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Abstract

The research work presented in this thesis aims to achieve high-power, high-efficiency

amplification across substantial bandwidths at microwave frequencies. The push-pull

topology was identified as a promising possible solution which had previously not been

considered for this application.

The key component in the push-pull power amplifier is the balun, which converts

between balanced and unbalanced signal environments. The novel use of ferrite materials

allowed the half-wavelength resonance of a coaxial-cable transmission line balun to be

suppressed, greatly extending its bandwidth. This was done by utilising the resistive

properties of the ferrite material at frequencies greater than 1 GHz, at which these

materials are not usually studied.

The multi-decade performance of the transmission line baluns opened up the possibil-

ity of realising push-pull power amplifiers across similar bandwidths. The measurement

of these baluns revealed that they present a resistive impedance to the odd-harmonic

frequencies, and an open circuit to the even-harmonic frequencies. This is a significant

departure from the conventional view of the push-pull mode, and led to the modes of

operation inside a microwave push-pull power amplifier being reconsidered.

Factorised waveform expressions were used to describe the new modes of operation,

and these were verified through load-pull simulations and measurements. The wave-

forms were found to resemble the inverted modes of operation, with similar desirable

characteristics such as high efficiency and an increase in output power compared to Class

A.

The viability of the push-pull amplifier topology was demonstrated through two pro-

totype amplifiers, which achieved high output power levels and efficiencies over multi-

octave bandwidths. Measurement systems for characterising and analysing these ampli-

fiers were developed, which should lead to improved understanding and better perfor-

mance in future.
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Key Contributions

Contribution 1

Demonstration of the viability of the push-pull amplifier topology as a method for obtain-

ing high-power, high-efficiency operation across multi-octave bandwidths at microwave

frequencies.

Contribution 2

Identification of and investigation into the modes of operation of a push-pull power

amplifier using transmission line baluns.

Contribution 3

Novel use of ferrite materials to suppress the half-wavelength resonance of a coaxial-cable

transmission line balun.

Contribution 4

Development of a measurement system for investigating the push-pull power amplifier

with differential input ports.
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Chapter 1

Introduction

1.1 Broadband Microwave Push-Pull Power Amplifiers

A microwave power amplifier is a device that converts DC energy into microwave energy

in order to increase the amplitude of an input signal. This concept is simple enough, and

yet designing a power amplifier for a modern communications system is a complicated

task. This is due to the numerous requirements that are placed on the power amplifier,

many of which will become apparent throughout this thesis.

As a starting point, it is worth expanding on the title of the thesis in order to clarify

some of the terms contained within it.

Although ‘broadband’ is a commonly used term in RF and microwave engineering, its

definition varies significantly depending on perspective. For cellular network applications,

for instance, broadband could refer to a relative bandwidth of less than 10%. For this

thesis, broadband is taken to mean ‘greater than one octave of relative bandwidth’

(66.7%).

‘Microwave’ is defined in the Oxford English Dictionary as “an electromagnetic wave

with a wavelength between about one millimetre and 30 centimetres (corresponding to

a frequency between 300 gigahertz and one gigahertz)” [1]. The work presented in this

thesis focusses on the low-end of this range, and also below 1 GHz, but the concepts

can be extended to higher frequencies.

‘Push-pull’ is a well-known amplifier topology which is described in Chapter 2. It

has many advantages, as well as a number of design challenges, and until now has not

been widely investigated as a method of achieving broadband performance at microwave

frequencies.

And finally, the ‘power amplifier’ itself is briefly introduced in the next section.
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CHAPTER 1. INTRODUCTION

1.2 The Power Amplifier

The power amplifier (PA) is a crucial component in the transceiver, a simplified form

of which is shown in Fig. 1.1. Of all the components in the transmitter and receiver

chain, it is generally the power amplifier that consumes the most power, and so largely

determines the power efficiency of the transmitter.

Power amplification was originally achieved through the use of vacuum device (or

‘valve’) amplifiers. These devices can operate at high power levels and high frequencies,

however have relatively short lifespans compared to solid-state amplifiers. They also

require high voltages and high temperatures to operate, which makes them unsuitable

for mobile applications.

Solid-state amplifiers have replaced vacuum tubes in most applications, and have

been integrated into billions of fixed and portable communications devices as well as

military hardware and systems for industrial, scientific and medical (ISM) applications.

It is worth noting that vacuum tubes are still used in certain high-power applications,

typically above 1 kW, and so the transition to solid-state amplifiers is not yet entirely

complete.

A number of transistor structures have been developed, based on either the field-

effect transistor (FET) or the bipolar junction transistors (BJT). The most-used semi-

conductor material of recent years has been silicon (Si), firstly in the implementation

of BJTs and later as the laterally-diffused metal-oxide semiconductor (LDMOS) FET.

The other widely used semiconductor material has been gallium arsenide (GaAs), a ‘III-

V’ compound semiconductor used in high electron mobility transistors (HEMTs) and

heterojunction bipolar transistors (HBTs). Other semiconductor materials have been

utilised in solid-state power amplifiers, including silicon germanium (SiGe), silicon car-

bide (SiC) and indium phosphide (InP), however silicon and gallium arsenide are used

for the majority of applications.

In the last decade, the emergence of another III-V compound semiconductor mate-

Figure 1.1: Simple transceiver block diagram
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1.3. RESEARCH MOTIVATION

rial, gallium nitride (GaN), has opened up the possibility of replacing vacuum tubes in

high-power, high-frequency applications where solid-state amplifiers had previously been

unsuitable. Gallium nitride transistors feature heavily in this thesis, and are introduced

in Chapter 2.

The power amplifier is a key component in the transmitter chain, and any improve-

ments that can be made to it will have a profound effect on the overall system. As a

result, there is a large incentive to conduct research into improving the power amplifier.

1.3 Research Motivation

If the ideal power amplifier were to be defined, it would have the following characteristics;

• Broadband operation

• High output power

• High power efficiency

• High gain

• Linear

• Reliable

• Minimal size, weight and cost

Simultaneously achieving the first three of these characteristics is the key motivation

behind the research in this thesis.

Having an amplifier that can cover a wide range of operating frequencies is desirable

for several reasons. It requires fewer amplifiers to cover the desired bandwidth, and thus

removes the need for switching systems to select the appropriate amplifier. This makes

transmitters smaller, cheaper and simpler. The techniques developed for multi-octave

bandwidth amplifiers can also find use in narrower band applications.

High output power levels (where permitted) are useful for communications signals in

order to increase the signal-to-noise ratio (SNR) and hence the information capacity of

the communication channel. For radar and jamming applications, increased power will

increase the range that the systems can operate over and improve their effectiveness.

Being able to realise a single high-power amplifier means that it is unnecessary to combine

the output power from several low-power amplifiers, and this again reduces cost and

complexity, as well as eliminating the power loss in the combiners and hence improving

efficiency.

DC-to-RF conversion efficiency a measure of how much energy is converted to ‘useful’

RF energy, and how much is ‘wasted’ as heat. Improving efficiency means that less

energy is required to achieve a desired output power, and for portable devices this has a

3



CHAPTER 1. INTRODUCTION

direct impact on battery life. For systems such as cellular base-stations, reducing energy

consumption results in lower operating expenditure (OPEX) for the network provider,

and is more environmentally friendly. If the DC-to-RF conversion efficiency of the power

amplifier can be improved, the reduced heat dissipation also means that it requires less

cooling. This further reduces power consumption of the overall transmitter, as well as

size, weight, cost and complexity.

One of the key applications for this work is in the field of jamming. Jamming is the

transmission of signals to purposely lower the signal-to-noise ratio of another signal, with

the intention of disrupting the communication link. High power levels are required to

reduce the signal-to-noise ratio to the extent that the target signal cannot be received.

One method to counteract jamming is frequency hopping. This involves regularly

changing the frequency at which a signal is broadcast, such that the jammer cannot

determine the broadcast frequency and hence cannot disrupt the signal. An effective

jammer is therefore required to operate over wide bandwidths in order to be able to

block the signal at any frequency it may be broadcast at. In addition, it is desirable for

high power efficiencies to be achieved in order to reduce the overall size and weight of

the jammer.

In the wireless communications space, modern systems can operate across a wide

range of frequencies, although the signal bandwidths are typically narrow. Long Term

Evolution (LTE), for example, has portions of frequency spectrum allocated between

698 MHz and 3.8 GHz [2], and it is desirable to cover as many of these frequency bands

as possible in order to maximise the number of countries that the equipment can be used

in. In addition, both base-stations and handsets are likely to have to support multiple

generations of cellular communications systems.

Whilst a mobile handset is limited to relatively low power levels, a base-station’s

output power requirements are much higher. As previously mentioned, power efficiency

is important to reduce operating expenses. Again, the three requirements of high output

power, good power efficiency and broadband operation are present.

Instrumentation is another potential application for broadband power amplifiers. A

modern Vector Network Analyser (VNA) can cover a frequency range of 10 MHz to

26.5 GHz [3], and a driver PA that could cover this bandwidth would be extremely

useful for large-signal measurements.

4



1.4. RESEARCH OBJECTIVES

1.4 Research Objectives

Two key objectives for the research were set;

1. Investigate the push-pull topology as a method for achieving high-power, high

efficiency power amplification over multi-octave bandwidths.

2. Deliver a prototype power amplifier with performance figures that match or exceed

previously published work.

1.5 Thesis Organisation

The basic modes of operation of RF power amplifiers are outlined in Chapter 2, along

with the existing literature on broadband amplifier topologies, including the push-pull

configuration.

A novel method for extending the bandwidth of the microwave transmission line

balun is introduced in Chapter 3. A multi-decade balun is presented that opens up the

possibility of broadband push-pull power amplifiers at microwave frequencies.

As a result of measurements on the transmission line balun, it was necessary to

reconsider the modes of operation that are present inside a push-pull power amplifier.

These newly-recognised modes are presented in Chapter 4 and verified through simulation

and measurement.

The potential of the push-pull topology is demonstrated through the design, manu-

facture and test of two prototype power amplifiers in Chapter 5. Bespoke measurement

systems were used to gain additional insight into the amplifiers’ operation.

The work presented in this thesis is concluded in Chapter 6, and areas for future

work are described in Chapter 7.

5





Chapter 2

Literature Review

2.1 Introduction

This chapter introduces many of the concepts that will be expanded upon later in

the thesis and reviews the existing work that has been conducted on developing high-

efficiency, high-power amplifiers over significant bandwidths.

The essence of power amplifier design is in the selection of a bias point for the

transistor and the design of input and output matching networks, in order to achieve the

required performance. Particular bias points and matching impedances are classified as

power amplifier modes and assigned an alphabetic designation. As can be seen in Fig.

2.1, the purpose of the matching network is to present the required impedances to the

transistor whilst presenting the system impedance to external components.

The chapter begins with a brief review of ‘conventional’ PA modes as a foundation

on which to build later work. Fundamental limitations in the ability to design matching

networks that operate over large bandwidths are identified. Having introduced the tradi-

tional approach to PA design and some of its limitations, continuous modes, also known

as ‘extended’ modes, are shown to be able to maintain highly power-efficient operation

over significantly extended bandwidths.

An introduction to gallium nitride (GaN) transistors and their suitability to broad-

band, high-power applications is presented, along with some of the challenges that they

Figure 2.1: Basic single-ended amplifier configuration
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CHAPTER 2. LITERATURE REVIEW

present to amplifier designers. The different topologies used to achieve broad bandwidth

operation, namely balanced and distributed amplifiers, are then outlined along with their

shortcomings.

Finally, the push-pull topology, which will form the basis of the work in this thesis,

is introduced. Its advantages and challenges are explained, and the current state-of-

the-art papers are reviewed. As will become evident throughout the thesis, the balun

component is the key component in the push-pull amplifier, and the many techniques

for implementing baluns are categorised.

2.2 Power Amplifier Modes of Operation

In this section, a brief introduction to the various power amplifier operating modes is

presented. There is no point ‘reinventing the wheel’, seeing as many excellent texts on

RF PA design already exist [4–6], however it will provide a useful point of reference for

later work.

Classes A through to C are regarded as the ‘conventional’ modes of operation. Figure

2.2 shows an idealised transistor transfer characteristic with the bias points associated

with each mode. A common characteristic of the conventional modes of operation is

that the output voltage waveform is sinusoidal, achieved by presenting the harmonics

with a short circuit.

Classes D, E and S are known as ‘switched’ modes, as they rely on the transistor

acting as a switch. Switched mode amplifiers require a resonator to be included as part

of their output matching network, and this makes them unsuitable for broadband appli-

cations. Details of these modes can be found in the PA textbooks previously identified.

Classes F and F-1 (inverse Class F) are known as ‘harmonically tuned’ modes, whose

efficiency is improved compared to other modes by shaping the output waveforms. They

require more complicated matching networks due to their harmonic impedance require-

ments, however very high efficiencies are possible over modest bandwidths.

Class J, the Class JB continuum and the continuous modes of operation are recent

developments in power amplifier design. Unlike other modes of operation, they account

for the transistor’s intrinsic output capacitance (described in Section 2.3.2) and com-

pensate for its effects to achieve high levels of performance across wider bandwidths

than other modes.

In discussing the theory of all of these modes, the effect of the transistor’s knee

region is ignored. The effect of the knee region is to reduce the RF output voltage

swing, and hence output power and drain efficiency. It is shown analytically in [4] that

for Class B operation the knee region causes a decrease of approximately 1 dB in output

power and 10% in efficiency.

8



2.2. POWER AMPLIFIER MODES OF OPERATION

Figure 2.2: Ideal transistor transfer characteristic

2.2.1 Class A

A Class A amplifier has a conduction angle of 360°, i.e. it is always conducting. Because

the DC power is always non-zero, its efficiency is low compared to the other modes of

operation. Figure 2.2 shows that Class A PAs are biased halfway between the maximum

output current and zero output current. The maximum theoretical drain efficiency for a

Class A amplifier is 50%. As shown in Fig. 2.3, Class A has purely sinusoidal waveforms

for both current and voltage. The current has been normalised to IMAX, the maximum

drain current that can be supplied by the transistor. The output voltage has been

normalised with respect to its DC value, which remains constant.

Class A has a linear power back-off characteristic, such that a 3 dB reduction in

input power results in a 3 dB reduction in output power. Most modulation schemes

employ some form of amplitude modulation (AM), whereby the carrier signal amplitude

varies with time. Whenever the signal is not at its peak value, the RF output power

of the Class A PA is reduced but its DC power consumption remains constant. Under

these conditions, the Class A mode exhibits low values of efficiency.

Figure 2.3: Class A voltage and current waveforms

9



CHAPTER 2. LITERATURE REVIEW

2.2.2 Class B

In Class B the transistor is biased at its threshold voltage, so that the current only

conducts for half of the cycle, producing a half-wave rectified sinusoid. In order to

achieve the half-wave rectified shape, even-order harmonics are generated but the odd-

order harmonic components are zero. Class B amplifiers produce the same maximum

output power as Class A amplifiers, but have to be driven with more input power, as

the theoretical gain is 6 dB lower. The load resistance is the same as for Class A, and

the power back-off relationship is also linear.

The maximum theoretical efficiency for a Class B amplifier is 78.5%, and its time-

domain waveforms are shown in Fig. 2.4. Because the harmonic frequencies are short-

circuited, none of the harmonics present in the current waveform appear in the output

voltage waveform, hence it is a pure sinusoid.

Figure 2.4: Class B voltage and current waveforms

2.2.3 Class AB

As opposed to Classes A and B, Class AB is not defined at a single bias point but

instead as the range between Class A and Class B. Bias points closer to Class A are

generally referred to as ‘light’ or ‘shallow’ Class AB, with bias points closer to Class B

referred to as ‘deep’ Class AB. It is possible to achieve slightly higher maximum output

power with Class AB compared to Class A (typically 0.25 dB [4]), but the trade-off

is a reduction in gain. The optimum load resistance is slightly lower than for Class A

operation. As the conduction angle depends on the input (drive) power [4], as well

as the biasing conditions, the output power and drain efficiency do not decrease with

power back-off as rapidly as in Classes A and B. This is advantageous for applications

where the amplifier will not be constantly operating at full output power, such as when

amplifying amplitude-modulated signals. As the transistor is biased into ‘deep’ Class

AB, the harmonic content of the current waveform increases.

10



2.2. POWER AMPLIFIER MODES OF OPERATION

2.2.4 Class C

In Class C amplifiers the conduction angle is very small (less than one-half of the RF

cycle) so the drain current is shaped as a narrow pulse, as shown in Fig. 2.5. As with the

other ‘conventional’ modes of operation, the harmonics are shorted and so the output

voltage is always sinusoidal. In theory, the maximum efficiency of a Class C amplifier

tends towards 100%, as the conduction angle tends towards zero. However, this higher

efficiency is achieved at the expense of both output power and gain. Class C amplifiers

have a reduced gain compared to Classes A, AB and B, which makes this mode unfeasible

in applications where the maximum available gain (MAG) of the transistor is low, for

example at X-band frequencies.

Figure 2.5: Class C voltage and current waveforms

Amplifier Class Conduction Angle Maximum Efficiency Zf0 Z2f0 Z3f0

Class A θ = 2π 50% 1 n/a n/a

Class AB π < θ < 2π 50% - 78.5% 0.93 0 0

Class B θ = π 78.5% 1 0 0

Class C θ < π 78.5% - 100% ≥ 1 0 0

Class F θ = π 90.7% - 100% 1.154 0 ∞

Class F-1 θ = 2π 90.7% - 100% 1.22 ∞ 0

Class J θ = π 78.5% 1 + j −j 3π
8 0

Table 2.1: Summary of power amplifier modes of operation

11



CHAPTER 2. LITERATURE REVIEW

2.2.5 Class F

‘Waveform engineering’ is the modification of a transistor’s time-domain voltage and

current waveforms through the manipulation of the harmonic impedances that are pre-

sented to it [7]. The Class F mode can be realised using waveform engineering by

shaping the output current and voltage into highly power-efficient waveforms. The tran-

sistor is driven into compression and the voltage waveform is ‘flattened’ by presenting

the odd-order harmonics with an open circuit. By flattening the voltage waveform, the

fundamental voltage swing can be increased, and hence output power is increased with-

out increasing the DC power consumption. As additional higher-order odd harmonics

are tuned, the voltage waveform tends towards a square wave shape, and the efficiency

increases. Tuning lower-order harmonics is more effective at improving efficiency than

tuning higher-order harmonics, so lower-order harmonics are tuned first.

The current waveform approaches the shape of a half-rectified sinewave by short-

circuiting the even harmonics. Again, tuning the lower-order harmonics has a greater

effect than tuning the higher-order harmonics. Typical Class F waveforms are shown in

Fig. 2.6.

Some key results are contained within Table 2.2. The number of even harmonics

considered is represented by m, and n represents the number of odd harmonics consid-

ered. When m and n are 1, both current and voltage are sinusoidal and the maximum

efficiency is 50%. This is the Class A mode. When the even harmonics are all shorted

but the odd-order harmonics are not tuned, the maximum efficiency is 78.5% (Class

B). If the third harmonic is then tuned (keeping the ideal current waveform) the maxi-

mum efficiency then increases to 90.7%. This is the most commonly quoted maximum

efficiency for the Class F amplifier. If it were possible to tune an infinite number of

harmonics, the Class F amplifier would theoretically be 100% efficient.

Figure 2.6: Class F voltage and current waveforms (m = 4, n = 5)
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n = 1 n = 3 n = 5 n = ∞

m = 1 50.0% 57.7% 60.3% 63.7%

m = 2 70.4% 81.6% 85.3% 90.0%

m = 4 75.0% 86.6% 90.5% 95.4%

m = ∞ 78.5% 90.7% 94.8% 100.0%

Table 2.2: Maximum efficiency of the Class F mode with m even harmonics and n odd
harmonics considered (from [8])

2.2.6 Inverse Class F

Inverse Class F amplifiers (commonly denoted as Class F-1) are based on the same

principle of operation as Class F, but are biased at the Class A bias point. Rather than

the voltage waveform being flattened, the current waveform is flattened and the voltage

waveform tends towards a half-wave rectified sinusoid. The waveforms are shown in Fig.

2.7.

