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Abstract 

 

Compacted bentonites and compacted sand-bentonite mixtures have been proposed as suitable barrier and backfill 

materials for the disposal of municipal solid waste and high level radioactive waste. Although unsaturated on 

placement, the barrier and backfill materials can become saturated subject to the availability of fluid. Detailed 

understanding of the saturated hydraulic conductivity of compacted bentonites and sand-bentonite mixtures is 

essential to ensuring the integrity of the waste disposal facility and the long-term protection of the 

geoenvironment. 

 

This thesis is concerned with the experimental determination of the hydraulic conductivity of compacted MX80 

bentonite and sand-bentonite mixtures (30% MX80 bentonite to 70% sand). A high capacity fixed ring modified 

swelling pressure cell was used for carrying out the hydraulic conductivity tests. High precision pressure-volume 

controllers were used to apply a range of hydraulic gradients between about 1250 and 12500 under constant head 

conditions. The expansion of the measuring system was studied to account for differences between inflow and 

outflow water volumes during the hydraulic conductivity tests. The hydraulic gradient was increased and 

decreased during the hydraulic conductivity tests. Chemical analysis of fluid samples collected from the inflow 

and outflow reservoirs after each hydraulic conductivity tests provided information about the type and amount of 

exchangeable cations expelled from the specimens. The inflow volume was calculated based on the system 

expansions. The hydraulic conductivities were calculated from Darcy’s law. The saturated hydraulic conductivity 

of compacted bentonite and sand-bentonite specimens were also calculated based on the consolidation tests 

results. The gas permeability of compacted unsaturated bentonites was determined. The saturated hydraulic 

conductivity of compacted bentonites was assessed using various existing models. A model based on parallel plate 

flow was proposed in the current study. The proposed model considered the viscosity of water in the inter-platelet 

region and its influence on the hydraulic conductivity of compacted bentonites.  

 

The correction of the water inflow volume by accounting for the system expansion during the hydraulic 

conductivity tests provided good compatibility between the inflow and outflow water volumes. The equilibrated 

inflow and outflow rates were found to be similar during the hydraulic conductivity tests. A linear relationship 

was noted between hydraulic gradient and hydraulic flux indicating the validity of Darcy’s law for calculating the 

hydraulic conductivity of compacted bentonites. An expulsion of exchangeable cations from the compacted 

bentonite specimens occurred during the hydraulic conductivity tests. The amount of expelled cations was found 

to be less than about 6% of the total exchangeable cations present in the bentonite. The gas permeability of 

compacted unsaturated bentonite was found to decrease within an increase in compaction dry density. The 

calculated hydraulic conductivity of compacted unsaturated bentonite based on the measured intrinsic 

permeability was found to be greater than the measured hydraulic conductivity of compacted saturated bentonite 

indicating that swelling reduces the hydraulic flow paths. The saturated hydraulic conductivities calculated from 

the Kozeny-Carman model were found to better describe the measured saturated hydraulic conductivities than the 

other available models. The model proposed in this study did not satisfactorily establish the hydraulic conductivity 

of compacted saturated bentonite due to uncertainties associated with the assumptions made regarding the 

viscosity of the bulk fluid. 
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CHAPTER 1 

INTRODUCTION   

 

 

 

 

 

 

 

 

1.1 Introduction 

 

The safe disposal of waste materials, both radioactive and domestic, requires a 

detailed geoengineered solution. The isolation of the waste material and the protection of the 

geoenvironment are important considerations. The use of swelling clays in the containment 

and isolation of waste materials requires a better understanding of the materials to be used 

(Pusch and Yong, 2005).  
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One application of geoengineered barriers is the safe disposal of radioactive waste 

(Thomas et al., 1998). Deep geological repositories have been proposed as a suitable method 

for disposing of high level radioactive waste. The repositories will consist of a tunnel system 

located at a minimum depth of 500 m underground (Pusch, 1982). Engineered barriers 

composed of highly compacted swelling clays are proposed to isolate the radioactive waste 

(Sun et al., 2008). Bentonite has been selected for the engineered barriers due to its low 

permeability, high swelling capacity and retention properties (Villar and Lloret, 2007).  

 

The high level radioactive waste will be stored in deposition holes at regular intervals 

along the tunnel network (Bucher and Muller-Vonmoos, 1989). The multi-barrier system 

consists of the canister which encapsulates the spent fuel surrounded by the bentonite buffer 

(Karnland et al., 2007). Compacted unsaturated bentonite blocks will form the bentonite 

barrier (Villar, 2007). The bentonite is required to serve a number of functions, including 

ensuring structural integrity of the canister and a high level of water tightness (Muller-

Vonmoos, 1986). 

 

Compacted bentonites have also been proposed as a suitable material for geosynthetic 

clay liners. These liners are a composite material comprising of bentonite and geosynthetics. 

Geosynthetic clay liners have been proposed as an alternative to soil barriers in the cover and 

bottom lining of waste containment facilities (Bouazza and Vangpaisal, 2003). A number of 

studies have been conducted previously in geosynthetic clay liners (Bouazza et al., 1996; 

Gilbert et al., 1996; Daniel et al., 1998; Shackelford et al., 2000; Didier et al., 2000). The 

geosynthetic clay liners are 5-10 mm thick, and contain approximately 5 kg/m
2
 of bentonite 

(Bouazza and Vangpaisal, 2003). 
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When the bentonite is placed at the hygroscopic water content, it initially has a very 

high suction (Villar, 2007). Saturation of the bentonite barrier by the surrounding 

environment will therefore occur. During hydration and under restrained boundary 

conditions, compacted bentonites exhibit swelling pressures. Swelling pressure tests have 

been carried out on compacted bentonites by a number of authors (Pusch, 1982; Dixon and 

Gray, 1985; Bucher and Muller-Vonmoos, 1989; Komine and Ogata, 1994; Villar and Lloret, 

2007; Karnland et al, 2007; Schanz and Tripathy, 2009).  

 

Geoenvironmental barriers are widely used to limit the movement of water and 

contaminants (Dixon et al., 1999). The hydraulic conductivity of the clays depends on a 

number of factors, including soil composition, permeant characteristics, void ratio and 

structure (Lambe, 1954). The saturated hydraulic conductivity of compacted bentonite has 

been determined in a controlled laboratory environment (Komine and Ogata, 1994; Petrov et 

al., 1997; Cho et al., 1999; Dixon et al., 1999; Jo et al., 2001; Lee and Shackelford, 2005; 

Komine, 2008). It has also been reported that the saturated hydraulic conductivity is affected 

by compaction dry density, temperature, montmorillonite content, and type of exchangeable 

cation.  

 

In the past, a range of applied hydraulic gradients have been considered for 

determining the hydraulic conductivity of compacted saturated bentonites. Usually larger 

hydraulic gradients have been shown to result in shorter testing durations. Differences 

between the saturated hydraulic conductivities determined in rigid- and flexible-walled 

permeameters haves been reported to be insignificant (Daniel, 1994).  
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A number of experimental factors can affect the determination of the saturated 

hydraulic conductivities. These include temperature fluctuations in the laboratory, dissolved 

air in the fluid, incomplete specimen saturation, biological action in the specimen, system 

expansion, leakage in the system and microstructural changes in the specimen. These factors 

are often not considered during hydraulic conductivity tests (Chapius, 2012). The effect of 

these factors on the saturated hydraulic conductivity can be quantified by assessing the inflow 

and outflow behaviour during hydraulic conductivity tests. Limited studies on the 

compatibility of inflow and outflow during hydraulic conductivity tests have been reported in 

literature.  

 

Bentonite mixtures are widely used as geoenvironmental barriers to control the 

movement of liquid from waste disposal facilities (Stewart et al., 2003). Bentonite is blended 

with sand or crushed rock to reduce shrinkage cracks and to increase strength and volume 

stability (Kleppe and Olsen, 1985). The hydraulic conductivity of bentonite-enhanced 

mixtures can be controlled by the percentage of bentonite in the bentonite-enhanced mixture 

(Chapius, 1989; Sivapullaiah et al., 2000; Stewart et al., 2003; Komine, 2008).  

 

The backfill material proposed to be used in deep geological disposal is required to 

create a zone of low permeability around the high level radioactive waste (Komine, 2010). 

The hydraulic conductivity is required to be between 10
-11

 and 10
-12

 m/s (Japan Nuclear 

Cycle Development Institute, 1999). Mixtures of 0-30% bentonite and 100-70% ballast 

material (crushed rock or sand) have been proposed for backfilling material in the Swedish 

repository concept (Borgesson et al., 2003). The backfilling material in the UK repository 

concept will consist of 30% bentonite and 70% crushed rock (Nirex, 2005). The hydraulic 

conductivity of compacted sand-bentonite prepared to these percentages has been reported 
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previously for different compacted bentonites (Sivapullaiah et al, 2000; Komine, 2008; Sun et 

al., 2008).  

 

Once saturated, water may flow through the compacted bentonite under a hydraulic 

gradient.  A number of transport mechanisms will be present in the bentonite-water system. 

The flow of water through the specimen may result in ion expulsion (Mitchell and Soga, 

2005). Ions may diffuse due to the chemical concentration gradient between the compacted 

saturated bentonite and the adjacent fluid. Additional coupled processes may occur in the 

bentonite-water system. 

 

Geosynthetic clay liners may also provide an important role in landfill covers as a gas 

barrier (Bouazza and Vangpaisal, 2003). The liner is required to prevent the migration of 

landfill gas to surrounding areas (Didier et al., 2000). In the case of deep geological 

repositories, gases may be produced due to canister corrosion (Horseman et al., 1999; Gens et 

al., 2001; Alonso et al., 2002).  

 

Darcy’s law can be used to calculate the gas permeability of compacted bentonites 

(Tanai, 1996; Bouazza and Vangpaisal, 2003; Alonso, 2006). Previous studies in the 

literature (Didier et al., 2000; Bouazza and Vangpaisal, 2003) have determined the gas 

permeability of compacted bentonite at increasing water content. Detailed study of the effect 

of dry density on gas permeability at low water contents has not been reported.  

 

The experimental determination of saturated hydraulic conductivity can be time-

intensive, due to the low permeability of compacted bentonites. Analytical models have been 

proposed to determine the saturated hydraulic conductivity of compacted bentonites. The 
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hydraulic conductivity of compacted bentonites can be calculated from the compressibility 

behaviour. The Kozeny-Carman model has been widely used for predicting the hydraulic 

conductivity in soils, and has been employed for compacted bentonite (Dixon, 1999; Chapius 

and Aubertin, 2003; Singh and Wallender, 2008). Achari et al. (1999) calculated the 

hydraulic conductivity from the cluster model proposed by Olsen (1962). Komine (2004) 

determined the hydraulic conductivity from parallel plate flow. 

 

 

1.2 Scope and objectives of the research 

 

Considering the use of compacted bentonites as geotechnical barriers in high level 

radioactive waste disposal repositories and geo-liners, the primary aim of this research was to 

study the following aspects: 

 

1) To study the inflow and outflow of compacted saturated bentonites under applied 

hydraulic gradients to gain a better understanding of the limitations of hydraulic 

conductivity tests. 

 

2) To investigate the influence of hydraulic gradient and dry density on the hydraulic 

conductivity of compacted saturated bentonite. A range of compaction dry densities 

will be considered. The hydraulic gradient applied to the specimens will be increased 

and decreased in a step-wise manner. 

 

3) To determine the hydraulic conductivity for compacted saturated sand-bentonite 

mixtures at increasing compaction dry densities. The hydraulic conductivity tests will 



Chapter 1 

7 

 

be carried out under identical applied hydraulic gradients to those considered for tests 

on compacted bentonite. The proportion of sand to bentonite and the compaction dry 

densities will correspond to that proposed for backfilling material in deep geological 

repositories. 

 

4) To quantify the expulsion of exchangeable cations from the compacted bentonite 

specimens during hydraulic conductivity tests. The hydraulic conductivity of 

compacted bentonite is reported to be influenced by the cation exchange capacity of 

the material. An expulsion of exchangeable cations from the bentonite-water system 

may result in an increase in the measured hydraulic conductivity, which is undesirable 

in the context of containment of waste materials. 

 

5) To determine the gas permeability of air-dry compacted bentonite at low water 

contents and to assess whether the gas permeability of compacted bentonites can be 

used to determine the hydraulic conductivity. Compacted bentonites placed at low 

water contents can be used in geo-liners to form the capping layer of landfills, which 

can generate gases due to waste degradation. 

 

6) To use existing models to establish the hydraulic conductivity in compacted saturated 

bentonites and to propose a new model for assessing the saturated hydraulic 

conductivity of compacted bentonites. 

 

Detailed experimental studies on the unsaturated hydraulic conductivity of compacted 

bentonites, the effect of temperature on the saturated hydraulic conductivity of compacted 

bentonite, the influence of other permeants, the percentage of sand contained in the 
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compacted sand-bentonite specimen and the expulsion of anions during hydraulic 

conductivity tests was beyond the scope of this research.  

 

 

1.3 Thesis outline 

 

The thesis is divided into nine consecutive chapters. 

 

Chapter 1 presents the background to the research, the main objectives of the 

research and the outline of the thesis. 

 

Chapter 2 presents a review of literature relevant to this study. The structure of 

montmorillonite and the microstructure of compacted bentonites are presented. The 

mechanisms controlling the swelling of expansive clays are stated.  

 

The initial and testing conditions of hydraulic conductivity tests reported in the 

literature are reviewed. The hydraulic gradients applied during testing are justified. The 

factors affecting the saturated hydraulic conductivity are brought out and discussed. The 

hydraulic conductivity of compacted sand-bentonite and crushed rock-bentonite specimens is 

reviewed. The determination of the gas permeability of compacted bentonites is presented. 

The models available for assessing the hydraulic conductivity of compacted saturated 

bentonites are discussed.  

 

The bentonite used in the research was MX80 bentonite. Compacted MX80 bentonite 

has been proposed as a suitable material in high level toxic waste disposal repositories 
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(Pusch, 1982; Bucher and Muller-Vonmoos, 1989; Madsen, 1998; Montes-Hernandez et al., 

2003; Pusch and Yong, 2006; Tang and Cui, 2008). The properties of the MX80 bentonite 

used are presented in Chapter 3. The physical and chemical properties are provided. The 

suction-water content soil-water characteristic curve determined from osmotic technique and 

vapour equilibrium technique is presented.  

 

The rigid-walled fixed ring hydraulic conductivity cell used to determine the 

hydraulic conductivity of compacted bentonite and sand-bentonite specimens is presented. 

The experimental set-up for determining saturated hydraulic conductivity is shown. The 

compressibility of compacted bentonite and sand-bentonite specimens using standard 

oedometers is presented. The determination of gas permeability of compacted bentonite is 

described.  

 

Compliance of the hydraulic conductivity experimental set-up is presented in 

Chapter 4. The expansion of the inflow system to the hydraulic conductivity cell was 

determined under instantaneous and step-wise pressure changes. The correction of inflow due 

to system expansion is discussed. 

 

Chapter 5 presents the hydraulic conductivity test results of compacted bentonite 

specimens. The inflow and outflow behaviour is presented for the hydraulic gradients 

considered. The inflow and outflow rates at the end of hydraulic conductivity tests are 

determined. The hydraulic conductivity of each specimen is determined from the inflow and 

outflow rates.  
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The compressibility behaviour of saturated compacted bentonite specimens is 

presented. The coefficient of compressibility is calculated from Taylor’s and Casagrande’s 

methods. The hydraulic conductivity is calculated from the coefficient of compressibility. 

The percentage of exchangeable cations expelled from the compacted bentonite specimen 

during the hydraulic conductivity tests is determined.  

 

The hydraulic conductivity of compacted sand-bentonite specimens is presented in 

Chapter 6. The inflow and outflow behaviour during hydraulic conductivity tests is 

presented. The hydraulic conductivity of the compacted sand-bentonite specimens is 

determined from the inflow and outflow rates. The compressibility behaviour of compacted 

saturated sand-bentonite is presented. The coefficient of compressibility is calculated from 

Taylor’s and Casagrande’s methods. 

 

The gas permeability of air-dry compacted MX80 bentonite at low water contents is 

presented in Chapter 7. An existing device used for determining the gas permeability was 

utilised. The flow of nitrogen (N2) gas through the specimens is measured. The gas 

permeability of the compacted specimens is calculated from Darcy’s law. The 

appropriateness of determining the hydraulic conductivity of compacted bentonites from the 

measured gas permeability is discussed.  

 

The hydraulic conductivities of compacted saturated bentonite are calculated from 

existing models in Chapter 8. The hydraulic conductivity of compacted saturated bentonites 

is calculated from the Kozeny-Carman model and the model described by Komine (2004). A 

model for determining the saturated hydraulic conductivity of compacted bentonite is 

proposed based on parallel plate flow. The hydraulic conductivities calculated from the 
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models considered are compared, and are also compared with the experimental results 

determined in this study. 

 

The main conclusions drawn from this research are presented in Chapter 9. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

 

 

 

 

 

2.1 Introduction 

 

Compacted bentonites and compacted sand-bentonite mixtures have attracted 

considerable attention as suitable materials for geoengineered barriers. Compacted bentonites 

have been proposed as barrier and backfilling material in high level radioactive waste 

disposal (Thomas et al., 1998). The deep geological repository will store the radioactive 

waste at depths of at least 500 m below the ground surface (Pusch, 1982). The waste material 

will be stored in a multi-barrier system comprising of a stainless steel canister and compacted 

bentonite blocks. The canisters will be placed in deposition holes throughout the underground 
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tunnel network. The excavated tunnels and shafts will then be sealed using a backfilling 

material. Compacted bentonite surrounding the waste canister will form a barrier between the 

canister and the host rock. Fluid will percolate from the host rock and will saturate the 

compacted bentonite. Once saturated, the flow of water through the compacted bentonite 

barrier will depend on a number of physical and physico-chemical aspects.  

 

Geoengineered barriers such as geosynthetic clay liners are widely used in municipal 

solid waste disposal. Geosynthetic clay liners are a composite material, created from 

compacted bentonite and either geotextiles or a geomembrane (Bouazza and Vangpaisal, 

2003). Geosynthetic clay liners can be used as part of the cover or lining of waste disposal 

facilities. The landfill liner is required to prevent leachate from the landfill entering 

groundwater (Environment Agency, 2011). Landfill liners will become saturated during 

operation due to the availability of fluid from the waste material. The rate of flow through the 

saturated liner is required to assess the effect of leachate on the groundwater and the wider 

geoenvironment. 

 

This chapter presents a detailed literature review of the physico-chemical aspects and 

the physical process that may occur in compacted bentonites during saturation and hydraulic 

flow. The structure of montmorillonite and the microstructure of compacted bentonites are 

presented. The mechanisms governing the swelling of clays are discussed. The devices and 

procedures used to determine the saturated hydraulic conductivity of compacted bentonites 

are reviewed. The factors influencing the saturated hydraulic conductivity of compacted 

bentonites are discussed. The hydraulic conductivity of compacted sand-bentonite mixtures is 

reviewed. The mechanisms controlling the transport of ions in compacted bentonites are 

presented. The gas permeability of compacted bentonites is considered. Finally, available 
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models for assessing the hydraulic conductivity of compacted bentonites are presented. A 

summary of the chapter is provided. 

 

 

2.2 Structure of montmorillonite 

 

Clay minerals are predominantly composed of silicon-oxygen tetrahedral and 

aluminium- or magnesium-oxygen-hydroxyl octahedral layers and are classified depending 

upon the structural arrangement of mineral sheets (van Olphen, 1963; Grim, 1968). 

Pyrophyllite is a neutral 2:1 layer mineral, composed of two silica tetrahedral sheets, 

separated by an alumina octahedral sheet. The montmorillonite mineral is a derivative of 

pyrophyllite through substitution of atoms (van Olphen, 1963). The montmorillonite mineral 

is shown in Figure 2.1.  

 

   

 

Figure 2.1 - Schematic diagram of the montmorillonite mineral (adapted from Mitchell and 

Soga, 2005) 

 

c 
b 

a 
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The exchange of atoms within the crystalline structure is referred to as isomorphous 

substitution (van Olphen, 1963). The theoretical formula of montmorillonite is 

(OH)4Si8Al4.nH2O(interlayer), but the montmorillonite mineral always differs from this 

theoretical formula (Grim, 1968). Within the silica tetrahedral sheet, partial substitution of 

silicon by aluminium can occur.  Each substitution that occurs will result in a deficit of 

positive charge (van Olphen, 1963). The charge deficiency per unit cell that results from 

these substitutions is between 0.5 and 1.2, although it is usually 0.66 per unit cell (Mitchell 

and Soga, 2005). Broken ionic and covalent bonds at the platelet edges are also thought to 

contribute up to 20% towards the charge deficit (Mitchell and Soga, 2005). 

 

The charge deficit resulting from isomorphous substitution is compensated by the 

attraction of exchangeable cations (Na
+
, Ca

2+
, K

+
, Mg

2+
 etc.) to the mineral surface. These 

cations can be exchanged with other cations when they are available in solution (van Olphen, 

1963). The exchangeable cations can be replaced by cations of another species, dependant on 

the relative abundance of size of cations (Mitchell and Soga, 2005). The typical replaceability 

of cations is given as: 

 

Na
+
 < Li

+
 < K

+
 < Rb

+
 < Cs

+
 < Mg

2+
 < Ca

2+
 < Ba

2+
 < Cu

2+
 < Al

3+
 < Fe

3+
 < Th

4+
 

 

However, Mitchell and Soga (2005) reported that it is possible for a lower power 

cation to displace a higher power cation by mass action, if the concentration of the replacing 

power is high, relative to that of the ion which is to be replaced. 

 

The montmorillonite platelet is continuous in both the a and b directions, but has a 

finite thickness of around 0.96 nm (van Olphen, 1963; Grim, 1968; Mitchell and Soga, 2005). 
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Weak bonds exist between neighbouring, due to charge repulsion between the adjacent, 

negative octahedral layers (Grim, 1968). These can become separated when water is allowed 

to permeate (Mering, 1946). 

 

 

2.3 Structure of compacted bentonite 

 

Bentonite was initially used in 1898 by W.C. Knight to describe a highly plastic clay 

from Wyoming. Bentonites are primarily composed of the montmorillonite mineral (Ross and 

Shannon, 1926). The montmorillonite mineral unit layers stack in the c dimension to form 

individual particles (Saiyouri et al., 1998). The number of unit layers in each particle is 

dependent on the main type of exchangeable cation, and the water content of the bentonite 

(Saiyouri et al., 2004).  

 

Clay aggregates are composed of a number of particles. The schematic microstructure 

of powdered, air-dry bentonite, obtained through Scanning Electron Microscopy (SEM) by 

Pusch (1982), is shown in Figure 2.2. 

 

Multiple pore types exist within the bentonite microstructure. Macro-pores are pores 

which exist between aggregates. Micro-pores are pores which are contained within 

aggregates (Delage et al., 2006), either between particles or between unit layers. The spaces 

between unit layers can be referred to as interlayer pores (Pusch, 1982; Kozaki et al., 2001; 

Montes-Hernandez et al., 2003; Likos, 2004; Montes-Hernandez et al., 2006). Bradbury and 

Baeyens (2003) stated that the porosity can be subdivided into three distinct pore regions; 

interlayer pores (0.2 - 1 nm), micro-pores (< 5 nm) and macro-pores (5 - 20 nm). Mercury 
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Intrusion Porosimetry (MIP) is commonly used to determine the pore size distribution for 

clay specimens (Dixon et al., 1999; Montes-Hernandez et al., 2003; Delage, 2006; Montez-

Hernandez et al., 2006). Compacted bentonites can be described as ‘dual porosity’ due to the 

contribution of micro- and macro-porosity to the pore size distribution (Laird, 2006; Samper 

et al., 2008).  

 

 

 

Figure 2.2 - Schematic microstructure of air-dry MX80 bentonite powder (from Pusch, 1982) 

 

Thomas et al. (2003) and Lloret et al. (2004) stated that the expansion of the 

microstructure due to increases in water content reduces the macro-porosity of the compacted 

bentonite. Dixon et al. (1999) stated that the macro-porosity of compacted bentonites 

depended on the energy used during compaction. Delage et al. (2006) noted that at the same 

water content the changes in porosity observed were due to changes in the large pores. Bourg 

et al. (2006) proposed empirical derivations of the volume of pore space associated with 

micro- and macro-pores in compacted bentonite as a function of the compaction dry density. 

Pusch (2001) stated that changes in swelling pressure and hydraulic conductivity are 

observed due to microstructural changes. 

 

Micro-pore 

Macro-pore 

Clay particle 
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2.4 Swelling mechanisms in bentonite 

 

When in contact with water or electrolyte solution, bentonites will exhibit swelling. In 

unrestrained conditions, the volume of the bentonite will increase. When allowed to saturate 

under controlled volume conditions, a swelling pressure will develop. The swelling of 

bentonite occurs due to two distinct mechanisms; crystalline swelling and osmotic swelling. 

 

The initial hydration of the bentonite microstructure will result in the hydration of 

exchangeable cations and the mineral surfaces (van Olphen, 1963; Push, 1982; Alther, 2004). 

Water is able to permeate between unit layers, resulting in changes in the c axis spacing. 

From a dry state, the water molecules entering between unit layers sequentially form distinct 

layers of water molecules (known as hydrate layers) between the surfaces of adjacent unit 

layers. This process is referred to as crystalline (Type I) swelling (Grim, 1968; Saiyouri et al., 

2000; Likos, 2004; Saiyouri et al., 2004). Laird (2006) suggested that the potential energies 

of crystalline swelling are balanced by Columbic, van der Waals and Born’s repulsion forces. 

 

The c axis spacings can be determined through X-ray diffraction, with the reported c 

axis spacings increasing from 0.96 nm in a dry state, to 1.26, 1.56 and 1.86 nm for 1, 2 and 3 

hydrate layers respectively (Saiyouri et al., 2000; Likos, 2004). Saiyouri et al. (2000) also 

report the presence of a fourth hydrate layer, with the corresponding c axis spacing reported 

to be 2.16 nm.  

