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Abstract 
 

In ER+ breast cancer initial responses to antihormones are variable, complete 

responses are rare and resistance is eventually acquired by many patients. It is 

important to model these events to discover predictive markers of antihormone 

outcome and so targeted strategies can be developed to maximise antihormone 

effectiveness. To date, most studies have employed the MCF-7 cell line which fails 

to represent the variability of ER+ disease. Focusing on Faslodex, the thesis 

objective was to use 4 cell lines in vitro encompassing ER+/HER2- (MCF-7/T47D) and 

ER+/HER2+ (BT474/MDA-MB-361) disease to (i) characterise the magnitude of  

initial antihormone response, (ii) monitor the onset of resistance by prolonged 

treatment and (iii) detail gene expression changes during Faslodex treatment.  

 

All models were initially growth-inhibited by Faslodex, with superior responses in 

HER2- lines. Microarray analysis revealed gene cohorts affected by Faslodex 

treatment differed between HER2+ and HER2- models. While MCF-7, BT474 and 

MDA-MB-361 cells acquired Faslodex resistance, this failed to develop in the T47D 

line, providing a model of complete-response. A filtering process identified genes 

involved in the varying Faslodex responses and clinical relevance was determined 

using the NEWEST Faslodex clinical trial dataset.  

 

Of interest was the Faslodex-induction of CXCR4, as a potential mediator of 

acquired resistance, while suppression of the RET signalling pathway related to 

improved initial response in the ER+/HER2- setting. Importantly up-regulation of 

DCN by Faslodex was associated with improved Faslodex response in T47D cells and 

also with proliferation (Ki67) fall in the NEWEST clinical trial. shRNA knockdown of 

DCN reduced the sensitivity of T47D cells to Faslodex  and enabled development of 

resistance.  

 

This thesis has successfully identified novel elements of Faslodex response and 

resistance and further work is now required to clarify the importance of these 

mediators and to determine if DCN could prove a useful clinical biomarker of 

Faslodex response. 
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Chapter 1 

Introduction 

 

 

1.1 Incidence and Mortality 

Breast cancer is the most common female cancer in the UK and 1 in 8 women will 

be diagnosed with breast cancer during their lifetime. The incidence of breast 

cancer has increased by 70% in the last 30 years but improved treatments, 

increased awareness and an established screening system has resulted in more 

than 8 out of 10 women surviving the disease beyond 5 years (Cancer Research UK 

Statistics, 2010 (latest statistics available). Unfortunately, however, 1000 women in 

the UK still die from breast cancer every month. In many patients the disease 

manages to progress despite treatment so further research and improved 

treatments are clearly required (Cancer Research UK Statistics, 2010 (latest 

statistics available). 

1.2 Oestrogen and breast cancer risk 

Although the majority of breast cancers are sporadic and result from an 

accumulation of uncorrected genetic changes in somatic genes over a patient’s 

lifetime, exposure to the steroid hormone oestrogen is a major risk factor for the 

development of the disease (Clemons et al., 2001). As such, breast cancer is 

primarily a female disease and increasing age, women who begin menarche at a 

young age or have a late menopause (factors which increase a woman’s lifetime 

exposure to oestrogen) all increase breast cancer risk (Hunter et al., 1997; 

Collaborative Group on Hormonal Factors in Breast Cancer, 1997). Similarly, women 

with increased levels of endogenous oestrogen and testosterone following the 

menopause are at a higher risk of developing breast cancer compared to those with 

the lowest levels (Endogenous Hormones and Breast Cancer Collaborative Group, 
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2002). Also, women who take hormone replacement therapy (HRT) for 5 years have 

a 66% increased risk of developing breast cancer (Nomura et al., 1986).  

 

Further evidence for a link with endocrine status came from the observation that 

women who have children have a decreased risk of developing breast cancer, even 

more so if they breast feed (MacMahon et al., 1970; Siskind et al., 1989). 

Significantly, the incidence of breast cancer in developing countries is much less 

than in the developed world and it is thought that this may, in part, be due to 

women in such countries having more children and breast feed for longer (Cancer 

Research UK, Risk Factors).  

1.3 Molecular basis for oestrogen action  

Oestrogen signalling in normal breast and in breast tumours is mediated through 

two oestrogen receptors, ERα and ERβ, which belong to the steroid nuclear 

receptor family of ligand-dependent transcription factors (Tsai et al., 1994). 

Importantly, however, ERα is the dominant ER subtype in breast cancer, found by 

immunohistochemistry in many of these tumours, and it is thought that the 

inhibitory properties of antihormones in breast cancer treatment primarily result 

from the blocking of the actions of ERα (subsequently termed ER throughout this 

project) as both an oncogenic transcription factor and signal transducer (Nicholson 

et al., 1995; Wakeling et al., 2000). Several mechanisms have been determined that 

provide the molecular basis for ER signalling. With respect to genes impacted by ER 

signalling these include the induction of a number of pro-proliferative genes such as 

cyclin D1, myc and IGF1R (Frasor et al., 2003; Dubik et al., 1992; Kahlert et al., 2000) 

and pro-survival elements such as bcl-2 (Teixeira et al., 1995) that ultimately drive 

ER+ breast cancer. ER signalling also represses a number of other genes in order to 

further regulate cell growth including the suppression of adverse growth factor 

pathways such EGFR, HER2 and NF-κB (Yarden et al., 2001; Russell et al., 1992; 

Lobanova et al., 2007). 
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1.3.1 Classical and Non-classical Genomic Functions of ER 

1.3.1.1 Classical Genomic ER Functions 

The transcription of ER-regulated genes is regulated by 2 activating function (AF) 

domains in the oestrogen receptor: AF-2 is found near the carboxy-terminus of ER 

and requires oestrogen (E2) binding to the ligand-binding domain (LBD) of the 

receptor, while AF-1 at the N-terminus of the receptor, is hormone-independent 

(Figure 1) (Kumar et al., 1987; Metzger et al., 1995). Both transactivation domains 

are required for maximal ER transcriptional activity, but in the presence of 

particular ER-regulated gene promoters they can function independently 

(Tzukerman et al., 1994).  

 

Figure 1: Structure of ER. Receptor consists of 6 functional domains (A-F), which include the 

AF-activating function domains 1 and 2, DBD-DNA binding domain and LBD-ligand binding 

domain.  

In the absence of E2, chromatin is condensed and the transcription of ER-regulated 

genes is suppressed. In response to E2 binding into a hydrophobic “pocket” in the 

LBD (Figure 1), the ER becomes activated with a conformational change which 

allows helix 12 of ER to seal the pocket containing the E2 and the dissociation of 

chaperone proteins follows. The conformational change of the receptor allows it to 

dimerise with another ER. The ER dimer recruits nuclear coactivators which 

contribute to chromatin remodelling and enhance ER transcriptional activity 

(Metivier et al., 2003). One such transcription factor is FOXA1 which has been 

shown to be required for global ER binding and when FOXA1 is silenced >90% of ER 

binding events are reduced. This correlates with a loss in the accessibility of 

chromatin and the suppression of ER-mediated transcription and proliferation 

(Hurtado et al., 2011). Such factors have been named pioneer factors and, in the 

A/B C D E 

AF-1 DBD LBD 

F N 

AF-2 

C 
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absence of FOXA1, ER is unable to bind to DNA as it is incapable of physically 

associating with compacted chromatin (Carroll et al., 2005). 

The oestrogen-activated ER binds to target oestrogen response elements (ERE) in 

the promoter regions of oestrogen-responsive genes via the DBD (Figure 1) and 

forms a transcriptional complex via the recruitment and binding of oestrogen co-

regulatory proteins such as AIB1 (McKenna et al., 1999) and the general 

transcription machinery leading to transcription of such genes by synergistic activity 

of AF-2 and AF-1. However, ER is also able to inhibit the transcription of many other 

genes (Dobrzycka et al., 2003). Its ability to suppress the expression of many genes 

is thought to be due to differences in gene promoter sequences resulting in the 

recruitment of corepressor proteins to these transcriptional complexes (McKenna 

et al., 1999; Horwitz et al., 1996). For example, such repressive actions of oestrogen 

have been postulated to be the cause of TGF-β signalling repression (Malek et al., 

2006). 

1.3.1.2 Non-classical Genomic ER Functions 

In addition to the classical ER functions described above, oestrogen is also capable 

of regulating gene transcription without direct DNA binding of ER. This occurs by 

protein-protein interactions of ER with other transcription factors. Such interactions 

were indicated when O’Lone et al., reported that at least one third of ER-regulated 

genes do not possess EREs and thus the regulation of their expression by ER cannot 

be via a direct DNA interaction (O’ Lone et al., 2004). Instead ER modulates other 

transcription factors such as AP-1, Sp-1 or NF-κB, indirectly regulating these ER-

responsive genes, known as transcriptional crosstalk (Gottlicher et al., 1998).  

Genes known to be positively or negatively regulated in this non-classical manner 

include cyclin D1 (Castro-Rivera et al., 2001) Hsp27 (Porter et al., 1997), VCAM-1 

(Simoncini et al., 2000) and EGFR (Salvatori et al., 2009). Importantly, ER signalling 

not only suppresses EGFR but also other members of the erbB family (Russell et al., 

1992). The role of ER in this non-classical system can vary; in the case of some 

genes it will act to stabilise a transcription factor complex to aid transcription of a 

particular gene via alternative response elements (essentially acting as a 
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coactivator) (Teyssier et al., 2001), while in other cases, such as repression of IL6 

transcription, ER prevents the association of NF-κB and C/EBPβ with DNA (Ray et 

al., 1997).  

Interestingly, many ER-responsive/ ERE-lacking genes contain ERE half-sites, or 

binding sites for SF-1 (an orphan nuclear hormone receptor) where  SF-1 can act as 

a alternate direct ER binding site (O’Lone et al., 2004). To add further complexity to 

this, non-classical ER signalling can be cell (Cerillo et al., 1998) and ligand specific 

(Webb et al., 2003; Kushner et al., 2000) which may partly explain the varied action 

of oestrogens in different tissues. 

1.3.2 Ligand-independent genomic ER functions 

Critically, in environments where oestrogen is not present other kinase signalling 

pathways, notably those downstream of EGFR and IGF1R, are capable of activating 

ER via phosphorylation of particular residues within the ligand-independent AF-1 

domain (Driggers et al., 2002). Phosphorylation of these ER residues, in particular 

serine 118 which is a MAPK target, can re-activate ER in the absence of ligand, 

allowing transcription of oestrogen-responsive genes and the promotion of cell 

growth (Kato et al., 1995). Growth factor signalling has also been shown to activate 

ER coregulator proteins providing an alternative route for growth factors to 

influence the ER pathway (Schiff et al., 2003). p42/44 MAPK, AKT, p38 MAPK and 

PKA (Kato et al., 1995., Campbell et al., 2001., Lazennec et al., 2001) are some of 

the kinases that have been described to activate ER by direct phosphorylation 

and/or via phosphorylation of ER coregulators. 

1.3.3 Non-Genomic ER Functions 

Further to these nuclear transcriptional functions, rapid non-genomic actions have 

been ascribed to oestrogen. Such actions are believed to occur via oestrogen acting 

at membrane-associated ER and result in the phosphorylation of growth factor 

receptors such as IGF1R and HER2 (Fan et al., 2007; Kahlert et al., 2000), as well as 

downstream effectors such as the p85 subunit of phosphoinositide-3-kinase (PI3K) 

(Simoncini et al., 2000) resulting in pro-survival signalling.  
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Although ER at the plasma membrane can initiate signalling via its ligand binding 

domain (Kousteni et al., 2001),  it is possible that other domains that make up the 

receptor structure may also be involved in the signalling cascades initiated. It is 

likely that a number of ER domains provide docking stations for various scaffold 

proteins which may alter the magnitude of signalling via various protein-protein 

interactions, or the presence of certain scaffold proteins may promote interactions 

with particular downstream proteins thus modulating ER signalling cascades. For 

example, the scaffold protein MNAR promotes the interaction of activated ER with 

Src kinase, leading to increased Src activity and thus MAPK activation (Wong et al., 

2002). Like genomic signalling, the effects of ER non-genomic signalling can vary 

depending on cell type. The effect elicited by plasma-membrane associated ER 

following activation by oestradiol may depend on the availability of signal 

transduction molecules within a particular cell type as well as the downstream 

targets. As such, the non-genomic responses may be varied (Bjornstrom et al., 

2005) and their contribution to malignant growth differs from patient to patient 

and can evolve over time. 

1.3.4 Convergence of non-genomic and genomic ER actions 

Signal transduction pathways are likely to connect non-genomic actions of 

oestrogens to genomic responses. The functions of many transcription factors are 

regulated via protein kinase phosphorylation and thus may be downstream targets 

of non-genomic actions of oestrogens. One such transcription factor is AP-1; 

oestradiol activation of the MAPK pathway enhances AP-1 DNA binding and thus 

increases its transcriptional activity (Dos Santos et al., 2002; Bjornstrom et al., 

2004). However, oestradiol can also suppress AP-1 activity by inhibiting the c-Jun 

amino-terminal kinase signalling cascade (Kousteni et al., 2003). Such a mechanism 

also provides another way for ER to regulate the transcription at alternative 

response elements. In addition, kinase signalling pathways downstream of 

membrane ER may trigger ligand-independent phosphorylation of ER AF-1 residues, 

with activity thus promoting ER-regulated gene expression (Pietras et al., 1995).  

Collectively, therefore, data suggests that ER is capable of modulating gene 

transcription by four mechanisms (Figure 2): 



18 
 

 Direct binding of E2-ER to EREs (classical signalling). 

 E2-ER protein-protein interactions with other transcription factors within 

the nucleus, indirectly activating ER-responsive genes.  

 Ligand-independent genomic activation of ER-responsive genes by  

protein kinase cascade phosphoryaltion of ER 

 Membrane-associated ER activating signalling pathways from the plasma 

membrane that lead to activation or repression of their target transcription 

factors within the nucleus or their activation of ER (AF-1) to mediate 

transcription of ER-responsive  

 

 

Figure 2: Schematic diagram of the various mechanisms utilised by ERα to regulate gene 

expression of ER-responsive genes. 1. Classical signalling; E2-ER binds to ERE promoter on 

target genes. 2. ERE-independent activation; E2-ER interacts with other transcription 

factors within the nucleus to indirectly regulate transcription. 3. Ligand-independent 

genomic activation; Activation of protein kinase domains by growth factors results in 

phosphorylation of ER in the absence of E2. 4. Non-genomic signalling; membrane-

associated E2-ER activates protein kinase cascades which alter the function of cytoplasmic 

proteins e.g. eNOS as well as regulating gene expression. 
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1.4 Therapeutic options for ER+ breast cancer: Targeting ER signalling 

Approximately 70% of all breast cancers are ER+; molecular studies have 

determined several subtypes of ER+ breast cancer (Cancer Genome Atlas Network., 

2012). However, from a therapeutic perspective it is useful to sub-divide ER+ 

disease into 2 molecular subtypes according to status of HER2 (an erbB receptor); 

those that are ER+/HER2+ and those that ER+/HER2-. 80% of ER+ tumours are 

HER2- (Harvey et al., 1999) while the remainder co-express HER2 (amplification or 

over-expression (Slamon et al., 1987; Press et al., 1997).  It has been widely 

reported (Brufsky et al., 2005) that reduced drug responses are observed in 

ER+/HER2+ tumours following endocrine treatment such as tamoxifen  (while these 

tumours can be appropriate for the HER2-targeted therapy Herceptin (Spector and 

Blackwell, 2009).  

In 1896 Dr George Thomas Beatson described how removal of the ovaries from 

women with advanced breast cancer could bring about an improvement in their 

condition. Although Beatson had yet to make the connection between oestrogen 

and breast cancer, from his observations of lactation in farm animals and women 

who had recently given birth he demonstrated that certain functions of the breast 

were under the control of the ovaries (Beatson, 1896). 

Today the mainstay treatments for ER+ breast cancer are antihormonal drugs, of 

which there are several classes which have been designed to interfere with 

oestrogen/ER signalling and hence its regulation of genes involved in breast cancer 

growth. Predominately used in the clinic are tamoxifen and aromatase inhibitors, 

the latter having recently become the “gold standard” antihormonal approach in 

postmenopausal early breast cancer. Faslodex (fulvestrant) is also emerging as an 

antihormone of increasing importance for ER+ disease treatment. Figure 3 displays 

the actions of tamoxifen and Faslodex in inhibiting oestrogen signalling and how 

oestrogen drives gene transcription through the activation of ER and thus how the 

inhibition of oestrogen synthesis via the use of aromatase inhibitors would prevent 

such action and thus be of therapeutic use. Antihormones are invaluable adjuvant 

systemic treatments after surgery in ER+ early breast cancer patients to hinder 

relapse and extend survival or cure (Jordan et al., 2011). They can also be beneficial 
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in limiting advanced (metastatic) ER+ breast cancer growth (Joensuu et al., 2005), 

and furthermore in the neoadjuvant setting to reduce the size of large tumours 

allowing more conservative breast surgery (Olson et al., 2009). 

 

 

 

 

 

 

 

 

Figure 3: The mechanism of oestrogen-induced gene transcription and how this is 

affected by the use of tamoxifen and Faslodex. Further aromatase inhibitors 

prevent the synthesis of oestrogen thus inhibiting oestrogen-driven transcription 

(modified from Buzdar, 2004). 

1.4.1 The Selective ER Modulator (SERM) Tamoxifen 

Tamoxifen is a non-steroidal anti-oestrogen which acts as a competitive oestrogen 

antagonist of ER. As a consequence of its binding to the LBD, tamoxifen is able to 

prevent the action of oestrogen and thereby hinders transcription of oestrogen-

induced genes. Significantly, however, the bulky side chain of tamoxifen causes an 

ER conformational change so that Helix 12 of the ER protein is displaced. This 

conformational change inactivates AF-2 driven transcription, but does not hinder 

AF-1 transcriptional activity (Metzger et al., 1992). The agonist/antagonistic effects 

of tamoxifen, together with other SERMs, thus depend on the relative importance 

of AF-1 and AF-2 in driving ER-regulated transcription within a tissue. As ER activity 

in the hormone responsive breast is predominantly mediated by AF-2, an overall 

antagonistic effect of tamoxifen is observed, while in bone and the uterus where  

 Protein kinase  
cascades 
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tamoxifen has been shown to be agonistic, ER actions are driven  primarily though 

AF-1 (MacGregor et al., 1998). Significantly, in some instances the conformation 

change induced by tamoxifen binding to ER can result in the recruitment of nuclear 

co-repressors (NCORs) to the receptor instead of co-activators (NCOA’s) thereby 

inhibiting transcription of oestrogen-regulated genes (Smith et al., 1997; Lavinsky et 

al., 1998). Ultimately however, alterations in the contributions of AF-1/AF-2 to 

transcription, as well as the availability of NCOA’s and NCOR’s and of growth 

factor/kinase signalling activity that can activate AF-1 phosphorylation can  shift the 

balance of tamoxifen activity towards a more agonistic state  (Jepsen et al., 2000) 

and may contribute to resistance to this agent (Britton et al., 2008). 

 Until relatively recently tamoxifen was the gold standard endocrine treatment for 

ER+ breast cancer, but with the emergence of superiority of aromatase inhibitors in 

postmenopausal disease, it is now most commonly used in ER+ premenopausal 

women. Tamoxifen has been approved for use in the adjuvant clinical setting for 

premenopausal, postmenopausal and also male patients with ER+ disease who 

have undergone surgery to remove the primary tumour mass. 5 years of adjuvant 

therapy in this setting has been shown to reduce relapse rates significantly and 

improve patient survival (EBCTCG, 2011). It may also be alternated with an 

aromatase inhibitor, again for a 5 year period (Rao et al., 2012), and studies are 

now reporting benefits of more extended treatment timeframes (e.g. ATLAS trial: 

Davies et al., 2013). Tamoxifen is similarly approved for initial treatment of 

metastatic ER+ breast cancer in both males (Giordano et al., 2005) and females 

(pre- and post-menopausal women) (Michaud et al., 2001) and has also been 

approved for use in females at high risk of developing ER+ breast cancer (Cuzick et 

al., 2013). 

1.4.2 Aromatase Inhibitors (AI) 

With the menopause, although ovarian oestrogen production ceases, oestrogens 

can nevertheless still be detected in women.  Such levels arise primarily from 

androgens found in peripheral tissues, such as adipose tissue, which can be 

converted to oestrone and oestradiol by the enzyme aromatase (CYP450; Bulun et 

al., 1993). Oestrogens in breast cancers can also be derived from stromal 
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aromatase activity (Miki et al., 2007). It has been reported that breast cancer 

growth can be promoted by these low levels of oestrogen (Masamura et al., 1995) 

and aromatase inhibitors (AIs) have been developed to block the activity of 

aromatase and thus prevent the conversion of androgens to oestrogens. There are 

two classes of aromatase inhibitors available for the treatment hormone-

dependent breast cancer, steroidal AIs (e.g. exemestane) and the third generation 

nonsteroidal AIs (e.g. anastrozole and letrozole), which all act to severely deprive 

breast cancer cells of oestrogen and it’s signalling.  

 

Non-steroidal (reversible) AIs behave as competitive antagonists by occupying the 

substrate binding site of aromatase preventing androgen binding (Cole et al., 1990). 

However, as binding is competitive they can be displaced by the endogenous ligand. 

In contrast, steroidal AIs are analogues of the natural aromatase ligand 

androstenedione and thus are recognised as an alternative substrate by aromatase. 

Steroidal AIs are converted into a reactive intermediate which permanently bind to 

the enzyme resulting in irreversible inactivation (Hong et al., 2007). AIs can achieve 

over 95% inhibition of aromatase enzymatic activity and suppress circulating 

oestrogens to almost undetectable levels in postmenopausal ER+ breast cancer 

patients (Geisler et al., 1996). 

 

AIs are only currently approved for use in ER+ postmenopausal breast cancer 

patients (with an alternative approach for oestrogen deprivaion, the luteinizing 

hormone-releasing hormone (LH-RH) agonist Zoladex, used in premenopausal 

women). Anastrozole was initially approved as a first-line treatment for locally 

advanced or metastatic ER+ disease in postmenopausal patients and is valuable 

where tamoxifen fails. However, it has now become the gold-standard treatment in 

the adjuvant setting of early disease for ER+ postmenopausal women (5 year 

treatment) based on results from the ATAC (Arimidex, Tamoxifen, Alone or in 

Combination) trial where anastrozole was found to be superior to tamoxifen in this 

setting (Howell et al., 2005). Letrozole is approved for first-line treatment in the 

adjuvant setting for ERα+ postmenopausal women as well as subsequent to 

patients receiving 5 year adjuvant tamoxifen therapy and results in improved 
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disease free survival (DFS). Exemestane is the only steroidal aromastase inhibitor 

that is FDA approved for use in the adjuvant setting in ER+ postmenopausal 

patients who have already received 2-3 years of tamoxifen treatment in order to 

complete 5 years of endocrine treatment (Food and Drug Administration, 1999). 

1.4.3 The Selective ER down-regulator (SERD) Faslodex (Fulvestrant) 

The steroidal anti-oestrogen Faslodex, a 7-alpha derivative of oestradiol-17B with a 

long-unbranched 7-alpha alkylsufinyl sidechain (Wakeling et al., 1992) has been 

termed a “selective ER down-regulator” (SERD). Faslodex can be administered 

intramuscular (as fulvestrant) to postmenopausal patients with ER+ metastatic 

disease who have progressed following alternative antihormone treatments (AI or 

tamoxifen). It is also being trialled in the first line advanced disease clinical setting.  

It is described as a “pure antioestrogen” as it lacks any agonistic activity.  Like 

tamoxifen, Faslodex competitively binds to the ER preventing the binding of 

oestrogen, but in contrast to SERMs its long side-chain very severely disrupts ER 

conformation, resulting in down-regulation of ER in a dose-dependent manner. This 

occurs via Faslodex disrupting ER shuttling between the cytoplasm and nucleus, 

thus increasing ER cytoplasmic levels, leading to increased receptor ubiquitinisation 

and degradation and hence loss of nuclear ER (Dauvois et al., 1993; Linstedt et al., 

1986). Additionally, Faslodex binding to the receptor induces a distinct 

conformational change that no longer allows receptor dimerization (Wakeling, 

2000). Faslodex also interferes with helix 12 of the ER, blocking all co-activator 

recruitment but favouring co-repressor recruitment. Through a combination of 

these actions, Faslodex hinders expression of classic oestrogen-induced genes and 

blocks ER transcriptional activity via inhibition of both AF-1 and AF-2 domains 

(Wakeling et al., 1991; Kousteni et al., 2001; Kousteni et al., 2003; Dos Santos et al., 

2002). 

Due to the capacity of Faslodex to down-regulate ER in a dose-dependent manner 

and its substantial growth-inhibitory activity in ER+ breast cancer cells both in vitro 

and in xenograft studies (Nicholson et al., 1995; Wakeling et al., 1991; Osborne et 

al., 2004), early clinical studies were undertaken to establish whether this property 

related to clinical outcome. Data from 2 pre-operative studies upheld this 
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suggestion where patients received different doses of Faslodex for short-periods 

and the down-regulation of ER, the oestrogen regulated gene progesterone 

receptor (PGR) and Ki67 (a measure of tumour cell proliferation rate) were 

observed by immunohistochemistry to be dose-dependent (Robertson et al., 2001; 

DeFriend et al., 1994). A number of clinical trials were subsequently carried out to 

further investigate the efficacy of 250mg and also a high dose 500mg Faslodex 

treatment regime during the various phases of ER+ disease management. In total, 

based on such trials (and several additional ongoing studies), it is envisaged that the 

use of high dose Faslodex will be increasingly a viable therapeutic option at various 

stages during the management of ER+ postmenopausal disease in the clinic. Three 

of the recent pivotal Faslodex trials are summarised below: 

1.4.3.1 CONFIRM (Comparison of Faslodex in Recurrent or Metastatic Breast 

Cancer) 

Two phase III trials in tamoxifen pre-treated postmenopausal ER+ patients indicated 

that 250mg Faslodex was at least as effective as anastrozole when tamoxifen has 

failed (Howell et al., 2002; Osborne et al., 2002) resulting in FDA/EU approval of this 

dosage between 2002 and 2004. The phase III CONFIRM trail was subsequently 

initiated to compare 250mg Faslodex per month with 500mg Faslodex per month 

(with an additional loading dose of 500mg of Faslodex on day 14 of month 1) in the 

metastatic ER+ setting. The trial established the superiority of the 500mg regime 

and demonstrated a clinically relevant extended progression free survival, primarily 

by increasing the duration of disease stabilisation (Di Leo et al., 2010), resulting in 

FDA approval of this higher dose in ER+ postmenopausal patients who had failed on 

tamoxifen in 2010. Further studies have also suggested value of Faslodex after AI 

failure in ER+ breast cancer (Ingle et al., 2004; Perey et al., 2004). 

1.4.3.2 NEWEST (Neoadjuvant Endocrine Therapy for Women with Estrogen-

Sensitive Tumours) 

The NEWEST phase II study was undertaken to compare the biological and clinical 

(e.g. ER, Ki67, PGR and tumour size) activity of Faslodex 500 versus 250mg in the 

neoadjuvant ER+ breast cancer setting. Postmenopausal patients with newly 

diagnosed ER+, locally advanced breast cancer who had received no prior 
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treatments were selected. Patients were randomly assigned to receive 500mg 

Faslodex per month (plus 500mg loading dose on day 14 of month 1) or 250mg per 

month, for 16 weeks prior to surgery. Core biopsies were taken at week 0 

(baseline), at week 4, and in some instances at surgery to assess biomarker 

changes. The primary biological endpoint was Ki67 proliferation marker expression 

from baseline to week 4 and secondary endpoints were ER and ER-regulated PGR 

protein expression, and tolerability (Kuter et al., 2012). The immunohistochemical 

results from NEWEST showed  that the 500mg Faslodex was superior to 250mg in 

terms of significantly greater decreases in Ki67 (-78.8% vs. -47.4% ; p <0.0001), ER (-

50.3 vs. -13.7%; p < 0.0001) and PGR (-80.5 vs. -46.3%; p = 0.0018) protein 

expression (Kuter et al., 2012). 

1.4.3.3 FIRST (Fulvestrant First-Line Study Comparing Endocrine Treatments) 

Following the superior results of a 500mg Faslodex regime in down-regulating ER 

and decreasing Ki67, and that 250mg Faslodex was found to be at least as effective 

as anastrozole in the second line setting for postmenopausal ER+ patients with 

advanced disease (Robertson et al., 2003), the FIRST trial (phase II, open-label 

study) was designed in order to investigate the efficacy of 500mg Faslodex versus 

anastrozole in the first line setting for advanced disease (Robertson et al., 2009). 

ER+ and/or PGR+ postmenopausal patients were randomly assigned to receive 1mg 

anastrozole per day or 500mg Faslodex per month (plus 500mg loading dose on day 

14 of month 1), and continued treatment until progression (or due to any other 

reason that required discontinuation). The high clinical benefit rates for both 

Faslodex and anastrozole confirmed the high clinical efficacy of both agents; 72.5% 

and 62% respectively indicating 500mg Faslodex was at least as effective as 

anastrozole. Moreover, median time to progression was found to be significantly 

longer in patients receiving 500mg Faslodex versus anastrozole. Duration of 

response and duration of clinical benefit were also superior in the Faslodex trial 

arm, promisingly suggesting 500mg Faslodex may provide a longer-lasting effect 

than anastrozole if given first-line in the advanced disease setting (Robertson et al., 

2009). 



26 
 

1.5 Response and Resistance to endocrine therapies 

The oestrogen receptor is arguably the biomarker that has had the most profound 

effect on clinical practice in medical oncology (McDermott et al., 2009). The 

presence of ER in early-stage breast cancer identifies patients who may benefit 

from anti-hormone therapy where treatment has been shown to significantly 

reduce mortality and recurrence rates not only during the treatment period but for 

the following 15 years post treatment (Early Breast Cancer Trialists Collaborative 

Group, 2011). Unfortunately, ER is not an absolute predictor of endocrine response 

(in both the primary or metastatic setting) and it is believed that upwards of 40% of 

patients with ER+ disease are de novo resistant to antihormones, while a significant 

number of patients who initially respond will acquire resistance during therapy 

(Osborne et al., 2011). Moreover, relapse during endocrine therapy has been 

suggested to be associated with accelerated growth, increased aggressive tumour 

behaviour and morphological changes characteristic of cells undergoing partial 

epithelial-to-mesenchymal transition (Gilles et al., 1996; Hiscox et al., 2006).The 

‘CONFIRM’ clinical trial shows the spectrum of response/resistance achieved with 

Faslodex treatment: Table 1 displays the numerical data of the clinical responses 

observed in the 500mg arm of this trial. Only 45.6% of the patients within this trial 

obtained clinical benefit from Faslodex while over half of the patients 

demonstrated disease progression or stable disease for less than 24 weeks. 
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Table 1: Objective response and clinical benefit rates of patients within the Faslodex 500mg 

trial arm of the ‘CONFIRM’ clinical trial (Di Leo et al., 2010). 

Response Number of 
Patients 

% Number of 
Patients 

Complete response 
(CR) 

4 1.1 

Partial response (PR) 29 8 

Objective response 
(CR+PR) 

33 9.1 

Stable disease (SD) 
>24 weeks 

132 36.5 

Clinical benefit 
(CR+PR+SD >24 

weeks) 

165 45.6 

Stable disease (SD) 
>24 weeks 

47 13 

Progressive disease 
(PD) 

140 38.7 

Not evaluable 10 2.8 

Taken together, these clinical findings suggest that ER is not the only 

survival/growth-promoting pathway driving some ER+ tumours, and that escape 

pathways are invariably established when ER is inhibited which serve to limit 

response.  Although in several studies HER2 positivity (HER2+) has also been found 

to be a biomarker of reduced endocrine sensitivity for a number of antihormones 

(AIs and tamoxifen), the relationship between Faslodex and HER2 is less 

established. Overall, the current consensus is that while ER+/HER2+ co-positive 

patients can exhibit a response to endocrine therapy (AI and tamoxifen),  generally 

these responses are inferior in comparison to HER2- patients (Rasmussen et al., 

2008). As such expression of HER2 has become a marker of poorer endocrine 

response and tumours exhibiting this phenotype are often treated with 

trastuzumab (combined with chemotherapy; Piccart-Gebhart et al., 2005). 

Significantly, the relationship between HER2 expression and endocrine response 

does not seem so clear for Faslodex where a  number of researchers have 

demonstrated activity of Faslodex in the ER+/HER2+ setting (Robertson et al., 2010; 

Mello et al., 2011), possibly due to  the unique action of Faslodex in down-

regulating ER and thus inhibiting any ER-HER2 crosstalk.  
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1.5.1 Mechanisms of antihormone resistance 

Faslodex resistance is poorly characterised pre-clinically and the potential 

molecular mechanisms of both response and resistance are poorly understood. 

Furthermore, the majority of research carried out has utilised a limited number of 

cell models which fail to reflect the clinical heterogeneity of ER+ breast cancer. 

However, several mechanisms have been proposed to contribute to antihormone 

resistance, generally reflecting work carried out on tamoxifen and AI resistance and 

can be broadly divided into mechanisms dependent on altered growth factor 

signalling and those that can be independent of such events. Preclinical and clinical 

observations suggest that some of these mechanisms may translate to the 

Faslodex-resistant setting. 

1.5.2 Antihormone resistance mechanisms that can be independent of 

growth factor signalling 

These mechanisms are generally associated with changes in expression level of ER 

or other factors that influence ER activity. For example, along with ~30% patients 

who are intrinsically ER negative, 15-20% of ER+ patients treated with endocrine 

therapy have been reported to lose ER expression thus rendering them insensitive 

to anti-oestrogen therapy (Kumar et al., 1996; Gutierrez et al., 2005). While 

hyperactivation of growth factor signalling pathways may be contributory to ER loss 

(Oh et al., 2001; Stoica et al., 2003), epigenetic modifications to the ER gene ESR1 

have been implicated in the loss of ER expression. The majority of ER-negative 

tumours demonstrate ER promoter methylation (Wei et al., 2008) while a 

proportion of ER+ breast cancer patients’ also exhibit ER promoter methylation 

(Giacinti et al., 2006). As an ER down-regulator, loss of ER at the protein level has 

also been reported in vitro following continued long-term Faslodex treatment (Liu 

et al., 2004) 

 

Further alterations in ER co-regulator levels can influence antihormone activity. ER 

drives transcription by associating with a group of regulatory proteins that form the 

transcription complex (McKenna et al., 1999) and changes in the level of such 

proteins can influence the effectiveness of endocrine therapy. The equilibrium of ER 
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corepressors and coactivators can directly control the agonistic versus antagonistic 

properties of SERMs and the overexpression of the ER coactivator AIB1 has been 

associated with tamoxifen resistance (Shou et al., 2004; Osborne et al., 2003). 

Similarly, the increased activity of transcriptional factors associated with ER 

signalling, such as AP-1, Sp-1 and NF-κB, have been linked to endocrine resistance 

(Schiff et al., 2000; Zhou et al., 2007). The ER coactivator MED1 has been associated 

with development of Faslodex resistance and knockdown of this gene renders cells 

sensitive to Faslodex in vitro and in vivo (Zhang et al., 2013). Differential ER binding 

of co-activators may also be contributory to resistance. Recently, the transcription 

factor FoxA1 has been shown to be essential for ER-mediated transcription where 

its distinct ER binding profiles promoted differential gene expression in a pattern 

unique to tamoxifen resistant cells and also associated with adverse clinical 

outcome in ER+ disease (Ross-Innes et al., 2012).  

 

There is also considerable preclinical and clinical data implicating the activity of 

several cell cycle regulators in determining tumour sensitivity to endocrine agents, 

with data again primarily available in relation to tamoxifen (Musgrove et al., 2009). 

Overexpression of MYC and amplification and/or overexpression of cyclins E1 and 

D1 have been associated with the development of endocrine resistance by either 

activating drivers of the cell cycle, such as cyclin-dependent kinases which are 

critical for the transition of cells through the G1 phase, or relieving the inhibitory 

effects of the negative cell cycle regulators p21 and p27 (Butt et al., 2005). Reduced 

expression or activity of the negative regulators p21 and p27 is similarly associated 

with endocrine resistance (Chu et al., 2008; Perez-Tenorio et al., 2006). 

1.5.3 Growth factor signalling and endocrine resistance 

1.5.3.1 Ligand independent ER activation 

Most resistant tumours continue to express ER (Johnston et al., 1995; Guiterrez et 

al., 2001). Although this does not dictate continued dependence on ER signalling, 

nevertheless a cohort of resistant patients do respond to second-line endocrine 

treatment (Howell et al., 1996; Buzdar et al., 2001) indicating maintained reliance 

on ER signalling for resistant growth and disease progression.  
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It has been suggested that ligand-independent activation of ER (independent or 

downstream of any non-genomic ER input) is linked to endocrine resistance, with 

ER becoming activated despite E2 deprivation or presence of tamoxifen. Such 

events can promote hypersensitivity to any residual oestrogens (Chan et al., 2002) 

or tamoxifen agonism (Shou et al., 2004). Phosphorylation of 2 key AF-1 residues in 

ER have been associated with resistance, serine 118 (S118) and serine 167 (S167). 

Both are reported to be important for ER activity (Arnold et al., 1994; Thrane et al., 

2013). Phosphorylation of S118 has been shown to be mediated by not only 

oestrogen but also by growth factor ligands such as EGF and IGF-1 (Joel et al., 1998; 

Lannigan et al., 2003) as well as downstream growth factor signalling molecules 

ERK1/2 and p38 MAPK (Kato et al., 1998; Joel et al., 1998; Gutierrez et al., 2005; 

Britton et al., 2006). Further the PI3K/AKT signalling pathway has also been 

implicated in phosphorylation of S167 (Campbell et al., 2001). Subsequently, up-

regulation of these signalling pathways has been associated with endocrine 

resistance (Shim et al., 2000; Campbell et al., 2001; Gutierrez et al., 2005). There is 

also cell model evidence that some of the target growth factor receptors in such 

pathways (e.g. erbB family members HER2 and EGFR) are oestrogen-repressed and 

antihormone-induced elements, and so increases in such receptors have also been 

implicated in the development of resistance, cross-talking with ER through their 

downstream kinase signalling to drive acquired resistant cell growth (Gee et al., 

2003; Nicholson et al., 2005; Britton et al., 2006). HER2 induction in resistance is 

believed to be a consequence of loss of the transcription factor PAX2, which is 

involved in its oestrogen/ER-mediated repression (Hurtado et al., 2008) 

Most of the above research was carried out in relation to tamoxifen treatment and 

in light of the mechanism of action of Faslodex, ligand independent activation of ER 

should be reduced as the ER protein is degraded and activity of both AF-2 and AF-1 

are blocked. Nevertheless, as explained previously 250mg Faslodex failed to 

sufficiently suppress ER level leading to the approval of 500mg Faslodex. While this 

dosage was found to be biologically and clinically superior, clinical trials also 

indicate that this higher dose fails to completely suppress ER expression and 



31 
 

function (Kuter et al., 2012; Di Leo et al., 2010; Robertson et al., 2009) and thus it 

remains feasible that ligand independent ER activation may contribute to Faslodex 

resistance. Indeed, the responses observed to further endocrine agents following 

Faslodex failure at least in a proportion of patients implies some retained 

importance for this receptor (Vergote et al., 2003), and trials are ongoing to 

determine if higher doses, or combination with alternative endocrine agents, can 

promote superior ER blockade (Robertson et al., 2009; Di Leo et al., 2010; Kuter et 

al., 2012; Mehta et al., 2012). 

1.5.3.2 Loss of reliance on ER signalling 

A proportion of resistant tumours appear to be ER independent: they are no longer 

reliant on ER signalling for resistant cell growth and survival and thus are not 

growth inhibited by further antihormone treatments. It seems that such tumours 

have acquired the ability to employ alternative signalling pathways which ultimately 

leads to the emergence of a resistant cancer cell population. This has been 

observed in a significant number of patients who fail to respond to second-line 

endocrine therapy (Buzdar et al., 2001).  The hyperactivation of growth factor 

signalling pathways specifically has again been heavily implicated in ER-

independent tumour growth and survival (Normanno et al., 2005).  

In MCF-7-derived acquired tamoxifen-resistant and Faslodex-resistant cells, HER2 

and/or EGFR expression is elevated in comparison to wild-type cells.  These 

antioestrogen-resistant cells can also show increased EGFR/HER2 

heterodimerisation and activity. Such partners activate MAPK and PI3K/AKT 

signalling pathways driving antioestrogen-resistant cell growth (McClelland et al., 

2001; Knowlden et al., 2003; Jordan et al., 2004). While in the tamoxifen resistant 

cells hyperactivated EGFR/HER2 signalling activates ER in a ligand independent 

manner (Britton et al., 2006), such growth factor receptor signalling must function 

independently of ER where acquired Faslodex resistant cells lose this receptor. 

Faslodex has also been shown to differentially regulate EGFR ligands leading to an 

increase in EGFR signalling reducing Faslodex response in MCF-7 cells (Zhang et al., 

2013). Nf-κB may also be involved, as its p65 subunit has been shown to increase in 

Faslodex resistant MCF-7 cells (Gu et al., 2002; Riggins et al., 2005) 
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1.5.3.3 Impact of targeting growth factor pathways in resistance 

The potential importance of growth factor signalling pathways in driving resistant 

cell growth, either through their cross-talk with ER or in an  

ER-independent manner, has been demonstrated by using agents that specifically 

target these growth factor receptor pathways. EGFR or HER2 blockade in either 

acquired tamoxifen-resistant or Faslodex-resistant MCF-7 cells using gefitinib or 

trastuzumab respectively results in potent growth inhibition, whereas in 

antihormonal untreated cells inhibition is small due to the low basal levels of such 

growth factor receptors in the presence of functional E2/ER signalling which 

represses these receptors (McClelland et al., 2001; Knowlden et al., 2003).  

Co-treatment with such targeted agents alongside antihormones such as tamoxifen 

can also subvert emergence of resistance in MCF-7 cells (Gee et al., 2003; Leary et 

al., 2010).  Targeted therapy of the downstream kinases such as MAPK or PI3K/AKT 

has also been shown to inhibit growth of such antiestrogen-resistant cells 

(McClelland et al., 2001; Knowlden et al., 2003; Jordan et al., 2004). 

Immunohistochemical analysis of clinical breast cancer tissue has also shown 

increased expression and/or activity of EGFR, HER2 and MAPK members in samples 

from de novo ER+ (and ER-) tamoxifen resistant patients as well as in some patients 

who acquired resistance (Gutierrez et al., 2005) including samples obtained from 

tamoxifen-treated ER+ primary elderly patients (Gee et al., 2005).   

 

In total, such findings have provided the rationale for the introduction of trials 

looking at EGFR/HER2 targeted therapies alongside antihormones to control 

resistance in the clinic (Christofanilli et al., 2010; Osborne et al., 2011; Carlson et al., 

2012). Emerging data indicates that some tamoxifen or AI treated breast cancer 

patients (notably those who are also HER2+) can respond to such targeted agents 

(Gutteridge et al., 2010; Osborne et al., 2011) but responses can be short-lived, 

indicating further contributory resistance mechanisms. The impact of growth 

factor–targeted treatments in Faslodex resistant disease remains to be established 

in the clinic. However, it is already clear that up-regulation of EGFR, HER2 along 

with MAPK activity is not observed in all Faslodex-resistant cell models where, for 

example, other members of the erbB family have been reported to contribute to 
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reduced efficacy of Faslodex (Sonne-Hansen et al., 2010; Thrane et al., 2013). 

Further, ER has been observed to be lost in some cell models of Faslodex resistance 

while retained in others (Liu et al., 2004; Nicholson et al., 2007). Importantly, the 

long-term biological effects of Faslodex in the clinic are not well reported and thus 

the prevalence of growth factor pathways and relation to any retained ER following 

the development of Faslodex resistance are unknown.  Further studies are clearly 

required to understand both response and resistance mechanisms to Faslodex, 

within and beyond growth factor signalling, particularly given the limited success of 

antihormone (tamoxifen and AI’s) alongside further targeted therapies in the clinic. 

1.6 Gene expression profiling and breast cancer 

Following the completion of the sequencing of the human genome which 

demonstrated the potential breadth of genes that could be expressed came the 

advent of gene expression microarray profiling. Such profiling allows analysis of  

gene transcription on a genome-wide scale rather than the traditional “one gene at 

a time” thus creating a global picture of potential cellular function and providing 

another level of detail to the functionality of the genes present in the human 

genome.  

 

High throughput gene expression profiling using microarray-based methods has 

achieved many successes with relation to breast cancer research. Without such 

data, we would lack an understanding of the heterogeneity that exists in breast 

cancer which has challenged the concept that breast cancer is a single disease 

(Perou et al., 2000; Sorlie et al., 2001). Instead, it is now accepted that breast 

cancer is a collection of different diseases that affect the same organ site but have 

different transcriptional profiles, risk factors, clinical presentation, histopathological 

features, outcome and response to therapies (Reis-Filho et al., 2010; Weigelt et al., 

2010). These studies have also shown that response to a given treatment is at least 

in part determined by inherent molecular characteristics of the tumours and such 

findings have been taken advantage of in order to discover genes over-expressed in 

breast cancer or to identify molecular gene signatures that can predict prognosis 

and response to therapies (Sotiriou et al., 2009; Weigelt et al., 2010). Some gene 
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signatures are available in commercial formats, e.g. the 21 gene OncotypeDX test, a 

genetic test used to determine if node negative early ER+ breast cancer patients are 

at risk of 10 year distant recurrence and would thus benefit from the addition of 

chemotherapy to their standard endocrine treatment (Paik et al., 2004). Although 

there are further tests that may be able to predict risk of recurrence on tamoxifen 

therapy including measurement of the ratio of HOXB13 gene to interleukin 17B 

receptor (Ma et al., 2004), such tests have not generally been independently 

validated for clinical use.  

 

Critically, tests such as OncotypeDX only provide prognostic data and have failed to 

unveil new therapeutic targets that could possibly improve response. While 

immunohistochemical measurement of Ki67 remains the most widely used marker 

of drug response, it again is unable to accurately predict resistance and fails to 

provide information on the underlying mechanism of response, only that 

suppression of the protein indicates a tumour with reduced proliferative capability. 

Also, even with such prognostic information available a number of patients present 

with intrinsic resistance while others ultimately acquire endocrine resistance. The 

molecular mechanisms of response and acquired resistance, particularly to 

Faslodex, thus remain largely unknown. It is unlikely that sole investigation of the 

intrinsic cancer phenotype will provide a full explanation of how a patient will 

respond to endocrine therapy and eventually acquire resistance and relapse.  

 

A number of predictive gene signatures have been reported which relate gene 

expression to clinical and pathological response to endocrine therapy in ER+ 

patients. However, very few have been validated for clinical use. Further no such 

studies have been carried out in relation to Faslodex. 

 

Miller et al published a study in which they reported a signature that could 

discriminate between clinically-responsive and non-responsive tumours to 

aromatase inhibitors (Miller et al., 2009). 205 genes were found to be differentially 

expressed between responding and non-responding tumours and hierarchical 

clustering of these genes successfully grouped responding and resistant tumours. 
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Unfortunately, the gene signature was not validated using an independent cohort 

of patients. However, as the case for predictive signatures, this research has failed 

to identify novel response and resistance pathways and thus the mechanisms of the 

various antihormone responses remain uncharacterised. 

1.7 Aims and Objectives 

As described, antihormone treatments are a mainstay for early and advanced ER 

positive breast cancer. Unfortunately response to treatment is variable with 

complete response being rare and resistance eventually will be acquired by many 

patients. To delay, or ultimately treat resistance, these varying responses need to 

be modelled and the underlying signalling mechanisms determined so strategies 

can be developed to maximise drug effectiveness. Cell lines can provide an 

amenable opportunity to monitor signalling changes in a dynamic manner during 

treatment, although it is important that such studies should also aim to consider 

aspects of ER+ breast cancer heterogeneity if clinically-relevant mechanisms are to 

be determined.  

In this regard, the work in the thesis focuses on the pure-antioestrogen Faslodex. 

This is important because to date, the majority of experimental work regarding 

resistance has employed the ER+/HER2- MCF-7 cell line and the antioestrogen 

tamoxifen. It is particularly important that the responses and resistance 

mechanisms to Faslodex are explored as the increased dose of 500mg has been 

shown to more effective than the 250mg dose, thus allowing the drug to be of 

potential further use in the clinic which is currently being trialled in the first line 

setting.  Four cell lines are to be used in this thesis in vitro to account for  key 

genetic contexts present in clinical ER+ breast cancer i.e. ER+/HER2-: MCF-7 and 

T47D and ER+/HER2+: BT474 and MDA-MB-361. These will be used to elucidate the 

extent of initial Faslodex response in each cell model, to monitor the duration of 

response in continuous culture with Faslodex and to track any emergence of 

resistance. Such studies should provide further information on how HER2 status 

impacts on these events in ER+ breast cancer. With respect to tamoxifen it has been 

widely reported that HER2-amplification is associated with resistance to the drug 
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(Schiff et al., 2005). However, it has been suggested that HER2-positive tumours 

may retain some initial responsiveness to Faslodex (Robertson et al., 2009).  

Gene expression changes following 10 day Faslodex treatment will also be analysed 

in the 4 models to further aid explanation of in vitro growth behaviour and to 

identify specific Faslodex response or failure signalling mechanisms. Assuming the 

ER+ cell models show varying responses to Faslodex (mirroring the spectrum of 

responses seen clinically in ER+ disease with this agent (Di Leo et al., 2010), analysis 

of the gene microarray data will allow us to (i) identify potential biomarkers of 

Faslodex response or resistance that may ultimately be of relevance to clinical use 

of the drug, as well as (ii) identify possible new therapeutic targets that may 

promote an enhanced response when given in combination with Faslodex 

1.7.1 Objectives 

 To establish the duration of Faslodex response and determine if 

acquired resistance develops in cell models of ER+/HER2- and 

ER+/HER2+ breast cancer in vitro through growth studies. 

 

 To identify genes most likely to associate with the Faslodex response 

profiles in vitro via Affymetrix gene expression profiling of the cell 

models prior and subsequent to Faslodex treatment. Subsequently a 

stringent filtering procedure, including detailed investigation of gene 

expression data across the models, ontology, expression in silica 

clinical datasets and PCR verification of profile, will be used to 

prioritise genes of interest. 

 

 To explore clinical relevance of the genes of interest in relation to 

Faslodex treatment and its anti-proliferative impact by examining 

their profiles in the NEWEST (Neoadjuvant Endocrine Therapy for 

Women with Estrogen-Sensitive Tumours) clinical trial gene 

expression dataset (investigation of Faslodex in the neoadjuvant 

setting). 
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 Faslodex response genes identified of highest priority from the in 

vitro and NEWEST data will be further investigated, including 

verifying their profile at the protein level and examining impact of 

genetic manipulation on drug response. 
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Chapter 2 

Materials and Methods 

 

Unless otherwise stated, all tissue culture medium and their chemical constituents 

were purchased from Life Technologies (Paisley, UK). All tissue culture plastic wares 

were purchased from Nunc (Roskilde, Denmark), supplied by Fisher Scientific 

(Loughborough, UK). All general molecular grade chemicals, organic solvents and 

molecular biology reagents were obtained from Sigma-Aldrich (Poole, UK) unless 

otherwise stated. 

2.1 Cell Culture 

2.1.1 Routine maintenance 

All 4 ER+ human breast cancer cell lines were obtained from American Type Cell 

Collections (ATCC) and routinely cultured as monolayer cultures in vitro  in phenol 

red-containing RPMI medium (2mM glutamine) containing foetal calf serum (FCS), 

(optimal FCS concentration for culture depended on each cell line; MCF-7 and T47D 

5%; BT474 and MDA-MB-361 10%). Further medium additives comprised penicillin-

streptomycin (100U/ml-10g/ml) and fungizone (2.5g/ml). For all routine 

maintenance and experimental studies, cells were grown under sterile conditions in 

a 37oC/5% CO2 incubator (Sanyo MCO-17AIC incubators, Sanyo Gallenkamp, 

Loughborough, UK).  

Cell growth was visually assessed using a phase-contrast microscope (Nikon Eclipse 

TE200n phase contrast microscope, Nikon Ltd, Kingston-upon-Thames, UK) and 

passaged when confluency reached 70-80%. For passaging, medium was aspirated 

from the flask using a glass pipette and 0.05% trypsin with 0.02% EDTA was added 

to the flask. Trypsin, a proteolytic enzyme, acts to detach the cells from the flask 

wall and EDTA is used to chelate Mg2+ and Ca2+ present in the serum that can 

potentially act as trypsin inhibitors. The flasks were placed in the 37oC/5% CO2 
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incubator for 3-5 minutes to allow the cells to fully detach. An equal volume of the 

routine maintenance media was subsequently added to the flask to neutralise the 

trypsin/EDTA solution. The cell suspension was then transferred to a universal tube 

and placed in a centrifuge (Mistral 3000i centrifuge, Sanyo Gallenkamp, 

Loughborough, UK) for 5 minutes at 1000rpm. The supernatant was discarded and 

the cell pellet resuspended in 1-10ml of routine maintenance medium and mixed 

gently using a pipette to avoid cell clumps. A proportion of the cell suspension was 

then dispensed into a clean flask and diluted with the appropriate medium; this 

dilution fluctuated depending on the cell line and its growth rate: BT474 and MDA-

MB-361 underwent a 1:6 dilution, while the MCF-7 and T47D models underwent a 

1:10 dilution for passaging. Cells were subsequently maintained with fresh medium 

changes every 3 days until required for experimentation or further passaging. 

Table 2 displays the key features of each of the human breast cancer cell models 

used in this project. 

Table 2: Key molecular features and characteristics of the ER+ cell models used in this 
project (adapted from Neve et al., 2006).  

 

Cell Line 

Molecular 

Subtype 

ER 

status 

PGR 

status 

Original source 

of cells 
Tumour type 

BT474 Luminal B + + 
Primary breast 

tumour 

Invasive ductal 

carcinoma 

MDA-MB-

361 
Luminal B + - 

Mammary 

breast: derived 

from metastatic 

site: brain 

Adenocarcinoma 

MCF-7 Luminal A + + Pleural effusion 
Invasive ductal 

carcinoma 

T47D Luminal A + + Pleural effusion 
Invasive ductal 

carcinoma 

2.1.2 Short-term cell growth studies  

Cells were trypsinised from flasks and re-suspended in phenol red-free RPMI 

containing 5% FCS with no further addition of oestradiol as the concentration of 

oestrogen is very low in FCS (<100pM) (Briand et al, 1984) as observed in 
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postmenopausal women (<35pg/ml/1000pM), 2mM glutamine, penicillin-

streptomycin (100U/ml-10g/ml) and fungizone (2.5g/ml). Cells were then passed 

through a sterile 25G syringe needle in order to obtain a single cell suspension. 

100μl of this suspension was added to 10ml of Isoton solution and cell number was 

determined using a CoulterTM Multisizer II (Beckman Coulter UK Ltd, High 

Wycombe, UK). Cells were seeded into 24 well plates at required cell densities 

according to growth rate (i.e. MCF-7 and T47D - 40,000 cells per well; BT474 and 

MDA-MB-361 – 120,000 cells per well) in 1 ml of media and left to adhere 

overnight. Various treatments (as described in the Results sections) were then 

added to the cells the next day and replenished every 3 days before cells were 

counted following 7-10 days of treatment. Cell were trypsinized and re-suspended 

in the appropriate medium. Cells were then passed through a sterile 25G syringe 

needle 3 times in order to obtain a single cell suspension. 3 x 1ml of Isoton solution 

was added to each well and transferred to the same syringe to make up 4ml cell 

suspension. The latter was mixed with 6ml Isoton solution in a counting cup to give 

a total of 10ml cell suspension and cell number was determined using a CoulterTM 

Multisizer II (Beckam Coulter UK, Ltd, High Wycombe, UK) according to 

manufacturer’s instructions.  

2.1.3 Treatments 

Throughout this study, cells were subjected to treatments with various compounds. 

Details of these treatments (durations and compound concentrations) are indicated 

in the figure legends throughout the Results chapters (Chapters 3-10). Table 3 lists 

the compounds used in this study and where they were obtained. All experiments 

included appropriate controls which again are stated in the figure legends of the 

results chapters. 
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Table 3: List of treatments used in this project along with where they were compounds 

were obtained and the diluents used to store them 

Treatment Source Diluent 

Faslodex 
AstraZeneca, UK 

Ethanol 

Tamoxifen T5648, (Sigma-
Aldrich, UK) 

Ethanol 

Herceptin 
Roche 

Pharmaceuticals, 
Penzberg, 
Germany 

Water 

Decorin D8422, Sigma UK PBS 

Charcoal 

stripped FCS 

Carried out in-
house. (see 
Appendix A) 

 

2.1.4 Statistical analysis of short-term cell growth  

The statistical software package SPSS was used for all statistical analyses. An 

independent 2-tailed t-test was used for direct comparisons of cell growth between 

controls and treatments for each cell line utilising the data from the experimental 

replicates (at least n=3). If more than 3 treatment groups were to be examined a 

one-way ANOVA with post-hoc tests. Differences were deemed significant if p<0.05 

2.1.5 Long term growth experiments. 

Cells were cultured in phenol red free RPMI medium containing 5% foetal calf 

serum (FCS), penicillin-streptomycin (100U/ml-10g/ml), fungizone (2.5g/ml) in 

T25 flasks until 60% confluent before the addition of 10-7M Faslodex while 

untreated cells were also continually grown as a control arm of the experiment. The 

effect of continuous Faslodex treatment on cell growth was subsequently 

monitored until the acquisition of resistance was observed, tracking cell growth 

(including estimating percentage cell coverage of the flask) on a weekly basis using 

a phase-contrast microscope and also recording the number of passages each cell 

model underwent under control or Faslodex treated conditions during the culture 

time as indicators of growth behaviour during treatment. Respective media was 

regularly replenished by changing every 3 days. Culture was continued until 
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Faslodex resistant cell populations began to emerge (evidenced by recovery of 

regular passaging) or until treatment led to complete cell loss so that further 

culture was not possible. 

2.2 Immunocytochemistry (ICC) 

Cells were grown on sterile 3-aminopropyltriethoxysilane coated (see Appendix B.1) 

glass coverslips seeded at 1x104 cells/cm2 in 35mm dishes in phenol red free RPMI 

supplemented with 5% FCS, 2mM glutamine (and antibiotics) for 10 days in the 

presence or absence of 100nM Faslodex prior to appropriate cell fixation and 

assayed for ER, Ki67, HER2 and DCN. Assays for all markers had already been 

previously optimised (Gee et al., 2003) with the exception of DCN which was 

optimised during this project.  

2.2.1 Ki67 (proliferation marker) 

2.2.1.1 Formal saline fixation for Ki67  

Cell medium was removed using a pipette before each coverslip was immersed in 

3.7% formal saline (see Appendix B.2) at room temperature for 10 minutes.  

Coverslips were then immersed in 70% ethanol and left for 5 minutes before being 

washed twice with PBS for 10 minutes. Coverslips were then stored at -20oC in 

sucrose storage medium (see Appendix B.3). 

2.2.1.2 Ki67 ICC assay 

The storage medium was poured away from the dishes containing the fixed cells on 

coverslips and they were then washed several times using PBS (see Appendix B.4)  

followed by 30 seconds wash in PBS/Tween (P5927, Sigma) (0.02% see Appendix 

B.5) in a humidity chamber. Ki67 primary antibody (M7240 Dako Ltd Species: mouse 

anti human) was diluted at 1:150 in PBS. 50µl of primary antibody was then 

dispensed onto each coverslip, ensuring full coverage before being placed back into 

the humidity chamber for 60 minutes at room temperature. The coverslips were 

then briefly washed in PBS several times and PBS/Tween (0.02%) was added twice 

each for 5 minutes minutes before the solution was drained off. The secondary 

antibody (Dako Envision+ system-HRP labelled polymer antimouse, Dako, K4001) 
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was dispensed onto the coverslips, again ensuring full coverage of the coverslip 

before placing back into the humidity chamber to incubate for 75 minutes at room 

temperature. The 2 x 5 minute washes described above were then repeated and 

the slides drained. 50µl of Dako diaminobenzidine (DAB)/substrate chromagen 

system solution (Dako Ltd, K3468) was then dispensed onto the coverslips and left 

for 10 minutes at room temperature before being rinsed off several times with 

distilled water. Methyl green counterstain (M8884, Sigma) (0.05%) was then added 

to each coverslip for 4 minutes. Coverslips were washed with distilled water before 

being left to air dry and mounting onto glass microscope slides (FB58628, Fisher 

Scientific, UK) using DPX (a mixture of Distyrene, a plasticizer, and xylene, 06522, 

Sigma-Aldrich, UK). Positivity was indicated as brown staining against green 

counterstained negative cells. Ki67 positivity was scored as the % of cells with 

nuclear staining. 

