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Summary   

The anti-viral acyclic nucleoside monophosphate compound Cidofovir has shown efficacy in 

treatment of Human Papillomavirus (HPV) associated genital intraepithelial neoplasia; 

however, the mechanism of action of Cidofovir in this setting has not been determined. This 

investigation focused on modifying nucleoside analogue compounds to increase their efficacy 

in HPV positive cell models of disease, in addition to determining the molecular mechanism of 

action of Cidofovir in premalignant HPV associated intraepithelial neoplasia.  

ProTide modification increases the efficacy of nucleoside analogue compounds by increasing 

their cellular permeability. Cidofovir was not amenable to ProTide manipulation; however, 

ProTide derivatives of its sister compounds, Adefovir and Tenofovir, were synthesized. Parent 

Adefovir and Tenofovir and a range of their respective ProTide modified daughter compounds 

were examined for inhibition of cell growth and effect on cell size and morphology in HPV 

positive and negative transformed cell lines. The most effective compounds were further 

examined for dose response in normal HPV negative untransformed Human Epidermal 

Keratinocytes (HEKs) and naturally HPV immortalized short term (NHIST) cell lines cloned from 

vulval and vaginal intraepithelial neoplasia biopsies. ProTide analogues displayed striking 

increased efficacy in comparison to their parent compounds; however, they did not show 

specificity to transformed or HPV positive cell lines.  

Cidofovir did not show specificity to HPV positive cells when examined for growth inhibitory 

effect in HPV positive and negative cell models. A variety of molecular processes were 

examined to determine the mechanism by which Cidofovir inhibits cell growth in validated 

NHIST cell lines and HEK cells.  At the concentrations investigated, Cidofovir did not cause 

apoptosis in HPV positive or negative cells and its growth inhibitory effect appeared likely to 

be associated with cell cycle arrest or senescence. The effects of radiation on the molecular 

response induced by Cidofovir were also evaluated as previous studies suggested Cidofovir 

can function as a radiosensitizer. Cidofovir combined with gamma radiation did not result in 

apoptosis but was associated with an augmented molecular response in NHIST cell lines. On 

the contrary, Cidofovir combined with gamma radiation caused a major apoptotic response in 

HPV negative HEKs, suggesting such a combination could result in disadvantageous effects on 

healthy tissue if it were used in vivo.  
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1. Introduction 

1.1. The Cell Cycle, DNA Repair and Cancer 

1.1.1.  The Cell Cycle 

Neoplasia, meaning new growth, is a consequence of uncontrolled cell division/abnormal 

cell proliferation. Normal cell proliferation involves the reproduction of one cell to form 

two daughter cells. The sequence of stages through which a cell passes between one 

division and the next is known as the cell cycle. This cycle is made up of four stages; G1, S, 

G2 and M phase (Weinberg, 2013). G1, S and G2 make up interphase, where the cycling cell 

spends most its time and performs the majority of its pre-divisional functions including 

growth and replication of cellular organelles and DNA. M phase involves the partitioning 

of the cell to produce two new daughter cells and includes mitosis and cytokinesis. G1 and 

G2 are gap phases preceding the S and M phases respectively, in which the cell verifies 

that the cellular processes that occurred in previous phases were completed accurately 

(Weinberg, 2013). 

Most eukaryotic cells are quiescent and exist in an inactive state called G0, a phase outside 

the cell cycle (Gray et al., 2004). Mitogens or growth factors can induce cells in G0 to re-

enter the cell cycle and pass the G1 restriction point (Foijer and Te Riele, 2006). Before 

they pass this restriction point, cell division is dependent on mitogens, however, 

afterwards they are committed to progress through the cell cycle without the need for 

growth factors (Pardee, 1989, Foijer and Te Riele, 2006). 

Cyclins and cyclin dependent kinases (CDKs) coordinate passage of the cell through the 

different stages of the cell cycle (Weinberg, 2013). Cyclins are the regulatory subunits of 

highly specific CDKs and upon binding the cyclin induces a conformational change in the 

catalytic subunit of the CDK revealing its active site. Different cyclin-CDK complexes are 

present at specific points in the cell cycle. D-type cyclins and CDK4/6 drive cell cycle 

progression through G1. E-type cyclins and CDK2 are involved in G1 to S phase transition 

via phosphorylation of certain substrates. A-type cyclins and CDK2 complexes are 

important for S phase progression. A-type cyclins followed by B-type cyclins associate with 
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CDK1 and direct cell cycle progression through G2. Finally, B-type cyclins and CDK1 trigger 

many of the events involved in mitosis (Weinberg, 2013). 

A second form of cell cycle regulation is checkpoint control, which is a more supervisory 

form of regulation in comparison to regulation via the cyclin kinase family (Collins et al., 

1997). Cell cycle checkpoints are a series of biochemical signalling pathways that sense 

and induce a cellular response to DNA damage and are important for maintaining the 

integrity of the genome. The G1 checkpoint occurs at the end of the G1 phase and can lead 

to the arrest of the cell cycle in response to DNA damage (Murray, 1994). The G2 

checkpoint occurs at the end of the G2 phase and can lead to the arrest of the cell cycle in 

response to damaged or unreplicated DNA to ensure proper completion of S phase 

(Murray, 1994). The M checkpoint or mitotic spindle assembly checkpoint can lead to the 

arrest of chromosomal segregation in response to misalignment on the mitotic spindle 

during metaphase of mitosis (Murray, 1994). Disruption of these checkpoints can lead to 

mutations that may induce carcinogenesis (Pecorino, 2012). The phases of the cell cycle 

including checkpoints, cyclin-CDK complexes and CDK inhibitors are outlined in Figure 1.1.  
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(Dehay and Kennedy, 2007) 

 

Figure 1.1. The Mammalian Cell Cycle 

The mammalian cell cycle is composed of four individual phases: G1, S, G2 and M. The G1 

and G2 phases precede S phase (during which DNA is replicated) and M phase (mitosis) 

respectively. The G1 checkpoint occurs at the end of G1 phase and functions to inhibit cell 

cycle progression in response to unfavorable environmental conditions and DNA damage. 

The G2 checkpoint occurs at the end of the G2 phase and inhibits progression of the cell cycle 

in response to damaged or incorrectly replicated DNA. The spindle assembly checkpoint 

occurs during M phase and blocks anaphase if chromatids are not correctly assembled on 

the mitotic spindle. Specific cyclin and CDK complexes drive progression through the various 

phases of the cell cycle. CDK inhibitors block the actions of CDKs at various points of the cell 

cycle. The four INK4 proteins (p16, p15, p18 and p19) inhibit the cyclin D-CDK4/6 complexes 

that are active in early and mid G1 phase. The three KIP/CIP CDK inhibitors (p21, p27 and 

p57) can inhibit the remaining cyclin-CDK complexes and are active throughout the cell cycle. 

 

Adapted from Dehay et al. 2007 
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1.1.2. DNA Repair 

To maintain the integrity of the genome and avoid deleterious mutations cells possess 

several different mechanisms of DNA damage repair:  

Nucleoside excision repair (NER) is a DNA damage repair pathway involved in the excision 

of major UV-induced photoproducts caused by sunlight such as cyclobutane pyrimidine 

dimers (CPDs) and the (6-4) pyrimidine–pyrimidone photoproducts (6-4PPs) (de Laat et al., 

1999). 

Base excision repair (BER) occurs in response to smaller DNA damage lesions caused by 

simple alkylating agents, free radicals and hydrolysis at both a spontaneous and 

continuous level (Seeberg et al., 1995, Offer et al., 1999). DNA glycosylases are the main 

enzymes involved in BER and act by removing damaged or modified bases through 

cleavage of the N-glycosylic bond between the defective base and the deoxyribose 

moieties of the nucleotide residues (Seeberg et al., 1995). 

Mismatch repair (MMR) corrects DNA base-base mismatches and insertion/deletion 

mispairs generated during DNA replication and recombination (Li, 2008). As well as 

genome-wide instability, defects in MMR are linked to predisposition to particular types of 

cancer including hereditary non-polyposis colorectal cancer, resistance to 

chemotherapeutic agents, and aberrations in meiosis and sterility (Li, 2008). 

Homologous recombination (HR) repairs a variety of DNA lesions, including single-strand 

DNA gaps, interstrand crosslinks and DNA double strand breaks (DSBs) (Krejci et al., 2012). 

DNA DSBs can be created by a number of different processes, including treatment with 

genotoxic chemicals, ionizing radiation, collapse of replication forks and endogenous DNA 

breaks (Krejci et al., 2012). HR uses extensive regions of DNA homology to accurately 

repair DSBs using the genetic code on the undamaged sister chromatid or homologous 

chromosome (Kanaar et al., 1998). HR repairs damaged DNA during S phase of the cell 

cycle (Saleh-Gohari and Helleday, 2004). 

Non-homologous end-joining (NHEJ) repairs DNA DSBs using no or very limited sequence 

homology to re-join juxtaposed ends directly, in a manner that is not necessarily error free 
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(Kanaar et al., 1998, Moore and Haber, 1996). NHEJ can repair DNA DSBs at any point 

during the cell cycle (Rothkamm et al., 2003). As NHEJ is typically an imprecise process it 

can be useful for immune diversification in lymphocytes; however, it may also contribute 

to some of the genetic changes associated with cancer and ageing (Lieber et al., 2003). 

Microhomology-mediated end joining (MMEJ) is a third less characterized DSB repair 

mechanism. In MMEJ DNA DSBs are repaired via the use of microhomologous sequences 

of approximately 5 to 25 nucleotides (McVey and Lee, 2008). However, this form of repair 

always results in deletions (McVey and Lee, 2008). It is thought that MMEJ contributes to 

oncogenic chromosome rearrangements and genetic variation in humans (McVey and Lee, 

2008). 

1.1.3. The Hallmarks of Cancer 

The connection between deregulation of the cell cycle, defects in DNA repair pathways 

and unchecked proliferation resulting in neoplasia is evident. Defects in the synthesis, 

regulation, or recognition of growth factors/mitogens and related proteins that modulate 

the cell cycle can all result in tumour formation and cancer progression (Pecorino, 2008). 

It has been proposed that the majority of cancer genotypes are a manifestation of eight 

crucial transformations in cell physiology, termed hallmarks of cancer, which together 

with two transformation enabling characteristics dictate malignant cell and tissue growth 

(Hanahan and Weinberg, 2000, Hanahan and Weinberg, 2011). The eight hallmarks of 

cancer include: 

1.1.3.1. Self-Sufficiency in Growth Signals 

Normal cells cannot divide and proliferate without the aid of mitogenic signals. However, 

oncogenes have evolved, which encode proteins that mimic mitogens and trick the cell 

into proliferation (Hanahan and Weinberg, 2000). Tumours often show autocrine cell 

growth, and are rarely dependent upon exogenous growth stimulation. Three 

characteristic molecular approaches for achieving autonomy are observed and involve 

alteration of; 
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 extracellular growth signals 

 transcellular transducers of those signals  

 intracellular circuits that translate those signals into action (Hanahan and 

Weinberg, 2000) 

Cell surface receptors that relay positive growth signals to the cell interior can be targets 

of deregulation during tumorigenesis (Hanahan and Weinberg, 2000). Over expression of 

growth promoting receptors may induce cancer cells to become hyper-sensitive to normal 

levels of growth factor that would not ordinarily initiate proliferation (Hanahan and 

Weinberg, 2000). Additionally, cancer cells can alternate the types of extracellular matrix 

receptors they express, supporting ones that transmit positive proliferative  signals 

(Lukashev and Werb, 1998). Alterations in intracellular signalling molecules, for example 

the SOS-Ras-Raf-MAPK cascade, which receive and process signals emitted by ligand-

activated growth factor receptors and integrins, are the most complex autonomic features 

of cancer cells. An estimated 25% of human tumours bear structurally abnormal Ras,  

which allows for the release of mitogenic signals into cells in the absence of activation by 

their usual upstream regulators (Medema and Bos, 1993).  

1.1.3.2. Insensitivity to Growth Inhibitory Signals 

Cancer cells exist by evading cell cycle inhibitory signals. For example, disruption of the 

key antiproliferative pRb pathway liberates E2F which stimulates cell proliferation leaving 

cells insensitive to anti-growth factors. Aside from direct mutation, pRb activity, which is 

associated with TGFβ control (Franch et al., 1995), can be disrupted in several different 

ways in various types of human tumours (Hanahan and Weinberg, 2000). Some tumours 

lose sensitivity to TBFβ through dysfunctional/mutated cell surface receptors (Markowitz 

et al., 1995). Another study found that under particular cellular growth conditions pRb 

removal transforms TGFβ growth-inhibitory effects into growth-stimulatory effects 

(Herrera et al., 1996).  

1.1.3.3. Evasion of Programmed Cell Death 

It is now accepted that acquired resistance to apoptosis is a fundamental hallmark of the 

majority of cancers. This has been demonstrated in transgenic mice, where inactivation of 
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pRb in the choroid plexus resulted in the formation of slow growing microscopic tumours 

with high apoptotic rates. The accompanying inactivation of p53 led to fast growing 

tumours with low numbers of apoptotic cells (Symonds et al., 1994).  

1.1.3.4. Limitless Replicative Potential 

Immortalized cells are cells that have gained an infinite growth capacity allowing them to 

replicate indefinitely (Adolphe and Thenet, 1990, Hayflick, 1997). The majority of tumour 

cells that are grown in cell culture appear to be immortalized, suggesting that at some 

stage during tumorigenesis advancing premalignant cell populations lose their ability to 

limit mitosis, overcome senescence and acquire unlimited replicative potential (Hanahan 

and Weinberg, 2000).  

Telomere conservation is apparent in nearly all types of malignant cells (Shay and 

Bacchetti, 1997). Most cells accomplish telomere conservation via up-regulation of 

telomerase, which functions as a reverse transcriptase enzyme using intrinsic RNA as a 

template to elongate the guanine-rich strand of telomere DNA (Bryan and Cech, 1999). 

Other cells preserve telomere length by activating a mechanism termed Alternative 

Lengthening of Telomeres (ALT), which is thought to maintain telomere length through 

homologous recombination-mediated DNA replication (Cesare and Reddel, 2010). In order 

to prohibit normal human cells from unlimited replicative potential, both mechanisms are 

heavily suppressed under normal physiological conditions (Bryan and Cech, 1999). 

1.1.3.5. Sustained Angiogenesis 

In the initial stages of cancer progression, proliferating neoplastic cells lack the ability to 

form new blood vessels from pre-existing vessels, a process termed angiogenesis. This 

restricts their capacity for expansion. In order to advance to a larger tumour mass, 

neoplastic cells must develop angiogenic ability (Hanahan and Folkman, 1996). Negative 

and positive signals can promote or inhibit angiogenesis.  

Tumours appear to activate angiogenesis by altering the balance of angiogenic inducers 

and inhibitors which is promoted by altered gene expression (Hanahan and Folkman, 

1996). Numerous tumours show increased expression of vascular endothelial growth 

http://en.wikipedia.org/wiki/Blood_vessel
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factor (VEGF) and/or fibroblast growth factor (FGF), or decreased expression of 

endogenous inhibitors such as interferon-β (Singh et al., 1995).  

1.1.3.6. Tissue Invasion and Metastasis  

The ability of cancer cells to invade and metastasize enables them to escape the primary 

tumour mass and colonize new areas in the body, where nutrients and space are not 

limited (Hanahan and Weinberg, 2000). Tissue invasion and metastasis use similar 

strategies which involve changes in the physical coupling of cells to their 

microenvironment and activation of extracellular proteases. Various classes of proteins 

such as cell to cell adhesion molecules (CAMs) and integrins, which are involved in cell 

adhesion and attachment, are altered in cells possessing invasive or metastatic 

characteristics (Hanahan and Weinberg, 2000). In cancer, the most observed change in 

cell-environment interactions involves E-cadherin, a calcium dependent cell-cell adhesion 

molecule, which is universally expressed on epithelial cells. The coupling of adjacent cells 

by E-cadherin allows for the relay of anti-proliferative signals by cytoplasmic contacts with 

β-catenin, a protein that helps coordinate transcription and cell to cell adhesion, to 

intracellular signalling cascades (Christofori and Semb, 1999). Normal E-cadherin function 

can be lost in many epithelial cancers due to inactivation of E-cadherin or β-catenin genes 

by mutation, transcriptional repression or proteolysis of the extracellular cadherin domain 

(Christofori and Semb, 1999).  

1.1.3.7. Reprogramming of Energy Metabolism 

Reprogramming of energy metabolism is described as an emerging hallmark of cancer 

(Hanahan and Weinberg, 2011). Unlike normal cells, in the presence of oxygen, cancer 

cells alter their glucose metabolism by limiting their energy metabolism mostly to 

glycolysis, which leads to a process called “aerobic glycolysis” (Vander Heiden et al., 2009). 

As this process is counterproductive, in that 18 fold less ATP can be produced by this 

method compared to normal aerobic respiration (Nelson and Cox, 2005), cancer cells 

compensate for this by increasing the importation of glucose into the cytoplasm by up-

regulating glucose transporters, such as GLUT1 (Krzeslak et al., 2012). It has been 

suggested that cancer cells use aerobic respiration to facilitate the uptake and 

incorporation of glycolytic intermediates into biomolecule synthesis, such as nucleosides, 
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amino acids and lipids, all of which are required for the formation of new cancer cells 

(Vander Heiden et al., 2009). 

1.1.3.8. Immunoevasion 

Evading immune destruction is described as another emerging hallmark of cancer 

(Hanahan and Weinberg, 2011). It is thought that cancer cells evade immune elimination 

by disabling elements of the immune system that have been targeted to eradicate them. 

(Hanahan and Weinberg, 2011). A murine study found that melanoma tumour expression 

of CCL21, a chemo-attractant for a range of leukocytes and lymphoid tissue inducer cells, 

was associated with immunotolerance (Shields et al., 2010). However, immunoevasion as 

a core hallmark of cancer is yet to be further developed (Hanahan and Weinberg, 2011).  

1.1.4. Transformation Enabling Characteristics 

In addition to the previously outlined hallmarks of cancer, (Hanahan and Weinberg, 2011), 

also described two transformation enabling characteristics of cancer cells: tumour 

promotion of inflammation and genome instability and mutation. To complement the 

work outlined in this thesis the latter is discussed in more detail than the former. 

1.1.4.1. Tumour Promotion of Inflammation 

Tumour promotion of inflammation can contribute to several of the hallmarks of cancer 

by delivering bioactive chemokines to the tumour microenvironment, which in turn can 

promote tumour growth, angiogenesis, invasion and metastasis (Karnoub and Weinberg, 

2006, Hanahan and Weinberg, 2011). 

1.1.4.2. Genome Instability and Mutation 

Genome instability and mutation enable cell transformation by providing selective growth 

advantage to subclonal populations of cells. This results in outgrowth of the mutant cells 

in a local tissue environment and subsequent dominance of the defective genotype 

(Hanahan and Weinberg, 2011). Genome instability can occur via a range of different 

processes, which can be classified according to the category of event stimulated. 

Chromosomal instability caused by failure in mitotic chromosome transmission or failure 

of the spindle mitotic checkpoint results in changes in chromosome number (Aguilera and 

Gomez-Gonzalez, 2008, Draviam et al., 2004). Micro- and mini-satellite instability results 
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in repetitive-DNA expansions or contractions caused by replication slippage (Aguilera and 

Gomez-Gonzalez, 2008). Genome instability generating mutations including micro-

insertions, micro-deletions and base substitutions result from replication errors, 

impairment of BER or MMR (Aguilera and Gomez-Gonzalez, 2008). Genome instability 

resulting in DNA rearrangements such as translocations, duplications, inversions and 

deletions involve changes in the genetic linkage of two DNA fragments, which ultimately 

occur via DNA DSBs (Aguilera and Gomez-Gonzalez, 2008).  

1.1.5. Gain of Function Mutations 

There are several different classifications of mutation. Based on effect on gene product 

function mutations can be classified as gain of function or loss of function. Gain of 

function mutations are mutations that change the product of a gene resulting in a new 

and abnormal function. Oncogene activation is an example of gain of function mutation 

(Osborne et al., 2004).  Oncogenes were originally identified in tumour causing viruses and 

were later found to be analogous to or derived from genes in animal host cells that 

encode growth regulatory proteins, namely, proto-oncogenes (Nelson and Cox, 2005).  

On occasion during a viral infection, the DNA sequence of a host proto-oncogene can be 

copied by the virus and incorporated into its genome. Subsequently during the viral 

replication cycle this gene may become defective due to mutation. When the defective 

gene is expressed in the host cell the resulting abnormal protein product interferes with 

correct regulation of cell growth, which occasionally results in tumour formation (Nelson 

and Cox, 2005). An example of this process can be seen with Rous sarcoma virus (RSV). 

The RSV retrovirus was the first oncogenic virus to be identified (Rous, 1911). The gene 

that enables RSV to transform cells is v-src (Martin, 1970), which encodes a tyrosine 

kinase enzyme. v-src is derived from a proto-oncogene termed c-src found in normal 

vertebrate cellular DNA (Stehelin et al., 1976).  

Proto-oncogenes can also become efficient oncogenes without a viral intermediate. 

Chromosomal rearrangements, chemical agents and radiation are among the factors that 

contribute to oncogenic mutations. The mutations that activate oncogenes are genetically 

dominant and the oncogenic defect can be in any of the proteins involved in intra-cellular 
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signalling. For example, oncogenes can encode: secreted proteins (secreted Frizzled-

related proteins (sFRP)), growth factors (platelet-derived growth factor (PDGF)), 

transmembrane protein receptors (ErbB), cytoplasmic signalling proteins (Ras) and several 

transcription factors (Jun and Fos) (Nelson and Cox, 2005).  

1.1.6. Loss of Function Mutations 

Loss of function mutations involve mutations in tumour suppressor genes (TSGs). These 

genes have protein products whose function is to inhibit cell division if DNA 

damage/mutation occurs, therefore, they negatively modulate cell cycle progression 

(Collins et al., 1997). Examples of tumour suppressor gene products are pRb and p53. 

Inactivation of both copies of a tumour suppressor gene is usually required for loss of 

function. In contrast to gain of function oncogenes, loss of function mutations can be 

carried in the gene pool with no direct deleterious consequence. Mutations in pRb and 

p53 are examples of loss of function mutations (Nelson and Cox, 2005). 

1.1.7. p53 Tumour Suppressor Protein  

p53, also termed the “Guardian of the Genome”, is a sequence-specific transcription 

factor that modulates most of its downstream effects via activation or repression of target 

genes. It is a central element of several stress response pathways that prevent growth and 

survival of possible malignant cells; however, it is also one of the most frequently mutated 

tumour suppressor genes found in cancer (Levine and Oren, 2009).  

When the cell is not exposed to stress or DNA damaging agents, levels of p53 are tightly 

controlled predominantly by Mdm2, its negative regulator, through the ubiquitin-

proteasome degradation pathway in order to maintain normal homeostatic levels of cell 

growth (Haupt et al., 1997). Activation via phosphorylation of p53 in response to stresses 

such as DNA damage, hypoxia and/or oncogene activation disrupts the binding of Mdm2 

to p53 (Shieh et al., 1997), allowing p53  to proceed to regulate a number of downstream 

responses such as DNA repair, apoptosis, cell-cycle arrest, senescence or regulation of 

autophagy (Hofseth et al., 2004, Tasdemir et al., 2008). In addition, p53 is also involved in 

cell survival (Singh et al., 2002), chromosomal segregation, DNA recombination, gene 

amplification, development and differentiation (Hofseth et al., 2004). The p53 induced 
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response is influenced by several different factors, including the action and availability of 

p53 co-activators as well as the type of cellular stress and characteristics of the assaulted 

cell (Haupt et al., 1997). 

1.1.7.1. p53 Function 

p53 induces DNA repair via a range of different mechanisms. In the first instance p53 

regulates the transcription of several genes involved in NER including the global genomic 

repair (GGR)-specific damage recognition genes DDB2 and XPC (Adimoolam and Ford, 

2003). Additionally, p53 has been shown to be directly involved in BER. Activation of BER 

by p53 in response to DNA damage is associated with its capability to interact with DNA 

polymerase β and AP endonuclease. Moreover, p53 can stabilize the interaction of DNA 

polymerase β with abasic DNA (Zhou et al., 2001). p53 has also been shown to be involved 

in DNA DSB repair. It has been found that p53 is directly involved in re-joining of DSBs with 

short complementary ends of single-stranded DNA in gamma-irradiated mouse embryonic 

fibroblasts (Tang et al., 1999). Additionally, it has been suggested that p53 plays a role in 

restraining DNA exchange between inadequate homologous sequences, therefore 

inhibiting tumorigenic genome rearrangements (Akyuz et al., 2002).  

p53 can induce apoptosis at a number of different levels. It can stimulate the extrinsic 

apoptotic pathway via the transcription of genes encoding the transmembrane proteins, 

PERP, Fas and DR5 (Hofseth et al., 2004, Vousden and Lu, 2002). It also plays a role in the 

intrinsic apoptotic pathway by regulating the transcription of a subset of the Bcl-2 family 

including Bid, Bax, Noxa, and PUMA, which function by promoting cytochrome C release 

from the mitochondria (Hofseth et al., 2004). The release of cytochrome C as well as 

APAF-1, whose transcription is also regulated by p53 (Kannan et al., 2001), from 

mitochondria and their subsequent interaction with pro-caspase-9 is required for the 

formation of the apoptosome (Adams and Cory, 2002).  

p53 can delay the transition through G1, G2 and the mitotic spindle checkpoints. p53 

induces the expression of several cell cycle regulatory genes including 

CDKN1A/CIP1/WAF1, which encodes a G1 CDK inhibitor, p21. p21 binds to and inhibits the 

CDK4/cyclin D and CDK2/cyclin E complexes and prevents them from phosphorylating 
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downstream target proteins responsible for cell cycle progression (He et al., 2005). 

Gadd45, another p53-regulated protein, has been found to contribute to G2 arrest (Jin et 

al., 2000). With regards to the mitotic spindle checkpoint, it has been shown that the 

presence of spindle inhibitors impede the passage of cells through mitosis, but p53 null 

mouse embryo fibroblasts will go through numerous rounds of DNA synthesis with 

incomplete chromosome segregation, which results in the formation of tetraploid and 

octaploid cells (Cross et al., 1995).  

Cellular senescence, the process in which cells permanently lose their ability to divide or 

replicate, is linked to p53 control. The expression of CDKN1A increases at an early stage in 

senescent cells, indicating that p53 plays a role in inducing senescence at an initial stage in 

the process (Itahana et al., 2001, Stein et al., 1999). 

p53 has been shown to possess a dual role in the regulation of autophagy, a catabolic 

process that involves the degradation of unnecessary or dysfunctional cellular 

components to recycle valuable biomolecules through lysosomal machinery. Cytoplasmic 

p53 has been found to repress autophagy (Tasdemir et al., 2008), whereas nuclear p53 

has been found to induce autophagy (Crighton et al., 2006). 

1.1.8. Retinoblastoma Tumour Suppressor Protein (pRb) 

The retinoblastoma gene was the first tumour suppressor gene to be discovered (Friend et 

al., 1986). Its protein product, pRb, is a nuclear phosphoprotein that functions to suppress 

progress through the G1 phase of the cell cycle by restricting the transcription of genes 

required for G1-to-S-phase progression (Harbour and Dean, 2000). Active hypo-

phosphorylated pRb sequesters transcription factors such as E2F, which are required to 

activate the transcription of S phase genes, therefore preventing the passage of cells 

across the G1 checkpoint in normal cells. However, during the middle to late stage of the 

G1 phase, complexes of cyclin D/CDK4 and/or CDK6 elicit the phosphorylation of pRb, 

which causes its dissociated from E2F and inhibits its growth suppressive function. The 

CDK inhibitor 2 (CDKN2) gene encodes p16INK4 protein, which binds to, and inhibits the 

CDK4- and CDK6- phosphorylation and inactivation of pRb (Pande et al., 1998, Lukas et al., 

1995, Harbour and Dean, 2000). Tumour suppression via pRb requires the central ‘pocket’ 
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domain of the protein, which is disrupted by the majority of naturally arising tumour-

promoting genetic alterations and mutations, and is targeted by viral oncoproteins that 

disrupt pRb function (Harbour and Dean, 2000). 
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1.2.  Human Papillomavirus  

1.2.1. Definition and Classification 

It is now accepted that Human Papillomaviruses (HPV) are the primary causative agents of 

clinically abnormal gynaecological and anogenital epithelial lesions (van de Nieuwenhof et 

al., 2008). Infection with HPV is also known to lead to the development of respiratory tract 

papillomas and other hyper-proliferative epithelial lesions of the head and neck region 

such as the conjunctiva, ear canals, nasal sinuses and tonsils (Chow et al., 2010). 

HPV is a member of the family Papillomaviridae. More than 150 different genotypes of 

HPV have been isolated to date (Tommasino, 2013), each having a specific tropism to a 

particular epithelium type/site (Doorbar, 2006). Each genotype is characterized as being 

more than 10% different from all other HPV genotypes in their L1 genetic sequence 

(Bernard, 2005). Furthermore, these viruses can be divided into five genetically distinct 

genera: Alpha, Beta, Gamma, Mu and Nu. Distinct genera share no more than 60% 

nucleotide sequence identity in the L1 Open Reading Frame (ORF) (IARC, 2007). Subgroups 

within each genus are termed species, where species within a particular genus share 

between 60 and 70% nucleotide sequence identity (IARC, 2007). 

Gamma, Mu and Nu papillomaviruses make up the minority of currently classified HPVs 

and normally cause benign cutaneous papillomas such as superficial warts and verrucas 

(Doorbar, 2006). The two primary HPV genera are the Alpha and Beta papillomavirus 

genera, with an estimated 90% of known HPV types falling within one of these two genera 

(Doorbar, 2006). The largest genus is the Alpha papillomavirus group, whose members 

infect genital mucosa. Greater than 30 different types of the Alpha virus genus infect 

cervical epithelium, with a subgroup of these being associated with premalignant lesions 

and invasive cancer development and progression (Doorbar, 2006). Such cancer 

associated HPVs are classified into High- and Low-Risk HPVs (HR-HPV and LR-HPV 

respectively) depending on the incidence with which they are identified in cancers. HR-

HPVs are most frequently found in cancers, with HPV16 being the most prevalent type in 

the general population and the known causative agent in approximately 61% of all cervical 

cancers (de Sanjose et al., 2010). In addition to HPV16, Alpha HPV types 18, 31, 33, 35, 39, 
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45, 51, 52, 56, 58, 59 and 66 are classified as group one carcinogens by the International 

Agency for Research on Cancer (IARC) (IARC, 2012). HPV6 and 11 are low risk Alpha 

papillomaviruses, which are rarely associated with gynaecological cancer but are 

commonly found in genital warts. Alpha HPVs also include several cutaneous viruses, for 

example HPV2, but are rarely linked to cancers. Beta papillomaviruses have been related 

to unapparent or latent cutaneous infections in the general population. Beta 

papillomaviruses become problematic in immuno-suppressed patients and in individuals 

who have inherited disorders such as Xeroderma pigmentosum (XP), where infection can 

spread rapidly and become associated with non-melanoma skin cancer (NMSC) (Harwood 

and Proby, 2002). A summary of the different virus types and species within each specific 

HPV genus is outlined Table 1.1. 
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Table 1.1. HPV Genera, Species and Types 

Genus Species IARC Group 1 
Carcinogenic 
HPV Types 

Other HPV Types Within 
Species 

Species Characteristics  

Alpha 1  32, 42 Low risk, oral/genital mucosa 

 2  3, 10, 28, 29, 78, 94 Low risk, cutaneous lesions 

 3  61, 62(cand), 72, 81, 83, 84, 
86(cand), 87(cand), 89(cand) 

Low risk, mucosal lesions 

 4  2, 27, 57 Common skin warts, benign 
genital lesions in children 

 5 51 26, 69, 82 High risk, mucosal lesions 

 6 56, 66 30, 53 High risk, mucosal lesions 

 7 18, 39, 45, 59 68, 70, 85, 97 High risk, mucosal lesions 

 8  7, 40, 43, 91(cand) Low risk, mucosal/cutaneous  

 9 16, 31, 33, 35, 
52, 58 

67 High risk, mucosal lesions 

 10  6, 11, 13, 44, 74 Low risk, mucosal lesions 

 11  34, 73 High risk, mucosal lesions 

 13  54 Low risk, mucosal lesions 

 14  90 Low risk, mucosal lesions 

 15  71 Low risk, mucosal lesions 

Beta 1  5, 8, 12, 14, 19, 20, 21, 25, 
36, 47, 93 

Benign cutaneous, also 
reported in malignant lesions 

 2  9, 15, 17, 22, 23, 37, 38, 80 Benign cutaneous, also 
reported in malignant lesions 

 3  49, 75, 76 Benign cutaneous lesions 

 4  92(cand) Pre-/malignant cutaneous 
lesions 

 5  96(cand) Pre-/ malignant cutaneous 
lesions 

Gamma 1  4, 65, 95 Cutaneous lesions 

 2  48 Cutaneous lesions 

 3  50 Cutaneous lesions 

 4  60 Cutaneous lesions 

 5  88 Cutaneous lesions 

Mu 1  1 Heterogeneous lesions with 
intracytoplasmic inclusion 
bodies 

 2  63 Heterogeneous lesions with 
intracytoplasmic inclusion 
bodies 

Nu 1  41 Several larger uncharacterized 
ORFs in viral genome 

(de Villiers et al., 2004) 

The table shows division of Papillomaviridae (human) into genera and species. Specific HPV 

types are outlined for each species with emphasis on the IARC group 1 carcinogenic types 

(highlighted in yellow). Species characteristics such as tissue tropism and pathological 

properties are also outlined. (cand) = candidate HPV.  

From de Villiers et al. 2004 
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1.2.2. HPV Genomic Structure 

The HPV genome consists of double-stranded circular DNA of approximately 8000 base 

pairs (bp) (Narisawa-Saito and Kiyono, 2007). The genome has an upstream regulatory 

region (URR) spanning 400 – 700 base pairs (bp), six early (E1, E2, E4, E5, E6 and E7) region 

ORFs and two late (L1 and L2) region ORFs (Chow et al., 2010). The origin of replication is 

located in the URR, as well as core transcription factor binding sites, early promoters and 

several enhancer and repressor regulatory proteins (Chow et al., 2010). The virus 

replicates as multi-copy episomal plasmids in the nucleus of infected dividing basal and 

parabasal keratinocytes. Amplification in the copy number can be seen as the 

keratinocytes differentiate up through the various layers of epithelium reaching the mid 

to upper spinous cell layer (Chow et al., 2010). HPV genome structure is depicted in Figure 

1.2. 

1.2.3. Physical Structure of HPV; L1 and L2 Capsid Proteins  

A non-enveloped icosahedral capsid of estimated 55 nm in diameter encloses the HPV 

genome. The capsid is composed of two structural capsid proteins, one major and one 

minor, L1 and L2 respectively (Roden and Viscidi, 2006). The L1 capsid protein forms 72 

pentameric capsomeres that constitute the major portion of the icosahedral virion. One 

copy of the L2 protein is embedded into each of the 72 pentamers, which promotes shape 

and stability (Buck et al., 2008). HPV virions do not have a membrane envelope and are 

stable to environmental extremes due to cross-linking of L1 capsid proteins by disulphide 

bonds (Chow et al., 2010). An atomic model of the surface of a HPV virion is outlined in 

Figure 1.3. 
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(Munoz et al., 2006) 

 

Figure 1.2. HPV Genomic Structure  

Schematic presentation of the circular HPV DNA genome based on HPV16. The figure 

shows the arrangement of the early ORFs (E1, E2, E4, E5, E6 and E7) and the late capsid 

ORFs (L1 and L2). Both sets of early and late ORFs are separated by a non-coding upstream 

regulatory region (URR) of about 1000 bp, which contains cis-elements required for 

regulation of gene expression, replication of the genome, and its packaging into virus 

particles. 

 

Adapted from Muñoz et al. 2006  



20 
 

 

 

 

 

(Modis et al., 2002) 

 

Figure 1.3. Molecular Surface of a HPV Virion 

Heat map of the molecular surface of the atomic model of a HPV virion. The model was 

generated using combined image reconstructions from electron cryomicroscopy of bovine 

papillomavirus with coordinates from the crystal structure of small virus-like particles of the 

human papillomavirus type 16 L1 protein. 

 

 

 

Adapted from Modis et al. 2002  
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1.2.4. HPV Infection and Virus Life Cycle 

1.2.4.1. Initiation of HPV Infection 

HPV is transmitted from one individual to another via direct dermal/mucosal contact with 

an infected person. The virus requires entry to the basal epithelial layer and access to the 

immature dividing basal cells to initiate infection (Doorbar, 2006). It is speculated that 

heparin sulphate proteoglycans play a role in the initial binding/virus uptake event and 

that α6 integrin molecules act as secondary receptors for efficient infection (Shafti-

Keramat et al., 2003, McMillan et al., 1999). The viral particles are taken into the host 

epithelial cells very slowly after binding, the mode of entry differing between genotypes. 

For example, HPV16 is taken into the cell via clatherin coated endocytosis (Day et al., 

2003), whereas, HPV31 is thought to enter via caveolae (Bousarghin et al., 2003).    

It is presumed that the reducing environment of the host cell disrupts the disulphide 

cross-links of the L1 protein, and the acidic conditions in endosomes disassembles the 

capsid, releasing the viral genome into the cytoplasm, where it is transported to the 

nucleus with the aid of the minor capsid protein L2 (Chow et al., 2010).  

1.2.4.1.1. E1 and E2 Viral DNA Replication Proteins  

Early in HPV infection the viral genome exists as a stable episome. It is thought this 

process requires the expression of E1 and E2, the viral replication proteins (Doorbar, 

2006). The E1 and E2 mRNAs are derived from the same primary transcripts but spliced 

differently (Chow et al., 2010). E1 is a DNA helicase and the only enzyme encoded by HPV, 

rendering it problematic to obtain selective inhibitors of HPV replication (Chow et al., 

2010). The E2 protein initiates viral DNA replication and genome segregation in replicative 

cells (Chiang et al., 1992). It is a DNA-binding protein that identifies and binds to a 

particular palindromic motif in the non-coding region of the viral genome (Dell et al., 

2003). E2 binding in this region is required to recruit the E1 helicase to the viral origin, 

which in turn binds to host cell proteins needed for DNA replication such as replication 

protein A (RPA) and DNA polymerase α primase (Conger et al., 1999, Loo and Melendy, 

2004). The E2 protein then separates from the viral origin in an ATP dependent process, 

allowing the assembly of E1 into a double hexameric ring (Sanders and Stenlund, 1998, 

Sedman and Stenlund, 1998).  
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Besides functioning in the initiation of replication, the E2 protein also has other functions. 

For example, HPV DNA replicates concurrently with the host cell DNA during S-phase and 

the E2 protein is responsible for anchoring viral episomes to mitotic chromosomes to 

ensure equal partitioning and segregation during the mitotic division (You et al., 2004). 

Furthermore, E2 acts as a repressor of the transcription of viral oncogenes, E6 and E7, at 

high levels by displacing a transcriptional activator from a site adjacent to the early 

promoter, whereas, at low levels it allows for transcription activation (Doorbar, 2006). 

This early stage of HPV infection is termed as a latent or clinically unapparent infection 

since the host is HPV DNA positive, but no lesions can be detected  (Wright, 2006).  

1.2.4.2. Promotion of Cell Proliferation  

The HPV oncoproteins, E5, E6 and E7, are required along with E1 and E2, for viral episome 

replication above the basal layer of the epithelium (Doorbar, 2006). The HPV oncoproteins 

condition the infected differentiating host cell to support viral DNA amplification by 

interfering with signal transduction pathways and inactivating major tumour suppressor 

proteins. They are the means by which HR-HPV types promote cell transformation and 

immortalization (Munger et al., 1989).  

1.2.4.2.1. E7 Oncoprotein 

The E7 oncoprotein is approximately 100 amino acids long and contains two highly 

conserved regions (CRs), the amino-terminal CR1 and CR2 domains (Wang et al., 2010). 

The mature E7 protein binds, sequesters and directs pRb to its ubiquitin-mediated 

proteolysis (Huh et al., 2007). This results in the liberation of E2F, which leads to the 

expression of proteins needed for cell cycle progression and entry into S phase, bypassing 

cell cycle arrest and cellular senescence. In addition to the degradation of pRb, E7 also 

destabilizes p130, a pRb related protein, which is responsible for regulating homeostasis 

in differentiated cells by preventing them from re-entering the S phase. Thus, disruption 

of p130 by E7 promotes S-phase re-entry in differentiated cells (Genovese et al., 2008). 

In addition to its association with pocket proteins such as pRb and p130, E7 can also 

interact with histone deacetylases to maintain HPV episomal DNA and extend the life span 

of infected keratinocytes (Longworth and Laimins, 2004). 
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E7 can interact with AP1 transcription factors such as c-Jun, JunB, JunD and c-Fos. It can 

trans-activate c-Jun-induced transcription from a Jun responsive promoter (Antinore et al., 

1996). c-Jun is a proto-oncogene that has several cell proliferation promoting attributes 

such as repression of p53 transcription through binding to a variant AP-1 site in the p53 

promoter (Schreiber et al., 1999). In addition, c-Jun also induces the transcription of cyclin 

D1 (Schwabe et al., 2003), where cyclin D1 phosphorylates pRb resulting in the liberation 

of E2F and cell cycle progression. 

HR-HPV E7 also prevents p21 from inhibiting CDK2/cyclin E activity and proliferating cell 

nuclear antigen (PCNA)-dependent DNA replication through interaction with sequences 

that modulate anti-proliferative activity in the carboxy-terminal end of the p21 protein 

(Funk et al., 1997). 

1.2.4.2.2. E6 Oncoprotein 

The main function of E7 is to stimulate unscheduled S-phase entry and cell cycle 

progression. However, the increase in liberated E2F, which occurs as a result of E7 activity, 

can induce and stabilize p53 levels (Seavey et al., 1999, Wu and Levine, 1994, Nip et al., 

2001) in an effort to control unchecked cell proliferation by causing apoptosis. The second 

major HPV oncoprotein, E6, complements the role of E7 by inhibiting p53 induced 

apoptosis in response to unscheduled S-phase entry. 

E6 is small highly basic 158 amino acid protein that contains two zinc-binding domains 

(Ristriani et al., 2000). E6 uses the ubiquitin-ligase E6-AP to induce p53 degradation. An 

E6/E6-AP complex forms before the formation of the stable ternary complex that includes 

p53 (Scheffner et al., 1993), this complex in turn is recognized by the ubiquitin-dependent 

proteolysis system and causes the degradation of p53 via this pathway (Scheffner et al., 

1993). Thus, by preventing the accumulation of cellular p53, HPV has the ability to 

overcome p53 growth arrest and apoptosis-inducing functions. 

The E6 oncoprotein has many other p53-independent functions that may augment the 

anti-apoptotic and oncogenic potential of HPV. E6 is thought to be involved in the 

reduction of apoptosis induced by Bak. E6 associates with pro-apoptotic Bak and 

decreases its function by increasing the level of Bak degradation. Similar to its effect on 
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p53, degradation presumably occurs via ubiquitination by the E6-AP protein. Bak may 

represent a normal cellular target of E6-AP when HPV is not infecting the host (Thomas 

and Banks, 1998). 

Additionally, the E6 protein can increase transcription of the hTERT gene, which codes for 

the catalytic subunit of the telomerase holoenzyme. Telomerase synthesizes telomere 

repeat sequences (TTAGGG) which prevent loss of DNA from chromosomal ends during 

genome replication, thus, avoiding cell senescence (Klingelhutz et al., 1996). The enzyme 

uses an RNA template, namely TERC, to add telomere repeats to chromosome ends. The 

TERT subunit of the enzyme is the restricting component in telomerase activity and over-

expression of the hTERT gene alone is enough to generate elevated levels of telomerase 

activity in cells (McMurray and McCance, 2004). Further to its enzymatic activity, 

telomerase has demonstrated direct association with double-strand break-sensing 

proteins (human homologues of the yeast Ku protein, Ku70 and Ku80), which suppress the 

potential DNA damage responses at telomere ends (McMurray and McCance, 2004). The 

exact molecular mechanism of E6 up-regulation of hTERT transcription is yet to be fully 

determined. One study found that E6 increased hTERT transcription correspondingly with 

E6-induced telomerase activity in transduced primary human foreskin keratinocytes. 

Furthermore, E6 induced a 6.5-fold increase in the activity of a 5′ promoter region in the 

hTERT gene in the same cells (Veldman et al., 2001). A different study suggested that E6 

interferes with a repressive complex present on the proximal E box in the hTERT promoter 

as HPV16 E6 activated the hTERT promoter principally through this region in transfected 

primary human foreskin keratinocytes (McMurray and McCance, 2003). The E box site is 

specific for the Myc/Mad/Max transcription factors in addition to USF1 and USF2 and 

upon addition of exogenous USF1 or USF2, the authors found repression of E6 activation 

of the hTERT promoter, Moreover, they found that siRNA against USF1 or USF2 resulted in 

greater activation of the hTERT promoter by E6 and that loss of c-Myc function reduced 

such activation. Through chromatin immunoprecipitations the authors found that there 

was a reduction in binding of USF1 and USF2 at the hTERT promoter proximal E box, and 

an accompanying increase in c-Myc bound to the same site in the presence of E6. It was 

suggested that a repressive complex containing USF1 and USF2 is present in normal cells 
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with minimal telomerase activity and that such a repressive complex is replaced by c-Myc 

in E6 transfected keratinocytes, which coincides with higher levels of hTERT transcription 

and telomerase activity (McMurray and McCance, 2003). 

Another p53 independent mechanism whereby E6 augments the oncogenic potential of 

HPV is through its PDZ domain binding function. The PDZ binding activity of E6 results in 

atypical cellular morphology and disruption of intercellular junction formation (Watson et 

al., 2003). PDZ (PSD-95/disc large/ZO-1) domains are  80 - 90 amino acid protein-

interaction domains frequently found in multi-domain scaffolding proteins, which bind to 

short peptide motifs of other proteins (Ponting and Phillips, 1995, Kim, 1997). A number 

of PDZ domain containing proteins have been identified as binding partners of HR-HPV E6. 

One such protein is the human homologue of the Drosophila tumour suppressor protein, 

discs large (Dlg) (Gardiol et al., 1999). Dlg is expressed in several different cell types 

including epithelial cells, where it is located in areas of cell-cell contact (Lue et al., 1994). 

Disruption of Dlg results in loss of polarity in epithelial cells and neoplastic progression 

(Woods et al., 1996). E6 interacts with Dlg through a highly conserved region in its C-

terminal domain (Kiyono et al., 1997). Once bound to Dlg, E6 mediates the proteasomal 

degradation of this protein and abolishes its tumour suppressor function (Gardiol et al., 

1999), further contributing to oncogenesis by HPV.  

E6 has also been shown to regulate G protein signalling by degrading GTPase-activating 

proteins (GAPs). One study found that E6TP1 (E6-targeted protein 1), a protein to which 

E6 binds and targets for ubiquitin-mediated degradation, has high homology to GAP 

domains of Rap GAPs. The study confirmed human E6TP1 displays GAP activity for Rap1 

and Rap2. Expression of E6 promoted the degradation of E6TP1 and enhanced the GTP 

loading of Rap, which leads to continuous activation of the Rap small-G-protein pathway 

(Singh et al., 2003). 

1.2.4.2.3. E5 Oncoprotein 

HPV E5 is the third and least well characterized HPV oncoprotein. It is a transmembrane 

protein found mainly in the cellular endoplasmic reticulum, which can promote 

retardation of endosomal acidification through association with the vacuolar proton 
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ATPase. It is assumed this influences growth factor receptor recycling, which results in an 

increase in epidermal growth factor receptor regulated signalling and the conservation of 

a replication efficient environment in the upper epithelial layers (Crusius et al., 2000). 

1.2.4.3. Progeny Virus Assembly and Release  

If infectious progeny virions are to be produced, HPV must eventually amplify and package 

its genome. Late events in the infection process are thought to depend on the variations 

in the cellular environment as the HPV infected cell passes towards the upper epithelial 

surface (Bodily and Meyers, 2005). This depends largely upon up-regulation of the 

differentiation dependent promoter, which for the majority of HPV types is positioned 

within the E7 ORF (Bodily and Meyers, 2005). Activation of this promoter depends on host 

cell signalling and results in an increase in the level of viral replication proteins (Bodily and 

Meyers, 2005).  

The end stage in the HPV productive infection cycle involves the packaging of the 

amplified viral DNA into newly formed infectious particles. L1 and L2 viral capsid proteins 

appear after the commencement of genome amplification (Florin et al., 2002). It is 

thought that the events that link genome amplification to capsid protein synthesis are 

dependent on adjustments in mRNA splicing and on the production of transcripts that 

finish in the late polyadenylation site (Doorbar, 2006).  

In addition to L1 and L2, it has been suggested that E2 may promote the competency of 

genome encapsulation during natural infection (Zhao et al., 2000). By means of nuclear 

localization signals located at its N- and C-termini, L2 localizes to the nucleus and 

associates with promyelocytic leukaemia (PML) bodies. In contrast, L1 clusters into 

capsomeres in the cytoplasm prior to transportation to the nucleus. Once it has been 

transported to the nucleus it is incorporated into PML bodies once L2 has bound and 

dislodged the PML component SP100 (Florin et al., 2002). 

The L2 capsid protein then links to L1 via a hydrophobic region near its C terminus, which 

is believed to embed into a central hole in the L1 capsomeres (Finnen et al., 2003). 

Disulphide cross-linking of the capsomeres gives rise to virus maturation and stabilization 

as the infected host cells near the surface of the epithelium (Buck et al., 2008). The 
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delayed expression of HPV antigens is thought to restrict the ability of the immune system 

to identify infection up until the infected cell reaches the superficial epithelial surface 

(Tindle, 2002). 

1.2.4.3.1. E4 Protein 

Productive HPV infection is associated with significant expression of E4 protein, where E4 

is thought to have several different functions at different stages of the HPV lifecycle. 

Several HPV types encode E4 proteins that promote cell cycle arrest in G2 and counteract 

E7 directed cellular proliferation which can complement HPV genome amplification 

(Nakahara et al., 2002, Knight et al., 2011). It has been hypothesized that HPV1 E4 inhibits 

competing host cell DNA synthesis by suppressing licensing of cellular origins of 

replication, which liberates host cell DNA replication machinery favouring HPV genome 

amplification (Roberts et al., 2008). 

HR-HPV E4 is thought to be involved in late gene expression (Wilson et al., 2007), as well 

as assisting in progeny virus escape at the cornified envelope at the cell surface. E4 can 

interrupt the keratin network of the epithelium and can affect the structural stability of 

the cornified envelope (Doorbar et al., 1991, Roberts et al., 1993). 

1.2.5. HPV Infection Outcome; Regression or Progression to Cancer 

In most people immunity will develop to HPV after a period of months or years and 

productive infection terminates. These people ultimately become HPV DNA negative 

(Wright, 2006). However, in the absence of lesion regression with persistent HPV 

infection, progression to cancer may occur. Expression of the HPV oncogenes, whilst 

necessary for productive HPV infection to drive host cell proliferation in order to increase 

episomal replication, may become deregulated resulting in increased cell proliferation in 

the lower epithelial layers. This leads to abortive HPV infection, where the virus is 

primarily confined to its proliferative phase and cannot effectively complete its productive 

life cycle (Doorbar, 2005). The increased rate of cell proliferation along with failure to 

repair secondary mutations can result in genome instability, which further promotes an 

oncogenic phenotype. 



28 
 

1.2.5.1. HPV Genome Integration 

The genomic instability that results from abortive HPV infection and uncontrolled cellular 

proliferation can lead to the incorporation of viral genetic material into the host genome, 

a process termed viral integration. During productive infection, the HPV genome 

replicates as circular episomal DNA, however, as infection progresses to pre-malignant 

and malignant lesions, HPV DNA is found increasingly integrated into cellular DNA and 

there is much evidence that integration contributes to the carcinogenic process (Kalantari 

et al., 2010). HPV integration usually occurs at common fragile sites within chromosomes 

and appears to be randomly distributed throughout the genome (Yu et al., 2005). 