 

The hydration by distinct water layers is accompanied by a large amount of energy 

being released, due to hydration of both exchangeable cations and also the platelet surface 

(van Olphen, 1963; Pusch, 1982). Hydration of exchangeable cations on the platelet surface is 
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due to alignment of temporary negative dipoles within the water molecule towards the 

positive cation (Alther, 2004). The hydrated radii of cations are significantly greater than that 

of the unhydrated radii, as shown in Table 2.1 (Alther, 2004). 

 

Table 2.1 - Radii sizes for unhydrated and hydrated cations (after Alther, 2004) 

Cation Unhydrated radius (nm) Hydrated radius (nm) 

Ca
2+

 0.099 0.960 

K+ 0.133 0.530 

Mg
2+

 0.066 1.800
a
 

Na
+
 0.097 0.790 

a
 from Mitchell and Soga (2005) 

 

During osmotic (Type II) swelling, electrical diffuse double layers are formed 

between unit layers. Upon contact with water, cations on the platelet surface diffuse away 

from the mineral surface to equalise the cation concentration through the fluid. This is 

countered by an electrostatic attraction between the mineral surface and the cations, as a 

charge deficit is still present within the mineral (Mitchell and Soga, 2005). The distribution of 

ions adjacent to the clay surface is shown in Figure 2.3. 

 

The Gouy-Chapman diffuse double layer theory can be used to determine the swelling 

pressure of bentonites (Bolt, 1956; van Olphen, 1977; Tripathy et al., 2004, Schanz et al., 

2013). Shainberg and Kemper (1965) observed good agreement between the diffuse double 

layer theory and experimental data when the platelet surfaces were at distances large enough 

for diffuse double layers to form. However, at low separations, the clay platelets demonstrate 

significantly greater resistance than expected (Swartzen-Allen and Matijevic, 1973), which 

has been attributed to additional repulsive forces (van Olphen, 1963; Tripathy et al., 2006). 
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Figure 2.3 - Distribution of ions adjacent to a clay surface according to the concept of the 

diffuse double layer (from Mitchell and Soga, 2005) 

 

 

2.5 Compressibility behaviour of bentonite 

 

In deep geological repositories, compacted bentonites may experience high 

overburden pressures, subject to placement conditions. The compressibility behaviour of 

bentonites has been reported previously by several researchers, covering a wide range of void 

ratios (Bolt, 1956; Mesri and Olsen, 1971; Low, 1980; Al-Mukhtar et al., 1999; Fleureau et 

al., 2002; Marcial et al., 2002; Tripathy and Schanz, 2007; Baille et al., 2010). In the majority 

of cases, the compressibility behaviour of bentonites has been assessed from initially 

saturated clays with water contents greater than the liquid limit.  
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A range of applied pressures has been considered. Sridharan et al. (1986) applied 

pressures between 6.25 and 300 kPa to homo-ionised bentonites. Olsen and Mesri (1971) 

studied the compressibility behaviour of sodium and calcium bentonites up to a maximum 

pressure of 4000 kPa. Tripathy and Schanz (2007) showed that the Gouy-Chapman diffuse 

double layer theory, along with the compressibility behaviour of bentonite at small applied 

pressures, could be used to predict the compressibility behaviour of bentonites at large 

applied pressures. 

 

Baille et al. (2010) studied the compressibility of bentonites at large applied pressures 

(up to 25 MPa). The bentonite specimens were compacted prior to testing being undertaken, 

and were allowed to swell upon saturation. The compaction paths of compacted saturated 

specimen remained below that of the compression path for the initially slurried specimen. 

The compressibility behaviour of the compacted bentonite specimens was used by Baille et 

al. (2010) to determine the hydraulic conductivity of the bentonite for void rations between 

0.5 and 2, through determination of the coefficient of compressibility. The hydraulic 

conductivity was found to increase from approx. 5 x 10
-13

 m/s for a void ratio of 0.5 to around 

6 x 10
-12

 m/s for a void ratio of 2. 

 

 

2.6 Determination of saturated hydraulic conductivity in clays 

 

The low hydraulic conductivity of compacted bentonites is one of the primary reasons 

for their selection in geoengineered barriers. In deep geological repositories, the bentonite 

barrier material will become saturated by the host rock (Alonso et al., 2008). The flow of 
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water to the canister will be dependent on the hydraulic conductivity of the bentonite, 

coupled with thermal and mechanical effects (Thomas et al., 1998).  

 

Due to the low permeability of compacted bentonites, the apparatus and testing 

procedure adopted is critical in reducing and avoiding experimental errors. Darcy’s law is 

commonly used to calculate the hydraulic conductivity of soils. The hydraulic conductivity 

cell used should suitably confine the specimen, and should avoid applying additional 

pressure. The chosen method of applying the hydraulic gradient to the specimen will dictate 

the experimental procedure to be followed.  

 

Few researchers have explicitly stated the equilibrated inflow and outflow rates, and 

from which the hydraulic conductivity was determined. Chapius (2012) noted that measuring 

only one of the flow rates (either the inflow or outflow rate) is not advisable, as this may lead 

to significant errors when determining the hydraulic conductivity, particularly in fine grained 

soils. Dixon et al. (1999) presented the inflow and outflow rates measured during hydraulic 

conductivity tests. Some variation between the inflow and outflow of water was observed. It 

was observed by Dixon et al. (1999) that approximately 1% of fluid was lost from the 

specimen during the hydraulic conductivity tests. 

 

To fully inform the experimental procedure to be adopted during this study, this 

section briefly reviews the use of Darcy’s law in determining the hydraulic conductivity of 

bentonites, the types of cells reported in the literature for measuring hydraulic conductivity of 

bentonites, and the reported testing procedures adopted.  
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2.6.1 The use of Darcy’s law in determining the hydraulic conductivity of bentonite 

 

 The hydraulic conductivity of soils is typically determined from Darcy’s law (Darcy, 

1856). Darcy’s law states that a proportional relationship exists between hydraulic flux and 

hydraulic gradient. Darcy’s law is stated as; 

 

v = ki            (2.1) 

 

where v is the hydraulic flux (m/s), k is the hydraulic conductivity (m/s) and i is the hydraulic 

gradient (m/m).  

 

From Equation (2.1), the coefficient of proportionality, the hydraulic conductivity of 

the soil, can be determined from a linear relationship between hydraulic flux and hydraulic 

gradient, where the hydraulic conductivity is the gradient of the ‘best fit’ line. It follows from 

Equation (2.1) that the intercept for such a line would pass through the origin, as no flow 

would be expected in the absence of a hydraulic gradient on the soil. 

 

In the literature, the use of Darcy’s law for the determination of the hydraulic 

conductivity of bentonite has been widely used. However, the existence of ‘threshold’ 

gradients has been reported by several authors (Lutz and Kemper, 1959; Miller and Low, 

1963; Pusch, 1982; Dixon et al., 1999). These ‘threshold’ gradients are hydraulic gradients 

under which no flow will take place through the bentonite. Dixon et al. (1999) state that for 

low hydraulic gradients (less than 30), the relationship between hydraulic gradient and 

hydraulic flux indicates that two zones of ‘Darcian’ flow exist where the relationship between 

flux and gradient are linear. These two zones are disjointed, with neither of the linear trend 
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lines passing through the origin, as is required for Darcian flow. Due to the low hydraulic 

gradients used, it is possible that the flow conditions observed are more significantly affected 

by experimental errors. 

 

The vast majority of authors have not reported the existence of ‘threshold’ gradients 

for bentonites (Olsen, 1969; Miller et al., 1969; Chan and Kenney, 1973). Lloret et al. (2004) 

observed that the applied hydraulic gradient did not significantly influence the hydraulic 

conductivity of the bentonite specimens. Villar and Gomez-Espina (2009) also observed no 

clear trend between the applied hydraulic gradient and the hydraulic conductivities measured 

for the range of applied hydraulic gradients considered.  

 

It is therefore considered for this study that it is appropriate to use Darcy’s law to 

determine the hydraulic conductivity of bentonites, and that ‘threshold gradients’ within the 

bentonite are not present. 

 

2.6.2 Cells used to measure the hydraulic conductivity of compacted bentonites 

 

The cells used to determine the hydraulic conductivity of clays can be broadly 

described as two types; rigid- and flexible-walled permeameters. A brief description of each 

cell type is presented here, and the comparison between the measured hydraulic conductivity 

from the two cell types is discussed. 

 

Rigid-walled permeameters have been widely used to determine the hydraulic 

conductivity of clays (Boynton and Daniel, 1984; Benson and Daniel, 1990; Chapius, 1990; 

Shackelford and Javed, 1991; Kenney et al., 1992, Dixon et al., 1999). The hydraulic 



Chapter 2 
 

25 

 

conductivity tests are conducted under constant-volume conditions i.e. the specimen is not 

permitted to swell during the test. Sidewall flow may occur in rigid-walled permeameters. 

Daniel (1994) stated that sidewall leakage does not occur in compressible soils that have been 

subjected to compressive stresses of at least 50 kPa. Dixon et al. (1999) reported that sidewall 

flow was overcome during the testing procedure by statically compacting specimens directly 

into the hydraulic conductivity cell. The expansive nature of compacted bentonites also stated 

prevented sidewall flow (Dixon et al., 1999). 

 

Flexible-walled permeameters have been used to determine the hydraulic conductivity 

of clays (Boynton and Daniel, 1984; Mundell and Bailey, 1985; Chapius, 1990; Zimmie et 

al., 1992, Petrov et al., 1997; Shackelford et al., 2000). The test specimens are vertically 

confined within the permeameter, but a latex membrane around the specimen allows for 

volume change to occur. The cell is filled with water and pressurised. This ensures contact 

between the test specimen and the latex membrane, reducing sidewall flow in the 

permeameter.  

 

The advantages and disadvantages of rigid- and flexible-walled permeameters were 

discussed by Daniel (1994). The main advantages of a rigid-walled permeameter are its 

simplicity to construct and the wide range of materials that can be tested, as the flexible-

walled permeameter requires a more complicated testing procedure. Sidewall flow is 

minimised in flexible-walled permeameters, but can be significant in rigid-walled 

permeameters.  

 

Daniel (1994) compared the hydraulic conductivities of bentonites determined from 

rigid- and flexible-walled permeameters, reported previously in the literature. The specimens 
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were saturated with distilled water in all cases. No significant difference was observed in the 

hydraulic conductivity determined from rigid- and flexible-walled permeameters. It is 

therefore considered that either a rigid- or flexible-walled permeameter would be suitable for 

determining the hydraulic conductivity of compacted bentonite. 

 

2.6.3 Application of hydraulic gradient to determine the hydraulic conductivity in clays 

 

The application of a hydraulic gradient is imperative for determination of the 

hydraulic conductivity of compacted bentonite. Several approaches have been used to apply a 

hydraulic gradient to bentonite specimens. The constant-head test maintains a constant water 

level in the inflow reservoir. In a variable-head test, the water levels in the influent and 

effluent reservoir will change during the hydraulic conductivity tests. The most common 

variable-head test is the falling-head test, where the water level of the inflow reservoir 

decreases through the hydraulic conductivity test. Constant flow and constant volume tests 

may also be used, with the influent and effluent reservoir heads adjusted to maintain these 

conditions. 

 

For hydraulic conductivity tests on compacted bentonites, differing approaches have 

been considered. Dixon et al. (1999) applied constant-head test conditions during testing. 

Large water reservoirs were used, such that the change in water levels during the hydraulic 

conductivity test was negligible. Villar and Gomez-Espina (2009) conducted hydraulic 

conductivity tests on FEBEX bentonite using a constant-head approach. The water head was 

applied using a pressure-volume controller that maintained a constant inflow pressure. 
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Jo et al. (2005) and Ahn and Jo (2009) tested the long-term hydraulic conductivity of 

geosynthetic clay liners using the falling-head approach. The inflow water head decreased 

with the outflow head remaining constant. Lee and Shackelford (2005) also tested specimens 

of two geosynthetic clay liners using the falling-head method.  

 

Petrov et al. (1997) conducted hydraulic conductivity tests in a fixed-ring 

permeameter using the constant-flow approach. The fluid was pressurised to flow through the 

specimen at a constant rate, and the induced pressure head was measured by an in-line 

transducer. Siemens and Blatz (2007) discussed the development of a new hydraulic 

conductivity apparatus. The cell described was used to determine the hydraulic conductivities 

under constant-volume conditions. The inflow and outflow were measured during the tests. 

 

The three approaches for the application of a hydraulic gradient during hydraulic 

conductivity tests have been used successfully for compacted bentonites. However, constant 

flow and constant volume tests are considered more difficult to maintain, particularly for long 

test durations. It is also considered that the variable-head approach may introduce 

experimental errors in the determination of the hydraulic gradient, in particular with the 

potential for evaporation, and monitoring the rate at which the head changes. It is therefore 

concluded that the constant-head method will be used in the current study. 

 

2.6.4 Typical hydraulic gradients applied during hydraulic conductivity tests 

 

A range of applied hydraulic gradients have been considered in the literature for 

determining the saturated hydraulic conductivity of compacted bentonites. ASTM D 5084 

states that for materials with low hydraulic conductivity a maximum hydraulic gradient of 30 
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should be applied. However, due to experimental practicalities, in particular testing time, 

significantly higher hydraulic gradients have been considered. In the case of compacted 

bentonites, assuming a hydraulic conductivity of 10
-13

 m/s and a specimen diameter of 

100mm, an applied hydraulic gradient of 30 will lead to a volumetric flow rate of 2ml per 

day.  

 

Benson and Daniel (1990) determined the hydraulic conductivity of compacted clays 

under applied hydraulic gradients between 10 and 100. Cho et al. (1999) conducted hydraulic 

conductivity tests on compacted bentonite specimens with dry densities up to 1.8 Mg/m
3
. 

Hydraulic gradients of 20600 were applied to the densest specimens. Lloret et al. (2004) 

applied gradient up to 30000 to determine the hydraulic conductivity of highly compacted 

bentonite specimens. 

 

 Although it is recommended that low hydraulic gradients are applied when 

determining hydraulic conductivity, the low permeability nature of bentonite will lead to 

small flow volumes, which may introduce error and lead to longer test durations. It has been 

reported within the literature that hydraulic gradients up to 30000 have been used for 

determining the hydraulic conductivity of bentonite, and so it is considered in this study that 

larger hydraulic gradients can be applied. 

 

 

2.7 Factors affecting the saturated hydraulic conductivity of clays 

 

An appreciation of the factors which influence the hydraulic conductivity of 

bentonites is essential, in order to place the experimental results determined in the context of 
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that reported by others. Previous studies on the saturated hydraulic conductivity of clays have 

attempted to assess the influence of a number of physical and chemical properties. The main 

findings of these studies are presented in this section. 

 

2.7.1 Influence of dry density on saturated hydraulic conductivity of compacted bentonites 

 

The hydraulic conductivity of bentonite is widely reported to be influenced by the 

compaction dry density (Pusch, 1982; Cho et al., 1999; Dixon et al., 1999; Villar, 2008; 

Baille et al., 2010). The available porosity within the specimen, through which the flow 

occurs, reduces as the dry density increases. This results in a reduction in the measured 

hydraulic conductivity. 

 

Cho et al. (1999) produced a number of water-saturated calcium bentonite specimens 

with dry densities of 1.4, 1.6 and 1.8 Mg/m
3
. The reported hydraulic conductivities were 

shown to reduce from about 10
-12

 m/s to about 10
-14

 m/s when the compaction dry density 

was increased from 1.4 to 1.8 Mg/m
3
. 

 

Dixon et al. (1999) determined the hydraulic conductivities of compacted bentonite 

specimens under an applied hydraulic gradient between 1 and 1000. The diameter chosen for 

the specimen was dependant on the applied hydraulic gradient, as the observed flow was 

greater for larger diameters. Compacted specimens with dry densities between 0.5 Mg/m
3
 and 

1.5 Mg/m
3
 were tested. The hydraulic conductivity reduced from 10

-11
 m/s to 10

-13
 m/s over 

the range of compaction dry densities considered. 
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2.7.2 Influence of montmorillonite content on saturated hydraulic conductivity of compacted 

bentonites 

  

As discussed previously, the montmorillonite minerals are responsible for swelling 

within the bentonite microstructure during saturation. The development of diffuse double 

layers between platelet stacks leads to an overall increase in the inter-layer porosity, with an 

accompanying reduction in the available macro-porosity (Saiyouri et al., 2000).  

 

Flow through the compacted bentonite has been reported to occur through the macro-

pores (Pusch, 1999; Bourg et al., 2006). As the available macro-porosity reduces due to 

osmotic swelling, it is expected that the hydraulic conductivity of the bentonite would reduce. 

Several authors have investigated the effect of montmorillonite content on the hydraulic 

conductivity. 

 

Lee and Shackelford (2005) determined the saturated hydraulic conductivity of two 

bentonites. The high quality bentonite was found to have a greater montmorillonite content 

(86%) than the low quality bentonite (77%). The water hydraulic conductivity of the high 

quality bentonite was significantly lower than the low quality bentonite.  

 

Dananaj et al. (2005) increased the montmorillonite content of two bentonites from 

68% to 92%. The measured hydraulic conductivity was found to be greater for the bentonites 

with 68% montmorillonite content than for those with 92% montmorillonite content.  
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2.7.3 Influence of microstructure on saturated hydraulic conductivity 

 

The microstructure of compacted bentonite is significant in understanding the 

available flow channels through which flow will be able to take place. In geosynthetic clay 

liners, and as buffer and barrier material for deep geological repositories, the compacted 

bentonites will be artificially prepared to the dry density required by the design.  

 

The effect of microstructure on the hydraulic conductivity of bentonite has been 

reported in the literature. Benson and Daniel (1990) investigated the influence of clod size on 

the saturated hydraulic conductivity of compacted clay. Low hydraulic conductivities were 

measured in specimens where the large inter-clod voids had been eliminated during specimen 

compaction, corresponding to a reduction in the available flow paths within the 

microstructure.  

 

Pusch and Schomburg (1999) considered the hydraulic conductivity of in-situ and 

artificially prepared specimens of Friedland clay. Artificially prepared specimens were 

prepared by oven-drying, grinding and compacting Friedland clay. The hydraulic 

conductivity of artificially prepared specimens was found to be slightly higher than that of the 

undisturbed specimens. The hydraulic conductivity differences were attributed to 

microstructural homogenisation in the undisturbed specimen. 

 

Pusch (1999) stated that as the bentonite hydrates, the platelets stacks expand and 

exfoliate. This exfoliation of platelets from the platelet stacks produces a low permeability 

gel between platelet stacks. High voltage transmission electron microscopy was used to 

investigate the hydration process. The density and permeability of the gel was found to vary. 
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2.7.4 Influence of exchangeable cation type on saturated hydraulic conductivity 

 

The swelling of bentonite during hydration is a function of a number of factors, 

including the montmorillonite content, which has been discussed previously in Subsection 

2.7.2. The inter-layer spacing due to the formation of diffuse double layers can be calculated 

from the Gouy-Chapman diffuse double layer theory (Tripathy et al., 2004). The separation 

of platelets (the inter-platelet distance, d) is a function of the valency of the bentonite. As the 

inter-platelet distance increases, the overall swelling of the platelet stack increases, reducing 

the available flow channels through the bentonite microstructure.  

 

Rao and Mathew (1995) prepared homo-ionic clays by displacing the exchangeable 

cations with a leachate, and then treating the clay with a metal chloride. Mono-, di- and tri-

valent cations were considered. It was reported that as the valency of the exchangeable cation 

increased, the hydraulic conductivity of the clay increased. The hydraulic conductivity 

determined for aluminium-exchanged clay was found to be an order of magnitude greater 

than that of sodium-exchanged clay for pressures between 25 and 800 kPa. For cations of the 

same valency, the hydraulic conductivity was also found to decrease as the hydrated ion 

radius increased. 

 

Dananaj et al. (2005) determined the hydraulic conductivity of a calcium and sodium 

bentonite. The sodium bentonite was found to have a lower hydraulic conductivity than that 

of the calcium bentonite, for the smectite contents considered. Ahn and Jo (2009) also 

considered the difference in measured hydraulic conductivity in calcium and sodium 

bentonite. As the fraction of sodium (Na
+
) ions within the bentonite increased, the hydraulic 
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conductivity decreased. This effect was observed to be more significant at higher sodium 

fractions. 

 

2.7.5 Influence of permeant on saturated hydraulic conductivity 

 

The hydraulic conductivity of compacted saturated bentonites permeated with an 

ionised solution has attracted considerable attention in literature. In deep geological 

repositories, the compacted bentonite may be saturated by saline water from the host rock, 

depending on the proximity to seawater. Geosynthetic clay liners may be required to retard 

the flow of other ionic solutions other than water (Shackelford et al, 2000). As with 

montmorillonite content and predominant type of exchangeable cation, the swelling of the 

bentonite is a function of the ionic concentration of the bulk fluid. The thickness of the 

diffuse double layer reduces as the concentration increases, with a lower degree of swelling 

observed of the platelet stacks. 

 

Dixon et al. (2002) studied the influence of the permeant salinity on the saturated 

hydraulic conductivity of bentonites. Sodium chloride (NaCl) solutions were prepared with 

concentrations increasing from 10 g/l to 350 g/l. The hydraulic conductivity of bentonite was 

found to increase as the electrolyte concentration increased. Significant differences were 

observed in the measured hydraulic conductivities when the NaCl concentration was 

increased from 10 g/l to 350 g/l, with greater concentrations of NaCl leading to larger 

hydraulic conductivities. 

 

Shackelford et al. (2000) determined the hydraulic conductivity of geosynthetic clay 

liners when permeated with zinc chloride (ZnCl2) solutions from 0.01 M to 0.1M. Increases 
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in electrolyte concentration were reported to result in an increase in the saturated hydraulic 

conductivity.  

 

Jo et al. (2005) measured the long term hydraulic conductivity of sodium bentonite 

permeated with salt solutions. Three salt solutions, sodium chloride (NaCl), potassium 

chloride (KCl) and calcium chloride (CaCl2) were considered. The hydraulic conductivity 

determined using NaCl and KCl solutions was found to be twice that determined using 

distilled water. The hydraulic conductivity of bentonite when permeated with CaCl2 was 

found to be greater than that which was obtained using NaCl and KCl solutions. 

 

2.7.6 Influence of temperature on saturated hydraulic conductivity 

 

The physical properties of water, including density and viscosity, are temperature 

dependant (Handbook of Physics and Chemistry, 2006). Olsen and Daniel (1981) stated that a 

1 ºC temperature change can result in a 3% change in hydraulic conductivity. To minimise 

experimental error due to temperature fluctuations, a temperature controlled environment 

should be considered during testing. 

 

Cho et al. (1999) measured the saturated hydraulic conductivity of calcium bentonite 

between 20 ºC and 80 ºC. Multiple specimens were prepared at three compaction dry 

densities. Tests were conducted at 10 ºC pressure increments. The hydraulic conductivities 

determined were found to increase with an increase in temperature. The increase of hydraulic 

conductivity with temperature was observed to be more pronounced at lower compaction dry 

densities. 
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 The hydraulic conductivity-temperature relationship determined by Villar and 

Gomez-Espina (2009) also showed that the hydraulic conductivity of FEBEX bentonite 

increased as the temperature increased from 25 ºC to 80 ºC. It was also observed that the 

influence of temperature was more significant for the specimens with dry densities of 1.5 

Mg/m
3
 than that for specimens with dry density of 1.7 Mg/m

3
. 

 

 

2.8 Hydraulic conductivity of sand-bentonite and crushed rock-bentonite mixtures 

 

Sand-bentonite and crushed rock-bentonite mixtures have been proposed as suitable 

backfilling materials for high level radioactive waste disposal in deep geological repositories. 

The backfilling material is required to have a similar hydraulic conductivity to that of the host 

rock, to have a high resistance to erosion, be mechanically and chemically stable, and to limit 

the expansion of the contacting buffer material (Pusch, 1978; Villar, 2005). Sand-bentonite 

and crushed rock-bentonite mixtures possess higher thermal conductivity and stiffness, and 

are more economical than pure bentonite (Tien et al., 2004). 

 

The hydraulic conductivity of compacted bentonite mixtures has been widely reported 

in literature. Similarly to that reported for bentonite, the hydraulic conductivity of bentonite 

mixtures has been found to decrease as the compaction dry density increased (Kenney, 1992; 

Dixon et al., 1999; Sivapullaiah et al., 2000). Constant-head, variable head and constant flow 

hydraulic conductivity tests have all been reported within the literature. 

 

Hydraulic conductivity tests have been conducted for a range of bentonite to sand or 

crushed rock percentages. Chapius (1989) determined the hydraulic conductivity of sand-
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bentonite specimens containing up to 33% bentonite. Kenney et al. (1992) reported the 

hydraulic conductivity of sand-bentonite mixtures with a bentonite content increasing to 30%. 

Studds et al. (1998) determined the hydraulic conductivity of 10 and 20% bentonite contents 

in sand-bentonite mixtures. Sivapullaiah et al. (2000) and Prikryl et al. (2003) tested a range 

of sand-bentonite mixtures, where the bentonite content increased from 0-100%. Komine 

(2010) considered the hydraulic conductivity of sand-bentonite mixtures with 10, 20, 30 and 

50% bentonite by mass.  

 

Several authors have reported the hydraulic conductivity behaviour of several ratios 

of sand to bentonite to assess the influence of the extent of the bentonite matrix on the 

conductivities observed. Kenny et al. (1992) conducted a series of tests on compacted sand-

bentonite specimens. Specimens were tested under a hydraulic gradient of 15. The hydraulic 

conductivity of the sand-bentonite mixture was found to decrease as the percentage of 

bentonite within the mixture increased. It was concluded that low hydraulic conductivity in 

sand-bentonite mixture required continuity of the bentonite matrix within the specimen. 

 

The hydraulic conductivity behaviour determined by Sivapullaiah et al. (2000) 

supported the findings of Kenney et al. (1992). It was found that the size of the sand particles 

in the sand-bentonite mixtures controlled the hydraulic conductivity of the mixture at low 

bentonite contents and that when then bentonite content in the sand-bentonite mixture was 

greater than the voids present within the sand, the hydraulic conductivity was controlled by 

the clay content. 