2.2.2 HER2 

2.2.2.1 Formaldehyde/methanol/acetone fixation for HER2 

Coverslips were immersed in 4% Formaldehyde solution in PBS at room 

temperature for 15 minutes before being placed in PBS for 5 minutes. Coverslips 

were then immersed in methanol (maintained at -10 to -30oC) for 5 minutes before 

being immersed in acetone (maintained at -10 to -30oC) for 3 minutes. Coverslips 

were then placed washed in PBS for 5 minutes at RT before being stored in a -20oC 

freezer in sucrose storage medium. 

2.2.2.2 HER2 ICC assay 

The storage medium was removed from coverslips and they were then briefly 

washed several times using PBS followed by 30 seconds in PBS/Tween (0.02%) in a 

humidity chamber. 80μl of 5% normal goat serum with 5% normal human serum in 

PBS was then added to each of the coverslips for 10 minutes as a blocking step to 

prevent non-specific binding of this primary antibody. HER2 primary antibody (Dako 

Ltd, c-ErbB-2 (A0485): species rabbit antihuman) was diluted 1:50 (for ER+/HER2- 

cells lines) and 1:100 (for ER+/HER2+ cell lines) in PBS supplemented with 5% 

normal goat serum (X0907, Dako) and 5% normal human serum. The block was 
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then removed before 50μl of diluted HER2 antibody was dispensed onto the 

coverslips and left to incubate for 2 hours at room temperature in a humidity 

chamber. The coverslips were then washed in PBS several times and PBS/Tween 

(0.02%) was added for 2x 5 minutes. A secondary antibody (Sigma Goat anti-Rabbit 

IgG peroxidase conjugate A4914) was also prepared in PBS supplemented with 5% 

normal goat serum and 5% normal human serum at a concentration of 1:50 and 

applied for 60 minutes at room temperature. The 10 minute washes were repeated 

before 50µl of Dako DAB/substrate chromagen system solution was then dispensed 

onto the coverslip and left for 10 minutes at room temperature before being rinsed 

several times with distilled water. Counterstaining and mounting was then 

performed as for Ki67 Brown HER2 plasma membrane immunostaining was then 

evaluated in each coverslip across at least 3 fields using a continuous HScore (also 

checking for any cytoplasmic staining). Hscore, on a 0-300 scale, is calculated using 

the following formula which considers both percentage positivity and staining 

intensity (where negative staining cells=0, weak staining cells= 1+, moderate 

staining cells=2+ and high staining cells =3+):  H-Score = (% at 0) * 0 + (% at 1+) * 1 + 

(% at 2+) * 2 + (% at 3+) * 3).  

For HER2 staining, it was also noted which of the models exhibited a strong 

complete membrane stain in 10% or more of the tumour cells i.e. defined as 3+ in 

the CAP/ASCO guidelines (Wolff et al., 2007) 

2.2.3 Oestrogen-receptor ICC Assay 

For ER, cell coverslip fixation and storage was as described for the HER2 ICC assay. 

Coverslips were subsequently washed several times with PBS to remove storage 

medium followed by 10 minute incubation with 0.02% PBS/Tween to block non-

specific binding. ER primary antibody (6F11, VP-E613, Vector Laboratories, mouse 

anti human antibody) was diluted 1:175 in PBS and dispensed onto the coverslips 

and incubated for 90 minutes at room temperature in a humidity chamber. Sections 

were then washed three times with PBS (3 minutes) and twice with 0.02% 

PBS/Tween (5 minutes) before the secondary antibody was dispensed on to the 

coverslips (Dako Mouse EnVision labelled polymer, K4001) for 75 minutes in a 

humidity chamber at room temperature. 5 minute washes with PBS and 0.02% 
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PBS/Tween was repeated before Dako DAB/substrate chromagen system solution 

was added for 10 minutes and washed off using distilled water. Coverslips were 

then counterstained and mounted as for Ki67. ER was again evaluated using 

HScoring, in this instance also encompassing an additional very weak (+/-) staining 

category which has been employed for previous evaluation of Faslodex treated 

material (Kuter et al., 2012).  

H-Score = (% at 0) * 0 + (% at +/-) *0.5 + (% at 1+) * 1 + (% at 2+) * 2 + (% at 3+) * 3).  

2.2.4 Decorin 

2.2.4.1 Decorin Optimisation of Fixation 

Various fixatives and also ICC assay conditions were examined during staining 

optimisation for decorin. This optimisation was performed in relation to DCN mRNA 

profile established across the 4 ER+ models with/without Faslodex treatment (Table 

4).  

Table 4: Summary of DCN ICC assay optimisation procedure 

Procedure Reason for rejection 

Fixation  

Phenol formal saline Staining improved with 

removal of phenol. 

Formal saline Chosen for assay 

Antibody  

LF-122 (a gift from Dr Larry 

Fisher, NIH) 

Non-uniformed staining 

AB60425 (Abcam) Improved membrane 

staining 

Antibody dilution  

1:50 Saturated staining 

1:200 Too weak staining 

1:100 Chosen for assay 
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Optimal staining profile across the models was achieved using formal/saline fixed 

cell coverslips (as for Ki67 assay) and the following ICC assay protocol: 

2.2.4.2 Decorin ICC assay 

The storage medium was poured away from the dishes containing the cell 

coverslips and washed several times with PBS followed by 5 minutes in PBS/Tween 

(0.02%) in a humidity chamber. The coverslips were then drained and 50µl of 

decorin primary antibody (AB60425, goat anti human polyclonal, Abcam, UK) 

diluted at 1:100 in PBS supplemented with 1% bovine serum albumin (A7030, 

Sigma), was dispensed onto the coverslip. Full coverage was ensured before placing 

back into the humidity chamber for 90 minutes at room temperature. The 

coverslips were then washed in PBS several times and PBS/Tween (0.02%) for 2 x 5 

minutes before the solution was drained off. The secondary antibody (a polyclonal 

rabbit anti-goat horseradish- peroxidase secondary antibody; P0449, Dako Ltd., Ely, 

UK) at 1:100 in PBS was dispensed onto the coverslips and incubated in the 

humidity chamber for 1 hour at room temperature. The 10 minute washes 

described above were then repeated. Once completed 50µl of Dako DAB/ substrate 

chromagen system solution was dispensed onto the coverslip and left for 6 minutes 

at room temperature before being rinsed several times with distilled water. 

Counterstaining and mounting was as described for Ki67. Decorin expression was 

scored using the H-score method as used for HER2, evaluating both membrane and 

cytoplasmic staining. 

2.3 Microarray Gene Expression Profiling 

Prior to this project, mRNA samples from each of the ER+ models before and after 

short-term Faslodex treatment (grown in phenol-red-free RPMI and 5% FCS 

medium) were routinely prepared by the Breast Cancer Molecular Pharmacology 

group cell culture staff and the samples microarrayed using a Cardiff University 

commercial service, so that gene expression analysis using the resultant microarray 

data could be performed as a focus of this project. In addition, further microarray 

data was made available for this analysis from triplicate samples similarly prepared 

from oestradiol (10-9M) treated control MCF-7 cells and an acquired Faslodex 

resistant MCF-7 cell line in logarithmic growth phase (grown in phenol-red-free 
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RPMI and 5% charcoal-stripped FCS medium, the Faslodex-resistant model also 

cultured in the presence of 10-7M Faslodex as described in Hiscox et al., 2006). The 

methodologies employed for this cell preparation and commercial arraying are as 

described below:  

2.3.1 Cell Lysis 

For each ER+ cell model, untreated control cells and Faslodex treated (10-7M) cells 

were seeded at 3 million cells per dish in phenol-red-free RPMI and 5% FCS  and 

grown in experimental triplicate for 10 days in 150mm diameter dishes to 

determine the effects of short term Faslodex exposure on gene expression. 

Similarly, the Faslodex-resistant cell line and oestrogen-treated control were also 

grown in 150mm dishes in phenol-red-free RPMI and 5% charcoal-stripped FCS. 

Medium was poured from each dish and briefly drained, followed by the addition of 

10ml of tissue culture grade PBS which was left for 10 seconds before being poured 

away. This was repeated three times, with a thorough drainage following the last 

PBS addition. 1.5ml of Tri-Reagent was then dispensed onto the dish surface and 

gently rocked for 1 minute to ensure complete coverage of the plate. If cells on 

treatment plates were growth inhibited at time of lysis, 1.5ml of Tri-Reagent was 

used to lyse cells on 2 combined dishes to ensure adequate RNA yield for further 

experimentation. Using a sterile disposable cell scraper, the lysate was collected to 

one area at the bottom of the dish and half transferred via pipette into each of the 

two 1.5ml micro-centrifuge tubes. The lids were closed and inverted twice before 

being placed on dry ice. Once the process was completed for all dishes the frozen 

tubes were transferred to a -80oC freezer for storage.  

2.3.2 Total RNA Isolation for Tri-Reagent-Lysed Samples 

Cell lysates were removed from -80oC storage and thawed on ice. Samples were 

adjusted to 1ml using extra Tri-Reagent tubes were closed and gently mixed by 

inversion. Samples were left to stand for 5 minutes at room temperature to 

equilibrate. 200µl of chloroform was then added to each sample and vortexed for 

20 seconds allowing a thorough mix of the solution and then left to stand at RT for 

10 minutes. The tubes were placed into a precooled centrifuge (4oC, Labofuge 400R 
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centrifuge, Heraeus, Germany) and spun for 10 minutes at 16000g. At this point, 

the samples separated into 3 phases; the upper aqueous phase contains the RNA, 

while the mid phase contains DNA and the lower phenolic phase contains protein. 

Using a 200µl pipette the upper phase was removed carefully avoiding genomic 

DNA contamination and dispensed into a clean micro-centrifuge tube. 500µl of 

isopropanol was added to the RNA to precipitate it and vortexed briefly and 

allowed to stand at room temperature for 10 minutes. Samples were spun again for 

10 minutes in a pre-cooled (4oC) centrifuge at 16000g. The supernatant was 

discarded and the RNA remained as a pellet at the bottom of the microfuge tube. 

500µl of 70% ethanol was added to wash the RNA pellet before being spun again in 

the pre-cooled centrifuge for 10 minutes at 16000g. The ethanol was discarded and 

the tube inverted to drain away any remaining ethanol. The RNA pellet was left to 

air dry for 5 minutes before being resuspended in 50µl of RNase-free water. The 

RNA concentration and purity was determined by spectrophotometry (260/280nm) 

and integrity checked via gel electrophoresis for each sample. If the RNA was intact 

then gel electrophoresis would result in the formation of 2 strong bands identifying 

the 18s and 28s ribosomal RNA with a smear in between identifying mRNA of 

different sizes. The identification of 2 strong bands implies RNA is in intact, and this 

was apparent for all samples subsequently examined in this project. All RNA 

samples were subsequently stored at -80oC. 

2.3.3 DNase Treatment of isolated RNA 

This protocol used the RNase-free DNase reagents supplied with the Qiagen RNeasy 

Micro Kit in order to remove any trace of contaminating genomic DNA. For each 

sample, 45μg of RNA was adjusted to 87.5μl of water and 10μl of kit buffer and 

2.5μl of DNAse I mix was added before being thoroughly mixed and incubated at 

room temperature for 10 minutes. 350µl of RLT buffer from the kit (supplemented 

with β-mercaptoethonal according to manufacturer’s directions) was then added to 

the solution and mixed thoroughly. The RLT kit buffer is a denaturing lysis buffer 

that inactivates RNases and other proteins to prevent degradation of RNA. Once 

mixed, 250µl of 100% ethanol was added to each tube and mixed well.                                                                                                                                                                                                                        
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An RNeasy MiniElute spin column (provided in kit) was then inserted into a 2ml kit 

collection tube and the entire contents of each micro-centrifuge tube transferred 

into the spin column. Lids were closed and spun at 10000g for 15 seconds using a 

benchtop microfuge (Biofuge, Heraeus, Germany). The flow-through was discarded 

and 700µl of RW1 kit buffer added to the column and spun again for 15 seconds at 

10000g to wash the spin column membrane. Again the flow-through was discarded 

along with the collection tube. The column was then placed into a clean collection 

tube and 500µl of RPE kit buffer added. The tube was spun again at 10000g for 15 

seconds and flow-through discarded; this again washed the spin column 

membrane. 500µl of 80% ethanol was then added to the column and spun for 2 

minutes at 10000g. Flow-through and the collection tube were subsequently 

discarded. The column was then placed into a clean collection tube and spun with 

the lids open for 5 minutes at 10000g to dry the column. Drying was essential to 

prevent residual ethanol interfering with subsequent experimentation. The column 

was placed into a sterile 1.5ml micro-centrifuge tube and 14µl of RNase-free sterile 

water was added into the centre of the column, lids were closed and spun at 

13000g for one minute to elute the RNA. The column was then removed and 

discarded and the micro-centrifuge containing approximately 12µl of eluted RNA 

was closed and placed on ice.  The RNA concentration and integrity 

(spectrophotometery and gel electrophoresis (detailed in 2.3.2) was then 

determined for each sample, and all RNA samples subsequently aliquoted (1μg/7μl 

H20) and stored at -80oC. 

2.3.4 Affymetrix microarraying procedure 

Triplicate preparations of control and Faslodex-treated RNA samples prepared from 

all four cell models (and from the E2-treated MCF-7 and derived Faslodex resistant 

line) were sent to the Cardiff University Central Biotechnology Services (CBS), 

where initial quality assessments of the RNA were carried out using a Agilent 

bioanalyser. All samples provided were deemed appropriate for arraying (i.e. no 

RNA degradation or contamination) and so were then ran by CBS on Affymetrix 

Human Genome UI33Aplus2 Array GeneChips (containing approximately 23,000 

gene probes) using standard Affymetrix protocols. In brief, this included first and 
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second strand synthesis of the RNA to obtain cDNA (Certa et al., 2001). This 

subsequently underwent an in vitro transcription (IVT) reaction which biotinylated 

the cDNA which was then hybridised to the genechip. A biotinylated anti-

streptavidin stain was then used to allow scanning of the chip to determine relative 

expression levels for all genes (using Affymetrix GeneChip Software) and the 

transcript level of a gene was determined by a fluorescent probe following the 

subtraction of mismatch and negative control probe expression. Affymetrix 

Microarray Suite 5.0 (MAS 5.0) provides powerful algorithms that analyse the 

resultant intensity data and generates the appropriate analysis output files for 

analysis for upload into appropriate programs for further analysis. 

2.3.5 Hierarchical Clustering Analysis (HCA) of microarray data 

Using an in-house software program, the raw gene expression data were uploaded 

for all 4 ER+ cell lines untreated and 10 day Faslodex treated, a median 

normalisation was carried out across all the arrays and all data was log-

transformed. Statistical tests within the software were then carried out to identify 

robust transcriptome changes, firstly a t-test for significance (p<0.05) and also a 

significance analysis of microarrays (SAM) (Larsson et al., 2005) with the false 

discovery rate (FDR) for gene changes set at <0.05. This stringent approach allowed 

identification of genes displaying robust transcriptome changes following Faslodex 

treatment in each model, where these genes were subsequently used by the 

program to generate hierarchical clustering diagrams, performing clustering in 

samples before or after Faslodex treatment to examine patterns across the models 

(and also encompassing further clustering as a quality control check for the 

triplicate data from each model). 

2.3.6 Genesifter analysis of microarray data 

Triplicate raw data was also uploaded to the online bioinformatic software 

GeneSifter (available at: https://login.genesifter.net/) where a median 

normalisation across all datasets and log transformation was carried out. Initial 

examination of two genes known to be ER-regulated (pS2, GREB2) was performed 

to further ensure the preparations were appropriate to determine novel Faslodex-

https://login.genesifter.net/
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deregulated genes. This was achieved using the heatmap function within the 

software to visualise the expression profile across the models before and after 

Fasldoex treatment. Log2 intensity plots were also generated by the software to 

visualise level of expression across the models. The Faslodex-altered genes 

previously identified as significant using the t-test and SAM analysis were 

subsequently further analysed using this program. The fold change of change in 

gene expression was calculated by the software for all gene probes of interest, and 

analyses carried out to identify gene probes that underwent a significant, greater 

than 1.5 fold change in one or more cell lines (depending on hypothesis being 

examined). 

Following identification of genes of interest, any multiple gene probes for a given 

gene were also analysed. The Affymetrix UI33Aplus2 genechips in some instances 

contained more than one gene probe for each gene, so expression changes of 

interest can be assessed via the multiple probes to evaluate if a consistent direction 

of change is occurring, providing further confidence that any Faslodex-promoted 

change in expression is robust.  

However, it must be noted that particular importance was placed on the “jetset” 

gene probe for each particular gene in this project. Jetset is an online tool 

generated by the Technical University of Denmark and gives each Affymetrix gene 

probe a score based on specificity, splice isoform coverage, and robustness against 

transcript degradation. Using these scores the Jetset tool has selected a best single 

probe set for a given gene as the representative probe (see Appendix C for further 

information) (Li et al., 2011) which can subsequently be used to determine most 

reliable profile in the array project of interest. In this project, therefore, for each 

gene of interest, expression heatmaps and log2 intensity plots were visualised 

across the models before and after Faslodex treatment, together with reporting 

associated fold changes, primarily using the jetset probe. Such data were also 

provided for genes indentified of interest in the oestradiol-treated MCF-7 versus 

Faslodex-resistant MCF-7 cells following data upload, median normalisation and log 

transforming of triplicate data.  Expression “call” was also retrieved by GeneSifter 

across the models for genes of interest before and after Faslodex treatment. 



52 
 

Affymetrix UI33Aplus2 genechips provide further information on the reliability of a 

given expression change via the ‘detection call algorithm’. This is intended to gauge 

whether the expression of a transcript has been reliably detected. A detection call 

of ‘absent’ suggested unreliable detection of expression or no expression while a 

‘present’ detection call indicated expression had been reliably detected. A 

‘marginal’ detection call signified partial detection of expression.  

2.4 Ontological investigation of genes of interest from microarray data  

Along with expression profiling using HCA and Genesifter analysis, ontological 

investigations were carried out for the genes of interest identified by microarray 

analysis in order to help prioritise these for further study. Using the multiple 

acronyms and names for genes of interest derived from Genesifter and Genecards 

(http://www.genecards.org/), PubMed (http://pubmed.com/) and Scopus 

(http://www.scopus.com) were used to ascertain reported function and also to 

carry out searches using a number of key words to identify any literature 

associations with cancer and anti-hormone response. Examples of key words and 

phrases used for this search were:  

“breast cancer “ “cancer” “proliferation” “survival” “apoptosis” “growth inhibition” 

“resistance” “anti-hormone” “Faslodex” “response” “estrogen” “estrogen receptor” 

“HER2” “erbB signalling” “complete-response” “Ki-67” “growth factor”.  

 

Ontological analysis in some instances revealed elements potentially critical in any 

function of the gene of interest (e.g. ligand where identified gene was a receptor), 

and so additional heatmaps and log intensity plots were retrieved to examine 

profile of such elements in the models.  Additional bioinformatic analysis for the 

high priority gene DCN was performed using UCSC (http://genome.ucsc.edu/) and 

Transcriptomine (http://www.nursa.org/nursaGrails/transcriptomine/) tools to 

further determine if this was ER-regulated. 
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 2.5 Verification of genes of interest from microarray data using RT-

PCR 

Following determining genes of interest across the ER+ model panel before and 

after Faslodex treatment using microarray analysis and ontological studies, it was 

important to attempt to verify their expression profile to help determine high-

priority genes. Further triplicate RNA samples from the ER+ cell models both before 

and after 10 days Faslodex treatment were thus prepared in this project using an 

equivalent approach for lysis and RNA isolation to that in Sections 2.3.1 AND 2.3.2  

Profile verification was then achieved using these samples for Reverse Transcription 

followed by Polymerase Chain reaction (RT-PCR):  

2.5.1 Reverse Transcription (RT) 

This procedure converts isolated RNA molecules into their complementary DNA 

(cDNA), which is necessary for the performance of PCR experiments. A mastermix 

solution was generated using 5l of dNTPs (2.5mM, Invitrogen, UK), 2l PCR 10x 

buffer (10mM Tris-HCl, pH8.3, 50mM NH4, 0.001% w/v gelatin) and 0.5l MgCl2 

(50mM) in order to stabilise the ATP molecules, while also aiding the transfer of the 

phosphate groups during DNA extension. 2l of dithiothreitol (DTT) (0.1M) was 

then added to the solution, where DTT is a reducing agent that breaks disulfide 

bonds of proteins. Finally, 2l of random hexamers (100M, Pharmacia 

Biotechnologies, UK) were added, which comprised a mixture of single stranded 

random hexanucleotides that aid the replication process (11.5l total volume). All 

amounts as described were for one RNA sample.  

1g of RNA (in a total of 7.0l water) of sample RNA was then added to the 11.5l 

mastermix solution. The solution was then put into the PTC-100 thermocycler (MJ 

Research Ltd, USA) and denatured at 95oC for 5 minutes and then cooled rapidly to 

ice for 5 minutes. It was then pulse spun in a microfuge (Biofuge, Heraeus, 

Germany) to collect the solution and placed back on ice. 1l of MMLV a reverse 

transcriptase enzyme along with 0.5l of a commercial RNAse inhibitor RNasinTM 

was then added giving a final volume of 20l. The solution was then placed back 
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into the PCR machine to be reverse transcribed using the following programme 

parameters: 

10 minutes at 22oC for annealing 

40 minutes at 42oC to allow for reverse transcriptase extension 

5 minutes at 95oC for denaturing. 

The cDNA was cooled to 4oC before being stored at -20oC until needed. 

2.5.2 Polymerase Chain Reaction (PCR)  

This technique is used to amplify a particular DNA region that lies between two 

regions of a known DNA sequence. Two short DNA fragments known as 

oligonucleotide primers are synthesised to be complementary to DNA sequences on 

both strands of DNA, flanking the region of interest. The reaction exploits the ability 

of DNA polymerases to make copies of genetic material. In the presence of 

deoxynucleotide triphosphates (dNTPs) consisting of all four bases, dATP, dTTP, 

dGTP, dCTP, the heat stable DNA polymerase, Taq, will copy a strand of DNA. 

During the PCR reaction there are repeated cycles of heat denaturation to separate 

the newly formed double strand DNA, followed by subsequent cooling to allow the 

DNA primers to attach to their complementary sequences and then extension of 

the annealed primers with the polymerase. Following the first cycle of the reaction 

the products formed can stand as DNA templates for subsequent cycles, thus after 

each cycle the amount of DNA produced doubles to that of the previous cycle, with 

exponential production of the PCR product. 

2.5.3 Oligonucleotide Design 

As the PCR was to be carried out in order to verify gene expression profiles 

identified as of interest from the microarray data, PCR primers were first designed 

which recognised similar mRNA regions to those used by the differentially-

expressed gene probes on the Affymetrix Human Genome UI33Aplus2 GeneChips. 

To do this, the relevant Affymetrix selected gene probe sequence was input into the 

online program Primer3 (http://primer3.ut.ee/). From these sequences, Primer3 

identified potential primer pairs whilst allowing the user to consider the product 

size and melting temperature as well as the likelihood of unwanted primer dimer 

http://primer3.ut.ee/
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formation (ratio of guanine to cytosine bases) (Rozen et al., 2000). Once primer 

pairs had been selected, they were input into another online program called the 

Basic Local Alignment Search Tool, BLAST (http://blast.ncbi.nlm.nih.gov/). BLAST 

primarily compares sequences across the genome and locates regions of similarity 

between DNA sequences and calculates the statistical significance of matches. 

Inputting the primer sequences ensured that the primer sequence was specific to 

the gene of interest (McGinnis and Madden, 2004). 

Specific Oligonucleotide sequences employed in this study 

Table 5: Primer sequences used in the PCR verification experiments with the predicted PCR 

product size (amplicon) and optimised cycle number. 

Gene Name Forward Primer Reverse Primer 
Product size 

(bp) 

Cycle 

Number 

used 

DCN 
GAAGGGAGAAGACA

TTGGTTTG 

GCAGAGGGGTAAA

TTGAAACA 
193 33 

CASP1 
TTTCTTGGAGACATC

CCACA 

CTCTTTCAGTGGTG

GGCATC 
162 31 

PCDH7 
CTACTCCGAAACCTG

CTGGA 

CCGCCTCTTTAAGA

ATGGAA 
215 30 

PRKACB 
AAGAGCCTTGGTGTC

TGTCC 

CCAATGGGCAGTTA

ACACAA 
150 29 

KITLG 
GGATGGATGTTTTGC

CAAGT 

TCTTTCACGCACTCC

ACAAG 
172 29 

VEGFC 
GGAAAGAAGTTCCAC

CACCA 
TTTGTTAGCATGGA

CCCACA 
249 29 

CXCR4 
TTCTACCCCAATGACT

TGTG 
ATGTAGTAAGGCA

GCCAACA 
206 28 

GABBR2 
TATGCCTACAAGGGA

CTTCTCATGTTG 

ATGATGACCAGAGC

CACGATGCAG 
206 28 

TXNIP 
TGGTGATCATGAGAC

CTGGA 
AGGGGTATTGACAT

CCACCA 
200 30 
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TGFB2 
CCCGAGACTGACACA

CTGAA 
CCCTGACTTTGGCG

AGTAAG 
128 30 

UPK3B 
TTTCTCTCCCTCTCCA

AGCA 
AACAACCAGATCCC

ATGAGC 
110 30 

GFRA1 
AACATCCCTAACGAG

CATCC 
AGCTCAGCATGCAG

CGAT 
420 28 

VGLL1 
CCAGCCTTCCAAATG

AAACT 
ATGCTGCAGGTATC

GATGTG 
101 28 

ARTN 

 

TTCATGGACGTCAAC

AGC 
AGGCACTTTCAACC

AAGC 
478 27 

CDH2 

 

TTGGGGAGGGAGAA

AAGTTC 
GCTGGGTCAGAGG

TGTATC 
230 27 

β-actin (big) 
CTACGTCGCCCTGGA

CTTCGAGG 

GATGGAGCCGCCG

ATCCACACACGG 
385 24 

β-actin 

(small) 

GGAGCAATGATCTTG

ATCTT 

CCTTCCTGGGCATG

GAGTCCT 
204 24 

ERα 
GGAGACATGAGAGC

TGCCAAC 

CCAGCAGCATGTCG

AAGATC 
432 26 

HER2 
CCTCTGACGTCCATCA

TCTC 

ATCTTCTGCTGCCG

TCGCTT 
98 25 

2.5.4 PCR procedure 

Using a 0.5ml sterile eppendorf tube and keeping all solutions on ice, the PCR 

mastermix was generated using the following (amounts shown are per individual 

sample): 

17.8l sterile RNA/DNAse free water 

2.5l of PCR 10x buffer (10mM Tris-HCl, pH8.3, 50mM NH4, 0.001% w/v gelatin)  

0.75l MgCl2 (50mM) 

2l dNTPs (2.5mM) 

0.625l of each primer for gene of interest (20M) 

0.2l TAQ DNA polymerase (5units/l) 
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The mastermix solution was mixed thoroughly and 0.5l cDNA from each sample 

(equivalent to 0.05g RNA) was added, giving a final volume of 25l. 1 drop of 

sterile mineral oil was dispensed onto the top of each resultant sample to prevent 

evaporation during the reaction. Reaction mixtures were then placed into a PTC-

100 thermocycler (MJ Research Ltd, Massachusetts, USA) using the following cycle 

parameters 

First cycle: 

2 minutes at 94oC to allow denaturation of the DNA. This was followed by 

temperature reduction to 55oC for 1 minute to allow the annealing of the primers 

and Taq polymerase to the cDNA. The temperature then increased to 72oC for 5-10 

minutes to allow extension of the primers, thus generating the PCR product. 

Subsequent cycles (20-40, optimised according to gene of interest): 

The solution was heated to 94oC for 30 seconds, cooled to 55oC for 1 minute, and 

then reheated to 72oC for another minute. 

Final cycle 

The solution was heated to 94oC for 1 minute, cooled to 55oC for 1 minute and the 

reheated to 60oC for 10 minutes. 

Once the reaction was finished, the PCR products were visualised on ethidium 

bromide (EtBr) stained agarose gels under ultra violet (UV) light illumination. For 

equivalence of loading on such gels and to subsequently gauge the expression of 

the gene of interest, the constantly expressed house-keeping gene β-actin was 

amplified in parallel, using the cycle sequence parameters as above for a total of 25 

cycles. 

2.5.5 PCR product visualisation via gel electrophoresis  

A 2% agarose gel was prepared in 1X Tris acetate (TAE) buffer (pH8.3) and ethidium 

bromide added to a final concentration of 0.1μg/ml. Once set, the gel was placed 

into a Mini-Sub Cell GT electrophoretic tank (Bio-Rad Laboratories Ltd, Herts, UK) 

and filled with 1X TAE buffer. 5-10l of each sample PCR product was mixed with 
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3l of gel loading buffer (40% sucrose and bromophenol blue) and added to each 

well of the gel. For product size determination, a DNA marker ladder was routinely 

loaded alongside the samples on the gels (Hyperladder IV, Bioline Ltd, Herts, UK). 

Once loaded the gel was run at 100V for 30 minutes and visualised on a standard 

UV transilluminator using the AlphaDigiDoc imaging software (Genetic Technologies 

Inc, Miami, USA). 

2.5.6 Real-Time quantitative PCR (qPCR) 

Real-Time PCR was carried out to further confirm the efficient knockdown of DCN 

by shRNA. 

RNA was extracted and reverse-transcribed as previously described in Sections 

2.3.2, 2.3.3 and 2.5.1 using further triplicate preparations of each model before and 

after 10 days Faslodex treatment. The resulting cDNA was then analysed in 

triplicate using the MJ Research DNA Engine Opticon 2 system. SYBR green hot-start 

polymerase assays were used to determine the gene expression of the priority 

target gene DCN, along with β-actin which was used as an endogenous control and 

for normalisation of data. All PCR reactions were carried out in 96 well PCR plates 

(Bio-Rad Laboratories, Herts, UK) in a total of 25μl comprising 12.5μl of 1x DyNAmo 

PCR solution (Finnzymes, Finland) containing dNTPs, PCR buffer, Taq polymerase 

and SYBR green dye), 20μM forward and reverse primers (0.18μl), 5.14μl water and 

0.05μg cDNA. Plates were briefly centrifuged (30 seconds, 2000rpm, Lbofuge 400R 

centrifuge, Heraeus, Germany) before undergoing the following qPCR cycling 

conditions: 

Step 1: Initial denaturation - 95oC/15minutes 

Step 2: Denaturation - 94oC/30seconds 

Step 3: Annealing - 55oC/30 seconds 

Step 4: Extension - 72oC/30 seconds 

Step 5: Melting curve analysis – from 55oC to 95oC 

 

PCR product homogeneity in standards and unknown samples was routinely 

checked by ‘melt curve’ analysis which was performed following every PCR run. A 
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melt curve allows a comparison of the melting temperatures of amplification 

products. To produce melt curves, the final PCR product was exposed to a 

temperature gradient from 55oC to 95oC while fluorescent read outs were 

continually detected. This causes denaturation of all double-stranded DNA (dsDNA) 

and at a given point dsDNA melts into single-stranded DNA (ssDNA) and a drop in 

fluorescence is observed. As products of different lengths and sequences will melt 

at different temperatures, distinct peaks would be observed if more than one PCR 

product is present. However, product amplification should be specific for a given 

product expected from the primer pair and thus only one peak should be observed. 

If multiple peaks are present this may indicate non-specific binding of the primers. 

A single peak was observed in this project for DCN as shown in Figure 4. Expression 

of genes of interest was subsequently normalised to β-actin and quantified using a 

standard curve generated from serial dilutions of cDNA from a pool of breast cancer 

cell lines for both the gene of interest and the housekeeping gene. 

 

Figure 4: DCN melt curve demonstrating the single peak where ds-DNA becomes ss-RNA 

and the drop in fluorescence that occurs during this event. 

2.5.7 PCR statistical tests 

As stated in 2.1.4. 
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2.6 Analysis of genes of interest in Clinical Breast Cancer Expression 

Microarray Datasets  

2.6.1 Analysis of genes of interest in patients with tamoxifen outcome 

data 

To begin to gauge relation of the genes of interest with endocrine outcome in the 

clinic (and thus potential relevance to response or failure), virtual datasets 

comprising Affymetrix microarray expression data from ER+ tamoxifen-treated 

breast cancer patients were interrogated using publically-available KMPlotter and 

GOBO tools:  

2.6.1.1 Kaplan-Meier Outcome Plotter (KMPlotter) 

KMPlotter (http://kmplot.com/analysis/) is an online tool that can interrogate 

Affymetrix microarray chip-derived mRNA expression data accumulated in 

KMPlotter from breast cancer patients prior to therapy in relation to outcome 

measures including relapse free survival. The aim of the tool is to generate survival 

plots which can be used to assess how expression levels of a particular gene relate 

to clinical outcome (Györffy et al., 2010). KMPlotter splits the patients into two 

groups based on best fit of expression of a particular gene (i.e. high and low 

expressers, obtained for example using median, lower quartile or upper quartile 

cut-points) and integrating this data simultaneously with clinical data so the two 

groups can be compared with respect to relapse free survival (Györffy et al., 2010). 

In this project, KMPlotter was used to analyse clinical relevance of genes identified 

of interest from the models in an ER+ breast cancer patient cohort (n=657, with up 

to 20 year followup) who had been subsequently been treated with tamoxifen to 

determine the relationship with response duration to this antihormone (RFS). 

Equivalent analysis was also carried out on ER+ patients who were systemically 

untreated to investigate any inherent prognostic value of genes of interest (n=785 

patients). All analyses were carried out using the jetset Affymetrix gene probe (Li et 

al., 2011), with output presented as Kaplan-Meier survival curves with associated 

Hazard ratio (HR) and significance value (log rank p <0.05). 
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2.6.1.2 Gene expression-based Outcome for Breast cancer Online (GOBO) 

The GOBO tool (http://co.bmc.lu.se/gobo) operates in similar manner to KMPlotter. 

This tool has diverse capabilities but again fundamentally aims to integrate 

Affymetrix gene expression data with patient outcome parameters in order to 

determine the relevance of a gene of interest clinically in breast cancer. Of note, 

GOBO allows splitting of the patient dataset into more than 2 groups based on 

increasing level of gene expression thus gauging whether the magnitude of gene 

expression is associated with an improved or poorer outcome (e.g. RFS). This 

analysis is again displayed as Kaplan-Meier plots with a significance value (p<0.05). 

One further capability of the tool is that it can determine if the expression of a 

given gene is associated with a particular molecular subtype of breast cancer as 

well as with disease grade, where relationships are displayed as boxplots.  In this 

project, GOBO was used to determine the clinical relevance of genes of interest in 

relation to tamoxifen outcome in the same manner as KMPlotter but patients were 

split into 3 groups to determine if gene expression level displayed a graded 

relationship with RFS GOBO was also used to determine if gene expression was 

associated with particular molecular subtype to gauge further if the gene associated 

with a more or less aggressive disease (for example, HER2+ vs. Luminal A). It should 

be noted that GOBO does not contain as many datasets as KMPlotter thus patient 

numbers are lower (n=326 for tamoxifen treated patients, with 10 year follow-up). 

Again, all analyses were carried out using jetset gene probe sets to represent each 

gene of interest (Li et al., 2011) 

2.6.2 Analysis of genes of interest using Faslodex-treated breast 

cancer clinical trial (NEWEST) data 

Through collaboration with AstraZeneca, this project was able to access gene 

expression data accumulated from a clinical breast cancer trial treated with 

Faslodex to interrogate genes of interest from the cell models. The NEWEST 

(Neoadjuvant Endocrine Therapy for Women with Estrogen-Sensitive Tumors; 

9238IL/0065) trial is a neoadjuvant clinical trial designed by AstraZeneca in order to 

compare 250mg Faslodex with 500mg Faslodex in ER+ postmenopausal patients. 

The trial design was based on previous immunohistochemical (IHC) marker data (i.e. 

http://co.bmc.lu.se/gobo
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ER, PgR and Ki67) indicating that Faslodex acted in a dose-dependent manner in 

clinical breast cancers. Thus, by doubling the dose efficacy should be increased 

(including greater inhibition of ER signalling), potentially leading to an improved 

anti-tumour response (Kuter et al., 2012). This trial collected core tumour biopsies 

at baseline, week 4 and at week 16 (surgery). Cores were formalin-fixed and 

paraffin-embedded before biomarker assessment was carried out using established 

IHC assays (Ki67, ER and PR) and assessed using percentage positivity and H-score 

as described in Kuter et al. In addition, a proportion of samples primarily at baseline 

and at 4 weeks treatment had been microarrayed for gene expression analysis. RNA 

was extracted from core biopsies from a subset of patients in both trial arms and 

underwent microarray gene expression profiling using the Illumina platform 

(carried out by the laboratory of Professor Mitch Dowsett, ICR, London). In the 

present project, the resultant microarray expression database (and parallel IHC 

marker data) was made available for n=24 matched samples to allow  interrogation 

of whether 500mg Faslodex treatment altered expression of the genes of interest, 

and to examine if such gene changes associated with changes in proliferation (Ki67) 

during treatment. To interrogate genes of interest in this project, the Illumina 

expression data was first transformed using Illumina software (LumiExpresso) which 

performed background correction, variance stabilisation and log2 normalisation of 

the data and removed genes that are were not expressed above the background 

level (as defined by the negative control gene probes) ensuring that the remaining 

probes are detecting expression.  

Normalised microarray data and the associated IHC data from the NEWEST trial 

were then uploaded into SPSS for statistical analysis. A paired t-test was initially 

carried out using the matched baseline and on-therapy (4 weeks) data to determine 

if gene expression for genes of interest was significantly altered by Faslodex 

treatment in the patient samples. Genes that neared significance or met 

significance were more closely analysed and fold change of expression was 

calculated.  

A Mann-Whitney U test was then used to determine if the change in gene 

expression promoted by Faslodex (induction or suppression) was significantly 
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(p<0.05) associated with change in Ki67 and ER protein expression (IHC data) 

following 4 weeks of treatment. Change in Ki67 was calculated by subtracting the 

on-therapy % positivity value from the baseline % positivity value while for ER on 

therapy Hscore was subtracted from baseline Hscore. 

2.6.3 Analysis of genes of interest using aromatase inhibitor-treated 

breast cancer clinical trial (Trial 223) data 

Microarray data from Trial 223 were also available for interrogation of the genes of 

interest in this project. Trial 223 was a neoadjuvant study designed to determine if 

combination treatment of anastrozole and gefitinib (an EGFR inhibitor) may 

increase drug sensitivity in those tumours that are generally not sensitive to anti-

hormonal measures (Smith et al., 2007). In this study, breast cancer patients were 

postmenopausal, with non-metastatic disease and tumours were ER and/or PgR 

positive. All patients received 1mg anastrozole daily for 16 weeks before surgery 

took place. There were 3 arms to the trial and patients were split in 2:5:5 ratio to 

receive anastrozole and gefitinib 250mg daily for 16 week trial period (arm A); 

placebo daily for initial 2 weeks followed by 14 weeks of 250mg gefitinib daily (arm 

B); and finally patients received placebo tablet daily for the complete 16 week trial 

(arm C). Core biopsies were taken at baseline, 2 weeks and 16 weeks (surgery). The 

primary endpoint in the trial was KI67 IHC analysis and secondary endpoint was 

tumour response. However, microarray gene expression profiling was also again 

carried out by the laboratory of Professor Mitch Dowsett. ICR, London. RNA 

samples were taken from the core biopsies from a subset of patients in trial arms B 

and C. RNA was extracted in conjunction with Illumina protocols and gene 

expression profiling was carried using the Illumine platform and data transformed 

using the appropriate software as detailed previously. Again by collaboration with 

AstraZeneca, access to this normalised microarray data in the present project 

allowed analysis of anastrozole-induced gene changes focussing on the genes of 

interest from the models and utilising the matched expression data at baseline and 

at 2 weeks, which encompassed a patient cohort who had only received 

anastrozole treatment. The statistical approach was comparable to that taken for 

the NEWEST data using SPSS  
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2.7 Functional studies of high priority gene (decorin) using shRNA  

2.7.1 Lentiviral DCN shRNA 

Short-hairpin RNA (shRNA) is a sequence of RNA that can make a short turn hairpin, 

silencing expression of a target gene. This technology was utilised to permanently 

silence the decorin (DCN) gene in the T47D cell line, permitting growth studies to 

investigate if such knockdown influenced Faslodex response and parallel DCN 

expression analysis using PCR. The Dharmacon® SMARTvector 2.0 system was 

employed, which uses lentiviral vectors to stably deliver and express genetically 

engineered RNA  to silence the target gene. The lentiviral shRNA particle binds to 

the cell and delivers the genetically engineered RNA into the cytoplasm where it is 

reverse-transcribed into DNA. The DNA is transported into the host cell nucleus 

where it is incorporated into the host genome. Subsequently, the silencing 

construct is stably and constitutively expressed as a pri-microRNA (pri-miRNA) and 

is processed by Drosha. Exportin 5 then transfers the pre-shRNA out of the nucleus 

for it to be processed by Dicer and subsequently enters the RNA-induced silencing 

complex (RISC) pathway. The antisense strand of the shRNA directs RISC to mRNA 

of a complementary sequence; when RNA of perfect complementation is found 

(target mRNA) RISC cleaves the target mRNA resulting in target/DCN silencing.  

The SMARTvector 2.0 lentiviral constructs contain a turboGFP reporter gene 

allowing assessment of transduction. The constructs also contain a puromycin 

resistant gene (PuroR) to allow for selection of cells that have been successfully 

transduced. 

2.7.2 Puromycin Selection Conditions 

T47D cells were plated into a 24-well plate (40,000 cells per well) in RPMI medium + 

5% FCS and left to adhere overnight. Growth medium was replaced with medium 

containing a range of puromycin concentrations (in triplicate); 0.1, 1, 2, 5, 7, 

10μg/ml (as suggested by the manufacturer and diluted in cell medium). Medium 

was replenished every two days and the cells were assessed via a microscope daily 

to determine the minimal concentration of puromycin that killed all cells between 

days 4-6 (1μg/ml). 
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2.7.3 Lentiviral shRNA 

The lentiviral shRNA experiments were carried out at Imperial College London 

under the supervision of Professor Simak Ali and Dr Laki Buluwela who have much 

experience in carrying out shRNA gene knockdown. The SMARTvector 2.0 system 

provides 3 constructs targeting various sequences of the target gene allowing 

evaluation of each of the constructs targeting the gene of interest (Table 6 for 

DCN), as well as a negative non-targeting (NT) control construct. Following the 

manufacturer’s instructions, using a 96 well plate, T47D cells were plated in 

triplicate at seeding densities of 5000 or 10,000 cells per well. The shRNA lentiviral 

particles were then added at varying multiplicity of infections (MOI) i.e. the ratio of 

transducing units (TU) (viral particles) per cell set at 0.5, 1.8, 5 and 10. Some wells 

were left devoid of particles as a negative experimental control. To calculate the 

amount of virus required for a given MOI, the following formula was used as 

indicated by the manufacturer:                                            

(MOI*CN)/VT 

MOI-Multiplicities of infection 

CN-Cell number 

VT-stock viral titre (TU/μl) 

 

Table 6: The gene target sequence for each of the shRNA constructs used to target DCN 

gene expression as well as the viral titer provided by the manufacturer (number of 

transducing units provided (TU/ml) 

Gene symbol Gene target sequence Titer (TU/ml) 

DCN (SH1) CTGTCAATGCCATCTTCGA 1.82 x 105 

DCN (SH2) GTTGATGTTAACTGAGCTA 1.41 x 105 

 

The plate was then placed back into the incubator for 24 hours before the medium 

containing lentiviral particles was removed and replaced with the usual medium 

(RPMI + 5% FCS). Within 48-72 hours the genetically engineered material should be 
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incorporated into the host genome and thus the turboGFP gene should be 

expressing detectable levels of GFP allowing the transduction efficiency to be 

assessed. Once detectable levels of turboGFP were detected using a fluorescence 

microscope (Leica Microsystems) and the cell confluency was greater than 70%, 

1μg/ml of puromycin was added to the growth media in order to select for those 

cells that had been effectively transduced. The puromycin selection was 

subsequently maintained throughout the culture of each of the new cell lines. 

Other than puromycin addition, each model was cultured the same as the T47D 

wild-type cell line for growth and PCR studies to compare the DCN knockdown 

constructs versus the NT control using procedures as described in Sections 2.1, 

2.2.4 and 2.5 (including cell growth experiments, ICC and PCR, further information 

provided in the figure legends of chapter 10). 
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Chapter 3 

In vitro evaluation of the duration of initial Faslodex 

response and the development of acquired resistance in cell 

models of ER+/HER2- and ER+/HER2+ breast cancer 

 

 

3.1 Introduction 

Two important principles of targeted therapy have recently arisen: (1) that 

significant genomic heterogeneity exists among tumours of the same origin and 

such heterogeneity can have a profound impact on clinical response (Carey et al., 

2013; Higgins et al., 2011) and (2) drug-induced transcriptome events can also 

affect the subsequent clinical response (Gee et al., 2003; Nicholson et al., 2005).  

 

With regards to breast cancer heterogeneity, this is often not factored into research 

activities. In most instances, the field largely relies on single cancer cell lines and 

with respect to hormone-dependent breast cancer the MCF-7 cell line is primarily 

used due to its high ER expression and subsequent hormone-sensitivity (Levenson 

et al., 1997). As such it is becoming increasingly clear that the use of the MCF-7 cell 

line to represent all ER+ breast cancer is not adequate. This issue has been 

summarised and discussed in the published report from Holliday and Speirs where 

they have concluded that even though significant advances have been made in 

cancer biology through the use of individual cancer cell lines, it is time to move 

from the “one marker, one cell line” approach (Holliday and Speirs, 2011). Certainly, 

breast cancer has been subdivided into at least 6 molecular subtypes all associated 

with different clinical prognoses and it is a fair assumption that these differing 

responses are in part due to inherent genetic differences between the sub-types. 

 

Similarly, drug-induced genomic events have been poorly characterised (Gee et al., 

2011), particularly to Faslodex and it is self evident that a further understanding of 



68 
 

such events may aid in the identification of novel therapies to improve 

antihormone response or new biomarkers to help stratify patients who will undergo 

an improved clinical response. While absence of ER in a breast cancer is a robust 

marker of endocrine resistance (Gutierrez et al., 2005; Kumar et al., 1996), currently 

in ER+ disease we are unable to competently predict the magnitude/duration of 

patient response (if any) to anti-hormone treatment and our knowledge in this 

regard is again poorest for Faslodex. 

The purpose of the work described in this thesis is  to identify and characterise 

mechanisms of response and resistance to the antihormone Faslodex in vitro, 

encompassing drug-induced events and also taking into account an aspect of 

heterogeneity that exists in ER+ breast cancer; HER2 status. Four ER+ breast cancer 

cell lines were utilised; 2 where the HER2 gene is amplified (BT474 and MDA-MB-

361) and 2 that have inherently low levels of HER2 and thus represent ER+ HER2- 

disease (MCF-7 and T47D) (Neve et al., 2006). Approximately 15-20% of breast 

cancers over-express the oncogene HER2 (Baehner et al., 2010) and this tumour 

subset has been deemed the HER2+ molecular subtype and is associated with a 

poorer prognosis and more aggressive disease. Approximately 10% of ER+ breast 

cancer patients  express HER2 (Dowsett et al., 2008) and it has been recognised for 

many years that inherent overexpression of HER2 predicts a reduced response to 

anti-hormone measures including tamoxifen (Pietras et al., 1995; Sabnis et al., 

2009). However, the relationship between Faslodex response and HER2 has not 

been fully established. 

In this chapter, the ER and HER2 status of each of the cell lines is confirmed and the 

effect of continuous Faslodex treatment on their growth is examined. By carrying 

out such investigations the aim was to determine the duration of initial Faslodex 

response in each of the cell models and to determine if and when a resistant 

phenotype emerged.  
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3.2 Results 

3.2.1 ER and HER2 status of the 4 cell lines 

PCR and ICC staining prior to Faslodex treatment was carried out to confirm the 

status of ER and HER2 in the four cell lines (as described by Neve et al., 2006);  

Figures 4 and 5. 

 

 

 

Figure 4: Representative PCR image in the 4 breast cancer cell lines, with the corresponding 

densitometry graph representing the mean data for ER expression normalised to β-actin 

(n=3). 
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Figure 5: ICC analysis of ER in the 4 breast cancer cell lines utilised in this project, showing 

representative images (original magnification=x20) and associated average Hscores 

examined over replicate coverslips 

All of the 4 cell lines used in the study expressed ER at the mRNA level (Figure 4) 

and displayed at least 80% ER positivity at the protein level (Figure 5). Staining, 

however, was highly heterogeneous with levels varying not only across the cell 

models but also within any one cell line. The strongest ER staining was observed in 

the MCF-7 cell line and lowest ER stain (and ER mRNA expression) in BT474.  
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Figure 6: Representative PCR image in the 4 breast cancer cell lines, with the corresponding 

densitometry graph representing the mean data for HER2 expression normalised to β-actin 

(n=3). 

The expression of the RTK HER2 gene in the 4 cell lines is shown in Figure 6. High 

levels of HER2 mRNA were recorded in BT474 and MDA-MB-361 cell lines, 

consistent with its reported amplification in these cells. Lowest levels of HER2 

mRNA were seen in the MCF-7 cell model, with weak detection in T47D cells.   

Figure 4 displays intense immuno-staining of this RTK at the plasma membrane and 

to a lesser extent throughout the cytoplasm in the BT474 and MDA-MB-361 cell 

lines. Indeed, in each of these cell lines, it was necessary to dilute the HER2 primary 

antibody 2x further than recommended in the immunocytochemical test due to the 

extremely high levels of HER2 to allow HScore analysis. Clinically, patient biopsies 

undergo the Hercep Test to determine immunocytochemically if HER2 is expressed 

by a tumour and thus determine if Herceptin treatment is appropriate or not. In 

order to receive Herceptin, stained samples must meet the requirements for 3+ 

staining, described as “a strong complete membrane stain in 10% or more of the 

tumour cells”. Both BT474 and MDA-MB-361 cell lines meet this requirement 
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indicating that they are a good representation of the clinical HER2+ phenotype. In 

contrast, only very low levels of HER2 staining was seen at the plasma membrane of 

the MCF-7 and T47D cell lines (Figure 7) and moreover in only a small proportion of 

cells. For the purpose of this study, these cell lines have been taken to represent 

ER+/HER2- disease.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 7: ICC analysis of HER2 in the 4 breast cancer cell lines utilised in this project, 

showing representative images (original magnification=x20) and associated average H-

scores examined over replicate coverslips 

3.2.2 Faslodex dose-response and down-regulation of ER 

An extensive Faslodex dose-response experiment was initially performed on the 

MCF-7 cell line to measure the degree of Faslodex promoted ER down-regulation. 

This was deemed maximal at 10-7M (Appendix D). This concentration is in keeping 
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with that used by the majority of researchers who have also demonstrated effective 

ER down-regulation and growth inhibition in ER+ breast cancer cell lines as well as 

inhibition of oestrogen stimulated growth (Memminger et al., 2012; Lupien et al., 

2010; Frogne et al., 2009).   

A narrower dose response study was subsequently examined in the 4 cell lines, 

which verified the maximal growth inhibitory properties of 10-7M Faslodex. At this 

dose, Faslodex significantly reduced cell proliferation in the four cell lines, as 

monitored by cell growth data (Figure 8), and also decreased ER level (Figure 9). Of 

the 4 cell lines examined,  MCF-7 cells showed an approximately 90% fall in cell 

number, while an 80%, 60% and 50% fall was seen in MDA-MB-361,  T47D and  

BT474 cells respectively, declines broadly paralleling the maximum growth 

inhibition achieved in each line Substantial ER down-regulation (MCF-7 55%, T47D 

88%, BT474 96%, MDA-MB-361 91%) was observed in all 4 models. 
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Figure 8: Effects of increasing concentrations of Faslodex (0.01 to 1 μM) on the basal 

growth of MCF-7, T47D, BT474 and MDAMB361 cells after 7 day treatment. The results are 

expressed as means ± SEM of triplicate experiments. *P < 0.05 versus untreated control, 

**P < 0.01 versus untreated control, ***P < 0.001 versus untreated control. 
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Figure 9: ICC analysis of ER down-regulation by 10-7M Faslodex in 4 ER+ breast cancer cell 

lines, showing representative images (original magnification=x20) and associated average  

Hscore. 
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3.2.3 Effect of long term culture on the four ER+ breast cancer cell 

lines in the presence of Faslodex. 

3.2.3.1 Duration of Faslodex response and establishment of Faslodex-resistance 

Previously an acquired tamoxifen-resistant cell line was successfully established by 

culturing MCF-7 cells in the presence of 4-OH-tamoxifen for an extended period of 

time in vitro (Nicholson et al., 2001; Knowlden et al., 2003). In this project, long 

term culture was similarly carried out using the MCF-7, T47D, BT474 and MDA-MB-

361 cell lines in the presence of 10-7M Faslodex.  By using ER+ cell lines with 

differing HER2 status it was hoped to relate HER2 and duration of Faslodex 

response in vitro. 

Figures 10-13 comprise these long-term growth data. The graphs have been 

constructed using the number of days each cell line was in culture (x-axis) and the 

number of passages carried out during this culture period (y-axis). The absence of 

passaging indicates a period of Faslodex-induced growth inhibition while recovery 

of routine passaging indicates the establishment of a resistant phenotype. Table 7 

summarises these data.   

 

Figure 10: Growth inhibitory effect of continuous Faslodex (10-7M) on the ER+/HER2- MCF-7 

cell l ine in vitro. Growth inhibition is displayed by lack of cell passages compared to 

continuously increasing passage number for untreated control cells. 
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Figure 11: Growth inhibitory effect of continuous Faslodex (10-7M) on the ER+/HER2- T47D 

cell line in vitro. Growth inhibition is displayed by lack of cell passages compared to 

continuously increasing passage number for untreated control cells. 

 

Figure 12: Growth inhibitory effect of continuous Faslodex (10-7M) on the ER+/HER2+ 

BT474 cell line in vitro. Growth inhibition is displayed by lack of cell passages compared to 

continuously increasing passage number for untreated control cells. 
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Figure 13: Growth inhibitory effect of continuous Faslodex (10-7M) on the ER+/HER2+ MDA-

MB-361 cell line in vitro. Growth inhibition is displayed by lack of cell passages compared to 

continuously increasing passage number for untreated control cells. 

 

Table 7: Number of days taken for each cell line to develop resistance to Faslodex in 

continuous culture. The response duration in vitro was determined by the time taken until 

the first passage occurred and subsequent cell growth was maintained in the presence of 

Faslodex. 
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cells revealed  that the ER+/HER2- cell lines underwent an enhanced Faslodex 

response compared to the HER2+ cell lines, evidenced by the superior duration of 

growth inhibition in the MCF-7 line and by the complete cell loss in the T47D cell 

line in the presence of this antihormone by ~60 days (Figures 10 and 11; Table 7).  

Although Faslodex resistance developed during treatment in MCF-7, MDA361 and 

BT474 cells, it occurred more rapidly in the HER2+ cells.  

This experiment was repeated several times confirming the growth profiles 

observed, and where failure to develop Faslodex resistance by T47D cells 

(contrasting the 3 further models) was reproducibly observed (Figure 14) during the 

same time frame. The failure of T47D cells to develop Faslodex resistance resulted 

from a complete cell loss beginning after ~8.5 weeks of treatment (Figure 15), when 

the cell coverage of the culture flasks began to dramatically drop, indicative of a 

complete response. It is believed that this is the first reported Faslodex complete-

response model. 

 

Figure 14: Growth inhibitory effect of continuous Faslodex on the ER+/HER2- T47D cell line 

in vitro (replicate experiment). Growth inhibition is again displayed by lack of cell passages 

compared to control.  
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Figure 15: % cell coverage of T47D cells in a culture flask undergoing continuous Faslodex 

treatment (viewed under a microscope, magnification x10).  

In summary, these cell models reflected several important phenomena observed 

with antihormones in the clinic (but in some instances as yet only poorly-described 
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compared to HER2- tumour cells. 

Resistance is commonly acquired by the ER+ tumour cells during Faslodex 

treatment, but significantly, T47D cells underwent a complete response to Faslodex 

treatment.   
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consistent with the published literature where MDA-MB-361 and BT474 cells show 

HER2 gene amplification (She et al., 2008; Ithimakin et al., 2013).  

Subsequent studies showed that Faslodex efficiently down-regulates ER, 

independently of the HER2 status of the cells, and impacted on tumour cell number 

and cell proliferation rate, as determined by cell growth data. The responsiveness 

of the ER+ cells to the growth inhibitory effects of continuous Faslodex exposure 

was, however, highly variable, where the HER2+ cell lines showed the least 

favourable response to Faslodex, each developing resistance within a shorter 

period.  Significantly, within the two HER2- cell lines, while acquired resistance to 

Faslodex was eventually observed in MCF-7 cells, T47D cells showed a complete 

response to Faslodex, a rarely described phenomenon with targeted treatments 

such as antihormones in breast tumour models. Heterogeneity of response, 

therefore, occurs both between HER2 positive and negative cell models and within 

HER2 negative cell types. The 4 cell model panel with its varied anti-tumour 

response provides a new research tool to delineate determinants of Faslodex 

response and failure, critical given use of this antihormone is increasing clinically.   

Degree of ER positivity has been associated with an improved response to anti-

hormone therapy (Goldhirsch et al., 2009) and more recently there have been 

suggestions that patients with low levels of ER should receive chemotherapy in 

addition to endocrine therapy while high expressers would receive little benefit 

from the addition of chemotherapy (Pagani et al., 2009). Thus the high inherent ER 

positivity in the MCF-7 cell line probably partially explains its sensitivity to 

oestrogens and short-term anti-hormone measures. Immunostaining of ER revealed 

that ER expression varied from cell line to cell line and also within cell lines (Figure 

5). This is not unique to the cells used in this project but has also been described by 

other laboratories (Bock et al., 2012). Variations within a given cell line are partly 

explained by cell-cycle related variations of ER expression (Caldon et al., 2010). 

Such variations are also observed in ER positive tumours from different patients 

(Charpin et al., 1988) and within individual ER+ tumours (Nassar et al., 2010). 

However, there is little available clinical information regarding relationship between 

degree of initial ER positivity and response to Faslodex. The studies here indicated 
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that expression of ER failed to relate to initial degree of response to short-term 

Faslodex treatment or subsequent duration of response in all cell lines. The MCF-7 

cell line displayed markedly higher ER protein expression than the MDA-MB-361 cell 

line but following short-term Faslodex treatment growth inhibition was largely 

equivalent (Figure 9). In addition, degree of ER expression also failed to relate to 

response to long-term Faslodex treatment.  

The long-term growth studies revealed that the HER2- cell lines displayed a superior 

Faslodex response versus the HER2+ models (Figures 10 and 11) but the T47D cell 

line emerged as a model of Faslodex complete response even though expressing 

substantially less ER than the MCF-7 cell line (Figure 5) which subsequently 

developed resistance. Based on these observations that response is clearly 

independent of initial level of ER (including within MCF-7 and T47D cells), 

measuring ER prior to treatment may prove unhelpful in predicting response 

outcome within ER+ disease for the agent Faslodex. Significant ER down-regulation 

was observed with Faslodex in all models, and has also been reported in pre-

surgical studies in primary breast cancer with this drug showing dose dependency 

(Kuter et al., 2012; Robertson et al., 2010).  No clinical study has related magnitude 

of ER down-regulation to duration of response, but again the cell model findings 

here showing lack of relationship between the capacity of Faslodex to down-

regulate the cellular levels of this protein and initial or long-term Faslodex growth 

response suggest such measurement may be uninformative.  

