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 i 

 

ABSTRACT 

 

Single-machine scheduling is the process of assigning a group of jobs to a 

machine. The jobs are arranged so that a performance measure, such as the total 

processing time or the due date, may be optimised. Various swarm intelligence 

techniques as well as other heuristic approaches have been developed for machine 

scheduling. Previously, the Bees Algorithm, a heuristic optimisation procedure 

that mimics honeybee foraging, was successfully employed to solve many 

problems in continuous domains.  In this thesis, the Bees Algorithm is presented 

to solve various single-machine scheduling benchmarks, all of which, chosen to 

test the performance of the algorithm, are NP-hard and cannot be solved to 

optimality within polynomially-bounded time. To apply the Bees Algorithm for 

machine scheduling, a new neighbourhood structure is defined. Several local 

search algorithms are combined with the Bees Algorithm.  

This work also introduces an enhanced Bees Algorithm. Several additional 

features are considered to improve the efficiency of the algorithm such as negative 

selection, chemotaxis, elimination and dispersal which is similar to the ‘site 

abandonment’ strategy used in the original algorithm, and neighbourhood change. 

A different way to deploy neighbourhood procedures is also presented. 
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Three categories of machine scheduling problems, namely, single machine with a 

common due date, total weighted tardiness, and total weighted tardiness with 

sequence-dependent setup are used to test the enhanced Bees Algorithm’s 

performance. The results obtained compare well with those produced by the basic 

version of the algorithm and by other well-known techniques. 
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CHAPTER 1 

 

Introduction 

 

 

 

1.1 Motivation 

Combinatorial optimisation is optimisation in the case of discrete alternatives. 

Being positioned at the interface between mathematics, computer science, and 

operations research, the field of combinatorial optimisation has a diversity of 

algorithm approaches. Job scheduling, a combinatorial problem, is a process that 

is used on a regular basis in many companies. It deals with the allocation of 

resources to tasks over a given time period and its goal is to optimise some 

performance measure. Job scheduling plays an important role in most 

manufacturing and production systems as well as a number of information 

processing environments. It is also important in transportation and distribution 

settings. 
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In a manufacturing environment, the scheduling function has to interact with other 

decision making methods. Many computational methods such as Discrete Particle 

Swarm Optimisation (DPSO), Ant Colony Optimisation (ACO), and Discrete 

Differential Evolution (DDE) have been employed to solve job scheduling 

problems. More recently, the Bees Algorithm has become a possible new tool for 

job scheduling and other combinatorial optimisation problems. 

 

The Bees Algorithm (Pham et al. 2005; Pham et al. 2006a, Pham et al. 2006b, 

Pham et al. 2006c, Pham et al. 2006d; Pham et al. 2007a) is an intelligent 

optimisation tool which is inspired by the natural foraging behaviour of honey 

bees. The algorithm employs a combination of global exploration and local 

exploitation. However, the Bees Algorithm was basically developed for solving 

continuous problems. In 2007, the use of the Bees Algorithm for a combinatorial 

problem was presented (Pham et al 2007). The algorithm successfully solved a 

machine scheduling with a common due date. 

 

This work presents a hybrid algorithm. The Bees Algorithm is enhanced to 

increase its performance in solving different kinds of machine scheduling 

problems. All benchmarks used are known as NP-hard. The motivation for this 

research was to test how robust and efficient the Bees Algorithm was at handling 

such NP-hard problems. 
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1.2 Research Aims and Objectives 

The overall aim of this research was to develop and improve swarm-based 

optimisation algorithms inspired by the foraging behaviour of honeybees and use 

the developed algorithms to solve various single machine scheduling problems. 

The main research objectives were: 

 To survey existing tools used to solve machine scheduling problems 

 To study different types of machine scheduling problems and their 

characteristics 

 To develop and enhance the Bees Algorithm with  new features to 

overcome the drawbacks of its original version and enable it to solve 

machine scheduling problems 

 To compare the results obtained with other optimisation methods 

 

1.3 Research Methodology 

To achieve the objectives, the following methodology was adopted: 

 Literature review: The most relevant papers were reviewed to clarify the 

key points in the subject. Their advantages and disadvantages will be 

discussed in the thesis. 

 A swarm-based optimisation procedure was proposed along with its 

enhanced version.  
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 The performance of the new versions of the algorithm was evaluated on a 

number of machine scheduling problems. In each case, performance 

measures were computed to assess the effectiveness of the new methods 

and comparisons with the original version and other optimisation methods 

were also carried out.  

 

1.4 Outline of thesis 

Chapter 2: In this chapter, definitions of machine scheduling problems and a 

review of the proposed engineering methodologies are given. Intelligence swarm-

based optimisation algorithms including honeybee-inspired algorithms for 

combinatorial optimisation and neighbourhood search procedures are also 

reviewed. 

 

Chapter 3: The Bees Algorithm to solve the problem of single-machine 

scheduling with common due date is introduced. This version is an enhancement 

of the basic version focusing on selecting the most promising solutions for the 

next generation. More neighbourhood procedures are deployed to increase search 

performance. The performances of the basic and improved algorithms are 

compared and the differences discussed. Also, the results from the improved 

algorithm are compared with those produced by well-known algorithms to show 

its performance and robustness.  
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Chapter 4: This chapter focuses on implementation of the Bees Algorithm to 

minimise the total weighted tardiness in single-machine scheduling. The 

disadvantages of the basic version are studied and an enhanced algorithm is 

proposed. The foraging behaviour of E. coli is used to help the main algorithm 

when it is trapped at local minima. The performances of the basic and improved 

algorithms are evaluated. Their results are also compared with those of other 

optimisation techniques. 

 

Chapter 5: This chapter presents an application of the Bees Algorithm to solve 

the problem of scheduling for minimum total weighted tardiness with sequence-

dependent setup times. The Apparent Tardiness Cost with Setups (ATCS) 

heuristic is applied to create a reasonably good starting solution. Neighbourhood 

change in Variable Neighbourhood Search (VNS) is adapted. The results obtained 

are compared with those of other existing optimisation techniques. 

 

Chapter 6: This chapter presents the main contributions of this research and 

suggestions for future work in this field. 



 

 

 

CHAPTER 2 

 

BACKGROUND 

 

 

 

2.1 Job Scheduling 

Job scheduling problems involve solving for the optimal schedule under various 

objectives, different machine environments and characteristics of the jobs. In the 

definitions, job can be made up of any number of tasks. It can be considered as 

making a product. Basic information associated with a job are processing time 

(pj), release date (rj), due date (dj), and weight (wj). Processing time (pj) represents 

the processing time of job j on a machine i. Release date (rj) is the time that the 

job arrives at the system. It may also be referred to as the ready date. Due date (dj) 

represents the committed shipping or completion date. Completion of a job after 

its due date is allowed, but then a penalty is incurred. Weight (wj) represents the 

actual cost, which could be a holding or inventory cost. 



 7 

The main possible machine environments are: 

 

Single machine: only one machine is available to process jobs. Each job has 

single task. Every job is processed on the same machine. 

 

Parallel machine: Multiple machines are available to process jobs. A job requires 

a single operation and can be processed on any machine. 

 

Flow shop: There are a series of machines (m). Each job has exactly m tasks. The 

first task of every job has to be processed on machine 1, then on the machine 2 

and so on. Every job goes through all m machines in a unidirectional order. 

 

Job shop: There are m machines and j jobs. Each job has its own predetermined 

route to follow. A distinction is made between job shops in which each job visits 

each machine at most once and job shops in which a job may visit each machine 

more than once. 

 

Examples of possible objective functions to be minimised are: 

 

Makespan (Cmax): The makespan is equivalent to the completion time of the last 

job. Cmax is defined as: 

 

 

 



 8 

 

Cmax = max (C1, C2, C3, …, Cn )                                  (Eq. 2.1) 

 

The objective of this problem is to minimise Cmax or to minimise the completion 

time of the last job to leave the system. This criterion is usually used to measure 

the level of utilisation of the machine. 

 

Maximum Lateness (Lmax): The maximum Lateness (Lmax) measures the worst 

violation of the due date. It can be defined as: 

 

 

Lmax = max (L1, L2, L3, …, Ln )                                  (Eq. 2.2) 

 

 

Total Weighted Completion Time (      ): Cj denotes the completion time of 

the j
th
 job in a batch of n jobs given. The sum of the completion times is often 

referred to as the flow time. It is defined as:  

 

 

   
 
                                               (Eq. 2.3) 

 

 

Wj denotes the weight assigned to j
th
 job in a batch of n jobs given. The total 

weighted completion time is defined as:  
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                                                      (Eq. 2.4) 

 

 

The total weighted completion time is then referred to as the weighted flow time. 

It gives an indication of the total holding or inventory costs incurred by the 

schedule. The objective of this problem is to minimise the total weighted 

completion time. 

 

Total Weighted Tardiness (      ):  Total weighted tardiness is a more general 

cost function than the total weighted completion time. However, it is one of the 

strongly NP-hard problems which can be defined as: 

 

 

     
 
                                                      (Eq. 2.5) 

 

 

All objective functions mentioned above are so-called regular performance 

measures which is a function that is non-decreasing in C1, …, Cn. Recently 

objective function that are not regular has been studied. For example, when job j 

has a due date dj, it may be subject to an earliness penalty, where the earliness of 

job j is defined as: 
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                                                      (Eq. 2.6) 

 

 

 

An objective such as the total earliness plus the total tardiness is defined as:  

 

 

        
 
   

 
                                        (Eq. 2.7) 

 

 

A more general objective that is not regular is the total weighted earliness plus the 

total weighted tardiness:  

 

 

              
 
   

 
                                       (Eq. 2.8) 

 

 

The weight associated with the earliness of job j may be different from the weight 

associated with the tardiness of job j. This problem is harder than the total 

tardiness problem (Lenstra 1977; Pinedo 2008; Robert and Vivien 2010). 
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2.2 Job Scheduling Solvers 

This section presents existing techniques that have been successfully applied to 

job scheduling problems. 

 

2.2.1 Simulated Annealing 

Simulated Annealing (SA) was developed by Kirkpatrick et al. (1983) and Cerny 

(1985). The idea of SA algorithm was taken from the simulation of the annealing 

of solids. It has been successfully applied to many practical problems as it has a 

stochastic component, which facilitates a theoretical analysis of their asymptotic 

convergence. General schema for a SA algorithm to solve scheduling problem 

starts by generating a starting solution S. Then the neighbourhood of S is chosen 

randomly (S’). If the objective function value of S’ is smaller than that of S, the 

new solution becomes the actual one and the search process is then continued 

from S’. On the other hand, if the objective function value of S’ is greater than S, 

then S’ is accepted as the actual solution with probability      , where c 

represents the actual value of the control parameter (temperature). At the 

beginning, the algorithm starts with a relatively high value of c so that most of the 

interior neighbourhood solutions are accepted. The c value is usually kept 

constant for a number of iterations and then reduced afterwards, so that the 

acceptance probability of inferior solution is relatively small in the end phase of 

search process. Fig 2.1 shows general pseudo code of a SA algorithm. 
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Figure 2.1 General pseudo code of a Simulated Annealing algorithm 

 

 

 

 

 

Step 1: Generate a starting solution S as initial solution Sbest = S 

Step 2: Determine a starting temperature c 

Step 3: While 

         Choose a random neighbour S’ of current solution 

         Set Δ = f(S’) – f(S) 

               If Δ ≤ 0 then S = S’ 

                   If f(S) < f(Sbest) then Sbest = S 

                   Else if       > random [0,1] then S = S’ 

                 End 

        Lower the temperature c 

        End 

Step 4: If stopping criterion not met then goto step 3 
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2.2.2 Genetic Algorithms 

Genetic Algorithms (GAs) are invented by Holland (1975). The algorithms have 

been used for a wild variety of problems including machine learning, game 

playing, and combinatorial optimisation. GAs use a population of possible 

solutions to conduct a robust search of search space. Initially, a set of solutions is 

generated randomly. Each of which is then evaluated by fitness function. The 

algorithm then enters a loop. Any iteration in the loop is called a generation, 

which consists of two steps: selection and recombination. Holland (1975) 

suggested that the solutions with better fitness values should have a higher 

probability to be selected for reproduction. In recombination step, the most 

common operators are crossover and mutation. Results from recombination 

operators are the population for the next generation. The loop continues until a 

stopping criteria is met (De Jong 2006; Goldberg 1989; Webster et al 1998). 

Figure 2.2 shows general pseudo code of a GAs. 
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Figure 2.2 General pseudo code of a Genetic algorithms 

 

 

 

 

 

 

 

 

 

 

Step 1: Create an initial population of m parents 

Step 2: Compute and save the fitness value f(i) for each individual (i) 

Step 3: Define selection probabilities p(i) for each parent i 

            So that p(i) is proportional to f(i) 

Step 4: Generate m offspring  by probabilistically selecting parents to  

             produce offspring 

Step 5: Select only the offspring to survive 

Step 6: Repeat step 2 until a stopping criterion has been met 
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2.2.3 Tabu Search Algorithm 

Tabu search (TS) is a meta-heuristic that guides a local search procedure to 

explore the solution space beyond local optimality (Glover and Laguna 1997). In 

order to improve the efficiency of the exploration process, local information and 

some information related to the exploration process must be memorised. This 

adaptive memory usage is an essential feature of TS.  

 

The TS begins by marching to a local minima. To avoid retracting the steps used, 

the method records recent moves in one or more tabu lists. The original intent of 

the list was not to prevent a previous move from being repeated, but rather to 

insure it was not reversed. The tabu lists are historical in nature and form the tabu 

search memory. The role of the memory can change as the algorithm proceeds. At 

initialisation the goal is to make a coarse examination of the solution space, 

known as diversification, but as candidate locations are identified the search is 

more focused to produce local optimal solutions in a process of intensification. In 

many cases the differences between the various implementations of the tabu 

method have to do with the size, variability, and adaptability of the tabu memory 

to a particular problem domain. 

 

The TS has traditionally been used on combinatorial optimisation problems. The 

technique is straightforwardly applied to continuous functions by choosing a 

discrete encoding of the problem. Many of the applications in the literature 
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involve integer programming problems, scheduling, routing, traveling salesman 

and related problems. 

 

2.2.4 Ant Colony Optimisation 

Ant Colony Optimisation (ACO) was introduced by Dorigo et al. (1991). The 

ACO is a non-greedy population-based meta-heuristic which emulates the 

behaviour of real ants. Ants are capable of finding the shortest path from the food 

source to their nest using a chemical substance called pheromone, which is used 

to guide the exploration. The pheromone is deposited on the ground as the ants 

move and the probability that a passing stray ant will follow this trail depends on 

the quantity of pheromone laid (Bilchev and Parmee 1995). 

 

Current applications of ACO algorithms fall into the two important problem 

classes of static and dynamic combinatorial optimisation problems. The artificial 

ants in ACO implement a randomised construction heuristic which makes 

probabilistic decisions as a function of artificial pheromone trails and possibly 

available heuristic information based on the input data of the problem to be 

solved. As such, ACO can be interpreted as an extension of traditional 

construction heuristics, which are readily available for many combinatorial 

optimisation problems (Dorigo et al. 1999; Dorigo 2004; Bonabeau et al. 1999; 

Pan et al. 2010).  Figure 2.3 shows the pseudo code of ACO. 
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Figure 2.3 The pseudo code of Ant Colony Optimisation 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Initialise pheromone values 

Step 2: While (stopping criterion not met) do 

Step 3: Create all ants solutions 

Step 4: Perform local search 

Step 5: Update pheromone values 

Step 6: End while 
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2.2.5 Discrete Particle Swarm Optimisation 

Particle Swarm Optimisation (PSO) is a population based meta-heuristic proposed 

by Kennedy and Eberhart (1995). It is based on the social behaviour of groups of 

organisations, for example the flocking of birds or the schooling of fish and 

originally designed for continuous optimisation domains. PSO deploys the 

exploring agents called particles that can adjust their positions in time according 

to their own experience and to other particles’ experience (Eberhart and Kennedy 

2001). 

 

Discrete Particle Swarm Optimisation (DPSO) was first proposed by Kennedy 

and Eberhart (1997). DPSO approach differs both for the way it associates a 

particle position with a discrete solution and for the velocity model used.  Several 

studies have applied the DPSO approach to combinatorial optimisation problem 

such as the travelling salesman problem, vehicle routing problem, and job 

scheduling problems. The pseudo code of DPSO is given in Fig.2.4. 
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Figure 2.4 The pseudo code of Discrete Particle Swarm Optimisation 

 

 

 

 

 

 

 

Step 1: Create particles (population) 

Step 2: While (stopping criterion not met) do 

Step 3: Evaluate each particle’s position according to the objective function 

Step 4: Find the personal best 

Step 5: Update the personal best 

Step 6: Find the global best 

Step 7: Update the global best 

Step 8: Update particles’ velocities 

Step 9: Move particles to their new position according to their velocity 

Step 10: Go to step 3 until stopping criterion has been met 
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2.2.6 Discrete Differential Evolution 

Differential Evolution (DE) was introduced by Storn and Price (1997). DE is a 

stochastic population-based heuristic that has been applied on many numerical 

optimisation problems. The standard DE algorithm is given in Figure 2.5. 

Recently, Discrete Differential Evolution Algorithm (DDE) was proposed to solve 

complex combinatorial optimisation problems with discrete decision variables 

such as the traveling salesman and job scheduling problems. The advantages of 

DDE include a simple structure, immediately accessible for practical applications, 

ease of implementation, speed to acquire solutions, and robustness. However, the 

application of DDE on combinatorial optimisation problems are still considered 

limited. 
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Figure 2.5 The standard pseudo code of Differential Evolution Algorithm 

 

 

 

 

 

 

 

 

 

 

Step 1: Initialise parameters and population 

Step 2: Evaluate population 

Step 3: Do 

Step 4: Obtain mutant population 

Step 5: Obtain trial population 

Step 6: Evaluate trial population 

Step 7: Make selection 

Step 8: Apply local search (optional) 

Step 9: While (not termination) 
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2.2.7 Exact Algorithm 

In 2008, Tanaka and Fujikuma (2008) have proposed an Exact Algorithm solve 

general single machine scheduling without machine idle time problem. It is based 

on Successive Sublimation Dynamic Programming (SSDP) method. Its process 

starts from a relaxation of the original problem. Thus Langrangian Relaxation 

(LR) technique is employed. Three relaxations      ,     
    and     

   are 

generated. The algorithm composes of three stages:       is solved first,     
   is 

solved next and then     
    is solved. The constrains are successively added for 

better relaxations during the main loop of the SSDP method until the gap between 

lower and upper bounds becomes zero. Reduction of memory usage is also 

performed by network reduction techniques (Tanaka et al 2009; Tanaka and 

Fujikuma 2012). Recently, an Exact Algorithm has been successfully applied to 

solve several types of single machine scheduling problems such as the single-

machine earliness-tardiness scheduling problem (Tanaka 2012), the precedence-

constrained single-machine scheduling problem (Tanaka and Sato 2013),  AND 

the single-machine total weighted tardiness problem with sequence-dependent 

setup times (Tanaka and Araki 2013). 
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2.3 Artificial Immune System 

The natural immune system is a very complex system with several mechanisms to 

defence against pathogenic organisms. However, the natural immune system is 

also a source of inspiration for solving optimisation problems. From the 

information processing perspective, immune system is a remarkable adaptive 

system and can provide several important aspects in the field of computation. 

When incorporated with evolutionary algorithms, immune system can improve 

the search ability during the evolutionary process. The Artificial Immune Systems 

(AIS) are machine-learning algorithms that embody some of the principles and 

attempt to take advantages of the benefits of natural immune systems to deal with 

complex problem domains. Some of theories primarily used in AIS are briefly 

described below: 

 

The Clonal Selection Principle describes the basic characteristics of an adaptive 

immune response to an antigenic stimulus. Only those cells that able to recognise 

an antigenic stimulus will proliferate and differentiate into effector cells and will 

be selected. The main features of clonal selection theory are cloning, elimination 

and proliferation (de Castro and Timmis 2002; Aickelin and Dasguta 2005). The 

Clonal Selection Algorithm (CLONALG), the most well-known AIS algorithm, 

proposed by de Castro and Von Zuben (2002), is one such system inspired by the 

clonal selection theory of acquired immunity, which has shown success on broad 

range of engineering problem domains.  
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The Immune Network Theory was proposed by Jerne (1974). The immune 

network was introduced as a fundamental idea to explain phenomena like 

repertoire selection, tolerance, self/nonself discrimination and memory (Varela 

and Coutinho 1991). The hypothesis was that antibody molecule could be 

recognised by a set of other antibody molecules. A regulated network of 

molecules and cells that recognise one another even in the absence of antigens 

composes the immune system.  

