146

4339

6832

3514

132

6153

1895

3649

0

4430

2749

1250

4127

75

971

0

2675

474

4902

1465

5946

4084

6652

3350

114

5803

1799

3294

0

4194

2268

964

3876

61

857

0

2111

504

4902

1480

6026

4084

6712

3404

113

5894

1803

3078

0

4194

2375

1030

3517

60

835

0

2167

471

4878

1430

6006

4114

6667

3330

108

5751

1789

2998

0

4068

2260

935

3381

0

845

0

2053

471

4854

1455

5906

4134

6667

3458

110

5778

1805

3190

0

4185

2340

953

3843

60

845

0

2058

453

4794

1390

5866

4054

6592

3267

100

5660

1740

2785

0

3904

2075

724

3285

0

767

0

1757

471

4878

1430

6006

4114

6667

3330

108

5751

1789

2998

0

4068

2260

935

3381

0

845

0

2053

 135

Table 5.4 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 21-40

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0

0

0

1063

0

0

0

0

0

165

0

0

0

0

0

0

755

0

0

0

0

0

0

1047

0

0

0

0

0

130

0

0

0

0

0

0

400

0

0

0

0

0

0

1043

0

0

0

0

0

0

0

0

0

0

0

0

186

0

0

0

0

0

0

1033

0

0

0

0

0

0

0

0

0

0

0

0

107

0

0

0

0

0

0

1039

0

0

0

0

0

0

0

0

0

0

0

0

116

0

0

0

0

0

0

920

0

0

0

0

0

0

0

0

0

0

0

0

46

0

0

0

0

0

0

1044

0

0

0

0

0

0

0

0

0

0

0

0

296

0

0

0

0

0

0

761

0

0

0

0

0

0

0

0

0

0

0

0

46

0

0

0

0

0

0

920

0

0

0

0

0

0

0

0

0

0

0

0

46

0

0

0

 136

Table 5.5 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 41-60

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

71186

58199

147211

35648

59307

35320

73984

65164

79055

32797

52639

99200

91302

123558

69776

78960

67447

48081

55396

68851

70253

57847

146697

35331

58935

35317

73787

65261

78424

31826

50770

95951

87317

120782

68843

76503

66534

47038

54037

62828

69102

57487

145883

35331

59175

34805

73378

64612

77771

31810

49907

94175

86891

118809

68649

75490

64575

45680

52001

63342

69242

57511

145310

35289

58935

34764

73005

64612

77641

31565

49927

94603

84841

119226

66006

75367

64552

45322

52207

60765

69242

57511

145310

35289

58935

34764

73005

64612

77641

31565

49927

94603

84841

119226

66006

75367

64552

45322

52207

60765

69242

57511

145310

35289

59025

34764

72853

64612

77833

31292

49761

93106

84841

119074

65400

74940

64575

45322

51649

61755

69552

57511

145310

35289

58935

34887

73157

64688

77771

31519

50101

96225

87559

121228

66006

75079

64552

46324

53315

62783

69102

57487

145310

35166

58935

34764

72853

64612

77641

31292

49761

93106

84841

118809

65400

74940

64552

45322

51649

60765

69102

57487

145130

35289

59025

34764

72853

64612

77641

31292

49761

93106

84841

118809

65400

74940

64522

45322

51649

60765

 137

Table 5.6 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 61-80

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

76396

44769

75317

92572

127912

59832

29390

22148

64632

75102

150709

46903

29408

33375

21863

55055

34732

21493

121118

20335

75916

44869

75317

92572

126696

59685

29390

22120

71118

75102

145825

45810

28909

32406

22728

55296

32742

20520

117908

18826

75916

44769

75317

92572

126696

59685

29390

22120

71118

75102

145771

43994

28785

30734

21602

53899

31937

19660

114999

18157

75916

44769

75317

92572

126696

59685

29390

22120

71118

75102

145007

43904

28785

30313

21602

53555

32237

19462

114999

18157

75916

44769

75317

92572

126696

59685

29390

22120

71118

75102

145264

43286

28785

29777

21602

53555

31817

19462

114999

18157

75916

44769

75317

92572

126696

59685

29390

22120

71118

75102

145007

43286

28785

30136

21602

54024

31817

19462

114999

18157

75916

44769

75317

92572

126696

59685

29390

22120

71118

75102

145290

44558

28785

30142

21758

55482

32931

20008

115644

18824

75916

44769

75317

92572

126696

59685

29390

22120

64632

75102

145007

43286

28785

30136

21602

53555

31817

19462

114999

18157

75916

44769

75317

92572

126696

59685

29390

22120

71118

75102

145007

43286

28785

30136

21602

53555

31817

19462

114999

18157

 138

Table 5.7 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 81-100

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

384996

410979

460978

330384

555106

364381

399439

434948

410966

402233

344988

365129

410462

335550

521512

461484

413109

532519

370080

439944

383485

409982

458879

329670

554766

361685

398670

434410

410102

401959

340030

361407

408560

333047

517170

461479

411291

526856

368415

436933

383703

409544

458787

329670

555130

361417

398551

433519

410092

401653

343029

361152

406728

332983

521208

459321

410889

522630

365149

432714

383485

409544

458752

329670

554993

361417

398670

433186

410092

401653

340508

361152

404548

333020