Integration of HPV DNA commonly results in the loss of the viral E2 repressor, remodelling 

of the E6/E7 promoter and because the E6 and E7 ORFs are nearly always retained, 

continued expression of E6 and E7 oncoproteins results (Yu et al., 2005).  

1.2.5.2. Co-factors for HPV Associated Cancer Progression  

The HPV viral oncoproteins are fundamental components in the initiation and 

maintenance of a malignant phenotype; however, alone they are not sufficient for cancer 

development (zur Hausen, 1999). Most sexually active women encounter HPV infection at 

some point in their lives (Bosch and de Sanjose, 2003); however, as only a minority of such 

cases progress to invasive cancer additional co-factors are required to promote this 

transformation (Kalantari et al., 2010). Several co-factors responsible for the progression 

of HPV related cancer have been identified. These include: 

 Smoking (Hildesheim et al., 2001, Wang et al., 2009) 

 Multiparity in cervical cancer (Hildesheim et al., 2001) 

 Long term oral contraceptive use in cervical cancer (Hildesheim et al., 2001)  

 Prior or co-infection with other non-HPV sexually transmitted viruses such as 

Herpes simplex virus (HSV) (Smith et al., 2002) 

 Genetic variation, for example p53 polymorphism (Storey et al., 1998) 

 

An illustration of HPV infection progression in epithelial cells is outlined in Figure 1.4. 
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Adapted from Woodman et al. 2007  
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Figure 1.4. HPV-Mediated Progression to Invasive Carcinoma 

Basal epithelial cells rest on the basement membrane, which is supported by the dermis. 

HPV gains access to the basal cells through micro-abrasions in the upper epithelial layers. 

Following infection, the early HPV genes are expressed and viral DNA replicates from 

episomal DNA (purple nuclei). In the upper epithelial layers viral genome replication is 

amplified, and E4 and the late HPV genes, L1 and L2, are expressed. L1 and L2 encapsulate 

newly synthesized viral genomes to form progeny virions in the nucleus. Shedding of the 

virus can then initiate new infection. A minority of HR-HPV infections progress to high-grade 

intraepithelial neoplasia. The malignant progression of untreated lesions is associated with 

integration of the HPV genome into host chromosomes (red nuclei). This event usually 

results in loss or disruption of the E2 ORF, and subsequent up-regulation of E6 and E7. LCR, 

long control region. (Woodman et al., 2007) 
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1.2.6. HPV and Cervical Cancer  

1.2.6.1. Prevalence 

Nearly every case of cervical cancer results from HPV infection, giving a HPV prevalence 

rate of >99% for this type of neoplasia (Walboomers et al., 1999). Cervical cancer is the 

third most common cancer in women (GLOBOCAN, 2008). Over half a million new cases of 

cervical cancer were estimated for 2008 worldwide, responsible for 274,000 deaths 

(GLOBOCAN, 2008). In 2008 incidence was nearly ten times greater in developing 

countries compared with Europe (GLOBOCAN, 2008).  A recent worldwide HPV genotype 

distribution study found HPV16 and HPV18 in 71% of 8977 cases of invasive cervical 

cancer (de Sanjose et al., 2010). The study also found HPV types 16, 18, and 45 in 94% of 

470 cervical adenocarcinoma cases. Additionally, patients with invasive cervical cancers 

associated with HPV types 16, 18, or 45 presented at a younger mean age than patients 

with other HPV types. HPV types 6, 30, 61, 67, 69, 82, and 91 were found in 1% of the 

8977 cases of invasive cervical cancer (de Sanjose et al., 2010). 

1.2.6.2. Cervical Intraepithelial Neoplasia  

Cervical intraepithelial neoplasia (CIN), the precursor of cervical cancer, usually manifests 

within the cervical transformation zone, where the endocervical columnar cells merge 

with the stratified squamous epithelial cells of the ectocervix (Jordan and Singer, 1976). A 

unique layer of squamocolumnar junctional cells with distinct cuboidal morphology and 

gene-expression profile have been identified at this site (Herfs et al., 2012). Biomarkers 

that exclusively present on squamocolumnar junctional cells are conserved in squamous 

cell carcinomas and adenocarcinomas that originate from this region (Herfs et al., 2012). 

The processes by which viral-host cell interactions lead to neoplasia at this particular site 

remain to be elucidated, although it is thought that HR-HPV types such as HPV16 cannot 

correctly regulate their productive cycle  at this junctional site, and that changes in both 

the timing and level of viral protein expression may influence neoplastic development in 

this region (Doorbar, 2006).  Figure 1.5 shows the location and histology of cells in the 

squamocolumnar junction. 
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Adapted from Herfs et al. 2012 

 

Figure 1.5. Site and Histology of the Squamocolumnar Junction 

(A) Schematic diagram of the human cervix with the squamocolumnar junction separating the 

endocervix from the ectocervix. (B) Histology of the adult cervix, with squamous cells (Top 

right), junctional cells (Middle right), and columnar cells (Bottom right). 
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The progression of high-grade pre-cancerous cervical neoplasia occurs in patients who 

cannot clear their HPV infection and who hold active HPV infection for years to decades 

post initial virus exposure. On the basis of viral gene expression, Low grade squamous 

intraepithelial lesions (LSIL) or CIN1, caused by both HR- and LR-HPV types, are 

comparable to productive HPV infections. In addition to this, viral coat proteins are often 

detected in cells at the epithelial surface in LSIL (Middleton et al., 2003). However, the 

productive phase of the virus life cycle is inadequately supported in High grade squamous 

intraepithelial lesions (HSIL) or CIN2/3; therefore, this grade of cervical lesion has a 

greater proliferative phase (Doorbar, 2006). Overall, the risk of progression from CIN1 

through to cervical cancer is 1% per year (Holowaty et al., 1999). 

1.2.6.3. Cervical Screening 

Cervical cytology, which involves the staining and microscopic examination of exfoliated 

cervical cells, is the current screening tool for premalignant and malignant cervical lesions 

(Kalantari et al., 2010). Eighty percent of cervical cancers are preventable in developed 

countries by routine screening with cervical smear tests (Kalantari et al., 2010). However, 

implementation of such programs can prove challenging in developing countries. 

Additionally, cervical cytology can be associated with poor reproducibility and high rates 

of false negative results (Stoler et al., 2001). Several factors can contribute to false 

negative results, including: 

 Specimen preparation; clumping of cells when they are not spread evenly and 

uniformly on the microscope slide. Additionally, cervical cells can become distorted 

If exposed to air for too long prior to fixation (Burd, 2003) 

 Sample contamination: other components of the cervical specimen such as blood, 

bacteria, or yeast may contaminate the sample and inhibit the identification of 

abnormal cells (Burd, 2003) 

 Human error: as the average cervical cytology slide contains 50,000 to 300,000 

cells, a sample that contains only a few abnormal cells within a crowded 

background of normal cells may be diagnosed as a false negative result if the 

abnormal cells were missed, particularly by overburdened cytologists with a large 

workload (Burd, 2003) 



34 
 

1.2.7. Other HPV Associated Cancers  

In addition to vulval neoplasias (discussed in detail in the following section) and cervical 

neoplasias, HPV transformation can also be implicated in a range of other precancerous 

and malignant lesions.  

HPV DNA and/or HPV antibodies have been found in in situ and invasive vaginal neoplasia 

(Daling et al., 2002). A recent meta-analysis identified HPV DNA in 100% of 107 vaginal 

intraepithelial neoplasia grade 1 (VaIN1) cases, 90.1% of 191 VaIN2/3 cases and 69.9% of 

136 vaginal cancer cases (De Vuyst et al., 2009).  

HPV has also been associated with penile cancer; however, there is a wide variation in 

HPV prevalence from study to study. A recent meta-analysis of 1,266 penile squamous cell 

carcinoma (SCC) cases indicate a HPV prevalence of 47.9%, with the most prevalent type 

being HPV16, followed HPV6 and HPV18 (Backes et al., 2009).  

The majority of anal cancer and anal cancer precursors are HPV positive. One study found 

HPV DNA in 38 of 47 cases of anal carcinoma, which gave a HPV prevalence of 80.9%, with 

HPV16 being the most common type detected. In the same study HPV had a prevalence of 

87.9% in 33 cases of anal intraepithelial neoplasia (AIN) (Varnai et al., 2006). In a larger 

meta-analysis HPV positivity was found in 91.5% of 671 AIN1 cases, 93.9% of 609 AIN2/3 

cases and 84.3% of 955 anal carcinoma cases (De Vuyst et al., 2009).  

With regards to HPV associated head and neck squamous cell carcinoma (HNSCC) cases, 

HPV DNA was detected in 25.9% of 5,046 HNSCC cancer specimens in a systemic review of 

60 different studies (Kreimer et al., 2005).  

HPV has also been implicated in the development on non-melanoma skin cancer in 

immunocompromised patients and in people who have Epidermodysplasia Verruciformis 

(EV) (Harwood and Proby, 2002). Additionally HPV DNA has been detected in lung cancer 

(Fei et al., 2006), breast cancer (Akil et al., 2008), prostate cancer (Leiros et al., 2005) and 

cancer of the bladder and urethra (Moonen et al., 2007). 
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1.2.8. HPV Prevention: Vaccination 

At present, two prophylactic HPV vaccines are available. The first is a quadrivalent vaccine, 

Gardasil® (Merck & Co. Inc., Whitehouse Station, New Jersey, USA; Sanofi Pasteur MSD, 

Lyon, France), which contains virus-like particles (VLPs) composed of L1 proteins  from 

HPV types 6, 11, 16 and 18 (Monsonego et al., 2010). The other is a bivalent vaccine, 

Cervarix® (GlaxoSmithKline, Rixensart, Belgium), and is comprised of VLPs for HPV types 

16 and 18 (Monsonego et al., 2010). Many developed countries, including the UK, have 

HPV vaccination programs for girls aged between 12 - 14 years as the main target 

population.  

Gardasil® protects against cervical, vulvar, vaginal, and anal cancer caused by HPV types 

16 and 18, as well as genital warts caused by HPV types 6 and 11. Additionally, Gardasil® 

can be used to prevent precancerous or dysplastic lesions caused by HPV types 6, 11, 16, 

and 18 including CIN, VIN, VaIN and AIN. Gardasil® can also be used in boys to prevent 

HPV associated neoplasia of the anus and genital warts (Merck, 2011). Cervarix®, on the 

other hand, is approved for females only for the prevention of cervical cancer and CIN 

(GlaxoSmithKline, 2012). 

As HPV is spread via contact with infected individuals, inhibition of transmission by 

vaccinated individuals could indirectly protect disadvantaged communities that are 

frequently difficult to reach through screening programs. Lack of knowledge regarding the 

risks of sexual behaviour and the cause of cervical neoplasia has been highlighted a barrier 

for the efficient implementation of routine gynaecological screening and HPV vaccination 

(Henderson et al., 2011, Monsonego et al., 2010). 
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1.3.  Vulval Intraepithelial Neoplasia  

1.3.1. Vulval Intraepithelial Neoplasia Pathology 

Vulvar intraepithelial neoplasia (VIN) is a premalignant lesion affecting the skin and 

mucosal tissue of the vulva (van de Nieuwenhof et al., 2008). Histologically, VIN manifests 

as inadequately to undifferentiated basal cells and/or extremely atypical squamous 

epithelial cells involving the complete thickness of the epithelium, with or without a 

warty, hyperkeratotic surface (Bruchim et al., 2007). There are two distinct types of VIN: 

Classic/Usual VIN or differentiated VIN (McCluggage, 2009). The latter is diagnosed less 

commonly and is also known as simplex VIN. Differentiated VIN is described as a 

neoplastic lesion with hyperplasia and hyperkeratosis/parakeratosis of the squamous 

epithelium along with elongation of the rete ridges, which are the epidermal thickenings 

that extend downward between dermal papillae. Differentiated VIN is not graded and is 

not caused by HPV infection, but arises from vulval dystrophy, often lichen sclerosis 

(McCluggage, 2009). 

Classic VIN, on the other hand, is associated with HR-HPV infection, with types 16 and 18 

being the most common (McCluggage, 2009). Such HPV associated VIN lesions tend to be 

multifocal, pigmented, white, red, or a combination of these colour tones (Bruchim et al., 

2007). Like its HPV-related counterpart CIN, classic VIN is divided into three grades, 

namely VIN1, 2 and 3 (McCluggage, 2009). The three-grade system of VIN is defined 

according to the degree of cellular dysplasia in each layer of affected epithelium. The 

International Society for the Study of Vulvar Diseases (ISSVD) has recommended an 

adjustment in the classification of classic VIN, with the VIN1 category being abandoned 

and lesions currently diagnosed as VIN1 being referred to as flat condyloma or HPV effect. 

In this classification, classic VIN2 and 3 are combined into a single category, termed classic 

VIN (McCluggage, 2009). Classic VIN lesions comprise the molecular variations in epithelial 

cell differentiation, which occur as a consequence of HPV infection. When the dysplastic 

cells of VIN lesions penetrate the epithelial basement membrane the lesion becomes 

malignant and is referred to as invasive carcinoma (van de Nieuwenhof et al., 2008). 

Figure 1.6 shows haematoxylin and eosin (H&E) staining of normal vulval epithelia and 

VIN3 epithelia. 
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Images kindly provided by Dr Amanda Tristram, Cardiff University 

Figure 1.6. Haematoxylin and Eosin Staining of Vulval Epithelia 

(A) Normal vulval epithelia with a clear cut basal layer and normal maturation. (B) VIN3 

epithelia with acanthosis (diffuse epidermal hyperplasia/thickening of the skin), 

hyperkeratosis (thickening of the stratum corneum/uppermost keratinous layer), 

parakeratosis (retention of nuclei in the stratum corneum) and abnormal mitotic figures 

involving the entire thickness of the epidermis.  
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Risk factors (van de Nieuwenhof et al., 2008) for VIN include: 

 Age; HPV associated VIN is more common in younger women, often in their 4th to 5th 

decade  

 Tobacco use; Cigarette smoking is reported in about 60 - 80% of VIN cases 

 Genital warts; A history of genital herpes and Human Immunodeficiency Virus (HIV) 

infection are common in young women with usual VIN  

 Immunosuppression; Immunosuppressants, used to prevent rejection after 

transplantation or to treat a chronic autoimmune disease, increase the risk of 

developing HPV associated VIN 

 Number of sexual partners; The greater the number of sexual partners a person has, 

the more likely they are to contract genital HPV infection  

1.3.2. Prevalence of HPV in VIN and Vulval Cancer 

A recent study examined HPV prevalence in 2296 archived paraffin embedded vulva 

specimens from 39 different counties using a PCR based DNA enzyme immunoassay. HPV 

DNA was found in 86.7% of 587 VIN cases, where 535 cases were classified as usual VIN, 

48 cases were classified as differentiated VIN and 4 cases had histological features of both 

usual and differentiated VIN. Differentiated VIN had lower HPV prevalence (48.9%) 

compared to usual VIN (90.3%). In the same study HPV DNA was found in 28.6% of 1709 

invasive vulvar cancer cases (de Sanjose et al., 2013). Overall prevalence of HPV DNA in 

VIN and invasive vulvar cancer cases was highest in younger women, where HPV positivity 

was found in 93% of 115 VIN patients younger than 37 years of age at diagnosis, and 

48.1% of 312 invasive vulvar cancer patients younger than 56 years of age at diagnosis. 

HPV16 was found to be the most common type (72.5%) followed by HPV33 (6.5%) and 

HPV18 (4.6%) (de Sanjose et al., 2013). 

A different meta-analysis calculated HPV prevalence in VIN and invasive vulvar cancer 

from 63 separate studies across Asia, Europe, North America and Latin America, all of 

which used PCR based assays for detection. HPV DNA was present in 67.8% of 90 VIN1 

cases, 85.3% of 1061 VIN2/3 cases and 40.4% of 1873 vulval cancer cases (De Vuyst et al., 

2009). HPV6 (22.4%), 16 (9.8%) and 11 (9.0%) were the most prevalent HPV types found in 

the VIN1 samples. Whereas, HPV16 (71.9%), 33 (8%) and 18 (5%) were the most frequent 
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HPV types observed in the VIN2/3 cases. Similarly, HPV 16 (32.2%), 33 (4.5%) and 18 

(4.4%) were the most common types observed in vulval cancers. The incidence of 

infection with multiple HPV types decreased from 13.4% in VIN1 to 2.8% in vulvar 

carcinoma (De Vuyst et al., 2009). 

In an earlier study a total of 13,176 in situ and invasive vulvar carcinomas were identified 

over a 28 year period (1973 to 2000) (Judson et al., 2006). Of these, 57% of the patients 

were diagnosed with carcinoma in situ and 44% with invasive disease. It was estimated 

that vulvar carcinoma in situ increased 411% and that invasive vulvar cancer increased 

20% during the period examined. They found carcinoma in situ incidence increased up to 

the age of 40 – 49 years and then decreased, whereas, invasive vulvar cancer risk 

increased as women age, increasing rapidly after the sixth decade (Judson et al., 2006). 

The increase in HPV associated VIN without similar increase in invasive vulvar carcinoma 

may be explained by several different factors. One explanation is the increased application 

of vulval biopsy, a diagnostic method that contributes to earlier and more effective 

discovery of VIN lesions, which may have been missed previously (Kaufman, 1995). Earlier 

diagnosis and treatment of VIN may avert the eventual development of invasive SCC 

(Kaufman, 1995). Additionally, it has been hypothesised that the malignant progression of 

VIN is slow, suggesting that a limited number of these lesions progress to invasive vulvar 

SCC (Kaufman, 1995). 

1.3.3. Diagnosis of HPV Associated VIN 

Vulval biopsy is the method employed to attain an accurate diagnosis of a suspicious 

vulval lesion (van de Nieuwenhof et al., 2008). A punch biopsy with a minimal size of 4 

mm, which penetrates the entire thickness of the epithelium is obtained from the edge of 

the lesion along with a small segment of unaffected tissue (van de Nieuwenhof et al., 

2008). If invasive disease is suspected, the biopsy is taken from the most suspicious area 

of the lesion (van de Nieuwenhof et al., 2008). To aid VIN diagnosis a vulvoscopy can also 

be performed. This procedure examines the vulval area using a colposcope with optional 

use of a 5% acetic acid solution to highlight abnormal vascular patterns (van de 

Nieuwenhof et al., 2008). Advantages of vulvoscopy include the possible visualisation of 
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formerly unidentified, subclinical lesions, as well as the ability to better ascertain the 

distribution of an already clinically evident disease (van de Nieuwenhof et al., 2008). 

However, disadvantages of vulvoscopy include low sensitivity of aceto-white staining as a 

predictor of HPV positivity, as well as the fact that acetic acid can be very painful on 

ulcerative or de-epithelised lesions (van de Nieuwenhof et al., 2008).  

1.3.4. Treatment of HPV Associated VIN 

Although HPV associated VIN is recognised as an uncommon chronic skin disorder, a 

considerable range of treatment options are available (van de Nieuwenhof et al., 2008).  

1.3.4.1. Surgical Excision 

Surgical excision protocols encompass skinning vulvectomy, radical vulvectomy, and wide 

local excision of the area (Campion and Singer, 1987, van de Nieuwenhof et al., 2008, 

Bruchim et al., 2007). This may be done using “cold-knife”, diathermy or laser excision.  

Although this is the historical standard of treatment, surgery can be mutilating due to the 

recurrent nature of the lesion, where many patients require repeated treatment over a 

prolonged follow-up period. This can lead to patient distress on physical, emotional, 

mental and psychosexual levels (van de Nieuwenhof et al., 2008). 

1.3.4.2. Photodynamic Therapy  

Photodynamic therapy (PDT) uses a topical photosensitizer and light to initiate the 

formation of highly reactive singlet oxygen and other free radicals (Lai and Mercurio, 

2010). Cell death in the area treated is attributed to apoptosis, necrosis, immunologic 

effects, and the destruction of vascular endothelium (Lai and Mercurio, 2010). Topical 5-

aminolaevulinic acid (ALA) is the compound of choice generally used in PDT (Lai and 

Mercurio, 2010). ALA is preferentially absorbed and induces protoporphyrin IX 

accumulation in rapidly proliferating cells, which has the advantage of minimising 

incidental damage to surrounding healthy tissues (Bedwell et al., 1992). Absence of 

ulceration/scar formation and shorter healing times in comparison with other treatment 

options are examples of PDT advantages. However, hyperkeratotic and pigmented lesions 

do not respond effectively to PDT (Lai and Mercurio, 2010). 
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1.3.4.3. Imiquimod 

Imiquimod (Aldara®, 3M Pharmaceuticals, St Paul, MN) is an imidazoquinoline amine, 

which has the ability to induce innate and cell-mediated immunity as well as having anti-

viral activity (Lai and Mercurio, 2010). It is extremely efficient in terms of clearance of 

lesions, especially genital warts, and has a low rate of recurrence post treatment (van de 

Nieuwenhof et al., 2008). Moreover, Imiquimod can be used by itself or potentially in 

amalgamation with other treatment options to augment the shrinking of lesions before 

performing ablative procedures (Lai and Mercurio, 2010). A small-scale study using topical 

applications of Imiquimod produced encouraging results, where Imiquimod reduced VIN 

lesion size by 25% after 16 weeks of treatment in 81% of 26 patients treated with the 

compound  (van Seters et al., 2008). The chemical structure of Imiquimod can be seen in 

Figure 1.7 (A). 

1.3.4.4. 5-Fluorouracil 

5-fluorouracil (5-FU) is a topical chemotherapeutic agent that functions by arresting DNA 

synthesis (Lai and Mercurio, 2010). However, many patients do not respond to treatment 

with 5-FU and pain and burning frequently limit the duration of treatment (van de 

Nieuwenhof et al., 2008). The chemical structure of 5-FU is shown in Figure 1.7 (B). 

1.3.4.5. Interferon 

Alpha Interferons, which are components of the innate immune response that are rapidly 

induced during viral infection, have been used in the treatment of genitourinary 

neoplastic lesions and show variation in their therapeutic effects (Spirtos et al., 1990, Ikic 

et al., 1981, Yliskoski et al., 1990). However, as these molecules are an extremely 

expensive treatment substitute and due to their limited therapeutic effects, they are not 

used as standard in the treatment of VIN (van de Nieuwenhof et al., 2008). 

1.3.4.6. Cidofovir 

Cidofovir, a deoxycytidine monophosphate analogue, has shown potential in the topical 

treatment of HPV associated VIN (Tristram and Fiander, 2005).  Cidofovir is an acyclic 

nucleoside phosphonate (ANP) compound and is discussed in detail in the following 

section.  The chemical structure of Cidofovir is shown in Figure 1.7 (C). 
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Figure 1.7. Chemical Structure of (A) Imiquimod, (B) 5-fluorouracil and (C) Cidofovir 

Imiquimod (trade name Aldara), an immune response modifier; 5-fluorouracil (trade name 

Efudex), an irreversible inhibitor of thymidylate synthase; and Cidofovir (trade name Vistide), 

a selective inhibitor of viral DNA polymerase, have all shown varying degrees of efficacy in 

topical treatment of VIN. 

(A) 

(B) 

(C) 
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1.4.  Acyclic Nucleoside Phosphonates 

Preservation of healthy tissue in areas affected by VIN would be a great advantage as 

opposed to other invasive and sometimes mutilating treatment options such as excisional 

surgery, laser therapy, etc. A topical treatment option that specifically targets the cause of 

the disease, that being HPV in usual VIN, is highly desirable. Acyclic nucleoside 

phosphonates (ANPs) are a category of nucleotide analogues, which have a phosphonate 

group chemically attached to the alkyl side chain of purine or pyrimidine molecules 

(Ballatore et al., 2001). ANPs display broad-spectrum anti-viral activity against a range of 

DNA and RNA viruses as well as displaying anti-neoplastic activity (De Clercq, 2011a). 

Currently there are three ANPs approved for clinical use; Adefovir for the treatment of 

chronic hepatitis B virus (HBV) infections, Tenofovir for the treatment of HIV and HBV 

infections and Cidofovir for the treatment of cytomegalovirus (CMV) retinitis in AIDS 

patients (De Clercq, 2011a).  

Comparable to naturally occurring DNA bases, ANP compounds are most active in their 

triphosphate form, which interacts with their target enzyme, either viral DNA polymerase 

or reverse transcriptase, and exerts therapeutic effect by causing chain termination and 

inhibition of genome replication (Xiong et al., 1997). Unlike earlier nucleoside analogue 

compounds such as: acyclovir, penciclovir, and ganciclovir, ANP compounds already 

contain the first (mono)phosphate group needed before the addition of two further 

phosphate groups render them to their active triphosphate form. In terms of anti-viral 

treatment, the addition of the initial phosphate group in earlier nucleoside analogues was 

via specific virus encoded kinases and this constituted a rate limiting step. Due to viral 

resistance through mutation or absence of viral kinases, the therapeutic effects of these 

nucleoside analogues may be limited in some viruses (Field and Biron, 1994). ANP 

compounds are active against a wider range of viruses as they circumvent the first kinase 

step and rely on host cellular enzymes only. 

1.4.1. Nucleoside Analogue Metabolism 

Metabolism of nucleoside analogue compounds begins with cellular uptake via transport 

across the plasma membrane. Nucleoside transporters (NTs) are membrane transport 
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proteins that mediate the uptake of naturally occurring physiological nucleosides as well 

as anti-neoplastic and anti-viral nucleoside analogue drugs (Baldwin et al., 1999). Several 

different classes of NT proteins exist, including: Equilibrium Nucleoside Transporters 

(hENT in humans), which  mediate the transport of purine and pyrimidine nucleosides 

down their concentration gradients (Young et al., 2008); Concentrating Nucleoside 

Transporters (hCNT in humans), which transport nucleoside analogues against a 

concentration gradient (Pastor-Anglada et al., 2008); Organic Cationic Transporters and 

Organic Anionic Transporters (OCTs and OATs respectively), which use facilitated transport 

to mediate the uptake of nucleoside analogue compounds into target cells (Roth et al., 

2012); and ATP-binding Cassette (ABC) Transporter Proteins, which mediate ATP-

dependent transport of nucleosides in and out of cells (Goldman, 2002)  

With regards to intracellular uptake of pyrimidine nucleoside analogues currently used in 

cancer chemotherapy, the deoxycytidine analogue Cytarabine relies upon plasma 

concentrations of the drug and enters cells mainly by hENT mediated processes. 

Gemcitabine, another analogue of deoxycytidine, requires both hENT and hCNT NTs for its 

intracellular uptake. Capecitabine, a pyrimidine nucleoside compound developed to 

overcome the low oral bioavailability of 5-FU, is metabolized to 5’-deoxy-5-fluorocytidine 

after oral administration and transported into cells via hENT NTs (all reviewed in 

(Damaraju et al., 2003).  

Once nucleoside analogue compounds have entered their target cells they are 

metabolized to their active tri-phosphate derivatives by the action of cytosolic enzymes 

such as nucleoside kinases and nucleoside diphosphate kinases (De Clercq and Holy, 

2005). Cytarabine is phosphorylated to its triphosphate form by deoxycytidine kinase 

(dCK) and other nucleotide kinases. Similarly, gemcitabine is phosphorylated to its 

monophosphate derivative by dCK and to its active triphosphate by pyrimidine nucleotide 

kinases (all reviewed in (Damaraju et al., 2003).  
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1.4.1.1. Nucleoside Analogue Resistance 

Nucleoside analogues exert therapeutic effect when fully metabolized to their tri-

phosphate derivatives. However, some cancer cells can over-express certain NT proteins 

in order to eject therapeutic nucleoside analogues from within the cell, resulting in drug 

resistance and cancer cell survival (Wijnholds et al., 2000). Multidrug resistance 1 (MDR1) 

P-glycoprotein and multidrug resistance protein 1 (MRP1), members of the ABC 

transporter superfamily, are examples of NT proteins that can induce a multi-drug 

resistant phenotype when over-expressed in cancer cells (Wijnholds et al., 2000). In 

addition to over-expression of nucleoside efflux proteins, cancer cells can also incur drug 

resistance by reducing expression of NT proteins that promote intracellular uptake of 

therapeutic nucleoside analogues, such as hENT in trifluorothymidine resistance 

(Temmink et al., 2010). Additionally, cancer cells can reduce the expression of nucleoside 

phosphorylating enzymes, such as thymidine kinase (TK) in trifluorothymidine resistance 

(Temmink et al., 2010). Furthermore, nucleoside resistance can occur in cancer cells due 

to increased deaminase activity, such as cytidine deaminase (CDA) in Cytarabine 

resistance (Ohta et al., 2004).  

1.4.2. Cidofovir 

Cidofovir ((S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine; HPMPC, Vistide),  the 

primary drug of interest in this project, is a nucleoside analogue of deoxycytidine 

monophosphate, which has anti-viral activity against a wide range of DNA viruses such as 

HPV, Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human herpes virus type 6 

(HHV-6), varicella-zoster virus (VZV), CMV, Epstein-Barr virus (EBV), etc. (De Clercq, 1996). 

Cidofovir is currently approved for CMV infection, but is also potentially an effective 

treatment option for benign and premalignant vulvar and extra-genital HPV lesions 

including VIN (Snoeck et al., 2001b, Tristram and Fiander, 2005). 

1.4.2.1. Cidofovir Pharmacology 

The mechanism of action of Cidofovir in CMV infections is well documented (Xiong et al., 

1997). Cidofovir is a hydrophilic polar molecule that enters cells through interaction with 

the NT hOAT1 (Cihlar et al., 1999). Once inside the host cell, it undergoes two stages of 
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phosphorylation, via pyrimidine nucleoside monophosphate kinase and then pyruvate 

kinase to form the active metabolite, Cidofovir diphosphate (CDVpp) (Cihlar and Chen, 

1996). As CDVpp embodies structural similarity to naturally occurring host nucleotides it 

acts as a competitive inhibitor and an alternative substrate for CMV DNA polymerase 

(Xiong et al., 1997). CDVpp, which is incorporated into a growing strand of DNA 

complimentary to deoxyguanosine monophosphate (dGMP), is not excised by the 

exonuclease activity of human-CMV DNA polymerase causing a decline in the rate of DNA 

elongation (Xiong et al., 1997). The incorporation of a second CDVpp molecule is required 

to further inhibit DNA elongation (Xiong et al., 1997). 

The diphosphate form of Cidofovir has a half-life of 17 hours. However, its choline 

derivative, which is formed following the uptake and metabolism of Cidofovir (Johnson 

and Gangemi, 1999), has a half-life of greater than 48 hours resulting in the need for 

infrequent dosing . However, in spite of its long-half-life, the cellular uptake of Cidofovir is 

slow due to its negatively charged phosphate group (De Clercq, 2003). 

1.4.2.2. Cidofovir and HPV 

Unlike its role in CMV infection, the mechanism of action of Cidofovir in HPV positive cells 

is not clearly defined. ANPs have higher affinities for viral DNA polymerases compared to 

cellular DNA polymerases (Kramata et al., 1996) and references therein), but as HPV 

utilizes host cell DNA polymerase instead of a virally encoded polymerase it is unclear how 

Cidofovir induces its therapeutic effect in HPV positive cells.  

Previous studies examining the effect of Cidofovir in HPV positive cells show varied results. 

For example, it has been suggested that Cidofovir promotes an antiproliferative effect in 

HPV positive cell lines via inhibition of E6 and E7 oncoproteins (Amine et al., 2009, Sirianni 

et al., 2005), re-accumulation of p53 and pRb (Snoeck et al., 2001a), induction of 

apoptosis (Andrei et al., 2001, Snoeck et al., 2001a, Donne et al., 2007), cell cycle arrest 

(Abdulkarim et al., 2002) or generation of double stranded breaks (Deberne et al., 2013, 

De Schutter et al., 2013). In some studies the radiosensitizing ability of Cidofovir in HPV 

positive cells has also been reported (Abdulkarim et al., 2002, Sirianni et al., 2005). Due to 

the potential use of Cidofovir in the topical treatment of HPV associated VIN, these varied 
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and sometimes contradictory results, require further work to elucidate the exact 

mechanism of action of the compound in this setting. 

1.4.2.3. Cidofovir and VIN 

Although Cidofovir is licensed for CMV infection it has shown promise in the treatment of 

VIN, as well as specificity to HPV positive cell lines and lesions (De Schutter et al., 2013, 

Amine et al., 2009, Abdulkarim et al., 2002, Tristram and Fiander, 2005). In a pilot study 

(Tristram and Fiander, 2005), Cidofovir treatment caused ulceration of diseased tissue in 

nearly every case (N=12), with no effect seen on the peripheral healthy skin when applied 

as a 1% topical formulation on alternative days for 16 weeks. Four out of 12 women 

completely cleared the disease, with resolution of long standing symptoms and 

histological and viral clearance; three of the 12 woman showed a partial response to the 

treatment; two women did not respond to Cidofovir treatment and one woman appeared 

to have resolved the disease but tested positive for invasive disease at the final biopsy 

(Tristram and Fiander, 2005). Images from this pilot study, showing clearance of VIN3 with 

Cidofovir treatment, are shown in Figure 1.8.  
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Images kindly provided by Dr Amanda Tristram, Cardiff University  

 

Figure 1.8. Clearance of VIN3 with Topical Cidofovir Treatment  

(A) A VIN3 lesion on the right anterior vulva of a patient before Cidofovir treatment; (B) 

Ulceration of the same lesion during Cidofovir treatment; (C) Clearance of the lesion post 

Cidofovir treatment. 

 

 

(A) 

(B) 

(C) 
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1.4.3. Adefovir and Tenofovir 

A recent review (Huttunen et al., 2011) described prodrug compounds as “inactive, 

bioreversible derivatives of active drug molecules that must undergo an enzymatic and/or 

chemical transformation in vivo to release the active parent drug, which can then elicit its 

desired pharmacological effect in the body”. Adefovir (PMEA) [9-(2-

phosphonylmethoxyethyl) adenine] and Tenofovir (PMPA) [(R)-9-(2-

phosphonylmethoxypropyl) adenine] are adenine derivative ANPs and sister compounds 

of Cidofovir. Due to their poor oral bioavailability they have been converted to their oral 

prodrug forms, Adefovir dipivoxil or bis(pivaloyloxymethyl)-PMEA [bis(POM)-PMEA] and 

Tenofovir disoproxil or bis(isopropyloxycarbonyloxymethyl)-PMPA [bis(POC)-PMPA] 

(Figure 1.9) (De Clercq, 2003). Adefovir dipivoxil is approved for the treatment of HBV 

infections and Tenofovir disoproxil fumarate for the treatment of both HIV and HBV 

infections (De Clercq, 2011b). Similar to Cidofovir, Adefovir and Tenofovir, in their 

diphosphate forms, have a higher affinity to viral DNA polymerase and reverse 

transcriptase enzymes such as HSV-1 DNA polymerase and HIV-1 reverse transcriptase 

when compared with their cellular counterparts and act as competitive inhibitors or 

alternate substrates of deoxyadenosine triphosphate (dATP) for these enzymes (Kramata 

et al., 1996) and references therein).  
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Figure 1.9. Chemical Structure of (A) Adefovir dipivoxil and (B) Tenofovir disoproxil 

Adefovir dipivoxil and Tenofovir disoproxil are the respective oral prodrug derivatives of the 

acyclic nucleoside phosphonates Adefovir and Tenofovir, both of which are derived from an 

adenine nucleobase. 

(A) 

(B) 
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1.4.4.  ProTide Technology 

ANP compounds are effective against a wide range of viruses as they include the first 

monophosphate group needed to eventually become a triphosphate molecule. However, 

the negative charge on the phosphate group results in low cell membrane permeability 

and can be subject to dephosphorylation, hence some form of chemical manipulation is 

desirable to avert these potential problems (Mehellou et al., 2009). Pronucleotides or 

ProTides are nucleoside monophosphate prodrugs designed to efficiently permeate target 

cells, avoiding the first rate-limiting nucleoside phosphorylation step (Serpi et al., 2013). 

ProTide drugs are usually nucleosides and more recently sugars, which by means of 

chemical manipulation have the charge on their phosphate groups masked by an amino 

acid ester promoiety linked by a P-N bond to allow efficient passive cell-membrane 

penetration (Mehellou et al., 2009, Serpi et al., 2013, Wagner et al., 2000). For efficient 

cell membrane permeability the ProTide phosphate masking groups should be: lipophilic 

so they can pass through the cell via passive diffusion; stable in human plasma; have the 

ability to hydrolyze in cells; and non-cytotoxic. Once the compound has entered the cell, 

the masking groups are enzymatically cleaved to liberate the phosphorylated biomolecule 

(Mehellou et al., 2009).  

ProTide technology has resulted in improved anti-viral and anti-cancer therapy, where 

nucleoside resistance may have occurred via down regulation of nucleoside metabolising 

enzymes such as dCK and other monophosphate kinases. Additionally, as ProTide 

modification can increase lipophilicity of certain nucleoside analogues it can lead to more 

efficient passive diffusion of the compound into cells and independence from nucleoside 

transporters. It has also been suggested that ProTide modification promotes a degree of 

deaminase resistance in certain nucleoside analogues (McGuigan et al., 2009). A 

schematic representation of the ProTide concept is outlined in Figure 1.10.   

The development of aryloxy phosphoramidate triesters as an efficient ProTide model for 

the intracellular transfer of charged bio-active anti-viral nucleoside monophosphates 

using intracellular enzymatic activation of the prodrug to liberate the nucleoside 

monophosphate has been previously outlined (Cahard et al., 2004). The aryloxy 

phosphoramidate triesters block the charge on the phosphate group to increase the 
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efficacy of anti-viral drugs. Via structure-activity relationships it was found that alpha 

amino acids, such as alanine, were essential for the approach. Furthermore, it was found 

that the ester and aryl moieties could be alternated, provided the ester can be cleaved by 

esterase, and the aryl is a reasonable leaving group. Finally, it was established that a P-N 

bond within the molecule is vital for efficient activity (Cahard et al., 2004). Another study 

suggested that the activation of aryloxy phosphoramidates to release monophosphate 

species progressed in four steps, which are outlined schematically in Figure 1.11 

(Mehellou et al., 2009). 
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Adapted from Mehellou et al. 2009 

 

Figure 1.10. Schematic Representation of the ProTide Concept 

Masking of the negative charge on the phosphate group of a monophosphate nucleic acid 

(NA) allows for more efficient cell membrane permeability.  Once inside the host cell masking 

groups are cleaved releasing the monophosphate NA. Subsequent phosphorylations render 

the NA to its most active tri-phosphate form.   
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Adapted from Mehellou et al. 2009 

 
Figure 1.11. Hypothesized Mechanism of Phosphoramidate Activation 

(1) Activation of aryloxy phosphoramidates begins with cleavage of the ester moiety (A) by an 

esterase such as cathepsin A. (2) Intracellular displacement of the phenoxy group by the 

carboxylate anion (B) results in the formation of a five-membered ring mixed anhydride (C) by 

spontaneous cyclisation. (3) The cyclic anhydride intermediate undergoes hydrolysis and 

opens up to give phosphoalaninate (D) (this step is not enzyme assisted). (4) Cleavage of the 

P-N bond of the phosphoalanine intermediate by a phosphoramidase-type enzyme generates 

the monophosphate nucleoside analogue (d4T monophosphate in this example). 



55 
 

1.4.4.1. ProTide Derivatives of Acyclic Nucleoside Phosphonates 

The ProTide approach is also applied to increase the anti-viral and anti-neoplastic activity 

of acyclic nucleoside analogues that lack the first monophosphate group. For example, 

phosphoramidates of 4’-Azidouridine, which is inactive against hepatitis C virus (HCV) in its 

primary form, showed a great improvement in anti-HCV activity with non-toxic effects in 

replicon assays (Perrone et al., 2007).   

The Food and Drug Administration (FDA) approved anti-HIV compound 2’,3’-Didehydro-

2’,3’-dideoxythymidine (d4T) also shows low efficiency in phosphorylation to its 

monophosphate form (Balzarini et al., 1989), therefore, a series of d4T phosphoramidates 

were prepared and examined for their degree of anti-HIV activity (Siddiqui et al., 1999). 

Several of the derivative compounds displayed greater than 10-fold selectivity index (SI) 

compared with the parent d4T (Siddiqui et al., 1999). This again highlights the increased 

efficacy of the phosphoramidate analogues. 

Phosphoramidate analogues were also derived from (E)-5-(2-Bromovinyl)-2’-deoxyuridine 

(BVDU), a uridine analogue, which exhibits powerful anti-HSV-1 and anti-VZV activity in 

cell culture. The phosphoramidate analogues were less effective than their parent 

compound against VZV, HSV-1 and HSV-2 (Harris et al., 2001). However, when other BVDU 

phosphoramidates were examined as anti-neoplastic compounds they showed increased 

antiproliferative activity against cancer cell lines, where some of the analogues were more 

efficient at inhibiting certain cancer cell lines and not others (McGuigan et al., 2005).  
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1.5.  RT3VIN 

In spite of obvious advantages such as ease of use/self-administration and fewer hospital 

visits, there is currently no licensed topical treatment option for VIN (Shylasree et al., 

2008). RT3VIN was a randomized phase II UK multi-centre treatment trial of topical 

Imiquimod and Cidofovir in women with usual and differentiated high grade VIN . Patients 

were recruited to the trial from October 2009 to January 2013. Women were eligible if 

they met the following criteria: 

 They were older than 16 years of age at trial commencement  

 They agreed to using efficient contraception for the duration of the trial 

 They had a VIN3 biopsy taken no longer than 3 months previous to entering the 

trial, which was ≥ 20 mm in diameter  

 Patients with perianal disease could be included but the disease must not have 

extended into the anal canal 

 Patients had to give a three way written informed consent (for screening, trial and 

cross-over) 

Exclusion criteria of the trial included: 

 Patients with current invasive vulval or anogenital carcinoma  

 Pregnancy, breastfeeding or patients trying to conceive 

 Patients who were unresponsive to previous treatment with Cidofovir or 

Imiquimod 

 Patients with impaired renal function 

 Patients who were unable to comply with protocol treatment 

 Patients who were undergoing treatment or had treatment in the previous 4 

weeks  

A total of 180 patients were recruited and randomized on a 1:1 basis to either Cidofovir or 

Imiquimod using a Fleming single stage design. Both topical treatment options were 

applied three times a week for up to 24 weeks. A thin layer of Cidofovir gel or Imiquimod 

cream was spread over the affected area at night and the area was washed using aqueous 

cream and water the following day.  
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For the duration of the trial, clinical assessment in addition to the application of Response 

Evaluation Criteria in Solid Tumours (RECIST) (Eisenhauer et al., 2009), a set of published 

rules that define when patients respond, stabilize, or progress during treatments, was 

used to monitor progress. After 30 weeks a biopsy was taken from each patient to 

examine the histology of the lesion and to determine HPV status of the tissue.  

At the end of the trial, patients were assigned to one of four categories determined by 

their response to the treatment. The categories were: 

1. Complete Response (CR) – all treated lesions disappeared within the 24 weeks 

2. Partial Response (PR) – at least a 30% decrease was seen in the pathological 

severity of the lesion 

3. Progressive Disease (PD) – at least a 20% increase in the pathological severity of 

the lesion was seen 

4. Stable Disease (SD) – No positive or negative change was seen in the disease state  

At the time of submission of this thesis the clinical results of the RT3VIN clinical trial were 

under analysis.  
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1.6.  Naturally HPV16 Immortalized Short Term Cell Lines; an 
in vitro Model of Neoplastic Disease  

Transformed cell lines have many advantages related to ease of use, but they are a poor 

model for in vivo cellular behaviour. In vivo tumours are far more diverse than the limited 

number of clonal lines available. Additionally, transformed cell lines are often derived 

from more aggressive and metastatic tumours rather than from primary lesions, and 

therefore represent only a subset of tumours. They are a particularly poor model of early 

stage neoplastic conditions like VIN. Studies of premalignant conditions in particular 

should ideally utilise more biologically relevant models. This has led to increasing interest 

in the use of primary cultures to investigate tumour behaviour (Burdall et al., 2003). This is 

particularly important when assessing the effects of potential therapeutic agents, as many 

established cell lines and even late passage primary cultures, have developed resistance to 

such agents over time (Johnson and Gangemi, 1999).  

To address these issues, naturally HPV16 Immortalized Short Term (NHIST) monoclonal 

cell lines were derived from VIN3 and VaIN3 biopsies by Tiffany Onions in the HPV 

Research Group at Cardiff University. For ease of reference for the remainder of this thesis 

the VIN NHIST cell line will be termed M08 and the corresponding VaIN NHIST cell line will 

be termed A09 or NHIST cell lines collectively. Prior to use these cell lines were validated 

in terms of baseline oncogene expression levels, HPV integration status, telomere 

dynamics and telomerase activity and DNA methylation state (data in preparation for 

publication at the time of submission of this thesis). The notable difference between M08 

and A09 was that E2 expression was absent in the M08 cell line indicating that the HPV16 

DNA may have integrated. Amplification of Papillomavirus Oncogene Transcripts (APOT) 

and Detection of Integrated Papillomavirus Sequence (DIPS) results also indicated that the 

HPV16 DNA was likely to have integrated in the M08 cell line; however, at the time of 

submission of this thesis southern blotting had not been performed to confirm this result. 

E2 expression was not disrupted in the A09 cell line and APOT and DIPS were negative 

indicating that HPV DNA in the A09 cell line was likely to be episomal. In addition to E2; E4 

and E5 transcription was also absent in the M08 cell line. A09 cells expressed all HPV 

genes.  
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The M08 and A09 cell lines were used to assess the growth inhibitory effects of nucleoside 

analogue compounds and to investigate the molecular mechanism of action of Cidofovir in 

HPV associated premalignant disease. The previous studies that aimed to determine the 

mechanism of action of Cidofovir in HPV positive cells mainly utilized transformed cell 

lines such as SiHa, HeLa, CaSki, SCC90, Hep2 and Me180 (Abdulkarim et al., 2002, Amine 

et al., 2009, De Schutter et al., 2013, Donne et al., 2007, Sirianni et al., 2005); all derived 

from malignant tumours. Such transformed cell lines would not be an accurate model of 

premalignant vulval or vaginal intraepithelial neoplastic disease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

1.7.  HPV Radiosensitivity and DNA Double Strand Breaks 

Radiosensitivity can be defined as the relative susceptibility of cells, tissues, organs, 

organisms, and other substances to the injurious action of ionising radiation. The purpose 

of radiosensitizing compounds in cancer treatment is to selectively modify tumour cells 

and/or normal tissues so that therapeutic gain is achieved using conventional radiation 

(Coleman and Turrisi, 1990). DSBs are the foremost cytotoxic lesions produced by 

radiation (Jackson, 2002). The first cellular response to DSBs involves the recruitment of 

large protein complexes which begin the DSB repair cascade (Brandsma and Gent, 2012). 

Examples of foci that occur in response to ionizing radiation may include: locally 

phosphorylated histone H2AX as well as 53BP1, RPA and RAD51 (Brandsma and Gent, 

2012). Phosphorylation of histone H2AX occurs primarily via the Ataxia-telangiectasia 

mutated (ATM) kinase (Burma et al., 2001), which is attracted to the DSB foci by the 

Mre11-Rad50-Nbs1 Complex (Lee and Paull, 2005). Other proteins such as ATR and DNA-

dependent protein kinase catalytic subunit (DNA-PKcs) (Falck et al., 2005) are also 

recruited to the site of the DSB and help trigger a DNA damage response. Of note, ATM 

phosphorylates and activates p53 protein (Banin et al., 1998), which is also attracted to 

the DSB site. Activated p53 then proceeds to initiate its cellular response to DNA damage, 

which can include DNA repair, apoptosis, cell cycle arrest, senescence etc.    

With regards to HPV and radiosensitivity, HPV positive invasive disease of oropharyngeal 

regions appears to be more responsive to radiotherapy compared with HPV negative solid 

tumours of the same areas (Vu et al., 2010). In a review (Vu et al., 2010) of several 

different HNSCC studies (Gillison et al., 2000, Lindel et al., 2001, Reimers et al., 2007, 

Weinberger et al., 2006), which examined patient survival in terms of HPV status, a 60-

80% reduction in the risk of mortality owing to their disease, compared to their HPV-

negative counterparts, was observed in HPV positive patients.  

A recent study examined the radiation response of five HPV/p16INK4a positive and five 

HPV negative HNSCC cell lines (Rieckmann et al., 2013). The authors found that on average 

the HPV positive cell lines displayed greater radiosensitivity compared to the HPV negative 

cell lines. The radiosensitivity result correlated with elevated levels of residual DSBs in the 

HPV positive cell lines, indicating that HPV positive cells are more susceptible to radiation 
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induced DSBs. To complement these data, a different study (Kimple et al., 2013) also 

found increased radiosensitivity in HPV positive cell lines when compared to HPV negative 

cell lines and a genome-wide microarray analysis found that multiple p53 pathway genes 

were up-regulated in the HPV positive cells following irradiation. It was therefore 

concluded that in spite of E6 ubiquitination of p53, low levels of wild-type p53 in HPV 

positive HNSCC cell lines could be activated by radiation. 

As HPV associated neoplasia responds better to radiotherapy, further research into the 

exact molecular processes resulting in this finding is needed to better develop therapeutic 

strategies involving radiation and possible combination treatment options.   
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1.8.  Hypotheses  

The main aim of this project was the evaluation of ANP compounds, particularly Cidofovir, 

in NHIST cell lines. Compounds of interest were evaluated in terms of specificity, inhibition 

of cell growth and mechanism of action in HPV positive cell lines to establish an 

agreement with or to challenge previously published and occasionally inconsistent 

literature. The mechanism of action of Cidofovir in the cell lines was compared to that 

occurring in vivo using clinical material from the RT3VIN clinical trial. The approaches used 

to investigate the following hypotheses are outlined in detail in the introductory sections 

of each results chapter. 

Hypothesis A 

i. Cidofovir displays anti-growth activity in NHIST cell lines 
ii. IC50 values obtained for Cidofovir in NHIST cell lines are similar to those outlined in 

previously published literature 

This hypothesis aimed to investigate the validity of the experimental dosing system using 

the NHIST cell lines as they had never been subjected to Cidofovir treatment prior to this 

study. Previous studies describe Cidofovir IC50 values and indicate possible specificity of 

the compound to HPV positive transformed ME180, HEP2, HeLa, CK-1, CaSki and HeLa cell 

lines (Andrei et al., 1998, Abdulkarim et al., 2002). 

Hypothesis B 

Cyclic ProTide analogues of Cidofovir have increased anti-growth activity compared with 
acyclic parent Cidofovir in NHIST cell lines 

This hypothesis was derived from the ProTide technology principle. As the negative charge 

on Cidofovir hinders and delays its cellular entry, ProTide analogues of cyclic Cidofovir 

were developed to mask its negative charge and increase cellular permeability.  

Hypothesis C 

ProTide analogues of Adefovir and Tenofovir are more efficient at inhibiting cell growth of 
HPV positive immortalized cell lines in comparison to the parent compounds from which 
they were derived 

The Cidofovir sister compounds, Adefovir and Tenofovir, are derived from an adenine 

nucleobase rather than a cytosine nucleobase. Few studies have examined the effects of 

Adefovir and Tenofovir in the treatment of HPV, but owing to the huge increases in 
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efficacy described for ProTide analogues (Mehellou et al., 2009) it was hypothesised that 

ProTide versions of Adefovir and Tenofovir may display an anti-growth effect in HPV 

positive cells. 

Hypothesis D 

The NHIST cell lines, M08 and A09, are TP53 wild-type  

As the HPV E6 oncoprotein causes degradation of p53 there is minimal selective pressure 

for p53 mutation in HPV positive cells. However given the potential importance of p53 

activity in mediating the response to Cidofovir, it was important to confirm p53 mutation 

status in the NHIST cell lines. 

Hypothesis E 

i. Growth inhibition of Cidofovir treated NHIST cell lines is due to re-accumulation of 
total and phosphorylated-p53 

ii. Cidofovir treatment combined with radiation can augment a p53 protein response 
in NHIST cell lines 

As HPV causes increased cellular proliferation by ubiquitination of the tumour suppressor 

proteins p53 and pRb via its E6 and E7 oncoproteins, an inhibition of HPV positive cell 

proliferation produced by Cidofovir may occur by reversal of this process. A re-

accumulation of total p53 and activation by phosphorylation could result in apoptosis, cell 

cycle arrest, senescence, DNA repair or in some cases autophagy. Additionally, previous 

studies demonstrated a radiosensitizing ability of Cidofovir in HPV positive cell lines 

(Abdulkarim et al., 2002, Sirianni et al., 2005). It is known that radiation on its own can 

induce a p53 response (Fei and El-Deiry, 2003). If Cidofovir treatment results in a re-

accumulation of total and phosphorylated-p53, further irradiation could augment such a 

response. 