 

The Negative Selection describes the process whereby a lymphocyte-antigen 

interaction results in the death of that lymphocyte (de Castro and Von Zuben 

2002). During the generation of T-cells, T-cells that react against self-proteins are 

destroyed. Only T-cells that do not bind to self-proteins are allowed to leave the 

thymus then circulate throughout the body to protect the body from foreign 

antigen (Aickelin and Dasguta 2005). 

 

The Positive selection serves the purpose of avoiding the accumulation of useless 

lymphocytes. In positive selection of T-cells, all T-cells must recognise antigens 

associated with self-MHC molecules. Only those of T-cells that capable of 

binding to Self-MHC (Major Histocompatibility Complex) molecules can survive. 

The positive selection algorithm consists of three main processes: generation of 

the potential repertoire of immature T-cells, Affinity evaluation and generation of 

available repertoire (de Castro and Timmis 2002; Zhang and QI 2012). 

 

 



 25 

The Danger Theory was proposed by Matzinger (1994). The key why the 

immune system is able to distinguish between the nonself-antigens and the self-

antigens is that the nonself-antigens make the body produce biochemical reactions 

different from natural rules and the reactions will make the body produce danger 

signals of different levels. Thus, the immune system produces danger signals 

based on the environmental changes and then leads to the immune responses. In 

essence, the danger signal creates a danger zone around itself and immune cells 

within this danger zone will be activated to participate in the immune response. 

The Danger theory explains the immune response of the human body by the 

interaction between antigen presenting cells and various signals (Zhange et al. 

2013; Lu 2012; Aickelin and Dasguta 2005; Matzinger 2002) 

 

The Artificial Immune system was introduced as a new computational intelligent 

paradigm. It is a general framework for a distributed adaptive system and could be 

applied to many problem domains such as Network Intrusion Detection problem 

(Kim and Bentley 1999), Autonomous Navigation (Watanabe et al 1999), 

Computer Network Security (Hofmeyr and Forrest 2000), Job Scheduling (Coello 

et al. 2003; Hart and Ross 1999; Lee and Zomaya 2007), Data Analysis and 

Optimisation (de Castro and Von Zuben 2001; de Castro and Timmis 2002; 

Zhang and QI 2012). It represents a powerful technique that already emerged.  
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2.4 The Honeybees-inspired Algorithm  

2.4.1 The Honeybees in nature 

A colony of honeybees can extend itself over long distances and in multiple 

directions simultaneously to exploit a large number of food sources (Von Frisch 

1967; Seeley 1996). A colony prospers by deploying its foragers to good fields. In 

principle, flower patches with plentiful amounts of nectar or pollen that can be 

collected with less effort should be visited by more bees, whereas patches with 

less nectar or pollen should receive fewer bees (Camazine et al. 2003). 

 

The foraging process begins in a colony by scout bees being sent to search for 

promising flower patches. Scout bees move randomly from one patch to another. 

During the harvesting season, a colony continues its exploration, keeping a 

percentage of the population as scout bees (Seeley 1996). 

 

When they return to the hive, those scout bees that found a patch which is rated 

above a certain quality threshold (measured as a combination of some 

constituents, such as sugar content) deposit their nectar or pollen and go to the 

“dance floor” to perform a dance known as the “waggle dance” (Von Frisch 

1967). Source quality can be understood as simply the relation between gain and 

cost from a specific nectar source (Von Frisch 1967). 
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This mysterious dance is essential for colony communication, and contains three 

pieces of information regarding a flower patch: the direction in which it will be 

found, its distance from the hive and its quality rating (or fitness) (Von Frisch 

1967; Camazine et al. 2003). This information helps the colony to send its bees to 

flower patches precisely, without using guides or maps. Each individual’s 

knowledge of the outside environment is gleaned solely from the waggle dance. 

This dance enables the colony to evaluate the relative merit of different patches 

according to both the quality of the food they provide and the amount of energy 

needed to harvest it (Camazine et al. 2003). After waggle dancing on the dance 

floor, the dancer (i.e. the scout bee) goes back to the flower patch with follower 

bees that were waiting inside the hive. More follower bees are sent to more 

promising patches. This allows the colony to gather food quickly and efficiently. 

 

While harvesting from a patch, the bees monitor its food level. This is necessary 

to decide upon the next waggle dance when they return to the hive (Camazine et 

al. 2003). If the patch is still good enough as a food source, then it will be 

advertised in the waggle dance and more bees will be recruited to that source. 

 

Nectar source selection behaviour is one of the most challenging as well as vital 

tasks for honey-bee colonies (Camazine et al. 2003). When a honey-bee colony 

becomes overcrowded it needs to be divided for effective source management 

(Von Frisch 1967; Camazine et al. 2003). This critical decision making process 

works without a central control mechanism. Nectar source selection behaviour 

mainly deals with the situation of a colony choosing between several nectar 
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sources by simply measuring several factors at once and comparing them with 

other solutions. The decision is made when all the scout bees are dancing for the 

same site and it takes a couple of days before half of the colony moves to a new 

hive (Camazine and Sneyd 1991; Camazine et al. 1999: Seeley and Visscher 

2003). 

 

2.4.2 Artificial Bee Colony Algorithm 

Artificial Bee Colony (ABC) is a swarm-based algorithm that was originally 

proposed by Karaboga (2005); Karaboga and Basturk (2007). It simulates the 

foraging behaviour of a honeybee swarm. In its basic version, honeybees are 

classified into three groups namely, employed bees, onlookers, and scouts. An 

employed bee is responsible for searching for food source and collecting nectar. 

An onlooker waits in the hive and decides on whether a food source is acceptable 

or not after watching employed bees perform waggle dance. A scout searches for 

new food source randomly. The main steps of the ABC algorithm are given in 

Figure 2.6 (Karaboga (2005); Karaboga and Basturk (2007); Karaboga and 

Basturk (2008).  
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Figure 2.6 The main steps of the ABC algorithm 

 

Later a Discrete Artificial Bee Colony (DABC) algorithm was proposed to solve 

job scheduling problems for examples, the lot-streaming flow shop scheduling 

problem, the multi-objective flexible job-shop scheduling problem with 

maintenance activities, and the flexible job-shop scheduling problem (Pan et al. 

2010; Li et al. 2013; Thammano and Phu-ang 2013). The DABC algorithm 

represents a food source as a discrete job permutation and applies discrete 

operators to generate new neighbouring food sources for the employed bees, 

onlookers and scouts.  

 

 

Step 1: Send the scouts onto the initial food sources 

REPEAT 

Step 2: Send the employed bees onto the food sources and determine their 

nectar amounts. Calculate the probability value of the sources with which 

they are preferred by the onlooker bees   .  

Step 3: Stop the exploitation process of the sources abandoned by the bees 

Step 4: Send the scouts into the search area for discovering new food 

sources, randomly 

Step 5: Memorise the best food source found so far UNTIL (requirements 

are met) 

UNTIL (requirements are met) 
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2.4.3 The Bees Algorithm 

2.4.3.1 The Bees Algorithm for continuous domains 

The Bees Algorithm (BA) was developed by a group of researchers at the 

Manufacturing Engineering Centre, Cardiff University (Pham et al. 2005; Pham et 

al. 2006a, Pham et al. 2006b, Pham et al. 2006c, Pham et al. 2006d; Pham and 

Ghanbarzadeh 2007; Pham et al. 2007a). This algorithm emulated the behaviour 

of honeybees in foraging for pollen and nectar. The algorithm required 

parameters, namely the number of scout bees (n), number of selected sites (m), 

number of top-ranking (elite) sites among the m selected sites (e), number of bees 

recruited for each non-elite site (nsp), number of bees recruited for each elite site 

(nep), and neighbourhood size (ngh). The optimisation process started with n 

scout bees randomly spread across the solution space. Each scout bee was 

associated with a possible solution to the problem. The solutions were evaluated 

and ranked in descending order of the fitness, and the best m sites were selected 

for neighbourhood search. 

 

In the neighbourhood search procedure, more forager bees were sent in the 

neighbourhood of the elite (e) sites, and fewer bees around the non-elite (m-e) 

sites. According to this strategy, the foraging effort was concentrated on the very 

best (i.e., elite) solutions. That is, nep bees were sent to forage around the elite 

sites, while the area around the non-elite locations was exploited by nsp bees. 

Within the given neighbourhood area (i.e., flower patch size), some of the newly 

generated solutions were expected to be better than that found by the scout bees. 
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In the global search procedure, the unselected scout bees (n-m) were used to 

explore at random the solution space. This kind of search was to avoid bees being 

trapped at local optima. At the end of each cycle, a new list of scout bees was 

formed, comprising the fittest solutions from each neighbourhood (neighbourhood 

search results), and the new randomly generated solutions (global search results). 

This list would be sorted in the next iteration and used for a new phase of 

optimisation. The combination of exploitative (neighbourhood) and explorative 

(global) search would be able to capture the best solution quickly and efficiently. 

These steps were repeated until the stopping criterion was met (Ghanbarzadeh 

2007). The pseudocode of the BA and the algorithm flowchart for continuous 

domains is shown in Figures 2.6 and 2.7 respectively (Pham et al. 2006b; Ahmad 

2012). 
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Figure 2.7 The pseudocode of the Bees Algorithm for continuous domains 

 

 

  

 

Step 1: Initialise population with random solutions  

Step 2: Evaluate fitness of the population 

Step 3: While (stopping criterion not met) 

           //Forming new population 

Step 4: Select sites for neighbourhood search 

Step 5: Recruit bees for selected sites (more bees for best e sites)  

             and evaluate the fitness 

Step 6: Select the fittest bee from each patch 

Step 7: Assign remaining bees to search randomly and evaluate their fitness 

Step 8: End While 
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Figure 2.8 Flowchart of the Bees Algorithm 

  

Start 

Initialise a population of n scout bees 

Evaluate the fitness of the population 

Select m sites for neighbourhood search 

Determine the size of the neighbourhood 

Recruit bees for the selected sites 

Select the representative bee from each patch 

Assign remaining bees to random search 

New population of scout bees 

End 

Neighbourhood 

search 
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2.4.3.2 The Bees Algorithm for Job Scheduling Problems 

In 2007, the first Bees Algorithm to solve machine scheduling was proposed 

(Pham et al. 2007b). This work is the first to report the application of the Bees 

Algorithm to a combinatorial problem.  The pseudo-code of the Bees Algorithm 

for scheduling problem is given in Fig. 2.8. In essence, the algorithm is very 

similar to the original algorithm. The main differences here are: in step 5, the 

patch idea is replaced by a local search operator to be able to perform a local 

search and the, shrinking procedure is also removed from the algorithm. However, 

the abandonment procedure is kept to help the algorithm to improve the global 

search part.  

 

The main feature of combinatorial domains, unlike continuous domains, is that 

there is no mathematical distance definition for the neighbourhood search. Since 

the Bees Algorithm was developed for continuous domains, it is necessary to 

modify the neighbourhood part by simply replacing the patch with a local search 

operator (Koc 2010).  

 

There are several exchange neighbourhood strategies for examples, 2-Opt, 3-Opt, 

and Swap operators. 2-Opt was first proposed by Croes 1958 for solving the 

traveling salesman problem. The main idea is to break two edges and reconnect 

them in other way. There is also 3-Opt approach, a cut of 3 points and reconnect 

them in other possible ways. The same problem may have multiple different 

neighbourhoods defined on it, local neighbourhood search that involve changing  
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Figure 2.9 The pseudo-code of the BA for scheduling problem (Koc 2010) 

Step 1: Initial population with n random solution; random(Sequence(n)).  

Step 2: Evaluate fitness of the population.    

Step 3: While (stopping criterion not met)   

Step 4: Select sites (m) for neighbourhood search. 

Step 5: Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the 

fittest bee from each site and shrink patches 

for (k=1 ; k=e ; k++) // Elite Sites   

for (i=1 ; i= nep ; i++) // More Bees for Elite Sites 

                            RecruitedBee(k)(i) = NeighbourhoodOperator(Sequence(k));   

                            Evaluate Fitness = RecruitedBee(k)(i);  

                               //Evalute the fitnees of recruited Bee(i)  

                            If (Bee(i) is better than Bee(i-1)) RepresentativeBee = RecruitedBee(k)(i); 

for (k=e ; k=m ; k++) // Other selected sites (m-e)   

for (Bee=1 ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e) 

                             RecruitedBee(k)(i) = NghOperator(Sequence(k));    

                             Evaluate Fitness = RecruitedBee(k)(i);  

                              //Evalute the fitnees of recruited Bee(i)  

                            If (Bee(i) is better than Bee(i-1)) RepresentativeBee = RecruitedBee(k)(i); 

Step 6: If (Iteration > sat)   

If (no improvement on the site) 

                       Save the Best Fitness;   Abandon the Site;   

                       Bee(m) = GenerateRandomValue(All Search Space); 

Step 7: Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned 

to search randomly into whole solution space 

Step 8: End while 
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up to k components of the solution is often referred to as k-opt. Swap and insert 

operators are considered as neighbourhood strategies. They simply change the 

position of a randomly selected node to create an altered path. In swap 

neighbourhood, two nodes are interchanged whereas in insert neighbourhood, one 

node is removed from its current position and then inserted elsewhere (Aarts and 

Lenstra 1997). In Pham et al. 2007b, only the exchange, 2-Opt and 3-Opt were 

used to modify the Bees Algorithm. 

 

2.5 Summary 

This chapter briefly describes job scheduling problems and some existing 

techniques applied to solve those problems. It also provides general background 

of the Bees Algorithm for combinatorial domains as well as continuous domain. 

 

 

 



 

 

 

CHAPTER 3 

 

THE ENHANCED BEES ALGORITHMS WITH 

NEGATIVE SELECTION FOR SINGLE 

MACHINE WITH A COMMON DUE DATE 

 

 

 

3.1 Preliminaries 

Scheduling multiple jobs on a machine with a common due date set costs depend 

on whether a job is finished before or after the specified due date. Minimising 

earliness penalty such as inventory cost and tardiness penalty imposed by 

customers pushes the completion time of each job as close as possible to the due 

date. If the optimal sequence cannot be constructed without considering the value 

of the due date, the common due date is called restrictive. This problem is known 

to be intractable (Garey and Johnson 1979). 
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Two newly developed Bees Algorithm with Negative Selection based Artificial 

Immune System (AIS) are presented in this chapter. These algorithms are 

enhanced version of their basic counterpart for combinatorial problems to solve 

single-machine with common due date problem. The discrete uniform distribution 

technique is also used for randomly generating the idle time during initialisation 

when needed. 

 

The chapter is organised as follows: Section 3.2 describes the single machine 

scheduling problem with a common due date, its model, its well-known properties 

and benchmark. Section 3.3 presents the enhanced Bees Algorithms for single 

machine with common due date. Their characteristics are also described. Results 

are tabulated in Section 3.4 and the summary of this work is in Section 3.5 

 

 

3.2 Earliness and Tardiness penalties in single-machine 

problem with a common due date 

Common due date problems have been studied extensively in recent years. Kanet 

(1981) is one of the pioneers studying common due date problems. This 

contribution has been extended in many directions; see, for examples, Baker and 

Scudder (1989a&b), Biskup and Cheng (1999), Hoogeveen and van de Velde 

(1991), Feldmann M, and Biskup D (2003), Hino et al. (2005), Pan et al. (2006), 

Nearchou (2006), Nearchou (2008), Pham et al. (2007b),  and Talebi et al (2009). 
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This problem became important with the advent of the just in time (JIT) concept 

which is a production strategy that strives to improve the business return on 

investment by reducing costs. In the JIT scheduling environment, the product 

should be finished as close to due date as possible. An early job completion 

results in inventory carrying costs, such as storage and insurance costs. On the 

other hand, a tardy job completion results in penalties, such as loss of customer 

goodwill and damaged reputation. When scheduling on a single machine against 

common due date, one job at most can be completed exactly at the due date. 

Hence, some of the jobs have to be completed early while other jobs must be 

finished late. 

 

3.2.1 The Earliness and Tardiness Model 

The concept of earliness and tardiness (E/T) has spawned a rapidly developing 

line of research in scheduling area. Because the use of both earliness and tardiness 

penalties gives rise to non-regular performance measure, it has led to new 

methodological issues in the design of solution procedures. In the E/T problem, 

the set of jobs to be scheduled is known in advance and is simultaneously 

available. The vast majority of articles on E/T problems also deal with single 

machine models.  

 

To describe an E/T model, let n be the number of jobs to be scheduled. Job i is 

described by a processing time pi and a due date di. All jobs are assumed to be 

available at time Zero. If the completion time Ci of job i is smaller than or equal to 
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common due date d, which is assumed as given, the jobs’ earliness is Ei = (di. – 

Ci). Accordingly, a job i is tardy with  tardiness Ti = (Ci -di), if its completion time 

is greater than the common due date d. As it is not known in advance whether a 

job will be completed before or after due date, earliness and tardiness are 

calculated as is Ei = max{0, di. – Ci} and Ti = max{0, Ci -di} for all jobs i = 1, …, 

n. The per time unit penalties of the job i for being early or tardy are αi and βi, 

respectively.  

 

The basic E/T objective function for a schedule S can be written as f(S), 

where 

 

 

          
 
          

 
                                      (Eq. 3.1) 

 

 

Some of E/T problems have been derived for models in which all jobs have a 

common due date (di = d) (Baker and Scudder 1989a; Baker and Scudder 1989b). 

 

 

 

 

 

 

 



 41 

3.2.2 The Restrictive Common Due Date 

The restrictive and unrestrictive cases are two main approaches to address the 

common due date. In the unrestricted case, the optimal schedule (S) can be 

constructed without considering the due date, which means it has no influence on 

the optimal sequence. However, if the due date is known and it affects the optimal 

sequence of jobs, then it is considered restrictive. 

 

 

The restrictive common due date is NP-hard which has been proven 

independently by Hall et al. (1991) and Hoogeveen and Van de Velde (1991). 

Three well-known properties that are essential for an optimal schedule in the 

restrictive case are as follows:  

 

1. There are no idle times between consecutive jobs (Cheng and Kahlbacher 

1991). 

2. An optimal schedule has the so-called V-shape property, that is, jobs 

finished before the due date are ordered according to non increasing ratios 

pj/αj and jobs finished after the due date are ordered according to non-

decreasing ratios pj/βj (Smith 1956). 

3. There is an optimal schedule in which either the processing time of the 

first job starts at time zero or one job is finished at the due date 

(Hoogeveen and Van de Velde 1991) 
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All potential optimal schedules can be divided into three cases:  

1) The first job starts at time zero and the last early job is finished exactly at 

time d. 

2) The first job starts at time zero and the last early job is finished before d, 

here a straddling job exists. 

3) The first job does not necessarily start at time zero. 

 

 

3.2.3 Benchmark for single machine with common due date 

problems 

Biskup and Feldmann (2001) have developed a set of the restricted single 

machine with common due date benchmark. There are seven categories of 

problems with 10, 20, 50, 100, 200, 500, and 1000 jobs. Each category contains 

10 instances. For each of the jobs, the individual processing times pi , earliness αi 

and tardiness βi penalty are given. Four values of parameter h: 0.2, 0.4, 0.6, 0.8, 

are used to calculate more or less restrictive common due dates. Therefore this 

benchmark has 280 test instances in total. The common due date d is calculated by  

 

                                                             (Eq.3.2) 

 

where round[ x ] gives the biggest integer, which is smaller than or equal to x 

                       denotes the sum of the processing times of the n jobs 
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These instances are available at OR-LIBRARY website: http://people.brunel. 

ac.uk/~mastjjb/ jeb/orlib/schinfo.html 

 

 

3.3 The Enhanced Bees Algorithms for Single Machine 

with Common Due Date 

In 2007, Pham et al. (2007b) has presented the Bees Algorithm to solve single 

machine with common due date. This work is the first to report the application of 

the Bees Algorithm to a combinatorial problem.  In this basic version, two 

neighbourhood search methods, namely simple-swap and insert method are 

applied. The search of best idle time is considered as continuous domain. The 

computational results show that the Bees Algorithm performed more strongly than 

the existing techniques during that period of time.  