The long term cell growth studies with Faslodex treatment agree with the varying 

responses observed with antihormones in the clinic. Clinically, many HER2- patients 

display a partial response before an antihormone resistant phenotype emerges, an 

event represented by the MCF-7 cell line (Figure 10). As previously stated the T47D 

cell line underwent a complete response following long-term Faslodex treatment 

despite short-term treatment failing to initiate the most robust growth inhibition, 

indicating that degree of inhibition induced by short-term treatment is not 

indicative of long-term outcome. The stark difference between the relatively-poor 

magnitude of response of the T47D cell line to Faslodex following short-term 

treatment compared to complete response achieved during long-term exposure 
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could be due to a drug-induced event(s). Faslodex treatment may result in a unique 

genomic event in the T47D cell line i.e. up or down-regulation of gene expression 

respectively  modulating an important apoptotic or cell survival pathway in the 

T47D line that does not occur in the other cell models, so that over time an 

eventual complete-response is observed. With respect to the use of the T47D cell 

line as a model for ER+ breast cancer, this may be of particular relevance with 

respect to those patients who show a complete response following endocrine 

therapy. Complete-response to Faslodex is not a common phenomenon, Table 1 

from the introduction states that 1.1% of patients demonstrated a clinical response 

in the CONFIRM study (Di Leo et al., 2010). Complete response is described as the 

disappearance of all signs of cancer in response to treatment as indicated by the 

National Cancer Institute. 

Very few trials have assessed the relationship between pathological complete 

response and endocrine therapy. It has been shown that pathological complete 

response is associated with an improved clinical outcome (Milla-Santos et al., 

2004), although it is also known that patients can relapse following complete 

response to therapy. Using the T47D cell line in comparison with the further ER+ 

models to determine the precise mechanism of such an effect in relation to 

Faslodex could be key to helping explain the varying responses to Faslodex 

treatments observed in patients and hopefully aid identification of patients who 

will elicit superior response and thus potentially benefit from Faslodex therapy. 

Generally patients with HER2+ disease are associated with a more aggressive 

tumour and the period of initial response to anti-hormones such as tamoxifen is 

reduced (Osborne et al., 2003). Experimental studies by other laboratories, 

primarily utilising stable HER2-transfected MCF-7 cells, indicate this may involve 

establishment of an “escape” growth survival pathway (i.e. HER2 as alternative to 

ER) (Schiff et al., 2005; Wardley and Howell, 2006). There is also emerging evidence 

that HER2 blockade can temporarily improve tamoxifen or aromatase inhibitor 

outcome in some ER+/HER2+ patients (Johnston et al., 2009). However, studies are 

only beginning in this area for Faslodex clinically and there are no substantial 

preclinical data with this agent in ER+/HER2+ cells, so the response relationship for 
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Faslodex with HER2 status is not fully established). In the HER2+ in vitro models in 

this project, a reduced initial response to Faslodex was observed compared to the 

MCF-7 cell line providing some evidence that HER2 overexpression de novo may 

also contribute to limiting maximal Faslodex response.  Also of interest in this 

regard is the superior long-term Faslodex response observed in the HER2- cell lines 

compared to the HER2+ cell lines (Figures 10- 13). Even though the MCF-7 cell line 

eventually developed Faslodex-resistance the duration of initial drug response was 

superior compared to the HER2+ cell lines. Again, this is in keeping with current 

literature stating that endocrine response is reduced in the HER2+ disease setting 

(Schiff et al., 2005; Wardley and Howell, 2006).  

 

These data do suggest the presence of HER2 can contribute to limiting Faslodex 

response. However, the ER+/HER2+ as well as the ER+/HER2- cell lines exhibited 

initial Faslodex responses, and also the HER2+ phenotype does appear able to 

display some response to Faslodex in the clinic (Robertson et al., 2010). 

Furthermore, Faslodex resistance was ultimately acquired in both the HER2- MCF-7 

line and the HER2+ lines. These data in total suggest that additional factors 

alongside amplification of HER2 contribute to determining response or failure to 

this antihormone in ER+ disease. It is feasible that the varying growth inhibitory 

responses and subsequent acquisition of resistance (where observed) in the HER2- 

and HER2+ cell lines may be due to Faslodex induced genomic changes in addition 

to aspects of the intrinsic phenotype, particularly HER2 status. 

In the following chapters, microarray gene expression profiling has been utilised in 

order to determine Faslodex-induced transcriptome alterations that may explain 

these varying drug responses in each of the cell lines in vitro. It is feasible that this 

approach could identify novel therapeutic strategies or biomarkers of these varying 

responses with the ultimate aim of maximising Faslodex impact. 
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Chapter 4 

Microarray gene expression profiling to identify genes that 

may associate with Faslodex response profiles  

in vitro 

 

 

4.1 Introduction 

Following the completion of the sequencing of the human genome, which 

demonstrated the potential breadth of genes that could be expressed in any tissue, 

came the advent of gene expression microarray profiling. Such profiling allows the 

analysis of gene transcription on a genome-wide scale rather than the traditional 

“one gene at a time”. This creates a global picture of potential cellular function and 

thus provides another level of detail to the functionality of the genes present in the 

human genome.  

High throughput gene expression profiling using microarray-based methods has 

achieved many successes in relation to breast cancer research. Without such data, 

we would lack a fuller understanding of the heterogeneity that exists in breast 

cancer which has now challenged the concept that breast cancer is a single disease 

(Perou et al., 2000; Sorlie et al., 2001). Instead, it is currently accepted that breast 

cancer is a collection of different diseases that affect the same organ site but have 

widely different transcriptional profiles, risk factors, clinical presentation, 

histopathological features, outcome and response to therapies (Reis-Filho et al., 

2010; Weigelt et al., 2010). These studies have shown that response to a given 

treatment is at least in part determined by inherent molecular characteristics of the 

tumours and such findings have been taken advantage of in order to discover genes 

over-expressed in breast cancer or to identify molecular gene signatures that can 

potentially predict prognosis and response to therapies (Sotiriou et al., 2009; 

Weigelt et al., 2010). Although there is as yet no accepted signature to distinguish 
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endocrine sensitive from resistant patients, some gene signatures are available in 

commercial formats, e.g. OncotypeDX, a genetic test that can be used to determine 

if ER+ patients are at risk of distant recurrence and would thus benefit from the 

addition of chemotherapy to their standard endocrine treatment (Paik et al., 2004).  

Significantly however, little data are available which correlate changes in gene 

expression profiles during therapy with either initial tumour response or the 

subsequent development of endocrine resistance, with data particularly lacking for 

Faslodex. Importantly, therefore this chapter builds on the data presented in 

chapter 3 to determine if meaningful information using gene expression analysis 

can be generated from the 4 ER+ cell lines with their differing HER2 status and 

Faslodex response/resistance data. Affymetrix U133Aplus2 arrays were used to 

chart the gene expression profiles in each model before and after treatment in 

order to identify de-regulation of genes by Faslodex (10-7M, 10 day treatment) that 

may subsequently contribute to a given response. The approach in part mirrors a 

study by Frasor et al., confined to MCF-7 cells, who demonstrated that 

antihormones can induce as well as suppress the expression of ER-regulated genes 

(Frasor et al., 2004) and where some gene changes contributed to eventual tumour 

re-growth and resistance, essentially limiting the efficacy of the treatment.  

4.2 Results 

4.2.1 Hierarchical clustering analysis: Quality control of replicate data 

Following the completion of the microarray gene expression profiling experiment, 

the resultant triplicate expression data were normalised prior to a number of 

statistical tests. Firstly, a simple t-test (p<0.05) was conducted to identify gene 

probes that were significantly altered by 10 day Faslodex treatment compared to 

untreated cells. This was followed by a further statistical test, SAM (Significant 

Analysis of Microarrays), with a false discovery rate (FDR) set also at 0.05. The 

stringent statistical testing was chosen to maximise chances of determining robust 

expression changes occurring in the cell models following Faslodex treatment. The 

total gene probe changes with Faslodex thus identified in each model are shown in 

Table 8 as well as the number of individual gene probes were de-regulated by 
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Faslodex in all models. It can be seen from Table 8 that of the 10517 genes probes 

de-regulated; approximately 50% are induced by 10 day treatment while 

approximately 50% were suppressed. 

Table 8: Total number of gene probes induced or suppressed by 10 day Faslodex treatment 

(10-7M) in each of the cell lines and number of individual gene probes analysed. 

Experimental arm 
Number of gene probes 

altered by Faslodex 

MCF-7  5559 

T47D  2240 

BT474  3319 

MDA-MB-361  2946 

Total number de-regulated 

(individual gene probes) 
10517 

 

Induced 5279 

Suppressed 5238 

Cumulating these significant gene probes, hierarchical clustering analysis (HCA) was 

then carried out on these selected induced or suppressed gene probes pre- and 

post- Faslodex treatment using an in-house software program as a quality check to 

ensure the individual replicates for each control and experimental arm 

appropriately clustered for each model before further analysis (Figures 16-19). 

Areas in green indicate low gene expression, while red indicates high gene 

expression. 
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 Figure 16: Hierarchical clustering analysis of the expression of genes that were (A) – 

induced by Faslodex or (B)- suppressed by Faslodex in one or more of the cell lines,  

examined in the MCF-7 cell line (untreated and Faslodex treated). Clustering of the 

triplicate data for each experimental arm is highlighted in orange boxes. 

 

Figure 17: Hierarchical clustering analysis of the expression of genes that were (A) – 

induced by Faslodex or (B)- suppressed by Faslodex in one or more of the cell lines, 

examined  in the T47D cell line (untreated and Faslodex treated). Clustering of the triplicate 

data for each experimental arm is highlighted in orange boxes. 
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Figure 18: Hierarchical clustering analysis of the expression of genes that were (A) – 

induced by Faslodex or (B)- suppressed by Faslodex in one or more of the cell lines, 

examined in the BT474 cell line (untreated and Faslodex-treated). Clustering of the 

triplicate data in each experimental arm is highlighted in orange boxes. 

 

Figure 19: Hierarchical clustering analysis of the expression of genes that were (A) – 

induced by Faslodex or (B)- suppressed by Faslodex in one or more of the cell lines, 

examined in the MDA-MB-361 cell line (untreated and Faslodex treated). Clustering of the 

triplicate data in each experimental arm is highlighted in orange boxes. 

Using gene probes that were significantly Faslodex-de-regulated in any of the cell 

lines, all the replicate microarray expression data clustered together for pre or post 

treatment (highlighted by orange), with pre-treatment clustering distinct from post-

treatment, indicating good quality data (Figures 16-19) for the statistically-

discriminated Faslodex-induced and suppressed genes. 
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4.2.2 Confirmation of suppression of two known ER-regulated genes 

following 10 day Faslodex using the gene expression datasets. 

In parallel with the above, the raw gene expression data were also uploaded into an 

analysis software program called Genesifter. Genesifter is commercially available 

and carries out a median normalisation and log-transfromation on the data before 

profile analysis begins. Genesifter allows the user to use heatmaps, and log2-

expression intensity plots in order to investigate individual gene expression 

changes. This program was used to further gauge the quality of the pre- and post-

treatment array data by analysing the change in expression exerted by 10 days 

Faslodex treatment on two known ER-regulated genes PGR and GREB1 (growth 

regulation by oestrogen in breast cancer 1; an oestrogen-responsive gene that is an early 

response gene in the oestrogen receptor-regulated pathway).   

The data presented in Figure 20 (heatmaps and intensity plots) shows that PGR and 

GREB1 were suppressed to varying degrees by Faslodex treatment evidencing its 

expected anti-oestrogenic impact in all models. Indeed, in some instances, gene 

expression levels below 0 were observed in the 10 day treatment samples, 

indicative of very low (if any) expression levels of these mRNAs after treatment. 
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Figure 20: (A) Heatmaps of known ER-regulated genes (PGR and GREB1) to determine the 

effect of 10 day Faslodex treatment on expression of these genes (B) Gene expression 

intensity plots for each gene in all cell lines pre and post Faslodex treatment. Genesifter 

uses a log2 intensity scale for display of mean of triplicate normalised expression data +/- 

SEM for each experimental arm. 
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4.2.3 Interrogation of gene changes in each cell model following 

Faslodex treatment 

Following the validation of the quality of the array expression data and 

confirmation that Faslodex was de-regulating known ER-regulated genes in all the 

models at the expression level, the expression data were further interrogated by 

analysing the number of genes that were induced or suppressed by Faslodex within 

each of the individual cell lines (Table 9). 

Table 9: The number of gene probes induced or suppressed by 10 day Faslodex treatment 

in each of the cell lines investigated. Also displayed is the % of the genome that is Faslodex 

de-regulated (based on total Affymetrix HGU133A probe number of n=22215)  

Experimental arm 
Number of gene 

probes 

% of gene probes 

Faslodex-regulated 

MCF-7 suppressed probes 2795 12.6 
24.9 

MCF-7 induced probes 2764 12.3 

BT474 suppressed probes 1674 7.5 
14.9 

BT474 induced probes 1645 7.4 

MDA-MB-361 suppressed 

probes 
1468 6.6 

13.2 
MDA-MB-361 induced 

probes 
1478 6.6 

T47D suppressed probes 1261 5.7 
11 

T47D induced probes 1179 5.3 

 

The greatest number of gene probe changes was observed in MCF-7 cells with over 

5000 being recorded. This represented approximately one quarter of all the gene 

sets on the Affymetrix array. Although substantially fewer changes were seen in 

T47D, MDA-MB-361 and BT474 cells, as in MCF-7 cells these alterations were 

almost equally divided between Faslodex induced and suppressed events.     
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Interestingly, while the T47D cell line which exhibited the greatest response to 

Faslodex in vitro, the fewest Faslodex-induced gene changes were observed (11% of 

all gene probes), the number of changes were not too dissimilar to those observed 

in the  HER2+ models  (13-14% of all gene probes) which displayed the poorest 

Faslodex response. As such the overall frequency of gene changes promoted by 

Faslodex, together with the proportion of induced and suppressed events 

(approximately 50% in each cell line), failed to discriminate between the 

heterogeneity of Faslodex growth inhibitory response in the models or to relate to 

HER2 status. 

4.2.4 Hierarchical clustering analysis in relation to HER2 status and 

Faslodex response 

Investigation of the total number of gene probe changes occurring in each of the 

cell lines post Faslodex treatment failed to discriminate between the varying 

Faslodex growth inhibitory responses observed following long term Faslodex 

treatment in vitro. Subsequently, hierarchical clustering analysis was carried out in 

order to determine if such an analysis could provide detail into the varying Faslodex 

responses observed in the cell lines or could cluster cell lines based on HER2 status. 

Hierarchical clustering analysis was carried out before and after treatment, using 

the gene probe cohort that had been identified as Faslodex-deregulated (induced 

or suppressed by Faslodex in one or more of the cell lines). This analysis included all 

gene probes that were de-regulated in one cell line or more thus multiple gene 

probes for one gene may be included in the analysis as well as very good and poor 

performing probes. 
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Figure 21: HCA of expression data for the cell models before Faslodex treatment using all 

probes that were induced or suppressed following treatment in one or more of cell lines. 

The orange squares highlight the clustering of the HER2- and HER2+ cell lines, while the 

highlighted 1-3 along the right-hand side of the heatmap indicate the dominant gene 

clusters.  

 

Figure 21 displays the clustering of all the Faslodex-deregulated genes prior to 

treatment. It can be seen that analysis of the intrinsic phenotype of the cells 

according to this gene cohort clustered the HER2- and HER2+ cell lines separately 

(highlighted by orange boxes).  

With respect to the gene clustering across the four models, there were 2 major 

cohorts of approximately equivalent size, one cluster of gene probes at a higher 

expression level (cluster 1-yellow) in the majority of the models and another 

representing those genes expressed at low levels (comprising clusters 2+3-red and 

blue). The gene profiles in cluster 3 mainly consisted of genes expressed at low 

intensity levels. However, it can be clustered as separate from cluster 2 as there 
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appeared to be some variability and somewhat higher expression levels, evidenced 

by the increase in red in some cell models. Beyond these dominant clusters the 

clustering of various gene profiles became very complex which is probably due to 

the vast number of genes being analysed and the lack of shared gene expression 

profiles across all of the 4 cell models. 

  

 

 

 

 

 

 

 

 

 

 

Figure 22: HCA of expression data for the cell models post Faslodex treatment using all 

probes that were induced or suppressed following treatment in one or more of cell lines. 

The orange squares highlight the clustering of the HER2+ cell lines with the MCF-7 cell line 

and also the separation of the T47D cell line from the MCF-7 line, while the highlighted 

areas 1-3 within the heatmap indicate the dominant gene clusters. 

 

In contrast following Faslodex treatment, HCA of the Faslodex-deregulated genes 

failed to clearly discriminate between the HER2- and HER2+ cell lines (Figure 22).  

Interestingly, the HER2- T47D cell line no longer closely clustered with the HER2- 

MCF-7 cell line suggesting that the de-regulation of these genes in the T47D cell line 

is different both to the MCF-7 and the HER2+ cell lines (highlighted in orange). Both 

HER2+ models clustered suggesting that there are some Faslodex-deregulated 
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events shared by both models. However, although the HER2- MCF-7 cell line 

continued to cluster separately from both HER2+ cell lines, this clustering was 

closer (highlighted in orange) than seen pre-treatment. This suggests some 

similarity with regards to the genes that are Faslodex deregulated in these 3 

models.  

There were 3 dominant gene clusters after Faslodex treatment (Figure 22). Cluster 2 

represents those gene probes that were expressed at a low intensity in the majority 

of the models while in cluster 1 the majority of gene profiles were expressed at a 

higher intensity. Cluster 3 represents those genes with a more variable expression 

profile and thus much of this cluster is a mix of red and green indicating elevated 

expression in some cell models and low expression in others suggesting varying de-

regulation exerted by Faslodex treatment. Further analysis of the smaller gene 

clusters that make up the dominant gene clusters was very difficult as the clustering 

became very complex due both to the high variability of gene expression profiles 

across the 4 cell models and the number of gene probes being analysed in the HCA.  

Following the interesting clustering of the gene expression data after Faslodex 

treatment, HCA was used to interrogate the induced and suppressed gene probes 

separately, determining that both gene cohorts again showed separation of the 

T47D cluster from the 3 remaining cell lines (Figures 23 and 24; highlighted in 

orange). While they also showed some clustering of the 2 HER2+ lines, there was 

again clustering overlap between these and the HER2- MCF-7 cells (highlighted in 

orange).  Figure 23 which analyses the genes suppressed by Faslodex treatment in 

any of the cell lines identified a substantial cluster 2 (blue) which highlights genes 

expressed at a lower intensity level compared to cluster 1 (yellow), in keeping with 

Faslodex suppression. In contrast, Figure 24 which only represents those genes 

induced by Faslodex in any of the cell lines identified that  cluster 1 is now larger 

than cluster 2 indicating more genes expressed at a higher intensity in keeping with 

induction by Faslodex for this gene cohort. Further analysis of the gene clustering to 

identify individual genes in relation to the varying in vitro drug responses was not 

possible via this HCA approach due to the sub-clustering complexity.  
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Figure 23: HCA of expression data for the cell models post Faslodex treatment using all 

probes that were suppressed following treatment in one or more of cell lines. The orange 

squares highlight the clustering of the HER2+ cell lines with the MCF-7 cell line and the 

separation of the T47D cell line from the MCF-7 line while the highlighted areas 1-2 within 

the heatmap indicate the main gene clusters  
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Figure 24: HCA of expression data for the cell models post Faslodex treatment using all 

probes that were induced following treatment in one or more of cell lines. The orange 

squares highlight the clustering of the HER2+ cell lines with the MCF-7 cell line and the 

separation of the T47D cell line from the MCF-7 line while the highlighted areas 1-2 within 

the heatmap indicate the main gene clusters  

 

In an attempt to identify genes/pathways that were de-regulated by Faslodex in the varying 

models instigating a given response, genes were identified that were significantly de-

regulated (according to SAM) and analysed using a pathway analyser (fold change not 

considered). Four gene lists were generated based on the following hypotheses: 

 Genes Faslodex de-regulated in the T47D cell line only (complete response-

associated) 

 Genes Faslodex de-regulated in the BT474, MDA-MB-361 and MCF-7 cell lines 

(resistance-associated) 

 Genes Faslodex de-regulated in the HER2-amplified lines; BT474 and MDA-MB-361 

cell lines (reduced response genes). 

 Genes Faslodex de-regulated in the HER2-not amplified lines; MCF-7 and T47D cell 

lines (extended response genes) 
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Some pathways of interest were identified (Appendix E) but there did not seem to be de-

regulation of a whole pathway by Faslodex treatment. Instead there were instances of one 

component of a pathway being de-regulated. Subsequently a more stringent analysis which 

included fold change was carried out to identify individual genes associated with the 

differing responses and these are described in Chapters 5-8.  

 

4.3 Discussion 

In this chapter, analysis of the quality of microarray gene expression data was first 

assessed to justify the use of these data to robustly identify potential mediators of 

Faslodex response/resistance. The results in this chapter successfully show that all 

microarray data consisted of good replicate expression data both pre and post 

Faslodex, with clear separation of these data before and after treatment in each 

model (Figures 16-19); furthermore, the down-regulation of known oestrogen-

induced genes (GREB1 and PGR (Kalyuga et al., 2012), Figure 20) is in keeping with 

the anti-oestrogenic mechanism of action of Faslodex. Further analysis of the 

numbers of gene probes de-regulated by Faslodex in each of the cell models (Table 

9), confirmed data from Frasor et al which showed that antihormone treatment can 

equally induce and suppress gene expression (Frasor et al., 2004). The overall 

frequency of gene changes and the proportion of induced or suppressed genes 

failed to relate Faslodex response or HER2 status across the models. Hierarchical 

clustering analysis of genes de-regulated by Faslodex revealed that pre Faslodex 

treatment the cell lines clustered based on their HER2 status (Figure 21). This was 

less clear after treatment. Following Faslodex treatment, the T47D cell line was 

found to cluster as a distinctive phenotype indicating Faslodex treatment had some 

unique effects on the transcriptome of this cell line in keeping with its complete 

response. Furthermore, the HER2- MCF-7 cell line clustered separately from T47D 

and more closely to the HER2+ lines suggesting Faslodex treatment promoted 

common genomic events in those cell lines that eventually develop resistance 

(Figures 22-24). In summary therefore, following Faslodex treatment the cell lines 

clustered in relation to their varying growth responses following long term Faslodex 

treatment suggesting that continued interrogation of Faslodex-induced genomic 

changes may provide further detail to the mechanisms of Faslodex 



100 
 

response/resistance. 

 

As stated above, analysing the Faslodex-induced gene changes in each of the cell 

models revealed that following treatment a similar number of genes were induced 

and suppressed in each of the cell lines (Table 9), in agreement with array studies 

showing that antiestrogen treatment has the ability to induce and suppress gene 

expression (Frasor et al., 2004). Frasor et al also stated that approximately 70% of 

genes regulated by E2 are down-regulated by treatment, thus more gene inductions 

might have been expected with antihormones in each of the cell lines; however, it 

should be noted that Frasor et al (2003, 2004) only carried out treatment for 48 

hours, while the gene expression data in this project was collected following 10 

days of Faslodex treatment. It is thus feasible that the effects on genes indirectly 

regulated by E2 may not have been fully observed in the data from Frasor et al., 

and moreover was MCF7-specific where the present project has utilised 4 ER+ 

models for analysis. 

Oestrogen induces growth-promoting genes (e.g. cyclin D1, bcl2,  

c-myc) and these in turn can be decreased by antihormones (Musgrove et al., 1994; 

Perillo et al., 2000; Kalyuga et al., 2013), events which may potentially contribute to 

response. Induction of oestrogen-suppressed growth inhibitory elements by 

antihormones may also feasibly contribute to response. However, several 

oestrogen-suppressed genes have also been described that are proliferative and 

cell survival elements (Frasor et al., 2004). Anti-hormone treatment can lead to the 

re-expression of such genes which can provide a compensatory mechanism and 

limit anti-hormone response (Gee et al., 2003, 2005; Shaw et al., 2005). The 

Faslodex-promoted gene expression changes identified here are thus likely to 

include some genes contributory to features of drug response or failure exhibited 

by the model panel. However, considering the overall frequency of gene changes in 

each cell model cannot discriminate the cell lines based on their response to long-

term Faslodex treatment.  There were nearly double the number of gene changes 

with Faslodex observed in the MCF-7 cell line compared to the other 3 cell lines but 

despite these additional gene changes the establishment of resistance in a reduced 
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timeframe, as observed in the HER2+ cell models, was not observed (Figures 10-13;  

Chapter 3). It is possible that the reduced number of gene changes in the HER2+ cell 

lines may represent fewer tumour suppressive elements being induced and fewer 

growth promoting genes being suppressed by Faslodex compared with MCF-7, 

where such a profile could equate with the limited drug response and subsequent 

more rapid drug failure observed in vitro. However, the T47D complete response 

cell line underwent the very fewest gene changes. This could possibly encompass 

lack of induction of compensatory growth-promoting signalling which would equate 

with a markedly improved drug response. Alternatively Faslodex could promote 

unique genomic events in the T47D transcriptome subsequently resulting in a 

complete response (e.g. induction of T47D-specific growth suppressive elements). 

The frequency of Faslodex-altered genes across the models has some agreement 

with the Carroll laboratory data showing a higher number of ER binding events as 

mapped by Chip-seq in MCF-7, lower in BT474 and lowest in T47D (Ross-Innes et al., 

2012). Although the latter study did not encompass genes that are indirectly 

regulated by ER whereas the 10 day Faslodex treatment here would encompass 

both direct and indirect transcriptional impact of the drug. 

Along with examining frequency of gene changes, hierarchical clustering analysis 

was carried out using the Faslodex-deregulated gene cohort to determine if 

clustering was able to better discriminate between the cell lines based on their 

response to long-term Faslodex treatment. Analysis of the intrinsic cell phenotype 

(control samples) saw the cell lines cluster clearly by HER2 status; the HER2- T47D 

and MCF-7 cell lines clustered together, while the HER2+ BT474 and MDA-MB-361 

cell lines clustered (Figure 21). Tumour subclasses have been clustered by HER2 

status using whole genome analysis (Sorlie et al., 2001) but this is thought to be the 

first time that a Faslodex-regulated gene cohort has been used to successfully 

discriminate ER+ cell lines by HER2 status.  

However, while a relationship with HER2 status has been identified, the data also 

showed that analysis of Faslodex de-regulated genes in the intrinsic cell phenotype 

was unable to predict response outcome to Faslodex across the 4 models (Figure 

21). In contrast, HCA of the Faslodex-regulated gene cohort using the 10 day 
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Faslodex-treated datasets found the T47D cell line clustering separately to the 

other 3 cell lines (Figure 22) suggesting potential to identify some genes altered 

only in the complete responding model from this gene probe cohort (e.g. induction 

in T47D of individual genes with tumour suppressive function or alternatively 

suppression of growth-promoting elements). The MCF-7 cell line, while still 

clustering separately from the HER2+ cell lines clustered more closely to these cell 

lines. This suggested that Faslodex treatment is inducing common genomic changes 

in the 3 cell lines that may be associated with their development of resistance (e.g. 

induction of oncogenes or suppression of tumour suppressors). There may thus be 

potential to identify particular mediators of acquired Faslodex resistance involved 

in both the HER2+ and HER2- disease setting from within this gene probe cohort. 

The partial separation of clustering of the MCF-7 model from the HER2+ cell lines is 

likely to be due to the extra 1000 genes Faslodex-deregulated (Table 9) and could 

encompass increased induction of mediators of growth inhibition which may relate 

to the improved response in this model before the changes shared with the HER2+ 

cell lines provide a compensatory signalling pathway and ultimately drug resistance. 

While the two HER2+ models still clustered indicating there are some Faslodex-

deregulated events shared by both models, post-Faslodex treatment HER2 status is 

no longer the clear mediator of cell line clustering suggesting Faslodex-induced 

transcriptional changes are responsible for the varying growth responses across the 

model panel.  

The clustering patterns observed across the models, which extended to the induced 

and suppressed gene cohorts on examining the post-Faslodex expression data by 

HCA, provide confidence that more detailed analysis of gene expression changes 

exerted by Faslodex at this 10 day time point could provide insight into the varying 

long-term drug responses observed in these cell lines. Subsequently, the gene 

expression data has been used in this project to identify genes that are Faslodex-

deregulated in one or more cell lines in the hope that further detail of the 

mechanisms of the various responses could be revealed and also to attempt to 

identify novel biomarkers of response. The following hypotheses have subsequently 

been considered in order to identify mediators of Faslodex response and/or 



103 
 

resistance: 

 

1. T47D versus MCF-7/MDA361/BT474 

Further investigating the Faslodex-induced or suppressed gene expression 

profiles associated with complete response (T47D) versus those in the 3 

models developing acquired resistance (MCF-7, BT474 and MDA-MB-361) 

should be valuable in determining (i) Faslodex-altered profiles promoting 

acquired resistance in the other cell lines (i.e. induction of oncogenes or 

suppression of tumour suppressors) (chapter 3) and (ii) Faslodex-altered 

elements promoting improved drug response in the T47D cell line (i.e. 

induction of tumour suppressors or suppression of oncogenes) (chapter 4). 

 

2. T47D/MCF-7 (HER2-) versus MDA-MB-361/BT474 (HER2+) 

While Faslodex has been shown to be effective in ER+/HER2+ patients 

(Robertson et al., 2010), the cell growth data in this project adds further 

detail in that it indicates responses are likely to be inferior vs. HER2- disease 

with resistance emerging earlier during treatment. The data in this chapter 

gives reason to investigate the genomic effects of Faslodex in each pair of 

cell lines in order to identify Faslodex-induced or suppressed gene 

expression profiles that are associated with (i) superior anti-tumour 

response in HER2- cells (genes altered by Faslodex in both MCF-7 and T47D 

only) (chapter 5) and (ii) limited drug responses and earlier failure in HER2+ 

cells (genes altered by Faslodex in both BT474 and MDA-MB-361 only) 

(chapter 6), since this may provide further experimental detail on the 

relationship of HER2 with Faslodex response in ER+ disease. 
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Chapter 5  

Identification of Faslodex-regulated genes potentially 

involved in the promotion of Faslodex resistance in the 

BT474, MDA-MB-361 and MCF-7 cell lines. 

 

 

5.1 Introduction 

In this chapter the microarray data obtained from the 4 breast cancer cell lines has 

been used to identify genes that could potentially be involved in the emergence of 

Faslodex-resistance in both the HER2+ and MCF-7 cell lines. Following HCA of the 

gene expression data it was noted that  the gene cohort identified as being 

Faslodex de-regulated in MCF-7 did not cluster well with the other ER+/HER2- cell 

line T47D,  but instead clustered more closely to the HER2+ cell lines. This suggests 

that there are some comparable Faslodex-promoted gene changes occurring in the 

3 cell lines that developed Faslodex resistance and that any shared drug-induced 

gene changes could provide further detail into the mechanisms of resistance 

emerging during treatment in ER+ cells regardless of HER2 status. 

Only a few gene signatures have been developed that relate to targeted therapy in 

breast cancer. Generally the best signatures of response to date include the 

intrinsic mutation or overexpression of the drug target leading to potential pathway 

addiction (Garnett et al., 2012). As discussed previously, ER is one such target, 

where its significant expression in breast cancer dictates treatment with ER 

targeted therapies (AIs, tamoxifen or Faslodex) which cumulatively have 

significantly reduced mortality and recurrence rates (Early Breast Cancer Trialists 

Collaborative Group, 2011). Another example of such a target is HER2 where a 

cohort of breast cancer patients display amplification of  HER2 and treatment with 
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the HER2-targeted therapy trastuzumab (Herceptin) has  a significant effect on the 

survival rates for this particular breast cancer subtype (Vogel et al., 2002).  

With regards to predicting acquired resistance following initial therapy, however, 

there are very few promising markers, especially for Faslodex resistance. Generally, 

such markers have been identified by comparing drug-resistant cell models with 

their wild-type counterparts (Konecny et al., 2006; Lynch et al., 2004). Even though 

valuable biological information has been gathered following such studies, in 

particular identifying alterations in signalling pathways utilised by resistant cell 

models, the genomic and phenotypic changes that occur during the acquisition of 

resistance have not been intensely investigated and their clinical relevance is largely 

unknown.  

However, as a promising example relevant to aromatase inhibition, Weigel et al., 

have recently carried out such a study to identify genomic changes involved in the 

acquisition of resistance of oestrogen-deprivation, where they identified significant 

elevations in the PDGF/Abl pathway as early as one week after the initiation of 

treatment (Weigel et al., 2012). Importantly, by identifying early drug-induced 

promoters of resistance, it may be possible to stratify patients based on the 

likelihood of extended response to targeted treatments, as well as using the 

information to predict the optimum second line treatments based on the 

mechanisms utilised to establish the resistant phenotype. Indeed, Weigel and her 

colleagues (2012) demonstrated that the inhibition of PDGFRβ and Abl using 

nilotinib, while having little effect on wild-type MCF-7 cells, significantly added to 

the inhibitory response to oestrogen deprivation in the same cell line.  

Similarly, the Clarke laboratory (Crawford et al., 2010) have investigated differences 

between wild-type MCF-7 cells and Faslodex-resistant cells in an attempt to identify 

signalling pathways utilised by cells in the resistant state which if targeted  re-

sensitise them to Faslodex treatment. In their studies, they have shown that BCL2, a 

known survival factor for breast cancer cells (Martin and Dowsett, 2013), although 

lowered during the responsive phase of Faslodex action, is restored in resistance, 

enabling the cells to evade apoptosis. In the resistant setting, an increase in 
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Faslodex-regulated BCL-2 mRNA, protein and promoter activity was observed, and 

inhibition of BCL-W and BCL-2 was shown to restore Faslodex sensitivity (Crawford 

et al., 2010). Critically, they also showed that the tumour suppressor IRF-1 is a key 

mediator of the initial pro-apoptotic response to Faslodex in MCF-7 cells and the 

emergence of resistance in this cell line is associated with a loss of IRF-1 (Bouker et 

al., 2004). Finally, an elevation in the NF-κB pathway has also been associated with 

Faslodex resistance and pharmacological inhibition of this pathway in vitro similarly 

can restore Faslodex sensitivity (Riggins et al., 2005).  

However, few studies of Faslodex resistance have extended past profiling of  

MCF7-derived lines and it is important that such studies are extended more broadly 

to ER+ models given the emerging applicability of this agent in both the ER+ HER2- 

and ER+ HER2+ setting. In this chapter, by carrying out whole genome analysis, it 

was hoped that biomarkers and/or drivers of Faslodex-resistance promoted by 

short-term Faslodex treatment in the two HER2+ and the MCF-7 cell lines (or 

alternatively any potential growth inhibitory genes suppressed by this agent in 

these models) could be revealed which transcend the HER2 status of ER+ cells. 

5.3 Results 

5.3.1 Identification of genes that undergo comparable Faslodex-de-

regulation in the HER2+ and MCF-7 cell lines 

Using those gene probes that were identified in Chapter 4 as robustly Faslodex 

induced or suppressed, the data were further interrogated with the fold-change 

tool in Genesifter to identify gene probes with a greater than 1.5 fold change in 

expression of comparable direction in each of the 3 cell lines (MCF-7, MDA-MB-361 

and BT474 cells) during Faslodex treatment versus control cells.  

Identified gene probes were then analysed in the T47D cell line dataset to ensure 

that the Faslodex-promoted gene changes were not shared by this cell line which 

showed a complete response to Faslodex, maximising likelihood of association 

between the identified genes and emergence of Faslodex resistance.  
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As you can see from Figure 24, 43 genes were significantly altered in those models 

that develop resistance and further only 9 were identified to exhibit at least 1.5 fold 

change in all 3 models with limited change in the T47D line. 

 

 

 

 

 

 

 

 

Figure 24: The Venn diagram illustrates the identification of the 9 genes taken forward as 

potential mediators/biomarkers of Faslodex resistance in the BT474, MDA-MB-361 and 

MCF-7 cell lines. The red circle represents all those genes significantly altered in the 3 cell 

lines that develop resistance. The green circle, shows the number of these genes that were 

not altered by at least 1.5 fold in these models and the blue circle are those that were 

found to be also altered to some extent in the T47D cell line. The 9 genes represented by 

the overlapping circles identify those genes that met the criteria to be taken forward. 
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Table 10: Genes with a greater than 1.5 fold change in gene expression following 10 days 

Faslodex treatment in all cell lines that eventually developed Faslodex-resistance (BT474, 

MDA-MB-361, MCF-7). Also listed is the total number of probes representing each gene on 

the UI33Aplus2 genechip, together with the number of those probes which exhibited a 

robust change in expression with Faslodex. 

Potential 
resistance-
promoting 

genes 

Gene Name 

Gene 
expression 

change 
following 
Faslodex 

treatment (in 
both HER2+ 

and  
MCF-7 cell 

lines) 

Total 
number 

of probes 
per gene 

Total number of probes 
exhibiting change in 

expression 

BT474 
MDA-

MB-361 
MCF-

7 

IKZF1 
Ikaros family 

zinc finger 
protein 1 

Induced 3 3 1 2 

GPR37 
G protein-
coupled  

receptor 37 
Induced 2 2 2 2 

GABBR2 

Gamma-
aminobutyric  
acid (GABA) B 

receptor, 2 

Induced 4 4 3 4 

CXCR4 
C-X-C 

chemokine 
receptor type 4 

Induced 3 3 3 3 

VEGFC 
Vascular 

endothelial  
growth factor C 

Induced 1 1 1 1 

KITLG KIT ligand Induced 2 2 2 2 

PRKACB 

Protein kinase, 
cAMP- 

dependent, 
catalytic, beta 

Induced 2 2 2 2 

ZNF343 
Zinc finger 

protein 343 
Suppressed 1 1 1 1 

GFRA1 
GDNF family 

receptor  
alpha 1 

Suppressed 1 1 1 1 

 

The 9 genes found to be Faslodex-deregulated in only MCF-7, MDA-MB-361 and 

BT474 cells and their pattern of change are listed in Table 10. In instances where 

more than 1 probe set was present for a particular gene on the U133Aplus2 
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genechip, although some variability existed between the 3 cells lines with regards 

to the number of probe sets showing a significant alteration in level, generally the 

probe profile concordance was good (Table 10).  

Heatmaps and gene expression intensity plots were subsequently generated to 

visualise the magnitude of change in expression for each of the genes listed in Table 

10 for each of the cell models. The optimal jetset Affymetrix gene probe for each 

gene was used to generate these heatmaps and gene expression intensity plots (see 

section 2.3.6 of Materials and Methods for further details) and their respective 

gene probe ID’s are listed in Table 11, along with the jetset score (where a score 

closer to 1 indicates a better predicted probe performance (has best sequence 

coverage for a given gene and accounts for splice variants thus provides a higher 

confidence of the de-regulation of a specific gene following Faslodex treatment). All 

jetset probes exhibited the directional change in expression initially observed 

following Faslodex treatment in heatmaps for MCF7, MDA-MB-361 and BT474 cells 

(Figure 25).   However, Figures 5-13 further illustrate the basal and post Faslodex 

treatment expression for the each of the jetset probes along with the calculated 

fold change for each gene of interest and it is apparent that not all jetset gene 

probes exhibited a fold change greater than 1.5 in each of the 3 models. This was 

because in some instances the initial identification of the gene of interest arose 

from a non-jetset gene probe. In each instance, however, the directional change 

was identical.   
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Table 11: Genes of interest in relation to the promotion of resistance in MCF7, BT474 and 

MDA-MB-361 cells with their corresponding jetset gene probe Affymetrix ID’s and jetset 

score (closer to 1 the better the predicted performance of the probe). 

Gene Acronym Jetset Affymetrix 
Probe ID 

Jetset score 

IKZF1 205039_s_at 0.42 

GPR37 209631_s_at 0.57 

GABBR2 209990_s_at 0.47 

CXCR4 217028_at 0.54 

VEGFC 209946_at 0.43 

KITLG 207029_at 0.56 

PRKACB 202741_at 0.49 

ZNF343 207296_at 0.58 

GFRA1 205696_s_at 0.39 
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The jetset profiles confirmed the majority of identified genes were substantially 

induced by Faslodex in each of the models, with the exception of ZNF343 and 

GFRA1 which were suppressed. These data are presented in Figure 25. 

 

Figure 25: Heatmaps displaying change in expression of the genes of interest following 10 

day Faslodex treatment in the 3 cell lines that eventually develop resistance to this 

antihormone. Red indicates expression is greater in the Faslodex-treated arm versus 

control while green indicates reduced expression versus control and black no change from 

control. 

The 9 genes were also analysed across the 3 cell models and also comparing with 

the T47D cells using the gene expression intensity plots (log2 scale) generated in 

GeneSifter. The intensity plots displayed the average normalised expression data 

(+/-SEM) for each jetset probe from the triplicate data sets for each model both 

prior to and subsequent to 10 day Faslodex treatment.  
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5.3.1.1 Genes induced by Faslodex in BT474, MDA-MB-361 and MCF-7 cells:  

5.3.1.1.1 IKZF1 

Figure 26 shows the log2 intensity plot for the gene IKZF1. Although the error bars 

proved relatively large for all samples, IKZF1 was induced by Faslodex treatment in 

MCF-7, MDA361 and BT474 cells (Figure 26A, B), an effect not observed in T47D 

cells where a marginal suppression of this gene was observed. Importantly, 

however, all of the log2 expression values were below 0 and absent gene calls were 

recorded in each instance, indicative of extremely low/no gene expression in all 

models. 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

IKZF1 1.86 1.58 1.70 1.19 

Figure 26: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of IKZF1 in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment and (B) table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. control expression. Highlighted in red are Faslodex-

promoted inductions in gene expression >1.5 fold. 
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5.3.1.1.2 GPR37 

Although the log2 intensity plot showed basal expression level of GPR37 was quite 

variable across the 4 cell lines, it was induced by Faslodex in MCF-7 and BT474 cells 

(Figure 27A, B). A small increase in intensity was also observed in the MDA-MB-361 

cell line, in contrast to its lack of induction in T47D cell line following Faslodex 

treatment. However, the majority of the samples, with the exception of the 

Faslodex-treated MCF-7, had very low log2 expression values (0 or below) indicative 

of extremely low/no expression of this gene in the cells examined, however all 

samples called present with the exception of BT474 control suggesting some 

expression could be reliably detected. 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

GPR37 4.46 1.44 3.91 1.05 

Figure 27: (A) A log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of GPR37 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment and (B) table displaying the fold change in gene expression exerted by 10 

day Faslodex treatment in each cell line vs. control expression. Highlighted in red are 

Faslodex-promoted inductions in gene expression >1.5 fold. 
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5.3.1.1.3 GABBR2 

While the expression of GABBR2 was increased by Faslodex treatment across 

BT474, MDA361 and MCF-7 cells, the induction was most obvious in the latter 

(Figure 28A, B).  In each instance, while the pre-treatment call for the gene was 

absent with log2 expression values below 0, the post-treatment expression call was 

present. Although some induction of GABBR2 was also recorded in T47D cells, the 

induced levels remained lower than in the other 3 cell lines and an absent call was 

recorded in both pre-treatment and on treatment samples for this model.  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

GABBR2 2.59 3.11 187.37 2.40 

Figure 28: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of GABBR2 in each of the 3 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in red are Faslodex-

promoted inductions in gene expression >1.5 fold. 
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5.3.1.1.4 CXCR4 

The log2 intensity plot for CXCR4 showed some induction of expression of this gene 

in the HER2+ and MCF-7 cell lines (Figure 29A). All detection calls were present in 

the 3 models and the error bars associated with the data were small, indicating 

reproducible detection of gene expression in all samples. The greatest induction 

promoted by Faslodex was seen in the BT474 and MCF-7 cell lines (Figure 29B). The 

MDA-MB-361 cell line, however, demonstrated the greatest basal expression level 

of CXCR4 which may explain the reduced level of induction detected in this cell 

model (fold change 1.37). An induction of CXCR4 gene expression by Faslodex was 

also observed in the T47D cell line (Figure 29B) but log2 expression values failed to 

reach 0 and expression calls were absent, suggesting extremely low/no CXCR4 

expression. 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

CXCR4 4.55 1.37 13.12 3.27 

Figure 29: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of CXCR4 in each of the 4 cell lines pre (con) and post 10 day Faslodex 

(FAS) treatment (B) table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. control expression. Highlighted in red are Faslodex-

promoted inductions in gene expression >1.5 fold. 
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5.3.1.1.5 VEGFC 

The log2 intensity plot showed basal expression level of VEGFC was similar in the 

HER2+ and MCF-7 cell lines, while reduced in the T47D cell line (Figure 30A). 

Following 10 day Faslodex treatment period, although VEGFC expression appeared 

up-regulated in all of the cell lines, the effect was greatest in MCF-7 and BT474 cells 

(Figure 30B). A small induction in VEGFC expression by Faslodex was observed in 

the T47D cell line, but the induction was <1.5 fold and failed to reach a log2 

expression value of 0, suggestive of extremely low/no expression of this gene in 

T47D cells irrespective of treatment, contrasting the further models. However, the 

detection calls were found to be present indicative of some expression. 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

VEGFC 1.71 1.56 2.20 1.43 

Figure 30: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of VEGFC in each of the 4 cell lines pre and post 10 day Faslodex treatment  

(B) table displaying the fold change in gene expression exerted by 10 day Faslodex 

treatment in each cell line vs. control expression. Highlighted in red are Faslodex-promoted 

inductions in gene expression >1.5 fold. 
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5.3.1.1.6 KITLG 

The log2 intensity plot (Figure 31A) revealed that although basal KITLG gene 

expression level was relatively low in all cell lines before Faslodex treatment, MCF-

7, MDA-MB-361 and BT474 cells showed up-regulation of the expression of this 

gene (>1.5 fold induction) during therapy where a present call was recorded. The 

inductive effect was most obvious in MDA-MB-361 cells which showed almost a 4 

fold induction of this gene (Figure 31B). While the T47D cells displayed an elevated 

basal expression level of KITLG compared to the 3 other models, KITLG was 

suppressed by Faslodex treatment in this cell line (Figure 31A, B).  

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

KITLG 1.87 3.74 2.08 1.67 

Figure 31: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of KITLG in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment (B) table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. control expression. Highlighted in red are Faslodex-

promoted inductions in gene expression and in green suppression of expression >1.5 fold. 
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5.3.1.1.7 PRKACB 

The log2 intensity plot and associated fold changes (Figure 32A, B) showed that 

both the basal expression level of PRKACB and its induction by Faslodex was 

greatest in the two HER2+ cell lines in comparison to the HER2- cell models. 

Although the induction of PRKACB was relatively modest in MCF-7 cells, as for the 

HER2+ lines both pre- and post-treatment samples showed a present call, and 

contrasted with the lack of induction of this gene in T47D cells.  

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

PRKACB 2.18 2.35 1.35 1.08 

Figure 32: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples)  

gene expression of PRKACB in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B)  table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. control expression. Highlighted in red are Faslodex-

promoted inductions in gene expression >1.5 fold. 
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5.3.1.2 Genes suppressed by Faslodex in BT474, MDA-MB-361 and MCF-7 cells  

5.3.1.2.1 ZNF343 

The log2 intensity plot (Figure 34A) showed that although the basal expression level 

of ZNF343 was quite varied across all 4 cell lines, all values were below 0 and 

detection calls were found to be absent indicative of at best very low expression of 

this gene in these breast cancer cells. However, any ZNF343 appeared suppressed 

by Faslodex in the HER2+ and MCF-7 cell lines, as shown by the log2 intensity plot, 

with suppression greater than 2.5 fold being seen in each instance (Figure 34B). In 

contrast, the T47D cell line displayed an apparent up-regulation in the ZNF343 log2 

intensity level by Faslodex. 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

ZNF343 2.64 4.29 4.06 1.96 

Figure 34: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of ZNF343 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. control expression. Highlighted in red are Faslodex-

promoted inductions in gene expression and in green suppression of expression >1.5 fold. 
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5.3.1.2.2 GFRA1 

The log2 intensity plot and fold changes (Figure 35A and B) showed that GFRA1 was 

suppressed by Faslodex in the HER2+ and MCF-7 cell lines, despite variable basal 

expression levels of this gene. In contrast, no change was observed in GFRA1 levels 

during Faslodex treatment in T47D cells, where the log2 intensity levels of this gene 

were also extremely low both before and after treatment. Analysis of the detection 

calls found only the BT474 cell line to demonstrate a change from present to absent 

indicative of a robust down-regulation while the MDA-MB-361 and MCF-7 cell lines 

basally called present and remained present following treatment suggesting 

residual expression following treatment. Indicative of the very low expression 

observed in the T47D cell line by the log2 intensity plot, detection calls were found 

to be absent.   

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

GFRA1 3.13 3.46 37.93 1.45 

Figure 35: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of GFRA1 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. control expression. Highlighted in green are 

Faslodex-promoted suppression in gene expression >1.5 fold. 
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To summarise the various array data for each gene, the jetset gene probe for IKZF1 

was the only probe representing IKZF1 out of the 3 probes that exhibited a 

significant, greater than 1.5 fold change in expression following Faslodex treatment 

in the HER2+ and MCF7 models (Table 10, Figure 26). The remaining 2 probes for 

IKZF1 on the array underwent a suppression following treatment in at least one of 

the models questioning the reliability of the up-regulation of this gene across all 3 

lines with the jetset probe. This unreliability was further confirmed by the large 

error bars and absent detection calls for this gene. Indeed, log2 expression values 

for IKZF1 jetset probe were also very low (Figure 26) suggesting PCR verification 

would be difficult so subsequently this gene was not taken forward for further 

investigation. Similarly, the very low log2 expression values (below 0) determined 

for GPR37 (Figure 27) particularly in the HER2+ cell lines and ZNF343 in all cell lines 

(Figure 34) pre and post Faslodex treatment again suggest PCR verification would  

be difficult for these genes and thus they were also not taken forward for further 

investigation. 

5.3.2 Analysis of the HER2+ and MCF-7 shared potential resistance-

promoting genes in an MCF-7-derived Faslodex-resistant gene 

expression array dataset 

As the 6 remaining Faslodex de-regulated genes identified in this chapter are 

hypothesised to be involved in the onset and development of the Faslodex resistant 

phenotype in the HER2+ and MCF-7 cell lines, their expression profiles  were 

subsequently analysed using Genesifter in a microarray dataset generated from an 

MCF-7-derived acquired Faslodex-resistant cell line (compared to oestrogen-treated 

control MCF-7 cells). The resultant heatmaps (Figure 36), log2 intensity plots and 

fold change data are shown for the Faslodex resistant model versus the control 

using the jetset probes for each gene. Of the 6 genes examined, 4 (GABBR2, 

PRKACB, CXCR4 and GFRA1; Figures 37, 38, 39 and 42 respectively) retained the 

expression profile identified during early Faslodex response into the acquired 

resistant state. On this further array set, PRKACB and CXCR4 (Figures 38, 39) 

showed the highest log2 intensity values in resistance for the induced genes, while 

the value for the suppressed gene GFRA1 fell below 0 in resistance (Figure 42). The 
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Faslodex induced gene VEGFC was lost in resistance (Figure 41), while KITLG 

showed no marked difference between oestradiol treated MCF-7 cells and those 

which had developed Faslodex resistance (Figure 40).  

 

 

Figure 36: Heatmap displaying the 6 genes from the HER2+ and MCF-7 cell lines analysed in 

the MCF-7 Faslodex-resistant cell line compared to oestradiol (E2) treated MCF-7 cells. The 

heatmap has been generated using jetset affymetrix gene probe IDs (see Table 2). 
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5.3.2.1 Genes induced by 10 day Faslodex-treatment: GABBR2, PRKACB, CXCR4, 

KITLG and VEGFC 

 

 

Gene 
Acronym 

Fold change 

GABBR2 1.47 

 

Figure 37: (A) Log2 intensity plot displaying the induction of GABBR2 gene expression in an 

MCF-7-derived, acquired Faslodex-resistant cell model in comparison to wild-type MCF-7 

cells treated with oestradiol (10-9M) using the jetset probe (B) Fold difference of GABBR2 

expression in the resistant versus the oestradiol-treated control cells . 
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Gene 
Acronym 

Fold change 

PRKACB 1.42 

 

Figure 38: (A) Log2 intensity plot displaying the induction of PRKACB gene expression in an 

MCF-7-derived, Faslodex-resistant cell model in comparison to wild-type MCF-7 cells 

treated with oestradiol (10-9M) using the jetset probe (B) Fold difference of PRKACB 

expression in the resistant versus the oestradiol-treated control cells. 

 

 

Gene 
Acronym 

Fold change 

CXCR4 1.37 

 

Figure 39: (A) Log2 intensity plot displaying the induction of CXCR4 gene expression in an 

MCF-7-derived, Faslodex-resistant cell model in comparison to wild-type MCF-7 cells 

treated with oestradiol (10-9M) using the jetset probe (B) Fold difference of CXCR4 

expression in the resistant versus the oestradiol-treated control cells. 
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Gene 
Acronym 

Fold change 

KITLG 1.17 

 

Figure 40: (A) Log2 intensity plot displaying the induction of KITLG gene expression in an 

MCF-7-derived, Faslodex-resistant cell model in comparison to wild-type MCF-7 cells 

treated with oestradiol (10-9M) using the jetset probe (B) Fold difference of KITLG 

expression in the resistant versus the oestradiol-treated control cells. 
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Gene 
Acronym 

Fold change 

VEGFC 6.35 

 

Figure 41: (A) Log2 intensity plot displaying the induction of VEGFC gene expression in an 

MCF-7-derived, Faslodex-resistant cell model in comparison to wild-type MCF-7 cells 

treated with oestradiol (10-9M) using the jetset probe (B) Fold difference of VEGFC 

expression in the resistant versus the oestradiol-treated control cells. 
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5.3.2.2 Genes suppressed by 10 day Faslodex-treatment: GFRA1 

 

 

Gene 
Acronym 

Fold change 

GFRA1 31.41 

 

Figure 42: (A) Log2 intensity plot displaying the induction of GFRA1 gene expression in an 

MCF-7-derived, Faslodex-resistant cell model in comparison to wild-type MCF-7 cells 

treated with oestradiol (10-9M) using the jetset probe (B) Fold difference of GFRA1 

expression in the resistant versus the oestradiol-treated control cells. 

5.3.3 Ontological investigation of potential resistance-promoting 

genes 

An ontological investigation was also undertaken on the 6 genes to determine if 

they had been associated with: 

 Breast cancer or any other cancer type; 

 Known or potential adverse function (e.g. tumour growth or progression); 

 Known or potential tumour suppressive function  

The results of the ontological investigations are accumulated in Tables 12 to 17. 

Pubmed and Scopus were used throughout for these ontological studies using the 

gene name/acronym, together with selected keywords/phrases which included 

breast cancer, cancer, oncogene, proliferation, growth, metastasis, Faslodex, 

hormonal or endocrine therapy, survival, growth inhibition, tumour suppressor, 
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apoptosis. Gene acronyms highlighted in red were induced by Faslodex in T47D cells 

and those in green were suppressed. 

Table 12: Summary of the function of GABBR2 including previous published reports 

regarding the role of GABBR2 and further aspects of GABA signalling in breast and other 

cancers. 

Gene name/acronym Gamma-aminobutyric acid (GABA) B receptor, 2: GABBR2 

Function Member of the G-protein coupled receptor 3 family and GABA-B 

receptor subfamily. The GABA-B receptors inhibit neuronal 

activity through G-proteins that inhibit adenylyl cyclase activity, 

stimulates phospholipase A2, activates potassium channels, 

inactivates voltage-dependent calcium-channels and modulates 

inositol phospholipids hydrolysis (reviewed by Bettler et al., 

2003). 

Associations with 

breast cancer 

Increased GABA content has been observed in a number of 

cancers including breast (Opolski et al., 2000). GABAergic 

signalling is altered in cancer cells, particularly GABA levels and L-

glutamate decarboxylase (GAD) activity (GABA is synthesised 

from glutamate using the GAD enzyme) which are increased in 

certain types of tumours, including ovarian and breast suggesting 

increased GABA production within such tumour cells. 

 

Baclophen, a GABA-B receptor agonist, has been shown to have 

a growth inhibitory effect on mammary cancer in mice. In both 

human and mice GABA levels and GAD activity were elevated in 

tumour tissue compared to normal tissue. Given the inhibitory 

effect of a GABA-B receptor agonist on mammary cancer growth, 

and the correlation between GABA level and the stage of breast 

pathology and/or hormonal activity, it is probable that the 

GABAergic system is involved in hormonal regulation and 

pathogenesis of breast cancer (Opolski et al., 2000). 

 

In human breast cancer cells, migration was stimulated by the 

GABAA receptor agonist propofol (Garib et al., 2002).  
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Associations with other 

cancers 

In advanced prostate cancer patients, activation of GABA-B 

receptors induced MMP expression and stimulated the invasive 

capability of the cancer cells (Azuma et al., 2003).   

 

GABBR2 mRNA expression has been found to be elevated in an 

aggressive lung cancer cell line, exhibiting enhanced 

spontaneous metastasis in nude mice in comparison to its 

parental cell line (de Lange et al., 2003). 

 

For GABBR2 to have a functional role in the onset and development of Faslodex 

resistance GABA must be produced by the cells. Endogenously GABA is synthesised 

from glutamate via the GAD enzyme thus increased GAD expression indirectly could 

suggest elevated GABA levels. Using the jetset gene probes for GAD1 and GAD2 

(206669_at and 216651_s_at respectively), two forms of the GAD enzyme,  the 

expression of these genes was thus analysed in the HER2+ and MCF-7 cell lines 

following Faslodex treatment (Figure 43). The heatmaps showed that Faslodex 

treatment also up-regulated the expression of these genes (Figure 43A) but 

subsequent analysis of the log2 expression intensity plots indicated at best very low 

expression  in all cell models pre and post treatment (Figure 43B).  
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Figure 43: (A) Heatmaps generated by GeneSifter to assess the expression of the GAD 

enzyme, reported to be involved in the biosynthesis of GABA, in the HER2+ and MCF-7 cell 

lines and (B) Log2 normalised expression plots displaying expression in each cell line 

including T47D, pre and post 10 day Faslodex treatment. Jetset gene probes were used; 

GAD1-206669_at; GAD2-216651_s_at 
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Table 13: Summary of the function of CXCR4 including previous published reports 

surrounding the role of CXCR4 in breast and other cancers. 

Gene name/acronym Chemokine (C-X-C motif) receptor 4: CXCR4 

Function This gene encodes a CXC chemokine receptor specific for stromal 

cell-derived factor-1 (SDF-1). It is the receptor for CXCL12/SDF-1 

(CXCL12) that transduces a signal by increasing intracellular 

calcium ion levels and enhancing MAPK1/MAPK3 activation 

(reviewed by Tiecher et al., 2010).  

Associations with 

breast cancer 

CXCR4 has been shown to play a significant role in breast cancer 

as well as other cancers. In particular the CXCR4/SDF-1 signalling 

axis has been observed to have a primary role in metastasis, 

where organs secreting high amounts of SDF-1 tend to become 

the secondary tumour sites (Balkwill et al., 2004). CXCR4 is 

expressed by cancer stem cells and thus increased secretions of 

SDF-1 result in the movement of cancer stem cells to those 

locations, usually metastatic sites (Kucia et al., 2005).  

 

As well as the role for CXCR4 in tumour progression, more 

recently research has established a role for CXCR4 in breast 

cancer development (Yagi et al., 2011).  

 

Rhodes et al reported a role for CXCR4 in the development of 

hormone-independence in ER+ breast cancer. The 

overexpression of CXCR4 in MCF-7 cells resulted in increased 

tumour growth in the presence of oestrogen, however, this 

increase in growth was also seen in the absence of oestrogen 

suggesting CXCR4 signalling contributes to hormone 

independence (Rhodes et al., 2011). CXCR4 has the ability to 

activate ER in an oestrogen-independent manner (Sauve et al., 

2009), possibly increasing SDF-1 expression as a consequence 

and thus further promoting CXCR4 signalling. 

 

SDF-1 is an ER-regulated gene thus treatment with Faslodex has 

been shown to suppress SDF-1 expression. However, SDF-1 
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expression in CXCR4-expressing cells has been shown to 

overcome Faslodex-induced growth inhibition (Rhodes et al., 

2011) and  it has been hypothesised that there is a switch in 

cancer cells from oestrogen-dependent production of SDF-1 to 

SDF-1 produced by stromal cells (Sauve et al., 2009). 

 

CXCR4 signalling has been found to be essential for the 

maintenance of the cancer stem cell population in a tamoxifen-

resistant cell model derived from the MCF-7 cell line and thus a 

possible therapeutic target in the endocrine resistant clinical 

setting (Dubrovska et al., 2012). 