Hypothesis F 

i. Cidofovir inhibits growth of NHIST cell lines by induction of apoptosis  
ii. Cidofovir can be used as a radiosensitizer and augment an apoptotic response in 

NHIST cell lines 

This hypothesis is an extension of hypothesis E. As previous published literature suggested 

Cidofovir inhibits HPV positive cell lines by induction of apoptosis (Andrei et al., 2001), it 
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was hypothesized that if a p53 response was reactivated by Cidofovir treatment in the 

NHIST cell lines, it may result in cell death by apoptosis. 

Hypothesis G 

The increases in total and phosphorylated-p53 levels in Cidofovir and Cidofovir combined 
with radiation treated NHIST cell lines are due to decreases in E6 expression 

This hypothesis is also an extension of hypothesis E. As the E6 oncoprotein causes 

degradation of p53, the re-accumulation of total and phosphorylated-p53 in Cidofovir and 

Cidofovir combined with radiation treated NHIST cell lines could be due to an inhibition or 

decrease in E6 expression. 

Hypothesis H  

Increases in total and phosphorylated-p53 levels in Cidofovir and Cidofovir combined with 
radiation treated NHIST cell lines result in increased p21/CDKN1A transcription 

If Cidofovir and Cidofovir combined with radiation induce a total and phosphorylated-p53 

response, then phosphorylated-p53 is free to act as a transcription factor for its many 

target genes, including the cell cycle arrest protein p21. In theory activation of p21 would 

result in cell cycle arrest and inhibition of cellular proliferation.   

Hypothesis I 

Differential expression of genes involved in apoptosis is evident in VIN tissue from patients 
who underwent topical Cidofovir treatment in the RT3VIN clinical trial 

This hypothesis was derived from cell line results, which showed differential expression 

patterns in certain apoptosis related genes after Cidofovir treatment, where a specific 

effect was seen in HPV positive cell lines. As it was previously demonstrated that Cidofovir 

produced a specific effect in vivo (Tristram and Fiander, 2005), this hypothesis was applied 

to investigate correlation between in vitro cell line work and the in vivo RT3VIN clinical 

trial.    
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2. Methods 

2.1. Cell Culture 

2.1.1. Materials 

All plasticware for cell culture was obtained from Fisher Scientific UK Ltd, Loughborough, 

UK.  Cell lines used are outlined in Table 2.1; cell culture reagents used are outlined in 

Table 2.2. Table 2.3 outlines how the cell culture media was formulated. All cell culture 

was carried out in a class II safety cabinet with stringent aseptic technique. 

Table 2.1. Cell Lines, Description and Source 

Cell Line Description HPV Status Source 

SiHa 
Transformed adherent human epithelial 
cell line derived from a cervical squamous 
cell carcinoma. 

Integrated  
HPV16 

American Type 
Culture 
Collection, 
Manassas, VA 

HeLa 
Transformed adherent human epithelial 
cell line derived from a cervical 
adenocarcinoma. 

Integrated  
HPV18 

C33A 
Transformed adherent human epithelial 
cell line derived from a cervical 
carcinoma. 

HPV negative 

3T3 Mouse 
feeder cells 

Immortalized mouse fibroblastic cell line 
used for supplementing growth of NHIST 
cell lines. 

HPV negative 

Prof Nick 
Coleman, 
University of 
Cambridge 

Human 
Epidermal 
Keratinocytes, 
neonatal (HEKn) 

Primary human epidermal keratinocytes 
isolated from neonatal foreskin capable 
of 30 - 34 population doublings. 

HPV negative 
Life 
Technologies 
Ltd, Paisley, UK 

NHIST  
M08 Vulval 
Keratinocytes 

Homogenous monoclonal adherent 
human epithelial short term cell line 
derived from a VIN3 biopsy. Taken from 
liquid nitrogen storage at passage 5/6, 
cultured and used in dosing and 
mechanism of action studies from 
passage 7 to 10. 

HPV16 positive 
 
Hypothesized 
integrated  

Onions and 
Powell et al., 
unpublished. 

NHIST  
A09 Vaginal 
Keratinocytes 

Homogenous monoclonal adherent 
human epithelial short term cell line 
derived from a VaIN3 biopsy. Taken from 
liquid nitrogen storage at passage 5/6, 
cultured and used in dosing and 
mechanism of action studies from 
passage 7 to 10. 

HPV16 positive 
 
Hypothesized 
episomal 
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Table 2.2. List and Source of Reagents used for Cell Culture 

Reagent Source 

Dulbecco’s modified Eagle’s Medium 
Glasgow Minimum Essential Medium 
Penicillin  
Streptomycin  
Epidermal Growth Factor (EGF)  
Hydrocortisone  
Cholera Toxin  
Glutamine  
Trypsin EDTA 1X  solution  
Phosphate Buffered Saline pH 7.4 
Dimethyl sulfoxide (DMSO)  

Sigma-Aldrich, Dorset, UK 
 
 
 
 
 
 
 
 
 
 

EpiLife culture medium with Calcium 
Human Keratinocyte Growth Supplement 

Life Technologies Ltd, Paisley, UK 

Foetal bovine serum Autogen Bioclear, Wiltshire, UK 

 

Table 2.3. Formulation of Cell Culture Media 

SiHa, HeLa, C33A and 3T3 Feeder Cells M08 and A09 Keratinocytes 

Component Volume Component Volume 

Dulbecco’s Modified Eagle’s Medium 
(DMEM) 

500 mL 
Glasgow Minimal Essential Medium 
(GMEM) 

500 mL 

Penicillin/Streptomycin (100X)  5 mL 
Penicillin/Streptomycin (100X) 5 mL 

Foetal Calf Serum 50 mL 

Foetal Calf Serum  50 mL 
Hydrocortisone  (50 µg/mL) 250 µL 

Cholera toxin (100 nM) 500 µL 

 

 
 
 
 

L-Glutamine (200 nM)  5 mL 

Epidermal growth factor (EGF) 
 (1 µg/mL) 
(GMEM was formulated with and 
without EGF) 

1 mL per 
100 mL 
media 

 

2.1.2. Culture of SiHa, HeLa, C33A and Mouse 3T3 Feeder Cells 

One hundred and seventy five centimetre squared tissue culture flasks were inoculated 

with 2 x 106 cells and 25 mL of Dulbecco’s modified Eagle’s Medium (supplemented 

according to Table 2.3). Flasks were incubated at 37°C in 5% CO2 until cells were ~80% 

confluent. Flasks were washed with 7 mL phosphate buffered saline before the addition of 

5 mL of trypsin/EDTA to each flask. After an incubation period of 3 minutes at 37°C the 

flasks were tapped by hand to detach the cells from the culture surface. The trypsin was 

neutralized with the addition of 5 mL media and cells were transferred to a universal 
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container and centrifuged at 161 g for 5 minutes. Supernatant was discarded and cells 

were re-suspended in fresh media and counted in a haemocytometer. 

2.1.3. Irradiation of Mouse 3T3 Feeder Cells 

After the 3T3 feeder cells were stripped from culture flasks and counted they were 

subjected to 60 Gray (Gy) gamma radiation in a Gammacell 1000 Elite irradiator (MDS 

Nordion, Ottawa, Canada) and stored at 4°C for further use. 

2.1.4. Culture of Human Epidermal Keratinocytes  

Human Epidermal Keratinocytes were diluted to 1.25 x 104 cells/mL in pre-warmed EpiLife 

culture medium supplemented with Human Keratinocyte Growth Supplement and added 

to 6 cm2 tissue culture dishes. Cells were incubated at 37°C in 5% CO2 until they became 

~80% confluent. Cells were then washed with 2.5 mL of trypsin/EDTA before the addition 

of 1 mL of fresh 1X  trypsin/EDTA solution. Dishes were incubated at 37°C for 10 minutes 

after which time they were gently tapped before neutralization of trypsin with 1 mL 

media. The cell suspension was then transferred to a universal container and centrifuged 

at 181 g for 7 minutes. The supernatant was discarded and cells were counted on a 

haemocytometer. Cells for subculture were re-inoculated at 2.5 x 103 cells/cm2.   

2.1.5. Culture of M08 and A09 Vulval and Vaginal Keratinocytes 

M08 vulval and A09 vaginal keratinocytes were inoculated at 8 x 105 cells per 10 cm dish 

with 2 x 106 irradiated 3T3 fibroblasts in pre-warmed Glasgow Modified Eagles Medium 

(supplemented according to Table 2.3) at 37°C in 5% CO2. After 48 hours the media was 

changed to EGF positive media. Thereafter, the media was changed every 48 – 72 hours 

until 80% confluence was reached. After this time, cells were vigorously rinsed with pre-

warmed phosphate buffered saline to remove 3T3 cells and 2 mL pre-warmed trypsin was 

added to each dish. The dishes were incubated at 37°C for 10 – 20 minutes and then 

gently tapped to detach cells from the culture surface. The trypsin was neutralised with 2 

mL media and cells were transferred to a universal container and centrifuged at 161 g for 

5 minutes. The supernatant was discarded and cells were re-suspended in fresh media and 

counted in a haemocytometer. 
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2.1.6. Storage of Cells 

Cells to be stored post stripping and counting were re-suspended in foetal bovine serum 

with 10% DMSO and aliquoted into 1 mL cryovials. They were then placed in a Mr Frosty 

freezing container for > 24hours at -80°C, after which time they were transferred into a 

liquid nitrogen storage facility. 

2.1.7. Mycoplasma Detection 

Venor®GeM Mycoplasma PCR detection kit (Minerva Biolabs, Berlin, Germany) was used 

to detect Mycoplasma contamination of cell lines. The primer set is specific to the highly 

conserved 16S rRNA coding region, allowing for the detection of a range of mycoplasma 

species. The contents of the Venor®GeM Mycoplasma PCR detection kit are outlined in 

Table 2.4. 

Table 2.4. Components of Venor®GeM Mycoplasma Detection PCR Kit 

Component µL of water added for reconstitution 

Primer/Nucleotide Mix 65 

PCR 10x Reaction Buffer - 

Positive Control DNA 300 

Internal Control 300 

PCR grade Water - 

 

2.1.7.1. Template Preparation 

Templates for PCR analysis were prepared by transferring 100 μL of supernatant from the 

test cultures (which had reached 90 – 100% confluence) to sterile micro centrifuge tubes 

and heating to 95°C for 5 minutes. The samples were then briefly centrifuged (15700 g for 

5 seconds) to pellet cellular debris before addition to the PCR mixture. 

2.1.7.2. Component Rehydration 

The controls and primer/nucleotide mix were rehydrated by centrifuging the tubes with 

lyophilized components for 5 seconds at 15700 g before the addition of water (volumes 

outlined in Table 2.4.). The components were then incubated for 5 minutes at room 

temperature before vortexing and re-centrifugation. 

2.1.7.3. Preparation of PCR Mastermix 

The PCR reaction mixture was prepared according to Table 2.5. 
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Table 2.5. Formulation of Mycoplasma Detection PCR Reaction Mixture  

Component  µL per 1 PCR reaction 

PCR grade Water 15.3 

10x Reaction Buffer 2.5 

Primer/Nucleotide Mix 2.5 

Internal Control 2.5 

Hotstar taq (Qiagen, Hilden, Germany) 0.2 

Sample DNA/positive control/negative control 2 

Total 25 

 

2.1.7.4. Thermal Cycle Process 

The samples were placed into a Techne TC-512 (Bibby Scientific Limited, Staffordshire, UK) 

and the thermal cycle conditions outlined in Table 2.6 were used; 

Table 2.6. Thermal Cycle for Mycoplasma Detection PCR 

Process Temperature °C Duration Number of cycles 

Hot start activation 94 15 minutes - 

Denaturation 94 30 seconds 

39 Annealing 55 30 seconds 

Elongation 72 30 seconds 

Final extension 72 10 minutes - 

 

2.1.7.5. Agarose Gel Electrophoresis 

A 1.5% agarose gel was made using the formulation outlined in Table 2.7. 

Table 2.7. Agarose Gel Formulation for Mycoplasma Detection PCR Products 

Component Quantity Source 

Agarose 1.5 g Geneflow, Staffordshire, UK 

Tris-Borate-EDTA (TBE) buffer (1X ) 100 mL Sigma-Aldrich, Dorset, UK 

Ethidium bromide (10 mg/mL) 3 μL Sigma-Aldrich, Dorset, UK 

  

The agarose powder was dissolved in TBE buffer by heating in a microwave for 3 – 4 

minutes until the solution became clear. The solution was cooled to about 65°C before 

adding the appropriate volume of ethidium bromide. The solution was then poured into a 

gel mould with comb inserted. 

When set, the gel was placed into an electrophoresis tank filled with 1X TBE-buffer. The 

gel comb was removed and 5 μL of PCR product per reaction was mixed with 5 μL 

bromophenol blue loading buffer and added to single wells on the gel. For use as a DNA 
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standard 10 μL of Geneflow 100 bp PCR ranger (Geneflow, Staffordshire, UK) was also 

added to a peripheral well. Voltage was applied (94 mV/86 mA) and the PCR products 

were allowed to migrate within the gel according to their size for 20 – 30 minutes. 

After electrophoresis, the gel was transferred to a transilluminator and imaged using a 

GelDock-It TS UVP Imaging System (Ultra-Violet Products Ltd, Cambridge, UK). When 

examining the gel, the internal control appeared at 191 bp per sample, indicating the PCR 

preformed successfully. If mycoplasma was detected a second band was visible at 270 bp. 

2.2.  DNA and RNA extraction 

Total DNA and RNA were extracted simultaneously from cell culture experiments using an 

AllPrep DNA/RNA Mini Kit obtained from Qiagen, Hilden, Germany.  

2.2.1. Reagent Preparation 

Buffer RPE, Buffer AW1, and Buffer AW2 were each supplied as concentrate. The 

appropriate volume of ethanol (96 – 100%) was added to obtain a working solution before 

starting extraction for the first time. Before use, 10 μL β-mercaptoethanol (β-ME) (Sigma-

Aldrich, Dorset, UK) was added to 1 mL Buffer RLT Plus in a fume hood wearing 

appropriate protective clothing.  

2.2.2. Cell Lysis and Homogenisation  

For each sample to be extracted culture medium was aspirated off the monolayer of cells 

and the culture surface was rinsed with PBS. Either 350 μL (culture dish < 6 cm diameter) 

or 600 μL (culture dish 6 – 10 cm diameter) of Buffer RLT Plus was added to each culture 

surface. The lysates were rinsed over the culture surface, then transferred into separate 

microcentrifuge tubes and passed through a 20-gauge needle (0.9 mm diameter) fitted to 

an RNase-free syringe at least 5 times. The homogenized lysates were then transferred to 

AllPrep DNA spin columns placed in 2 mL collection tubes and centrifuged for 30 seconds 

at 15700 g. The AllPrep DNA spin columns were then placed into new 2 mL collection 

tubes and stored at room temperature or at 4°C for later DNA purification. The flow-

through from each sample was used for RNA purification. 
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2.2.3. RNA Purification 

Six hundred microlitres of 70% ethanol were added to the flow-through of each sample 

and mixed well by pipetting. The flow-through/ethanol mixtures were transferred to 

RNeasy spin columns placed in 2 mL collection tubes and centrifuged for 15 seconds at 

15700 g. The flow-through was discarded and 700 μL Buffer RW1 was added to each 

RNeasy spin column and centrifuged for 15 seconds at 15700 g to wash the spin column 

membranes. The flow through was again discarded and 500 μL Buffer RPE was added to 

each RNeasy spin column and centrifuged for a further 15 seconds at 15700 g – this step 

was carried out twice but on the second occasion the RNeasy spin columns were 

centrifuged for 2 minutes at 15700 g to wash and dry the spin column membranes, 

ensuring that no ethanol was carried over during RNA elution. Each RNeasy spin column 

was then placed in a fresh 1.5 mL collection tube and 30–50 μL RNase-free water was 

added directly to the spin column membranes and centrifuged for 1 min at 15700 g to 

elute the RNA. 

2.2.4. Genomic DNA Purification 

For genomic DNA purification 500 μL Buffer AW1 was added to each initial AllPrep DNA 

spin column and centrifuged for 15 seconds at 15700 g to wash the spin column 

membranes. The flow-through was discarded and 500 μL Buffer AW2 was added to each 

AllPrep DNA spin column and centrifuged for 2 min at 15700 g. Each AllPrep DNA spin 

column was placed into a new 1.5 mL collection tube and 100 μL Buffer EB was added 

directly to the spin column membranes and incubated at room temperature for 1 min. The 

columns were then centrifuged for 1 min at 15700 g to elute the DNA. 

2.2.5. Purified DNA and RNA Quantification and Storage 

Purified DNA and RNA were quantified by Nanodrop spectrophotometry (Fisher Scientific 

UK Ltd, Loughborough, UK). Purified DNA was stored at -20°C and purified RNA was stored 

at -80°C for downstream application. 



72 
 

2.3.  Protein Extraction  

PathScan® Sandwich ELISA Lysis buffer (Cell Signalling, Massachusetts, USA) was used to 

extract and preserve total protein from cell culture experiments. Components of the 

PathScan® Sandwich ELISA Lysis buffer are outlined in Table 2.8. 

Table 2.8. Components of 1X PathScan
®
 Sandwich ELISA Lysis Buffer 

 

One millimolar Phenylmethylsulfonyl Fluoride (PMSF) (Fisher Scientific UK Ltd, 

Loughborough, UK) was added to 1X lysis buffer chilled on ice immediately before use. 

Cells were rinsed with ice-cold PBS and 500 µL/10 cm plate of lysis buffer was added to 

each culture surface. Plates were left on ice for 5 minutes before scraping off the cell 

lysate mixture and transferring it to an appropriate tube. The lysates were then sonicated 

on ice for 30 seconds. Sonicated lysates were centrifuged for 10 minutes at 4°C at 15700 g 

and resulting supernatants were transferred into fresh tubes. Cell lysates were stored at 

−80°C in single-use aliquots for downstream application. 

2.3.1. Protein Quantification 

Total protein from cell lysates was quantified using a Thermo Scientific Pierce® BCA 

Protein Assay Kit (Fisher Scientific UK Ltd, Loughborough, UK). The Thermo Scientific 

Pierce BCA Protein Assay was used instead of the conventional Bradford Assay as it is a 

detergent-compatible formulation based on bicinchoninic acid (BCA) for the colourimetric 

detection and quantification of total protein. It combines the biuret reaction (the 

reduction of Cu+2 to Cu+1 by protein in an alkaline medium) with the highly sensitive and 

selective colorimetric detection of the cuprous cation (Cu+1) using a unique reagent 

Component Concentration 

β-glycerophosphate 1 mM 

EDTA disodium salt 1 mM 

EGTA 1 mM 

Leupeptin 1 µg/mL 

Sodium chloride 150 mM 

Sodium Pyrophosphate 20 mM 

Sodium Fluoride 25 mM 

Sodium Orthovanadate 1 mM 

Tris-Cl 20 mM 

Triton X-100 - 
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containing bicinchoninic acid. The chelation of two molecules of BCA with one cuprous ion 

forms a purple-colour reaction product, which exhibits a strong absorbance at 562 nm 

that has an almost linear relationship with increasing protein concentrations over a broad 

working range. Protein concentrations were determined using standards of bovine serum 

albumin (BSA). A dilution series of known concentrations was prepared from the protein 

standard and assayed alongside the unknown samples before the concentration of each 

unknown was determined using a standard curve. 

2.3.1.1. Preparation of Standards and Working Reagent 

The components of the Thermo Scientific Pierce® BCA Protein Assay Kit are outlined in 

Table 2.9. 

Table 2.9. Thermo Scientific Pierce® BCA Protein Assay Kit Contents 

Component  Quantity/Volume 

BCA Reagent A 500 mL 

BCA Reagent B 25 mL 

Albumin Standard Ampules (2 mg/mL) 10 x 1 mL 

 

The contents of one Albumin Standard (BSA) ampule were diluted into several clean vials 

using the same diluent (lyses buffer) as the samples. Each 1 mL ampule of 2mg/mL 

Albumin Standard was sufficient to prepare a set of diluted standards for the working 

range in triplicate. The formulation of the standards is outlined in Table 2.10. 

Table 2.10. Formulation of BSA Standards for Protein Quantification 

Vial Volume of diluent (µL) Volume and Source of BSA (µL) 
Final BSA Concentration 
(μg/mL) 

A 0 300 of Stock 2000 

B 125 375 of Stock 1500 

C 325 325 of Stock 1000 

D 175 175 of vial B dilution 750 

E 325 325 of vial C dilution 500 

F 325 325 of vial E dilution 250 

G 325 325 of vial F dilution 125 

H 400 100 of vial G dilution 25 

I 400 0 0 = Blank 
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Two hundred microlitres of working reagent (WR) reagent were required for each sample 

and were prepared by mixing 50 parts of BCA Reagent A with 1 part of BCA Reagent B. 

2.3.1.2. Procedure 

Twenty-five microlitres of each standard or unknown sample were aliquoted into separate 

wells on a 96 well plate. Two hundred microlitres of the WR were then added to each 

well. The plate was mixed thoroughly on a plate shaker for 30 seconds. The plate was then 

covered and incubated at 37°C for 2 hours. After the incubation period the plate was 

allowed to cool to room temperature and the absorbance was measured at 590 nm on a 

Biochrom Asys Expert Plus microplate reader (Biochrom Ltd., Cambridge, UK).  

2.3.1.3. Data Analysis 

The average 590 nm absorbance of the measurement of the blank standard replicates was 

subtracted from the 590 nm measurements of all other individual standard and unknown 

samples. A standard curve was constructed using GraphPad Prism 4 software (GraphPad 

Software, Inc., CA, US) by plotting the average Blank-corrected 590 nm measurement for 

each BSA standard against its concentration in μg/mL. The standard curve was then used 

to determine the protein concentration of each unknown sample. 

2.4.  TP53 Mutation Status 

The TP53 mutation status of short term vulval cell line, M08, and short term vaginal cell 

line, A09, was determined by direct sequencing using the IARC 2010 protocol (IARC, 2010 

Update) for detection of TP53 mutations.  

2.4.1. Primer Sets 

Thirteen primer sets designed to amplify exons 2 – 11 of the human TP53 gene were 

obtained from Sigma-Aldrich (Dorset, UK). Primer sequence and product size are displayed 

in Table 2.11. 
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Table 2.11. Primers, Direction, Region Amplified, Product Length and Thermo Cycle 

Program for TP53 Mutation Detection PCR 

IARC code 
 

Primer pairs 
(5’ → 3’) 

Direction 
Region 
Amplified 

Product 
Length 

PCR 
Program 

P-559 
P-E3Ri 

tctcatgctggatccccact 
agtcagaggaccaggtcctc 

F 
R 

Exons 2-3 344 bp B 

P-329 
P-330 

tgctcttttcacccatctac 
atacggccaggcattgaagt 

F 
R 

Exon 4 353 bp B 

P-326 
P-327 

tgaggacctggtcctctgac 
agaggaatcccaaagttcca 

F 
R 

Exon 4 413 bp B 

P-312 
P-271 

ttcaactctgtctccttcct 
cagccctgtcgtctctccag 

F 
R 

Exon 5 248 bp B 

P-239 
P-240 

gcctctgattcctcactgat 
ttaacccctcctcccagaga 

F 
R 

Exon 6 181 bp B 

P-236 
P-240 

tgttcacttgtgccctgact 
ttaacccctcctcccagaga 

F 
R 

Exons 5 - 6 467 bp B 

P-333 
P-313 

cttgccacaggtctccccaa 
aggggtcagaggcaagcaga 

F 
R 

Exon 7 237 bp C 

P-237 
P-238 

aggcgcactggcctcatctt 
tgtgcagggtggcaagtggc 

F 
R 

Exon 7 177 bp B 

P-316 
P-319 

ttccttactgcctcttgctt 
aggcataactgcacccttgg 

F 
R 

Exon 8 231 bp B 

P-314 
P-315 

ttgggagtagatggagcct 
agtgttagactggaaacttt 

F 
R 

Exons 8 - 9 445 bp B 

9F 
9R 

gacaagaagcggtggag 
cggcattttgagtgttagac 

F 
R 

Exon 9 215bp E 

P-E10Li 
P-562 

caattgtaacttgaaccatc 
ggatgagaatggaatcctat 

F 
R 

Exon 10 260 bp D 

P-E11Le 
P-E11Re 

agaccctctcactcatgtga 
tgacgcacacctattgcaag 

F 
R 

Exon 11 245 bp B 

 

2.4.2. PCR Reaction Components 

Template DNA was extracted from M08 and A09 cells and the PCR reaction mixture for 

each primer set was formulated according to Table 2.12. 
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Table 2.12. TP53 Mutation Detection PCR Reaction Formulation 

Component  Source 
μL / 
Reaction 

Final 
Conc. 

10X PCR buffer containing 15 mM MgCl2 Qiagen, Hilden, Germany 2 1X  

5X Q-Solution Qiagen, Hilden, Germany 4 1X  

dNTP mix (2 mM each) Life Technologies Ltd, Paisley, UK 2 0.2 mM 

Primer, forward 10 μM Sigma-Aldrich, Dorset, UK 0.8 0.4 μM 

Primer, reverse 10 μM Sigma-Aldrich, Dorset, UK 0.8 0.4 μM 

HotStarTaq DNA polymerase (5 U/μl) Qiagen, Hilden, Germany 0.1 0.5 U 

Template DNA  - 1 50 ng 

Water, molecuLar biology grade Sigma-Aldrich, Dorset, UK 9.3 - 

TOTAL 20 - 

 

2.4.3. Thermal Cycle Process 

The PCR reactions along with a negative control for each condition were run on one of the 

following four thermal cycle programs (Tables 2.13 – 2.16) on either a Techne TC-512 

(Bibby Scientific Limited, Staffordshire, UK) or a GeneAmp PCR System 9700 (Life 

Technologies Ltd, Paisley, UK). 

Table 2.13. TP53 Mutation Detection PCR Thermo Cycle B Conditions 

Process Temperature °C Duration Notes Number of Cycles 

Hot start activation 94 15 minutes  - 

Denaturation  94 30 seconds  

20 Primers anneal 63 45 seconds -0.5°C every 3 
cycles Elongation 72 1 minute 

Denaturation  94 30 seconds  

30 Primers anneal 60 45 seconds  

Elongation 72 1 minute  

Final extension 72 10 minutes  - 

 

Table 2.14. TP53 Mutation Detection PCR Thermo Cycle C Conditions 

Process Temperature °C Duration Number of Cycles 

Hot start activation 95 15 minutes - 

Denaturation  94 30 seconds 

50 Primers anneal 60 30 seconds 

Elongation 72 30 seconds 

Final extension 72 10 minutes - 
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Table 2.15.  TP53 Mutation Detection PCR Thermo Cycle D Conditions 

Process Temperature °C Duration Notes Number of Cycles 

Hot star activation 94 15 minutes  - 

Denaturation  94 30 seconds  

20 Primers anneal 58.5 45 seconds -0.5°C every 3 
cycles Elongation 72 1 minute 

Denaturation  94 30 seconds  

30 Primers anneal 55 45 seconds  

Elongation 72 1 minute  

Final extension 72 10 minutes  - 

 

Table 2.16.  TP53 Mutation Detection PCR Thermo Cycle E Conditions 

Process Temperature °C Duration Number of Cycles 

Hot star activation 95 15 minutes - 

Denaturation  94 30 seconds 

50 Primers anneal 57 30 seconds 

Elongation 72 30 seconds 

Final extension 72 10 minutes - 

 

PCR products were electrophoresed on a 2% agarose gel with 5X Orange G loading dye 

(Sigma-Aldrich, Dorset, UK) and visualised under UV light. 

2.4.4. Gel Extraction 

An illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare Life Sciences, 

Buckinghamshire, UK) was used to purify DNA post agarose gel electrophoresis. The 

illustra GFX PCR DNA and Gel Band Purification Kit contents are outlined in Table 2.17. 

Prior to first use, 100 mL absolute ethanol was added to the Wash buffer type 1. 

Table 2.17. illustra GFX PCR DNA and Gel Band Purification Kit Contents 

Capture buffer 

Wash buffer 

Elution buffer type 3 (Tris HCL) 

Elution buffer type 6 (Sterile H2O) 

illustra™GFX™MicroSpin™Columns 

Collection tubes 

 

The agarose gel was placed on a 365 nm benchtop ultraviolet transilluminator (Ultra-

Violet Products Ltd, Cambridge, UK) with minimal exposure time. Using a clean scalpel, the 

agarose band containing the DNA of interest was cut out and placed into a DNase-free 1.5 

mL microcentrifuge tube. Three hundred microlitres of Capture buffer type 3 were added 
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to each excised band of gel and mixed by inversion.  Samples were then incubated at 60°C 

for 15 – 30 minutes, mixing by inversion every 5 minutes to dissolve the agarose. Once the 

agarose had completely dissolved the colour of the mixture was examined. If the colour of 

the binding mixture was a dark pink or red, 10 µL of 3 M sodium acetate pH 5.0 (Fisher 

Scientific UK Ltd, Loughborough, UK) was added and mixed to adjust the pH of the 

mixture. The capture buffer type 3-sample mixtures were then centrifuged briefly to 

collect the liquid at the bottom of the tubes and transferred to assembled GFX MicroSpin 

column and collection tubes. After an incubation period of 1 minute the assembled 

columns were centrifuged at 15700 g for 30 seconds. The flow-through was discarded and 

the MicroSpin columns were placed back inside the collection tubes. Five hundred 

microlitres of Wash buffer type 1 were added to the GFX MicroSpin columns and the 

columns were centrifuged at 15700 g for 30 seconds. The collection tubes were discarded 

and the GFX MicroSpin columns were transferred to fresh DNase-free 1.5 mL 

microcentrifuge tubes. For each sample, 25 µL Elution buffer type 6 was added to the 

centre of the membrane in the assembled GFX MicroSpin column and incubated for 1 

minute at room temperature. Finally, the assembled column and sample collection tubes 

were centrifuged at 15700 g for 1 minute to recover the purified DNA. 

Five microlitres of each purified PCR product were loaded with 5 μL orange G to a 2% 

agarose gel and the purified products were electrophoresed to ensure there was only one 

correctly sized DNA band present post gel extraction. This was also carried out to estimate 

the concentration of purified product post purification by comparing the sample band 

intensity to the intensity of the standards on the of Geneflow 100 bp PCR ranger.  

2.4.5. Sequencing 

Primers for sequencing were diluted to 3.2 pmol/μL in fresh 1.5 mL tubes. Twenty 

microlitres of purified PCR product were aliquoted into appropriately labelled DNase free 

tubes. Sequencing was performed by Source Bioscience (Source BioScience UK Ltd., 

Nottingham, UK) who require 1 ng/μL per 100 bp of fragment.  
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2.4.6. Sequence Analysis 

The chromatograms of the Sanger Sequencing reactions were manually analysed using 

BioEdit software (Ibis Biosciences, Ca, USA) before the generation of fasta files for each 

sequence. In the nucleotide section of the BLAST® website (NCBI), the TP53 mRNA 

reference sequence NM_000546.4 was aligned with the sequences of interest. Where 

there was an identity between the reference and test sequences of 99% or less, the 

chromatograms were manually re-examined to rule out false mismatches. If the 

mismatches appeared to be real the nucleotide location and difference was recorded. The 

test sequences were then re-aligned with the genomic DNA (gDNA) reference sequence, 

NC_000017.9, and true mismatches were examined and recorded as per above. The true 

mismatches common to both mRNA and gDNA reference sequence alignments were 

searched for in the IARC TP53 Mutation Database (IARC, November 2012) using the cDNA 

(mRNA) sequence position. 

2.5.  Cidofovir and ANP Analogue Dosing 

2.5.1. ProTide Synthesis 

The compounds outlined in Table 2.18 were used in the dosing studies; 

Table 2.18. Compounds used in Dosing Studies 

Compound Source 

Cidofovir Shanghai Sun-Sail Pharmaceutical Science & Technology Co., Ltd., Shanghai, China 

Tenofovir Ningbo Haishu Hobid Imp & Exp Co., Ltd, Ningbo, China 

Adefovir Hubei Maxsource Chemical Co., Ltd, Wuhan, China 

Davide Carta, Fabrizio Pertusati and Karen Hinsinger of the McGuigan Group in the Welsh 

School of Pharmacy confirmed the identity and purity of the compounds by nuclear 

magnetic resonance (NMR) using a Bruker spectrometer (Bruker, Billerica, MA, USA) and 

synthesised the prodrug compounds.  

An amidate derivative of cyclic Cidofovir was synthesized according to the procedure 

outlined in the literature (Kern et al., 2002). In brief, Cidofovir was treated with N,N-

dicyclohexyl-4-morpholinecarboxamidine (DCMC) and 1,3-dicyclohexylcarbodiimide (DCC), 

which generated dicyclohexyl morpholinocarboxamidine salt. The reaction of cyclic 

Cidofovir with an excess of L-alanine benzyl ester in the presence of 2,2'-dithiopyridine 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&ved=0CEMQFjAB&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNuclear_magnetic_resonance&ei=Cyl9UZGXK-qX0AX6sIGYCg&usg=AFQjCNF7rzVo2Q_ghV_fChEHo5JfWeZQ8A&sig2=0vXtvyGEFMWXisG3XvR9zA&bvm=bv.45645796,d.d2k
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&ved=0CEMQFjAB&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNuclear_magnetic_resonance&ei=Cyl9UZGXK-qX0AX6sIGYCg&usg=AFQjCNF7rzVo2Q_ghV_fChEHo5JfWeZQ8A&sig2=0vXtvyGEFMWXisG3XvR9zA&bvm=bv.45645796,d.d2k
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and triphenylphosphine in anhydrous pyridine at 60 °C resulted in a mixture of two 

diastereomers. 

The Adefovir and Tenofovir prodrugs were synthesised by addition of 

bromotrimethylsilane (TMSBr) to a solution of the acyclic nucleoside in dry acetonitrile 

(ACN) under argon and the reaction was stirred at room temperature overnight. The 

solvents were then removed under reduced pressure without any contact with air and the 

residue was dissolved in anhydrous triethylamine (Et3N) and pyridine, and amino acid 

ester was added. Aldrithiol-2 and triphenylphosphine (Ph3P) were dissolved in anhydrous 

pyridine in a separate flask and immediately added to the reaction. The mixture was 

stirred for 3 – 5 hours at 50°C before solvent evaporation. The residue was then purified 

by flash chromatography on silica gel eluted with dichloromethane/methanol.  

2.5.2. Compound Formulation 

The materials used and volumes for compound formulation are outlined in Table 2.19 and 

Table 2.20 respectively. 

Table 2.19. Materials used for Compound Formulation 

Material Source 

Dimethyl sulfoxide (DMSO) Fisher Scientific, Loughborough, UK 

Phosphate buffered saline (PBS) pH 7.4 Sigma-Aldrich, Dorset, UK 

Sodium Hydroxide (NaOH) 5M Sigma-Aldrich, Dorset, UK 

 

Table 2.20. Formulation of Compounds 

Compound 
ID number 
/CAS 

MW 
g 

Grams 
g 

PBS 
mL 

DMSO 
mL 

DMSO 
% 

mM 

Cidofovir 149394-66-1 315.22 15.862 65.000† 40.000 37.92 30.8 

cCDV amidate cf 3293 422.3722 0.0029 6.866 0.166 2.36 1.0 

cCDV Salt cf 3362 554.6193 0.0020 3.607 0.047 1.29 1.0 

Tenofovir parent 147127-20-6 287.21 0.0057 20.000 0.200 0.99 1.0 

Tenofovir prodrug 1 cf 3472 569.6 0.0103 18.083 0.183 1.00 1.0 

Tenofovir prodrug 2 cf 3473 554.58 0.0122 22.000 0.200 0.90 1.0 

Tenofovir prodrug 3 cf 3474 554.58 0.0093 16.770 0.170 1.00 1.0 

Adefovir parent 106941-25-7 273.19 0.0055 20.000 0.200 0.99 1.0 

Adefovir prodrug 1 cf 3475 540.55 0.0048 8.880 0.110 1.22 1.0 

Adefovir prodrug 2 cf 3476 555.61 0.0069 12.420 0.200 1.58 1.0 

† With the addition of 0.5 mL 5M NaOH 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&sqi=2&ved=0CDMQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAcetonitrile&ei=czR9UdmTFojK0QXgv4CoCg&usg=AFQjCNGxSbAB6rfz6-czct69fT7N3R-VUg&sig2=pSx1ESmCB_53ghTORANFuA&bvm=bv.45645796,d.d2k
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&sqi=2&ved=0CDQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTriphenylphosphine&ei=mzV9Uc2FLMil0AXE2oBo&usg=AFQjCNHsE_qEgLhX5pWeTZiRzZPd0pgPXg&sig2=QQ4onMLiW5PEZNMUz7ztwg&bvm=bv.45645796,d.d2k
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDMQFjAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDichloromethane&ei=FDV9Uc6xGbST0QXJuYG4Dg&usg=AFQjCNFiJIkEvdAeAuBjUuHLv3Cij--JMA&sig2=ZtJ4VjdiUcOanb3dCkUG3A&bvm=bv.45645796,d.d2k
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2.5.3. Optimum Cell Number Titration 

As each cell line used in the dosing studies had different population doubling times it was 

necessary to establish the appropriate initial inoculum so the culture would not reach 

confluence during the experimental period. It was also important to determine the initial 

cell inoculums for the short term vulval and vaginal cells lines as these cells require 

contact with other cells to proliferate effectively. 

M08 cells were seeded at 5 x 103, 7.5 x 103 and 1 x 104 cells per well in triplicate in a 96 

well plate with the appropriate culture medium. After an adherence period of 24 hours, 

concentrations of 0, 1, 10 and 100 μM Cidofovir were added to the appropriate wells for 

each initial inocula series. The plates were incubated at 37°C in 5% CO2 for a further 6 

days, where cells were evaluated daily for efficient proliferation and degree of confluence. 

Viability readings using Trypan blue staining were taken 3 and 6 days post Cidofovir 

dosing. The optimum initial cell inoculum determined from the study was adjusted per 

culture surface area when working with different sized culture dishes.  

The transformed cell lines, SiHa, HeLa and C33A, were seeded from 1 x 102 – 7 x 103 cells 

per well in a 96 well plate and incubated at 37°C in 5% CO2. After 24 hours, 20 μL of 

CellTiter 96® AQueous One MTS Solution Reagent (Promega, Southampton, UK) was 

added to each well and absorbance values were read from 1 – 4 hours at 490 nm to 

determine the optimum initial cell inoculum as well as optimum time for incubation with 

the CellTiter 96® AQueous One MTS Solution Reagent. 

2.5.4. Dosing Method 

In all cases, cells to be used in the dosing experiments were taken from culture and 

aliquoted at specified cell numbers into 96 well plates, 24 well plates or 6 cm tissue 

culture dishes without compound. The plates were incubated at 37°C with 5% CO2 for 24 

hours to allow cells to adhere. The compound negative media was then aspirated and 

fresh media with the desired concentration of compound was added. Cells in all 

experiments apart from the Prodrug Screen were subjected to just one dose of 

compound. Cells in the Prodrug Screen were subjected to a second dose of compound 72 
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hours (3 days) after the initial dose. Untreated/compound negative cells were also 

cultured alongside treated cells to serve as a negative control. 

2.5.5. Radiation and Cidofovir Combined Treatment 

Cells in the radiosensitivity assay were pre-treated with their IC50 concentrations of 

Cidofovir for 6 days. After this time they were stripped from their culture dishes and 

reseeded into fresh 6 cm culture dishes in the presence of Cidofovir. After an attachment 

period of 24 hours the 6 cm culture dishes were placed into a Gammacell 1000 Elite 

irradiator and subjected to either 2 or 20 Gy gamma radiation. 

2.6.  Assessment of Cell Viability 

Viability of cells treated with compounds was assessed at various time points post 

treatment: 

2.6.1. Microscopic Examination and Photomicrographs 

Treated cells were examined using bright field microscopically at specific time points for 

evidence of viability using X100 and X320 magnification on a Zeiss Axiovert 35M inverted 

microscope.  

2.6.2. MTS Viability Protocol 

The CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega, Southampton, 

UK) was the first method employed to quantify cell viability in response to treatment. The 

colorimetric assay is composed of solutions of a tetrazolium compound (3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-suLfophenyl)-2H-tetrazolium, 

inner salt; MTS) and the electron coupling reagent phenazine methosulfate (PMS). MTS is 

reduced by dehydrogenase enzymes in metabolically active cells into a formazan product. 

At 490 nm the absorbance of the formazan can be measured directly from a 96-well plate, 

and absorbance is taken as proportional to the number of living cells. 

When cell viability was to be examined, the CellTiter 96® AQueous One MTS Solution 

Reagent was allowed to thaw at room temperature for approximately 2 hours. Twenty 

microlitres of CellTiter 96® AQueous One Solution Reagent were then added to each well 

of a 96-well assay plate containing the cells to be analysed in 100 μL of culture medium. 
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The plate was then incubated for 3.5 hours at 37°C in 5% CO2. After this incubation period 

absorbance was recorded at 490 nm using a Multiskan FC Microplate Photometer (Fisher 

Scientific UK Ltd, Loughborough, UK). Background interference was controlled for by using 

100 μL of culture media without cells and 20 μL of CellTiter 96® AQueous One Solution 

Reagent. The absorbance of this “blank” solution was then subtracted from the 

absorbance of the test wells for the final absorbance value, which was proportional to cell 

viability. 

2.6.3. Trypan Blue Dye Exclusion 

The Trypan Blue Dye Exclusion assay was also used to determine cell viability post 

treatment. Live cells have intact cell membranes that exclude Trypan Blue, whereas, dead 

cells do not and Trypan Blue can enter. Therefore, non-viable/dead cells stained with 

Trypan Blue appear to have a blue cytoplasm when visualised under a microscope, while 

cells with a clear cytoplasm are viable. Cells were trypsinized and brought into suspension. 

Twenty microlitres of cell suspension were removed and an equal volume of 0.4% Trypan 

Blue (Sigma-Aldrich, Dorset, UK) was added to the cell suspension and mixed by gentle 

pipetting. Both chambers of a Neubauer haemocytometer (Marienfeld, Lauda-

Königshofen, Germany) were filled with approximately 10 μL of the stained cell 

suspension each and viewed under a Zeiss Axiovert 35M inverted microscope at X200 

magnification. Both the number of viable (clear) and non-viable (blue) cells were counted 

and number of viable cells per mL was calculated by multiplying the number of viable cells 

counted in one chamber x 10,000. 

2.6.4. Flow Cytometry 

Flow cytometry using 7-amino actinomycin D (7-AAD) was the third method used to assess 

viability of treated cells. In a flow cytometry analyser, a laser beam of a particular 

wavelength is passed through a hydro-dynamically focused stream of cells in suspension, 

such that only one cell passes through the laser beam at a time. As a cell passes through 

the laser beam light is deflected and is registered and quantified by a number of detectors 

strategically positioned around the laser beam. The forward scatter detector is directly in 

line with the laser beam and detects light scattered in a forward manner, which is 

proportional to cell size. Side scatter and fluorescence detectors are positioned 
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perpendicular to the laser beam. The side scatter detectors measure the amount of light 

scattered to the side of the cell as it passes through the laser beam, which is an indication 

of cellular granularity. If a cell labelled with a particular fluorochrome passes through a 

laser beam, the fluorochrome will emit light at a specific wavelength which can be 

detected by the fluorescence detectors; the fluorescence is quantified and is used to 

estimate the proportion of cells in the sample that have the particular characteristic that 

binds the fluorochrome. For example, 7-AAD like Trypan Blue is a membrane impermeant 

dye that is generally excluded from living cells. However, unlike Trypan Blue it has the 

ability to intercalate between base pairs in Guanine - Cytosine rich regions in double 

stranded DNA (Cowden and Curtis, 1981). 7-AAD is excited at 488 nm with an argon laser 

and emits at 647 nm. Therefore, if a cell suspension incubated with 7-AAD is analysed 

using an argon laser the florescence emitted will be proportional to the number of 

dead/non-viable cells in the sample. 

Cells to be analysed were striped from culture dishes with trypsin, washed in PBS by 

centrifugation (232 g/3 minutes) and re-suspended in 100 μL BD FACSFlow Sheath Fluid 

(BD Biosciences, Oxford, UK) with a final working concentration of 1 μg/mL 7-AAD (Sigma-

Aldrich, Dorset, UK). Each sample was analysed on a BD Accuri C6 flow cytometer (BD 

Biosciences, Oxford, UK) using the blue laser with excitation of 488 nm at a high flow rate 

until an average of 10,000 events were recorded or until the entire 100 μL of sample was 

analysed. 7-AAD fluorescence was registered on the FL3 detector through a 670 nm filter. 

Using FCS express V4 software (De Novo Software, CA, USA) to analyse the data, 

background fluorescence was gated out by plotting FL1 against FL2 and FL3 against FL4. 

Fluorescence in terms of signal height was plotted on a log scale against the forward 

scatter height (FSC-H) parameter and a viable population of cells was identified and gated 

upon (gate 1). The number of viable cells/mL was calculated using the total number of 

events counted in the viable population and the volume of cell suspension analysed. To 

illustrate the effect of compound dosing on cell size the median forward scatter value 

obtained for the viable population of cells (gate 1) was plotted on a histogram relevant to 

cell count. 
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2.6.5. IC50 Value Calculation 

Percentage viability of treated cells was calculated by converting the viable count of cells 

treated with a particular concentration of compound to a percentage of the viable cell 

count in the corresponding untreated control samples. Percentage viability values were 

subtracted from 100% to give percentage inhibition values. The concentration that 

produced 50% inhibition of cell proliferation was the IC50 value.  

2.7. Storage of Compounds and Related Reagents 

Cidofovir parent compound was stored at room temperature when it was being used 

frequently and stored at -20°C for long term storage. Cidofovir analogues, Adefovir parent 

compound, Adefovir analogues, Tenofovir parent compound and Tenofovir analogues 

were all stored at 4°C for short term use and -20°C for long term use. DMSO, PBS, NaOh, 

Trypan Blue and BD FACSFlow Sheath Fluid were stored at room temperature. The 

CellTiter 96® AQueous One MTS Solution Reagent and 1 mg/mL stock 7-AAD were stored 

at -20°C. For short term use 100 µg/mL 7-AAD was stored at 4°C. 

2.8.  Assessment of Mechanism of Action of Cidofovir 

2.8.1. Cleaved Caspase-3 Activity Assay 

Caspase-3 is an executioner of apoptosis and is either partially or totally responsible for 

the proteolytic cleavage of many key proteins involved in apoptosis. Activation of caspase-

3, via both intrinsic and extrinsic pathways, requires proteolytic cleavage of its inactive 

proenzyme into activated p17 and p12 fragments (Cohen, 1997). Cleaved caspase-3 

activity of M08, A09 and HEK cell lines was assessed initially with a Caspase-3 Activity 

Assay Kit (Cell Signalling, Massachusetts, USA). This is a fluorescent based assay that 

detects caspase-3 activity in cell lysates. During the assay, activated caspase-3 cleaves a 

fluorogenic substrate (N-Acetyl-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin or Ac-DEVD-

AMC) between DEVD and AMC, yielding highly fluorescent AMC that can be quantified 

using a fluorescence reader with excitation at 380 nm and emission between 420 - 460 

nm. The amount of AMC produced is proportional to the number of apoptotic cells in the 

sample as cleavage only occurs in lysates of apoptotic cells. The caspase-3 activity assay kit 

contents are outlined in Table 2.21. 
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Table 2.21. Caspase-3 Activity Assay Kit Contents 

Component  Quantity/Volume 

Ac- DEVD-AMC  1 mg 

AMC (7-amino-4-methylcoumarin) 250 μL 

PathScan Sandwich ELISA Lysis Buffer 1X 30 mL 

Caspase Assay Buffer 2X 30 mL 

1 M DTT (Dithiothreitol) 200 μL 

 

DTT and Ac-DEVD-AMC were thawed at 37°C just before the experiment. Ac-DEVD-AMC 

was reconstituted in 1 mL DMSO. One part Assay buffer (2X) was mixed with one part 

dH2O, and DTT was added (final concentration of 5 mM) to make 1X assay buffer A. Ac-

DEVD-AMC was diluted 1:40 in 1X assay buffer A to make substrate solution B. 

Protein lysates were diluted to 2 mg/mL in 1X assay buffer and 25 μL of each lysate to be 

analysed was aliquoted into separate wells on a black 96 well flat bottomed plate. Two 

hundred microlitres of substrate solution B were added to the cell lysates and to 25 μL of 

1X assay buffer (which served as a negative control). Twenty-five microlitres of positive 

control AMC (supplied with kit) were added to 200 μL 1X assay buffer A as a positive 

control. Relative Fluorescence Units (RFU), with excitation at 380 nm and emission at 470 

nm, were recorded immediately at 0 hours on a FLUOstar OPTIMA fluorescence plate 

reader (BMG LABTECH Ltd., Buckinghamshire, UK). The plates were incubated at 37°C in 

the dark and RFU were further recorded at 1 and 2 hours. 

2.8.2. Western Blotting 

2.8.2.1. Materials 

The materials used for western blotting are outlined in Table 2.22. 
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Table 2.22. Materials used for Western blotting 

Material Source 

NuPAGE® lithium dodecyl sulfate (LDS) Sample Buffer (4x) 

Life Technologies Ltd, 
Paisley, UK 

NuPAGE® Sample Reducing Agent (10x) 

NuPAGE® Novex® 4-12% Bis-Tris Gel 1.0 mm, 12 Well 

NuPAGE® MOPS (3-(N-morpholino)propanesulfonic acid) SDS (sodium 
dodecyl sulphate) Running Buffer (20X) 

NuPAGE® Antioxidant 

MagicMark™ XP Western Protein Standard (20-220 kDa) 

NitrocelluLose membranes, 0.45 µm Pore Size, with filter paper 

NuPAGE® Transfer Buffer (20x) 

5% ECL advance blocking solution GE Healthcare Life 
Sciences, 
Buckinghamshire, UK 

Amersham ECL (Enhanced Chemiluminescence) Prime Western Blotting 
Detection Reagent 

β-Actin (13E5) antibody (rabbit) #4970 

Cell Signalling, 
Massachusetts, USA 

P53 antibody (rabbit) #9282 

Phospho-P53 (Ser 15) antibody (rabbit) #9284 

Cleaved Caspase-3 (Asp 175) (5A1E) antibody Rabbit #9664 

p21 Waf1/Cip1 (12D1) Rabbit mAb #2947 

Goat polyclonal Secondary Antibody to Rabbit IgG - H&L (HRP), pre-
adsorbed (ab97080) 

Abcam, Cambridge, UK 

Sterile H2O  

 

2.8.2.2. Sample Preparation 

M08 and A09 protein lysates were prepared to give a final loading concentration of 14.2 

μg protein in 20 μL. HEK lysates were prepared to give a final loading concentration of 

8.75 μg protein in 20 μL. The appropriate volumes of LDS sample buffer and reducing 

agent were added to a fresh 2 mL tube per lysate to each give a final concentration of 1X. 

The final protein concentrations were made up by adding the required volumes of water 

and lysate. Samples were mixed thoroughly by vortexing and placed in water bath for 10 

minutes at 70oC. After this incubation period the samples were centrifuged for 1 minute at 

15700 g. Samples were then stored on ice for immediate use or at -80oC. 

2.8.2.3. Electrophoresis 

The gel cassette was removed from the gel pouch and packaging buffer was drained away 

and the gel cassette was rinsed with tap water. The white tape covering the slot on the 

back of the gel cassette was peeled away and the comb was gently removed from the 

cassette exposing the gel loading wells. The cassette wells were gently washed with 1X 

running buffer three times and finally the wells were filled with fresh running buffer. The 
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gel cassette was inserted and secured in the lower buffer chamber of an XCell SureLock™ 

Mini-Cell Electrophoresis System (Life Technologies Ltd, Paisley, UK). If two gels were to 

be run, one cassette was placed behind the core and one cassette in front of the core with 

the well side of the cassettes facing the buffer core.  