 

The Bees Algorithm with Negative Selection proposed in this chapter is an 

enhanced version which aims to improve the basic Bees Algorithm in choosing 

the fittest solutions from selected patch sites after neighbourhood search. The 

basic version was studied and observed that keeping the fittest solution from each 

patch site might not always be a good option for single machine scheduling 

problem. There is a possibility that the algorithm will keep many of the same 

solutions which means each selected patch site sometimes might unintentionally 

produce the same sequences as other patch sites during neighbourhood search. 
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Moreover, there is a chance that the second best solution and sometimes as well as 

the third best solution from a patch site might have better fitness values than other 

sites’ fittest one. Keeping duplicitous solutions for the next generation could 

cause high computational time as well as being struggled in local optima.  

 

3.3.1 The enhanced Bees Algorithms’ characteristics 

In this section, three key features namely the Discrete Uniform Distribution, 

Neighbourhood Search Procedures, and Negative Selection based Artificial 

Immune System deployed to improve the Bees Algorithms’ performance are 

presented.  

 

3.3.1.1 The Discrete Uniform Distribution 

The discrete uniform distribution is the distribution in which all possible values 

have equal probabilities. The uniform distribution is characterised as follows: 

 

A discrete random variable R, taking value 1,2,3,…,n such that 

 

        
 

 
                

                       

                                      (Eq.3.3) 
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A random variable R used in this way, associated with the results rather than equal 

to them, can be a very useful concept. It is called a dummy variable or an 

indicator variable (Clarke and Cooke 2004). 

 

According to Property 3, the search for an optimal schedule should not be 

restricted to sequences starting at time Zero. The discrete uniform distribution is 

used to randomly generate the idle time, which will be inserted at the beginning of 

the schedule only. Fig. 3.1 illustrates possible solution sets. Fig. 3.1 (a) shows a 

possible solution when first job starts at time zero. Fig. 3.2 (b) shows a possible 

solution with idle time when processing of first job is delayed. 
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Figure 3.1 Illustration of possible solution sets 

 

 

  

     α      β         

   0 

  Early set   Tardy set 

(a) A possible solution without idle time inserted 

     α      β         

0 

  Early set   Tardy set   Idle time 

(b) A possible solution with idle time inserted 
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3.3.1.2 Neighbourhood Search Procedures 

Local search which is a widely used, is a general approach to solving hard 

optimisation problems. An optimisation problem has a set of solutions and an 

objective function that assigns a numerical value to every solution. Typically, 

local search procedures for job scheduling move from feasible schedules to 

feasible schedules. A key issue in these procedures is thus to design, or to select, 

moves that preserve feasibility in hope of improving an objective function which 

measures the quality of solutions to the problem at hand.  

 

A very simple neighbourhood search is the Swap, a well-known local search 

method for combinatorial problems (Aarts and Lenstra 1997). In this enhanced 

Bees Algorithm’s neighbourhood search step, two different types of swap 

methods are deployed. The first procedure is double swap method. Two jobs will 

be selected randomly regardless of whether these jobs are in early or tardy set and 

then swapped. The same process will repeat once again with two other jobs. Fig 

3.2 shows double swap method deployed in neighbourhood search step of the 

enhanced Bees Algorithm when the first job starts at time zero. In the second 

neighbourhood search procedure shown in Fig. 3.3, two groups of jobs are 

selected randomly and then their positions are swapped. Also, early and tardy sets 

are not considered. 

 

Another search method deployed in this enhanced Bees Algorithm is insert 

method. It is similar to simple-swap but insertion does not work vice versa. A 
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randomly selected job is simply inserted in a randomly defined position. It is 

slightly modified for this problem. Inserting can only occur between early and 

tardy sets. Fig 3.4 shows the third procedure deployed. A job from early set is 

randomly selected and then inserted into a position in tardy set. Fig 3.5 shows the 

fourth procedure. A job from tardy set is randomly selected and then inserted into 

a position in another set. 
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Fig 3.2 Double-swap method 

 

 

 

 

Fig 3.3 Two groups-swap method 
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Fig 3.4 Insert method from early set to tardy set 

 

 

 

 

Fig 3.5 Insert method from tardy set to early set 
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3.3.1.3 Negative Selection 

In recent years, attention has been drawn to Artificial Immune System (AIS), a 

biologically inspired computing paradigm. AIS abstracts and models tackle 

challenging problem in dynamic environments. Major AIS model include Positive 

Selection, Negative Selection, Clonal Selection, Danger Theory, and Immune 

Networks. This soft computing paradigm has been showing potential in job 

scheduling as well as other applications (Hart and Ross 1999; Coello et al. 2003; 

Aickelin et al. 2004; Chandrasekaran et al. 2006; Chen et al 2012).  

 

A well known artificial Negative Selection scheme was proposed in Forrest et al. 

(1994). Three principles of the algorithm presented were defining self, generating 

detectors and monitoring the occurrence of anomalies. Fig 3.6 shows the negative 

selection algorithm proposed by Forrest et al. (1994). Strings are randomly 

generated and placed in a set P of immature T-cells. Then the affinity of all T-

cells in P is determined with all elements of the self-peptides, named self-set S. If 

the affinity of an immature T-cell with at least one self-peptide is greater than or 

equal to a given cross-reactive threshold, then the T-cell recognises this self-

peptide and has to be eliminated (negative selection), else the T-cell is introduced 

into the available repertoire A. The result showed that negative selection 

algorithm has been successfully applied to detect changes in computer systems 

that lead to improvement of system robustness (de Castro and Von Zuben 2002; 

de Castro and Timmis 2002). 
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Figure 3.6 The negative selection algorithm 
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In the basic Bees Algorithms, after neighbourhood search, the fittest bee from 

each patch site will be saved for next iteration. In single machine scheduling, 

applying this idea often causes keeping duplicitous solutions and this does not 

guarantee that all best solutions are chosen as part of the population in the next 

generation. Also there is possibility that the second best solution from a selected 

site could have better fitness than the best solution from another site. To 

overcome this drawback, negative selection model is adapted for the Bees 

Algorithm. Two major phases of negative selection algorithm, detector generation 

and anomaly monitoring, are thus considered.  

 

After neighbourhood search process, all solutions derived will be sorted and 

transferred into repertoire (P). First solution (a sequence) in repertoire (P) will be 

copied into Self-strings (S) and repertoire (A). Then next solution in repertoire P 

will be considered by matching it with strings in Self-strings. If it is recognised 

then it will be eliminated. If not, it will be introduced into repertoire A. In the 

opposite sense, if the set of strings in Self-strings (S) does not match with solution 

from repertoire (P), then it is eliminated and replaced by the solution from 

repertoire (P). Negative Selection process for the Bees Algorithm can be 

summarised in two main steps as follows: 

1) Step 1: matches a set of solution from repertoire (P) with strings in Self-strings. 

If there is no set of strings in Self-strings to match with (Self-strings is empty), 

then introduce the solution into Self-strings and repertoire (A). 
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2) Step 2: matches the next solution from repertoire (P) with strings in Self-

strings. If no match is found, then add the solution into repertoire (A) and update 

string in Self-strings. Otherwise eliminate the solution. This step is repeated until 

repertoire (A) is full. 

 

3.3.2 The enhanced Bees Algorithms 

 

Two slightly different algorithms are proposed to solve single machine scheduling 

with a common due date.  

 

3.3.2.1 The Bees Algorithm with Negative Selection: Single Swarm 

 

The Bees Algorithm with Negative Selection is first developed to solve the 

benchmark when h value equals 0.2 and 0.4. In this case, the idle time does not 

need to be inserted. It means the optimal schedule can be found in a sequence that 

first job starts to be processed at time zero. Fig 3.7. shows its pseudo-code 

 

The algorithm requires a number of parameters to be set, namely: number of scout 

bees (n), number of patches selected out of n visited points (m), number of best 

patches out of m selected patches (e), number of bees recruited for e best patches 

(nep), number of bees recruited for the other (m-e) selected patches (nsp), and the 

stopping criterion. The algorithm starts with the n scout bees being placed 

randomly in the search space (possible sequences).  



 55 

In step 2, all jobs of each sequence are classified into two groups : early set and 

tardy set. Jobs finished early are in early set and jobs finished later than due date 

are in tardy set : Ei = max{0, di. – Ci} and Ti = max{0, Ci -di}.  

 

In step 3, all jobs of both sets are re-sequenced regarding v-shaped property: non-

increasing order of the ratio pj/αj in early set and non-decreasing order of pj/βj in 

tardy set.  

 

In step 4, the fitness values of the solutions visited by the scout bees are 

evaluated.  

 

In steps 6 and 7, bees with the highest fitness values are chosen as “selected bees” 

and those sites that have been visited will be chosen for neighbourhood search. 

Then the algorithm conducts searches in the neighbourhood of the selected bees in 

terms of more bees for the e best bees. The latter can be chosen directly according 

to the fitness values associated with the sites they are visiting. In each search, one 

of four neighbourhood search operators is chosen randomly for each recruited bee. 

Chance to be chosen is given equally. After the search, the algorithm repeats steps 

3 and 4 in order to calculate fitness values.  

 

In steps 9 and 10, the process of negative selection then begins. The maximum 

number of best solutions that can be saved in the repertoire (A) is 5 percent of 

number of scout bees (n). 
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At the end of each generation, the colony will have new population from negative 

selection process and scout bees assigned to conduct random searches. Steps 4-11 

are repeated until the best fitness value has stabilised. At the end of each 

generation, the colony will have two parts to its new population. The first part is 

the representative from previous generation and the second part is the new 

possible solutions conducted by other scout bees. 
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Figure 3.7 Pseudo-code of the Bees Algorithm: Single Swarm 

 

 

  

 

1. Initial population (sequences) with n random solutions. 

2. Classify early and tardy jobs. 

3. Re-sequence jobs in early and tardy sets regarding v-shaped property. 

4. Evaluate fitness of the population. 

5. While (stopping criterion has not been met). 

6. Select sites (m) for neighbourhood search. 

7. Recruit bees for selected sites: elite sites (e) and other selected sites (m-e). 

8. Repeat step 3 and 4. 

9. Move all solutions into repertoire (P) and sort them by their fitness values: high to low 

10. Select the fittest bees by Negative Selection. 

11. Assign remaining bees to search randomly and evaluate their fitness. 

12. End while. 
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3.3.2.2 The Bees Algorithm with Negative Selection: Two Swarms 

 

This section presents the enhanced Bees Algorithm with Negative Selection that 

has the use of discrete uniform distribution technique and two swarms of bees to 

solve this single machine scheduling with a common due date benchmark when h 

value equals 0.6 and 0.8. To find an optimal solution, the idle time has to be 

inserted which means first job must not start at time zero. 

 

To solve this dataset, a solution set is divided into two parts: continuous and 

combinatorial domains as shown in Fig. 3.8. Idle time is considered as continuous 

part. The pseudo-code of this algorithm is shown in Fig.3.9. During initialisation, 

the idle time is randomly generated by using discrete uniform distribution and 

inserted before the process of first job. In this version, the algorithm performs 

neighbourhood search for job sequence first and then performs idle time 

neighbourhood search after negative selection process. A group of recruited bees 

from a mini swarm is deployed in this process and the fittest bee will be selected 

from each site in step11. Then, in step 12, the remaining bees in the population 

are assigned randomly around the search space scouting for new potential 

solutions. These steps are repeated until a stopping criterion is met. 
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Figure 3.8 A set of solution with idle time considered as continuous part 
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Figure 3.9 Pseudo-code of the Bees Algorithm: Two swarms 

 

 

 

1. Initial population (sequences) with n random solutions: an idle time follows by a set of 

sequence. 

2. Classify early and tardy jobs. 

3. Re-sequence jobs in early and tardy sets regarding v-shaped property. 

4. Evaluate fitness of the population. 

5. While (stopping criterion has not been met). 

6. Select sites (m) for neighbourhood search. 

7. Recruit bees for selected sites: elite sites (e) and other selected sites (m-e). 

8. Repeat step 3 and 4. 

9. Move all solutions into repertoire (P) and sort them by their fitness values: high to low 

10. Select the fittest bees by Negative Selection. 

11. Recruit bees from mini smarm for some best selected sites derived from negative 

selection to perform idle time neighbourhood search. 

12. Repeat step 3 and 4. 

13. Assign remaining bees to search for new solution randomly and evaluate their fitness. 

14. End while. 
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3.4 Experimental results 

 

The enhanced Bees Algorithms were implemented in Matlab, a high-level 

language, and run on Dell laptop: Intel (R) Core (TM)2 Duo CPU P8600 

@2.40GHz, 4 GB RAM and MacBook Pro: Intel Quad Core i7 2.3GHz, 8 GB 

RAM. The algorithms have been applied to all 280 instances. Table 3.1 shows the 

parameters used for this experiment in search of potential solutions, where as 

Table 3.2 shows the parameters used in search of potential idle times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 62 

 

Table 3.1 Parameters of Bees Algorithms 

Parameters 
Value 

(when n = 10,20,50) 

Value 

(when n = 100,200,500,1000) 

p : Population 200 500 

m : Number of selected sites 50 75 

e : Number of elites sites 20 30 

nep : Number of bees around 

elite sites 
30 30 

nsp : Number of bees around 

other selected points 
20 20 

 

 

Table 3.2 Parameters used for idle time neighbourhood search 

Parameters 
Value 

(when n = 10,20,50) 

Value 

(when n = 100,200,500,1000) 

m : Number of selected sites 10 20 

e : Number of elites sites 4 10 

nep : Number of bees around 

elite sites 
8 8 

nsp : Number of bees around 
other selected points 

4 4 
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The performance of the algorithms was quantified by the percentage of relative 

deviations (∆) and standard deviation. To obtain the average performance of the 

algorithm, 10 runs were carried out for each instance to report the statistics based 

on the percentage of relative deviations from the upper bounds in Biskup and 

Feldmann (2001). To be more specific, avg  was computed as follows: 

 

 

       
            

    
       

                                            (Eq.3.4) 

 

 

where FeBA, Fref and R are the fitness function values generated by the enhanced 

Bees Algorithm in each run, the reference fitness function value generated by 

Feldmann and Biskup (2003), and the total number of runs, respectively. For 

convenience,
min , 

max  and 
std  denote the minimum, maximum and standard 

deviation of percentage of relative deviation in fitness function value over R  

runs, respectively.  

 

Tables 3.3-3.16 illustrate the detail results of all seven categories of problems 

(when h = 0.2 and h = 0.4) obtained by Feldmann and Biskup (2003), Nearchou 

(2006), Pham et al. (2007b), and the enhanced Bees Algorithm with its avg .  
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Table 3.3 Computational results for 10 jobs when h = 0.2 

 

Table 3.4 Computational results for 10 jobs when h = 0.4 

 

 

n 

 

instance 

h = 0.2 

UB Cost DE Basic BA Enhanced BA avg  

10 1 1936 1936 1936 1936 0.00 

 2 1042 1042 1042 1042 0.00 

 3 1586 1586 1586 1586 0.00 

 4 2139 2139 2139 2139 0.00 

 5 1187 1187 1187 1187 0.00 

 6 1521 1521 1521 1521 0.00 

 7 2170 2170 2170 2170 0.00 

 8 1720 1720 1720 1720 0.00 

 9 1574 1574 1574 1574 0.00 

 10 1869 1869 1869 1869 0.00 

 

n 

 

instance 

h = 0.4 

UB Cost DE Basic BA Enhanced BA avg  

10 1 1025 1025 1025 1025 0.00 

 2 615 615 615 615 0.00 

 3 917 917 917 917 0.00 

 4 1230 1230 1230 1230 0.00 

 5 630 630 630 630 0.00 

 6 908 908 908 908 0.00 

 7 1374 1374 1374 1374 0.00 

 8 1020 1020 1020 1020 0.00 

 9 876 876 876 876 0.00 

 10 1136 1136 1136 1136 0.00 
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Table 3.5 Computational results for 20 jobs when h = 0.2 

 

 

Table 3.6 Computational results for 20 jobs when h = 0.4 

 

n 

 

instance 

h = 0.2 

UB Cost DE Basic BA Enhanced BA avg  

20 1 4431 4394 4398 4394 -0.84 

 2 8567 8430 8430 8430 -1.60 

 3 6331 6210 6210 6210 -1.91 

 4 9478 9188 9188 9188 -3.06 

 5 4340 4215 4215 4215 -2.88 

 6 6766 6527 6527 6527 -3.53 

 7 11101 10455 10455 10455 -5.82 

 8 4203 3920 3920 3920 -6.73 

 9 3530 3465 3465 3465 -1.84 

 10 5545 4979 4979 4979 -10.21 

 

n 

 

instance 

h = 0.4 

UB Cost DE Basic BA Enhanced BA avg  

20 1 3066 3066 3067 3066 0.00 

 2 4897 4847 4847 4847 -1.02 

 3 3883 3838 3841 3838 -1.16 

 4 5122 5118 5118 5118 -0.08 

 5 2571 2495 2501 2495 -2.96 

 6 3601 3582 3582 3582 -0.53 

 7 6357 6238 6238 6238 -1.87 

 8 2151 2145 2145 2145 -0.28 

 9 2097 2096 2096 2096 -0.05 

 10 3192 2925 2925 2925 -8.36 
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Table 3.7 Computational results for 50 jobs when h = 0.2 

 

 

Table 3.8 Computational results for 50 jobs when h = 0.4 

 

n 

 

instance 

h = 0.2 

UB Cost DE Basic BA Enhanced BA avg  

50 1 42363 40697 40704 40697 -3.93 

 2 33637 30613 30613 30613 -8.99 

 3 37641 34435 34425 34425 -8.54 

 4 30166 27755 27760 27755 -7.99 

 5 32604 32307 32307 32307 -0.91 

 6 36920 34993 34970 34969 -5.28 

 7 44277 43136 43136 43134 -2.58 

 8 46065 43839 43840 43839 -4.83 

 9 36397 34228 34228 34228 -5.96 

 10 35797 32958 32961 32958 -7.93 

 

n 

 

instance 

h = 0.4 

UB Cost DE Basic BA Enhanced BA avg  

50 1 24868 23792 23792 23792 -4.33 

 2 19279 17910 17907 17907 -7.12 

 3 21353 20500 20502 20500 -3.99 

 4 17495 16657 16657 16657 -4.79 

 5 18441 18007 18007 18007 -2.35 

 6 21497 20385 20397 20385 -5.17 

 7 23883 23038 23042 23038 -3.54 

 8 25402 24888 24888 24888 -2.02 

 9 21929 19984 19984 19984 -8.87 

 10 20048 19167 19167 19167 -4.39 
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Table 3.9 Computational results for 100 jobs when h = 0.2 

 

 

Table 3.10 Computational results for 100 jobs when h = 0.4 

 

n 

 

instance 

h = 0.2 

UB Cost DE Basic BA Enhanced BA avg  

100 1 156103 145631 145516 145516 -6.78 

 2 132605 124964 124916 124916 -5.80 

 3 137463 129838 129800 129800 -5.57 

 4 137265 129632 129584 129584 -5.60 

 5 136761 124368 124351 124351 -9.07 

 6 151938 139196 139193 139193 -8.39 

 7 141613 135027 135026 135026 -4.65 

 8 168086 160198 160147 160147 -4.72 

 9 125153 116528 116522 116522 -6.90 

 10 124446 118971 118913 118913 -4.45 

 

n 

 

instance 

h = 0.4 

UB Cost DE Basic BA Enhanced BA avg  

100 1 89588 85897 85884 85884 -4.13 

 2 74854 73002 72982 72981 -2.50 

 3 85363 79690 79598 79598 -6.75 

 4 87730 79405 79405 79405 -9.49 

 5 76424 71334 71275 71275 -6.74 

 6 86724 77789 77789 77789 -10.30 

 7 79854 78250 78244 78244 -2.02 

 8 95361 94365 94365 94365 -1.04 

 9 73605 69527 69457 69457 -5.64 

 10 72399 71951 71850 71850 -0.76 
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Table 3.11 Computational results for 200 jobs when h = 0.2 

 

 