 

Numerous authors have determined the swelling and hydraulic conductivity behaviour 

of crushed rock-bentonite and sand-bentonite mixtures at 30:70 (Sivapullaiah et al., 2000; 
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Borgesson et al., 2003; Prikryl et al., 2003; Komine, 2004; Villar, 2005; Sun et al., 2008; Cui 

et al., 2008; Komine, 2010). This percentage of bentonite to sand or crushed rock has been 

proposed as suitable for deep geological disposal (Gunnerson et al., 2004; Nirex, 2005). 

 

Borgesson et al. (2003) considered the effect of heterogeneity on the hydraulic 

conductivity of crushed rock-bentonite mixtures. Crushed granite was used in the mixture. 

The measured hydraulic conductivity was compared with the expected values, assuming a 

homogeneous distribution of crushed rock and bentonite throughout the mixture. A 

heterogeneous distribution of the clay matrix was observed. It was concluded that the 

heterogeneities within the mixture increased with decreasing bentonite content. It was also 

observed that the hydraulic conductivity increased with increased heterogeneities. 

 

 A review of literature pertaining to the measurement of the hydraulic conductivity of 

compacted sand-bentonite and crushed rock-bentonite mixtures have highlighted several 

points requiring consideration during this study. Firstly, the application of hydraulic gradient 

using the constant-head method has been reported within the literature, and is therefore 

considered appropriate for sand-bentonite and crushed rock-bentonite mixtures. The 

behaviour of the mixtures has been reported to be largely controlled by the sand content at 

higher sand contents, and by the bentonite at higher bentonite contents.  

 

The continuity of the bentonite matrix is required for low hydraulic conductivities. 

Lastly, a homogeneous mixture is desirable to ensure an accurate representation of the 

hydraulic conductivity is determined. At low bentonite contents, the effect of heterogeneities 

within the matrix has been reported to be more pronounced, leading to more permeable 

channels within the microstructure, leading to an increased hydraulic conductivity. 
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2.9 Gas permeability of compacted bentonite 

 

The gas permeability of compacted bentonites is an important consideration in both 

municipal and high level radioactive waste facilities. Gas emissions from landfills are 

predominantly carbon dioxide and methane. The migration of methane from landfills to the 

surrounding area should be prevented, due to the explosive nature of the gas. 

 

The gas permeability of geosynthetic clay liners with nitrogen gas has been studied 

previously. Didier et al. (2000) carried out a series of gas permeability tests on a partially 

saturated geosynthetic clay liner with nitrogen gas. The influence of volumetric water 

content, hydration process and overburden pressure was studied. It was found that an increase 

of overburden pressure lead to a reduction in the determined gas permeability. The gas 

permeability was also found to decrease from 10
-16

 to 10
-18

 m
2
 as the volumetric water 

content increased from 46 to 79%. 

 

Bouazza and Vangpaisal (2003) carried out a series of tests to determine the 

relationship between gas permeability and volumetric water content for geosynthetic clay 

liners. The tests were carried out under constant gas pressure differentials using nitrogen gas 

as the permeant. The extended Darcy’s law, to account for flow volumes, was used to 

calculate the gas permeability. The range of gas permeabilities determined was found to 

decrease from 10
-13

 m
2
 when the volumetric water content was 10% to 10

-18
 m

2
 at 60% water 

content. 

 

Vangpaisal and Bouazza (2004) investigated the effect on the gas permeability of 

different geosynthetic clay liners. Needle punched and stitched bonding liners were 
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considered, produced with both granular and powdered bentonite. The gas permeability of the 

granular bentonite clay liner was found to be higher than that of the powdered bentonite liner. 

Similar to previous studies, the gas permeability decreased as the volumetric water content 

increased. Similar trends were observed to those reported by Bouazza and Vangpaisal (2003). 

The volumetric water contents considered ranged from 20% to 120%. 

 

Determining the gas permeability of compacted bentonites using nitrogen gas has 

been reported previously. The gas permeability has been calculated from the flow through the 

specimen and the pressure differential applied. However, the determination of the gas 

permeability for bentonites with low water contents (<20%) is limited within the literature. 

 

Iversen et al. (2001) reported that the determination of gas permeability was a more 

time-efficient method of characterising non-clayey soils, and could be used to determine the 

hydraulic conductivity of the soil, using the viscosity and density of water and the permeating 

gas. The hydraulic conductivity of predominately sandy soils has been reported from the gas 

permeability (Riley and Ekeberg, 1989; Loll et al., 1999). However for clays, the structure of 

the clay is dependent on the degree of saturation (Mitchell and Soga, 2005).  

 

 

2.10 Models available to assess the hydraulic conductivity of compacted bentonites 

 

The hydraulic conductivity is an important parameter for assessing flow in compacted 

saturated bentonites. Historically, a number of models have been proposed to determine the 

hydraulic conductivity in compacted saturated bentonite. Hazen (1892) developed an 

empirical formula for predicting the hydraulic conductivity of sands, based on the particle 
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size of which 10% of the soils is finer, and an empirical coefficient (CH) that is usually 

assumed to be around 100, but stated to range between 1 and 1,000 (Carrier III, 2003).  

 

Continuing improvements and developments in the analytical determination of 

hydraulic conductivity have been proposed. The following sections describe a number of 

these models. 

 

2.10.1 Kozeny-Carman model for saturated hydraulic conductivity 

 

The Kozeny-Carman model is derived from Poiseuille’s law of flow through a series 

of capillary tubes (Mitchell and Soga, 2005). The model was proposed by Kozeny (1927), 

and was modified by Carman (1937, 1956). The Kozeny-Carman model is expressed as 

 

�� = 	�����	



��
���� �
��

���         (2.2) 

 

where kh is the hydraulic conductivity, γp is the unit weight of the permeant, µp is the 

viscosity of the permeant, S0 is the wetted surface area per unit volume of particles, T is the 

tortuosity factor, k0 is the pore shape factor and e is the void ratio. k0 is typically assumed to 

be 2.5, with T taken as √2 (Mitchell and Soga, 2005). 

 

Carrier III (2003) stated a number of limitations of the Kozeny-Carman model. The 

physico-chemical forces present within bentonite are not considered in the model. It is also 

assumed that the soil particles are compact and regular; in compacted bentonites, the total 

porosity is comprised of a macro- and micro-porosity. The model is also stated not to be 

appropriate if a large fine fraction is observed from the particle size distribution of the soil. 
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The empirical parameters assumed within the model, namely k0 and T, have not been reported 

for differing soil types. 

 

Chapius and Aubertin (2003) presented a review of hydraulic conductivity determined 

using the Kozeny-Carman model. For homogenised soil specimens, the hydraulic 

conductivity determined from the Kozeny-Carman model was observed to fall within a range 

of 1/3 to 3 times that measured in hydraulic conductivity tests. Chapius and Aubertin (2003) 

stated that observed differences between the predicted hydraulic conductivity from the 

Kozeny-Carman model and test results may be due to incorrect estimates of specific surface 

area, testing procedures and theoretical limitations. 

 

Singh and Wallender (2008) modified the Kozeny-Carman model to take into account 

the influence of adsorbed water layers to the clay platelet surfaces. The volumes of water 

associated with increasing numbers of hydrate layers (0, 1, 2 and 3) were calculated from the 

specific surface area of the bentonite. The effective porosity was calculated, assuming this to 

be the previous porosity of the bentonite with the proportion of available pore space occupied 

by the fixed hydrate layers removed. The effective porosity was then used in place of the 

‘true’ porosity in the Kozeny-Carman model. The effective porosity with three hydrate layers 

was report a reasonable approach to the evaluation of the hydraulic conductivity. 

 

2.10.2 Cluster model for saturated hydraulic conductivity 

 

The Cluster model was proposed by Olsen (1962) to account for the different 

porosities within saturated clays. Olsen (1962) reported discrepancies between the hydraulic 

conductivity determined in tests with that which was predicted by the Kozeny-Carman 
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model. The Cluster model considers the void ratio of the clay as two distinct components; the 

intra-cluster (micro-pore) void ratio ec and the inter-cluster (macro-pore) void ratio ep. The 

total void ratio was stated as 

 

�
 = �� + ��           (2.3) 

 

where eT is the total void ratio, ec is the intra-cluster void ratio and ep is the inter-cluster void 

ratio. Olsen (1962) assumed that the flow occurred through the inter-cluster pores within the 

clay and that the clusters were spherical. The hydraulic conductivity of the clay was 

calculated from the Cluster model as 
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where kCM is the hydraulic conductivity determined from the Cluster model, kKC is the 

hydraulic conductivity calculated from the Kozeny-Carman model and N is the average 

number of clay particles per cluster. 

 

Achari et al. (1999) used the Cluster model and Gouy-Chapman diffuse double layer 

theory to calculate the hydraulic conductivity of clays. The intra-cluster void ratio was 

determined from the equation of true effective stress in saturated clay (Lambe and Whitman, 

1969), stated as 

 

$∗ = !$ − '(" − !) − *"         (2.5) 
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where σ* is the true effective stress, σ is the total stress, uw is the pore-water pressure, R is the 

repulsive stress and A is the attractive stress.  

 

The repulsive stress was determined from the Langmuir equation, stated in Equation 

(2.4) (Verwey and Overbeek, 1948). The attractive stress was determined from van der 

Waal’s attractive stress, stated in Equation (2.7) (Sridharan and Jayadeva, 1982). 

 

) = 2,�′.!cosh ' − 1"         (2.6) 

 

* = 4
567 8



9� +
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where n is the concentration of ions in solution, k’ is the Boltzmann constant, T is the 

absolute temperature, u is the dimensionless electric potential midway between two 

interacting double layers, B is a constant, d is the half separation distance between the clay 

platelets, and δ is the thickness of the unit layers of the clay platelet. 

 

Achari et al. (1999) determined the hydraulic conductivity from the Cluster model for 

sodium and calcium bentonites. Equations (2.5) - (2.7) were used to determine the intra-

cluster and inter-cluster void ratios, and the resultant total void ratio. The Kozeny-Carman 

model was then used to determine the hydraulic conductivity from the Cluster Model, using 

Equation (2.4). The number of platelets per cluster, N, was not known, and was assumed from 

an empirical relationship. The calculated values were compared with the hydraulic 

conductivities determined by Mesri (1969). A reasonable agreement was noted between the 

theoretical and experimental data. However, the age of the experimental data and subsequent 
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developments in the experimental determination of the hydraulic conductivity of bentonites 

was not included in the assessment. 

  

2.10.3 Komine (2004)’s model for saturated hydraulic conductivity 

 

Komine and Ogata (1999) proposed a model for saturated hydraulic conductivity 

based on the swelling potential of compacted specimen under a constant applied vertical 

pressure. The model was modified by Komine (2004) to include the effect of exchangeable 

cations on the predicted hydraulic conductivity. The swelling strain of montmorillonite, εsv* 

was stated as 

  

@AB∗ = CD�CEF
CG           (2.8) 

 

where Vv is the volume of voids within the bentonite, Vsw is the swelling deformation under 

constant vertical pressure and Vm is the volume of montmorillonite within the bentonite. It is 

assumed that the swelling of the bentonite is due to the hydration of the montmorillonite. 

 

Komine (2004) calculated the swelling strain of montmorillonite (εsv*) from the 

increase in inter-platelet distance during swelling. The half distance between two 

montmorillonite platelets for each exchangeable cation species considered was determined. 

 

HI = JED∗

<< KL + !)IMN"IO + !)IMN"I        (2.9) 

 

where di is the half distance between two platelets for exchangeable cation i (in m), t is the 

thickness of the montmorillonite platelet (in m) and Rion is the non-hydrated radius of the 
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exchangeable cation (in m).  The hydraulic conductivity was determined for each cation type 

considered. Equation (2.10) was used to calculate the individual hydraulic conductivities. The 

weighted average hydraulic conductivity was calculated using Equation (2.11). 

 

�I = �PF

;�PF !2HI"

;          (2.10) 

 

� = 

4∑ RSI�IT.I          (2.11) 

 

where ki is the hydraulic conductivity determined for each exchangeable cation species (in 

m/s), γaw is the density of adsorbed water within the montmorillonite platelets (in Pa/m), µaw 

is the viscosity of adsorbed water within the montmorillonite platelets (in Pa.s), B is the 

cation exchange capacity (in meq/100g) and Bi is the individual exchange capacities for the 

exchangeable cation species considered (in meq/100g). 

 

The properties of the interlayer water are unknown. Komine and Ogata (1999) stated 

that the ratio between density (γaw) and viscosity (µaw) of adsorbed water was calculated as 

 

�PF
�PF =



U
�VF
�VF           (2.12) 

 

where R is an empirical factor, γfw is the density of free water (in Pa/m) and µaw is the 

viscosity of free water (in Pa.s). The values of R have not been determined within the 

literature. Sato (1971) reported that the empirical value of R as 79 for bentonite clay and 14 

for silty clay (Sato, 1971). Komine (2004) has considered both values when using the 

proposed model. 
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Komine and Ogata (1999) experimentally determined the hydraulic conductivity of 

compacted bentonite specimens. The results were compared with the predicted hydraulic 

conductivity determined through the proposed model. It was observed that the predicted 

hydraulic conductivity when R was assumed to be 79 was a good approximation of the 

experimental behaviour. This corresponded to that reported by Sato (1971). 

 

 

2.11 Summary 

 

A detailed literature review of the hydraulic behaviour of compacted bentonites was 

presented in this chapter, relating to its use as a barrier and backfilling material in engineered 

barriers. The structure of the montmorillonite mineral and the microstructure of compacted 

bentonites were stated. The swelling mechanisms of compacted bentonites were discussed.  

 

A brief review of the methods of determining the hydraulic conductivity of compacted 

saturated bentonites was presented. The factors affecting the hydraulic conductivity of clays 

were considered. The hydraulic conductivity of compacted sand-bentonite and crushed rock-

bentonite mixtures was reviewed. The determination of the gas permeability of compacted 

bentonites was presented. The theoretical models used to assess hydraulic conductivity of 

compacted saturated bentonite were briefly discussed. 

 

A review of literature pertaining to the hydraulic conductivity of compacted 

bentonites has highlighted a number of areas that require further investigation; 
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1. It has been reported by Chapius (2012) that the determination of hydraulic 

conductivity should not be calculated from either inflow or outflow. However, the 

studies reported in the literature have only used the inflow or outflow rate when 

calculating hydraulic conductivity. The compatibility between flow rates is required 

to assess whether it is appropriate to only consider inflow or outflow. 

 

2. Darcy’s law is widely reported to be valid for compacted bentonites, although the 

existence of ‘threshold’ gradients has been noted. A linear relationship between 

hydraulic flux and hydraulic gradient will indicate whether Darcy’s law is valid. 

 

3. The gas permeabilities of compacted bentonites have been determined for a range of 

volumetric water contents between 20 and 120%. However, limited data exists for 

bentonites with low water contents (<20%). In the case of landfill covers, the 

bentonite will be initially placed in unsaturated conditions and, subject to 

environmental conditions, may become air-dry. An understanding of the gas 

permeability at low moisture contents is required to assess the potential flow of gases 

through the cover. 

 

4.  Several models exist for the determination of the hydraulic conductivity of 

bentonites. A review of the current literature has indicated limitations in each of the 

models, primarily in relation to assumptions of certain parameters. Assessment of 

these models is required using the experimental hydraulic conductivity data derived in 

this study. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

 

 

 

 

 

 

 

3.1 Introduction 

 

This chapter presents the physical and chemical properties of the materials used in 

this research. The experimental procedures used in subsequent chapters are also described. 

The properties determined for the materials used in this study are presented in Subsections 

3.3 and 3.4. The bentonite properties were compared with corresponding results in literature. 

The bentonite suction-water content soil-water characteristic curve is presented in Subsection 

3.5. 
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Three testing procedures are described in Subsection 3.6. The preparation of 

compacted specimens for each procedure is presented. The experimental set-up and testing 

procedure for determining the hydraulic conductivities of compacted specimens is provided. 

The step-wise consolidation of compacted specimens is described. The procedure to 

determine the gas permeabilities of compacted bentonite using a gas permeability cell is 

presented. Concluding remarks on material properties and experimental methods are made. 

 

 

3.2 Material used in the current study 

 

The main material considered in this study is commercially available MX80 bentonite. 

It is provided as a fine, granular powder, predominately grey in colour. The bentonite was 

stored at room temperature prior to testing in a sealed, airtight environment. MX80 has been 

considered previously in reference to barrier and backfill materials for deep geological 

disposal (Pusch, 1982; Pusch and Yong, 2006; Delage et al., 2006). Leighton Buzzard sand, a 

commercially available silica sand (250 - 600 µm) supplied from Sibelco Ltd has also been 

used in the experimental programme, due to its relative availability. 

 

 

3.3 Properties of the bentonite studied 

 

The mineralogy of MX80 bentonite was determined using x-ray diffraction. The use 

of x-ray diffraction allows for determination of specific minerals through measurement of the 

intercept angle and the c axis spacing. Figure 3.1 shows the x-ray diffraction chart for MX80 

bentonite. The minerals were assigned to the corresponding peaks, and through semi-
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quantative analysis, it was determined that MX80 bentonite consisted of 76% 

montmorillonite, 14% cristobailite and 10% quartz. 

 

 

Figure 3.1 - X-ray diffraction chart for MX80 bentonite 

 

The grain size distribution of the bentonite was determined using particle size 

distribution and hydrometer analysis, as described in the British Standards (BS 1377:2:1990). 

The results obtained are presented in Figure 3.2.  

 

The percentage of grains passing 2 µm was 84%. The grain size distribution obtained 

during this study was compared with that reported by Singh (2007) and was found to be in 

good agreement. Cerato and Lutenegger (2002) reported that the percentage passing 2 µm 

was 60%. Masden (1998) reported the percentage passing 2 µm was 77.6%, while Villar 

(2007) has reported the percentage between 76 and 90%. The liquid limit and plastic limit 

were determined following the procedure detailed in British Standards (BS1377:2:1990) and 

were found to be 396% and 45% respectively. The shrinkage limit was determined by wax 

method (ASTM D 4930:08:2008) and was found to be 16%.  
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Figure 3.2 - Grain size distribution of MX80 bentonite, compared with that obtained by Singh 

(2007) 

 

The percentage of grains passing 2 µm was 84%. The grain size distribution obtained 

during this study was compared with that reported by Singh (2007) and was found to be in 

good agreement. Cerato and Lutenegger (2002) reported that the percentage passing 2 µm 

was 60%. Masden (1998) reported the percentage passing 2 µm was 77.6%, while Villar 

(2007) has reported the percentage between 76 and 90%. The liquid limit and plastic limit 

were determined following the procedure detailed in British Standards (BS1377:2:1990) and 

were found to be 396% and 45% respectively. The shrinkage limit was determined by wax 

method (ASTM D 4930:08:2008) and was found to be 16%.  

 

The cation exchange capacity describes the amount and type of cations present on the 

clay platelet surface that can be easily exchanged by other cations when available in solution 

(van Olphen, 1977). The cation exchange capacity of MX80 bentonite was determined using 

the ammonium acetate technique at pH 7 (Grim, 1968, Thomas 1982). The individual cation 
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exchange capacities for Na
+
, K

+
, Ca

2+
 and Mg

2+
 were found to be 45.7, 1.6, 31.9, and 9.1 

meq/100g respectively. The total cation exchange capacity was determined to be 88.3 

meq/100g. The weighted average valency (Tripathy et al., 2004) of the exchangeable cations 

was calculated to be 1.46. 

 

The specific gravity of MX80 bentonite was determined following the procedure 

detailed in the British Standards (BS 1377:3:1990). The specific gravity of solids was 

determined with kerosene as the dispersing fluid. The specific gravity was determined to be 

2.76. 

 

The total surface area of a clay specimen is determined from the ethylene glycol 

mono-ethyl ether (EGME) method (Heilman et al., 1965). The total surface area of MX80 

bentonite was found to be 640 m
2
/g. 

 

The properties of the MX80 bentonite are presented in Table 3.1 and are compared 

with those reported in literature. Some differences were observed between the properties 

determined in this study and those reported. The liquid limit determined was found to be 

lower than that reported elsewhere. This difference was primarily attributed to a lower 

montmorillonite content. The Atterberg limits and specific gravity of bentonite solids were 

found to be comparable to those determined by other authors. 
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3.4 Properties of the sand studied 

 

The air-dry water content and the particle size distribution of the Leighton Buzzard 

sand were established following the procedure given in British Standards (BS 1377:2:1990). 

The air-dry water content of the sand was found to be 3%. Figure 3.3 shows the particle size 

distribution for Leighton Buzzard sand. Figure 3.3 shows that Leighton Buzzard sand is 

poorly graded with a 93% of particles having a diameter between 300 and 600 µm.  

 

  

 

Figure 3.3 - Particle size distribution for Leighton Buzzard sand. 
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Table 3.1 - Selected properties of MX80 bentonite 

Author This study 
Pusch 

(1982) 

Müller-

Vonmoos 

and Kahr 

(1987) 

Saiyouri et 

al. (1998) 

Sauzeat et 

al. (2001) 

Cerato and 

Lutenegger 

(2002) 

Mata et al. 

(2002) 

Villar 

(2007) 

Tadza 

(2011) 

Liquid limit  

(%) 
396 - 411 ± 10 - 520 519 - 526 437 

Plastic limit 

 (%) 
45 - 47 - 46 35 - 46 163 

Shrinkage limit  

(%) 
16 - 14 - - - - - 12.2 

Specific gravity 2.76 - - - 2.65 - 2.76 2.82 2.8 

Total surface area  

(m
2
/g) 

640 700 562 522 - 637 - - 676 

Cation exchange 

capacity 

(meq/100g) 

88.3 - - 82.3 70 76.4 - 75 - 82 90.3 

Montmorillonite 

content (%) 
76 80-90 - - 82 80 - - 75 
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3.5 Soil-water characteristic curve 

 

The soil-water characteristic curve provides the relationship between suction and 

water content in soils (Fredlund and Rahardjo, 1993). Two techniques were used to establish 

the suction-water content soil-water characteristic curve. For lower suction ranges, the 

osmotic technique was used. Higher suction values were determined through vapour 

equilibrium technique. The results obtained were compared with those reported by Bag 

(2011). 

 

3.5.1 Osmotic technique 

 

Bentonite-water mixtures were prepared by mixing MX80 bentonite powder with 

distilled, de-aired water. The distilled water was held under a vacuum overnight, using a 

vacuum pump, to minimise the volume of dissolved air within the water. The initial water 

content targeted was 1.15 times the liquid limit of the MX80 bentonite. The bentonite-water 

mixtures were stored in an airtight container in a temperature controlled room for seven days 

to allow for water equilibrium to take place. The mixtures were mixed intermittently during 

this period. 

 

The osmotic technique uses solutions of polyethylene glycol (PEGs) to control and 

apply suction to soils. In the current study, solutions of PEG and water were prepared by 

dissolving a predetermined mass of PEG-6000 into 500 ml of distilled, de-aired water. The 

mass of PEG-6000 to be added was calculated from the empirical relationship between 

suction and PEG concentration stated by Delage et al. (1998). Three suctions values were 
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targeted; 0.2, 0.5 and 1 MPa. Samples of the bentonite-water mixture were inserted into a 

previously-wetted semi-permeable membrane that was sealed at either end.  

 

The initial water content of the bentonite-water mixture was determined prior to 

testing following the procedure in the British Standard (BS1377-2:1990). The mass of the 

membrane and sealing attachments were recorded prior to the tests commencing. The 

specimen and membrane was then submerged into the PEG solution, which was magnetically 

stirred. The total mass of the bentonite-water specimen, the membrane and attachments was 

monitored until the mass became constant (i.e. suction equilibrium was reached). The final 

water content of the bentonite-water specimen was then determined.  

 

3.5.2 Vapour equilibrium technique 

 

The wetting suction-water content soil-water characteristic curve of the MX80 

bentonite was established using vapour equilibrium technique. Tests were conducted within 

closed-lid desiccators using saturated salt solutions (ASTM E 104-85, 1998). Six saturated 

salt solutions were considered, which generated relative humidities corresponding to suctions 

between 3.3 and 294.8 MPa. Details of the salts used are presented in Table 3.2. 
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Table 3.2 - Details of the saturated salt solutions used 

Salt 
Relative humidity (%) at 

20°C 
Suction (MPa) 

Potassium Sulphate (K2SO4) 97.6 ± 0.5 3.3 

Potassium Nitrate (KNO3) 94.6 ± 0.7 7.5 

Potassium Chloride (KCl) 85.1 ± 0.3 21.8 

Sodium Chloride (NaCl) 75.5 ± 0.1 38.0 

Potassium Carbonate 

(K2CO3) 
43.2 ± 0.3 113.3 

Lithium Chloride (LiCl) 11.3 ± 0.3 294.8 

 

 

Specimens were prepared by statically compacting MX80 bentonite powder at the air-

dry water content into thick-walled stainless steel specimen rings, following the procedure 

subsequently detailed in Subsection 3.6.1.1. The specimens prepared were 45 mm in diameter 

and 8 mm in height. Specimens were produced to 1.2, 1.3 and 1.4 Mg/m
3
 targeted dry 

densities. The compacted MX80 bentonite specimens were then equilibrated at the six relative 

humidities in the closed-lid desiccators until the measured masses of the specimens became 

constant (i.e. suction equilibrium had been reached). Specimens of MX80 bentonite powder 

were also equilibrated. 
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3.5.3 Soil- water characteristic curve 

 

The suction-water content soil-water characteristic curve obtained for MX80 bentonite 

is shown in Figure 3.4. For the vapour equilibrium technique, the data points relating to the 

powder samples are presented in Figure 3.4. The equilibrated water contents of the powder 

and compacted specimens were observed to be similar (Bennett et al., 2012). Although the 

initial conditions of the specimens prior to testing differed (slurried saturated bentonite for 

osmotic technique, and air-dry powder bentonite for vapour equilibrium technique), good 

agreement is noted at suctions at the overlap between osmotic and vapour equilibrium 

techniques (between 1 and 5 MPa).  

 

  

 

Figure 3.4 - Suction-water content soil-water characteristic curve for MX80 bentonite 
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water characteristic curve for MX80 bentonite. The suction-water content soil-water 

characteristic curve obtained in this study shows good agreement with that determined by 

Tang and Cui (2010) and Bag (2011). 