Five hundred microlitres of antioxidant were added to 200 mL running buffer. The Upper 

Buffer Chamber/cathode, formed between the two gel cassettes (or one cassette and the 

buffer dam) on each side of the buffer core, was filled with enough running 

buffer/antioxidant solution to completely cover the sample wells. The samples were 

loaded carefully. The lower buffer chamber/anode was filled with 600 mL of running 

buffer. The lid was aligned to the buffer core and voltage of 200 V was applied for 50 

minutes. The expected current for 1 gel was 100 - 125 mA at the beginning and 60-80 mA 

at the end of electrophoresis.  

2.8.2.4. Western Blotting 

During electrophoresis the transfer buffer was prepared according to Table 2.23.  

Table 2.23. Formulation of Transfer Buffer for Western blot 

Component Volume (mL) 

Transfer Buffer (20X)   50 

NuPAGE® Antioxidant   1 

Methanol   100 

Deionised Water   849 

Total Volume   1000 

 

The blotting pads were soaked in sufficient transfer buffer until saturated. Soaked blotting 

pads were placed into the cathode core of the blot module. The nitrocellulose membrane 

was then soaked in transfer buffer for several minutes. The filter paper was briefly soaked 

in transfer buffer immediately before use.    

Following electrophoresis the gel was removed from the cassette by carefully pulling apart 

either side of the cassette with a gel knife. The wells were removed from the gel with the 

gel knife and the pre-soaked transfer membrane was placed onto the gel. Pre-soaked filter 

paper was placed on top of the transfer membrane and on the other side of the gel. The 

gel membrane assembly was placed on the blotting pads so that the gel was closest to the 



89 
 

cathode plate as shown in Figure 2.1. Pre-soaked blotting pads were placed on top of the 

gel membrane assembly and the anode core was placed on top of the pads. The blot 

module was placed into the lower buffer chamber of the XCell SureLock™ Mini-Cell 

Electrophoresis System. The blot module was filled with transfer buffer and the outer 

buffer chamber was filled with deionised water to dissipate heat produced during the run. 

A voltage of 25 V was applied for one hour. The expected start current for one membrane 

was 170 mA and the expected end current was 110 mA. 

 

 

 

 

 

Figure 2.1. Outline of Gel-Membrane Sandwich in Blotting Module 

Assembly of blotting pads, filter paper, gel and transfer membrane in the blotting module for 

protein transfer. The gel-membrane sandwich was assembled so that the gel was closest to 

the cathode core plate.  
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2.8.2.5. Blocking and Antibody Staining 

TBS-Tween (TBST) was formulated according to Table 2.24. 

Table 2.24. Formulation of TBS-Tween for Western blot 

Component Volume (mL) Final Concentration Source 

2.5 M Tris HCL 20 5 mM 
Fisher Scientific UK Ltd, 
Loughborough, UK. 

5 M NaCl 27.7 150 mM 

Tween 20 1 - 

Sterile Water 951.3 - - 

Total Volume 1000 - - 

A 5% blocking solution was prepared by dissolving 0.5 g ECL blocking powder in 10 mL 

TBST for one membrane. The top left corner of the membrane was cut with a scissors to 

indicate orientation and the membrane was washed twice for 5 minutes with 20 mL of 

pure water in a plastic container on a rotary shaker set at 1 revolution per second. Water 

was poured off and 10 mL of the 5% blocking solution was added. The membrane was 

incubated for 1 hour on the rotary shaker. During the blocking process the antibody 

dilution was prepared in 5% blocking solution. 

P53, Phospho-p53 and Cleaved Caspase-3 antibodies were diluted 1:1000, whereas, β-

Actin and p21 Waf1/Cip1 antibodies were diluted 1:5000 in 10 mL of blocking solution per 

membrane. After the blocking incubation the solution was decanted, the membrane was 

rinsed twice with TBST.  The membrane was then washed twice in TBST on the shaker for 

15 minutes, followed by 3 x 5 minute washes. The membrane was then incubated in the 

primary antibody diluent overnight in a cold room on a rotary shaker. 

The next day the membrane was rinsed in TBST twice, and then washed with TBST on a 

shaker for 15 minutes, followed by 3 x 5 minute washes. The secondary antibody solution 

was prepared by diluting the goat polyclonal secondary antibody 1:5000 in 2% ECL 

blocking solution. The membrane was incubated in 10 mL of secondary antibody per 1 

membrane for 60 minutes. After this incubation period the secondary antibody solution 

was decanted and the membrane was rinsed twice with TBST. The membrane was washed 

in TBST on a shaker for 15 minutes, followed by 3 x 5 minute washes.  
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2.8.2.6. Chemiluminescence 

The ECL Prime chemiluminescent substrate solutions were prepared by mixing 2 mL of 

solution A with 2 mL of solution B for one full size blot. The excess liquid was drained from 

the membrane and it was placed protein side up on a thin transparent plastic sheet. The 

chemiluminescent substrate was evenly applied to the membrane surface and the 

reaction was allowed to develop in the dark for 5 minutes. After this time the excess 

chemiluminescent substrate solution was blotted from the membrane surface with filter 

paper and the membrane was covered with another clean transparent plastic sheet. The 

membrane was then subjected to image capture with an LAS-3000 imager (Fujifilm, Tokyo, 

Japan) using an initial exposure of 10 - 30 seconds to capture any fleeting weak signals, 

after which time the exposure was adjusted to capture more robust signals (5 - 30 

minutes). 

2.8.3. RT-qPCR 

2.8.3.1. Agilent  

Before reverse transcription (RT) and Quantitative Real Time Reverse Transcriptase PCR 

(RT-qPCR), the quality and integrity of the RNA was examined using an Agilent RNA 6000 

Nano Kit and Agilent 2100 bioanalyzer (both Agilent Technologies, Santa Clara, CA, USA). 

The Agilent RNA kits encompass chips and reagents designed for analysis of RNA 

fragments. The RNA chips contain interconnected sets of micro channels that are used for 

separation of nucleic acid fragments based on their size.  

Five hundred and fifty microlitres of RNA 6000 Nano gel matrix were aliquoted into a spin 

filter and centrifuged at 1500 g for 10 minutes at room temperature. Sixty-five microlitres 

of filtered gel were then dispensed into 0.5 mL RNase-free microfuge tubes.  

The RNA 6000 Nano dye concentrate was allowed to equilibrate to room temperature for 

30 minutes. After vortexing for 10 seconds and a brief centrifugation, 1 μL of dye was 

added to the 65 μL aliquots of filtered gel. The solutions were vortexed and centrifuged at 

13000 g for 10 min at room temperature.  

Nine microlitres of gel-dye mix were pipetted into the well-marked for gel on the RNA 

6000 Nano chip which was placed on the priming station. The chip priming station was 
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closed and the plunger was pressed until it was held by the clip. After 30 seconds the clip 

was released and the plunger was pulled back to the 1 mL position. The chip priming 

station was opened and 9 μL of gel-dye mix was pipetted into two of the wells marked. 

Five microlitres of RNA 6000 Nano marker were then aliquoted in to all 12 sample wells 

and in the well-marked with the ladder symbol. 

One microlitre of ladder was aliquoted into the appropriately marked well. One microlitre 

of RNA sample was aliquoted into each of the 12 sample wells. The chip was vortexed for 

1 minute at 2400 rpm in an IKA vortexer with Agilent chip adaptor and analysed on the 

Agilent 2100 bioanalyzer within 5 minutes. 

2.8.3.2. Reverse Transcription  

Reverse transcription of RNA into complementary DNA (cDNA) was carried out using a RT² 

First Strand Kit (Qiagen, Hilden, Germany). The contents of this kit are outlined in Table 

2.25.  

Table 2.25. RT² First Strand Kit Contents 

GE:   5X genomic DNA (gDNA) Elimination Buffer 

BC3: 5X Reverse Transcription Buffer 3 

H2O: RNase-free H2O            

P2:   Primer and External Control Mix              

RE3: RT Enzyme Mix 3     

 

All reagents were briefly centrifuged for 15 seconds at 15700 g. The genomic DNA 

elimination mixture was prepared for each RNA sample in a sterile PCR tube according to 

Table 2.26.  

Table 2.26. Formulation of Genomic DNA Elimination Mixture for Reverse Transcription 

Component  Quantity 

Total RNA 5 µg 

GE (5X gDNA Elimination Buffer) 2 µL 

H2O to a final volume of 10 µL 

 

The contents of each reaction were gently mixed by pipetting followed by brief 

centrifugation of 15700 g for 30 seconds. Each reaction was incubated at 42°C for 5 min, 
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then immediately chilled on ice for one minute. The RT cocktail was prepared according to 

Table 2.27.  

Table 2.27. Formulation of Reverse Transcription Cocktail 

RT Cocktail  µL Per reaction  

BC3 (5X RT Buffer 3)  4 

P2 (Primer and External Control Mix) 1 

RE3 (RT Enzyme Mix 3) 2 

H2O 3 

Final Volume  10 

 

Ten microlitres of RT Cocktail were added to each 10 µl Genomic DNA Elimination Mixture 

and mixed well by pipetting. The mixtures were incubated at 42°C for 15 minutes and then 

immediately at 95°C for 5 minutes to stop the reaction. cDNA was diluted 1:5 to 1:10 and 

stored at -20°C for downstream application.  

2.8.3.3. RT-qPCR Apoptosis Arrays 

The Human Apoptosis RT² Profiler PCR Arrays examine the expression of 84 key genes 

involved in apoptosis. The array is a collection of optimized qPCR primer assays in a 96-

well plate format for apoptosis pathway focused genes. As well as the 84 genes involved 

in apoptosis, the array also contained primer sets for 5 housekeeping genes to normalize 

the array data. It contained a control for genomic DNA contamination by using a primer 

set that specifically detects non-transcribed genomic DNA with a high level of sensitivity. It 

contains 3 reverse transcription control wells to test the efficiency of the RT² First Strand 

Kit reaction with a primer set designed to detect template synthesized from the kit's built-

in external RNA control. It contains 3 positive PCR controls to evaluate the efficiency of 

the PCR itself using an artificial DNA sequence and the primer set that detects it. The 

functional gene groups include:  
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A. Genes involved in the induction of apoptosis:  

Death Domain Receptors: CRADD, FADD, TNF, TNFRSF10B (DR5). 

DNA Damage: ABL1, CIDEA, CIDEB, TP53, TP73. 

Extracellular Signals: CFLAR (CASPER), DAPK1, TNFRSF25 (DR3). 

Other: BAD, BAK1, BAX, BCL10, BCL2L11, BID, BIK, BNIP3, BNIP3L, CASP1 (ICE), CASP10 (MCH4), 

CASP14, CASP2, CASP3, CASP4, CASP6, CASP8, CD27 (TNFRSF7), CD70 (TNFSF7), CYCS, DFFA, 

DIABLO (SMAC), FAS (TNFRSF6), FASLG (TNFSF6), GADD45A, HRK, LTA (TNFB), NOD1 (CARD4), 

PYCARD (TMS1/ASC), TNFRSF10A, TNFRSF9, TNFSF10 (TRAIL), TNFSF8, TP53BP2, TRADD, TRAF3. 

B. Anti-apoptosis genes 

AKT1, BAG1, BAG3, BAX, BCL2, BCL2A1 (Bfl-1/A1), BCL2L1 (BCL-X), BCL2L10, BCL2L2, BFAR, BIRC3 

(c-IAP1), BIRC5, BIRC6, BNIP2, BNIP3, BNIP3L, BRAF, CD27 (TNFRSF7), CD40LG (TNFSF5), CFLAR 

(CASPER), DAPK1, FAS (TNFRSF6), HRK, IGF1R, IL10, MCL1, NAIP (BIRC1), NFKB1, NOL3, RIPK2, TNF, 

XIAP (BIRC4) 

C. Genes involved in the regulation of apoptosis 

Negative Regulation: BAG1, BAG3, BCL10, BCL2, BCL2A1 (Bfl-1/A1), BCL2L1 (BCL-X), BCL2L10, 

BCL2L2, BFAR, BIRC2 (c-IAP2), BIRC3 (c-IAP1), BIRC6, BNIP2, BNIP3, BNIP3L, BRAF, CASP3, CD27 

(TNFRSF7), CD40LG (TNFSF5), CFLAR (CASPER), CIDEA, DAPK1, DFFA, FAS (TNFRSF6), IGF1R, MCL1, 

NAIP (BIRC1), NOL3, TP53, TP73, XIAP (BIRC4). 

Positive Regulation: ABL1, AKT1, BAD, BAK1, BAX, BCL2L11, BID, BIK, BNIP3, BNIP3L, CASP1 (ICE), 

CASP10 (MCH4), CASP14, CASP2, CASP4, CASP6, CASP8, CD40 (TNFRSF5), CD70 (TNFSF7), CIDEB, 

CRADD, FADD, FASLG (TNFSF6), HRK, LTA (TNFB), LTBR, NOD1 (CARD4), PYCARD (TMS1/ASC), 

RIPK2, TNF, TNFRSF10A, TNFRSF10B (DR5), TNFRSF25 (DR3), TNFRSF9, TNFSF10 (TRAIL), TNFSF8, 

TP53, TP53BP2, TRADD, TRAF2, TRAF3 

D. DEATH Domain Proteins 

CRADD, DAPK1, FADD, TNFRSF10A, TNFRSF10B (DR5), TNFRSF11B, TNFRSF1A, TNFRSF1B, 

TNFRSF21, TNFRSF25 (DR3), TRADD 

E. Caspases and Regulators 

Caspases: CASP1 (ICE), CASP10 (MCH4), CASP14, CASP2, CASP3, CASP4, CASP5, CASP6, CASP7, 

CASP8, CASP9, CFLAR (CASPER), CRADD, PYCARD (TMS1/ASC). 

Caspase Activators: AIFM1 (PDCD8), APAF1, BAX, BCL2L10, CASP1 (ICE), CASP9, NOD1 (CARD4), 

PYCARD (TMS1/ASC), TNFRSF10A, TNFRSF10B (DR5), TP53.  

Caspase inhibitors: CD27 (TNFRSF7), XIAP (BIRC4) 
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The Human Apoptosis RT² Profiler PCR Arrays and RT2 SYBR Green Mastermix were both 

obtained from Qiagen, Hilden, Germany. 

For one RT-qPCR array the RT2 SYBR Green Mastermix was briefly centrifuged for 10 - 15 

seconds to bring the contents to the bottom of the tube. The PCR components were 

prepared in a 5 mL tube before transferring to a loading reservoir as described in Table 

2.28.  

Table 2.28. RT-qPCR Apoptosis Array Master Mix Formulation 

Component µL  

2x RT2 SYBR Green Mastermix 1350 

cDNA synthesis reaction 102 

RNase-free water 1248 

Total volume 2700 

 

Using a 12 channel pipette, 25 µL of the PCR component mix was dispensed into each well 

in the RT2 Profiler PCR Array. The array was sealed with an optical adhesive film and 

centrifuged for 1 min at 1000 g at room temperature to remove air bubbles and placed in 

an ABI 7900HT RT-PCR System (Life Technologies Ltd, Paisley, UK).   

2.8.3.4. RT-qPCR Apoptosis Assays 

Genes that were substantially up or down regulated (> two fold) at 12 and 36 hours post 

dosing were examined further using separate RT² qPCR Assays which contained the same 

primers as the wells of the genes of interest of the Human Apoptosis RT² Profiler PCR 

Array. These assays were also performed on the clinical material. RT² qPCR Primer Assays 

for TP53, BCL2A1, BCL2L10, BIRC3, HRK, CDKN1A and housekeeping genes GAPDH and 

HPRT1 were obtained along with RT² SYBR Green ROX qPCR Mastermix form Qiagen, 

Hilden, Germany.  

The RT2 SYBR Green Mastermix, RT2 qPCR Primer Assay, and cDNA synthesis reaction were 

briefly centrifuged for 10 - 15 seconds to bring the contents to the bottom of the tubes. 

The PCR components mix was prepared in a 2 mL tube according to Table 2.29.  
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Table 2.29. RT-qPCR Individual Primer Assay Master Mix Formulation 

Component µL per one reaction 

RT2 SYBR Green Mastermix 12.5 

RT2 qPCR Primer Assay (10 μM stock) 1 

RNase-free water 10.5 

Total volume 24 

 

The PCR Mastermix was aliquoted into wells on a 96 well plate and 1 µL cDNA was also 

added to the appropriate wells. The plate was centrifuged for 1 minute at 1000 g to 

remove bubbles and placed into an ABI 7900HT RT-PCR System. 

2.8.3.5. Instrument set up for Human Apoptosis RT² Profiler PCR 
Arrays and RT2 qPCR Primer Assays 

The ABI 7900HT RT-PCR System was programmed for absolute quantification using the 

thermo cycle outlined in Table 2.30.  

Table 2.30. Thermo Cycle Conditions for RT
2
 Apoptosis Array and Individual Primer 

Assay RT-qPCR 

Process  Temperature Duration Cycles 

HotStart Taq activation 95°C 10 minutes - 

Fluorescence data collection 
95°C 
60°C 

15 seconds 
1 minute 

50 

 

2.8.3.6. RT-qPCR for E6 and E7 

RT-qPCR for the HPV genes, E6 and E7, was performed on a LightCycler carousel-based 

qPCR system using LightCycler DNA Master SYBR Green I reagent kits and LightCycler 

reaction capillary tubes (all Roche Applied Science, Mannheim, Germany). Ten microlitres 

of LightCycler® FastStart Enzyme were added to a full vial of defrosted LightCycler® 

FastStart Reaction Mix HybProbe to make the FastStart (FS) mix. E6, E7, HPRT and TBP2 

forward and reverse primers were obtained from Sigma-Aldrich, Dorset, UK. The FS mix 

was kept at 4 °C and the qPCR master mix was prepared on a cooling block according to 

Table 2.31.  
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Table 2.31. HPV Gene RT-qPCR Master Mix Formulation 

 E6 primer pair E7 primer pair HPRT primer pair TBP2 primer pair 

Component  µL per 1 reaction 

Forward primer (5 µM) 2 2 2 2 

Reverse primer (5 µM) 2 2 2 2 

FS mix 2 2 2 2 

MgCl2 (25 mM) 1.6 2 1.6 2.4 

Water 10.4 10 10.4 9.6 

cDNA 2 2 2 2 

Total  20 20 20 20 

 

After the qPCR master mix and cDNA were aliquoted into the appropriate capillary tube, 

they were centrifuged at 1000 g for 5 seconds to bring the mix to the bottom. Water was 

used as a negative control and all runs included 1:100 CaSki cDNA (frozen communal 

stock, HPV research group, Cardiff University) in triplicate to serve as a positive control. RT 

negative control samples for each RT positive sample were also analysed to correct for 

undigested genomic DNA. The carousel was loaded and the LightCycler was programmed 

to the thermo cycle outlined in Table  

Table 2.32. Thermo Cycle Conditions for HPV Gene RT-qPCR 

Process Temperature °C Duration Number of Cycles 

Initial Denaturation 95 10 minutes - 

Denaturation  95 10 seconds 

60 Primers anneal 
60 for E6, HPRT and TBP 
62 for E7 

5 seconds 

Elongation 72 5 seconds 

 

2.8.3.7. Human Apoptosis RT² Profiler PCR Arrays, Individual RT2 
qPCR Primer Assays and HPV Gene RT-qPCR Data Analysis 

For the RT² Profiler PCR Arrays and RT2 qPCR Primer Assays the baseline for Ct values was 

defined by choosing the automated baseline option as the ABI 7900HT RT-PCR System SDS 

2.4 software used had an adaptive baseline function. The threshold value was manually 

defined to 0.2, which lay above the background signal but within the lower one-third to 

lower one-half of the linear phase using the log view of the amplification plots. The CT 

values for all wells were exported to a blank Excel® spreadsheet for use with the 

SABiosciences PCR Array Data Analysis Web-based software. Dissociation curve analysis 
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was performed to verify PCR specificity by checking to see that only a single peak was 

found in each reaction. 

The individual RT2 qPCR Primer Assay data was analysed manually to obtain standard error 

of the mean (SEM) values for the replicate values. The delta delta CT (ΔΔCT) method was 

used to convert the absolute quantification to relative quantification (RQ) by normalizing 

to the housekeeping/reference genes. The method is outlined as follows; 

a) The arithmetic mean of the housekeeping gene CT values was subtracted from the 

CT values of the treated and untreated target genes, giving a ΔCT value for each 

target (Equation 2.1); 

                               

Equation 2.1. Delta Ct 

b) The ΔCT values of the untreated samples were then subtracted from the ΔCT 

values of the corresponding treated samples giving a ΔΔCT value (Equation 2.2); 

                                 

Equation 2.2. Delta Delta Ct 

 

c) The ratio of gene expression change between the treated and untreated samples 

(relative expression) was derived by calculating the negative value of ΔΔCT as an 

exponent of 2. The value of 2 is used under the assumption that the product 

doubled in each cycle (Equation 2.3): 

              

Equation 2.3. Relative Quantification 

The Human Apoptosis RT² Profiler PCR Array data was analysed using the 

SABioscience/Qiagen RT² Profiler PCR Array data analysis version 3.5 web-based software. 

This software used a derivative of the ΔΔCT method to calculate gene expression ratios. It 

first calculated the average ΔCT value by subtracting the average CT value of the 

housekeeping genes from the CT value of the gene of interest and then calculated the 

ratio of gene expression by calculating the negative value of the average ΔCT as an 

exponent of 2 (Equations 2.4 and 2.5).  
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Equation 2.4. SABioscience Average Delta Ct 

 

                       

Equation 2.5. SABioscience Ratio of Gene Expression 

 

Relative expression of the HPV genes was calculated using qBase+ software (Biogazelle, 

Gent, Belgium). This software utilized the Vandesompele equation (Vandesompele et al., 

2002) to correct for differences in PCR efficiencies between the genes examined. The 

Vandesompele equation is shown in Equation 2.6 below. 

 

Equation 2.6. Vandesompele Equation (Hellemans et al., 2007, Vandesompele et al., 

2002) 

E refers to the PCR efficiency, target refers to the target gene (E6 or E7), reference refers to 

housekeeping genes (TBP2 and HPRT), sample refers to sample of interest, control refers to 

CaSki, Ct refers to the crossing point, n is the number of reference genes. 

 

The Vandesompele equation is a derivative of the Pfaffl equation (Pfaffl, 2001), where 

Pfaffl adjusted the ΔΔCT equation to correct for differences in PCR efficiency between a 

target gene and one housekeeping gene (Pfaffl, 2001, Hellemans et al., 2007). The 

Vandesompele equation allows for the correction of PCR efficiency differences between a 

target gene and more than one reference gene (Hellemans et al., 2007). 

For each method used to calculate relative quantification, fold change values less than 1.0 

were converted into their negative reciprocal values in order to demonstrate down-

regulation of gene expression in a biological meaningful way on a histogram. This was 

termed fold regulation. If the fold change value was 1.0 or more the fold regulation value 

was the same as the fold change value.  
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2.8.4. RT-qPCR of RT3VIN Clinical Samples 

RT3VIN, a multicentre phase II randomized Cancer Research UK clinical trial (trial number 

CRUK/06/024), aimed to assess the activity, safety and feasibility of topical formulations of 

Imiquimod and Cidofovir in 180 women with VIN3. 

2.8.4.1. Ethics and Regulatory Approval 

Ethical approval for the trial was obtained from the Office for Research Ethics Committees 

Northern Ireland (ORECNI) (08/NIR03/82). Regulatory approval was obtained from the 

Medicines and Healthcare Products Regulatory Agency (MHRA) under the Medicines for 

Human Use Regulations 2004 S.I 2004/1031 (reference number 21323/0020/001-0001).  

Approval was also obtained from the Research and Development offices at each of the 32 

participating hospitals. 

2.8.4.2. Study Population and Treatment Regime  

Biopsies were collected from women with VIN3 prior to treatment, 6 weeks into 

treatment and approximately 6 weeks post treatment. Treatment lasted for a maximum of 

24 weeks with patients self-applying either a 1% Cidofovir or a 5% Imiquimod cream three 

times a week. 

2.8.4.3. HPV Testing 

HPV testing of the RT3VIN samples was carried out by Sadie Jones of the HPV research 

group at Cardiff University, using HPV type 16 specific PCR, which targeted the E6 region 

of the HPV genome. The samples were further examined for the presence of additional 

HPV types using a PapilloCheck detection kit from Greiner Bio-One, Frickenhausen, 

Germany. 
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3. Validation of Experimental Models and Method Development 

The results presented in this chapter were obtained from experiments performed to 

validate and develop experimental models used for compound dosing and mechanism of 

action (MOA) studies. 

3.1.  Characterization of Clonal NHIST Cell Lines 

For use in the dosing and MOA studies, the novel NHIST cell lines were evaluated in terms 

of phenotypic and molecular characteristics. The results in this subsection were derived 

and supplied by Tiffany Onions of the HPV Research Group at Cardiff University.  

3.1.1. Initial Heterogeneous Cell Lines; PC08 and PC09 

In a pilot study, two heterogeneous cell lines, PC08 and PC09, were derived from VIN3 and 

VaIN3 tissue biopsies respectively, by Dr Ned Powell of the HPV Research Group at Cardiff 

University. PC08 was cultured for 19 passages and PC09 was cultured for 21 passages. 

Early passage heterogeneous PC08 and PC09 cell lines were fastidious in culture, where 

initial cultures of passage 2 cell lines were highly contaminated with dermal fibroblasts 

that originated from the original biopsy tissue (Figure 3.1). As fibroblasts overpopulated 

both cultures quickly, restricting keratinocyte establishment and growth, they were 

discouraged by culture with irradiated 3T3 feeder cells and were removed by vigorous 

rinsing with PBS. Both cell lines grew efficiently when supplemented with irradiated 3T3 

feeder cells. Photomicrographs of early passage PC09 cells can be seen in Figure 3.2. 

Keratinocyte colonies were generally round in shape and contained a population of 

tessellated polygonal keratinocytes as shown in Figure 3.3.  Keratinocyte colonies grew 

outwards due to peripheral cell division, resulting in displacement of surrounding 3T3 

feeder cells, forming a ridge on the outer edge of expanding keratinocyte colonies. This 

was also noticeable when expanding keratinocyte colonies in close proximity converged, 

which can be seen in Figure 3.4.  Early passage (passage 2) heterogeneous PC08 and PC09 

cell cultures contained two types of colony variants; type 1 colonies contained laterally 

growing keratinocyte cells forming ‘flat’ colonies; and type 2 colonies contained 

differentiating keratinocyte cells forming colonies that appeared to resemble ‘peaks’, as 

seen in Figure 3.5.  
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Images kindly provided by Tiffany Onions of the HPV Research Group, Cardiff University 

 

Figure 3.1. Dermal Fibroblast Contamination of Passage 2 PC08 and PC09 

Heterogeneous Cell Cultures 

(A) Passage 2 PC09 cell culture in 6 cm tissue culture dish. (B)  Passage 2 PC08 cell culture 

in 6 cm tissue culture dish. Both images were taken at 100X magnification.  The cultures 

were comprised of 3T3 feeder cells (blue arrow), which had no characteristic cell shape, and 

fibroblasts (red arrow) which demonstrated elongated morphology.   
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Images kindly provided by Tiffany Onions of the HPV Research Group, Cardiff University 

 

Figure 3.2. Morphological Characteristics of Passage 2 PC09 and 3T3 Feeder Cells in 

Culture  

(A) Irradiated 3T3 feeder cells were used to supplement keratinocyte cell cultures in a 6 cm 

tissue culture dish (50X magnification).  (B)  A roughly circular keratinocyte colony (red circle) 

surrounded by 3T3 feeder cells in a 6 cm tissue culture dish (50X magnification).  (C)  A 

keratinocyte colony (red circle) consisting of approximately 10 dividing keratinocyte cells with 

surrounding 3T3 feeder cells in a 6 cm tissue culture dish (100X magnification). (D) A 

keratinocyte colony (red circle) consisting of approximately 20 dividing keratinocytes with 

surrounding 3T3 feeder cells in 6 cm tissue culture dish (320X magnification).    
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Images kindly provided by Tiffany Onions of the HPV Research Group, Cardiff University 

 

Figure 3.3. Characteristic Morphology of Passage 2 PC09 Keratinocyte Cells  

(A) Round keratinocyte colonies surrounded by 3T3 feeder cells in 6 cm tissue culture dish 

(50X magnification). The red circle highlights an area of laterally growing keratinocytes within 

a colony which has been magnified as shown in B.  (B)  Characteristic polygonal morphology 

and tessellating pattern of keratinocytes within a colony (100X magnification).   

A 
 

A 

B 
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Images kindly provided by Tiffany Onions of the HPV Research Group, Cardiff University 

 

Figure 3.4. Characteristics of 3T3 Feeder Cells Surrounding Expanding Keratinocyte 

Colonies in Passage 2 PC09 Cultures 

(A) A keratinocyte colony containing lateral keratinocytes (red circle) (50X magnification).  

3T3 feeder cells form a ridge (blue arrows) on the periphery of expanding keratinocyte 

colonies. (B) Convergence of two lateral keratinocyte colonies (red circles) forming a ridge of 

3T3 feeder cells (blue arrows) (50X magnification). (C) Multiple converging keratinocyte 

colonies; two larger containing lateral keratinocytes (red circles); and two smaller containing 

differentiating keratinocytes resembling peaks (yellow circles) (50X magnification).    
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Image kindly provided by Tiffany Onions of the HPV Research Group, Cardiff University 

 

Figure 3.5. Variation in Keratinocyte Colony Morphology in Passage 2 PC08 Cell 

Cultures  

An example of type 1 (red circle) and type 2 (yellow circle) colonies identified in PC08 

cultures in 6 cm tissue culture dishes. Type 1 colonies contained lateral keratinocytes that 

appeared ‘flat’ and were significantly larger than ‘type 2’ colonies, which contained 

differentiating keratinocytes, resembling peaks (50X magnification).   
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3.1.2. Monoclonal Cell Line Isolation 

To produce monoclonal cell cultures, cryopreserved passage 1 PC08 and PC09 

polyclonal cell lines were thawed and used to seed 6 cm tissue culture dishes 

supplemented with irradiated 3T3 feeder cells. To isolate clonal cells, passage 2 PC08 

and PC09 cells were allowed to reach approximately 80% confluence before 

trypsinization and use in dilution cloning in 9 cm tissue culture dishes (in triplicate). 

Well dispersed keratinocyte colonies emanated on tissue culture dishes seeded with 

103 cells (passage 3) and were chosen for ring cloning. Cells isolated within each ring 

were trypsinized and transferred to individual 6 cm tissue culture dishes resulting in 

individual clonal cell populations at passage 4. Twelve clonal cell lines were derived 

from both PC08 and PC09, where each clonal cell line was given a letter of 

identification and each letter was linked with the parental heterogeneous cell line. The 

clonal cell lines were referred to as A09 to L09 and M08 to X08. Ten clonal cell lines 

from PC09 and 3 clonal cell lines from PC08 survived primary isolation and were 

maintained in culture.  

For this project one clone was selected from each parental heterogeneous cell line for 

use in the compound dosing and mechanism of action studies. M08 was chosen from 

the PC08 cell clones and A09 was chosen from the PC09 clones as they established and 

reached confluence most rapidly post primary isolation.  

3.1.3. Morphology and Growth Characteristics of M08 and A09 
Monoclonal Cell Lines 

The morphology of M08 and A09 cells post initial isolation is shown in Figure 3.6. Both 

cell lines demonstrate small, tightly tessellating polygonal keratinocytes. 
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Images kindly provided by Tiffany Onions of the HPV Research Group, Cardiff University 

 

Figure 3.6. Morphology of Clonal Cell Lines M08 and A09 at First Passage Post 

Isolation  

Clonal cell lines were cultured in 6 cm tissue culture dishes and images taken at ~80% 

confluence (100X magnification). Initial cultures of M08 and A09 began at passage 4.  
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For preliminary phenotypic characterization, M08 was cultured for 5 passages post initial 

isolation, which lasted 63 days with an estimated 25.0 total number of population 

doublings (PD). A09 was cultured for 7 passages post initial isolation, which lasted 84 days 

and underwent an estimated 36.2 PD. The mean population doubling time (DT) was 1.69 

days for M08 from passage 5 to passage 9; and 1.76 days for A09 from passage 5 to 

passage 11. This data is summarized in Table 3.1 

 

 

Table 3.1. Growth Characteristics of M08 and A09 Clonal Cell Lines Post Initial 

Isolation 

Clone Short Term Culture 
(Passage) 

Total Time 
in Culture 
(days) 

Total PD Mean DT 
(days) 

Start Finish 

M08 5 9 63 25.0 1.69 

A09 5 11 84 36.2 1.76 

Data kindly provided by Tiffany Onions of the HPV Research Group, Cardiff University 

M08 and A09 were selected for short-term culture (5 and 7 passages respectively). The table 

shows the total number of days in culture, the total calculated number of PD during this 

period and the calculated mean DT. 

 

To demonstrate the difference in growth kinetics between M08 and A09, growth 

curves and corresponding photomicrographs are shown in Figure 3.7. When seeded at 

5 x 105 cells in a 6 cm tissue culture dish M08 cells displayed a greater seeding 

efficiency when compared to A09 cells, where the cell count 12 hours post seeding was 

half of the initial seeding inoculum for A09 cells. Additionally, M08 cells appeared to 

grow more efficiently than A09 cells, which can be seen in the greater slope of the 

growth curve between 36 and 60 hours for M08 cells when compared to the same 

region of the growth curve for A09 cells in Figure 3.7 (A). The morphology of M08 cells 

12 and 36 hours post seeding appeared to be typical polygonal with “cobblestone” 

effect. The morphology of A09 cells 12 and 36 hours post seeding appeared to be more 

striated and elongated with an almost fibroblast like effect. 
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Images and data kindly provided by Tiffany Onions of the HPV Research Group, Cardiff 

University 

Figure 3.7. Growth Kinetics and Morphology of M08 and A09 Cells  

(A) Mean viable cell counts of passage 11 M08 and A09 cells 12, 36, and 60 hours post 

seeding at 5 x 10
5
 cells in a 6 cm tissue culture dish. Data was calculated from triplicate cell 

counts of 2 separate experiments. Error bars = SEM. (B) M08 and A09 cell morphology 12 

and 36 hours post initial seeding corresponding to growth curves in (A) (320X magnification). 

Note: For this experiment M08 cells were cultured further than initial passage 5 to passage 9 

as descried in Table 3.1 to compare to A09 data. 
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3.1.4. HPV Gene Expression Profile of M08 and A09 Cell Lines 

Relative quantification (RQ) of the HPV genes: E2, E4, E5, E6 and E7, was assessed using 

RNA extracted from clonal cell lines at each passage during short-term culture. Expression 

of HPV genes was normalised to stable house-keeping genes TBP2 and HPRT. Once 

calculated, the RQ of the HPV genes in the clonal cell lines was evaluated by comparing to 

CaSki cDNA as a standard. The RQ of E2, E4, E5, E6 and E7 in the M08 and A09 clonal cell 

lines over a range of passages is shown in Figure 3.8. mRNA for E2, E4 and E5 was 

undetectable in M08 cells, however, mRNA levels of E6 and E7 remained relatively 

constant with increasing passage number. All HPV gene transcripts were detected in the 

A09 cell line with stable expression values across all passages examined. 
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Data kindly provided by Tiffany Onions of the HPV Research Group, Cardiff University 

Figure 3.8. E2, E4, E5, E6, and E7 RQ during Short-Term Culture of M08 and A09 Cell 

Lines 

HPV gene expression was investigated in passage 5 to 9 in M08 cells and passage 5 to 10 in 

A09 cells. Expression is relative to CaSki; a value of 1 indicates the same level of expression 

detected in the CaSki cell line. No data signifies that transcripts were not detected for a 

particular gene. Error bars signify SEM. 
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3.1.5. HPV DNA Integration Status of M08 and A09 Cells 

The possibility of HPV DNA integration in M08 and A09 clonal cell line DNA was assessed 

using several different assays by Tiffany Onions of the HPV Research Group at Cardiff 

University. In the DIPS assay, adapters are ligated to common restriction endonuclease cut 

sites in the HPV and human genomes. A PCR step using adapter specific primers amplifies 

HPV:human DNA fusions (Luft et al., 2001). The APOT assay amplifies HPV mRNAs in order 

to detect and differentiate HPV:human fusion transcripts (Klaes et al., 1999). APOT and 

DIPS are complemented by E2 PCRs, which are a series of overlapping PCRs that cover the 

entire E2 gene (Collins et al., 2009). The assays were carried out on the first and last 

passage post initial clonal cell isolation for both cell lines (passage 5 and 9 for M08 and 

passage 5 and 11 for A09). 

The results of these experiments indicated that A09 had a fully intact E2 gene with no 

genomic disruption detected by DIPS. APOT data for the A09 cell line indicated an 

episomal transcript consisting of E7-E1 spliced to E4. On the other hand E2 was not 

amplified in the M08 cell line suggesting a disruption in this gene. DIPS data for the M08 

cell line indicated viral disruption at nucleotide 1194 of the HPV16 genome (E1 region) 

with antisense integration at locus 3q28, which was confirmed by APOT. These results 

were found in both passages examined for both cell lines. 

These data indicate that HPV16 DNA is episomal in the A09 cell line and integrated in the 

M08 cell line. However, these results had not been conclusively confirmed by Southern 

blotting at the time of submission of this thesis. 
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3.2. Mycoplasma Testing 

Mycoplasmas are the smallest free-living micro-organisms known (Taylor-Robinson and 

Bebear, 1997). They are parasitic prokaryotes that lack a true cell wall and are classed as 

mollicutes (Taylor-Robinson and Bebear, 1997). Mycoplasma contamination of cell culture 

is a common and serious problem as they can cause biochemical and metabolic changes in 

infected cell lines. Infection cannot be detected macroscopically or even with the aid of a 

normal light microscope. For this project mycoplasma detection was carried out using a 

Venor®GeM mycoplasma PCR detection kit, which uses PCR to test for mycoplasma DNA 

in the media of cell cultures. Mycoplasma monitoring of all cell types in culture within the 

HPV research group laboratory was carried out regularly (every 1 - 2 months). The M08, 

A09, 3T3 and HeLa cell lines remained mycoplasma free throughout the project. Infection 

of SiHa and C33A cell lines occurred at one point during the project and all stocks were 

replaced with new uncontaminated stocks obtained from the ATCC.  
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3.3.  TP53 Mutational Status of the NHIST Cell Lines 

There is minimal selective pressure for mutation in the TP53 gene in HPV associated 

gynaecological neoplasia due to the degradation of the p53 protein by E6; however, it was 

important to validate the exact TP53 status of the HPV positive cell models used in the 

Cidofovir dosing studies as the central hypothesis was Cidofovir could reactivate a p53 

response. The TP53 gene of the M08 and A09 NHIST cell lines was sequenced according to 

“Detection of TP53 mutations by direct sequencing” IARC protocol (IARC, 2010 Update). 

Briefly, 13 PCR reactions, with primer sets designed to target exons 2 to 11 of the TP53 

gene, were carried out on DNA from M08 and A09 cells. The PCR products were purified 

by gel band purification and sequenced in both directions. The resulting sequences were 

aligned with the TP53 mRNA sequence NM_000546.4 and the TP53 genomic reference 

sequence NC_000017.9. Any mismatches with the reference sequences were cross 

referenced to the IARC TP53 Database (IARC, November 2012), which contains a 

compilation of TP53 gene variations (both Single Nucleotide Polymorphisms (SNPs) and 

mutations) identified in human populations and tumour samples from peer-reviewed 

literature. 

Out of 52 sequencing reactions (13 forward and reverse for both A09 and M08 DNA 

samples) 46 were successful.  For the 6 reactions that failed, the corresponding opposite 

direction reactions were available and allowed sequence analysis of those particular 

regions/exons. The sequences (n = 46) were aligned with the mRNA reference sequence 

NM_000546.4. The possible SNPs/mutations from this step are outlined in Table 3.2. One 

mutation (c.670del1(C)) was present in both A09 and M08 DNA. This mutation was 

queried in the IARC TP53 Database, which gave the results outlined in Table 3.3. 
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Table 3.2. Possible TP53 gene SNPs/Mutations in A09 and M08 DNA  

Sample Primer cDNA Number † Exon Number 

A09 

P-326 
P-327 

c.215G>C ◊ 
c.215G>C ◊ 

4 
4 

P-239 c.674_675insG 6 

P-E11Re c.1097G>T 11 

P-E11Re c.1094del1(T) 11 

P-238 c.670del1(C) 6 

P-313 
P-333 

c.670del1(C) ◊ 
c.670del1(C) ◊ 

6 
6 

M08 

P-236 c.674_675insG 6 

P-238 c.670del1(C) 6 

P-313 
P-333 

c.670del1(C) ◊ 
c.670del1(C) ◊ 

6 
6 

† c. denotes position on the mRNA (cDNA) reference sequence NM_000564.4. It is important 

to note that the sequences were searched against NM_000546.4 but the base positions used 

in the IARC TP53 database corresponded to NM_000546.1 which started 197 bases later 

than NM_000546.4. The above cDNA base positions are corrected by 197 nucleotides. 

◊
 This possible SNP/mutation was found in both the forward and reverse sequencing 

reactions 

 

 

Table 3.3. IARC TP53 Database Mutation Information for deletion c.670del1(C)  

cDNA 
description 

Protein 
Description 

Exon 
Number 

Effect 
Somatic 
Count 

Germline 
Count 

Cell Line 
Count 

c.670del1 - 6 Frame Shift 1 0 0 

cDNA Description = Mutation nomenclature according to Human Genome Variation Society 

(HGVS) standards based on NM_000546.4 sequence. Protein Description = Mutation 

description at the protein level as recommended by HGVS and using the Uniprot reference 

sequence P04637. Exon Number = TP53 gene exon number. Effect = Effect of the mutation; 

Frame Shift changes the amino acid sequence from the site of the mutation. Somatic Count = 

Number of tumours reported to carry this somatic mutation. Germline Count = Number of 

tumours reported to carry this germline mutation. Cell Line Count = Number of cell lines 

reported to carry this mutation.  
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The c.670del1 mutation was a frame shift mutation in exon 6, which codes for part of the 

DNA binding region of the protein and according to the database was found once before 

in a somatic tumour. It appeared to be a rare mutation with possible significant effect on 

the translated protein. However, it was found in both A09 and M08 DNA. This raised 

concerns about possible contamination between the DNAs, although negative controls for 

the PCR reactions were negative and the initial electropherograms for these samples and 

primer sets appeared clean with single peaks at each base position. To check the 

consistency of these results, the process was repeated with a different extraction of A09 

and M08 DNA using primer sets P-326/P-327 which flanked exon 4 and P-237/P-238 which 

flanked exon 6. The exon 4 primer set was used as a control as the SNP c.215G>C 

appeared specifically in the A09 sample in the initial sequences and not in the M08 sample 

(as can be seen in Table  3.2).  On the repeat, negative controls were again negative 

indicating there was no contamination of the primers or reagents. This can be seen on the 

gel image of the purified PCR products in Figure 3.9.      

The repeat sequences were identical to the initial sequences with c.670del1 appearing in 

both samples and c.215G>C only appearing in A09. The sequences which contained 

c.670del1 were aligned with mRNA reference sequences NM_000546 to NM_000546.5, 

but the deletion persisted to appear when aligned to each sequence. The sequences that 

contained c.670del1 were then re-aligned with the genomic reference sequence 

NC_000017.9 and the updated version, NC_000017.10, and 100% identities were found 

with no deletions. This result suggested a difference between the mRNA and gDNA 

reference sequences, which was confirmed by alignment of the mRNA reference sequence 

NM_000546.4 and the gDNA reference sequence NC_000017.9. This can be seen in Figure 

3.10. 

The remaining sequences with possible SNPs/mutations were realigned with the gDNA 

reference sequence, NC_000017.9. This filtered out several of the possible 

SNPs/mutations which were derived from alignment with the mRNA reference sequence 

only. Upon re-examination of the electropherograms of the remaining mismatches 

c.215G>C in sample A09 (P-326/P-327 for exon 4) was the only true mismatch. This SNP 

can be seen on sections of the electropherograms outlined in Figure 3.11. 
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Figure 3.9. Gel Image of Purified Products of Repeat PCR for TP53 Sequencing Primer 

Sets P-326/P-327 (Exon 4) and P-237/P-238 (Exon 6) 

The repeat PCR on different DNA extractions produced the same results as the initial PCR 

ruling out contamination of DNA samples. The exon 4 primer set was used as a control as 

the SNP c.215G>C appeared specifically in the A09 sample in the initial sequences and not 

in the M08 sample, whereas, the frame shift deletion at cDNA position 670 appeared in both 

cell lines. 

 

 

 

 

 

Figure 3.10. Alignment of genomic DNA Reference Sequence NC_000017.9 against 60 

bases from the cDNA Reference Sequence NM_000546.4 

In this figure the “Query” (top) sequence is the gDNA reference sequence NC_000017.9. The 

“Sbjct” (Subject – bottom) is 60 nucleotides taken from the mRNA reference sequence 

NM_000546.4 which contained the apparent deletion (circled in red). 

 

 

 

 

Lane Content 

A 100 bp Ladder 

B Blank lane 

C A09 primer set for Exon 4 (413 bp) 

D A09 primer set for Exon 6 (181 bp) 

E M08 primer set for Exon 4 (413 bp) 

F M08 primer set for Exon 6 (181 bp) 

G Negative control for Exon 4 PCR 

H Negative control for Exon 6 PCR 

 
 

413 bp 

181 bp 
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Figure 3.11. Electropherogram Sections with Forward (P-326) and Reverse (P-327) 

Primers for A09 DNA TP53 Sequencing 

Electropherograms showing sections of TP53 exon 4 DNA for the A09 cell line. The red 

arrows highlight the site of the SNP in both forward and reverse sections of DNA. Black G = 

Guanine; Blue C = Cytosine; Red T = Thymine; Green A = Adenine. 
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The single peak observed at the substitution site indicates homozygous substitution. The 

SNP, c.215G>C, was identified in the IARC TP53 Database (Table 3.4). This SNP had an NCBI 

dbSNP link rs1042522. 

 

Table 3.4. SNP information for c.215G>C as obtained from the IARC TP53 Database 

Primer 
cDNA 
Description 

Genomic 
DNA 
Description 

Exon 
Protein 
Description 

Protein 
Domain 

Effect 

P-326 (forward) 
P-327 (reverse) 

c.215G>C g.7520197C>G 4 p.R72P 
Proline 
Rich 

Missense 

cDNA description as per reference sequence NM_000546.4 corrected by 197 nucleotides; 

Genomic DNA description as per reference sequence NC_000017.9; Protein description as 

per reference sequence P04637; Protein domain is the domain in which the SNP occurs; 

This SNP occurs in the proline rich domain of the p53 protein; Effect is missense on the 

translated protein resulting in the substitution of a proline with an arginine amino acid at 

codon 72. 

 

 

The data for c.215G>C / g.7520197C>G obtained from the linked Reference SNP Cluster 

Report, rs1042522, classed c.215G>C / g.7520197C>G as a single nucleotide variation 

(SNV) with the ancestral allele being C. Minor Allele Frequency (MAF) is defined as the 

second most frequent allele for a particular SNP using the current default global 

population, which is genotype data from 1094 worldwide individuals in the 1000 Genomes 

phase 1 project (1000Genomes, 2008 - 2012). For rs1042522 the MAF is G=0.398/869, 

which indicates that G has a frequency of 39.8%. This SNP results in the substitution of a 

proline with an arginine at position 72 of the p53 protein and is also referred to as 

Arg72Pro (Bojesen and Nordestgaard, 2008).  
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3.4.  E6 and E7 Transcription Relative to Cell Confluence 

Prior to the treatment of the NHIST cell lines with ANPs, it was necessary to examine any 

changes in oncogene expression of untreated cells in response to cell confluence. This was 

required to determine the appropriate duration of treatment and degree of confluence 

the cells should be allowed to reach before examination of oncogene transcription levels 

in response to treatment. The primary focus of this project was VIN, hence the NHIST 

vulval cell line, M08, was used for dosing optimization studies. In brief, the cells were 

cultured to reach confluences of 50%, 75%, 100% and 100% plus one week, and then RNA 

was extracted. The RNA was reverse transcribed and cDNA was subjected to RT-qPCR to 

examine E6 and E7 transcription levels. 

Amplification curves for E6 and E7 at various M08 cell confluences are outlined in Figure 

3.12 (A) and (B) respectively. E6 and E7 transcription levels corresponding to cell 

confluence in the M08 cell line are shown in Figure 3.12 (C). It can be seen that 

transcription of both oncogenes was relatively low at 50% confluence, but tripled and 

peaked at 75% confluence. At 100% confluence E6 and E7 transcript levels were similar to 

those of 75% confluence, but decreased following one week of culture at 100% 

confluence.  

Statistical analyses on changes in RQ between different confluences are outlined in Table 

3.5. A significant increase in RQ was observed between 50% and 100% confluence for both 

E6 and E7. A significant decrease in E6 RQ was also observed between 100% confluence 

and 100% confluence plus 1 week.    
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(A) E6 Amplification Plot 

(B) E7 Amplification Plot 
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Figure 3.12. E6 and E7 RQ in M08 Cells at Various Degrees of Confluence 

(A) Raw RT-qPCR amplification plot for E6 mRNA levels for M08 cells at 50%, 75%, 100% 

and 100% plus 1 week confluence including intra-experimental repeats and negative control 

(water). (B) Raw RT-qPCR amplification plot for E7 mRNA levels for M08 cells at 50%, 75%, 

100% and 100% plus 1 week confluence including intra-experimental repeats and negative 

control (water). (C) E6 and E7 RQ for M08 cells at various degrees of confluence 

represented on a logarithmic scale. Transcript levels were calculated with Biogazelle qBase+ 

software using the Vandesompele equation (Vandesompele et al., 2002, Hellemans et al., 

2007). E6 and E7 Ct values were normalized to housekeeping genes HPRT and TBP2. RQ 

values are the mean of duplicate inter-experimental repeats and error bars represent SEM. 

RQ values are presented on a logarithmic scale to compare with those of CaSki standard 

DNA (1/100 dilution). 

 
Table 3.5. p-Values for E6 and E7 RQ differences between M08 Cell Confluences 

 p-Values for E6 RQ differences p-Values for E7 RQ differences 

 Confluence 75% 100% 
100% + 
1 week 

CaSki 75% 100% 
100% + 
1 week 

CaSki 

50% 0.052 0.023 0.804 0.093 0.104 0.017 0.490 0.139 

75%   0.162 0.054 0.117   0.581 0.323 0.160 

100%     0.025 0.104     0.376 0.155 

100% + 1 week       0.094       0.146 

 
Statistical analysis was carried out using GraphPad QuickCalcs software (GraphPad 

Software, Inc., California, USA). p-Values were calculated with 95% confidence intervals 

using a two-tailed unpaired t-test. For each confluence condition n = 2; for CaSki positive 

control standard n = 3. p ˂ 0.05 indicates statistical significance (red text) and the difference 

in RQ levels between various conditions is unlikely to have occurred by chance. p ˃ 0.05 

indicates that the difference is not statistically significant (green text). 
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3.5.  Culture of NHIST Cells with and without 3T3 Feeder Cells 

Feeder cells are often used in the culture of primary human keratinocytes and short term 

cell lines to provide connective tissue factors to supplement and support keratinocyte 

proliferation and colony formation (Stanley and Parkinson, 1979). This study was carried 

out to examine if the NHIST cell lines could be cultured effectively without 3T3 feeder cells 

for use in the dosing studies. It was desirable to culture the NHIST cells in the absence of 

3T3 feeder cells in the dosing experiments for several reasons. Firstly, it was unknown 

what effect the test compounds could have had on the feeder cells. Secondly, this would 

avoid the risk of contamination with feeder cell material during the downstream 

processing of NHIST cell material. Finally, the presence of feeder cells could skew viable 

NHIST cell counts. To examine this two identical inocula of 5 x 105 M08 cells were cultured 

separately with and without 3T3 feeder cells in 10 cm tissue culture plates. The two 

cultures were evaluated each day in terms of growth and morphology. After eight days, 

when both cultures had reached 80 – 100% confluence, RNA was extracted, reverse 

transcribed and subjected to RT-qPCR to quantify E6 and E7 transcripts. 