Table 3.12 Computational results for 200 jobs when h = 0.4 

 

n 

 

instance 

h = 0.2 

UB Cost DE Basic BA Enhanced BA avg  

200 1 526666 498653 498653 498653 -5.32 

 2 566643 541181 541180 541180 -4.49 

 3 529919 488732 488665 488665 -7.78 

 4 603709 586294 586257 586257 -2.89 

 5 547953 513396 513217 513217 -6.34 

 6 502276 478059 478019 478019 -4.83 

 7 479651 454757 454757 454757 -5.19 

 8 530896 494348 494276 494276 -6.90 

 9 575353 529388 529275 529275 -8.01 

 10 572866 538389 538332 538332 -6.03 

 

n 

 

instance 

h = 0.4 

UB Cost DE Basic BA Enhanced BA avg  

200 1 301449 295767 295684 295684 -1.91 

 2 335714 319212 319199 319199 -4.92 

 3 308278 293980 293886 293888 -4.67 

 4 360852 353113 353034 353034 -2.17 

 5 322268 304666 304668 304666 -5.46 

 6 292453 279982 279920 279920 -4.29 

 7 279576 275095 275024 275024 -1.63 

 8 288746 279323 279172 279172 -3.32 

 9 331107 310558 310402 310402 -6.25 

 10 332808 323325 323085 323085 -2.92 
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Table 3.13 Computational results for 500 jobs when h = 0.2 

 

 

Table 3.14 Computational results for 500 jobs when h = 0.4 

 

n 

 

instance 

h = 0.2 

UB Cost DE Basic BA Enhanced BA avg  

500 1 3113088 2954864 n/a 2954852 -5.08 

 2 3569058 3365958 n/a 3365953 -5.69 

 3 3300744 3103108 n/a 3103107 -5.99 

 4 3408867 3221273 n/a 3221260 -5.50 

 5 3377547 3114923 n/a 3114914 -7.78 

 6 3024082 2792248 n/a 2792239 -7.67 

 7 3381166 3172733 n/a 3172714 -6.17 

 8 3376678 3122332 n/a 3122318 -7.53 

 9 3617807 3364823 n/a 3364823 -6.99 

 10 3315019 3120383 n/a 3120383 -5.87 

 

n 

 

instance 

h = 0.4 

UB Cost DE Basic BA Enhanced BA avg  

500 1 1839902 1787906 n/a 1787899 -2.83 

 2 2064998 1994930 n/a 1994915 -3.39 

 3 1909304 1864827 n/a 1864685 -2.34 

 4 1930829 1887781 n/a 1887604 -2.24 

 5 1881221 1807272 n/a 1807251 -3.93 

 6 1658411 1610343 n/a 1610188 -2.91 

 7 1971176 1902962 n/a 1902833 -3.47 

 8 1924191 1819358 n/a 1819355 -5.45 

 9 2065647 1973837 n/a 1973780 -4.45 

 10 1928579 1837530 n/a 1837485 -4.72 
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Table 3.15 Computational results for 1000 jobs when h = 0.2 

 

 

Table 3.16 Computational results for 1000 jobs when h = 0.4 

 

n 

 

instance 

h = 0.2 

UB Cost DE Basic BA Enhanced BA avg  

1000 1 15190371 14056103 n/a 14055942 -7.47 

 2 13356727 12296728 n/a 12296689 -7.94 

 3 12919259 11974907 n/a 11974875 -7.31 

 4 12705290 11805221 n/a 11805204 -7.08 

 5 13276868 12457810 n/a 12457788 -6.17 

 6 12236080 11653395 n/a 11653258 -4.76 

 7 14160773 13286055 n/a 13286027 -6.18 

 8 13314723 12279652 n/a 12279489 -7.78 

 9 12433821 11764788 n/a 11764472 -5.38 

 10 13395234 12433037 n/a 12433015 -7.18 

 

n 

 

instance 

h = 0.4 

UB Cost DE Basic BA Enhanced BA avg  

1000 1 8570154 8113004 n/a 8112904 -5.34 

 2 7592040 7273409 n/a 7273368 -4.20 

 3 7313736 6988905 n/a 6988904 -4.44 

 4 7300217 7025750 n/a 7025544 -3.76 

 5 7738367 7366803 n/a 7366619 -4.80 

 6 7144491 6928294 n/a 6928077 -3.03 

 7 8426024 7862538 n/a 7862431 -6.69 

 8 7508507 7223809 n/a 7223732 -3.79 

 9 7299271 7059399 n/a 7059358 -3.29 

 10 7617658 7277199 n/a 7276948 -4.47 
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Tables 3.17-3.30 illustrate the detail results when h = 0.6 and h = 0.8 (with idle 

time inserted). Note that some of the results from the basic Bees Algorithm are 

not applicable. 

 

The results obtained by the enhanced Bees Algorithm were compared with the 

results from Pham et al. (2007), Biskup and Feldmann (2001), Feldmann M, and 

Biskup D (2003), Hino et al. (2005), Pan et al. (2006), Nearchou (2006) and 

Talebi et al (2009). In Biskup and Feldmann (2001), the average percentage 

improvements and their standard deviations are given using the best solution 

among all the heuristics, namely, evolution search (ES), simulated annealing 

(SA), threshold accepting (TA) and TA with a back step (TAR). Since the 

enhanced Bees Algorithm is stochastic, its minimum, maximum, average and 

standard deviation of runs should be given to evaluate its performance. However, 

Hino et al. (2005) conducted 10 runs and selected the best out of 10 runs even 

updating the idle time. For this reason, the minimum percentage of relative 

deviation ( ) of the enhanced Bees Algorithms was compared to Pham et al 

(2007), Hino et al. (2005) and Pan et al. (2006). Tables 3.31-3.34 summarise  

of the computational results to be compared to Hino et al. (2005), Pan et al. (2006) 

and Pham et al (2007) with regard to h value respectively. As seen in Tables 3.31 

and 3.32 when h = 0.2 and 0.4 there is not a large difference.  In the average of all 

results when h = 0.2, the basic Bess Algorithm (BA) performed slightly better 

than the enhance Bees Algorithm but when h = 0.4 the enhanced Bees Algorithm 

performed vice versa. For h = 0.6 and h = 0.8, the enhanced Bees Algorithm 

outperformed other algorithms.  See Tables 3.33-3.34, there is a great deal of 

min

min
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difference especially for 100 jobs. The enhanced Bees Algorithm, the BA, discrete 

particle swarm optimisation (DPSO) and GA have a similar tendency to yield 

negative percentage of relative deviations ( ), which means they outperformed 

Biskup and Feldmann (2001). However, Tabu Search (TS), HTG (TS+GA) and 

HGT (GA+TS) show a tendency to diverge after 100 jobs and give positive 

percentage of relative deviations ( ), which means they are inferior to Biskup 

and Feldmann (2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

min

min
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Table 3.17 Computational results for 10 jobs when h = 0.6 

 

 

Table 3.18 Computational results for 10 jobs when h = 0.8 

 

 

 

n 

 

instance 

h = 0.6 

UB Cost DE Basic BA Enhanced BA avg  

10 1 841 841 841 841 0.00 

 2 615 615 615 615 0.00 

 3 793 793 793 793 0.00 

 4 815 815 815 815 0.00 

 5 521 521 521 521 0.00 

 6 755 755 755 755 0.00 

 7 1101 1101 1101 1101 0.00 

 8 610 610 610 610 0.00 

 9 582 582 582 582 0.00 

 10 710 710 710 710 0.00 

 

n 

 

instance 

h = 0.8 

UB Cost DE Basic BA Enhanced BA avg  

10 1 818 818 818 818 0.00 

 2 615 615 615 615 0.00 

 3 793 793 793 793 0.00 

 4 803 803 812 803 0.00 

 5 521 521 521 521 0.00 

 6 755 755 755 755 0.00 

 7 1083 1083 1088 1083 0.00 

 8 540 540 540 540 0.00 

 9 554 554 554 554 0.00 

 10 671 671 671 671 0.00 
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Table 3.19 Computational results for 20 jobs when h = 0.6 

 

 

Table 3.20 Computational results for 20 jobs when h = 0.8 

 

 

 

n 

 

instance 

h = 0.6 

UB Cost DE Basic BA Enhanced BA avg  

20 1 2986 2986 2987 2986 0.00 

 2 3260 3206 3206 3206 -1.66 

 3 3600 3583 3583 3583 -0.47 

 4 3336 3317 3317 3317 -0.57 

 5 2206 2173 2173 2173 -1.50 

 6 3016 3010 3010 3010 -0.20 

 7 4175 4126 4126 4126 -1.17 

 8 1638 1638 1638 1638 0.00 

 9 1992 1965 1965 1965 -1.36 

 10 2116 2110 2116 2110 -0.28 

 

n 

 

instance 

h = 0.8 

UB Cost DE Basic BA Enhanced BA avg  

20 1 2986 2986 2987 2986 0.00 

 2 2980 2980 2980 2980 0.00 

 3 3600 3583 3583 3583 -0.47 

 4 3040 3040 3040 3040 0.00 

 5 2206 2173 2173 2173 -1.50 

 6 3016 3010 3010 3010 -0.20 

 7 3900 3878 3878 3878 -0.56 

 8 1638 1638 1638 1638 0.00 

 9 1992 1965 1965 1965 -1.36 

 10 1995 1995 1995 1995 0.00 
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Table 3.21 Computational results for 50 jobs when h = 0.6 

 

 

Table 3.22 Computational results for 50 jobs when h = 0.8 

 

 

 

n 

 

instance 

h = 0.6 

UB Cost DE Basic BA Enhanced BA avg  

50 1 17990 17969 17969 17969 -0.12 

 2 14231 14050 14050 14050 -1.27 

 3 16497 16497 16497 16497 0.00 

 4 14105 14080 14080 14080 -0.18 

 5 14650 14605 14605 14605 -0.31 

 6 14251 14275 14251 14251 0.00 

 7 17715 17616 17616 17617 -0.55 

 8 21365 21329 21329 21329 -0.17 

 9 14298 14202 14202 14202 -0.67 

 10 14377 14366 14366 14366 -0.08 

 

n 

 

instance 

h = 0.8 

UB Cost DE Basic BA Enhanced BA avg  

50 1 17990 17934 17934 17934 -0.31 

 2 14132 14040 14040 14040 -0.65 

 3 16497 16497 16497 16497 0.00 

 4 14105 14080 14080 14081 -0.17 

 5 14650 14605 14605 14605 -0.31 

 6 14075 14066 14066 14066 -0.06 

 7 17715 17616 17616 17616 -0.56 

 8 21367 21335 21329 21329 -0.18 

 9 13952 13948 13942 13942 -0.07 

 10 14377 14363 14363 14363 -0.10 
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Table 3.23 Computational results for 100 jobs when h = 0.6 

 

 

Table 3.24 Computational results for 100 jobs when h = 0.8 

 

 

 

n 

 

instance 

h = 0.6 

UB Cost DE Basic BA Enhanced BA avg  

100 1 72019 72017 72017 71688 -0.46 

 2 59351 59230 59230 59175 -0.30 

 3 68537 68540 68537 68537 0.00 

 4 69231 68774 68759 68759 -0.68 

 5 55291 55345 55286 54887 -0.73 

 6 62519 62411 62399 62278 -0.39 

 7 62213 62204 62197 62187 -0.04 

 8 80844 80713 80708 80351 -0.61 

 9 58771 58730 58727 58729 -0.07 

 10 61419 61366 61361 60966 -0.74 

 

n 

 

instance 

h = 0.8 

UB Cost DE Basic BA Enhanced BA avg  

100 1 72019 72018 72017 71814 -0.28 

 2 59351 59230 59230 59230 -0.20 

 3 68537 68537 68537 68538 0.00 

 4 69231 68772 68759 68760 -0.68 

 5 55277 55103 55103 55103 -0.31 

 6 62519 62407 62399 62399 -0.19 

 7 62213 62197 62197 62197 -0.03 

 8 80844 80713 80708 80713 -0.16 

 9 58771 58727 58727 58466 -0.52 

 10 61419 61361 61361 61341 -0.13 
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Table 3.25 Computational results for 200 jobs when h = 0.6 

 

 

 

 

Table 3.26 Computational results for 200 jobs when h = 0.8 

 

n 

 

instance 

h = 0.6 

UB Cost DE Basic BA Enhanced BA avg  

200 1 254268 255566 n/a 254259 0.00 

 2 266028 267002 n/a 266002 -0.01 

 3 254647 255337 n/a 254488 -0.06 

 4 297269 298230 n/a 297109 -0.05 

 5 260455 260981 n/a 260278 -0.07 

 6 236160 236942 n/a 235702 -0.19 

 7 247555 247450 n/a 246330 -0.49 

 8 225572 226301 n/a 225215 -0.16 

 9 255029 255519 n/a 254659 -0.15 

 10 269236 268759 n/a 268353 -0.33 

 

n 

 

instance 

h = 0.8 

UB Cost DE Basic BA Enhanced BA avg  

200 1 254268 255697 n/a 254259 0.00 

 2 266028 267315 n/a 266002 -0.01 

 3 254647 254911 n/a 254476 -0.07 

 4 297269 297981 n/a 297109 -0.05 

 5 260455 261458 n/a 260278 -0.07 

 6 236160 236462 n/a 235702 -0.19 

 7 247555 247450 n/a 246313 -0.50 

 8 225572 225529 n/a 225215 -0.16 

 9 255029 255675 n/a 254637 -0.15 

 10 269236 269042 n/a 268354 -0.33 
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Table 3.27 Computational results for 500 jobs when h = 0.6 

 

 

Table 3.28 Computational results for 500 jobs when h = 0.8 

 

 

n 

 

instance 

h = 0.6 

UB Cost DE Basic BA Enhanced BA avg  

500 1 1581233 1617712 n/a 1579140 -0.13 

 2 1715332 1741211 n/a 1712429 -0.17 

 3 1644947 1680763 n/a 1641706 -0.20 

 4 1640942 1684516 n/a 1640785 -0.01 

 5 1468325 1477669 n/a 1468256 0.00 

 6 1413345 1450456 n/a 1411867 -0.10 

 7 1634912 1671889 n/a 1634330 -0.04 

 8 1542090 1562208 n/a 1540458 -0.11 

 9 1684055 1705411 n/a 1680486 -0.21 

 10 1520515 1527515 n/a 1519215 -0.09 

 

n 

 

instance 

h = 0.8 

UB Cost DE Basic BA Enhanced BA avg  

500 1 1581233 1610769 n/a 1579109 -0.13 

 2 1715322 1733575 n/a 1712466 -0.17 

 3 1644947 1653140 n/a 1641718 -0.20 

 4 1640942 1653346 n/a 1640784 -0.01 

 5 1468325 1481320 n/a 1468263 0.00 

 6 1413345 1426017 n/a 1411841 -0.11 

 7 1634912 1649639 n/a 1634330 -0.04 

 8 1542090 1560903 n/a 1540470 -0.11 

 9 1684055 1707100 n/a 1680647 -0.20 

 10 1520515 1529451 n/a 1519205 -0.09 
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Table 3.29 Computational results for 1000 jobs when h = 0.6 

 

 

Table 3.30 Computational results for 1000 jobs when h = 0.8 

 

 

 

n 

 

instance 

h = 0.6 

UB Cost DE Basic BA Enhanced BA avg  

1000 1 6411581 6421773 n/a 6411260 -0.01 

 2 6112598 6158588 n/a 6110369 -0.04 

 3 5985538 6078028 n/a 5983589 -0.03 

 4 6096729 6198005 n/a 6088472 -0.14 

 5 6348242 6448069 n/a 6342433 -0.09 

 6 6082142 6230516 n/a 6079207 -0.05 

 7 6575879 6608387 n/a 6574569 -0.02 

 8 6069658 6153974 n/a 6067688 -0.03 

 9 6188416 6280472 n/a 6185834 -0.04 

 10 6147295 6230598 n/a 6146054 -0.02 

 

n 

 

instance 

h = 0.8 

UB Cost DE Basic BA Enhanced BA avg  

1000 1 6411581 6611622 n/a 6411352 0.00 

 2 6112598 6365048 n/a 6110400 -0.04 

 3 5985538 6077715 n/a 5983430 -0.04 

 4 6096729 6239392 n/a 6089268 -0.12 

 5 6348242 6488538 n/a 6342525 -0.09 

 6 6082142 6321170 n/a 6079243 -0.05 

 7 6575879 6717260 n/a 6574465 -0.02 

 8 6069658 6155240 n/a 6067727 -0.03 

 9 6188416 6434096 n/a 6185813 -0.04 

 10 6147295 6337246 n/a 6145999 -0.02 
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Table 3.31 Comparison of minimum deviation of computational results: h = 0.2 

 

 

 

 

Table 3.32 Comparison of minimum deviation of computational results: h = 0.4 
 

 

 

n 

h = 0.2 

DPSO TS GA HTG HGT Basic BA Enhanced BA 

10 0.00 0.25 0.12 0.12 0.12 0.00 0.00 

20 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 

50 -5.70 -5.70 -5.68 -5.70 -5.70 -5.70 -5.70 

100 -6.19 -6.19 -6.17 -6.19 -6.19 -6.19 -6.19 

200 -5.78 -5.76 -5.74 -5.76 -5.76 -5.78 -5.78 

500 -6.42 -6.41 -6.41 -6.41 -6.41 -6.43 -6.43 

1,000 -6.76 -6.73 -6.75 -6.74 -6.74 -6.76 -6.72 

AVG -4.96 -4.91 -4.92 -4.93 -4.93 -4.96 -4.95 

 

n 

h = 0.4 

DPSO TS GA HTG HGT Basic BA Enhanced BA 

10 0.00 0.24 0.19 0.19 0.19 0.00 0.00 

20 -1.63 -1.62 -1.62 -1.62 -1.62 -1.63 -1.63 

50 -4.66 -4.66 -4.60 -4.66 -4.66 -4.66 -4.66 

100 -4.94 -4.93 -4.91 -4.93 -4.93 -4.94 -4.94 

200 -3.75 -3.74 -3.75 -3.75 -3.75 -3.75 -3.75 

500 -3.56 -3.57 -3.58 -3.58 -3.58 -3.57 -3.57 

1,000 -4.37 -4.39 -4.40 -4.39 -4.39 -4.35 -4.38 

AVG -3.27 -3.24 -3.24 -3.25 -3.25 -3.27 -3.28 
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Table 3.33 Comparison of minimum deviation of computational results: h = 0.6 

 

 

 

 

Table 3.34 Comparison of minimum deviation of computational results: h = 0.8 
 

 

 

n 

h = 0.6 

DPSO TS GA HTG HGT Basic BA Enhanced BA 

10 0.00 0.10 0.03 0.03 0.01 0.00 0.00 

20 -0.72 -0.71 -0.68 -0.71 -0.71 -0.72 -0.72 

50 -0.34 -0.32 -0.31 -0.27 -0.31 -0.34 -0.33 

100 -0.15 -0.01 -0.12 0.08 0.04 -0.15 -0.40 

200 -0.15 -0.01 -0.13 0.37 0.07 -0.15 -0.15 

500 -0.11 0.25 -0.11 0.73 0.15 -0.11 -0.11 

1,000 -0.06 1.01 -0.05 1.28 0.42 -0.05 0.05 

AVG -0.22 0.04 -0.20 0.22 -0.05 -0.22 -0.24 

 

n 

h = 0.8 

DPSO TS GA HTG HGT Basic BA Enhanced BA 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 -0.41 -0.41 -0.28 -0.41 -0.41 -0.41 -0.41 

50 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24 -0.24 

100 -0.18 -0.15 -0.12 -0.08 -0.11 -0.18 -0.25 

200 -0.15 -0.14 -0.14 0.26 0.07 -0.15 -0.15 

500 -0.11 0.21 -0.11 0.73 0.13 -0.11 -0.10 

1,000 -0.06 1.13 -0.05 1.28 0.40 -0.05 -0.05 

AVG -0.16 0.07 -0.13 0.22 -0.02 -0.16 -0.17 
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Table 3.35 shows comparative results for the Enhanced Bees Algorithm, BA and 

DPSO in terms of minimum, maximum and average percentage of relative 

deviations and standard deviations. The minimum percentage of relative 

deviations ( ) of the enhanced Bees Algorithm was compared to the Scatter 

Search Algorithm (SS) (Talebi et al. 2009), the BA, and the DPSO. The average 

percentage of relative deviation ( ) of the enhanced Bees Algorithm was 

compared to the BA, the DPSO and differential evolution (DE).  It was found that 

the enhanced Bees Algorithm outperforms these four algorithms.  It can be seen 

from the total minimum, that the enhanced Bees Algorithm is slightly better than 

the BA and the DPSO at -2.15 and much better than the SS at 2.15, which is 

inferior to Biskup and Feldmann (2001). 