 

 

3.6 Experimental programme 

 

The experimental programme for this study consists of three types of tests (i) saturated 

hydraulic conductivity tests (ii) consolidation tests and (iii) gas permeability tests. Saturated 

hydraulic conductivity tests were conducted using a modified swelling pressure cell 

connected to two pressure-volume controllers. The compressibility behaviour of compacted 

specimens was carried out using conventional one dimensional oedometers. The gas 

permeability of compacted MX80 bentonite specimens was established using an existing 

device for determining gas permeability in cast concrete. The following subsections present 

details of the preparation of specimens and the experimental procedures adopted to carry out 

the laboratory tests. 

 

3.6.1 Saturated hydraulic conductivity tests 

 

The saturated hydraulic conductivities of compacted MX80 bentonite and sand-

bentonite mixtures were considered in this study. A modified swelling pressure cell was used 

in conjunction with two pressure-volume controllers. A software package, GDSlab, was used 

to control the inflow and outflow pressures of the pressure-volume controllers, and to record 

the flow volumes. The preparation of compacted specimens, details of the experimental 

apparatus assembly and testing procedure are detailed here. 
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3.6.1.1 Specimen preparation 

 

Specimens were produced by static compaction. The diameter and height of the 

specimens produced were 45 mm and 8 mm respectively. The compaction device consists of 

five main components; (a) a base, (b) a specimen ring, (c) a collar, (d) a locking ring and (e) a 

compaction piston. The specimen ring fitted in to a recess in the base of the compaction 

mould. The collar was placed onto the specimen ring. The locking ring was placed onto the 

collar, securing the collar to the base of the mould. The locking ring is fastened to the base 

using three 10 mm bolts. The components of this compaction mould are shown in Figure 3.5.  

 

Figure 3.6 shows the assembled compaction mould. Prior to the specimen being 

compacted, the inner surface of the collar was lubricated using silicon grease, to minimise the 

friction between the collar and piston. The specimen ring was not lubricated, due to the 

possibility of contamination of the specimen with silicon grease. The travel direction of the 

piston would result in vertical travel of the silicon grease on the piston surface through the 

final stages of the compaction process.  

 

The assembled compaction mould was transferred to a high capacity, static 

compaction machine. Load was applied until the piston rim and the collar made contact. The 

load was maintained for five minutes to minimise elastic rebound within the specimen once 

the compaction pressure had been removed. The height and diameter of the specimen were re-

measured, and the achieved dry density was calculated.  
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Figure 3.5 - The constituent components of the compaction mould 

 

 

Figure 3.6 – The assembled compaction mould for preparing compacted specimens 

 

 

3.6.1.2 Testing procedure 

 

The hydraulic conductivity cell used in this study was modified from a swelling 

pressure device that was previously used for swelling pressure determination (Tadza, 2011).  
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The cell consists of five components; (a) a base, (b) a compaction ring, (c) a 

collar, (d) a locking ring and (e) a piston. Six 10 mm bolts were used to secure the 

locking ring to the base. The components of the hydraulic conductivity cell are shown 

in Figure 3.7. The assembled cell is shown in Figure 3.8. 

 

 

Figure 3.7 - The constituent components of the hydraulic conductivity cell 

 

 

Figure 3.8 - Assembled arrangement of the hydraulic conductivity cell 
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Figure 3.9 shows the cross-sectional arrangement of the components of the hydraulic 

conductivity cell. Figure 3.10 shows the exploded arrangement of the hydraulic conductivity 

cell, showing the assembly to the individual components. The specimen ring, containing the 

compacted specimen, was placed into a circular recess in the base. The specimen rested on the 

porous stone. The collar was positioned onto the specimen ring, and was held in position by 

the locking ring. The locking ring was bolted to the base. The piston is then inserted into the 

collar onto the top surface of the compacted specimen. Three seals in the cell reduced leakage 

from the system. Two O-rings rest within groves in the base, one between the specimen ring 

and the base, and a second between the collar and the base. A vertical seal is positioned 

around the piston. 

 

The pressure-volume controllers used in this experimental programme were supplied 

from GDS Instruments, model V2 New Style 200cc/4MPa (STANDARD). The pressure-

volume controllers contained an internal water reservoir of 200,000 mm
3
 and pressurised 

water to 4 MPa. The resolution of pressure and volume of the controllers was 1 kPa and 1 

mm
3
 respectively. The accuracy of pressure and volume recorded by the controller was 0.15% 

of maximum pressure, and 0.25% of the measured volume ± 30 mm
3
. Figure 3.11 shows the 

pressure-volume controller used.  

 

Distilled de-aired water was provided to the top and bottom of the cell by two 

pressure-volume controllers. The pipe from each pressure-volume controller was split into 

two smaller pipes that were connected to the hydraulic conductivity cell. Fluorinated ethylene 

propylene pipes were used. A tap was incorporated into both inflow and outflow pipe loops to 

allow for entrapped air to be flushed from the system. Figure 3.12 shows a schematic of the 

pipe systems connecting the hydraulic conductivity cell to the pressure-volume controllers. 



Chapter 3 

64 

 

          

Figure 3.9 - Cross-sectional arrangement of the hydraulic conductivity cell 

 

 

Figure 3.10 - Exploded view of the hydraulic conductivity cell 
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Figure 3.11 - The pressure-volume controller used in this study 

 

 

 
Figure 3.12 - Schematic arrangement of pipes connecting the hydraulic conductivity cell to 
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The experimental set-up is shown in Figure 3.13. The assembled cell was positioned 

in the load frame. The load cell was placed on the hydraulic conductivity cell, and the base of 

the load frame was then raised until contact was made between the load frame and the load 

cell. The load frame was held in position to allow for constant volume tests to be carried out. 

The saturation of compacted bentonite specimens, and subsequent hydraulic conductivity tests 

were carried out under constant volume conditions. The pressure-volume controllers were 

connected to GDSlab so that the inflow and outflow pressures could be maintained 

electronically. The load cell was also connected to GDSlab.  

 

 

 

 

 

 

 

 

Figure 3.13 - Saturated hydraulic conductivity test set up 
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The compacted specimens were saturated under a nominal inflow and outflow 

pressure of 20 kPa. Once the swelling pressure had stabilised, the saturated hydraulic 

conductivity tests were carried out. The inflow pressure was increased to the required value. 

The pressure was maintained at this level for 60 seconds prior to the test commencing. The 

outflow pressure was maintained at 20 kPa throughout the testing programme. Logging 

intervals were set to 150 seconds for compacted MX80 bentonite specimens, and to 60 

seconds for compacted sand-bentonite specimens.  

 

Each hydraulic conductivity test was terminated when the inflow and outflow rates 

were constant for a specified time period, as detailed in subsequent chapters. After each test, 

fluid samples were taken from the inflow and outflow reservoirs. The experimental set-up was 

then prepared for the next hydraulic conductivity test. 

 

The saturated hydraulic conductivity of compacted MX80 bentonite specimens and the 

analysis of the fluid samples are presented in Chapter 5. The saturated hydraulic conductivity 

of compacted sand-bentonite specimens is presented in Chapter 6. 

 

3.6.2 Consolidation tests 

 

A series of consolidation tests were carried out on compacted bentonite and sand-

bentonite specimens. The specimens were prepared and were allowed to swell under an 

applied vertical pressure. Once saturated, the specimens were step-wise consolidated under 

increasing applied pressures. The preparation of specimens and the testing procedure is 

detailed. 
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3.6.2.1 Specimen preparation for consolidation tests 

 

The compacted specimens were statically compacted at the air-dry water content with 

diameter and height of 70 mm and 6 mm respectively. The specimens were compacted 

directly into the oedometer ring, and then transferred to the oedometer cell. The height of the 

oedometer ring was 19 mm, and so an initial specimen height after compaction was chosen to 

ensure the swelling of the specimen during saturation would be maintained with the 

oedometer ring. The components of the compaction device are shown in Figure 3.14. Figure 

3.15 shows the assembled compaction mould. 

 

The compaction device consists of five main components; (a) a base, (b) an oedometer 

cutting ring, (c) a collar, (d) a locking ring and (e) a compaction piston.. The oedometer ring 

was placed in a prefabricated grove in the base of the compaction mould. The collar was 

placed onto the oedometer ring, and secured with the locking. The inner surface of the collar 

was lubricated using silicon grease, to minimise the friction between the collar and piston.  

 

The specimen was compacted using a high capacity static compaction machine. Load 

was applied to the specimen until the desired height had been reached. The load was 

maintained for an additional five minutes to minimise elastic rebound from the specimen. The 

achieved dry density of the specimen was then calculated by re-measuring the height and 

diameter of the compacted specimen.  
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Figure 3.14 - The constituent components of the compaction mould 

 

 

Figure 3.15 - The assembled compaction mould for consolidation testing 
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swelling upon inundation with distilled water. Once the swelling had stabilised, the specimen 

was step-wise loaded. 

  

The consolidation behaviour of compacted MX80 bentonite specimens is presented in 

Chapter 5. The consolidation behaviour of compacted sand-bentonite specimens is presented 

in Chapter 6. 

 

3.6.3 Gas permeability tests 

 

In deep geological repositories, the anaerobic corrosion of the waste disposal canisters 

can produce hydrogen. The flow of gas in compacted saturated bentonites has been studied by 

other researchers (Harrington and Horseman, 1997; Romero et al., 2003; Olivella and Alonso, 

2008). The gas permeabilities of compacted bentonite with increased water contents have 

been measured in the context of geosynthetic clay liners (Didier et al., 2000; Bouazza, 2002; 

Vangpaisal and Bouazza, 2003). In this study, the gas permeability of compacted bentonite 

specimens was determined using an existing gas permeability cell. 

 

3.6.3.1 Specimen preparation for gas permeability tests 

 

Compacted MX80 bentonite specimens were prepared at the air-dry water content 

(8%). An existing concrete casting mould was modified to prepare compacted specimens. The 

height and diameter of the specimens were 100 mm in both cases. The components of the 

compaction mould are shown in Figure 3.16. The mould consists of five main components; (a) 

a base, (b) two connecting sleeves, (c) base connection pieces, (d) a piston and (e) four bolts. 

The assembled compaction mould is shown in Figure 3.17. 
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Figure 3.16 - The constituent components of the compaction mould 

 

 

Figure 3.17 - Compaction mould for producing specimens for gas permeability testing 
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compacted to the required height. The compaction load was maintained on the specimen for 

an additional five minutes to reduce elastic rebound in the specimen.  

 

After compaction, the specimen was prepared for testing. A 7.5 mm hole was drilled 

centrally through the length of the specimen. An augered drill bit was used, with the drilled 

material being removed in stages to reduce the internal stresses within the specimen. The hole 

was drilled from either end to the centre of the specimen to prevent break-out. 

 

3.7.3.2 Gas permeability testing procedure 

 

The gas permeability of compacted MX80 bentonite specimens was determined in a 

device developed by Martin (1986) and modified by Lydon (1993). The device had previously 

been used for testing the gas permeability of cast concrete specimens. Figure 3.18 shows the 

gas permeability cell used in this study.  

 

 

 

Figure 3.18 - Schematic of the gas permeability cell 

Bolt 

From gas 

reservoir 

7.5 mm hole 

Gas outlet 

Lid 

Cork pad 

Compacted 

MX80 

bentonite 

specimen 

Cork pad 

150 mm 



Chapter 3 

73 

 

The specimen was sealed on the top and base faces with petroleum jelly. Cork pads, 

100 mm diameter and 3 mm thickness, were placed on the top and bottom surfaces of the 

specimen, in contact with the petroleum jelly. The cork pad at the top of the specimen 

contained a prefabricated hole in the centre. The specimen and the attached cork pads were 

placed into the gas permeability cell. Additional cork pads were placed at the top of the 

specimen to ensure an airtight seal. The lid of the gas permeability cell was secured with 

twelve bolts with 10 mm diameter.  

 

The experimental set-up is shown in Figure 3.19.  The gas permeability cell was 

separated from the gas reservoir by an isolation valve, Valve B. The gas reservoir was 

connected to the pressurised N2 gas cylinder. Valve A separated the pressurised gas cylinder 

from the gas reservoir. The pressure within the gas reservoir was logged using a pressure 

gauge. 

 

 

Figure 3.19 - Experimental set-up for determining gas permeability 
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The outlet valve on the cell, Valve C, was closed. Valve B was also closed. Valve A 

was opened, and the pressure within the gas reservoir was increased to the required pressure 

for the test. Valve A was then closed. Valve B was opened, so that the pressure in the 

reservoir and the cell were equal, after which, Valve B was then closed. This reduced the 

pressure in the gas reservoir. The pressure in the gas reservoir was increased to the required 

pressure value by opening Valve A once again. Valve A was then closed, and Valve B opened, 

increasing the pressure in the air permeability cell. The process of opening Valve A, and then 

Valve B, in turn was continued until the pressure in the gas permeability cell and the gas 

reservoir was that required for the test.  

 

The pressure in the gas reservoir (and the gas permeability cell) was logged every 0.1 

seconds. Prior to testing, Valves A and C were closed, and Valve B was open. The test was 

started and Valve C was opened. The reduction of gas pressure within the gas permeability 

cell was logged. The test was terminated once the pressure had equilibrated. The lid was 

removed from the permeability cell, and the specimen was inspected for pressure cracks. If 

required, the assembly was then prepared for another test.  

 

The gas permeability of compacted MX80 bentonite determined under gas flow is 

presented in Chapter 7. 

 

 

3.7 Concluding remarks 

 

The properties of MX80 bentonite and Leighton Buzzard sand used in the study were 

presented in this chapter. The physical properties determined included the liquid, plastic and 
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shrinkage limits, the mineralogical composition and the particle size distribution. The 

chemical properties determined included the cation exchange capacity and average cation 

valence. Some differences were observed, which were attributed to a lower montmorillonite 

content and lower specific surface area determined for the MX80 bentonite to that reported in 

the literature. The suction-water content soil-water characteristic curve of MX80 bentonite 

was also presented, and was compared with literature. 

 

 The experimental procedures for determining the saturated hydraulic conductivity, 

consolidation behaviour and gas permeability of compacted bentonite specimens were 

presented. The results obtained from the procedures detailed in this chapter are presented in 

Chapters 5, 6 and 7. 
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CHAPTER 4 

COMPLIANCE OF THE HYDRAULIC 

CONDUCTIVITY EXPERIMENTAL SET-UP 

 

 

 

 

 

 

 

4.1 Introduction 

 

In Chapter 3, the experimental set-up for determining the saturated hydraulic 

conductivity of compacted specimens was presented. The procedure for conducting constant-

head tests was described. The hydraulic gradient was applied to the specimen by a pressure 

differential between the inflow and outflow pressure-volume controllers. The experimental 

set-up was newly assembled for the current study. 
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Experimental factors affecting the determination of saturated hydraulic conductivity 

have been reported in literature. Benson and Daniel (1990) reported that discrepancies 

between field and laboratory measurement may be due to differences in clod size. Dixon et 

al. (1999) stated a number of factors that can affect saturated hydraulic conductivity 

determination, including bacterial action in test cells and changes in soil structure.  

 

Temperature changes have been reported to affect the saturated hydraulic conductivity 

of bentonite (Cho et al., 1999). The applied hydraulic gradient may also lead to the 

development of coupled processes that can influence the hydraulic behaviour observed 

(Mitchell and Soga, 2005). Chapius (2012) stated that the losses in the pipes, valves and 

porous stones are often ignored during hydraulic conductivity tests. 

 

Additional factors may affect the determination of saturated hydraulic conductivity. 

Temperature fluctuations can cause expansion or contraction of the experimental set-up. 

Internal pressure changes can also result in expansion or contraction of the system. Air may 

become dissolved into the water if the system is not entirely saturated. Fluid can be lost from 

the system through leakage, particularly at the connections between the pipes and the 

hydraulic conductivity cell.  

 

The experimental procedure adopted in this study mitigated some of the experimental 

issues. Distilled de-aired water was used to minimise dissolved air within the fluid during the 

hydraulic conductivity tests. The compacted bentonite specimens were saturated under 

constant volume conditions, and saturation of the specimen was assumed to have occurred 

once the swelling pressure had stabilised (i.e. no further swelling was occurring). The 

hydraulic conductivity tests were carried out in a temperature controlled environment. 
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However, the effect of system expansion and contraction due to pressure changes is expected 

to be significant in this study. 

 

In this chapter, the expansion of the inflow system due to changes in pressure is 

determined. The total expansion of the inflow system is established for step-wise and 

instantaneous pressure changes. The expansion is considered with and without a dummy 

specimen. The secondary expansion of the inflow system is discussed. The relationship 

between inflow pressure and secondary inflow system expansion is shown. An empirical 

equation is stated to account for secondary expansion in the inflow system due to the applied 

water pressure. 

 

 

4.2 Total system expansion due to changes in inflow system pressure 

 

4.2.1 Experimental procedure 

 

During saturated hydraulic conductivity tests, a constant outflow water pressure of 20 

kPa was maintained. The inflow water pressure was varied to apply the pressure differential 

required for each applied hydraulic gradient. The inflow pipe system expanded due to 

changes in the applied pressure. No pressure-induced expansion occurred in the outflow pipe 

system. 

 

The inflow pressure was applied through two testing procedures (i) step-wise pressure 

changes and (ii) instantaneous pressure changes. The initial inflow pressure was 20 kPa. The 
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first test was carried out at a pressure of 45 kPa. The expansion of the inflow pipe system was 

also determined at 100, 200, 400, 600, 800, 1000 and 1200 kPa. 

 

For the step-wise procedure, the inflow pressure was increased from 45 kPa to 1200 

kPa through each of the pressure values considered. Each pressure was applied for 360 

minutes before being changed. Once the expansion at 1200 kPa was established, the inflow 

pressure was then reduced to each of the stated values in an identical step-wise manner to 

20kPa.  

 

Instantaneous changes in pressure were also considered. The expansion at each 

pressure value considered was measured for 360 minutes. The inflow pressure was reduced to 

20 kPa for 360 minutes between testing stages. The inflow pressures were considered in 

increasing magnitude up to 1200 kPa. The expansion at each pressure was then repeated by 

decreasing the inflow pressure in sequential order.  

 

To determine the total inflow system expansion, the hydraulic conductivity cell was 

assembled as described in Chapter 3. The pressurised system consisted of the pressure-

volume controller, the inflow pipes and the hydraulic conductivity cell. It was not possible to 

isolate the outflow system entirely, as entrapped air needed to be able to be removed from the 

system. To minimise the effect of the inclusion of the outflow pipes, the outflow pipe length 

was reduced, with the connection to the outflow pressure-volume controller removed. 

 

The volume of water contained within the pipes was 8.6 x 10
-5

 mm
3
. The testing 

procedures were carried out with and without a stainless steel dummy specimen in place. The 

volume of water within the cell without the dummy specimen was 1.4 x 10
-5

 m
3
. The volume 
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of water within the cell with the dummy specimen was 2 x 10
-6

 m
3
. The volume of water 

within the pressure-volume controller initially was approximately 1.8 x 10
-4

 m
3
. This volume 

reduced during the testing steps undertaken. 

 

The cell was allowed to saturate for 24 hours prior to the start of the test. The 

expansion of the inflow pipe system was measured by the volume of fluid in the inflow 

pressure-volume controller.  

 

4.2.2 Total inflow system expansion due to pressure changes 

 

Figure 4.1 shows the total inflow system expansion due to step-wise pressure changes 

(a) with and (b) without the dummy specimen. Figure 4.2 shows the total inflow system 

expansion measured from the instantaneous pressure changes (a) without and (b) with the 

dummy specimen. The expansion of the inflow system was observed to be significantly lower 

with the inclusion of a dummy specimen for both testing procedures. This difference was 

attributed to the expansion of the hydraulic conductivity cell.  

  

Figure 4.1(a) and Figure 4.2(a) show that the maximum expansion with the dummy 

specimen was not significantly affected by the method of applying inflow pressure. Similarly, 

Figure 4.1(b) and Figure 4.2(b) show that the expansion of the inflow system without the 

dummy specimen determined by the two testing procedures was similar. The application of 

inflow pressure in either a step-wise or instantaneous method was therefore concluded not to 

significantly affect the total inflow system expansion. 
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Figure 4.1 - Total expansion of the inflow system (a) with and (b) without a dummy specimen 

due to step-wise pressure changes (45, 100, 200, 400, 600, 800, 1000, 1200, 1000, 800, 600, 

400, 200, 100, 45 and 20 kPa) 

 

From Figure 4.1 and 4.2, it was observed that the expanded volume of the system did 

not recover to its original level at the end of the testing programmes. The difference between 

the initial and final volume of the system was found to be about 3000 mm
3
 without the 

dummy specimen, and about 2000 mm
3
 with the dummy specimen for both testing 

procedures. 
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Figure 4.2 - Total expansion of the inflow system (a) with and (b) without a dummy specimen 

due to instantaneous pressure changes (45, 20, 100, 20, 200, 20, 400, 20, 600, 20, 800, 20, 

1000, 20, 1200, 20, 1000, 20, 800, 20, 600, 20, 400, 20, 200, 20, 100, 20, 45, 20 kPa) 

 

The compressibility of water was assessed for each inflow pressure applied to the 

system. Prior to testing commencing, the total volume of water contained within the cell was 

1.4 x 10
-5

 m
3
 without the dummy specimen in place, and approximately 2 x 10

-6
 m

3
 with the 

dummy specimen. The volume of water contained within the pressure-volume controller 

ranged from 1.2 x 10
-4

 m
3
 to 1.8 x 10

-4
 m

3
. The volume of water contained within the pipes 

was 8.6 x 10
-5

 m
3
.  

 

The bulk modulus of water was assumed to be 2.2 x 10
9
 Pa at 20ºC (Handbook of 

Chemistry and Physics, 1996). The reduction in volume contained within the hydraulic 

conductivity system due to compressibility of the water under the applied pressure was 

determined to be 3ml when the pressure was increased from 20 kPa to 45 kPa, increasing to 

134 ml when the pressure was increased from 20 kPa to 1200 kPa. Given the volume of water 
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entering the system when the inflow pressure was increased, it is not considered the 

compressibility of water is a significant contributor. 

 

The theoretical hoop stresses within the pipes were calculated (Young and Budynas, 

2002). The pipes were assumed to be thin-walled. The elastic limit for fluorinated ethylene 

propylene pipes was stated as 620 ± 30 MPa (FEP Handbook, 2009). The hoop stresses 

calculated at each pressure value were within the elastic limit. The difference between initial 

and final expansion was therefore not due to plastic deformation of the pipes. 

 

From the instantaneous pressure changes, it was seen that the system did not contract 

to its initial volume after the 1000 kPa test with the dummy specimen and 800 kPa without 

the dummy specimen (Figure 4.3). For testing stages after this, the measured expansion 

volume when the pressure was reduced to 20 kPa remained consistent. This suggests that a 

volume of fluid was lost from the system during the 1200 kPa test with the dummy specimen, 

and during the 1200 kPa and 1000 kPa tests without the dummy specimen. The connections 

between the pipes were stated to have a maximum working pressure of approximately 1000 

kPa (SMC Pneumatics Tube and Fittings Information Sheet). 

 

It was not possible to carry out repeats of the system expansion, due to time 

constraints. From the behaviour of the system under increasing pressures, it was concluded 

that the applied inflow pressure was to be limited to 1000 kPa, as larger inflow pressures 

caused leakage from the inflow pipe system. 
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4.3 Secondary system expansion  

 

Saturated hydraulic conductivity tests on compacted saturated bentonite can be time 

consuming, due to its low hydraulic conductivity. In the current study, the long term response 

of the system is required to calibrate the inflow and outflow volumes determined during 

hydraulic conductivity tests. 

 

From the expansion of the system determined in Subsection 4.2, the most significant 

inflow system expansion was observed to occur immediately after a change in pressure. After 

this, further expansion of the system was observed, but this secondary expansion was 

significantly less than the initial expansion.  

 

For each hydraulic gradient applied during hydraulic conductivity tests, the required 

inflow pressure was applied for one minute prior to the start of the test. The majority of the 

expansion of the inflow system occurred during this time, immediately after the pressure was 

increased. The hydraulic conductivity tests were started after the initial expansion had 

occurred. Secondary expansion was therefore continuing to occur during the hydraulic 

conductivity tests. The quantification of this secondary expansion was required to correct the 

inflow behaviour observed during the hydraulic conductivity tests. 

 

The total inflow system expansion shown in Subsection 4.2 was used to determine the 

secondary expansion. The expansion with the dummy specimen was considered, as the 

response was more representative of the inflow system during the hydraulic conductivity 

tests. The secondary expansion was calculated up to and including the expansion due to 1000 
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kPa. The increases in inflow pressure, i.e. from 45 kPa to 100 kPa to 200 kPa etc, were 

considered only, due to the loss of fluid from the system at pressures larger than 1000 kPa.  

 

The secondary expansion of the inflow system was determined once the initial 

expansion of the system had occurred. For the step-wise pressure changes, the secondary 

inflow system expansion was calculated from the previous to the current inflow pressure. The 

cumulative secondary inflow system expansion was calculated for the step-wise procedure. 

Figure 4.3 shows the secondary inflow system expansion of the system determined at the end 

of each testing step (after 360 minutes).  

 

  

 

Figure 4.3 - Secondary system expansion due to inflow pressure with a dummy specimen 

 

From Figure 4.3, an empirical relationship for the inflow pressure and the secondary 

expansion of the inflow system was proposed.  
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� = 0.323�           (4.1) 

 

where v is the secondary inflow system expansion (in mm
3
) and p is the inflow pressure (in 

kPa). 

 

The empirical relationship stated in Equation (4.1) calculates the secondary system 

expansion of the inflow system due to the inflow pressure. The inflow measured during 

hydraulic conductivity tests presented in Chapter 5 and 6 was adjusted using this equation to 

better assess the compatibility between inflow and outflow. 

 

 

4.4 Concluding remarks 

 

A number of experimental factors can influence the determination of hydraulic 

conductivities. The head losses in the pipes, valves and porous stones are often ignored 

during hydraulic conductivity tests (Chapius, 2012). In the current study, the expansion of the 

experimental system was measured at different inflow pressures.  