To realise the inverse Class F mode, the second harmonic is open-circuited and the

third harmonic is shorted. A characteristic of the inverse Class F mode that is not

commonly noted is that the theoretical maximum output power of this mode is 2.1 dB

higher than for Class A, a notable increase. Later on in this thesis, a similar advantage

will be shown to be present in the modes of operation present in a push-pull power

amplifier. The inverse Class F mode results in higher peak voltages than other modes,

which could be problematic for transistors with relatively low breakdown voltages, but

is acceptable for wide-bandgap semiconductor materials such as GaN, which have high

breakdown voltages.

Figure 2.7: Inverse Class F voltage and current waveforms

13



CHAPTER 2. LITERATURE REVIEW

2.3 Bandwidth Limitations in Power Amplifier Design

In this section, three major obstacles to achieving broadband power amplifier operation

using conventional matching networks are outlined. It will be shown that the limita-

tions of the conventional single-ended power amplifier in achieving large bandwidths

necessitates the investigation into alternative approaches.

2.3.1 Matching Network Limitations

As stated in the introduction, the purpose of a matching network is to transform a

system impedance, typically 50 Ω, into an impedance that will result in the circuit

element giving the desired performance. In the case of power amplifiers, the desired

output impedance is dependent on the operating mode of the amplifier and the size of

the transistor. Higher-power transistors are physically larger and have lower optimum

output impedances.

When matching is only required at a single frequency, this can be done fairly eas-

ily through appropriate design [9]. However, maintaining an impedance transformation

over a range of frequencies is a significant challenge. The main reason for this is that

the impedance presented by the matching network varies with frequency, which is un-

surprising given that the matching network is constructed from frequency-dependent

elements such as transmission lines, capacitors and inductors. Broadband matching can

be achieved through careful design, but becomes increasingly complicated as the required

bandwidth increases.

Because of the difficulties of matching to a single impedance across a range of

frequencies, it is common to target a range of impedances, for example where the

output power is within 1 dB of the output power achieved at the optimum impedance.

These contours can be predicted by theory [10], measured directly using a load-pull

measurement system or obtained by simulation, if a nonlinear model is available. This

approach helps to take into account the variation of the presented matching network

impedance with frequency.

When designing a matching network, there is a fundamental limit to the band-

width that a matching network can achieve for a given transformation ratio. A greater

impedance transformation ratio reduces the achievable bandwidth. As smaller transistors

have larger output impedances, they can generally be matched over wider bandwidths

than higher power transistors. One approach to achieving high-power, broadband am-

plifiers could therefore be to combine many low-power transistors that are matched over

a wide bandwidth. Unfortunately, the losses associated with the power combining com-

ponents, as well as the bandwidth of these components, are a major obstacle to this

particular approach.

The limitations of matching arbitrary impedances over bandwidth have been dis-
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cussed first by Bode [11] and later expanded on by Fano [12]. It can be shown that

there is a maximum achievable bandwidth for a specified tolerance of match, and vice

versa. Fano provides a set of integral relations for determining the realisability of match-

ing networks for a given specification, and later provides a method for designing these

matching networks. It should be noted however that the mathematical analysis for com-

plex matching networks quickly becomes cumbersome, and that the widespread use of

CAD (computer-aided design) tools means that in reality the equations developed are

rarely used when designing matching networks.

Additional challenges result from the use of lumped-element components, which

cannot be considered to be ideal components, especially at microwave frequencies where

they have distributed effects. Complicated, multi-element matching networks also have

the disadvantage that the additional components will increase the loss of the matching

network, and also increase its physical size.

2.3.2 Reactive Output Impedances

In the previous section the difficulties of matching two fixed impedances over a wide

bandwidth have been discussed. These difficulties are due to the fundamental trade-off

between bandwidth and matching tolerance when designing matching networks.

However, the output impedance of the transistor also varies with frequency, further

complicating the task of designing a matching network. There are a number of reactive

components contained within the transistor and its packaging that cause its output

impedance to vary with frequency. The most influential of these reactive components

is the capacitance between the drain and the source (CDS) that is inherent to the

transistor. Bond wire inductances and other reactances introduced by the transistor

package also serve to complicate the problem. It can be seen in Fig. 2.8 how a normalised

output impedance is shifted by reactances inherent to the transistor so that the resulting

impedance varies significantly across a decade of bandwidth. In addition, it can be

observed that the impedance at the high-frequency end of the band is much lower than

the original impedance, increasing the matching ratio and further limiting the bandwidth.

The effect of the transistor’s reactive components is even more pronounced at the

harmonic frequencies. This makes it very difficult to present the desired harmonic ter-

minations over bandwidth, and this has a detrimental effect on performance. In Section

2.4.3 it is shown that the Class J mode and continuous modes can alleviate this problem

through waveform engineering.

2.3.3 Harmonic Impedances

In addition to the matching restrictions at the fundamental frequency, outlined in Sec-

tions 2.3.1 and 2.3.2, the matching network is also required to present appropriate
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Figure 2.8: Output impedance as transformed by device and package reactances

impedances at the harmonic frequencies. This creates a further bandwidth limitation

at the frequencies at which there are conflicting requirements placed on the matching

network. As the bandwidth of an amplifier increases, eventually the high end of the

fundamental band and the low end of the second harmonic band will meet, as shown

in Fig. 2.9. In a conventional PA mode, this would require a specific impedance to

be presented at the fundamental frequency and a short circuit to be presented at the

second harmonic. As can be seen in Fig. 2.9, the theoretical bandwidth limitation for

conventional PA modes is one octave (66%).

For harmonically-tuned, high efficiency modes, the bandwidth limitation can also

be identified. Figure 2.10 shows the limitations in implementing the Class F mode of

operation. As Section 2.2.5 outlined, the second harmonic is required to be presented

with a short circuit and the third harmonic requires an open circuit. At the normalised

frequency of 2.4fC, the matching network is required to simultaneously present a short

circuit to the second harmonic and open circuit to the third harmonic, which is not

possible. Figure 2.10 demonstrates that the theoretical bandwidth limitation for a high-

efficiency mode with three tuned harmonics is 40%. In reality, a matching network would

not be able to maintain a perfect short or open circuit over any significant bandwidth in

any case, so this bandwidth limitation is rarely a practical concern. However, it is worth

noting as a theoretical limitation of conventional matching networks.

Figure 2.9: Bandwidth limitation of a conventional PA mode of operation
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Figure 2.10: Bandwidth limitation of the Class F PA mode of operation

2.4 Class J and Continuous PA Modes

2.4.1 Class J

The Class J mode can be used to compensate for the effects of reactive components on

the harmonic output impedances discussed in Section 2.3.2. When designing a Class B

power amplifier, the second harmonic impedance can be shifted a significant distance

away from an ideal short circuit due to the transistor’s drain-source capacitance. This

means that the output voltage waveform is no longer sinusoidal and may have a negative

value at certain points of the waveform (known as ‘zero-crossing’), leading to a decrease

in both output power and efficiency. Because CDS is inherent to the transistor, the PA

designer cannot remove this effect and has to compensate by reducing the voltage swing

or modifying the matching network.

The Class J mode introduces a reactive element to the fundamental matching

impedance [13] to shape the time-domain voltage into a waveform with the same effi-

ciency and output power as Class B. This is a remarkable result that, unlike the conven-

tional PA modes, recognises and compensates for non-ideal effects inside a transistor.

The Class J voltage and current waveforms shown in Fig. 2.11 have the same output

power as Class B and the same theoretical 78.5% drain efficiency. It can be seen that the

Class J voltage waveform has a higher peak value than the Class B voltage waveform,

however when used with transistor technologies which have high breakdown voltages,

such as GaN, this is not a significant problem. It can be seen that the Class J am-

plifier displays approximately half-wave rectified sinusoidal output current and voltage

waveforms, but with a shift in phase.

2.4.2 Class JB Continuum

The time-domain voltage waveform of Class J can be described mathematically as the

sum of cosinusoidal and sinusoidal components. The cosinusoidal components represent

the real components of the complex waveform, and the sinusoidal components represent

the reactive components. It was recognised that these expressions could be factorised

[14], and the factorised voltage waveform for the Class J mode is described by (2.1).

The parameter α can be varied between -1 and 1 to produce a family of waveforms with

the same power and efficiency. Because α can take any value between -1 and 1, this
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Figure 2.11: Class J voltage and current waveforms, with Class B voltage waveform for
comparison

set of waveforms is termed the Class JB continuum. A number of these waveforms are

shown in Fig. 2.12. Note that when α is zero the output voltage waveform is sinusoidal,

corresponding to the Class B mode of operation, and that α = 1 corresponds to the

Class J mode.

The corresponding Class JB impedances are shown in Fig. 2.13, and it can be ob-

served that the reactive components of the fundamental and second harmonic have

opposite signs. The equations ensure that the voltage remains above zero (known as

non-zero crossing). This is an important consideration, as a zero-crossing voltage would

result in current collapse and low output power and efficiency.

v(ωt) = (1− cos(ωt))(1− α sin(ωt)) (2.1)

Figure 2.12: Class JB waveforms for various values of α including Class J (α = 1), Class
B (α = 0) and Class J* (α = -1), where α is defined in (2.1)
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Figure 2.13: Fundamental and second harmonic impedances for the Class JB continuum

2.4.3 Continuous Modes

Using the voltage factorisation method, other PA modes that exhibit high drain efficien-

cies over narrow bandwidths can be extended to a continuum of waveforms with the

same output power and drain efficiency. The significance of this is that the modes can

be maintained over a much wider range of impedances and therefore frequencies.

High-efficiency, harmonically-tuned modes such as Class F require the harmonic

impedances to remain constant and preferably at an ideal short- or open-circuit, de-

pending on the mode. This is difficult to achieve in practice, due to transistor output

reactances and non-ideal matching networks, and is virtually impossible to maintain over

significant bandwidths. The continuous modes allow the harmonic reactances to vary

with frequency, and provide a mechanism for compensating for this variation through

the introduction of a suitable reactive component in the fundamental impedance.

The continuous mode approach has been extended to the Class F mode [15, 16],

inverse Class F mode and Class A mode [17]. As an example, (2.2) describes the

continuous Class F mode of operation, where the parameter γ is analogous to α in the

Class JB equation.

v(ωt) = (1− 2√
3

cos(ωt))2(1 +
1√
3

cos(ωt))(1− γ sin(ωt)) (2.2)

As with the Class JB continuum, these modes are enabled by factorising the time-

domain waveform expressions and including a (1 − sin(ωt)) multiplier. Furthermore,

for each ‘base’ mode that the extended modes are derived from, there are two sets of

continuous modes, specified by a -I or -V suffix. The difference between the two is that

for -I modes the voltage waveform remains constant and the current waveform varies,

and for -V modes the opposite occurs. The mode that is present in the PA depends on
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the harmonic at which the impedance varies reactively.

Despite the advantages of the continuous modes, of which there are many, they are

still based on conventional matching networks and their inherent bandwidth limitations,

and suffer from conflicting harmonic termination requirements at certain frequencies, as

outlined in Section 2.3.3. Therefore, although continuous modes can provide excellent

performance up to one octave of bandwidth [15], they would not be a suitable solution

for targeting larger bandwidths.

2.5 Gallium Nitride RF Transistors

In this section a brief overview of gallium nitride (GaN) transistors is presented. Its key

properties that make it suitable for broadband, high power applications are identified

and compared to those of the other two primary transistor technologies, silicon (Si) and

gallium arsenide (GaAs).

Gallium nitride is a wide band gap compound semiconductor material whose use in RF

power amplifiers has been rapidly increasing in recent years. A compound semiconductor

is made up of two or more elements, one of which is typically a Group III element in

the periodic table, with the other being a Group V element. Gallium nitride is a III-V

semiconductor, as is gallium arsenide, but GaN has a much wider band gap (3.4 eV

compared to 1.43 eV). This means that GaN has a higher breakdown voltage and hence

can be operated with a higher drain supply voltage, typically 28 V compared to 10 V for

GaAs [18]. A higher operating voltage requires lower current for the same output power

level, and this results in a higher output impedance, which is advantageous for matching

high-power devices into 50 Ω. Compared to a GaAs device at the same power level, both

input and output impedance transformation ratios are greatly reduced, which means the

transistor can be matched over a wider range of frequencies. A high breakdown voltage

is especially advantageous for PA modes of operation which produce high peak voltages,

such as Class J.

Gallium nitride transistors also exhibit a higher power density than either GaAs or

LDMOS. Cree’s 0.4 µm 28 V process, used extensively in this thesis, gives a power

density of 4.5 W/mm [19], but experimental GaN has been shown to achieve greater

than 30 W/mm [20]. In comparison, the power density for GaAs and LDMOS transistors

is typically around 1 W/mm [21]. A high power density means a smaller device is

needed for a specified output power. A device’s capacitance is proportional to both

its area and its dielectric constant. A smaller gate area therefore results in a lower

drain-source capacitance (CDS), which reduces the shift in output impedance described

in Section 2.3.2. In addition, as can be seen in Table 2.3, GaN has the lowest dielectric

constant when compared to GaAs and Si. The smaller device sizes and lower dielectric

constant mean that GaN devices’ capacitance-per-Watt is lower than either GaAs or
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Parameter Symbol (unit) Si GaAs GaN

Band gap Eg (eV) 1.12 1.43 3.4

Thermal conductivity K (W/°K-cm) 1.5 0.54 1.3

Dielectric constant εr (unitless) 11.9 12.5 9.5

Electric field for breakdown Ec (V/cm) 3 x 105 4 x 105 2 x 106

Table 2.3: Material properties of GaN compared to GaAs and SiC (values from [18])

silicon, another significant advantage for wide bandwidth applications. By using GaN

transistor technology, two of the three bandwidth limitations identified in Section 2.3

can be improved upon.

High-power, broadband power amplifiers are an application well suited to gallium ni-

tride given its high power density, high breakdown voltages and low output capacitance

per Watt. Gallium nitride transistors are also competing with GaAs transistors in areas

where GaAs has traditionally excelled, for example in low noise amplifiers (LNAs) [22].

In addition, gallium nitride is challenging vacuum electron devices in high power appli-

cations where solid-state devices have not been suitable until now.

It is not currently possible to make wafers out of gallium nitride, so substrates must be

made out of a different material, on which GaN layers are then grown. Silicon carbide

(SiC), sapphire and silicon can all be used as substrates for GaN devices. The high

power density of GaN transistors means that they require careful thermal management.

Gallium nitride itself has reasonable thermal conductivity, slightly lower than silicon,

however silicon carbide has excellent thermal conductivity (4 W/°K-cm). It should be

noted that because of GaN transistors’ high power density, conducting heat away from

the underside of the die is still a challenge .

An additional advantage is that GaN can operate at higher channel temperatures

than GaAs, which means that less cooling equipment will be needed to keep the device

within its operating limits, reducing the size and power demands of the overall system.

As with most new technologies, one of the barriers to adoption that GaN faces is

cost. Silicon transistors are extremely inexpensive to manufacture, and as such are used

wherever possible. However, as GaN increasingly replaces GaAs and, in certain applica-

tions, vacuum tubes, its demand will increase and this generally leads to a reduction in

price.

As a relatively immature technology, GaN has experienced a number of technical

issues such as trapping effects, reliability and current collapse. One problem that GaN

has experienced is the issue of knee-voltage ’walk-out’ [23]. Knee walk-out is the problem

of the transistor knee voltage being greater at RF than at DC [7]. This can cause

difficulties for loadline matching based on DC I-V measurements.
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Current collapse is the problem that the maximum drain current is reduced under RF

drive compared to that observed under DC [7]. There is a reversible and nondestructive

reliability problem with AlGaN/GaN HFETs that is due to electrons leaking from the

gate electrode to the surface of the semiconductor. This results in a degradation of the

DC drain current, gain and RF output power, and an increase in gate leakage current.

It should be noted that whilst GaN is a promising and increasingly popular choice of

transistor technology, GaAs transistors can operate at higher frequencies, and that for

many high power applications vacuum tube amplifiers remain the only choice. However,

for implementation of decade bandwidth power amplifiers with output power levels in

the tens of Watts, GaN appears to be the best choice.

2.6 Broadband Power Amplifier Topologies

Apart from the single-ended power amplifier topology, there are three main topologies

that can be used to achieve broadband operation for solid-state devices; distributed,

balanced and push-pull amplifiers. Because of the importance of the push-pull topology

to this thesis, it will be considered separately in the next section. The distributed

amplifier and balanced amplifier are discussed in this section, along with the ‘resistive

Class B’ mode.

2.6.1 Distributed Amplifiers

A brief introduction to the distributed amplifier is presented here, due to its inherently

broadband characteristics and its coverage in a number of classic textbooks. However,

its low efficiency, output power and gain, notwithstanding the fact it is better suited

to monolithic microwave integrated circuit (MMIC) implementation, meant that it was

quickly deemed unsuitable for the requirements previously outlined.

Distributed power amplifiers have long been known as a technique to achieve very

broad bandwidths. The distributed amplifier topology is shown in Fig. 2.14. Tradition-

ally, distributed amplifiers exhibit low efficiencies, but recently a number of papers report

relatively high efficiencies over multi-octave bandwidths using GaN devices. These are

summarised in Table 2.4.

The basic principle of the distributed amplifier is that a standing wave is created along

the length of the amplifier, and the input signal is gradually amplified along the length

of the PA. First suggested for vacuum tubes, this technique allows for very broadband

operation. There are, in effect, two transmission lines, a drain line and a gate line. The

distributed amplifier is an inefficient use of device periphery [6], due to the low gain of

the overall amplifier, although it does achieve flat gain and a reasonable match across

very wide bandwidths.
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Figure 2.14: Distributed amplifier topology

There have been a number of modifications to the basic distributed topology in-

cluding the non-uniformly distributed power amplifier (NDPA), capacitive coupling and

tapered drain lines. The highest output power reported for the distributed amplifiers

in Table 2.4 is 15 W, and the highest power-added efficiency (PAE) is 38%, showing

that although distributed amplifiers are extremely broadband, there are still challenges

to overcome for high-power, high-efficiency performance.

2.6.2 Balanced Amplifiers

The balanced amplifier consists of two identical single-ended amplifiers with quadrature

(90°) couplers at the input and output, as shown in Fig. 2.15. This topology has

advantages for both narrow- and broadband applications, and shares some similarities

with the push-pull topology. The key advantage of the balanced configuration is that,

as long as the amplifiers are identical, and reasonably well matched, any input and

output reflections are absorbed in the 50Ω coupler terminations [6]. The input coupler

divides the input signal into two equal amplitude signals of -3 dB power, with a 90°
phase difference between the two. When any reflected waves travel back through the

coupler, they are in anti-phase and cancel each other out [28]. The consequence of

this is that the individual amplifiers can be mismatched for better performance whilst

the overall balanced amplifier presents a 50 Ω impedance at its input and output ports.

This is especially useful for multi-stage amplifiers, where gain stages can be designed

Ref. Freq. Range Output Power Device Tech. Efficiency

[24] 1.5 GHz - 17 GHz 9 W - 15 W GaN on SiC 20 - 38% PAE

[25] 4 GHz - 18 GHz 4 W GaN & GaAs 23 / 15.6% PAE

[26] 20 MHz - 3 GHz 5 W GaN 27% PAE

[27] 100 MHz - 20 GHz 1 - 3 W GaN 10 - 15% PAE

Table 2.4: Summary of published distributed amplifiers

23



CHAPTER 2. LITERATURE REVIEW

individually and cascaded to form a complete amplifier.

Like the push-pull amplifier, the gain of the balanced amplifier is the same as one of

its constituent single-ended amplifiers, but the output power is doubled. Unlike push-

pull however, which transforms the transistors’ impedance environment down to 25 Ω,

the balanced configuration offers no impedance transformation to aid with the matching

of high-power transistors. In addition, the balanced configuration does not solve the

problem of conflicting harmonic impedances outlined in Section 2.3.3.

The balanced amplifier does, however, have a couple of other advantages. In the

event that one amplifier fails, the other continues to operate and the overall amplifier still

produces output power, albeit with a reduction of 6 dB in gain. Balanced amplifiers also

have considerable in-band stability benefits when compared to single-ended amplifiers.

The stability factor is increased in a balanced amplifier as reflected waves in the passband

are cancelled in the quadrature couplers.