517011

457631

409263

523486

364442

431736

383485

409479

458752

329670

554870

361417

398551

433186

410092

401653

339933

361152

403423

332941

516926

455448

407590

520582

363977

431736

383485

409479

458752

329670

554766

361417

398551

433244

410092

401653

339933

361152

404917

332949

517646

457631

407590

520582

363977

432068

383485

409479

458752

329670

554870

361837

398551

433244

410092

401653

340221

361250

405978

335106

519843

460140

413671

525439

369154

435064

383485

409479

458752

329670

554766

361417

398551

433186

410092

401653

339933

361152

403423

332941

516926

455448

407590

520582

363518

431736

383485

409479

458752

329670

554766

361417

398551

433186

410092

401653

339933

361152

404548

332983

517646

455488

407590

520582

363977

432068

 139

Table 5.8 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 101-120

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

353408

493889

379913

358222

450808

455849

353371

462737

413205

419481

347233

373238

261239

470327

459194

527459

512286

352118

579462

398590

352990

493936

378602

358033

450806

455093

353368

461452

413408

418769

346763

373140

260400

464734

457782

532840

506724

355922

573910

397520

352990

493069

378602

357963

450806

455152

352867

460793

413004

418769

342752

369237

260176

464136

457874

532456

503199

350729

573046

396183

352990

492748

378602

357963

450806

454379

352766

460793

413004

418769

342752

367110

260872

465503

457289

530803

502840

349749

573046

396183

352990

492572

378602

357963

450806

454379

352766

460793

413004

418769

342752

367110

259649

464001

456904

530601

502840

349749

573046

396183

352990

492572

378602

357963

450806

454379

352766

460793

413004

418769

342752

367110

259649

463474

457189

530601

503046

349749

573046

396183

352990

493036

378602

358334

451249

455031

352766

461452

413408

418769

343953

372819

260077

463474

459538

533160

507474

353142

573541

398528

352990

492572

378602

357963

450806

454379

352766

460793

413004

418769

342752

367110

259649

463474

456890

530601

502840

349749

573046

396183

352990

492572

378602

357963

450806

454379

352766

460793

413004

418769

342752

367110

259649

463474

457089

530601

502840

349749

573046

396183

 140

Table 5.9 Comparison of the average percentage of relation deviations: Ins 1-20

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

-25.00

0.02

-1.28

-3.68

-8.56

21.41

-2.57

-9.15

-4.02

-4.45

-0.36

0

-19.14

-4.73

-14.61

-9.27

-37.25

-23.17

-100.00

-14.22

-22.37

0.12

-10.21

-5.82

-6.93

18.04

-4.85

-7.04

-3.09

-6.23

-5.64

0

-22.08

-9.72

-14.27

-16.46

-63.24

-39.69

-100.00

-9.84

-30.70

-3.54

-18.25

-8.89

-12.40

14.93

-9.29

-19.72

-8.60

-10.98

-14.82

0

-26.23

-25.52

-33.88

-21.54

-70.10

-46.77

-100.00

-28.85

-26.32

-3.54

-17.41

-7.66

-12.40

15.96

-7.83

-20.42

-7.17

-10.79

-20.40

0

-26.23

-22.00

-29.36

-28.81

-70.59

-48.14

-100.00

-26.96

-31.14

-4.01

-20.20

-7.97

-11.75

15.19

-9.83

-23.94

-9.42

-11.48

-22.47

0

-28.44

-25.78

-35.87

-31.56

-100.00

-47.52

-100.00

-30.81

-31.14

-4.49

-18.81

-9.50

-11.33

15.19

-6.36

-22.54

-8.99

-10.69

-17.51

0

-26.39

-23.15

-34.64

-22.21

-70.59

-47.52

-100.00

-30.64

-33.77

-5.67

-22.43

-10.11

-13.04

13.89

-11.54

-29.58

-10.85

-13.90

-27.98

0

-31.33

-31.86

-50.34

-33.50

-100.00

-52.36

-100.00

-40.78

-31.14

-4.01

-20.20

-7.97

-11.75

15.19

-9.83

-23.94

-9.42

-11.48

-22.47

0

-28.44

-25.78

-35.87

-31.56

-100.00

-47.52

-100.00

-30.81

 141

Table 5.10 Comparison of the average percentage of relation deviations: Ins 21-40

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0.00

0.00

0.00

-1.51

0.00

0.00

0.00

0.00

0.00

-21.21

0.00

0.00

0.00

0.00

0.00

0.00

-47.02

0.00

0.00

0.00

0.00

0.00

0.00

-1.88

0.00

0.00

0.00

0.00

0.00

-100.00

0.00

0.00

0.00

0.00

0.00

0.00

-75.36

0.00

0.00

0.00

0.00

0.00

0.00

-2.82

0.00

0.00

0.00

0.00

0.00

-100.00

0.00

0.00

0.00

0.00

0.00

0.00

-85.83

0.00

0.00

0.00

0.00

0.00

0.00

-2.26

0.00

0.00

0.00

0.00

0.00

-100.00

0.00

0.00

0.00

0.00

0.00

0.00

-84.64

0.00

0.00

0.00

0.00

0.00

0.00

-13.45

0.00

0.00

0.00

0.00

0.00

-100.00

0.00

0.00

0.00

0.00

0.00

0.00

-93.91

0.00

0.00

0.00

0.00

0.00

0.00

-1.79

0.00

0.00

0.00

0.00

0.00

-100.00

0.00

0.00

0.00

0.00

0.00

0.00

-60.79

0.00

0.00

0.00

0.00

0.00

0.00

-28.41

0.00

0.00

0.00

0.00

0.00

-100.00

0.00

0.00

0.00

0.00

0.00

0.00

-93.91

0.00

0.00

0.00

0.00

0.00

0.00

-13.45

0.00

0.00

0.00

0.00

0.00

-100.00

0.00

0.00

0.00

0.00

0.00

0.00

-93.91

0.00

0.00

0.00

 142

Table 5.11 Comparison of the average percentage of relation deviations: Ins 41-60