E6 and E7 transcript levels for M08 cells cultured with and without feeder cells are shown 

in Figure 3.13.  Statistical analysis indicated E6 and E7 transcript levels in M08 cells grown 

in the absence of feeder cells were not significantly different to those in M08 cells grown 

with feeder cells (Table 3.6). Microscopic examination of the cultures suggested that 

cultures grown without 3T3 feeder cells initially grew more slowly than cells grown with 

feeder cells. Photomicrographs of M08 cells cultured with and without feeder cells for 6 

and 8 days are shown in Figure 3.14. On day 6 cells cultured with feeder cells appeared 

more confluent and regularly shaped in comparison to those cultured without feeder cells. 

By day 8 both cultures were fully confluent; however, the cells cultured without feeder 

cells appeared to diversify into two morphologically distinct populations. One population 

resembled normal tightly packed tessellating polygonal keratinocytes with typical 

“cobblestone” appearance. The other population appeared irregular in morphology and 

exhibited large hypertrophic keratinocytes with a “fried egg” effect. 
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Figure 3.13. E6 and E7 RQ in M08 Cells cultured with and without 3T3 Feeder Cells for 

8 Days 

Transcript levels were calculated with Biogazelle qBase+ software using the Vandesompele 

equation (Vandesompele et al., 2002, Hellemans et al., 2007). E6 and E7 Ct values were first 

normalized to housekeeping genes HPRT and TBP2, then scaled to those of CaSki DNA 

standard (1/100 dilution) and presented on a logarithmic scale. RQ values are the mean of 

duplicate inter-experimental repeats and error bars represent SEM. 

 

 

Table 3.6. p-Values for E6 and E7 RQ differences between M08 Cells cultured with and 

without 3T3 Feeder Cells 

  E6 E7 

p-Value  0.427 0.804 

Statistical analysis was carried out using GraphPad QuickCalcs software (GraphPad 

Software, Inc., California, USA). p-Values were calculated with 95% confidence intervals 

using a two-tailed unpaired t-test. n = 2 for M08 cells cultured with 3T3 feeder cells and M08 

cells cultured without 3T3 feeder cells after 8 days. p-Values ˃ 0.05 indicate that the 

difference in both E6 and E7 RQ between M08 cells cultured with and without 3T3 feeder 

cells was not statistically significant. 
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A. DAY 6 M08 Cells Grown With Feeder Cells 

B. DAY 6 M08 Cells Grown Without Feeder Cells 
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Figure 3.14. M08 Cells Cultured with and without 3T3 Feeder Cells for 6 and 8 Days 

320X magnification using bright field light microscopy. (A) M08 cells on day 6 cultured in the 

presence of feeder cells, green line encloses a ridge of displaced feeder cells. (B) M08 cells 

on day 6 cultured in the absence of feeder cells, red arrows highlight atypical hypertrophic 

morphology. (C) M08 cells on day 8 cultured in the presence of feeder cells; feeders fully 

displaced. (D) M08 cells on day 8 cultured in the absence of feeder cells, red line encloses a 

second population of hypertrophic keratinocytes with “fried egg” effect. 

C. DAY 8 M08 Cells Grown With Feeder Cells 

D. DAY 8 M08 Cells Grown Without Feeder Cells 
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3.6.  Initial Inoculum of NHIST Cells for use in Dosing Studies 

To use the NHIST cell lines without feeder cells in the dosing studies, seeding cell densities 

that would allow the cells to grow efficiently were determined. This was necessary as if 

the initial inoculum was too high, cells could become confluent before the end of the 

experiment, but if the initial inoculum was too low cells might not grow effectively. Three 

inocula were examined; 5,000, 7,000 and 10,000 M08 cells/well in 96 well plates. 

Cidofovir treatment of the M08 cell line was used to optimize the inocula. The cells were 

examined microscopically every day for 6 days and cell growth and morphology were 

assessed. On day 0 (after a 24 hour attachment period, when cells were treated with 

Cidofovir), day 3 and day 6 viability readings were recorded using the Trypan Blue dye 

exclusion method. Growth curves for the three initial cell densities are presented in Figure 

3.15. 

Each initial inoculum produced interpretable results with clear dose response 

relationships to Cidofovir concentration. The 7,000 and 10,000 initial cell inocula grew 

more effectively earlier (day 3) in comparison to the 5,000 cell inoculum; however, the 

untreated control cells were confluent by day 6 for these inocula. For the 5,000 cell 

inoculum, the untreated cells were not confluent by day 6. 
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Figure 3.15. M08 Viable Cell Count per mL with Three Different Initial Cell Inocula 

All cells were seeded in 96 well plates. Growth curves were constructed using viable cell 

counts that were obtained using Trypan blue manual counting 24 hours post seeding (Day 0); 

and 3 and 6  days thereafter. The growth curves show a dose dependant increase in viable 

cell number over the 6 day period. Initial inocula of 7,000 (B) and 10,000 (C) cells per well 

were better established by day 3; however, the untreated control samples were confluent by 

day 6 with these initial inocula. An initial inoculum of 5,000 cells per well (A) did not reach 

confluence by day 6.  Error bars represent standard deviation of viable cell counts per mL for 

the mean of triplicate wells (each singular well was counted in duplicate).  
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3.7. Optimal Method of Assessment of Cell Viability 

To determine the IC50 concentrations of the compounds in the various cell lines it was 

necessary to determine the number of viable cells following treatment. Three methods of 

assessing cell viability were employed; CellTiter 96® AQueous One MTS Solution Reagent 

(Promega, Southampton, UK), manual cell counting using the Trypan Blue dye exclusion 

method and automated cell counting using 7-AAD staining and flow cytometry. These 

methods were optimized using mycoplasma free SiHa cells as they were quick and easy to 

grow, unlike primary and NHIST cell lines that were of limited stocks.   

Initially the CellTiter 96® AQueous One MTS Solution Reagent (Promega, Southampton, 

UK) was used to assess viability of cells treated with Cidofovir. However, increased 

absorbance (which the manufacturer markets as being proportional to viability) was 

consistently observed in cells treated with up to 30 µM Cidofovir compared to the 

untreated cells. However, when these cells were viewed microscopically they appeared 

less confluent than the untreated control cells. An example of this effect is shown in 

Figure 3.16. Figure 3.17 shows microscopic images complementary to Figure 3.16 (B). 
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Figure 3.16.  CellTiter 96® AQueous One MTS Solution Reagent Absorbance values for 

SiHa Cells Treated with Cidofovir  

(A) Absorbance for untreated SiHa cells and SiHa cells treated with six concentrations of 

Cidofovir over a 12 day period. Absorbance for all samples peaked from day 6 to day 9 and 

decreased on day 12. (B) Absorbance of SiHa cells treated with various concentrations of 

Cidofovir on Day 9. A typical dose dependant decrease in absorbance was not observed and 

a peak in absorbance was found for 30 µM Cidofovir. Absorbance at 490 nm was read 3.5 

hours after the addition of the CellTiter 96® AQueous One MTS Solution Reagent. The 

absorbance readings of the test wells were normalized to blank wells which contained culture 

media spiked with the relevant concentration of Cidofovir. 
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Figure 3.17. SiHa Cell Photomicrographs 9 Days post Treatment with Cidofovir 

Photomicographs at 320X magnification using bright field light microscopy 9 days post 

treatment with Cidofovir equivalent to the absorbance trend line in Figure 3.16 (B). A = 0 μM 

Cidofovir (untreated), B = 30 μM Cidofovir, C = 100 μM Cidofovir. The figures show a 

decrease in live cell number with a corresponding increase in Cidofovir concentration, which 

was not found using the MTS reagent in Figure 3.16 (B). 

A. 0 μM 

B. 30 μM 

C. 100 μM 
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The graphs of MTS absorbance (Figure 3.16) and photomicrographs (Figure 3.17) appear 

to show contradictory trends. To address this issue, viable cell counts were performed 

using an alternative method. SiHa cells were treated with Cidofovir for up to 6 days; on 

day 3 and day 6 cell viability was assessed using the Trypan Blue dye exclusion manual 

method of cell counting. 

Figure 3.18 (A) shows SiHa cell viability obtained using the Trypan blue manual cell 

counting method. In contrast to the absorbance data obtained with the MTS reagent, the 

manual cell counting method displayed dose response consistent with Cidofovir 

concentration, and the data were constant with the results of microscopic analysis. It was 

therefore decided that cell counting was a more appropriate method of determining cell 

viability in comparison to the MTS method. However, due to the large number of 

compounds that needed to be assessed, in several different cell lines, in triplicate, it was 

decided that a higher throughput method was needed. Thus, automated cell counting 

using 7-AAD flow cytometry was used. The data obtained using automated cell counting 

with SiHa cells can be seen in Figure 3.18 (B.). Similar dose response trends were obtained 

using the manual and automated cell counting methods, hence it was decided to use 

automated cell counting using 7-AAD flow cytometry for the prodrug screen. 
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Figure 3.18. Two Methods of Cell Counting in SiHa Cells Following Cidofovir Treatment 

(A) Number of SiHa viable cells per mL determined by Trypan blue dye exclusion manual cell 

counting (B) Number of SiHa viable cells per mL determined by flow cytometry using 7-AAD 

automated cell counting. Viability readings were recorded at the time of Cidofovir treatment 

(Day 0) and 3 and 6 days thereafter. Error bars represent standard deviation of viable cell 

counts for the mean of triplicate wells. Both methods of cell counting showed similar trends in 

dose response of SiHa cells to three log concentrations of Cidofovir. Automated cell counting 

was chosen for future experiments as it allowed for the analysis of a greater volume of cells 

as well as allowing for analysis of other cellular characteristics in comparison to manual 

counting using Trypan blue staining.    

 

0

50

100

150

200

250

300

350

400

Day 0 Day 3 Day 6

V
ia

b
le

 C
e

ll 
C

o
u

n
t 

x 
1

0
3 /

m
L 

Days post treatment with Cidofovir 

  A. Manual Cell Counting  

0 µM
1 µM
10 µM
100 µM

0

50

100

150

200

250

300

350

400

Day 0 Day 3 Day 6

V
ia

b
le

 C
e

ll 
C

o
u

n
t 

x 
1

0
3 /

m
L 

Days post treatment with Cidofovir 

B. Automated Cell Counting 

0 µM
1 µM
10 µM
100 µM



135 
 

3.8.  Discussion  

Validation of the VIN and VaIN NHIST Clonal Cell Lines 

A number of clonal cell lines were successfully isolated from heterogeneous cell lines, 

PC08 and PC09, which were derived from a VIN3 and a VaIN3 biopsy respectively. For use 

in the compound dosing and mechanism of action studies for this project the fastest 

growing clone from each parental heterogeneous cell line was selected. M08 was selected 

from the PC08 clones and A09 was selected from the PC09 clones. Both clones appeared 

to have similar tessellating polygonal morphologies with “cobblestone” effect post initial 

isolation from parental heterogeneous cell lines (Figure 3.6). However, with continued 

short term culture slight differences in their growth and morphological characteristics 

were observed. M08 had a greater seeding efficiency and growth rate when compared to 

A09 (Figure 3.7 (A)). Additionally, M08 had a slightly shorter mean doubling time of 1.69 

days compared to 1.76 days for A09. At passage 11 A09 displayed a slightly elongated and 

striated morphology when compared to the prominent polygonal “cobblestone” 

morphology of M08 (Figure 3.7 (B)).  

In terms of molecular characteristics, M08 cells did not express E2, E4 and E5; however 

they did express E6 and E7 at a relatively stable level over 5 short term passages (Figure 

3.8). A09 expressed E2, E4, E5, E6 and E7 at relatively stable levels over 6 short term 

passages (Figure 3.8). These data, together with the results of DIPS, APOT and E2 PCRs, 

suggest that the M08 line contained integrated HPV16 only. The results of these assays 

indicated that A09 contained episomal HPV16 only; however, these results had not been 

conclusively confirmed by Southern blotting at the time of submission of this thesis. 

Mycoplasma Status of Cell Lines 

Mycoplasma testing of the cell lines was carried out regularly (every 1 to 2 months) during 

the project. If a positive result was found for a particular cell line, a new stock was 

obtained from the ATCC and all contaminated stocks were removed from liquid nitrogen 

storage. The NHIST cell lines derived from the VIN and VaIN biopsies did not test positive 

for mycoplasma. Stringent aseptic technique was employed during cell culture. As the 

main focus of this project was to evaluate nucleoside analogue drugs in cell lines, 



136 
 

mycoplasma testing was particularly important as mycoplasma infection can affect the 

metabolism of these analogues by interfering with their phosphorylation. (Bronckaers et 

al., 2008), found that several pyrimidine nucleoside analogues, including 5-

trifluorothymidine (TFT), 5-fluoro-2'-deoxyuridine (FdUrd) and 5-halogenated 2'-

deoxyuridines are susceptible to degradation to their inactive base forms by Mycoplasma 

hyorhinis encoded thymidine phosphorylase in  MCF-7 breast carcinoma cells. The 

mycoplasma encoded enzyme dramatically reduced the cytostatic activity of the 

compounds causing a reduction in the formation of active metabolites and/or reduced 

drug incorporation into nucleic acids in infected cells compared with uninfected cells. 

Consequently, routine mycoplasma testing was essential to ensure all cell lines used in the 

dosing and mechanism of action studies were mycoplasma free. 

TP53 Mutational Status of the NHIST Cell Lines 

TP53 sequencing indicated that the coding regions, exons 2 – 11, of TP53 in M08 and A09 

cell lines were wild type and not mutated. This result was consistent with the lack of 

selective pressure for mutation in TP53 in HPV positive cells. An SNV, 

c.215G>C/g.7520197C>G or Arg72Pro, was found in exon 4 of the A09 DNA and had a 

frequency of 39.8% in a sample of global population. 

Although 6 out of 52 sequencing reactions failed, there were still the alternative direction 

sequences for those samples and upon examination of the singular sequences aligned to 

the reference sequences no mismatches were found. Additionally, Arg72Pro was found in 

both forward and reverse sequencing reactions in both the initial PCR product and the 

repeat PCR product, which used independently extracted DNA. Although the majority of 

TP53 mutations are found within exons 5 - 8, IARC recommended screening of at least 

exons 4–10, including the splice junctions, so that less than 1% of mutations may be 

missed, which was why this protocol was chosen to evaluate the M08 and A09 samples. 

During the DNA sequence analysis inconsistencies were found within the IARC TP53 

Database and between the gDNA and mRNA (cDNA) reference sequences. The nucleotide 

numbering of cDNA positions in the IARC TP53 Database was 197 bases too high, which 

could lead to erroneous interpretations of possible SNPs/mutations. A difference was also 
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observed between the gDNA exon reference sequence and the mRNA reference 

sequence. The deletion which highlighted this non-conformance, c.670del1 (numbered 

from the 197 nucleotide corrected mRNA reference sequence NM_000546.4), is a rare 

somatic frame shift mutation which was unlikely to have occurred in cell lines derived 

from two individual patients led to further analysis. Upon comparison of the mRNA and 

gDNA reference sequences the mRNA reference sequence was found to have an extra 

base. As it is likely that TP53 is sequenced more frequently from gDNA rather than 

mRNA/cDNA, and because the TP53 gene was sequenced from gDNA in this study, the 

gDNA reference sequence was used in the bioinformatic analysis.  

Published data regarding the TP53 polymorphism at codon 72 (rs1042522) is 

contradictory. Functional differences between the Arg72 and Pro72 variants have been 

reported. The Arg72 variant was found to induce apoptosis more effectively than the 

Pro72 variant (Dumont et al., 2003), whereas, the Pro72 variant was found to be more 

efficient at activating p53 dependent DNA-repair genes (Siddique and Sabapathy, 2006).  

A significant increase in the Arg72 variant with increase in latitude has been shown, 

although the selective pressure maintaining this gradient is unknown (Beckman et al., 

1994). With regards to HPV and gynaecological disease, one particular study by (Storey et 

al., 1998), found that E6 proteins from both high-risk and low-risk HPV types are more 

efficient at targeting the p53 Arg72 variant for ubiquitin-mediated degradation compared 

with the Pro72 variant. Additionally, through a PCR and sequencing based assay, they 

found a high prevalence of the homozygote Arg72 variant in patients with cervical 

tumours (n = 30, material derived from frozen paraffin embedded samples) compared 

with healthy individuals (n = 41, material derived from whole blood), of whom the 

majority were heterozygous. They estimated that individuals homozygous for Arg72 were 

7 times more susceptible to HPV associated tumorigenesis than heterozygote individuals 

(Storey et al., 1998). However another study by(Rosenthal et al., 2000), designed to 

evaluate the correlation between the TP53 codon 72 polymorphism and HPV-associated 

neoplasia outside the cervix, observed a lower frequency of homozygote individuals for 

the Arg72 variant in HPV-associated vulval cancer (n = 52) and VIN (n = 48) patients than in 

healthy controls (n = 246) and suggested that Arg72 homozygote individuals had a lower 
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risk of developing vulval neoplasia, compared with heterozygote or Pro72 homozygote 

woman. This study also used material from paraffin embedded tissue for the disease 

cohort, blood samples from the healthy cohort and PCR analysis (Rosenthal et al., 2000). 

In 2009, however, a meta-analysis of 49 individual studies estimated odds ratios using 

logistic regression, stratification by study and ethnic origin for individual data sets (Klug et 

al., 2009). Subgroup analyses for infection with HPV, material used to determine TP53 

genotype, racial background, study quality and Hardy–Weinberg equilibrium were also 

performed. This demonstrated that the frequency of the arginine allele in women with 

invasive cancer was most likely due to errors in study methods not clinical or biological 

factors. When the analysis was confined to methodologically sound studies no connection 

was found between cervical cancer and TP53 codon 72 polymorphism (Klug et al., 2009). 

To conclude, there is diverse literature concerning the association of the TP53 rs1042522 

SNP with various HPV positive and negative neoplasias. As this study only examined two 

HPV positive gynaecological samples, with one being homozygous for proline at codon 72 

and the other homozygous for arginine at codon 72, no conclusions can be made as to the 

prevalence and functional significance of rs1042522 in women with HPV associated 

gynaecological neoplasia. The final conclusion for this section of work was that both the 

M08 and A09 cell lines used in the Cidofovir dosing experiments were wild type for TP53. 

Hence they are appropriate models in which to investigate the hypotheses that Cidofovir 

can reactive a p53 response. 

Future work might include determining the prevalence of the codon 72 SNP in the RT3VIN 

cohort and correlating this with treatment response and HPV status. As it has been 

previously demonstrated that the Arg72 variant is more susceptible to degradation by E6 

perhaps heterozygous or homozygous woman for Pro53 respond differently to treatment 

as they may be better able to induce a p53 response (if the Pro53 allele is still functionally 

intact). 

E6 and E7 Transcription Relative to Cell Confluence 

In the cell confluence studies, it was found that at 50% confluence E6 and E7 transcription 

was lowest and from 75% to 100% confluence it was greatest. There was a significant 
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increase in E6 and E7 transcription from 50% to 100% confluence. This high level of 

transcription may be attributed to the exponential growth of the cells at this point. One 

week after 100% confluence was reached, transcript levels decreased, possibly due to cell 

senescence as a result of culture surface saturation as well as cell death.  

A recent study by (Isaacson Wechsler et al., 2012), also demonstrated differences in E6 

and E7 transcription with regards to cell confluence. Parental HPV16 transfected NIKS 

cells, 3 HPV16 positive clones representing HSIL and 3 HPV16 positive clones representing 

LSIL were grown in monolayer culture to a range of different cell densities before 

harvesting. Unlike the HSIL-like clones, the LSIL-like clones did not appear to continue to 

divide effectively post 100% confluence, which suggested that they were sensitive to 

contact inhibition. Similarly, the HSIL-like clones displayed an increase in E6 and E7 when 

they reached confluence, contrasting what was observed for the LSIL-like clones. 

Furthermore, it was found that the E6 target, cellular p53, decreased more prominently 

post 100% confluence in the HSIL-like clones compared to the LSIL-like clones. Another 

study by (Laurson and Raj, 2011),, also found levels of E7 to be elevated in confluent cells. 

The findings from both of these studies agree with the data presented here. As VIN3 is the 

stage prior to invasive disease it is similar to HSIL and has a highly proliferative phenotype. 

As the focus of this study was to assess E6 and E7 transcript levels relative to cell 

confluence it did not assess mitotic numbers one week post confluence; therefore, a valid 

conclusion on the contact inhibition status of the M08 cell line cannot be made, but would 

prove valuable as future work in light of the data presented by Isaacson Wechsler et al., 

2012.  

The findings from the confluence study confirmed the influence cell density had on levels 

of oncogene transcription and emphasised the importance of standardisation of 

conditions for the dosing studies. Based on the data outlined in Figure 3.12, optimal 

experimental conditions were chosen to examine E6 and E7 expression in the NHIST cell 

lines in response to treatment. Time periods of 12, 36 and 72 hours post treatment were 

selected for analysis of E6 and E7 transcription to ensure minimal differences in the 

confluences between the treated and untreated cells (where cells were allowed to adhere 

to the tissue culture surface 24 hours prior to dosing). A maximum cell culture period of 
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4.5 days would equate to less than three population doublings for both M08 and A09 cells 

(Table 3.1). Minimizing differences in cell confluence between treated and untreated cells 

by limiting the number of population doublings in a dosing study may avert potential 

skewing of transcript normalization, where change in oncogene expression of treated cells 

is normalized to that of the untreated control cells.  

Culture of NHIST Cells with and without 3T3 Feeder Cells 

It was found that the M08 NHIST cell line could be cultured effectively without feeder cells 

when inoculated at a standard concentration, although M08 cells grown with feeder cells 

became fully confluent sooner than M08 cells grown in the absence of feeder cells. 

Additionally, M08 cells grown without feeder cells exhibited hypertrophic morphology 

with a “fried egg” effect. “Fried egg” morphology is associated with cytoplasmic extension 

resulting in cell motility and locomotion (Alt and Dembo, 1999). It is possible that the M08 

cells cultured in the absence of feeder cells had more room to expand, which may have 

resulted in this hypertrophic morphology.   

An important consideration was that culture of primary and short term HPV immortalized 

human keratinocytes without feeder cells may promote episome loss. A study by (Dall et 

al., 2008), reported loss of episomal HPV DNA from W12s, a naturally HPV transformed 

cell line derived from a cervical intraepithelial neoplasia, following growth without feeder 

cells for 15 and 25 population doublings. However, as the mechanism of action studies in 

this project lasted a maximum of 4.5 days, which equates to less than 3 population 

doublings for the M08 and A09 NHIST cell lines, episome loss was unlikely. On the other 

hand, it may be speculated that general stress induced in cells by culturing them without 

feeder cells may be mistaken for stress induced by compound dosing. This effect could 

interfere with the compound mechanism of action results. However, as the untreated and 

treated cells in the mechanism of action studies were cultured in the exact same 

conditions such potential stress responses are controlled for. It was therefore decided 

that the NHIST lines could be grown in the absence of feeder cells for the dosing and 

mechanism of action studies. 
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Initial Inoculum of NHIST Cells for use in Dosing Studies 

In a 96 well plate format the optimal initial inoculum of NHIST cell lines was found to be 

5,000 cells per well. This value had to be a balance between the number of cells required 

to effectively initiate proliferation and the number of cells that would reach 100% 

confluence during the experimental period. This differed from experimental set up using 

transformed cell lines as they did not need a minimal cell density before they could divide 

effectively presumably because these cells were derived from cancer and the NHIST cell 

lines were derived from intraepithelial neoplasia biopsies. This may suggest that the NHIST 

cell lines rely on paracrine cell signalling, which would also explain their preference for 

growth in the presence of feeder cells.  For mechanism of action studies, cells were grown 

in larger vessels and optimal initial inocula were adjusted per culture area when culturing 

cells in 6 cm and 10 cm culture dishes. 

Optimal Method of Assessment of Cell Viability 

The optimum method of assessment of cell viability in response to compound treatment 

was found to be cell counting. Cidofovir was used in the optimization process as it was the 

main subject of this investigation and results could be compared to published data. 

Transformed cervical cancer cells were used in the optimization process as they were 

more robust and easy to work with compared to short term or primary cell lines. Three 

different methods were assessed to determine viability of cells in response to treatment. 

CellTiter 96® AQueous One MTS Solution Reagent assay was initially selected as the 

quickest and easiest assay to perform, as well as providing high through-put; however the 

results it produced were consistently contradicted by microscopic assessments and did 

not show a linear dose response to Cidofovir concentration. The reason for this 

inconsistency is unclear. MTS reagent was added to compound-spiked media with no cells 

to control for background interference, thus the irregular results do not appear to be due 

to a reaction between Cidofovir and the MTS reagent. An alternative explanation might be 

that treatment with Cidofovir resulted in a small population of large, highly metabolically 

active cells. 

Manual and automated cell counting methods were then evaluated and both showed 

linear dose responses to Cidofovir treatment. Both methods provided cell counts but the 
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automated cell counting method using flow cytometry had the advantage of counting a far 

greater number of cells in comparison to the manual method. Furthermore, automated 

cell counting using flow cytometry gave the option of examining a large range of cellular 

characteristics.  

Apart from confirming the best method to assess viability of treated cells, these 

experiments also proved beneficial in optimization of the dosing system. For instance, 

initially cells were treated for up to 12 days with up to 6 different concentrations of 

compound (Figure 3.16 (A) - MTS method). However, upon re-evaluation of the system, it 

was found that a shorter experimental duration provided better data to calculate IC50 

values. This was because after one week in culture, the untreated cells and the cells 

treated with very low concentrations of compound became over confluent and began to 

die of their own accord, thus skewing inhibitory concentration values.  
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4. The Effects of Acyclic Nucleoside Phosphonate and ProTide 
Treatment on the Growth of HPV Positive Cell Lines 

The compounds analysed in this chapter include: Cidofovir, cyclic Cidofovir, one cyclic 

Cidofovir ProTide analogue, Adefovir, two ProTide analogues of Adefovir, Tenofovir and 

three ProTide analogues of Tenofovir. The experiments were designed to investigate the 

specificity of Cidofovir for HPV transformed lines and to investigate the activity of 

Cidofovir and the other ANPs in the NHIST cell lines. 

4.1.  Cidofovir Specificity and Dose Range Finding 

Hypotheses 

i. Cidofovir displays anti-growth activity in NHIST cell lines 
ii. IC50 values obtained for Cidofovir in NHIST cell lines are similar to those outlined in 

previously published literature 

Cidofovir has shown promise in the treatment of HPV positive cell lines and lesions 

(Tristram and Fiander, 2005, Snoeck et al., 2000); additionally, some studies have reported 

specificity of Cidofovir to HPV positive cells (Andrei et al., 2001, Abdulkarim et al., 2002). 

To test these hypotheses the specificity of Cidofovir to NHIST cell lines was examined and 

IC50 concentrations of Cidofovir were determined for use in subsequent mechanism of 

action studies. Cidofovir dosing was examined in the NHIST cell lines and untransformed 

HPV negative HEKs. M08 and A09 cells were seeded at 5 x 103 cells/well in 96 well plates. 

HEKs were seeded at 3.5 x 104 cells/well in 24 well plates. After an initial attachment 

period of 24 hours M08 and A09 cells were treated with 0, 1, 5, 10 and 100 μM Cidofovir 

in triplicate and HEKs were treated with 0, 1, 10 and 100 μM Cidofovir in duplicate. HEKs 

were treated in 24 well plates as they were easier to work with in larger numbers. An 

extra concentration of Cidofovir (5 μM) was used in the M08 and A09 cell lines as previous 

work had suggested Cidofovir had an IC50 value between 1 and 10 μM in the M08 cell line 

(results section 3.6; Figure 3.15). Viable cells were counted 48 and 96 hours post 

treatment for each cell type using Trypan blue staining. 
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4.1.1. Growth and Morphology of NHIST Cells Post Cidofovir 
Treatment   

Ninety-six hour  dose response curves and photomicrographs of cellular morphology 96 

hours post Cidofovir treatment of M08, A09 and HEK cells are shown in Figures 4.1, 4.2 

and 4.3 respectively.  
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Figure 4.1. M08 Cell Viability and Morphology in Response to Cidofovir Treatment over 

a 96 Hour Time Frame 

(A) Growth curves of M08 cells treated with 4 concentrations of Cidofovir over a 96 hour 

period. Cells were seeded at 5 x 10
3
 cells per well in 96 well plates. After a 24 hour 

attachment period cells were treated with 0 µM, 1 µM, 5 µM, 10 µM and 100 µM  Cidofovir in 

triplicate wells for each condition. Viability was assessed 48 and 96 hours post treatment by 

manual cell counting using Trypan blue staining. Error bars represent standard deviation of 

the mean viable cell count per mL of triplicate wells for each condition. (B) Photomicrographs 

illustrate M08 cell morphology 96 hours post treatment with 4 concentrations of Cidofovir. 

Images were captured using bright field microscopy. Images at 100X magnification show 

cells floating in media for each condition and decreasing cell confluence with higher 

concentrations of Cidofovir. Images at 320X magnification show morphology of cells treated 

with all conditions, where an increase in cell size can be seen in cells treated with higher 

concentrations of Cidofovir.  
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Figure 4.2. A09 Cell Viability and Morphology in Response to Cidofovir Treatment over 

a 96 Hour Time Frame 

(A) Growth curves of A09 cells treated with 4 concentrations of Cidofovir over a 96 hour 

period. Cells were seeded at 5 x 10
3
 cells per well in 96 well plates. After a 24 hour 

attachment period cells were treated with 0 µM, 1 µM, 5 µM, 10 µM and 100 µM  Cidofovir in 

triplicate wells for each condition. Viability was assessed 48 and 96 hours post treatment by 

manual cell counting using Trypan blue staining. Error bars represent standard deviation of 

the mean viable cell count per mL of triplicate wells for each condition. (B) Photomicrographs 

illustrate A09 cell morphology 96 hours post treatment with 4 concentrations of Cidofovir. 

Images were captured using bright field microscopy. Images at 100X magnification show 

cells floating in media for each condition. Images at 320X magnification show cells in each 

condition with an elongated morphology.  
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Figure 4.3. HEK Cell Viability and Morphology in Response to Cidofovir Treatment over 

a 96 Hour Time Frame 

(A) Growth curves of HEK cells treated with 3 concentrations of Cidofovir over a 96 hour 

period. Cells were seeded at 3.5 x 10
4
 cells per well in 24 well plates. After a 24 hour 

attachment period cells were treated with 0 µM, 1 µM, 10 µM and 100 µM  Cidofovir in 

duplicate wells for each condition. Viability was assessed 48 and 96 hours post treatment by 

manual cell counting using Trypan blue staining. Error bars represent standard deviation of 

the mean viable cell count per mL of duplicate wells for each condition. (B) Photomicrographs 

illustrate HEK cell morphology 96 hours post treatment with 3 concentrations of Cidofovir. 

Images were captured using bright field microscopy. Images at both 100X and 320X 

magnification show hypertrophic cells with increasing Cidofovir concentration.  
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The M08 cell dose response curve in Figure 4.1 (A) indicates that Cidofovir did not produce 

a notable differential inhibitory effect until 96 hours post treatment in this cell line. This 

can be seen in the photomicrographs in Figure 4.1 (B), where increasing Cidofovir 

concentration caused a decrease in cell confluence and an increase in cell size. 

Similar to M08 cells, a differential inhibitory effect by Cidofovir in A09 cells was not seen 

until 96 hours post treatment (Figure 4.2 (A)). This was not clear in the photomicrographs 

due to the low number of viable cells and smaller differential effect between different 

concentrations of Cidofovir (Figure 4.2 (B)).  

From the HEK dose response curve (Figure 4.3 (A)) a prominent decrease in viable cell 

number was observed for each concentration of Cidofovir at 48 hours. However, by 96 

hours the HEK cells appear to have recovered but grew in a dose dependent manner. The 

photomicrographs in Figure 4.3 (B) show HEKs decreasing in cell number and increasing in 

cell size in a Cidofovir dose dependent manner. 

4.1.2. Cidofovir IC50 Values in NHIST Cell Lines 

Cell count data was used to calculate Cidofovir IC50 values for M08, A09 and HEK cells 48 

and 96 hours post treatment (Table 4.1). Cidofovir did not produce 50% inhibition of M08 

cell growth with the concentrations used at 48 hours; however, an IC50 value of 5 μM was 

calculated for M08 cells 96 hours post Cidofovir treatment. In A09 cells an IC50 value of 84 

μM was found at 48 hours; this reduced to 21 μM 96 hours post Cidofovir treatment.  An 

IC50 value of 0.6 μM was calculated 48 hours post treatment for HEKs; however, this 

increased 10 fold to 6.6 μM by 96 hours post Cidofovir treatment. 

 

Table 4.1. Cidofovir IC50 values for M08, A09 and HEK cells 48 and 96 hours post 

treatment  

 M08 (HPV16+) IC50 A09 (HPV16+) IC50 HEK (HPV-) IC50 

 48 hours 96 hours 48 hours 96 hours 48 hours 96 hours 

μM - 5 84 21 0.6 6.6 
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4.2.  Effects of Cyclic Analogues of Cidofovir on HPV Positive 
and Negative Transformed Cell Lines 

Hypothesis 

Cyclic ProTide analogues of Cidofovir have increased anti-growth activity compared with 
acyclic parent Cidofovir in HPV positive cell lines 

Previous studies suggest Cidofovir may be an effective treatment for HPV associated 

neoplasia (Tristram and Fiander, 2005, Snoeck et al., 2000). This study focused on 

modifying Cidofovir using the ProTide approach in order to increase its efficacy. ProTide 

technology was applied to the compound in order to mask the negative charge on the 

phosphonate moiety, thus allowing it to enter cells more readily. However, the synthesis 

of the ProTide derivative of Cidofovir in its acyclic form was not achieved due to 

nucleophilic attack on the phosphonate group by a hydroxymethylene side chain. The 

chemical structure of Cidofovir before manipulation is outlined in Figure 4.4 (A). 

In order to avoid the displacement of the masking group on the phosphonate moiety by 

the hydroxymethylene side chain, cyclic Cidofovir was synthesised and its amidate 

derivative was obtained by reaction with the benzyl ester of L-Alanine. The chemical 

structures of cyclic Cidofovir (salt) and its ProTide amidate derivative are shown in Figure 

4.4 (B) and Figure 4.4 (C) respectively. 
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Figure 4.4. Chemical structure of Cidofovir, cyclic Cidofovir and cyclic Cidofovir 

Amidate (ProTide) 

(A) Chemical structure of Cidofovir; the red ring highlights the site of attachment for the 

hydroxymethylene side chain. (B) Chemical structure of Cyclic Cidofovir; Cyclic Cidofovir is 

the structure on the left hand side; its salt is the structure on the right hand side. (C) 

Chemical structure of cyclic Cidofovir amidate (ProTide); the amidate moiety is attached to 

the phosphonate group of cyclic Cidofovir. 

A. 

B. 

C. 
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The cyclic compounds were examined for improved growth inhibitory efficacy in 

comparison to Cidofovir in HeLa (HPV18 positive) and C33A (HPV negative) cells. The cells 

were subjected to treatment with 0, 1, 10 and 100 μM Cidofovir, cyclic Cidofovir and cyclic 

Cidofovir amidate in triplicate in 96 well plates. Viable cell counts were performed prior to 

treatment (0 hours) and 48 and 96 hours post treatment. Viability was assessed using 

Trypan blue dye exclusion manual counting. 

4.2.1 Growth of HeLa and C33A cells with Cidofovir, cyclic Cidofovir and 
cyclic Cidofovir Amidate Treatment 

The results of the Cidofovir, cyclic Cidofovir and cyclic Cidofovir amidate dosing are 

outlined in Figure 4.5 (A), (B) and (C) respectively. There appears to be minimal variation 

in dose response between the three compounds in HeLa and C33A cell lines. 
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Figure 4.5. HeLa and C33A cell growth 48 and 96 hours post Cidofovir, cyclic Cidofovir 

and cyclic Cidofovir amidate (ProTide) treatment 

(i) HeLa and (ii) C33A growth curves post (A) Cidofovir, (B) cyclic Cidofovir and (C) cyclic 

Cidofovir amidate (ProTide) treatment. Both cell types were seeded at 5 x 10
2
 cells per well in 

96 well plates. After an attachment period of 24 hours cells were treated with 0 µM, 1 µM, 10 

µM and 100 µM of each compound in triplicate. The number of viable cells per mL was 

recorded 48 and 96 hours post treatment using Trypan blue manual cell counting. Error bars 

represent standard deviation of the mean of triplicate wells for each condition.  
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4.2.1. IC50 Values for HeLa and C33A Cells Treated with Cidofovir, 
cyclic Cidofovir and cyclic Cidofovir amidate (ProTide) 

The IC50 values presented in Table 4.2 were calculated from the dose response curves 

outlined in Figure 4.5. 

Table 4.2. IC50 values for Cidofovir, cyclic Cidofovir and cyclic Cidofovir amidate 

(ProTide) in HeLa and C33A cells 

Compound 
IC50 for HeLa Cells (HPV+) μM IC50 for C33A Cells (HPV-) μM 

48 hours 96 hours 48 hours 96 hours 

Cidofovir - - 92 9 

Cyclic Cidofovir - 83 - 24 

Cyclic Cidofovir amidate - 46.5 - 62 

 

Table 4.2 shows that at the doses examined, Cidofovir did not reduce HeLa cell counts by 

50% over a period of 96 hours. Less than 50% reduction in cell counts was also seen at 48 

hours for both cyclic Cidofovir and cyclic Cidofovir amidate in HeLa cells. At 96 hours, 

cyclic Cidofovir had an IC50 value of 83 μM, and cyclic Cidofovir amidate had an IC50 value 

of 46.5 μM. From this data it would appear that the cyclic compounds are more active 

than unmodified Cidofovir, with the ProTide analogue producing 50% inhibition at nearly 

half the concentration of cyclic Cidofovir. 

With the C33A cell line, Cidofovir did have a 50% inhibitory effect, with IC50 values of 92 

μM and 9 μM at 48 and 96 hours respectively. No IC50 effect was seen at 48 hours for 

either cyclic Cidofovir or the cyclic Cidofovir amidate in the C33A cell line. An IC50 value of 

24 μM with cyclic Cidofovir was observed at 96 hours and an IC50 value of 62 μM was 

observed with the cyclic Cidofovir amidate at the same time. This data suggests that the 

cyclic compounds are not as effective as unmodified Cidofovir in the HPV negative C33A 

cells. 

These IC50 values vary between the two cell lines as well as between the 3 compounds 

examined. Cidofovir had no 50% inhibitory effect on HeLa cells over the experimental time 

period, where as it did on the C33A cells with a 10 fold decrease in IC50 concentration 

from 48 to 96 hours. Neither cyclic compound produced an IC50 effect after 48 hours in 

either cell line. At 96 hours the cyclic amidate was more active than cyclic Cidofovir in 

HeLa cells, but in C33A cells the opposite was observed.  The HPV negative C33A cells 
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appeared to be more sensitive to all compounds compared to the HPV positive HeLa cells, 

which is most likely due to genetic differences between the two cell lines.  

The inconsistency of these results raised questions regarding the experimental materials. 

Upon chemical re-evaluation of the amidate derivative of cyclic Cidofovir by 31P-NMR and 

TLC analysis in the Welsh School of Pharmacy, it was found that the compound  re-opened 

to its acyclic form by a hydrolysis reaction. 

4.3.  Adefovir and Tenofovir ProTide Screen 

Hypothesis 

ProTide analogues of Adefovir and Tenofovir are more efficient at inhibiting cell growth in 
HPV positive immortalized cell lines in comparison to the parent compounds from which 
they were derived 

As the chemical structure of Cidofovir would not allow chemical manipulation to form 

acyclic ProTide analogues it was decided to modify the Cidofovir sister compounds, 

Adefovir and Tenofovir. Like Cidofovir, Adefovir and Tenofovir are ANP compounds but 

are derived from an adenine nucleobase. Adefovir in its oral prodrug form, Adefovir 

dipivoxil (Hepsera), is FDA approved for the treatment of HBV infections, and the prodrug 

form of Tenofovir, Tenofovir disoproxil fumarate (TDF, Viread), is approved for the 

treatment of HIV and HBV infections (De Clercq, 2011b). In theory, ProTide compounds 

should be more effective than their parent compounds as the negative charge on their 

phosphate group is masked to allow more efficient entry into cells. 

Three ProTide analogues of Tenofovir and two ProTide analogues of Adefovir were made 

in the Welsh School of Pharmacy. These ProTide analogues along with their parent 

compounds were examined at 1 μM, 10 μM and 100 μM concentrations in triplicate  3 and 

6 days post treatment in SiHa (HPV 16 positive), HeLa (HPV 18 positive) and C33A (HPV 

negative) cell lines. Viable cell counts in treated lines were determined using 7-AAD flow 

cytometry, cell size was assessed using the forward scatter parameter in flow cytometry 

and morphology was assessed by bright field microscopy.  

4.3.1. ProTide Screen 

A summary of IC50 values obtained in the ProTide screen are outlined in Table 4.3.  
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Table 4.3. ProTide Analogue and Adefovir and Tenofovir Parent Compound IC50 

Values for SiHa, HeLa and C33A Cells 3 and 6 days Post Treatment  

 SiHa (HPV 16+) HeLa (HPV 18+) C33A (HPV -) 

Compound 

IC50 (µM) Effect 
on cell 
size 

‡
 

IC50 (µM) Effect 
on cell 
size 

‡
 

IC50 (µM) Effect 
on cell 
size 

‡
 Day 

3 
Day 6 Day 3 Day 6 Day 3 Day 6 

Tenofovir 0 0 - 0 0 - 0 10 - 

TNF Pro 
cf3472 

0.73 0.77 ++ 0.54 0.5 ++ 0.7 0.79 ++ 

TNF Pro 
cf3473 

0 0.93 ++ 0.53 5.6 ++ 7.6 0.8 ++ 

TNF Pro 
cf3474 

7.8 5.9 ++ 6.2 6 ++ 6 0.7 ++ 

Adefovir 45 10 ++ 0 0 + 7.8 0.94 + 

ADF Pro 
cf3475 

0.6 0.5 +++ 0.5 0.5 +++ 0.54 0.5 +++ 

ADF Pro 
cf3476 

0.66 0.55 +++ 0.6 6.4 ++ 0.84 0.62 ++ 

Viable cell numbers to calculate IC50 values were determined by flow cytometry using 7-AAD 

staining. Cells were seeded at 5 x 10
2
 cells per well in 96 well plates. After an attachment 

period of 24 hours cells were treated in triplicate with 3 log concentrations of the test 

compounds. Three days post initial treatment viability was measured for each condition in 

triplicate and the remaining wells had a media change/second dose of test compound. Three 

days post the second treatment (6 days post initial treatment) a second viability 

measurement was obtained for each condition in triplicate. IC50 values were calculated from 

percentage kill plots using the equation of the line; Y = MX + C. IC50 values in red text 

highlight sub micromolar concentrations. IC50 values in green text highlight concentrations of 

1 μM or greater.  

  

 

 

 

 

 

‡ Effect on cell size and morphology:   

-   No effect 

+   Slight effect, cells starting to become bigger 

++ Cells are moderately swollen and granular 

+++  Cells extremely swollen and granular 
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As can be seen from Table 4.3 the Tenofovir parent compound had the least effect on the 

three cell lines. However, an inhibitory effect was observed on day 6 in the C33A cells. This 

contrasted with the Tenofovir ProTide analogue, TNF Pro cf3472, which displayed sub-

micromolar IC50 values for each cell line at each time point. A moderate effect on cell size 

and morphology was also observed with this compound. The second Tenofovir ProTide 

analogue, TNF Pro cf3473, showed inconsistent results over the 3 cell lines at both time 

points. For example, no IC50 value was found on day 3 in the SiHa cell line with 

concentrations as high as 100 μM, but 3 days later a 50% inhibitory effect was seen with 

just under 1 μM concentration of the compound. In the HeLa cell line, 3 days after 

treatment an IC50 value of 0.53 μM was found but 3 days later it increased 10 fold to 5.6 

μM, which directly contradicted what was found in the C33A cell line, with an IC50 

concentration of 7.6 μM on day 3 but 10 fold lower at 0.8 on day 6. However, a moderate 

effect on cell size and morphology was observed in each cell line. The final Tenofovir 

ProTide, TNF Pro cf3474, like TNF Pro cf3472 showed stable IC50 values over the three cell 

lines, with a 10 fold decrease in IC50 on day 6 in the C33A cell line. A moderate effect on 

cell size and morphology was observed in each cell line with this compound. 

Adefovir produced IC50 values of 45 µM and 10 μM on day 3 and day 6 respectively in the 

SiHa cell line and IC50 values of 7.8 μM and 0.94 μM on day 3 and day 6 respectively in 

C33A cells. The compound displayed an effect on cell size and cell morphology in each cell 

line but did not produce an IC50 value in HeLa cells. The first Adefovir ProTide analogue, 

ADF Pro cf3475, displayed the greatest effect on the three cell lines with consistent IC50 

values between 0.5 and 0.6 μM at both time points in each of the cell lines and the 

greatest effect on cell size and morphology for each cell line also. Similarly, the second 

Adefovir ProTide analogue, ADF Pro cf3476, showed a prominent inhibitory effect on each 

cell line with mostly sub-micromolar IC50 values except in the HeLa cell line on day 6. This 

analogue also caused a significant effect on cell size and morphology in each cell line 

which appeared to be more pronounced in the SiHa cell line. 

Examining the data as a whole, the Tenofovir parent compound had the least effect on 

viable cell counts and the Adefovir ProTide compound, ADF Pro cf3475, had the most 

pronounced effect. It would also appear from these cell models that none of the 
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compounds were specific to HPV positive cell lines. In fact the HPV negative cell line, 

C33A, appeared to be the most susceptible in that each of the 7 compounds produced an 

inhibitory effect. The Adefovir ProTide analogues appeared to have a greater effect in 

comparison to the Tenofovir ProTide analogues as a collection, which may reflect the 

greater activity of the Adefovir parent compound. Each ProTide daughter compound for 

both Adefovir and Tenofovir had far greater growth inhibitory effects on the cell lines 

examined in comparison to their respective parent compounds.   

To highlight the difference in efficacy between parent Adefovir and ADF Pro cf3475 flow 

cytometry plots, growth curves and photomicrographs are shown in the following sections 

using SiHa cells as an example.  

4.3.2. Effect of Adefovir and ADF Pro cf3475 on SiHa Cell Viability  

The increased efficacy of the ADF Pro cf3475 compound relative to Adefovir was 

demonstrated by flow cytometry. Figure 4.6 depicts flow cytometry plots of 7-AAD 

fluorescence versus forward scatter for SiHa cells treated with (A) 10 μM Adefovir and (B) 

10 μM ADF Prof Cf3475. 

The dose response plots outlined in Figure 4.7 were derived from the viable cell count 

data obtained using 7-AAD flow cytometry. Viable counts for SiHa cells 3 and 6 days post 

treatment with (A) Adefovir and (B) ADF Pro cf3475 are shown in Figure 4.7. All 

concentrations of ADF Pro cf3475 had an inhibitory effect on SiHa cells as early as 3 days 

post treatment. 
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Figure 4.6. Dot Plots of 7-AAD Fluorescence versus Forward Scatter for SiHa Cells 3 

days post Treatment with Adefovir and ADF Pro cf3475 

7-AAD flourescence is displayed on a log scale on the y axis, forward scatter is displayed on 

the x axis.“Gate 1” encloses the viable cell population used to determine number of viable 

cells per mL for (A) Adefovir and (B) ADF Pro cf3475 3 days post treatment. 

 

 

Figure 4.7. Dose Response Growth Curves of SiHa Cells Treated with Adefovir and 

ADF Pro cf3475 

Growth curves of SiHa cells treated with (A) Adefovir and (B) ADF Pro cf3475. SiHa cells 

were seeded at 5 x 10
2 

cells per well in 96 well plates and were allowed to adhere for 24 

hours before treatment with 3 log concentrations of both Adefovir and ADF Pro cf3475 in 

tiplicate. Cell viability was determined by 7-AAD staining and quantification on an Accuri C6 

flow cytometry instrument 3 and 6 days post treatment. Error bars represent standard 

deviation of the mean number of viable cells per mL for triplicate wells. 
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4.3.3. Effect of Adefovir and ADF Pro cf3475 on SiHa Cell Size and 
Morphology 

Adefovir and ADF Pro cf3475 treatment of SiHa cells resulted in a noticeable effect on cell 

size, which was quantified by flow cytometry using the forward scatter parameter. In 

Figure 4.8 (A), SiHa cells treated with Adefovir were larger than the untreated control cells 

particularly at 10 and 100 μM. Figure 4.8 (B), on the other hand, shows SiHa cells were 

considerably larger compared to untreated cells at concentrations of 1 and 10 μM ADF Pro 

cf3475. Cells treated with 100 μM ADF Pro cf3475 were smaller. 

In addition to effect on cell size, both compounds produced noticeable effects on SiHa cell 

morphology (photomicrographs in Figure 4.9). Treated cells were larger than the 

untreated cells particularly with ADF Pro cf3475, where a proportional increase in cell size 

was observed with increasing concentration of compound; with the exception of 100 μM 

where the majority of cells appeared to be dead.  

When viewed by light microscopy, apoptosing cells appear to shrink and exhibit 

membrane blebbing (Kerr et al., 1972). Distinct from apoptosing cells, necrotic cells and 

cells undergoing senescence display similar morphological characteristics. For example, 

necrotic cells exhibit cell swelling, cytoplasmic vacuolation and eventually disruption of 

the cell membrane (Edinger and Thompson, 2004, Golstein and Kroemer, 2007). Similarly, 

senescing cells also become larger in size, flatten out and lose their original shape (Ben-

Porath and Weinberg, 2004). From this it would appear that the cells, which increased in 

size and decreased in number, were either displaying necrotic or senescent characteristics 

in response to treatment with the compounds. Photomicrographs for Figure 4.9 were 

taken at X320 magnification using bright field microscopy. 
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Figure 4.8. Histograms showing changes in SiHa cell size 3 days post treatment with 

Adefovir and ADF Pro cf3475 

Increases in SiHa cell size three days post treatment with three log concentrations of (A) 

Adefovir and (B) ADF Pro cf3475. Cell size was determined by the median forward scatter 

value for each viable population of cells, as gated on using 7-AAD staining. Increases in 

forward scatter are proportional to increases in cell size from the left hand side of the x axis 

to the right hand side. Histogram curves were subjected to “smoothing” to account for low 

numbers of viable cells in samples that were treated with high concentrations of compound. 
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Figure 4.9. SiHa morphology 3 and 6 days post Adefovir and ADF Pro cf3475 treatment 

SiHa cell morphology at 320X magnification using bright field microscopy; (A) 3 days, and (B) 6 

days post Adefovir and ADF Pro cf3475 treatment. A proportional increase in cell size was 

observed with increasing concentration of both compounds with the exception of 100 µM ADF 

Pro cf3475, where cell debris was observed at both time points.  
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4.3.4. Disease Model Specificity of the Most Effective Compounds 

The compounds that displayed the greatest degree of efficacy, ADF Pro cf3475 and ADF 

Pro cf3476, were further examined at lower concentrations (0.01 to 5 μM) to identify any 

specificity to cell models representing normal (HEK cells), neoplastic (short term M08 

cells) and malignant (SiHa cells) disease types.  

SiHa cells were seeded at 5 x 102 cells per well in 96 well plates; M08 cells were seeded at 

5 x 103 cells per well in 96 well plates; HEKs were seeded at 3.5 x 104 cells per well in 24 

well plates. After an initial attachment period of 24 hours all cell types were treated with 

0.01 µM, 0.05µM, 0.1 µM and 1 µM ADF Pro cf3475 in triplicate; and 0.05 µM, 0.1 µM, 1 

µM and 5 µM ADF Pro cf3476 in triplicate. Two and 4 days post treatment cell viability was 

assessed by Trypan blue staining and manual cell counting for each condition in triplicate 

to calculate viable cell counts per mL. Percentage kill plots were constructed and IC50 

values for both compounds were derived and outlined in Table 4.4. Response to 

treatment with ADF Pro cf3475 and ADF Pro cf3476 did not differ markedly between the 

normal, neoplastic or malignant cell types. At both time points ADF Pro cf3475 appeared 

to have lower IC50 concentrations in the 3 cell types compared to ADF Pro cf3476. 