Associations with other 

cancers 

CXCR4 has been shown to mediate many of same functions 

related to cancer development and progression in cancers in 

addition to breast. The CXCR4-SDF-1 signalling axis encourages 

metastasis in a variety of other cancers including prostate, small 

cell lung cancer, colorectal, melanoma and ovarian cancers (Sun 

et al., 2003; Kijima et al., 2002, Zeelenberg et al., 2003; Scotton 

et al., 2002). 

 

As described in Table 13, the contribution of CXCR4 towards a limited Faslodex 

response is dependent on its activation by SDF-1 (CXCL12). SDF-1 is an ER-regulated 

gene and has been shown to be down-regulated by Faslodex treatment (Rhodes et 

al., 2011). In vivo, CXCR4 has been speculated to continue to contribute to 

endocrine resistance via the alternative availability of SDF-1 from stromal cells. 

However, in the cell lines in this project, for CXCR4 to be functionally involved in 

Faslodex-resistance SDF-1 would have to be produced in an autocrine manner 

despite Faslodex treatment. From Figure 22 it can be seen that SDF-1 (CXCL12) gene 

expression was down-regulated by Faslodex treatment in both HER2+ and MCF-7 

cell lines to log2 intensity values below 0 indicating extremely low/no expression 

after this antihormone but expression values were found to be present (with the 

exception of the MCF-7 Faslodex treated sample which called absent) indicative of 

some residual expression. 
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Figure 44: (A) Heatmaps generated by GeneSifter to assess the expression of CXCL12/SDF1, 

the reported ligand for CXCR4, in the HER2+ and MCF-7 cell lines and (B) Log2 normalised 

expression plots displaying expression in each cell line including T47D, pre and post 10 day 

Faslodex treatment. Jetset gene probe was used; CXCL12-209687_at 

Table 14: Summary of the function of PRKACB including previous published reports 

surrounding the role of PRKACB in breast and other cancers. 

Gene name/acronym Protein kinase, cAMP-dependent, catalytic, beta: PRKACB 

Function The protein encoded by the gene PRKACB is a subunit of protein 

kinase A (PKA). It is a member of the Ser/Thr protein kinase 

family and is a catalytic subunit of cAMP-dependent protein 

kinase. PKA activation regulates a number of cellular processes 

such as cell proliferation, the cell cycle, differentiation as well as 

regulation of intracellular transport mechanisms and ion flux (Yu 

et al., 2013)   

Associations with 
breast cancer 

PKA activation has been shown to induce tamoxifen-resistance in 
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breast cancer. Overexpression of PKA as well as down regulation 

of the inhibitory subunit PKA-RIα has been observed in 

tamoxifen-resistant tumours (Michalides et al., 2004).  

 

Further details of PKA contribution to tamoxifen resistance were 

uncovered by de Leeuw et al who showed that PKA can 

phosphorylate ER at Serine 305 resulting in conformation when 

exposed to tamoxifen that allows this antihormone to act as an 

ER agonist and thus exhibit tamoxifen resistance (de Leeuw et 

al., 2012) 

Associations with other 
cancers 

PKA is overexpressed in many cancers and as a result it has been 

considered as a diagnostic marker as well as a therapeutic target 

(Caretta et al., 2011). 

 

PKA has been identified as a critical mediator in prostate 

carcinogenesis via its crosstalk with the androgen receptor and 

activating other oncogenic signalling pathways including EGFR 

and RAS (Merkle et al., 2011). 

 

In lung cancer, PKA has been shown to be involved in hypoxia-

mediated EMT, migration and invasion (Shaikh et al., 2012). 

 

Increased expression of PKA has been associated with resistance 

to MEK inhibitors in lung and colorectal cancer cells (Troiani et 

al., 2012).  

 

Table 15: Summary of the function of KITLG including previous published reports 

surrounding the role of KITLG in breast and other cancers. 

Gene name/acronym KIT ligand: KITLG/SCF 

Function KIT ligand is the ligand for tyrosine-kinase receptor c-kit. 

It plays an essential role in the regulation of cell survival and 

proliferation, hematopoiesis, stem cell maintenance, 

gametogenesis and mast cell development. KITLG/SCF binding can 
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activate several signalling pathways (reviewed by Lennartsson et 

al., 2012). 

Associations with 

breast cancer 

c-kit is infrequently expressed in breast cancer and expression in 

breast tumours is an indicator of a basal-like tumour (Nielsen et 

al., 2004). It has also been found to be over-expressed in tumours 

with BRCA-1 mutation-associated breast cancer (Regan et al., 

2012). 

 

The KITLG-c-kit axis has been implicated in the metastasis of 

breast tumours in mouse models via HIF-1 mediated KITLG 

release (Kuonen et al., 2012). 

 

KITLG has been reported to be produced by tumour cells (Hue et 

al., 2005) and is widely distributed throughout the body, in 

particular stromal cells, and detectable at low levels in the blood 

(Ashman, 1999). In cancer the KITLG-c-kit axis is thought to 

function in both an autocrine and paracrine manner contributing 

to mammary malignancy (Hines et al., 1995). 

 

c-Jun has been identified at the invasive front of breast cancer 

tumours (Vleugel et al., 2006) and induction of this oncogene 

regulates the expression of a number of proteins involved in 

growth, proliferation and development (Shaulian et al., 2002). 

Jiao et al have shown that c-Jun is involved in HER2-induced 

migration and invasion in mammary epithelial cells where c-Jun 

promoted the expression of KITLG and CCL5. KITLG and CCL5 

encouraged the expansion of mammary cells with self-renewal 

activity and promoted invasiveness (Jiao et al., 2010). 

 

Stimulation of c-kit activates a wide array of signalling pathways 

that are known to be involved in onogenic signalling such as PI3K, 

Src, Ras-Erk and JAK-STAT (reviewed in Kitamura et al., 2004; 

Ronnstrand et al., 2004). 
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c-kit is also expressed on stem cells such as hematopoietic 

progenitors and has thus been used as a stem cell marker, and 

KITLG by binding to c-kit has been shown to contribute to the 

survival, self-renewal and maintenance of human stem cells. 

Stromal cells surrounding human stem cells can be a source of 

KITLG (Kent et al., 2008). 

Associations with other 

cancers 

c-Kit acts as oncogene in several tumors, in particular 

gastrointestinal stromal tumors (GIST), mastocytosis, and 

melanoma (Pittoni et al., 2011), through activating mutations in 

the extracellular or intracellular domain (Liu et al., 2007) or 

through an autocrine KITLG/c-Kit loop (Stanulla et al., 1995).  

 

A KIT inhibitor, Gleevec (Imatinib) has been generated and is 

approved for the use in GIST following therapy to prevent 

recurrence and for use in inoperable tumours. 

 

KITLG also activates tissue-resident mast cells to generate a 

tumor-promoting angiogenic microenvironment (Crivellato et al., 

2008). Hypoxia promotes the expression of HIFs which induce a 

number of factors that encourage angiogenesis, one being KITLG 

(Ceradini et al., 2004).  

 

KITLG is the ligand for c-kit and the activation of this RTK has been reported to be 

involved in a plethora of disease-progression events. Consequently, the expression 

of c-kit was also investigated in each of the 3 cell lines in this project that eventually 

develop Faslodex resistance. From the heatmaps in Figure 45A it can be seen that 

there was no consistent change in expression of c-kit in the 3 models and the log2 

expression intensity plot revealed that c-kit is unlikely to be expressed either pre or 

post Faslodex treatment with all detection calls absent (Figure 45B). 
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Figure 45: (A) Heatmaps generated by GeneSifter to assess the expression of c-kit, the 

reported receptor for KITLG, in the HER2+ and MCF-7 cell lines and (B) Log2 normalised 

expression plots displaying expression in each cell line including T47D, pre and post 10 day 

Faslodex treatment. Jetset gene probe was used; KIT-205051_s_at 

Table 16: Summary of the function of VEGFC including previous published reports 

surrounding the role of VEGFC in breast and other cancers. 

Gene name/acronym Vascular endothelial growth factor C: VEGFC 

Function The protein encoded by this gene is a member of the vascular 

endothelial growth factor family. It is involved in angiogenesis 

and endothelial cell growth, stimulating their proliferation and 

migration while also affecting the permeability of blood vessels 

(Hirakawa et al., 2007).  

Associations with 

breast cancer 

VEGFC has been identified to be particularly involved in 

intratumoral lymphangiogenesis resulting in enhanced metastasis 

to the lymph nodes and lungs and ultimately leading to a poorer 

prognosis (Skobe et al., 2001). 

 

B
T4

7
4

 C
O

N
 

B
T4

7
4

 F
A

S 

M
D

A
-3

6
1

 C
O

N
 

M
D

A
-3

6
1

 F
A

S 

M
C

F-
7

 C
O

N
 

M
C

F-
7

 F
A

S 

B
T4

7
4

 C
O

N
 

B
T4

7
4

 F
A

S 

M
D

A
-3

6
1

 C
O

N
 

M
D

A
-3

6
1

 F
A

S 

M
C

F-
7

 F
A

S 

M
C

F-
7

 C
O

N
 

B 

A 



139 
 

Expression of VEGFC also encourages metastasis of tumour cells 

thus contributing to a more aggressive behaviour (Burton et al., 

2008). In agreement with this increased expression of VEGFC has 

been shown to correlate with lymph node metastasis in a 

number of tumour types (Rinderknecht et al., 2009; He et al., 

2005). 

 

As well as its role in lymphangiogenesis VEGFC also promotes cell 

proliferation and invasion thus further promoting disease 

progression (Tobler et al., 2006).  

 

All of the functions of VEGFC are mediated mainly through the 

VEGFR3 receptor and occasionally theVEGFR2 receptor 

(depending on the post-translational modifications that VEGFC 

has undergone) (Joukov et al., 1994) 

Associations with other 

cancers 

VEGFC expression has been identified in several cancers where it 

has been associated with increased lymphatic metastases. These 

include colorectal cancer (Akagi et al., 2000), cervical cancer 

(Hashimoto et al., 2001), and gastric adenocarcinoma (Juttner et 

al., 2006).  

 

Expression of VEGFC (and VEGFA) have been reported to predict 

a poorer prognosis in gastric cancer and combined suppression of 

both factors markedly suppresses cancer growth (Wang et al., 

2013). 

 

As VEGFC is the ligand for the VEGFR3 (FLT4) receptor and has been shown to also 

signal through the VEGFR2 (KDR) receptor, the gene expression levels of these two 

receptors were also investigated from the microarray datasets for all 3 cell lines to 

determine if autocrine signalling was likely during Faslodex treatment (Figure 46). 

VEGFR3 (FLT4) appeared to be down-regulated in all cell lines by Faslodex and 

furthermore the log2 expression values were below 0 both pre and post Faslodex 

treatment with all detection calls being absent. VEGFR2 (KDR) gene expression was 
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suppressed by Faslodex in both HER2+ cell lines and again log2 expression values 

were below 0 and detection calls were absent. The MCF-7 cell line exhibited an up-

regulation of VEGFR2 expression and although the detection call was shown to go 

from absent to present with Faslodex, it was notable that log2 expression values 

were below 0 indicating at best only low expression. 
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Figure 46: (A) Heatmaps generated by GeneSifter to assess the expression of VEGFR2 and 

VEGFR3, reported receptors for VEGFC, in the HER2+ and MCF-7 cell lines and (B) Log2 

normalised expression plots displaying expression in each cell line including T47D, pre and 

post 10 day Faslodex treatment. Jetset gene probes were used; VEGFR2 (KDR)-203934_at; 

VEGFR3 (FLT4)-210316_at 
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Table 17: Summary of the function of GFRA1 including previous published reports 

surrounding the role of GFRA1 in breast and other cancers. 

Gene name/acronym GDNF family receptor alpha 1: GFRA1 

Function The protein encoded by this gene is a member of the GDNF 

receptor family. It is a glycosylphosphatidylinositol(GPI)-linked 

cell surface receptor primarily for GDNF, and mediates activation 

of the RET tyrosine kinase receptor (Takahashi et al., 2001). 

Associations with 

breast cancer 

A subset of ER+ breast cancer patients have been shown to 

express elevated levels of RET and its co-receptor GFRA1 and 

that RET signalling in the ER+ setting can activate ERK1/2 and 

AKT signalling pathways (Esseghir et al., 2007; Boulay et al., 

2008). These signalling pathways have been shown to be 

involved in limiting tamoxifen and aromatase inhibitor response 

and inhibition of RET in the resistant setting resensitised cells 

endocrine therapy (Plaza-Menacho et al., 2010; Morandi et al., 

2013). 

 

GFRA1 has been found to be upregulated at the mRNA level in 

invasive breast cancer compared to normal breast tissue 

(Esseghir et al., 2006).  

 

There is much evidence suggesting a link between cancer 

promotion and presence of chronic inflammation in the 

microenvironment. Most studies focus on the role of 

inflammatory chemokines and cytokines. However, it has now 

become clear that neurotrophic factors also play a role in the 

immune system homeostasis, inflammatory response and 

tumour progression (Albini et al., 2007). 

 

The neurotrophic factor GDNF exerts its effects via binding to 

GFRα coreceptors (preferentially GFRα1), which recruit RET to 

form a signalling complex leading to RET autophosphorylation 

and activation of a signalling cascade (Manie et al., 2001). 
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GDNF has been shown to stimulate migration via activation of 

MAPK and PI3K pathways in a RET+/ GFRα1+ pancreatic cell line 

(Veit et al., 2004) GFRα1 has also been found to be 

overexpressed in invasive breast cancer (Esseghir et al., 2006). 

The data concludes that GDNF is induced by inflammatory signals 

and tumour fibroblasts in breast cancer cells activating RET and 

GFRα1 signalling cascades supporting both paracrine and 

autocrine stimulation of tumour cells in response to their 

microenvironment (Esseghir et al., 2007). 

Associations with other 

cancers 

GDNF has been shown to stimulate migration via activation of 

MAPK and PI3K pathways in a RET+/ GFRα1+ pancreatic cell line 

(Veit et al., 2004). 

 

In order to further investigate the potential role of GFRA1 suppression by Faslodex 

treatment in the 3 models, other elements of the GFRA1 receptor complex were 

investigated using the gene microarrays to determine if all components of RET 

signalling were suppressed by this antihormone. From Figure 47 it can be seen that 

RET and GDNF were invariably suppressed by Faslodex treatment. For RET all basal 

log2 expression values were above 0 and called present indicative of expression in 

the 3 models prior to treatment. The greatest suppression was observed in the 

MCF-7 cell line leading to an absent detection call, while expression in the other 

models remained present after Faslodex. The log2 intensity plot showed GDNF was 

at best expressed at only extremely low levels pre and post Faslodex treatment 

with all detection calls absent. 
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Figure 47: (A) Heatmaps generated by GeneSifter to assess the expression of RET and GDNF 

in the HER2+ and MCF-7 cell lines. GDNF is the reported ligand for GFRA1, which is a  

co-receptor for RET. (B) Log2 normalised expression plots displaying expression in each cell 

line including T47D, pre and post 10 day Faslodex treatment. Jetset probes were used; RET-

211421_s_at; GDNF-221359_at 

 

B
T4

7
4

 C
O

N
 

B
T4

7
4

 F
A

S 

M
D

A
-3

6
1

 C
O

N
 

M
D

A
-3

6
1

 F
A

S 

M
C

F-
7

 C
O

N
 

M
C

F-
7

 F
A

S 

RET 

RET 

RET 

B
T4

7
4

 C
O

N
 

B
T4

7
4

 F
A

S 

M
D

A
-3

6
1

 C
O

N
 

M
D

A
-3

6
1

 F
A

S 

M
C

F-
7

 F
A

S 

M
C

F-
7

 C
O

N
 

B
T4

7
4

 C
O

N
 

B
T4

7
4

 F
A

S 

M
D

A
-3

6
1

 C
O

N
 

M
D

A
-3

6
1

 F
A

S 

M
C

F-
7

 F
A

S 

M
C

F-
7

 C
O

N
 

GDNF 

RET 

A 

B 



145 
 

5.3.3.1 Summary of the microarray data and ontological information collated for 

the potential resistance genes 

From the ontological studies, there was evidence that all of the genes identified 

could have a possible role in the limited Faslodex response and subsequent onset of 

Faslodex-resistance in the HER2+ and MCF-7 cell lines. Up-regulation of GABBR2, 

CXCR4, PRKACB, KITLG and VEGFC have all been reported to be involved in cell 

survival and growth signalling as well as disease progression (invasive and 

metastatic capability). GFRA1 (and associated RET signalling) has also been 

associated with disease progression in breast cancer. However, its suppression by 

short-term Faslodex and continued suppression in the MCF-7 FAS-R cells suggested 

it is unlikely to be involved in the promotion of resistance in the HER2+ and MCF-7 

cell lines. GFRA1 is reported as being ER-regulated and thus its suppression may be 

an indicator of initial Faslodex response in these cell lines. The Faslodex-induced 

genes also showed evidence of induction in the MCF-7 Faslodex-resistant cell line 

versus hormone sensitive cells with the exception of VEGFC and KITLG.  Initial 

induction by 10 day Faslodex treatment may suggest a potential role for these latter 

genes in early development of resistance but their continued induction may not be 

required for the subsequent maintenance of the resistant phenotype.  

5.3.4 Establishing potential clinical relevance of the genes of interest 

in the context of endocrine resistance 

All genes were further analysed in clinical breast cancer using the online tools 

KMPlotter and GOBO to determine their clinical prognostic and/or predictive value 

following anti-hormone treatment.  These tools can use breast cancer gene 

microarray mRNA expression data collected from patients prior to tamoxifen 

treatment and also contain associated survival-related information. They generate 

survival curves that allow determination of whether an association exists between 

inherent expression level for genes of interest and clinical outcome, in this instance 

following tamoxifen treatment in ER+ breast cancer patients. Detailed information 

on these tools can be found in Section 2.6.1 of ‘Materials and Methods’.  There are 

no Faslodex-treated clinical microarray datasets as yet publically available for such 

analysis. 



146 
 

KMPlotter was initially used as this tool encompasses the largest dataset of relevant 

patients for analysis (n=657). All patients were ER positive and had undergone 

tamoxifen therapy. In order to analyse the association between a gene of interest 

and relapse free survival (RFS) in this project, the patient data was split into 2 

groups using the best cut-off tool provided by KMPlotter and then compared by a 

Kaplan-Meier plot. The only genes to display a significant association (log rank 

P<0.05) with clinical outcome following tamoxifen treatment in ER+ breast cancer 

using KMPlotter were GABRR2 and VEGFC. 
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5.3.4.1 GABBR2 

Figure 48 displays the significant association identified between inherent GABBR2 

gene expression and subsequent duration of response to tamoxifen in ER+ clinical 

breast cancer. The red line depicts those patients with increased expression of 

GABBR2 which significantly associated with a reduced duration of response to 

tamoxifen in this analysis. A hazard ratio (HR) of 2 indicated  twice as many patients 

underwent a relapse in the patient cohort with higher GABBR2 expression (HR= 

2.46 95% CI 1.36-4.45), suggesting this gene may contribute to anti-hormone 

resistance and supportive of a potential role for Faslodex-induced GABBR2 in the 

eventual development of Faslodex resistance in HER2- and HER2+ ER+ cells in vitro. 

 

Figure 48: Kaplan-Meier survival curve generated using KMPlotter displaying probability of 

RFS according to high (red) or low (black) GABBR2 mRNA expression (red line)in  tamoxifen-

treated ER+ breast cancer patients (n=657).  

GABBR2 was also analysed using the online tool GOBO, which not only enables the 

relationship between the expression of a given gene and patient prognosis  to be 

determined, but also allows the patient expression data to be subdivided into more 

than 2 cohorts to determine if there is a graded relationship between level of gene 

expression and clinical outcome. Again, RFS was used as a measure of clinical 

outcome and patients selected (n=176) were ER+ and subsequently received 

tamoxifen treatment (Figure 49). 
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Figure 49: Kaplan Meier survival curve generated using GOBO displaying RFS according to 

high (blue), intermediate (red) or low (grey) GABBR2 gene expression  data used was from 

ER+ tamoxifen treated breast cancer patients (n=176). 

GABBR2 analysed in GOBO showed the same relationship as in the larger dataset 

within KMPlotter: increased levels of expression were associated with a reduced 

response to tamoxifen (p=0.05177) (Figure 49), although the data could not be 

discriminated further according to high or intermediate expression level.  
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5.3.4.2 VEGFC 

Although there was no relationship in the smaller GOBO dataset, KMPlotter again 

revealed a significant association between increased expression of VEGFC and 

reduced RFS in tamoxifen treated ER+ breast cancer patients (Figure 50). The HR 

was greater than 1 in this group indicating patients with an increased VEGFC 

expression were associated with a poorer response (HR=1.46 95% CI 1.05-2.02).  

 

 

 

 

 

 

 

 

 

Figure 50: Kaplan-Meier survival curve generated using KMPlotter displaying probability of 

RFS according to high (red) or low (black) VEGFC mRNA expression (red line)in  tamoxifen-

treated ER+ breast cancer patients (n=657).  

Both VEGFC and GABBR2 were also analysed in a cohort of ER+ breast cancer 

patients who had received no adjuvant therapy using KMPlotter. In this cohort, the 

same association between increased GABBR2 expression and reduced RFS was 

identified, suggesting that increased expression of GABBR2 could have prognostic 

value in ER+ breast cancer (Figure 51) (HR=1.57 (95%CI 1.2-2.04), p=0.00075). 

However, no association was seen for VEGFC, suggesting that it may be predictive 

in relation to antihormone (tamoxifen) treatment outcome. 
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Figure 51: Kaplan-Meier survival curve generated using KMPlotter displaying probability of 

RFS according to high (red) or low (black) GABBR2 mRNA expression (red line)in  ER+ breast 

cancer patients that were systemically untreated (n=785).  

5.3.5 PCR verification of genes potentially involved in the 

development of resistance in the HER2+ and MCF-7 cell lines 

Reverse-transcription (RT)-PCR was carried out using triplicate RNA from untreated 

and 10 day Faslodex treated cells (under the same conditions as those used to 

generate samples for the microarray gene expression profiling experiment) in an 

attempt to verify the Affymetrix expression profiles. 

PCR verification was carried out for GABBR2, CXCR4, PRKACB, KITLG, VEGFC and 

GFRA1 (Figures 30-35).  
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5.3.5.1 GABBR2 

GABBR2 gene expression was very low in the HER2+ and MCF-7 cell lines prior to 

Faslodex treatment and even lower in the T47D cell line, in agreement with the 

gene expression microarray data (Figure 28). GABBR2 was, however, significantly 

induced in the BT474 and MCF-7 cell lines by 10 day Faslodex treatment. In some 

samples GABBR2 was also up-regulated in the MDA-MB-361 cell line, but this was 

found not be significant across all replicates.  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

GABBR2 1.45 1.13 3.66 1.02 

Figure 52: Representative PCR image (A) with the corresponding β-actin normalised 

densitometry graph (B), semi-quantitatively representing the data (CON-control; FAS-10 

day Faslodex treatment). The results are expressed as means ± SEM of three separate 

experiments. *P < 0.05 versus control, ***P < 0.001 versus control. (C) Table displaying the 

fold changes of gene expression detected by PCR following Faslodex treatment  
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5.3.5.2 CXCR4 

Basal expression of CXCR4 was found to be similar in the BT474 and MCF-7 cell 

lines, while elevated expression was observed in the MDA-MB-361 cell line (Figure 

53), in agreement with the log2 normalised expression intensity plot generated 

from the microarray data (Figure 29). The greatest induction of CXCR4 gene 

expression was observed in the BT474 (1.44 fold) and MCF-7 (2.97 fold) cell lines, 

while a lack of induction was observed in the MDA-MB-361 cell line where its 

elevated basal expression remained unchanged. These profiles mimicked the 

microarray data for CXCR4, as shown in Figure 29.  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

CXCR4 1.44 1.0 2.97 1.01 

Figure 53: Representative PCR image (A) with the corresponding β-actin normalised 

densitometry graph (B), semi- quantitatively representing the data (CON-control; FAS-10 

day Faslodex treatment). The results are expressed as means ± SEM of three separate 

experiments. *P < 0.05 versus control, ***P < 0.001 versus control. (C) Table displaying the 

fold changes of gene expression detected by PCR following Faslodex treatment. 
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5.3.5.3 PRKACB 

Although previous gene expression data indicated that the basal levels of PRKACB 

were readily detected in all cell lines (log2 intensity value above 0), and that its 

expression was higher in the HER2+ models (Figure 32), the latter was not 

confirmed by PCR (Figure 54). Faslodex up-regulation of PRKACB was, greatest in 

the HER2+ cell lines (Figure 54) in parallel with the microarray data (Figure 32). 

There was little change in expression of PRKACB in the MCF-7 cell line during 

Faslodex treatment, and in T47D cells its level fell on exposure to the antihormone 

an observation not detected during the analysis of the microarray data (Figure 32).  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

PRKACB 1.84 1.39 1.06 1.97 

Figure 54: Representative PCR image (A) with the corresponding β-actin normalised 

densitometry graph (B), semi-quantitatively representing the data (CON-control; FAS-10 

day Faslodex treatment). The results are expressed as means ± SEM of three separate 

experiments. **P < 0.01 versus control, ***P < 0.001 versus control. (C) Table displaying 

the fold changes of gene expression detected by PCR following Faslodex treatment. 
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5.3.5.4 KITLG 

As can be seen in Figure 55, the basal levels of KITLG expression detected by PCR 

were variable, with the lowest levels being seen in the BT474 cell line. This 

contrasted with the microarray gene expression data, where the lowest levels were 

recorded in MCF-7 cells (Figure 31). In all instances, KITLG was significantly up-

regulated by Faslodex treatment, although this had not been observed on the 

arrays in the T47D cell line where a suppression of KITLG expression was observed 

(Figure 31).  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

KITLG 2.25 1.30 1.42 1.24 

Figure 55: Representative PCR image (A) with the corresponding β-actin normalised 

densitometry graph (B), semi-quantitatively representing the data (CON-control; FAS-10 

day Faslodex treatment). The results are expressed as means ± SEM of three separate 

experiments. *P < 0.05 versus control, **P < 0.01 versus control, ***P < 0.001 versus 

control. (C) Table displaying the fold changes of gene expression detected by PCR following 

Faslodex treatment. 
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5.3.5.5 VEGFC 

PCR of VEGFC revealed similar basal gene expression profiles for this gene across 

the 4 cell lines (Figure 56), an observation in disagreement with the microarray data 

which suggested VEGFC expression was inherently lower in the T47D cell line 

(Figure 30). Importantly, 10 day Faslodex treatment significantly up-regulated 

VEGFC expression in all 3 cell lines that eventually develop resistance to Faslodex, 

while no change in expression was observed in the T47D cell line (Figure 56). The 

PCR data indicated that the MDA-MB-361 cell line underwent the greatest 

induction of expression in disagreement with the array data.  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

VEGFC 1.45 3.46 1.46 1.13 

Figure 56: Representative PCR image (A) with the corresponding β-actin normalised 

densitometry graph (B), semi-quantitatively representing the data (CON-control; FAS-10 

day Faslodex treatment). The results are expressed as means ± SEM of three separate 

experiments. **P < 0.01 versus control, ***P < 0.001 versus control. (C) Table displaying 

the fold change of gene expression detected by PCR following Faslodex treatment. 
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5.3.5.3 GFRA1 

Although the basal expression of GFRA1 was variable, in agreement with the 

microarray data (Figure 35). As such, highest basal levels were detected in the MCF-

7 cell line, with lowest levels being recorded in the T47D and BT474 cells. Again in 

parallel with the microarray data, the PCR data revealed that Faslodex treatment 

resulted in a significant suppression of GFRA1 expression in MCF-7 and MDA-MB-

361 (Figure 35). GFRA1 could not be detected in BT474 or T47D cells; hence, any 

weak suppression with Faslodex after normalisation in these models was equivocal. 

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

GFRA1 1.24 1.60 7.28 1.57 

Figure 57: Representative PCR image (A) with the corresponding β-actin normalised 

densitometry graph (B), semi-quantitatively representing the data (CON-control; FAS-10 

day Faslodex treatment). The results are expressed as means ± SEM of three separate 

experiments.  **P < 0.01 versus control, ***P < 0.001 versus control. (C) Table displaying 

the fold change of gene expression detected by PCR following Faslodex treatment. 
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Several of the genes induced on the arrays (e.g. VEGFC, KITLG, GABBR2) were PCR 

verified successfully with evidence for some induction by Faslodex in both HER2+ 

and MCF-7 cell lines, while CXCR4 and PRKACB showed induction in two models, in 

keeping with a role in the development of resistance.  However, KITLG was also 

induced in the T47D cell line (albeit to a lesser extent) and so was dismissed from 

further investigation. GFRA1 was also selected for further investigation but in 

relation to the role of GFRA1 suppression and Faslodex response. This data is 

summarised in Table 18 which compares the results from the microarray data with 

the PCR results. There is generally a good concordance between the array and PCR 

results with the exception of KITLG. 

Table 18: Comparison of Faslodex-deregulation of genes of interest from the 

microarray data and PCR results (I-Induced; S-Suppressed; ~ limited/no change) 

Gene 
Name 

Microarray (FAS de-regulation) PCR (FAS de-regulation) 
BT474 MDA-

361 
MCF-7 T47D BT474 MDA-

361 
MCF-7 T47D 

GABBR2 I I I ~ I I I ~ 

CXCR4 I ~ I ~ I ~ I ~ 

PRKACB I I I ~ I I ~ S 

KITLG I I I S I I I I 

VEGFC I I I ~ I I I S 

GFRA1 S S S ~ ~ S S ~ 

 

5.4 Discussion 

In this chapter a filtering process was undertaken to identify genes that were 

significantly altered by Faslodex treatment (by at least 1.5 fold) in those cell lines 

that eventually develop resistance to Faslodex (HER2+ and MCF-7 cell lines). 9 

genes were initially identified as being de-regulated by Faslodex following analysis 

of the microarray gene expression data (Table 10). It was hypothesised that these 

may encompass genes that could be potential crucial signalling elements gained 

(i.e. growth promoters) or lost (i.e. tumour suppressive elements), independent of 

HER2 status, that if manipulated in combination with Faslodex may enhance the 

growth inhibition exerted by Faslodex, as well as providing earlier predictive 

elements for the Faslodex resistant state.  
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Of the 9 genes initially identified, three (IKZF1, GPR37 and ZNF343) were 

immediately dismissed from the investigation due to lack of significant expression 

(log2 intensity values below 0, absent expression calls) and unreliable changes in 

expression following Faslodex treatment (Figures 26, 27 and 34). Further filtering 

based on expression profile (including in a Faslodex resistant model), ontology and 

examination in virtual clinical datasets with endocrine outcome was undertaken to 

discriminate those remaining genes with the strongest potential association to 

resistance, before PCR verification was performed to confirm their Faslodex de-

regulation in the cell models.  

Induction of 5 of the remaining genes (CXCR4, GABBR2, PRKACB, VEGFC and KITLG) 

by Faslodex had potential importance in the eventual development of Faslodex-

resistance. CXCR4 and GABBR2 were of much interest due to the lack of detectable 

gene expression in the T47D cell line pre and post Faslodex treatment (Figures 28, 

29, 52 and 53). CXCR4 (which was induced in the HER2+ and MCF7 cells by Faslodex 

treatment and also elevated in the Faslodex resistant MCF7 cells) is particularly 

interesting because of the compelling literature surrounding the involvement of this 

gene in disease progression. The role of CXCR4 and its ligand SDF-1 in metastasis 

and cancer cell proliferation has been widely reported (Muller et al., 2001., Smith et 

al., 2004) but more recently CXCR4 has been implicated in the development of 

hormone-independence when over-expressed in ER+ breast cancer (Rhodes et al., 

2011). Rhodes et al have shown that CXCR4 has the ability to activate ER in an 

oestrogen-independent manner encouraging tumour growth where ER-regulated 

SDF-1 expression further promotes such growth. Faslodex treatment was reported 

to deplete ER expression and this inhibited CXCR4-mediated tumour growth via 

suppression of SDF-1 expression. Treatment with exogenous SDF-1, however, was 

able to overcome the anti-tumour effects of Faslodex in this model. Clinically, SDF-1 

is likely to be provided by the tumour stroma to encourage resistance to Faslodex 

(Rhodes et al., 2011). Assuming SDF-1 is not significantly present in the serum 

added to the cell growth medium, for CXCR4 to be functionally involved in the 

development of resistance in the in vitro models used in this project SDF-1 would 

have to be expressed by these cells. SDF-1 expression was investigated in the cell 
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lines by analysing the gene expression data and confirmed that the ER-regulated, 

SDF-1 gene was very much suppressed by 10 day Faslodex treatment in the 3 cell 

lines indicating CXCR4 signalling is unlikely to be functionally active in these cells 

following Faslodex treatment. 

The literature supporting a role for GABBR2 in cancer progression is limited. There 

are two reports associating GABBR2 expression with a shift towards a more 

aggressive phenotype but neither is in relation to breast cancer. In prostate and 

lung cancer, GABBR2 activation and elevated GABBR2 levels were associated with 

an increase in invasive and metastatic potential (Azuma et al., 2003; de Lange et al., 

2003). In contrast, there have also been reports stating that activation of GABBR2 is 

growth inhibitory (Opolski et al., 2000). However, GABBR2 has never previously 

been associated with response or failure on anti-hormone treatment. Its expression 

increases in the HER2+ and MCF-7 models with Faslodex and its maintained 

induction into the MCF-7 Faslodex-resistant model setting (Figure 37) as well as its 

negative association with RFS duration in patients who received tamoxifen suggest 

that while the role of GABBR2 in ER+ breast cancer (Figure 48 and 49) has yet to be 

fully understood it may be adverse and contributory to endocrine resistance. 

Enzymes involved in the biosynthesis of GABA from glutamate were also 

investigated to determine if GABA may also be produced by the cells and thus GABA 

signalling was functionally active. L-glutamate decarboxylase (GAD) is the key 

enzyme involved in GABA biosynthesis and is represented by 2 genes, GAD1 and 

GAD2. Both genes were shown to up-regulated by Faslodex treatment in the 3 cell 

lines. Mean expression values failed to be above 0 indicative of very low expression, 

but none the less their Faslodex up-regulation may suggest some elevation of GABA 

signalling via GABBR2 receptor during treatment (Figure 43). 

The remaining three induced genes, PRKACB, VEGFC and KITLG were all expressed 

by the T47D cell line pre and post treatment as well as in the other cell models, 

where they were predominantly induced by Faslodex (Figures 54-56). PRKACB was 

found to be significantly induced in the BT474 cell line by PCR with a modest, non-

significant induction also observed in the MDA-MB-361 cell line (Figure 54). 

However, very little change in expression was observed in the MCF-7 cell line while 
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a significant suppression by Faslodex was seen in the T47D cell line (Figure 54) in 

keeping with a possible role for induction serving to limit Faslodex response. These 

data also suggest if PRKACB induction is involved in the subsequent development of 

resistance it may be particularly important in the ER+/HER2+ setting. The PRKACB 

gene encodes one of the catalytic subunits of the enzyme PKA. PKA has been 

reported to be involved in cancer progression (Michalides et al., 2004; Merkle et al., 

2011) as well as the development of resistance to the anti-hormone treatment 

tamoxifen (Michalides et al., 2004; de Leeuw et al., 2012). While PKA signalling has 

not previously been associated with Faslodex failure, the induction of PRKACB by 

short-term Faslodex treatment and the maintained induction of PRKACB into 

resistance in the MCF-7-derived model suggest the PKA pathway could be a crucial 

survival signalling pathway utilised by ER+ breast cancer cells to overcome Faslodex 

challenge. 

The T47D cell line also expressed VEGFC pre and post treatment, but Faslodex 

treatment had a minimal effect on expression (Figure 56). In contrast, significant 

induction of VEGFC was present in the 3 remaining models following Faslodex 

treatment in keeping with a possible role in the development of drug resistance. 

Published reports surrounding the role of VEGFC in disease progression were in 

agreement with our hypothesis of VEGFC possibly acting to limit Faslodex response 

(Table 16). In particular, VEGFC is thought to be involved in the process of 

lymphangiogenesis and thereby tumour spread via the lymphatic system via 

signalling through the VEGFR3 receptor and sometimes the VEGFR2 receptor 

(Skobe et al., 2001). This process is believed to occur following the establishment of 

the primary tumour when metastasis to lymph nodes is subsequently ready to 

occur, but the timings for this event remains unclear (Wissmann et al., 2006). The in 

vitro data presented here suggest that VEGFC may also have a functional role in 

disease progression prior to the process of lymphangiogenesis. Clinical data from 

KMPlotter revealed a negative association between VEGFC expression and RFS 

following tamoxifen treatment (Figure 50). Along with the induction of VEGFC by 

Faslodex treatment, this is in keeping with VEGFC being involved in onset of 

Faslodex resistance. However, the suppression of VEGFC expression in the MCF-7-
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derived Faslodex resistant cell line was at odds with VEGFC being involved in 

maintenance of the resistant phenotype.  In order to further explore if there was a 

potential role for induction of VEGFC in the HER2+ and MCF-7 cell lines, the 

expression of VEGFR2 and VEGFR3 in the 3 cell lines pre and post Faslodex 

treatment was analysed using the gene expression data (Figure 46). VEGFR3 was 

not expressed by any of the cell lines pre or post treatment, while VEGFR2 was also 

absent in the HER2+ cell lines and although induced in the MCF-7 cell line  by 

Faslodex  was still at a low expression level. In total, these findings suggest limited 

functional activity of VEGFC in the in vitro cell models following Faslodex treatment, 

questioning any contribution towards development of Faslodex resistance.   

Nevertheless, clinically it remains possible that cancer cells may express VEGFR2 or 

3 in response to environmental factors allowing any Faslodex induction of VEGFC to 

promote disease progression and metastasis to the lymph nodes. Interestingly, it 

has been reported that high tumour VEGFC levels significantly correlated with 

lymph node metastasis in ER+ breast cancer patients (Morgillo et al., 2013) while a 

recent phase II clinical study assessing the combination treatment of Faslodex and 

Cediranib (an inhibitor of all VEGF receptors) demonstrated non-significant 

improvements of clinical activity with respect to tumour size, progression free 

survival and objective response rate. It thus remains possible that inhibition of 

VEGF signalling may prevent or delay the onset of Faslodex resistance (Hyams et al., 

2013).  

KITLG gene expression was induced by Faslodex in all the cell models, unfortunately 

including the T47D cell line (Figure 55) shedding doubt on its involvement with 

emergence of resistance. Furthermore, KITLG functions through its receptor  

c-kit and investigations of c-kit expression found the receptor not to be 

substantially expressed in either ER+/HER2+ cell lines or the MCF-7 model, with all 

log2 intensity values  below 0 suggesting functional KITLG signalling was not active 

in the cell models post Faslodex treatment. Subsequently, therefore, no further 

work was carried out on KITLG. 

It was interesting to note that Faslodex induction of the various genes in this 

project was observed following 10 days of treatment in the 3 models but resistance 
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did not emerge for a further number of weeks. This could be due to a threshold 

effect, where the initial induction observed following 10 days of treatment does not 

lead to sufficient expression of these genes to contribute to limiting drug response 

but the continued induction over time may lead to further increases in expression 

so that resistance can emerge. In this regard, GABBR2, PRKACB and CXCR4 could 

perhaps be most promising since they also showed some evidence of expression 

induction in the MCF7-derived acquired Faslodex resistant line. Also, it is clear that 

a number of the genes identified (e.g. CXCR4, GABBR2, VEGFC) require a ligand or 

receptor to be co-expressed for functional signalling to take place; it is feasible that 

more extended Faslodex treatment may lead to the eventual up-regulation of the 

receptors/ligands required for these genes to be actively involved in signal 

transduction and development of resistance.  Even if this is not observed, such 

signalling elements may remain important for limiting Faslodex response in vivo 

where paracrine signalling initiated by the tumour microenvironment can lead to 

the activation of a number of signalling pathways within cancer cells failing to 

express a given ligand (Witz et al., 2006).  

GFRA1 expression was found to be suppressed significantly by Faslodex in both 

HER2+ and MCF7 models on the arrays. While ontological investigations found 

GFRA1 to be part of the RET signalling pathway and involved in cancer progression 

and tamoxifen or AI resistance (Plaza-Menacho et al., 2010; Morandi et al., 2013), 

its suppression by 10 day Faslodex (Figure 35) and continued suppression into the 

resistant setting (Figure 42) was in disagreement with an equivalent involvement 

for such signalling in Faslodex resistance. Indeed, the suppression of GFRA1 on the 

Faslodex-treated arrays could reflect ER regulation of this gene (Boulay et al., 2008) 

and possibly even be an indicator of the initial Faslodex response that occurred to 

some degree in both the HER2+ and MCF-7 cell lines, all 3 cell lines. Analysis of the 

GFRA1 expression profile by PCR found GFRA1 to be suppressed by Faslodex in the 

MDA-MB-361 and MCF-7 cell lines, while expression was barely detectable basally 

in the BT474 and also the T47D cell line (Figure 57). These data suggest that if 

suppression of GFRA1 is a possible mediator of initial Faslodex response such 

changes are not required in all ER+ breast cancer cells. To examine this concept 
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further, investigations were carried out to determine the effects of Faslodex 

treatment on other elements of the RET signalling pathway utilising the microarray 

data (Figure 47); RET and the dominant GFRA1 ligand GDNF were assessed, where 

RET was suppressed in the MCF-7 and MDA-MB-361 cell lines while GDNF was 

suppressed in all models (although pre treatment log2 intensity values for GDNF 

were below 0 indicative of at best only very low basal expression). These data 

possibly provide further evidence that suppression of RET signalling may be an 

important mediator of initial Faslodex response in vitro in some ER+ breast cancer 

cells. However, it remains to be explored if this suppression is causative of 

response, or merely reflective of ER blockade with this agent. 

To summarise, by carrying out whole genome analysis across the model panel, this 

project has successfully revealed several genes induced by short-term Faslodex 

treatment in the HER2+ and the MCF-7 cell lines of potential interest in relation to 

the development of Faslodex resistance (functionally or as biomarkers): VEGFC, 

PRKACB, GABBR2 and CXCR4. Also of interest is the suppression of GFRA1 in the cell 

models by Faslodex that, along with suppression of other elements of the RET 

pathway, comprises a possible mediator of initial Faslodex response. 
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Chapter 6 

Identification of genes Faslodex-deregulated in the T47D cell 

line that are potentially involved in the complete-Faslodex-

response 

 

 

6.1 Introduction 

The general consensus surrounding endocrine therapy of breast cancer is that even 

though these treatments have revolutionised treatment plans and survival statistics 

for ER+ breast cancer patients, they are unable to induce significant levels of cell 

death, rather their main action is to inhibit cancer cell proliferation (Gee et al., 

2003). Indeed, it has come to light that anti-hormone treatments are not entirely 

passive during their inhibition of breast cancer cell proliferation, but concurrently 

have the ability to rapidly induce alternative signal transduction pathways as a 

“compensatory” cell survival mechanism (Gee et al., 2011). Critically, such induced 

signalling can limit the initial drug inhibitory effect and ultimately promote 

therapeutic resistance. In chapter 3 genes were identified that were de-regulated 

by Faslodex in the 3 ER+ cell models that develop anti-hormone resistance during 

continuous treatment. In this chapter the T47D cell line was used to identify early 

genes changes that could possibly be involved in the subsequent complete 

response to Faslodex that was observed following 8.5 weeks of culture with the 

drug. Certainly, early microarray gene expression analysis procedures in this project 

supported the concept of unique Faslodex-promoted gene changes in T47D cells, 

with the HCA diagrams showing the T47D model to cluster separately from the 

other ER+ cell lines after 10 days treatment. This potentially indicated the presence 

of Faslodex-altered gene changes that may influence intracellular signalling 

pathways in this model and may explain the complete response observed, for 
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example comprising Faslodex suppression of growth promoting genes and/or the 

induction of tumour suppressive genes.  

As the first in vitro model reported to exhibit a complete-response with Faslodex, 

study of the T47D cell line provided a unique opportunity to investigate the 

underlying mechanisms of this response. Complete response to anti-hormone 

treatment is a rare phenomenon in the clinic, including for Faslodex, in the 

CONFIRM trial only 1.1% of patients exhibited a complete response (Di Leo et al., 

2010). Investigating this cell model could potentially reveal genes able to identify 

early those patients likely to display a superior response to Faslodex treatment, or 

determine mechanisms that if manipulated in combination with Faslodex could 

induce an enhanced anti-tumour response. 

6.2 Results 

6.2.1 Identification of genes uniquely Faslodex de-regulated in the 

T47D cell line 

A similar 4 stage filtering process to that used in chapter 3 was carried out to (i) 

identify genes with a >1.5 fold change with Faslodex in the T47D cell line only, (ii) 

undertake an ontological investigation (iii) analyse their expression in Faslodex-

resistance using an MCF-7 derived model, and (iv) determine their potential clinical 

relevance in relation to endocrine outcome using online tools and databases. As 

you can see from Figure 57, only 29 were significantly altered in the T47D cell line 

only and further only 11 were identified to exhibit at least 1.5 fold change in the 

T47D line with limited change in the 3 remaining cell models. 
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Figure 57: The Venn diagram illustrates the identification of the 11 genes taken forward as 

potential mediators/biomarkers of Faslodex complete-response observed in the T47D cell 

line. The red circle represents all those genes significantly altered in the T47D cell line. The 

green circle, shows the number of these genes that were not altered by at least 1.5 fold in 

this model and the blue circle are those that were found to be also altered to some extent 

in the BT474, MDA-MB-361 and MCF-7 cell lines. The 11 genes represented by the 

overlapping circles identify those genes that met the criteria to be taken forward for 

further investigation. 

 

Table 18 lists those genes identified as having a >1.5 fold change in expression in 

the T47D cell line following 10 day Faslodex treatment. It can be seen that of the 

genes identified, a similar number were induced and suppressed. Importantly, for 

most of the genes identified, all of the multiple probes exhibited the same 

directional change in expression, the only exceptions being SEPT6 and ID4. 
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Table 18: Genes with a greater than 1.5 fold change in gene expression following 10 days 

Faslodex treatment in the T47D cell line. Also listed is the total number of probes 

representing each gene on the UI33Aplus2 genechip, together with the number of those 

probes which exhibited a robust change in expression with Faslodex. 

Potential complete-
response genes 

T47D unique genes 
Gene Name 

Gene 
expression 

change 
following 
Faslodex 

treatment  
(in T47D cell 

line) 

Total 
number of 

probes 
per gene 

Total number 
of probes 
exhibiting 
change in 

expression 

CASP1 Caspase 1 Induced 5 5 

DCN Decorin Induced 4 4 

TXNIP 
Thioredoxin 
interacting  

protein. 
Induced 2 2 

TGFB2 
Transforming 
growth factor, 

beta 2 
Induced 3 3 

ADAM12 
ADAM  

metallopeptidase 
domain 12 

Induced 3 3 

PTGER3 
Prostaglandin E  

receptor 3 
(subtype EP3) 

Suppressed 8 8 

SEPT6 Septin 6 Suppressed 5 3 

IL6ST 
Interleukin 6 

signal  
transducer 

Suppressed 5 5 

SKAP2 

src kinase 
associated  

phosphoprotein 
2 

Suppressed 3 3 

DUSP4 
Dual specificity 

protein 
phosphatase 4 

Suppressed 2 2 

ID4 
Inhibitor of DNA 

binding 4 
Suppressed 3 2 

 

 

To further confirm the robust induction or suppression of the genes identified, the 

jetset gene probe was further analysed, this being the probe predicted to best 

represent a given gene (see Methods Section 2.3.6 for further information). The 

Affymetrix ID’s for the jetset gene probes and jetset score are listed in Table 19.  
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TGFB2, PTGER3, IL6ST, SKAP2 and DUSP4 all had low jetset scores which indicated 

potentially poorer probe performance. The remaining genes all showed adequate 

jetset scores. 

Table 19: Genes of interest in relation to the Faslodex promotion of a complete-response in 

the T47D cell line with their corresponding jetset gene probe Affymetrix ID’s and jetset 

score (closer to 1 the better the predicted performance of the probe). 

Gene Acronym 
Jetset Affymetrix 

Probe ID 
Jetset Score 

CASP1 211368_s_at 0.38710235 

DCN 209335_at 0.78909851 

TXNIP 201010_s_at 0.476311939 

TGFB2 209909_s_at 0.01054474 

ADAM12 213790_at 0.2812175 

PTGER3 210831_s_at 0.15459993 

SEPT6 212414_s_at 0.41583468 

IL6ST 212195_at 0.03510335 

SKAP2 204362_at 0.03408559 

DUSP4 204014_at 0.00307944 

ID4 209291_at 0.41014426 

 

Using the jetset Affymetrix gene probes ID for the induced and suppressed genes, 

the software program GeneSifter was used to determine the magnitude of de-

regulation of these genes in the T47D cell line by Faslodex as well as their log2 

expression profile across the remaining ER+ cell lines (Figures 58 to 69) also 

recording the gene detection calls from the arrays.   
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Figure 58: Heatmap displaying the significant induction or suppression of genes altered by 

10 day Faslodex treatment in the T47D cell line generated by GeneSifter using the jetset 

probes. 
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6.2.1.1 Genes induced by Faslodex in T47D cells:  

6.2.1.1.1 TXNIP 

While the heatmap and log2 intensity plots for TXNIP confirmed its induction only 

in T47D cells (Figures 58 and 59 respectively), its basal expression in this cell line 

was lower than that observed in the HER2+ and MCF-7 cells where no Faslodex 

induction was seen (Figure 59). Log2 intensity values were above zero for each cell 

line pre- and post-Faslodex treatment, with the exception of the basal value for 

TXNIP in T47D cells which was found to call absent. As seen in Figure 59B, Faslodex 

induced the expression of TXNIP over 12 fold in the T47D cells. 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

TXNIP 3.18 1.01 1.57 12.69 

Figure 59: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of TXNIP in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) table displaying the fold change in gene expression promoted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in red are Faslodex-

promoted inductions in gene expression and in green suppression of expression >1.5 fold. 
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6.2.1.1.2 DCN and CASP1 

Basal log2 intensity values of DCN and CASP1 were similar across all 4 cell lines and 

found to below 0 with absent calls indicative of a lack of basal expression (Figure 

60and 61). Following Faslodex treatment, log2 intensity values for both DCN and 

CASP1 were only induced in the T47D cell line, further confirmed by the substantial 

fold changes (approximately 5 fold) and a change in detection call to present. In the 

other cell models the detection calls remained absent after treatment.  

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

DCN 1.20 1.23 1.22 4.93 

Figure 60: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of DCN in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment (B) Table displaying the fold change in gene expression promoted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in red are Faslodex-

promoted inductions in gene expression >1.5 fold. 
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Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

CASP1 1.98 1.49 1.45 5.95 

Figure 61: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of CASP1 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression promoted by 10 

day Faslodex treatment in each cell line vs. untreated control. Highlighted in red are 

Faslodex-promoted inductions in gene expression and in green suppressions >1.5 fold. 
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6.2.1.1.3 TGFB2 

The log2 intensity values for TGFB2 were very low in the HER2+ cell lines with no 

change in expression occurring following Faslodex treatment (Figure 62). The 

detection calls for this gene were also absent pre and post Faslodex treatment 

indicative of a lack of expression in these models. Although in MCF-7 cells, basal 

TGFB2 gene expression was elevated with a present call, Faslodex did not further 

induce its expression. In contrast to the other cell lines, a clear up-regulation of 

TGFB2 gene expression was observed in the T47D cell line following treatment (> 5 

fold) where present detection calls were observed pre and post treatment. 

Although the jetset score for this gene probe was poor, all 3 gene probes 

demonstrated an induction in expression following treatment (Table 18), suggesting 

a robust up-regulation of TGFB2 in the T47D cell line. 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

TGFB2 1.46 1.51 1.07 5.37 

Figure 62: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of TGFB2 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression promoted by 10 

day Faslodex treatment in each cell line vs. untreated control. Highlighted in red are 

Faslodex-promoted inductions in gene expression and in green suppression of expression 

>1.5 fold. 
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6.2.1.1.4 ADAM12 

The log2 intensity values of ADAM12 were below 0 in all cell models and minimal 

changes were observed in the HER2+ and MCF-7 cell lines following treatment 

(Figure 63). This contrasted with the data derived for the T47D cell line where 

Faslodex promoted an induction its expression, although the log2 intensity value 

remained below 0. Significantly, analysis of the detection calls for the jetset probe 

found them to be absent for all of the cell lines pre and post treatment, indicative 

of a lack of expression, and an analysis of the remaining 2 gene probes showed 

them to also have unreliable profiles.  

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

ADAM12 1.53 1.68 1.44 3.96 

Figure 63: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of ADAM12 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression promoted by 10 

day Faslodex treatment in each cell line vs. untreated control. Highlighted in red are 

Faslodex-promoted inductions in gene expression and in green suppressions >1.5 fold. 
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6.2.1.2 Genes suppressed by Faslodex in T47D cells:  

6.2.1.2.1 SEPT6 

Inherent log2 intensity values of SEPT6 were found to be equivalent in the HER2+ 

and T47D cell lines, but lower in the MCF-7 cell line (Figure 64). In each instance, 

however, values at or below 0 and called absent in the HER2+ and T47D cell lines, 

indicative of a lack of expression. Although the lower log2 intensity value observed 

in the MCF-7 cell line appeared further reduced by treatment, the detection calls 

also called absent pre and post treatment. Suppression in expression was also 

observed in the T47D cell line, but again absent detection calls were recorded post-

treatment.  

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

SEPT6 1.28 1.43 4.15 2.38 

Figure 64: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of SEPT6  in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression promoted by 10 

day Faslodex treatment in each cell line vs. untreated control. Highlighted in green are 

Faslodex-promoted suppressions in gene expression >1.5 fold. 
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6.2.1.2.2 PTGER3 

As seen in Figure 65, the inherent log2 intensity value of PTGER3 in the T47D cell 

line was elevated in comparison to the remaining cell models and a positive 

detection call was recorded. In contrast, the basal log2 intensity values in the 

HER2+ and MCF-7 cell lines were below 0 and called absent, indicative of a lack of 

expression. Following Faslodex treatment, minimal changes were observed in the 

HER2+ cell lines and detection calls remained absent indicating changes were 

equivocal. A small induction was observed in the MCF-7 cell line with a present 

detection call, indicative of up-regulation. In the T47D cell line, Faslodex treatment 

suppressed the PTGER3 log2 intensity value by ~5 fold, although the detection call 

remained present, indicative of some expression retained after treatment. 

Regardless of the poor jetset score of this gene probe, PTGER3 remained a gene of 

interest (Table 19). 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

PTGER3 1.14 2.43 3.18 5.56 

Figure 65: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of PTGER3  in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression promoted by 10 

day Faslodex treatment in each cell line vs. untreated control. Highlighted in green are 

Faslodex-promoted suppressions in gene expression and in red inductions >1.5 fold. 
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6.2.1.2.3 ID4 

Although the inherent log2 intensity values of ID4 were variable across the 4 cell 

models (Figure 66), present detection calls were recorded. In contrast to the HER2+ 

and MCF-7 cells, Faslodex treatment of the T47D cell line suppressed ID4 log2 

intensity values to a value below 0, although it retained a present detection call on 

the arrays.  

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

ID4 1.34 3.25 1.01 2.79 

Figure 66: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of ID4  in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment (B) Table displaying the fold change in gene expression promoted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in green are 

Faslodex-promoted suppressions in gene expression and in red inductions >1.5 fold. 

 

 

 

 

B
T4

7
4

 C
o

n
 

B
T4

7
4

 F
A

S 

M
D

A
-M

B
-3

6
1

 C
o

n
 

M
D

A
-M

B
-3

6
1

 F
A

S 

M
C

F-
7

 C
o

n
 

M
C

F-
7

 F
A

S 

T4
7

D
 C

o
n

 

T4
7

D
 F

A
S 

A 

B 



178 
 

6.2.1.2.4 SKAP2 

The basal log2 intensity values of SKAP2 were equivalent across the HER2+ and 

MCF-7 cell lines and positive detection calls were recorded (Figure 67). In these cell 

lines, Faslodex treatment resulted in very little change in the expression of SKAP2 

and contrasted with a clear suppression of SKAP2 in the T47D cells. In T47D cells, 

detection calls were present pre and post treatment indicating some residual SKAP2 

expression remained after treatment. Although the jetset score was poor for 

SKAP2, its other probes showed a similar suppression in expression in the T47D cell 

line (Table 18 and 19). 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

SKAP2 1.11 1.19 1.14 6.10 

Figure 67: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of SKAP2  in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression promoted by 10 

day Faslodex treatment in each cell line vs. untreated control. Highlighted in green are 

Faslodex-promoted suppressions in gene expression >1.5 fold. 
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6.2.1.2.5 IL6ST 

In contrast to the lack of effect of Faslodex treatment on IL6ST in the HER2+ and 

MCF-7 cell lines, the antihormone suppressed the expression of this gene in T47D 

cells (Figure 68). In all instances, positive detection calls were recorded pre and post 

Faslodex treatment. Although the jetset score for this gene probe was found to be 

particularly poor, all of the gene probes demonstrated a suppression increasing 

confidence of a robust down-regulation of the gene (Table 18).  

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

IL6ST 1.46 1.10 1.17 7.20 

Figure 68: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of IL6ST  in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment (B) Table displaying the fold change in gene expression promoted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in green are 

Faslodex-promoted suppressions in gene expression >1.5 fold. 
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6.2.1.2.6 DUSP4 

Basal log2 intensity values of DUSP4 were equivalent across the 4 cell models and 

present detection calls were recorded (Figure 69). In the HER2+ cells lines, Faslodex 

treatment did not alter the expression of DUSP4, while a small induction was 

observed in the MCF-7 cell line.  In T47D cells, Faslodex treatment led to a clear 

suppression of the expression of DUSP4 further confirmed by a change in detection 

call from present to absent.  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

DUSP4 1.45 1.19 4.50 12.68 

Figure 69: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of DUSP4 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression promoted by 10 

day Faslodex treatment in each cell line vs. untreated control. Highlighted in green are 

Faslodex-promoted suppressions in gene expression >1.5 fold. 

 

Following the analysis of the log2 intensity plots for these genes in the various ER+ 

cell lines ADAM12 and SEPT6 were immediately dismissed from further 

investigation due to the very low log2 intensity values and absent detection calls 

indicative of a lack of expression 
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6.2.3 Ontological investigation of the genes to determine their 

potential involvement in the anti-tumour -response mechanism 

An ontological investigation was undertaken on the 9 remaining genes to determine 

if they had been associated with: 

 Breast cancer or any other cancer type; 

 Known or potential adverse function (e.g. tumour growth or progression); 

 Known or potential tumour suppressive function  

The results of the ontological investigations are accumulated in Tables 20 to 28. 

Pubmed and Scopus were used throughout using the gene name/acronym, 

together with selected keywords/phrases which included breast cancer, cancer, 

oncogene, proliferation, growth, metastasis, Faslodex, hormonal or endocrine 

therapy, survival, growth inhibition, tumour suppressor, apoptosis. Gene acronyms 

highlighted in red were induced by Faslodex in T47D cells and those in green were 

suppressed. 

Table 20: Summary of published reports investigating the role of DCN in breast cancer 

disease as well as other cancers. 

Gene name/acronym Decorin: DCN 

Function The protein encoded by this gene is a small cellular or 

pericellular matrix proteoglycan that is closely related in 

structure to biglycan protein. This protein is a component of 

connective tissue, binds to type I collagen fibrils, and plays a role 

in matrix assembly. It contains one attached glycosaminoglycan 

chain. This protein is capable of suppressing the growth of 

various tumour cell lines (reviewed in Bi et al., 2013).  

Associations with 

breast cancer 

While it can be expressed by tumour and stromal cells (Oda et 

al., 2012; Soria-Valles et al., 2013), decorin is primarily found in 

the ECM. It  has been shown to bind and inhibit a number of 

growth factors  such as TGFβ1 and a number of RTKs found on 

tumour cells known to be involved oncogenic signalling such as 

EGFR, IGF1R and MET (reviewed in Iozzo et al., 2011), leading to 
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suppression of tumour growth, migration and angiogenesis 

(Goldoni et al., 2008a). More recently, decorin has been shown 

to influence inflammatory responses in the tumour stroma via 

interaction with Toll-like receptors, again functioning to prevent 

tumour progression (Merline et al., 2011). 