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

-1.31

-0.60

-0.35

-0.89

-0.63

-0.01

-0.27

0.15

-0.80

-2.96

-3.55

-3.28

-4.36

-2.25

-1.34

-3.11

-1.35

-2.17

-2.45

-8.75

-2.93

-1.22

-0.90

-0.89

-0.22

-1.46

-0.82

-0.85

-1.62

-3.01

-5.19

-5.07

-4.83

-3.84

-1.62

-4.39

-4.26

-4.99

-6.13

-8.00

-2.73

-1.18

-1.29

-1.01

-0.63

-1.57

-1.32

-0.85

-1.79

-3.76

-5.15

-4.63

-7.08

-3.51

-5.40

-4.55

-4.29

-5.74

-5.76

-11.74

-2.73

-1.18

-1.29

-1.01

-0.63

-1.57

-1.32

-0.85

-1.79

-3.76

-5.15

-4.63

-7.08

-3.51

-5.40

-4.55

-4.29

-5.74

-5.76

-11.74

-2.73

-1.18

-1.29

-1.01

-0.48

-1.57

-1.53

-0.85

-1.55

-4.59

-5.47

-6.14

-7.08

-3.63

-6.27

-5.09

-4.26

-5.74

-6.76

-10.31

-2.30

-1.18

-1.29

-1.01

-0.63

-1.23

-1.12

-0.73

-1.62

-3.90

-4.82

-3.00

-4.10

-1.89

-5.40

-4.92

-4.29

-3.65

-3.76

-8.81

-2.93

-1.22

-1.29

-1.35

-0.63

-1.57

-1.53

-0.85

-1.79

-4.59

-5.47

-6.14

-7.08

-3.84

-6.27

-5.09

-4.29

-5.74

-6.76

-11.74

-2.93

-1.22

-1.41

-1.01

-0.48

-1.57

-1.53

-0.85

-1.79

-4.59

-5.47

-6.14

-7.08

-3.84

-6.27

-5.09

-4.34

-5.74

-6.76

-11.74

 143

Table 5.12 Comparison of the average percentage of relation deviations: Ins 61-80

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

-0.63

0.22

0.00

0.00

-0.95

-0.25

0.00

-0.13

10.04

0.00

-3.24

-2.33

-1.70

-2.90

3.96

0.44

-5.73

-4.53

-2.65

-7.42

-0.63

0.00

0.00

0.00

-0.95

-0.25

0.00

-0.13

10.04

0.00

-3.28

-6.20

-2.12

-7.91

-1.19

-2.10

-8.05

-8.53

-5.05

-10.71

-0.63

0.00

0.00

0.00

-0.95

-0.25

0.00

-0.13

10.04

0.00

-3.78

-6.39

-2.12

-9.17

-1.19

-2.72

-7.18

-9.45

-5.05

-10.71

-0.63

0.00

0.00

0.00

-0.95

-0.25

0.00

-0.13

10.04

0.00

-3.61

-7.71

-2.12

-10.78

-1.19

-2.72

-8.39

-9.45

-5.05

-10.71

-0.63

0.00

0.00

0.00

-0.95

-0.25

0.00

-0.13

10.04

0.00

-3.78

-7.71

-2.12

-9.70

-1.19

-1.87

-8.39

-9.45

-5.05

-10.71

-0.63

0.00

0.00

0.00

-0.95

-0.25

0.00

-0.13

10.04

0.00

-3.60

-5.00

-2.12

-9.69

-0.48

0.78

-5.19

-6.91

-4.52

-7.43

-0.63

0.00

0.00

0.00

-0.95

-0.25

0.00

-0.13

0.00

0.00

-3.78

-7.71

-2.12

-9.70

-1.19

-2.72

-8.39

-9.45

-5.05

-10.71

-0.63

0.00

0.00

0.00

-0.95

-0.25

0.00

-0.13

10.04

-1.33

-3.78

-7.71

-2.12

-9.70

-1.19

-2.72

-8.39

-9.45

-5.05

-10.71

 144

Table 5.13 Comparison of the average percentage of relation deviations: Ins 81-100