 

For 100 jobs when h = 0.6 or 0.8, the enhanced Bees Algorithm is superior to the 

BA and DPSO which can perform better than the DE. As can be seen, the 

standard deviation for both the enhanced Bees Algorithm are nearly zero, which 

means that it is slightly more robust than DPSO. All the statistics obtained show 

that the performance of the enhanced Bees Algorithm is better than the basic BA 

and is superior to all existing approaches considered in this study. 

 

In term of runtime, the stopping criteria of the BA is 1,000 iterations or 2,000 

iterations in some difficult instances whereas the stopping criteria of the enhanced 

Bees Algorithm is set to stop when the solution found was less than or equal to 

the upper bound or it is reached 1,000 iterations. In many cases especially when 

min

avg
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solving 10 jobs, the enhanced Bees Algorithm found the optimum after 

performing not more than 10 or 20 iterations. 
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Table 3.35 Comparison between the enhance Bees Algorithms, the basic Bees Algorithm, DPSO and DE 
 

n h 
Dmin

 Dmax
 

avg  Dstd
 

SS DPSO BA eBA DPSO BA eBA DPSO DE BA eBA DPSO BA eBA 

10 

0.2 0.33 0.00 0.00 0.00 0.11 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00 

0.4 0.19 0.00 0.00 0.00 0.15 0.00 0.00 0.02 0.00 0.00 0.00 0.05 0.00 0.00 

0.6 1.54 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.8 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 

0.2 -3.57 -3.84 -3.84 -3.84 -3.79 -3.83 -3.84 -3.83 -3.84 -3.84 -3.84 0.02 0.00 0.00 

0.4 -0.85 -1.63 -1.63 -1.63 -1.57 -1.63 -1.63 -1.62 -1.63 -1.63 -1.63 0.02 0.00 0.00 

0.6 -2.9 -0.72 -0.72 -0.72 -0.66 -0.72 -0.72 -0.71 -0.72 -0.72 -0.72 0.03 0.00 0.00 

0.8 -6.82 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 0.00 0.00 0.00 

50 

0.2 -5.23 -5.70 -5.70 -5.70 -5.61 -5.69 -5.70 -5.68 -5.69 -5.70 -5.70 0.03 0.00 0.00 

0.4 -4.05 -4.66 -4.66 -4.66 -4.52 -4.66 -4.66 -4.63 -4.66 -4.66 -4.66 0.05 0.00 0.00 

0.6 -1.62 -0.34 -0.34 -0.33 -0.23 -0.34 -0.33 -0.31 -0.32 -0.34 -0.33 0.04 0.00 0.00 

0.8 -3.13 -0.24 -0.24 -0.24 -0.24 -0.22 -0.24 -0.24 -0.24 -0.24 -0.24 0.00 0.01 0.00 
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Table 3.35 Comparison between the enhance Bees Algorithms, the basic Bees Algorithm, DPSO and DE (continued) 
 

n h 

Dmin
 Dmax

 
avg  Dstd

 

SS DPSO BA eBA DPSO BA eBA DPSO DE BA eBA DPSO BA eBA 

100 0.2 -5.82 -6.19 -6.19 -6.19 -6.15 -6.19 -6.19 -6.18 -6.17 -6.19 -6.19 0.02 0.00 0.00 

0.4 -4.28 -4.94 -4.94 -4.94 -4.82 -4.93 -4.94 -4.90 -4.89 -4.94 -4.94 0.04 0.00 0.00 

0.6 -0.27 -0.15 -0.15 -0.40 0.26 -0.14 -0.40 -0.09 -0.13 -0.14 -0.40 0.14 0.00 0.00 

0.8 0.37 -0.18 -0.18 -0.25 -0.18 -0.17 -0.25 -0.18 -0.17 -0.18 -0.25 0.00 0.00 0.00 

200 0.2 -5.37 -5.78 -5.78 -5.78 -5.74 -5.77 -5.78 -5.77 -5.77 -5.78 -5.78 0.01 0.00 0.00 

0.4 -3.12 -3.75 -3.75 -3.75 -3.68 -3.74 -3.75 -3.72 -3.72 -3.75 -3.75 0.02 0.01 0.00 

0.6 0.19 -0.15 -0.15 -0.15 0.56 -0.15 -0.15 -0.03 0.23 -0.15 -0.15 0.27 0.00 0.00 

0.8 0.43 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 0.20 -0.15 -0.15 0.00 0.00 0.00 

500 0.2 -5.93 -6.42 -6.43 -6.43 -6.40 -6.42 -6.43 -6.41 -6.43 -6.43 -6.43 0.01 0.00 0.00 

0.4 -3.06 -3.56 -3.57 -3.57 -3.51 -3.56 -3.57 -3.54 -3.57 -3.57 -3.57 0.01 0.00 0.00 

0.6 0.31 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 1.72 -0.11 -0.11 0.00 0.00 0.00 

0.8 0.38 -0.11 -0.11 -0.10 -0.11 -0.11 -0.10 -0.11 1.01 -0.11 -0.10 0.00 0.00 0.00 

 

 

 



 86 

Table 3.35 Comparison between the enhance Bees Algorithms, the basic Bees Algorithm, DPSO and DE (continued) 
 

n h 

Dmin
 Dmax

 
avg  Dstd

 

SS DPSO BA eBA DPSO BA eBA DPSO DE BA eBA DPSO BA eBA 

1000 0.2 -6.18 -6.76 -6.76 -6.72 -6.73 -6.74 -6.72 -6.75 -6.75 -6.72 -6.72 0.01 0.01 0.00 

0.4 -3.76 -4.37 -4.35 -4.38 -4.32 -4.33 -4.38 -4.35 -4.34 -4.38 -4.38 0.01 0.01 0.00 

0.6 0.71 -0.06 -0.05 -0.05 -0.03 -0.05 -0.04 -0.04 1.29 -0.05 -0.05 0.01 0.01 0.01 

0.8 0.71 -0.06 -0.05 -0.05 -0.06 -0.05 -0.04 -0.06 2.79 -0.05 -0.05 0.00 0.00 0.01 

AVG 2.15 -2.15 -2.15 -2.16 -2.07 -2.15 -2.16 -2.14 -1.87 -2.15 -2.16 0.03 0.00 0.00 
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3.5 Summary 

 

In this chapter, the enhanced Bees Algorithm is proposed. The aim is to improve 

the basic Bees Algorithm’s performance in solving single machine with common 

due date problem. Negative Selection is embedded into the basic Bees Algorithm 

to overcome its drawback. The results are compared to those obtained by the basic 

Bees Algorithm and by some other well-known algorithms to be found in the 

literatures. The results obtained show that the enhanced Bees Algorithm performs 

better than the basic version and any other well-known algorithms considered for 

this problem. 

 

 

 

 

 

  



 

 

 

CHAPTER 4 

 

THE BACTERIAL BEES ALGORITHM TO 

MINIMISE TOTAL WEIGHTED TARDINESS 

ON A MACHINE SCHEDULING 

 

 

 

4.1 Preliminaries 

Single machine total weighted tardiness problem is one of the well-known 

scheduling problems. It is known to be NP-hard (Lenstra et al. 1977) that consists 

of one machine and a number of independent jobs. The objective of this 

scheduling problem is to find a processing order of all jobs that minimise the sum 

of the weighted tardiness. In the first phase of this research, the Bees Algorithm 

with four different neighbourhood search procedures has been developed. It could 

solve 122 out of 125 instances of 40 job problem benchmark (Pham et al 2012). 
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However, it struggled to find optimal solutions of many instances of 50 and 100 

job problems. In the second phase of this research, bacterial foraging technique 

was adapted and embedded into the Bees Algorithm to improve its performance. 

 

The chapter is organised as follows: Section 4.2 describes single machine total 

weighted tardiness problem and benchmark used in this study. Section 4.3 

presents the Bacterial Bees Algorithm developed to solve this problem. Its 

characteristics are described. In section 4.4, results are compared with the results 

derived from the first Bees Algorithm developed to solve this benchmark and 

other existing works to show the improvement. The summary of this work is in 

Section 4.5. 

 

 

4.2 Single Machine Total Weighted Tardiness Problem 

The single machine total weighted tardiness problem is to schedule n jobs on a 

machine. A set of jobs is to be processed without interruption on a machine that 

can handle one job at a time. Each job i is available for processing at time zero 

and has a processing time pi, a weight wi, and a due date di by which it should 

ideally be finished. The tardiness of a job i can be defined as Ti = max {0, Ci –di}, 

where Ci is the completion time of job i. The objective of this scheduling problem 

is to find a processing order of all jobs that minimise the sum of the weighted 

tardiness given by : 
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                                                               (Eq.4.1) 

 

 

The benchmark data used in this study can be obtained at OR-LIBRARY  

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html. 125 test instances are 

available for each problem size n = 40, n = 50 and n = 100 where n is number of 

jobs. The instances were randomly generated as follows:  

 

 For each job i (i = 1 ,..., n), an integer processing time pi was  generated 

from the uniform distribution (1,100) and integer processing weight wi was 

generated from the uniform distribution (1,10). Instance classes of varying 

hardness, the due dates, were generated by using different uniform 

distributions.  

 

 For a given relative range of due dates (RDD) = 0.2, 0.4, 0.6, 0.8, 1.0 and 

a given average tardiness factor (TF) = 0.2, 0.4, 0.6,0.8,1.0, an integer due 

date di for job i was randomly generated from the uniform distribution 

[P(1-TF-RDD/2), P(1-TF+RDD/2)], where  

 

 

 

http://people.brunel.ac.uk/
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                                          (Eq.4.2) 

 

 

The optimal values for 40 and 50 job problems and best-known optimal values for 

100 job problem are known and also available at OR-LIBRARY. Those optimal 

values of 40 and 50 job problems are from Crauwels et al. (1996) and of 100 job 

problem is from Congram et al. (1998). Table 4.1 shows optimal values for 40 and 

50 job problems, and best-known for 100 job problems respectively. 
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Table 4.1 Optimal and Best-known solutions of 40, 50, and 100 job problems 

Instance Optimum for 40 jobs Optimum for 50 jobs Best-known for100 jobs 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

913 

1225 

537 

2094 

990 

6955 

6324 

6865 

16225 

9737 

17465 

19312 

29256 

14377 

26914 

72317 

78623 

74310 

77122 

63229 

77774 

100484 

135618 

119947 

128747 

2134 

1996 

2583 

2691 

1518 

26276 

11403 

8499 

9884 

10655 

43504 

36378 

45383 

51785 

38934 

87902 

84260 

104795 

89299 

72316 

214546 

150800 

224025 

116015 

240179 

5988 

6170 

4267 

5011 

5283 

58258 

50972 

59434 

40978 

53208 

181649 

234179 

178840 

157476 

172995 

407703 

332804 

544838 

477684 

406094 

898925 

556873 

539716 

744287 

585306 
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Table 4.1 Best-known solution values of 40, 50, and 100 job problem (continued) 

Instance 40 jobs 50 jobs 100 jobs 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

108 

64 

15 

47 

98 

6575 

4098 

5468 

2648 

5290 

19732 

17349 

24499 

19008 

19611 

57640 

81462 

65134 

78139 

66579 

64451 

113999 

74323 

110295 

95616 

2 

4 

755 

99 

22 

9934 

7178 

4674 

4017 

6459 

34892 

22739 

29467 

49352 

26423 

71111 

90163 

84126 

123893 

79883 

157505 

133289 

191099 

150279 

198076 

8 

718 

27 

480 

50 

24202 

25469 

32964 

22215 

19114 

108293 

181850 

90440 

151701 

129728 

462324 

425875 

320537 

360193 

306040 

829828 

623356 

748988 

656693 

599269 
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Table 4.1 Best-known solution values of 40, 50, and 100 job problem (continued) 

Instance 40 jobs 50 jobs 100 jobs 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

0 

0 

0 

0 

0 

2099 

2260 

4936 

3784 

3289 

20281 

13403 

19771 

24346 

14905 

65386 

65756 

78451 

81627 

68242 

90486 

115249 

68529 

79006 

98110 

0 

0 

0 

0 

0 

1258 

3679 

2522 

3770 

5904 

25212 

17337 

30729 

18082 

25028 

76878 

85413 

92756 

77930 

74750 

150580 

131680 

98494 

135394 

135677 

0 

0 

0 

0 

0 

9046 

11539 

16313 

7965 

19912 

86793 

87067 

96563 

100788 

56510 

243872 

401023 

399085 

309232 

222684 

640816 

611362 

623429 

584628 

575274 
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Table 4.1 Best-known solution values of 40, 50, and 100 job problem (continued) 

Instance 40 jobs 50 jobs 100 jobs 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

0 

0 

0 

0 

0 

684 

172 

798 

617 

776 

10262 

18646 

10021 

25881 

8159 

47683 

43004 

55730 

59494 

42688 

126048 

114686 

112102 

98206 

157296 

0 

0 

0 

0 

0 

816 

4879 

973 

508 

3780 

20751 

36053 

28268 

28846 

15451 

89298 

66340 

61060 

42453 

56522 

177909 

139591 

148906 

179264 

120108 

0 

0 

0 

0 

0 

1400 

317 

1146 

136 

284 

66850 

84229 

55544 

54612 

75061 

248699 

311022 

326258 

273993 

316870 

495516 

636903 

680082 

622464 

449545 
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Table 4.1 Best-known solution values of 40, 50, and 100 job problem (continued) 

Instance 40 jobs 50 jobs 100 jobs 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

0 

0 

0 

0 

0 

0 

516 

3354 

0 

0 

31478 

21169 

27077 

19648 

13774 

46770 

50364 

25460 

66707 

69019 

122266 

82456 

75118 

73041 

104531 

0 

0 

0 

0 

0 

0 

1717 

0 

6185 

1295 

27310 

15867 

35106 

15467 

10574 

35727 

71922 

65433 

106043 

101665 

78315 

119925 

101157 

139488 

110392 

0 

0 

0 

0 

0 

0 

1193 

0 

232 

0 

159138 

174377 

91171 

168297 

70190 

370631 

324437 

246243 

293576 

267326 

471214 

570459 

397029 

431115 

560754 
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4.3 The Bacterial Bees Algorithm for Single Machine 

Total Weighted Tardiness Problem 

The Bees Algorithm was successfully developed to solve 40 job problem (Pham 

et al 2012). In this basic version, four different neighbourhood search procedures 

were deployed randomly. Figures 4.1-4.4 display neighbourhood search 

procedures deployed for the Bees Algorithm. Figure 4.1 shows 1
st
 procedure: 

swap between two jobs selected randomly. Two pairs of jobs will be done in this 

process. Figure 4.2 shows 2
nd

 procedure: reverse job order in a selected sub 

sequence. Two positions are selected randomly then job positions between these 

two positions are reversed. Figure 4.3 shows 3
rd

 procedure: swap between two sub 

sequences. Position one and two are selected randomly first and then position 

three and four. Provided these selections do not overlap then job sequence 

between position one and two and job sequence between position three and four 

are swapped. Figure 4.4 shows 4
th
 procedure: swap between three jobs. Three 

positions are selected and then swapped. The job at selected position one will be 

moved to selected position two, the previous job at selected position two will be 

moved to position three, and the job at position three will be moved to selected 

position one. 
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Figure 4.1 Swapping between two jobs randomly 

 

 

a) before 

 

b) after 

Figure 4.2 Reversing job order in a selected sub sequence. 
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Figure 4.3 Swapping two groups of jobs 

 

 

 

 

 

 

 

 

Figure 4.4 Swapping three job positions 
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The experimental results showed that the Bees Algorithm could find 122 optimal 

values out of 125 instances for 40 job problem. The full result details will be 

shown and discussed in Section 4.3. The result showed that it was struggling to 

find optimal values of many instances of 50 and 100 job problems. Hence the 

Bacterial foraging technique is considered for enhancing the Bees Algorithm’s 

performance in this task. 

 

In 2002, Passino proposed Bacterial Foraging Optimisation Algorithm (BFOA) 

for Distributed Optimisation and Control. Foraging behaviour of E. coli, which is 

a common type of bacteria living in human intestine, was considered. BFOA 

consists of three events namely chemotaxis, reproduction, and elimination and 

disposal. The idea is to find the minimum of J(θ) where θ is the position of a 

bacterium and J(θ) represents the combine affects of attractants and repellents 

from environment. J(θ) <0, J(θ) =0, and J(θ) >0 represent that the bacterium at 

location θ is in nutrient-rich, neutral, and noxious environments, respectively. 

Basically, chemotaxis is a foraging behaviour that implements a type of 

optimisation where bacteria try to climb up the nutrient concentration and avoid 

noxious substances. It implements a type of biased random walk. Normally, each 

bacterium can move in two different ways. It can swim for a period of time in the 

same direction, or it may tumble, and alternate between these two modes of 

operation for the entire lifetime (Zhong et al 2011).  

 

After a period of food search, the foraging strategies of some bacteria appear 

inferior evidently. To avoid noxious substances, last half of bacteria with high 
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cost are considered unhealthy and removed out of population. Healthiest bacteria 

each split into two bacteria to keep the population size constant. It is also possible 

that the local environment where a population of bacteria live changes either 

gradually or suddenly due to some other influence. For example, the sudden 

increase of temperature can kill a population of bacteria that are currently in a 

region with a high concentration of nutrients. This event is called elimination and 

dispersal and it is triggered with probability. If a certain individual satisfies the 

dispersal condition, it should be deleted and a new individual should be generated. 

 

 Chemotaxis and elimination and dispersal have been adapted and embedded into 

the Bees Algorithm in this research. These two techniques are re-designed to suit 

the Bees Algorithm for combinatorial optimisation problem. This new version is 

called ‘the Bacterial Bees Algorithm’. The pseudo-code of the Bacterial Bees 

Algorithm is given in Fig 4.5. This algorithm starts with the bee foraging part. 

Initial population of n scout bees are randomly generated. Each bee presents a 

sequence of jobs. In step 2, the fitness computation process is carried out. In step 

4, the m sites with highest fitness are selected for neighbourhood search. In step 5, 

the algorithm conducts searches around the selected site, assigning more bees to 

search in the surrounding area of the best ‘e’ sites. Each bee randomly chooses to 

perform one of four neighbourhood search procedures. The fitness values are 

evaluated. For the first iteration, the fittest value is saved. In other iteration, the 

best fitness solution is compared with the saved one. If its value is less than the 

saved one, then overwrite the value and update J(θ). In this case J(θ) = 0 which 

means J(θ) is in nutrient rich environment. In step 7, a small number of best 



 102 

solutions (s) will be carried out for next iteration. Then only half of n including s 

is produced as new population for next generation. This is to reduce 

computational time from calculating fitness values. The Algorithm will repeat 

steps 2 to 6 until the best fitness is equal to the saved one which means J(θ) > 0 

and is in neutral environment, and then goto step 8. When this happens, to avoid 

local optimum the algorithm will do reproduction by keeping small number of 

best solution and clone them and move first or last job and insert it into a new 

random position to create new solution and then repeat steps 2 to 6 but in step 5, 

some of recruited bees will randomly perform chemotactic step. This study has 

adapted chemotactic step to a neighbourhood search procedure. The recruited bee 

will randomly choose and perform two neighbourhood search procedures with 

probability 0.25. If the algorithm could not improve the fitness value in a certain 

time, the best solution is save and the algorithm will perform elimination and 

dispersal event by ignoring all solutions and reproducing n-1 possible solutions in 

step 9. Then repeat steps 2-6 without chemotactic step. 
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Figure 4.5 The pseudo-code of the Bacterial Bees Algorithm 

 

 

1. Initial population (θ) with n random solutions. 

2. Evaluate fitness of the population. 

3. While (stopping criterion has not been met). 

4. Select sites (m) for neighbourhood search. 

5. Recruit bees for selected sites: elite sites (e) and other selected sites (m-e). 

6. Evaluate the fittest values and for 1
st
 iteration, save the best fittest (Fi) otherwise update 

J(θ) as follows:  

       If Fi < Fi-1  

Then J(θ) is in nutrient rich environtment. Update best fitness and go to step (7) 

          Else if Fi = Fi-1 and less than T times  

               Then J(θ) is in neutral environtment. Go to step (8) 

            Else go to step (9). 