Figure 2.15: Balanced amplifier topology

As with baluns in push-pull amplifiers, the quadrature coupler is the key component in

the balanced amplifier and is often the limiting factor for broadband operation. For wide-

band couplers, multiple sections are needed, which require a large area [29]. Because

microwave-frequency quadrature couplers are based on a pair of coupled quarter-wave

transmission lines, couplers cannot be manufactured at low frequencies without becom-

ing very long and consuming a lot of space. Detailed analysis of quadrature couplers

can be found in [30], with an emphasis on VHF/UHF lumped element couplers. The

effects of over- and under-coupling can be shown to have little impact on the amplifier

output power [4]. There are a number of commercially-available quadrature couplers

which operate over wide bandwidths, such as a 0.5 to 7 GHz coupler [31] and 1 to

18 GHz coupler [32], both from Krytar. These have relatively high loss (1.5 - 2.0 dB),

but lower loss couplers with narrower bandwidths are readily available. As with push-pull

amplifiers, the insertion loss in the power dividing and combining components is critical

to the overall amplifier efficiency.

Considering the numerous advantages of the balanced amplifier topology, the bal-
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anced amplifier does not feature heavily in the broadband PA literature at L- and S-band,

although there are some examples of its use at X-band frequencies [33,34]. Physical size

is generally a primary practical consideration in PA design, which would limit the use of

this type of amplifier at lower frequencies.

2.6.3 Resistive Class B

The resistive Class B mode is described in [4] as a wideband variant of the standard

Class B mode. ‘Standard’ Class B is limited in bandwidth due to the need for the

harmonics to be short-circuited, either using short circuit stubs or a high-Q resonator

[35]. The resistive Class B mode relaxes the need for short-circuited harmonics by

terminating the fundamental and harmonics in the same load resistance. This results

in the waveforms shown in Fig. 2.16. Unlike Class B, this mode can be sustained over

a very broad bandwidth whilst still achieving a higher theoretical drain efficiency than

the Class A mode (57.6% compared to 50%). Compared to Class B however, the drain

bias voltage must be increased in order to maintain the same level of output power,

and the efficiency is significantly lower. A practical implementation of this mode of

operation has been shown to operate between 0.4 - 4.1 GHz [36], a greater than decade

bandwidth. Drain efficiency varied between 40% and 62%, with an output power of

10 W. As the impedance transformation is achieved by conventional matching networks,

it is doubtful as to whether this approach could be applied to larger bandwidths or higher

output powers while still maintaining similar efficiencies. When compared to Class A, the

resistive Class B mode exhibits lower gain with only a modest efficiency improvement.

This has probably prevented this particular PA mode from being more widely adopted.

Figure 2.16: Voltage and current waveforms for the resistive Class B mode
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2.7 Push-Pull Power Amplifiers

In this section the push-pull implementations documented in the existing literature are

reviewed. It is shown that the push-pull topology has been implemented in silicon,

GaAs and GaN over a range of frequencies and power levels. Unlike other broadband

topologies such as distributed amplifiers, push-pull amplifiers have been demonstrated

at high output power levels. Excellent performance has been achieved at VHF/UHF,

with very broadband microwave amplifiers operating at frequencies up to 1.8 GHz.

However, it will be shown that the three requirements of high output power, high

efficiency and decade bandwidth performance have not yet been achieved at microwave

frequencies. This necessitates the further investigations that will be presented in this

thesis.

The push-pull configuration is familiar to most electronic engineers, as it is a topology

generally introduced at undergraduate level. In its classical form, shown in Fig. 2.17, it

consists of two identical amplifiers, each operating in Class B bias, whose input signals

are 180° out of phase and whose output currents are combined to reconstruct a sinusoidal

output current. The commonly cited advantage of this arrangement is that the linear

output waveforms of Class A can be obtained whilst achieving Class B efficiency (78.5%),

albeit by using two transistors rather than one. The push-pull amplifier requires a balun

at both input and output to split the input signals (with 180° offset between them) and

recombine them at the output.

Figure 2.17: Push-pull amplifier topology

The other commonly cited advantages of push-pull are even-mode cancellation, as-

suming an ideal second harmonic short circuit, reduced common lead inductance and

impedance transformation.

Whilst commonly used at lower frequencies, push-pull amplifiers are very uncommon

at microwave frequencies. As will be shown in Section 2.8, baluns that make use of

magnetic materials are used at at VHF and below to perform the balun function (convert

balanced signals to unbalanced, and vice versa), impedance transformation and power

combining and splitting. Limitations in magnetic material properties prevent the use of
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magnetically coupled and VHF transmission line baluns much above 1 GHz.

There have been a range of frequencies and bandwidths at which push-pull power

amplifiers have been designed and manufactured. They have been categorised into

three groups; VHF/UHF amplifiers, above octave microwave amplifiers and narrowband

amplifiers.

2.7.1 VHF / UHF Push-Pull PAs

Ref. Freq. Range Output Power Device Tech. Efficiency

[37] 100 MHz - 1 GHz 104 - 121 W GaN 61.4 - 76.6% D.E.

[38] 100 MHz - 1 GHz 82.2 - 107.5 W GaN 51.9 - 73.8% D.E.

[39] 50 MHz - 500 MHz 100 W LDMOS 60% PAE

[40] 30 MHz - 500 MHz 100 W LDMOS 30 - 38% PAE

[41] 10 MHz - 500 MHz 100 W GaN >43% PAE

Table 2.5: VHF/UHF push-pull power amplifiers

As already identified, push-pull amplifiers are commonly used at VHF and UHF

frequencies, where excellent performance is achievable. A selection of VHF and UHF

power amplifiers are presented in Table 2.5. A 30 MHz to 500 MHz 100 W push-pull

power amplifier is described in [40] using LDMOS transistors. Two stages of Guanella

1:1 baluns (in balun configuration, see Section 2.8) were used to transform down to a

characteristic impedance of 12.5 Ω. Reasonable PAE figures of around 30% were achieved

under 1 dB of gain compression.

A common design approach is to take four single-ended transistors that have been

designed into 50 Ω, then connect two pairs of parallel connected devices to match to

25 Ω, presented at each half of the balanced port [37]. Whilst this is a quick method

of converting an existing amplifier into a push-pull configuration, this requires twice as

many devices as are necessary. In addition, if this is done at microwave frequencies, the

individual PAs will not have been designed for the open-circuit even harmonic impedance

presented by a transmission line balun. This open-circuit even-mode impedance will be

identified in Chapter 3, and its consequences on the operation of push-pull amplifiers

will be studied in Chapter 4.

High power (100 W), high efficiency performance was achieved across a decade

bandwidth from 100 MHz to 1 GHz, with the GaN transistors operated at a drain supply

voltage of 48 V in order to increase output impedance [37].
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Ref. Freq. Range Output Power Device Tech. Efficiency

[42] 20 MHz - 3 GHz 40 dBm (10 W) GaAs 22 - 30%

[43] 0.1 - 1.8 GHz 50 dBm (100 W) GaN 40.6% - 74.0% D.E.

[44] 4 - 8.5 GHz 36 dBm (4.0 W) GaN 42% PAE

[45] 3.5 - 10.5 GHz 30 dBm (1.0 W) GaN on SiC 15 - 25% PAE

[46] 6 - 18 GHz 31 dBm (1.3 W) GaAs Not disclosed

Table 2.6: Broadband (greater than one octave) push-pull PAs

2.7.2 Above Octave Push-Pull PAs

One of the earliest implementations of GaN in a push-pull configuration was presented in

2003 covering a 4 GHz to 8.5 GHz frequency range [44]. A power added efficiency value

of 42% was achieved with 36 dBm output power at the 3 dB gain compression point.

Interestingly, analysis of the three-coupled line balun reveals that the balun presents a

short-circuit termination to the even-order harmonics. As will be shown in Chapter 3,

the coaxial cable transmission line balun presents an open circuit to the even harmonics.

This paper recognises that a 50 Ω balanced load is equivalent to two 25 Ω terminations

to ground, and that this can be utilised to provide an impedance transformation ratio of

2:1. The GaN push-pull PA demonstrates improved linearity compared to a single-ended

device.

A push-pull power amplifier with operation up to 1.8 GHz and excellent performance

figures is reported in [43]. This is notable for using ferrite materials as a choking

reactance at higher frequencies than previously reported. However, it is suspected that

this is the upper frequency limit of this particular technique without further advances in

ferrite materials.

Because the balun provides an impedance transformation across significant band-

widths, and the impedance transformation ratio can be increased using different topolo-

gies, in some cases it is possible to minimise or even eliminate conventional matching

elements entirely. The concept of matching the output impedance of the device directly

to the impedance presented by the balun, thus eliminating the need for a matching net-

work, was used in [42] for a GaAs-based PA. Output power levels of 10 W were achieved

between 20 MHz and 3 GHz with reduced performance up to 4 GHz. Fair-Rite ferrite

beads are used to improve low frequency performance. Efficiencies between 22% and

30% were observed across the bandwidth, although it is not specified whether this was

drain efficiency or power added efficiency (PAE).

Second harmonic cancellation is demonstrated between 6 GHz and 18 GHz in [46] us-

ing GaAs MMICs, subject to achieving good amplitude and phase balance in the baluns.
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2.7.3 Narrowband (sub-octave) Push-Pull PAs

Although narrowband amplifiers are not the focus of this work, there are a number of

notable papers that are worth discussing.

An example of a high-power microwave push-pull power amplifier is presented in [47]

using GaAs transistors. It exhibits 112 W output power with 42% PAE, albeit at a

spot frequency of 2.2 GHz. Whilst narrowband, it shows that high power levels can be

achieved at microwave frequencies using the push-pull topology.

Stameroff et. al. [48] presented a push-pull PA with both transistors operating in

inverse Class F mode. The power-added efficiency was 63% at 10 GHz, with saturated

output power at 33 dBm (2 W). This paper is notable for recognising the open-circuit

even-mode termination presented at the balanced port of a transmission line balun.

The effects of reflection coefficient phase of the second and third harmonics on drain

efficiency and output power are measured using load-pull. The prototype power amplifier

is compared to a conventional single-ended AB amplifier. However, no details on the

balun design were provided, and neither was a photo of the prototype circuit. The

decision to implement a band-stop filter to short-circuit the third harmonic limits the

frequency range of the power amplifier.

Later work by the same group [49] extended the operating bandwidth of the technique

by eliminating the harmonic trap and instead using a broadside-coupled Marchand balun

to provide the required inverse Class F impedances. Higher output powers of 40.5 dBm

were achieved with reasonable efficiency across the whole X-band frequency range.

A pair of Doherty amplifiers in push-pull configuration is reported in [50], imple-

mented at 2.14 GHz.

Ref. Freq. Range Output Power Device Tech. Efficiency

[47] 2.2 GHz 50.5 dBm GaAs 46% PAE

[48] 10 GHz 33 dBm GaAs 63% PAE

[49] 8 - 12 GHz 40.5 dBm GaN >55% PAE

Table 2.7: Narrowband (below one octave) push-pull PAs

2.8 Baluns

The input and output signals of the push-pull amplifier are ‘unbalanced’ (also known

as single-ended), which means that one conductor carries the signal and the other is

grounded. However, the transistors themselves are fed by a balanced signal, in which one

conductor is positive and the other is negative. The transformation between unbalanced

and balanced signal environments is achieved through the use of a balun.
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The word balun is composed of the words that describe its function; BALanced-

to-UNbalanced transformation. There are a number of different ways of achieving this

function; the main ones will be introduced here.

A balun is a three port device, where one port is unbalanced (single-ended), and

the other two ports form a balanced port. Baluns are used in a variety of applications

including balanced antenna feeds and mixers, as well as push-pull power amplifiers. As

would be expected, different applications place different requirements on the balun. For

example, balanced mixers require good phase balance, whereas push-pull PAs require

baluns with low loss for high efficiency operation.

There are three main types of balun. At frequencies up to 10 MHz, magnetically

coupled coils of wire can be used as transformers or baluns [30]. These are similar to the

transformers that are used in electrical systems for the step-up and step-down of voltages.

They are usually, but not always, wrapped around a piece of ferrite material to increase

the magnetic coupling. The parasitic capacitances between the windings and inductance

due to long wire lengths limit the frequency response of these devices. Because of their

low-frequency operation, it is not necessary to consider the magnetically-coupled balun

further.

There are two types of transmission line balun which will be referred to as VHF

transmission line baluns and microwave transmission line baluns.

Most of the time, the term ‘transmission line transformer’ refers to a VHF transformer

or balun. A VHF balun can be made from coaxial cable or twisted wires and always

makes use of some sort of ferrite component. In contrast to the magnetically-coupled

balun, the ferrite is not used to increase the magnetic coupling but instead as a high

impedance choke to increase the impedance of the outer transmission line. The high

permeability of the ferrite results in a large inductance, which presents a high reactive

impedance that blocks current. The ferrite can provide a high impedance without the

loss that would be introduced by a resistive element. It is worth noting that in both

magnetically-coupled baluns and VHF baluns the desirable property of the ferrite material

is high real permeability.

The main reference work on the design of transmission line transformers at HF and

VHF is [51]. At these frequencies, a lot of the practical knowledge has stemmed from

the amateur (‘ham’) radio community. Because of the number of parameters that affect

the ferrite’s characteristics, and therefore the balun’s performance, VHF transmission

line balun design using ferrite materials is regarded as “mostly empirical” [52].

Microwave transmission line baluns, in contrast, rarely make use of ferrite materials.

This is due to the fact that most ferrite materials display rapidly decreasing real per-

meability at 100 MHz and above [53]. Transmission line baluns can be implemented as

three-dimensional structures using coaxial cable, or as two-dimensional planar structures.

The coaxial cable transmission line balun is shown in Fig. 2.18.
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Figure 2.18: Coaxial cable transmission line balun

Further complication in categorising baluns stems from the three most common ways

in which the balun structure can be connected. The first is the ‘true’ balun mode, shown

in Fig. 2.19, where an unbalanced load at one end is converted into a balanced load at

the other end.

The second is the ‘transformer’ mode, shown in Fig. 2.20, where the unbalanced-

to-balanced transformation is not actually implemented. However, by choosing an ap-

propriate value of Z0, an impedance transformation can be realised. Occasionally in the

literature, a transformer is referred to as an ‘unun’ (UNbalanced-to-UNbalanced), but

this term will not be used here.

The third mode will be termed the ‘push-pull mode’. Walker notes in [30] that when

used in a push-pull amplifier, a balun is not actually converting to a balanced load but

actually to two unbalanced loads, each with half the impedance of the balanced load.

This configuration is shown in Fig. 2.21. He therefore suggests a more appropriate name

for a balun in this scenario is an ‘anti-phase power splitter’. This serves to differentiate

the use of baluns for push-pull power amplifiers compared to true balanced loads, such

as a balanced antenna. However, recognising that all the baluns that are discussed here

are to be used in push-pull power amplifiers, they will continue to be referred to as

baluns.

It should be noted that the balun function could also be implemented with a 180°
hybrid coupler at microwave frequencies, however this component has a number of crucial

differences compared to a balun. The balun is a three port device whereas the hybrid

coupler has an additional port that combines the two signals in phase (designated the

Σ port). A balun achieves a 2:1 impedance transformation ratio, which means that its

balanced ports should be terminated into 25 Ω. In comparison, the 180° hybrid coupler

has all of its ports terminated into 50 Ω. Another, less well recognised difference between

the two is the isolation achieved between the two differential ports. The ideal 180° hybrid

coupler has complete isolation between the two halves of the balanced port, whereas

the ideal balun has 6 dB coupling between the two halves of its balanced port. The

implications of this coupling on the output balun of a push-pull power amplifier will be

considered in Chapter 5.
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Figure 2.19: Balun connection

Figure 2.20: Transformer connection

Figure 2.21: Push-pull connection (anti-phase power splitter)

2.8.1 Microwave Transmission Line Transformers & Baluns

It will be seen in Chapter 3 that one of the main bandwidth limitations in a microwave

transmission line balun is the half-wavelength resonance. An interesting balun structure

that avoids this problem is presented in [54]. By tapering the coils of the coaxial

cable, and filling the low-frequency end of the tapered coil with ferrite, an operational

bandwidth is achieved from kHz to 26 GHz. This is an extremely impressive bandwidth,

however the design has a number of limitations. The balun exhibits high insertion loss

at the high-frequency end of the bandwidth (4 dB), and the power handling capability

of the structure is limited due to the narrow diameter (0.35 mm) of the coaxial cable

used. In addition, the author acknowledges that the ground plane is required to be as far

away from the structure as possible for optimum performance, limiting the practical use

of the device. Back-to-back measurements were made, which means that the amplitude

and phase balance of the balun cannot be determined.

Planar transmission line baluns generally do not achieve the same level of perfor-

mance as coaxial cable baluns, primarily because of the reduced isolation between the

primary transmission line and the ground plane compared to coaxial baluns. However,

planar baluns are easier to mass-produce compared to coaxial cable transmission line
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baluns. Planar baluns are either edge coupled (two transmission lines side-by side) or

broadside coupled (on top of each other, i.e. multilayer) [28]. Low-loss, broadband baluns

have been implemented in planar form [55], although these usually require complicated,

multilayer processes. A transmission line transformer has been implemented in planar

form between 200 MHz and 5.5 GHz [56]. Low loss is achieved for a 4:1 impedance

transformation ratio, however three metal layers are required for implementation.

2.8.2 VHF Transmission Line Transformers & Baluns

The use of ferrimagnetic materials to improve the low frequency performance of trans-

mission line baluns is widespread and described in [37,56]. A model for the ferrite-loaded

balun at low frequencies is presented in [57]. At low frequencies, multi-octave band-

widths can be achieved through the use of ferrite materials [51], however the decreasing

permeability of these materials greatly reduces the effectiveness of this technique at

microwave frequencies.

Transmission lines wound on ferrite cores are analysed in [58] and good agreement is

shown between theory and measurement. Low frequency, ferrite-loaded baluns are also

analysed in [57], however as transmission line length and stray reactances are neglected

in the analysis, this cannot be utilised at microwave frequencies.

Ferrite-and-wire based baluns with less than 1 dB insertion loss between 5 MHz and

2.5 GHz are presented in [52]. This is the highest frequency observed for transmission

line baluns that use a ferrite component as a high reactance choke.

2.8.3 Marchand and Other Compensated Baluns

The basic concept of the compensated balun, of which the Marchand balun is most

popular, is to introduce a compensating line to the inner conductor which has the

same characteristic impedance as the outer transmission line, such that each half of

the balanced port presents the same impedance. In the same way, it also improves the

amplitude balance between the two halves of the balanced port. The basic circuit model

of the Marchand balun is shown in Fig. 2.22.

Marchand’s original paper was published in 1944 [59]. One of the key works in

understanding the Marchand balun is [60], which also claims that Marchand’s original

optimisation criterion is not in fact optimum. The Marchand balun was reinvented by

Roberts [61] and was presented after Marchand’s design, but has the same structure.

A Marchand planar balun with a very wide bandwidth is presented in [62]. A ‘defected

ground plane’ structure helps to increase the characteristic impedance of the transmission

line and hence widen the bandwidth. An operating bandwidth of 4 GHz to 20 GHz is

achieved with insertion loss values of 0.5 to 0.7 dB.
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Figure 2.22: Marchand balun basic topology

2.9 Chapter Summary

In this chapter the main concepts that are relevant to this thesis have been introduced. It

has been shown that there are several limitations to achieving broadband, high-power and

high-efficiency performance using single-ended power amplifiers. These limitations in-

clude the fundamental ability of matching networks to present the necessary impedances

across significant bandwidths, the variation in optimum impedances due to transistor

and package reactances and the conflicting requirements for harmonic terminations.

The conventional modes of operation in a power amplifier have been outlined, as

well as newer, broadband modes such as Class J and the continuous modes.

The basic properties of gallium nitride make it suitable for the applications discussed

in this thesis. It has been shown that, compared to silicon or GaAs, GaN is the most

appropriate semiconductor material for implementing broadband, high-efficiency power

amplifiers.

Several alternative topologies to the single-ended amplifier have been discussed,

including the distributed and balanced amplifier. The push-pull topology appeared to

have the greatest potential for achieving high performance at microwave frequencies

across significant bandwidths.

The many implementations of baluns and push-pull power amplifiers have been re-

viewed, with clarification on the differences between balun structures at different fre-

quencies. It can be seen from the existing literature that there is plenty of scope for

further research into this topic, as will be seen in the following chapters of this thesis.
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Chapter 3

Design Methodology for

Multi-Decade Baluns at

Microwave Frequencies

3.1 Introduction

As identified in the previous chapter, the balun is key to the overall performance of a

push-pull power amplifier. The requirements for the balun is that a 180° phase offset, 2:1

impedance transformation and even power split between the balanced ports is achieved

across the entire operational bandwidth of the amplifier. Insertion loss is critical and

should be kept to a minimum, as it directly affects the output power and efficiency of

the amplifier. Secondary considerations include size and power handling capabilities.