 

The total pipe expansion was presented for the system with and without a dummy 

specimen. The method of applying the inflow pressure, either step-wise or instantaneously 

was not shown to significantly affect the observed expansion. The total inflow system 

expansion without the dummy specimen was found to be greater than with the dummy 

specimen. This difference was due to the expansion of the hydraulic conductivity cell. 
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In all tests conducted, a volume of fluid entering the system was not recovered at the 

end of the testing procedure. It was determined that no plastic deformation of the pipes 

occurred, as the calculated hoop stresses were within the elastic limit. Significant fluid was 

lost when the applied inflow pressure was 1200 kPa. The maximum working pressure of the 

pipe connections was reported to be 1000 kPa. It was concluded that inflow pressures greater 

than 1000 kPa should not be applied to the inflow system during the hydraulic conductivity 

tests. 

 

The secondary system expansion was determined by considering the additional 

expansion of the system one minute after the inflow pressure was changed. Consideration of 

the secondary pipe expansion was more appropriate due the length of the hydraulic 

conductivity tests, and the low flow volumes expected. An empirical relationship between 

secondary inflow system expansion and applied inflow pressure was determined. This 

equation was subsequently used to correct the inflow behaviour observed during hydraulic 

conductivity tests. 
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CHAPTER 5 

SATURATED HYDRAULIC CONDUCTIVITY OF 

COMPACTED MX80 BENTONITE 

 

 

 

 

 

 

 

5.1 Introduction 

 

The saturated hydraulic conductivity of compacted bentonites is of particular 

importance in geoenvironmental applications. In deep geological repositories, bentonite 

powder or pellets will be compacted to high compaction dry densities to form the barrier and 

backfilling material (Pusch, 1982; Bucher and Muller-Vonmoos, 1989; Borgesson et al., 

1996; Karnland et al., 2007). The bentonite barrier will be initially unsaturated, but will 

become hydrated due to available water percolating from the host rock. The flow of water 
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from the host rock to the canister is a key consideration to ensure the integrity of the high 

level radioactive waste is maintained. 

 

Municipal solid waste disposal also requires understanding of the saturated hydraulic 

conductivity of compacted bentonites. The lining of landfills is required to mitigate the flow 

of leachate from the landfill to the surrounding groundwater (Environment Agency, 2011). 

The flow rate through the liner will dictate the flow of leachate from the landfill. 

 

The saturated hydraulic conductivity of bentonite can be determined in a number of 

ways. A rigid- or flexible-walled permeameter can be used to test compacted bentonite 

specimens. Daniel (1994) reported that the hydraulic conductivity results obtained from rigid- 

and flexible-walled permeameters were comparable. The hydraulic gradient can be applied to 

the specimen through constant head conditions, falling head conditions and constant flow 

conditions.  

 

A number of factors have been reported to affect the saturated hydraulic conductivity 

of compacted bentonites. These include compaction dry density (Pusch, 1982; Dixon et al., 

1999; Baille et al., 2010), microstructure of the specimens (Benson and Daniel, 1990; Pusch, 

1999), type of exchangeable cation in the bentonite (Rao and Mathew, 1995; Ahn and Jo, 

2009), permeant type (Shackelford et al., 2000; Dixon et al., 2002), applied temperature 

(Olsen and Daniel, 1981; Cho et al., 1999) and applied hydraulic gradient (Pusch, 1982; 

Dixon et al., 1999). 

 

An important issue to be considered during the hydraulic conductivity tests is the loss 

of ions from the bentonite-water system due to ion transport processes, including advection 
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and diffusion processes. In low permeability barriers, diffusion may become the dominant 

transport mechanism (Shackelford and Daniel, 1991). Coupled flows may also develop due to 

imposed hydraulic gradients (Mitchell and Soga, 2005).  

 

The loss of ions from the compacted saturated bentonites can impact a number of 

parameters due to a reduction in the cation exchange capacity of the bentonites. The effects of 

ion loss can include a reduction in the swelling pressure and an increase in the hydraulic 

conductivity. Changes to the behaviour of the bentonite-water system may affect the integrity 

of the geological barrier. 

 

The main objective of this chapter is to determine the saturated hydraulic conductivity 

of compacted MX80 bentonite at compaction dry densities from 1.1 to 1.7 Mg/m
3
. The 

swelling pressures developed by the compacted specimens during saturation are presented. 

The inflow and outflow volumes measured during the hydraulic conductivity tests is 

presented and compared. The swelling pressure and flow behaviour throughout the hydraulic 

conductivity testing programme for each specimen is shown.  

 

The saturated hydraulic conductivities of compacted MX80 bentonite are determined. 

The total loss of exchangeable cations as a percentage of the initial cations within the 

compacted bentonite specimen is studied. The compressibility behaviour of compacted 

saturated bentonite under increasing vertical loads is presented. The hydraulic conductivities 

are calculated from the compressibility behaviour of the specimens, and are compared with 

measured values. 
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5.2 Saturated hydraulic conductivity of compacted MX80 bentonite 

 

5.2.1 Experimental programme 

 

The saturated hydraulic conductivities were determined directly using the 

experimental set-up described in Subsection 3.6.1. Specimens were prepared at targeted dry 

densities of 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 and 1.7 Mg/m
3
.  Tripathy and Schanz (2007) stated that 

for deep geological disposal of high level radioactive waste, bentonite barriers will be 

prepared at compaction dry densities between 1.3 and 2.0 Mg/m
3
. Dixon et al. (1999) 

conducted hydraulic conductivity tests on compacted bentonite specimens for a range of dry 

densities between 0.5 and 1.5 Mg/m
3
. 

 

The actual dry density of each specimen was calculated after the compaction process, 

based on the final height of the specimen. Table 5.1 shows the targeted and actual dry 

densities of the compacted specimens. Bag (2011) reported that the extrusion and reinsertion 

of compacted specimens into the rings resulted in greater swelling pressures being exhibited 

by the specimen. In this study, the extrusion and reinsertion of specimens was not considered.  
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Table 5.1 - Targeted and actual dry densities of compacted MX80 bentonite specimens 

prepared for saturated hydraulic conductivity tests 

Specimen 
Targeted dry density 

(Mg/m
3
) 

Actual dry density 

(Mg/m
3
) 

1 1.100 1.088 

2 1.200 1.191 

3 1.300 1.283 

4 1.400 1.379 

5 1.500 1.478 

6 1.600 1.582 

7 1.700 1.684 

 

ASTM D 5084 stated that a maximum hydraulic gradient of 30 should be applied 

when determining the saturated hydraulic conductivity of low permeability materials.  

Applied hydraulic gradients reported in literature have exceeded this (Benson and Daniel, 

1990; Cho et al.. 1999; Dixon et al., 1999; Lloret et al., 2004). In the current study, the 

maximum applied water inflow pressure was determined previously to be about 1000 kPa, 

due to experimental limitations. The maximum applied hydraulic gradient under this pressure 

differential was therefore to 12500. The minimum hydraulic gradient that would result in 

water flow through the specimen was not known. A series of preliminary tests were 

conducted to establish the minimum hydraulic gradient.  

 

The specimen prepared to a compaction dry density of 1.088 Mg/m
3
 was chosen for 

the preliminary experimental programme. Four hydraulic gradients were applied to the 

specimen to assess the water inflow and outflow. Details of the preliminary experimental 

programme are shown in Table 5.2. 
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Table 5.2 - Preliminary experimental programme for saturated hydraulic conductivity tests 

Test 

number 

Inflow 

pressure 

(kPa) 

Outflow 

pressure 

(kPa) 

Pressure 

differential 

(kPa) 

Hydraulic 

gradient 

(m/m) 

A 45 20 25 311 

B 70 20 50 623 

C 95 20 75 934 

D 120 20 100 1245 

 

 

The water inflow and outflow during preliminary tests A-D is shown in Figure 5.1(a) 

- (d) respectively. For all tests, a difference was observed between the water volume entering 

and leaving the specimen. This difference was attributed partially to the internal swelling and 

shrinkage of the specimen upon application of a hydraulic gradient, and the ongoing 

secondary expansion within the system due to the applied water pressure. Volumes of water 

within the inflow and outflow pressure-volume controllers were zeroed prior to the test 

commencing. The water inflow and outflow rates were observed to become constant within 

5000 minutes.  

  



Chapter 5 

94 

 

          

 

         

 

Figure 5.1 - Inflow and outflow during preliminary hydraulic conductivity tests for the 1.088 

Mg/m
3 

specimen 

 

For tests (b)-(d), the water inflow and outflow rates calculated were found to be 

comparable. The time for equilibrium to be reached was observed to reduce as the hydraulic 

gradient increased. From the preliminary tests, it was decided that the minimum hydraulic 

gradient to be applied was that which corresponded to a 100 kPa water pressure differential. 

Lower applied hydraulic gradients were not considered due to time limitations. 
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During the main experimental programme, five hydraulic gradients were considered. 

The water pressure differentials between the inflow and outflow water pressures applied to 

the specimens were 100, 250, 500, 750 and 1000 kPa. These differentials corresponded to 

hydraulic gradients of approximately 1250, 3125, 6250, 9375 and 12500. The exact hydraulic 

gradients applied were calculated from the actual height of the specimens after compaction. 

  

Nine hydraulic conductivity tests were conducted on each of the specimens. The five 

hydraulic gradients considered were applied to the specimen in order of increasing 

magnitude. Each hydraulic gradient was then retested as the water pressure differential 

applied to the specimens was reduced in a step-wise manner. 

 

5.2.2 Saturation of compacted bentonite specimens under constant volume conditions 

 

The compacted MX80 bentonite specimens were saturated using distilled de-aired 

water supplied to the inflow and outflow under an applied pressure of 20 kPa.  The specimens 

were allowed to saturate until the measured swelling pressure had equilibrated. Figure 5.2 

shows the equilibrated swelling pressures developed for the compacted MX80 bentonite 

specimens considered.  

 

 



Chapter 5 

96 

 

 

 

Figure 5.2 - Equilibrated swelling pressures of compacted bentonite developed during 

saturation 

 

The results are plotted based on the initial dry density of the specimens. The measured 

swelling pressures are in reasonable agreement with those reported by Bucher and Muller-

Vonmoos (1989) but are lower than those reported by Karnland et al. (2007).  The differences 

in swelling pressure are attributed to the lower cation exchange capacity of the bentonite used 

in this study, compared with those reported in literature. 

 

5.2.3 Evolution of swelling pressure during hydraulic conductivity tests 

 

The swelling pressure exhibited by the compacted bentonite specimens was monitored 

throughout the hydraulic conductivity tests on each specimen. Figure 5.3 and Figure 5.4 

shows the (a) swelling pressure evolution under a variable applied water pressure differential 

and (b) measured inflow and outflow volumes for the specimens with dry densities of 1.191 

Mg/m
3
 and 1.664 Mg/m

3 
respectively. 

0

500

1000

1500

2000

2500

1 1.2 1.4 1.6 1.8

Dry density (Mg/m
3
) 

S
w

el
li

n
g

 p
re

ss
u

re
 (

k
P

a
) 



Chapter 5 

97 

 

 

 

 

Figure 5.3 - (a) Swelling pressure changes and (b) measured flow during hydraulic 

conductivity tests for the specimen with dry density of 1.191 Mg/m
3
 

 

Figures 5.3(a) and 5.4(a) also show the calculated difference between the swelling 

pressure changes (after saturation has occurred) and the applied water pressure differential 

(applying the hydraulic gradient). In an ideal situation, no increase of swelling pressure 

would be observed, as fluid entering the system would pass through the specimen.  
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Figure 5.4 - (a) Swelling pressure changes and (b) measured flow during hydraulic 

conductivity tests for the specimen with dry density of 1.664 Mg/m
3 

 

Conversely, if no flow was occurring, the applied inflow pressure would generate an 

identical response in the swelling pressure observed, as the fluid stagnated within the system. 

Figures 5.3(a) and 5.4(a) indicate that an increase of swelling pressure was observed during 

the hydraulic conductivity tests, suggesting that some stagnation of water within the system 
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has occurred. However, the increases in swelling pressure observed are less than the applied 

pressure differential, indicating that some flow through the specimen has occurred. 

 

5.2.4 Measured inflow and outflow during saturated hydraulic conductivity tests 

 

During the hydraulic conductivity tests, the water inflow and outflow volumes under 

each hydraulic gradient were monitored until the flow rates became constant. The hydraulic 

conductivity tests were terminated once constant flow conditions were observed. The system 

expansion was observed previously to be significant, and so the inflow was corrected to 

account for the secondary expansion of the system. Equation (4.1) was used to calculate the 

volume of secondary expansion of the inflow system due to the inflow pressure. The inflow 

behaviour observed during each tests was corrected by the secondary system expansion 

volume. 

 

The inflow and outflow behaviour for each specimen during the nine hydraulic 

conductivity tests is presented here. Figures 5.5 - 5.11 show the water inflow and outflow 

volumes with elapsed time for the specimens with dry densities of 1.088, 1.191, 1.283, 1.379, 

1.489, 1.581 and 1.664 Mg/m
3
 respectively. The corrected inflow is also shown in each case. 

 

In all cases, the water flow rates were observed to become constant within 5000 

minutes. Specimens prepared at higher compaction dry densities were found to require an 

increased time for water flow rates to become constant. The corrected water inflow volumes 

were generally found to more closely equate to the outflows in the majority of cases. The 

inflow and outflow rates at the end of the hydraulic conductivity tests are presented in Table 
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5.3. The outflow rate, calculated as a percentage of the inflow rate, is also shown in Table 5.3 

for each test conducted.  

 

  



(a) i = 1245                   (b) i = 3113                     (c) i = 6227  

(d) i = 9340                  (e) i = 12453                    (f) i = 9340  

(g) i = 6227                   (h) i = 3113     (i) i = 1245  

 

Figure 5.5 - Inflow and outflow behaviour determined for the 1.088 Mg/m
3
 specimen 
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(a) i = 1246                   (b) i = 3115               (c) i = 6231  

(d) i = 9346                   (e) i = 12461              (f) i = 9346  

(g) i = 6231                    (h) i = 3115               (i) i = 1246  

 

 

Figure 5.6 - Inflow and outflow behaviour determined for the 1.191 Mg/m
3
 specimen 
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(a) i = 1244             (b) i = 3111                 (c) i = 6222  

(d) i = 9333         (e) i = 12444             (f) i = 9333  

(g) i = 6222           (h) i = 3111              (i) i = 1244  

 

Figure 5.7 - Inflow and outflow behaviour determined for the 1.283 Mg/m
3
 specimen 
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(a) i = 1243                 (b) i = 3109            (c) i = 6218  

(d) i = 9327               (e) i = 12432             (f) i = 9327  

(g) i = 6218               (h) i = 3109              (i) i = 1243  

 

Figure 5.8 - Inflow and outflow behaviour determined for the 1.379 Mg/m
3
 specimen 
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(a) i = 1243          (b) i = 3109             (c) i = 6218  

(d) i = 9327       (e) i = 12432              (f) i = 9327  

(g) i = 6218            (h) i = 3109             (i) i = 1243  

 

Figure 5.9 - Inflow and outflow behaviour determined for the 1.478 Mg/m
3
 specimen 
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(a) i = 1244            (b) i = 3111            c) i = 6222     

(d) i = 9333           (e) i = 12444        (f) i = 9333  

(g) i = 6222    (h) i = 3111               (i) i = 1244  

 

Figure 5.10 - Inflow and outflow behaviour determined for the 1.581 Mg/m
3
 specimen 
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(a) i = 1240         (b) i = 3101        (c) i = 6203  

(d) i = 9305        (e) i = 12403         (f) i = 9305  

(g) i = 6203          (h) i = 3101          (i) i = 1240  

 

Figure 5.11 - Inflow and outflow behaviour determined for the 1.664 Mg/m
3
 specimen 
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Equilibrium inflow and outflow was calculated once the flow rates became constant 

for a minimum of 1440 minutes. The outflow rate was calculated to be between 95-100% of 

the inflow velocity in the majority of tests. Differences between the inflow and outflow rates 

were concluded to be due primarily to continuing secondary system expansion. The step-wise 

increasing and decreasing of hydraulic gradient was not observed to have any significant 

effect on the inflow and outflow rates. 

 

Table 5.3 - Equilibrated inflow and outflow rates determined during this study 

Specimen 

Dry 

density 

(Mg/m3) 

Test 

step 

Pressure 

differential 

 (kPa) 

Hydraulic 

gradient 

(m/m) 

Inflow 

rate 
(mm3/min) 

Outflow  

rate 
(mm3/min) 

Outflow as 

percentage of 

inflow (%) 

1 1.088 

a 100 1245 0.287 0.271 94.4 

b 250 3113 0.419 0.397 94.7 

c 500 6227 0.774 0.730 94.3 

d 750 9340 1.032 0.957 92.7 

e 1000 12453 1.411 1.299 92.1 

f 750 9340 0.912 0.859 94.2 

g 500 6227 0.651 0.597 91.7 

h 250 3113 0.422 0.397 94.1 

i 100 1245 0.290 0.268 92.4 

2 1.191 

a 100 1246 0.124 0.118 95.2 

b 250 3115 0.263 0.252 95.8 

c 500 6231 0.477 0.455 95.4 

d 750 9346 0.679 0.654 96.3 

e 1000 12461 0.853 0.825 96.7 

f 750 9346 0.717 0.684 95.4 

g 500 6231 0.440 0.421 95.7 

h 250 3115 0.214 0.208 97.2 

i 100 1246 0.114 0.114 100.0 

3 1.283 

a 100 1244 0.161 0.169 105.0 

b 250 3111 0.288 0.281 97.6 

c 500 6222 0.411 0.403 98.1 

d 750 9333 0.573 0.551 96.2 

e 1000 12444 0.741 0.739 99.7 

f 750 9333 0.541 0.517 95.6 

g 500 6222 0.391 0.375 95.9 

h 250 3111 0.233 0.202 86.7 

i 100 1244 0.104 0.103 99.0 
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Table 5.3 - Equilibrated inflow and outflow rates determined during this study (continued) 

Specimen 

Dry 

density 

(Mg/m
3
) 

Test 

step 

Pressure 

differential 

 (kPa) 

Hydraulic 

gradient 

(m/m) 

Inflow 

rate 
(mm

3
/min) 

Outflow  

rate 
(mm

3
/min) 

Outflow as 

percentage of 

inflow (%) 

4 1.379 

a 100 1243 0.064 0.066 103.1 

b 250 3109 0.115 0.109 94.8 

c 500 6218 0.239 0.221 92.5 

d 750 9327 0.350 0.298 85.1 

e 1000 12432 0.396 0.388 98.0 

f 750 9327 0.344 0.342 99.4 

g 500 6218 0.251 0.251 100.0 

h 250 3109 0.130 0.129 99.2 

i 100 1243 0.059 0.057 96.6 

5 1.478 

a 100 1243 0.042 0.042 100.0 

b 250 3109 0.087 0.086 98.9 

c 500 6218 0.143 0.138 96.5 

d 750 9327 0.211 0.207 98.1 

e 1000 12436 0.243 0.235 96.7 

f 750 9327 0.213 0.204 95.8 

g 500 6218 0.125 0.118 94.4 

h 250 3109 0.072 0.068 94.4 

i 100 1243 0.033 0.032 97.0 

6 1.581 

a 100 1244 0.025 0.023 92.0 

b 250 3111 0.063 0.045 71.4 

c 500 6222 0.125 0.094 75.2 

d 750 9333 0.153 0.151 98.7 

e 1000 12444 0.190 0.185 97.4 

f 750 9333 0.150 0.147 98.0 

g 500 6222 0.091 0.088 96.7 

h 250 3111 0.075 0.065 86.7 

i 100 1244 0.027 0.026 96.3 

7 1.664 

a 100 1240 0.025 0.025 100.0 

b 250 3101 0.052 0.050 96.2 

c 500 6204 0.084 0.081 96.4 

d 750 9305 0.100 0.098 98.0 

e 1000 12407 0.144 0.137 95.1 

f 750 9305 0.123 0.115 93.5 

g 500 6204 0.067 0.064 95.5 

h 250 3101 0.039 0.033 84.6 

i 100 1240 0.028 0.027 96.4 
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5.2.3 Saturated hydraulic conductivity of compacted bentonite calculated from Darcy’s law 

 

The hydraulic conductivity of soils is commonly determined using Darcy’s law 

(1856). Darcy’s law states that the hydraulic flux is proportional to the hydraulic gradient 

applied to the soil. The validity of Darcy’s law in saturated expansive clays has been 

discussed previously (Lutz and Kemper, 1959; Olsen, 1969; Miller et al., 1969; Chan and 

Kenney, 1973; Dixon et al., 1999). The existence of transitional or threshold hydraulic 

gradients has been reported by some researchers. Other researchers have failed to confirm the 

existence of these gradients.  

 

The validity of Darcy’s law for the range of applied hydraulic gradients considered in 

the study was assessed. The equilibrium inflow rates determined during the hydraulic 

conductivity tests are presented in Figure 5.12(a). The equilibrium outflow rated determined 

during the hydraulic conductivity tests are presented in Figure 5.12(b).  

 

For all specimens, a proportional relationship was observed between hydraulic flux 

and hydraulic gradients. The water flow velocities for highly compacted bentonite specimens 

were observed to be significantly lower than specimens with lower compaction dry densities. 

As the overall trend observed was linear in the case of inflow and outflow, it was concluded 

that Darcy’s law was valid for the applied hydraulic gradients considered.  
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Figure 5.12(a) - Relationship between hydraulic gradient and inflow flux determined during 

hydraulic conductivity tests 

 

 

 

Figure 5.12(b) - Relationship between hydraulic gradient and outflow flux determined during 

hydraulic conductivity tests 

Hydraulic gradient (m/m) 

In
fl

o
w

 h
y
d

ra
u

li
c 

fl
u

x
 (

m
/s

) Mg/m3 

Hydraulic gradient (m/m) 

O
u

tf
lo

w
 h

y
d

ra
u

li
c 

fl
u

x
 (

m
/s

) 

Mg/m3 



Chapter 5 

112 

 

From Darcy’s law, the hydraulic conductivity is defined as the proportionality 

constant between the hydraulic flux and the applied hydraulic gradient. A linear relationship 

is observed between hydraulic flux and hydraulic gradient, with the gradient taken to be the 

hydraulic conductivity. In the case of the inflow and outflow fluxes determined for each dry 

density, a ‘best-fit’ line was added, as shown in Figures 5.12(a) and 5.12(b). This line passed 

through the origin. The hydraulic conductivity of each of the specimens was then determined 

in the case of the inflow and outflow hydraulic fluxes. The values calculated for each 

specimen are shown in Table 5.4.  

 

Table 5.4 - Saturated hydraulic conductivities determined for the compacted bentonite 

specimens considered in this study 

Dry density  

(Mg/m
3
) 

Hydraulic conductivity 

calculated from inflow flux 

Figure 5.12(a) 

 (m/s) 

Hydraulic conductivity 

calculated from outflow flux 

Figure 5.12(b)  

(m/s) 

1.088 1.17 ×  10
-12

 1.09 ×  10
-12

 

1.191 7.59 ×  10
-13

 7.30 ×  10
-13

 

1.283 6.49 ×  10
-13

 6.31 ×  10
-13

 

1.379 3.76 ×  10
-13

 3.58 ×  10
-13

 

1.478 2.26 ×  10
-13

 2.18 ×  10
-13

 

1.582 1.72 ×  10
-13

 1.62 ×  10
-13

 

1.684 1.26 ×  10
-13

 1.21 ×  10
-13

 

 

 

The hydraulic conductivity was found to decrease as the dry density increased. This is 

in agreement with that reported in the literature (Pusch, 1982; Dixon et al., 1999; Cho et al., 

1999). The hydraulic conductivities calculated from the inflow and outflow rates were 
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observed to differ slightly. The differences between the hydraulic conductivities calculated 

from inflow and outflow rates were found to be less than 7% for all dry densities considered. 

 

 

5.3 Expulsion of exchangeable cations during hydraulic conductivity tests 

 

5.3.1 Inflow and outflow samples taken between hydraulic conductivity tests 

 

The expulsion of exchangeable cations was determined throughout the hydraulic 

conductivity tests conducted on compacted saturated bentonite specimens. Five of the 

compacted saturated bentonite specimens were considered. The specimens considered were 

those prepared with dry densities of 1.191, 1.283, 1.379, 1.581 and 1.664 Mg/m
3
.  

 

The specimens were initially saturated. Once the swelling pressure had equilibrated, a 

fluid sample from the influent and effluent was taken. The first hydraulic conductivity test 

was then commenced. The influent and effluent was sampled once the inflow and outflow 

rates had equilibrated. In turn, the nine hydraulic conductivity tests were carried out. The 

influent and effluent was sampled after each test.  

 

Approximately 30 ml of fluid was sampled from the influent and effluent after each 

hydraulic conductivity test. The inflow and outflow fluid pressures were maintained at 20 

kPa. Care was taken to avoid fluid loss from the pipe. The experimental system was then 

prepared for the next hydraulic conductivity test.  
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The fluid samples taken were analysed using inductively coupled plasma optical 

emission spectrometry (ICP-OES). The concentration of calcium (Ca
2+

), magnesium (Mg
2+

), 

potassium (K
+
) and sodium (Na

+
) ions was determined in mg/l. These cations were found 

previously to be present within the MX80 bentonite. The concentration of anions in the fluid 

samples was not considered, as any movement of ions from the bentonite-water system will 

maintain electro-neutrality (Higashihara et al., 2008).  

 

As the volume of fluid and concentration of cations present within the inflow and 

outflow systems were known, the mass of each species of exchangeable cation within the 

inflow and outflow systems was calculated. The initial masses of exchangeable cation were 

determined from the cation exchange capacity of the MX80 bentonite, as presented in 

Chapter 3. The total percentage loss of exchangeable cations from the compacted bentonite 

specimen to the adjacent water reservoirs at the end of the hydraulic conductivity testing 

programme for each specimen considered was calculated. 