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

-0.39

-0.24

-0.46

-0.22

-0.06

-0.74

-0.19

-0.12

-0.21

-0.07

-1.44

-1.02

-0.46

-0.75

-0.83

0.00

-0.44

-1.06

-0.45

-0.68

-0.34

-0.35

-0.48

-0.22

0.00

-0.81

-0.22

-0.33

-0.21

-0.14

-0.57

-1.09

-0.91

-0.77

-0.06

-0.47

-0.54

-1.86

-1.33

-1.64

-0.39

-0.35

-0.48

-0.22

-0.02

-0.81

-0.19

-0.41

-0.21

-0.14

-1.30

-1.09

-1.44

-0.75

-0.86

-0.83

-0.93

-1.70

-1.52

-1.87

-0.39

-0.36

-0.48

-0.22

-0.04

-0.81

-0.22

-0.41

-0.21

-0.14

-1.47

-1.09

-1.71

-0.78

-0.88

-1.31

-1.34

-2.24

-1.65

-1.87

-0.39

-0.36

-0.48

-0.22

-0.06

-0.81

-0.22

-0.39

-0.21

-0.14

-1.47

-1.09

-1.35

-0.78

-0.74

-0.83

-1.34

-2.24

-1.65

-1.79

-0.39

-0.36

-0.48

-0.22

-0.04

-0.70

-0.22

-0.39

-0.21

-0.14

-1.38

-1.06

-1.09

-0.13

-0.32

-0.29

0.14

-1.33

-0.25

-1.11

-0.39

-0.36

-0.48

-0.22

-0.06

-0.81

-0.22

-0.41

-0.21

-0.14

-1.47

-1.09

-1.71

-0.78

-0.88

-1.31

-1.34

-2.24

-1.77

-1.87

-0.39

-0.36

-0.48

-0.22

-0.06

-0.81

-0.22

-0.41

-0.21

-0.14

-1.47

-1.09

-1.44

-0.77

-0.74

-1.30

-1.34

-2.24

-1.65

-1.79

 145

Table 5.14 Comparison of the average percentage of relation deviations: Ins 101-120

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

-0.12

0.01

-0.35

-0.05

0.00

-0.17

0.00

-0.28

0.05

-0.17

-0.14

-0.03

-0.32

-1.19

-0.31

1.02

-1.09

1.08

-0.96

-0.27

-0.12

-0.17

-0.35

-0.07

0.00

-0.15

-0.14

-0.42

-0.05

-0.17

-1.29

-1.07

-0.41

-1.32

-0.29

0.95

-1.77

-0.39

-1.11

-0.60

-0.12

-0.23

-0.35

-0.07

0.00

-0.32

-0.17

-0.42

-0.05

-0.17

-1.29

-1.64

-0.14

-1.03

-0.41

0.63

-1.84

-0.67

-1.11

-0.60

-0.12

-0.27

-0.35

-0.07

0.00

-0.32

-0.17

-0.42

-0.05

-0.17

-1.29

-1.64

-0.61

-1.35

-0.50

0.60

-1.84

-0.67

-1.11

-0.60

-0.12

-0.27

-0.35

-0.07

0.00

-0.32

-0.17

-0.42

-0.05

-0.17

-1.29

-1.64

-0.61

-1.46

-0.44

0.60

-1.80

-0.67

-1.11

-0.60

-0.12

-0.17

-0.35

0.03

0.10

-0.18

-0.17

-0.28

0.05

-0.17

-0.94

-0.11

-0.44

-1.46

0.07

1.08

-0.94

0.29

-1.02

-0.02

-0.12

-0.27

-0.35

-0.07

0.00

-0.32

-0.17

-0.42

-0.05

-0.17

-1.29

-1.64

-0.61

-1.46

-0.50

0.60

-1.84

-0.67

-1.11

-0.60

-0.12

-0.27

-0.35

-0.07

0.00

-0.32

-0.17

-0.42

-0.05

-0.17

-1.29

-1.64

-0.61

-1.46

-0.46

0.60

-1.84

-0.67

-1.11

-0.60

 146

 Table 5.15 Comparison of the average of the average percentage of relation deviations of all instances

AVG

ACO_AP DPSO DDE DEM GVNS SS EXACT ABA

-3.34 -5.31 -6.78 -6.78 -7.51 -6.29 -8.33 -7.54

 147

5.5 Summary

In this chapter, the Adaptive Bees Algorithm is presented. The proposed algorithm

deploys ATCS heuristic and random technique to find a set of starting solutions and

adapts the idea of neighbourhood change in VNS for the use of neighbourhood search

procedure. It was applied to a Weighted Tardiness Scheduling with Sequence-

dependent Setups problem. The results were compared to those obtained by Simulated

Annealing (SA), Genetic Algorithms (GAs), Tabu Search (TS), Ant Colony

Optimisation (ACO), Discrete Particle Swarm Optimisation (DPSO), Discrete

Differential Evolution (DDE), Discrete Electromagnetism-like Mechanism (DEM),

General Variable Neighbourhood Search (GVNS), Scatter Search (SS), and EXACT

Algorithm. The results show that the proposed algorithm performs better than or as well

as the others. However, EXACT performs better than the Adaptive Bees Algorithm.

CHAPTER 6

CONCLUSION

6.1 Contributions

The overall aim of this research was to develop the Bees Algorithm for single-machine

scheduling and to improve the performance of the algorithm. The research contributions

include:

 Different versions of the Bees Algorithm for single-machine scheduling.

 Enhancements to the basic algorithm, with proofs to show that the enhanced

version is both more robust and efficient than the original.

 A number of neighbourhood search procedures to help the algorithm find better

solutions faster.

 A new method of selecting potential solutions for the next iteration. The method

helps significantly to improve the speed of the algorithm.

 149

 Proofs that, for some benchmark problems, using a tool to generate good

starting solutions might help the algorithm find the optimum faster than when

starting solutions are randomly produced.

6.2 Conclusion

In this thesis, the feasibility of utilising the Bees Algorithm to solve machine

scheduling problems has been demonstrated. Enhanced algorithms have been presented

which improve the current state of the art in this research area. The key conclusions for

each topic investigated are given below.

 The algorithm was applied to three complex scheduling problems with specific

modifications for each. The algorithm was first enhanced to solve the problem

of machine scheduling with common due date. The results were compared to

those by the original version, which was the first Bees Algorithm developed for

combinatorial domains and to the results by other well-known algorithms. This

work has shown that the modified algorithm performs better than other existing

techniques.

 The Bees Algorithm deploying the Negative Selection technique inspired by the

Immune System delivers the most promising solutions for the next iteration.