Multi-decade bandwidths are readily achievable at VHF and UHF but are much harder

to realise at microwave frequencies.

In this chapter, a new methodology is presented for designing baluns exhibiting multi-

decade bandwidths at microwave frequencies. The bandwidth limitations of coaxial cable

transmission line baluns are identified and overcome through the use of ferrite beads.

The novel aspect of the work is the observation that ferrite beads can perform a dual role

of not only improving performance at low frequencies but also suppressing resonances

at higher frequencies. The concept of using ferrite beads for resonance suppression was

first introduced in [63], a copy of which is included in Appendix A.

The design methodology is comprised of a number of different elements, namely

the circuit model for the balun, the effect of the physical dimensions of the balun on

its outer characteristic impedance and the measurement of ferrite beads at microwave

frequencies. These are discussed individually. The use of 3D electromagnetic (EM)

simulations in designing the balun was also investigated, although this was not part of

the original design procedure. The design methodology is then described and applied to
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Figure 3.1: Coaxial cable transmission line balun

the design of a prototype multi-decade microwave balun.

The prototype balun achieves low-loss operation over a bandwidth greater than two

decades. The measured results validate the design methodology and demonstrate that

ferrite beads can be used to realise high-performance transmission line baluns.

3.2 Basic Transmission Line Balun Operation

The basic structure of the coaxial cable transmission line balun is again shown in Fig.

3.1. The properties of the transmission line force the voltage difference between the

inner and outer conductor of the coaxial cable to remain constant along its length,

so that a differential voltage appears across the balanced termination at the remote

end. The balanced termination is in fact split into two unbalanced loads with half

the impedance of the equivalent balanced load. This is the ‘push-pull’ configuration

previously outlined in Section 2.8. There are two transmission lines; the coaxial cable

and a ‘parasitic’ transmission line formed between the outer conductor and the ground

plane. The simulated frequency response of this structure is shown in Fig. 3.2. This

response was obtained using the circuit model of Fig. 3.4, which will be described in

Section 3.3. A linear (S-parameter) circuit simulator was used with a frequency sweep

between 10 MHz and 6 GHz.

It can be seen in Fig. 3.1 that the outer conductor of the coaxial cable is connected

directly to ground at the unbalanced end of the cable (corresponding to Port 1). This

short circuit to ground is transformed by the parasitic transmission line to a different

impedance when viewed from the other end of the cable, in accordance with standard

transmission line theory [28]. At the frequency at which the transmission line length is

a quarter of a wavelength (λ/4), the short circuit is transformed to an open circuit. At

this frequency (1.875 GHz in Fig. 3.2), the voltage at the balanced end of the cable is

split equally between Ports 2 and 3.

When the transmission line length is half the wavelength, the short circuit is rotated

360°, back to a short circuit. This forms a series resonator, which limits the usable

bandwidth of the balun. The frequency that is occurs at is termed the half-wavelength

frequency (fres). It should be noted that resonances occur every n*fres where n is a
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Figure 3.2: Simulated frequency response of the balun of Fig. 3.1 (1:1 transformation
ratio)

positive integer. In Fig. 3.2 fres is 3.75 GHz, calculated using (3.1). As the dielectric of

the parasitic transmission line is air, it is assumed that the phase velocity is equal to the

speed of light in free space, denoted by c.

fres =
c

2l
(3.1)

The second bandwidth limitation occurs when the outer conductor appears as a

short circuit on the unbalanced input at the lower end of the frequency band. As the

wavelength becomes much greater than the length of the transmission line, the trans-

mission line can no longer be considered as distributed and the ‘parasitic’ transmission

line appears as a short circuit. This bandwidth limitation can be overcome through

the use of ferrite materials, which effectively act as ‘choking reactances’ to increase the

impedance of the ‘parasitic’ transmission line and maintain balun operation. This is a

standard technique that is widely used at VHF and below.

The length of the coaxial cable is chosen to be a quarter of a wavelength at the

centre frequency of the operational bandwidth. This is necessary to transform the

short circuit to ground into an open circuit, in order to realise an equal voltage split

between the two balanced ports. This length of cable also means that the balun can

be used as a quarter-wave impedance transformer, the operation of which is described

in [28]. The quarter-wave balun can be used as an impedance transformer by selecting

an appropriate value of Z0 using (3.2). For example, a 50 Ω input impedance (ZIN) can

be transformed to a 12.5 Ω balanced impedance (ZOUT) using a piece of coaxial cable

with a characteristic impedance of 25 Ω.

Z0 =
√
ZINZOUT (3.2)

The tradeoff is that a larger transformation ratio results in a reduction in bandwidth.

As can be seen in Fig. 3.3, an ideal 3 dB power split is achieved at the quarter-wavelength
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Figure 3.3: Frequency response of 4:1 impedance transforming balun

frequency, 1.875 GHz, but the insertion loss rapidly increases either side of this frequency.

For this reason, it was decided to design a balun with an impedance transformation ratio

of 1:1 in order to achieve maximum bandwidth. It should be noted that even in the 1:1

case there is effectively a 2:1 transformation at each half of the balanced port, due to

the balanced load being split into two unbalanced loads.

3.3 Transmission Line Balun Circuit Model

3.3.1 Transmission Line Balun with Resonance

The coaxial cable transmission line balun can be modelled by the circuit shown in Fig.

3.4. It comprises two parallel transmission lines; one is formed between the centre and

the outer conductors of the coaxial cable, the other between the outer conductor and

the ground plane. The characteristic impedance of the ‘inner’ transmission line is equal

to the characteristic impedance of the coaxial cable (typically 50 Ω). The characteristic

impedance of the ‘outer’ transmission line is referred to as ZOUTER, and is set to 150 Ω
in Fig. 3.4. It will be seen later in this chapter that 150 Ω is a realistic value of ZOUTER

that can be achieved in practical baluns. The outer transmission line resonates at the

half-wavelength frequency, limiting the bandwidth. Using typical values, the simulated

response of the circuit in Fig. 3.4 is shown in Fig. 3.2. This circuit model provides

a suitable yet simple model of a transmission line balun. Both transmission lines are

modelled, with the connections between the two representing the shared conductor (the

outer conductor of the coaxial cable). It will be seen throughout this chapter that this

simple circuit model provides a valuable tool for investigating transmission line balun

operation, and that it provides reasonable agreement with measured results.

It can be seen in Fig. 3.5 that a higher value of ZOUTER increases the Q-factor of the

resonance and hence increases the bandwidth. This demonstrates that the performance

of the balun is improved by making the ground plane as far away as possible. If the
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Figure 3.4: Basic transmission line balun circuit model

Figure 3.5: Effect of ZOUTER on balun passband bandwidth (ZOUTER = 50 Ω, 100 Ω
and 150 Ω)

ground plane was not present, the parasitic transmission line could be ignored and the

half-wavelength resonances would not appear. This would result in a near-ideal balun

with an equal power split and a high-pass filter response, as described in [30].

The impedances presented to the two halves of the balanced port are shown in Figs.

3.6 and 3.7 between 10 MHz and 6 GHz. When the balun is excited at the balanced

port, it presents different impedances depending on whether the excitation is odd-mode

or even-mode. When considering coupled lines, there are two possible excitations. If

the currents in the two conductors are equal in magnitude but opposite in direction, this

is termed ‘odd-mode’ [28]. If the currents are equal and in the same direction, this is

‘even-mode’. It can be seen that in the passband region both Ports 2 and 3 are presented

with 25 Ω when excited in odd-mode, as expected, but at the half-wavelength resonance

frequency Port 3 is presented with a short circuit. At the half-wavelength frequency Port

2 is presented with 50 Ω, and the balanced-to-unbalanced transformation does not take

place. For even-mode excitation, the impedances are open-circuited except around the

half-wavelength resonance frequency. The identification of the open-circuit even-mode

impedance is an important observation, the implications of which will be discussed in

Chapter 4.
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Figure 3.6: Odd-mode impedances presented to balanced ports of balun model of Fig.
3.4

Figure 3.7: Even-mode impedances presented to balanced ports of balun model of Fig.
3.4
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For the realisation of extremely broadband power amplifiers, it is desirable to extend

the operational bandwidth of the balun to a decade or more. The existing technique of

adding ferrite to the balun removes the low-frequency limit, however the half-wavelength

resonance has proved to be the limitation at the high-end of the frequency band.

3.3.2 Suppression of Half-Wavelength Resonance

The key innovation in this work is the introduction of a terminating resistor at the

unbalanced end of the outer transmission line (position A in Fig. 3.4). Figs. 3.8 and

3.9 show that when the resistance is equal to the characteristic impedance of the outer

transmission line (ZOUTER) the resonance is eliminated entirely and a flat frequency

response is achieved over a wide bandwidth. S21 and S31 are plotted separately for

clarity. The resistor ensures that at the half-wavelength frequency the transmission line

appears as a finite resistance rather than a short circuit, and so a resonance is avoided.

This is a significant result, as it opens up the possibility of greatly increasing the usable

bandwidth of a microwave transmission line balun. It should be noted that when R >

ZOUTER, the frequency response actually worsens, as is the case for R = 200 Ω in Figs.

3.8 and 3.9.

Although it may appear from the circuit model of Fig. 3.4 that a physical resis-

tor could be placed between the outer conductor and ground, this is not possible in

practice. A resistor placed between the outer conductor and ground would prevent the

coaxial transmission line from being properly grounded. It will be seen later in this

chapter that a ferrite bead can act as a terminating resistor whilst allowing the outer

conductor to remain grounded. This is due to its geometry, which allows it to modify

the characteristics of the outer ‘parasitic’ transmission line. However, a resistor provides

a suitable model for the effect of the ferrite, so this will be referred to throughout the

remainder of this section.

The disadvantage of adding resistance to the parasitic transmission line is that the

insertion loss of the overall balun structure is increased. In all the simulations, the coaxial

cable is assumed lossless, in order to directly evaluate the loss caused by the resonance-

suppressing resistor. When the resistor is excluded, and the half-wavelength resonance

is present, the insertion loss in the passband region is 0 dB, i.e. the balun has no loss.

Once the resistor is included, and R = ZOUTER = 150 Ω, the insertion loss increases to

0.33 dB. Fig. 3.10 shows that insertion loss decreases as ZOUTER increases, indicating

that for optimum balun performance the outer characteristic impedance should be as

high as possible with an equal value of resistance in order to suppress the resonance.

It should be noted that introducing resistance at the unbalanced end of the outer

transmission line also affects the amplitude balance between the balanced ports in the

passband region. When the resistance is not present, the amplitude balance between the

two halves of the balanced port is 0 dB, i.e. there is an equal power split. However, when

41



CHAPTER 3. DESIGN METHODOLOGY FOR MULTI-DECADE MICROWAVE BALUNS

Figure 3.8: S21 of simulated balun with various terminating resistor values (ZOUTER =
150 Ω)

Figure 3.9: S31 of simulated balun with various terminating resistor values (ZOUTER =
150 Ω)
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Figure 3.10: Insertion loss variation with ZOUTER (with R = ZOUTER)

Figure 3.11: Amplitude balance variation with ZOUTER (with R = ZOUTER)

R = ZOUTER = 150 Ω, the resonance is completely suppressed but there is a 1.34 dB

difference in amplitude balance between the two halves of the balanced ports. As can

be seen in Fig. 3.11, when the half-wavelength resonance is suppressed a higher value

of ZOUTER improves the amplitude balance between the balanced ports.

The effect of the terminating resistor on the odd- and even-mode impedances is

shown in Fig. 3.12. It can be seen that over a very broad bandwidth the impedances

do not vary with frequency, and neither odd- nor even-mode impedances pass through

a short circuit.

Once a resistance equal to ZOUTER has been placed at position A, it is possible to

investigate the effect of including additional resistance at the balanced end of the outer

transmission line (position B in Fig. 3.4). Figs. 3.13 and 3.14 demonstrate the effect

of this additional resistance on insertion loss and amplitude balance respectively. The

resistor at position B serves to increase the shunt impedance terminations between the

two transmission lines, and thereby helps to improve the amplitude balance. According

to simulation, the resistance at position B should be as high as possible. The increased

impedance of the overall outer transmission line also results in a reduced insertion loss,

as shown in Fig. 3.13.
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Figure 3.12: Odd- and even-mode impedances presented to balanced ports of balun
model with terminating resistor suppressing resonance (R = ZOUTER) between 0.5 GHz
and 6 GHz

Figure 3.13: Insertion loss variation with resistance at position B

It can be seen through simulation that the bandwidth-limiting half-wavelength reso-

nance can be eliminated using a resistor. It is apparent that for optimum performance,

ZOUTER should be as high as possible with an equal value of resistance at position A.

In addition, a high value of resistance should be placed at position B to improve both

the insertion loss and the amplitude balance. Both the values of ZOUTER and resistance

are limited by what can be achieved in practice. The implementation of the resonance-

suppressing resistor for use with coaxial cable baluns is discussed in the next section.
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Figure 3.14: Amplitude balance variation with resistance at position B
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3.4 Ferrite Measurements

In this section it is shown that the terminating resistors introduced in Section 3.3 can

be realised in practice using one or more ferrite bead(s). Before illustrating that ferrite

can be used to suppress a balun’s half-wavelength resonance, it is necessary to briefly

explain some of the properties of ferrite materials.

3.4.1 Introduction to Ferrite Materials

Ferrite materials are magnetic materials composed of oxides containing ferric (iron) ions

as the main constituent [30]. The chemical formula for iron oxide is Fe2O3. Other

elements such as cobalt (Co), manganese (Mn), nickel (Ni) and zinc (Zn) can be added

to modify the properties of the ferrite.

The most important property of a ferrite material is its permeability. Permeability

is a complex parameter, where the real part (µ’) represents the reactive component and

the imaginary part (µ”) represents the resistive component (loss). Ferrite materials have

high reactive permeabilities, which means that they can be used to increase the coupling

between transformer coils and realise high-value inductors.

Ferrites are used in VHF transmission line baluns at low frequency to provide a ‘chok-

ing’ reactance, which increases the characteristic impedance of the unwanted parasitic

transmission line to ground at low frequencies and hence extends the balun’s perfor-

mance.

Other uses for ferrite include chokes, EMI (electromagnetic interference) suppression

beads and circulators. Ferrite materials are available in a number of geometries, such

as toroids or rods. Three geometries which are relevant to the current discussion are

shown in Fig. 3.15. These are the single aperture ferrite core, referred to in this work as

a ferrite ‘bead’, the dual aperture core and the ‘bead-on-lead’ ferrite.

(a) Single aperture core
(‘bead’)

(b) Dual aperture core (c) ‘Bead-on-lead’

Figure 3.15: Ferrite geometries

The conventional reason for using ferrite materials is due to their high values of

reactive (real) permeability. The variation of this permeability with frequency is inves-

tigated using data provided by Fair-Rite, a leading ferrite manufacturer. Figs. 3.16 and

3.17 show the permeabilities of three different materials from Fair-Rite. These materials
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are #61, #43 (both NiZn ferrites) and #73 (MnZn ferrite). At very low frequencies

(below 1 MHz), the real permeability remains constant with frequency. However, above

a certain frequency both the real and imaginary permeabilities decrease rapidly. This

frequency is known as the ferroresonance frequency, which is the frequency at which

loss (imaginary permeability) is highest (µ”max) [64]. For #61 material, µ”max occurs

at around 30 MHz, for #43 material µ”max occurs around 3 MHz and for #73 material

µ”max occurs around 1 MHz. µ”max has an inversely proportional relationship to initial

permeability [30], and this is visible in Fig 3.16.

For conventional ferrite applications, a high reactive permeability and low resistive

permeability is generally desired. As Figs. 3.16 and 3.17 show, different materials are

suitable for different frequency ranges. It can be observed that #73 material is a rel-

atively low frequency ferrite, and #61 material is a relatively high frequency ferrite.

Although #61 material is one of the highest frequency ferrite materials available, it

can be seen that its reactive permeability falls below 1 at around 600 MHz. This ex-

plains why VHF transmission line baluns almost universally make use of ferrite materials

whilst microwave transmission line baluns do not. It should be noted however, that at

1 GHz the ferrite materials still exhibit some resistive permeability. This is generally

not considered to be useful in the conventional applications for ferrite materials, but as

has been shown in Section 3.3 a resistor can be used to suppress a transmission line

balun’s half-wavelength resonance. The use of ferrite materials as resistive terminations

is an exciting and novel observation, and the logical progression was to investigate its

application in microwave transmission line balun design.

Figure 3.16: Real permeability of different Fair-Rite materials

From Figs. 3.16 and 3.17, it was decided to choose Fair-Rite #61 material as the

ferrite material to investigate further. It has low resistive permeability, and hence low

loss, at lower frequencies, but has suitable loss between 100 MHz and 1 GHz to suggest

it could be used as a terminating resistor at the half-wavelength frequencies.
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Figure 3.17: Imaginary permeability of different Fair-Rite materials

Unfortunately, because ferrite materials are rarely perceived to be useful above 1 GHz,

manufacturer data is generally unavailable above this frequency. In the next section,

however, it is shown that ferrite beads can be characterised at microwave frequencies

using simple S-parameter measurements.

3.4.2 Ferrite Bead-on-Lead Measurements

S-parameter measurements made using a Vector Network Analyser (VNA) can be used

to characterise ferrite beads at microwave frequencies. Ferrite beads are assumed to

be linear under small-signal excitation, so S-parameters can be considered to be valid.

Figure 3.18 shows the test fixture for measuring a ‘bead-on-lead’, which itself is shown

in Fig. 3.15(c). The VNA was calibrated to the interface between the measurement

cables and test fixture using a thru-open-short-match (TOSM) calibration. The 50 Ω
microstrip lines of the test fixture were then de-embedded to shift the reference plane,

as shown in Fig. 3.19. It should be noted that as S11 is being measured, 50 Ω should be

subtracted from the measured resistive value of S11 to obtain the bead’s true resistance.

Figure 3.18: Test fixture for measuring ferrite beads-on-leads
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Figure 3.19: Bead-on-lead test fixture showing the shift in the measurement plane

Initially, the three different types of ferrite material from Fair-Rite were compared

by measuring different lengths of ‘beads-on-leads’ between 30 MHz and 6 GHz. As Fig.

3.21 shows, the inductive properties of the ferrite bead-on-lead decrease, and essentially

vanish, at higher frequencies. This shows that the imaginary permeability, which mani-

fests itself as a resistance, becomes much higher than the real permeability at microwave

frequencies. As noted in [57], the reactance becomes capacitive at the higher end of the

frequency range. This can be explained by noting that in Fig. 3.20, the permittivity of

#61 material appears to be steady up to 3 GHz and does not appear to be decreasing

with frequency in the same way as permeability does. Crucially, these measurements

show that at higher frequencies the bead-on-lead behaves like a resistance with a small

series resonant reactance. As expected, in Fig. 3.21 the longest bead length results in

the highest resistive value.

Figure 3.20: Permittivity of #61 material
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Figure 3.21: Frequency response of different lengths of #61 material beads-on-leads
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The measurements of #43 and #73 material beads-on-leads are shown in Figs.

3.22 and 3.23 respectively. These beads-on-leads do not behave as expected; at low

frequencies the shorter beads have a higher resistive component than the longer beads,

a counterintuitive result. Their resistive components also decrease fairly rapidly with

frequency compared to #61 material. The unexpected behaviour of these beads and the

higher resistive values offered by #61 material led to the decision to use #61 material.

Figure 3.22: Frequency response of different lengths of #43 material beads-on-leads

Figure 3.23: Frequency response of different lengths of #73 material beads-on-leads
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3.4.3 Ferrite Bead Measurements

As mentioned in Section 3.3.2, any component added between the outer conductor of

the coaxial cable and the ground plane would affect the grounding of the coaxial cable

transmission line. As the beads-on-leads measured in the previous section are attached

to a length of wire and cannot be separated from it, they cannot be used as terminating

resistors for coaxial cable baluns.