 

Reduced decorin levels in the tumour stroma have been 

described as a poor prognostic indicator for invasive breast 

cancer (Troup et al., 2003). Adenovirus gene transfer of decorin 

has been shown to prevent the growth of tumour xenografts 

from a number of malignancies including breast (Reed et al., 

2005). Goldoni et al., have also demonstrated that exogenous 

decorin treatment in the MTLn3 (a rat mammary 

adenocarcinoma cell lines) was able to growth inhibit the cells, 

prevent anchorage-independent growth and reduce cell motility 

thus hindering their invasive capacity and importantly inducing 

significant apoptosis. They also assessed the effects of decorin 

treatment in a murine model of orthotopic breast carcinoma 

where it was able to prevent metastasis to the lungs possibly 

through the inhibition of EGFR, ERBB2 and Met (Goldoni et al., 

2008b). 

 

DCN has been reported to be up-regulated in patients treated 

with neoadjuvant letrozole and included in a gene signature that 

predicted letrozole response (Makay et al., 2007; Miller et al., 

2009) suggesting a possible role in the mechanism of AI 

response. 

 

Reduced expression of decorin in the stroma surrounding 

invasive breast cancers or ductal carcinoma in situ was 

associated with more aggressive disease, thus decorin 

expression levels could relate to prognosis and malignant 

potential of a tumour (Oda et al., 2012). 
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Decorin has also been linked to the suppression of angiogenesis 

in a malignant setting. Treatment of MDA-MB-231 cells with 

decorin led to the suppression of HIF-1α and VEGFA, thought to 

be mediated by the ability of decorin to antagonise Met and thus 

downstream β-catenin signalling. Also, decorin treatment up-

regulated an anti-angiogenic factors TIMP-3 and down-regulated 

two pro-angiogenic factors MMP-9 and MMP-2 (Neill et al., 

2012). 

However, there is one study where proteomic analysis 

established an association between increased decorin expression 

and disease progression; lymph node metastasis, increased 

number of positive lymph nodes and worse overall survival 

(Cawthorn et al., 2012).  

Associations with other 

cancers 

Decorin levels are significantly reduced in colorectal cancer in 

keeping with a tumour suppressive function (Bi et al., 2012). 

Forced expression of decorin results in suppression of growth 

and progression (Santra et al., 1995). Loss of E-cadherin has been 

shown to promote disease progression via encouraging EMT 

(Schmalhofer et al., 2009) and Bi et al., have shown that decorin 

interacts with E-cadherin, stabilising the protein to attenuate 

colorectal tumour growth and migration in vitro and in vivo (Bi et 

al., 2012). 

 

Decorin can inhibit the growth of ovarian cancer cells via 

upregulation of the cyclin-dependent kinase inhibitor p21. 

Decorin promoted a synergistic anti-tumour effect in these cells 

when treated in combination with carboplatin (Nash et al., 

1999). 

 

The ability of decorin to inhibit TGFβ1 was found to enhance the 

in vivo immune response (increased T-cells) to glioma cells with 

tumour formation suppressed in vivo (Stander et al., 1998). 

 

Tralhao et al., investigated the potential of decorin as a anti-
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cancer therapy using adenovirus-mediated decorin gene transfer 

in nude mice. They found that decorin significantly reduced 

tumour volume and also that decorin could function in an 

autocrine and paracrine manner to prevent inhibit tumour 

growth at secondary sites. Importantly, they observed that the 

effects of decorin were selective to cancer cells and that 

evidence of apoptosis or growth inhibition was not observed in 

normal cells such as hepatocytes or endothelial cells (Tralhao et 

al., 2003). 

 

In hepatocarcinogenesis, decorin was found to bind to PDGF 

preventing its binding to PDGFRα. The PDGF receptors are 

known to have crucial roles in the development and 

maintenance of liver tumours and receptor levels can be used as 

prognostic markers. Thus inhibition of PDGF signalling has been 

reported to be tumour suppressive in liver cancer (Baghy et al., 

2013). 

 

Table 21: Summary of published reports investigating the role of TXNIP in breast cancer 

disease as well as other cancers. 

Gene name/acronym Thioredoxin-interacting protein: TXNIP 

Function TXNIP (thioredoxin interacting protein, also known as Vitamin D3 

up-regulated protein 1, VDUP-1; thioredoxin binding protein 2, 

TBP-2), is a key modulator of the redox system. It binds to the 

active cysteine residue of thioredoxin (TRX) and inhibits its 

antioxidative function (Cheng et al., 2004). It can also function 

independently of TRX-binding and function to inhibit cell growth 

via arrestin domain-mediated suppression of glucose uptake and 

metabolic reprogramming (Elgort et al., 2010)  

Associations with 

breast cancer 

Increased expression of TXNIP in breast cancer patients with 

lymph-node negative disease was associated with an increased 

metastasis-free interval (Zhou et al., 2012).  
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Butler et al., demonstrated that expression of TXNIP in  

MCF-7 cells with metastatic capability could force the cells into 

senescence with parallel increased production of reactive oxygen 

species and oxidative stress. In agreement with suggestions of 

TXNIP being a potential tumour suppressor gene in breast 

cancer, in a small study of 9 patients, TXNIP expression was 

reduced in cancer tissue compared to normal matched controls 

(Butler et al., 2002). 

 

Endocrine therapy has been shown to be capable of producing 

ROS exerting ROS-stress in cancer cells which can lead to the 

disruption of redox signalling. In this pro-oxidant state, there is 

an increase in the oxidised form of thioredoxin and high levels of 

oxidised thioredoxin has been speculated to be associated with 

anti-hormone resistance (Penney et al., 2013). As TXNIP inhibits 

thioredoxin, it is essentially preventing one mechanism by which 

drug resistance could be developed. 

Associations with other 

cancers 

Goldberg et al identified an inverse correlation between TXNIP 

expression and metastatic potential in melanoma cancer cell 

lines (Goldberg et al., 2003). 

 

In prostate and bladder cancer cell lines, TXNIP expression was 

further reduced in cancer cells compared to normal, potentially 

indicative of TXNIP being a tumour suppressor (Butler et al., 

2002).  

 

In vivo, overexpression of TXNIP has been shown to halt disease 

progression; reduced tumour growth and prevention of 

metastasis while TXNIP knockout increased the incidence of 

hepatocellular carcinoma (Sheth et al., 2006). 
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Table 22: Summary of published reports investigating the role of TGFB2 in breast cancer 

disease as well as other cancers. 

Gene name/acronym Transforming growth factor beta-2: TGFB2 

Function This gene encodes a member of the transforming growth factor 

beta (TGFB) family of cytokines, which are multifunctional 

peptides that regulate proliferation, differentiation, adhesion, 

migration, and other functions in many cell types by transducing 

their signal through combinations of transmembrane type I and 

type II receptors (TGFBR1 and TGFBR2) and their downstream 

effectors, the SMAD proteins (Vilar et al., 2006) 

Associations with 

breast cancer 

TGFβ signalling is somewhat of a paradox in breast cancer. In 

early-stage disease, TGFβ signalling is thought to be growth 

inhibitory, while in established disease it has been shown to 

promote progression (Muraoka-Cook et al., 2005). Several 

studies in late-stage disease have correlated TGFβ signalling with 

breast cancer invasiveness, progression and metastasis (Walker 

et al., 1992; Ivanovic et al., 2003; Walker et al., 1994). Inhibition 

of TGFβ signalling in this setting can successfully prevent 

metastasis (Muraoka et al., 2002). 

 

Beisner et al have shown that an insertion polymorphism into 

the TGFβ2 promoter enhances the transcription of TGFβ2 and is 

potentially linked to metastasis of the primary tumour to the 

lymph nodes (Beisner et al., 2006). 

 

Tamoxifen and Faslodex therapy induces TGFβ2 secretion. This 

induction of TGFB2 expression has been shown to be predictive 

of the antioestrogen activity of tamoxifen (Buck et al., 2008; 

Gomes et al., 2011). 

Associations with other 

cancers 

A vaccine targeting TGFβ2 has shown to have significant activity 

in lung cancer by enhancing the immune system (Dasanu et al., 

2012). 

 



187 
 

Due to the role of TGFβ2 in cancer progression and metastasis, a 

number of clinical trials are looking at the activity of TGFβ2 

vaccines in a number of cancer settings, including advanced 

pancreatic cancer, metastatic melanoma and metastatic colon 

cancer (Jaschinski et al., 2011) 

 

Table 23: Summary of published reports investigating the role of CASP1 in breast cancer 

disease as well as other cancers. 

Gene name/acronym Caspase 1: CASP1 

Function This gene encodes a protein which is a member of the caspase 

family. Caspase-1 is an initiator caspase that cleaves inactive 

prointerleukin 1β to generate the active proinflammatory 

cytokine interleukin 1β and has been associated with inducing 

apoptosis (Thornberry et al., 2001). 

Associations with 

breast cancer 

The transcription factor IRF-1 is a potential tumour suppressor 

gene which is lost in several cancers including breast (Willman et 

al., 1996; Nozawa et al., 1996; Doherty et al., 2001). Its tumour 

suppressive functions are due to its ability to regulate apoptosis 

(Tanaka et al., 1994) via activation of caspase-1 (Tamura et al., 

1995), caspase-7 (Sanceau et al., 2000), caspase-8 (Suk et al., 

2001) and FAS ligand (Chow et al., 2000).  

 

Expression of IRF-1 in breast cancer cells has been shown to be 

growth inhibitory in vitro and in vivo and these functions are 

mediated by caspase activation (Bouker et al., 2005). This 

observation was taken further by Ning et al who reported that 

expression of IRF-1 increased responsiveness to antioestrogens 

and in the Faslodex-resistant setting low dose of IFNγ, a cytokine 

that induces the expression of IRF-1 is sufficient to overcome 

Faslodex-resistance and enhances anti-Oestrogen induced 

apoptosis (Ning et al., 2010). IRF-1 has been shown to signal to 

apoptosis through a number of components including caspase 1 

(Tamura et al., 1995). 
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Associations with other 

cancers 

The NLRP3 inflammasome is a protein complex that actiates 

caspase-1 leading to the secretion of pro-inflammatory cytokines 

such as IL-1β, IL-18 and IL-33. It has been shown by Aymeric et 

al., that the NLRP3 inflammasome is critical for the 

immunogenicity of cell death triggered by anthracyclines, 

oxaloplatin, or radiotherapy (Aymeric et al., 2010). 

 

Functional TGFβ1 signalling in human prostate cancer cells 

resulted in the activation of the apoptosis pathways leading to 

growth suppression. It was observed that the TGFβ1 pathway 

was inducing apoptosis via a caspase- 1 mediated pathway, 

involving induction of caspase-1 with a parallel down-regulation 

of bcl-2 and up-regulation of bax proteins (Guo et al., 1999). 

 

Table 24: Summary of published reports investigating the role of PTGER3 in breast cancer 

disease as well as other cancers. 

Gene name/acronym Prostaglandin E receptor 3: PTGER3 

Function The protein encoded by this gene is a member of the G-protein 

coupled receptor family. This protein is one of four receptors 

identified for prostaglandin E2 (PGE2). This receptor may have 

many biological functions, which involve digestion, nervous 

system, kidney reabsorption, and uterine contraction activities 

(Hatae et al., 2002). 

Associations with 

breast cancer 

No direct associations with breast cancer but PTGER3 has been 

shown to be involved in stages of tumour progression (see 

below). 

Associations with other 

cancers 

PGE2-stimulated PTGER3/4 signalling has a prominent role in 

tumour stromal formation and tumour growth. Such signalling at 

stromal fibroblasts has been observed to induce CXCL12 in the 

fibroblasts enhancing CXCR4-CXCL12 signalling and thus 

encouraging the stroma formation. Targeting of PTGER3/4 or 

CXCR4 have been suggested to possibly prevent tumour 

development (Katoh et al., 2010). 
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PTGER3 expression in bone-marrow derived stromal cells has 

been linked to tumour-associated angiogenesis. Knockdown of 

PTGER3 within these cells led to the inhibition of such 

angiogenesis via reduction of VEGF in the tumour stroma and a 

reduction in the recruitment VEGFR1 and VEGFR2 positive cells 

for the bone marrow which aid tumour angiogenesis (Ogawa et 

al., 2009). 

 

PTGER3 signalling has also been observed to initiate tumour 

invasion and metastasis in Lewis lung carcinoma cells via the 

upregulation of MMP-9 (Amano et al., 2009). 

 

Increased amounts of IL-8 are produced by airway epithelial 

cancer cells initiating a pro-tumour response. Activation of EGFR 

by TGF-α has been shown to promote this IL-8 production. Kim et 

al., have demonstrated a positive feedback loop between 

COX2/PGE2/PTGER3 receptor-dependent EGFR activation  

leading to the aberrant IL8 production observed in these cancer 

cells (Kim et al., 2011) 

 

Table 25: Summary of published reports investigating the role of IL6ST in breast cancer 

disease as well as other cancers. 

Gene name/acronym Interleukin 6 signal transducer (gp130, oncostatin M receptor): 

IL6ST/GP130 

Function Signal-transducing molecule. The receptor systems for IL6, LIF, 

OSM, CNTF, IL11, CTF1 and BSF3 can utilize IL6ST for initiating 

signal transmission. Binds to IL6/IL6R (alpha chain) complex, 

resulting in the formation of high-affinity IL6 binding sites, and 

transduces the signal (Waetzig et al., 2012). 

Associations with 

breast cancer 

Following ligand binding, IL6ST supports the activation of the 

RTKs JAK1, JAK2 and Tyk2 for initiation of signalling (Taga et al., 

1997). JAK activation initiates a number of downstream growth-
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related signalling pathways including PI3K and MAPK. 

 

STAT3 is also a target of IL6ST; STAT3 becomes phosphorylated, 

dimerises and translocates to the nucleus, inducing transcription 

of a number of genes involved in growth, differentiation and cell 

cycle (Hirano et al., 2000).  

 

STAT3 is an oncogene, found to be constitutively active in many 

tumours including breast where it is a key mediator of 

malignancy (Bromberg, 2002). IL6ST is expressed in most breast 

cancer cell lines and most primary tumours (Douglas et al., 1997; 

Karczewska et al., 2000). 

 

Inhibition of IL6ST in breast cancer cells in vitro and in vivo led to 

growth inhibition suggesting IL6ST could be a potential novel 

target for breast cancer (Selander et al., 2004) 

Associations with other 

cancers 

Inhibition of IL6ST has also been seen to be growth inhibitory in 

colorectal cancer (Waldner et al., 2012). Chronic STAT3 

activation is observed in most gastric cancers and inhibtion of 

STAT3 signalling via IL6ST and/or EGFR inhibition could be 

potentially therapeutic (Giraud et al., 2012) 

 

Table 26: Summary of published reports investigating the role of SKAP2 in breast cancer 

disease as well as other cancers. 

Gene name/acronym Src kinase associated phosphoprotein 2: SKAP2 

Function The protein encoded by this gene is closely affiliated with the src 

family kinases (SFKs) and is an adaptor protein that may be 

involved in such signalling. Src family kinases (including Fyn and 

Lyn) have been found to have a high homology to src kinase , but 

no direct interaction with src kinase signalling has been reported 

(Wheeler et al., 2009a). 

Associations with 

breast cancer 

No associations with breast cancer. 

However, a number of the SFKs have been associated with 
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cancer progression and the src inhibitor dasatanib also inhibits 

this family  (due to the high homology with src) so potentially the 

clinical activity of dasatanib may be due to SFK signalling 

inhibition (Wheeler et al., 2009b) 

Associations with other 

cancers 

SKAP2 has been observed to be over expressed in pancreatic 

intraepithelial neoplasia (Buchholz et al., 2005). Further work 

also displayed over-expression in pancreatic ductal carcinoma via 

a genetic gain of the gene. The authors predict that this genetic 

gain leading to deregulation of SKAP2 is likely to be involved in 

the development of this cancer (Harada et al., 2008).  

 

SKAP2 has a an SH3 domain allowing the binding of focal 

adhesion protein RAFTK suggesting that its likely to modulate the 

motility and invasiveness of pancreatic ductal carcinoma cells 

(McLean et al., 2005). 

 

SKAP2 was found to inhibit actin polymerisation and by 

modulating actin assembly reduced migration and proliferation 

of a glioblastoma cell line (Shimamura et al., 2012). 

 

Table 27: Summary of published reports investigating the role of DUSP4 in breast cancer 

disease as well as other cancers. 

Gene name/acronym Dual specificity phosphatase 4: DUSP4 

Function DUSP4 is a member of the dual specificity protein phosphatase 

subfamily. These phosphatases inactivate their target kinases by 

dephosphorylating phosphotyrosine residues. They negatively 

regulate members the MAPK superfamily  which are associated 

with cellular proliferation and differentiation. DUSP4 inactivates 

ERK1, ERK2 and JNK, is expressed in a variety of tissues, and is 

localized in the nucleus (Kevse et al., 2008). 

Associations with 

breast cancer 

Reduced expression of DUSP4 has recently been identified as a 

mediator of resistance to chemotherapy and a possible tumour 

suppressor in basal- like breast cancers. Reduced DUSP4 
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expression was associated with activation of the Ras-ERK 

pathway that mediated resistance to neoadjuvant chemotherapy 

(Balko et al., 2012). 

 

DUSP4 has been reported to be lost in early-onset and high-

grade disease mimicking the behaviour of a tumour suppressor 

gene (Armes et al., 2004). 

Associations with other 

cancers 

The DUSP4 promoter has been found hypermethylated  

astrocytic gliomas and glioma cell lines and forced expression of 

DUSP4 inhibited the growth of glioma cells suggesting tumour 

suppressive functions (Waha et al., 2010). 

 

However, DUSP4 has been observed to be upregulated in 

pancreatic cell lines (Yip-Schneider et al., 2001), rectal 

adenocarcinomas (Gaedcke et al., 2010) and melanoma cell lines 

(Teutschbein et al., 2010) suggesting that DUSP4 does not 

behave as a tumour suppressor in all instances. DUSP4 

overexpression has also been shown to encourage cell 

proliferation in colorectal cancer cell line where it is an 

important regulator of cell growth (Gröschl et al., 2013). 

 

Table 28: Summary of published reports investigating the role of ID4 in breast cancer 

disease as well as other cancers. 

Gene name/acronym Inhibitor of DNA binding 4: ID4 

Function Id proteins are dominant negative inhibitors of DNA binding. 

They contain functional HLH dimerisation motifs, but lack the 

DNA-binding basic region found in the basic HLH (bHLH) proteins, 

thereby inhibiting DNA binding of bHLH transcription factors thus 

regulating transcription of bHLH-regulated genes (Benzera et al., 

1990). 

Associations with 

breast cancer 

ID4 has been found to be highly expressed in triple-negative 

breast cancers. It blocks BRCA1 gene transcription in triple-

negative cell lines and down-regulates BRCA1 in vivo, thus 
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inhibiting BRCA-1 mediated signalling (Wen et al., 2012). 

 

ID4 has been found to be expressed in normal mammary tissue 

but suppressed in ER+ breast cancer. Further investigations have 

found ID4 to be tumour suppressor gene hypermethylated in 

breast cancer and thus silenced during disease progression and 

its methylation status has been suggested as prognostic marker 

(Noetzel et al., 2008) 

Associations with other 

cancers 

In high grade ovarian cancer ID4 has been reported to be a 

contributory oncogene and knockdown of the protein in mouse 

models suppressed tumour growth and improved survival (Ren 

et al., 2012). 

 

In prostate cancer ID4 has been described as a tumour 

suppressor; expressed in normal healthy tissue but silence by 

hypermethylation following onset of carcinogensis (Sharma et 

al., 2012). 

 

ID4 has also been reported to promote the malignant 

transformation of astrocytes leading to the formation of 

glioblastomas via de-regulation of the cell cycle pathway (Jeon et 

al., 2008) 

 

Based on the above ontology, DUSP4 and ID4 were not taken forward for further 

analysis since both showed tumour suppressive actions and so their down-

regulation by 10 day Faslodex treatment in the T47D cell line was counterintuitive 

in relation to its improved response.   

DCN, TXNIP, TGFB2, and CASP1, whilst similarly having some tumour suppressive 

actions, are induced by Faslodex treatment and could thus be part of the complete 

response mechanism to Faslodex in this cell line. These genes were thus taken 

forward for further analysis. 
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SKAP2, PTGER3 and IL6ST were similarly taken forward for further analysis since 

their ontology suggests a role in disease progression and signalling. As such, their 

suppression by Faslodex may contribute to the complete response exerted by this 

drug in the T47D cell line. 

6.2.4 Expression of the genes potentially involved in the T47D 

complete response in a Faslodex-resistant MCF-7 model. 

To further clarify any involvement of changes in DCN, TXNIP, TGFB2, CASP1, SKAP2, 

PTGER3 and IL6ST in the initial Faslodex response, the expression of these genes 

were analysed using a microarray dataset generated from the MCF-7-derived 

Faslodex-resistant cell line versus its hormone responsive control (Figures 70-77). 

The rational was that if the Faslodex-promoted gene changes observed in the T47D 

cell line were also observed in the MCF-7 acquired Faslodex-resistance setting, then 

this might undermine any potential involvement in the T47D response mechanism. 
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Figure 70: Heatmap generated by GeneSifter displaying the change in expression of these 

potential modulators of Faslodex response in MCF-7 Faslodex-resistance versus oestradiol-

treated control using the jetset gene probes.6.2.4.1 Genes induced by 10 day Faslodex-

treatment in the T47D cell line 
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Gene 
Acronym 

Fold change 

TXNIP 1.11 

 

Figure 71: (A) Log2 expression intensity plot displaying the normalised (mean of triplicate 

samples) gene expression of TXNIP in an MCF-7 derived Faslodex-resistant cell line 

(Faslodex-R) versus oestradiol-treated control and (B) table displaying the fold change in 

gene expression 

 

Gene 
Acronym 

Fold change 

DCN 1.01 

 

Figure 72: (A) Log2 expression intensity plot displaying the normalised (mean of triplicate 

samples) gene expression of DCN in an MCF-7 derived Faslodex-resistant cell line (Faslodex-

R) versus oestradiol-treated control and (B) table displaying the fold change in gene 

expression. 

O
es

tr
ad

io
l 

Fa
sl

o
d

ex
-R

 

O
es

tr
ad

io
l 

Fa
sl

o
d

ex
-R

 

B 

A 

A 

B 



197 
 

 

Gene 
Acronym 

Fold change 

CASP1 1.90 

 

Figure 73: (A) Log2 expression intensity plot displaying the normalised (mean of triplicate 

samples) gene expression of CASP1 in an MCF-7 derived Faslodex-resistant cell line 

(Faslodex-R) versus oestradiol-treated control and (B) table displaying the fold change in 

gene expression. 

 

Gene 
Acronym 

Fold change 

TGFB2 3.07 

 

Figure 74: (A) Log2 expression intensity plot displaying the normalised (mean of triplicate 

samples) gene expression of TGFB2 in an MCF-7 derived Faslodex-resistant cell line 

(Faslodex-R) versus oestradiol-treated control and (B) table displaying the fold change in 

gene expression. 
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6.2.4.2 Genes suppressed by 10 day Faslodex-treatment in the T47D cell line 

 

 

Gene 
Acronym 

Fold change 

PTGER3 1.63 

 

Figure 75: (A) Log2 expression intensity plot displaying the normalised (mean of triplicate 

samples) gene expression of PTGER3 in an MCF-7 derived Faslodex-resistant cell 

line(Faslodex-R) versus oestradiol-treated control and (B) table displaying the fold change 

in gene expression. 

 

Gene 
Acronym 

Fold change 

SKAP2 1.98 

 

Figure 76: (A) Log2 expression intensity plot displaying the normalised (mean of triplicate 

samples) gene expression of SKAP2 in an MCF-7 derived Faslodex-resistant cell line 

(Faslodex-R) versus oestradiol-treated control and (B) table displaying the fold change in 

gene expression. 
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Gene 
Acronym 

Fold change 

IL6ST 2.37 

 

Figure 77: (A) Log2 expression intensity plot displaying the normalised (mean of triplicate 

samples) gene expression of IL6ST in an MCF-7 derived Faslodex-resistant cell line 

(Faslodex-R) versus oestradiol-treated control and (B) table displaying the fold change in 

gene expression. 

 

DCN, CASP1, TXNIP, TGFB2 were thus  all induced by short term Faslodex treatment 

in the T47D cell line and in contrast either remained at basal level or were 

suppressed in MCF-7 cells that acquired Faslodex-resistance (Figures 71-74), further 

suggesting a potential role for these genes in the complete response mechanism 

following their Faslodex induction. SKAP2 and IL6ST were suppressed in the T47D 

cell line by treatment but up-regulated in the resistant setting (Figures 76 and 77), 

suggesting their suppression by Faslodex in the T47D cell line may contribute to the 

anti-tumour response. PTGER3 was suppressed in the T47D cell line by Faslodex but 

there was also some evidence for its decline/absence of expression in resistance 

(Figure 75), suggesting suppression of this gene is unlikely to contribute to the 

complete response observed in the T47D cell line. 

6.2.5 Establishing potential clinical relevance of the genes of interest 

in the context of endocrine outcome  

Using the online tools KMPlotter (and for promising genes GOBO), the relationship 

was explored between inherent tumour gene expression levels of DCN, TXNIP, 
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TGFB2, CASP1, SKAP2, IL6ST, PTGER3 and duration of RFS to tamoxifen in ER+ 

breast cancer patients. 

6.2.5.1 KMPLotter analysis of DCN, TXNIP, TGFB2 and CASP1 in tamoxifen treated 

breast cancer 

Use of KMPlotter (Figures 78 and 79) revealed that ER+ breast cancer patients 

expressing higher levels of DCN and TXNIP had a significantly improved duration of 

RFS following tamoxifen treatment (HR=0.66; 95% CI 0.47-0.91 p=0.011, Figure 78 

and HR=0.66 95% CI 0.48-0.92 p=0.013, Figure 79 respectively). TGFB2 and CASP1 

failed to display significant associations with relapse free survival in this cohort of 

tamoxifen-treated patients. 

 

Figure 78: Kaplan Meier survival curve generated by KMPlotter displaying the association 

between DCN gene expression and relapse free survival (RFS) in ER+ tamoxifen treated 

patients. This survival curve was generated using the jetset affymetrix gene probe for DCN 

and grouping patients by best fit cutpoint (as calculated by KMPlotter) (n=657). 
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Figure 79: Kaplan Meier survival curve generated by KMPlotter displaying the association 

between TXNIP gene expression and relapse free survival (RFS) in ER+ tamoxifen treated 

patients. This survival curve was generated using the jetset affymetrix gene probe for TXNIP 

grouping patients by best fit (as calculated by KMPlotter) (n=657). 

6.2.5.2 KMPlotter analysis of PTGER3, SKAP2 and IL6ST in tamoxifen treated 

breast cancer  

The survival curves from KMPlotter in Figures 80-82 revealed significant 

associations between higher PTGER3, SKAP2 and IL6ST gene expression and 

increased duration of RFS following tamoxifen treatment. These data were not 

consistent with the concept derived from the Faslodex treated T47D cells that their 

suppression by Faslodex in this model related to its superior response, or with their 

reported adverse gene ontology.  
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Figure 80: Kaplan Meier survival curve generated by KMPlotter displaying the association 

between PTGER3 gene expression andrelapse free survival (RFS) In ER+ tamoxifen treated 

patients. This survival curve was generated using the jetset affymetrix gene probe for 

PTGER3 grouping patients by best fit (as calculated by KMPlotter) (n=657). 

 

Figure 81: Kaplan Meier survival curve generated by KMPlotter displaying the association 

between SKAP2 gene expression and relapse free survival (RFS) in ER+ breast cancer 

patients. This survival curve was generated using the jetset affymetrix gene probe for 

SKAP2 grouping patients by best fit (as calculated by KMPlotter) (n=657). 
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Figure 82: Kaplan Meier survival curve generated by KMPlotter displaying the association 

between IL6ST gene expression and relapse free survival (RFS) in ER+ tamoxifen treated 

patients. This survival curve was generated using the jetset affymetrix gene probe for IL6ST 

grouping patients by best fit (as calculated by KMPlotter) (n=657). 

 

6.2.5.3 GOBO analysis of DCN and TXNIP in tamoxifen treated patients 

Although GOBO used a smaller patient dataset than KMPlotter (n=176), it could be 

used to further determine how the degree of expression of genes of interest 

associated with RFS following tamoxifen treatment. Firstly, the gene expression 

levels can be grouped into more than 2 groups so it can be determined if there is a 

graded relationship between gene expression and survival. Further, expression 

levels can be linked to molecular subtype and tumour grade. As seen in Figure 83, 

the significant association between elevated DCN gene expression and improved 

response was retained, and this relationship was weakly graded (i.e. the more DCN 

expression, the better the RFS).  
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Figure 83: Kaplan Meier survival curve generated by GOBO displaying RFS according to high 

(blue), intermediate (red) or low (grey) DCN gene expression  data used was from ER+ 

tamoxifen treated breast cancer patients (n=176). 

 

In contrast to DCN, TXNIP failed to retain a significant relationship with RFS in the 

smaller GOBO dataset (not illustrated). However, higher DCN and TXNIP expression 

levels were significantly associated with normal-like and luminal A tumour 

molecular subtypes across the breast cancer database, subtypes reported to have 

improved prognosis, while the log2 expression level was found to be lower in 

luminal B subtype tumours which are reported to be a more aggressive ER+ subtype 

(Figure 84). 
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Figure 84: Association between expression of DCN (A) (p=<0.0001) and TXNIP (B) 

(p=<0.0001) with breast cancer molecular subtype. 

A significant association was also revealed between elevated expression of DCN and 

TXNIP and lower histological grade of tumours in ER+ tamoxifen treated patients 

(Figure 85).  

 

Figure 85: Association between expression of DCN (A) (P=0.01) and TXNIP (B) (P=0.04) and 

grade in tumours from ER+ breast cancer patients who received tamoxifen treatment 

 

Finally, DCN and TXNIP were analysed using KMPlotter in a large cohort of 

untreated ER+ breast cancer patients versus RFS, where in both instances their 

increased expression significantly associated with improved patient outcome 

(Figure 86).  
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Figure 86: Kaplan Meier survival curves generated by KMPlotter displaying the association 

between (A) DCN (B) TXNIP gene expression and relapse free survival (RFS) In ER+ 

systemically untreated patients. The survival curves were generated using the jetset 

affymetrix gene probes for DCN and TXNIP grouping patients by best fit (as calculated by 

KMPlotter) (n=785). 

 

6.2.6 PCR verification of genes hypothesised to be involved in the 

complete response mechanism exerted by Faslodex in the T47D cell 

line 

Considering the various results of the profile interrogation in the 4 models and in 

the faslodex resistant MCF7 cells, ontological examination, and clinical examination 

using KMPlotter, the most promising genes (all Faslodex induced in T47D cells on 

the arrays), DCN, TXNIP, TGFB2 and CASP1, were taken forward for PCR verification.  
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6.2.6.1 DCN 

PCR confirmed that DCN was significantly up-regulated only in the T47D cell line on 

exposure to Faslodex, with minimal expression observed in the remaining three cell 

models pre and post Faslodex treatment (Figure 87). As such the expression profile 

mirrored the log2 intensity plot generated from the microarray data (Figure 60). 

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

DCN 1.01 1.17 1.1 4.8 

Figure 87: Representative PCR image (A) with the corresponding densitometry graph (B), 

semi-quantitatively representing the data (CON-Control; FAS-Faslodex). The results are 

expressed as means ± SEM of three separate experiments. **P < 0.01 versus control (C) 

Table displaying the fold change of gene expression following Faslodex treatment; 

highlighted in red are Faslodex induced changes  
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6.2.6.2 TXNIP 

As seen in Figure 88, the basal expression of TXNIP was elevated in the MDA-MB-

361 and MCF-7 cell lines compared to the T47D cell line (Figure 88). Following 10 

day Faslodex treatment, the expression of TXNIP was significantly induced in both 

the BT474 and T47D cell lines.  This PCR profile mirrored the TXNIP log2 intensity 

plot generated from the microarray data for T47D cells, but was discordant for the 

BT474 cell line (Figure 59).  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

TXNIP 2.4 1.3 1.01 1.9 

 

Figure 88: Representative PCR image (A) with the corresponding densitometry graph (B), 

quantitatively representing the data (CON-Control; FAS-Faslodex). The results are 

expressed as means ± SEM of three separate experiments. *P < 0.05 versus control, **P < 

0.01 versus control (C) Table displaying the fold change of gene expression following 

Faslodex treatment 
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6.2.6.3 TGFB2 

Basal expression of TGFB2 was very low in the HER2+ cell lines versus the HER2- 

cells (Figure 89). Faslodex treatment led to a substantial increase in TGFB2 

expression in the T47D cells that was not seen in the HER2+ and MCF-7 cells. This 

profile mirrored the TGFB2 log2 intensity plot generated from the microarray data 

(Figure 62).  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

TGFB2 1.01 1.15 1.4 2.3 

Figure 89: Representative PCR image (A) with the corresponding densitometry graph (B), 

quantitatively representing the data (CON-Control; FAS-Faslodex). The results are 

expressed as means ± SEM of three separate experiments. *P < 0.05 versus control (C) 

Table displaying the fold change of gene expression following Faslodex treatment.  
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6.2.6.4 CASP1 

CASP1 was significantly up-regulated by Faslodex in both HER2- cell lines (Figure 90) 

although the induction was greatest in the T47D cell line. These data largely 

mirrored the CASP1 log2 intensity plots for the microarrays (Figure 61).  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

CASP1 1.1 1.1 1.8 2.3 

Figure 90: Representative PCR image (A) with the corresponding densitometry graph (B), 

quantitatively representing the data (CON-Control; FAS-Faslodex). The results are 

expressed as means ± SEM of three separate experiments. *P < 0.05 versus control, **P < 

0.01 versus control (C) Table displaying the fold change of gene expression following 

Faslodex treatment 

 

PCR verification thus confirmed Faslodex-promoted induction of all 4 genes in T47D 

cells. While DCN and TGFB2 were induced in the T47D cell line only, TXNIP and 

CASP1 were found to also be significantly induced in one of the other ER+ cell lines 
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following treatment. Table 29 compares the results of the microarray data with the 

results from the PCR validation. 

Table 29: Comparison of Faslodex-deregulation of genes of interest from the 

microarray data and PCR results (I-Induced; S-Suppressed; ~ limited/no change) 

Gene 
Name 

Microarray (FAS de-regulation) PCR (FAS de-regulation) 
BT474 MDA-

361 
MCF-7 T47D BT474 MDA-

361 
MCF-7 T47D 

DCN ~ ~ ~ I ~ ~ ~ I 

TXNIP ~ ~ ~ I I S ~ I 

TGFB2 ~ ~ ~ I ~ ~ ~ I 

CASP1 ~ ~ ~ I ~ ~ I I 

 

6.3 Discussion 

In the current study, the T47D cell line was found through continuous culture 

studies to be a model of Faslodex complete response. HCA diagrams of genes de-

regulated by Faslodex in the 4 ER+ cell lines also revealed that the T47D cell line 

failed to cluster with its ER+/HER2- counterpart the MCF-7 cell line (or with the ER+ 

HER2+ lines) suggestive of unique gene changes that may impact on intracellular 

signalling pathways to ultimately prevent emergence of resistant growth in the 

presence of Faslodex. By carrying out a filtering process using the microarray data 

generated from the 4 ER+ cell lines treated for  10 days with Faslodex, particular 

genes were identified that were uniquely de-regulated by this antihormone in the 

T47D cell line and thus possibly contributory towards its eventual complete 

response. 11 genes were initially identified on the microarrays as being de-

regulated by Faslodex by at least 1.5 fold in the T47D cell line only and the changes 

in these genes were hypothesised to include induction of tumour suppressive 

elements and down-regulation of growth-promoting genes. A further filtering 

procedure was then undertaken to identify genes with the strongest profiles, logical 

ontology in relation to the superior Faslodex response in T47D cells, and in some 

instances association with available clinical endocrine outcome using publically-

available tamoxifen treated breast cancer datasets before PCR verification.  4 genes 

were thus identified as possible contributors towards the Faslodex-promoted T47D 
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complete response; DCN, TGFB2, TXNIP and CASP1.                                                                                                                                                                                   

Currently, the only biological indicators of Faslodex impact in the clinic are the 

down-regulation of ER, ER-regulated genes such as PgR, and Ki67 and thus these are 

the key endpoints measured in antihormone clinical trials (Kuter et al., 2012; 

Robertson et al., 2013). The suppression of ER and PgR is indicative of the Faslodex 

mechanism of action targeting ER.  Ki67 is a marker of proliferation, and its superior 

inhibition has been demonstrated in neoadjuvant studies with 500mg Faslodex 

(Kuter et al., 2012) that also improved patient clinical response in the CONFIRM 

study (Di Leo et al., 2010). Research by the Dowsett laboratory has further shown 

that measurement of Ki67 following short-term endocrine treatment is predictive 

of RFS versus pre-treatment levels (Dowsett et al., 2007). However, the suppression 

of these factors reveals very little information regarding the key signalling elements 

determining anti-tumour responses, and it is important these are determined if the 

value of Faslodex is to be maximised in the clinic. Faslodex led to complete cell loss 

in the T47D model preventing development of resistance; this is of much interest 

not only because such an effect is desirable clinically, but also because it is widely 

known that anti-oestrogens, in general, fail to induce substantial cell death (Wilson 

et al., 1995). Their actions predominantly exert growth inhibition with only modest 

cell kill so that cells persist to support acquired resistance (Wilson et al., 1995). As 

such, mechanistic deciphering of how Faslodex induces such a superior effect in 

T47D cells could potentially be informative in developing treatments to improve 

Faslodex impact in the clinic and could provide Faslodex-deregulated biomarkers to 

help identify early an ER+ patient cohort who would subsequently gain substantial 

benefit from Faslodex therapy. In this regard, successful identification, filtering and 

prioritisation of genes uniquely deregulated in T47D cells through the project has 

considerable potential to yield potentially-interesting elements.  

Of the 11 genes initially identified as Faslodex deregulated, 5 were induced by the 

antihormone and 6 suppressed (Table 18). The log2 intensity plots for each of the 

genes were analysed using the jetset probes, as well as ensuring the multiple  

probes (Table 18) for each gene also showed the same change in expression and 

analysing the detection calls to determine if the change in expression was robust 
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and reliable. Following this stringent analysis ADAM12 and SEPT6 were dismissed 

from the investigation.  

Ontological investigations of the remaining 9 genes confirmed tumour suppressive 

functions for DCN, TGFB2, TXNIP and CASP1, (Tables 20-23) which were all induced 

by 10 day Faslodex treatment in the T47D cell line. In contrast, PTGER3, SKAP2 and 

IL6ST had all been previously associated with disease progression (Tables 24-25) 

and thus their suppression in the T47D cell line by Faslodex may also contribute to 

the anti-tumour response observed. ID4 and DUSP4 were dismissed from the 

investigation following ontological investigation as although both genes were 

reported to be tumour suppressor genes (Tables 27 and 28), they were depleted in 

the T47D cell line by Faslodex and are thus unlikely to contribute to the complete 

growth inhibitory response. It is interesting that although the T47D cell line exhibits 

sensitivity to Faslodex not achieved in the further ER+ breast cancer cell lines with 

respect to this cell line exhibiting a complete response to long-term Faslodex 

treatment while the remaining 3 line eventually acquired resistance, this 

antihormone can also suppress certain tumour suppressor genes, an event which 

may feasibly act to delay the onset of complete-response. The remaining 7 genes 

were subsequently analysed using online tools to determine if their intrinsic 

expression in ER+ breast cancers was associated with RFS following tamoxifen 

treatment. While clinical associations were counterintuitive for PTGER3, IL6ST and 

SKAP2 (Figures 80-82), increased inherent expression of DCN and TXNIP associated 

with an improved RFS (Figures 78 and 79) in keeping with the concept that their 

induction by Faslodex in T47D cells may serve to promote superior response and 

subvert development of resistance. DCN and TXNIP were also associated with 

normal/luminal A molecular phenotype and reduced tumour grade in ER+ disease 

(Figures 84 and 85), again in keeping with higher levels of these genes relating to 

improved prognosis. Although CASP1 and TGFB2 failed to demonstrate a significant 

association with RFS, their ontology and lack of (or decreased) expression in the 

acquired Faslodex resistant MCF-7 cells warranted their further pursuit alongside 

DCN and TXNIP where PCR verification confirmed induction of all 4 genes by 10 day 

Faslodex treatment in the T47D model (Figures 87-90). 
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It is feasible that Faslodex induction of CASP1, a member of the caspase family 

could potentially be involved in the anti-tumour response in T47D cells by aiding 

cells to commit to cell death following such antihormone treatment. Importantly, a 

similar mechanism has already been demonstrated with respect to caspase 1 

involvement in any tamoxifen-induced cell death (Bowie et al., 2004). In this latter 

study, CASP1 gene expression was found to be suppressed by E2 and thus 

tamoxifen treatment increased CASP1 expression and promoted apoptosis. 

However, it must be noted here that in the study by Bowie et al a high tamoxifen 

concentration was used of 1μM to in order to induce cell death. In the cell models 

used in the present study, CASP1 was induced by Faslodex in the T47D cell line, with 

more modest up-regulation in the MCF-7 model (Figure 90) and loss of expression 

in Faslodex resistant MCF-7 model (Figure 73).  It is possible that this up-regulation 

of CASP1 in the MCF-7 cell line during treatment contributes to the superior initial 

response observed in this cell line, while the larger induction in T47D cells 

ultimately contributes towards its better inhibitory effects (perhaps further 

increasing with more extended Faslodex exposure) and subverting resistance. While 

it remains unknown how caspase 1 increases in the T47D line to promote cell loss, it 

is possible that this may involve EGFR signalling in such cells. EGF is known to have 

the ability to aid cell survival and inhibit apoptosis in some cell types while inducing 

apoptosis in others (Armstrong et al., 1994; Brabyn et al., 1995). The latter is 

thought to be mediated by the activation of the STAT proteins by EGFR (Chin et al., 

1996), which can trigger apoptosis via activation of caspase 1 (Chin et al., 1997). It is 

possible that Faslodex treatment may result in the changes in EGFR signalling 

(which can be oestrogen-repressed and antihormone-induced; Yarden et al., 2001; 

McClelland et al., 2001; Gee et al., 2003) which in turn regulates CASP1 in the T47D 

cells to promote cell death. Further regulatory factors for CASP1 activity may 

comprise TGFB signalling (Guo et al., 1999), and also the tumour suppressor IRF1 

which interestingly has been reported to restore responsiveness to Faslodex 

resistant MCF7 cells (Ning et al., 2010). 

There is also rationale for the further 3 Faslodex-induced genes to be involved in 

the enhanced Faslodex response in T47D cells. TXNIP has been reported to be a 
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pro-apoptotic protein in cancer cells (Chen et al., 2008) and thus the subsequent 

complete-response observed in Faslodex-treated T47D cells may in some way be 

due to the induction of this protein. Further support for a function of TXNIP in the 

T47D complete response mechanism is its association with superior RFS and lower 

grade disease in ER+ patients who underwent tamoxifen-treatment (Figures 79, 

84B, 85B). In keeping with this, data from Cadenas et al., have shown that increased 

TXNIP expression is associated with an improved prognosis in breast cancer 

patients (Cadenas et al., 2010). TXNIP function may exert a complete response via 

its inhibitory action on thioredoxin. Anti-hormone treatment can lead to a pro-

oxidant state within cancer cells which is associated with increased levels of 

oxidised thioredoxin. This form of thioredoxin has been hypothesised to be involved 

in the onset of drug-resistance (Penney et al., 2013), thus the inhibition of 

thioredoxin by TXNIP could act to prevent a key survival signalling pathway. 

Although TXNIP was PCR verified as being induced in the T47D cell line by Faslodex, 

a significant induction was also observed in the BT474 cell line which was able to 

develop resistance (Figure 88). Further studies would be required to clarify this 

induction given the PCR discordance with the array data for BT474. However, it is 

possible that while induction of TXNIP promotes growth inhibition in the T47D cell 

line, such an effect is ultimately overridden in the BT474 cell line either by Faslodex 

induction of survival factors in this model or by its amplified HER2. Interestingly, 

Cadenas et al., has reported that transfection of the MCF-7 cell line with HER2 can 

lead to a downregulation of TXNIP (Cadenas et al., 2010). 

TGFB2, which was another gene induced only in the T47D cell line by Faslodex, has 

been previously associated with tamoxifen response, where the extent of induction 

of this protein by this antioestrogen has been shown to positively correlate with 

response (MacCallum et al., 1996). The data presented in the current study suggest 

TGFB2 induction by Faslodex in T47D cells could similarly equate with superior 

response to this further antihormone. PCR verification confirmed the significant 

induction of TGFB2 only in the T47D cell line by Faslodex, with inherent high levels 

observed in the MCF-7 cell line that were unchanged by treatment (Figure 89). This 

suggests that the significant degree of induction of TGFB2 could be an important 
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contributor to the complete response in the T47D cell line, while the inherently 

high levels in the MCF-7 cell line pre and post treatment may feasibly contribute to 

the substantial magnitude of initial response and its extended duration following 

long-term antihormone treatment (with evidence from the Faslodex resistant MCF-

7 cell line for TGFB2 decrease once resistance is established, Figure 74). 

The published findings with regards to DCN ontology (Table 20) and the successful 

PCR verification of its induction by Faslodex only in the T47D cell line (Figure 87) as 

well as its absence of expression in the MCF-7 Faslodex resistant (Figure 72) line 

fully support a role for decorin in the Faslodex complete response mechanism in 

T47D cells, and it is encouraging that it is also being explored as a potential anti-

cancer therapy (Tralhao et al., 2003). The survival curves in Figures 78 and 83 also 

highlight that any inherent increased expression of DCN in ER+ patients is 

associated with an improved RFS in patients who received tamoxifen therapy while 

Figures 84A and 85A show expression of DCN is elevated in molecular tumour 

subtypes with improved prognosis and also in ER+ patients with lower grade 

disease. Studies with more patients would allow multivariate analysis to determine 

the impact of molecular subtype/grade etc revealing the magnitude of decorin 

prognostic impact. However, the findings in total are supportive of the concept that 

decorin may have growth suppressive functions in breast cancer and could be 

integral in preventing emergence of Faslodex resistance in the complete responding 

T47D cells. Previous research into the signalling mechanisms underlying the onset 

and development of antihormonal resistance, primarily employing MCF-7-derived 

resistant cells, has invariably revealed the potential importance of the erbB family 

of growth factor receptor proteins (Gee et al., 2003; Knowlden et al., 2003). 

Interestingly, Santra et al., (2000) have shown that decorin not only binds to EGFR 

instigating a number of events that ultimately lead to growth suppression but that 

the proteoglycan can also reduce total HER2 levels as well as nearly abolishing 

levels of tyrosyl phosphorylation of HER2, erbB3 and erbB4. Decorin is thus 

essentially an endogenous pan-erbB inhibitor, where its ability to decrease levels of 

erbB2 reduces potent oncogenic intracellular signalling (as all erbB receptors 

preferentially heterodimerise with HER2) leading to an induction of the cyclin-
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dependent kinase inhibitor p21 and subsequent growth inhibition (Santra et al., 

2000). Any basal or antihormone-up-regulated erbB signalling would thus be 

inhibited following up-regulation of DCN by Faslodex in the T47D cell line. 

Moreover, it has also been reported that decorin can inhibit a number of further 

RTKs including IGF1R (Iozzo et al., 2011), MET (Goldoni et al., 2009) and PDGFRα 

(Baghy et al., 2013), all of which have been associated with proliferation, cell 

survival and breast cancer progression.  Decorin has also been reported to bind to 

key growth factors ligands of RTK’s (Border et al., 1992; Hildebrand et al., 1994). 

This interaction between decorin and growth factors in the ECM has been reported 

to result in formation of a growth factor reservoir where any degradation/cleavage 

of DCN results in an increase in growth factor bioavailability (Imai et al., 1997). An 

increase in the expression of DCN produced by the T47D cell line during Faslodex 

treatment may thus also feasibly prevent the action/availability of a number of 

growth factors (either secreted by the cells or present in the serum added to the 

culture medium), further limiting the activation of any potentially-compensatory 

signalling pathways and consequently leading to an enhanced growth inhibition and 

eventual cell kill. Since the potential mechanisms of decorin-induced growth 

inhibition/tumour suppressive functions are varied and may span multiple growth 

factor receptor pathways, its ontology is particularly compelling when considering a 

potential contribution to growth inhibition promoted by Faslodex. 

Based on the above, the project has successfully obtained evidence to implicate 

Faslodex-induction of DCN, TXNIP, TGFB2 and CASP1 as potential contributors in 

the complete response mechanism seen in T47D cells following such antihormone 

treatment. However, it remains important to try to address in clinical breast 

cancers whether Faslodex similarly alters expression of these genes and if these 

changes are paralleled by growth inhibitory effects. Moreover, induction at the 

mRNA was examined after 10 day treatment, while the complete-response in T47D 

was not observed until 8.5 weeks of Faslodex treatment and so it is possible that 

further alterations in one or more of these elements may occur over time and be 

necessary for the complete response, requiring longer-term profiling.  Ultimately, 

therefore further work must be carried out in this project in order to further 
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understand their involvement in the Faslodex response mechanism in order to 

clarify any potential either to provide new treatment approaches or as predictive 

biomarkers to maximise Faslodex response in breast cancer. 
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Chapter 7 

Identification of Faslodex-de-regulated genes potentially 

involved in the extended Faslodex response observed in both 

the MCF-7 and T47D HER2- cell lines. 

 

 

7.1 Introduction 

As previously discussed ER tumour positivity is a key biomarker in selecting systemic 

endocrine therapy for patients with both early and metastatic disease and its 

presence predicts response to anti-hormone therapy (Goldhirsch et al., 2006; 

Buzdar, 2001). The majority of ER+ tumours, approximately 86%, are HER2- 

(Osborne et al., 2011) and in comparison to HER2+ tumours are associated with an 

improved response to endocrine therapy (reviewed by De Laurentiis et al., 2005). 

However, despite an improved response to endocrine therapies a significant 

number of ER+/HER2- breast cancer patients’ acquire resistance to antihormones. 

Preclinical research has been carried out in an attempt to identify modulators of 

resistance in this disease setting due to the lack of appropriate treatments for this 

patient cohort following relapse after initial responses. There are many reports 

investigating the mechanisms of resistance to anti-hormone treatments 

(particularly for tamoxifen and oestrogen deprivation and primarily using acquired 

resistant MCF-7-derived cells) and consequently developing inhibitors to such 

signalling pathways in order to examine if these counteract the emergence of 

resistance or regain sensitivity to anti-hormone treatments (Moulder et al., 2001; 

Leary et al., 2010; DeGraffenried et al., 2004).  However, even though promising in 

vitro data has been obtained, the impact of such approaches (e.g. erbB blockade) 

has been extremely limited in the clinic in ER+/HER2- disease (reviewed Johnston et 

al., 2008). Interestingly, very little work has been carried out investigating the 

underlying mechanisms promoting Faslodex response. It is feasible that modulating 



220 
 

the signalling pathways potentially involved in this response could provide an 

alternative means whereby the timeframe of anti-hormone-induced growth 

inhibition could be further extended and subsequently delay the emergence of 

antihormone resistance. Moreover, determination of such elements could provide 

future biomarkers for patients most likely to benefit from Faslodex treatment. 

The degree of down-regulation of ER and ER-regulated genes in the 4 cell lines in 

this project failed to predict the duration of response to Faslodex. Thus, following 

short-term 7 day Faslodex treatment the same degree of ER protein down-

regulation was observed in all 4 cell lines (Chapter 3), as was the  expression of PGR 

and GREB1 (ER-regulated genes, Chapter 4), and furthermore all of the cell lines 

showed initial growth inhibition the magnitude of which did not obviously relate to 

subsequent long-term outcome. Taken together, these data suggest that unknown 

factors are contributing to extended response in the ER+/HER2- cell lines and these 

are likely to be promoted during Faslodex treatment.  In this regard, there was a 

unique opportunity to identify Faslodex de-regulated genes in both the T47D and 

MCF-7 cells that may potentially underlie the superior responses in HER2- breast 

cancer cells by examining their microarray expression profiles. It is hypothesised 

that potential genes of interest de-regulated by Faslodex in the T47D and MCF-7 

cell line will primarily be anti-apoptotic or anti-proliferative. To further increase the 

likelihood of such genes being involved in  improved response, expression profiles 

were also analysed in the HER2+ cell lines to ensure expression changes induced by 

Faslodex were not shared by these models. An examination of the literature 

indicates that there are no other published reports that have used multiple cell 

models to identify genes deregulated following early endocrine therapy that may 

subsequently contribute towards long-term treatment effect.  

7.2 Results 

7.2.1 Identification of genes de-regulated by Faslodex in the MCF-7 

and T47D cell lines 

Genes that displayed a significant change in gene expression (t-test <0.05; SAM FDR 

<0.05) following 10 day Faslodex treatment in both the HER2- cell lines of at least 
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1.5 fold were identified. 16 genes were detected which are listed in Table 29, along 

with the associated direction of change in expression (10 induced, 6 suppressed by 

Faslodex), the number of gene probes for each gene, and how many of these 

probes displayed the expected change in expression. 

As you can see from Figure 90, of the 10517 gene probes that were found to be 

deregulated by Faslodex in one or more of the cell lines, only 44 were significantly 

altered in the ER+/HER2- cell lines and further only 16 were identified to exhibit at 

least 1.5 fold change in both models. 

 

 

 

 

 

 

 

Figure 90: The Venn diagram illustrates the identification of the 16 genes taken forward as 

potential mediators/biomarkers of Faslodex improved response observed in the MCF-7 and 

T47D cell lines. The red circle represents all those genes significantly altered in the MCF-7 

and T47D cell lines. The green circle, shows the number of these genes that were not 

altered by at least 1.5 fold in these two models and the blue circle are those that were 

found to be also altered to some extent in the BT474 and MDA-MB-361 cell lines. The 16 

genes represented by the overlapping circles identify those genes that met the criteria to 

be taken forward for further investigation. 
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Table 29: List of genes whose expression was significantly altered in both HER2- cell lines 

(MCF-7 and T47D) following 10 day Faslodex treatment and the associated change in 

expression (induced or suppressed). Also listed is the number of gene probes representing 

a given gene on the UI33Aplus2 genechip and the number of probes also exhibiting the 

same change in expression in each HER2- cell line. 

Potential 
response 

genes 
(genes 

shared by 
both MCF-7 

& T47D)  

Gene Name 

Gene 
expression 

change 
following 
Faslodex 

treatment 

Total n.o. 
gene 

probes 

 
Total number of 

probes exhibiting 
expected change in 

expression 
 

MCF-7 T47D 

PTPRJ 
Protein tyrosine  

phosphatase, 
receptor type, J 

Induced 1 1 1 

ITIH1 
Inter-alpha-trypsin 

inhibitor  
heavy chain 1 

Induced 1 1 1 

KRT4 Keratin 4 Induced 1 1 1 

VGLL1 Vestigial like 1 Induced 2 2 2 

UPK3B Uroplakin 3B Induced 1 1 1 

ANK1 Ankyrin 1 Induced 6 4 4 

ALOX5 
Arachidonate 5- 

lipoxygenase 
Induced 3 3 3 

PCDH7 Protocadherin 7 Induced 4 4 3 

NR2F1 
Nuclear receptor  

subfamily 2, group F, 
member 1 

Induced 1 1 1 

SH3TC2 
SH3 domain and  
tetratricopeptide 

repeats 2 
Induced 1 1 1 

ARTN Artemin Suppressed 3 3 3 

MYRIP 
Myosin VIIA and Rab  
interacting protein 

Suppressed 1 1 1 

NPY5R 
Neuropeptide Y 

receptor  
Y5 

Suppressed 1 1 1 

PYY Peptide YY Suppressed 2 2 2 

SULF1 Sulfatase 1 Suppressed 3 3 3 

ELOVL2 
ELOVL fatty acid  

elongase 2 
Suppressed 2 2 2 
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From Table 29 it can be seen that the majority of probes for each gene displayed 

the same directional change in expression following Faslodex treatment.  

Low jetset scores (Table 30) were subsequently recorded for PTPRJ, SH3TC2 and 

PCDH7, suggesting that the changes in gene expression following Faslodex 

treatment may be unreliable. PCDH7, however, was also represented by a further 3 

gene probes on the Affymetrix genechip and the majority of these probes exhibited 

a Faslodex-induction in both cell lines, increasing confidence that PCDH7 was 

reliably induced in HER2- cells. 
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Table 30: Genes identified as being Faslodex de-regulated in both HER2- cell lines and their 

associated jetset Affymetrix gene probe ID and jetset score (the closer to 1 the better the 

predicted performance). 

HER2- shared genes Jetset Affy Probe ID Jetset Score 

PTPRJ 210173_at 0.00085872 

ITIH1 210888_s_at 0.34793661 

KRT4 213240_s_at 0.73693584 

VGLL1 215729_s_at 0.53307751 

UPK3B 206658_at 0.50480997 

ANK1 205390_s_at 0.50851937 

ALOX5 204446_s_at 0.79570734 

PCDH7 205534_at 0.10924584 

NR2F1 209506_s_at 0.45285561 

SH3TC2 219710_at 5.87E-17 

ARTN 210237_at 0.24336664 

MYRIP 214156_at 0.59824101 

NPY5R 207400_at 0.32761039 

PYY 207080_s_at 0.26026271 

SULF1 212353_at 0.51716857 

ELOVL2 213712_at 0.64165584 
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Figure 91: Heatmaps generated by GeneSifter displaying the induction or suppression of 

genes altered by 10 day Faslodex treatment in both HER2- cell lines using jetset gene 

probes. 

 

 

 

 

 

 M
C

F-
7

 C
o

n
tr

o
l 

M
C

F-
7

 
Fa

sl
o

d
ex

 

T4
7

D
 C

o
n

tr
o

l 



226 
 

7.2.1.1 Genes induced by Faslodex in MCF-7 and T47D (ER+/HER2-) cells:  

7.2.1.1.1 PTPRJ 

The log2 intensity plot for PTPRJ (Figure 92) showed the gene was highly up-

regulated by Faslodex treatment in the HER2- cell lines, showing a >5 fold change in 

both of the models. In contrast, the HER2+ cell lines demonstrated either no effect 

of Faslodex or a modest decrease in PTPRJ. All log2 intensity values were below 0 

basally, and it was noted that even following Faslodex induction in the HER2- lines 

log2 intensity values failed to be above 0 and detection calls for all samples were 

also absent indicative of probable lack of expression.  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

PTPRJ 1.96 1.25 5.80 5.92 

Figure 92: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of PTPRJ in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment using the jetset probe for PTPRJ and (B) table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 
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(highlighted in red are those displaying a >1.5 fold induction in expression and in green a 

>1.5 fold suppression). 

7.2.1.1.2 ITIH1 

As seen in Figure 93, the basal log2 intensity of ITIH1 showed no obvious pattern 

across the 4 cell lines (Figure 93). Although Faslodex increases in expression were 

observed in both MCF-7 and T47D cells in line with the heatmap displayed in Figure 

1, a more modest increase in expression was also noted in MDA-MB-361 cells 

following Faslodex treatment. All log2 values across the 4 cell lines, with the 

exception of the T47D cells post-Faslodex treatment where the log2 intensity value 

approached 0, had absent calls.   