This improvement overcomes the drawback of keeping the fittest solution from

each selected patch after the algorithm performs neighbourhood search in a

combinatorial domain. The results have proved the efficiency and robustness of

the new algorithm.

 150

 The second application of the Bees Algorithm was to solve the total weighted

tardiness problem. Providing a variety of neighbourhood search procedures to

the Bees Algorithm and assigning different ways to deploy them could

significantly reduce computational time. It is also important to study the nature

of each benchmark to ensure a good match with the parameters used in the

algorithm. This study found that the enhanced Bees Algorithm performs faster

when assigned a small number of parameters together with a proper technique to

avoid being trapped at local optima.

 Lastly, the Bees Algorithm was used to solve the problem of minimising total

weighted tardiness with sequence-dependent setups, which is the most

complicated of the three benchmarks. The study demonstrates that the algorithm

needs a tool to help generate a good starting solution as well as a technique to

deploy a set of neighbourhood search procedures. The results have shown that

although the algorithm performs much better than some existing algorithms it is

only slightly better than other algorithms.

6.3 Future work

Possible extensions that can be made to the work presented in this thesis include:

 Developing a tool that can generate a more uniform spread of starting solutions.

 Developing new local search algorithms for combinatorial domains.

 Using more complex models to improve the performance of the Bees Algorithm.

 Developing techniques to reduce the Bees Algorithm’s computational time.

 Applying the enhanced Bees Algorithm to solve flow shop and job shop

 151

scheduling problems.

 Applying the enhanced Bees Algorithm to schedule jobs using real-world data.

 Applying the enhanced Bees Algorithm to different types of scheduling

problems, for example, class room timetabling.

 Combining other ideas from other techniques such as Exact, Scatter Search and

Discrete Electromagnetism-like Mechanism to the Bees Algorithm to improve

its performance.

 152

References

Aarts, E. and Lenstra, J. K. 1997. Local search in combinatorial optimization. England:

John Wiley & Sons Ltd,

Ahmad, A.S. 2012. A study of search neighbourhood in the bees algorithm. PhD

Thesis, Cardiff University.

Aickelin, U., et al. 2004. Investigating Artificial Immune Systems for Job Shop

Rescheduling in Changing Environments. Poster Proceeding of ACDM, Engineer’s

House, UK

Aickelin, U. and Dasguta, D. 2005. Search Methodologies: Introductory Tutorials in

Optimisation and Decision Support Techniques. USA: Springer.

Anghinolfi, D. and Paolucci, M. 2008. A new ant colony optimization approach for the

single machine total weighted tardiness scheduling problem. International Journal of

Operations Research 2008;5(1), pp44–60.

Anghinolfi, D. and Paolucci, M. 2009. A new discrete particle swarm optimization

approach for the single-machine total weighted tardiness scheduling problem with

sequence-dependent setup times. Operational Research 193, pp. 73 – 85.

 153

Baker K.,R., and Scudder G.,D. 1989a. On the assignment of optimal due dates.

Operational Research 40, pp. 93-95.

Baker K.,R., and Scudder G.,D. 1989b. Sequencing with earliness and tardiness

penalties: a review. Operational Research 38, pp. 22-36.

Besten M.,D., et al. 2000. Ant Colony Optimization for the total weighted tardiness

problem. In Parallel Problem Solving from Nature PPSN VI 1917, pp. 611-620.

Bilchev G., and Parmee I.C. 1995. The Ant Colony Metaphor for Searching Continuous

Design Spaces. In Selected Papers from AISB Workshop on Evolutionary Computing,

pp. 25-39.

Biskup, D. and Cheng, T.C.E. (1999). Multiple-machine scheduling with earliness,

tardiness and completion time penalties. Computers and Operations Research, 26, pp.

45–57.

Biskup D., and Feldmann M. 2001. Benchmarks for scheduling on a single machine

against restrictive and unrestrictive common due dates. Computers & Operations

Research 28, pp. 787-801.

 154

Bonabeau E., et al. 1999. Swarm Intelligence: from Natural to Artificial Systems. New

York: Oxford University Press.

Cagnina, L. 2004. Particle swarm optimization for sequencing problems: a study case.

Proceeding of the 2004 Congress on Evolutionary Computation. USA, pp. 536-541

Camazine, S. and Sneyd, J. 1991. A model of collective nectar source selection by

honey bees: self-organization through simple rules. Theoretical Biology 149, pp.547-

571.

Camazine, S. et al. 1999. House-hunting by honey bee swarms: collective decisions and

individual behaviours. Insects soc. 46:348-360.

Camazine, S. et al. 2003. Self-Organization in Biological Systems, Princeton: Princeton

University Press.

Cerny, V. 1985. Thermodynamical approach to the traveling salesman problem: An

efficient simulation algorithm. Journal of Optimization Theory and Applications 45, pp.

41–51.

Chandrasekaran, M. et al. 2006. Solving Job Shop Scheduling Problems using Artificial

Immune System. Int J Adv Manuf Techno 1, pp. 580-593.

 155

Chao, C.W. and Liao, C.J. 2012. A discrete electromagnetism-like mechanism for

single machine total weighted tardiness problem with sequence-dependent setup times.

Applied Soft Computing 12, pp. 3079-3087.

Chen, M.H., et al. 2012. The design of Self-evolving Artificial Immune System II for

Permutation Flow-shop Problem. World Academy of Science, Engineering and

Technology 65.