 

Table 4.4. IC50 values for ADF Pro cf3475 and ADF Pro cf3476 in SiHa, M08 and HEK 

Cells two and four days post Treatment 

Cell Line HPV Status Phenotype 

IC50 ADF Pro cf3475 
(μM) 

IC50 ADF Pro cf3476 
(μM) 

2 days 4 days 2 days 4 days 

SiHa HPV 16 Malignant 0.17 0.09 1.06 0.83 

M08 HPV 16 Neoplastic 0.68 0.05 1.04 0.82 

HEK Negative Normal 0.08 0.08 0.34 0.30 

 
IC50 values in red text highlight sub micromolar concentrations. IC50 values in green text 

highlight concentrations of 1 μM or greater. 
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4.4. Discussion 

Cidofovir Specificity and Dose Range Finding 

The main finding of the Cidofovir specificity study was that the compound did not produce 

a specific inhibitory effect in NHIST cell lines compared to HPV negative HEKs. In Cidofovir 

treated HEK cells at 48 hours the number of viable cells was reduced, but by 96 hours they 

appeared to have recovered but proliferated in a dose dependant manner. This could 

perhaps be due to the fact that these cells have functional stress response pathways. The 

initial assault with the compound may have caused substantial apoptosis but recovery/cell 

survival pathways may have been reactivated thereafter, which may be why viability 

increased by 96 hours.  

The A09 NHIST cell line grew less efficiently than the M08 cell line. As both cell lines were 

cultured in the exact same conditions this may have been due to genetic differences 

between the two cell lines. M08 has a disruption in its E2 gene, which can result in over-

expression of E6 and E7. On the other hand, A09 has an intact E2 gene, whose protein 

product can suppress E6 and E7. However, when baseline levels of E6 and E7 in the M08 

and A09 clones were assessed the difference between them was minimal (Section 3.1.4.; 

Figure 3.8). There was also a considerable difference in cell morphology between the A09 

and M08 cell line. Even though both cells lines were used in the dosing experiment from 

passages 7 to 10, the A09 cells appeared to resemble earlier passage heterogeneous cells, 

with morphology closer to cells from the initial biopsy (PC09 cell line; Section 3.1.1.; Figure 

3.1 (B)). An IC50 concentration was obtained at 96 hours for A09 cells, but estimation of 

this value may have been confounded due to low cell counts in the control/untreated 

cells. The apparent greater sensitivity of M08 cells to Cidofovir may hence only reflect 

differences in growth rates between the M08 and A09 cell lines. Similarly, the increase in 

IC50 with time, observed in the HEK cells, may be caused by inaccurate estimation of the 

IC50 at 48 hours. 

With regards to previous published studies, (Andrei et al., 1998), examined IC50 values of 

Cidofovir in HPV33 transfected cervical keratinocytes (CK-1 cell line) as well as CaSki 

(HPV16), HeLa (HPV18), SiHa (HPV16) and C33A (HPV negative) transformed cell lines. The 

authors reported IC50 values in µg/mL at 3 and 7 days post Cidofovir treatment using cell 
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counts as determined by a Coulter counter. For the SiHa, HeLa and CaSki HPV positive 

transformed cell lines they reported IC50 values between 26 and 143 µg/mL on day 3 and 

IC50 values between 0.7 and 2 µg/mL on day 7. For the HPV33 positive cervical 

keratinocytes they reported an IC50 of 52 µg/mL on day 3 and 0.7 µg/mL on day 7. Finally 

they reported an IC50 value of 32 µg/mL on day 3 and 1.4 µg/mL on day 7 in C33A cells. 

From this data it can be seen that the IC50 of Cidofovir in each cell line drops considerably 

at day 7 compared to day 3. This is a trend which is also seen in the M08 and A09 cell line 

IC50 values between day 2 and day 4. The IC50 values on day 3 in the Andrei et al. study 

were much higher than the IC50 values observed on day 4 for the M08, A09 and HEK cell 

lines in this study.  

A different study by (Abdulkarim et al., 2002), examined Cidofovir selectivity in HPV 

positive cell lines in terms of mechanism of action rather than cell viability. The authors 

examined induction of p53 and pRb protein levels following Cidofovir treatment in Me180 

and HeLa (both HPV positive) and C33A (HPV negative) cell lines, and observed induction 

of p53 protein in HeLa cells 3 days post treatment with 1, 10 and 100 µg/mL Cidofovir but 

not in C33A cells. However, they had previously concluded through a p53 functional assay 

in yeast that TP53 in C33A was mutated, which may be a reason for the apparent 

selectivity.  

A strength of the Cidofovir specificity study includes the HEK cells as the HPV negative 

control cell line. The HEK cells are untransformed and thus are a better genotypic 

representation of “normal” HPV negative cells that would occur in vivo. Abdulkarim et al., 

2002, identified specificity of Cidofovir to HPV positive cells using transformed C33A cells 

as a HPV negative counterpart. C33A cells are derived from a cervical cancer and while 

HPV negative they cannot be considered an accurate model of “normal” HPV negative 

cells. Furthermore, as a transformed cell line, C33A cells could be resistant to drug 

treatment due to mutated DNA damage/stress response pathways or up or down 

regulation of nucleoside metabolising enzymes. Abdulkarim et al., 2002, examined the 

TP53 status of the cell lines they used to assess cellular response to Cidofovir and found 

that the C33A cell line had a mutation in this gene. Consequently, another strength of this 

study was that M08 and A09 cell lines were previously found to be TP53 wild-type and as 
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the HEKs were primary human epidermal keratinocytes derived from a neonate of less 

than two weeks old they are unlikely to carry a TP53 mutation. Additionally, as this study 

was to model Cidofovir treatment in vulval and vaginal intraepithelial neoplasia rather 

than invasive cancer, the M08 and A09 NHIST cell lines were more similar models of the 

disease compared to other HPV positive transformed cell lines.  

A limitation of the Cidofovir specificity study includes the broad range of Cidofovir 

concentrations used. A narrower range of concentrations would give more precise IC50 

values. M08 and A09 cells were treated with an extra concentration of Cidofovir (5 µM) as 

previous work had suggested Cidofovir may cause 50% growth inhibition in these cells 

with less than 10 µM. Additionally, HEK cells were assayed in duplicate rather than 

triplicate as work with the HEKs was carried out in 24 well plates rather than 96 well 

plates and the larger volumes meant a decrease in throughput. However, as the main 

reason for using the HEKs was to examine if Cidofovir had any effect on a HPV negative 

untransformed cell line, the duplicate repeats were deemed sufficient. Nevertheless, 

although the HEKs are a better representation of a HPV negative cell line in comparison to 

C33A cells, they may not be the best representation of a HPV/neoplasia-free vulval and 

vaginal cell line as they are primary cells derived from neonatal foreskin. A better model to 

test the specificity of Cidofovir may be by transfection of a portion of the HEKs with HPV, 

therefore having two genetically identical cell lines but one HPV transformed and the 

other HPV negative. The final disadvantage of the study was that it was carried out in 2D 

monolayer cell culture. This is not representative of an in vivo state due to lack of physical 

barriers and immune system and thus would not exemplify a true VIN lesion. Better 

models would include raft culture, which would show drug effect on the different layers of 

epithelium or in vivo animal models, which would have the advantage of having an 

immune system and ability to produce an inflammatory response.  

Future work from the Cidofovir specificity study would involve a better model to measure 

the specificity of the compound. Either HPV transfected HEKs in monolayer culture or raft 

cultures to obtain a better in vivo representation. To conclude on the Cidofovir specificity 

study, selectivity of the compound to HPV immortalized cells was not demonstrated in this 

model but IC50 values for use in the mechanism of action studies were obtained. 
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Examination of Cyclic Analogues of Cidofovir 

The main finding of the cyclic Cidofovir ProTide analogue study was that the cyclic 

Cidofovir compounds produced a 50% growth inhibitory effect in the HeLa cell line 

compared with unmodified Cidofovir, which did not produce a 50% growth inhibitory 

effect at either time point in HeLa cells. Contrastingly, in the C33A cell line, unmodified 

Cidofovir appeared to produce 50% inhibition at lower concentrations, at both time 

points, compared to the cyclic compounds. There was no HPV specificity or pattern with 

regards to response to treatment between the two lines with all three compounds. As 

unmodified Cidofovir and the two cyclic compounds had an inhibitory effect on the C33A 

cells, it would appear this cell line was more sensitive to treatment.   

Similar studies have compared Cidofovir analogues, both cyclic and acyclic, to unmodified 

Cidofovir and have found variable results depending on analogue type and experimental 

model used. (Hostetler et al., 2006), synthesized three novel analogues of Cidofovir and 

found all three to be more efficient at arresting cell proliferation in the cervical cancer 

lines, CaSki, Me-180 and HeLa. Cell proliferation was measured by an XTT assay, which is a 

colorimetric tetrazolium salt based assay that detects cellular metabolic activities similar 

to MTS (Scudiero et al., 1988). Hostetler et al., 2006, found two of the novel compounds 

to be up to 17,000 times more active than Cidofovir at inhibiting the proliferation of 

cervical cancer cells. However, they did not demonstrate specificity to HPV positive cell 

lines as C33A cells and primary human foreskin fibroblasts were also susceptible. They 

speculated that the increase in efficacy was due to increased cellular uptake of the novel 

analogue compounds.  

In a different study by the same group (Beadle et al., 2002), hexadecyloxypropyl and 

octadecyloxyethyl novel analogues of cyclic Cidofovir and Cidofovir were synthesized and 

found to have 2.5- to 4-log increases in anti-CMV activity when compared to their 

respective parent compounds. They also suggested that the increase in anti-viral activity 

of these novel compounds may be partially due to greater cell permeability. Anti-viral 

activity was determined by a DNA reduction assay with MRC-5 human lung fibroblast cells 

or by a plaque reduction assay with human foreskin fibroblast cells infected with different 

strains of HCMV. Although the novel cyclic analogues were much more active than parent 
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cyclic Cidofovir, they were less active than the corresponding novel analogues of Cidofovir. 

Both cyclic Cidofovir and Cidofovir parent compounds had similar activities.  

Both of these in vitro studies (Beadle et al., 2002, Hostetler et al., 2006) agree that 

analogues of Cidofovir have greater anti-proliferative activities compared to their parent 

compounds. With regards to cyclic Cidofovir (Beadle et al., 2002), the novel cyclic 

analogues appeared to be considerably more active than parent cyclic Cidofovir and 

Cidofovir, where both parent cyclic Cidofovir and Cidofovir had the same activities. These 

results differ to the data presented here in that cyclic Cidofovir and Cidofovir both 

displayed contrasting activities in the HeLa and C33A cell lines. Additionally, in the study 

presented here, the cyclic amidate analogue appeared to be less active, albeit not by 

much, than parent cyclic Cidofovir in C33A cells. However, when evaluating these 

differences it should be highlighted that the study carried out by (Beadle et al., 2002) used 

live CMV infected MRC-5 human lung fibroblast cells/human foreskin fibroblast cells, 

whereas the study presented here was carried out in HPV transformed HeLa cells and 

transformed C33A cells, both derived from cervical carcinomas. Therefore, the 

compounds may have been metabolized differently by different viruses/different cell 

types. As it is already known that ANP compounds have a greater affinity to virus encoded 

polymerases as opposed to host cell polymerases (Kramata et al., 1996)and references 

therein), the molecular mechanism of cellular inhibition may have differed between 

compounds and cell models, giving rise to the differences in compound efficiencies.   

Another study by (McKenna et al., 2005), synthesized three novel analogues of cyclic 

Cidofovir and examined their permeability relative to parent cyclic Cidofovir and Cidofovir 

in a rat oral bioavailability assay examining single pass intestinal drug perfusion with 

portal vein blood collection. They found a 10 – 20 fold increase in permeability for the 

cyclic analogue derivatives relative to Cidofovir and cyclic Cidofovir. Aside to this, Cidofovir 

exhibited a higher rate of perfusion in comparison to unmodified cyclic Cidofovir, which 

was interesting as part of the negative charge on Cidofovir is eliminated by cyclization 

(McKenna et al., 2005), therefore in theory it would be expected that cyclic Cidofovir has 

the potential to be more permeable than acyclic Cidofovir. These results complemented 
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those of the (Beadle et al., 2002) study, where they found increased efficacy of novel 

cyclic Cidofovir analogues by their ability to inhibit CMV infected cells.    

Due to the differences in the results presented here and the results of published studies, 

the chemical structure of the cyclic Cidofovir amidate was re-evaluated and appeared to 

have degraded to its unmodified form by a hydrolysis reaction, with additional probable 

hydrolysis of the amino acid. It may be tentatively suggested that the hydrolysis reaction 

occurred during the storage (4°C) of the compound as the NMR was carried out on stock 

compound, not supernatant. Indeed, hydrolysis of an ester of cyclic Cidofovir has been 

reported as a possible product at 37°C (Oliyai et al., 1999).  

Because the cyclic Cidofovir amidate analogue had degraded, a valid conclusion cannot be 

made as to whether unmodified Cidofovir, cyclic Cidofovir or the cyclic Cidofovir ProTide 

amidate was more effective at inhibiting cell growth. The HeLa cell experiment suggested 

the cyclic analogues were more effective but the C33A cell assay suggested the 

unmodified form was better at inhibiting cell growth. Future work would involve re-

evaluating all compounds in their non-degraded forms. 

Adefovir and Tenofovir ProTide Screen 

The Adefovir and Tenofovir ProTide study evaluated the ability of ProTide analogues of 

these adenine derivative compounds to inhibit the growth of HPV positive and negative, 

transformed and untransformed cells. It also examined the effect of these compounds on 

cell size and morphology. The ProTide compounds were far more efficient at inhibiting 

growth of both HPV positive and negative cell lines in comparison to their parent 

compounds; most likely due to increased cellular permeability. This was seen most in the 

Adefovir ProTides as both daughter compounds exhibited consistent sub-micromolar IC50 

values, with prominent increases in cell size and atypical morphology. There was no 

specificity observed for HPV positive cell lines, in fact the HPV negative cell line, C33A, 

appeared most sensitive. The Adefovir parent compound produced a greater effect than 

the Tenofovir parent compound. The two compounds that displayed greatest efficacy, 

ADF Pro cf3475 and ADF Pro cf3476, were further examined in cell lines representing 

normal, neoplastic and malignant cell types, but again no specificity was observed.  



175 
 

Several reports suggest that Cidofovir may be effective in treatment of HPV associated 

disease (Tristram and Fiander, 2005, Abdulkarim et al., 2002, Sirianni et al., 2005, Andrei 

et al., 1998, Andrei et al., 2001). In contrast, the ProTide compounds were completely 

novel and no previous studies had been carried out to examine their possible therapeutic 

effects in HPV positive experimental models of disease. However, collaboration with the 

Rega Institute for Medical Research in Leuven, Belgium, allowed for the examination of 

the ProTides and their parent compounds in HIV-1, HIV-2, herpes simplex virus type 1 

(HSV-1), herpes simplex virus type 2 (HSV-2), CMV, varicella-zoster virus (VZV) and vaccinia 

virus infected cells (Pertusati et al., Submitted for publication ). All the ProTide analogues 

were far more effective than their parent compounds and had considerable anti-HIV 

activity at nanomolar concentrations. In contrast to the current study, the Tenofovir 

ProTides had an even greater effect than the Adefovir ProTides. With regards to the DNA 

virus infected cells, the Tenofovir ProTides also proved to be more efficient than the 

Adefovir ProTides. As well as virus infected cells this study also examined inhibition by all 

compounds in murine leukemia cells (L1210), human CD4+ T-lymphocyte cells (CEM) and 

HeLa cells. The results showed low micromolar IC50 values in the Tenofovir series and sub-

micromolar IC50 values in the Adefovir series. The latter results were consistent with the 

findings of this study, where the analogues, particularly those of Adefovir, also produced a 

profound inhibitory effect on the HPV negative C33A cells.  

Other studies have looked at Adefovir and Tenofovir treatment in HPV associated lesions. 

For example, (Christensen et al., 2000), examined Adefovir and Tenofovir in a cottontail 

rabbit papillomavirus (CRPV) domestic rabbit model and found that topical treatment 

with Adefovir had a marked effect on papillomas whereas Tenofovir showed no effect. 

Similarly, in the data presented here, Adefovir parent compound produced an anti-

proliferative effect on both SiHa and C33A cell lines, whereas Tenofovir produced a 

growth inhibitory effect on the C33A cell line alone. This would suggest that Adefovir had 

a greater potency at inhibiting HPV positive cells in comparison to Tenofovir. To add to 

this, the Adefovir ProTide analogues produced the most profound anti-growth effects on 

all three cell lines examined, with the lowest IC50 concentrations out of all compounds 
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examined. This again indicates that the Adefovir derived compounds were more efficient 

at inhibiting the growth of the cells described in this study. 

Historically, Adefovir and Tenofovir have been used as anti-viral compounds, with 

Adefovir being approved as an anti-HBV compound and Tenofovir for the treatment of 

both HBV and HIV (De Clercq, 2011b). These compounds produce anti-viral effects by 

inhibiting viral polymerases (Kramata et al., 1996)and references therein). However, In 

HPV associated disease episomal HPV replicates using host cell DNA polymerase (Park et 

al., 1994). Additionally, the risk of episome loss and integration of HPV into the human 

genome increases as the disease progresses (Pirami et al., 1997). ANP ProTide analogues 

have the negative charges on their phosphate groups masked to allow for more efficient 

cell permeability thus increasing their activity (Serpi et al., 2013). Once inside the target 

cell the blocking group is enzymatically cleaved to release the ANP, where it can be further 

phosphorylated to its active tri-phosphate form (Hecker and Erion, 2008). From the data 

presented here the exact mechanism of action of the Adefovir and Tenofovir ProTides 

cannot be deduced. The analogues produced a profound growth inhibitory effect on both 

HPV positive and negative cell lines, therefore specificity to HPV positive cells was not 

observed at the concentrations used. From the morphology of the treated cells, either cell 

senescence or necrosis could be deduced from their enlarged, flattened and vacuolar 

appearance. Cell senescence may have occurred via DNA damage (Di Leonardo et al., 

1994) caused by possible genotoxic stress induced by the analogues. Similarly, necrosis 

may also have resulted by compound induced DNA strand breaks and Poly (ADP-ribose) 

polymerase (PARP) activation. Over-activation of PARP in response to DNA damage can 

result in decreased ATP, which would lead to cell death via necrosis rather than apoptosis 

(Ha and Snyder, 1999).  

Strengths of this study include use of multiple transformed cell lines; SiHa (HPV16 

positive), HeLa (HPV18 positive) and C33A (HPV negative). The HPV negative cell line 

allowed for the examination of possible specificity to HPV positive cell lines. Each 

concentration of compound was examined in triplicate and parent and daughter 

compound dosing were set up and analysed at the same time in the same controlled 

conditions. Furthermore, in the primary ProTide screen the daughter compounds 
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generally displayed a consistency in IC50 values (with the exception of TNF Pro cf3473 and 

the lower values observed for most compounds in the C33A cell line). Also, 3 different 

responses to treatment were examined; Cell viability by 7-AAD flow cytometry, cell size by 

the forward scatter parameter using flow cytometry and cell morphology by manual 

evaluation of cell appearance by light microscopy. These 3 components combined made 

for a more comprehensive evaluation of cell line response to treatment with the test 

compounds. After the ProTide screen, the 2 most effective compounds were further 

examined in three more cell lines; HEKs, M08 and SiHa at lower concentrations to gain a 

better indication of true IC50 values and specificity to normal and transformed cell types. 

This further evaluation was carried out using Trypan blue dye exclusion manual cell 

counting; a second method of assessment of cell viability to complement the data 

produced by the 7-AAD automated flow cytometry. 

Weaknesses of this study include the fact that only 3 concentrations were examined for 

each compound. More concentrations would give more accurate IC50 values but as this 

study was a primary screen and as the ProTide compounds had never been examined 

before, 1, 10 and 100 μM were selected as a wide range of concentrations to examine 

growth inhibitory effects. Another weakness and probably the most important was that 

2D/monolayer cell culture models are not representative of an in vivo state, in particular 

layered differentiated epithelium, which would be better represented by 3D/raft culture 

or an in vivo animal model.  

To conclude on the ProTide analogue study, the hypothesis that the ProTide compounds 

were more effective at inhibiting HPV transformed cells in comparison to their parent 

compounds proved true. This may be due to more efficient cell membrane permeability. 

There was no specificity found for HPV positive cells, neoplastic cells or malignant cells. As 

a monolayer cell culture system does not contain any barriers, such as cornified 

epithelium, it cannot be said for certain how these compounds would be processed in 

vivo. Further work with the analogues would involve cytotoxicity evaluation and possible 

mechanism of action studies examining cell senescence and necrosis. Examination of the 

compounds in a HPV virus infected 3D/raft culture would also prove useful to see if they 

had an effect or specificity through the entire epithelial layer. Finally, if cytotoxicity 
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studies proved non-toxic, examination of the compounds in topical formulation on 

neoplastic lesions in animal models might also prove informative. 

Several conclusions were made from the data presented in this chapter. The first 

conclusion was that Cidofovir did inhibit the growth of NHIST cell lines. However, the 

inhibitory effect caused by Cidofovir was not specific to HPV immortalized cell lines as the 

compound also had an effect on normal HPV negative cells. The second conclusion was 

that Cidofovir and its cyclic analogues displayed variation in growth inhibition of HPV18 

transformed HeLa cells and the HPV negative transformed C33A cells. However, the cyclic 

Cidofovir amidate analogue appeared to have degraded upon re-evaluation of its chemical 

structure, which invalidated these findings.  The third conclusion was that ProTide 

analogues of Adefovir and Tenofovir had a much greater inhibitory effect on cell growth in 

comparison to the parent compounds from which they were derived; however this effect 

did not appear specific to HPV positive cells.   
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5. Mechanism of Action of Cidofovir 

Several published studies have attempted to determine the mechanism of action of 

Cidofovir. The mechanism of action of this acyclic nucleoside phosphonate analogue is 

well documented with regards to CMV infection. Once inside its target cell Cidofovir is 

phosphorylated twice to its active triphosphate form, which structurally mimics 

deoxycytidine triphosphate (dCTP). After the incorporation of two consecutive Cidofovir 

diphosphate molecules by CMV DNA polymerase, chain elongation is inhibited and virus 

replication is arrested (Xiong et al., 1997). This mechanism is consistent with the finding 

that the specific anti-viral activities of acyclic nucleoside phosphonates are attributed to 

the higher affinity of the compounds towards viral polymerases rather than host 

polymerase (Kramata et al., 1996, De Clercq and Holy, 2005)and references therein). 

However, as HPV replication uses host cell DNA polymerase, the classical mechanism of 

action of Cidofovir is not likely to be relevant in HPV associated disease. If Cidofovir is 

incorporated into both human and viral DNA it will most likely result in chain termination 

and stalling of replication forks, which may result in a stress or DNA damage response. 

Various mechanisms of action for Cidofovir in HPV associated disease have been proposed 

and include; inhibition of E6 and E7 oncoproteins (Amine et al., 2009, Sirianni et al., 2005), 

re-accumulation of p53 and pRb (Snoeck et al., 2001a), induction of apoptosis (Snoeck et 

al., 2001a, Donne et al., 2007) and cell cycle arrest (Abdulkarim et al., 2002). Taking into 

account these findings and examining them alongside the biology of HPV pathogenesis, 

they would all appear to be linked; repression of E6 and E7 oncoproteins would lead to re-

accumulation of p53 and pRb and providing that the p53 and pRb signalling pathways are 

still functionally intact, would in turn lead to induction of apoptosis and/or cell cycle 

arrest.   

Radiation treatment alone can also induce a p53 dose dependant response both in vitro 

and in vivo (Fei and El-Deiry, 2003). Several studies (Abdulkarim et al., 2002, Sirianni et al., 

2005) have shown that Cidofovir can radiosensitize HPV positive cell lines and augment a 

p53 response when both treatments are combined. If correct, radiosensitisation might aid 

clinical management of HPV associated lesions.  
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This chapter describes the results of experiments that were designed to determine the 

mechanism of action of Cidofovir and to investigate the molecular effects of combining 

Cidofovir treatment with radiation, a known inducer of a p53 response, in NHIST cell lines. 

To examine the mechanism of action of the compound M08, A09 and HEK cells were 

cultured in their respective IC50 concentrations of Cidofovir (5 μM for M08, 21 μM for A09 

and 6 μM for HEKs) for 6 days. At the same time M08, A09 and HEK cells were also 

cultured in Cidofovir free media. At -24 hours (1 day before treatment) both sets of cells 

were plated into 6 cm tissue culture dishes and allowed to adhere for 24 hours. At 0 

hours, the cells that had been cultured in Cidofovir free media were treated with their 

IC50 concentration of Cidofovir, 2 Gy gamma radiation or 20 Gy gamma radiation. The 

cells that were previously cultured in Cidofovir spiked media were subjected to 2 Gy 

radiation. Two Gray radiation was used as it constitutes a clinically relevant dose 

(Abdulkarim et al., 2002). As the main hypothesis of the mechanism of action studies was 

that Cidofovir could reactivate a p53 response in HPV positive cell lines, 20 Gy radiation 

was used as a positive control as such a dose has been found to induce p53 accumulation 

in a variety of cell lines and other experimental models (Cmielova et al., 2012, Sun et al., 

2005, Guo et al., 2013). The reason for pre-treating cells for 6 days with Cidofovir was to 

allow for ample accumulation of the compound in the cells, and in theory incorporation 

into the cellular DNA, before treatment with radiation. Additionally, a portion of cells 

cultured in the absence of Cidofovir were kept in culture to serve as negative untreated 

control cells for each cell type. These dosing conditions are outlined in Figure 5.1. 

After 12, 36 and 72 hours of treatment all cells had protein and RNA extracted. These time 

points were used as significant differences in cell number were not generally observed 

until four days post Cidofovir treatment. Therefore, the molecular processes leading to 

the growth inhibitory effect would have occurred prior to day four.   
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Figure 5.1. Cell Culture and Treatment Regimen for M08, A09 and HEK Cells for 

Mechanism of Action of Cidofovir Studies 

M08, A09 and HEK cells were cultured in their respective IC50 concentrations of Cidofovir (5 

μM for M08, 21 μM for A09 and 6 μM for HEKs) for 6 days. Additionally, M08, A09 and HEK 

cells were concurrently cultured in Cidofovir free media. At -24 hours (1 day before treatment) 

both sets of cells were plated into 6 cm tissue culture dishes and allowed to adhere for 24 

hours. At 0 hours, the cells that had been cultured in Cidofovir free media were treated with 

their IC50 concentration of Cidofovir, 2 Gy gamma radiation or 20 Gy gamma radiation. 

Additionally, a portion of cells cultured in the absence of Cidofovir were kept in culture to 

serve as negative untreated control cells for each cell type. The cells that were previously 

cultured in Cidofovir spiked media were subjected to 2 Gy radiation. Cells in all treatment 

conditions had protein and RNA extracted 12, 36 and 72 hours post treatment. 
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5.1. Cidofovir Induction of Apoptosis and Effect of Combining 
Treatment with Radiation  

Hypothesis 

i. Cidofovir inhibits growth of NHIST cell lines by induction of apoptosis  
ii. Cidofovir can be used as a radiosensitizer and augment an apoptotic response in 

NHIST cell lines 

The dose response observed in Cidofovir treated NHIST cell lines (results section 4.1) was 

examined in order to further clarify the mechanism of action of the compound in these 

cell models. After IC50 values were determined in M08 and A09 cell lines, the possibility 

that Cidofovir produced an inhibitory effect by causing apoptosis was investigated. Twenty 

Gray gamma radiation was used as a positive control (Petit-Frere et al., 2000) and the 

combined effects of Cidofovir and 2 Gy gamma radiation were also assessed as 2 Gy 

equates to a clinically relevant dose (Abdulkarim et al., 2002). A caspase-3 activity assay 

kit, which used a fluorogenic substrate (Ac-DEVD-AMC) for activated caspase-3 enzyme 

was used to quantify apoptotic cells in all sets of conditions for each cell type at the three 

time points. Positive and negative assay controls were used, which included AMC and 

water respectively. After the caspase-3 activity assay, cleaved caspase-3 protein levels 

were also measured by Western blotting and densitometry. 

5.1.1. Cleaved Caspase-3 Activity 

The results of the caspase-3 activity assay, measured by relative florescence units (RFU), 

for M08, A09 and HEK cells are outlined in Figure 5.2. 
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Treatment Condition 

p-value for change in cleaved caspase-3 activity between untreated 
control cells and each treatment condition at 12, 36 and 72 hours post 
treatment for M08 cells 

12 hours 36 hours 72 hours 

Cidofovir 0.0141 0.1013 0.0149 

Cidofovir + 2 Gy XRT 0.0001 0.0165 0.0002 

2 Gy XRT 0.0004 0.2533 0.7638 

20 Gy XRT 0.0001 0.0286 0.1484 
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Treatment Condition 

p-value for change in cleaved caspase-3 activity between untreated 
control cells and each treatment condition at 12, 36 and 72 hours post 
treatment for A09 cells 

12 hours 36 hours 72 hours 

Cidofovir 0.0513 0.4754 0.0001 

Cidofovir + 2 Gy XRT 0.462 0.5008 0.0001 

2 Gy XRT 0.0231 0.0005 0.6834 

20 Gy XRT 0.0512 0.0001 0.9532 
 
 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

12hours 36hours 72hours

R
at

io
 o

f 
cl

e
av

e
d

 c
as

p
as

e
-3

  
ac

ti
vi

ty
 t

o
 u

n
tr

e
at

e
d

 c
o

n
tr

o
l 

Time Post Treatment 

A09 Cells Negative Control

Cidofovir

Cidofovir & 2 Gy XRT

2 Gy XRT

20 Gy XRT

B. (ii)  

B. (i) 



185 
 

 
 
 
 
Treatment Condition 

p-value for change in cleaved caspase-3 activity between untreated 
control cells and each treatment condition at 12, 36 and 72 hours post 
treatment for HEK cells 

12 hours 36 hours 72 hours 

Cidofovir 0.0002 0.0298 0.9601 

Cidofovir + 2 Gy XRT 0.0022 0.0001 0.0006 

2 Gy XRT 0.0044 0.3299 0.0124 

20 Gy XRT 0.0868 0.8016 0.6416 

Figure 5.2. Cleaved Caspase-3 Activity in M08, A09 and HEK cells 12, 36 and 72 hours 

post treatment with Cidofovir, Cidofovir combined with 2 Gy, 2 Gy and 20 Gy radiation 

A. (i), B. (i) and C. (i) represent cleaved caspase-3 activity plots for each treatment condition 

normalised to that of the untreated control samples for M08, A09 and HEK cells respectively.  

Cleaved caspase-3 activity was measured by RFU with excitation at 380 nm and emission at 

470 nm using a cleaved caspase-3 activity kit (Cell Signalling, Massachusetts, USA). Each 

treatment condition was measured in duplicate intraexperimental repeats in 2 independent 

experiments. XRT = radiotherapy. Error bars represent SEM of 4 repeat values. The tables in 

A. (ii), B. (ii) and C. (ii) show p-values for each corresponding cleaved caspase-3 activity plot 

for M08, A09 and HEK cells respectively. p-values were calculated for differences in cleaved 

caspase-3 activity between the untreated control samples and each treatment condition for 

each time point in the three cell lines using an unpaired two-tailed Student’s t-test with 95% 

confidence intervals (GraphPad QuickCalcs software, GraphPad Software, Inc., California, 

USA). n = 4 for each condition. p-value < 0.05 (red text) = the difference in cleaved caspase-

3 activity is statistically significance. p-value > 0.05 (green text) = the difference in cleaved 

caspase-3 activity is not statistically significant. 
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The M08 data set indicated a significant reduction in caspase-3 activity in all conditions 

compared with the untreated cells 12 hours post treatment. A similar trend was observed 

at 36 and 72 hours post treatment with a slight increase in caspase-3 activity at these time 

points in 2 Gy treated M08 cells; however, this increase was not significantly different to 

the untreated control samples at these time points.   

In contrast to the M08 line, the A09 line did show increased caspase-3 activity compared 

with the negative control at 12 and 36 hours in the 2 and 20 Gy treated cells. However, 

the response was diminished by 72 hours. No change in caspase-3 activity was observed 

for Cidofovir and Cidofovir combined with 2 Gy treated cells at 12 and 36 hours post 

treatment; however, caspase-3 activity was significantly reduced 72 hours post treatment 

with these particular conditions.  

Induction of caspase-3 activity was greatest in the HEKs, particularly in the combined 

treatment samples at each time point. At 12 hours, with the exception of the 20 Gy 

treated cells, all treatment conditions had significantly increased levels of caspase-3 

activity compared to the untreated cells, however, this response diminished thereafter 

(except in the combined treatment cells).  

In terms of the actual cleaved caspase-3 activity assay, positive control AMC (supplied 

with the kit) was highly fluorescent, which indicated that the reagents used for the assay 

were all working correctly. 

5.1.2. Western Blotting for Total Cleaved Caspase-3 

Cleaved caspase-3 Western blot images and corresponding densitometry plots using the 

same cell lysates that were used in the caspase-3 activity assay are outlined for the M08 

and A09 cell lines in Figure 5.3. As HEK viable cell number decreased considerably after 

radiotherapy there was not sufficient protein concentrations to carry out Western blotting 

on this material. 
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               M08 12 hours          M08 36 hours               M08 72 hours 
               A       B      C       D      E         A      B      C      D      E       A      B       C      D      E 

                 

                      
 
             A09 12 hours         A09 36 hours                        A09 72 hours 
              A       B      C      D     E           A      B      C      D      E          A      B      C      D     E    

                 

                           
    Key: Lane A = Unteated Control; Lane B = IC50 Cidofovir;  

Lane C = IC50 Cidofovir + 2 Gy XRT; Lane D = 2 Gy XRT; Lane E = 20 Gy XRT 
 

 

Figure 5.3. Cleaved Caspase-3 Western blot results for M08 and A09 Cells 12, 36 and 

72 hours post Treatment with Cidofovir, Cidofovir combined with 2 Gy, 2 Gy and 20 Gy 

radiation  

(A) Cleaved caspase-3 and corresponding β-actin Western blot images 12, 36 and 72 hours 

post treatment. Cleaved caspase-3 was imaged using a 30 minute exposure time. β-Actin 

was imaged using a 1 minute exposure time on the same membrane. The cleaved caspase-3 

protein band was confirmed to be 17/19 kDa in size and the β-Actin protein band was 

confirmed to be 45 kDa in size using a MagicMark™ XP Western Protein Standard. The 

MagicMark™ XP Western protein standard and specificity of both antibodies can be seen in 

appendix 8. (B) Densitometry plots for cleaved caspase-3 band intensity for (i) M08 cells and 

(ii) A09 cells corresponding to Western blot membrane images in (A). Cleaved caspase-3 

band intensity was first normalized to the corresponding intensity for β-Actin, before further 

normalization to the untreated control band for each time point. It was not possible to repeat 

this experiment due to insufficient protein concentrations; therefore n = 1. 
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A similar pattern observed in the caspase-3 activity assay was found in  the cleaved 

caspase-3 Western blot results for the M08 cell line. In the A09 cell line an increase in 

cleaved caspase-3 levels was observed in the Western blot data for all treatment 

conditions at 12 hours; and in the Cidofovir and Cidofovir combined with 2 Gy radiation 

treatment conditions at 36 hours. Western blotting for cleaved caspase-3 was carried out 

in one single experiment due to insufficient protein concentrations. As the cleaved 

caspase-3 activity assay was carried out with 2 intra-experimental repeats on two 

separate occasions the results produced from the cleaved caspase-3 activity assay are 

more reliable in comparison to the cleaved caspase-3 Western blot data.  

 

5.2.  Transcription of Apoptotic Response Pathway Genes 
post Cidofovir Treatment  

Hypothesis 

Cidofovir inhibits growth of NHIST cell lines by induction of apoptosis 

In addition to examining apoptosis at a protein level RT-qPCR arrays were used to examine 

transcription of apoptosis related genes in response to Cidofovir treatment. M08 and HEK 

cells were treated with 10 μM Cidofovir and 0.1 μM ADF Pro cf3475. HEKs were used as a 

HPV negative untransformed control line and ADF Pro cf3475 was examined due to its 

striking inhibitory effect (section 4.3). RNA was extracted from all samples 12 and 36 

hours post Cidofovir treatment, reverse transcribed, and cDNA was evaluated in apoptosis 

pathway specific RT-qPCR arrays. Genes that were greater than 2 fold up/down-regulated 

in the initial arrays at both time points were further examined in gene specific individual 

RT-qPCR assays. 

5.2.1. RT-qPCR Apoptosis Arrays 

5.2.1.1. M08 Cell Line 

The data described below shows that in the M08 line, 0.1 μM ADF Pro cf3475 had less 

effect on expression of apoptosis pathway specific genes compared to 10 μM Cidofovir. 
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5.2.1.1.1. Clustergrams for RT-qPCR Apoptosis Arrays 

Figure 5.4 shows clustergrams representing co-regulated genes 12 and 36 hours post 

Cidofovir and ADF Pro cf3475 treatment in addition to the untreated control cells for the 

M08 cell line. The clustergrams display non-supervised hierarchical clustering of the entire 

RT-qPCR array dataset in the form of a heat map with dendrograms indicating co-

regulated genes across the individually treated samples.  
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Figure 5.4. Clustergrams for M08 Cell Gene Expression post Cidofovir and ADF Pro 

cf3475 Treatment 

(A) Clustergram for M08 cells 12 hours post 10 µM Cidofovir and 0.1 µM ADF Pro cf3475 

treatment; (B) Clustergram for M08 cells 36 hours post 10 µM Cidofovir and 0.1 µM ADF Pro 

cf3475 treatment. The clustergrams were constructed using the SA Bioscience Web-Based 

RT² Profiler™ PCR Array Data Analysis (Qiagen, Hilden, Germany). Colour coded values are 

displayed on the y-axis of the clustergrams based on magnitude of gene expression. The 

green colour at the extreme left of the colour scale correlates to the minimal value, whereas, 

the red colour at the extreme right of the scale correlates to the maximum value. The black 

colour in the middle of the colour scale represents the average magnitude of expression 

value for a particular gene. In the following clustergrams the software assigned the colours 

according to the normalized gene expression values across all samples including the 

negative controls. It then clustered samples that had similar values and created the colour 

range based on these numbers. At both time points ADF Pro cf3475 and untreated samples 

were clustered together according to similarities and co-regulation of the genes examined in 

the qPCR apoptosis arrays.  
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From the 12 hour clustergram (Figure 5.4 (A)) it can be seen that magnitude of gene 

expression for the majority of genes in the Cidofovir treated cells was the opposite of the 

untreated sample. Treatment with ADF Pro cf3475 produced magnitude of gene 

expression values similar to those of the untreated control cells or average magnitude of 

expression values between the untreated control cells and Cidofovir treated cells. For the 

Cidofovir treated cells, the SA Bioscience software clustered several genes involved in 

induction of apoptosis together as being minimally expressed compared to the other two 

samples, for example; TNFRSF10B TNFRSF1A, DFFA, CASP8, CIDEB, DIABLO and FAS, 

however, NAIP, an anti-apoptosis gene was also grouped within this cluster. On the 

contrary however, other inducers of apoptosis were clustered as being maximally 

expressed compared with the other samples, for instance; BNIP3, CIDEA, TNFRSF25, BIK, 

CYCS and TNFRSF25. However, anti-apoptosis genes such as IGF1R and NFKB1 were also 

grouped with these genes.  

The 36 hour clustergram also shows contrasting magnitudes of gene expression for nearly 

all genes treated with Cidofovir when compared to the untreated control. Magnitude of 

gene expression in the ADF Pro cf3475 was again similar to that of the untreated cells, but 

not as much as it was at 12 hours. In the Cidofovir treated cells the software clustered 

several minimally expressed anti-apoptosis/negative regulators of apoptosis together, for 

example; MCL1, BCL2L2, BIRC2 and FAS. However, it also clustered several 

inducers/regulators of apoptosis together as being minimally expressed in comparison to 

the average value across all the samples analysed, for example; BNIP3L, CASP14, TNFRSF9, 

CASP9, TNFSF10, CASP10 and CASP4. In contrast again, it clustered other inducers and 

regulators of apoptosis together as having maximum magnitudes of expression in 

comparison to the other samples, these include; BAX, CASP3, TNFRSF10A, FADD, CASP7, 

ABL1 and TNFRSF25, as well as; AIFM1, LTA, CASP6, TP73, FASL6 and TNFRSF11B, and 

finally; CRADD, BAK1 and CYCS.  

For the remainder of this chapter gene expression is discussed in terms of fold regulation. 

RQ, expressed as fold change, quantifies differences in the expression level of a specific 

target gene between different samples. Fold change values are derived from the ΔΔCt 

equation, where change in gene expression is measured between the untreated and 
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treated cells for a particular time point. Fold regulation values, on the other hand, are 

those which are used to present the data in a biologically meaningful way. If a fold change 

value of less than 1, indicating down-regulation, was plotted on a linear scale its size 

would be disproportional to a fold change value of greater than 1, representing-up 

regulation. To make fold change values less than 1 easier to interpret on a linear scale 

they are converted to their negative inverse value to make down-regulation more 

comparable to up-regulation. Therefore, when the fold change value is less than 1 its 

negative inverse value is the fold regulation value. When the fold change value is one or 

more the fold regulation value is the same as the fold change value. For the remainder of 

this section fold regulation values are shown for genes with greater than or equal to 2 fold 

up/down-regulation for a particular time point. 

5.2.1.1.2. RT-qPCR Apoptosis Array Data for M08 Cells 

Genes showing greater than 2 fold up- or down-regulation in M08 cells treated with both 

compounds are listed in Table 5.1. As seen in the clustergrams, there were minimal 

changes in expression of apoptosis pathway specific genes in the M08 cells treated with 

0.1 μM ADF Pro cf3475 after 12 and 36 hours. The only gene with a dependable 

differential regulation value was BCL2 at 36 hours post ADF Pro cf3475 treatment.  On the 

other hand, 18 out of 84 apoptosis-related genes were differentially expressed following 

Cidofovir treatment in the M08 cell line after treatment periods of 12 and 32 hours.  

Seven genes were greater than 2 fold differentially expressed at both time points, these 

include: BCL2A1, BCL2L10, BIRC3, HRK, TP53, TNFSF8 and TNFSF10.  TNFSF10 was 2 fold 

up-regulated at 12 hours and 2 fold down-regulated at 32 hours. There was a greater 

change in expression in the 36 hour Cidofovir treated sample, with HRK decreasing from -

3.4 at 12 hours to -5.8 at 36 hours and BIRC3 decreasing from -2.4 at 12 hours to -9 at 36 

hours.  

To demonstrate the raw RT-qPCR apoptosis array data, Figure 5.5 shows amplification and 

dissociation plots for BCL2A1, BIRC3, HRK and 5 housekeeping genes (HKGs): ACTB, RPLPO, 

GAPDH, B2M and HPRT1. 
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Table 5.1. Fold Regulation Values and Protein Function of Differentially Expressed 

Genes post Cidofovir and ADF Pro cf3475 Treatment of M08 Cells as determined by 

RT-qPCR Apoptosis Arrays 

Gene 
10 µM Cidofovir 0.1 µM ADF Pro cf3475 Gene product function in 

apoptosis 12 hours 36 hours 12 hours 36 hours 

BCL2    2.3122† Inhibits apoptosis (NCBI, October 2013) 

BCL2A1 3.1325 2.459   
Inhibits apoptosis (NCBI, September 
2013c) 

CD70 3.1536†    
T cell activation and regulation (NCBI, 
September 2013f) 

FASLG 2.2574‡    
Positive regulator of apoptosis (NCBI, 
September 2013b) 

IL10 2.2508‡    
Immune-regulation and inflammation 
(NCBI, September 2013j) 

TNF 2.9045‡    
Positive regulator of apoptosis (NCBI, 
September 2013o) 

TNFSF8 2.2241‡ 2.1338‡   
Can induce apoptosis or promote cell 
proliferation  (NCBI, September 2013e) 

TNFRSF11B  2.0743‡   
DEATH domain protein (NCBI, 
September 2013n) 

TNFRSF21  2.0072   
DEATH domain protein (NCBI, 
September 2013u) 

TNFSF10 2.324 -1.9819   
Induces apoptosis in transformed and 
tumour cells (NCBI, September 2013r) 

BCL2L10 -2.1616 -2.4394   
Inhibits apoptosis (NCBI, September 
2013s) 

BIRC3 -2.3679 -9.1225   
Inhibits apoptosis (NCBI, September 
2013a) 

BNIP3L  -2.0484   Inhibits apoptosis (GeneCards®, 2013) 

CASP14  
-
11.9187 

  
Functions in terminal keratinocyte 
differentiation (NCBI, September 2013t) 

CIDEA 
 

-
2.0568‡ 

-2.1785‡ 2.5459‡ 
Induces apoptosis (NCBI, September 
2013h) 

HRK -3.385† -5.7533   
Induces apoptosis (NCBI, September 
2013q) 

NAIP -2.3798    
Inhibits apoptosis (NCBI, September 
2013m) 

TNFRSF9  
-
2.0789‡ 

  
TNF-receptor involved in inflammation 
and immunity (NCBI, September 2013k) 

TP53 -3.0134 -1.9951   

Tumour suppressor protein.  Responds 
to diverse cellular stresses to regulate 
expression of target genes, thereby 
inducing cell cycle arrest, apoptosis, 
senescence, DNA repair, or changes in 
metabolism(NCBI, September 2013p) 
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Fold regulation values greater than 2 and less than -2 obtained in the RT-qPCR apoptosis 

arrays 12 and 36 hours post 10 µM Cidofovir and 0.1 µM ADF Pro cf3475 treatment of M08 

cells are shown. Fold regulation values were calculated using the ∆∆Ct method and fold 

change values less than 1.00 were converted into their negative inverse value. Red and blue 

texts highlight up- and down-regulation respectively. 

† The average threshold cycle for this gene was greater than 30 in either the treated or un-

treated sample and less than 30 in the opposite sample. Therefore, the gene’s expression is 

low in one sample and reasonably detected in the other suggesting that the true fold-change 

value is at least as large as the calculated value shown.                      

 ‡ The average threshold cycle for this gene is high (> 30) in both treated and untreated 

samples indicating low expression values in both; this result should be treated with caution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



197 
 

 

 

(A) 96 Well Apoptosis Array  
    12 hour Amplification Plot 
    Untreated M08 Cells 

(B) 96 Well Apoptosis Array  
    12 hour Amplification Plot 
    Cidofovir Treated M08 Cells 
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(C) BCL2A1, BIRC3, HRK + HKGs  
    12 hour Dissociation Curve 
    Untreated M08 Cells 

(D) BCL2A1, BIRC3, HRK + HKGs  
    12 hour Dissociation Curve 
    Cidofovir Treated M08 Cells 
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(E) BCL2A1, BIRC3, HRK + HKGs  
    12 hour Amplification Plot 
    Untreated M08 Cells 

(F) BCL2A1, BIRC3, HRK + HKGs  
    12 hour Amplification Plot 
    Cidofovir Treated M08 Cells 



200 
 

 

 

(H) BCL2A1, BIRC3, HRK + HKGs  
    36 hour Amplification Plot 
    Cidofovir Treated M08 Cells 

(G) BCL2A1, BIRC3, HRK + HKGs  
    36 hour Amplification Plot 
    Untreated M08 Cells 
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 Gene 

12 hours 36 hours 

Untreated Cidofovir  
∆ Ct 

Untreated Cidofovir   
∆ Ct Ct ºC Ct ºC Ct ºC Ct ºC 

BCL2A1 28.70465 77.6 27.20609 77.6 1.498561 29.95613 78 28.81591 77.7 1.140213 

BIRC3 22.98962 80.5 24.38197 80.5 1.39235 21.46826 80.6 24.81556 80.6 3.3473 

HRK 28.33725 84.1 30.24514 84 1.90789 25.56737 84.1 28.24962 84.1 2.68225 

ACTB 14.95406 85.3 14.8158 85.3 0.138264 16.88945 85.4 15.60069 85.4 1.288755 

B2M 19.83284 78.9 19.66863 78.9 0.164211 19.31163 78.7 19.61475 79 0.30313 

GAPDH 16.75957 85.3 17.32988 85.3 0.57031 16.97291 85.4 16.99103 85.4 0.01812 

HPRT1 23.70975 77.4 23.63129 77.4 0.078457 23.95013 77.3 23.60013 77.3 0.350001 

RPLP0 16.60157 81.2 16.86894 81.2 0.26737 15.92733 81.3 16.58755 81.3 0.66022 

 

Figure 5.5. RT-qPCR Apoptosis Array Amplification and Dissociation Plots for 

BCL2A1, BIRC3, HRK and Housekeeping Genes (ACTB, RPLPO, GAPDH, B2M and 

HPRT1) 

BCL2A1, BIRC3 and HRK exemplify differentially expressed genes in the RT-qPCR 

apoptosis array data 12 and 36 hours post Cidofovir treatment of M08 cells. The primary 

array data was analysed using SDS Software version 2.3 (SA Bioscience, Qiagen, Hilden, 

Germany). For amplification analysis and to obtain Ct (crossing threshold) values for all gene 

products the baseline parameter was set to automatic and the threshold value was manually 

set to 0.2. Amplification plots are presented on logarithmic scales. (A) and (B) show 96 well 

array amplification plots for 12 hour untreated and Cidofovir treated M08 cells respectively. 

(C) and (D) show derivative melting point disassociation curves for  BCL2A1, BIRC3, HRK 

and the 5 Housekeeping genes (HKGs) (ACTB, RPLPO, GAPDH, B2M and HPRT1) in the 

12 hour untreated and Cidofovir treated M08 samples respectively. The disassociation curves 

indicated no unspecific amplification. (E) and (F) show amplification plots for BCL2A1, 

BIRC3, HRK and the 5 HKGs for untreated and Cidofovir treated M08 cells after 12 hours 

respectively. (G) and (H) show amplification plots for BCL2A1, BIRC3, HRK and the 5 HKGs 

for untreated and Cidofovir treated M08 cells after 36 hours respectively. The table in (I) 

summarises the Ct values and melting temperatures (TM) (°C) for BCL2A1, BIRC3, HRK and 

the 5 HKGs in untreated and Cidofovir treated M08 cells after 12 and 36 hours. The table 

also shows change in Ct (∆Ct) between the untreated and Cidofovir treated samples at both 

time points. Due to the expense of the RT-qPCR apoptosis arrays and financial limitations 

each sample was assayed once only. Genes that were differentially expressed at both time 

points in the RT-qPCR arrays were examined further in repeat individual RT-qPCR assays.  

 

 

 

 

(I)  
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5.2.1.2. HEK Cell Line 

Unlike the M08 cells, HEKs displayed minimal changes in expression of apoptotic response 

pathway genes after treatment with Cidofovir at both 12 and 36 hours. However, similar 

to the M08 cell line there was also minimal changes in expression of apoptosis response 

pathway genes in HEKs treated with 0.1 μM ADF Pro cf3475 at 12 and 36 hours. These 

data can be seen in Table 5.2. BCL2A1, CD27, HRK and LTA all had relatively high Ct values 

in both treated (Cidofovir and/or ADF Pro cf3475) and untreated HEKs. Consequently, the 

only gene that displayed a reliable fold regulation value in HEKs was DAPK1, which was 2 

fold up-regulated at 36 hours with both treatments. 