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

ITIH1 1.07 1.50 5.26 4.66 

Figure 93: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of ITIH1 in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment using the jetset probe for ITIH1 (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in red are those displaying a >1.5 fold induction in expression). 
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7.2.1.1.3 KRT4 

The basal log2 intensity of KRT4 appeared (Figure 94) generally similar across the 4 

cell lines and this gene was Faslodex induced not only in the HER2- models, but also 

in MDA-MB-361 cells. Again the majority of log2 values were recorded as below 0 

with absent calls, with only the post-Faslodex T47D sample calling present.  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

KRT4 2.19 2.13 3.39 31.21 

Figure 94: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of KRT4 in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment using the jetset score for KRT4 (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in red are those displaying a >1.5 fold induction in expression and in green a 

>1.5 fold suppression). 
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7.2.1.1.4 VGLL1 

Figure 95 shows the low basal log2 intensity of VGLL1 recorded across the 4 cell 

lines. Although following Faslodex treatment some increase in its expression was 

evident in MDA-MB-361 cells (>2.5 fold), the level of expression of this gene was 

very substantially increased in MCF-7 and T47D cells (>100 and >60 fold 

respectively), with post-treatment values in these models attaining positive log2 

scores and present expression calls.  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

VGLL1 1.66 2.57 117.21 64.60 

Figure 95: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of VGLL1 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment using jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in red are those displaying a >1.5 fold induction in expression and in green a 

>1.5 fold suppression). 
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7.2.1.1.5 UPK3B 

As seen in Figure 96, the HER2+ cell lines expressed a reduced basal level of UPK3B 

(log2 values below 0 and absent calls) in comparison to the present call in HER2- 

cell lines. Significantly, however, Faslodex treatment acted predominantly on the 

MCF-7 and T47D cells causing an up-regulation of UPK3B by >7 and 11 fold 

respectively.  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

UPK3B 1.29 1.17 7.96 11.40 

Figure 96: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of UPK3B in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment using jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in red are those displaying a >1.5 fold induction in expression). 
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7.2.1.1.6 ANK1 

The expression of ANK1 across the 4 cell lines was below 0 with absent calls in all 

experimental arms indicating expression was unlikely, and there was also no 

obvious Faslodex induction in the T47D cells but an apparent induction in 

MDAMB361 cells (Figure 97).  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

ANK1 1.35 2.71 1.94 1.17 

Figure 97: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of ANK1 in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment using the jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in red are those displaying a >1.5 fold induction in expression). 
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7.2.1.1.7 ALOX5 

Some apparent increases in ALOX5 were recorded in all the Faslodex treated HER2- 

models and HER2+ models. However, the log2 intensity values were, in all 

instances, low (Figure 98) with absent calls indicating expression was unlikely. 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

ALOX5 1.50 2.58 4.74 2.37 

Figure 98: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of ALOX5 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment using jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in red are those displaying a >1.5 fold induction in expression). 
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7.2.1.1.8 PCDH7 

The basal log2 intensity values of PCDH7 were relatively similar and low across the 

4 cell models (Figure 99), with Faslodex treatment increasing the expression of this 

gene only in the HER2- cells. In all but the post-treatment T47D cells, log2 values 

remained below 0 with absent calls.  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

PCDH7 1.26 3.24 2.60 10.13 

Figure 99: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of PCDH7 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment using the jetset gene probe (b) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in red are those displaying a >1.5 fold induction in expression and in green a 

>1.5 fold suppression). 
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7.2.1.1.9 NR2F1 

Largely equivalent basal log2 intensity values of NR2F1 were observed in the HER2- 

and MDA-MB-361 cell lines, while a reduced value was observed in the BT474 cell 

line which remained unchanged following Faslodex treatment (Figure 100). A >1.5 

fold Faslodex-promoted induction of NR2F1 was observed in both the HER2- cell 

lines with the greatest induction seen in T47D cells and a present call detected. In 

most instances, however, the log2 intensity values were below 0 with absent 

detection calls.   

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

NR2F1 1.05 1.21 1.54 2.89 

Figure 100: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of NR2F1 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment using the jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in red are those displaying a >1.5 fold induction in expression). 
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7.2.1.1.10 SH3TC2 

Although Faslodex increased the log2intensity value of SH3TC2 in the HER2- 

models, all log2 values remained below 0 with absent detection calls (Figure 101).  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

SH3TC2 2.32 1.59 6.68 13.39 

Figure 101: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of SH3TC2 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment using the jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in red are those displaying a >1.5 fold induction in expression and in green a 

>1.5 fold suppression). 

7.2.1.2 Genes suppressed by Faslodex in MCF-7 and T47D (ER+/HER2-) cells:  
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7.2.1.2.1 ARTN 

Of the 4 cell lines, the T47D cells displayed elevated ARTN basal log2 intensity 

values, whilst the BT474 cell line displayed reduced levels below 0 (Figure 102). 

Following Faslodex treatment ARTN was suppressed in the two HER2- cell lines 

only; the greatest suppression occurred in the T47D cell line. The detection calls for 

both the HER2+ and MCF-7 cell lines pre and post treatment were absent, while the 

T47D cell line demonstrated a change in call from present to absent indicative of a 

robust fall in gene expression in this model.  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

ARTN 1.08 1.03 1.69 3.24 

Figure 102: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of ARTN in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment using the jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in green are those displaying a >1.5 fold suppression in expression). 
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7.2.1.2.2 MYRIP 

Basal expression of MYRIP was uniform across the cell models (Figure 103) and was 

above 0 and called present. Faslodex treatment suppressed MYRIP expression only 

in the HER2- cell lines (Figure 103). For both MCF-7 and T47D cells, Faslodex 

treatment reduced the positive log2 intensity values to below 0 with an absent 

gene call in MCF-7 cells further indicating a robust suppression of this gene.  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

MYRIP 1.99 1.06 13.54 5.19 

Figure 103: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of MYRIP in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment using the jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in red are those displaying a >1.5 fold induction in expression and in green a 

>1.5 fold suppression). 
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7.2.1.2.3 NPY5R 

Basal NPY5R log2 intensity values were higher in the MCF-7 cell line compared to 

the other models. Faslodex treatment suppressed NPY5R gene expression in both 

HER2- cell lines to levels equivalent to those recorded in the HER2+ models pre and 

post drug treatment. However, the log2 intensity values were low for this gene 

(Figure 104) with absent calls throughout so that profiles were unreliable.  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

NPY5R 1.34 1.32 4.57 2.02 

Figure 104: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of NPY5R in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment using the jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in green are those displaying a >1.5 fold suppression in expression). 
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7.2.1.2.4 PYY 

Although some suppression of PYY expression was seen in the HER2- cells, the log2 

intensity values were very low both pre- and post-Faslodex treatment with absent 

calls throughout, so profiles were unreliable (Figure 105).  

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

PYY 1.13 1.52 2.56 5.33 

Figure 105: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of PYY in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment using the jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in green are those displaying a >1.5 fold suppression in expression). 
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7.2.1.2.5 SULF1 

Basal log2 intensity values of SULF1 were elevated in both the HER2- cell lines 

compared to the HER2+ cell lines and showed Faslodex suppression (Figure 106). 

Indeed, in these HER2- cells a change in detection call from present to absent was 

observed on Faslodex treatment. Absent calls were seen throughout for the HER2+ 

lines and so the small fall detected in BT474 was unreliable. 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

SULF1 2.27 1.38 103.49 9.03 

Figure 106: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of SULF1 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment using the jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in green are those displaying a >1.5 fold suppression in expression). 
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7.2.1.2.6 ELOVL2 

Basal ELOVL2 log2 intensity values were lowest in the BT474 cell line compared to 

the 3 other cell models. Faslodex treatment led to >4 fold suppression of ELOVL2 

expression in both HER2- cell lines, with minimal change being observed in the 

HER2+ models (Figure 107). Indeed, the HER2- cell models exhibited a change in 

detection call from present to absent following treatment, indicating a robust 

suppression of expression of this gene. 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

ELOVL2 1.21 1.16 4.46 4.90 

Figure 107: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of ELOVL2 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment using the jetset gene probe (B) Table displaying the fold change in gene 

expression promoted by 10 day Faslodex treatment in each cell line vs. control expression 

(highlighted in green are those displaying a >1.5 fold suppression in expression). 

 

In summary, following the analysis of the gene log2 intensity plots, PTPRJ, ITIH1, 
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investigation due to one or more of the following reasons; (i) low log2 intensity 

values (intensity below 0), (ii) absent detection calls, and (iii) Faslodex-de-regulation 

of expression was not unique to the HER2- cell lines. For PTPRJ and SH3TC2 there 

was also very poor jetset performance.   

Investigations were, however, continued for the Faslodex-induced genes VGLL1, 

UPK3B, PCDH7, NR2F1 and suppressed genes ARTN, MYRIP, SULF1 and ELOVL2 as 

potential Faslodex response genes in the HER2- cell lines. 

7.2.2 Analysis of potential superior response genes in an MCF-7-

derived Faslodex-resistant gene expression array dataset 

The above genes, identified as being Faslodex de-regulated in the HER2- cell lines, 

are hypothesised to be involved in the extended growth inhibitory response of the 

drug. They were thus subsequently analysed in an MCF-7-derived Faslodex-resistant 

cell line to determine any directional changes in their expression.  

Figure 108 displays the heatmap showing the change in expression of the 8 genes of 

interest that occurred in the Faslodex resistant-phenotype compared to oestradiol-

treated MCF-7 control cells. Figures 109-116 display the gene expression log2 

expression intensity plots and fold change for each of the genes using their jetset 

gene probes, where these data confirmed the profiles of changes.   

VGLL1 and UPK3B continued to be induced once the cells developed Faslodex 

resistance, with the highest log2 intensity and fold changes in the resistant cells 

achieved for these genes. ARTN, SULF1 and ELOVL2 continued to be suppressed 

once the cells developed Faslodex resistance, with log2 intensity levels below 0 in 

the resistant cells. PCDH7 gene expression was induced by 10 day Faslodex 

treatment but down-regulated in Faslodex resistance, the opposite was observed 

for MYRIP which was a gene suppressed by Faslodex treatment. NR2F1 (that was 

initially induced by Faslodex treatment) returned to the basal level expression seen 

in the oestradiol-treated control (Figure 108).  
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Figure 108: Heatmap displaying Faslodex de-regulated genes in the HER2- cell lines 

reanalysed in the MCF-7 Faslodex-resistant cell line compared to oestradiol (E2) treatment. 

The heatmap was generated using jetset affymetrix gene probe ID’s. 
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7.2.2.1 Genes induced by 10 day Faslodex-treatment: VGLL1, UPK3B, PCDH7 and 

NR2F1 

 

 

 

Gene 
Acronym 

Fold change 

VGLL1 322.63 

Figure 109: (A) Log2 expression intensity plot displaying the substantial induction of VGLL1 

expression level using the jetset gene probe in an MCF-7-derived, Faslodex-resistant cell 

model in comparison to wild-type MCF-7 cells treated with oestradiol (10-9M) (B) table 

displaying the fold change in expression. 
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Acronym 

Fold change 

UPK3B 16.35 

 

Figure 110: (A) Log2 intensity plot displaying the induction of UPK3B expression level using 

the jetset gene probe in an MCF-7-derived, Faslodex-resistant cell model in comparison to 
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wild-type MCF-7 cells treated with oestradiol (10-9M) (B) table displaying the fold change in 

expression. 

 

Gene 
Acronym 

Fold change 

PCDH7 2.39 

 

Figure 111: (A) Log2 intensity plot displaying an apparent suppression of PCDH7 gene 

expression level using the jetset gene probe in an MCF-7-derived, Faslodex-resistant cell 

model in comparison to wild-type MCF-7 cells treated with oestradiol (10-9M) (B) table 

displaying the fold change in expression. 
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Gene 
Acronym 

Fold change 

NR2F1 1.06 

 

Figure 112: Log2 intensity plot displaying the gene expression level of NR2F1 using the 

jetset gene probe in an MCF-7-derived, Faslodex-resistant cell model in comparison to wild-

type MCF-7 cells treated with oestradiol (10-9M) (B) table displaying the fold change in 

expression. 

7.2.2.2 Genes suppressed by 10 day Faslodex-treatment: ARTN, MYRIP, ELOVL2 

and SULF1 

 

 

 

Gene 
Acronym 

Fold change 

ARTN 1.77 

 

Figure 113: (A) Log2 intensity plot displaying an apparent suppression of ARTN gene 

expression level using the jetset gene probe in an MCF-7-derived, Faslodex-resistant cell 

O
ES

TR
A

D
IO

L 

FA
S-

R
 

O
ES

TR
A

D
IO

L 

FA
S-

R
 



247 
 

model in comparison to wild-type MCF-7 cells treated with oestradiol (10-9M) (B) table 

displaying the fold change in expression. 

 

 

 

Gene 
Acronym 

Fold change 

MYRIP 1.99 

 

Figure 114: (A) Log2 intensity plot displaying an apparent induction of MYRIP gene 

expression level using the jetset gene probe in an MCF-7-derived, Faslodex-resistant cell 

model in comparison to wild-type MCF-7 cells treated with oestradiol (10-9M) (B) table 

displaying the fold change in expression. 

 

Gene 
Acronym 

Fold change 

ELOVL2 18.89 

 

Figure 115: (A) Log2 intensity plot displaying the suppression of ELOVL2 expression level 

using the jetset gene probe in an MCF-7-derived, Faslodex-resistant cell model in 
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comparison to wild-type MCF-7 cells treated with oestradiol (10-9M) (B) table displaying the 

fold change in expression. 

 

 

 

Gene 
Acronym 

Fold change 

SULF1 18.25 

 

Figure 116: (A) Log2 intensity plot displaying the suppression of SULF1 gene expression 

level using the jetset gene probe in an MCF-7-derived, Faslodex-resistant cell model in 

comparison to wild-type MCF-7 cells treated with oestradiol (10-9M) (B) table displaying the 

fold change in expression. 

7.2.3 Ontological investigation of genes potentially involved in the 

extended Faslodex response in the HER2- cell lines 

To help further determine if they might relate to Faslodex response, an ontological 

investigation was also undertaken on the 8 genes to determine if they had been 

associated with: 

 Breast cancer or any other cancer type; 

 Known or potential adverse function (e.g. tumour growth or progression); 

 Known or potential tumour suppressive function  

The results of the ontological investigations are accumulated in Tables 3 to 10. 

Pubmed and Scopus were used throughout for these ontological studies using the 

gene name/acronym, together with selected keywords/phrases which included 

breast cancer, cancer, oncogene, proliferation, growth, metastasis, Faslodex, 
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hormonal or endocrine therapy, survival, growth inhibition, tumour suppressor, 

apoptosis. 

If the gene name is highlighted in red, expression was induced by 10 day Faslodex 

treatment and if green, the gene was suppressed by treatment. 

Table 31: Summary of the function of VGLL1 including previous published reports 

surrounding the role of VGLL1 in breast and other cancers. 

Gene Name/Acronym Vestigial like 1: VGLL1 

Function VGLL1 binds proteins of the TEA (transcription enahancer 

activator) domain family of transcription factors through the Vg 

(vestigial) homology region found in its N-terminus. 

Subsequently it may function as a specific coactivator for this 

family of transcription factors (Pobbati et al., 2012). 

Associations with 

breast cancer 

No direct associations with breast cancer but has been discussed 

as a potential mediator of disease progression. 

 

Pobbati et al., have shown that VGLL1 interacts with TEAD (TEA 

domain) in a similar way to oncogenic transcription coactivators 

YAP and TAZ. The VGLL1-TEAD complex induces the expression 

of IGFBP-5, a known promoter of proliferation and encourages 

anchorage-independent cell proliferation (Pobbati et al., 2012). 

The YAP/TAZ-TEAD complex has been shown to upregulate a 

number of other genes involved in the proliferation and 

anchorage-independent growth, thus given the similarities 

between these transcription factors and VGLL1, one may suspect 

that VGLL1 has potential to be involved cancer progression 

(Avruch et al., 2012). 

Associations with other 

cancers 

No direct associations with cancer. 

 

Table 32: Summary of the function of UPK3B including previous published reports 

surrounding the role of UPK3B in breast and other cancers. 
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Gene Name/Acronym Uroplakin 3B: UPK3B 

Function UPK3B is a minor component of the apical plaques of 

mammalian urothelium that binds and dimerizes with uroplakin-

1b (UPK1B), one of the major conserved urothelium membrane 

proteins. May play an important role in asymmetric unit 

membrane (AUM)-cytoskeleton interaction in terminally 

differentiated urothelial cells (Wu et al., 2009). 

Associations with 

breast cancer 

No associations with breast cancer 

Associations with other 

cancers 

In bladder cancer, the loss of expression of FOXA1 is associated 

with advanced tumour stage and high histologic grade as well as 

a parallel upregulation of the uroplakin family including UPK3B. It 

has been suggested that FOXA1 regulates UPK expression but 

when FOXA1 is lost a compensatory mechanism is activated 

resulting in further increases in UPK expression. The regulation 

of the UPK proteins by FOXA1 is complex but further 

investigations may elucidate the mechanisms responsible for 

normal bladder development and urothelial differentiation. The 

effects of the UPK family directly on cancer growth are still 

unknown (DeGraff et al., 2012).  

 

Table 33: Summary of the function of PCDH7 including previous published reports 

surrounding the role of PCDH7 in breast and other cancers. 

Gene Name/Acronym Protocadherin 7: PCDH7 

Function This gene belongs to the protocadherin gene family, a subfamily 

of the cadherin superfamily. The gene encodes a protein with an 

extracellular domain containing 7 cadherin repeats. PCDH7 

(NFPC) has four isoforms (7a, 7b, 7c and 7c1). The gene product 

is an integral membrane protein that is thought to function in 

cell-cell recognition and adhesion. PCDH7 interacts with TAF1 

regulating the strong adhesive properties of PCDH7 (Heggem et 

al., 2003). 

Associations with No direct associations with breast cancer. 
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breast cancer 

Associations with other 

cancers 

The hypermethylation of PCDH7 has been suggested to be 

involved in the development of bladder cancer (Beukers et al., 

2013). Analysis of 60 bladder cancer tumours also found PCDH7 

to be under expressed (Djyrskot et al., 2004) indicative of 

tumour suppressor functions. 

 

Small polymorphisms within the PCDH7 gene have been shown 

to be associated with poor survival in early-stage NSCLC (Huang 

et al., 2009). 

 

Table 34: Summary of the function of NR2F1 including previous published reports 

surrounding the role of NR2F1 in breast and other cancers. 

Gene Name/Acronym Nuclear receptor subfamily 2, group F, member 1: NR2F1/COUP-TF1 

Function Coup (chicken ovalbumin upstream promoter) transcription factors 

binds to the ovalbumin promoter and, in conjunction with the 

protein S300-II stimulate the initiation of transcription. COUP-TFI is 

one of the two major homologues of the COUP-TF family. These 

factors belong to the nuclear receptor (NR) super family. There is 

much evidence suggesting that these transcription factors are 

involved in a number of biological processes including cell 

proliferation, survival, angiogenesis and migration. They have also 

been shown to modulate a number of other transcription factors 

known to be involved in carcinogenesis (Boudot et al., 2011). 

Associations with 

breast cancer 

COUP-TFI has been shown to interact with ER leading to the 

recruitments of ERKs (in an E2-independent manner) resulting in the 

enhancement of ER transcriptional activity (Métivier et al., 2002).   

 

Expression of COUP-TFI has been shown to be higher in more 

dedifferentiated breast cancer cell lines (MDA-MB-231) and tumour 

cells compared to the well-differentiated MCF-7 cell line and normal 

breast cells. Overexpression of COUP-TFI in MCF-7 cells resulted in 

enhanced motility and invasiveness as well as promoting cell 
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proliferation (Le Dily et al., 2008).   

 

Promoters I.3 and II have been identified as the key promoters in 

regulating aromatase expression in breast cancer (Zhou et al., 1996). 

A negative regulatory element has been identified between these 

two promoters, S1, which downregulates the activity of these two 

promoters (Zhou et al., 1998). COUP-TFI has been shown to interact 

with the S1 region (Yang et al., 1998) in a negative regulatory 

manner (Yang et al., 2002). In normal breast tissue the activity of 

promoters I.3 and II are suppressed by the binding of COUP-TF1 (as 

well as EAR-2 and RARγ). However, in breast cancer tissue these 

factors are decreased and thus activity of promoters I.3 and II is 

elevated leading to an induction of aromatase expression (Chen et 

al., 2005).  

 

COUP-TFI and COUP-TFII (the other major homologue) has been 

shown to activate VEGF-C expression in the MCF-7 cell line 

suggesting an involvement in neo-angiogenesis and 

lymphangiogenesis (Nagasaki et al., 2009). 

 

COUP-TFI and II overexpression has also been shown to induce 

tamoxifen-resistance (Le Dily et al., 2008) but other research groups 

have suggested that increased expression of COUP-TFII may increase 

sensitivity to anti-estrogens (Riggs et al., 2006). More work is 

required to determine the involvement of the COUP-TFs in anti-

oestrogen sensitivity. 

Associations with other 

cancers 

Depending on the type of cancer the COUP-TFs have been suggested 

to act in a positive or negative manner (Boudot et al., 2012). As seen 

in the breast cancer MCF-7 cell line, the COUP-TFs have been shown 

to induce the expression of VEGF-C in the MKN-45 gastric cancer cell 

line suggesting a role in lymphangiogenesis (Schafer et al., 2008). 

 

COUP-TFI is negatively regulated by the androgen receptor; 

downregulated when androgen is bound to the androgen receptor 
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and upregulated when an androgen receptor antagonist is bound. 

COUP-TFI protein expression was found to be elevated in nucleoli of 

malignant prostate epithelium compared to normal epithelium 

(Perets et al., 2012).  

 

COUP-TFI expression seems to be lower in ovarian (De Sousa Damiao 

et al., 2007) and bladder (Ham et al., 2008) malignant tissue than in 

benign and normal tissue suggesting that loss of COUP-TF expression 

in these cancers is associated with such malignancy.  

 

Table 35: Summary of the function of ARTN including previous published reports 

surrounding the role of ARTN in breast and other cancers. 

Gene Name/Acronym Artemin: ARTN 

Function ARTN is a member of the GDNF family of ligands which belong to 

the TGF-beta superfamily of signalling molecules. ARTN is a 

ligand for the GFR-alpha-3-RET receptor complex but can also 

activate the GFR-alpha-1-RET receptor complex (Baloh et al., 

1998).  

Associations with 

breast cancer 

Kang et al., identified ARTN expression in 65% of mammary 

cancers and expression correlated with a reduced overall survival 

(Kang et al., 2009). Transfection of breast cancer cells with ARTN 

resulted in anchorage-independent growth and enhanced 

migration and invasion and increased tumour growth in vivo. 

GFRA1 and RET (members of the ARTN receptor complex) and 

ARTN have been observed as E2 regulated (induced expression 

following E2 treatment) (Boulay et al., 2008; Kang et al., 2010). 

Kang et al., have also showed that expression of ARTN can confer 

antiestrogen-resistance by reducing the efficacy of antiestrogens 

in breast cancer cell lines. They have suggested that this effect 

may be mediated by enhanced ERα transcriptional activity and 

increased expression of BCL-2. Combination therapy of an 

antiestrogen and an anti-ARTN antibody enhanced the activity of 

tamoxifen in sensitive and resistant cells (Kang et al., 2010). 
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As artemin is a ligand for RET forming a receptor complex along 

with a member of the GFRα family, it is of note to discuss the 

role of RET signalling in breast cancer. In summary RET 

expression has been found elevated in a subset of ER+ breast 

cancers (Esseghir et al., 2007). In vitro activation of the RET 

signalling pathway in ER+ cells led to an E2-independent increase 

in ER phosphorylation and transcriptional activity (Plaza-

Menacho et al., 2010). The Isacke laboratory have reported that 

RET signalling is a key signalling pathway associated with 

aromatase inhibitor response and resistance in ER+ breast 

cancers clinically (Morandi et al., 2013). 

Associations with other 

cancers 

Artemin and its further receptor GFRA3 have been linked to 

increased motility and invasion in pancreatic cancer, 

subsequently leading to a more aggressive phenotype (Meng et 

al., 2012). 

 

ARTN expression was found to be significantly higher in 

esophageal carcinoma than in adjacent noninvasive tissues, and 

ARTN was shown to promote migration and invasion of 

esophageal carcinoma cells (Li et al., 2011b). 

 

Artemin was also shown to be involved in the disease 

progression of non-small cell lung carcinoma and endometrial 

cancer by encouraging cell proliferation, migration and invasion 

(Tang et al., 2010; Pandev et al., 2010). 

 

Ontology for ARTN indicates an adverse role related to cancer progression thus its 

suppression by Faslodex treatment is in keeping with a superior drug response in 

the HER2- cell lines. ARTN is the ligand for RET which form a receptor complex with 

GFRA1 or GFRA3 and so the gene expression of these additional factors were 

examined in the cell models pre and post Faslodex treatment. 
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GFRA1 in chapter 5 was identified as being significantly down-regulated by Faslodex 

in the cell lines that develop drug resistance (Figure 35 and 57). From the log2 

intensity plot for GFRA1 the receptor was down-regulated in the 3 cell lines by 

Faslodex and very low log2 intensity values were observed in the T47D cell line pre 

and post treatment with detection calls absent indicative of lack of expression 

(Figure 35). GFRA3 was expressed at very similar, low levels in all models basally 

(Figure 117). Marginal inductions of GFRA3 were observed in the HER2- cell lines 

but all detection calls were found to be absent indicative of lack of expression.  

Log2 intensity values of RET were fairly uniform basally in the HER2+ and MCF-7 cell 

lines but reduced in the T47D cell line (Figure 117). Faslodex treatment led to a >1.5 

fold suppression of RET in the HER2- cell lines (MCF-7-1.82 fold suppression; T47D-

1.96 fold suppression) while no change was observed in the HER2+ cell lines. 

Detection calls were found to be present for all samples with the exception of the 

T47D samples pre and post treatment. 
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Figure 117: (A) Heatmaps and (B) log2 intensity plots generated by GeneSifter displaying 

the change in expression of GFRA3 and RET promoted by 10 day Faslodex treatment in the 
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MCF-7 and T47D cell lines versus untreated control using the jetset gene probes (GFRA3-

214479_at, RET-205879_x_at). 

 

Table 36: Summary of the function of MYRIP including previous published reports 

surrounding the role of MYRIP in breast and other cancers. 

Gene Name/Acronym Myosin VIIA and Rab interacting protein: MYRIP 

Function MYRIP is a Rab effector protein involved in melanosome 

transport. Serves as link between melanosome-bound RAB27A 

and the motor proteins MYO5A and MYO7A. It can also function 

as a protein kinase A-anchoring protein (AKAP) (El-Amraoui et 

al., 2002) 

Associations with 

breast cancer 

No associations with breast cancer 

Associations with other 

cancers 

MYRIP has been reported as a potential tumour suppressor gene 

in hepatocarcinogenesis due its methylation status (Yang et al., 

2011) 

 

Table 37: Summary of the function of SULF1 including previous published reports 

surrounding the role of SULF1 in breast and other cancers 

Gene Name/Acronym Sulfatase 1: SULF1 

Function Heparan sulfate proteoglycans (HSPGs) act as coreceptors for 

numerous heparin-binding growth factors and cytokines and are 

involved in cell signalling (Forsten-Williams et al., 2008). Heparan 

sulfate 6-O-endosulfatases, such as SULF1, selectively remove 6-

O-sulfate groups from heparan sulfate. This activity modulates 

the activity of heparan sulfate by altering binding sites for 

signalling molecules (Ai et al., 2006). 

Associations with 

breast cancer 

SULF1 has been found to be down-regulated in metastatic breast 

cancer (Narita et al., 2007) and its expression is lost in many 

breast cancer cell lines in particular those deemed metastatic 

e.g. MDA-468 AND MDA-231 (Khurana et al., 2011). 

Overexpression of SULF1 is able to suppress growth and 



258 
 

angiogenesis (by suppressing VEGF signalling) in vivo suggesting 

that SULF1 is a tumour suppressor gene (Narita et al., 2006). 

 

However, there is a paradox to SULFs in that they can promote 

Wnt signalling and thus tumorigenesis (Lai et al., 2010).  

Associations with other 

cancers 

SULF1 overexpression in hepatocellular carcinoma cells 

suppressed KDR/VEGF and FGF2 signalling thus promoting 

sensitivity to a number of chemotherapy agents such as 

doxorubicin as well as the histone deacetylase inhibitor aphicidin 

(Lai et al., 2008). 

 

Downregulation of SULF1 has been described in a number of 

tumours in keeping with a tumour suppressor function; including 

ovarian (Staub et al., 2007), hepatocellular (Lai et al., 2008), 

gastric (Gopal et al., 2012) and kidney (Lai et al., 2008) cancer. 

 

However overexpression of SULF1 has also been identified in 

adrenal carcinoma, brain cancer, breast cancer, colon 

adenocarcinoma as well as others (Rosen et al., 2010) 

challenging the concept that SULF1 is simply a tumour 

suppressor. 

 

Table 38: Summary of the function of ELOVL2 including previous published reports 

surrounding the role of ELOVL2 in breast and other cancers. 

Gene Name/Acronym ELOVL fatty acid elongase 2: ELOVL2 

Function Condensing enzyme that catalyzes the synthesis of 

polyunsaturated very long chain fatty acid (C20- and C22-PUFA) 

(Moon et al., 2001; Leonard et al., 2002) 

Associations with 

breast cancer 

No associations with breast cancer 

Associations with other 

cancers 

ELOVL2 gene expression has been found to be up-regulated in 

hepatocellular carcinoma (Zekri et al., 2012) 
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7.2.3.1 Summary of the ontological data for the potential response-promoting 

genes 

A number of the genes de-regulated by Faslodex in both HER2- cell lines have not 

previously been associated with breast cancer including UPK3B, PCDH7, MYRIP and 

ELOVL2 and so their further clarification may yield interesting data in relation to 

HER2- response.  UPK3B has not been directly associated with growth regulation in 

any cancer. PCDH7 and MYRIP have both been suggested to be associated with 

growth inhibition but, there is very little published work on ELOVL2 in any cancer.   

VGLL1 and NR2F1 have both been associated with disease progression suggesting 

that induction of these genes in the HER2- cell lines may not contribute to the 

superior Faslodex response. Induction of VGLL1 was furthermore maintained in 

Faslodex-resistance (Figure 109). ARTN was also involved in disease progression, so 

its suppression by Faslodex may enhance the growth inhibitory response, 

particularly as its co-receptors were also suppressed (Figure 117). Expression of 

SULF1 can growth inhibit breast cancer cells, thus its suppression by Faslodex seems 

unlikely to contribute to the growth inhibitory mechanism. 

5 genes were selected for further investigation as a consequence: 

 PCDH7 

 UPK3B 

 ARTN 

 MYRIP 

 ELOVL2 

 

7.2.4 Establishing potential clinical relevance of the genes of interest 

in the context of endocrine outcome  

Equivalent analyses, as performed in chapters 5 and 6 using KMPlotter and GOBO, 

were used to determine the potential clinical relevance of the 5 genes identified in 

HER2 – cells in relation to tamoxifen treated ER+ breast cancer.   
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In KMPlotter only UPK3B and PCDH7 were found to demonstrate an association 

with tamoxifen outcome. Increased expression of UPK3B and PCDH7 were 

significantly associated with an improved duration of response (Figure 118 and 

119), in keeping with their induction in the ER+/HER2- cell lines. Hazard ratios of 

less than 1 confirmed improved RFS in those patients with increased expression of 

these genes (UPK3B: HR=0.66 (95% CI 0.47-0.92), p=0.014; PCDH7: HR=0.69 (95% CI 

0.48-0.98), p=0.038).  

 

 

 

 

 

 

 

 

Figure 118:   Kaplan-Meier survival curve generated using KMPlotter displaying probability 

of RFS according to high (red) or low (black) UPK3B mRNA expression in  tamoxifen-treated 

ER+ breast cancer patients (n=553). 
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Figure 119:  Kaplan-Meier survival curve generated using KMPlotter displaying probability 

of RFS according to high (red) or low (black) PCDH7 mRNA expression in  tamoxifen-treated 

ER+ breast cancer patients (n=553). 

UPK3B and PCDH7 were subsequently analysed using GOBO (splitting the ER+ 

tamoxifen treated patient cohort (n=176) into 3 groups), to further determine if RFS 

in tamoxifen treated patients was dependent on magnitude of gene expression.  

 

Figure 120: Kaplan Meier survival curve generated using GOBO displaying RFS according to 

high (blue), intermediate (red) or low (grey) UPK3B gene expression. Expression data used 

was from ER+ tamoxifen treated breast cancer patients. 

The significant association between increased UPK3B expression and RFS following 

tamoxifen treatment was maintained in the GOBO dataset in ER+ patients treated 

with tamoxifen (Figure 120) and this relationship was also weakly graded, where 

greater gene expression of UPK3B appeared to relate to further improved RFS in 

tamoxifen-treated patients (Figure 120). No significant association was identified 

with respect to PCDH7 in this smaller patient dataset 

UPK3B and PCDH7 were also analysed using KMPlotter in systemically untreated 

ER+ patients. UPK3B failed to demonstrate a significant association in this 

untreated group. PCDH7 retained a significant association, where increased 

expression was associated with an improved clinical outcome (Figure 121). The 
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hazard ratio was less than 1 indicating a superior RFS in patients with increased 

PCDH7 expression (HR=0.64 (95%CI 0.47-0.88), p=0.005). 

 

 

 

 

 

 

 

 

 

Figure 121: Kaplan-Meier survival curve generated using KMPlotter displaying probability of 

RFS according to high (red) or low (black) PCDH7 mRNA expression (red line)in  ER+ breast 

cancer patients that were systemically untreated (n=785).  

7.2.5 PCR verification of genes potentially involved in extended 

Faslodex response in the HER2- cell lines  

After considering the profile, ontological and clinical expression findings, UPK3B, 

PCDH7 and additionally ARTN were chosen for PCR verification as genes potentially 

being involved in the extended Faslodex response in the HER2- cell lines. ELOVL2 

and MYRIP were not taken forward as they both failed to demonstrate clinical 

relevance with respect to tamoxifen using KMPlotter and GOBO and also had very 

little ontological information available to help relate these gene changes to 

improved response. Triplicate RNA from untreated and 10 day Faslodex treated 

cells were used for PCR in an attempt to verify the Affymetrix expression profiles. 
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7.2.5.1 UPK3B 

The microarray data indicated that basal UPK3B expression was elevated in the 

HER2- cell lines in comparison to the HER2+ models and this was confirmed by PCR 

(Figure 122). While UPK3B was also increased in the BT474 cell line (Figure 122A 

and B) which was not seen in the arrays (Figure 96). Indeed, the biggest fold 

induction was observed in the BT474 cell line by PCR, possibly because of its low 

basal expression. However, Faslodex treatment in the HER2- cell lines led to a 

higher UPK3B expression (Figure 122) as seen in the array data.  It is possible that 

the induction observed in the BT474 cell line may be due to sample variation.  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

UPK3B 2.64 0.88 1.50 1.66 

Figure 122: (A) Representative PCR image and (B) the corresponding β-actin-normalised 

densitometry graph (CON-Control; FAS-10 days Faslodex) for UPK3B. The results are 

expressed as means ± SEM of three separate experiments. ***P < 0.001 versus control.  (C) 

Table displaying the fold change of gene expression following Faslodex treatment. 
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7.2.5.2 PCDH7 

As for the microarray data, basal expression of PCDH7 was largely equivalent across 

the 4 cell lines, with significant induction of expression by Faslodex only in the 

HER2- cells (Figure 123). Fold Induction of expression was prominent in both cell 

lines (Figure 123C) and, in agreement with the array data, the biggest induction was 

observed in the T47D cell line (Figure 99).  

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

PCDH7 1.30 1.31 2.43 4.51 

Figure 123: (A) Representative PCR image and (B) the corresponding β-actin-normalised 

densitometry graph (B (CON-Control; FAS-10 day Faslodex) for PCDH7. The results are 

expressed as means ± SEM of three separate experiments. ***P < 0.001 versus control. (C) 

Table displaying the fold change of gene expression detected by PCR following Faslodex 

treatment. 
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7.2.5.3 ARTN 

Using PCR, ARTN was significantly suppressed by 10 day Faslodex treatment in the 

HER2- cell lines, particularly T47D, (>1.5 fold) in agreement with the microarray 

data (Figure 102). These findings contrasted the significantly induced of this gene in 

the HER2+ cell lines which was not seen on the arrays (Figure 124), disparity which 

may be due to a somewhat sub-optimal performance of the jetset gene probe in 

the HER2+ cells on the arrays (since the jetset score was 0.2; Table 30). 

 

 

 

Gene 
Acronym 

Fold change of expression following Faslodex 
treatment 

BT474 MDA-MB-
361 

MCF-7 T47D 

ARTN 3.43 1.40 2.11 2.89 

Figure 124: (A) Representative PCR image and (B) the corresponding β-actin-normalised 

densitometry graph (CON-Control; FAS-10 day Faslodex) for ARTN. The results are 

expressed as means ± SEM of three separate experiments. ***P < 0.001 versus control. (C) 

Table displaying the fold change of gene expression detected by PCR following Faslodex 

treatment. 
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In summary, PCDH7 and UPK3B were thus confirmed to be significantly up-

regulated in the HER2- cell lines by 10 day Faslodex treatment, while ARTN was 

significantly suppressed, in agreement with the array data for these two models.  

This data is summarised in Table 39 which compares the results from the 

microarray data with the PCR results. There is generally a good concordance 

between the array and PCR results with the exception of the induction of UPK3B in 

the BT474 cell line as validated by PCR and the unexpected induction of ARTN in the 

ER+/HER2- (BT474 and MDA-MB-361) cell models. 

Table 39: Comparison of Faslodex-deregulation of genes of interest from the 

microarray data and PCR results (I-Induced; S-Suppressed; ~ limited/no change) 

Gene 
Name 

Microarray (FAS de-regulation) PCR (FAS de-regulation) 
BT474 MDA-

361 
MCF-7 T47D BT474 MDA-

361 
MCF-7 T47D 

UPK3B ~ ~ I I I ~ I I 

PCDH7 ~ ~ I I ~ ~ I I 

ARTN ~ ~ S S I I S S 

 

7.3 Discussion 

HER2- MCF-7 and T47D cells underwent a superior Faslodex anti-tumour response 

during long term in vitro culture compared with their HER2+ counterparts. In 

Chapter 3 it was shown that Faslodex promoted a similar down-regulation of ER 

and ER-regulated genes in all of the models and thus this phenomenon fails to 

explain the varying anti-tumour responses observed between HER2+ and HER2- 

cells. However, it is feasible that there may be Faslodex de-regulated genes shared 

by both the MCF-7 and T47D cell lines whose discovery may be more informative 

regarding the mechanism of Faslodex response in HER2- breast cancer.  

In light of this, in this chapter following initial SAM analysis and t-test filtering 16 

genes were successfully identified as being significantly Faslodex de-regulated in 

both these HER2- cell lines by at least 1.5 fold. 10 were found to be induced by 

Faslodex treatment in both cell lines and 6 were suppressed (Table 29). These genes 

then underwent further filtering, by using their Jetset probes to interrogate 
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expression using intensity plots and also ensuring any additional gene probes for 

the individual genes showed the same change in expression. No genes were 

rejected on the basis of multiple probe profile but half were dismissed following 

analysis of the intensity plots (i.e. PTPRJ, ITIH1, ANK1, ALOX5, SH3TC2, KRT4, NPY5R 

and PYY) because Faslodex induction was also noted in HER2+ cells or because of 

low log2 intensity values/absent detection calls indicating unreliable expression. 

This filtering strategy was successful in prioritising 8 genes for further investigation. 

VGLL1, UPK3B, PCDH7 and NR2F1 were all induced by Faslodex treatment in the 

HER2- cells on the arrays while ARTN, MYRIP, SULF1 and ELOVL2 were suppressed. 

One of the rejected genes, KRT4 (CK4), highlights a potential limitation of the 

stringent filtering process that was essential in the thesis to achieve prioritisation. 

The KRT4 log2 intensity plot (Figure 94) showed a present call for expression after 

Faslodex induction in T47D but not MCF7 cells, so this gene could still potentially 

contribute to response in the former model. Indeed, further cytokeratins have been 

associated with breast cancer patient outcome (Alshareeda et al., 2013) while their 

down-regulation can encourage epithelial-mesenchymal transition (Thiery et al., 

2006).  

The 8 prioritised genes were subsequently assessed in MCF-7 derived acquired 

Faslodex-resistant cells (Hiscox et al., 2006) in an attempt to confirm or refute the 

hypothesis that changes in their expression may be involved in response (Figures 

108-116). 5 of the genes exhibited the same direction of expression change in the 

Faslodex-resistant cells as seen following 10 day treatment (i.e. induction of VGLL1 

and UPK3B, suppression of ARTN, SULF1 and ELOVL2), which may mean these 

particular genes do not contribute to response in the HER2- cells. Alternative 

explanations could be that these gene changes contribute to early “compensatory” 

survival signalling, limiting initial antitumour effect and permitting resistance 

development in MCF7 cells. However, it is also feasible that the 5 genes do 

contribute to response, but their beneficial effects are bypassed by alternative 

signalling pathways in the resistant MCF7 cells or perhaps that they have a change 

in function, contributing to growth inhibition in the Faslodex sensitive phase while 

positively involved in resistant growth. Indeed, dual function has been reported for 
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TGF-β which can act as a tumour suppressor in early stage breast cancer but 

contribute to progression later in the course of this disease (Tian et al., 2009). The 

remaining genes PCDH7, NR2F1 and MYRIP exhibited different changes in 

expression when analysed in the resistant model setting compared with 10 day 

Faslodex treatment (Figure 18). While these profiles were weaker for NR2F1 and 

MYRIP, PCDH7 was clearly induced by early treatment but was not expressed in 

resistance. Based on expression profiles, it was thus also feasible that PCDH7 could 

be involved in HER2- responses to Faslodex.  

However, ontological interrogation was required to further determine if any of the 

priortised genes, notably PCDH7, VGLL1, UPK3B, ARTN, SULF1 and ELOVL2, were 

likely candidates in relation to anti-tumour response of the HER2- models. The 

Faslodex upregulated gene VGLL1 had been previously associated with disease 

progression (Pobbati et al., 2012; Avruch et al., 2012), and coupled with its 

induction in both HER2- cell lines and maintained induction in the Faslodex resistant 

MCF-7 cells, this did not support a contribution for VGLL1 in drug responses so this 

gene was rejected from further analysis. The Faslodex suppressed gene SULF1 was 

also eliminated because of its reported role as a tumour suppressor (Narita et al., 

2006, 2007). Interestingly, however, analysis of published literature showed that 

the further Faslodex-suppressed gene ARTN had been associated with cancer 

progression (Kang et al., 2010) including in breast cancer. ARTN is a ligand for 

GFRA1 or GFRA3 which are RET co-receptors, and increases in such signalling have 

also been associated with tamoxifen or oestrogen deprivation resistance (Morandi 

et al., 2013). Using microarrays, GFRA1 and RET were Faslodex-suppressed and 

GFRA3 expression was absent in the HER2- cells (Figures 35 and 117). GFRA1, ARTN 

and RET are reported to be induced by oestrogen (Kang et al., 2011) in accordance 

with the Faslodex suppression observed, and so in total it is feasible that 

suppression of ARTN/RET signalling is an important mediator of superior Faslodex 

response in HER2- cells. As ARTN was not recovered in the Faslodex-resistant MCF-7 

line (Figure 113) ARTN-independent signalling seems likely to promote emergence 

of resistance with this particular antihormone.  
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The further genes UPK3B, PCDH7 and ELOVL2 had no or very limited useful 

ontological information (Tables 32, 33 and 38) so this approach precluded 

assumptions on their possible involvement in the HER2- growth inhibitory response 

with Faslodex. Consequently, KMPlotter and GOBO proved invaluable as these tools 

were able to show that inherent elevated UPK3B and PCDH7 expression associated 

with an improved duration of response to tamoxifen, in keeping with tumour 

suppressive functions and supportive of a role in contributing to superior Faslodex 

response in the HER2- cells (Figures 118-120). PCDH7 also displayed predictive 

biomarker potential for tamoxifen since the relationship was absent in untreated 

patients (Figure 121).  

PCR was thus performed on ARTN, UPK3B and PCDH7 since these comprised the 

strongest candidates for relationship to Faslodex response in the HER2- cells 

following the ontological or clinical interrogation. PCR was able to successfully 

verify that Faslodex repression of ARTN and induction of PCDH7 occurred in the 

HER2- cells only (Figures 122 and 123), further confirming that these changes may 

contribute to the extended Faslodex response in HER2- cells. Interestingly, PCR also 

suggested that ARTN could be up-regulated by Faslodex in the HER2+ cell lines 

(Figure 124). This may indicate that induction of ARTN (along with RET co-

expression (Figure 117)) could be involved in the onset of resistance and in limiting 

Faslodex impact in the HER2+ cells, in keeping with the literature associating such 

signalling with disease progression and resistance (Kang et al., 2010; Plaza-

Menacho et al., 2010; Morandi et al., 2013).  It was perhaps surprising that ARTN, 

reported to be oestrogen regulated, is induced in these models despite Faslodex 

treatment. However, ARTN  has been associated with TWIST1 and VEGFA signalling 

in ER- breast cancer (Banerjee et al., 2012), and so it is feasible that alternative 

signalling is similarly promoted when Faslodex suppresses ER in HER2+ cells, driving 

ARTN expression. Also, ARTN has been shown to be regulated by miR-223 in 

oesophogeal cancer (Li et al., 2011b) and so it’s up-regulation in the HER2+ lines 

may reflect impact of Faslodex on micro-RNA profile in these cells. The PCR studies 

in this project were also able to confirm that UPK3B was significantly induced by 

Faslodex in the HER2- cell lines. However, the significant induction of UPK3B also 
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detected in the HER2+ BT474 cell line questioned any involvement for this gene in 

the superior responses to Faslodex in the HER2- cells (Figure 122). 

Thus, genes of prime importance for further study emerging in this chapter are 

PCDH7 and ARTN. Cumulatively, the data presented suggest that PCDH7 could be a 

Faslodex-induced tumour suppressive gene while ARTN could be a Faslodex-

suppressed growth-promoting gene in the HER2- cells.  As shown in chapter 3, HER2 

positivity is a likely factor contributing to the inferior Faslodex anti-tumour 

responses in BT474 and MDA-MB-361 cells, but further study of PCDH7 and ARTN 

could help understand the mechanism of superior drug response in the HER2- lines 

and in turn the varying drug responses that occur within ER+/HER2- patients to anti-

hormones including Faslodex (Di Leo et al,. 2010). Their continued study could 

potentially reveal new therapeutic approaches or biomarkers to maximise Faslodex 

response in breast cancer. 
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Chapter 8 

Identification of Faslodex-de-regulated genes potentially 

involved in shortened Faslodex responses observed in both 

the BT474 and MDA-MB-361 HER2+ cell lines 

 

 

8.1 Introduction  

Although HER2 over-expression has been correlated with an inferior response to 

tamoxifen and AIs (Rasmussen et al., 2008), its clinical relationship to Faslodex 

response does not seem so clear cut, with Faslodex responses having been reported 

in ER+/HER2+ disease in more than one trial (Robertson et al., 2009; Mello et al., 

2011). Nevertheless, many ER+ breast cancer patients treated with Faslodex 

ultimately develop resistance during treatment and this project has also shown 

ER+/HER2+ cells have potential to develop such resistance more rapidly.  

In the ER+ MCF-7 breast cancer line, it has been reported that short-term anti-

hormone treatments, including Faslodex, can promote the up-regulation of 

erbB/HER family members and that such elements are maintained into emerging 

resistant lines and can be targeted alongside anti-hormone to control resistant 

growth (Gee et al., 2011). Co-treatment of ER+/HER2+ cell lines with erbB inhibitors 

(including trastuzumab or lapatanib) and endocrine agents has also been reported 

to have a superior inhibitory effect versus monotherapy with respect to delaying 

the onset of resistance, suggesting that for improved drug response inhibition of ER 

and erbB signalling pathways may be required (Kunisue et al., 2000). However, 

despite these promising results in vitro and some improved response in ER+/HER2+ 

patients during anti-hormone and trastuzumab/lapatanib co-treatment, a common 

outcome for these patients is relapse. This suggests that there are likely to be other 

compensatory mechanisms utilised to overcome endocrine therapy and establish a 

resistant phenotype in ER+/HER2+ disease. Such mechanisms could be due to 
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inherent genetic background (not just HER2 status) or be due to unknown anti-

hormone induced events.  

In this chapter gene expression data from BT474 and MDA-MB-361 HER2+ cell lines 

has been used to attempt to identify Faslodex-induced genomic changes not 

apparent in the HER2- lines, where it is hypothesised that such changes could 

potentially be involved in ER+/HER2+ cell acquisition of resistance to Faslodex. By 

identifying further induced genes, novel mechanisms of Faslodex resistance may be 

identified that could encompass potential therapeutic targets to  maximise Faslodex 

response in the ER+/HER2+ disease cohort or biomarkers of reduced Faslodex 

response.  

8.2 Results 

8.2.1 Identification of genes uniquely Faslodex de-regulated in the 

HER2+ cell lines 

A similar filtering process to that used in previous chapters was employed to 

identify potential resistance-promoting genes altered by Faslodex only in the HER2+ 

cell lines. Genes significantly altered (SAM FDR <0.05; t-test p <0.05) were further 

analysed to identify those genes exhibiting a change in expression greater than 1.5 

fold following 10 day Faslodex treatment in both the BT474 and MDA-MB-361 cell 

lines and these are listed in Table 39.  

As you can see from Figure 124 only 24 were significantly altered in the ER+/HER2+ 

cell lines and further only 10 were identified to exhibit at least 1.5 fold change in 

both models. 
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Figure 124: The Venn diagram illustrates the identification of the 10 genes taken forward as 

potential mediators/biomarkers of reduced Faslodex response as observed in the BT474 

and MDA-MB-361 cell lines. The red circle represents all those genes significantly altered in 

the BT474 and MDA-MB-361 cell lines. The green circle, shows the number of these genes 

that were not altered by at least 1.5 fold in these two models and the blue circle are those 

that were found to be also altered to some extent in the T47D and/or MCF-7 cell lines. The 

10 genes represented by the overlapping circles identify those genes that met the criteria 

to be taken forward for further investigation. 
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Table 39: Genes whose expression was significantly altered in both HER2+ cell lines (BT474 and 

MDA-MB-361) following 10 day Faslodex treatment and the associated change in expression 

(induced or suppressed). Also listed is the number of gene probes that represent a given gene on the 

Affymetrix UI33A genechip and the number of probes exhibiting the same change in expression. 

Potential 
resistance 

promoting-genes 
in BT474 & MDA-

MB-361 

Gene Name 

Gene 
expression 

change 
following 
Faslodex 

treatment 

Total n.o. 
gene 

probes 

Total number of probes 
exhibiting expected 

change in expression 

BT474 
MDA-MB-

361 

SERPINI1 

Serpin peptidase 
inhibitor, clade I 
(neuroserpin), 

member 1. 

Induced 1 1 1 

CDH2 Cadherin 2 Induced 2 2 2 

FAM155A 

Family with 
sequence 

similarity 155, 
member A. 

Induced 1 1 1 

CYP2B6 
Cytochrome P450 

2B6 
Suppressed 1 1 1 

CYP2B7P1 

Cytochrome 
P450, family 2, 

subfamily B, 
polypeptide 7 
pseudogene 1. 

Suppressed 1 1 1 

DDX3Y 
DEAD box 

polypeptide 3, Y-
linked. 

Suppressed 2 2 2 

SLC6A14 

Solute carrier 
family 6 (amino 

acid transporter), 
member 14. 

Suppressed 1 1 1 

GOLM1 
Golgi membrane 

protein 1 
Suppressed 1 1 1 

HSPG2 
Heparan sulfate 
proteoglycan 2. 

Suppressed 2 2 1 

HFE 
Human 

hemochromatosis 
protein 

Suppressed 13 7 1 

 

From Table 39 it can be seen that 7 of the 10 gene probes were suppressed by 

Faslodex treatment in the HER2+ cell lines, and that for most of the genes identified 

the multiple probes showed the same directional change in expression in both 

HER2+ cell lines. The exceptions were HSPG2 where only 1 of the 2 gene probes 
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was suppressed in the MDA-MB-361 cell line, and HFE which was represented by 13 

gene probes, where only 7 were suppressed in the BT474 cell line and only 1 in the 

MDA-MB-361 cell line. Analysis of the HFE jetset probe (211330_s_at) in the HER2+ 

cell lines was not consistent with suppression in both models and as a consequence 

no further work was undertaken for HFE.  

All further analyses investigating the potential of the remaining gene changes to be 

involved in the poorer Faslodex response in HER2+ cells was carried using the jetset 

Affymetrix gene probes for these genes. Table 40 lists the gene names along with 

their associated jetset Affymetrix probe ID and jetset score. Even though the gene 

probe ID’s had been selected as the best probe for a given gene based on 

specificity, coverage and degradation resistance (as predicted by jetset), some  of 

the jetset scores were  low (e.g. FAM155A, CYP2B6) suggesting caution was needed 

when considering the expression profiles of such genes in the HER2+ cells. 

Table 40: Genes identified as being Faslodex de-regulated in both HER2+ cell lines and their 

associated jetset Affymetrix gene probe ID and jetset score (closer to 1 the  better the 

predicted performance). 

HER2+ shared genes Jetset Affy Probe ID Jetset score 

SERPINI1 205352_at 0.52263382 

CDH2 203440_at 0.60799729 

FAM155A 214825_at 0.04316956 

CYP2B6 206754_s_at 0.17823764 

CYP2B7P1 210272_at 0.20452182 

DDX3Y 205000_at 0.24612241 

SLC6A14 219795_at 0.52499114 

GOLM1 217771_at 0.32647773 

HSPG2 201655_s_at 0.54826069 
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Using the jetset Affymetrix gene probes, the genes were further analysed using the 

software program GeneSifter. Figure 125 display the direction of expression change 

for those genes identified as being de-regulated by Faslodex in the HER2+ cell lines 

using heatmaps, confirming that 6 were suppressed and 3 were induced in both 

models. Further investigation of gene expression changes were carried out by 

analysis of the intensity plots generated using the log2 transformed normalised 

data (Figures 126-134). Analysis of these plots allowed an investigation of the 

magnitude of induction or suppression of the gene in all 4 cell lines. By investigating 

the log2 transformed intensity values, as well as the detection call, it was possible 

to determine whether gene expression was robust and thus could be potentially 

PCR verified 

 

 

Figure 125: Heatmaps displaying the induction or suppression of genes altered by 10 day 

Faslodex treatment in both HER2+ cell lines generated by GeneSifter using jetset probes. 
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8.2.1.1 Genes induced by Faslodex in the ER+/HER2+ cell lines 

8.2.1.1.1 SERPINI1  

SERPINI1 was substantially induced by 10 day Faslodex treatment in both HER2+ 

cell lines (Figure 126). All detection calls were present in the HER2+ cell lines pre 

and post treatment with positive log2 intensity values after Faslodex, indicative of 

robust induction which was further confirmed by the good jetset score of the 

SERPINI1 gene probe (Table 40). In the MCF-7 cell lines basal expression was very 

low and Faslodex exerted no expression change.  In contrast, in the T47D cell line, 

basal expression was relatively high and SERPINI1 was suppressed 8 fold following 

Faslodex treatment.   

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

SERPINI1 10.64 6.16 1.05 8.12 

Figure 126: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of SERPINI1 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression promoted by 10 

day Faslodex treatment in each cell line vs. untreated control. Highlighted in red are 

inductions in gene expression and in green suppression of expression >1.5 fold. 
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8.2.1.1.2 CDH2 

Basal gene expression of CDH2 was elevated in the HER2+ cell models compared to 

the HER2- cell lines, where Faslodex treatment further induced CDH2 expression (8 

fold) in the HER2+ cells (Figure 127).  Pre and post treatment, CDH2 detection calls 

were present in the HER2+ cell lines, while absent calls were recorded in the HER2- 

cell lines where all log2 intensity values were below 0, indicative of a lack of 

expression and so unreliable profile in the HER2- cells. As may be seen in Table 40, 

the jetset probe performance was predicted to be relatively high, providing further 

confidence in the gene expression profiles generated. 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

CDH2 8.24 8.83 1.88 1.18 

Figure 127: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of CDH2 in each of the 4 cell lines pre (Con) and post 10 day Faslodex (FAS) 

treatment (B) Table displaying the fold change in gene expression promoted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in red are inductions 

in gene expression >1.5 fold. 
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8.2.1.1.3 FAM155A 

Although FAM155A level was induced in both HER2+ cell lines, the increase was 

greatest in the MDA-MB-361 cell line (Figure 128). Log2 transformed intensity 

levels, however, were low pre and post treatment (below 0) in all cell lines and the 

detection calls were absent so that any changes were unreliable. The poor jetset 

score for FAM155A (Table 40) may contribute to its weak expression profile. 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

FAM155A 2.62 4.75 1.88 1.51 

Figure 128: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of FAM155A in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in red are the 

inductions in gene expression and green the suppression in expression >1.5 fold. 
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8.2.1.1.4 CYP2B6 

The basal log2 intensity values of CYP2B6 in the HER2+ cell lines were higher than 

those recorded in the HER2- cells, where positive calls were detected in the HER2+ 

lines only.  While following Faslodex treatment, the log2 intensity values of CYP2B6 

were minimally changed in the HER2- cell lines with detection calls remaining 

absent, the HER2+ cell lines showed a substantial suppression in CYP2B6 

expression. The BT474 cell line showed a change in detection call from present to 

absent following Faslodex, indicative of a particularly large suppression, while both 

detection calls for the MDA-MB-361 cell line remained present, indicative of some 

residual expression. In total, CYP2B6 appeared substantially suppressed in HER2+ 

cells following Faslodex, although some caution should be observed due to the 

poorer jetset score for this gene (Table 40). 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

CYP2B6 36.04 27 1.96 1.89 

Figure 129: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of CYP2B6 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in red are the 

inductions in gene expression and in green the suppressions >1.5 fold. 
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8.2.1.1.5 CYP2B7P1 

From the log2 intensity plot presented in Figure 130, it can be seen that CYP2B7P1 

basal expression was elevated (with positive log2 intensity values) in the HER2+ 

versus the HER2- cell lines and that Faslodex treatment suppressed its expression in 

both HER2+ models. In each instance in the HER2+ models, detection calls altered 

from present to absent on Faslodex treatment, indicative of a robust suppression of 

gene expression. Log2 intensity levels were below 0 in the HER2- cell lines both 

before and after Faslodex and detection calls were absent. 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

CYP2B7P1 5.96 10.53 2.52 1.65 

Figure 130: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of CYP2B7P1 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in red are the 

inductions and in green suppressions in gene expression >1.5 fold  
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8.2.1.1.6 DDX3Y 

From the log2 intensity values in Figure 143 it can be seen that levels of DDX3Y 

were very low in all cell models both pre and post Faslodex (all below 0) and that 

some suppression of its expression appeared to be  detected in all models post-

Faslodex treatment.  All detection calls were, however, absent and together with a 

poor jetset probe score (Table 40) this suggested an unreliable profile.  

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

DDX3Y 2.05 1.61 1.98 1.55 

Figure 131: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of DDX3Y in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B)A table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in green are the 

suppressions in gene expression >1.5 fold. 
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8.2.1.1.7 SLC6A14 

The log2 intensity data suggested that basal expression of SLC6A14 was elevated in 

the HER2+ cell models in comparison to the HER2- cell lines, and in both HER2+ 

models Faslodex treatment suppressed its expression level (Figure 132). In the 

BT474 cell line, the detection call changed from present to absent after Faslodex 

treatment, while in the MDA-MB-361 cell line the detection call remained present. 

Although there was an apparent >1.5 fold suppression of SLC6A14 expression in 

MCF-7 cells, the detection calls were absent pre and post treatment, indicative of 

an unreliable profile in this model. Very little change in expression was observed in 

the T47D cell and very low log2 intensity values were noted pre and post treatment. 

The jetset score for the SLC6A14 probe was adequate (Table 40), suggestive of a 

good performing gene probe. 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

SLC6A14 33.14 7.68 1.55 1.41 

Figure 132: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of SLC6A14 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in green are the 

suppressions in gene expression and red induction of expression >1.5 fold. 
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8.2.1.1.8 GOLM1  

Log2 intensity control values of GOLM1 were similar across the HER2+ and MCF-7 

cell lines (although slightly elevated in the T47D cell line) (Figure 133) and 

suppression of GOLM1 by 10 day Faslodex treatment was found to occur not only in 

the HER2+ cell lines but also in the T47D model. Each HER2+ cell line showed a 

change in detection call from present to absent, indicative of a robust suppression. 

In contrast, the T47D cell line call remained present after Faslodex treatment. 

Regardless of the adequate predicted jetset performance (Table 40), the robust 

suppression of GOLM1 in the T47D cell line as well as in the HER2+ cell lines 

suggested GOLM1 changes were not unique to HER2+ cells; no further work was 

carried out on this gene. 

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

GOLM1 3.50 22.48 2.55 3.97 

Figure 133: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of GOLM1in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in green are the 

suppressions in gene expression and red inductions of expression >1.5 fold. 
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8.2.1.1.9 HSPG2 

Log2 intensity control values of HSPG2 were similar in the HER2- and BT474 cell 

lines, while very much suppressed in MDA-MB-361 cells (Figure 134). Faslodex 

treatment suppressed HSPG2 expression in both the HER2+ cell lines and to an 

extent in the T47D cell line. However, despite the good predicted performance of 

this gene probe (Table 40), HSPG2 log2 intensity values in all models pre and post 

treatment were low and all detection calls were found to be absent, indicative of a 

lack of expression and so unreliable profile. As HSPG2 was represented by 2 gene 

probes on the Affymetrix gene chip the second gene probe was also analysed, but 

found to exhibit an even poorer profile than the jetset gene probe.  