7. Keep a small number of best solutions (s) and assign remaining bees to search for new 

possible solutions (p) where p = (n/2)-s. Then repeat step (2)-(6). 

8. Keep a small number of best solutions, perform reproduction, and assign remaining 

bees to search for new possible solution (np) where np = (n/2)-2s. Then repeat step (2)-(6) 

with Chemotactic event in step (5). 

9. Save the best solution (F) and perform elimination and dispersal event. Then reproduce 

n-1 possible solutions randomly. 

10. End while. 
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4.4 Experimental results 

The first Bees Algorithm was implemented in Matlab and run on a cluster called 

Merlin provided by ARCCA, Cardiff University. The configuration and features 

for compute nodes are Xeon E5472 3.0GHz, 1600MHz FSB, 16 GB RAM, 12 

MB L2 cache, 160 GB@ 7.2k RPM SATA HDD local disk. For the computation 

results, the Bees Algorithm was able to find 122 optimal solutions out of 125 

instances. Three instances where the Bees Algorithm could not find the optimums 

are instance 62, 85, and 112.  

The Bacterial Bees Algorithm is introduced to increase the performance. The 10 

time experiment has been carried out on Dell laptop: Intel (R) Core (TM) 2 Duo 

CPU P8600 @2.40GHz 4 GB RAM and MacBook Pro: Intel Quad Core i7 

2.3GHz. 6 GB RAM. This enhanced version of the Bees Algorithm found 125 

optimal solutions out of 125 instances. Table 4.2 shows the parameters used and 

for the maximum number of being in neutral medium or trapping in local optima 

is normally set to 3 but only at some difficult instances, this parameter was set to 

6 or 9. Table 4.3-4.7 show the comparison of running times between the basic 

Bees Algorithm and the Bacterial Bees Algorithm. The performance of the new 

algorithm was quantified by the average percentage of relative deviations ( avg ) 

from 10 runs. The minimum of the average percentage of relative deviations
 

of 

computational runtime is -50.37. It performed 2 times faster than the basic Bees 

Algorithm on 13
th

 instance. The maximum of the average percentage of relative 



 105 

deviations
 

of computational time is -99.80. It found optimum 495 times faster 

than the basic Bees Algorithm on 87
th
 instance.  

Table 4.8-4.10 show the computational time of the Bacterial Bees Algorithm for 

50 jobs problem. It could find 120 optimal solutions out of 125 instances. The 

minimum average runtime that it could find the optimum is 0.70 seconds on 103
rd

 

instance, whereas the maximum average runtime is at 1228.14 seconds on 107
th

 

instance. Table 4.11-1.13 show the computational time of the Bacterial Bees 

Algorithm for 100 job problem. It could find only 98 optimal solutions out of 125 

instances. The minimum average runtime that it could find the optimum is 2.49 

seconds on 77
th

 instance, whereas the maximum average runtime is at 63427.00 

seconds on 100
th
 instance.  

There are many existing research that had applied varied techniques to solve this 

benchmark. However, this study could not show and compare the results from the 

Bacterial Bees Algorithm with those existing work in detail as none of them 

reported or has showed results in detail. Some works used only some instances of 

each dataset problem to be tested on their techniques. Some works used only one 

or two dataset problems for their research.  

Nearchou (2004) has applied a Simulated Annealing Algorithm on 40 and 50 jobs 

problems. 5 run were carried out. This algorithm solved to optimality 91 out of 

test instances for 40 jobs problem and 73 out of 125 test instance for 50 job 

problem. In 2006, Huang and Tung have introduced Discrete Particle Swarm 

Optimisation called MPSO to solve the two dataset. However, only 10 instances 

of each dataset were used to test the algorithm. Those instances are 1, 11, 21, 31, 
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46, 56, 71, 91,101, and 116. MPSO could solve all 10 instances of both dataset. 

Its performance was compared with previous work by Cagnina et al (2004) who 

applied a hybrid PSO which could solve only 5 out of 10 instances for 40 jobs 

problem and 4 out of 10 instances. 

In 2006, Ferrolho and Crisostomo proposed Genetic Algorithm to solve some of 

test instances of 40, 50 and 100 jobs problems. For 40 jobs problem, 2
nd

, 7
th
, and 

31
st
 instances were used. The average runtimes were 190.00, 362.40, 319.70 

seconds respectively where as the Bacterial Bees Algorithm’s average runtimes 

for these instances were 16.35, 8.48, and 14.78 seconds respectively. For 50 jobs 

problem, 1
st
 , 30

th
, and 33

rd
 instances were used. The average runtimes were 

88.30, 45.50, 573.60 seconds respectively where as the Bacterial Bees 

Algorithm’s average runtimes for these instances were 4.42, 3.84, and 28.25 

seconds respectively. For 100 jobs problem, 1
st
, 4

th
 , and 26

th
 instances were used. 

The average runtimes were 2406.01, 2428.10, 523.90 seconds respectively where 

as the Bacterial Bees Algorithm’s average runtimes for these instances were 

64.10, 31.33, and 50.56 seconds respectively. However, both techniques were 

tested on different types of computers. 

Kellegoz et al. (2008) selected first five instances of each job problem to compare 

the performances of 11 crossover operators to solve this total weighted tardiness 

problem. For 40 jobs problem, none of 11 crossover operators could find the 

optimums of 1
st
 – 4

th
 instances. Only 4 operators could find the optimum of 5

th
 

instance. For 50 and 100 jobs problems, none of those operators could find the 

optimums of selected instances.  
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Tasgetiren et al (2004) proposed PSOspv to solve this benchmark. A heuristic rule 

called Smallest Position Value (SPV) rule was developed to enable PSO to solve 

this combinatorial problem. PSOspv was able to find 120 optimal solution out of 

125 instances for 40 jobs problem, 110 optimal solution out of 125 instances for 

50 jobs problem, and 51 best known solutions out of 125 instances for 100 jobs 

problem which is the most difficult one. It seems that the basic Bees Algorithm 

performed better in solving 40 jobs problem and Bacterial Bees Algorithm could 

perform better in all problems. However, this work set has limited runtime to 5 

seconds for 40 jobs problem, 10 seconds for 50 jobs problem, and 100 seconds for 

100 jobs problem. In term of runtime comparison, PSOspv performed better than 

the Bees Algorithms. 

In 2000, Besten et al presented the Ant Colony Optimisation (ACO) to solve this 

benchmark. Their results are superior to the Bacterial Bees Algorithm’s. The 

ACO found all optimal solutions for 40 and 50 jobs problems and found 113 out 

of 125 instances for 100 jobs problem. 
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Table 4.2 Parameters of the Bacterial Bees Algorithms 

Parameters 
Value 

 

p : Population 300 

m : Number of selected sites 30 

e : Number of elites sites 10 

nep : Number of bees around elite sites 20 

nsp : Number of bees around other 
selected points 

10 

Probability of Chemotaxis 0.25 

Max of time to be in Neutral Medium 3,6,9 
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Table 4.3 Comparison of computational times between the basic Bees Algorithm 

and the Bacterial Bees Algorithm: Instance 1-25 

Instance Optimum 

The basic Bees 

Algorithm’s 

running time (sec) 

The Bacterial Bees 

Algorithm’s running 

time (sec) 
avg  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

913 

1225 

537 

2094 

990 

6955 

6324 

6865 

16225 

9737 

17465 

19312 

29256 

14377 

26914 

72317 

78623 

74310 

77122 

63229 

77774 

100484 

135618 

119947 

128747 

84.93 

93.27 

372.86 

79.22 

18.84 

162.12 

183.48 

89.84 

218.92 

236.08 

268.28 

420.22 

836.41 

363.51 

744.05 

2793.78 

1463.90 

4218.73 

2683.74 

3164.42 

8265.32 

5058.46 

5091.31 

12187.37 

8018.63 

5.64 

8.48 

34.26 

8.76 

2.37 

11.94 

14.78 

8.61 

13.48 

28.61 

19.66 

22.10 

415.14 

100.32 

32.84 

99.75 

164.46 

184.20 

189.84 

413.02 

501.64 

821.04 

513.36 

920.15 

421.20 

-93.35 

-90.90 

-90.81 

-88.95 

-87.44 

-92.64 

-91.94 

-90.41 

-93.84 

-87.88 

-92.67 

-94.74 

-50.37 

-72.40 

-95.59 

-96.43 

-88.77 

-95.63 

-92.93 

-86.95 

-93.93 

-83.77 

-89.92 

-92.45 

-94.75 
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Table 4.4 Comparison of computational times between the basic Bees Algorithm 

and the Bacterial Bees Algorithm: Instance 26-50 

Instance Optimum 

The basic Bees 

Algorithm’s 

running time (sec) 

The Bacterial Bees 

Algorithm’s running 

time (sec) 
avg  

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

108 

64 

15 

47 

98 

6575 

4098 

5468 

2648 

5290 

19732 

17349 

24499 

19008 

19611 

57640 

81462 

65134 

78139 

66579 

64451 

113999 

74323 

110295 

95616 

26.23 

49.87 

9.70 

28.42 

21.81 

16.35 

6.46 

20.52 

24.71 

13.45 

91.98 

35.92 

49.21 

160.75 

56.36 

186.06 

703.61 

352.30 

349.72 

1071.16 

715.55 

840.03 

1087.91 

642.71 

614.53 

1.51 

1.76 

0.56 

0.85 

1.99 

16.35 

6.46 

20.52 

24.71 

13.45 

91.98 

35.92 

49.21 

160.75 

56.36 

186.06 

703.61 

352.30 

349.72 

1071.16 

715.55 

840.03 

1087.91 

642.71 

614.53 

-94.25 

-96.48 

-94.23 

-97.00 

-90.89 

-94.82 

-96.59 

-95.72 

-86.47 

-95.69 

-93.29 

-95.16 

-94.73 

-84.58 

-97.39 

-89.09 

-93.90 

-94.67 

-97.51 

-83.68 

-87.40 

-89.56 

-90.39 

-91.12 

-90.83 
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Table 4.5 Comparison of computational times between the basic Bees Algorithm 

and the Bacterial Bees Algorithm: Instance 51-75 

Instance Optimum 

The basic Bees 

Algorithm’s 

running time (sec) 

The Bacterial Bees 

Algorithm’s running 

time (sec) 
avg  

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

0 

0 

0 

0 

0 

2099 

2260 

4936 

3784 

3289 

20281 

13403 

19771 

24346 

14905 

65386 

65756 

78451 

81627 

68242 

90486 

115249 

68529 

79006 

98110 

69.47 

9.58 

9.68 

7.23 

11.96 

600.86 

6608.07 

879.75 

391.77 

315.44 

6719.99 

- 

8178.16 

3606.48 

768.62 

9918.82 

14290.57 

7351.29 

6685.56 

5340.08 

5524.07 

7296.84 

6413.35 

10390.73 

5371.25 

2.69 

0.34 

0.34 

0.30 

0.58 

20.77 

42.33 

64.06 

32.81 

38.12 

28.08 

44.89 

48.76 

38.65 

30.01 

46.52 

78.06 

46.81 

55.16 

48.21 

32.52 

28.64 

32.04 

29.15 

29.24 

-96.12 

-96.44 

-96.53 

-95.87 

-95.11 

-96.54 

-99.36 

-92.72 

-91.63 

-87.92 

-99.58 

- 

-99.40 

-98.93 

-96.10 

-99.53 

-99.45 

-99.36 

-99.17 

-99.10 

-99.41 

-99.61 

-99.50 

-99.72 

-99.46 
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Table 4.6 Comparison of computational times between the basic Bees Algorithm 

and the Bacterial Bees Algorithm: Instance 76-100 

Instance Optimum 

The basic Bees 

Algorithm’s 

running time (sec) 

The Bacterial Bees 

Algorithm’s running 

time (sec) 
avg  

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

0 

0 

0 

0 

0 

684 

172 

798 

617 

776 

10262 

18646 

10021 

25881 

8159 

47683 

43004 

55730 

59494 

42688 

126048 

114686 

112102 

98206 

157296 

7.22 

9.76 

4.94 

14.34 

21.47 

1712.20 

242.46 

536.20 

759.82 

- 

2023.87 

35266.67 

4322.38 

6875.27 

4970.31 

16140.77 

8827.16 

5041.33 

5168.17 

16425.03 

7291.68 

4035.00 

6259.16 

7351.92 

12608.67 

0.45 

0.38 

0.17 

0.41 

0.88 

109.90 

12.21 

24.05 

50.51 

69.54 

73.88 

71.24 

34.97 

68.23 

134.19 

67.32 

26.67 

47.46 

44.05 

51.44 

32.46 

28.56 

25.17 

34.27 

30.82 

-93.71 

-96.11 

-96.52 

-97.14 

-95.90 

-93.58 

-94.96 

-95.51 

-93.35 

- 

-96.35 

-99.80 

-99.19 

-99.01 

-97.30 

-99.58 

-99.70 

-99.06 

-99.15 

-99.69 

-99.55 

-99.29 

-99.60 

-99.53 

-99.76 
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Table 4.7 Comparison of computational times between the basic Bees Algorithm 

and the Bacterial Bees Algorithm: Instance 101-125 

Instance Optimum 

The basic Bees 

Algorithm’s 

running time (sec) 

The Bacterial Bees 

Algorithm’s running 

time (sec) 
avg  

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

0 

0 

0 

0 

0 

0 

516 

3354 

0 

0 

31478 

21169 

27077 

19648 

13774 

46770 

50364 

25460 

66707 

69019 

122266 

82456 

75118 

73041 

104531 

2.52 

23.97 

52.76 

12.05 

14.48 

116.55 

2371.98 

3960.22 

47.61 

78.43 

6447.61 

- 

10165.80 

5685.70 

16498.10 

19830.87 

11686.70 

6249.10 

8363.85 

11290.97 

3994.61 

14371.13 

10906.37 

7879.30 

9016.24 

0.39 

0.87 

3.06 

0.36 

0.64 

4.22 

45.01 

42.14 

1.63 

2.95 

32.97 

2715.94 

47.69 

41.38 

77.32 

120.20 

50.40 

56.16 

27.74 

88.94 

45.92 

35.28 

78.39 

43.35 

31.20 

-84.45 

-96.38 

-94.21 

-97.02 

-95.57 

-96.38 

-98.10 

-98.94 

-96.57 

-96.24 

-99.49 

- 

-99.53 

-99.27 

-99.53 

-99.39 

-99.57 

-99.10 

-99.67 

-99.21 

-98.85 

-99.75 

-99.28 

-99.45 

-99.65 
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Table 4.8 The Bacterial BA’s computational results for 50 job problem: Ins 1-50 

Instance Optimum Time (sec)  Instance Optimum Time (sec) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

2134 

1996 

2583 

2691 

1518 

26276 

11403 

8499 

9884 

10655 

43504 

36378 

45383 

51785 

38934 

87902 

84260 

104795 

89299 

72316 

214546 

150800 

224025 

116015 

240179 

4.42 

37.17 

4.39 

4.21 

15.61 

25.70 

18.45 

24.69 

16.75 

12.55 

35.77 

108.26 

31.93 

100.15 

20.81 

45.27 

- 

110.84 

91.88 

81.63 

104.20 

71.04 

80.51 

75.30 

79.30 

 
26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

2 

4 

755 

99 

22 

9934 

7178 

4674 

4017 

6459 

34892 

22739 

29467 

49352 

26423 

71111 

90163 

84126 

123893 

79883 

157505 

133289 

191099 

150279 

198076 

6.13 

1.78 

35.20 

15.47 

3.84 

59.99 

157.57 

28.25 

41.71 

105.46 

82.40 

48.44 

103.55 

70.42 

63.20 

100.31 

80.56 

136.60 

213.70 

99.61 

90.09 

64.11 

69.15 

84.44 

72.16 
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Table 4.9 The Bacterial BA’s computational results for 50 jobs: Ins 51-100 

Instance Optimum Time (sec)  Instance Optimum Time (sec) 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

0 

0 

0 

0 

0 

1258 

3679 

2522 

3770 

5904 

25212 

17337 

30729 

18082 

25028 

76878 

85413 

92756 

77930 

74750 

150580 

131680 

98494 

135394 

135677 

2.03 

1.05 

0.80 

1.76 

1.11 

30.42 

166.67 

27.12 

112.66 

108.53 

110.53 

136.06 

801.66 

220.47 

- 

345.07 

247.89 

253.95 

237.34 

235.40 

120.25 

140.74 

248.18 

119.88 

202.20 

 
76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

0 

0 

0 

0 

0 

816 

4879 

973 

508 

3780 

20751 

36053 

28268 

28846 

15451 

89298 

66340 

61060 

42453 

56522 

177909 

139591 

148906 

179264 

120108 

2.21 

2.42 

0.74 

1.39 

2.62 

168.94 

147.27 

456.12 

33.55 

- 

1117.18 

917.55 

286.95 

128.34 

619.72 

399.84 

228.07 

308.16 

342.25 

380.86 

71.45 

83.08 

148.30 

79.04 

85.52 



 116 

Table 4.10 The Bacterial BA’s computational results for 50 jobs: Ins 101-125 

  Instance Optimum Time (sec) 

  101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

0 

0 

0 

0 

0 

0 

1717 

0 

6185 

1295 

27310 

15867 

35106 

15467 

10574 

35727 

71922 

65433 

106043 

101665 

78315 

119925 

101157 

139488 

110392 

1.16 

1.08 

0.70 

1.33 

8.27 

3.83 

1228.14 

7.73 

- 

551.41 

141.93 

124.66 

239.44 

- 

196.75 

129.03 

308.46 

139.12 

195.25 

763.26 

178.43 

110.67 

193.80 

268.94 

113.13 

 



 117 

Table 4.11 The Bacterial BA’s’s computational results for 100 jobs: Ins 1-50 

Instance Optimum Time (sec)  Instance Optimum Time (sec) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

5988 

6170 

4267 

5011 

5283 

58258 

50972 

59434 

40978 

53208 

181649 

234179 

178840 

157476 

172995 

407703 

332804 

544838 

477684 

406094 

898925 

556873 

539716 

744287 

585306 

64.10 

157.76 

58.91 

50.56 

56.07 

257.42 

189.18 

232.80 

610.87 

658.07 

1952.42 

1751.46 

1229.41 

7311.54 

1553.44 

1812.34 

1915.74 

1675.21 

5713.15 

6641.12 

1295.57 

2016.39 

4604.94 

1710.34 

1271.63 

 
26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

8 

718 

27 

480 

50 

24202 

25469 

32964 

22215 

19114 

108293 

181850 

90440 

151701 

129728 

462324 

425875 

320537 

360193 

306040 

829828 

623356 

748988 

656693 

599269 

31.33 

618.15 

58.47 

536.29 

31.66 

620.47 

816.09 

3853.48 

- 

1493.04 

1982.21 

3205.19 

1668.15 

3298.23 

1669.68 

4120.01 

21861.07 

8515.39 

- 

- 

2373.19 

2531.77 

2928.70 

1589.95 

3457.98 
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Table 4.12 The Bacterial BA’s computational results for 100 jobs: Ins 51-100 

Instance Optimum Time (sec)  Instance Optimum Time (sec) 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

0 

0 

0 

0 

0 

9046 

11539 

16313 

7965 

19912 

86793 

87067 

96563 

100788 

56510 

243872 

401023 

399085 

309232 

222684 

640816 

611362 

623429 

584628 

575274 

3.73 

3.60 

3.36 

5.28 

3.33 

- 

553.83 

3281.77 

479.28 

1140.13 

- 

17957.30 

- 

- 

- 

- 

8698.46 

- 

- 

1182.16 

3431.82 

18813.50 

2445.46 

6492.95 

4910.05 

 
76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

0 

0 

0 

0 

0 

1400 

317 

1146 

136 

284 

66850 

84229 

55544 

54612 

75061 

248699 

311022 

326258 

273993 

316870 

495516 

636903 

680082 

622464 

449545 

5.75 

2.49 

5.11 

4.39 

4.15 

5896.30 

927.67 

1334.17 

42.30 

452.16 

- 

- 

- 

4050.92 

- 

4867.05 

- 

- 

- 

10126.80 

9144.44 

6966.12 

8621.40 

5766.41 

63427.00 
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Table 4.13 The Bacterial BA’s computational results for 100 jobs: Ins 101-125 

  Instance Optimum Time (sec) 

  101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

0 

0 

0 

0 

0 

0 

1193 

0 

232 

0 

159138 

174377 

91171 

168297 

70190 

370631 

324437 

246243 

293576 

267326 

471214 

570459 

397029 

431115 

560754 

3.84 

3.05 

3.73 

5.29 

3.15 

19.09 

1914.77 

97.45 

428.21 

302.39 

15012.82 

- 

- 

- 

- 

- 

- 

- 

6265.52 

- 

5411.93 

4136.22 

19223.10 

11192.80 

- 
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4.5 Summary 

In this chapter, the Bees Algorithm is implemented to solve the single machine 

total weighted tardiness problem. A benchmark from the OR-LIBRARY is chosen 

to test its performance. The results show that the Bees Algorithm could 

successfully solve the 40 jobs benchmark. Also an enhanced Bees Algorithm 

called the Bacterial Bees Algorithm was proposed to improve the Bee 

Algorithm’s performance. The computational results show that the enhanced 

algorithm could perform better than the basic one and some other well-known 

algorithms in the literature considered in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 5 

 

THE ADAPTIVE BEES ALGORITHM FOR 

WEIGHTED TARDINESS SCHEDULING WITH 

SEQUENCE-DEPENDENT SETUPS 

 

 

 

5.1 Preliminaries 

In this chapter, the Adaptive Bees Algorithm is proposed for solving machine 

total weighted tardiness with sequence-dependent setup times. Apparent Tardiness 

Cost with Setups (ATCS) heuristic is used to create a reasonably good starting 

solution together with a set of random solutions. The algorithm also adapts the 

idea of Neighbourhood change in Variable Neighbourhood Search (VNS), a meta-

heuristic or framework for building heuristics. 
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The chapter is organised as follows: Section 5.2 describes single machine total 

weighted tardiness with sequence-dependent setup times and benchmark used in 

this study. Section 5.3 presents the Bees Algorithm enhanced to solve this 

problem. Its characteristics are described. In section 5.4, results are compared 

with the results derived from some existing research. The summary of this work is 

in Section 5.5. 