However, ferrite beads, shown in Fig. 3.15(a), can be used as terminating resistors

by passing the coaxial cable through the hole in the middle of the bead. This allows the

outer coaxial cable conductor to be grounded whilst still suppressing the resonance.

S-parameter measurements can be made on the ferrite beads by placing them on a

piece of wire so that they resemble a ‘bead-on-lead’. However, there is a slight difference

between measuring the ferrite beads and the ‘beads-on-leads’, as can be seen in Figs.

3.24 and 3.25. Because the hole in the bead is larger than the diameter of the wire,

there is an air gap that exists between the ferrite and the wire. It is uncertain what

the effect of this air gap is, but it is speculated that it will reduce the resistance of the

bead and hence its resonance-suppressing effect. It should also be noted that when the

bead is placed on a piece of coaxial cable, as in Fig. 3.26, the coaxial cable is thicker

than the wire and the air gap is reduced. The measured S11 of a #61 material bead

(model number 2661000101) is shown in Fig. 3.27, and it can be seen that it behaves

in a similar manner to the beads-on-leads made from the same material. The length of

this bead was 3.25 mm. Another ferrite bead made from #61 material (model number

2661021801) was measured, and its frequency response is shown in Fig. 3.28. The length

of this bead was 11.1 mm, and it can again be seen that the bead behaves as expected

across a wide frequency range. The advantage of shorter beads is that several can be

stacked in series in order to get closer to the necessary value of resistance required to

suppress the resonance.

The measurements of ferrite beads and beads-on-leads has shown that they can act

as the resonance-suppressing terminating resistors introduced in Section 3.3.2 for coaxial

cable transmission line baluns. This is in addition to the high choking reactance they

exhibit at low frequency which significantly improves the low frequency response of the

balun. It was identified that of the ferrite materials available, #61 material was most

suitable for the application. It will now be shown how the value of ZOUTER can be

measured in order to determine the value of resistance that the ferrite bead is required

to provide.
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Figure 3.24: Bead on lead measurement cut through

Figure 3.25: Ferrite bead on wire cut through

Figure 3.26: Ferrite bead on coaxial cable cut through

Figure 3.27: Frequency response of Fair-Rite 2661000101 ferrite bead
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Figure 3.28: Frequency response of Fair-Rite 2661021801 ferrite bead
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3.5 Outer Characteristic Impedance (ZOUTER) Measurements

The design methodology requires knowledge of the characteristic impedance of the ‘par-

asitic’ transmission line to ground (ZOUTER). This value is dependent on three physical

parameters; the depth and width of the milled gap and the outer diameter of the coaxial

cable. Using specially constructed test fixtures, S-parameter measurements were made

to establish the relationship between the physical parameters and the characteristic

impedance. A cut-through of the test fixture is shown in Fig. 3.29. It was constructed

from Rogers RT/duroid 5880 circuit board backed with a 6.35 mm layer of aluminium.

RT/duroid 5880 is a PTFE-based low-loss material with a dielectric constant (εr) of

2.20. By milling a gap in the aluminium layer, the characteristic impedance between

the outer conductor of the coaxial cable and the ground plane could be set. Two-port

S-parameter measurements were made to test the effect of varying depth on ZOUTER.

Using (3.3), ZOUTER was calculated from the measured value, Zmeas, and Zload, which

was 50 Ω. Zmeas is plotted in Fig. 3.31.

ZOUTER =
√
ZmeasZload (3.3)

Figure 3.29: Cut-through view of coaxial cable test fixture and prototype balun

Figure 3.30: Coaxial cable test fixture

Table 3.1 shows that thinner coaxial cable and greater test fixture depth result in

a higher characteristic impedance. As identified in Section 3.3, increased characteristic

impedance (ZOUTER) improves the balanced port amplitude balance when terminating

resistors are present. These measurements show that a trade-off is needed between test

fixture size and balun power loss, which increases for smaller coaxial cable diameters.
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Figure 3.31: Measured S11 for two diameters of coaxial cable with gap width of 7.5 mm
and depth of 3 mm

Outer Coaxial Cable Diameter

Gap Depth 0.86 mm 1.19 mm

2 mm 136 Ω 117 Ω

3 mm 146 Ω 136 Ω

Table 3.1: Variation of ZOUTER for a gap width of 7.5 mm

3.5.1 3D FEM Electromagnetic Coaxial Cable Simulations

As demonstrated in Section 3.5, test fixtures can be constructed and measured to de-

termine the width and depth of the milled channel for a given ZOUTER and coaxial cable

diameter. However, it can be a time-consuming process to build and measure many test

fixtures, and an alternative method is to use a 3D electromagnetic (EM) simulator. The

coaxial cable test fixture was modelled and simulated using COMSOL, a multiphysics

finite element modelling (FEM) simulator. As can be seen in Fig. 3.33, the agreement

between simulation and measurement is good. This suggests that 3D FEM simulations

could be used to determine the required width and depth of the milled channel for a

specified characteristic impedance.
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Figure 3.32: Coaxial cable test fixture as modelled in COMSOL

Figure 3.33: S11 of coaxial cable test fixture simulated in COMSOL compared to mea-
sured data

Figure 3.34: S11 of coaxial cable test fixture simulated in COMSOL compared to mea-
sured data
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3.6 Design Methodology

The circuit model, ferrite and coaxial cable measurements described in Sections 3.3 to

3.5 are used in a design procedure to increase the usable bandwidth of a coaxial-cable

balun to multiple decades. To verify this design procedure a balun was constructed with

a target frequency range of 30 MHz to 6 GHz, a greater than double-decade bandwidth.

The assumption made in the design methodology is that that commercial off-the-shelf

(COTS) ferrite beads and coaxial cable are used. The balun was constructed using the

same method as the coaxial cable test fixture in Section 3.5, shown in Fig. 3.29.

The design process can be summarised as follows;

1. Select coaxial cable based on power handling and ZOUTER requirements.

2. Choose length of coaxial cable based on resonant frequency and low-frequency

performance.

3. Select width and depth of channel milled in aluminium to set ZOUTER.

4. Select ferrite beads such that Rferrite = ZOUTER in order to suppress half-wavelength

resonance.

This design procedure is now followed in order to implement a prototype balun that

validates the design methodology.

3.6.1 Selection of Coaxial Cable

The first stage in the design is to select the coaxial cable diameter and length. The loss

of the coaxial cable should be minimised as much as possible, as it will have a direct

effect on the insertion loss of the overall balun. If used in a push-pull power amplifier,

this loss would decrease the gain and output power of the power amplifier, and hence

also its efficiency. It can be shown that the primary loss mechanism in the coaxial cable

at these frequencies is due to conductor loss. Dielectric loss also contributes, but has a

much smaller impact on the coaxial cable loss compared to conductor loss.

Conductor loss can be reduced by increasing the diameter of the coaxial cable and

by choosing a metal with high conductivity per unit length. Coaxial cable with a larger

diameter is also capable of handling higher power levels, as the electric field strength is

reduced and dielectric breakdown will occur at a higher voltage.

The disadvantage of using coaxial cable with a greater diameter is that as the coax-

ial cable increases in diameter, the milled gap in the aluminium must become larger

to maintain the same value of ZOUTER. This could lead to an increase in the outer

dimensions of the balun, which may be a problem for applications where available space

is constrained. Instead of increasing the dimensions of the milled gap, it would also be
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possible to accept a reduction in ZOUTER, with reduced performance as shown in the

simulations of Section 3.3. Thinner coaxial cable also has the advantage that a wider

range of ferrite beads will be available for resonance suppression compared to thicker

cable.

For the prototype balun, coaxial cable CSR034T from AtlanTec was chosen. This

cable has a characteristic impedance (Z0) of 50 Ω and a diameter of 0.86 mm.

3.6.2 Choice of Coaxial Cable Length

In order for the transmission line to be regarded as distributed, its length is required to

be a “considerable fraction of a wavelength” [28] at the lowest frequency of operation.

A length of cable one-tenth of the wavelength and above can be considered to be a

considerable fraction of a wavelength. A longer cable therefore exhibits better low fre-

quency performance, but the longer length increases the insertion loss. In a conventional

balun design, the length of the balun would be highly dependent on making sure that

the half-wavelength resonance was not in the passband region. However, this is not so

much of a consideration in this case, as the resonance will be suppressed by ferrite beads

at a later stage.

The cable was selected to be 40 mm long, which sets its half-wavelength resonant

frequency at 3.75 GHz. The resonance was deliberately selected to be within the targeted

bandwidth of the balun in order to demonstrate resonance suppression. This cable length

also gives reasonable low frequency performance that can be further improved by the

addition of ferrite.

3.6.3 Width and Depth of Milled Channel

Once the cable diameter has been selected, ZOUTER is set by the width and depth of

the gap. Whilst a high value of ZOUTER is preferable, as described in Section 3.3.2,

this requires a greater ferrite resistance to suppress the resonances. With commercial-

off-the-shelf (COTS) components this may require multiple ferrite beads, which when

connected in series could degrade the performance. It is speculated that using multiple

beads would cause the magnetic fields of the individual beads to interact with each other,

which may lead to the partial demagnetisation of the beads. As described in Sections

3.5 and 3.5.1, either measured data or 3D electromagnetic simulations can be used to

calculate the required width and depth of the gap.

For the prototype balun, the width of the milled gap was 7.5 mm and the depth was

2 mm, giving a ZOUTER of 136 Ω. This value was determined from the coaxial cable

ZOUTER measurements of Section 3.5.
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3.6.4 Ferrite Bead Selection

Using measurements made in Section 3.4, it is then possible to select ferrite beads to

place at the unbalanced end of the outer transmission line and hence eliminate the

resonance. The resonant frequency can be calculated from the cable’s length using

(3.1), then a ferrite bead which satisfies the condition R=ZOUTER at that frequency can

be chosen.

Three ferrite beads, which as Fig. 3.27 shows have a resistive value of 43 Ω at

3.75 GHz, were placed in series to give a combined resistance of 129 Ω. The beads

provide a terminating resistance approximately equal to ZOUTER.

3.7 Measurement of Prototype Balun

In this section it will be shown that ferrite beads have been successfully used to suppress

the half-wavelength resonance and improve the low frequency performance of the pro-

totype balun. It will also be shown that the design methodology results in the optimum

number of ferrite beads needed to suppress the resonance. The circuit model used for

the transmission line balun without the resonance-suppressing resistors is compared to

measured results and refined to provide good agreement.

Figure 3.35: Prototype balun with ferrite beads attached

3.7.1 Measurement Technique

The prototype balun is shown in Fig. 3.35. Three-port S-parameter measurements were

made between 30 MHz and 6 GHz, with both balanced ports terminated into 25 Ω. This

was implemented in practice using the superposition properties of S-parameters. As Fig.

3.36 shows, all the ports were calibrated into 50 Ω, and then port extensions were used

to measure the phase length to the end of the balanced-end microstrip lines. Once the
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reference plane has been appropriately shifted, the system impedance of S-parameters

can be changed to an arbitrary impedance, in this case 25 Ω. Note that this procedure

is not necessary for the unbalanced port.

This method of measuring baluns gives a much greater insight into their operation

compared to the standard ‘back-to-back’ configuration shown in Fig. 3.37. Back-to-back

measurements are generally carried out as they only require a two-port VNA, rather than

the three ports required to measure an individual balun. However, the only information

that can be gained by back-to-back measurements is the balun’s insertion loss (S21) and

input reflection coefficient. No knowledge of the amplitude or phase balance between

Ports 2 and 3 is available, and the odd- and even-mode impedances presented to each

half of the balanced port cannot be measured.

Figure 3.36: Port extensions used to shift measurement plane at balanced ports

Figure 3.37: Baluns in ‘back-to-back’ measurement configuration

3.7.2 Demonstration of Resonance Suppression

Figure 3.38 shows the magnitude response of the prototype balun without ferrite beads

attached, and it can be seen that it exhibits the classic bandwidth limitations at the low-

end of the frequency band and at the half-wavelength resonance frequency. Comparing

the magnitude responses in Figs. 3.38 and 3.39 it should be noted that the resonance has

been eliminated entirely, and the performance at the low-end of the band has been greatly

improved. The insertion loss of the balun is relatively flat across the full 30 MHz to
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6 GHz bandwidth. It is possible that the series connection of ferrite beads is diminishing

the performance at higher frequencies, as mentioned in Section 3.6.3. The results of Fig.

3.39 represent the optimum configuration of ferrite beads to achieve a flat frequency

response whilst keeping insertion loss to a minimum. The optimum configuration was

found to be three ferrite beads at the unbalanced end of the balun, equivalent to position

A in Fig. 3.4, with one ferrite bead with a resistance of 43 Ω at the balanced end of

the cable to increase the shunt impedance. Although simulations showed that making

the balanced-end ferrite resistance as high as possible was beneficial, in practice it was

found that doing this significantly increased the power loss at 3 GHz and above.

Figure 3.38: Magnitude response of balun without ferrite beads attached

Figure 3.39: Magnitude response of balun with ferrite beads attached

Figure 3.40 shows the phase performance of the ferrite-loaded balun compared to

the balun without ferrite. It can be seen that the addition of ferrite improves the phase

response around the resonant frequency. A 180° phase difference between S21 and S31

can be observed across the entire 30 MHz to 6 GHz bandwidth.
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Figure 3.40: Phase response of balun with and without ferrite beads attached

Figure 3.41: Insertion loss of balun with and without ferrite beads attached

It can be seen in Fig. 3.41 that the power loss is less than 1 dB up to 4.4 GHz,

and the balun remains usable up to 6 GHz. The insertion loss of the balun increases

with frequency, which is due in part to the coaxial cable’s loss increasing with frequency.

Adding ferrite increases the insertion loss between 0.5 GHz and 3.4 GHz by a typical

value of 0.3 dB, a necessary compromise in order to obtain performance over such a

broad frequency range.

It can be seen that there is a slight ‘glitch’ in performance at 4.54 GHz, where both

S21 and S31 display a slight increase in loss. It is possible that this results from the

assembly of the balun, which is done manually, and could be removed by more precise

assembly. It is also possible that it results from a calibration error from the VNA.

Figure 3.39 shows that when the resonance is suppressed, there is an uneven power

split between the inner and outer transmission lines, which could be reduced by increas-

ing ZOUTER. The amplitude balance would not have been measurable if back-to-back

measurements had been conducted, as is often the case in published balun measure-

ments.
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3.7.3 Measured Balun Impedances

Figure 3.42 shows the measured odd-mode impedances of the balun without ferrite

beads, and Fig. 3.43 shows the even-mode impedances. Fig. 3.42 shows that the Port

3 odd-mode impedance is close to a short circuit at 30 MHz, as would be expected.

It then approaches 25 Ω across much of the bandwidth, except at the half-wavelength

frequency where it again appears close to a short circuit.

Fig. 3.44 shows that when the resonance is suppressed through the use of ferrite

beads the impedances are significantly less frequency-dependent. Over a bandwidth

greater than two decades, the odd-mode impedances remain in the region of 25 Ω, and

the even-mode excitations are presented with high impedances. The low-frequency even-

mode impedance at Port 3 could be further increased with the addition of low-frequency

ferrite material such as #43 or #73 materials.

Figure 3.42: Measured odd-mode impedances presented to balanced ports of balun
without resonance suppressed
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Figure 3.43: Measured even-mode impedances presented to balanced ports of balun
without resonance suppressed

Figure 3.44: Measured odd- and even-mode impedances presented to balanced ports of
balun with resonance suppressed

65



CHAPTER 3. DESIGN METHODOLOGY FOR MULTI-DECADE MICROWAVE BALUNS

3.7.4 Circuit Model Validation

The simulated performance of the balun, without ferrite beads attached, was compared

to its measured performance. Although the half-wavelength resonance and low frequency

roll-off was accurately modelled, the measured balun exhibited a ‘crossover’ in the S21

and S31 traces in the passband region that was not present in simulation. This is marked

on Fig. 3.45.

It was found that this ‘crossover’ was caused by the small length of wire that is

soldered between the microstrip line of Port 3 and the outer conductor of the coaxial

cable in order to connect them. This length of wire is labelled in Fig. 3.36. If this

length of wire is modelled as an inductor with a value of 0.6 nH and included in the

circuit model, and the loss of the coaxial cable is included, the response of Fig. 3.45 is

obtained, which shows excellent agreement between simulation and measurement. This

also indicates that making the connecting length of wire as short as possible improves

the amplitude balance of the balun.

Figure 3.45: Simulated response of balun with 0.6 nH inductor added at Port 3

3.7.5 Validation of Design Methodology

Figure 3.46 shows measured results with different numbers of Fair-Rite 2661000101

beads attached at the unbalanced end. It can be seen that with only one bead the reso-

nance is reduced but not suppressed entirely. As further beads are added the resonance

is suppressed further but the two traces become more separated, as would be expected

from simulation. The optimum case is when three beads are used and S31 is compara-

tively flat across the entire bandwidth. This agrees with the design procedure in Section

3.6, which identified that three beads would give the overall resistance value that was

closest to ZOUTER. When four beads are present, the flatness of the frequency response

worsens as Rferrite is greater than ZOUTER. This could also be observed in the simulated

results of Figs. 3.8 and 3.9. At the low frequency end of the band, the performance

improves as more beads are added. If the half-wavelength resonance were suppressed
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Figure 3.46: Comparison of different bead configurations

but the low-frequency performance was not sufficient, further beads of a lower-frequency

ferrite material such as #43 or #73 could be added to improve the low-frequency per-

formance without having a significant effect on the resonance suppression. In this case,

however, this was not necessary.
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3.8 Chapter Summary

In this chapter a novel design procedure is presented for multi-decade coaxial cable

baluns based on a new understanding of the dual role of ferrite beads. Measured ferrite

beads are shown to act as series resistors at microwave frequencies, and so can be used

to suppress resonances on the outer transmission line. At VHF and UHF, the established

practice of using ferrite beads as high impedance chokes is used.

Using this new design methodology, a balun was constructed that exhibits flat, low-

loss performance between 30 MHz and 6 GHz. The power loss in the balun is less than

1 dB up to 4.4 GHz. It is shown that the design methodology can be used to select the

optimum number of ferrite beads needed to suppress the half-wavelength resonance.

The balun serves as a power combiner and matching network in a push-pull amplifier,

providing an effective 2:1 impedance transformation over the entire bandwidth and a 180°
phase difference. The development of the balun opens up the possibility of a push-pull

power amplifier operating over a bandwidth greater than two decades. It will be shown

in Chapter 5 that the baluns introduced in this chapter can be successfully integrated

into a prototype push-pull power amplifier.

The investigation and design of a microwave transmission line balun has led to the

identification of its open-circuit even-mode impedance. As will be seen in the next

chapter, this observation requires the modes of operation inside a microwave push-pull

power amplifier to be reconsidered.
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Chapter 4

Push-Pull Operation at Microwave

Frequencies

4.1 Introduction

In the previous chapter it was identified that the microwave transmission line balun

presents an open circuit to even-mode signals. This is an important observation, the

consequences of which will be investigated in this chapter. The conventional view on

push-pull amplifiers, that a centre-tapped output transformer presents a short circuit

to the harmonics components, is not the case when transmission line baluns are used.

It is also worth noting that the transmission line balun presents a finite resistance to

odd-mode signals, so the third harmonic will not be a short circuit either.

As was shown in Chapter 3, if the half-wavelength resonance has not been suppressed,

the even-mode impedance is a short circuit at the resonant frequency. In this chapter

however, it is assumed that the resonance has been suppressed and that the even-mode

impedance is an open circuit.

Because of the unique impedances presented by a transmission line balun, the mode

of operation inside a push-pull amplifier must be reconsidered. None of the existing

modes of power amplifier operation outlined in Chapter 2 can be applied to the transistors

inside a push-pull amplifier at microwave frequencies. New modes of operation that

describe the behaviour of the push-pull amplifier at microwave frequencies are introduced

in this chapter.

These new modes of operation were first introduced through the development of

factorised time-domain current and voltage waveforms in [65] (included in Appendix B).

It will be seen that at certain bias points the push-pull waveforms bear a resemblance to

existing modes such inverse Class F and inverse Class B, but it should be stressed that

the impedance environment is unique to the push-pull mode of operation.

In this chapter a novel mathematical formulation is proposed to describe the time-
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domain waveforms by defining the harmonic impedance environment in terms of odd-

and even-mode excitation rather than tuned harmonics. Simulations were used to in-

vestigate these modes further, and experimental verification using harmonic load-pull

measurements showed good agreement with the theoretical waveforms.