  

5.3.2 Total loss of exchangeable cations from the compacted bentonite specimens 

 

Figure 5.13 shows the total percentage cation expulsion of exchangeable cations for 

the compacted saturated bentonite specimens considered in this study. The greatest total 

percentage of initial exchangeable cations lost from the specimen was observed to be sodium 

ions. The total percentage of initial calcium, magnesium and potassium ions expelled were 

similar for all dry densities considered. In all cases, the total percentage of initial 

exchangeable cations lost during the hydraulic conductivity tests were observed to decrease.  
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Figure 5.13 - Total percentage of exchangeable cations expelled during hydraulic 

conductivity tests 
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As such, it would be expected that there would be no effect on the hydraulic 

conductivity determined throughout the testing programme. The small total percentage of 

exchangeable cations lost is supported by the relationships between hydraulic flux and 

hydraulic gradient presented in Figure 5.12, which show that no significant change of the 

hydraulic conductivity was observed. 

 

  

5.4 Compressibility behaviour of compacted saturated bentonite 

 

5.4.1 Experimental programme 

 

Compacted specimens of MX80 bentonite were prepared at the air-dry water content 

(8%). The compressibility behaviour of five specimens was considered at increasing 

compaction dry densities. The targeted and actual dry densities of the prepared specimens are 

provided in Table 5.5. 

 

Table 5.5 - Targeted and actual dry densities of compacted bentonite specimens prepared for 

consolidation tests 

Specimen 
Targeted dry density 

(Mg/m
3
) 

Actual dry density 

(Mg/m
3
) 

1 1.350 1.345 

2 1.450 1.436 

3 1.550 1.537 

4 1.700 1.683 

5 1.850 1.821 
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Prior to the step-wise consolidation, the swell-load method was adopted (Sridharan et 

al., 1986), during which the specimens were allowed to saturate under an applied surcharge, 

before sequential consolidation within increasing applied pressures. Initial saturation of a 

preliminary specimen prepared to a compaction dry density of about 1.6 Mg/m
3
 showed that 

under a surcharge pressure of 50 kPa, a significant testing period was required for the 

swelling potential to equilibrate. Given this, the specimens with initial compaction dry 

densities of 1.537, 1.683 and 1.821 Mg/m
3
 were saturated under a surcharge of 100 kPa. The 

specimens with compaction dry densities of 1.345 and 1.436 Mg/m
3
 were saturated under a 

surcharge of 50 kPa. Upon saturation, the compacted specimens exhibited volume change. 

 

The step-wise consolidation of the specimens was commenced after the swelling of 

the specimen had stabilised. The saturated specimens were step-wise loaded from 100 to 800 

kPa using standard conventional oedometers.  

 

5.3.2 Swelling of compacted bentonite specimens under constant vertical load 

 

The swelling potentials that developed in the specimen are shown in Table 5.6. The 

greatest swelling potentials were found to occur in specimens 1 and 2. This was due to the 

applied vertical pressure being only 50 kPa, compared to 100 kPa of the other specimens 

tested. For the specimens, the height of the compacted specimen was found to be almost 

doubled during the saturation of the specimen. 
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Table 5.6 - Swelling potentials determined during saturation of compacted specimens 

Specimen dry 

density (Mg/m
3
) 

Surcharge  

(kPa) 

Swelling potential  

(%) 

Final dry density 

after swelling 

(Mg/m
3
) 

1.345 50 81.8 0.74 

1.436 50 96.1 0.73 

1.537 100 67.9 0.91 

1.683 100 73.6 0.97 

1.821 100 69.8 1.07 

 

 

5.4.3 Compressibility behaviour of compacted saturated bentonite 

 

The pressure-void ratio (e-log p) relationships for the compacted bentonite specimens 

considered are shown in Figure 5.14. The specimens prepared at compaction dry densities of 

1.345 and 1.436 Mg/m
3
 were found to have greater void ratios after swelling. This was 

attributed to the lower applied vertical pressure applied during saturation, resulting in greater 

swelling within the specimens. As the 1.345 and 1.436 Mg/m
3
 specimens were permitted to 

swell to a greater extent, the platelets within the microstructure are thought to have better 

aligned themselves in a parallel manner, such that at higher pressures, these specimens 

demonstrated greater compressibility.  
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Figure 5.14 - Compressibility behaviour of MX80 bentonite 

 

 

5.5 Comparison between saturated hydraulic conductivity determined experimentally 

and from compressibility behaviour 

 

The coefficient of compressibility was calculated from the root-time (Taylor’s) and 

log-time (Casagrande’s) methods. The hydraulic conductivities were calculated from the 

coefficients of compressibility. The hydraulic conductivities determined in the rigid-walled 

permeameter was compared with that calculated hydraulic conductivity values. Figure 5.15(a) 

shows the hydraulic conductivities found in this study as a function of dry density. Figure 

5.15(b) shows the determined hydraulic conductivities as a function of void ratio.  
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The range of dry densities and therefore void ratios that could be considered from 

saturated hydraulic conductivity tests and calculated from the compressibility behaviour was 

restricted by experimental limitations. It was not possible to produce compacted bentonite 

specimens at dry densities lower than 1.088 Mg/m
3
 as the integrity of the specimen could not 

be maintained. The applied pressure during consolidation tests could not be increased higher 

than 800 kPa due to safety factors. The overlap between the two methods (between void 

ratios of 1 to 1.5) shows that the methods are comparable, but this cannot be confirmed in this 

study. 

 

The hydraulic conductivities determined in this study were compared with that 

reported in the literature for compacted saturated bentonites permeated with water. 

Reasonable agreement was observed generally between this study and the hydraulic 

conductivities of different bentonites. Borgesson et al. (1996) presented the hydraulic 

conductivity of MX80 bentonite at increasing void ratios. The values determined in this study 

for MX80 bentonite show good agreement for the range of void ratios considered in this 

study.  
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Figure 5.15(a) - Comparison of saturated hydraulic conductivity from hydraulic conductivity 

tests and consolidation behaviour as a function of dry density 

 

 

Figure 5.15(b) - Comparison of saturated hydraulic conductivity from hydraulic conductivity 

tests and consolidation behaviour as a function of void ratio 

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10
0 0.5 1 1.5 2

   Experimental (current study)

   Calculated from Cv (Taylor's method)

   Calculated from Cv (Casagrande's method)

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10
0 0.5 1 1.5 2 2.5 3

   Experimental (current study)

   Calculated from Cv (Taylor's method)

   Calculated from Cv (Casagrande's method)

Void ratio 

H
y

d
ra

u
li

c 
co

n
d

u
ct

iv
it

y
 (

m
/s

) 

Dry density (Mg/m
3
) 

H
y
d

ra
u

li
c 

co
n

d
u

ct
iv

it
y
 (

m
/s

) 



Chapter 5 

122 

 

5.6 Concluding remarks 

 

In this chapter, the hydraulic conductivities of compacted saturated MX80 bentonite 

were presented for a dry density range between 1.088 and 1.664 Mg/m
3
. A high capacity 

fixed ring modified swelling pressure cell was used during the hydraulic conductivity tests. 

The compacted bentonite specimens were saturated with distilled de-aired water. The 

swelling pressures developed during hydration were monitored. The hydraulic conductivity 

tests were commenced once the swelling pressures were stabilised. The applied hydraulic 

gradients considered were between 1250 and 12500. These corresponded to pressure 

differentials between the inflow and outflow pressures of 100 to 1000 kPa. The actual inflow 

water volumes were calculated based on the system expansion at various water pressures. The 

hydraulic conductivity was determined from Darcy’s law.  

 

It was found that the inflow of water to the compacted bentonite specimen was greater 

than the outflow of water from the compacted bentonite specimen. The inflow volume was 

corrected to take into account the secondary expansion, and the corrected inflow and outflow 

volumes showed good compatibility. The water inflow and outflow rates were found to be 

about equal.   

 

The influent and effluent to the compacted bentonite specimen was sampled after each 

hydraulic conductivity tests, to assess the loss of exchangeable cations from the bentonite-

water system due to a number of transport processes, including diffusion and advection. 

Approximately 30ml of fluid was taken from the inflow and outflow pipe system after each 

test, which was subjected to ICP-OES analysis.  
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The compressibility behaviour of compacted bentonite was studied using a 

conventional oedometer. Compacted specimens were allowed to swell under an applied 

pressure of 50 or 100 kPa. The specimens were then step-wise loaded up to an applied 

vertical pressure of 800 kPa. Taylor’s and Casagrande’s method were used to calculate the 

hydraulic conductivity from the coefficient of compressibility. 

 

The total percentage loss of exchangeable cations from the compacted bentonite 

specimen was then determined. It was found that less than around 6% of the initial 

exchangeable cations within the bentonite specimen were expelled during the hydraulic 

conductivity tests. No significant changes were therefore expected of the hydraulic 

conductivity of the specimen during the testing programme, which was confirmed through 

the step-wise increasing and decreasing of hydraulic gradient. 

 

A linear relationship was noted between the hydraulic gradient and hydraulic flux 

calculated from the constant flow rates at the end of the hydraulic conductivity tests. This 

indicates that Darcy’s law was valid for compacted bentonites in the range of hydraulic 

conductivities considered in this study. The calculated and measured hydraulic conductivities 

were found to decrease as the compaction dry density increased, in agreement with that 

reported in the literature. 
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CHAPTER 6 

HYDRAULIC CONDUCTIVITY OF COMPACTED  

SAND-BENTONITE SPECIMENS 

 

 

 

 

 

 

 

6.1 Introduction 

 

Sand-bentonite or crushed rock-bentonite mixtures have been considered as suitable 

backfilling materials for deep geological repositories. The backfilling material is required to 

have similar hydraulic conductivity to that of the host rock (Villar, 2007). It has been 

reported that the hydraulic conductivity of sand-bentonite mixtures increased as the bentonite 

content of the mixture decreased (Sivapullaiah et al., 2000; Komine, 2008).  
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A number of researchers have determined the hydraulic conductivity of compacted 

sand-bentonite and crushed rock-bentonite mixtures at increasing compaction dry densities 

and increasing bentonite contents. Kenney et al. (1992) reported that the low conductivity of 

the sand-bentonite mixture was due to the continuation of the bentonite matrix within the 

specimen. Borgesson et al. (2003) found that heterogeneities in the crushed rock-bentonite 

mixtures were observed. Increased heterogeneities resulted in increasing hydraulic 

conductivity. 

 

A number of bentonites have been considered during hydraulic conductivity tests on 

compacted sand-bentonite and crushed rock-bentonite mixtures. These include calcium 

bentonite (Prikryl et al., 2003), Nagayo clay (Watabe et al., 2011), Kunigel VI (Komine, 

2004) and an Indian bentonite (Sivapullaiah et al., 2000). The hydraulic conductivity of 

compacted crushed rock-bentonite specimens using MX80 bentonite has only been reported 

previously by Borgesson et al. (2003).  

 

The hydraulic conductivity of compacted sand-bentonite specimens determined at 

increasing compaction dry densities is presented in this chapter. The swelling pressures 

exhibited during saturation of the specimens are shown. The water inflow and outflow 

volumes are presented. The relationship between hydraulic gradient and hydraulic flux are 

shown for the compacted sand-bentonite specimens. The compressibility behaviour of 

compacted sand-bentonite mixtures is provided. 
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6.2 Saturated hydraulic conductivity of sand-bentonite mixtures 

 

6.2.1 Experimental programme 

 

Compacted sand-bentonite specimens were prepared at a ratio of 30% MX80 

bentonite and 70% sand by mass. This ratio of sand to bentonite has attracted attention as a 

suitable composition for backfilling materials in radioactive waste disposal (Gunnarsson et 

al., 2004; Nirex, 2005). Prior to compaction, the mixture was thoroughly mixed, to limit the 

heterogeneities in the specimen. Table 6.1 shows the targeted and actual dry densities of 

specimens considered in this study.  

 

Table 6.1 - Targeted and actual dry densities of sand-bentonite mixtures prepared 

Specimen 
Targeted dry density 

(Mg/m
3
) 

Attained dry density 

(Mg/m
3
) 

1 1.600 1.584 

2 1.700 1.679 

3 1.800 1.778 

 

 

The hydraulic gradients applied corresponded with the pressure differentials 

considered during the hydraulic conductivity tests on saturated bentonite. The pressure 

differentials tested were 100 kPa, 250 kPa, 500 kPa, 750 kPa and 1000 kPa. These 

corresponded to hydraulic gradients between approximately 1250 and 12500. For each 

gradient applied, the test was terminated when the inflow and outflow rates were constant.  
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6.2.2 Saturation of compacted sand-bentonite specimens under constant volume conditions 

 

The compacted sand-bentonite specimens were saturated with distilled de-aired water. 

The equilibrium swelling pressure was attained around 5000 minutes. Once the swelling 

pressures had stabilised, the hydraulic conductivity tests were undertaken. The equilibrated 

swelling pressures developed during saturation of the sand-bentonite specimens are shown in 

Figure 6.1. 

 

 

 

Figure 6.1 - Equilibrated swelling pressures prior to hydraulic conductivity tests for 

compacted sand-bentonite specimens 
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6.2.3 Measured inflow and outflow during hydraulic conductivity tests  

 

Figures 6.2, 6.3 and 6.4 show the water inflow and outflow behaviour due to the 

applied hydraulic gradients for the specimens prepared with compaction dry densities of 

1.584, 1.678 and 1.778 Mg/m
3
 respectively. The water inflow volumes were corrected to 

account for secondary pipe expansion. The correction applied to the inflow as determined 

from Equation (4.1).  

 

The inflow and outflow was observed to increase as the hydraulic gradient applied to 

the specimen was increased. For all tests carried out, the inflow and outflow rates equilibrated 

within about 1000 minutes of testing. Good compatibility was observed between the 

corrected inflow and outflow volumes for the majority of tests. The inflow and outflow rates 

were determined once steady flow conditions were observed for a minimum of 500 minutes. 

The calculated inflow and outflow rates from Figures 6.2, 6.3 and 6.4 are shown in Table 6.2. 

The outflow rate is also calculated as a percentage of the inflow rate. 

 

  



(a) i = 1243      (b) i = 3109     (c) i = 6218  

(d) i = 9327     (e ) i = 12432    (f) i = 9327  

(g) i = 6218       (h) i = 3109    (i) i =  1243    
 

Figure 6.2 - Inflow and outflow behaviour determined for the 1.584 Mg/m
3
 specimen 
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 (a) i = 1245    (b) i = 3113    (c) i = 6227  

(d) i = 9340    (e) i = 12453     (f) i = 9340  

   (g) i = 6227    (h) i = 3113     (i) i = 1245  
 

Figure 6.3 - Inflow and outflow behaviour determined for the 1.679 Mg/m
3
 specimen 
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 (a) i = 1243   (b) i = 3109  (c) i = 6218  

(d) i = 9327    (e) i = 12432   (f) i = 9327  

(g) i = 6218  (h) i = 3109  (i) i = 1243  
 

Figure 6.4 - Inflow and outflow behaviour determined for the 1.778 Mg/m
3
 specimen 

0

1000

2000

3000

4000

0 200 400 600 800 1000

   Measured inflow

   Corrected inflow

   Measured outflow

0

1000

2000

3000

4000

0 200 400 600 800 1000

   Measured inflow

   Corrected inflow

   Measured outflow

0

1000

2000

3000

4000

0 200 400 600 800 1000

   Measured inflow

   Corrected inflow

   Measured outflow

0

1000

2000

3000

4000

0 200 400 600 800 1000

   Measured inflow

   Corrected inflow

   Measured outflow

0

1000

2000

3000

4000

0 200 400 600 800 1000

   Measured inflow

   Corrected inflow

   Measured outflow

0

1000

2000

3000

4000

0 200 400 600 800 1000

   Measured inflow

   Corrected inflow

   Measured outflow

0

1000

2000

3000

4000

0 200 400 600 800 1000

   Measured inflow

   Corrected inflow

   Measured outflow

0

1000

2000

3000

4000

0 200 400 600 800 1000

   Measured inflow

   Corrected inflow

   Measured outflow

0

1000

2000

3000

4000

0 200 400 600 800 1000

   Measured inflow

   Corrected inflow

   Measured outflow

Time (minutes) 

V
o

lu
m

e
 (

m
m

3
) 

Time (minutes) 

V
o

lu
m

e
 (

m
m

3
) 

Time (minutes) 

V
o

lu
m

e
 (

m
m

3
) 

Time (minutes) 

V
o

lu
m

e
 (

m
m

3
) 

Time (minutes) 

V
o

lu
m

e
 (

m
m

3
) 

Time (minutes) 

V
o

lu
m

e
 (

m
m

3
) 

Time (minutes) 

V
o

lu
m

e
 (

m
m

3
) 

Time (minutes) 

V
o

lu
m

e
 (

m
m

3
) 

Time (minutes) 
V

o
lu

m
e
 (

m
m

3
) 



Chapter 6 

132 

 

Table 6.2 - Equilibrated inflow and outflow rates determined during this study 

Specimen 

Dry 

density 

(Mg/m
3
) 

Test 

step 

Pressure 

differential 

 (kPa) 

Hydraulic 

gradient 

(m/m) 

Inflow 

rate 
(mm

3
/min) 

Outflow  

rate 
(mm

3
/min) 

Outflow as 

percentage of 

inflow (%) 

1 1.584 

a 100 1245 1.56 1.54 98.7 

b 250 3113 2.35 2.21 94.1 

c 500 6227 3.87 3.54 91.5 

d 750 9340 5.62 5.31 94.5 

e 1000 12453 7.09 6.77 95.6 

f 750 9340 4.61 4.59 99.6 

g 500 6227 2.83 2.71 95.8 

h 250 3113 2.15 1.45 67.4 

i 100 1245 1.64 1.57 95.7 

2 1.679 

a 100 1243 1.02 0.74 72.5 

b 250 3109 1.34 1.28 95.5 

c 500 6218 2.24 2.13 95.1 

d 750 9327 3.31 3.22 97.3 

e 1000 12432 3.95 3.55 89.9 

f 750 9327 2.68 2.66 99.3 

g 500 6218 1.72 1.68 97.7 

h 250 3109 0.85 0.78 91.8 

i 100 1243 0.45 0.43 95.5 

3 1.778 

a 100 1243 0.55 0.49 89.9 

b 250 3109 0.74 0.71 96.0 

c 500 6218 1.39 1.26 90.6 

d 750 9327 2.25 2.16 96.0 

e 1000 12432 3.12 2.65 84.9 

f 750 9327 2.06 1.99 96.6 

g 500 6218 1.58 1.47 93.0 

h 250 3109 0.65 0.63 96.9 

i 100 1243 0.25 0.22 92.1 

 

 

The constant inflow and outflow rates determined from the hydraulic conductivity 

tests were found to be approximately equal. As with that observed from the hydraulic 
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conductivity tests on compacted MX80 bentonite, the outflow was generally observed to be 

between 95-100% of inflow. The differences between inflow and outflow rates were 

attributed to continuing secondary expansion of the system. This was supported by similar 

losses from both experimental programmes (compacted MX80 bentonite and compacted 

sand-bentonite specimens).  

 

The inflow and outflow rates were observed to decrease as the dry density of the 

specimen increased. As the hydraulic gradient applied to the specimen increased, the inflow 

and outflow rates were also observed to increase.  

 

6.2.4 Saturated hydraulic conductivity of compacted sand-bentonite  

 

The inflow and outflow hydraulic fluxes were calculated from the equilibrated inflow 

and outflow rates and the cross-sectional area of the specimen. The relationships between 

inflow hydraulic flux and the hydraulic gradient during tests are presented in Figure 6.5(a). 

The relationships between outflow hydraulic flux and the hydraulic gradient during tests are 

shown in Figure 6.5(b). A linear relationship was observed between hydraulic gradient and 

hydraulic flux for each of the specimens considered.  
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Figure 6.5(a) - Relationships between inflow hydraulic flux and hydraulic gradient 

determined during hydraulic conductivity tests 

 

The hydraulic conductivity of the sand-bentonite specimens was determined using 

Darcy’s law. The linear relationship observed between hydraulic flux and hydraulic gradient 

indicated that Darcy’s law was valid, and so a proportional ‘best fit’ line was added for each 

specimen, passing through the origin. The hydraulic conductivity was then calculated from 

the gradient of the line. The hydraulic conductivity values determined are shown in Table 6.3.  
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Figure 6.5(b) - Relationships between outflow hydraulic flux and hydraulic gradient 

determined during hydraulic conductivity tests 

 

Table 6.3- Hydraulic conductivities calculated for compacted sand-bentonite specimens 

Dry density (Mg/m
3
) 

Hydraulic conductivity 

from inflow flux  

Figure 6.5(a)  

(m/s) 

Hydraulic conductivity 

from outflow flux  

Figure 6.5(b) 

 (m/s) 

1.584 5.94 x 10
-12

 5.63 x 10
-12

 

1.679 3.38 x 10
-12

 3.19 x 10
-12

 

1.778 2.51 x 10
-12

 2.29 x 10
-12

 

 

 

 The hydraulic conductivities of the tested specimens presented in Table 6.3 were 

found to decrease as the compacted dry density of the specimen increased. This is in 

agreement with that reported in the literature. 
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6.3 Compressibility of compacted sand-bentonite specimens 

 

6.3.1 Experimental programme 

 

Compacted sand-bentonite specimens were prepared at targeted dry densities between 

1.5 and 1.8 Mg/m
3
. The specimens were prepared from predetermined masses of sand and 

MX80 bentonite and mixed thoroughly prior to compaction. The details of the targeted and 

actual dry densities of the specimens are shown in Table 6.4. 

 

Table 6.4 - Targeted and attained dry densities of specimens subjected to step-wise 

consolidation 

Specimen 
Targeted dry density 

(Mg/m
3
) 

Actual dry density 

(Mg/m
3
) 

1 1.500 1.497 

2 1.600 1.582 

3 1.700 1.680 

4 1.800 1.785 

 

 

The swell-load method (Sridharan et al., 1986) was adopted. Specimens were allowed 

to swell under an applied surcharge of 50 kPa, before being consolidated in a step-wise 

manner. Once the swelling of the specimens had equilibrated, the specimens were loaded in a 

step-wise manner. Applied vertical pressures of 100 kPa, 200 kPa, 400 kPa and 800 kPa were 

considered. The tests were terminated once equilibrium was reached.  
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6.3.2 Swelling of compacted sand-bentonite specimens under constant vertical load 

 

Table 6.5 shows the swelling potentials of the compacted sand-bentonite specimens 

due to saturation with distilled water. The swelling potentials exhibited were observed to 

increase as the dry density of the specimen increased. The swelling potentials of sand-

bentonite specimens were also observed to be considerably lower than those of compacted 

MX80 bentonite (shown previously in Table 5.6) 

 

Table 6.5 - Swelling potentials determined during saturation of compacted specimens 

Specimen dry density 

(Mg/m
3
) 

Surcharge  

(kPa) 

Swelling potential  

(%) 

Final dry density 

(Mg/m
3
) 

1.497 50 27.9 1.171 

1.582 50 29.7 1.220 

1.680 50 32.2 1.271 

1.785 50 35.3 1.319 

 

 

6.3.3 Compressibility behaviour of compacted sand-bentonite specimens 

 

The pressure-void ratio (e-log p) relationships for the compacted sand-bentonite 

specimens considered are shown in Figure 6.6. The compression of the specimen under the 

applied vertical loads was observed to slightly decrease with an increase in the initial dry 

density of the specimen. The e-log p relationship was observed to be linear at applied vertical 

pressures greater than 100 kPa.  
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Figure 6.6 - Compressibility behaviour (e - log p) for compacted sand-bentonite specimens 

 

The compressibility behaviour determined was compared with that reported by Sun et 

al. (2008) for compacted sand-bentonite mixture prepared with 30% Kunigel VI bentonite 

and 70% sand. The initial void ratio after swelling was greater in this study. This was 

attributed to the greater montmorillonite content of MX80 bentonite compared with Kunigel 

VI. The compressibility behaviour once saturated, however, was comparable to that of the 

results reported by Sun et al. (2008). 
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6.4 Comparison between saturated hydraulic conductivity determined experimentally 

and from compressibility behaviour 

 

The compressibility behaviour of the compacted sand-bentonite specimens was used 

to calculate the saturated hydraulic conductivity. Taylor’s and Casagrande’s methods were 

used to determine the coefficient of compressibility through the root-time and log time 

procedures. The calculated hydraulic conductivities were then compared with those 

determined from the hydraulic conductivity tests. The hydraulic conductivity of compacted 

sand-bentonite mixtures as a function of dry density is shown in Figure 6.7(a). The 

relationship between void ratio and hydraulic conductivity is shown in Figure 6.7(b).  

 

   

Figure 6.7(a) - Comparison of saturated hydraulic conductivity of compacted sand-bentonite 

mixtures as a function of dry density 
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The hydraulic conductivity was observed to decrease as the void ratio decreased (i.e. 

the dry density of the specimen increased). At overlapping void ratios, the hydraulic 

conductivities determined from hydraulic conductivity tests were comparable to those 

obtained from the compressibility behaviour of the compacted san-bentonite specimens.  

 

Some scatter was observed in Figure 6.7 from the hydraulic conductivities calculated 

from the compressibility behaviour. This scatter is primarily attributed to the degree of 

accuracy of measurements taken during the consolidation of the compacted sand-bentonite 

specimens, as a significantly lesser degree of consolidation was observed than that of the 

compacted bentonite specimens. In addition, the potential for heterogeneities to be present 

within the sand-bentonite matrix may also have contributed to the scatter observed.  

 

 

Figure 6.7(b) - Comparison of saturated hydraulic conductivity of compacted sand-bentonite 

mixtures as a function of void ratio 
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The hydraulic conductivity determined in this study was compared to experimental 

results in literature where 70:30 sand-bentonite specimens have been tested. Sivapullaiah et 

al. (2000) reported for a void ratio range between 1 - 2, the hydraulic conductivities of sand-

bentonite mixtures decreased from 10
-9

 to 10
-11

 m/s. Gunnarsson et al. (2004), reported  that 

for compacted sand-bentonite specimens prepared with compaction dry densities between 1.7 

and 1.9 Mg/m
3
, the saturated hydraulic conductivity determined decreased from 10

-11
 to 10

-12
 

m/s.  

 

The results obtained in this study are comparable to that reported in literature. The 

slight differences between the hydraulic conductivity determined in the current study and 

those reported in literature are due to the type of bentonite considered in the specimen. The 

results obtained by Borgesson et al. (2003) for mixtures comprised of MX80 bentonite and 

crushed rock are in reasonable agreement with that determined in this study. 