 

Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

HSPG2 7.54 2.78 1.56 1.73 

Figure 134: (A) Log2 intensity plot displaying the normalised (mean of triplicate samples) 

gene expression of HSPG2 in each of the 4 cell lines pre (Con) and post 10 day Faslodex 

(FAS) treatment (B) Table displaying the fold change in gene expression exerted by 10 day 

Faslodex treatment in each cell line vs. untreated control. Highlighted in green are the 

suppressions in gene expression and red inductions of expression >1.5 fold. 
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In summary, following analysis of the log2 intensity plots and expression calls, the 

following genes were dismissed from the investigation; FAM155A, DDX3Y, GOLM1 

and HSPG2 due either to a lack of expression and/or not being uniquely de-

regulated by Faslodex in the HER2+ cell models.  

Further investigations were carried out on the following genes: 

 SERPINI1  

 CDH2 

 CYP2B6 

 CYP2B7P1 

 SLC6A14 

8.2.2 Ontological investigation on those genes potentially involved in 

limiting Faslodex response in the HER2+ setting. 

Ontological investigations were carried out on each of the 5 short-listed genes to 

determine if they had been previously associated with:  

 Breast cancer or any other cancer type; 

 Known or potential adverse function (e.g. tumour growth or progression); 

  Known or potential tumour suppressive function 

The results of the ontological investigations are accumulated in Tables 41 to 45. 

Pubmed and Scopus were used throughout using the gene name/acronym, 

together with selected keywords/phrases which included breast cancer, cancer, 

oncogene, proliferation, growth, metastasis, Faslodex, hormonal or endocrine 

therapy, survival, growth inhibition, tumour suppressor, apoptosis. Gene acronyms 

highlighted in red were induced by Faslodex in T47D cells and those in green were 

suppressed. 

Table 41: Summary of published reports investigating the function of SERPINI1 including 

any reports in breast and other cancers. 

Gene Name/Acronym Serpin peptidase inhibitor, clade 1: SERPINI1 

Function SERPINI1 is a serine protease inhibitor that inhibits 
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plasminogen activators and plasmin. It may also be involved in 

the formation or reorganization of synaptic connections as well 

as synaptic plasticity in the nervous system (Lee et al., 2008) 

Associations with breast 

cancer 

No associations with breast cancer 

Associations with other 

cancers 

miR21 is overexpressed in gastric carcinoma  (Volinia et al., 

2006) and has been shown to downregulate SERPINI1 releasing 

cells from the G1-S transition checkpoint, ultimately leading to 

an increase in tumour growth. Thus expression of SERPINI1 in 

gastric cancer has tumour suppressive functions (Yamanaka et 

al., 2012). 

 

The PDCD10 (programmed cell death gene 10) gene is adjacent 

to the SERPINI1 gene. It has been shown by Chen et al., that 

transcription of these genes is promoted by the c-myc 

oncogene and potentially involved in central nervous system 

(CNS) diseases such as brain cancer (Chen et al., 2009). 

However, SERPINI1 is down-regulated in brain cancer tissues 

and in cell lines derived from brain cancer suggesting that its 

expression in brain cancer is tumour suppressive (Chang et al., 

2000). 

 

Table 42: Summary of published reports investigating the function of CDH2 including any 

reports in breast and other cancers. 

Gene Name/Acronym Cadherin 2, N-cadherin: CDH2/NCAD 

Function CDH2 is a classical member of the cadherin superfamily. Cadherins 

play an important role in cell recognition, adhesion, and signalling, 

and have a significant effect on the progression of tumours 

(reviewed by Maitre et al., 2008) 

Associations with 

breast cancer 

It has been recently noted, that the loss of E-cadherin is 

associated with an upregulation in N-cadherin in invasive tumour 

cell lines, including those derived from breast cancer (Hazan et al., 

1997). Forced expression of N-CAD in the  
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MCF-7 and BT-20 breast cancer cell lines leads to increased 

motility and a pro-invasive phenotype (Neiman et al., 1999) and 

metastatic behaviour in nude mice (Hazan et al., 2000). 

 

The invasive phenotype encouraged by N-CAD expression is due 

to its interaction with FGFR1 at the cell membrane (Suyama et al., 

2002; Kim et al., 2000). Binding of N-CAD to FGFR1 causes 

receptor stabilisation and continuous MAPK/ERK activation 

resulting in enhanced transcription of MMP-9 that leads to the 

pro-invasive phenotype (Suyama et al., 2002). N-CAD can also 

encourage metastasis independent of its interaction with FGFR1; 

namely by homophilic interaction between N-CAD expressing 

tumour cells and tissues such as the stroma (Hazaan et al., 1997) 

and endothelium (Hazan et al., 2000) assisting the movement of 

tumour cells to secondary sites.  

 

N-CAD has also been shown to correlate with HER2+ status as well 

as a HER2+ enriched triple negative molecular subtype in breast 

cancer patients who underwent surgery for invasive ductal 

carcinoma (Lee et al., 2012) 

 

N-CAD has also been shown to interact with a further cadherin VE-

CAD (vascular endothelial cadherin), the main component of 

endothelial cell adherens junction with prominent roles in 

angiogenesis and vascular permeability (Dejana et al., 2009). VE-

CAD and N-CAD have been shown to be co-expressed in 

aggressive mouse breast cancer cells, where N-CAD controls the 

expression of VE-CAD. N-CAD maintains the mesenchymal 

phenotype thus promoting disease progression, while VE-CAD 

regulates the intracellular localisation of N-CAD by displacing it 

from the cell membrane (Rezaei et al., 2012). 

Associations with 

other cancers 

Increased levels of circulating N-CAD have been identified as a 

prognostic marker for high-risk multiple myeloma patients 

(Vandyke et al., 2013). 
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Deregulation of N-CAD expression is associated with the 

promotion of cell migration in prostate cancer (Cui et al., 2013). 

In osteosarcoma, the downregulation of N-CAD prevents cell 

migration and metastasis (Kashima et al., 2003). 

 

In contrast, in neuroblastoma, reduced N-CAD expression was 

associated with metastasis. However, inhibition of N-CAD using an 

N-CAD antagonist had antitumour activity suggesting it could still 

be a valid target in this disease setting (Lammens et al., 2011) 

 

Table 43: Summary of published reports investigating the function of CYP2B6 including any 

reports in breast and other cancers. 

Gene Name/Acronym Cytochrome P450, family 2, subfamily B, polypeptide 6: CYP2B6 

Function CYP2B6 encodes a member of the cytochrome P450 superfamily 

of enzymes. The cytochrome P450 proteins are monooxygenases 

which catalyze many reactions involved in drug metabolism and 

synthesis of cholesterol, steroids and other lipids (reviewed by 

Danielson, 2002). 

Associations with 

breast cancer 

Tamoxifen is a prodrug that is converted to endoxifen and 4-

hydroxy-tamoxifen (metabolites have 33 times greater affinity for 

ER than tamoxifen) by several CYP-P450’s, including CYP2B6, 

CYP2C9, CYP2C19 and CYP2D6).  The CYP-P450 enzymes are 

polymorphic and based on SNPs they can have increased or 

decreased activity. While a patient’s genotype for CYP2D6 has 

been shown to affect tamoxifen metabolism and thus the plasma 

concentration of endoxifen (Goetz et al., 2005), CYP2B6 is less 

active in this respect (Boocock et al., 2002).  

 

CYP2B6 has been identified as an ER-regulated gene through an 

ERE site located on the CYP2B6 promoter in the T47D breast 

cancer cell line. In this context, E2 leads to the up-regulation of 

CYP2B6, an effect not observed in the MCF-7 cell line, suggestive 
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of cell-type specific transcriptional regulation of CYP2B6 by ER (Lo 

et al., 2010). 

Associations with 

other cancers 

No associations with other cancers. 

 

Table 44: Summary of published reports investigating the function of CYP2B7P1 including 

any reports in breast and other cancers. 

Gene Name/Acronym cytochrome P450, family 2, subfamily B, polypeptide 7 

pseudogene 1. CYP2B7P1 

Function Pseudogenes are relatives of genes that have lost their protein-

coding ability. By definition, pseudogenes lack a function (Poliseno 

et al., 2010) 

Associations with 

breast cancer 

No associations to breast cancer 

Associations with 

other cancers 

No associations to cancer 

 

Table 45: Summary of published reports investigating the function of SLC6A14 including 

any reports in breast and other cancers. 

Gene Name/Acronym Solute carrier family 6 (amino acid transporter), member 14: 

SLC6A14 

Function SLC6A14 is a member of the solute carrier family 6; sodium and 

chloride dependent neurotransmitter transporters. The encoded 

protein transports both neutral and cationic amino acids 

(Ganapathy et al., 2003).  

Associations with 

breast cancer 

SLC6A14 transports all essential amino acids as well as glutamate 

(an important precursor for nucleotide synthesis) and arginine 

(which is essential for tumour growth) but the transporter is only 

expressed at low levels in normal cells. Due to the increased need 

by tumour cells for amino acids it has been hypothesised that 

SLC6A14 maybe upregulated in cancer cells (Karunakaren et al., 

2011). 
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SLC6A14 has been found to be upregulated by E2 in HER2+/ER+ 

breast cancer cell lines (BT474 and ZR-75 cell lines) and inhibition 

of the transporter in these cell lines prevented the uptake of 

many essential amino acids leading to growth inhibition and 

apoptosis (Karunakaran et al., 2008) 

Associations with 

other cancers 

SLC6A14 has been shown to up-regulated in colon and cervical 

cancer in order to cope with the increased demand for nutrients 

(Gupta et al., 2005; Gupta et al., 2006). 

 

The only gene whose expression profile and ontology were in keeping with a likely 

in involvement in the reduced Faslodex response observed in the HER2+ cell lines 

was CDH2 (Table 42). CDH2 (N-cadherin) has been associated with cancer 

progression in breast and other cancers and thus its up-regulation by short-term 

Faslodex treatment in the HER2+ cell lines may contribute to swifter development 

of drug resistance. Subsequently, all further investigations were carried out solely 

on CDH2. 

8.2.3 Establishing potential clinical relevance of CDH2 in the context of 

endocrine outcome  

Equivalent analysis, as performed in previous chapters using KMPlotter and GOBO, 

were used to determine if there was a potential clinical relevance of CDH2 in 

relation to tamoxifen-treated ER+ breast cancer. Although no significance was 

observed in the smaller GOBO dataset, in KMPlotter (n=657) a significant 

association was identified (Figure 135), where increased inherent CDH2 expression 

(red line) was associated with a reduced RFS in tamoxifen treated patients. The 

hazard ratio was found to be greater than 1, indicated patients with an increased 

CDH2 expression (red line) were at an increased risk of earlier relapse following 

tamoxifen therapy (HR=1.39, 95% CI 1.04-1.85). No significant associations were 

identified when using KMPlotter to investigate CDH2 gene expression in ER+ 

systemically untreated ER+ patients. 
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Figure 135: Kaplan-Meier survival curve generated using KMPlotter displaying probability of 

RFS according to high (red) or low (black) CDH2 mRNA expression in  tamoxifen-treated ER+ 

breast cancer patients (n=657). This survival curve was generated using the jetset 

affymetrix gene probe for CDH2 grouping patients by best fit cut-point (calculated by 

KMPlotter). 

8.2.4 PCR verification of CDH2 potentially involved in reduced 

Faslodex response duration in the HER2+ cell lines  

Based on a promising Faslodex induced profile in the HER2+ cell lines, adverse 

ontology and clinical relationship to poor tamoxifen outcome, CDH2 was deemed a 

good candidate to be subsequently PCR verified. Triplicate RNA from untreated and 

10 day Faslodex treated cells were used for PCR (Figure 136) in an attempt to verify 

the Affymetrix expression profile. CDH2 expression was elevated basally in the 

HER2+ compared to the HER2- cell lines, as observed in the microarray data (Figure 

127). However, following 10 day Faslodex treatment only very minimal further 

inductions were detected by PCR in the HER2+ cell lines, contrasting the microarray 

findings. In agreement with the microarray data CDH2 expression was extremely 

low in the MCF-7 cell line despite a small Faslodex induction.  While there was little 

change in the modest CDH2 expression in the T47D cell line.  
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Gene 
Acronym 

Fold change of expression following Faslodex treatment 

BT474 MDA-MB-361 MCF-7 T47D 

CDH2 1.26 1.05 2.55 1.23 

Figure 136: Representative PCR image (A) with the corresponding β-actin normalised 

densitometry graph (B) quantitatively representing the data (CON-control; FAS-10 day 

Faslodex treatment) for CDH2. The results are expressed as means ± SEM of three separate 

experiments. (C) Table displaying the fold change of gene expression following Faslodex 

treatment. 

8.3 Discussion 

HER2+ BT474 and MDA-MB-361 cells had a reduced response duration to Faslodex 

during long-term in vitro culture compared with their HER2+ counterparts. It is 

feasible that along with their intrinsic amplified HER2, Faslodex-deregulated genes 

(i.e. induced proliferative/cell survival genes, or alternatively decreased tumour 

suppressive elements) also contribute towards this earlier development of 

resistance in these models. In this light, following SAM analysis and t-test filtering 

10 genes were initially identified as being uniquely Faslodex de-regulated (by at 

least 1.5 fold) in the HER2+ cell lines. Of those, 3 were induced by 10 day Faslodex 
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treatment and 7 were suppressed.  Half of these were lost following further filtering 

by analysis of the log2 intensity plots (which eliminated genes because Faslodex 

changes were also noted in HER2- cells or because of low log2 intensity 

values/absent calls indicating unreliable expression), and by ensuring that the 

change in expression observed using the jetset probe was shared by the majority of 

any further probes for a given gene.  

This filtering strategy was successful in prioritising 5 genes for subsequent 

ontological investigation, comprising SERPINI1 and CDH2 which were Faslodex 

induced and CYP2B6, CYP2B7P1 and SLC6A14 which were Faslodex suppressed on 

the arrays in HER2+ cells. Ontological studies led to the dismissal of 4 of these 

genes, leaving CDH2 as the highest priority gene potentially-contributory towards 

the earlier development of Faslodex resistance in the ER+/HER2+ cell lines. CDH2 

has been widely associated with disease progression, increased motility, invasive 

capacity, metastasis and angiogenesis in breast cancer as well as other cancers 

(Hazan et al., 2000; Suyama et al., 2002; Hazaan et al., 1997, Rezaei et al., 2012), 

while an N-CAD antagonist exhibited anti-tumour activity in neuroblastoma 

(Lammens et al., 2011). It has also been associated with HER2 positivity in breast 

cancer (Lee et al., 2012), and in agreement its basal expression in this project was 

found to be higher in HER2+ compared with HER2- cells on the arrays. CDH2 has not 

been previously associated with anti-hormone failure in breast cancer.  

Unfortunately, however, although the basal expression profile was verified in the 

HER2+ versus HER2- cells, PCR was unable to detect significant further induction of 

the gene in either of the HER2+ cell lines with Faslodex. No non-specific binding was 

identified suggesting the PCR primers were specific for CDH2. However, from the 

PCR densitometry graph (Figure 136) the error margins were relatively large 

suggesting expression was variable in the different samples analysed which may 

have masked any significant Faslodex change. Alternatively, it may be that because 

expression of CDH2 was elevated basally in the HER2+ cells, observing further 

significant increases was not feasible by end-point PCR.  
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Although further approaches are therefore needed to definitively confirm or refute 

Faslodex impact on CDH2 expression in the HER2+ cells, it is certainly interesting 

that there were inherently high levels of CDH2 gene expression in the HER2+ cell 

lines. Based on its adverse ontology, it is feasible that this intrinsic CDH2 may 

contribute to limiting the duration of Faslodex response in this model. This concept 

is in part supported by the relationship between increased intrinsic CDH2 level and 

poorer RFS in tamoxifen treated ER+ patients observed using KMPlotter (Figure 

135) (although it was not possible with this tool to explore the association within an 

ER+/HER2+ cohort). Indeed, the lack of relationship in systemically untreated 

patients further suggested that CDH2 expression level related specifically to anti-

hormone outcome within ER+ disease.  Although data from Lee et al suggest that 

expression of CDH2 may be dependent on elevated HER2 levels (Lee et al., 2012) 

and the transcription factor AP2 gamma has been implicated in regulation of both 

genes (Ailan et al., 2009), no relationships have previously been reported linking 

CDH2 and HER2 signal transduction in cancer or in the context of endocrine 

resistance. However, the data in this project gives reason to believe that elevated 

basal CDH2 could contribute to limiting Faslodex response in the HER2+ setting, and 

so future work is certainly warranted in this regard since this may yield new 

therapeutic strategies to improve endocrine outcome or potentially a novel 

resistance biomarker.  
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Chapter 9 

Analysis of genes of interest in the NEWEST (Neoadjuvant 

Endocrine Therapy for Women with Estrogen-Sensitive 

Tumours) trial to determine clinical impact of Faslodex and 

relation to anti-tumour impact. 

 

 

9.1 Introduction 

In the previous chapters, this project has begun to determine potential clinical 

relevance of genes of interest in relation to antihormone outcome using publically 

available breast cancer datasets within KMPlotter and GOBO. While these datasets 

allow determination of the relationship between inherent gene expression and 

duration of response in tamoxifen treated ER+ breast cancer patients,   they fail to 

determine the effect of endocrine treatment on the expression level of the gene. 

Furthermore, the prioritised genes of interest in this project have been identified as 

being potentially involved in the varying Faslodex responses shown by ER+ breast 

cancer cell lines in vitro by determining their expression de-regulation by Faslodex 

in one or more of the cell models. Critically, however, the endocrine-treated 

datasets used by KMPlotter and GOBO are generated from tamoxifen-treated 

patients and do not address Faslodex promoted events and gene expression data 

from patients treated with Faslodex is not as yet publically available.  

Fortunately, however, for this project access to gene microarray and parallel 

immunohistochemical (IHC) data from the NEWEST (Neoadjuvant Endocrine 

therapy for Women with Estrogen-Sensitive Tumours) trial carried out by 

AstraZeneca was granted. NEWEST comprises a recently-completed randomised 

Phase II trial in newly diagnosed ER+ postmenopausal with locally advanced breast 

cancer who had received no prior treatment (Kuter et al., 2012). It was the first trial 
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to assess the biological and clinical activity of 500mg/month (plus 500mg on day 14 

of month 1) versus 250mg/month Faslodex in the neoadjuvant breast cancer setting 

for 16 weeks prior to surgery. Neoadjuvant treatment is a systemic cancer therapy 

given to patients for a number of weeks prior to surgery for the primary tumour in 

an attempt to reduce tumour size (Liu et al., 2010; Mathew et al., 2009). Such 

treatments, if they cause anti-tumour effects, can result in patients being 

appropriate for breast conserving surgery and can make inoperable tumours 

operable (Makris et al., 1998). Most neoadjuvant approaches to date relate to the 

use of chemotherapy but following the success of adjuvant endocrine treatments 

more studies are assessing the benefit of anti-hormones in the neoadjuvant setting 

(Coombes et al., 2007; Coates et al., 2007). Importantly, studies in this pre-

operative setting also allow new treatments to be investigated, providing a 

“window-of-opportunity” to collect matched tumour samples prior and subsequent 

to treatment for biological studies (Krainick-Strobel et al., 2008; Baselga et al., 

2009). 

In the NEWEST trial, gene expression and various IHC data from core biopsies were 

accrued at week 0 (baseline) and at week 4 during Faslodex treatment. 

Unfortunately, sufficient data relating to the HER2 status of patients was not 

collected as well as clinical response data. The primary endpoint of the trial was 

IHC-detected Ki67 (proliferation marker) expression from baseline to week 4, and 

secondary endpoints were ER and ER-regulated PGR protein expression, and 

tolerability (Kuter et al., 2012). The trial was instigated as a consequence of 

previous observations that ER down-regulation appeared to be dose-dependent, 

thus it was hypothesised for the NEWEST trial that by increasing the dose of 

Faslodex to 500mg further ER antagonism may occur improving anti-tumour 

response (Robertson et al., 2001). NEWEST went on to show that 500mg Faslodex 

was indeed superior to 250mg in terms of significantly greater down-regulation of 

KI67 (-78.8% vs. -47.4% ; p <0.0001), as well as ER (-50.3 vs. -13.7%; p < 0.0001) and 

also PGR (-80.5 vs. -46.3%; p = 0.0018) protein expression, although the underlying 

mechanisms of the anti-proliferative impact remain unknown.  
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Since gene expression data were available, therefore, the NEWEST trial provided a 

unique opportunity in this project to determine the initial effects of Faslodex 

treatment on the expression of the 12 in vitro-derived, prioritised genes of interest 

(Table 46) from Chapters 3-6 to address; (1) if they were commonly altered in ER+ 

breast cancer patients treated with Faslodex in the neoadjuvant setting and (2) if 

they were related to changes in Ki67 and thus potentially linked to mechanistic 

regulation of proliferation by Faslodex. By carrying out these investigations, 

potential clinical relevance of the genes of interest could be determined for the first 

time in relation to Faslodex treatment in ER+ breast cancer (although unfortunately 

it was not possible to further stratify patients by HER2 status).   

Table 46: Key genes prioritised from the 4 ER+ breast cancer cell lines treated with Faslodex 

(FAS) for 10 days. Genes highlighted in green comprise those suppressed by at least 1.5 fold 

Faslodex treatment while those in red were Faslodex-induced by at least 1.5 fold.  

HER2+ and MCF-7 
FAS de-regulated 

genes (n=5) 
 (potentially 
resistance-
promoting) 

T47D FAS  
de-regulated genes 

(n=4)  
(potentially 
involved in 

Faslodex complete 
response) 

HER2- FAS  
de-regulated genes 

(n=2) 
(potentially 
involved in 

extended HER2-
Faslodex response) 

HER2+ FAS  
de-regulated genes 

(n=1) 
 (potentially 
involved in 

HER2+early onset 
of resistance) 

PRKACB DCN PCDH7 CDH2 

VEGFC TXNIP ARTN  

CXCR4 TGFB2   

GABBR2 CASP1   

GFRA1    

 

FDA approval has been granted for the increased dose of Faslodex at 500mg and 

this dose has been shown to be superior in down-regulating ER, consistent with an 

improved tumour delivery of the drug in comparison to the sub-optimal 250mg 

dose (Di Leo et al., 2010; Kuter et al., 2012). Hence all initial analyses to identify 

associations between the expression of the genes of interest, Faslodex treatment 

impact and anti-proliferative effect were carried out using matched sample data 
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collected from patients in the 500mg treatment arm of the trial, only examining 

resultant significant genes for any emerging trends using the matched 250mg data. 

9.2 Results 

The NEWEST gene expression data and IHC data (Ki67, and for more limited analysis 

ER) were uploaded into SPSS to carry out statistical tests to determine if any of the 

12 prioritised Faslodex-influenced genes (Table 46) were significantly altered 

following 4 weeks neoadjuvant Faslodex treatment versus baseline (using paired t-

test analysis on matched patient sample) and if the direction of any Faslodex-

induced change in gene expression associated with the degree of Ki67 suppression 

(using Mann Whitney analysis). Kuter et al., reported that core biopsies were taken 

from 60 patients in the 500mg Faslodex trial arm, but only a subset were processed 

for microarrays. For the patients chosen for microarray analysis, magnitude of Ki67 

fall (and also ER down-regulation) was calculated and is displayed in Tables 2 and 3 

along with the changes reported by Kuter et al., (Kuter et al., 2012) for the full 

patient study.  

Absolute Ki67 change was not substantially different between the patient cohort 

chosen for microarray analysis and the whole trial cohort (Table 47). 

Table 47: Absolute reduction in Ki67 positivity from baseline in the NEWEST trial for all 

patients from the 500mg Faslodex trial arm and for those with samples processed for 

microarray analysis 

Patient cohort 
Absolute Ki67 

reduction from 
baseline 

N=60 500mg 
trial arm 

17.5 

N=24 500mg 
trial arm used 
for microarray 

24.4 
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9.2.1 Analysis of the 5 genes de-regulated by Faslodex in the MCF-7 

and HER2+ models within the NEWEST clinical trial microarray 

dataset. 

9.2.1.1 Determining if the genes were de-regulated by Faslodex in the clinic 

A paired t-test was performed to determine if any of the genes potentially 

contributory towards acquired Faslodex resistance in both the ER+/HER2+ and 

ER+/HER2- setting were also significantly altered in expression in patient samples 

during Faslodex treatment (Table 48) using normalised gene array data and 

comparing their expression after 4 weeks 500mg Faslodex treatment versus 

baseline. 

Table 48: Paired t-test results from NEWEST data for  genes de-regulated by Faslodex in the 

HER2+ and MCF-7 cell lines, and number of patients showing an induction or suppression in 

gene expression following 4 weeks 500mg Faslodex treatment versus baseline (n=24). 

Gene Symbol P-value 

Number of patients showing 
gene change 

Induction Suppression 

PRKACB 0.167 12 12 

VEGFC 0.276 13 11 

CXCR4 0.675 17 7 

GABBR2 0.592 11 13 

GFRA1 <0.0001 1 23 

 

The only gene to meet significance was GFRA1 (Table 48). GFRA1 was identified as a 

Faslodex-suppressed gene in the HER2+ and MCF-7 cell lines, and similarly the 

NEWEST dataset revealed that of the 24 patients analysed from the 500mg trial 

arm, 23 demonstrated suppression in GFRA1 after 4 weeks 500mg Faslodex 

treatment (Table 48, Figure 137). Varying degrees of suppression in the patient 

samples were reflected by the broad range of fold change after Faslodex treatment 

(1.04-8.3 fold suppression; mean = 1.97, very similar to the inductions observed in 

the PCR validation of the ER+/HER2+ cell lines (~1.7) while the MCF-7 cell line 
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exhibited a much greater induction at the top end of the scale observed in NEWEST 

(7.28). 

 

Figure 137: Microarray log2 baseline expression and on-treatment mRNA expression of 

GFRA1 following 4 week neoadjuvant 500mg Faslodex, p=<0.0001 (n=24). 

Examining the 250mg trial arm versus baseline, a significant association was also 

identified for GFRA1 (p=<0.001), with the majority of patients again demonstrating 

a suppression by 4 weeks Faslodex at this dosage. Of the 17 patients analysed, 16 

showed decreased GFRA1 expression following treatment, while the remaining 

patient exhibited an induction (Figure 138). The baseline log2 expression range of 

GFRA1 from patients in the 250mg trial arm (7-9.5) was comparable with the 

500mg arm (7-10) (Figures 137 and 138) and again varying degrees of suppression 

were observed following Faslodex treatment (Figure 138), although a somewhat 

smaller range of GFRA1 fold change was observed with 250mg Faslodex (1.02-2.8 

fold suppression, mean= 1.5) with no large fold changes. 
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Figure 138: Microarray log2 baseline expression and on-treatment mRNA expression of 

GFRA1 following 4 week neoadjuvant 250mg Faslodex, p=<0.0001 (n=17). 

Although significance was not met for the 48 remaining genes induced by Faslodex 

in the HER2+ and MCF-7 cell lines, the clinical sample data were interrogated 

further to determine the number of patients showing an induction or suppression 

for each gene following 4 week 500mg Faslodex treatment (Table 48) to see if any 

of these genes could potentially be important in limiting drug response in a patient 

sub-population. For PRKACB, VEGFC and GABBR2, approximately half of patients 

showed an induction while others showed suppression of gene expression (Table 

48). In contrast, the majority of patients showed induction of CXCR4 expression 

following treatment (n=17), as displayed in Figure 139A, with few patients showing 

suppressed CXCR4 expression in 139B. Even though in the majority of patients 

Faslodex induced CXCR4, the magnitude of induction was relatively low (fold 

induction range 1.02-1.68, average= 1.2 fold, similar to the induction observed in 

the PCR validation of the cell lines; in both ER+/HER2+ cell lines induction was 1 fold 

while the MCF-7 cell line exhibited an of approximately 3 fold. The baseline CXCR4 

log2 expression level was comparable between both patient cohorts (range ~7-9, 

Figure 139). 
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Figure 139: Microarray Log2 baseline expression and the on-treatment mRNA expression of 

CXCR4 in (A) patients that showed Faslodex-induction of expression (n=17), and (B) patients 

that exhibited suppression (n=7) following 4 week neoadjuvant 500mg Faslodex treatment. 

9.2.1.2 Determining if Faslodex change in expression of the 5 genes related to 

Ki67 change 

Further analyses were carried out for the 5 genes to determine if magnitude of 

suppression of Ki67 (baseline % – 4 week treatment %) related to direction of 

change of gene expression following Faslodex treatment using a Mann-Whitney U 

test. No p-value was reported for GFRA1 as only one patient showed an induction 

of GFRA1 expression following treatment (Table 49). It was hypothesised from the 
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cell models that induction of PRKACB, VEGFC, CXCR4 or GABBR2 and GFRA1 

suppression would be associated with a reduced magnitude of Ki67 suppression. 

Table 49: Relationship between direction of gene change and the magnitude of change in 

Ki67 (using Mann-Whitney U test) following 4 weeks of 500mg Faslodex (n=24). 

Gene 
Name 

P-value Number of 
patients with 

gene 
suppression 

Median 
suppression 
of Ki67 (%) 

Number of 
patients with 

gene 
induction 

Median 
suppression 
of Ki67 (%) 

PRKACB 0.905 9 14 15 12 

VEGFC 0.296 11 11 13 13.88 

CXCR4 0.445 7 31 17 12 

GABBR2 0.817 12 14.5 12 12 

GFRA1 N/A 23 14 1 11 

 

For these remaining genes there was unfortunately no significant difference in 

magnitude of suppression of Ki67 between the induced or suppressed gene 

expression cohorts (Table 49). However, the majority of patients from the 500mg 

Faslodex trial arm showed an induction in CXCR4 expression following treatment 

and there was a reduced median suppression of Ki67 in this group. 

9.2.2 Analysis of the 4 genes de-regulated by Faslodex in the T47D cell 

line within the NEWEST clinical trial microarray dataset. 

9.2.2.1 Determining if the genes were de-regulated by Faslodex in the clinic 

A paired t-test was performed to determine if any of those genes hypothesised to 

contribute to the complete response in the T47D cell line were also significantly 

altered in expression in patient samples during Faslodex treatment in the NEWEST 

trial. 
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Table 50: Pared t-test results from NEWEST data for genes de-regulated by Faslodex in the 

T47D cell line only, and number of patients showing an induction or suppression of gene 

expression following  4 weeks 500mg Faslodex treatment versus baseline (n=24).  

Gene Symbol P-value 

Number of patients showing 
gene change 

Induction Suppression 

DCN 0.070 17 7 

TXNIP 0.714 12 12 

TGFβ2 0.137 12 12 

CASP1 0.815 14 10 

 

After such analysis, DCN was the only gene nearing significance (Table 50). DCN was 

a Faslodex induced gene in the T47D line, and the majority of patients showed 

induction of DCN following 4 weeks of Faslodex treatment (n=17) (Figure 140A), 

while only 7 patients displayed  down-regulation of expression (Figure 140B). 

Patients that exhibited induction of DCN expression with Faslodex (Figure 140A) 

showed a broad range of fold change (1.1-4.5 fold induction; mean= 2.3 which is 

lower than that observed in the PCR validation of DCN induction in the T47D cell 

line which was calculated as 4.8 fold).   
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Figure 140: Microarray log2 baseline expression and on-treatment mRNA expression of 

DCN in (A) patients that showed a Faslodex-induction of expression (n=17), and (B) patients 

that exhibited suppression (n=7) following 4 week neoadjuvant 500mg Faslodex treatment. 

There also seemed to be some difference in the intrinsic DCN gene expression in 

relation to whether a patient subsequently showed Faslodex induction or 

suppression of this gene. Thus, the baseline log2 expression range for those 

patients where Faslodex subsequently induced DCN expression was 8-11 while for 

those where Faslodex suppressed expression the baseline log2 intensity was 
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generally higher (range=10-12.5). An independent t-test determined this difference 

was significant (p=0.003).    

While  there was evidence that 500mg Faslodex induced DCN expression, with 

250mg treatment no prevalent pattern of change was observed (p=0.776), where 9 

patients displayed induction and 8 suppression in DCN gene expression (Figure 5). 

Fold induction also appeared lower (range=1.06-3.1) compared with 500mg 

Faslodex (Figure 141).  

 

 

Figure 141: Microarray log2 baseline expression and on-treatment mRNA expression of 

DCN in (A) patients that showed a Faslodex-induction of expression (n=9), and (B) patients 

that exhibited suppression (n=8) following 4 week neoadjuvant 250mg Faslodex treatment. 
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TXNIP, CASP1 and TGFB2 were also identified as Faslodex-induced genes in the 

T47D cell line. Although none of these genes neared significance (Table 50), the 

500mg data were again further analysed to determine the magnitude of any patient 

cohort demonstrating induction. Approximately half of the patients displayed an 

induction of gene expression following 4 weeks Faslodex treatment (Table 50).  

9.2.2.2 Determining if Faslodex change in expression of the 4 genes related to 

Ki67 change 

In order to further determine if induction of the genes of interest was associated 

with an improved anti-proliferative response to Faslodex in the clinic, a Mann-

Whitney U test was performed to determine if magnitude of Ki67 fall (baseline % - 4 

weeks 500mg Faslodex %) was greater in those patients exhibiting Faslodex-

induced gene expression.  Both DCN and TXNIP neared significance (Table 51). 

Graphical display of these data revealed increases in expression of either DCN or 

TXNIP were associated with a greater median fall in Ki67 protein expression 

following Faslodex treatment (Figure 142 and 143) compared to patients displaying 

suppression of expression. 

Table 51: Relationship between direction of gene change and magnitude of change in Ki67 

(using Mann-Whitney U test) following 4 weeks of 500mg Faslodex (n=24). 

Gene Symbol P-value 

DCN 0.075 

TXNIP 0.089 

TGFB2 0.147 

CASP1 0.240 
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Figure 142: Change in Ki67 in patients exhibiting induction of DCN following 4 weeks 500mg 

Faslodex treatment compared to those with suppression. 

Figure 143: Change in Ki67 in patients exhibiting induction of TXNIP following 4 weeks 

500mg Faslodex treatment compared to those with suppression. 

While induction of TGFB2 or CASP1 was not statistically associated with an 

improved fall in Ki67 protein expression (Table 51), induction of expression of these 

genes by Faslodex was associated with a modestly improved median Ki67 

suppression (Table 52).  
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Table 52: Relationship between direction of gene change for TGFB2 and CASP1 and the 

magnitude of change in Ki67 following 4 weeks of 500mg Faslodex (n=24). 

Gene 
Name 

Number of 
patients with 

gene 
suppression 

Median 
suppression of 

Ki67 

Number of 
patients with 

gene 
induction 

Median 
suppression of 

Ki67 

TGFB2 12 11.5 12 23 

CASP1 12 13 12 21.5 

 

Of the 24 patients analysed from the 500mg trial arm, 3 displayed an up-regulation 

in Ki67 expression during Faslodex treatment and it is possible that such increases 

in Ki67 during treatment could be an indication of a distinct patient cohort 

“intrinsically resistant” to therapy (although this is yet to be confirmed in relation to 

endocrine therapy). To examine whether induction of the most promising genes 

DCN and TXNIP was also informative in relation to patients showing some initial 

anti-tumour “responsiveness”, Mann-Whitney U analysis was repeated for these 

genes using the 21 patients showing any suppression in Ki67 during treatment. The 

relationship between changes in Ki67 and DCN was found to reach significance 

(p=0.047) (Figure 144): the 15 patients who showed an increase in DCN with 

Faslodex also showed a significantly greater fall in Ki67 (Figure 144). While not 

significant (Table 53), induction of TXNIP by 500mg Faslodex was also associated 

with a somewhat improved fall in Ki67. 

Figure 144: Change in Ki67 in patients exhibiting induction of DCN following 4 weeks 500mg 

Faslodex treatment compared to those with suppression after excluding 3 potentially 

resistant patients. 
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Table 53: Relationship between direction of gene change for TXNIP and the magnitude of 

change of Ki67, excluding 3 potentially resistant patients following 4 weeks of 500mg 

Faslodex (Mann-Whitney test). 

Gene 
Name 

P-value 

Number of 
patients with 

gene 
suppression 

Median 
suppression 

of Ki67 

Number of 
patients with 

gene 
induction 

Median 
suppression 

of Ki67 

TXNIP 0.147 8 11 13 31 

 

Following the analysis of DCN, TXNIP, CASP and TGFB2 in the NEWEST trial dataset, 

induction of all 4 genes was associated with improved Ki67 fall (even though some 

were not statistically significant). However, following this observation, the 4 genes 

were analysed as a metagene. This was carried out in 2 ways, firstly by determining 

the average log2 expression change of all 4 genes (on-treatment expression-pre-

treatment expression) and how this associated with magnitude of Ki67 change 

(Figure 145) and secondly by identifying all those patients that exhibited an 

induction in all 4 genes (only 6 patients identified) and how this associated with 

magnitude of Ki67 change (Figure 146). 

 

Figure 145: The association between the change in expression of the metagene by 4 weeks 

Faslodex treatment and magnitude of Ki67 fall. 
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From Figure 145 it can be seen that with the exception of 1 outlier the majority of 

patients with a low average expression change of the metagene (left-hand side of 

graph) show a very small reduction in Ki67 following Faslodex treatment while 

those that show a positive induction of expression of all 4 genes show a range of 

reductions in expression. However, it is of worth to note that again with the 

exception of the outlier, all patients that exhibit a fall of at least 50% in Ki67 

expression show a positive induction of expression of the metagene. 

In Figure 146, a Mann Whitney U analysis was carried out to determine if the 

magnitude of Ki67 fall was significantly greater in those 6 patients that exhibited an 

induction of all 4 genes part of the metagene. The analysis determined that the 6 

patients who did exhibit an induction in all genes part of the metagene did indeed 

demonstrate an improved fall in Ki67 expression and this was found to be 

significant (p=0.039) suggesting that the induction of all four genes may co-

operatively contribute to an improved Faslodex response. However, as only 6 

patients exhibited an increase in all 4 genes a bigger sample size must be used to 

confirm this result. 

 

 

 

 

 

 

Figure 146: Change in Ki67 in patients exhibiting induction of all 4 genes part of the 

metagene following 4 weeks 500mg Faslodex treatment compared to those with 

suppression. 
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9.2.3 Analysis of the 2 genes de-regulated by Faslodex in both HER2- 

MCF-7 and T47D models within the NEWEST clinical trial microarray 

dataset. 

9.2.3.1 Determining if the genes were de-regulated by Faslodex in the clinic 

A paired t-test analysis examining those genes hypothesised to be contributory to 

the superior HER2- drug response observed in the MCF7 and T47D lines found the 

Faslodex suppressed gene ARTN was also significantly suppressed by 500mg 

Faslodex in the NEWEST trial (Table 54). ARTN suppression was seen in the majority 

of patients (21) (Figure 145A), while only 3 displayed very minimal induction in 

expression (Figure 145B). In the 21 patients, there was varied suppression of ARTN 

following treatment (range of fold change= 1.01-2.01), and the average fall was 

relatively-modest (1.2 fold). 

Table 54: Paired t test results from NEWEST data for gene de-regulated by Faslodex in both 

the MCF-7 and T47D cell lines, and the number of patients showing an induction or 

suppression in gene expression following 4 weeks 500mg Faslodex treatment versus 

baseline (n=24). 

Gene Symbol P-value 

Number of patients showing 
gene change 

Induction Suppression 

PCDH7 0.581 15 9 

ARTN 0.001 21 3 
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Figure 145: Microarray log2 baseline expression and on-treatment mRNA expression of 

ARTN in (A) patients with Faslodex-suppressed expression (n=21) and (B) patients that 

showed induction (n=3) following 4 week neoadjuvant 500mg Faslodex treatment. 

ARTN changes were subsequently investigated in patients who received 250mg 

Faslodex. A paired t-test test confirmed that ARTN was also significantly altered by 

Faslodex treatment, with the majority of patients again displaying some 

suppression of ARTN (p=0.003). 14 showed suppression of expression while 3 

showed induction (Figure 146). In the 14 patients, there was varied suppression of 

ARTN following treatment (fold range=1.01-1.39) and again the average fall was 
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quite modest (1.1 fold), lower than that observed in the cell lines where the in both 

ER+/HER2- cell lines suppression was approximately 2 fold. There were no patients 

who displayed greater than 1.5 fold suppression in contrast to the 500mg arm. 

 

 

Figure 146: Microarray log2 baseline expression and on-treatment mRNA expression of 

ARTN in (A) patients with Faslodex-suppressed expression (n=14) and (B) patients that 

showed induction (n=3) following 4 week neoadjuvant 250mg Faslodex treatment. 

While an overall dominant pattern of change was absent PCDH7 (Table 54), in 

keeping with its Faslodex-induced expression in vitro over half of the patients 

displayed up-regulation of PCDH7 with 500mg Faslodex (Table 54, Figure 147). 

However, the degree of induction was minimal in all these patients (fold range 1-
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1.29, average fold induction=1.1 (much lower than that observed in ER+/HER2- cell 

lines where the average fold induction was calculated as approximately 3 fold in the 

ER+/HER2- cell lines).  

 

 

Figure 147: Microarray log2 baseline expression and on-treatment mRNA expression of 

PCDH7 in (A) patients with Faslodex-induced expression (n=15), and (B) patients that 

exhibit suppression (n=9) following 4 week neoadjuvant 500mg Faslodex treatment. 

9.2.3.2 Determining if Faslodex change in expression of the 2 genes related to 

Ki67 change 

A Mann-Whitney U test was used to determine if any induction of PCDH7 or 

suppression of ARTN was associated with a greater fall in Ki67 and thus  in keeping 
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with the hypothesis derived from HER2- cells that such changes  may contribute to 

improved Faslodex response. ARTN was found to meet significance in the NEWEST 

dataset (Table 55). Graphical display of these data revealed the median fall in Ki67 

expression was greater in those patients who displayed suppression in ARTN during 

Faslodex treatment (Figure 148). However, it was noted that there was only a very 

small patient cohort inducing ARTN during treatment within this analysis.  

Table 55: Relationship between direction of gene change and magnitude of Ki67 change 

(using Mann Whitney U test) following 4 weeks 500mg Faslodex treatment (n=24). 

Gene Symbol P-value 

PCDH7 0.403 

ARTN 0.040 

 

 

Figure 148: Change in Ki67 in patients exhibiting suppression of ARTN following 4 weeks 

500mg Faslodex treatment compared to those with ARTN induction. 

Although significance was not met, induction of PCDH7 was also associated with a 

somewhat improved median suppression of Ki67 (Table 56). 

Table 56: Relationship between direction of gene change for PCDH7 and the magnitude of 

change of Ki67 following 4 weeks of 500mg Faslodex (n=24). 

Gene 
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Number of 
patients with 

gene 
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Median 
suppression of 

Ki67 
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induction 

Median 
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PCDH7 9 11 15 31 
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9.2.3.3 Determining if RET expression was also de-regulated by 500mg Faslodex 

treatment within the NEWEST clinical trial microarray dataset. 

The major ligand for RET, ARTN, was suppressed by Faslodex in both HER2- cell lines 

while the RET co-receptor GFRA1 was also suppressed or at a very low expression in 

these models. RET was also suppressed in both HER2- cell lines by Faslodex. The 

NEWEST data also showed that both ARTN and GFRA1 expression were suppressed 

to some degree by Faslodex treatment in many patients in the clinic, with a possible 

relationship between ARTN and Ki67 suppression, and so RET gene expression was 

also analysed to further determine any relationship between RET signalling and 

Faslodex treatment. 

A paired t-test revealed that RET was significantly suppressed by 500mg Faslodex 

treatment (Figure 149) (p=0.010). 16 of the 24 patients analysed demonstrated 

suppression, which varied in magnitude between patients (fold range 1.02-3.4, 

average fold suppression=1.48).  All 4 patients who had the highest baseline log2- 

expression value (>8.5) demonstrated a suppression of RET (Figure 149A). 
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Figure 149: Microarray log2 baseline expression and on-treatment mRNA expression of RET 

in (A) patients that exhibited Faslodex-suppression (n=16) and, (B) patients that exhibited 

induction (n=8) following 4 week neoadjuvant 500mg Faslodex treatment. 

Subsequent analysis of RET in the Faslodex 250mg trial arm failed to demonstrate a 

significant pattern of change (p=0.188), although of the 17 patients analysed 10 

exhibited suppression (fold range 1-3.3). Average fold suppression of RET was 

similar in both the 500mg and 250mg patient cohorts (1.48 and 1.49 respectively). 

Since the majority of patients exhibited a fall in GFRA1 and ARTN, statistical analysis 

to assess relationship with Ki67 change was problematic. Such analysis was possible 
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for RET. The relationship was not significant, although there was a somewhat 

poorer fall in Ki67 for patients that showed RET suppression (Table 57). 

Table 57: Relationship between direction of gene change for RET and the magnitude of 

change of Ki67 following 4 weeks of 500mg Faslodex (n=24, Mann Whitney U test). 

Gene 
Name 

P-value Number of 
patients with 

gene 
suppression 

Median 
suppression 

of Ki67 

Number of 
patients with 

gene 
induction 

Median 
suppression 

of Ki67 

RET 0.232 16 11.5 8 37 

 

9.2.4 Analysis of CDH2, a gene de-regulated by Faslodex in both 

ER+/HER2+ cell lines, within the NEWEST clinical trial microarray 

dataset. 

Based on microarray findings, expression and modest induction of CDH2 in the 

HER2+ cell lines was hypothesised to contribute to limited Faslodex response in 

HER2+ breast cancer. PCR had been unable to verify a Faslodex-induced profile 

although it had confirmed that higher basal CDH2 levels were a feature of the 

poorer-responding HER2+ cells (Chapter 8). Unfortunately, it was not possible in 

NEWEST to exclusively analyse Faslodex-promoted changes of CDH2, or indeed 

examine inherent CDH2 expression level, in ER+/HER2+ patients as HER2 data was 

not available and HER2+ patient numbers are likely to be low. A paired t-test 

analysis of CDH2 in the 500mg trial arm of the NEWEST trial also found that CDH2 

was not consistently de-regulated by Faslodex in these unstratified ER+ patients 

(Table 58). A similar number of patients displayed induction or suppression of CDH2 

following treatment. Analysis of the relationship between Faslodex change in CDH2 

and magnitude of Ki67 suppression was also non-significant (Table 59). 

Table 58: Paired t test results from NEWEST data for CDH2, and the number of patients 

showing and induction or suppression of CDH2 following 4 weeks 500mg Faslodex 

treatment versus baseline (n=24).  

Gene Symbol P-value 

Number of patients showing 
gene change 

Induction Suppression 

CDH2 0.617 11 13 
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Table 59: Relationship between direction of gene change for CDH2 and the magnitude of 

change of Ki67 following 4 weeks of 500mg Faslodex (n=24, Mann-Whitney test). 

Gene 
Name 

P-value Number of 
patients with 

gene 
suppression 

Median 
suppression 

of Ki67 

Number of 
patients with 

gene 
induction 

Median 
suppression 

of Ki67 

CDH2 0.362 13 15 11 12 

 

9.2.5 Further analysis of genes of interest to assess any relationship 

between change in gene expression and ER-down-regulation following 

4 weeks Faslodex treatment. 

Genes that showed some evidence of a Faslodex-altered profile in NEWEST (CXCR4, 

DCN, TXNIP, RET, PCDH7) were further investigated to determine if any relationship 

existed between their direction of change and degree of ER protein down-

regulation by 500mg Faslodex (matched data was available for 23 patients). While 

of additional interest, due to the very low patients numbers exhibiting an increase 

in ARTN and GFRA1 following Faslodex treatment these genes were not examined.   

The absolute change of ER H-score was calculated following 4 weeks 500mg 

Faslodex treatment (absolute change range=10-125), where all patients in the 

500mg trial arm suppressed ER protein expression to a greater or lesser extent. 

From Table 60 it can be seen that none of the examined genes met significance and 

thus magnitude of ER down-regulation was not related to their gene change.  

 

Table 60: Relationship between direction of gene changes and the magnitude of change of 

ER following 4 weeks of 500mg Faslodex (n=23, Mann-Whitney U test). 

Gene 
Name 

P-value Number of 
patients with 

gene 
suppression 

Median 
suppression 

of ER 

Number of 
patients with 

gene 
induction 

Median 
suppression 

of ER 

CXCR4 0.452 7 40 16 56.3 

DCN 0.286 6 40 17 52.5 

TXNIP 0.235 9 40 14 48.8 

PCDH7 0.781 9 40 14 48.8 

RET 0.875 15 45 8 50 
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9.3 Discussion 

The neoadjuvant setting confers a number of advantages for investigating the 

biological characteristics of response and resistance. The primary tumour remains 

in situ while treatment ensues, and biopsy samples can be taken prior to and during 

treatment before surgery to remove tumour bulk. IHC analysis of key biomarkers 

and gene expression profiling can thus be used to assess changes in expression in 

the sequential samples as treatment proceeds. In this project, a number of genes 

whose expression is altered by Faslodex in the model panel have been identified 

and prioritised using microarray and PCR mRNA profiles, ontological studies and 

KMplotter, with changes in the genes hypothesised to be involved in the varying 

anti-tumour responses achieved with Faslodex in the cells (summarised in Table 46). 

Subsequent analysis of these genes in  NEWEST clinical trial samples, which had 

previously been used to evaluate impact of 500mg versus 250mg Faslodex in the 

neoadjuvant setting on proliferation (Ki67) and ER (Kuter et al., 2012), has provided 

a unique opportunity to determine if any of these genes were commonly altered by 

Faslodex and associated with magnitude of Ki67 suppression, thus determining if 

their de-regulation by Faslodex is potentially relevant to mechanisms of response or 

may act to limit anti-tumour impact of the drug in the clinic. The majority of the 

statistical tests to analyse gene expression were carried out using samples from the 

500mg Faslodex trial arm: this dose has recently obtained FDA approval following 

the CONFIRM trial findings showing its clinical anti-tumour superiority versus 

250mg antihormone (Di Leo et al., 2010) and the NEWEST trial showing 500mg 

Faslodex promotes a greater ER and Ki67 down-regulation versus 250mg indicative 

of superior biological activity (Kuter et al., 2012). 

 

In chapter 3, 5 genes were verified as being Faslodex de-regulated in the HER2+ and 

MCF-7 cell lines and changes in these genes were hypothesised to be involved in 

the emergence of Faslodex-resistance regardless of HER2 status. These comprised 

Faslodex-induced genes PRKACB, VEGFC, CKCR4 and GABBR2, and also one 

Faslodex suppressed gene GFRA1.  Unfortunately, the 4 induced genes 

hypothesised to be involved in acquisition of Faslodex resistance in vitro failed to 
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meet significance in the NEWEST trial for a dominant pattern of Faslodex impact on 

their expression using a paired t test (Table 48). Furthermore, where inductions 

were observed these were generally only modest (e.g. 1.2 fold for CXCR4). While 

this lack of significant change suggests that Faslodex induction of these genes is not 

robust in vivo and therefore unlikely to underlie subsequent emergence of Faslodex 

resistance which ultimately occurs in many patients, the lack of significant induction 

could simply be due to the limitations of the clinical trial studied. The NEWEST trial 

samples can only allow identification of changes in gene expression, and their 

relationship with proliferation, over a 4 week treatment timeframe. Although 

inductive events were rapid in vitro (apparent in the models at 10 days along with 

complete ER down-regulation), more prolonged treatment may be required to 

observe maximal ER blockade by Faslodex and in turn the necessary magnitude of 

up-regulation of these genes of interest to ultimately promote emergence of 

acquired resistance.   

Despite the lack of significant pattern with Faslodex, further profile interrogation 

was performed and revealed that for PRKACB, VEGFC and GABBR2 approximately 

half of the patients showed increases in expression during treatment, while 17 of 

the 24 patients showed some up-regulation of CXCR4 with 500mg Faslodex at 4 

weeks (Table 48). Future studies would be required to determine if there were 

further expression increases with more extended Faslodex exposure and also to 

determine if those patients showing CXCR4 increases, or indeed increases in 

PRKACB, VEGFC or GABBR2, ultimately acquired resistance following continued 

treatment to confirm or refute their hypothesised role in emergence of this state. 

Although no association with proliferation was seen for PRKACB, VEGFC or GABBR2, 

further data supportive of such a hypothesis were derived here for CXCR4, since 

patients who did show increases in this gene following 500mg Faslodex treatment 

had a somewhat inferior decline in Ki67 compared to patients where CXCR4 was 

suppressed during treatment (Table 49).  

Thus, of the genes identified as potentially relating to emergence of acquired 

resistance in the MCF7 and HER2+ models, CXCR4 perhaps has the most promise as 

a Faslodex-induced gene that may act to limit anti-proliferative response in some 
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patients. CXCR4 has previously been reported to be induced by oestrogen in MCF-7 

and ZR-75 ER+ breast cancer cell lines and suppressed by Faslodex (Boudot et al., 

2011). However, our HER2+ and MCF7 model data with Faslodex, and the NEWEST 

array data showing that Faslodex treatment induces expression in many patients, 

are at odds with this observation. The mechanism of CXCR4 induction by this 

antihormone remains unclear. In vivo, activation of CXCR4 by its stromal ligand SDF-

1 can induce CXCR4 expression (Rhodes et al., 2011). However, this mechanism 

seems unlikely to contribute since it is dependent on interplay with ER, which is 

significantly reduced after 500mg Faslodex treatment in many NEWEST trial 

patients. Furthermore, such a mechanism does not explain the parallel in vitro 

observation of CXCR4 induction where ER loss was almost complete with Faslodex 

and also SDF-1 expression was also suppressed by Faslodex in vitro. It seems more 

likely that up-regulation of CXCR4 is via an oestrogen-repressed mechanism that is 

reversed following ER depletion with Faslodex in some breast cancers. In mouse 

models, the importance of the CXCR4-MAPK pathway has been established for 

hormone-independent tumour growth and thus an induction of MAPK signalling 

elements by Faslodex treatment may be important for the induction of CXCR4 

(Rhodes et al., 2011; Hutcheson et al., 2003). This event appears to be context-

dependent, as Faslodex suppression of CXCR4 in 7 patients in NEWEST also 

indicated some capacity for positive CXCR4 regulation by oestrogen (as observed 

experimentally by Boudot et al., 2011) in a minority of patients.  

In accordance with its Faslodex suppression in both the HER2+ and MCF-7 cells, 

interrogating the NEWEST sample gene microarray data revealed that the further 

prioritised gene GFRA1 was also significantly decreased by 4 weeks 500mg Faslodex 

treatment in clinical breast cancers (Table 48 and Figure 137), as well as by 250mg 

Faslodex (Figure 139). While suppression was generally comparable with the two 

doses (mean suppression: 500mg-1.97 fold; 250mg-1.5fold), it was notable that the 

largest changes (up to 8.3 fold) were seen in the 500mg treatment arm. These data 

in total suggest that GFRA1 is a classical ER-regulated gene in some breast cancers 

given the decreases in expression with Faslodex. In keeping with this, GFRA1 has 

been reported to be a luminal A gene and is induced by oestradiol stimulation of 
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the ER+ ZR-75-1 cell line (Dorssers et al., 2005), while in turn it was Faslodex-

suppressed in both the HER2+ and MCF-7 cell lines (PCR revealed very low 

expression in the BT474 cell line) in this project (Figure 57). Unfortunately, GFRA1 

suppression could not be formally associated with magnitude of Ki67 suppression in 

NEWEST since only 1 patient showed induction of GFRA1 following 500mg 

treatment (Table 48). However, based on ontology it seems unlikely that the loss of 

GFRA1 that is common to the 3 models that developed resistance and in most 

clinical breast cancers during early Faslodex treatment acts to limit response. 

GFRA1 is a co-receptor for the tyrosine kinase RET, and it is gain in GFRA/RET 

signalling that has been linked to downstream proliferation and cell survival kinase 

activity as well as tamoxifen and also aromatase inhibitor resistance (Morandi et al., 

2013). Where ER is retained, such endocrine resistance can involve productive 

GFRA/RET cross talk with this receptor (Plaza-Menacho et al., 2010). It seems more 

likely, therefore, that depletion of GFRA/RET signalling during early treatment of 

the models and in clinical disease is a component of the initial Faslodex anti-tumour 

response mechanism, but further studies are required to confirm or refute this and 

to address whether such signalling ultimately recovers to drive acquisition of 

resistance to Faslodex.  

Interestingly, a further RET pathway gene ARTN (a GFRA ligand that can interplay 

with GFRA1 (Airaksinen et al., 2002)) was Faslodex depleted in both HER2- lines 

MCF-7 and T47D which exhibited superior anti-tumour response. Decreases in 

ARTN were thus hypothesised to be involved in an improved Faslodex response in 

the ER+/HER2- setting. Although HER2 status was not available for the NEWEST 

trial, it is assumed that the majority of patients were also HER2- since only 10% of 

ER+ tumours are HER2+ (Dowsett et al., 2008). In keeping with the HER2- cell model 

observations, ARTN was significantly decreased by both 500mg and 250mg Faslodex 

in the majority of the trial patients (Table 54 and Figure 145, 146). The average fold 

suppression was quite modest and comparable for both treatment arms (1.1 and 

1.2 fold respectively) indicating some suppression of ARTN during early treatment 

can be achieved without maximal ER blockade. However, all patients with >1.5 fold 

changes had undergone 500mg treatment and in total this gene appears to be ER 
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regulated in some breast cancers. Further analysis determined that suppression of 

ARTN was significantly associated with a greater fall in Ki67 (Table 55 and Figure 

148) but as so few patients demonstrated an increase in ARTN expression (n=3) this 

requires future verification.  Nevertheless, the observations of Faslodex depletion 

of ARTN in vivo and in vitro, as for GFRA1, and the adverse ontology previously 

reported for ARTN (Kang et al., 2010) again imply that depletion of ARTN/GFRA/RET 

signalling may be contributory to Faslodex response. In keeping with this, in chapter 

5 it was also shown that RET was Faslodex suppressed in the HER2- cell lines (Figure 

47) and similarly analyses of NEWEST revealed that RET was significantly decreased 

by 500mg treatment and was also depleted in a proportion of the 250mg cohort 

(Figure 149). These data suggest that like ARTN and GFRA1, RET can be ER-regulated 

in vivo, and RET expression has also been previously reported to be prominent in a 

subset of ER+ disease (Morandi et al., 2011) and oestrogen regulated in vitro (Stine 

et al., 2011; Dorssers et al., 2005). However, this Faslodex suppression of RET was 

not associated with an improved Ki67 fall (Table 57). It is feasible that measuring 

phosphorylation of RET, which is promoted by ARTN binding to co-receptors 

including GFRA1, would provide a better correlate for proliferation. However, it 

remains possible that Faslodex-depleted GFRA1, ARTN and RET merely comprise 

indicators of ER blockade rather than being substantially-contributory towards the 

Faslodex response mechanism, and so further studies are required to confirm such 

a relationship in ER+ breast cancer, including after HER2 subdivision. Interestingly, 8 

of the patients showed induction of RET during short term treatment. As up-

regulation of RET has been associated with anti-oestrogen resistance (Morandi et 

al., 2013), it is possible that these patients may have had a more limited drug 

response, but NEWEST follow-up data would be required to confirm this.  

A gene shown to be Faslodex induced in both the HER2- lines was PCDH7, and so 

potentially its induction could also be linked to their superior anti-tumour response. 

In NEWEST, there was no significant dominant change in PCDH7 expression with 

Faslodex and relationship with Ki67 change was also non-significant for this gene 

(Tables 55 and 56). However, 15 patients did show some induction and this 

appeared to be associated with a somewhat greater fall in Ki67 (Table 56). This is in 
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keeping with the hypothesis that induction of PCDH7 by Faslodex can associate with 

an improved anti-tumour response, but it seems this may only be applicable to a 

subpopulation of ER+ patients, again requiring further consolidation in ER+ patients 

of known HER2 status.  Currently, there are no clinical trials involving Faslodex 

where ER+ patients are subdivided based on HER2 positivity or negativity.  