Cheng, T. C. E. and Kahlbacher, H. G. 1991. A proof for the longest-job-first policy in

one-machine scheduling. Naval Research Logistics, 38, pp. 715 – 720.

Cicirello, V.A. 2003. Weighted tardiness scheduling with sequence-dependent setups a

benchmark library. Technical Report of Intelligent Coordination and Logistics

Laboratory Robotics Institute, Carnegie Mellon University, USA

Clarke, G.M. and Cooke, D. 2004. A basic course in statistics. 1929-Chichester. Wiley.

Coello, C.A. et al. 2003. Use of an Artificial Immune System for Job Shop Scheduling.

Artificial Immune Systems, Lecture Notes in Computer Science 2787, Springer, pp. 1-

10.

 156

Congram, R.K, et al. 1998. An iterated dynasearch algorithm for the single-machine

total weighted tardiness scheduling problem. INFORMS Journal on Computing 14,

2002, pp. 52-67.

Crauwels, H. et al. 1998. Local search heuristics for the single machine total weighted

tardiness scheduling problem, INFORMS Journal on Computing 10, pp.341-350.

Croes, G.A. 1958. A method for solving traveling salesman problems. Operations Res.

6, pp., 791-812.

de Jong, K. A. 2006. Evolutionary computation: a unified approach. Cambridge: MIT

Press.

de Castro L. N. and Von Zuben, F. J. 2001. aiNet : An Artificial Immune Network for

data analysis. In Data Mining : A Heuristic Approach, USA: Idea Group Publishing.

de Castro L. N. and Von Zuben, F. J. 2002. Learning and Optimisation Using the

Clonal Selection Principle. IEEE Transactions on Evolutionary Computation, Special

Issue on Artificial Immune Systems (IEEE) 6 (3). pp. 239–251.

de Castro, L. N., and Timmis, J. 2002. Artificial Immune Systems: A new

Computational Intelligence Approach. Springer.

 157

Dorigo, M. et al. 1999. Ant algorithms for discrete optimization. Artificial Life, 5, 2, pp.

137-172.

Dorigo, M., et al. 1991. Positive feedback as a search strategy. Technical Report 91-

016, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.

Dorigo, M. and Stutzle, T. 2004. Ant Colony Optimization, MIT Press, Cambridge.

Eberhart, R,. and Kennedy, J. 2001. Swarm Intelligence, San Francisco: Morgan

Kaufmann.

Feldmann, M., and Biskup, D. 2003. Single-machine scheduling for minimizing

earliness and tardiness penalties by meta-heuristic approaches. Computers & Industrial

Engineering, 44, No. 2, pp. 307-323.

Ferrolho, A., and Crisostomo, M. 2006. Genetic algorithm for the single machine total

weighted tardiness problem. In 2006 1ST IEEE International Conference on E-

Learning in Industrial Electronics, pp. 17-22.

Forrest S., et al. 1994. Self-nonself discrimination in a computer. IEEE Symposium on

Research in Security and Privacy, pp. 202–212.

 158

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to

Theory of NP-Completeness, San Francisco: Freeman.

Ghanbarzadeh, A. 2007. THE BEES ALGORITHM A Novel Optimisation Tool. PhD

Thesis, Cardiff University.

Glover, F. and Laguna, M. 1997. Tabu Search. Massachusetts:Kluwer Academic

Publishers.

Goldberg, D. E, 1989. Genetic Algorithms in Search, Optimization and Machine

Learning, Reading: Addison-Wesley Longman.

Guo, Q. and Tang, L. 2011. A new scater search approach for the single machine total

weighted tardiness scheduling problem with sequence-dependent setup times. Fourth

International Workshop on Advanced Computational Intelligence, Wuhan, Hubei,

China, pp. 19-21.

Hall N.G., et al. 1991. Earliness/tardiness scheduling problem. Deviation of completion

times about a restrictive common due date. Operation Research 39. pp. 847-856.

Hansen, P., and Mladenovie, N. 2001. Variable neighborhood search: principles and

applications. Operational Research 30, pp 449-467.

 159

Hansen P., and Mladenovie, N., 2003. A Tutorial on Variable Neighborhood Search.

Les Cahiers du GERAD, HEC Montreal and GERAD.

Hart, E. and Ross, P. 1999. An Immune System Approach to Scheduling in Changing

Environments. Proc. Of the Genetic and Evolutionary Computation Conference, pp.

1559-1566.

Hino, C. M. et al. 2005. Minimizing earliness and tardiness penalties in a single-

machine problem with a common due date. European Journal of Operational Research

160, pp. 190-201.

Hofmeyr, S.A. and Forrest, S. 2000. Architecture for an Artificial Immune System.

Evolutionary Computation 7, pp. 45-68.

Holland, J. H. 1975. Adaptation in natural and artificial systems. University of

Michigan Press.

Hoogeveen, J., A., and Van de Velde, S.L. 1991. Scheduling around small common due

date. Operational Research 55, pp. 237-242.

Huang, C.,L., and Tung. 2006. Using mutation to improve discrete particle swarm

 160

optimization for single machine total weighted tardiness problem. In World Automation

Congress (WAC2006). pp.1-6.

Jerne, N.K. 1974.Towards a network theory of the immune system. Ann. Immunol.

(Inst. Pasteur), 125C, pp. 373-389.

Kanet, J. J. 1981. Minimizing the average deviation of job completion times about a

common due date. Naval Research Logistics Quarterly 28, pp. 643–651.

Karaboga, D. 2005. An idea based on honey bee swarm for numerical optimization,

Technical Report TR06, Computer Engineering Department, Erciyes   University,

Turkey.