4.2 Benefits of the Push-Pull Topology at Microwave Fre-

quencies

The push-pull configuration offers significant impedance matching benefits when com-

pared to the single-ended topology. It has already been shown how the transmission line

balun presents a 25 Ω impedance to each half of its balanced port. When used in a

push-pull topology, this means that each transistor will be looking into a 25 Ω impedance

environment rather than the standard 50 Ω. For high-power transistors whose loadline

impedances are around or below 25 Ω, this provides a 2:1 impedance matching advantage

over single-ended amplifiers. In addition, the output balun serves as a power combiner,

allowing two transistors to be used and hence doubling the total output power of the

overall amplifier. If two single-ended transistors were combined in parallel, their output

impedance would be half that of a single transistor, and so the required impedance

matching ratio would be doubled. It can therefore be reasonably stipulated that for a

given output power level the push-pull configuration provides a 4:1 matching advantage

over a standard single-ended design.

The advantage of the push-pull modes of operation is not only in the efficiency

and output power of the waveforms, as will be seen later in this chapter, but in the

fact that they can be maintained over the entire bandwidth of the transmission line

balun, which is significantly larger than for conventional matching networks. In theory,

a push-pull PA using transmission line baluns does not suffer from the same inherent

bandwidth limitations as a harmonically tuned single-ended PA mode, such as Class F.

This is an important observation, and is a result of the properties of transmission line

baluns. In contrast to a conventional output matching network, a balun is able to present

two impedances at the same frequency, depending on the mode of excitation. This

eliminates the problems of conflicting harmonic impedances that limit the bandwidth of

harmonically tuned PAs and were outlined in Section 2.3.3.

4.3 Waveform Formulations

The analysis of the theoretical time-domain waveforms begins with mathematical expres-

sions. In the following discussions of time-domain waveforms, the first three harmonics

are considered. This is partly because the inclusion of higher harmonics results in an

ever-diminishing improvement in the amplifier’s performance, and partly because three
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harmonics represents the practical limit that can be measured using the active harmonic

load-pull system at Cardiff University.

In existing work on factorised waveforms [14,15], the analysis assumes a fixed current

(or voltage, for inverted modes) and allows the impedances to be varied to shape the

voltage. In this work a different approach is employed, whereby the impedances are fixed

and the current is varied, shaping the output voltage. This was done on the assumption

that an ideal balun would present frequency-independent impedances, and that these

impedances were being presented to the transistor at the current generator plane. It is

recognised that this is a highly simplified representation of a real-world scenario, but it

nonetheless serves as a useful starting point.

It is important that neither the voltage nor current waveforms can dip below zero,

as this would not be permitted in a real transistor. There are no restrictions placed on

the upper limit that the voltage can reach. It was assumed that the peak voltage will

always be lower than the transistor’s breakdown voltage, a reasonable assumption when

considering GaN technology. This same assumption is made when discussing other PA

modes with high peak voltages, such as Class J and inverse Class F, as well as switched

modes.

4.3.1 Voltage Waveforms

The push-pull waveform expressions permit only two impedances to be defined; odd-

and even-mode, as this is what would be presented by an ideal balun. The odd-mode

impedance will be presented to odd-order excitations, i.e. the fundamental frequency

component and the third harmonic (and fifth, seventh etc. harmonics if higher-order

components were being considered). The even-mode impedance will be presented to

even-order excitations, in this case the second harmonic component only.

A suitable voltage expression was required to contain components at all three har-

monics, since although there will be no second harmonic current, second harmonic volt-

age is permissible. This is analogous to the situation for the third harmonic in the Class

F mode and for the second harmonic in the inverse Class F mode.

The factorised voltage waveform equation is shown in (4.1). α and β are param-

eters which are initially unbounded and which generate a set of ‘zero-grazing’ voltage

waveforms having fundamental, second and third harmonics. Only cosinusoidal terms

are required, as the scope of the present work only extends to resistive terminations.

When (4.1) is expanded, the individual harmonic components can be described by (4.2)

to (4.5).

V (ωt) = (1 + α cos(ωt))2(1 + β cos(ωt)) (4.1)
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VDC = 1 + αβ +
α2

2
(4.2)

Vf0 = 2α+ β +
3α2β

4
(4.3)

V2f0 = αβ +
α2

2
(4.4)

V3f0 =
α2β

4
(4.5)

4.3.2 Current Waveforms

The ideal transmission line balun presents an even-mode open circuit, which does not

permit even-order harmonic currents to flow, and so the current waveform expression is

only required to contain a fundamental and third harmonic component.

I(ωt) = 1 + k(cos(ωt)− γ cos(3ωt)) (4.6)

The parameter γ relates to the bias condition of a transistor, where γ = 0 corresponds

to a raised cosinusoidal current waveform, or Class A bias. As the transistor is biased

deeper into Class AB and eventually Class B, the third harmonic current component

increases and has a ‘squaring-off’ effect on the waveform. The parameter k is a scaling

factor to ensure that the zero-grazing condition is met for a given value of γ.

4.3.3 Microwave Transmission Line Balun Impedances

The next stage in the analysis is to take account of the impedance restrictions imposed

by the balun. These restrictions are shown in (4.7) and (4.8).

Zodd = Zf0 = Z3f0 = Z5f0 ... = ZB (4.7)

Zeven = Z2f0 = Z4f0 = Z6f0 ... =∞ (4.8)

ZB is the odd mode impedance of the balun when one half of the balanced output

is measured with respect to ground. For the ideal transmission line baluns considered in

Chapter 3, ZB will have a value of 25 Ω. Using (4.1), (4.6) and (4.7), β can be defined

in terms of α and γ by setting the fundamental and third harmonic impedances to be

equal.

Zf0 =
Vf0
If0

=
2α+ β + 3α2β

4

k
=

8α+ 4β + 3α2β

4k
(4.9)
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Z3f0 =
V3f0

I3f0
=

α2β
4

−kγ
=

α2β

−4kγ
(4.10)

It is then possible to set Zf0 = Z3f0 in accordance with (4.7);

8α+ 4β + 3α2β

4k
=

α2β

−4kγ
(4.11)

8α+ 4β + 3α2β =
−α2β

γ
(4.12)

4β + 3α2β +
α2β

γ
= −8α (4.13)

β(4 + 3α2 +
α2

γ
) = −8α (4.14)

β =
−8α

4 + 3α2 + α2

γ

(4.15)

By defining β in terms of α and γ, it is now possible to investigate the performance

of this mode of operation by varying these two parameters.

4.3.4 Theoretical Performance

The equations introduced in the previous sections define the current and voltage wave-

forms for different values of γ, whilst ensuring that the impedance conditions imposed

by the balun are met. It is now possible to plot the drain efficiency against the parameter

α, as shown in Fig. 4.1. Notably, this shows that the maximum drain efficiency occurs

at the value of α = −
√

2 for all values of γ. Figure 4.2 plots drain efficiency against γ,

and shows that the maximum theoretical efficiency is 71.65% at γ = 0.12.

Figure 4.1: Drain efficiency plotted against α for different values of γ
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Figure 4.2: Drain efficiency plotted against γ with α = −
√

2

It is possible to calculate the output power of the push-pull mode compared to the

Class A mode, which was introduced in Chapter 2. Referring back to Fig. 2.3, the Class

A mode has a peak-to-peak voltage swing of 2, and peak-to-peak current swing of 1.

Using (4.16), it can be calculated that the output power is 0.25.

P =
VppIpp

8
(4.16)

For the push-pull mode with γ set to zero, the fundamental current swing is still 1, but

the fundamental voltage swing is increased to 2
√

2. This can be shown by substituting

α = −
√

2 and γ = 0 into (4.3) and (4.15), and this increase in fundamental voltage

results in an output power of 0.354, a 1.5 dB increase in fundamental power compared

to Class A. This is a significant increase in output power, and is a notable benefit of the

push-pull mode at microwave frequencies.

The output power is plotted against γ in Fig. 4.3. The output power has been

normalised to the Class A case under full drive (maximum power) conditions. Figure 4.3

shows that there is a significant increase in power for a device operating in the push-pull

mode compared to the Class A case over a wide range of γ values.

Figure 4.4 shows how this power advantage is realised. At low values of γ, the

second harmonic component is flattening the voltage waveform ’troughs’ and allowing

an increase in fundamental voltage. At higher values of γ, the third harmonic current

component is flattening the current waveform and allowing the fundamental current

component to be increased compared to Class A. As shown in Fig. 4.3, the maximum

output power is realised at γ = 0.12 and subsequently decreases with increasing values

of γ.
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Figure 4.3: Output power plotted against γ with α = −
√

2 (normalised to Class A)

Figure 4.4: Fundamental frequency voltage and current components plotted against γ
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4.3.5 Theoretical Time-Domain Waveforms

Theoretical waveforms are generated directly from (4.1) and (4.6) and are plotted in Figs.

4.5, 4.6 and 4.7, with drain efficiencies of 70.71%, 71.65% and 63.49%, respectively.

A case of particular interest is when γ is close to zero. It can be seen from Fig. 4.5

that the waveforms bear a resemblance to the waveforms of the ‘inverted Class B’ mode,

which has a sinusoidal current waveform and a half-wave rectified voltage waveform. It

must be stressed, however, that the waveforms of Fig. 4.5 are unique. The inverted

Class B mode is implemented by biasing the transistor in Class A and presenting the

harmonic frequencies with an open-circuit. The difference between the two modes is

that the third harmonic impedance in the push-pull case is a finite resistance instead of

the open circuit of the inverted Class B mode. Due to the need for an open circuit at

all harmonics, the inverted Class B mode would also be subject to the same bandwidth

limitations as the ‘conventional’ PA modes outlined in Chapter 2.

Figure 4.5: Time domain theoretical waveforms for γ = 0.001 and α = −
√

2

Figure 4.6: Time domain theoretical waveforms for γ = 0.12 and α = −
√

2

Fig. 4.6 shows the case for γ = 0.12. This particular set of waveforms has an output

power of 1.56 dB (normalised to Class A) and a drain efficiency of 71.65%. It can be

seen from Fig. 4.6 that the current is at the ‘maximally flat’ state. Interestingly, this
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Figure 4.7: Time domain theoretical waveforms for γ = 0.25 and α = −
√

2

is not the point at which the fundamental current component is at its maximum. As

can be seen in Fig. 4.4, maximum fundamental current occurs at γ = 0.17. There are

similarities with the work of Raab, where for Class F the maximum power waveforms are

not maximally flat but instead “exhibit slight ripples” [8].

The waveforms of Fig. 4.7 are a unique set of waveforms that look significantly

different to any presented in the current literature. These waveforms may be more

suitable when voltage breakdown is a problem, as their peak voltage is no higher than

that of the Class A mode. It will also be seen in Section 4.4 that the power back-off

characteristics differ with different bias conditions. Where voltage breakdown is not a

problem, waveforms with small values of γ are preferable.

Inverted modes are, in effect, the natural modes for push-pull PAs using transmission

line baluns. The analytical expressions predict that a push-pull PA, with the transistors

biased in a high quiescent current state, can be implemented over multi-octave band-

widths with drain efficiencies above 70%.

All of the theoretical waveforms assume that the full range of voltage and current

swing is being utilised. To evaluate other parameters such as power back-off (PBO),

and gain compression, nonlinear circuit simulations are used.
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4.4 Simulations

4.4.1 Purpose of Simulations

The purpose of carrying out circuit simulations was twofold. Firstly, circuit simulations

can serve as initial verification of the theoretical modes of operation presented in the

previous section. Secondly, it is quicker and easier to investigate other performance

characteristics of the modes of operation, such as back-off power and gain compression,

using a circuit simulator compared to mathematical analysis.

4.4.2 Simulation Setup

Load-pull simulations were carried out using the nonlinear harmonic balance simula-

tor in AWR Microwave Office. The simulation schematic is shown in Fig. 4.8. The

HBTUNER2 component allows arbitrary impedances to be specified at the first three

harmonic frequencies, and also incorporates an integrated ideal bias tee for biasing the

transistor under test. An additional tuner is included in order to control the fourth

harmonic impedance.

Figure 4.8: Circuit schematic for load-pull simulations in AWR Microwave Office

The large signal transistor model used in the simulations was the CGH40010F R6 LL

model provided by Cree. The simulations were carried out at a fundamental frequency

of 900 MHz in order to match the fundamental frequency at which the active harmonic

load-pull measurements were conducted (presented in Section 4.5).

Load-pull is carried out at the output of the transistor, whilst all the input har-

monics are terminated into 50 Ω. This emulates the load-pull measurement setup at

Cardiff University.
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4.4.3 Transistor Reference Planes

As discussed in Chapter 2, a real transistor will not behave as an ideal voltage-controlled

current source (VCCS). There will be reactive impedances within the transistor itself,

such as CDS, and those caused by the bond wires and transistor package.

It is necessary to define the different reference planes referred to in the following

sections. A basic model of the reactive circuit elements for a packaged transistor is

shown in Fig. 4.9. The most significant element is the drain-source capacitor, CDS.

On the left hand side of Fig. 4.9, the transistor is first assumed to be an ideal voltage-

controlled current source. This is referred to as the ‘current generator’ (IGEN) reference

plane. When the drain-source capacitor is included in the model of the transistor,

along with other elements that are internal to the transistor chip, this is referred to as

the ‘device’ plane. The ceramic package introduces components such as bond wires

and metal tabs that are represented by additional circuit elements. Once all of these

elements have been included, this outermost reference plane is termed the ‘package’

plane.

Figure 4.9: Transistor reference planes

When load-pull measurements are made, it is only possible to measure at the package

plane. However, if a sufficiently accurate model of the package exists, it is possible to

remove the effects of the package to effectively measure at the device plane. This is

a process known as de-embedding. Similarly, if it is possible to model the intrinsic

components such as CDS, these can be de-embedded to provide a reasonable estimate

of measurements at the current generator plane.

The same de-embedding process can be applied to circuit simulations, as most tran-

sistor vendors will provide models referenced to the package plane. However, recently

released transistor models from Cree allow voltage and current meters to be placed di-

rectly at the current generator plane. These are shown connected to transistor ports 2

and 4 in Fig. 4.8. Therefore, in simulation, it is possible to view voltage and current

waveforms at the current generator reference plane. It is these models that are used in

the following simulations.
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4.4.4 Power Sweep Simulations

The characteristics of the transistor in backed-off power conditions were investigated at

two bias voltages; -1.5 V and -3.0 V. It should be noted that γ will change with input

power, due to the generation of third harmonic current as the transistor compresses.

As shown in Fig. 4.10, the higher quiescent current case (VGS = -1.5 V) exhibits

more gain, as expected. It is also worth noting the ‘soft’ compression characteristics

of the GaN transistor. Figure 4.11 shows that eventually the two operating conditions

reach the same output power level. The higher γ value, corresponding to a VGS value of

-3.0 V, shows better performance in terms of efficiency when the input power is backed

off. This can be observed from Fig. 4.12.

Figure 4.10: Gain versus input power for two bias points

Figure 4.11: Output power versus input power for two bias points

Time-Domain Waveform Simulations

For the waveforms of Fig. 4.13 γ is close to zero, corresponding to a raised sinusoidal

current waveform. It can be observed that there is a small amount of second harmonic

voltage contributing to the ‘peaking’ of the voltage waveform and the ‘flattening’ of
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Figure 4.12: Drain efficiency versus input power for two bias points

the trough of the waveform. The associated output power, gain and efficiency was

42.1 dBm, 20.3 dB and 54.2% respectively. The efficiency is lower than the theoretical

70.7% for γ = 0, however this can be explained by the presence of the knee voltage in

the transistor model.

Figure 4.13: Simulated current and voltage waveforms for γ = 0.0235

As γ is increased to 0.1050, achieved in practice by reducing the gate bias voltage,

the waveforms of Fig. 4.14 are produced. The output power and drain efficiency are

42.15 dBm and 57.8% respectively, which is comparable to the results of Fig. 4.13,

however the gain has reduced by approximately one decibel to 19.35 dB. The current

is slightly flattened by the third harmonic current in order to remain above zero. This

third harmonic current is multiplied by Zodd to produce a third harmonic voltage which

flattens the peaks of the voltage waveform.

Figure 4.15 shows the results for a γ value of 0.1811. The voltage and current

waveforms are flattened by the increased third harmonic components, and the gain is

reduced to 18.10 dB. The output power is 41.90 dBm and the drain efficiency is 58.7%.
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Figure 4.14: Simulated current and voltage waveforms for γ = 0.1050

Figure 4.15: Simulated current and voltage waveforms for γ = 0.1811

For the waveforms of Figure 4.16, the output power has dropped fairly significantly

to 40.32 dBm. The third harmonic current is a considerable fraction of the fundamental

current, with a γ value of 0.2681. The drain efficiency is 55.9% and the gain is 16.5 dB.

This reduced performance at higher values of γ again suggests that inverted modes (low

γ) are better suited to the push-pull topology. Figure 4.16 shows some unexpected

asymmetry, which could be a result of de-embedding.

Good performance is simulated without distorting the waveforms. There is reasonable

agreement with theory, although the efficiencies are lower in simulation due to the

inclusion of knee voltage in the transistor model.
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Figure 4.16: Simulated current and voltage waveforms for γ = 0.2681
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4.5 Load-Pull Measurements

Section 4.4 demonstrated that the push-pull mode of operation could be realised in

simulation, and so the next stage was to investigate whether these modes could be

achieved using a real transistor.

4.5.1 Measurement Setup

Using the active harmonic load-pull system developed at Cardiff University, measure-

ments were made on a Cree CGH40010F gallium nitride (GaN) power transistor at

900 MHz. The package reactances and the transistor’s drain-source capacitance were

de-embedded such that specific output loads could be presented to the first three har-

monics at the current generator plane.

The load-pull system is not described in detail here owing to the abundance of

existing literature documenting the system [66–69]. However, a simple block diagram of

the open-loop active harmonic load-pull system is shown in Fig. 4.17. A digital sampling

oscilloscope (DSO) samples incident and reflected travelling waves (a- and b-waves) in

the time-domain, which can be transformed to voltage and current waveforms through

knowledge of the system impedance, which is 50 Ω.

Figure 4.17: Active harmonic load pull system block diagram

Whilst the number of harmonics that can be measured depends on the upper fre-

quency limit of the DSO and the accuracy of calibration at higher harmonics, the number

of harmonics whose impedances can be controlled by the measurement system is limited

to three. It is theoretically possible to control the fourth harmonic impedance and higher,

however practical limitations in the load-pull software and the equipment available meant

the load-pull control was limited to the fundamental, second and third harmonics. The

fourth harmonic and above are measured, however they will be presented with an arbi-
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Figure 4.18: Test fixture de-embedding

trary impedance which is a product of the system impedance, the effects of the cables

in the load-pull system and the package and device reactances.

4.5.2 Calibration and Test Fixture De-embedding

The load-pull system was calibrated using a thru-open-short-match (TOSM) calibration

procedure [70]. The calibration kit used was an Agilent 85052D 3.5 mm kit, where

resulting calibration plane is approximately in the middle of the cable and calibration

standard mating interface. In order to move the reference plane to the ‘package plane’,

where de-embedding can be carried out, it is first necessary to de-embed the transistor

test fixture. This can be done by measuring the test fixture’s S-parameters and mathe-

matically removing them from the measured results, which has the effect represented in

Fig. 4.18. An alternative approach would be to calibrate directly to the device plane by

using a set of microstrip calibration standards. The calibration was verified by measur-

ing a different set of 3.5 mm calibration standards and comparing measurements to the

calibration standards’ known characteristics.

The large-signal aspect of the calibration is done by making a large-signal measure-

ment using a power meter as a reference, and scaling the travelling waves measured by

the DSO.

4.5.3 Transistor Package De-embedding

As discussed in Section 4.4.3, recently released transistor models from Cree allow voltage

and current meters to be placed directly at the current generator plane in simulation.

Therefore, it is possible to view simulated voltage and current waveforms at the current

generator reference plane.

However this is not possible for load-pull measurements, and so S-parameter de-

embedding is necessary using estimated values for the intrinsic and extrinsic elements.