 

 

5.2 The Weighted Tardiness Scheduling with Sequence-

dependent Setups Problem 

The objective of minimising the total weighted tardiness has been the subject of a 

very large amount of literature on scheduling, although sequence-dependent 

setups have not been so frequently considered. Setups usually correspond to 

preparing the production resources for the execution of the next job, and when the 

duration of such operations depends on the type of last completed job, the setups 

are called sequence-dependent. The presence of sequence-dependent setups 

greatly increases the problem difficulty since it prevents the application of 

dominance conditions used for simpler tardiness problems (Rubin and Ragatz 

1995). 

 

The Weighted Tardiness Scheduling with Sequence-dependent Setups problem 

corresponds to the scheduling of n independent jobs on a single machine. All jobs 
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are ready at time zero and released simultaneously. The machine is continuously 

available and can process only one job at a time. For each job j= 1,2,3,…,n, a 

processing time pj, a due date dj, and a weight wj are given. A sequence-dependent 

setup time sij must be waited before starting the processing of job j if it is 

immediately sequenced after job i. The tardiness of a job j is defined as Tj = max 

{0, Cj –dj}, where Cj is the completion time of job j. The objective of this 

scheduling problem is to find a processing order of all jobs that minimise the sum 

of the weighted tardiness      
 
     

 

In 2003, Circirello (2003) has proposed a set of benchmark for the Weighted 

Tardiness Scheduling with Sequence-dependent Setups Problem. The version of 

the problem without setup time is NP-hard. The problem is further complicated by 

the fact that it takes variable amounts of time to setup the machine when 

switching between any two jobs. The completion time cj of a job can be defined as 

: 

 

 

                                                                      (Eq 5.1) 

 

 

where pi, sk,i are the processing time of job i and the setup time of job i if it 

immediately follows job k, respectively. Predecessors(j) is the set of all jobs that 

come before job j in the sequence and previous(i) is the single job that 

immediately precedes job i. Three parameters characterising each problem 
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instance are the due date tightness factor τ, the due date range factor δ and the set 

up time severity factor η. The benchmark set is formed by the following 

parameter values: τ = {0.3, 0.6, 0.9}, δ = {0.25, 0.75} and η = {0.25, 0.75}. For 

each of the twelve combinations of parameter values, 10 problem instances with 

60 jobs are generated. These 12 problem sets cover a spectrum from loosely to 

tightly constrained problem instances. The benchmark instances can be obtained 

at http://www.ozone.ri.cmu.edu/benchmarks.html 

 

Recently, several approaches have been adopted to solve this benchmark dataset 

see, for examples, Simulated Annealing, Genetics Algorithms, and Tabu Search 

by Lin and Ying (2007), Ant Colony Optimisation Algorithm and Discrete 

Particle Swarm Optimisation Algotithm by Anghinolfi and Paolucci (2008), 

Discrete Differential Evolution Algorithm by Tasgetiren et al. (2009), Discret 

Electromagnetism-like Machanism by Chao and Liao (2012), General Variable 

neighbourhood serach by Kirlik and Oguz (2012), Scater Search by Guo and Tang 

(2011) and Exact Algorithm by Tanaka and Araki (2012). 

 

 

5.3 The Adaptive Bees Algorithm 

Apparent Tardiness Cost with Setups (ATCS) heuristic consists of two stages. 

The first stage is to estimate due date tightness, due date range, and setup time 

severity factors. These three factors define the problem instances and their 

respective makespan value. Next, two look-ahead parameter values (k1 and k2) are 
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calculated by using those three estimated values derived from first stage and then 

used to calculate a priority index, which determines the sequence of the jobs. 

 

The due date tightness  , due date range  , and setup time severity factors   can 

be calculated as follows: 

 

 

 

 

 

 

     
  

    
                                                   (Eq. 5.2) 

 

 

   
         

    
                                                (Eq. 5.3) 

 

 

  
  

  
                                                        (Eq. 5.4) 

 

 

Cmax is the completion time after finishing processing last job added into the 

sequence,    is the average of the due dates, dmax and dmin represent the maximum 
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and the minimum of due dates, respectively,    denotes the average setup time and 

   denotes the average processing time. 

 

Due to the sequence dependent setup times, the determining the maximum of the 

completion time beforehand is very difficult. An estimated Cmax can be obtained 

by correlating the Cmax value with the average processing time, the average setup 

time and a coefficient  : 

 

 

 

 

 

                                                         (Eq. 5.5) 

 

 

Variability of setup times and the number of jobs in the instance would affect the 

value of  . By using the estimates of      and  , the parameters k1 and k2 can be 

calculated as follows: 

 

 

    
              
            

                                    (Eq. 5.6) 

 

 



 127 

    
 

   
                                            (Eq. 5.7) 

 

 

Finally, the priority index is determined with the following equation: 

 

 

         
  

  
     

               

    
      

   

    
                 (Eq. 5.8) 

 

 

The above equation, t denotes, the current time, and I is the index of the job that is 

just processed. The ATCS rule separates the effect of the setup time. The priority 

of a job given by weighted shortest processing time ratio is exponentially 

discounted twice, once based on the slack and again based on the setup time. 

These two effects are scaled separately by the parameters k1 and k2, which jointly 

provide the look-ahead capabilities of the ATCS rule. The values of the 

parameters depend on the problem instance as they essentially perform the scaling 

(Lee at al. 1997; Kirlik and Oguz 2012). 

 

According to Mladenovic and Hansen (1997), Hansen and Mladenovic (2001) and 

Hansen and Mladenovic (2003), Variable Neighbourhood Search (VNS) exploits 

systematically the following facts: A local minimum with respect to one 

neighbourhood structure is not necessarily so for another, a global minimum is a 

local minimum with respect to all possible neighbourhood structure, and for many 
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problems, local minima with respect to one or several neighbourhoods are 

relatively close to each other. 

 

The last observation implies that a local optimum often provides some 

information about the global one. There might be several variables with the same 

value in both. However, it is usually not known which ones are such. A study of 

the neighbourhood of this local optimum is therefore in order, until a better one is 

found.  

 

Reduced Variable Neighbourhood Search (RVNS) is a simple application of 

VNS. It is a pure stochastic search method. A set of neighbourhood structures 

N1(x), N2(x), …, Nkmax(x) will be considered around the current point x. Usually, 

these neighbourhood structures will be nested. Then a point is chosen at random 

in the first neighbourhood. If its fitness value is lower than that of the incumbent, 

the search is recentered there. Otherwise, one proceeds to the next neighbourhood. 

After all neighbourhoods have been considered, one begins again with the first, 

until the stopping criteria is met. The description of the steps of the RVNS is as 

follows: 

 

1) Find an initial solutions x and choose a stopping condition 

2) Repeat the following until a stopping condition is met: 

2.1) k   1 

2.2) Repeat the following steps until k = kmax 

       Shake: take a solution randomly from Nk (x) 
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       If this point is better than the incumbent, move there (x  x’), and 

continue the search with N1(k  1); otherwise, set k  k+1 

 

This study has used ATCS to generate a starting solution for the Adaptive Bees 

Algorithm. The Algorithm itself also generates a set of solutions randomly and 

adapts the idea of neighbourhood change within the search in VNS to find better 

solution and/or escape from local optima. During Neighbourhood search, the Bees 

Algorithm randomly generates the order of the neighbourhood search procedures. 

Six different procedures are used which are (See details in chapter 3 and 4): 

 

1) Swapping between two jobs 

2) Reversing job order 

3) Swapping two groups of jobs 

4) Swapping three job positions 

5) Inserting first job to a new random position 

6) Inserting last job to a new random position 

 

After neighbourhood search, if the Bees Algorithm could find a better solution 

then it will apply the same neighbour hood procedure for the next iteration. 

Otherwise it will use the next procedure in the order. If the algorithm could not 

find a better solution in a certain times, it will abandon the site and create new 

potential solution randomly. The pseudo code of the Adaptive Bees Algorithm is 

given in Fig 5.1. 
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Figure 5.1 The pseudo code of the Adaptive Bees Algorithm 

 

  

 

1. Initial population (θ) with p-1 random solutions plus a solution by ATCS.  

2. Evaluate fitness of the population. 

3. While (stopping criterion has not been met). 

4. Randomly create an order of neighbourhood procedures (kn) 

5. Select sites (m) for neighbourhood search. 

6. Recruit bees for selected sites: elite sites (e) and other selected sites (m-e). 

7. Evaluate the fittest values, if no improvement then changes the neighbourhood procedure 

to the next one in the order for next iteration. Otherwise perform the same procedure. 

8. If no improvement for a certain time, save the best fitness and search for new potential 

solution; solution. 

9. End while. 
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5.4 Experimental results 

The Adaptive Bees Algorithm was implemented in Matlab. The 10 time 

experiment has been carried out on Dell laptop: Intel (R) Core (TM) 2 Duo CPU 

P8600 @2.40GHz 4 GB RAM and MacBook Pro: Intel Quad Core i7 2.3GHz. 6 

GB RAM. Table 5.1 shows the parameters used for experiments for problem 

instance 1-40 and Table 5.2 shows the parameters used for experiments for 

problem instance 41-120. Table 5.3 - 5.8 show the results derived from the 

Adaptive Bees Algorithm (ABA), OBK which is the best-known solutions 

composed of the solutions generated by Simulated Annealing, Genetics 

Algorithms and Tabu Search by Lin and Ying (2007), ACO by Anghinolfi and 

Paolucci (2008), DPSO by Anghinolfi and Paolucci (2009), DDE by Tasgetiren et 

al. (2009), DEM by Chao and Liao (2012), GVNS by Kirlik and Oguz (2012), SS 

by Guo and Tang (2011), and EXACT by Tanaka and Araki (2012).  

Performance of the algorithm was quantified by the average percentage of relation 

deviations which was computed as follows: 

 

 

       
          

   
        

                                               (Eq. 5.9) 
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Table 5.9 - 5.14 show the average percentage of relation deviations of ABA, 

ACO, DPSO, DDE, DEM, GVNS, SS, and EXACT. The results show that the 

Adaptive Bees Algorithm was able to find 23 better solutions out of 120 instances 

than OBK and the same as DPSO, DDE, DEM, GVNS, and SS whereas ACO 

found only 22 better solutions. However, EXACT found 24 better solutions. 

There are 97 instances in total that the Adaptive Bees Algorithm could not 

performed better than OBK. Results of 94 out of those 97 instances were equal. 

Table 4.5 shows the average of the average percentage of relation deviations of all 

instances. It can be seen that the proposed algorithm could perform much better 

than ACO and DPSO and slightly better than GVNS. However, the EXACT 

perform better than other existing techniques including the Bees Algorithm. 
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Table 5.1 Parameters of the Adaptive Bees Algorithms to solve 1-40 instances 

Parameters 

 

Value 

 

p : Population 400 

m : Number of selected sites 50 

e : Number of elites sites 10 

nep : Number of bees around elite sites 30 

nsp : Number of bees around other 

selected points 
10 

 

 

Table 5.2 Parameters of the Adaptive Bees Algorithms to solve 41-120 instances 

Parameters 

 

Value 

 

p : Population 600 

m : Number of selected sites 50 

e : Number of elites sites 10 

nep : Number of bees around elite sites 30 

nsp : Number of bees around other 
selected points 

15 
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Table 5.3 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 1-20 

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

684 

5082 

1792 

6526 

4662 

5788 

3693 

142 

6349 

2021 

3867 

0 

5685 

3045 

1458 

4940 

204 

1610 

208 

2967 

513 

5083 

1769 

6286 

4263 

7027 

3598 

129 

6094 

1931 

3853 

0 

4597 

2901 

1245 

4482 

128 

1237 

0 

2545 

531 

5088 

1609 

6146 

4339 

6832 

3514 

132 

6153 

1895 

3649 

0 

4430 

2749 

1250 

4127 

75 

971 

0 

2675 

474 

4902 

1465 

5946 

4084 

6652 

3350 

114 

5803 

1799 

3294 

0 

4194 

2268 

964 

3876 

61 

857 

0 

2111 

504 

4902 

1480 

6026 

4084 

6712 

3404 

113 

5894 

1803 

3078 

0 

4194 

2375 

1030 

3517 

60 

835 

0 

2167 

471 

4878 

1430 

6006 

4114 

6667 

3330 

108 

5751 

1789 

2998 

0 

4068 

2260 

935 

3381 

0 

845 

0 

2053 

471 

4854 

1455 

5906 

4134 

6667 

3458 

110 

5778 

1805 

3190 

0 

4185 

2340 

953 

3843 

60 

845 

0 

2058 

453 

4794 

1390 

5866 

4054 

6592 

3267 

100 

5660 

1740 

2785 

0 

3904 

2075 

724 

3285 

0 

767 

0 

1757 

471 

4878 

1430 

6006 

4114 

6667 

3330 

108 

5751 

1789 

2998 

0 

4068 

2260 

935 

3381 

0 

845 

0 

2053 
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Table 5.4 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 21-40 

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

0 

0 

0 

1063 

0 

0 

0 

0 

0 

165 

0 

0 

0 

0 

0 

0 

755 

0 

0 

0 

0 

0 

0 

1047 

0 

0 

0 

0 

0 

130 

0 

0 

0 

0 

0 

0 

400 

0 

0 

0 

0 

0 

0 

1043 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

186 

0 

0 

0 

0 

0 

0 

1033 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

107 

0 

0 

0 

0 

0 

0 

1039 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

116 

0 

0 

0 

0 

0 

0 

920 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

46 

0 

0 

0 

0 

0 

0 

1044 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

296 

0 

0 

0 

0 

0 

0 

761 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

46 

0 

0 

0 

0 

0 

0 

920 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

46 

0 

0 

0 
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Table 5.5 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 41-60 

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

71186 

58199 

147211 

35648 

59307 

35320 

73984 

65164 

79055 

32797 

52639 

99200 

91302 

123558 

69776 

78960 

67447 

48081 

55396 

68851 

70253 

57847 

146697 

35331 

58935 

35317 

73787 

65261 

78424 

31826 

50770 

95951 

87317 

120782 

68843 

76503 

66534 

47038 

54037 

62828 

69102 

57487 

145883 

35331 

59175 

34805 

73378 

64612 

77771 

31810 

49907 

94175 

86891 

118809 

68649 

75490 

64575 

45680 

52001 

63342 

69242 

57511 

145310 

35289 

58935 

34764 

73005 

64612 

77641 

31565 

49927 

94603 

84841 

119226 

66006 

75367 

64552 

45322 

52207 

60765 

69242 

57511 

145310 

35289 

58935 

34764 

73005 

64612 

77641 

31565 

49927 

94603 

84841 

119226 

66006 

75367 

64552 

45322 

52207 

60765 

69242 

57511 

145310 

35289 

59025 

34764 

72853 

64612 

77833 

31292 

49761 

93106 

84841 

119074 

65400 

74940 

64575 

45322 

51649 

61755 

69552 

57511 

145310 

35289 

58935 

34887 

73157 

64688 

77771 

31519 

50101 

96225 

87559 

121228 

66006 

75079 

64552 

46324 

53315 

62783 

69102 

57487 

145310 

35166 

58935 

34764 

72853 

64612 

77641 

31292 

49761 

93106 

84841 

118809 

65400 

74940 

64552 

45322 

51649 

60765 

69102 

57487 

145130 

35289 

59025 

34764 

72853 

64612 

77641 

31292 

49761 

93106 

84841 

118809 

65400 

74940 

64522 

45322 

51649 

60765 
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Table 5.6 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 61-80 

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

76396 

44769 

75317 

92572 

127912 

59832 

29390 

22148 

64632 

75102 

150709 

46903 

29408 

33375 

21863 

55055 

34732 

21493 

121118 

20335 

75916 

44869 

75317 

92572 

126696 

59685 

29390 

22120 

71118 

75102 

145825 

45810 

28909 

32406 

22728 

55296 

32742 

20520 

117908 

18826 

75916 

44769 

75317 

92572 

126696 

59685 

29390 

22120 

71118 

75102 

145771 

43994 

28785 

30734 

21602 

53899 

31937 

19660 

114999 

18157 

75916 

44769 

75317 

92572 

126696 

59685 

29390 

22120 

71118 

75102 

145007 

43904 

28785 

30313 

21602 

53555 

32237 

19462 

114999 

18157 

75916 

44769 

75317 

92572 

126696 

59685 

29390 

22120 

71118 

75102 

145264 

43286 

28785 

29777 

21602 

53555 

31817 

19462 

114999 

18157 

75916 

44769 

75317 

92572 

126696 

59685 

29390 

22120 

71118 

75102 

145007 

43286 

28785 

30136 

21602 

54024 

31817 

19462 

114999 

18157 

75916 

44769 

75317 

92572 

126696 

59685 

29390 

22120 

71118 

75102 

145290 

44558 

28785 

30142 

21758 

55482 

32931 

20008 

115644 

18824 

75916 

44769 

75317 

92572 

126696 

59685 

29390 

22120 

64632 

75102 

145007 

43286 

28785 

30136 

21602 

53555 

31817 

19462 

114999 

18157 

75916 

44769 

75317 

92572 

126696 

59685 

29390 

22120 

71118 

75102 

145007 

43286 

28785 

30136 

21602 

53555 

31817 

19462 

114999 

18157 
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Table 5.7 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 81-100 