Karaboga, D., and Basturk, B. 2007. A powerful and efficient algorithm for numerical

function optimization: artificial bee colony (ABC) algorithm, Journal of Global

  Optimization 39, pp. 459–471.

Karaboga, D., and Basturk, B. 2008. On the performance of artificial bee colony (ABC)

algorithm, Applied Soft Computing 8. pp. 687–697.

 161

Kellegoz, T., et al. 2008. Comparing efficiencies of genetic crossover operations for

one machine total weighted tardiness problem. Applied Mathematics and Computation

199, pp. 590 – 598.

Kennedy, J. and Eberhart, R. 1995. Particle Swarm Optimization. Proceedings of IEEE

International Conference on Neural Networks (ICNN'95), Vol. IV, pp.1942- 1948.

Kennedy, J. and Eberhart, R. 1997. A discrete binary version of the particle swarm

optimization algorithm. Proc. of the 1997 conference on Systems, Man, and Cybernetics

(SMC'97), pp.4104-4109.

Kim, J. and Bentley, P. 1999. The Artificial Immune Model for Network Intrusion

Detection. 7
th

 European Congress on Intelligent Techniques and Soft Computing.

Kim, D.,H., et al. 2007. A hybrid genetic algorithm and bacterial foraging approach for

global optimization. Information Sciences 177, pp. 3918-3937.

Kirlik, G., and Oguz, C. 2012. A variable neighborhood search for minimizing total

weighted tardiness with sequence dependent setup times on a single machine.

Computers & Operations Research 39(7), pp. 1506-1520.

 162

Kirkpatrick, S., et al. 1983. Optimization by Simulated Annealing. Science 220 (4598),

pp. 671–680.

Koc, E. 2010. The Bees Algorithm Theory Improvement and Application. PhD Thesis,

Cardiff University.

Lee, Y.,C., and Zomaya, A.,Y. 2007. Immune system support for scheduling. Advances

in Applied Self-Organizing Systems, M. Prokopenko (ed), pp. 247-270 (Chapter 11),

Springer, London.

Lee, Y.H., et al. 1997. A heuristic to minimise the total weighted tardiness with

sequence-dependent setups. IIE Transactions, pp. 45-52.

Lenstra, J.K. et al. 1977. Complexity of machine scheduling. Ann of Discret math.

Li, J.Q., et al. 2013. A discrete artificial bee colony algorithm for the multi-objective

flexible job-shop scheduling problem with maintenance activities. Applied

Mathematical Modelling.

Lin, S.W., and Ying, K.C. 2007. Solving single-machine total weighted tardiness

problems with sequence-dependent setup times by meta-heuristics. International

Journal of Advanced Manufacturing Technology, pp. 1183-1190.

 163

Lu, T. 2012. A Danger Theory Based Mobile Virus Detection Model and Its

Application in Inhibiting Virus. Journal of Networks 7, pp.1227-1232.

Matzinger, P. 1994. Tolerance, danger and the extended family. Annual Review

Immunology, pp. 991–1045.

Matzinger, P. 2002. The danger model: a renewed sense of self. Science, pp. 301-305.

Mladenovi, N., and Hansen, P. 1997. "Variable neighborhood search". Computers and

Operations Research 24 (11), pp1097–1100.

Nearchou, A. C. 2004. Solving the single machine total weighted tardiness scheduling

problem using a hybrid simulated annealing algorithm. In 2004 2nd IEEE International

Conference on Industrial Informatics, 2004. INDIN 2004, pp. 513-516.

Nearchou, A. C. 2008. A differential evolution approach for the common due date

early/tardy job scheduling problem, Computers & Operations Research 35(4), pp.

1329-1343.

Nearchou, A. C. 2006. An efficient meta-heuristic for the single machine common due

date scheduling problem. In 2nd I Proms Virtual International Conference.

 164

Passino, K.,M. 2002. Biomimicry of bacterial foraging for distributed optimization and

control. Control Systems IEEE 22(3), pp. 52-67.

Pan, Q. K., et al. 2006. A Discrete Particle Swarm Optimization Algorithm for Single

Machine Total Earliness and Tardiness Problem with a Common Due Date. In IEEE

Congress on Evolutionary Computation 2006, Vancouver, BC, Canada, pp. 3281-3288.

Pan, Q. K., et al. 2010. A discrete artificial bee colony algorithm for the lot-streaming

flow shop scheduling problem. Information science 181(12), pp.2455-2468.

Pinedo, M. 2008. Theory, Algorithms, and Systems, Springer, New York,

Pham, D. T., et al. 2005. The Bees Algorithm, Technical Note, Manufacturing

Engineering Centre, Cardiff University, UK.

Pham, D. T., et al. 2006a. The Bees Algorithm, a novel tool for complex optimisation

problems. In Proc. 2
nd

 Int. virtual conf. On intelligent production machines and

systems (IPROMS). Oxford: Elseiver UK.

Pham, D.T., et al. 2006b. Optimising neural networks for identification of wood defects

using the Bees Algorithm. Proceedings of the IEEE International Conference on

Industrial Informatics, Singapore, pp. 1346-1351.

 165

Pham, D.T., et al., 2006c. Optimisation of the weights of multi-layered perceptrons

using the bees algorithm”, Proceedings of 5th Int. Symposium on Intelligent

Manufacturing Systems, Sakarya, Turkey, pp. 38-46.