For these measurements the package model of Fig. 4.9 was used, with associated values
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Package Model
Element

Value

CDS 1.22 pF

Lbond 0.55 nH

Cbond 0.25 pF

Ltab1 0.1 nH

Ctab 0.25 pF

Ltab2 0.1 nH

Table 4.1: Package model element values for Cree CGH40010F

provided in Table 4.1. Cree do not provide details of their intrinsic and extrinsic de-

embedding models, so the values were obtained from previous work at Cardiff University

using the same transistor [71]. For a more accurate model of package and device circuit

elements, it should be possible to compare simulated waveforms at the current generator

and package planes and ‘reverse engineer’ a more accurate model for these elements

than the one that was used. This improved model could then be used for de-embedding

measured data. However, as the transistor models with current-generator plane ports

were only made available in May 2013, this was not possible to do when the load-pull

measurements were conducted.

4.5.4 Measured Waveforms

Two sets of measurements are presented in this section. The odd-mode impedance in

both cases was 50 Ω, the even mode impedance was a high impedance approximating

an open circuit and the drain voltage was 28 V.

In Figs. 4.19 and 4.20 the same measured data is plotted with the number of harmonic

frequencies included set to three and five, respectively. Having calculated the value of

γ for the measured waveform, the theoretical waveform is generated and scaled up to

a drain supply voltage of 28 V, in order to be compared to the measured data. A

gate-source voltage of -2.0 V gave a corresponding γ value of 0.076.

The measured fundamental output power of Fig. 4.19 was 40.8 dBm, drain efficiency

was 73.7% and transducer gain was 18.2 dB. This is very impressive performance that

demonstrates the viability of of the push-pull mode of operation. In Fig. 4.19, when three

harmonics are included, the agreement between theoretical and measured waveforms is

good. When viewing only three harmonics, it appears as though the voltage dips into

the knee region, however it can be seen in Fig. 4.20 that the higher harmonics are

flattening the voltage trough to reduce this. It can be seen that the current is not

86



4.5. LOAD-PULL MEASUREMENTS

Figure 4.19: Measured and theoretical waveforms for γ = 0.076 (3 harmonics)

Figure 4.20: Measured and theoretical waveforms for γ = 0.076 (5 harmonics)

sinusoidal, especially when all five harmonics are included. The peaking of the current

in Fig. 4.20 cannot be controlled due to the limitations of the measurement setup. The

current appears to be crossing zero when three harmonics are included, but this does

seem to reduce when the higher harmonics are included. Large signal calibration error

could provide further explanation for the zero-crossing current waveform.

A second set of waveforms is presented in Figs. 4.21 and 4.22 at a γ value of 0.219.

The measured output power was 39.4 dBm, drain efficiency was 68.1% and transducer

gain was 15.8 dB. The gate-source voltage was -3.1 V.

As would be expected, the gain at the higher value of γ is reduced, as is the drain

efficiency. As with the γ = 0.076 case, the fourth harmonic is flattening the current to

reduce the amount by which the current dips below zero. The higher harmonics are also

preventing the voltage waveform from entering the knee region. When three harmonics

are considered, the agreement between theoretical and measured waveforms is good.

Although not achieving the performance figures of the other measured waveforms, the
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waveforms of Figs. 4.21 and 4.22 should have improved drain efficiency under backed-off

conditions.

It can be observed that the measured waveforms and drain efficiencies closely match

those predicted by theory for two different bias voltages. It is believed that the measured

drain efficiency is slightly higher than that predicted by theory due to the beneficial effect

of the current at the fourth harmonic, which flattens the current waveform and allows

the fundamental current component to be increased.

Figure 4.21: Measured and theoretical waveforms for γ = 0.219 (3 harmonics)

Figure 4.22: Measured and theoretical waveforms for γ = 0.219 (5 harmonics)
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4.6 Chapter Summary

In this chapter, new modes of operation inside a push-pull power amplifier with trans-

mission line baluns have been identified and investigated. The resulting waveforms have

been found to differ significantly from the Class B waveforms that are usually associated

with the push-pull mode of operation. This difference results from the open-circuited

even-mode impedance presented by a microwave transmission line balun.

The new modes of operation demonstrate high efficiency performance and signifi-

cantly higher output power than the Class A mode. In addition, due to the microwave

transmission line balun, these modes can be realised over significantly broader band-

widths than conventional PA modes.

Using the ‘factorised waveform’ approach, the time-domain RF waveforms have been

predicted by theory and show good agreement with simulation and measurement. It has

been demonstrated that for push-pull amplifiers at microwave frequencies, the waveforms

share many of the characteristics of the ‘inverted’ modes of operation, an important

observation that has significant consequences for the PA designer.

This chapter has demonstrated the potential for multi-octave, high power, high effi-

ciency microwave push-pull amplifiers that use transmission line baluns. Such amplifiers

will be introduced in the next chapter.
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Chapter 5

Push-Pull Power Amplifier

Prototypes

5.1 Introduction

In this chapter the design, manufacture and measurement of two prototype push-pull

power amplifiers is presented. These amplifiers were developed in order to demonstrate

that the push-pull topology is a promising solution to the challenge of designing high-

power, high-efficiency multi-octave power amplifiers.

The design and simulation of the amplifiers is described, with measured results

demonstrating the performance that is currently achievable. In addition, the bespoke

measurement systems used for characterising these amplifiers are discussed.

The first prototype amplifier was presented at the International Microwave Sym-

posium in June 2012 [72], whilst the second prototype was presented at the ARMMS

conference in April 2013 [73].

The first prototype amplifier achieved a minimum output power of 20 W between

250 MHz and 3.1 GHz, with an output power of 40 W and a minimum of 45% drain

efficiency between 700 MHz and 2 GHz. The development of these amplifiers shows

that the push-pull topology is a feasible solution to the challenges of broadband power

amplifier design, and that extremely competitive performance figures can be obtained.

5.2 Push-Pull Power Amplifier Version 1

5.2.1 Design Goals

The objective was to build an amplifier with a bandwidth significantly larger than one

octave, with a significant portion of the frequency range being above 1 GHz. As outlined

in Chapter 2, there are many examples of broadband push-pull power amplifiers in the

literature, however very few of these operate above 1 GHz.
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For the first version of the prototype amplifier (abbreviated to v1 for brevity), a

target output power of at least 20 W was specified. Again, this was to differentiate

this work from other broadband techniques that, whilst achieving impressive operating

bandwidths, are limited to relatively modest output power levels. It is worth mentioning

this as the task of efficient power combining over large bandwidths is non-trivial. The

initial frequency range to design across was 750 MHz to 3 GHz, a bandwidth of two

octaves. The aim was to measure the efficiency that could be achieved whilst meeting

the bandwidth and power requirements, with the results of Chapter 4 suggesting that

good efficiency should be achievable in a practical amplifier.

5.2.2 Choice of Transistor

As discussed in Chapter 2, gallium nitride transistors have many desirable properties

for high-power, broad-bandwidth power amplifiers. The two major perceived drawbacks

of GaN, cost and reliability, are not significant concerns when designing a prototype

amplifier for research, rather than commercial or military, purposes.

Of the commercial GaN vendors, Cree was chosen as the preferred supplier. The

Centre for High Frequency Engineering at Cardiff University has both an existing re-

lationship with Cree and a familiarity with its GaN devices through research involving

load-pull measurements and prototype power amplifiers [13, 15, 74].

Two Cree transistors were considered; model number CGH40010F, referred to as the

‘10 W transistor’ for simplicity and model number CGH40025F, referred to as the ‘25 W

transistor’. These are both packaged transistors, meaning that the GaN transistors

have been die attached and wire bonded to a package, which makes them easier to

handle and interface with a printed circuit board. Because of this, packaged devices are

more convenient than ‘bare die’ transistors, however the package introduces additional

reactances that can limit the transistor’s performance. The performance disadvantage

was judged to be acceptable when compared to the extra expense, manufacturing time

and inconvenience that a ‘chip-and-wire’ approach would result in.

The choice of whether to use the 10 W transistor or 25 W transistor largely rested

on the optimum output impedance for both of the devices. The closer to 25 Ω the

optimum impedance was, the fewer matching elements would be required and hence the

better the performance would be over multi-octave bandwidths.

Loadline Matching

There are a number of different methods that can be used for determining a transistor’s

optimum output impedance. For maximum output power, loadline matching is the

simplest method. Loadline matching involves calculating the impedance that will result

in the voltage and current waveforms swinging across their full ranges without clipping

92



5.2. PUSH-PULL POWER AMPLIFIER VERSION 1

Property Value

Vdc 28 V

Vk 5 V

Idc 1 A

Table 5.1: Basic properties of Cree CGH40010F

Figure 5.1: Simulated output DC I-V characteristic of Cree 10 W transistor with loadline

or entering the ‘knee’ region. The great advantage of loadline matching is that a value

of Ropt can be obtained whilst knowing relatively little information about the transistor.

Using (5.1) from [4] and the transistor properties in Table 5.1, Ropt is calculated as

22 Ω for the 10 W transistor, and the resulting loadline is shown in Fig. 5.1.

For the 25 W transistor, the DC drain supply voltage and the knee voltage remain

the same, but the DC current changes to 1.8 A, which results in an Ropt value of 12.2 Ω,

as shown in Fig. 5.2. According to the loadline method, the 10 W transistor provides

the closest optimum impedance to 25 Ω.

Ropt =
Vdc − Vk
Idc

(5.1)

It should be noted that the DC I-V curves have a negative gradient due to the

simulated thermal effects at higher power levels. These are not necessarily the same

characteristics that will be observed at microwave frequencies, as the transistor will only

be at peak power, and hence experience a rise in temperature, for a small percentage of

the overall time. Pulsed DC I-V measurements would result in a more accurate model

of the transistor’s output characteristics.
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Figure 5.2: Simulated output DC I-V characteristic of Cree 25 W transistor with loadline

Load-Pull Measurements

Whilst loadline matching is a quick, convenient and useful method of determining a

transistor’s optimum output impedance, a more accurate method is to measure Ropt for

an actual transistor, using the same load-pull measurement system that was introduced

in Chapter 4.

It is difficult to categorically define a single value for optimum impedance, as it

is dependent on input power, bias, frequency, harmonic impedances and many other

factors. It is also worth noting the difficulty in calibrating the system for high power

measurements due to the sensitivity of the receiver and the maximum power that the

calibration standards can withstand. Measuring a transistor under all possible operating

conditions is a time-consuming exercise, and so an approximate value was chosen from

one set of load-pull measurements.

Figure 5.3: Measured drain efficiency contours for the 25 W transistor at 2 GHz
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Figure 5.4: Measured output power contours for the 25 W transistor at 2 GHz

Load-pull measurements were conducted on a CGH40025F transistor at 2 GHz. The

fundamental impedance was swept whilst the second harmonic impedance was held at

an open circuit and the third harmonic impedance was 25 Ω. As Figs. 5.3 and 5.4 show,

the optimum impedance is not the same for maximum output power and maximum

efficiency. In Fig. 5.3, the highest measured drain efficiency was 71.7% at Zf0 = 55.8 +

j7.8 Ω. The maximum output power measured was 43.01 dBm at Zf0 = 19.0 + j1.7 Ω. A

value between 19 Ω and 56 Ω represents a compromise between optimum output power

and efficiency. The load-pull sweeps of Figs. 5.3 and 5.4 reveal that a fundamental

impedance of 25 Ω results in an output power of 46.7 dBm and drain efficiency of

63.7%. These load-pull measurements show that 25 Ω is a good compromise between

output power and efficiency, and hence that the 25 W transistor should be chosen over

the 10 W transistor for this design.

Another reason to use the 25 W transistor is to increase the overall output power

of the amplifier, which enables a more favourable comparison with conventional single-

ended amplifiers. To achieve a similar output power of between 40 W and 50 W from a

single-ended, single-transistor amplifier would significantly increase the matching ratio

and hence reduce its bandwidth. This serves to highlight the inherent advantages of the

push-pull topology that were outlined in Chapter 4.

5.2.3 Differential Input Ports

It was decided to drive the prototype amplifier using differential inputs instead of one

single-ended input. This provided the opportunity to investigate the operation of the

push-pull power amplifier in greater depth. For example, as will be shown in Section
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5.2.10, it is possible to vary the amplitude and phase balance between the two halves

of the differential input in order to measure the effect on output power, efficiency and

gain.

5.2.4 Output Balun Design

The output balun design was largely the same as the prototype balun described in

Chapter 3. It was decided to use these baluns due to the familiarity with their design,

manufacture and assembly. Compared to the balun of Chapter 3, a thicker coaxial cable

was used, increasing the outer diameter from 1.19 mm to 2.20 mm. This was mainly

due to the increased power handling capability of the thicker cable, which was 69.8 W

at 5 GHz compared to 20.7 W [75]. The thicker coaxial cable also reduced the loss from

2.59 dB/m to 1.51 dB/m. The datasheet for the coaxial cable is included in Appendix

I.

It was decided to set the balun length to 40 mm, resulting in a half-wavelength

resonant frequency of 3.75 GHz. This set the resonant frequency outside the intended

operating range of the amplifier, to avoid the need for ferrite beads, which as Chapter

3 shows increase the insertion loss of the baluns.

An alternative approach would have been to set the balun length at a value closer

to 80 mm, placing the resonant frequency around 1.875 GHz, deliberately in the middle

of the amplifier’s passband. Ferrite beads could then have been used to suppress the

half-wavelength resonance, thus demonstrating that the design methodology of Chapter

3 could be applied in to a power amplifier design. However, it was decided against this

approach, as it was thought that better overall amplifier performance would be achieved

by keeping the resonance out-of-band and hence removing the need for ferrite beads.

In addition, as it is relatively straightforward to disassemble the balun and add ferrite

beads at a later date, it was decide to make initial measurements without the beads,

and to add them later if necessary.

5.2.5 Simulations

Nonlinear harmonic balance simulations were conducted during the power amplifier de-

sign. A large-signal model from Cree was used to model the transistors, and measured

S-parameter data of the output balun was imported into the simulator.

Input return loss (|S11|) is a commonly specified parameter in PA design, and is

usually important when considering the PA as part of a transmitter chain, however it

was not considered during this design. This was because it would be unlikely that this

PA would be used in a transmitter chain in its present form, and instead there would

either be a differential driver stage or a balun at its input.

Capacitors to ground were included close to the gate tabs to increase the gain at
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Figure 5.5: Transmission lines and capacitor to ground at input of PA v1

Figure 5.6: Simulated small-signal gain of PA v1

the high-end of the frequency range, and to flatten the gain across the bandwidth.

The distance between the capacitors and the gate tabs were tuned, and the network is

shown in Fig. 5.5. The input transmission lines had a characteristic impedance of 50 Ω.

As shown in Fig. 5.6, the capacitors at the input greatly improve the gain at higher

frequencies compared to the unmatched transistor. It would be extremely difficult to

achieve flat gain across such a wide bandwidth without feedback or a ‘lossy’ match at

lower frequencies, both of which would lower the overall gain. It was decided that the

preferred approach would be to try and maximise gain at all frequencies and compensate

for the gain variation by adjusting the input power to achieve a constant output power.

In simulation, no lumped-element matching components at the output could improve

performance in one part of the band without significantly worsening performance in

another. The microstrip line lengths were tuned to optimise amplifier performance, with

the characteristic impedance of the output transmission lines set to 25 Ω. The simulated

large-signal performance is shown in Fig. 5.7, and suggests that 60% efficiency should

be achievable across a bandwidth greater than a decade. For the simulations of Fig. 5.7,

the input power was varied to compensate for the gain variation of the amplifier, and
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Figure 5.7: Simulated large-signal performance of PA v1

the phase offset between the two inputs was 180°.
The final layout of the power amplifier is shown in Fig. 5.8. The simplicity of the

design is one of the advantages of using the push-pull topology in conjunction with GaN

transistors, as a 25 Ω impedance environment combined with a 25 Ω optimum output

impedance should eliminate the need for conventional matching. It is worth noting the

output voltage probe, which will be discussed further in Section 5.2.11.

5.2.6 Manufacture

The manufacture of the prototype amplifier used the same equipment as the manufacture

of the transmission line baluns of Chapter 3. A high-precision PCB (printed circuit board)

milling machine was used to mill away the copper in order to define the microstrip lines.

The milling machine was then used to create the balun channel in the aluminium that

the coaxial cable sits above, as well as the small rectangular ‘pockets’ in which the

transistors sit. The depth of the transistor gaps was set to allow the transistor package

tabs to align with the top of the microstrip line. The assembled amplifier is shown in

Fig. 5.9.

5.2.7 Stability and S-Parameter Measurements

Initially it was found that the PA was unstable at certain bias points. A 50 Ω resistor

was added to each of the gate bias feeds to prevent instability. Once these resistors had

been added, no further stability problems were observed.

S-parameters were measured using a four-port VNA in the same manner as the

transmission line baluns. This involves measuring the individual S-parameters at each

port, with only one port being excited at a time, and then mathematically transforming

the S-parameters into ‘mixed-mode S-parameters’ [76]. This is valid at low power levels

where the amplifier is assumed to be linear, however would not be a valid technique at
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Figure 5.8: Layout of push-pull PA v1

Figure 5.9: Photograph of assembled push-pull PA v1
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Figure 5.10: Measured mixed-mode S21 of PA v1

higher power levels. As will be seen in Section 5.2.8, a bespoke measurement system

was developed for measuring the PA under large-signal conditions.

At this stage, the values and positions of the parallel input matching capacitors were

tuned to give optimum performance, and the mixed-mode S21 measurements are shown

in Fig. 5.10. There was a minimum of 12 dB gain across the measured bandwidth. At

higher frequencies the gain was lower than was predicted in simulation, however it did

show a similar roll-off with frequency.

5.2.8 Large Signal Measurement Setup

The differential inputs of the PA create practical difficulties when measuring its large-

signal performance. It is necessary to ensure that a 180° phase difference and equal

amplitude balance is maintained across the wide frequency range over which the amplifier

is to be tested. 180° hybrid couplers and baluns are limited in bandwidth, and are

unlikely to provide ideal amplitude and phase balance. In addition, it is difficult to vary

the amplitude and phase balance in order to measure their effect on performance.

To overcome these difficulties, it was decided to use two electronic signal generators

(ESGs) that were phase-locked together. Electronic signal generators have a 10 MHz

reference signal input and output port, which allows them to be phase locked with

other instruments through the use of a built-in phase-locked loop (PLL). In this way,

an arbitrary phase difference can be specified. The problem with this approach is that

the phase difference between the two phase-locked ESGs is initially unknown, and is

frequency dependent. In addition, there is a phase shift associated with each path

between the ESG and the PA input. If the phase shifts in the two paths are different,

which is likely due to different cable lengths, differences in driver PA characteristics and

any variation in directional couplers, there will be an unknown phase difference between

the two input ports of the PA.

This problem can be overcome by the measurement setup shown in Fig. 5.11. By
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Figure 5.11: Block diagram of setup for measuring PA with differential inputs

using a digital sampling oscilloscope (DSO) to measure the amplitude and phase at each

input, a software-controlled feedback loop ensures that the desired phase relationship

between the inputs is achieved. Bespoke software was written in C# to control the ESGs,

as well as collect measured data from the DC power supplies and RF power meter. An

example screenshot from the program’s graphical user interface (GUI) is shown in Fig.

5.12. Because the software can be programmed to sweep certain parameters and store

the measured data, this frees the user from having to manually measure each point of

interest.

The disadvantage of this measurement setup is that the digital sampling oscilloscope

takes a relatively long time to capture a measurement, and as it can take a number of

iterations to converge on the desired amplitude and phase balance, this further slows

the measurement procedure. As can be seen from Fig. 5.11, this setup also requires a

significant amount of hardware to implement.

The input ports were calibrated using the same procedure that was used for the

load-pull measurements in Section 4.5, and indeed the existing software was used. A

TOSM calibration was used at small signal, and a power meter was used to calibrate the

absolute power level. The only difference is that this measurement system has two input

ports, rather than one input and one output port. As with the load-pull measurements

of Section 4.5, a different set of calibration standards was measured in order to verify

the calibration.

5.2.9 Large Signal Measurement Results

The large-signal measurements were made using the system shown in Fig. 5.11. The

phase between the differential input ports was varied to optimise performance. The
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Figure 5.12: Screenshot of measurement system software

input power was set to compensate for the gain variation of the amplifier and achieve

40 W of output power where possible.

It can be seen in Fig. 5.13 there is good output power and efficiency across a very

wide bandwidth. The output power is 46 dBm (40 W) between 700 MHz and 2 GHz, with

drain efficiencies greater than 45%. The output power decreases above 2 GHz, probably

due to the increased effects of the drain-source capacitance and package reactances at

higher frequencies, but remains above 20 W between 250 MHz and 3.1 GHz, a bandwidth

greater than a decade.