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

384996 

410979 

460978 

330384 

555106 

364381 

399439 

434948 

410966 

402233 

344988 

365129 

410462 

335550 

521512 

461484 

413109 

532519 

370080 

439944 

383485 

409982 

458879 

329670 

554766 

361685 

398670 

434410 

410102 

401959 

340030 

361407 

408560 

333047 

517170 

461479 

411291 

526856 

368415 

436933 

383703 

409544 

458787 

329670 

555130 

361417 

398551 

433519 

410092 

401653 

343029 

361152 

406728 

332983 

521208 

459321 

410889 

522630 

365149 

432714 

383485 

409544 

458752 

329670 

554993 

361417 

398670 

433186 

410092 

401653 

340508 

361152 

404548 

333020 

517011 

457631 

409263 

523486 

364442 

431736 

383485 

409479 

458752 

329670 

554870 

361417 

398551 

433186 

410092 

401653 

339933 

361152 

403423 

332941 

516926 

455448 

407590 

520582 

363977 

431736 

383485 

409479 

458752 

329670 

554766 

361417 

398551 

433244 

410092 

401653 

339933 

361152 

404917 

332949 

517646 

457631 

407590 

520582 

363977 

432068 

383485 

409479 

458752 

329670 

554870 

361837 

398551 

433244 

410092 

401653 

340221 

361250 

405978 

335106 

519843 

460140 

413671 

525439 

369154 

435064 

383485 

409479 

458752 

329670 

554766 

361417 

398551 

433186 

410092 

401653 

339933 

361152 

403423 

332941 

516926 

455448 

407590 

520582 

363518 

431736 

383485 

409479 

458752 

329670 

554766 

361417 

398551 

433186 

410092 

401653 

339933 

361152 

404548 

332983 

517646 

455488 

407590 

520582 

363977 

432068 
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Table 5.8 Comparison results of the Adaptive Bees Algorithm with best-known results from recent research: Ins 101-120 

Instance OBK ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

353408 

493889 

379913 

358222 

450808 

455849 

353371 

462737 

413205 

419481 

347233 

373238 

261239 

470327 

459194 

527459 

512286 

352118 

579462 

398590 

352990 

493936 

378602 

358033 

450806 

455093 

353368 

461452 

413408 

418769 

346763 

373140 

260400 

464734 

457782 

532840 

506724 

355922 

573910 

397520 

352990 

493069 

378602 

357963 

450806 

455152 

352867 

460793 

413004 

418769 

342752 

369237 

260176 

464136 

457874 

532456 

503199 

350729 

573046 

396183 

352990 

492748 

378602 

357963 

450806 

454379 

352766 

460793 

413004 

418769 

342752 

367110 

260872 

465503 

457289 

530803 

502840 

349749 

573046 

396183 

352990 

492572 

378602 

357963 

450806 

454379 

352766 

460793 

413004 

418769 

342752 

367110 

259649 

464001 

456904 

530601 

502840 

349749 

573046 

396183 

352990 

492572 

378602 

357963 

450806 

454379 

352766 

460793 

413004 

418769 

342752 

367110 

259649 

463474 

457189 

530601 

503046 

349749 

573046 

396183 

352990 

493036 

378602 

358334 

451249 

455031 

352766 

461452 

413408 

418769 

343953 

372819 

260077 

463474 

459538 

533160 

507474 

353142 

573541 

398528 

352990 

492572 

378602 

357963 

450806 

454379 

352766 

460793 

413004 

418769 

342752 

367110 

259649 

463474 

456890 

530601 

502840 

349749 

573046 

396183 

352990 

492572 

378602 

357963 

450806 

454379 

352766 

460793 

413004 

418769 

342752 

367110 

259649 

463474 

457089 

530601 

502840 

349749 

573046 

396183 
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Table 5.9 Comparison of the average percentage of relation deviations: Ins 1-20 

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

-25.00 

0.02 

-1.28 

-3.68 

-8.56 

21.41 

-2.57 

-9.15 

-4.02 

-4.45 

-0.36 

0 

-19.14 

-4.73 

-14.61 

-9.27 

-37.25 

-23.17 

-100.00 

-14.22 

-22.37 

0.12 

-10.21 

-5.82 

-6.93 

18.04 

-4.85 

-7.04 

-3.09 

-6.23 

-5.64 

0 

-22.08 

-9.72 

-14.27 

-16.46 

-63.24 

-39.69 

-100.00 

-9.84 

-30.70 

-3.54 

-18.25 

-8.89 

-12.40 

14.93 

-9.29 

-19.72 

-8.60 

-10.98 

-14.82 

0 

-26.23 

-25.52 

-33.88 

-21.54 

-70.10 

-46.77 

-100.00 

-28.85 

-26.32 

-3.54 

-17.41 

-7.66 

-12.40 

15.96 

-7.83 

-20.42 

-7.17 

-10.79 

-20.40 

0 

-26.23 

-22.00 

-29.36 

-28.81 

-70.59 

-48.14 

-100.00 

-26.96 

-31.14 

-4.01 

-20.20 

-7.97 

-11.75 

15.19 

-9.83 

-23.94 

-9.42 

-11.48 

-22.47 

0 

-28.44 

-25.78 

-35.87 

-31.56 

-100.00 

-47.52 

-100.00 

-30.81 

-31.14 

-4.49 

-18.81 

-9.50 

-11.33 

15.19 

-6.36 

-22.54 

-8.99 

-10.69 

-17.51 

0 

-26.39 

-23.15 

-34.64 

-22.21 

-70.59 

-47.52 

-100.00 

-30.64 

-33.77 

-5.67 

-22.43 

-10.11 

-13.04 

13.89 

-11.54 

-29.58 

-10.85 

-13.90 

-27.98 

0 

-31.33 

-31.86 

-50.34 

-33.50 

-100.00 

-52.36 

-100.00 

-40.78 

-31.14 

-4.01 

-20.20 

-7.97 

-11.75 

15.19 

-9.83 

-23.94 

-9.42 

-11.48 

-22.47 

0 

-28.44 

-25.78 

-35.87 

-31.56 

-100.00 

-47.52 

-100.00 

-30.81 
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Table 5.10 Comparison of the average percentage of relation deviations: Ins 21-40 

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

0.00 

0.00 

0.00 

-1.51 

0.00 

0.00 

0.00 

0.00 

0.00 

-21.21 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-47.02 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-1.88 

0.00 

0.00 

0.00 

0.00 

0.00 

-100.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-75.36 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-2.82 

0.00 

0.00 

0.00 

0.00 

0.00 

-100.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-85.83 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-2.26 

0.00 

0.00 

0.00 

0.00 

0.00 

-100.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-84.64 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-13.45 

0.00 

0.00 

0.00 

0.00 

0.00 

-100.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-93.91 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-1.79 

0.00 

0.00 

0.00 

0.00 

0.00 

-100.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-60.79 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-28.41 

0.00 

0.00 

0.00 

0.00 

0.00 

-100.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-93.91 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-13.45 

0.00 

0.00 

0.00 

0.00 

0.00 

-100.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-93.91 

0.00 

0.00 

0.00 
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Table 5.11 Comparison of the average percentage of relation deviations: Ins 41-60 

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

-1.31 

-0.60 

-0.35 

-0.89 

-0.63 

-0.01 

-0.27 

0.15 

-0.80 

-2.96 

-3.55 

-3.28 

-4.36 

-2.25 

-1.34 

-3.11 

-1.35 

-2.17 

-2.45 

-8.75 

-2.93 

-1.22 

-0.90 

-0.89 

-0.22 

-1.46 

-0.82 

-0.85 

-1.62 

-3.01 

-5.19 

-5.07 

-4.83 

-3.84 

-1.62 

-4.39 

-4.26 

-4.99 

-6.13 

-8.00 

-2.73 

-1.18 

-1.29 

-1.01 

-0.63 

-1.57 

-1.32 

-0.85 

-1.79 

-3.76 

-5.15 

-4.63 

-7.08 

-3.51 

-5.40 

-4.55 

-4.29 

-5.74 

-5.76 

-11.74 

-2.73 

-1.18 

-1.29 

-1.01 

-0.63 

-1.57 

-1.32 

-0.85 

-1.79 

-3.76 

-5.15 

-4.63 

-7.08 

-3.51 

-5.40 

-4.55 

-4.29 

-5.74 

-5.76 

-11.74 

-2.73 

-1.18 

-1.29 

-1.01 

-0.48 

-1.57 

-1.53 

-0.85 

-1.55 

-4.59 

-5.47 

-6.14 

-7.08 

-3.63 

-6.27 

-5.09 

-4.26 

-5.74 

-6.76 

-10.31 

-2.30 

-1.18 

-1.29 

-1.01 

-0.63 

-1.23 

-1.12 

-0.73 

-1.62 

-3.90 

-4.82 

-3.00 

-4.10 

-1.89 

-5.40 

-4.92 

-4.29 

-3.65 

-3.76 

-8.81 

-2.93 

-1.22 

-1.29 

-1.35 

-0.63 

-1.57 

-1.53 

-0.85 

-1.79 

-4.59 

-5.47 

-6.14 

-7.08 

-3.84 

-6.27 

-5.09 

-4.29 

-5.74 

-6.76 

-11.74 

-2.93 

-1.22 

-1.41 

-1.01 

-0.48 

-1.57 

-1.53 

-0.85 

-1.79 

-4.59 

-5.47 

-6.14 

-7.08 

-3.84 

-6.27 

-5.09 

-4.34 

-5.74 

-6.76 

-11.74 
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Table 5.12 Comparison of the average percentage of relation deviations: Ins 61-80 

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

-0.63 

0.22 

0.00 

0.00 

-0.95 

-0.25 

0.00 

-0.13 

10.04 

0.00 

-3.24 

-2.33 

-1.70 

-2.90 

3.96 

0.44 

-5.73 

-4.53 

-2.65 

-7.42 

-0.63 

0.00 

0.00 

0.00 

-0.95 

-0.25 

0.00 

-0.13 

10.04 

0.00 

-3.28 

-6.20 

-2.12 

-7.91 

-1.19 

-2.10 

-8.05 

-8.53 

-5.05 

-10.71 

-0.63 

0.00 

0.00 

0.00 

-0.95 

-0.25 

0.00 

-0.13 

10.04 

0.00 

-3.78 

-6.39 

-2.12 

-9.17 

-1.19 

-2.72 

-7.18 

-9.45 

-5.05 

-10.71 

-0.63 

0.00 

0.00 

0.00 

-0.95 

-0.25 

0.00 

-0.13 

10.04 

0.00 

-3.61 

-7.71 

-2.12 

-10.78 

-1.19 

-2.72 

-8.39 

-9.45 

-5.05 

-10.71 

-0.63 

0.00 

0.00 

0.00 

-0.95 

-0.25 

0.00 

-0.13 

10.04 

0.00 

-3.78 

-7.71 

-2.12 

-9.70 

-1.19 

-1.87 

-8.39 

-9.45 

-5.05 

-10.71 

-0.63 

0.00 

0.00 

0.00 

-0.95 

-0.25 

0.00 

-0.13 

10.04 

0.00 

-3.60 

-5.00 

-2.12 

-9.69 

-0.48 

0.78 

-5.19 

-6.91 

-4.52 

-7.43 

-0.63 

0.00 

0.00 

0.00 

-0.95 

-0.25 

0.00 

-0.13 

0.00 

0.00 

-3.78 

-7.71 

-2.12 

-9.70 

-1.19 

-2.72 

-8.39 

-9.45 

-5.05 

-10.71 

-0.63 

0.00 

0.00 

0.00 

-0.95 

-0.25 

0.00 

-0.13 

10.04 

-1.33 

-3.78 

-7.71 

-2.12 

-9.70 

-1.19 

-2.72 

-8.39 

-9.45 

-5.05 

-10.71 
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Table 5.13 Comparison of the average percentage of relation deviations: Ins 81-100 

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

-0.39 

-0.24 

-0.46 

-0.22 

-0.06 

-0.74 

-0.19 

-0.12 

-0.21 

-0.07 

-1.44 

-1.02 

-0.46 

-0.75 

-0.83 

0.00 

-0.44 

-1.06 

-0.45 

-0.68 

-0.34 

-0.35 

-0.48 

-0.22 

0.00 

-0.81 

-0.22 

-0.33 

-0.21 

-0.14 

-0.57 

-1.09 

-0.91 

-0.77 

-0.06 

-0.47 

-0.54 

-1.86 

-1.33 

-1.64 

-0.39 

-0.35 

-0.48 

-0.22 

-0.02 

-0.81 

-0.19 

-0.41 

-0.21 

-0.14 

-1.30 

-1.09 

-1.44 

-0.75 

-0.86 

-0.83 

-0.93 

-1.70 

-1.52 

-1.87 

-0.39 

-0.36 

-0.48 

-0.22 

-0.04 

-0.81 

-0.22 

-0.41 

-0.21 

-0.14 

-1.47 

-1.09 

-1.71 

-0.78 

-0.88 

-1.31 

-1.34 

-2.24 

-1.65 

-1.87 

-0.39 

-0.36 

-0.48 

-0.22 

-0.06 

-0.81 

-0.22 

-0.39 

-0.21 

-0.14 

-1.47 

-1.09 

-1.35 

-0.78 

-0.74 

-0.83 

-1.34 

-2.24 

-1.65 

-1.79 

-0.39 

-0.36 

-0.48 

-0.22 

-0.04 

-0.70 

-0.22 

-0.39 

-0.21 

-0.14 

-1.38 

-1.06 

-1.09 

-0.13 

-0.32 

-0.29 

0.14 

-1.33 

-0.25 

-1.11 

-0.39 

-0.36 

-0.48 

-0.22 

-0.06 

-0.81 

-0.22 

-0.41 

-0.21 

-0.14 

-1.47 

-1.09 

-1.71 

-0.78 

-0.88 

-1.31 

-1.34 

-2.24 

-1.77 

-1.87 

-0.39 

-0.36 

-0.48 

-0.22 

-0.06 

-0.81 

-0.22 

-0.41 

-0.21 

-0.14 

-1.47 

-1.09 

-1.44 

-0.77 

-0.74 

-1.30 

-1.34 

-2.24 

-1.65 

-1.79 
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Table 5.14 Comparison of the average percentage of relation deviations: Ins 101-120 

Instance ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

-0.12 

0.01 

-0.35 

-0.05 

0.00 

-0.17 

0.00 

-0.28 

0.05 

-0.17 

-0.14 

-0.03 

-0.32 

-1.19 

-0.31 

1.02 

-1.09 

1.08 

-0.96 

-0.27 

-0.12 

-0.17 

-0.35 

-0.07 

0.00 

-0.15 

-0.14 

-0.42 

-0.05 

-0.17 

-1.29 

-1.07 

-0.41 

-1.32 

-0.29 

0.95 

-1.77 

-0.39 

-1.11 

-0.60 

-0.12 

-0.23 

-0.35 

-0.07 

0.00 

-0.32 

-0.17 

-0.42 

-0.05 

-0.17 

-1.29 

-1.64 

-0.14 

-1.03 

-0.41 

0.63 

-1.84 

-0.67 

-1.11 

-0.60 

-0.12 

-0.27 

-0.35 

-0.07 

0.00 

-0.32 

-0.17 

-0.42 

-0.05 

-0.17 

-1.29 

-1.64 

-0.61 

-1.35 

-0.50 

0.60 

-1.84 

-0.67 

-1.11 

-0.60 

-0.12 

-0.27 

-0.35 

-0.07 

0.00 

-0.32 

-0.17 

-0.42 

-0.05 

-0.17 

-1.29 

-1.64 

-0.61 

-1.46 

-0.44 

0.60 

-1.80 

-0.67 

-1.11 

-0.60 

-0.12 

-0.17 

-0.35 

0.03 

0.10 

-0.18 

-0.17 

-0.28 

0.05 

-0.17 

-0.94 

-0.11 

-0.44 

-1.46 

0.07 

1.08 

-0.94 

0.29 

-1.02 

-0.02 

-0.12 

-0.27 

-0.35 

-0.07 

0.00 

-0.32 

-0.17 

-0.42 

-0.05 

-0.17 

-1.29 

-1.64 

-0.61 

-1.46 

-0.50 

0.60 

-1.84 

-0.67 

-1.11 

-0.60 

-0.12 

-0.27 

-0.35 

-0.07 

0.00 

-0.32 

-0.17 

-0.42 

-0.05 

-0.17 

-1.29 

-1.64 

-0.61 

-1.46 

-0.46 

0.60 

-1.84 

-0.67 

-1.11 

-0.60 
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     Table 5.15 Comparison of the average of the average percentage of relation deviations of all instances 

AVG 

ACO_AP DPSO DDE DEM GVNS SS EXACT ABA 

 

 

-3.34 -5.31 -6.78 -6.78 -7.51 -6.29 -8.33 -7.54 
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5.5 Summary 

In this chapter, the Adaptive Bees Algorithm is presented. The proposed algorithm 

deploys ATCS heuristic and random technique to find a set of starting solutions and 

adapts the idea of neighbourhood change in VNS for the use of neighbourhood search 

procedure. It was applied to a Weighted Tardiness Scheduling with Sequence-

dependent Setups problem. The results were compared to those obtained by Simulated 

Annealing (SA), Genetic Algorithms (GAs), Tabu Search (TS), Ant Colony 

Optimisation (ACO), Discrete Particle Swarm Optimisation (DPSO), Discrete 

Differential Evolution (DDE), Discrete Electromagnetism-like Mechanism (DEM), 

General Variable Neighbourhood Search (GVNS), Scatter Search (SS), and EXACT 

Algorithm. The results show that the proposed algorithm performs better than or as well 

as the others. However, EXACT performs better than the Adaptive Bees Algorithm. 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 6 

 

CONCLUSION 

 

 

 

6.1 Contributions 

The overall aim of this research was to develop the Bees Algorithm for single-machine 

scheduling and to improve the performance of the algorithm. The research contributions 

include: 

 Different versions of the Bees Algorithm for single-machine scheduling. 

 Enhancements to the basic algorithm, with proofs to show that the enhanced 

version is both more robust and efficient than the original. 

 A number of neighbourhood search procedures to help the algorithm find better 

solutions faster.  

 A new method of selecting potential solutions for the next iteration. The method 

helps significantly to improve the speed of the algorithm. 
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 Proofs that, for some benchmark problems, using a tool to generate good 

starting solutions might help the algorithm find the optimum faster than when 

starting solutions are randomly produced. 

 

6.2 Conclusion 

In this thesis, the feasibility of utilising the Bees Algorithm to solve machine 

scheduling problems has been demonstrated.  Enhanced algorithms have been presented 

which improve the current state of the art in this research area. The key conclusions for 

each topic investigated are given below. 

 The algorithm was applied to three complex scheduling problems with specific 

modifications for each. The algorithm was first enhanced to solve the problem 

of machine scheduling with common due date. The results were compared to 

those by the original version, which was the first Bees Algorithm developed for 

combinatorial domains and to the results by other well-known algorithms.  This 

work has shown that the modified algorithm performs better than other existing 

techniques.  

 The Bees Algorithm deploying the Negative Selection technique inspired by the 

Immune System delivers the most promising solutions for the next iteration.  

This improvement overcomes the drawback of keeping the fittest solution from 

each selected patch after the algorithm performs neighbourhood search in a 

combinatorial domain. The results have proved the efficiency and robustness of 

the new algorithm. 
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 The second application of the Bees Algorithm was to solve the total weighted 

tardiness problem.  Providing a variety of neighbourhood search procedures to 

the Bees Algorithm and assigning different ways to deploy them could 

significantly reduce computational time.  It is also important to study the nature 

of each benchmark to ensure a good match with the parameters used in the 

algorithm.  This study found that the enhanced Bees Algorithm performs faster 

when assigned a small number of parameters together with a proper technique to 

avoid being trapped at local optima. 

 Lastly, the Bees Algorithm was used to solve the problem of minimising total 

weighted tardiness with sequence-dependent setups, which is the most 

complicated of the three benchmarks. The study demonstrates that the algorithm 

needs a tool to help generate a good starting solution as well as a technique to 

deploy a set of neighbourhood search procedures.  The results have shown that 

although the algorithm performs much better than some existing algorithms it is 

only slightly better than other algorithms. 

 

6.3 Future work 

Possible extensions that can be made to the work presented in this thesis include: 

 Developing a tool that can generate a more uniform spread of starting solutions. 

 Developing new local search algorithms for combinatorial domains. 

 Using more complex models to improve the performance of the Bees Algorithm. 

 Developing techniques to reduce the Bees Algorithm’s computational time. 

 Applying the enhanced Bees Algorithm to solve flow shop and job shop 
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scheduling problems. 

 Applying the enhanced Bees Algorithm to schedule jobs using real-world data. 

 Applying the enhanced Bees Algorithm to different types of scheduling 

problems, for example, class room timetabling. 

 Combining other ideas from other techniques such as Exact, Scatter Search and 

Discrete Electromagnetism-like Mechanism to the Bees Algorithm to improve 

its performance. 
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