 

Table 5.2. Fold Regulation Values and Protein Function of Differentially Expressed 

Genes post Cidofovir and ADF Pro cf3475 Treatment in HEK Cells as determined by 

RT-qPCR Apoptosis Arrays 

Gene 
10 μM Cidofovir 

0.1 μM ADF Pro 
cf3475 Gene product function in apoptosis 

12 hours 36 hours 12 hours 36 hours 

BCL2A1 -2.8932‡  -2.7719‡  
Inhibits apoptosis (NCBI, September 
2013c) 

CD27 2.1832‡  2.3335‡  
Induces apoptosis (NCBI, September 
2013d) 

DAPK1  2.1058  2.7517 
Induces apoptosis (NCBI, September 
2013i) 

HRK    2.5532‡ 
Induces apoptosis (NCBI, September 
2013q) 

LTA  2.3404‡   
Induces apoptosis (NCBI, September 
2013l) 

Fold regulation values greater than 2 and less than -2 obtained in the RT-qPCR apoptosis 

arrays 12 and 36 hours post 10 µM Cidofovir and 0.1 µM ADF Pro cf3475 treatment of HEK 

cells are shown. Fold regulation values were calculated using the ∆∆Ct method and fold 

change values less than 1.00 were converted into their negative inverse value. Red and blue 

texts highlight up- and down-regulation respectively. 

‡ The average threshold cycle for this gene is high (> 30) in both treated and untreated 

samples indicating low expression values in both; this result should be treated with caution 

. 
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5.2.2. Individual RT-qPCR Assays 

From the RT-qPCR apoptosis array results, the genes that were differentially expressed 12 

and 36 hours post Cidofovir treatment of M08 cells were validated in triplicate in separate 

individual RT-qPCR assays. These genes were BCL2A1, BCL2L10, BIRC3, HRK and TP53. 

CDKN1A (NCBI, September 2013g) was also examined in an individual RT-qPCR assay as it 

is a direct transcriptional target of p53 protein.  

Although differentially expressed at both time points, TNFSF8 was not assayed further as 

it displayed high Ct values in both the untreated and treated samples at both times points. 

TNFSF10 was also not examined further as it was up-regulated at 12 hours and down-

regulated at 36 hours. Fold regulation values for the genes examined in the individual RT-

qPCR assays are listed in Table 5.3, and displayed graphically in Figure 5.6. The individual 

RT-qPCR assay results showed the same trends as the RT-qPCR apoptosis arrays (with the 

exception of BCL2L10, which was not down-regulated at 12 hours but was at 36 hours). 

CDKN1A was slightly up-regulated at 12 hours but greater than 3 fold down-regulated at 

36 hours. BCL2A1 was up-regulated by 2 fold at both time points. BIRC3, HRK and TP53 

were down-regulated at both time points 

Table 5.3. Fold Regulation Values of Differentially Expressed Genes post Cidofovir 

Treatment of M08 Cells as determined by Individual RT-qPCR Assays 

Gene 12 hour fold regulation value 36 hour fold regulation value 

BCL2A1 2.246542 1.937273 

BCL2L10 1.282695 -8.47386 

BIRC3 -2.428559 -22.9953 

HRK † -10.33652 -18.155 

TP53 -4.293396 -3.55173 

CDKN1A 1.74351 -3.21667 

Fold regulation values from the individual RT-qPCR assays 12 and 36 hours post 10 µM 

Cidofovir treatment of M08 cells are shown. Fold regulation values were calculated using the 

∆∆Ct method and fold change values less than 1.00 were converted into their negative 

inverse value. Red and blue texts highlight up- and down-regulation respectively. 

† The average threshold cycle for HRK was greater than 30 in either the treated or un-treated 

sample and less than 30 in the opposite sample. Therefore, the gene’s expression is 

considerably low in one sample and reasonably detected in the other suggesting that the true 

fold-change value is at least as large as the calculated value shown. 
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Figure 5.6. Fold Regulation of Differentially Expressed BCL2A1, BCL2L10, BIRC3, HRK, 

TP53 and CDKN1A post Cidofovir Treatment of M08 Cells as determined by Individual 

RT-qPCR Assays  

The RT-qPCR apoptosis arrays found that BCL2A1, BCL2L10, BIRC3, HRK, and TP53 were 

differentially expressed at both time points in Cidofovir treated M08 cells. This result was 

validated with individual RT-qPCR assays using the same primer sets as those that were 

used in the RT-qPCR arrays. CDKN1A was also examined as it is a direct transcriptional 

target of p53 protein. Fold regulation values were calculated using the ∆∆Ct method and fold 

change values less than 1.00 were converted into their negative inverse value. Fold 

regulation is presented on a linear scale. Each gene was analysed in triplicate and error bars 

represent SEM for triplicate values. 

† The average threshold cycle for HRK was greater than 30 in either the treated or un-treated 

sample and less than 30 in the opposite sample. Therefore, the gene’s expression is 

considerably low in one sample and reasonably detected in the other suggesting that the true 

fold-change value is at least as large as the calculated value shown. The large error bar on 

HRK gene expression at 12 hours was because the Ct value of the treated sample was 

greater than 35 indicating considerably reduced expression.   
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5.3. Total and Phospho-p53 Re-Accumulation in Cidofovir and 
Radiation Treated NHIST Cell Lines  

Hypothesis 

i. Growth inhibition of Cidofovir treated NHIST cell lines is due to re-accumulation of 
total and phosphorylated-p53 

ii. Cidofovir treatment combined with radiation can augment a p53 protein response 
in NHIST cell lines 

As a decrease in TP53 transcription was observed in the RT-qPCR apoptosis arrays and 

individual RT-qPCR assays in the Cidofovir treated M08 cell line, but not in the Cidofovir 

treated HEK line, a selective effect on TP53 transcription in HPV positive cells lines was 

speculated. To examine if the decreased transcription of TP53 in response to treatment 

with Cidofovir had an effect at the protein level, and to examine the possible synergistic 

effect of combining Cidofovir treatment with a clinically relevant dose of radiation, levels 

of total and phosphorylated p53 and p21 protein were examined. M08 and A09 cell 

lysates from all treatment conditions outlined previously in Figure 5.1 were subjected to 

Western blotting and densitometric analysis for p53, phospho-p53 and p21 proteins. 

Phosphorylated p53 was evaluated to examine if any of the treatment conditions could 

activate p53, if change in total p53 levels were found. p21 was examined as it is a 

transcriptional target of phosphorylated p53. Due to low viable cell numbers post 

irradiation it was not possible to carry out Western blotting on irradiated HEK cells. Hence 

for this experiment, only untreated and Cidofovir treated HEKs were examined for p53, 

phospho-p53 and p21 proteins. 

5.3.1. NHIST Cell Lines 

Total p53, phospho-p53 and p21 Western blot images and densitometry plots for treated 

M08 and A09 cell lines are outlined in Figure 5.7.   
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              12 hours          36 hours                               72 hours 
   A       B       C       D       E         A       B       C       D       E          A        B       C       D       E   

     

     

     
    

 
                      12 hours                    36 hours                         72 hours 
                A      B      C       D      E          A        B       C       D        E           A       B        C       D       E 

            

              

                             

                                  
 
Key: Lane A = Unteated Control; Lane B = IC50 Cidofovir;  

Lane C = IC50 Cidofovir + 2 Gy XRT; Lane D = 2 Gy XRT; Lane E = 20 Gy XRT 
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(ii) A09 Cells 

A. Total p53, phospho-p53, p21 and β-Actin Western blot images  

B. Total p53 densitometry  

Total p53 

Phospho-p53 

P21 

Β-Actin 

Total p53 
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P21 
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C. Phospho-p53 densitometry  

(I) M08 Cells  

(ii) A09 Cells  
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Figure 5.7. Total p53, phospho-p53 and p21 Western blot Images and Densitometry 

Plots for M08 and A09 Cells Treated with Cidofovir, Cidofovir combined with 2 Gy, 2 Gy 

and 20 Gy Radiation over a 72 Hour Time Frame    

(A) Total p53, phospho-p53 and p21 Western blot images for (i) M08 and (ii) A09 cells 12, 36 

and 72 hours post teatment with the conditions outlined in Figure 5.1. Total p53 and p21 

blotting were carried out on a separate membrane to phospho-p53. All membranes were 

probed for β-Actin to normalize for sample loading differences. Total p53, p21 and β-Actin 

were imaged using a 1 minute exposure time. Phospho-p53 was  imaged using a 30 minute 

exposure time. The β-Actin bands shown in this figure correspond to the same membrane as 

total p53 and p21. β-Actin for phospho-p53 for the M08 and A09 samples can be seen in 

Figure 5.3. Total and phospho-p53 were confirmed to be 53 kDa, p21 was confirmed to be 21 

kDa and β-Actin was confirmed to be 45 kDa using a MagicMark™ XP Western Protein 

Standard. The MagicMark™ XP Western Protein Standard and specificity of all antibodies 

can be seen in appendix 8.1.The total and phospho-p53 doublets, observed in the M08 cell 

line, may be due to different phosphorylated isoforms of the protein. Due to the limitations of 

low protein concentrations n = 1 for all samples; however, trends in protein levels can be 

found through the three different time points examined for each cell line.  

(B) Densitomety plots for total p53 band intensities corresponding to the Western blot images 

for M08 and A09 cells in (A). (C) Densitomety plots for phospho-p53 band intensities 

corresponding to the Western blot images for M08 and A09 cells in (A). (D) Densitomety plots 

for p21 band intensities corresponding to the Western blot images for M08 and A09 cells in 

(A). All protein band intensities were first normalized to the corresponding intensity for β-Actin 

on the same nitrocellulose membrane, before further normalization to the untreated control 

band for each time point. 
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From these analyses, it appeared that Cidofovir on its own had no effect on the 

accumulation of total p53 in M08 cells. However, Cidofovir combined with 2 Gy radiation 

did produce a slight increase in total p53 at each time point. An increase in total p53 was 

also observed in the 20 Gy positive control cells at each time point. Cidofovir treatment of 

M08 cells had no effect on phospho-p53 levels. None of the treatment conditions 

produced a differential effect on the p21 protein levels observed in the M08 cell line. 

In comparison to the M08 cell line, a more prominent response in total and phospho-p53 

was observed in the A09 cell line. A large increase in these proteins was observed in both 

the combination treated sample and 20 Gy positive control. Phospho-p53 levels peaked at 

36 hours in the combined treatment sample. Similar to M08, no differences in p21 levels 

were observed in the A09 cell line at each time point. 

5.3.2. HEK Cell Line 

Total p53, phospho-p53 and p21 Western blot images and densitometry plots for HEKs 

treated with and without Cidofovir are outlined in Figure 5.8. This data indicated Cidofovir 

had minimal effect on accumilation of total p53, phospho-p53 and p21 protein levels in 

HEK cells.  
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Figure 5.8. Total p53, phospho-p53 and p21 Western blot Images and Densitometry 

Plots for Cidofovir Treated HEK Cells over a 72 Hour Time Frame             

 (A) Total p53, phospho-p53 and p21 Western blot images for HEK cells 12, 36 and 72 hours 

post Cidofovir teatment. p53 and p21 proteins were imaged using a 1 minute exposure time. 

Phospho-p53 was imaged using a 30 minute exposure time. β-Actin was imaged using a 1 

minute exposure time.  Β-Actin (a) corresponds to the same membrane as p53 and p21. β-

Actin (b) corresponds to the same membrane as phospho p53. Specifiicty of all antibodies 

used can be found in appendix 8. (B) Band intensities for (i) Total p53, (ii) Phospho-p53 and 

(iii) p21 in HEK cells post Cidofovir treatment. Intensities were first normalized to the 

corresponding intensity for β-Actin on the same nitrocellulose membrane, before further 

normalization to the untreated control band for each time point.                                         
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Key for Figure 5.8. (A): 
A = Untreated HEKs at 12 hours  
B = IC50 Cidofovir treated HEKs at 12 hours  
C = Untreated HEKs at 36 hours  
D = IC50 Cidofovir treated HEKs at 36 hours 
E = Untreated HEKs at 72 hours  
F = IC50 Cidofovir treated HEKs at 72 hours 
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A. Total p53, phospho-p53, p21 and β-Actin Western blot images 

B. Total p53, phospho-p53 and p21 densitometry  
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5.4.  E6, E7, TP53 and p21/CDKN1A Transcription Levels in 
Cidofovir and Cidofovir Combined with Radiation Treated NHIST 
Cell Lines  

Hypotheses 

i. The increases in total and phosphorylated-p53 levels in Cidofovir and Cidofovir 
combined with radiation treated NHIST cell lines are due to decreases in E6 expression 

ii. Increases in total and phosphorylated-p53 levels in Cidofovir and Cidofovir combined 
with radiation treated NHIST cell lines result in increased p21/CDKN1A transcription 

The p53 western blotting results showed that Cidofovir combined with radiation caused a 

re-accumulation of total and phosphorylated-p53, particularly in the A09 line. The 

molecular pathology of HPV associated cellular proliferation involves E6 and E7 

degradation of tumour suppressor proteins p53 and pRb. Therefore, the apparent 

increase in total and phosphorylated p53 may have been due to combination treatment 

causing a decrease in E6/E7 expression. mRNA from M08 and A09 cells treated with the 

same conditions as the Western blotting experiments (as described in Figure 5.1) was 

reverse transcribed and the resultant cDNA was subjected to RT-qPCR analysis to examine 

E6, E7, TP53 and CDKN1A transcription levels, which are outlined in Figure 5.9. Table 5.4 

lists p-values for change in E6, E7, TP53 and CDKN1A transcription levels between the 

untreated control samples and each treatment condition for M08 and A09 cells.  
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Figure 5.9. E6, E7, TP53 and CDKN1A Fold Regulation for M08 and A09 Cells 12 and 36 

Hours Post Treatment with Cidofovir, Cidofovir & 2 Gy, 2 Gy and 20 Gy radiation 

Fold regulation relative to untreated control samples (which equate to 0 on the X axes) for (A) 

E6, (B) E7, (C) TP53 and (D) CDKN1A for M08 and A09 cells treated with a variety of 

conditions as outlined in Figure 5.1. Each sample was analysed in triplicate for each gene 

and error bars represent SEM. Before conversion to E6 and E7 fold regulation, fold change 

was calculated using qBase+ software (Biogazelle, Gent, Belgium). Before conversion to 

TP53 and CDKN1A fold regulation, fold change was calculated manually using the ∆∆Ct 

equation.  

 
 
 
 
 
 
 
 

Table 5.4. p-values for Change in E6, E7, TP53 and CDKN1A Transcription between 

Untreated Control Samples and Cidofovir, Cidofovir & 2 Gy, 2 Gy and 20 Gy radiation 

Treatment Conditions for M08 and A09 Cells 

 Gene 
  

M08 12 hour p-value M08 36 hour p-value 

Cidofovir 
Cidofovir 
+ 2 Gy 2 Gy 20 Gy Cidofovir 

Cidofovir 
+ 2 Gy 2 Gy 20 Gy 

E6 0.0019 0.0022 0.1347 0.332 0.0108 0.0003 0.0001 0.0027 

E7 0.8744 0.5162 0.7952 0.0089 0.0283 0.0004 0.0001 0.0213 

TP53 0.0826 0.1152 0.0041 0.0044 0.0629 0.2946 0.6864 0.0095 

CDKN1A 0.0003 0.1356 0.2599 0.0346 0.0044 0.0001 0.0235 0.0001 

 Gene 
  

A09 12 hour p-value A09 36 hour p-value 

Cidofovir 
Cidofovir 
+ 2 Gy 2 Gy 20 Gy Cidofovir 

Cidofovir 
+ 2 Gy 2 Gy 20 Gy 

E6 0.9398 0.0003 0.1483 0.0504 0.5962 0.0007 0.1735 0.1497 

E7 0.3299 0.0144 0.0704 0.0982 0.2124 0.0002 0.3521 0.2555 

TP53 0.6037 0.0028 0.0343 0.0045 0.8366 0.1036 0.0368 0.0121 

CDKN1A 0.059 0.0001 0.5443 0.0189 0.3403 0.0001 0.0019 0.0003 
 

The table shows p-values for change in E6, E7, TP53 and CDKN1A transcription between 

the untreated control sample and each treatment conditions for M08 and A09 cells. p-values 

were calculated using an unpaired two-tailed Student’s t-test with 95% confidence intervals 

(GraphPad QuickCalcs software, GraphPad Software, Inc., California, USA). n = 3 for each 

condition. p-value < 0.05 (red text) = the difference in transcription levels is statistically 

significance. p-value > 0.05 (green text) = the difference in transcription levels is not 

statistically significant. 
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 As can be seen from Figure 5.9 (A) and Table 5.4, E6 was significantly down-regulated in 

Cidofovir and Cidofovir combined with 2 Gy radiation treated M08 cells 12 hours post 

treatment. E6 was significantly down-regulated in all treatment conditions 36 hours post 

treatment of M08 cells. A similar effect was observed in the A09 cell line; however, 

Cidofovir combined with 2 Gy radiation was the only treatment condition that produced 

significant down-regulation of E6 at both time points. 

Figure 5.9 (B) and Table 5.4 show differential expression of E7, which was minimal in the 

Cidofovir treated M08 cells at 12 hours, however, at 36 hours it was significantly 2 fold 

down-regulated. E7 was significantly down-regulated in all other treatment conditions in 

the M08 samples at 36 hours.  Similar to E6 transcription in A09 cells, E7 transcription was 

significantly down-regulated in the Cidofovir combined with 2 Gy radiation treated A09 

cells 12 and 36 hours post treatment. 

Figure 5.9 (C) and Table 5.4 show differential regulation of TP53 in the M08 and A09 cell 

lines 12 and 36 hours post treatment. Significant change in transcription was found in the 

20 Gy treated M08 cells 12 and 36 hour post treatment; and in A09 cells 12 hours post 

treatment with Cidofovir combined with 2 Gy radiation, 2 Gy radiation and 20 Gy radiation 

and 36 hours post treatment with 2 and 20 Gy radiation.  

CDKN1A was significantly down-regulated in M08 cells 12 hours post treatment with 

Cidofovir and 20 Gy radiation. CDKN1A in M08 cells treated with all conditions was 

significantly differentially transcribed 36 hours post treatment. CDKN1A was significantly 

up-regulated in A09 cells 12 hours post treatment with Cidofovir combined with 2 Gy 

radiation and 20 Gy radiation. CDKN1A was significantly up-regulated in Cidofovir 

combined with 2 Gy radiation, 2 Gy radiation and 20 Gy radiation treated A09 cells 36 

hours post treatment.  This can be seen in Figure 5.9 (D) and Table 5.4. 
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5.5.  RT3VIN RT-qPCR 

Hypothesis 

Differential expression of genes involved in apoptosis is evident in VIN tissue from patients 
undergoing topical Cidofovir treatment in the RT3VIN clinical trial 

The data derived from the RT-qPCR apoptosis arrays in cell lines suggested that Cidofovir 

produced a transcriptional response specific to HPV positive cells (Section 5.2). However, 

in vivo molecular processes can differ to those observed in cell culture. Therefore, the 

molecular effects of Cidofovir were examined in RNA samples from 10 VIN patients who 

had biopsies taken before treatment and six weeks into topical treatment with Cidofovir. 

The same genes that were examined in the individual RT-qPCR assays of the cell line 

studies were examined in the clinical material to compare the effects of treatment 

between in vitro and in vivo states. It was also important to examine the molecular effects 

of Cidofovir in the clinical samples, as when used topically, Cidofovir shows macroscopic 

specificity to VIN as opposed to healthy tissue (Tristram and Fiander, 2005). The RT3VIN 

RT-qPCR study was carried out blind in that only the baseline HPV status of the patients 

was known throughout the experimental and data analysis processes. After the data was 

analysed the HPV status of the patients during and after treatment was revealed. 

Sadie Jones of the HPV Research Group at Cardiff University carried out type specific PCR 

to determine the HPV16 status of the baseline, during treatment and post-treatment 

samples, the results of which are outlined in Table 5.5. The RT-qPCR results of TP53, 

CDKN1A, BCL2A1, BIRC3 and HRK transcription in patients treated topically with Cidofovir 

for six weeks are outlined in Figure 5.10. 

Table 5.5. HPV Status of VIN3 Patients Before, During and Post Cidofovir Treatment 

Case Number 
HPV16 Status 

Before Treatment During treatment After Treatment 

1 Negative Negative Negative 

2 Negative Negative Negative 

3 Negative Negative Positive 

4 Positive Negative Negative 

5 Positive Positive Negative 

6 Positive Positive Positive 

7 Positive Positive Positive 

8 Positive Positive Positive 

9 Positive Negative Positive 

10 Positive Negative Positive 
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Figure 5.10. Transcription of TP53, CDKN1A, BCL2A1, BIRC3 and HRK in VIN3 Patients 

Treated for 6 weeks with Topical Cidofovir  

Fold regulation of TP53, CDKN1A, BCL2A1, BIRC3 and HRK in VIN3 patients treated for six 

weeks with topical Cidofovir. Fold regulation was derived from Relative Quantification, which 

was calculated manually using the ΔΔCt equation. Change in transcription was measured 

between the baseline samples and the six week (during treatment) samples for the each 

patient. RT-qPCR reactions were carried out in triplicate for each sample and error bars 

represent SEM of triplicate values.  
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There was no consistent response to treatment with Cidofovir for any of the genes 

examined. Equally, there was no obvious correlation between HPV status and response to 

treatment. Expression of BCL2A1 and BIRC3 were highly up-regulated six weeks into 

treatment in the cases that cleared HPV by the end of the trial. Expression of BCL2A1 

increased nearly 20 fold in Case 4 and nearly 8 fold in Case 5. Expression of BIRC3 was up-

regulated 38 fold in Case 4 and nearly 6 fold in Case 5.  

Case 4 displayed the greatest fold change in BCL2A1 and BIRC3 transcription however, the 

Case 4 raw data showed a disproportional increase in Ct values for the two reference 

genes, GAPDH and HPRT, between the baseline and the six week/during treatment 

samples. Such a disproportional increase in reference gene Ct values was also seen in the 

Case 2 baseline sample.  For the eight other cases, the Ct values were typically more 

consistent over the course of the study. The differences between reference gene Ct values 

for all cases, along with repeat values for Case 4, are presented in Figure 5.11. The 

purpose of the reference genes was to normalise expression differences that may have 

occurred due to sample loading errors, variation in RNA concentration, differences in RNA 

integrity and varying RT efficiencies. If a lower amount of cDNA was used in these RT-qPCR 

reactions, or if a lower concentration of RNA was used in the initial reverse transcription 

reaction, there would be an expected proportional increase in Ct values for all genes so 

long as they have similar PCR efficiencies.  

When the raw Ct values for the five target genes were plotted in a similar manner (Figure 

5.12), TP53 and its target P21/CDKN1A followed a similar pattern to that of GAPDH and 

HPRT for Case 4, but BCL2A1 and BIRC3 did not. This suggests that in spite of potential 

underlying divergences in the normalization process for Case 4, there are genuine changes 

in transcription of these genes from baseline to the during treatment samples. 
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Figure 5.11. Difference in Ct Values between GAPDH and HPRT1 for each RT3VIN 

Sample Analysed 

Red bars illustrate the differences in Ct values between HPRT1 and GAPDH. HPRT1 had the 

higher Ct values; GAPDH had the lower Ct values. Ct values are the average of triplicate 

values for each sample. Case A denotes the baseline sample for each patient; Case B 

denotes the six week sample for each patient. Green arrows highlight Ct differences between 

housekeeping genes for Case 4.  

 

 

Figure 5.12. Raw Ct Values of TP53, P21, BCL2A1, BIRC3 and HRK for each RT3VIN 

Sample Analysed 

Ct values are the average of triplicate values for each sample. Case A denotes the baseline 

sample for each Case, Case B denotes the six week/during treatment sample for each Case. 
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TP53, P21, BCL2A1, BIRC3 and HRK expression in each of the patients before treatment is 

outlined in Figure 5.13. This analysis was carried out to determine differences, if any, in 

the baseline expression of these genes in the HPV positive and negative patients, as well 

as responders and non-responders. There appeared to be no difference in baseline 

expression of the target genes between HPV positive (Cases 1 – 3) and negative (Cases 4 – 

10) patients, or between responders (Cases 4 and 5) and non-responders (Cases 6 -10). 

Additionally, Case 3, which appeared to have gained HPV16 DNA by the end of the trial, 

did not show any difference in baseline gene transcription similar to either the HPV 

positive or negative Cases. 
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Figure 5.13. TP53, P21, BCL2A1, BIRC3 and HRK ∆Ct in HPV Positive and Negative 

RT3VIN Patients before Treatment 

∆Ct values of baseline samples indicative of baseline transcription for each patient.  A value 

of 0 indicates that the target gene is transcribed at the same level as the average of the 

housekeeping genes (GAPDH and HPRT1). 
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5.6. Discussion 

Cidofovir Induction of Apoptosis and Effect of Combining Treatment with 
Radiation in NHIST Cell Lines 

The caspase-3 data obtained for the A09 cell line was inconclusive.  The western blot data 

suggested a possible caspase-3 response in Cidofovir treated A09 cells and possible 

synergistic effect when Cidofovir treatment was combined with radiation at 12 and 36 

hours. However, this result was not observed in the caspase-3 activity assay.  

Minimal caspase-3 responses were observed in the M08 cell line for all treatment 

conditions, with the exception of 20 Gy at 72 hours observed in the Western blotting data 

only. This would suggest Cidofovir, used individually or combined with a clinically relevant 

dose of radiation, does not produce an apoptotic response through caspase-3 activity in 

the M08 cell line. These findings suggest that apoptotic response pathways are defective 

in both lines, with the M08 line showing a greater defect. 

In the untransformed HPV negative HEKs a sizable caspase-3 response was observed in the 

cells treated with Cidofovir and radiation together but not with either treatment 

individually; which suggests that this was a truly synergistic effect, rather than a merely 

additive one. Caspase activation in response to combined radiation and Cidofovir was not 

seen in the M08 and A09 cell line. This suggests that Cidofovir does not selectively 

radiosensitize HPV transformed cells to induce a caspase-3 response. This is important as 

it suggests that combining Cidofovir treatment with radiation in the clinic would produce a 

potently adverse effect on normal healthy tissue. The purpose of radiosensitizing 

compounds in cancer treatment is to selectively modify tumour cells and/or normal 

tissues so that therapeutic gain is achieved using conventional radiation (Coleman and 

Turrisi, 1990). These data oppose the results of (Abdulkarim et al., 2002), where they 

examined the radiosensitizing ability of Cidofovir using a clonogenic survival assay and 

found that exposure of HPV positive cells (Me180 and HEP2) to Cidofovir before 

irradiation was more efficient at inducing cell death than a relevant dose of radiation on 

its own. They concluded that this effect was more difficult to achieve in HPV negative 

C33A cells. As the C33A cell line was derived from a cervical carcinoma, the results 

presented in this study are more likely to represent a true clinical situation, as normal 



221 
 

untransformed HPV negative keratinocytes are genetically more comparable to healthy 

tissue. 

The caspase-3 assays were used as opposed to other markers of apoptosis, such as 

annexin v staining, as cell membrane damage could occur during detachment of the 

adherent cells,  which may interfere with the annexin v results, as this stain binds to 

phosphatidylserine on apoptosing cell membranes (Koopman et al., 1994). The caspase-3 

assays were used instead of TUNEL assays as activated caspase-3 is responsible for nuclear 

fragmentation (Zheng et al., 1998), which is what the TUNEL assay ultimately detects 

(Gavrieli et al., 1992).  

With regards to other studies, (Andrei et al., 2001), found that Cidofovir did induce 

caspase-3 activity in HPV33 transfected CK-1 cells using the ApoAlert CPP32/caspase-3 

assay (Clontech, Saint-Germain-en-Laye, France).  However, the cells they used for the 

assay were detached from the tissue culture surface prior to lysis, which may have altered 

the biochemical properties of the cells, possibly inducing caspase activity. Additionally, 

(Andrei et al., 2001), used higher concentrations of Cidofovir than used in the current 

study (20, 50 and 200 μg/mL, which equates to 64 μM, 159 μM and 635 μM respectively). 

They also found that the same concentrations of Cidofovir caused translocation of 

phosphatidylserine to the outer layer of the plasma membrane, disintegration of the 

nuclear matrix protein, DNA fragmentation and increased numbers of 

apoptotic cells following cell cycle analysis, all of which indicated that Cidofovir causes 

apoptosis in HPV 33 transfected CK-1s. However, these results were obtained 5 to 8 days 

post Cidofovir treatment, which was double the duration of treatment that was used in 

this study.  

A strength of the caspase-3 study was that cleaved caspase-3 was measured by two 

separate methods in the same material. Appropriate controls were used, those being AMC 

and water as positive and negative controls respectively for the caspase-3 activity assay, 

and a MagicMark™ XP Western Protein Standard for Western blotting. The MagicMark™ 

XP Western Protein Standard and caspase-3 antibody specificity can be seen in Appendix 

8.1. The 3 treatment options (IC50 Cidofovir, IC50 Cidofovir and 2 Gy and 2 Gy radiation 
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alone) made for a more comprehensive analysis of cellular caspase-3 response to various 

and combined treatment options. For the Western blots, the density of the individual 

bands was measured and normalized to those of a housekeeping gene in order to account 

for loading errors. Three cell lines were used; 2 HPV naturally immortalized and 1 

untransformed cell line, which served as both a HPV negative control but also as a cell line 

whose stress/DNA damage response pathways were functionally intact.  

A limitation of the study was the discordance between the caspase-3 activity assay and 

the cleaved caspase-3 Western blotting results, especially for the A09 cell line. Cleaved 

caspase-3 appeared to be higher in Cidofovir and Cidofovir plus 2 Gy irradiated cells at 12 

hours in the Western blotting data compared with the caspase-3 activity assay data, and 2 

Gy and 20 Gy treated cells appeared to be higher in the caspase-3 activity assay data 

compared to the Western blotting data at the same time point. The caspase-3 activity kit 

contains a fluorogenic substrate (N-Acetyl-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin or 

Ac-DEVD-AMC) for activated caspase-3 enzyme and during the assay the activated enzyme 

cleaves the substrate between DEVD and AMC, generating highly fluorescent AMC, 

whereby fluorescence is proportional to apoptosing cells. The cleaved caspase-3 Western 

blotting on the other hand detects endogenous levels of the large fragment (17/19 kDa) of 

cleaved caspase-3. Technically both assays measure activated caspase-3, although in 

different ways. The caspase-3 activity assay was carried out using replicates of 3-4; 

however, only one run of Western blotting for cleaved caspase-3 was carried out due to 

protein quantity limitations. Furthermore, the dynamic range of densitometric analyses 

may be limited by signal saturation. Hence of the two assays, measurement of caspase-3 

activity may give more reliable data.  

Future work from the caspase-3 study would involve repeating the Western blotting with 

more lysate from the M08 and A09 cell lines to confirm the result obtained in this study. 

Additionally, as Western blotting was not performed on the HEK cell lysates due to low 

protein concentrations, future work would also include carrying out cleaved caspase-3 

Western blotting on adequate lysates from this cell line. 
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Transcription of Apoptotic Response Pathway Genes post Cidofovir Treatment in 
NHIST Cell Lines 

The data presented in the transcription of apoptotic response pathway genes section 

showed that Cidofovir appeared to affect transcription of pro- and anti-apoptotic genes in 

the M08 cell line, but this effect was not seen in the HEK cells. This data is consistent with 

the caspase-3 results for the HEKs, where caspase-3 activity was minimally, if not at all, 

induced by Cidofovir treatment; however, this data is less consistent for the M08 cell line 

where Cidofovir treatment did not induce a caspase-3 response.  The results from this 

study also suggest that ADF Pro cf3475 did not cause transcription of apoptosis associated 

genes in both M08 and HEK cells when used at a concentration of 0.1 μM after 12 and 36 

hours. 

Clustergrams were used to display grouping of co-regulated genes and grouping of 

samples with similarly expressed genes. Clustergrams were constructed and displayed for 

the M08 line only as the genes in these cells showed greatest change in expression in 

response to treatment. Cidofovir treated M08 cells showed different profiles of gene 

expression when compared to those of the untreated as well as ADF Pro cf3475 treated 

cells.  

Individual RT-qPCR assays were performed to validate the results obtained for genes 

differentially expressed at both time points in the RT-qPCR arrays. In the repeat individual 

RT-qPCR assays BCL2A1 gene (BCL2-related protein A1) was 2 fold up-regulated in 

Cidofovir treated M08 cells at both time points. This gene is a direct transcriptional target 

of NF-kappa B in response to inflammatory mediators and is thought to have cell survival 

and cytoprotective functions. It can be up-regulated by different extracellular signals, such 

as CD40, inflammatory cytokine TNF and IL-1 among others. The protein encoded by 

BCL2A1 can reduce the release of pro-apoptotic cytochrome C from mitochondria and 

block caspase activation (NCBI, September 2013c). 

BCL2L10 (BCL2-like 10) was slightly more than 1 fold up-regulated at 12 hours but 

noticeably down-regulated at 36 hours after Cidofovir treatment in the M08 cell line in the 

RT-qPCR assay data. The protein encoded by this gene can interact with other members of 

BCL-2 protein family including BCL2, BCL2L1/BCL-X(L), and BAX. Similarly to BCL2A1, 
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BCL2L10 can inhibit apoptosis possibly through the prevention of cytochrome C release 

from the mitochondria and block caspase-3 activation (NCBI, September 2013s). 

BIRC3 was down-regulated at both time points in the initial qPCR arrays and individual 

qPCR assays in the Cidofovir treated M08 cells. BIRC3 is a member of the IAP family of 

proteins that inhibit apoptosis by binding to tumour necrosis factor receptor-associated 

factors TRAF1 and TRAF2 and protects cells from formation of the ripoptosome, a multi-

protein complex that can kill cancer cells in both a caspase-dependent and caspase-

independent manner by ubiquitination. BIRC3 also regulates inflammatory signalling and 

immunity. It modulates NF-kappa-B signalling through E3 ubiquitin-protein ligase activity. 

It regulates innate immune signalling via regulation of Toll-like receptors, NOD-like 

receptors and RIG-I like receptors. Additionally BIRC3 helps control mitogenic kinase 

signalling and cell proliferation, cell invasion and metastasis (NCBI, September 2013a). 

HRK was down-regulated at both time points after Cidofovir treatment in the M08 cell line 

in both the qPCR apoptosis array and individual qPCR assays. Similar to BCL2A1 and 

BCL2L10, this gene encodes a member of the BCL-2 protein family. The translated protein 

localizes to intracellular membranes and promotes apoptosis by interacting with the 

apoptotic inhibitors BCL-2 and BCL-X(L) (NCBI, September 2013q). 

TP53 was also down-regulated at both time points after treatment with Cidofovir in the 

M08 cell line, observed in both qPCR assays. TP53 encodes tumour suppressor protein 

p53. The protein contains transcriptional activation, DNA binding, and oligomerization 

domains and responds to a range of cellular stresses by modulating expression of target 

genes, ultimately inducing  apoptosis, cell cycle arrest, DNA repair or senescence (NCBI, 

September 2013p). 

CDKN1A/p21 was slightly up-regulated at 12 hours and down-regulated at 36 hours in the 

M08 cell line post treatment with Cidofovir, as determined by the individual qPCR assay. 

CDKN1A encodes a cyclin-dependent kinase inhibitor, p21, which binds to and inhibits the 

activity of cyclin-CDK2 or -CDK4 complexes, modulating cell cycle progression at the G1 

phase. Its expression is stringently controlled by p53 in response to a variety of stress 
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stimuli. p21 can interact with the DNA polymerase accessory factor, PCNA, and helps 

regulate S phase DNA damage repair and replication (NCBI, September 2013g). 

The results obtained for the Cidofovir treated M08 cell line showed no clear pro- or anti-

apoptotic trends. BCL2A1, an anti-apoptotic gene, appeared to be up-regulated at both 

time points, whereas two other anti-apoptotic genes, BCL2L10 and BIRC3, appeared to be 

down-regulated. HRK, a pro-apoptotic gene was also down-regulated. TP53 was down-

regulated at both time points, as was its transcriptional target, CDKN1A/p21, at 36 hours. 

Although down-regulation of CDKN1A/p21 may coincide with down-regulation of TP53 (if 

such a decrease in expression results in a decrease in p53 protein levels), the reason for a 

decrease in the expression of TP53 is difficult to explain in this model. Regulation of 

transcription of TP53 is not as well documented as regulation of p53 at a post translational 

level. One study found that p53 is able to induce its own transcription by binding to its 

promoter (Wang and El-Deiry, 2006). Another study found that exposure to genotoxic 

agents such as mitomycin and 5-fluorouracil also up-regulates TP53 expression (Sun et al., 

1995). The latter contrasts what was found in this study. The connection, if any, between 

the 6 genes appears to be complex in nature. These data do not suggest Cidofovir induces 

apoptosis at a transcriptional level, which can be linked to the results of the caspase-3 

study, where apoptosis was absent at a protein level. However, these results may indicate 

that a process other than apoptosis is occurring specifically in the HPV positive cell line. 

Further work, ideally entailing full microarray analysis is required to determine this 

transcriptional relationship. 

In relation to published literature, a study by (De Schutter et al., 2013), examined SiHa 

(HPV16 positive), HeLa (HPV18 positive) and HaCaT (HPV negative) transformed cell lines 

and primary human keratinocytes 24, 48 and 72 hours after treatment with 50 μg/mL (159 

μM) Cidofovir in whole genome gene expression microarrays. They also validated 

microarray data by separate individual RT-qPCR assays. In SiHa cells 2 genes were 

differentially expressed after 24 hours (DHRS2 and HIST1H2A, both down-regulated). At 

48 hours 27 genes were differentially expressed and at 72 hours 140 genes were 

differentially expressed, with the majority being up-regulated. Twenty genes showed 

similar changes in expression between 48 and 72 hours. Expression was also examined in 
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HeLa, HaCaT and normal keratinocytes at 72 hours. The majority of differentially 

expressed genes in HeLa, HaCaT and the normal keratinocyte were up-regulated and the 

number of genes that were differentially expressed was higher in HPV negative HaCaT 

cells than in the HPV positive cell lines. Only 2 genes (AOX1 and CLIC3) were differentially 

expressed (both up-regulated) in all 4 cell lines. Upon functional analysis of differential 

gene expression with Cidofovir treatment, they found ‘immune response’ and 

‘inflammatory response’ to be the only functional groupings up-regulated in the four 

different cell types. With further functional analysis, the authors found that HPV positive 

cells showed differential regulation in genes linked to “cell death of tumour cells” 

following Cidofovir treatment. This response was not observed in the HPV negative 

primary keratinocytes. For example, MDM4 was down-regulated and BIK and CYLD were 

up-regulated in SiHa cells, all of which are associated with cell death. Comparisons with 

the current study are limited as the De Schutter study examined 38,500 genes via 

microarray analysis, whereas this study examined 84 apoptosis pathway specific genes. A 

slight parallel between the studies was that Cidofovir was found to produce 

immune/inflammatory pathway responses in all cell lines post treatment in the De 

Schutter study, which may relate to the study presented here, where BIRC3 and BCL2A1, 

both anti-apoptotic genes and genes involved in inflammation, were differentially 

regulated at 12 and 36 hours post treatment in the M08 cell line. Additionally, De Schutter 

et al., 2013, found a “cell death of tumour cell” pathway response specifically in HPV 

positive cells, while in the study presented here, differential regulation of several 

apoptosis pathway specific genes was observed specifically in the HPV positive M08 cells.  

A strength of the current study was the examination of numerous apoptosis pathway 

specific genes (n = 84) in the RT-qPCR apoptosis arrays. Although a genome wide analysis 

would undoubtedly prove more informative, this study was designed to specifically assess 

the transcription of apoptosis linked genes in response to Cidofovir treatment. The RT-

qPCR apoptosis arrays were commercially validated to a high standard and used with 

optimised reagents and analysed on a well maintained and calibrated ABI 7900HT RT-PCR 

instrument. Both HPV positive and negative cell lines were used to determine differences 

in expression of the genes analysed between virally transformed and untransformed 
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keratinocytes. The RNA used was of high quality and Agilent Bioanalyser checked. Two 

drugs, Cidofovir and ADF Pro cf3475, and a negative control were used to compare and 

contrast the expression of the genes between different treatment options. As 

samples/conditions could only be analysed once on a RT-qPCR apoptosis array due to cost, 

the genes that were flagged as greater than two fold up/down-regulated at both time 

points in the Cidofovir treated M08 cell line were examined further in triplicate using 

individual RT-qPCR assays, which contained identical primer sets to those in the RT-qPCR 

apoptosis arrays.  

A weakness of the study was that the genes that did not display any differential regulation 

in the qPCR apoptosis array were not examined further to exclude false negative results. A 

second weakness may perhaps be that the HPV negative untransformed HEK cell line was 

derived from neonatal foreskin and the M08 line was derived from a vulval biopsy, thus a 

degree of heterogeneity was present between the two models, which should be 

highlighted when comparing these data. A final limitation of the study was that no true 

positive control was used in the RT-qPCR array experiments. In retrospect an apoptosis 

positive control, such as staurosporine, would have been useful.  

To conclude, from the analysis of transcription patterns of M08 and HEK cells treated with 

both Cidofovir and ADF Pro cf3475 it would appear Cidofovir induced a transcriptional 

response specific to NHIST cells. However, from the transcription data obtained, the actual 

functional response is difficult to explain. Further work was conducted using Western 

blotting for p53 and p21 proteins to examine if the down-regulation of TP53 and p21 was 

carried to a translational level. 

Total and Phospho-p53 Re-Accumulation in Cidofovir and Radiation Treated 
NHIST Cell Lines 

From the total p53, phosphorylated-p53 and p21 Western blot data it would appear that 

Cidofovir treatment combined with radiation produced an increase in total and 

phosphorylated-p53 in the A09 cell line and, to a lesser extent, in the M08 cell line. These 

cells were pre-treated with Cidofovir before being subjected to a clinically relevant dose of 

2 Gy radiation (Abdulkarim et al., 2002). The more prominent increases of these proteins 

in the A09 cell line compared with the M08 cell line may be due to the genotypic 
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differences between both. Both cell lines are TP53 wild-type, however, M08 contains 

integrated HPV DNA, whereas, A09 contains episomal HPV16 DNA. As a result of the 

integration event in the M08 cell line the E6 and E7 transcriptional repressor, E2, is 

disrupted, which in theory should lead to unlimited expression of these oncogenes, and as 

a result, increased degradation of p53 protein. However, the transcriptional profiles of 

M08 and A09, outlined in section 3.1.4; Figure 3.8., suggest that oncogene transcription in 

both of the cell lines, in the absence of treatment, is similar. Interestingly however, TP53 

in the A09 cell line contains the SNV Arg72Pro, which translates to a p53 protein that 

some reports suggest has a higher affinity to E6 oncoprotein, which therefore results in its 

increased E6 mediated degradation (previously reviewed in section 3.8). However, from 

the results presented here it would appear the Arg72Pro SNV does not negatively affect 

the re-accumulation of total and phospho-p53 in Cidofovir combined with 2 Gy radiation 

treated A09 cells. Nevertheless, the reason why the p53 response in the A09 cell line was 

greater than in the M08 cell line, in the combination treated samples, is yet to be 

determined. A minimal increase in total and phospho-p53 was also noted in the HPV 

negative Cidofovir treated HEKs. This response appeared to be most evident 36 hours post 

treatment.  

With regards to other studies, (Johnson and Gangemi, 1999), treated HPV16 transfected 

keratinocytes with 1 μM Cidofovir and examined p53 protein levels 2 days post treatment. 

Western blotting suggested that p53 levels were not affected by 1 μM Cidofovir. This 

result is similar to the one presented here where Cidofovir on its own did not produce an 

increase in total or phosphorylated p53. In contrast (Abdulkarim et al., 2002), found p53 

protein levels to be increased three days post treatment with 10 µg/mL (32 µM) Cidofovir 

in HPV 18 positive HEP2 cells and HPV 39 positive Me180 cells. They also combined 10 

µg/mL (32 µM) Cidofovir and 3 Gy radiation treatment in the same HPV positive HEP2 and 

Me180 cell lines and noted a prominent increase in p53 protein levels. (Sirianni et al., 

2005), found that the growth of both SCC90 cells (HPV16 positive) and CaSki cells 

(HPV16/18 positive) was inhibited in the presence of 40 μg/mL (127 μM) Cidofovir after 30 

Gy radiation. They further examined the effect of Cidofovir treatment on the expression of 

p53 protein through Western blotting and found that p53 expression was stabilized in the 
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presence of 20 μg/mL (64 μM) Cidofovir from two to four days. This result differed to the 

one presented here, where p53 protein levels only notably increased when Cidofovir 

treatment was combined with radiation.  

Minimal if no effect was seen on p21 protein levels in each of the three cell lines, with the 

exception of small increases in the 20 Gy positive control samples for M08 and A09 cells. 

Unlike the data presented here,(Abdulkarim et al., 2002), did note an induction of p21 

protein levels three days post treatment with 10 µg/mL (32 µM) Cidofovir in HPV positive 

Me180 and HEP2 cells. They did not report induction of p21 protein levels in the HPV 

negative C33A cell lines in response to Cidofovir treatment, nor was an induction observed 

in the HPV negative HEKs used in this study. Contrastingly, (Johnson and Gangemi, 1999), 

treated HPV 16 transfected keratinocytes with 1 μM Cidofovir and found via western blot 

analysis that p21 protein levels decreased by 82% two days post treatment. 

These contrasting results could be explained by several reasons, in particular by the 

regulation of p21 expression and the differences between the HPV positive cell lines used 

in the three studies. Transcription of p21 can be induced by both p53-dependant and -

independent mechanisms (Gartel and Tyner, 1999). The p21 promoter contains two p53-

response elements, at least one of which is needed for p53-dependent transcription of 

p21 (el-Deiry et al., 1993). Transcription of p21 can be controlled independent of p53 

through six SP1 binding sites located within the p21 promoter in response to a variety of 

intrinsic and extrinsic signals such as transforming growth factor-β (TGF-β), butyrate, 

lovastatin, phorbal ester, okadaic acid and Ca2+ (all reviewed in (Gartel and Tyner, 1999)). 

Additionally transactivation of p21 transcription can also occur by transcription factors 

such as E2F proteins via cis-acting regulatory elements within the p21 promoter (Hiyama 

et al., 1998).  

In theory, the increase in phospho-p53 observed in the M08 and A09 cell lines in the 

Cidofovir combined with radiation treated samples should result in an increase in p21 

expression at an mRNA and protein level. These data suggest activated p53 does not 

result in an up-regulation of p21 at a post-translational level. However, p21 expression is 

also regulated at a post-transcriptional pre-translational level. (Ivanovska et al., 2008), 
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found that miR-106b reduced p21 mRNA levels by 38% and p21 protein levels by 46% 

through RT-qPCR and immunohistochemistry analysis of treated human mammary 

epithelial cells. They also found that replicas of several members of the miR-106b family 

down-regulated a luciferase reporter carrying the entire p21 mRNA 3’ UTR (untranslated 

region), as this region of p21 mRNA contains two hexamers complementary to the miR-

106b family seed region (Ivanovska et al., 2008). The study concluded that miR-106b 

regulation of p21 promotes cell cycle progression. To complement this, a different study 

by (McBee W.C. et al., 2011), examined miRNA expression in four normal HPV negative 

cervical tissue samples, three HPV16 positive CIN2/3 samples and six HPV16 positive 

invasive squamous cell carcinoma cervical samples using human MicroRNA Arrays. They 

found 18 miRNAs were up-regulated and 2 miRNAs were down-regulated in cervical 

cancer tissue compared to normal cervical tissue. Further to this, through individual 

micro-RNA assays they found 8 miRNAs, including miR-106b, to be significantly 

overexpressed in the cervical cancer tissue. miR-106b is located less than 1 Mb from the 

common fragile site FRA7F on chromosome 7q22 (Calin et al., 2004). HPV integration has 

been shown to occur around this common fragile site (reviewed by (Wentzensen et al., 

2004)). It is thought that HPV integration causes changes in transcription patterns of 

adjacent DNA, therefore, it may be speculated that integration of HPV at this common 

fragile site causes overexpression of miR-106b. In addition to this, (Petrocca et al., 2008), 

found that transcription of the miR-106b-25 cluster, containing miR-106b, is 

transactivated by E2F1 by transcription of its target gene, MCM7. Therefore if HPV E7 

mediates degradation of pRb, releasing E2F, this could be another mechanism whereby 

HPV can promote up-regulation of miR-106b and possible inhibition of p21 at a post-

transcriptional level.  

Therefore, HPV associated up-regulation of miR-106b, by integration dependant and 

independent mechanisms could be a reason for the apparent non-differential effect on 

p21 protein levels for all treatment options in both the M08 and A09 HPV positive cells. 

Perhaps differences in the miRNA expression capacities of the HEP2 and Me180 cells used 

by (Abdulkarim et al., 2002), the HPV16 transfected keratinocytes used by (Johnson and 

Gangemi, 1999) and the VIN and VaIN M08 and A09 cell lines used in this study, were a 
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reason for these contradicting results. Future work will therefore examine p21 

transcription at an mRNA level in response to Cidofovir and Cidofovir combined with 

radiation treatment in the NHIST cell lines and HEKs, as well as possible miRNA expression 

status of the NHIST cell lines. 

Strengths of the total p53, phospho-p53 and p21 western blotting study include the 

variety of treatment options examined in two genetically different HPV naturally 

immortalized cell lines. Untreated cells were used as a negative control, and 20 Gy treated 

cells as a positive control. Twenty Grey was chosen at it has been shown to induce a p53 

response in cultured cells (Cmielova et al., 2012). Combination treatment of Cidofovir plus 

2 Gy radiation treatment was also evaluated as 2 Gy radiation in cell lines was equivalent 

to a clinically relevant dose (Abdulkarim et al., 2002). Membranes were visually inspected 

and also evaluated using densitometry software which enabled normalization to the 

house-keeping protein, β-Actin. Also, a MagicMark™ XP Western blot protein standard 

was also used to ensure the identification of the correct sized protein. The MagicMark™ 

XP Western blot protein standard and specificity of the antibodies used can be seen in 

appendix 8. Protein levels were examined 12, 36 and 72 hours post treatment in order to 

capture any variation in protein levels over a 3.5 day period post treatment.  

A weakness of the study was that sufficient HEK cell lysate was unobtainable for Western 

blotting in the irradiated HEK cells. Thus the effect of combination treatment on total and 

phosphorylated-p53 levels cannot be compared between the HPV positive and HPV 

negative cell lines. However it was shown that Cidofovir combined with radiation could 

produce an augmented apoptotic response through cleaved caspase-3 activation in HEK 

cells. Upon examination of previously published studies (Abdulkarim et al., 2002, Sirianni 

et al., 2005), it may have been useful to have carried out a clonogenic survival assay to 

attain exact viable cell numbers post Cidofovir combined with radiation treatment to 

examine if the increase in total and phosphorylated-p53 in these samples resulted in a 

greater growth inhibitory effect in comparison to Cidofovir treatment on its own. Viable 

cell counting was carried out on all Cidofovir treated cells to calculate IC50 values for each 

cell type. However, cell counting was not performed to an accurate standard in this study 

as cells were lysed directly on tissue culture surfaces to avoid metabolic changes in the 
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cells caused by trypisization. From this, future work would involve clonogenic survival 

assays on irradiated NHIST cells and HPV negative untransformed HEKs to determine 

radiosensitizing ability, if any, of Cidofovir.  

 To conclude on the total p53, phospho-p53 and p21 western blotting data Cidofovir 

treatment combined with a clinically relevant dose of radiation induced re-accumulation 

of total and phosphorylated p53 at 12, 36 and 72 hours in the NHIST cell lines. Overall, this 

effect was most prominent at 36 hours and was more pronounced in the A09 cell line. This 

effect was not seen in individual Cidofovir or individual 2 Gy radiation treated NHIST cell 

lines, suggesting the effect was synergistic rather than simply additive. In addition to 

clonogenic survival assays, further work stemming from this data set would also involve 

examination of miRNA expression levels in the NHIST cell lines to establish a link if any 

with p21 expression levels.  