Pham, D.T., et al. 2006d. “Some Applications of the Bees Algorithm in Engineering

Design and Manufacture”, In: Proc. of the IEEE Int. Conf. on Industrial Informatics,

Singapore, pp. 62-70.

Pham, D.T., and Ghanbarzadeh, A. 2007. Multi-Objective Optimisation using the Bees

Algorithm, Proc. of the 3rd Virtual Int. Conf. on Innovative Production Machines and

Systems (IPROMS 2007), Whittles (Dunbeath, UK) and CRC Press (Boca Raton, FL),

pp 529-533.

Pham, D.T., et al 2007a. Data Clustering Using the Bees Algorithm, Proc 40th CIRP

International Manufacturing Systems Seminar, Liverpool, UK.

Pham D.T., et al. 2007b, Using the Bees Algorithm to Schedule Jobs for a Machine,

Proceedings 8th international Conference on Laser Metrology, CMM and Machine Tool

Performance (LAMDAMAP). Cardiff, UK, Euspen, pp. 430-439.

 166

Pham, D.T., et al. 2012. An Application of the Bees Algorithm to the Single-Machine

Total Weighted Tardiness Problem, Proc of Eighth International Symposium on

Intelligent and Manufacturing Systems, Autonomous Service and Manufacturing

Ststems, IMS 2012, September, 27-28, Antalya, Turkey

Robert, Y. and Vivien, F. 2010. Introduction to scheduling. CRC press, USA.

Rubin P.A, and Ragatz GL. 1995. Scheduling in a sequence dependent setup

environment with genetic search. Computers & Operations Research 1995;22(1).

pp.85–99.

Seeley, T. D. 1996. The Wisdom of the Hive: The Social Physiology of Honey Bee

Colonies. Cambridge: Massachusetts: Harvard University Press

Seeley, T. D., and Visscher, P.,K. 2003. Choosing am home: how the scouts in a honey

bee swarm perceive the completion of their group decision making. Behav Ecol

Sociobiol 54, pp. 511-520.

Smith W.E. 1956. Various optimizers for single-stage production. Naval Research

Logistics Quarterly. v3. pp. 59-66.

 167

Storn, R, and Price, K. 1997. Differential Evolution-a simple and efficient heuristic for

global optimisation over continuouse spaces. Journal Global Optimisation. Number 4,

pp. 341-359.

Talebi, J., et al. 2009. An efficient scatter search algorithm for minimizing earliness and

tardiness penalties in a single machine scheduling problem with common due date. In

IEEE Congress on Evolutionary Computation, 2009. CEC '09, pp. 1012-1018.

Thammano, A., and Phu-ang, A. 2013. A hybrid Artificial Bee Colony Algorithm with

local search for flexible job-shop scheduling problem. Procedia Computer Science 20.

pp. 96-101.

Tanaka, S. and Fujikuma, S. 2008. An efficient exact algorithm for general single-

machine scheduling with machine idle time. 4th IEEE Conference on Automation

Science and Engineering (IEEE CASE 2008), pp 371–376.

Tanaka, S., et al. 2009. An exact algorithm for single-machine scheduling without

machine idle time. Journal of Scheduling 12, pp. 575– 593.

Tanaka, S., and Fujikuma, S. 2012. A dynamic-programming-based exact algorithm for

single-machine scheduling with machine idle time. Journal of Scheduling 15. pp. 347–

361.

 168

Tanaka, S. 2012. An exact algorithm for the single-machine earliness-tardiness

scheduling problem. Just-in-Time Systems, Springer, pp 21-40.

Tanaka, S., and Sato, S. 2013. An exact algorithm for the precedence-constrained

single-machine scheduling problem. European Journal of Operational Research 229,

pp. 347–361.

Tanaka, S., and Araki, M. 2013. An exact algorithm for the single-machine total

weighted tardiness problem with sequence-dependent setup times. Computers &

Operations Research, volume 40, pp. 344-352.

Tasgetiren, M.,F., et al. 2004. Particle swarm optimization algorithm for single machine

total weighted tardiness problem, In Congress on Evolutionary Computation CEC2004,

volume 2, pp.1412-1419.

Tasgetiren, M.,F., et al. 2009. A discrete differential evolution algorithm for the single

machine total weighted tardiness problem with sequence dependent setup times.

Computers & Operational Research, volume 36, pp. 900- 915.

Varela, F.J., and Coutinho, A. 1991. Second Generation Immune Networks. Imm.

Today 12, pp. 159-166.

 169

Von Frisch, K. 1967. Bees: Their Vision, Chemical Senses and Language, (Revised ed.)

Cornell University Press, N.Y., Ithaca.

Watanabe, Y. and Ishiguro, A. 1999. Decentralised Behaviour Arbitration Mechanism

for Autonomous Mobile Robots Using Immune Network. In Artificial Immune System

and Their Applications. Springer, pp.187-209.

Webster, S., et al. 1998. A genetic algorithm for scheduling job families on a single

machine with arbitrary earliness/tardiness penalties and an unrestrictive common due

date. Production Research, volume 39, pp. 2543-2551.

Zhang, F. and QI, D. 2012. A Positive Selection Algorithm for Classification. Journal

of Computational of Computational Information Systems, pp. 207-215.

Zhang, R., et al. 2013. A Danger-Theory-Based Immune Network Optimization

Algorithm. The Scientific World Journal 13.

Zhong, Y., et al. 2011. Hybrid artificial bee colony algorithm with chemotaxis behavior

of bacterial foraging optimization problem. In Seventh international Conference on

Natural Computation (ICNC), pp. 1171–1174.