However, there are some trials on-going that are exclusively recruiting ER+/HER2+ 

patients to assess Faslodex impact with and without lapatanib (ClinTrial.gov: 

NCT00390455). Such trials will be valuable to further investigate CDH2, the only 

gene whose intrinsic level, possibly further augmented by Faslodex treatment, this 

project has determined may contribute to earlier emergence of Faslodex resistance 

in both ER+/HER2+ cell models. Analysis of CDH2 in the NEWEST clinical trial 

determined that a similar number of ER+ patients demonstrated an induction or 

suppression following 500mg Faslodex treatment (Table 58) and that there was 

very little relationship to median fall of Ki67 (Table 59). This lack of association is 

perhaps to be expected since it was not possible to confine analysis to ER+/HER2+ 

patients in NEWEST or to explore impact of intrinsic CDH2 expression in such a 

cohort. Moreover, given this is a neoadjuvant trial with sample analysis after only 4 

weeks treatment, any Faslodex-induced changes in CDH2 that relate to subsequent 

development of resistance in ER+/HER2+ breast cancer may not be observed.   

Some reports have also linked CDH2 expression with increased invasion and 

motility (Hazan et al., 1997), and so CDH2 may only contribute to disease 

progression during extended treatment. 

Of particular interest in this project were 4  genes, DCN, TXNIP, TGFB2 AND CASP1, 

identified as being induced by Faslodex in the T47D cell line only and so  

hypothesised to be involved in the complete-response mechanism observed 

exclusively in this model and potentially to improved anti-tumour response 

clinically. TXNIP, TGFB2 and CASP1 unfortunately did not show a dominant pattern 

of induction by 500mg Faslodex in the clinic (Table 50) but it remains feasible that 

induction within some ER+ patients is associated with an improved anti-tumour 

response. Of some interest in this regard was TXNIP, where there was a trend for an 

association between Faslodex-induced expression and an improved fall in Ki67 (Table 



328 
 

51/Figure 143). TXNIP has been described as a potential tumour suppressor gene 

and increased expression of TXNIP has been associated with improved prognosis 

(Zhou et al., 2012). Increase in the oxidation of thioredoxin has been associated 

with endocrine resistance (Penney et al., 2013), and so the ability of TXNIP to inhibit 

thioredoxin could contribute to an improved Faslodex response. In addition, there 

was a somewhat greater median fall in Ki67 expression in patients who induced 

TGFB2 or CASP1 (Table 52) and the available ontological literature (Buck et al., 

2008; Gomes et al., 2011; Tamura et al., 1995; Bouker et al., 2005) is also 

supportive that these genes may relate to an improved Faslodex response in a sub-

group of ER+ breast cancers.  

However, of the 4 genes induced by Faslodex in T47D cells, DCN was the most 

promising in the clinical samples. DCN was found to be consistently de-regulated by 

500mg Faslodex (Table 50). DCN changes were close to significance and further 

profile analysis confirmed that the majority of patients showed Faslodex-induced 

DCN expression following 4 week neoadjuvant treatment (average induction of 2.3 

fold), in keeping with the induction observed in the T47D cell line with this 

antihormone. Analysis of the effect of 250mg Faslodex on DCN gene expression 

found no such trend suggesting that induction of DCN for the majority of patients 

only occurs with the higher dosage where there is more efficient tumour delivery of 

drug and thus ER blockade (Kuter et al., 2012). However, analysis of DCN change in 

relation to degree of ER suppression was found to be non-significant (Table 60) and 

so the mechanisms underlying its significant induction by 500mg Faslodex remain 

enigmatic. The observation that the gene was suppressed in 7 patients also implies 

context-dependent ER regulation of DCN expression: however, decorin has not 

been described as oestrogen regulated and subsequent analysis of promoter sites 

on the DCN gene using the UCSC genome browser (http://genome.ucsc.edu/) in this 

project did not identify an ERE site. Interestingly, those patients that suppressed 

DCN had a significantly higher log2 expression value than those that induce 

expression suggesting baseline DCN expression may be a contributory factor in 

determining the direction of change in expression observed with antihromone 

(Figure 140). Another factor to consider is that decorin is also expressed by cells of 
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the tumour stroma (Oda et al., 2012). Differences in stromal decorin between 

tumours and its regulation may also contribute to baseline DCN level and whether 

induction or suppression of expression is subsequently recorded during Faslodex 

treatment in vivo.  Future clarification will be required via IHC using Faslodex-

treated clinical trial material to verify DCN localisation in relation to epithelial and 

stromal cells within breast cancers. 

Critically, further analysis of the 500mg trial data identified that patients who had  

induced DCN with Faslodex also demonstrated an improved  fall in Ki67 

proliferative capacity (Table 51, Figure 142), in keeping with a role for DCN 

induction driving improved Faslodex anti-tumour response both in vitro and in vivo. 

Of the 24 patients analysed, 3 displayed an up-regulation of Ki67 during Faslodex 

treatment. These proliferation increases could be an indication of intrinsic Faslodex 

resistance. In the IMPACT clinical trial, mean % change of Ki67 was greater in 

responders versus non-responders (determined by objective clinical response) in 

the combination  arm of anastrozole and tamoxifen following 2 or 12 weeks of 

treatment but this was not significant. However, when the individual treatment 

arms were assessed responders exhibited a significantly greater fall in Ki67 versus 

non-responders following 2 weeks tamoxifen therapy (Dowsett et al., 2005). As 

DCN was hypothesised to contribute to the Faslodex promoted complete-response 

in the T47D cell line and thus superior Faslodex response in vivo, DCN was thus 

reanalysed using only patients who showed a Ki67 fall and so potentially responding 

to treatment. This analysis was significant, with 500mg Faslodex induction of DCN 

associating with a greater median fall in Ki67 (Figure 144).  

DCN has been widely reported to have anti-tumour capabilities via its ability to 

inhibit a number of RTK’s known to be involved in oncogenic signalling including 

EGFR, HER2, c-MET and IGF1R (reviewed in Iozzo et al., 2011). In conjunction with 

this decorin has been reported to sequester a number of RTK ligands further 

preventing tumour growth (Iozzo et al., 2011; Goldoni et al., 2008a). Cumulatively, 

therefore, the expression and ontological data suggest that up-regulation of DCN in 

the T47D cell line is likely to contribute to its complete response to Faslodex and 

importantly, in a number of patients Faslodex also induces tumour decorin which 
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may improve reduction of Ki67 during treatment. It is feasible in turn this may 

relate to improved clinical response in vivo and possibly for some patients a 

complete response. Follow-up data are required for patient outcome with Faslodex 

to confirm this observation. Complete response is not a common phenomenon 

(CONFIRM trial 1.1% of patients receiving 500mg Faslodex exhibited a complete 

response (Di Leo et al., 2010), so the data here suggest that up-regulation of DCN 

by Faslodex in vivo is not solely responsible for complete response clinically. 

Induction of other factors may be required such as the further Faslodex induced 

gene TXNIP or potentially there may be absence of Faslodex-induced genes 

involved in adverse growth (e.g. CXCR4). However, tracking of DCN expression is 

also required over a more prolonged Faslodex treatment period to determine of 

DCN expression is further altered only in the proportion of patients who go on to 

elicit a complete response. 

In summary, therefore, NEWEST has proved extremely valuable in accumulating 

clinical evidence that several of the genes prioritised in previous chapters are 

influenced by Faslodex treatment as in the cell models, and in some instances also 

relate to proliferation changes during treatment in clinical disease, successfully re-

enforcing hypotheses in relation to Faslodex response or failure. Of note, the 

majority of the most promising genes were those hypothesised to be involved in an 

improved Faslodex response, although success for such genes may in part be due to 

the limitations of such a neoadjuvant trial. While changes in some of the prioritised 

genes may potentially contribute in sub-populations of ER+ disease, the genes most 

promising in the context of determining Faslodex impact were a:  

 Faslodex-decreased RET pathway elements (i.e. ARTN and RET which were 

also Faslodex- depleted in both HER2- lines; GFRA1 which was also Faslodex 

depleted in HER2+ and MCF7 cells) in relation to improved Faslodex 

response 

 Faslodex-induced DCN and TXNIP (which were also induced in T47D cells 

only) in relation to improved Faslodex response.  

 Faslodex-increased CXCR4 (which was also Faslodex induced in HER2+ and 

MCF-7 cells) in relation to limiting response. 
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Of these, DCN was deemed of most interest, where the data in this Chapter are 

highly suggestive that induction of DCN by 500mg Faslodex could be very important 

in determining superior Faslodex growth-inhibitory responses. Based on the 

NEWEST findings, its profile with Faslodex in the complete responding T47D cells 

and PCR verification and ontology, DCN was chosen to go forward for mechanistic 

studies to further determine if it has an important causal involvement with superior 

Faslodex response using the T47D cell line.  
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Chapter 10 

Further investigation of decorin function in relation to the 

complete-response exerted by Faslodex  

in T47D cells 

 

 

 

10.1 Introduction 

Following long-term treatment with Faslodex in vitro, T47D cells underwent a 

complete response. The microarray work in chapter 6 aimed to identify Faslodex-

altered gene expression in this model (e.g. drug-promoted genes with a potential 

tumour inhibitory function) that may subsequently contribute towards the 

mechanism of this Faslodex-promoted complete response. Further study of strong 

candidates could be useful in determining novel therapeutic strategies to 

encourage improved response to Faslodex clinically and in vitro, as well as 

biomarkers that may relate to drug outcome.  

In this regard, the microarray data indicated that mRNA expression of the gene 

decorin (DCN) was up-regulated by 10 day Faslodex treatment in T47D cells, 

contrasting the additional ER+ models. Further investigations in chapter 6 verified 

the unique induction of decorin in this cell line and identified published reports that 

had also described decorin as anti-tumorigenic (summarised in Table 20 of Chapter 

6) as well as providing supportive KMplotter observations in relation to tamoxifen 

outcome. Subsequent analysis of DCN mRNA expression in the NEWEST clinical 

breast cancer trial revealed that DCN was consistently up-regulated in the majority 

of patients who received 500mg Faslodex treatment and that this associated with 

an improved fall in Ki67 proliferative activity. These data in total suggested that 

decorin was a strong candidate for involvement in the Faslodex-promoted T47D 

complete-response and (although it was not possible to ascertain from the NEWEST 
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series involvement with clinical outcome) also possibly involved in the growth 

inhibitory mechanism seen with this antihormone in ER+ breast cancer patients. 

In this chapter, several experimental approaches have thus been taken to further 

determine if induction of decorin contributed to the superior response mechanism 

in T47D cells with Faslodex. Firstly, DCN immunocytochemistry was optimised and 

used to confirm if Faslodex induction at the mRNA level in T47D cells was also 

mirrored at the protein level.  It was also important to perform in vitro experiments 

to more fully monitor the expression profile of decorin induction with continuous 

Faslodex treatment of T47D cells, since the Faslodex-induced complete response in 

this model did not occur until post week 5 of treatment despite significant 

induction of DCN expression by day 10.  While its localisation remains controversial 

and no studies have been performed with Faslodex treatment, reports indicate 

decorin is a proteoglycan that can be synthesised by cancer epithelial and stromal 

cells and secreted into the microenvironment to subsequently regulate tumour 

signalling pathways in an autocrine and/or paracrine manner by binding to RTKs at 

the tumour cell membranes (Csordas et al., 2000). A purified peptide is 

commercially available that can be used for DCN growth challenge experiments in 

vitro, and so growth experiments were conducted to determine any growth 

inhibitory impact of exogenous decorin in the presence and absence of Faslodex on 

the T47D cells, as well as in further ER+ lines to determine if any effect was 

exclusive to this model. Furthermore, studies with DCN shRNA were carried out in 

the T47D cells to see if prevention of Faslodex-induction of the gene could be 

achieved and if such DCN knockdown was able to hinder Faslodex growth inhibitory 

effect.  

Finally, the project investigated if there was any evidence for a broader 

contribution for DCN in determining endocrine response by exploring evidence for 

its regulation by ER (using online bioinformatic resources) and examining whether 

DCN induction also occurs during treatment with further antihormonal agents 

tamoxifen or oestrogen-deprivation. The latter was achieved (i) PCR studies 

monitoring DCN expression during antihormone treatment in T47D, and (ii) 

examining DCN changes in a further clinical dataset from Trial 223 (Smith et al., 
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2007). This is a neoadjuvant study sponsored by AstraZeneca to investigate if 

combination of gefitinib and the AI anastrozole effectively led to a greater response 

in breast cancer. In this project, the initial 2 week data from the trial were analysed 

since these patients had only received anastrozole and microarray and IHC data was 

available for a cohort of these patients where DCN expression could be profiled 

prior and subsequent to treatment. Using the Trial 223 data it was also possible to 

address if any DCN induction by AI related to anti-proliferative effect and so may 

contribute to anti-tumour response.  

10.2 Results 

10.2.1 DCN Immunocytochemistry 

Immunocytochemistry was successfully optimised for DCN in the models 

Ssubsequent HScore analysis revealed only very low levels of cytoplasmic DCN 

protein prior to treatment in all models (Figure 150). Following 10 day Faslodex 

treatment, the T47D cell line was the only model to substantially up-regulate 

expression of DCN protein, as observed at the mRNA level (Figure 150), with high 

levels of cytoplasmic and also plasma membrane staining in some cells after 

treatment. There was only very modest Faslodex up-regulation in the MCF-7 and 

MDA-MB-361 cell lines and no plasma membrane-localised protein detected.  
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Figure 150: Immunocytochemical analysis of DCN expression in the 4 ER+ breast cancer cell 

lines pre and post 10 day Faslodex treatment (10-7M) with associated staining Hscores. 

Along with prominent cytoplasmic staining, Faslodex-induced plasma membrane staining 

(red arrow) is shown in the T47D cells (Original magnifications x40).  

BT474 

ER+/HER2+ 

T47D 

ER+/HER2- 

MCF-7 

ER+/HER2- 

MDA-MB-361 

ER+/HER2+ 

Faslodex 10-7M Control 

Hscore: 45 Hscore: 180 

Hscore: 20 Hscore: 40 

Hscore: 10 Hscore: 10 

Hscore: 65 Hscore: 80 



336 
 

10.2.2 Temporal relationship between DCN expression and duration 

of Faslodex treatment 

 To monitor if there were further increases in DCN with increasing duration of 

antihormone exposure, PCR was used to monitor the expression profile of DCN 

following extended culture of T47D cells with/without Faslodex. DCN level 

appeared to be temporally related to Faslodex treatment. Its expression was up-

regulated in the T47D cell line over 10-28 days Faslodex treatment versus time-

matched untreated control cells. This resulted in 6 fold increase in DCN expression 

by 28 days with Faslodex that was significantly increased versus earlier treatment 

timepoints (Figure 151). 

 

 

 

 

Figure 151: Effect of increasing duration of Faslodex treatment (10-28 days) on DCN gene 

expression in T47D cells: (A) Representative PCR image (Con-Control; FAS-Faslodex) (B) 

with the corresponding actin-normalised densitometry graph .The results are expressed as 
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means ± SEM of three separate experiments. *P < 0.05, **P < 0.01 for treatment versus its 

respective time point control. Additional statistical comparison has been made between 

Day 28 and the further treatment timepoints (*P <0.05, ** P<0.01) 

 

10.2.3 Effect of exogenous decorin on growth of ER+ breast cancer cell 

lines 

10.2.3.1 ER+/HER2- T47D cells: 

To determine if decorin was capable of inhibiting T47D cells, these cells were 

treated with exogenous decorin and growth and morphology analysed after 10 days 

treatment by phase contrast microscopy and Coulter counting studies (Figures 152 

and 153). Comparison was also made with the anti-tumour impact of Faslodex and 

with Faslodex plus decorin combination treatment. Decorin and also all further 

treatment strategies significantly inhibited growth (by 60-70%) of the T47D cell line 

in comparison to untreated control (p<0.001) (Figures 152 and 153). Exogenous 

decorin treatment also further significantly growth inhibited the T47D cells 

compared with Faslodex alone (p=0.007) alone. Combining decorin with Faslodex 

also gave some further growth inhibition but this failed to reach significance versus 

Faslodex alone. However, the phase contrast images (Figure 152) tentatively 

suggested that exogenous decorin treatment either alone or in combination with 

Faslodex not only reduced culture growth but (in contrast to Faslodex alone) also 

induced significant changes in morphology and occasional small bright, disrupted 

cells, possibly evidencing instigation of some cell death. 
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Figure 152: Phase contrast microscope images of T47D cells following 10 days of culture 

with decorin (100μM), Faslodex (10-7M), a combination of these treatments or untreated 

control (original magnification= x10).  

  

Figure 153: Effect of 10 day treatment with decorin (100μM dose), Faslodex (10-7M dose) or 

their combination on growth of the T47D cell line. The results are expressed as means ± 

SEM of three separate experiments and presented as % of untreated control. *** P < 0.001, 

versus untreated control; **P < 0.01 versus Faslodex treatment. 
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10.2.3.2 ER+/HER2- MCF-7 cells: 

The in vitro growth experiments with exogenous decorin were also repeated using 

MCF7 cells to determine if its growth inhibitory and associated morphological 

effects were limited to the T47D cell line or if such effects could also be observed in 

another ER+/HER2- breast cancer cell line (Figures 154 and 155). Decorin induced a 

partial growth inhibitory effect in the MCF-7 cell line versus untreated control cells 

(~30%; p<0.05). Growth inhibition was also significant for Faslodex treatment in this 

model (~60%; p<0.001). The decorin impact appeared inferior in MCF-7 cells to that 

in T47D cells (p<0.05), and Faslodex also appeared to be a superior inhibitor versus 

decorin in MCF-7 contrasting T47D observations (Figure 155). The combination of 

decorin and Faslodex was growth inhibitory (p<0.01) but in Coulter counting studies 

failed to growth inhibit the cells further than Faslodex treatment alone (Figure 155). 

Nevertheless, phase contrast images possibly suggested a slightly greater inhibitory 

effect when decorin and Faslodex were in combination (Figure 154). 

 

                    

 

                     

Figure 154: Phase contrast images of MCF-7 cells following 10 days of culture with decorin 

(100μM), Faslodex (10-7M), a combination of these treatments or untreated control 

(original magnification= x10).  
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Figure 155: Effect of 10 day treatment with decorin (100μM dose), Faslodex (10-7M dose) or 

their combination on growth of the MCF-7 cell line. The results are expressed as means ± 

SEM of three separate experiments and presented as % of untreated control. *** P < 0.001, 

**p<0.001, *P<0.05, versus untreated control. 

 

10.2.3.3 ER+/HER2+ BT474 cells: 

 The growth inhibitory effects of exogenous decorin were also investigated in an 

ER+/HER2+ line BT474 (Figures 156 and 157). As in MCF7 cells, in BT474 cells 

exogenous decorin induced a modest significant growth inhibitory effect versus 

untreated control cells (~30%; p=0.03). Growth inhibition was also significant for 

Faslodex treatment in this model (~50%; p=0.002) (Figures 156 and 157). Of note, 

as in MCF7 cells, the decorin impact was inferior in BT474 cells to that in T47D cells 

and there was also a trend for Faslodex to be a superior inhibitor versus decorin 

(p=0.061), again contrasting T47D observations. As seen with the single agents, 

combination of decorin and Faslodex was significantly growth inhibitory (p<0.05) 

but failed to promote any further growth inhibitory activity compared to Faslodex 

alone (Figure 157). Phase contrast images confirmed the growth inhibitory impact 

of decorin, Faslodex or combination treatment (Figure 156), and that there was no 

apparent further impact of the combination treatment versus Faslodex alone. 
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Figure 156: Phase contrast images of BT474 cells following 10 days of culture with decorin 

(100μM), Faslodex (10-7M), a combination of these treatments, or untreated control 

(original magnification= x10).  

 

Figure 157: Effect of 10 day treatment with decorin (100μM), Faslodex (10-7M) or their 

combination on growth of the BT474 cell line. The results are expressed as means ± SEM of 

three separate experiments and presented as % untreated control. ***P<0.001, *P<0.05, 

versus untreated control. 
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These experiments in the BT474 cell line revealed that decorin was unable to 

promote a growth inhibitory effect as great as Faslodex, and was also inferior 

versus the decorin impact in T47D cells. As the BT474 cells are HER2+ it was 

possible that HER2 signalling may limit decorin impact in this model, and so further 

experiments were carried out to examine if Herceptin co-treatment could improve 

its effect. While decorin again promoted modest inhibition versus untreated BT474 

(p=0.01), Herceptin (10nM) promoted a more substantial growth inhibition versus 

untreated cells (p=0.004) which was significantly greater than decorin alone 

(p=<0.001). Herceptin was also able to add to decorin anti-tumour effect in this 

model (p=0.005) (Figure 158). 

 

 

 

Figure 158: Effect of 10 day treatment with decorin (100μM), Herceptin (10nM) or their 

combination on growth of the BT474 cell line. The results are expressed as means ± SEM of 

three separate experiments and presented as % untreated control. **P<0.001, *P<0.05 

versus untreated control **P<0.001 for decorin vs Herceptin treatment 
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10.2.4 Impact of DCN knockdown in the T47D cell line 

10.2.4.1 Verification of DCN expression knockdown by shRNA 

In order to further determine the role of DCN in the Faslodex-induced complete 

response in the T47D cell line, short-hairpin (sh) RNA studies were carried out in the 

T47D cell line to permanently suppress DCN expression. The shRNA constructs also 

contained a GFP gene and a puromycin resistant gene, which allowed the degree of 

transfection to be monitored and to select for cells that had been successfully 

transfected with the constructs. 2 DCN-targeting constructs (sh1, sh2) were 

evaluated in an attempt to permanently knockdown DCN gene expression in T47D 

cells, comparing with a non-targeting (NT) control construct. Figure 159 shows 

fluorescence microscope images following transfection and puromycin selection.  

 

                                      

 

                   

Figure 159: Fluorescent microscope images of T47D cells expressing GFP following shRNA 

transfection with 2 DCN-targeting constructs and a non-targeting control to assess degree 

of shRNA transfection. (Original magnification=x10) 

Following transfection and puromycin selection, initially end-point-PCR gels (Figure 

160A) and subsequently real-time-PCR studies (Figure 160B) were carried out 

NT-control Sh-construct 1 (sh1) 

Sh-construct 2 (sh2) 
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following 10 days Faslodex treatment versus untreated control for the NT, sh1 and 

sh2 construct cells. This was performed to determine if DCN gene expression 

knockdown had been achieved with the DCN shRNA constructs preventing Faslodex 

induction in T47D cells.  T47D wild-type cells express very little DCN basally, and in 

keeping with this basal DCN expression was virtually undetectable (also reflected in 

large error bars as DCN was too low to be accurately quantified; Figure 160B) in all 

the transfected models. DCN expression was significantly up-regulated by 10 day 

Faslodex treatment in the NT-control transfected T47D cells and also unfortunately 

in those transfected with sh1 (Figure 160). In contrast, the sh2 construct 

successfully prevented up-regulation of DCN expression with Faslodex. Indeed, 92% 

knockdown of DCN expression was achieved with sh2 when compared to 10 day 

Faslodex treated NT-control cells. Subsequently, therefore, the DCN knockdown 

sh2-transfected cells were used for all further experiments versus the NT control 

cells. 
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Figure 160: (A) Representative end-point PCR gel image of DCN gene expression following 

shRNA transfection of the T47D cell line with NT-control, sh1-construct and sh2-construct 

comparing 10 day Faslodex versus untreated control (B) Real-time PCR results for 

equivalent experiments,  with relative DCN mRNA expression levels expressed as means ± 

SEM of three separate experiments ***P<0.001 versus matched cell line control.  

10.2.4.2 Decorin protein evaluation by ICC in NT control and DCN knockdown 

(sh2) stably-transfected T47D cells 

To determine if the DCN-targeting shRNA sh2 also prevented the up-regulation of 

decorin by Faslodex at a protein level, decorin ICC was carried out. While NT-

control cells continued to show a substantial induction of decorin protein following 

10 days Faslodex treatment, no induction (either for cytoplasmic or plasma 

membrane staining) was observed in the DCN-knockout (sh2) cells (Figure 161). 
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Figure 161: ICC analysis of decorin expression in T47D cells transfected with non-targeting 

(NT) shRNA or DCN-targeting shRNA sh1, comparing 10 days Faslodex (10-7M) treatment 

versus control. Associated Hscores are given.   (Original magnifications x40). 

 

10.2.4.3 Effect of DCN knockdown on Faslodex-induced growth inhibition 

Subsequently growth experiments were carried out using the NT-control and sh2 

constructs in the presence and absence of Faslodex over 10 days to determine if the 

suppression of DCN expression in sh2 also limited Faslodex growth inhibitory 

impact in the transfected T47D cells. Faslodex treatment of the NT -control cells led 

to 70% suppression of growth in comparison to their untreated control (p=<0.001). 

Faslodex treatment of the sh2-transfected cells resulted in 50% growth suppression 

(p=<0.001) (Figure 162A). Faslodex-promoted inhibition in the NT-transfected cells 

was superior to that in the sh2-transfected cells (p=0.004). Phase contrast 

Non-targeting 

Control 

Non-targeting 

Faslodex 

DCN-knockout 

Control 

DCN-knockout 

Faslodex 

Hscore=65 Hscore=160 

Hscore=40 Hscore=45 



347 
 

microscopy confirmed the reduced growth inhibitory impact of Faslodex in the sh2 

versus NT control cell lines (Figure 162B). 
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Figure 162: (A) Graph displaying the degree of growth inhibition promoted by 10 day 

Faslodex (10-7M) treatment in NT non-targeting control and sh2 DCN shRNA T47D cells. The 

results are expressed as means ± SEM of three separate experiments and presented as % 

untreated respective control. ***P<0.001; **P < 0.01 versus NT control cells with Faslodex; 

(B) Phase contrast microscope images taken at day 10 of the experiment (original 

magnification= x10). 
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10.2.4.4 Effect of DCN knockdown on Ki67 (proliferation) suppression by Faslodex 

Ki67 ICC was used to compare impact of 10 day Faslodex on proliferative activity in 

the NT control cells and sh2-DCN shRNA transfected T47D cells. There was a 

substantial decrease in proliferation (% nuclear Ki67 staining) with Faslodex 

treatment in the NT-control cells. In the sh2 cells where induction of DCN 

expression by Faslodex was prevented there was a smaller decrease in proliferation 

after Faslodex treatment (Figure 163) 

 

 

 

 

 

Figure 163: Nuclear Ki67 positivity (%) in T47D cells transfected with NT-control or sh2 DCN 

shRNA pre and post 10 day Faslodex treatment. Original magnification= x20  
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It is hypothesised that the Faslodex-induced complete response that ultimately 

occurs in T47D cells is promoted by the progressive up-regulation of decorin by this 
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this agent) would ultimately allow the cell line to acquire Faslodex resistance. Non-

targeting (NT)-transfected cells and DCN knockdown sh2-transfected cells were 

cultured in the presence and absence of Faslodex in continuous culture for up to ~7 

weeks and growth was monitored by documenting any cell passaging required over 

this time (Figure 164). In the absence of Faslodex, both cell lines were cultured 

routinely (passaging on average every 10 days), growing approximately at the rate 

observed for wild-type T47D cells. In the presence of Faslodex, the  

NT-transfected cells did not require passaging and remained growth inhibited over 

the 46 days examined in culture (Figure 164). In contrast, in the presence of 

Faslodex, DCN-knockout sh2 cells (DCN-KO) after a period of growth inhibition (25 

days) reinstated some growth, indicated by passaging being carried out, although at 

46 days the growth rate of such cells had not reached that of the untreated control 

cells (Figure 164). Phase contrast microscopy (Figure 165) performed at 30 days in 

culture confirmed that the  NT-transfected control cells were growth inhibited by 

Faslodex while the DCN-KO cells had reinstated some growth. 
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Figure 164: Impact of continuous Faslodex (10-7M) on T47D cell lines stably-transfected 

with a non-targeting (NT) control shRNA (in orange) or a DCN-targeting shRNA sh2 (in 

green) in vitro versus their  respective untreated controls (in red). The graph displays the 

number of passages each experimental arm underwent over 46 days in continuous 

culture. 

 

 

                 

Figure 165: Phase contrast images of T47D cell lines transfected with non-targeting (NT) 

control shRNA or  DCN-targeting sh2 shRNA in vitro at day 34 of culture in the continuous 

presence of Faslodex (10-7M). Original magnification= x10 
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10.2.5 Evidence for induction of DCN potentially determining response 

to further endocrine agents  

10.2.5.1 Bioinformatic evaluation of ER-regulation of DCN  

Since DCN was Faslodex-induced in T47D cells and also in breast cancers in vivo, it 

was possible that DCN was an oestrogen-suppressed gene and so potentially 

inducible by further endocrine agents. The DCN gene is found on 

chromosome12q21.33 and analysis of the DCN promoter sequence using the UCSC 

genome browser (http://genome.ucsc.edu/) in this project revealed that no ERE-

site was present on the DCN gene.  However, the project did obtain evidence of 

DCN being oestrogen-suppressed. ‘Transcriptomine’ is an online database 

(http://www.nursa.org/nursaGrails/transcriptomine/) that allows mining for tissue-

specific or cell-line specific nuclear receptor transcriptomes based on annotated, 

publically-available microarray gene expression experiments (Ochsner et al., 2012). 

DCN was searched for in this transcriptome database, specifically interrogating any 

studies in the T47D cell line treated with 17 -oestradiol versus untreated control, 

where one microarray dataset was available generated by the Lippman laboratory 

(Rae et al., 2005). These array data indicated that 24 hour 10nM 17β-oestradiol 

treatment led to a 0.781 fold suppression of DCN expression (p=0.0004).  

10.2.5.2 Impact of further endocrine treatments (oestrogen deprivation, 

tamoxifen) on the expression of DCN in the T47D cell line 

To determine if decorin expression was induced by endocrine agents in addition to 

Faslodex, the wild-type T47D cell line was treated with Faslodex, tamoxifen or 

oestrogen-deprivation (using medium containing heat inactivated, charcoal 

stripped serum, in an attempt to mimic AI treatment) for 10 days and DCN 

expression analysed using PCR. From Figure 166 it can be seen that like Faslodex, 

oestrogen-deprivation led to a significant increase in DCN expression versus 

untreated T47D cells. Tamoxifen had no inductive effect on DCN expression. No 

significant difference was determined between the magnitude of DCN induction 

oestrogen deprivation compared with Faslodex. 

 



353 
 

 

 

Figure 166: mRNA expression of DCN in T47D cells following 10 days treatment with 

Faslodex (10-7M), tamoxifen (10-7M) or oestrogen (E2)-deprivation versus untreated control  

(A) Representative PCR image and (B) corresponding actin-normalised densitometry graph. 

The results are expressed as means ± SEM of three separate experiments. ***P<0.001, **P 

< 0.01 versus untreated control. 
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to anti-tumour activity 

DCN expression was also significantly up-regulated in the T47D cells following 

oestrogen deprivation. Therefore, its expression was also analysed using microarray 

data from Trial 223 to address if aromatase inhibition (anastrozole) induced DCN in 

clinical breast cancer and if this event related to anti-proliferative effect and so may 

contribute to anti-tumour response. Trial 223 was a phase II neoadjuvant clinical 

trial assessing clinical activity of anastrozole treatment alone and in combination 
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observation that resistance to tamoxifen or oestrogen deprivation could involve 

ligand-independent activation of ER by growth factor receptors such as EGFR 

(Johnston et al., 2003), where dual blockade of ER and EGFR could enhance 

endocrine response. Data from previous clinical trials with anastrozole revealed 

that some patients had a persistently poor anti-proliferative response (“intrinsic 

resistance”) or demonstrated an initial response before tumour growth resumed 

(acquired resistance) (Dowsett et al., 2005; Baum et al., 2002). It was thus 

hypothesised that tumours that were less sensitive to anastrozole may benefit from 

the addition of gefitinib. In trial 223, all ER+ breast cancer patients received 

anastrozole (1mg/day) for a 16-week treatment period. Patients were randomly 

assigned to receive gefitinib 250mg/day for 16 weeks (arm A); placebo 1 tablet/day 

for 2 weeks, followed by gefitinib 250 mg/day for 14 weeks (arm B); or placebo 1 

tablet/day for 16 weeks (arm C). Matched core biopsies were taken at week 0, 

week 2 and week 16 for Ki67 IHC analysis. RNA samples were also taken for 

microarray analysis from matched core biopsies from patients in arm A and B.  

To specifically address impact of oestrogen deprivation on DCN expression in the 

present project, profile interrogation was  carried out only on the microarray data 

available from week 0 and week 2 for Arm A and B so that all patients included 

(n=92) had only received anastrozole treatment. Microarray data normalisation and 

subsequent DCN profile analysis (in SPSS) using the matched pre and post 

treatment samples was performed as in Chapter 9 for the NEWEST trial. 

Interrogation of the available Ki67 IHC data revealed the mean % fall in Ki67 at this 

time point for these Trial 223 patients from baseline was 62% (range -47 to 98%) 

and the mean absolute Ki67 fall was 11.3% (range -10 to 33.4%). 

A paired t-test revealed that DCN gene expression was induced in the majority of 

patients examined by neoadjuvant anastrozole treatment (p<0.001) (Figure 167). 59 

patients showed a variable induction in DCN expression (fold change range: 1.01-

3.6; mean: 1.65 fold). 33 patients showed some suppression of expression (fold 

range: 1.0-2.2; mean: 1.29 fold) after treatment.  
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Figure 167: Microarray log2 baseline and on-treatment mRNA expression of DCN before 

and after 2 week neoadjuvant (1mg/day) anastrozole treatment in ER+ breast cancer 

patients (n=92); (A): treatment-induced expression, (B): treatment suppressed expression). 

A Mann-Whitney U test was also performed to determine if the induction in DCN 

expression promoted by anastrozole treatment in many patients was associated 

with a decline in Ki67 expression and thus potentially related to anti-tumour impact 

of the antihormone. Of the 92 patients investigated with matched array and Ki67 

IHC data, 85 demonstrated a fall in Ki67 positivity, while 7 demonstrated an 

increase or no change in Ki67 during treatment. There was no significant 

association between magnitude of Ki67 change and either induction or suppression 
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of DCN (Figure 168). This analysis was repeated removing 7 “intrinsically resistant” 

patients who showed an increase/no change in Ki67 expression. Again significance 

was not met (Figure 169) 

 

Figure 168: Change in Ki67 % positivity in patients with induction of DCN expression 

following 2 weeks  aromatase inhibitor treatment compared to those with DCN suppression 

(Mann-Whitney analysis, p=0.580). 

 

Figure 169: Change in Ki67 % positivity in patients with induction of DCN expression 

following 2 weeks  anastrozole treatment compared to those with DCN suppression, 

excluding those who demonstrated an increase/ no change in Ki67 (Mann-Whitney 

analysis, p=0.413). 
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10.3 Discussion  

The data associated with this chapter have further confirmed a role for decorin in 

the Faslodex-induced complete-response mechanism in the T47D cell line. DCN 

expression was not only up-regulated at the mRNA level by 10 day Faslodex 

treatment but it was also increased at the protein level in the T47D line, as shown 

by ICC. Prolonged Faslodex treatment led to a temporal increase in DCN mRNA 

expression in keeping with the complete response not being observed until post 8 

weeks of Faslodex treatment. Treatment of the T47D cell line with exogenous 

decorin led to a substantial growth inhibition, greater than that observed in the 

BT474 or MCF-7 cell lines, suggesting the T47D cell line has particular sensitivity to 

decorin-induced growth inhibition. Permanent knockdown of DCN expression by 

use of an shRNA (sh2) further clarified the importance of DCN induction in Faslodex 

response in the T47D cell line; knockdown led to a reduced suppression of Ki67 by 

Faslodex and also a growth advantage in the presence of Faslodex with the T47D 

cell line now able to develop Faslodex resistance. Critically, however, despite the 

growth advantage observed in the DCN-knockout T47D cell line there was still some 

suppression of Ki67 by Faslodex and long-term Faslodex treatment suppressed 

growth for approximately 25 days before resistance. These data indicate that 

suppression of DCN failed to render T47D cells completely Faslodex insensitive. 

Further experimental data indicated that DCN mRNA expression was up-regulated 

by oestrogen-deprivation in the T47D cell line, suggesting AI treatment may also 

induce DCN expression. This was further confirmed via analysis of clinical breast 

cancer Trial 223 where the majority of patients who received 2 weeks neoadjuvant 

anastrozole treatment also exhibited an up-regulation of DCN expression, although 

this failed to associate with improved Ki67 suppression. 

ICC analysis of T47D cells treated with Faslodex for 10 days confirmed that the 

induction of DCN observed at the mRNA level was mirrored by substantial increases 

at the protein level (Figure 1), providing further confidence that decorin was 

functionally involved in the superior Faslodex response observed in this cell line. 

Due to the mechanism of action of decorin in cells, where it binds to RTKs and 

encourages their degradation via endocytosis (Zhu et al., 2005), immuno-staining 
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for this protein was expected at the cell plasma membrane and cytoplasm and this 

was observed (Figure 150). Despite the induction of decorin protein being in the 

T47D cell line following 10 days Faslodex treatment, a complete response was not 

observed until post week 8 of Faslodex treatment. This suggests that either the de-

regulation of other elements may be involved in the complete response or the 

induction of decorin expression at day 10 has not reached a sufficient concentration 

to promote a complete response. An experiment investigating the mRNA 

expression of DCN during continuous Faslodex treatment showed that DCN was 

further induced by more extended Faslodex treatment (Figure 151). Significantly, 

previous reports associated with the inhibitory actions of decorin have used single 

concentrations of exogenous decorin and have not, therefore, considered any dose-

related aspects (Buraschi et al., 2013; Neill et al., 2013). In this study we have only 

used a single dose of exogenous decorin but the dose-related effects between DCN 

mRNA expression and duration of Faslodex treatment suggests that the complete-

response exhibited in the T47D cell line may be dose-dependent. 

The presence of decorin with tumour cells has also not been extensively reported, 

with most studies recording that decorin expression is limited to the tumour 

stroma, thus acting in a paracrine manner (Nash et al., 2002; Oda et al., 2012; 

Buraschi et al., 2012). The present ICC study shows, however, that the anti-cancer 

drug Faslodex is able to induce DCN expression directly in a cancer epithelial cell 

line, potentially contributing to therapeutic response in an autocrine manner. Little 

work has been carried out previously on antihormone-de-regulated genes and their 

contribution to clinical response; however, previous experimental studies have 

shown that EGFR is suppressed by oestrogen and induced by antihormone 

treatment where it contributes to the development of an antihormone resistant 

phenotype (Yarden et al., 2001). Although DCN has not been reported to be ER-

regulated and in the present study no EREs were found in the DCN promoter using 

the UCSC genome browser, further investigations using the online tool 

‘Transcriptomine’ (a database of publically available microarray datasets for mining 

nuclear receptor transcriptomes) revealed that in one dataset the low basal DCN 

level was further suppressed 0.7 fold by 24 hour oestradiol treatment (Rae et al., 
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2005).   The absence of an ERE in the decorin promoter does not in itself negate its 

oestrogen regulation since it may be indirectly ER-regulated through other ER 

regulated transcription factors such as AP-1, Sp-1 or NF-κB. 

Although there have been many reports regarding the tumour suppressive actions 

of decorin in cancer cells in vitro and in vivo, its actions in T47D cells have not been 

previously investigated and it was thus significant to observe that exogenous 

decorin was an effective inhibitory agent in these cells, with responses to decorin 

exceeding those recorded with Faslodex (Figures 152 and 153).  Importantly, not 

only did the growth inhibition recorded with decorin exceed the responses seen in 

either MCF-7 or BT474 cells (Figures 154 to 157), but preliminary evidence was seen 

that decorin was able to induce cell death in T47D (Figure 152). Disappointingly, 

combination therapy of decorin and Faslodex in T47D cells failed to produce a 

synergistic effect (Figure 153), but it is likely that the substantial 100μM dose of 

decorin used for these studies had achieved the maximal growth inhibition 

response in these cells. Interestingly the addition of decorin to Faslodex in the 

BT474 or MCF-7 cell lines failed to further improve the further growth inhibitory 

effect of Faslodex alone. While the reason for the lack of sensitivity of these cells to 

decorin is not known, HER2 amplification in BT474 cells could contribute to this 

phenomenon. Thus although decorin is able to inhibit normal HER2 signalling 

(Goldoni et al., 2008b) in cancer cells, the HER2 over expression apparent in BT474 

cells may overwhelm decorin responses. To further explore this possibility, the 

combined actions of Herceptin and decorin were investigated in BT474 cells. Once 

again, however, no synergistic effects were observed, in this instance due to the 

considerable effectiveness of Herceptin alone (Figure 158). Further experiments 

should be carried out investigating the combination of decorin with a sub-maximal 

concentration of Herceptin to delineate the potential of the combination of such 

treatments. Additional contributory factors limiting decorin impact in both MCF-7 

and BT474 in the presence of Faslodex may be antihormone up-regulation of 

potential protective factors such CXCR4 or VEGFC as demonstrated in this project. 

Additional evidence implicating decorin in the superior growth inhibitory effects of 

Faslodex in T47D cells was gained from one of the shRNA DCN-targeting constructs 
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(sh2) where its ability to reduce the Faslodex promotion of decorin mRNA and 

protein expression associated with a partial loss of  Faslodex inhibition of growth 

(Figure 162) and Ki67 immunostaining (Figure 163). Although these effects were not 

as dramatic as was expected given the magnitude (>90%) of gene knockdown, the 

long-term decorin knock-down data showing that decorin shRNA negates the 

complete response to Faslodex and leads to the development of resistance point to 

an important role for Faslodex induced decorin expression in the sensitivity of T47D 

cells to the anti-hormonal drug. Critically, in the shRNA studies the Faslodex 

promoted complete response was not converted into immediate de novo 

insensitivity to Faslodex on decorin knock-down, suggesting that even in the 

absence of decorin, Faslodex retains growth inhibitory properties in T47D cells. This 

may be due to Faslodex induction of CASP1, TXNIP or TGFB2, as indentified in this 

project, or via its reported suppression of known oestrogen-induced growth-

promoting elements such as c-src, IGF1R or PAK1 (Migliacci et al., 2002; Kahlert et 

al., 2000; Gururaj et al., 2006). Indeed, its non-decorin mediated growth inhibitory 

effects in MCF-7, MDA-MD-361 and BT474 cells are testimony to additional growth-

suppressive properties. 

 

Although this project primarily focused upon the antihormone Faslodex and the 

identification of elements involved in mediating varying responses to the drug, PCR 

investigations revealed that decorin was also up-regulated by oestrogen-

deprivation (Figure 166). To some degree, this is not an unexpected observation 

since both Faslodex and oestrogen deprivation effectively starves tumour cells of ER 

signalling (Dos Santos et al., 2002). In contrast, tamoxifen did not promote decorin 

expression in T47D cells, possibly due to its reported lack of suppressive impact on 

AF-1 activity in breast cancer cells (Metzger et al., 1992). Excitingly, therefore, 

differences in the capacity of varying classes of anti-hormone to induce decorin 

expression may contribute towards their anti-tumour capacity as reflected, for 

example, in the ATAC trial where the aromatase inhibitor anastrozole was shown to 

be superior to tamoxifen in improving survival in primary breast cancer patients 

(Howell et al., 2005). In order to begin to address its relation with oestrogen 

deprivation in the clinic, decorin expression was analysed in AstraZeneca-sponsored 
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Trial 223. This is a phase II study that investigated combination of anastrozole with 

gefitinib to determine if the addition of gefitinib led to an increase in patients 

demonstrating an initial response, since it was hypothesised that the expression of 

inherent EGFR or EGFR induced by anastrozole treatment might limit antihormone 

response. Microarray experiments were carried out within the trial on a cohort of 

patients and IHC data for Ki67 was also provided. The present study, focussing on 

trial arms encompassing aromotase inhibitor alone, determined that 2 weeks 

treatment with anastrozole significantly induced decorin expression in the majority 

of patients but that this induction was not necessarily associated with an improved 

Ki67 fall (Figures 167-169). Such a lack of association does not in itself rule out a 

contributory role for decorin in the tumour growth inhibition in some patients, and 

in keeping with this hypothesis, the laboratories of Miller and Dowsett have each 

reported DCN to also be up-regulated following neoadjuvant letrozole treatment 

(Mackay et al., 2007; Miller et al., 2009; Dunbier et al., 2013). Miller et al showed 

that decorin was part of a 205 gene signature predictive of response to letrozole 

(measured by tumour volume; Miller et al., 2009), and hence while decorin on an 

individual gene basis did not associate with clinical outcome, it clearly remained 

important alongside   other signalling elements as determinants of response.   
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Chapter 11 

 Concluding remarks and future studies 

 

 

While antihormone treatments are a mainstay for early and advanced ER+ breast 

cancer, responses to treatment are variable and resistance is eventually acquired by 

many patients. In this regard, the work presented in this thesis has focused on an 

examination of the pure-antioestrogen Faslodex and its capacity to (i) influence the 

growth of 4 ER+ cell lines and (ii) alter gene expression profiles in the cells based on 

an Affymetrix microarray gene expression analysis. Importantly, the cell lines used 

in this project aimed to represent 2 clinical phenotypes, ER+/HER2+ and ER+/HER2- 

tumours, which are known to differ in their response to further anti-hormonal 

drugs. Through a comparison of the data derived from (i) and (ii) several key 

observations have been made which largely fulfilled the aims of the project 

outlined at the end of chapter 1 (section 1.7). These were: 

1. That the 4 ER+ cell lines used in this study showed varying initial responses 

to Faslodex and short-term responses to Faslodex did not predict for the 

period of time to acquisition of drug resistance. Furthermore the time taken 

to develop an acquired resistant phenotype differed, with HER2- cells (MCF-

7 and T47D) being more responsive than the HER2+ cells (BT474 and MDA-

MB-361). Importantly, T47D cells were fully growth inhibited by Faslodex 

and therefore represent a novel model for complete response to an anti-

hormonal drug.  

2. That hierarchical clustering of microarray data can be used to determine 

Faslodex-induced transcriptome alterations that may explain these varying 

drug responses. Indeed, the clustering patterns based on both induced and 

suppressed genes identified gene cohorts which relate to (i) complete 

response to Faslodex versus incomplete response (i.e. T47D versus MCF-7, 
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MDA-MB-361 and BT474 cells respectively), where the 3 latter cell lines 

acquire Faslodex resistance and (ii) increased duration of response in HER2- 

versus HER2+ following long-term Faslodex treatment (i.e. MCF-7 and T47D 

versus MDA-MB-361 and BT474 cells respectively).   

Specifically, genes of interest that were identified following various prioritisation 

steps in the thesis were: 

VEGFC, PRKACB, GABBR2 and CXCR4, which were Faslodex-induced in those breast 

cancer cell lines that subsequently developed resistance and may be contributory 

to this process. In contrast, GFRA1, an element within the RET pathway, was 

Faslodex suppressed in those cell lines which subsequently developed resistance 

and its ontology suggested such an expression change may contribute towards their 

initial responsiveness (Chapter 5).  

DCN, TXNIP, TGFB2 and CASP1, which were Faslodex induced in the T47D cell line 

and may contribute to the complete response seen in this model (Chapter 6). 

PCDH7 was Faslodex induced in the ER+/HER2- cell lines and ARTN suppressed in 

this setting and these expression changes may associate with their superior 

response to Faslodex versus the HER2+ cell lines (Chapter 7). 

CDH2, which was elevated intrinsically and modestly Faslodex induced in HER2+ 

cells, and may relate to their capacity to rapidly develop Faslodex resistance. 

The most promising genes were subsequently analysed in the NEWEST Faslodex 

clinical trial dataset where a number (CXCR4, GFRA1, RET, ARTN, and DCN) showed 

expression changes similar to those detected in the in vitro studies. Of these, DCN 

(which promisingly associated with anti-proliferative impact of the antihormone in 

NEWEST) was taken forward for an in depth experimental analysis involving (i) its 

knockdown in T47D cells using a shRNA which, in part, blocked the ability of 

Faslodex to induce a complete response and (ii) the exposure of T47D cells to 

exogenous decorin which promoted growth inhibition of the cells. These data 

reinforce the concept of a major role for DCN in the induction of a favourable anti-
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tumour response in experimental and clinical ER+ breast cancer scenarios following 

Faslodex treatment.  

Although considerable progress has obviously been made within the current project 

to identify genes involved in cellular response to Faslodex, as well as those involved 

in the development of resistance, several broader issues have become evident 

which will be discussed further below: 

 

11.1 Can this type of analysis fully explain the varying responses 

observed in vitro and in vivo? 

Despite the research successes here in identifying a number of genes associated 

with the various Faslodex responses demonstrating the importance of analysing 

genes and pathways de-regulated by Faslodex treatment, it is clear that the de-

regulation of single genes by Faslodex fails to fully explain a given response. Thus, 

while the induction of DCN has been shown to be involved in the Faslodex response 

mechanism and looks promising both in the context of determining new 

therapeutic strategies and as a novel biomarker of response, its induction by 

Faslodex fails to fully explain either the complete response to the drug in the T47D 

cell line or the subsequent clinical variability of response to Faslodex seen in 

patients. Identification of these additional mechanisms contributing to response 

(possibly involving induction of CASP1, TGFB2 or TXNIP, and perhaps inhibition of 

RET signalling, together with their subsequent integration into more complex 

signalling models should allow us, in the future, to devise regimes to simultaneously 

target multiple pathways to  maximise therapeutic response to Faslodex. 

 

Significantly, such signalling models should also take into account paracrine 

pathways, since the ontology of a number of the genes identified in this project 

indicated a potentially-greater functional role in the in vivo setting e.g. CXCR4, 

VEGFC and DCN. Thus, while the ligand for CXCR4 and the receptors for VEGFC were 

not expressed in vitro, and DCN is reported (albeit in the absence of antihormone) 

to be primarily produced by the tumour stroma rather than the tumour epithelial 

cells, it is feasible in vivo that such signalling elements may gain a greater 
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significance as determinants of therapeutic response/resistance. Examination of 

these elements in ER+ breast cancer in vivo models or in 3D tumour/stromal cell co-

culture following Faslodex treatment may help to resolve these issues.  

11.2 The use of a wider array of experimental material 

Although the present study is one of a small number that have attempted to use 

multiple cell lines to examine response/resistance mechanisms, breast cancer is a 

highly heterogeneous disease and equivalent investigations in other cell lines 

reflective of this heterogeneity is necessary. Within this context, the tumour 

suppressor genes p53 and PTEN are often lost or mutated in clinical breast cancer 

(Hollstein et al., 1991; Li et al., 1997), yet they were not adequately represented in 

the limited number of models presently used. Equally, an increasing number of 

molecular sub-types are being discovered in breast cancer (Cutis et al., 2012) and 

hence such studies are also likely to benefit in the future by extending to primary 

breast cancer cells. Importantly, within the context of the present study and its 

approach, the issue of heterogeneity may be partially addressed through the 

development of isotypic cell lines where the expression of genes of interest are 

genetically modified, as with DCN. Finally, the experimental context within any 

expanded array of tumour models could also be usefully broadened to incorporate 

additional anti-hormonal measures.  

11.3 The need for on-therapy clinical samples 

As previously stated in this project, to further verify genes of interest as biomarkers 

of response or to implicate them in a given response in clinical breast cancer, 

additional on-therapy samples are required which are more fully reflective of 

current treatment practices.  Unfortunately, obtaining such material remains 

intrinsically difficult and even when obtained may be limited by the clinical context 

of the samples. Thus for example, while the NEWEST trial reported in this study 

clearly provided some useful information concerning the capacity of Faslodex to 

alter the expression of genes, such as DCN, it is a neoadjuvant study which cannot 

address issues of long-term response to a drug. Such difficulties should not, 

however, be insurmountable in the future as the techniques relating to tissue 
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sampling become less invasive and we are able to profile more on ever diminishing 

amounts of material (Heitzer et al., 2013).   
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Appendices 

 

Appendix A: Charcoal stripping procedure for 100ml FCS 

 

Charcoal-stripped FCS was used in order for the culture media to mimic oestrogen 

deprivation via the removal of as many steroids as possible (Morandi et al, 2013). 

 

A charcoal solution (2g activated charcoal, 0.01g dextran T70 in 18ml dH20) was 

stirred for at least one hour. FCS was adjusted to pH=4.2 using HCl (5M) and left to 

equilibriate for 30minutes at 4oC. 5ml of charcoal solution was added to 100ml FCS 

and the solution and stirred gently for 16 hours at 4oC. Charcoal was then removed 

by centrifugation (12000rpm for 40 minutes) and the supernatant coarse-filtered 

through Whatman filter paper NO. 4 to ensure complete removal of charcoal. The 

solution was re-adjusted to pH=7.2 using NaOH (5M) and filter sterilised using a 

2μM Super Vacucap membranes (Gellman Laboratory Pall, Ann Arbor, USA). 

Characoal stripped FCS was aliquotted into sterile universal containers and stored 

at 120oC 

 

Appendix B: ICC protocols 

Appendix B.1 3-aminopropyltriethoxysilane-coating of coverslips 

Coverslips were cleaned by immersing in 100% ethanol before being left to air dry. 

 

Once dry, coverslips were firstly immersed in 2% 3-aminopropyltriethoxysilane  

(A3648, Signal-Aldrich UK) in acetone for 5 seconds before being placed in 100% 

acetone for 2 minutes and distilled water 2 x 1 minute. Coated-coverslips were then 

left to air-dry before being sterilised. 
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Appendix B.2 Formal saline solution 

3.7% Formal saline solution: 0.9g sodium chloride, 10ml 37% formaldehyde 

solution, 90ml distilled water 

 

Appendix B.3 Sucrose storage medium  

42.8g sucrose + 0.33g magnesium chloride dissolved in 250ml PBS then add 250 ml 

of glycerol. Stored in -20oC freezer prior to use. 

 

Appendix B.4 PBS (0.01M) 

8.5g sodium chloride, 1.43g di-potassium hydrogen orthophosphate anhydrous, 

0.25g potassium dihydrogen orthophosphate and 1 litre distilled water. 

 

Appendix B.5 0.02% PBS/Tween 

100μl of Tween 20 to 500ml PBS.  

 

Appendix C: Jetset gene probes 

The Affymetrix microarray platform contains multiple gene probe sets for a given 

gene which can deliver inconsistent or even contradictory measurements 

subsequently determining an estimate of gene expression can be difficult. Li et al 

developed a method to score each of the probe sets in order to determine their 

suitability as a probe set (Li et al, 2011). Three factors were considered; first the 

probe set should respond to the target gene only (probes partially matching other 

untended targets may deliver misleading results (Eklund et al, 2010; Okiniewski et 

al, 2006)). Secondly, the probe should detect as many splice isoforms as possible of 

the target gene in order to estimate overall gene expression and finally, the gene 

probe set should target the gene at a position near the 3’ end of the corresponding 

transcript as it has been determined that probes too far from the 3’ end of the 

target are likely to have a reduced signal and are susceptible to false signal changes 

due to variations in RNA integrity (Eklund et al, 2008). In summary, the scoring 



404 
 

methods assess each probe for specificity, coverage and degradation resistance. 

The probe with the highest score for a given gene was deemed the most optimal 

probe. All scores range from 0-1 and the higher the score the better the predicted 

performance of the given gene probe. 

Appendix D: Faslodex dose-response graph using the MCF-7 cell line 

 

The effect of increasing concentrations of Faslodex on the basal growth of MCF-7 cells on 

day 7 after initial treatment. The results are expressed as means ± SEM of triplicate wells 

and are representative of three separate experiments. *P < 0.05 versus control, **P < 0.01 

versus control, ***P < 0.001 versus control. No significant difference between 10-7M 

Faslodex and 10-5M 
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Appendix E: Pathway Analysis. 

Genes identified as being significantly de-regulated (SAM: FDR <0.05) and used for pathway 

analysis. 

 Resistance (BT474, MDA-MB-361 and MCF-7) genes- 42 genes identified 

 T47D-unique genes-29 genes identified 

 HER2- (MCF-7 and T47D) genes-44 genes identified 

 HER2+ (BT474+MDA-MB-361) genes-24 genes identified 

RESISTANCE 
GENES (HER2+ 
AND MCF7) 

T47D 
UNIQUE 

HER2- 
ONLY 

HER2+ 
ONLY 

ABCA1  SEPT6 A2BP1 CD8B 

ADAM22 ADAM12 ABP1 CDH2 

ATP11A AFF3 ALDH4A1 CYP2A6 

BCL2 ANGPT1 ALOX5 CYP2B6 

BST1 ANK1 ANK1 CYP2B7 

C18orf1 APBB2 ANK2 CYP2B7P1 

CXCR4 AZGP1 ARTN CYP2C9 

DAB2 CA12 C14orf139 DDX3Y 

DAB2 CASP1 CEACAM1 DICER1 

EPHA3 CDC25A CEACAM6 DMD 

FLT4 DCN CLGN FAM155A 

FRMD4B DUSP4 CT62 GFRA2 

FRZB EPB41L3 CXCL12 GOLM1 

GABBR2 ID4 DSCAM HSPG2 

GFRA1 IL6ST EFNB2 ID3 

GPR37 KCNAB1 ELOVL2 IGF2BP3 

GRN KCNMA1 F5 LTF 

HLA-DQB1 LRRN3 IL6R MPPED2 

HS3ST1 MCM5 ITIH1 PVALB 

IGFBP3 NRIP1 KLF12 SERPINI1 

IKZF1 OLFM1 KRT4 SLC6A14 

IL1R1 PEG10 MAP1B SLC6A2 

IVD PTGER3 MLLT4 THBS1 

KITLG SKAP2 MYB TRIP6 

MAOA STC1 MYRIP   

NLRP3 TGFB2 NCAM1   

NOV TOX3 NPY5R   

NR4A3 TRIM29 NR2F1   

PDE4B TXNIP PCDH11X   

PDE4DIP   PCDH7   

PIK3R1   PMAIP1   

PKIA   PSCA   

PPP3CA   PTPRJ   



406 
 

PRKACB   PYY   

RGS12   RUNX1T1   

RPS6KA3   SERHL2   

STS   SH3TC2   

TLE4   SLC39A9   

VCAN   SLC7A1   

VEGFC   SSX4   

ZEB1   SULF1   

ZNF343   SYNJ2   

    UPK3B   

    VGLL1   

 

Pathway analysis was carried out using Ingenuity Pathway Analyser. The genes of interest 

were input along regulators and ligands of the subsequent proteins.  

Resistance/MCF-7, BT474 and MDA-MB-361 shared genes 

For those genes identified as possible resistance genes 4 pathways were identified as 

shown below (those shaded indicate the genes that are present in the gene list). 

A: Cancer, Cellular Development, Cellular Growth and Proliferation 
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B: Cellular Assembly and Organization, Cellular Movement, Cardiovascular Disease 

 

C: Molecular Transport, Small Molecule Biochemistry, Carbohydrate Metabolism 
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D: Cell Death and Survival, Gastrointestinal Disease, Inflammatory Disease 

 

 

Of particular interest was pathways A and D due to their potential roles in cell survival and 

thus possible acquisition of resistance to Faslodex. However, very few of the central nodes 

of the pathways included genes identified as being de-regulated and listed in the Table of 

Appendix E with the exception of CXCR4 in pathway A and BCL2 in pathway D. 

Complete response/T47D unique genes 

For those genes identified as possible T47D unique/complete response genes, 2 pathways 

were identified as shown below. Those shaded indicate the genes that are present in the 

gene list. 

With regards to a complete response both pathways identified are of interest, however 

pathway A includes more genes that are directly from the genes of interest list and with a 

few being present in the same pathway. Chapter 6 looks at many of these genes in further 

detail and analyses those that are more strictly de-regulated in the T47D line only and by a 

given a fold change. 

 

 

A: Cell Death and Survival, Cell-To-Cell Signaling and Interaction, Connective Tissue 

Development and Function 
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B: Cellular Compromise, Organismal Injury and Abnormalities, Cell Cycle 

 

 

Extended response/HER2- only genes 
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2 pathways were identified from the analysis of gene identified as being Faslodex de-

regulated in the ER+/HER2- cell lines (MCF-7 and T47D). Neither of the identified pathways 

are suggested to be involved in mechanisms that could be associated with an extended 

duration of Faslodex response suggesting that the de-regulation of these pathways is not 

the cause of the increased response. 

A: Cellular Movement, Digestive System Development and Function, Hematological System 

Development and Function 

 

B: Digestive System Development and Function, Organ Morphology, Cancer 
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Reduced response/HER2+ (BT474 and MDA-MB-361) shared genes 

Again only 2 pathways were identified following the analysis of genes de-regulated by both 

ER+/HER2+ cell lines. Pathway B could be of interest due its possible involvement in 

survival but none of the genes found to de-regulated in the both HER2+ lines (shaded 

genes) form central components of this pathway suggesting a minimal effect on cell 

survival.  

A: Drug Metabolism, Small Molecule Biochemistry, Lipid Metabolism 
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B: Cell Death and Survival, Nervous System Development and Function, Cardiovascular 

Disease 
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