E6, E7, TP53 and p21/CDKN1A Transcription Levels in Cidofovir and Cidofovir 
Combined with Radiation Treated NHIST Cell Lines 

From the E6, E7, TP53 and p21/CDKNA1 transcription study the most notable change in E6 

and E7 transcription for both the M08 and A09 cells at both time points appeared to be in 

the Cidofovir combined with 2 Gy radiation treated samples.  E6 was down-regulated in 

M08 cells in response to all treatments conditions at both time points. With the exception 

of the individual 2 Gy treated sample at 36 hours, an E6 response similar to that of the 

M08 cell line was found in the A09 cell line. E7 transcription showed a similar pattern to 

that of E6 for both the M08 and A09 cell lines, with the only difference being that there 

was no change in E7 transcription in the Cidofovir treated samples 12 hours post 

treatment. A similar pattern of expression of both oncogenes would be expected as E6 

and E7 are transcribed as a single bicistronic pre-mRNA (Baker C and C., 1995, Tang et al., 

2006). Therefore, a significant down-regulation of E6, with no accompanied down-

regulation of E7 in the 12 hour Cidofovir treated samples is intriguing.  

Three exons and two introns form the HPV 16 and HPV 18 bicistronic E6E7 pre-mRNAs 

(Tang et al., 2006). Intron 1 is positioned in the E6 ORF, consequently removal of this 

intron by RNA splicing would disrupt the E6 ORF and prevent the expression of full length 

E6 (Tang et al., 2006). If intron 1 remains unspliced, the resulting E6E7 mRNA can be 
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translated into oncogenic E6 (Zheng et al., 2004). Intron 1 of HPV 16 E6E7 pre-mRNA 

contains one 5’ splice site and three different 3’ splice sites (Tang et al., 2006). Several 

different studies have found that splicing of intron 1 in the HPV 16 E6E7 pre-mRNA is 

extremely competent, where many transcripts in cervical cancer cell lines and cancer 

tissues are a spliced product without intron 1, denoted E6*I (Doorbar et al., 1990, 

Sherman et al., 1992). It is thought that splicing of intron 1 in this pre-mRNA transcript is 

necessary for E7 production, as there are only two nucleotides between the termination 

of E6 translation and the re-initiation of E7 translation in HPV 16 E6E7 pre-mRNA 

containing this intron (Tang et al., 2006). (Zheng et al., 2004), found that splicing of the 

E6E7 pre-mRNA provided more E7 RNA templates and increased the production of E7 

oncoprotein, whereas absence of RNA splicing produced low levels of E7 oncoprotein. 

Therefore, mutation in intron 1 splice sites or inhibition of splicing may result in decreased 

levels of E7 oncoprotein, without a similar effect on levels of E6 oncoprotein. However, 

this does not explain why a decrease in E6 transcript levels occurred in the absence of a 

corresponding decrease in E7 transcript levels 12 hours post Cidofovir treatment. As this 

difference occurred in each cell line, where all other conditions followed a similar pattern 

of oncogene regulation, it appears unlikely to be due to an assay fault.  

In terms of molecule half-lives, if E7 mRNA had a longer half-life than E6 mRNA perhaps 

this difference in transcript levels could be explained, but as E7 transcript levels were the 

same as E6 in all other conditions this is presumably not the case. (Jeon and Lambert, 

1995), found E6/E7 mRNA molecules to have half-lives of three hours in cell lines that 

contain episomal HPV DNA and half-lives of 6 to greater than 12 hours in cell lines that 

contain integrated HPV DNA using an actinomycin-D mRNA decay assay. However, they 

did not differentiate between E6 and E7 mRNA molecules. In this study, where HPV DNA 

in the M08 cell line was hypothesized integrated and hypothesized episomal in the A09 

cell line, differences in E6 and E7 transcript levels by differential half-lives depending on 

HPV DNA type were not noted. 

The decrease in oncogene transcription in the other conditions may be due to DNA 

damage caused by Cidofovir and radiation, treated both individually and combined. If DNA 

damage, in the form of strand breaks occurred in the E6 and E7 ORFs, transcript levels of 
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these genes would decrease. However, this presumably would also happen in other genes 

including housekeeping genes, therefore, ∆Ct between E6/E7 and the housekeeping genes 

would remain similar. This does not explain why E7 transcript levels in both M08 and A09 

cells treated with Cidofovir remain the same as the corresponding untreated control cells, 

when in the same samples E6 levels decrease.  Further work is warranted to elucidate this 

phenomenon.   

There was no pattern in TP53 transcription found between the M08 and A09 cell lines at 

both time points with all treatment conditions. However, CDKN1A/p21 showed distinct 

up-regulation in both cell lines at both time points in the Cidofovir combined with 2 Gy 

treated cells. These data complement the p53 Western blot results outlined in section 5.3, 

where the prominent decrease in E6 transcription may be linked to the large increases in 

total and phosphorylated-p53 protein levels in M08 and A09 cells treated with a 

combination of Cidofovir and 2 Gy radiation, which in turn may be linked to the 

corresponding increase in CDKN1A/p21 transcription in the same samples. As TP53 

showed minimal changes in transcription in the Cidofovir combined with 2 Gy treated 

samples, and because there was a prominent increase in corresponding p53 protein levels, 

it would suggest that the increase in p53 in this treatment condition occurs via a post-

translation mechanism.  

The transcription results presented in this section contrast those in the initial individual 

RT-qPCR arrays and individual assays in results section 5.2, where TP53 was 3 to 4 fold 

down-regulated and P21/CDKN1A was 1 to 3 fold down-regulated in Cidofovir treated 

M08 cells. In the data presented here both genes were just over 1 fold down-regulated in 

the Cidofovir treated M08 cells. The reasons for this discrepancy are unknown but may 

possibly have something to do with the different concentrations of Cidofovir used in the 

two experiments. The results obtained from the RT-qPCR apoptosis arrays and individual 

assays were from an earlier experiment where the IC50 value of Cidofovir in M08 cells was 

determined as 10 μM. However, following further experimentation the IC50 estimate was 

later revised to 5 μM Cidofovir. Therefore, 5 μM Cidofovir was used in all further 

experiments involving the M08 cell line. Perhaps the higher concentration of Cidofovir 

used in in the initial RT-qPCR apoptosis arrays and individual assays caused a greater 
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effect on the down-regulation of TP53 and p21/CDKN1A, which may occur in a dose 

dependent manner.  

E6 and E7 transcript levels were measured using a different method to that for TP53 and 

p21/CDKN1A. TP53 and p21/CDKN1A cDNA levels were measured using commercially 

available RT-qPCR assays, where relative quantification was calculated using the standard 

∆∆Ct equation as target genes and reference genes (GAPDH and HPRT1) were designed to 

have similar PCR efficiencies as the individual RT-qPCR assays. However, E6 and E7 

transcript levels were quantified using the Vandesompele equation (Vandesompele et al., 

2002) as the E6, E7 and reference gene (TBP2 and HPRT1) primer sets had different PCR 

efficiencies. The qBase+ software (Biogazelle, Gent, Belgium) uses the Vandesompele 

equation to calculate relative gene quantification and corrects for differences in PCR 

efficiencies between the various target and reference genes. Additionally corresponding 

reverse transcription negative RNA samples were also subjected to RT-qPCR analysis for 

the HPV E6 and E7 genes to rule out contamination with genomic DNA, as the E6 and E7 

primer sets were not intron spanning. 

In relation to published literature, one study examined E6 expression after Cidofovir 

treatment (without radiation) at the protein level by Western blotting. They found 6 days 

of Cidofovir treatment inhibited E6 expression more effectively than 3 days of treatment 

and they also found that E6 inhibition in HeLa cells was associated with p53 restoration 

(Amine et al., 2009). In the study presented here, E6 transcription was found to be down-

regulated as early as 12 hours post Cidofovir treatment. However, in this study p53 

restoration was only associated with E6 down-regulation in the Cidofovir combined with 2 

Gy treated NHIST cells, not Cidofovir treatment on its own. However, it may be possible 

that Cidofovir treatment for a longer period of time (6 days) may have eventually resulted 

in p53 restoration.  

A different study examined E6 expression in Cidofovir treated SCC90 cells derived from a 

HPV naturally transformed SCC of the oropharynx and found that 2 doses of the drug were 

needed to produce a decrease in E6 transcription by 4 days (Sirianni et al., 2005). This 
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again contrasted what was found in this study, where a decrease in E6 transcription was 

observed as early as 12 hours post Cidofovir treatment.   

(Abdulkarim et al., 2002), used Western blot analysis to examine E6 and E7 protein levels 

after 1 - 10 mg/ml Cidofovir exposure in Me180 and HEP2 cell lines. They found the 

amount of E6 protein in Me180 and HEP2 cells decreased by 30% and 25% respectively 

after 3 days of treatment, and by 60% and 80% after 6 days. They found 40% and 60% 

decreases in E7 protein levels in Me180 and HEP2 cells at 3 days, and 65% and 85% 

reductions at 6 days. They also examined E6/E7 mRNA levels by RT-qPCR in HEP2 cells 

after 1 to 10 mg/mL Cidofovir, 3 Gy, 6 Gy and 9 Gy ionizing radiation and combined 

treatment of both. Compared to the untreated cells, E6/E7 mRNA levels in the Cidofovir 

treated cells decreased by 50% and 70% at 3 and 6 days respectively. Contrastingly, E6/E7 

mRNA levels were 2 fold increased 24 hours post 9 Gy ionizing radiation, however, this 

radiation-induced rise in E6/E7 mRNA levels was eradicated when cells were pre-treated 

with Cidofovir. Similar to the Abdulkarim study, a decrease in E6 and E7 mRNA levels was 

observed post treatment with Cidofovir in this study. However, contrasting to what 

Abdulkarim et al., 2002 found, E6/E7 transcript levels were also decreased 12 and 36 

hours post 2 and 20 Gy gamma radiation in the NHIST cell lines.  (Santin et al., 1998), also 

noted an increase in E6/E7 expression by northern blot analysis of 12.5 - 100 Gy gamma 

irradiated CaSki and SiHa cervical carcinoma cell lines and suggested that irradiation could 

confer a significant growth advantage to radiation-resistant tumour cells. As other HPV 

positive cell lines have been found to be more radiosensitive than HPV negative cell lines 

(listed and described by (Kimple et al., 2013, Rieckmann et al., 2013), perhaps the effect of 

radiation on HPV positive cells is cell line specific. 

A strength of this RT-qPCR study was that the individual RT-qPCR assays used for TP53 and 

p21/CDKN1A were commercially optimised, well validated assays used on a routinely 

calibrated ABI 7900HT RT-PCR analyser. To add to this E6 and E7 transcription was 

quantified by correcting for differences in PCR efficiencies and possible genomic DNA 

contamination.  Furthermore, the variety of treatment conditions, as well as the 

combination treatment condition, examined in the two NHIST cell lines made for a more 

comprehensive evaluation of gene expression in response to a range of treatment 
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options. Similarly, the two time points used to examine the differential regulation of the 

genes allowed for the inspection of transcription patterns over time. 

To conclude, examining the data from this section altogether, Cidofovir combined with 2 

Gy radiation proved to be the most effective treatment condition at producing differential 

expression of E6, E7 and P21/CDKN1A, when compared to the individual treatment 

conditions in M08 and A09 cell lines. Minimal effect on TP53 transcription was observed in 

both cell lines with all treatment conditions, suggesting that increases in p53 protein 

levels in the combination treated samples (observed in results section 5.3), were a result 

of post-translational mechanisms.  

Summary of in vitro Mechanism of Action of Cidofovir Data 

A summary of the cell line data acquired from the mechanism of action of Cidofovir 

studies is outlined in Table 5.6. 
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Table 5.6. Summary of Mechanism of Action of Cidofovir and Combined Treatment with 

Radiation Findings 

Assay 

M08 (HPV 16) A09 (HPV 16) HEKs (HPV negative) 

Cidofovir 
IC50 ‡ 
5 µM 

5 µM 
Cidofovir & 
2 Gy 
radiation 

Cidofovir 
IC50 ‡ 
21 µM 

21 µM 
Cidofovir 
& 2 Gy 
radiation 

Cidofovir 
IC50 ‡ 
6.6 µM 

6.6 µM 
Cidofovir 
& 2 Gy 
radiation 

Effect on cell 
morphology † 

Increase in 
size with 
increase in 
concentration  

Not 
Recorded 

Difficult to 
interpret on 
photo-
micrographs 

Not 
Recorded 

Increase in 
size with 
increase in 
concentration 

Not 
Recorded 

Caspase-3 
Activity Assay 

Decrease Decrease 
Decrease at 
72 hours 

Decrease 
at 72 hours 

Slight 
Increase 

Prominent 
Increase 

Cleaved 
Caspase-3 
protein levels 

No Effect No Effect 
Slight 
Increase 

Slight 
Increase 

Not assayed 
Not 
assayed 

Apoptosis 
pathway 
specific gene 
arrays  
(mRNA levels) 

Differential 
regulation of 
pro- and anti-
apoptotic 
genes 

Not 
assayed 

Not assayed 
Not 
assayed 

No Effect 
Not 
assayed 

Total p53 
protein levels 

No Effect 
Slight 
Increase 

Slight 
Increase 

Prominent 
Increase 

Slight 
Increase 

Not 
assayed 

Phospho-p53 
protein levels 

No Effect 
Slight 
Increase 

No effect 
Prominent 
Increase 

Slight 
Increase 

Not 
assayed 

p21  
protein levels 
 

No Effect No Effect No Effect No Effect No Effect 
Not 
assayed 

E6 mRNA 
levels 
 

Decrease 
Prominent 
Decrease 

Effect not 
significant 

Prominent 
Decrease 

Not assayed 
Not 
assayed 

E7 mRNA 
levels 
 

No Effect at 
12 hours 
Decrease at 
36 hours 

Prominent 
Decrease 

Effect not 
significant 

Prominent 
Decrease 

Not assayed 
Not 
assayed 

TP53  
mRNA levels 
 

Effect not 
significant 

Effect not 
significant 

Effect not 
significant 

Decrease Not assayed 
Not 
assayed 

CDKN1A  
mRNA levels  

Decrease 
Prominent 
Increase 

Effect not 
significant 

Prominent 
Increase 

Not assayed 
Not 
assayed 

†
 Data taken from results section 4.1. Morphology measured 96 hours post treated with 0, 1, 

5, 10 and 100 µM Cidofovir for M08 and A09 Cells; 0, 1, 10 and 100 µM Cidofovir for HEK 

cells.  

‡
 IC50 values were those calculated 96 hours post Cidofovir Treatment.  

* M08 and HEK cells were treated with 10 µM Cidofovir for the apoptotic pathway specific 

gene arrays. 
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To summarise the in vitro findings: 

 Cleaved caspase-3 was assessed as an indicator of apoptosis and was examined by two 

different methods. Caspase-3 activity was not increased in the M08 or A09 cell lines by 

Cidofovir or Cidofovir plus gamma radiation at any of the time points examined. HEKs 

displayed the greatest induction of cleaved caspase-3, especially in the combination 

treated samples. The caspase data for the HEK cell line was obtained from the 

caspase-3 activity assay only.  

 The RT-qPCR apoptosis arrays examined the transcriptional response of apoptosis 

related genes to treatment with Cidofovir in the M08 and HEK cell lines. This assay also 

examined the transcriptional response of these cell types to treatment with ADF Pro 

cf3475, the most potent ProTide ANP analogue (described in results section 4.3). 

Minimal transcriptional responses were observed in M08 and HEK cells treated with 

ADF Pro cf3475. However, Cidofovir induced a transcriptional response specific to the 

NHIST cell line, M08. Genes in the RT-qPCR apoptosis array, which were flagged as 

differentially regulated in the M08 cell line at 12 and 36 hours post Cidofovir 

treatment were examined further in individual RT-qPCR assays. The relationship 

between the genes that were differentially expressed at both time points appeared 

complex as both pro- and anti-apoptotic genes were similarly up-regulated or similarly 

down-regulated.  

 The third section of this chapter examined levels of total and phosphorylated-p53 

protein in the M08 and A09 cell lines in response to treatment with Cidofovir and 

Cidofovir combined with gamma radiation. In the M08 cell line, total and 

phosphorylated-p53 protein levels were slightly elevated compared to the untreated 

control samples in the Cidofovir combined with radiation treatment only. In the A09 

cell line there was a substantial increase in both total and phosphorylated-p53 in the 

combination treated samples at each time point. There was also a slight increase in 

total p53 in the Cidofovir only treated A09 cells. Total and phosphorylated-p53 levels 

were additionally examined in HEKs treated with Cidofovir only and very slight 

increases in both proteins were observed in these samples. Finally, p21 protein levels 

were examined in the same cell lysates, however, no notable difference in p21 levels 
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was found in any of the cell lines with the exception of the positive control (20 Gy) 

samples in the M08 cell line. 

 The data presented in the fourth section of this chapter was carried out in response to 

the p53 Western blotting results. RT-qPCR of E6, E7, TP53 and p21/CDKN1A was 

undertaken on RNA from the same samples that were subjected to Western blotting. 

A reduction in E6 mRNA levels was observed in M08 and A09 cells for all treatment 

conditions, with the exception of 2 Gy 12 hours post treatment in the A09 cell line. For 

both M08 and A09 cell lines, the most prominent reduction in E6 was generally 

observed in the Cidofovir combined with radiation treated samples. E7 mRNA levels 

followed the same pattern to those of E6 for both cell lines, with the exception of the 

Cidofovir only treated cells at 12 hours for both cell lines. Changes in TP53 mRNA 

levels in both the M08 and A09 cell lines were inconsistent. However, p21/CDKN1A 

mRNA levels were up-regulated in the Cidofovir combined with radiation treated 

samples in both cell lines.  

 

Examining the previous findings simultaneously several deductions as to the mechanism 

of action of Cidofovir can be made. Firstly, the decrease in number of HPV positive cells 

post treatment with Cidofovir (as described in results section 4.1) does not appear to 

occur via induction of cleaved caspase-3. Secondly, differential transcription of apoptosis 

pathway specific genes in HPV positive cells post treatment with Cidofovir suggested a 

specific response when compared to HPV negative untransformed cells also treated with 

Cidofovir. However, as no patterns in regulation of pro- or anti-apoptotic genes were 

observed it may be suggested that a process other than apoptosis is inhibiting 

proliferation of HPV positive cell lines at the concentration examined. The 2-fold reduction 

in E6 mRNA levels in Cidofovir treated HPV positive cell lines could be an important 

contributing factor to the inhibition of proliferation of these cells. Down-regulation of E7 

was also observed in Cidofovir treated cells, but not until 36 hours post treatment. This 

down-regulation of oncogene mRNA levels may have resulted in a reduction in the E6 

mediated ubiquitination of p53. However, minimal changes in levels of total and 

phosphorylated-p53 were found in the Cidofovir treated M08 and A09 cells at the 
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concentrations used. Similarly, there was little effect observed on p21 transcription or p21 

protein levels post treatment with IC50 concentrations of Cidofovir. Perhaps at higher 

concentrations or for longer periods of treatment with Cidofovir such a response may be 

induced. For example, (Abdulkarim et al., 2002), found increases in p53 and p21 protein 

levels 3 and 6 days post 32 µM Cidofovir treatment. Therefore, future work to further 

examine these data would involve the use of higher concentrations of Cidofovir and 

examination of its effect for more than 72 hours.  

It was clear that combining Cidofovir treatment with a clinically relevant dose of radiation 

resulted in an augmented molecular response in HPV positive cell lines. Both total and 

phosphorylated-p53 levels in A09 cell lines were noticeably increased as early as 12 hours 

post irradiation and continued to be elevated for the remainder of the 72 hour 

experiment. This effect was also observed to a lesser extent in the M08 cell line. The 

induction of both forms of p53 protein in the combined treated samples may have been 

associated with the observed decrease in E6 and E7 mRNA in the same sample. 

Additionally, an increase in p21/CDKN1A mRNA levels was also observed in the same 

samples. However, the increase in p21/CDKN1A mRNA levels did not result in an increase 

in p21 protein in either cell line.  

With the exception of the total and phospho-p53 Western blot data for the A09 cells, 

where the effect of Cidofovir combined with radiation appeared to be synergistic, the 

effect appeared to be additive in the E6 and CDKN1A transcription data (36 hour). The 

large caspase-3 response observed in the HEK cells further indicated that Cidofovir does 

not specifically radiosensitize HPV positive/transformed cells. It may be speculated that 

the augmented molecular response in the Cidofovir combined with radiation treated cells 

may be due to the susceptibility of HPV positive cells to radiation induced DSBs (Bresler et 

al., 1984); and the possibility that Cidofovir can also induce DSBs.  

Rieckmann et al., 2013, have shown that 10 Gy radiation alone did not induce apoptosis or 

G1 cell cycle arrest in HPV positive HNSCC cell lines, in spite of these cell lines displaying 

increased radiosensitivity compared to HPV negative HNSCC. However, 6 Gy irradiated 

HPV positive HNSCC cell lines did show cell cycle arrest in G2 proportional to the 
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radiosensitivity of the respective cell lines. They further examined whether the G2 cell 

cycle arrest was a result of a persistent G2/M-checkpoint activation triggered by 

unrepaired DSBs. Cells were subjected to 2 Gy radiation and incubated for 24 hours at 

37°C before the examination of residual DSBs via cH2AX/53BP1-positive repair foci. The 

results indicated that the numbers of foci in the HPV positive HNSCC cell lines matched 

the extent of G2 cell cycle arrest and that the numbers of foci found in these cell lines 

negatively correlated with survival post irradiation as established in a colony formation 

assay. As this result was not observed in the HPV negative HNSCC cell lines examined, a 

central role for DSB repair capacity in survival of HPV positive cell lines post irradiation 

was indicated.  

Similarly, De Schutter et al., 2013, concluded that growth inhibitory selectivity of Cidofovir 

is due to the difference in responses of normal and cancer cells to DNA damage. Using an 

assay designed to examine Cidofovir incorporation into genomic DNA, they found that 

higher levels of Cidofovir were incorporated into tumour cell DNA in comparison to 

normal untransformed keratinocyte DNA. After 72 hours incubation, 4-fold, 6-fold and 9-

fold higher levels of Cidofovir were found in HaCaT (HPV negative), HeLa (HPV positive) 

and SiHa (HPV positive) transformed cells respectively, when compared to Cidofovir levels 

found for HPV negative primary human keratinocytes. They complemented the data by 

genome wide expression profiling of the four cell types treated with Cidofovir.  The gene 

expression data suggested that that Cidofovir induced DSBs in DNA and that HPV positive 

cells were more susceptible to the growth inhibitory effects of Cidofovir as they are 

incapable of responding to this induced genotoxic stress due to defective DNA repair 

pathways.  

Complimentary to the findings of De Schutter et al., 2013, a study by (Shin et al., 2006), 

demonstrated that HPV16 E6 instigated abnormal DNA end joining activities, such as 

reduced error-free DNA end joining ability and increased DNA end joining errors. 

Additionally, their results indicated that high-risk HPV E6’s capability to bind, degrade 

and/or modify p53 was a primary feature in inducing abnormal DNA DSB repair in HPV 

positive cells. Another study by (Deberne et al., 2013), examined combination treatment 
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of Cidofovir and cetuximab and also found that Cidofovir treatment on its own induced 

DSBs. 

De Schutter et al., 2013, suggest that Cidofovir was incorporated to a greater degree into 

HPV positive and transformed cells due to their higher rate of cell division. Additionally, 

inhibition of chain elongation by Cidofovir may cause stalling of replication forks; which in 

some instances can lead to induction of DSBs (Unno et al., 2013) via nuclease activity 

(Hanada et al., 2007).  

As DSBs can induce a p53 response, where p53 can cause inhibition of cell proliferation by 

mechanisms other than apoptosis (such as cell cycle arrest and senescence), future work 

derived from the in vitro mechanism of action data presented here could involve 

evaluation of cell cycle inhibition in response to Cidofovir treatment.  Cell cycle inhibition 

could be assessed through propidium iodide staining and analysis by flow cytometry, 

examination of cell cycle regulators other than p21/CDKN1A, which are also linked to p53 

but function later in the cell cycle, examination of DSBs and possible examination of DSB 

response protein and DNA damage pathways.     

Various individual strengths and limitations of the in vitro work outlined in this chapter 

have been previously discussed. An important limitation of the entire study is perhaps the 

cell model used. As previously described the M08 and A09 cell lines are NHIST cell lines 

derived from intraepithelial neoplasia biopsies. When these cells are used in 

2D/monolayer culture the experimental model lacks physiological attributes such as 

barrier and immune system responses. Raft culture of these keratinocytes or animal 

models of disease would provide a more accurate disease representation. Additionally, 

due to the less robust nature of the HPV negative HEK cells, a true disease free HPV 

negative control model was not available for examination of the effects of radiation in 

such cells.   

To conclude on the in vitro mechanism of action studies it would appear that Cidofovir 

does not induce a molecular response specific to HPV positive cell lines. At the 

concentrations used and in the time frames examined, Cidofovir did not induce apoptosis 

in HPV positive cells. By comparing the data presented in this chapter to recently 
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published literature it may be suggested that Cidofovir induces DSBs by stalling of 

replication forks. As apoptosis was not observed in Cidofovir treated cells, it may be 

speculated that the compound inhibits the growth of HPV positive cells by causing cell 

senescence or cell cycle arrest, perhaps at the G2/M phase of the cell cycle. Cidofovir 

combined with a clinically relevant dose of radiation produced a prominent down-

regulation of E6/E7 mRNA levels and increased accumulation of total and phosphorylated-

p53, with an accompanying increase in p21/CDKN1A transcription; however, an increase 

in p21 protein level was not observed. In spite of this augmented molecular response in 

the Cidofovir combined with radiation treated HPV positive cells, this treatment option 

produced a profound cell death effect on HPV negative untransformed HEK cells, 

indicating such a treatment option may be difficult to develop for use in vivo. 

RT3VIN RT-qPCR 

The preliminary RT-qPCR study on the RT3VIN clinical material was the first of its kind in 

examining expression of apoptosis related genes in a small cohort of woman with VIN 

treated topically with Cidofovir. The results showed no consistent differential regulation of 

TP53, P21, BCL2A1, BIRC3 and HRK across all samples. However, they did suggest a 

possible link between clearance of HPV and expression of genes involved in anti-

apoptotic/inflammation in Cidofovir treated VIN. BCL2A1 and BIRC3 are anti-apoptotic as 

well as inflammatory genes (gene function outlined in section 5.2). The data for Cases 4 

and 5 on face value might suggest that the affected tissue is responding to Cidofovir by 

inducing an anti-apoptotic and/or an inflammatory response. However, because these 

cases are the only two cases in the study that clear HPV by the end of treatment, and 

because only 5 genes were examined, the exact mechanism of action of Cidofovir in the 

RT3VIN samples cannot be determined.  

BCL2A1 and BIRC3 displayed notable up-regulation specific to the two RT3VIN Cases that 

cleared HPV16 by the end of the trial. BCL2A1 is a direct transcriptional target of NF-kappa 

B, expressed in response to inflammatory mediators, and is up-regulated by different 

extracellular signals (NCBI, September 2013c). BIRC3 is regulated in a G2/M phase cell 

cycle dependant manner and is augmented by NF-kappa B activation.  When expressed, 
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BIRC3 contributes to the survival of mitotically arrested cells (Jin and Lee, 2006). Not only 

is NF-kappa B a multi-functional transcription factor involved in cell survival (Baetz et al., 

2005), inflammation (Tak and Firestein, 2001), regulation of an immune and anti-viral 

response (Hayden et al., 2006, Eickhoff and Cotten, 2005), it has also been implicated in 

cancer progression (Dolcet et al., 2005). Additionally, there has been a link proposed 

between HPV immortalization of cell lines and NF-kappa B. Some studies indicate that HPV 

represses NF-kappa B (Spitkovsky et al., 2002), whereas some studies indicate that HPV 

activates NF-kappa B (James et al., 2006). As NF-kappa B plays a role in both BCL2A1 and 

BIRC3 activation, further investigation of its application to HPV clearance in Cidofovir 

treated VIN may be warranted. 

There is limited published literature linking HPV and Cidofovir to BCL2A1 and BIRC3. 

However, a study examining DNA methylation patterns in HPV-Associated anal squamous 

neoplasia proposed a link between methylation of anti-apoptotic BCL2A1 and HPV-related 

carcinogenesis (Hernandez et al., 2012). Using methylation arrays, bisulfite-converted 

DNA was examined for methylation at 1,505 CpG loci representing 807 genes in 29 

formalin-fixed paraffin embedded samples from 24 patients, where 3 were neoplasia 

free, 11 had squamous cell carcinoma in situ and 15 had invasive squamous cell 

carcinoma. A range of different genes were found to be differentially methylated in pre-

invasive and invasive HPV associated anal disease. Among others, BCL2A1 was found to be 

highly methylated in invasive disease compared with pre-invasive disease. The authors 

concluded that BCL2A1 gene (among 18 others), occupied a “methylation prone” area. 

Additionally, BCL2A1 is located at chromosome position 15q25.3 (NCBI, September 

2013c), which is adjacent to a hotspot site of HPV integration at 15q23 (Wentzensen et al., 

2004). In light of this, Hernandez et al., 2012, suggested that HPV-associated methylation 

events appear to occur in a non-random fashion and that genes like BCL2A1 may have 

potential as therapeutic targets. In terms of the data presented here, if DNA methylation 

in HPV associated disease resulted in silencing of BCL2A1 and treatment with Cidofovir 

produced increased BCL2A1 transcription in patients who cleared their HPV infection, it 

would be interesting to evaluate if this connection is purely coincidental or if Cidofovir 
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could possibly produce a de-methylating effect in HPV positive neoplasias. Such a link, 

although highly speculative, may warrant further investigation. 

Not all HPV positivity test results were consistent across the three samples taken for each 

patient. For example, Case 3 was HPV positive at the end of the study but not at baseline 

or during the treatment. This may be related to the biopsy sampling process as Cases 9 

and 10 were HPV positive before and after treatment but tested HPV negative during 

treatment. The RT3VIN Study Protocol required biopsies to be taken from the same 

location, which should be a representative area of the lesion. For Case 3, in which HPV 

was not detected at baseline or during treatment, it could be suggested that either the 

patient acquired the virus after the six week biopsy was taken or the virus was present all 

along but gave false negative results at baseline and six weeks possibly due to sampling of 

uninfected epithelium or low sensitivity of the HPV detection assay. 

A link between HPV status at baseline and gene expression was not found. As HPV E6 

oncoprotein promotes the degradation of p53 protein, greater CDKN1A/p21 transcript 

levels may have been expected in the HPV negative patients. However for this study, 

mean baseline transcript levels were typically higher for CDKN1A/p21 than for the other 

genes assessed. Conversely, HRK typically had the lowest transcript levels. 

The reasons for the noticeable down-regulation of BCL2A1 and BIRC3 36 hours post 

treatment in the Cidofovir treated M08 cell line (results section 5.2) and the reasons for 

the prominent up-regulation of the same genes in the two patients who cleared their 

infection six weeks into treatment may be complicated. Firstly, in the cell line model, the 

cells were subjected to a single exact measured dose of Cidofovir and expression of genes 

was examined at exactly 12 and 36 hours post treatment. At this early time point it was 

likely that the M08 cells were responding to Cidofovir treatment for the first time. 

However, in the clinical material, patients were self-applying topical Cidofovir gel three 

times a week for six weeks, where amount of Cidofovir compound could vary between 

applications. In contrast to the M08 cells used in the in vitro study, the cells in the RT3VIN 

biopsy material at the six week interval were likely to be those that survived Cidofovir 

treatment. Therefore, duration and concentrations of treatment varied greatly between 
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the cell line work and the clinical material. In addition to this, BIRC3 and BCL2A1 are 

thought to be involved in immune regulation as well as anti-apoptotic and cell survival 

processes. Therefore, the availability of an active immune system would be an important 

factor to signal to and modulate the expression of these genes.  

A strength of the RT3VIN RT-qPCR study was that the experiment was conducted on 

histologically validated material from an ethically approved phase 2 clinical trial. RT3VIN 

had a robust methodology and strict inclusion criteria with access to a range of clinical 

information. HPV testing was well controlled, with CaSki DNA used as a positive control 

and water used as a negative control. Strengths of the gene expression data also include 

the use of negative controls and the production of reproducible Ct values. The individual 

RT-qPCR assays and the SYBR green master mixes were commercially validated as was the 

ABI 7900HT RT-PCR analyser.  

A weakness of the RT3VIN RT-qPCR study was the limited number of genes assessed. The 

five target genes analysed in this study showed differential response in the cell line 

studies, but are only a very small subset of genes linked to apoptosis. More genes would 

make for a more informative data set. Additionally, differential transcription patterns of 

the genes were analysed in only a small number of Cases (n = 10). The small sample size 

was a result of the limited and irreplaceable nature of the clinical material and was 

deemed acceptable for use as a pilot study. Limitations of the data itself include the 

normalisation required for the six week sample for Case 4. It is clear from the raw Ct 

values outlined in Figure 5.11 that there was less cDNA in the six week sample for Case 4. 

As the Ct values of GAPDH increased a maximum of two cycles more than HPRT1 

(compared to the baseline Ct values for Case 4) there would appear to be a divergence in 

the efficiency of the RT-qPCR reaction for this primer set. All genes were examined in 

triplicate twice for Case 4 and equivalent results were observed for both experiments 

indicating that these increases in Ct values were not erroneous. The reason for this 

divergence cannot be deduced with confidence from the data set obtained. The primer 

assays are marketed as having equivalent efficiencies by the manufacturer (Qiagen, 

Hilden, Germany) and the recommended SYBR green RT-qPCR master mixes and 

thermocycler programs were used, such that the generation of significant differences in 

http://click.thesaurus.com/click/nn1ov4?clksite=thes&clkpage=the&clkld=0&clkorgn=0&clkord=0&clkmod=1clk&clkitem=divergence&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Fdivergence
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PCR efficiencies between the two primer sets was unlikely. An alternative explanation 

might be that tissue or cell specific expression differences occur for these reference genes, 

which is plausible due to the fact that biopsies sample a cross section of epithelial layers. 

However, the GAPDH and HPRT1 reference genes were selected as they appeared most 

stable in the initial RT-qPCR apoptosis arrays on the cell line material.  

To conclude on the RT3VIN RT-qPCR study, extensive up-regulation of two anti-

apoptotic/inflammatory related genes, BCL2A1 and BIRC3, was found in the two patients 

who cleared HPV by the end of the trial. Future work should include a wider range of 

genes (apoptotic, inflammatory and anti-viral) in a larger cohort of women to gain a better 

understanding of the transcriptional processes taking place. Future work derived from this 

study would also examine the potential role of BCL2A1, BIRC3 and NF-kappa B in Cidofovir 

treated VIN and HPV clearance.  
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6. General Discussion and Conclusions 

This project investigated the treatment of HPV associated anogenital neoplasia using an in 

vitro cell based model derived from HPV16 positive vulval and vaginal intraepithelial 

neoplasia biopsies. It addressed two main questions. The first sought to determine the 

efficacy and specificity of nucleoside analogue compounds in a range of HPV positive and 

negative cell models. The second analysed the molecular mechanism by which Cidofovir 

inhibited cell growth in NHIST cell lines. As an extension of the second question, a pilot 

study was conducted to investigate the transcription of several apoptosis pathway specific 

genes that were differentially regulated in Cidofovir treated HPV positive cell in clinical 

material from the RT3VIN clinical trial.   

Validation of the dosing procedure and experimental models was necessary before 

evaluation of the compounds could be performed. In terms of growth characteristics of 

the M08 and A09 NHIST cell models, the M08 cell line displayed greater seeding efficiency 

and shorter mean DT compared to the A09 cell line. Both cell lines exhibited similar 

polygonal morphologies with “cobblestone” effect post initial isolation; however, with 

continuous passage A09 cells displayed an elongated morphology. The results of E2 PCR, 

DIPS and APOT indicated that A09 cells contained episomal HPV16 DNA and M08 cells 

contained integrated HPV16 DNA; however, these results were not confirmed by Southern 

blotting at the time of submission of this thesis. The final key difference observed 

between M08 and A09 cells was that M08 cells did not express E2, E4 and E5 HPV mRNA 

at any passage post initial isolation (passage 5 to 9); whereas, A09 cells did express E2, E4 

and E5 HPV mRNA at stable levels at each passage examined post initial isolation (passage 

5 to 10). Both E6 and E7 were transcribed at stable levels in M08 and A09 cells.  

As TP53 was a central component in the Cidofovir mechanism of action hypotheses, its 

mutational status in the NHIST cell lines was assessed. This study proved beneficial as in 

addition to showing that both the M08 and A09 cell lines were TP53 wild-type it also 

identified the SNV Arg72Pro, where it has been suggested that the arginine variant of this 

polymorphism renders p53 protein more susceptible to degradation by HPV E6 (Storey et 

al., 1998).  
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Further characterisation of the NHIST cell models found a significant increase in HPV 

oncogene expression between 50 and 100% cell confluence in M08 cells. This result 

highlighted the need to maintain cell confluence at a constant level between all treatment 

conditions in mechanism of action studies, where oncogene transcripts of treated cells are 

normalized to those of the untreated control cells. In addition, through examination of 

growth rates, morphology and oncogene expression of M08 cells grown in the presence 

and absence of 3T3 feeder cells over an 8 day period it was concluded that the NHIST cell 

lines could be cultured in the absence of feeder cells for the mechanism of action studies. 

Three different methods of assessing cell viability were examined to determine the most 

accurate for use in the compound dosing studies. Methods examined included: the 

CellTiter 96® AQueous One MTS Solution Reagent (Promega, Southampton, UK); manual 

cell counting using Trypan Blue dye exclusion staining; and automated cell counting using 

7-AAD staining and flow cytometry. The results suggested that both forms of cell counting 

were more accurate at assessing cell viability than the MTS method.  

In terms of nucleotide analogue dosing, initial experiments demonstrated dose response 

relationships for Cidofovir in the NHIST cell lines and HEKs using manual cell counting with 

Trypan blue staining. All cell lines were sensitive to Cidofovir at micromolar 

concentrations, which indicated lack of specificity of the compound to HPV immortalized 

cells. IC50 values were obtained for Cidofovir in M08, A09 and HEK cells for use in the 

mechanism of action studies. In clinical use, Cidofovir shows selectivity for VIN lesions; 

however the lack of specificity of Cidofovir for HPV immortalized cells in vitro may suggest 

that Cidofovir shows non-specific cytotoxicity but is specific in clinical use due to greater 

incorporation in rapidly proliferating cells. An alternative possibility would be that the 

presence of a stratified, partially keratinized epithelium over normal vulval tissue inhibits 

uptake of Cidofovir by proliferating cells adjacent to the basal layer, whereas in high grade 

VIN, proliferating cells are present at the surface of the epithelium and may receive a 

higher dose of Cidofovir, leading to their gradual erosion. 

IC50 values were obtained for Cidofovir and its cyclic analogues in HeLa (HPV18 positive) 

and C33A (HPV negative) transformed cell lines to determine differences in efficacy 
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between parent and daughter compounds. Inconsistencies in growth inhibition were 

observed between Cidofovir and its daughter compounds in these cell types and upon 

structural analysis it was found that the cyclic ProTide analogue of Cidofovir had reverted 

to its acyclic form.  

Unfortunately, the acyclic structure of Cidofovir was not responsive to ProTide 

modification; however, the Cidofovir sister compounds, Adefovir and Tenofovir, were 

amenable to this type of modification. Two ProTide analogues of Adefovir and three 

ProTide analogues of Tenofovir as well as their corresponding parent compounds were 

evaluated in terms of growth inhibition and effect on cell size and morphology in HeLa 

(HPV18 positive), SiHa (HPV16 positive) and C33A (HPV negative) transformed cell lines. 

The ProTide analogues proved to be extremely effective at inhibiting cell growth in HPV 

positive and negative cell lines at sub-micromolar concentrations, where the Adefovir 

ProTide analogues appeared more effective than the Tenofovir derivatives. While this 

potent effect successfully demonstrated the power of the ProTide technology, the 

compounds showed no specificity for transformed, or HPV positive cells.  

From the data obtained in Chapter 5 the exact mechanism of action of Cidofovir remains 

unclear, but several relevant observations were made. Firstly, at its IC50 concentration, 

Cidofovir did not induce an increase in caspase-3 activity, indicative of apoptosis, at 12, 36 

and 72 hours post treatment in HPV positive and negative cell lines. Consistent with this, 

both HPV positive and negative cells treated with Cidofovir became swollen and increased 

in size, rather than shrinking and undergoing blebbing. Cell swelling is indicative of 

permanent cell cycle arrest/senescence or necrosis, and the decrease in cell number and 

increase in cell size may suggest that Cidofovir treatment caused one of these two 

processes in HPV positive cell lines. The slight increase in total p53 observed in the 

Cidofovir treated A09 cell line may suggest that senescence is the inhibitory process 

occurring as opposed to necrosis, as the connection between p53 and cell senescence is 

better documented than its association with necrosis (Itahana et al., 2001, Leontieva et 

al., 2010, Santoro and Blandino, 2010, Wesierska-Gadek et al., 2005, Zhang et al., 2005).  
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The Cidofovir mechanism of action studies were carried out using IC50 values individual to 

each cell line. Other studies that found Cidofovir did induce apoptosis in HPV positive cell 

lines used higher standard concentrations of the compound and examined its effects for 

longer periods of time (Andrei et al., 2001, De Schutter et al., 2013, Abdulkarim et al., 

2002). The experimental period for the mechanism of action of Cidofovir studies carried 

out for this project lasted a maximum of 4.5 days (including a 24 hour cell attachment 

period). This maximum time point was chosen as significant differences in cell number 

were not generally observed until four days post Cidofovir treatment. Therefore, the 

molecular processes leading to the growth inhibitory effect would have occurred prior to 

day four. Differences in time frames may also have contributed to the lack of correlation 

between the transcriptional responses observed in the NHIST cell lines and those in 

clinical material from the RT3VIN trial. 

Pre-treating HPV positive cells with Cidofovir before radiation treatment was found to 

augment the molecular response. This response appeared to be more pronounced in the 

A09 cell line compared to the M08 cell line, which could be due to genetic differences, 

both host and viral, between the lines. Both M08 and A09 cell lines were found to be TP53 

wild-type, but the A09 cell line contained the arginine variant of Arg72Pro, which has been 

suggested to increase ubiquitination of p53 protein by E6. However, A09 showed greater 

induction of p53 following treatment with Cidofovir and radiation.  Other host genetic 

differences may relate to nucleotide metabolizing pathways and DNA damage repair 

pathways. With regards to viral genetic differences, the two lines differ in the integration 

state of HPV, where E2 PCR, DIPS and APOT indicate that A09 cells contain episomal HPV 

DNA and M08 cells contain integrated HPV DNA. It could be speculated that episomal HPV 

DNA could be lost due to genotoxic stress induced by Cidofovir and radiation treatment; 

this would manifest as a decrease in E6/E7 expression and an increase in total and 

phosphorylated p53. However, as a decrease in E6 expression was observed in the M08 

cell line as well as the A09 cell line, episome loss may not be relevant. Another difference 

between the M08 and the A09 cell line was the absence of E4 and E5 expression in the 

M08 cell line. E4 has been shown to be involved in virus maturation (Doorbar et al., 1986) 

and cytokeratin disruption (Doorbar et al., 1991, Roberts et al., 1993), while E5 is thought 
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to promote cellular proliferation through interfering with intracellular signalling cascades, 

such as EGF signalling (Leechanachai et al., 1992) (Tomakidi et al., 2000, Straight et al., 

1993). With these functions in mind, it is unclear how expression of E4 and E5 in the A09 

cell line could contribute to p53 induction post Cidofovir and radiation treatment.  

The combination of Cidofovir pre-treatment and radiation produced a large increase in 

cleaved caspase-3 activity in HPV negative untransformed HEK cells but not in the NHIST 

lines. This is consistent with abrogation of the apoptotic response in HPV infected cells 

due to the combined effects of E6 and E7 and suggests Cidofovir does not selectively 

radiosensitize HPV positive cells. Such a large increase in cleaved caspase-3 activity in HPV 

negative untransformed HEK cells suggests that to combine Cidofovir treatment with 

radiation could produce considerable cell death in healthy tissue, something that would 

be highly disadvantageous in the clinic. 

The findings of the cell line work were applied to the patient material from the RT3VIN 

clinical trial to investigate whether the same trends were present in both the NHIST cell 

models and the in vivo disease from which they were derived. Five apoptosis pathway 

specific genes that were examined previously and shown to be differentially expressed in 

the M08 cell line were further examined in 20 biopsies taken before or during Cidofovir 

treatment (10 patient cases in total). In the cell line work the most notable change in 

expression of the genes examined was down-regulation; however the most prominent 

change in gene expression between the before and during treatment samples was up-

regulation in the clinical material.   

As the results of the Cidofovir mechanism of action studies in M08, A09 and HEK cells 

tentatively suggest Cidofovir induces cell cycle arrest/senescence, future experiments to 

confirm such mechanisms would involve cell cycle evaluation using Propidium iodide 

staining with flow cytometry or β-Galactosidase staining for cell senescence. Additional 

future work stemming from the results presented in this project could involve evaluation 

of Cidofovir uptake and metabolism in M08 and A09 cells. This may determine if the 

molecular effect produced by Cidofovir, which was more prominent in A09 cells when 

compared to M08 cells, was due to differences in nucleotide metabolising enzymes 
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including hENT, cENT, OCTs, OATs and nucleoside phosphorylating enzymes. Furthermore, 

Cidofovir dosing of M08 and A09 cells in raft culture could be performed to provide 

further insight into the potential mechanism of action of Cidofovir and its ability to 

permeate different epithelial layers, which would be more representative of an in vivo 

state when compared to monolayer culture. 

To conclude, despite showing specificity to VIN lesions in clinical use, no specificity of 

Cidofovir for HPV immortalized cells was demonstrated in vitro. The ProTide analogues of 

Adefovir and Tenofovir displayed an extensive increase in efficacy when compared to their 

parent compounds; however, specificity to HPV positive or transformed cells was not 

observed. At the doses investigated, Cidofovir did not appear to cause apoptosis of HPV 

positive or negative cells. The inhibitory effect of Cidofovir on cell growth appears more 

likely to be associated with cell cycle arrest/senescence. In HPV negative HEK cells, 

combined treatment with Cidofovir and gamma radiation appeared to cause a significant 

apoptotic response. In HPV positive cells combined treatment with Cidofovir and gamma 

radiation was associated with accumulation and phosphorylation of p53, and with 

increased transcription of p21/CDKN1A, but not with increased p21 protein or apoptosis. 
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8. Appendix 

8.1. MagicMark™ XP Western blot Protein Standard and 
Western blot Antibody Specificity 

.  
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Figure 8.1. Total p53 Antibody Specificity and MagicMark™ XP Western blot Protein 

Standard 

Western blot images for total p53 antibody, which can be seen at 53 kDa on each blot. The 

MagicMark™ XP Western blot Protein Standard can be seen running down the left hand side 

of each blot as well as running through the middle of the blots in B. and C.. Treatment 

conditions in lanes from left to right are [untreated control], [IC50 Cidofovir], [IC50 Cidofovir + 

2 Gy XRT], [2 Gy XRT], [20 Gy XRT] for A (i) A09 cells 12 hours post treatment; A (ii) A09 

cells 36 hours post treatment; B (i) M08 cells 72 hours post treatment; B (ii) A09 cells 72 

hours post treatment; C (i) M08 cells 12 hours post treatment;  C (ii) M08 cells 36 hours post 

treatment. The blot in D is of HEKs and lanes running from left to right contain [12 hour 

untreated control], [12 hour IC50 Cidofovir], [36 hour untreated control], [36 hour IC50 

Cidofovir], [72 hour untreated control], [72 hour IC50 Cidofovir]. Blots A, C and D were 

imaged using a 1 minute exposure time. Blot B was imaged using a 30 minute exposure time 

to overcome the β-Actin signal for which it was previously imaged. 
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Figure 8.2. Phospho-p53 Antibody Specificity and MagicMark™ XP Western blot 

Protein Standard 

Western blot images for phospho p53 antibody, which can be seen at 53 kDa on each blot. 

The MagicMark™ XP Western blot Protein Standard can be seen running down the left hand 

side of each blot as well as running through the middle of the blots in B. and C.. Treatment 

conditions in lanes from left to right are [untreated control], [IC50 Cidofovir], [IC50 Cidofovir + 

2 Gy XRT], [2 Gy XRT], [20 Gy XRT] for A (i) A09 cells 12 hours post treatment; A (ii) A09 

cells 36 hours post treatment; B (i) M08 cells 72 hours post treatment; B (ii) A09 cells 72 

hours post treatment; C (i) M08 cells 12 hours post treatment;  C (ii) M08 cells 36 hours post 

treatment. The blot in D is of HEKs and lanes running from left to right contain [12 hour 

untreated control], [12 hour IC50 Cidofovir], [36 hour untreated control], [36 hour IC50 

Cidofovir], [72 hour untreated control], [72 hour IC50 Cidofovir]. All blots were imaged using a 

30 minute exposure time. 
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Figure 8.3. Cleaved Caspase-3 Antibody Specificity and MagicMark™ XP Western blot 

Protein Standard 

Western blot images for cleaved caspase-3 antibody, which can be seen at 17/19 kDa on 

each blot. The MagicMark™ XP Western blot Protein Standard can be seen running down 

the left hand side of each blot as well as running through the middle of the blots in B. and C.. 

Treatment conditions in lanes from left to right are [untreated control], [IC50 Cidofovir], [IC50 

Cidofovir + 2 Gy XRT], [2 Gy XRT], [20 Gy XRT] for A (i) A09 cells 12 hours post treatment; A 

(ii) A09 cells 36 hours post treatment; B (i) M08 cells 72 hours post treatment; B (ii) A09 cells 

72 hours post treatment; C (i) M08 cells 12 hours post treatment;  C (ii) M08 cells 36 hours 

post treatment. All blots were imaged using a 30 minute exposure time. 
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Figure 8.4. p21 and β-Actin Antibody Specificity and MagicMark™ XP Western blot 

Protein Standard 

Western blot images for p21 and β-Actin antibodies, which can be seen at 21 and 42 kDa 

respectively on each blot. The MagicMark™ XP Western blot Protein Standard can be seen 

running down the left hand side of each blot as well as running through the middle of the 

blots in B. and C.. Treatment conditions in lanes from left to right are [untreated control], 

[IC50 Cidofovir], [IC50 Cidofovir + 2 Gy XRT], [2 Gy XRT], [20 Gy XRT] for A (i) A09 cells 12 

hours post treatment; A (ii) A09 cells 36 hours post treatment; B (i) M08 cells 72 hours post 

treatment; B (ii) A09 cells 72 hours post treatment; C (i) M08 cells 12 hours post treatment;  

C (ii) M08 cells 36 hours post treatment. All blots were imaged using a 30 minute exposure 

time. The blot in D is of HEK cell lysates, where lanes running from left to right contain [12 

hour untreated control], [12 hour IC50 Cidofovir], [36 hour untreated control], [36 hour IC50 

Cidofovir], [72 hour untreated control], [72 hour IC50 Cidofovir]. All blots were imaged using a 

1 minute exposure time. The blots in this figure correspond to those in Figure 8.1. Total p53. 
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Figure 8.5. β-Actin Antibody Specificity and MagicMark™ XP Western blot Protein 

Standard 

Western blot images for β-Actin antibodies, which can be seen at 42 kDa on each blot. The 

MagicMark™ XP Western blot Protein Standard can be seen running down the left hand side 

of each blot as well as running through the middle of the blots in B. and C.. Treatment 

conditions in lanes from left to right are [untreated control], [IC50 Cidofovir], [IC50 Cidofovir + 

2 Gy XRT], [2 Gy XRT], [20 Gy XRT] for A (i) A09 cells 12 hours post treatment; A (ii) A09 

cells 36 hours post treatment; B (i) M08 cells 72 hours post treatment; B (ii) A09 cells 72 

hours post treatment; C (i) M08 cells 12 hours post treatment;  C (ii) M08 cells 36 hours post 

treatment. All blots were imaged using a 30 minute exposure time. The blot in D is of HEK 

cell lysates, where lanes running from left to right contain [12 hour untreated control], [12 

hour IC50 Cidofovir], [36 hour untreated control], [36 hour IC50 Cidofovir], [72 hour untreated 

control], [72 hour IC50 Cidofovir]. All blots were imaged using a 1 minute exposure time. The 

blots in this figure correspond to those in Figure 8.2 and 8.3; phospho-p53 and cleaved 

caspase-3 respectively. 
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