 

 

6.5 Concluding remarks 

 

The saturated hydraulic conductivities of compacted sand-bentonite specimens were 

presented in this chapter. The water inflow and outflow volumes under step-wise increasing 

and decreasing hydraulic gradients were shown. The hydraulic conductivity of compacted 

sand-bentonite specimens was calculated from Darcy’s law. The compressibility behaviour of 

compacted sand-bentonite mixtures was also shown. The coefficient of compressibility was 

calculated at each test stage using Taylor’s and Casagrande’s methods. The hydraulic 

conductivities were calculated from the coefficients of compressibility. 
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As with the compacted bentonite specimens, the outflow rate was observed to be 

between 95 and 100% of the inflow rate for most cases.  The correction of water inflow 

volumes to account for system expansion showed reasonable comparison with the measure 

water outflow volumes during the hydraulic conductivity tests.  

 

The hydraulic conductivity of the specimens was found to decrease as the compaction 

dry density of the specimen increased. The hydraulic conductivities calculated from 

coefficients of compressibility showed a greater scatter than for compacted MX80 bentonite. 

This was attributed to measurement inaccuracies when determining the consolidation 

behaviour of the specimens, and to heterogeneities within the sand-bentonite mixture. The 

results obtained showed good agreement with that reported previously in literature. 



Chapter 7 

143 

 

 

CHAPTER 7 

GAS PERMEABILITY OF COMPACTED 

BENTONITES 

 

 

 

 

 

 

 

7.1 Introduction 

 

The gas permeability of compacted bentonite is of particular importance in the 

disposal of municipal solid waste. Gas emissions from municipal landfill liners are primarily 

composed of methane and carbon dioxide produced from bacterial decomposition. The build-

up of methane in landfill liners should be avoided due to its combustible nature.  

 

Geosynthetic clay liners have been proposed as suitable cover materials for landfills. 

The landfill cover may not be fully saturated, depending on environmental factors. 
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Compacted bentonites are a constituent component of geosynthetic clay liners (Petrov et al., 

1997; Lee and Shackelford, 2005). The hydraulic conductivity of geosynthetic clay liners has 

been widely investigated in the context of landfill liners. The gas permeability of unsaturated 

compacted bentonite has attracted limited attention. Didier et al. (2000) determined the gas 

permeability of compacted bentonites by nitrogen gas at water contents between 46 - 73%. 

An approximately linear relationship between air content and gas permeability was observed. 

Bouazza et al. (2004) established the effect of wet-dry cycles on the gas permeability of 

geosynthetic clay liners when saturated with de-ionised water and electrolyte solutions.  

 

The gas permeability of compacted bentonites has been reported in literature for 

increasing water contents (Didier et al., 2000; Bouazza, 2002; Bouazza and Vangpaisal, 

2003). A number of other aspects, including electrolyte concentration, have been considered. 

The gas permeability of compacted bentonites at low water contents has not been reported in 

the literature.   

 

The objective of the chapter was to determine the gas permeability of compacted 

bentonite at the air-dry water content (8%). The gas permeabilities of compacted bentonite 

specimens were determined from the flow of nitrogen gas. An existing device commonly 

used for determining the gas permeability of concrete specimen was modified to allow for 

testing of compacted bentonite specimens. The pressure within the device was increased to 

the starting pressure, and the outlet valve was open. The rate of pressure reduction, the 

pressure decay within the device, was monitored regularly. The rate of pressure decay was 

plotted to produce pressure-decay curves for each of the initial pressures considered, for a 

range of compaction dry densities.  



Chapter 7 

145 

 

The gas permeabilities of the specimens were calculated from Darcy’s law. The 

relationship between gas permeability and compaction dry density at the air-dry water content 

was established. The relationship between the gas permeability and hydraulic conductivity of 

the bentonite specimen was assessed.  

 

 

7.2 Experimental programme 

 

7.2.1 Specimen preparation 

 

Compacted MX80 bentonite specimens were prepared with increasing compaction 

dry densities. The targeted and actual compaction dry densities of the specimens considered 

in the current study are presented in Table 7.1. Post-compaction, a 7.5 mm hole was drilled 

through the length of the specimen, described in Subsection 3.6.3.  

 

Table 7.1 - Targeted and actual dry densities of the compacted specimens used in the study 

Specimen 
Targeted dry 

density (Mg/m
3
) 

Actual dry density 

(Mg/m
3
) 

1 1.400 1.391 

2 1.500 1.489 

3 1.550 1.536 

4 1.600 1.605 

5 1.650 1.637 

6 1.700 1.692 

7 1.750 1.739 

8 1.850 1.832 

 



Chapter 7 

146 

 

Dry densities lower than 1.3 Mg/m
3
 were not considered as the integrity of the 

compacted MX80 bentonite specimen could not be maintained while the central hole was 

drilled. Specimens prepared between 1.3 and 1.4 Mg/m
3
 could not be tested as it was not 

possible to seal the top and bottom surfaces with petroleum jelly.  

 

7.2.2 Testing programme 

 

The testing procedure is provided in detail in Chapter 3. Prior to the start of each gas 

permeability test, the pressure within the gas permeability cell and the connecting gas 

reservoir was raised to the required starting pressure. The gas permeability experimental set-

up considered during this study had not been previously used to determine the gas 

permeability of compacted bentonite, and so the range of initial pressures which could be 

considered was unknown. The initial pressure employed when determining the gas 

permeability of cast concrete specimens was 1 MPa (Gardner, 2005).  

 

In the current study, the initial pressure was increased in a step-wise manner for each 

gas permeability test. Multiple tests were carried out on each specimen. The initial starting 

pressure considered was 100 kPa. The tests were carried out until the pressure in the gas 

permeability cell had reduced and stabilised. The lid was replaced and the next test was 

conducted at 200 kPa. The initial pressure was increased by 100 kPa for each test. The 

maximum initial pressure considered was 1 MPa. After each test was terminated, the lid of 

the gas permeability cell was removed and the specimen was inspected for cracks. If cracks 

were observed in the specimen, no further tests were conducted. 
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7.3 Determination of gas permeability from pressure-decay curves 

 

7.3.1 Procedure for calculating gas permeability  

 

The gas permeability can be determined from Darcy’s law (Bouazza and Vangpaisal, 

2003), assuming that steady state flow is present. However, in the case of the gas 

permeability tests carried out in this study, the specimen was not in steady state conditions.  

 

For this study, it has been assumed that the rate of mass loss, and hence volume flow 

rate, are constant (as would be the case for steady state flow) at any instant, and so the gas 

permeability may be estimated for pressure intervals.  

 

When the outflow valve on the gas permeability cell was opened, the gas pressure 

within the gas permeability cell decreased. The rate of pressure decrease in the gas 

permeability cell over time is referred to as the pressure decay curve. Pressure decay curves 

were obtained for each gas permeability test undertaken.  

 

Selected parameters were required to determine the gas permeability following the 

procedure described by Gardner (2005). The half time of pressure decay (t
1/2

) is the time 

taken for the pressure inside the gas permeability cell to reduce to half of the starting value 

(in minutes). The gradient of the initial pressure decay (a) was determined from the plot of 

log pressure against time. These parameters are shown schematically in Figure 7.1.   
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Figure 7.1 - Selected parameters from the pressure decay curves required to determine gas 

permeability 

 

Martin (1986) carried out a series of tests to observe the pressure decay curve for 

concrete specimens.  It was shown that the emperical relationship between relative pressure 

and time could be approximated by 

 

� = 10����           (7.1) 

 

where p is the relative pressure (in bar), a is the initial gradient of the pressure-decay curve 

and t is the time (in seconds).  

 

Using the ideal gas law, it can be shown that a loss of pressure from the system can 

lead to a loss of mass. In order to determine the rate of pressure loss from the system, the first 

order derivative of pressure, i.e. the rate of pressure decrease with respect to time, is required.  
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Firstly, the empirical relationship proposed by Martin (1986) required modification, to 

convert the pressure from bar to Pa. The relative pressure was also modified to give the 

absolute pressure. Equation (7.2) shows the modified empirical relationship for the pressure 

decay curves. 

 

	 = 10
.�
���          (7.2) 

 

where P is the absolute pressure (in Pa), a is the initial gradient of the pressure decay curve, 

and t is the time (in seconds). 

 

To determine the rate of pressure decay, the modified empirical relationship between 

pressure and time shown in Equation (7.2) was differentiated. The first order derivative of 

Equation (7.2) with respect to time is stated in Equation (7.3). 

 

��

��
= −10
.�
���� ln 10         (7.3) 

 

The gas permeability tests carried out by Martin (1986) were all undertaken with an 

initial pressure of 1MPa (10 bar). As such, the rate of pressure decay stated in Equation (7.3) 

is valid for tests with an initial pressure of 1MPa. Following the form of the relationship 

stated by Martin (1986), the generalised empirical pressure decay relationships were obtained 

for the initial pressures considered during the experimental study;  

 

	 = 10������ ������          (7.4) 
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where P1 is the absolute initial pressure within the gas reservoir, in Pa. The generalised rate 

of pressure decay was determined from Equation (7.4) to be; 

 

	 = −10������ ���������10         (7.5) 

 

For each test, once the rate of pressure decay had been determined, the rate of mass 

loss was calculated from the ideal gas law. The ideal gas law is given as 

 

	� = � !           (7.6) 

 

where P is the gas pressure, v and m are the volume and mass of gas respectively, R is the 

individual gas constant (assumed to be 296.8 J/kgºK for nitrogen) and T is the temperature. 

 

The volume of nitrogen gas contained with the gas permeability cell was determined 

as the sum of the volumes of each of the components of the testing apparatus. This included 

the cell itself, the gas reservoir, and the connecting pipework. The volume of nitrogen gas 

was calculated as 

 

�" = �# + �%& + �' − �(         (7.7) 

 

where vg is the volume of nitrogen gas lost during the gas permeability tests, vR is the volume 

of the gas reservoir, vec is the volume of the empty gas permeability cell, vp is the volume of 

the pipes connecting the gas reservoir to the gas permeability cell, and vb is the volume of the 

compacted bentonite specimen.  
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In this study, vR was determined to be 1.86 × 10
-3

 m
3
. vec was calculated as 1.65 × 10

-3
 

m
3
. vp was determined to be 1.62 × 10

-5
 m

3
. vb was 1.37 × 10

-3
 m

3
. vg was therefore calculated 

to be 2.15 × 10
-3

 m
3
.  

 

The volume of nitrogen gas present within the apparatus during each gas permeability 

test was 2.15 × 10
-3

 m
3
. The individual gas constant and the temperature were assumed to 

remain constant through the experimental programme. The pressure decay during the gas 

permeability test resulted in a corresponding mass reduction. It follows therefore that the 

pressure decay rate was proportional to the rate of mass loss from the system, as shown in 

Equation (7.8). 

 

�
��

��
=  !

�)

��
           (7.8) 

 

where 
�)

��
	is the mass loss rate during the gas permeability tests. 

 

For each gas permeability test undertaken, the parameters a and t
1/2

 were determined 

from the pressure-time relationship, as shown in Figure 7.1. The rate of pressure decay was 

then calculated from Equation (7.5), using a and t
1/2

. The subsequent rate of mass loss was 

calculated from Equation (7.8). The flow rate of nitrogen gas through the specimen i.e. the 

volumetic rate at which gas volume left the system - was then calculated from Equation (7.9), 

using the density of nitrogen gas at the outlet (i.e at atmospheric pressure). The volume flow 

rate of gas through the specimen was calculated as 

 

�)

��
= +

�,

��
           (7.9) 
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where 
�,

��
 is the gas flow rate through the specimen, and ρ is the density of nitrogen gas. 

 

Darcy’s law describes laminar, viscous flow which is dependent on the properties of 

the permeating fluid. Dhir and Byars (1993) stated the following derivation of Darcy’s Law 

to determine the gas permeability, which is independent of fluid properties 

 

-

.
= −

/

0

��

�1
          (7.10) 

 

where A is the cross-sectional area perpendicular to the direction of flow, K is the gas 

permeability, µ is the viscosity and 
��

�1
	is the pressure gradient in the direction of flow. 

 

The modified version of Darcy’s law stated in Equation (7.10) was solved by 

separation of the variables. The pressure differential was assumed to be the difference 

between the absolute inlet pressure to the specimen (the pressure within the gas reservoir) and 

the absolute outlet pressure (i.e. atmospheric). The gas permeability was found to be 

 

2 =
-01

.�����3�
           (7.11) 

 

where L is the flow length, P1 is the absolute inlet pressure and P2 is the absolute outlet 

pressure . 

 

Equation (7.11) is valid for steady state conditions. However, as the gas permeability 

tests were not carried out in steady state conditions, the volume flow rate Q varies with 

pressure P, due to the compressible nature of gas. At any given point,  
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PQ = P1Q1 = P2Q2 = constant = PmQm,       (7.12) 

 

where Q1 is the volume flow rate at the inlet of the cell, P2 is the absolute pressure at the 

outlet of the cell, Q2 is the volume flow rate at the outlet of the cell, Pm is the mean pressure 

and Qm is the mean volume flow rate. P1, Q1, P2, Q2 and P are known at any pressure interval, 

therefore substituting for Q from Equation (7.12) in Equation (7.10) and integrating, the gas 

permeability was expressed as 

 

2 =
401�3-3

.���
3��3

3�
           (7.13) 

 

where all symbols have the meanings stated previously. In the current study, the volume flow 

rate at the outlet (Q2) is assumed to be  
�,

��
, as determined from Equation (7.9). 

 

 

7.3.2. Calculation of gas permeability in the current study 

 

Gas permeability tests were carried out across a range of compaction dry densities. 

The pressure decay curve for each test was established. The half-life of pressure decay (t
1/2

) 

and the gradient (a) were calculated from the pressure decay curves.  

  

The pressure interval chosen for this work was from the initial pressure reading until 

the relative half pressure was reached. The pressure decay rate was calculated from Equation 

(7.5), based on the initial starting pressure of the test. The rate of mass loss was calculated 

from Equation (7.8). Once the rate of mass loss was determined, the gas permeability was 

calculated from Equation (7.13). The outlet pressure from the gas permeability cell, P2, was 
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assumed to be atmospheric pressure. The gas permeability was calculated at the outflow of 

the gas permeability cell, at which the density of nitrogen was assumed to be 1.2506 kg/m
3
. 

The flow length perpendicular to the direction of flow was calculated to be 0.0453 m. The 

cross-sectional area was calculated at the midway diameter of the specimen as 2.29 x 10
-4

 m
2
.  

 

The gas permeability tests carried out on the compacted MX80 bentonite specimens 

are presented in Table 7.2. The half time (t
1/2

) and gradient of pressure decay (a) determined 

from the pressure decay curves are shown. The calculated rate of mass loss and volume flow 

rate are stated. The gas permeability calculated from each test is also presented. 
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Table 7.2 - Calculation of gas permeability from pressure decay curves 

Dry 

density 

(Mg/m
3
) 

Absolute 

starting 

pressure 

(MPa) 

Half 

time of 

decay 

(s) 

Gradient 

a 

Rate of 

pressure 

loss 

x 10
4
 

(Pa/s) 

Rate of 

mass loss 

x10
-3

 

 (kg/s) 

Volume 

flow rate  

x10
-3

 

(m
3
/s) 

Gas 

permeability 

K  

x10
-13 

(m
2
) 

1.391 

0.201 1.9 0.10 4.47 1.11 0.88 75.4 

0.301 1.3 0.17 9.44 2.33 1.87 84.9 

0.401 1.1 0.21 14.23 3.52 2.81 80.1 

0.501 1.0 0.28 20.34 5.03 4.02 78.6 

0.601 0.9 0.31 26.32 6.51 5.20 74.2 

1.489 

0.301 3.2 0.05 2.40 0.59 0.47 40.4 

0.401 3.1 0.06 3.61 0.89 0.71 32.5 

0.501 3.0 0.09 5.58 1.38 1.10 31.4 

0.601 2.4 0.10 7.96 1.97 1.57 30.8 

0.701 2.2 0.13 10.86 2.69 2.15 30.6 

0.901 2.0 0.16 15.89 3.93 3.14 26.9 

1.536 

0.201 5.8 0.02 1.06 0.26 0.21 17.9 

0.301 5.4 0.02 1.44 0.36 0.28 13.0 

0.401 3.8 0.05 3.72 0.92 0.74 21.0 

0.501 3.1 0.06 5.41 1.34 1.07 20.9 

0.601 2.8 0.08 7.71 1.91 1.52 21.7 

1.583 

 

0.301 13.1 0.020 0.76 0.19 0.15 12.8 

0.401 11.1 0.018 1.05 0.26 0.21 9.4 

0.501 8.9 0.020 1.53 0.38 0.30 8.6 

0.601 7.0 0.025 2.31 0.57 0.46 8.9 

0.701 6.4 0.028 2.99 0.74 0.59 8.4 
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Table 7.2 - Calculation of gas permeability from pressure decay curves (continued)

Dry 

density 

(Mg/m
3
) 

Absolute 

starting 

pressure 

(MPa) 

Half 

time of 

decay 

(s) 

Gradient 

a 

Rate of 

pressure 

loss 

x 10
4
 

(Pa/s) 

Rate of 

mass loss 

x10
-3

 

 (kg/s) 

Volume 

flow rate  

x10
-3

 

(m
3
/s) 

Gas 

permeability 

K  

x10
-13 

(m
2
) 

1.615 

0.401 12.2 0.008 0.44 0.11 0.09 7.5 

0.501 8.9 0.012 0.87 0.21 0.17 7.8 

0.601 9.2 0.016 1.32 0.33 0.26 7.4 

0.701 6.7 0.022 2.17 0.54 0.43 8.4 

0.901 6.0 0.037 3.58 0.89 0.71 10.1 

1.677 

0.301 16.0 0.011 0.51 0.13 0.10 8.6 

0.401 12.2 0.014 0.87 0.22 0.17 7.9 

0.501 9.8 0.016 1.29 0.32 0.25 7.2 

0.601 8.9 0.023 1.99 0.49 0.39 7.7 

0.701 8.2 0.028 2.66 0.66 0.53 7.5 

0.801 7.0 0.037 4.23 1.05 0.84 7.2 

1.739 

0.301 21.9 0.008 0.37 0.09 0.07 6.2 

0.501 15.6 0.013 1.13 0.28 0.22 4.4 

0.901 9.4 0.020 2.69 0.67 0.53 4.6 

1.10 11.1 0.031 3.56 0.88 0.70 4.0 

1.832 

0.301 29.1 0.006 0.28 0.07 0.05 4.7 

0.401 31.1 0.007 0.39 0.10 0.08 3.5 

0.501 36.7 0.007 0.45 0.11 0.09 2.5 

0.701 33.3 0.008 0.70 0.17 0.14 2.0 

0.901 32.7 0.009 0.95 0.23 0.19 1.6 
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Several factors were observed to affect the half time of pressure decay. Firstly, at 

higher compaction dry densities, the half time of decay increased. At the highest dry 

densities considered (1.832 Mg/m
3
), the half time of decay was an order of magnitude 

greater than that observed in the case of the specimen with compaction dry density of 

1.391 Mg/m
3
. Secondly, the half time of decay reduced as the starting pressure of the test 

increased. The half time of decay was found to halve from the lowest to the highest starting 

pressure applied to the specimen.  

 

The pressure decay rate, the rate of mass loss and the volume flow rate were all 

observed to decrease as the dry density of the specimen increased, but to increase as the 

initial starting pressure of the test was increased. 

 

The relationship between the compaction dry density of the specimen and the 

calculated gas permeability is shown in Figure 7.2. The relationship between the void ratio 

of the specimen and the gas permeability is presented in Figure 7.3. 

 

Gas permeability values between 8.5 x 10
-12

 and 1.6 x 10
-13

 m
2
 were determined in 

the current study. The gas permeability was observed to decrease as the compaction dry 

density increased, and to increase as the void ratio of the specimen increased. 

 

The determination of gas permeability of compacted bentonite at the low water 

contents is scarce in literature. Bouazza and Vangpaisal (2003) reported that the gas 

permeability determined for water contents of less than 20% was about 10
-11

 m
2
. The 

compaction dry densities of the samples tested were at the lower end of the range 
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considered in the current study; nevertheless, the gas permeability values determined in 

this study are comparable.  

 

 

 

Figure 7.2 - The relationship between compaction dry density and gas permeability for 

compacted MX80 bentonite specimens at the air-dry water content 

 

Some scatter was observed in the gas permeability calculated for each compacted 

MX80 specimen. This is thought to be due to gas slippage, a non-Darcian effect associated 

with gas flow in porous media (Rushing et al., 2004).  

 

Klinkenburg (1941) reported the existence of the layer of gas molecules adjacent to 

the pore wall where molecule-wall collisions occurred. The increased collisions can cause 

increased molecule acceleration. Slippage can be significant when determining the gas 
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permeability by standard laboratory tests (Eates and Fulton, 1956). The correction of gas 

flow velocities to account for slippage was not within the scope of this study. 

 

 

 

Figure 7.3 - The relationship between void ratio and gas permeability for compacted 

MX80 bentonite specimens at the air-dry water content 

 

 

7.4 Determination of the hydraulic conductivity from the gas permeability 

 

The gas permeability K determined in the current study provides a measure of the 

permeability of a porous material which is independent of the type of permeant. A 

theoretical relationship exists between K and the hydraulic conductivity, k, such that the 

ideal hydraulic conductivity of a material could be calculated. The relationship between the 

gas permeability and the hydraulic conductivity is provided in Equation (7.14). 
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� = 	�
�

�
          (7.14) 

 

where k is the hydraulic conductivity, µ is the viscosity of water and ρ is the density of the 

water. The viscosity and density of water were assumed to be 0.00102 Pa.s and 977 kg/m
3
 

respectively (Handbook of Chemistry and Physics, 2006). 

 

 The gas permeabilities determined in this study were between 10
-11

 and 10
-13

 m
2
. 

Using Equation (7.14), the ideal hydraulic conductivities calculated were found to range 

between 10
-6

 and 10
-7

 m/s.  

 

The calculated values of hydraulic conductivity were found to be significantly 

greater than those determined previously in Chapter 5. Within the bentonite microstructure, 

discrete hydrate layers are absorbed to the platelet surfaces during hydration (Likos, 2004). 

The water molecules within these layers are tightly held to the platelet surface (van 

Olphen, 1963), leading to an increased viscosity within the immediate proximity of the 

platelet (Pusch and Yong, 2005).  

 

Given the physico-chemical interactions taking place within the bentonite 

microstructure, it would be anticipated that flow through the bentonite would be retarded, 

and therefore the hydraulic conductivity would be expected to be reduced. The hydraulic 

conductivities calculated from the gas permeabilities determined in this study support this, 

as they are significantly higher than those determined experimentally. It is therefore not 

considered appropriate to determine the hydraulic conductivity of bentonite from the gas 

permeability. 
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7.5 Concluding remarks 

 

Geosynthetic clay liners, comprised of compacted bentonite and geosynthetic 

layers, have been proposed as suitable materials for landfill covers and liners. During the 

lifetime of the landfill, gases will be generated due to bacterial degradation of the waste 

material. Methane is one such gas produced. The gas permeability of the landfill cover 

should prevent the build-up of methane in the landfill. 

 

In the current study, the gas permeability of compacted bentonite at lower water 

contents was determined using nitrogen gas. Specimens were prepared with compaction 

dry densities between 1.39 and 1.83 Mg/m
3
. A number of gas permeability tests were 

carried out on each specimen. The starting pressure of the test was increased in a step-wise 

manner until pressure cracks appeared in the compacted specimens. The maximum starting 

pressure considered as 1 MPa. 

 

Pressure decay curves were produced from the gas permeability tests. The half time 

of pressure decay and the gradient of the time-log pressure behaviour were determined. 

The pressure decay rate was determined. The rate of mass loss and the volume flow rate 

were calculated from the rate of pressure decay. The gas permeabilities of compacted 

bentonite specimens were established. 

 

The half time of pressure decay was observed to increase as the dry density of the 

specimen increased. A decrease in the half time of pressure decay was observed as the 

starting pressure of the test was increased. The gas permeabilities were observed to 

decrease as the compacted dry density of the specimens increased. Some scatter was 
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observed for the different gas permeability tests. This was attributed to the effect of gas 

slippage. 

 

An attempt was made to use the gas permeabilities to calculate the ideal hydraulic 

conductivities of compacted bentonite. The hydraulic conductivity values determined were 

significantly greater than those determined experimentally. It was concluded that due to the 

physico-chemical effects within the bentonite water system, it was not appropriate to use 

the gas permeability to determine the hydraulic conductivity. 
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CHAPTER 8 

ASSESSMENT OF THE HYDRAULIC 

CONDUCTIVITY OF COMPACTED SATURATED 

BENTONITE FROM VARIOUS MODELS 

 

 

 

 

 

 

8.1 Introduction 

 

The saturated hydraulic conductivity of a soil can be used to determine the flow of 

fluid under a hydraulic gradient. For low permeability soils, including compacted saturated 

bentonite, the experimental determination of hydraulic conductivity is time consuming. A 

number of experimental limitations can influence the measured hydraulic conductivity of the 

compacted saturated bentonites (Dixon et al., 1999).  
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The hydraulic conductivity of compacted saturated bentonite has been reported to be 

influenced by a number of factors, including compaction dry density, temperature, 

montmorillonite content, type of bulk fluid and predominant cation type. A review of the 

factors influencing the measured hydraulic conductivity was presented in Chapter 2.   

 

Various models have been used to assess the hydraulic conductivity of compacted 

saturated bentonite. Olsen (1962) proposed the Cluster model to account for flow through the 

micro- and macro-pores of compacted saturated bentonite. This method was modified by 

Achari et al. (1999), using Gouy-Chapman diffuse double layer theory. Chapius and Aubertin 

(2003) reviewed the applicability of the Kozeny-Carman model for a number of soils 

previously reported in literature. Komine and Ogata (1999) and Komine (2004) proposed a 

model for calculating hydraulic conductivity in compacted bentonite based the swelling 

potential. The hydraulic conductivity of compacted bentonite can also be determined from the 

compressibility behaviour, as considered previously in this study. 

 

The objectives of the chapter are threefold. Firstly, existing models will be used to 

determine the saturated hydraulic conductivity of compacted MX80 bentonite. Secondly, a 

new saturated hydraulic conductivity model will be proposed. Finally, the existing and 

proposed models will be compared with the experimentally determined saturated hydraulic 

conductivity. 

 

In this chapter, existing hydraulic conductivity models are presented. These are the 

Kozeny-Carman model and the parallel plate model proposed by Komine (2004). The 

saturated hydraulic conductivity model proposed in this study in presented. The parameters of 

compacted MX80 bentonite required for each of these models are stated. The calculated 
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hydraulic conductivity behaviour is compared with that determined experimentally. 

Conclusions are drawn on the accuracy of the models in calculating the saturated hydraulic 

conductivity behaviour. 

 

 

8.2 Models available to assess the hydraulic conductivity of compacted saturated 

bentonite 

 

The models used to determine the saturated hydraulic conductivity of compacted 

bentonite in the current study are presented here. A review of the implementation of these 

models reported in literature has been presented previously. 

 

8.2.1 Kozeny-Carman model 

 

The Kozeny-Carman model is derived from Poisuelle’s Law of flow through a bundle 

of parallel flow tubes (Mitchell and Soga, 2005). The model was presented by Kozeny (1927) 

and later modified by Carman (1937; 1956). The Kozeny-Carman equation is stated as 

 

�� = ������
	


��
��
 �
��
	���        (8.1) 

 

where kh is the hydraulic conductivity, γp is the density of the permeating fluid, µp is the 

viscosity of the permeating fluid, S0 is the wetting surface per unit volume of particles and e 

is the void ratio.  
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8.2.2 Hydraulic conductivity determined from the model proposed by Komine (2004) 

 

The determination of hydraulic conductivity from Komine (2004)’s approach is 

modified from the method proposed by Komine and Ogata (1999). The swelling strain of 

montmorillonite was stated as 

 

���∗ = ������
��           (8.2) 

 

where εsv* is the swelling strain of montmorillonite, Vv is the volume of voids within the 

bentonite, Vsw is the swelling deformation under constant vertical pressure and Vm is the 

volume of montmorillonite within the bentonite.  

 

Komine (2004) calculated the swelling strain of montmorillonite (εsv*) from the 

increase in swollen inter-platelet distance. The half distance between two montmorillonite 

platelets for each exchangeable cation species considered was determined from 

 

�� = ���∗
	  !" + $%�&'(�) + $%�&'(�        (8.3) 

 

where di is the half distance between two platelets for exchangeable cation i (in m), t is the 

thickness of the montmorillonite platelet (in m) and Rion is the non-hydrated radius of the 

exchangeable cation (in m).  

 

The hydraulic conductivity was determined for each cation type considered from 

Equation (8.4). The weighted average of the individual hydraulic conductivities was 

calculated from Equation (8.5).   
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�� = �*�
	+�*� $2��(+          (8.4) 

 

� = 	
-∑ /0���1.�          (8.5) 

 

where ki is the hydraulic conductivity determined for each exchangeable cation species (in 

m/s), γaw is the density of adsorbed water within the montmorillonite platelets (in Pa/m), µaw 

is the viscosity of adsorbed water within the montmorillonite platelets (in Pa.s), B is the 

cation exchange capacity (in meq/100g) and Bi is the individual exchange capacities for the 

exchangeable cation species considered (in meq/100g). 

 

The ratio between density (γaw) and viscosity (µaw) of adsorbed water was calculated 

 

�3�
�3� = 	

4
�*�
�*�           (8.6) 

 

where R is an empirical factor, γfw is the density of free water (in Pa/m) and µaw is the 

viscosity of free water (in Pa.s). R has been reported as 14 for silty sands and 79 for bentonite 

(Sato, 1971), based on empirical fitting of previous experimental results. Both14 and 79 have 

been included in the calculations presented by Komine (2004). 

 

8.2.3 Hydraulic model proposed in the current study 

 

When compacted bentonite is allowed to saturated, diffuse double layers form 

between individual clay platelets (van Olphen, 1963; Tripathy et al., 2004; Mitchell and 

Soga, 2005). The development of diffuse double layers is accompanied by a subdivision of 
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platelet stacks (Saiyouri et al., 2004). At high water contents, the number of unit layers per 

unit stack in sodium bentonite was reported to reduce from 350 to 10 (Saiyouri et al., 2004). 

The increased micro-porosity in compacted saturated bentonite is accommodated by a 

reduction in the macro-porosity. Bourg et al. (2006) reported that the macro-porosity in 

compacted bentonite is fully eliminated as the compaction dry density is increased to 1.8 

Mg/m
3
. It was assumed in the model proposed in this study that the flow in compacted 

saturated bentonites predominantly occurs between platelets, as the flow channels through 

macro-pores are not present due to the degree of compaction. 

  

Parallel plate flow was used to model the hydraulic conductivity of compacted 

saturated bentonites. Parallel plate flow is considered to be appropriate for modelling flow 

through compacted bentonite as the clay platelets are infinite in the a and b directions (Grim, 

1953). The c spacing between platelet layers can be determined from the degree of saturation 

of the bentonite and the inter-platelet spacings determined for discrete hydrate layers 

(Saiyouri et al., 2000). The velocity profile between two parallel plates is shown in Figure 

8.1.  

 

 

Figure 8.1 - Velocity flow profile between parallel plates (from Nalluri and Featherstone, 

2001) 

Umax Parallel plates 

dP/dx 

y 

x 
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The velocity profile between parallel plates is determined from Equation (8.7) 

(Nalluri and Featherstone, 2001).  The maximum velocity is found at the midpoint between 

the two plates. 

 

56
57 = 8 9
:

9;
           (8.7) 

 

where dp/dx is the pressure gradient, µ is the viscosity of the fluid and U is the velocity. 

 

The state of water in the interlayer pores is complex. Fixed hydrate layers are 

adsorbed to the platelet surface due to crystalline swelling (Likos, 2004). Up to 4 hydrate 

layers have been reported at being present between platelets prior to the formation of diffuse 

double layers. The mobility of the first hydrate layer in sodium bentonite was stated as 30% 

(Kemper et al., 1964).  

 

Pusch and Yong (2005) presented the water viscosity at increasing distances from the 

platelet surface. This is reproduced in Figure 8.2.  

 

Figure 8.2 - Viscosity of pore water at increasing distance from the platelet surface (from 

Pusch and Yong, 2005) 
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The decrease in the pore water viscosity observed from Figure 8.2 was linearly 

approximated up to distances of 4 nm from the platelet surface was approximated by 

Equation (8.8). 

 

8 = 0.005 − 909091A                           (8.8) 

 

where µ is the pore water viscosity (in Pa.s), and y is the distance from the montmorillonite 

surface (in m). 

 

The velocity profile was determined between the platelet surface and the half platelet 

spacing distance, d. The viscosity approximated from Equation (8.8) was substituted into 

Equation (8.7). The velocity profile was determined by integrating Equation (8.7) twice with 

respect to y, and rearranging for U. Using the known boundary conditions that the velocity at 

the platelet surface is zero, the velocity profile (between y = 0 and y = d) was calculated as 

 

B = 200 96
97 C$A + 5.5D10EF( ln$0.005 − 909091A( − AI + J	A + J+           (8.9) 

 

J	 = 96
97 K 	

+$ .  LEF F F	9(− 200C$� + 5.5D10EF( ln$0.005 − 909091�( − � + 2.91D10EMIN	(8.10) 

 

J+ = 3.205 96
97                  (8.11) 

 

where dP/dx is the pressure gradient and d is the half platelet separation distance (in m) 

 

The average velocity between the two platelets (u) was calculated from Equation (8.12). 
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Q = R :S� 9;
9                 (8.12) 

 

Using Darcy’s law, the hydraulic conductivity was calculated from  

 

� = T
�                  (8.13) 

 

where k is the hydraulic conductivity, u is the average fluid velocity and i is the hydraulic 

gradient. 

 

 

8.3 Calculation of hydraulic conductivity from the various models 

 

8.3.1 Calculation of hydraulic conductivity from the Kozeny-Carman model 

 

The Kozeny-Carman model describes the relationship between hydraulic conductivity 

and void ratio. In the current study, the hydraulic conductivity was calculated at assumed 

void ratios. The density of water at 298°K was assumed to be 977 kg/m
3
 (Handbook of 

Chemistry and Physics, 2006). The viscosity of water at 298°K was assumed to be 0.00102 

Pa.s (Handbook of Chemistry and Physics, 2006).  

 

Carman (1956) reported that the k0T
2
 is equal to 4.8 ± 0.3 for uniform spheres. 

Mitchell and Soga (2005) stated that k0 is equal to 2.5, and T is equal to √2. In the current 

study, k0T
2
 was assumed to be 5, taking the values reported by Mitchell and Soga (2005). The 

wetted surface area, S0, was calculated from the specific surface area of the bentonite 
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determined previously. It was assumed that all platelet surfaces within the bentonite had been 

fully hydrated. The specific surface area of the MX80 was determined to be 640 m
2
/g. 

 

The Kozeny-Carman model has been used by a number of authors. Dixon et al. (1999) 

reported good agreement between the Kozeny-Carman model and the experimental hydraulic 

conductivity determined for bentonite. Schaap and Lebron (2001) stated that only 

macroscopic data was necessary to predict the hydraulic conductivity of soils using the 

Kozeny-Carman model. Chapius and Aubertin (2003) reported that the Kozeny-Carman 

model can be used with confidence for hydraulic conductivity values between 10
-1

 and 10
-11

 

m/s. The hydraulic conductivities determined experimentally were observed to be between 

1/3 and 3 times that calculated from the Kozeny-Carman model (Chapius and Aubertin, 

2003). Carrier (2003) stated a number of limitations of the Kozeny-Carman model. In fine 

grain soils, such as bentonites, the physio-chemical forces are not taken into account.  

 

8.3.2 Calculation of hydraulic conductivity from Komine (2004)’s approach 

 

The hydraulic conductivity was calculated from Komine (2004)’s approach using the 

swelling potentials of the five compacted bentonite specimens considered during 

consolidation. The swelling potentials of the specimens were assumed. The parameters used 

in determining the hydraulic conductivity from Komine (2004)’s model are shown in Table 

8.1. The density and viscosity of water was that assumed previously. 
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Table 8.1 - Properties used for calculating the hydraulic conductivity from Komine (2004)’s 

model 

 

Parameter Value Comments 

Thickness of platelet (t) 0.96 nm  

Montmorillonite content (Cm) 76 %  

Non-hydrated radius of calcium ion 0.100 nm 

From Alther (2004) 
Non-hydrated radius of magnesium ion 0.072 nm 

Non-hydrated radius of potassium ion 0.138 nm 

Non-hydrated radius of sodium ion 0.102 nm 

Calcium exchange capacity 31.9  

Magnesium exchange capacity 9.1  

Potassium exchange capacity 1.6  

Sodium exchange capacity 45.7  

Total cation exchange capacity 88.3  

R 14, 79 From Komine (2004) 

 

 

The value of R has been reported as 79 for bentonite clay and 14 for silty clay (Sato, 

1971). Komine (2004) considered both 14 and 79 when determining the hydraulic 

conductivity of compacted bentonite. Komine (2004) reported good agreement between the 

experimental values obtained with the hydraulic conductivity calculated using R = 79.The 

value of R applied is an empirical correction factor for the hydraulic conductivity calculated. 

Significant differences in hydraulic conductivity were calculated based on the two values 

considered. 
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8.3.3 Calculation of hydraulic conductivity from the model proposed in this study 

 

The hydraulic conductivity calculated for a range of void ratios using the proposed 

model. For each void ratio assumed, Equation (8.14) was used to calculate d in each case. 

 

U = VWXY�           (8.14) 

 

where G is the specific gravity of bentonite solids, S is the specific surface area and d is the 

half-distance spacing between platelets. 

 

 Once d was determined for each void ratio, the velocity profile between the platelets 

was determined from Equation (8.9). The average velocity, u, was then determined from 

Equation (8.12), and the hydraulic conductivity for each void ratio was determined from 

Equation (8.13). 

 

The proposed model does not consider the effect of interacting diffuse double layers 

on the viscosity of fluid. The relationship between viscosity and distance from the platelet 

surface reported by Pusch and Yong (2005) did not consider a secondary platelet and the 

influence of the platelet on the viscosity. It was assumed in the current model that the 

viscosity of water between the platelet surface and the midway distance was that reported by 

Pusch and Yong (2005). It would be expected the viscosity would be greater if these 

additional forces were considered, which would reduce the calculated hydraulic conductivity.  

 

An example calculation is given here. The void ratio of the bentonite was determined 

to be 0.88. Using Equation (8.14), the interplatelet spacing, d, was found to be 5 x 10
-10

 m. 
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The velocity profile of flow through the inter-platelet space was determined from Equation 

(8.9) as a function of y, the distance from the platelet surface. This relationship was then 

integrated to determine the average velocity within the inter-platelet region from Equation 

(8.2).  The average velocity was determined to be 2.17 x 10
-8

 m/s. The average hydraulic 

conductivity was determined from Equation (8.3) and found to be 4.6 x 10
-12

 m/s. 

 

 

8.4 Comparison of the models used to assess the hydraulic conductivity of compacted 

saturated bentonite 

 

The saturated hydraulic conductivity was calculated for the models considered in this 

study. The saturated hydraulic conductivity was calculated for void ratios between 0 and 4. 

For the Kozeny-Carman model, and the model proposed in this study, the hydraulic 

conductivity was calculated for an assumed void ratio. For Komine (2004)’s method, the 

hydraulic conductivity was calculated from the previously determined swelling potential.  

 

Figure 8.3 shows the comparison between the hydraulic conductivity models used in 

this study and the saturated hydraulic conductivity determined experimentally. The results 

obtained through hydraulic conductivity tests and from the compressibility behaviour of the 

compacted bentonite specimens are shown. The models considered in this study shown 

varying agreement with the experimental values determined.  
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Figure 8.3 - Comparison of prediction models with experimentally determined hydraulic 

conductivity 

 

The Kozeny-Carman model can be seen to best predict the hydraulic conductivity 

behaviour of compacted saturated bentonite, with a close agreement observed across the 

range of void ratios considered. The good agreement observed between the Kozeny-Carman 

model and the experimental results of this study supports the conclusions of Chapius and 

Aubertin (2003) that the Kozeny-Carman model is appropriate in determining the hydraulic 

conductivity of compacted saturated bentonite.  

 

The hydraulic conductivities determined by Komine (2004)’s approach were found to 

differ significantly. This was primarily due to the R value used in calculation. Using R = 79, a 
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reasonable agreement was observed between the calculated hydraulic conductivity and the 

experimental results, although the calculated hydraulic conductivity was greater. The values 

calculated when R = 14 were significantly higher than the experimental results. The results 

calculated from Komine (2004)’s method were limited by the swelling potential tests 

conducted. Further tests were not considered as part of the experimental programme.  

 

The model proposed in this study was not found to show good agreement with the 

experimental results obtained. The calculated hydraulic conductivity determined was greater 

than that observed experimentally. As previously discussed, a key limitation of the proposed 

model is that the effect of interacting diffuse double layers on water viscosity is not 

considered. The water within the inter-platelet region would be affected by forces from both 

platelets, not just the one considered in this study. The resultant effect of interacting diffuse 

double layer would be expected to reduce the hydraulic conductivity determined. Due to time 

constraints, this was not considered in the current study. 

 

    

8.5 Concluding remarks 

 

The hydraulic conductivity of compacted saturated bentonite was calculated from 

various hydraulic conductivity models. The Kozeny-Carman model was used to determine 

the hydraulic conductivity for a range of void ratios. Komine (2004)’s approach was used to 

calculate the hydraulic conductivity from the swelling pressures previously determined.  A 

new model for determining the hydraulic conductivity of compacted saturated bentonite was 

proposed based on parallel plate theory. The proposed model was described in the chapter. 
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The available models were used to assess the hydraulic conductivity of compacted 

saturated MX80 bentonite. The Kozeny-Carman model was found to be in good agreement 

with the experimental results obtained. The hydraulic conductivities determined from 

Komine (2004)’s method varied significantly, due to the R value used in calculation. The 

calculated values were found to be in reasonable agreement with experimental values when R 

= 79, but were significantly larger when R = 14. The proposed model showed did not 

adequately assess the saturated hydraulic conductivity, and provided hydraulic conductivity 

values that were consistently greater than those measured. These differences were primarily 

attributed to the effect of the interacting diffuse double layer not being considered.  
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CHAPTER 9 

CONCLUSIONS 

 

 

 

 

 

 

 

 

The objective of this thesis was to (i) experimentally determine the saturated 

hydraulic conductivity of compacted bentonites and sand-bentonite mixtures used in 

geoenvironmental applications and (ii) to verify the applicability of various existing models 

used to assess the hydraulic conductivity for compacted bentonites. 

 

A commercially available MX80 bentonite and Leighton Buzzard sand was used 

during the investigation. The properties of the bentonite including the grain size distribution, 

Atterberg limits, cation exchange capacity and specific surface area were determined from 

standard laboratory tests. Some differences were noted between the material properties of the 
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MX80 bentonite found in this study and those reported in the literature. The differences in the 

properties are attributed to the differences in the specific surface area and the cation exchange 

capacity, particularly the percentage of sodium. 

 

 The hydraulic conductivities of compacted bentonite specimens were determined for a 

dry density range of 1.088 to 1.664 Mg/m
3
. The hydraulic conductivities of compacted sand-

bentonite specimens prepared with 70% sand and 30% bentonite were determined for a dry 

density range of 1.584 to 1.778 Mg/m
3
. The compaction dry densities of bentonite and sand-

bentonite mixtures tested were similar to those considered in the literature for 

geoenvironmental applications. 

 

A high capacity fixed ring modified swelling pressure cell was used during the 

hydraulic conductivity tests. The cell was similar to rigid-walled permeameters used 

previously in the literature for determining the hydraulic conductivity of compacted bentonite 

and sand-bentonite mixtures. The cell accompanied two high precision pressure-volume 

controllers that enabled the application of predetermined hydraulic gradients under constant 

head conditions.  

 

The water inflow and outflow volumes were monitored by the pressure-volume 

controllers. The resolution of pressure and volume of the controllers used was 1 kPa and 1 

mm
3
 respectively. Fluorinated ethylene propylene pipes were used to connect the pressure-

volume controllers to the hydraulic conductivity cell. Expansion of the inflow system due to 

applied water pressures between 45 and 1200 kPa was considered for calculating 

compatibility between inflow and outflow water volumes during hydraulic conductivity tests.  
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The compacted bentonite and sand-bentonite specimens were hydrated with distilled 

de-aired water. The swelling pressures developed during the hydration process were 

monitored. The hydraulic conductivity tests commenced once the swelling pressures were 

equilibrated. Pressure differentials (i.e. the differences in water pressures between the inflow 

and outflow sides) between 100 kPa and 1000 kPa were applied to the compacted specimens 

during the hydraulic conductivity tests. The applied hydraulic gradients varied between 

approximately 1250 and 12500.  

 

For each specimen, the applied hydraulic gradient was increased to the maximum 

value and then decreased in a step-wise manner. At each applied hydraulic gradient, an 

equilibrium condition was considered to be reached when the water inflow and outflow rates 

were constant for a predetermined period of time. After each applied hydraulic gradient, fluid 

samples from the inflow and outflow reservoirs were analysed to explore (i) the type and 

amount of each cation expelled from the specimens and (ii) the influence of initial dry density 

and applied hydraulic gradient on the type and amount of exchangeable cations expelled.  

 

The actual inflow water volumes were calculated based on the system expansions at 

various applied water pressures (i.e. applied hydraulic gradients). The hydraulic 

conductivities of the compacted bentonite and sand-bentonite specimens were calculated 

from Darcy’s law. 

 

 The compressibility behaviour of compacted bentonite and sand-bentonite specimens 

was studied using a conventional oedometer. Compacted specimens were allowed to swell 

under an applied pressure of either 50 or 100 kPa. The specimens were step-wise loaded up to 

a vertical pressure of 800 kPa. Taylor’s and Casagrande’s methods were used to calculate the 
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coefficient of compressibility (Cv), from which the hydraulic conductivities could be 

calculated. 

 

 The gas permeability of compacted bentonite specimens prepared at the air-dry water 

content (8%) was experimentally determined. Nitrogen gas as used during the gas 

permeability tests. Specimens were prepared at a range of compaction dry densities and 

placed within the gas permeability cell. The initial pressure to which the tests were carried 

out was increase from 0.1 MPa to 1 MPa. 

   

The saturated hydraulic conductivity of compacted bentonites was assessed using 

three existing models, such as the Kozeny-Carman model and the model proposed by Komine 

(2004). A model based on parallel plate flow was proposed in this thesis. The proposed 

model considered the viscosity of water in the inter-platelet region and its influence on the 

hydraulic conductivity of compacted saturated bentonites. The results from the proposed 

model were compared with the existing models. The results obtained from the various models 

were compared with the measured hydraulic conductivities of compacted bentonites. 

 

Based on the findings reported in this thesis, the following conclusions are drawn. 

 

1. During the hydraulic conductivity tests, the inflow volume of water to the compacted 

bentonite specimens was found to be greater than the outflow volume of water from 

the specimens. The difference between inflow and outflow water volumes was 

attributed to the expansion of the measuring system (the connecting pipes and the 

water reservoir). The correction of the inflow volume due to system expansion 

produced a closer correlation between inflow and outflow volumes.  
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2. The equilibrated inflow and outflow rates were found to be comparable for applied 

hydraulic gradients between about 1250 and 12500. Previous authors have typically 

considered either the inflow or the outflow rate when determining the hydraulic 

conductivity of compacted bentonite. This approach, however, has been reported to 

potentially introduce error (Chapius, 2012). The findings of this study indicated that 

the inflow rate was approximately equal to the outflow rate, and either can be used to 

calculate the hydraulic conductivity. 

  

3. A linear relationship was noted between the hydraulic gradient and the hydraulic flux 

calculated from the constant flow rates (at the end of the hydraulic conductivity tests). 

This indicated that Darcy’s law was valid for the range of hydraulic gradients 

considered, and is in good agreement with that generally reported in the literature. 

 

4. The hydraulic conductivity of compacted saturated bentonite decreased as the 

compaction dry density increased. The measured hydraulic conductivity decreased 

from 1 × 10
-12 

m/s to 4 × 10
-13

 m/s with an increase in dry density from 1.088 to 1.664 

Mg/m
3
. The hydraulic conductivity test results in this study are in good agreement 

with those reported in literature for similar bentonites. 

 

5. The hydraulic conductivity of compacted 70:30 sand-bentonite was found to be 

greater than the hydraulic conductivity of compacted sand-bentonite mixtures was 

found to decrease from 5 × 10
-12

 to 2 × 10
-12

 m/s as the dry density was increased from 

1.584 to 1.779 Mg/m
3
. The hydraulic conductivity test results are comparable to those 

reported in literature for similar compacted sand-bentonite mixtures prepared at the 

ratio considered in this study. 
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6. An expulsion of ions occurred during the hydraulic conductivity tests. The ions were 

found in both inflow and outflow fluid reservoirs. The expelled exchangeable cations 

(Ca
2+

, Mg
2+

, K
+
 and Na

+
) were found to be less than about 6% from the compacted 

bentonite specimens. The percentage of exchangeable cations expelled was found to 

decrease as the compaction dry density of the bentonite increased. Limited studies on 

the expulsion of exchangeable cations from compacted bentonite during the 

application of a hydraulic gradient have been reported in the literature. The relatively 

low percentage of initial cations expelled from the specimen were found to not have 

an effect on the hydraulic conductivity determined through the testing programme. 

 

7. The gas permeability of MX80 bentonite at air-dry water content was determined, and 

was found to decrease as the compaction dry density increased. For dry densities 

between 1.379 and 1.832 Mg/m
3
, the gas permeability decreased from about 8 × 10

-12
 

to 1 × 10
-13

 m
2
. Limited studies exist within the literature at low volumetric water 

contents; the gas permeability of specimens with water contents less than 20% are of 

the order of magnitude of those determined in the current study. 

 

8. The hydraulic conductivities of compacted bentonite calculated from the gas 

permeability results were found to be significantly greater than the measured 

hydraulic conductivities of the compacted saturated specimens. The differences 

between measured and calculated hydraulic conductivities were attributed to the 

swelling caused by physico-chemical forces affecting the flow of water in compacted 

saturated bentonite. 
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9. The hydraulic conductivities of compacted bentonite calculated from the Kozeny-

Carman model were in good agreement with the measured hydraulic conductivities of 

compacted saturated bentonite. The hydraulic conductivities calculated from the 

model proposed by Komine (2004) were found to differ from the measured hydraulic 

conductivities. 

 

10. The hydraulic conductivity model proposed in the study was not found to 

satisfactorily establish the hydraulic conductivity of compacted bentonite when 

compared with the measured hydraulic conductivities. The hydraulic conductivities 

determined from the proposed model were noted to be greater than those determined 

experimentally primarily due to assumptions made about the water viscosity in the 

model. 

 

To further the research undertaken in the current study, a number of areas have been 

identified as requiring further research.  

 

The chemical testing on the influent and effluent during hydraulic conductivity tests 

indicate that ions within the bentonite-water system can be expelled. However, the potential 

for ions to be expelled under long-term testing conditions has not been investigated. It is 

considered that further study on the long-term expulsion effects, in particular regarding the 

transport mechanisms controlling the expulsion of ions from the bentonite water system, may 

better inform the microstructure of the saturated bentonite, and the location of exchangeable 

cations. 
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Coupled processes are known to be present within the bentonite-water system. The 

presence of a hydraulic gradient across the specimen may lead to the development of 

additional coupled effects, such as streaming potential. Consideration of these effects can 

lead to a better understanding of the effect of hydraulic gradient, and the induced secondary 

potentials developed. 

 

The proposed model for determining the hydraulic conductivity proposed in this study is 

limited by the determination of the inter-layer viscosity. While attempts to quantify the 

increased viscosity have been reported (Pusch and Yong, 2005), the combined effect of 

interacting diffuse double layers has not been fully captured. It is felt that refinement of the 

proposed model, taking into account this and other phenomena, will lead to better agreement 

with the hydraulic conductivity results determined experimentally. 
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