At lower frequencies, the PA is performing particularly well, with a minimum of 60%

drain efficiency and 11 dB of transducer gain measured between 350 MHz and 1 GHz.

This level of performance would be impressive even if considered in isolation, without

taking into account the extended bandwidth of the amplifier.

Figure 5.13: Large signal measurement results for push-pull PA v1
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Figure 5.14: Measured and simulated output power for push-pull PA v1

Figure 5.15: Measured and simulated drain efficiency for push-pull PA v1

It can be seen in Fig. 5.14 that there is reasonably good agreement between simulated

and measured output power. The output power of the measured amplifier rolls off with

frequency, however below 2 GHz the performance matches that which was predicted

by simulation. It should be noted that the simulation and measurement conditions

are not identical, as the input power at each measured point was adjusted to produce

40 W of output power, and this adjustment was not possible in simulation. The input

phase of the measured PA was also adjusted to optimise performance, whereas the input

phase of the simulated PA was 180° across the bandwidth. In Fig. 5.15, the agreement

between simulated and measured drain efficiency is good at lower frequencies, with

better efficiency being predicted by simulation at higher frequencies.

These performance figures are very encouraging and show that the push-pull configu-

ration is worth pursuing as an amplifier topology for achieving high-power, high efficiency

performance across bandwidths well in excess of an octave. The bandwidth that this

amplifier is operating over should not be underestimated, especially when considering

the output power levels. For an initial prototype, this was a highly satisfactory outcome.

It is believed that at the time of publication, the combination of bandwidth, output

power and efficiency was the best reported to date at frequencies above 1 GHz.
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5.2.10 Amplitude Balance Measurements

The measurement system described in Section 5.2.8 and shown in Fig. 5.11 provides the

ability to specify arbitrary powers and phases at each input port of the PA. This allows

each input port to be driven with a different amount of power whilst still maintaining

a 180° phase offset. The relationship between the differential input powers is the ‘am-

plitude balance’, and is specified so that 0 dB represents an equal amount of power at

each input, negative amplitude balance represents more power at the ‘upper’ input port

and positive amplitude balance represents more power at the ‘lower’ input port. It is

specified in dB, so that, for example, 3 dB means that there is twice as much power at

one input than at the other. For all the measurement points in an amplitude balance

sweep, the total input power is the same. Table 5.2 shows an example of how the input

power at each port is calculated for a total input power of 1 W (30 dBm).

Similar measurements could be made for phase balance. For this amplifier, it was

determined that amplitude balance measurements were more relevant, due to the char-

acteristics of the balun being used. The balun measurements of Chapter 3 showed that

the phase balance was close to 180° at all frequencies, however the power split between

the differential ports was relatively uneven.

Amplitude
Balance

Input A
(dBm)

Input B
(dBm)

Input A
(W)

Input B
(W)

Total
Power (W)

- 3.0 dB 25.236 28.236 0.334 0.666 1

- 2.5 dB 25.562 28.062 0.360 0.640 1

- 2.0 dB 25.876 27.876 0.387 0.613 1

- 1.5 dB 26.175 27.675 0.415 0.585 1

- 1.0 dB 26.461 27.460 0.443 0.557 1

- 0.5 dB 26.733 27.233 0.471 0.529 1

0.0 dB 26.990 26.990 0.500 0.500 1

0.5 dB 27.233 26.733 0.529 0.471 1

1.0 dB 27.461 26.461 0.557 0.443 1

1.5 dB 27.675 26.175 0.585 0.415 1

2.0 dB 27.876 25.876 0.613 0.387 1

2.5 dB 28.062 25.562 0.640 0.360 1

3.0 dB 28.236 25.236 0.666 0.334 1

Table 5.2: Amplitude balance and corresponding input powers for a total input power
of 1 W

104



5.2. PUSH-PULL POWER AMPLIFIER VERSION 1

Figures 5.16 and 5.17 show a set of amplitude balance measurements at 1 GHz with

VGS equal to -2.4 V and phase difference equal to 180°. The amplifier was measured at

intervals of 0.5 dB between -3 dB and +3 dB. It can be seen that the maximum output

power is achieved at an amplitude balance of between -2 dB and -1.5 dB, i.e. with

more power being input into the lower half of the amplifier. On first glance, it may be

surprising that the optimum performance is not achieved at an equal amplitude balance.

However, given that the microwave transmission line baluns of Chapter 3 did not have

a equal amplitude balance across most of the bandwidth, it can be seen how some

adjustment may be needed to maximise performance. Considering that the difference in

input power is varied significantly, it can be seen that the PA is relatively tolerant to a

change in amplitude balance. For this particular case, there is an performance advantage

in ensuring that more input power is being injected into the lower half of the amplifier.

Figure 5.16: Drain efficiency against amplitude balance at 1 GHz

Figure 5.17: Output power against amplitude balance at 1 GHz

Figures 5.18 and 5.19 show that for 2 GHz and VGS of -3.2 V the optimum output

power and efficiency were achieved with an even power split between the two inputs. It

can also be observed that there is a fairly symmetrical roll-off in performance. Again,

the PA can be seen to be relatively tolerant to a change in amplitude balance, given

105



CHAPTER 5. PUSH-PULL POWER AMPLIFIER PROTOTYPES

Figure 5.18: Drain efficiency against amplitude balance at 2 GHz

Figure 5.19: Output power against amplitude balance at 2 GHz

that the difference between maximum and minimum output power for Fig. 5.19 is only

0.5 dB.

It is speculated that the amplitude balance is not overly critical to the overall amplifier

performance as the transistors influence each other through the coupling between the

balanced ports of the output balun. It is possible that the output power from one

transistor is fed back through the balun to effectively ‘load-pull’ the other transistor,

similar to the effect observed in Doherty amplifiers.

From the initial measurements, no overall trend could be identified for optimum

amplitude balance versus bias or frequency. As measurements were only taken at five

widely-spaced frequency points, this is perhaps not surprising. With data at more fre-

quency points, it may be possible to determine a relationship between frequency and

amplitude balance, which could aid with input balun design or the dynamic control of

amplitude balance. The differential measurement system is a useful tool for further

investigation of the push-pull mode of operation.
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5.2.11 Output Voltage Waveform Measurements

To gain further insight into the characteristics of the prototype amplifier, voltage prob-

ing microstrip lines were included close to the drain tab of the transistors, as shown in

Fig. 5.20. When a suitable resistor is soldered across the gap between the main mi-

crostrip line and the voltage probing microstrip line a voltage divider is formed and the

time-domain waveforms can be measured using a digital sampling oscilloscope. This

can be used to study the waveforms at the output of each transistor relative to each

other and to highlight and diagnose any performance issues. Further modifications to

the measurement software were required to support simultaneous measurements on six

channels.

Figure 5.20: Voltage probe (not to scale)

An example of a set of time-domain voltage waveforms is shown in Fig. 5.21. Al-

though every effort was made to keep the path lengths equal, these measurements have

to be regarded as qualitative rather than quantitative due to the lack of a rigorous

calibration procedure. These measurements can only measure voltage waveforms, and

without time-domain current waveforms only limited analysis of the PA operation can

be conducted.

Despite the limitations of these measurements, they can, at the very least, confirm

that the two transistors are operating approximately 180° out of phase, and that both

are contributing to the total output power of the amplifier. This may not be a sur-

prising result, but it is a reassuring discovery nonetheless. If the performance of the

amplifier at this frequency had been significantly lower than expected, the voltage wave-

form measurement would help to determine whether the two transistors were operating

similarly.

Another set of voltage waveform measurements is shown in Fig. 5.22. Again, the

180° phase difference is evident, however in this case the waveforms are quite different

between the two transistors. It can also be seen that these waveforms appear to have

more harmonic content compared to the waveforms of Fig. 5.21.
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Figure 5.21: Measured time-domain output voltage waveforms at 1.5 GHz and 0 dB
amplitude balance

Figure 5.22: Measured time-domain output voltage waveforms at 1 GHz and -3 dB
amplitude balance

It should be recognised that using more sophisticated, less intrusive methods of

measuring time-domain voltages [77], this work could be extended to gain valuable

information about the operation of the push-pull amplifier at microwave frequencies. For

example, voltage waveform measurements could be made to verify the push-pull modes

of operation introduced in Chapter 4, and could be compared to simulated waveforms

in AWR Microwave Office.
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5.3 Push-Pull Power Amplifier Version 2

5.3.1 Design Goals

The performance goals for the first prototype were also used as targets for the second

prototype, with three additional requirements.

The first prototype power amplifier made use of differential inputs, which allowed

the effects of amplitude and phase balance to be tested. However, the measurement

procedure was much more time consuming than for standard single-input PA measure-

ments and also required a relatively complex and costly measurement setup. For the

second prototype it was decided to include an input balun with the option of switching

to differential inputs if desired. The disadvantage of the input balun is that the loss in

the input side of the PA is increased and so the overall gain of the amplifier is reduced.

In addition, the amplitude and phase balance cannot be tuned to optimise performance.

With the addition of an input balun, and hence a single-ended input, the input return

loss (|S11|) became of interest, and a target of less than -10 dB at all frequencies was

set. The third requirement was to integrate gate bias networks into the amplifier, in

order to obviate the need for external bias tees.

The overall aim of the second prototype was to achieve similar performance figures

to the first prototype whilst creating a more ‘usable’ power amplifier.

5.3.2 Choice of Transistor

It was decided to use the same CGH40025F transistors as PA v1. As the balun design

was unchanged, the same reasoning for selecting the 25 W transistor based on load-pull

measurements could be applied. By using the same transistor, it also facilitated a direct

comparison between the amplifiers, and hence an evaluation of the effect of the input

balun and input matching.

5.3.3 Design

As previously stated, the target for input matching was an input return loss (|S11|) of

less than -10 dB at all frequencies. This is a typical input match target for broadband

power amplifiers. The strategy was to match the high end of the frequency band, where

there is less available gain, and use a ‘lossy’ resistive match at the low end to flatten

the gain and provide the necessary return loss. This was only achievable by including a

resistive element in the input matching network, which reduced the gain of the amplifier.

The input matching network was developed by first designing into a single-ended

topology. The initial matching network, using ideal lossless components, is shown in

Fig. 5.23. The matching network is oriented such that the input balun is at Port 1,

and the gate tab of the transistor is at Port 2. The first element, moving from right

109



CHAPTER 5. PUSH-PULL POWER AMPLIFIER PROTOTYPES

Figure 5.23: PA v2 input matching network (ideal lumped elements)

Figure 5.24: S11 of CGH40025F transistor with and without input matching network

to left, is a series inductor and shunt capacitor (low-pass filter) network that shifts the

high frequency end of S11 towards the centre of the Smith Chart. The next element is a

length of transmission line that rotates S11. Finally, a parallel combination of capacitor

and resistor serves to provide a ‘lossy’ match at the low end of the frequency band. The

effect of the input matching network is shown in Fig. 5.24, which demonstrates how S11

is shifted towards the centre of the Smith Chart and hence increases the input return

loss.

The input matching procedure was done into both a 50 Ω and 25 Ω impedance

environment. The advantages of the 25 Ω environment can be seen in Figs. 5.25 and

5.26 through higher gain values and a better input match.

Ideally, a power amplifier would have both a good input match and flat gain across

the entire operational bandwidth. However, this is very rarely possible, especially over

the extended bandwidths being considered here. Therefore, it was decided to prioritise

input match over gain flatness in this design. The consequence of this is that the input
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Figure 5.25: Simulated S21 of CGH40025F with input matching network of Fig. 5.23

Figure 5.26: Simulated S11 of CGH40025F with input matching network of Fig. 5.23

power has to be varied with frequency in order to achieve a constant output power. In

the simulator, this was achieved by fitting a fifth-order polynomial to S21 then inverting

the sign of the polynomials. This compensated for the gain variation with frequency,

and resulted in an approximately constant output power. The input power variation with

frequency is shown in Fig. 5.27.

As with the first prototype amplifier, no combination of lumped element matching

components at the output could be found to improve the overall amplifier performance.

The transmission line lengths and widths were tuned to optimise performance across

the operating bandwidth. The final layout is shown in Fig. 5.28. The simulated large-

signal performance is shown in Fig. 5.29, and shows a constant output power of around

46 dBm across the entire bandwidth. The predicted drain efficiency is lower than for

PA v1, however 40% drain efficiency up to 3 GHz would still be impressive performance

given the bandwidth of the amplifier.
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Figure 5.27: Input power variation with frequency

Figure 5.28: Layout of PA v2

Figure 5.29: Simulated large-signal performance of PA v2
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5.3.4 Manufacture

The manufacturing and assembly process was the same as for the first prototype, with

two minor improvements. The holes for grounding via pins were drilled using the milling

machine, rather than being drilled manually, which resulted in more uniform and reliable

ground connections. Also, the layout was changed so that all the microstrip lines had a

1.0 mm border around them, which is wide enough to ensure against accidental shorting

of the microstrip line to ground and narrow enough to allow 0402-size surface mount

components to be attached between the microstrip and the ground. This was not

possible in PA v1, with the result that at some points the gaps had to be widened

manually using a scalpel. The assembled amplifier is shown in Fig. 5.30.

Figure 5.30: Photograph of assembled push-pull PA v2 (ferrite beads included)

5.3.5 Stability and Initial S-Parameter Measurements

Due to the initial instability of PA v1, gate resistors were included as part of the gate

bias networks at the design stage of PA v2. Under all bias conditions that were tested,

the power amplifier was stable.

Figure 5.31 shows that, apart from a dip around 1.9 GHz, the gain of the amplifier

was greater than 11 dB up to 3 GHz for two of the bias conditions. The third bias

condition, with the lowest quiescent current, had less gain, as would be expected. The

dip was unexpected and did not appear during simulation. Further investigation of this

effect is discussed in Section 5.3.8. Apart from the dip in performance at 1.9 GHz, Fig.

5.32 shows that the agreement between measured and simulated S21 is good across the

entire band.

Figure 5.33 shows that there is an input return loss of less than -10 dB over most

of the bandwidth, the only exceptions being around 1.9 GHz and at the high end of
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Figure 5.31: S21 of PA v2 at different bias levels

Figure 5.32: Comparison of measured and simulated S21 of PA v2

the band. This was judged to be acceptable performance given the bandwidth of the

amplifier.

5.3.6 Large Signal Measurement Setup

Because of the single-ended input on the second prototype, the large-signal measurement

setup (shown in Fig. 5.34) is significantly simpler than for the first prototype. There

is no requirement to measure input phase, and so a power meter can be used in place

of the digital sampling oscilloscope. This has the advantage of significantly reducing

the measurement time and requiring fewer calibration steps. The calibration consisted

of characterising the coupling factor of the directional coupler at the input across the

frequencies to be measured at. In addition, the attenuation between the output of the

PA and the power meter (not shown) is characterised. It can be seen that less hardware

is required to implement this measurement setup compared to the measurement system

used for PA v1. Due to the integrated gate bias networks, bias tees on the input ports

are no longer required. A feedback loop ensures the required incident input power is

provided, and data from the DC supplies and power meters is acquired.
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Figure 5.33: Measured S11 of PA v2

Figure 5.34: Block diagram of setup for measuring PA v2 (single-ended input)
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5.3.7 Large Signal Measurement Results

Large-signal measurements were made at 100 MHz intervals between 0.5 GHz and

2.5 GHz, and are shown in Fig. 5.35. Excellent large-signal performance can be seen

between 0.5 GHz and 1.5 GHz, a 3:1 bandwidth. The output power over this range is

between 44.5 dBm and 46.5 dBm, with drain efficiencies around 60% for much of the

band, falling to 44% at 1.5 GHz. At the time of writing, large-signal measurements

below 500 MHz were unavailable, but it is predicted that the performance would be

similar to that of PA v1, with usable performance down to around 300 MHz. Between

1.3 GHz and 2.5 GHz the performance is lower than predicted in simulation, and also

lower than that achieved with PA v1. It is thought that this is partially because, unlike

the first prototype, it was not possible to vary the input amplitude and phase balance to

optimise performance. Large-signal measurements were not available above 2.5 GHz.

It can be seen in Fig. 5.36 that the decrease in output power at 1.9 GHz was

not predicted in simulation, however there is good agreement with simulation below

1.2 GHz. The input power was the same for both simulation and measurement. The

drain efficiency is actually higher than predicted by simulation below 1.2 GHz, as shown

in Fig. 5.37.

The dip in performance at 1.9 GHz that was visible in the small-signal measurements

is also present in the large-signal measurements, resulting in an output power of 42.0 dBm

and drain efficiency of 23.9%. As mentioned in Section 5.3.3, the input power was varied

with frequency in order to compensate for the gain variation of the PA.

Figure 5.35: Large signal measurement results for push-pull PA v2

5.3.8 S-Parameter Measurements - Addition of Ferrite

Up until this point, it had not been necessary to add ferrite beads to the baluns on

the prototype amplifiers. From the start it had been decided to measure the amplifiers

without ferrite beads in order to reduce loss, with the option of adding them if deemed

necessary. However, from the initial measured results of PA v2 it was clear that there
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Figure 5.36: Measured and simulated output power for PA v2

Figure 5.37: Measured and simulated drain efficiency for PA v2

was an unexpected dip in performance. Given that the frequency it occurred at was

around 1.9 GHz, approximately half the frequency of where the half-wavelength reso-

nance occurred, it was thought that the half-wavelength resonant frequency was having

an adverse effect on the second harmonic. It was decided to add ferrite beads to the

input and output baluns, to see if they could remove the dip in performance.

The coaxial cable used for PA v2 was AtlanTec CSR-086, which has an overall outer

diameter of 2.20 mm. This is the same cable that was used for PA v1, and was selected

for its greater maximum power handling and lower loss compared to thinner cables. The

disadvantage of using this coaxial cable is that most of the ferrite beads available would

not fit over this diameter of cable and so the only choice of ferrite bead was part number

2661000801 from Fair-Rite.

The S-parameter measurements of PA v2 with ferrite included are shown in Fig.

5.38. Ferrite beads were added to the output balun, and then to the input and output

balun, to see whether they had any effect on the dip. It would appear that the ferrite

has no effect on the dip in performance, suggesting that either the dip is caused by other

factors or that the particular ferrite bead model is ineffective. This second explanation is

unlikely as even if the ferrite’s equivalent resistance was not equal to ZOUTER it should
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Figure 5.38: S21 of push-pull PA v2 with ferrite included

have some noticeable flattening effect.

It would be possible to use a thinner cable for the input balun, where power handling

is not a primary consideration, which increases the number of beads available for use

at the input. Further options include sourcing different COTS ferrite beads, or having

ferrite beads shaped to custom dimensions, as discussed in Section 7.3.1.

Whilst the cause of the dip in performance is unknown at the time of writing, future

work provides an opportunity to gain better understanding of the operation of the push-

pull topology at microwave frequencies. This is discussed in more detail in Section

7.2.2.
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5.4 Chapter Summary

In this chapter two prototype push-pull power amplifiers have been presented, along with

bespoke measurement systems for evaluating their performance.

The impressive performance of PA v1 shows the potential for using the push-pull

topology at frequencies greater than 1 GHz, an area where it has rarely been used.

It is believed that at the time of publication, the combination of bandwidth, output

power and efficiency was the best reported to date at frequencies above 1 GHz. Usable

performance was achieved across a decade bandwidth, with especially good performance

at lower frequencies.

The second prototype greatly improves practicality and usability, but does not achieve

the same level of performance. Efficiency figures of around 60% are achieved up to

1.2 GHz, which was achieved without the ability to tune the amplitude and phase balance.

The output power between 0.5 GHz and 1.2 GHz is close to that predicted in simulation,

and the efficiency is higher than predicted, however the performance rolls off at higher

frequencies and there is a noticeable dip at 1.9 GHz. The addition of ferrite beads

did not have the expected effect of removing this dip, and further work is needed to

investigate this. The second prototype was a more practical power amplifier, with a

good input match across most of the bandwidth.

The measurement system software that was written to allow large-signal differential

input measurements opens up the possibility for furthering knowledge of the push-pull

amplifier. Examples of amplitude balance measurements and output voltage waveform

measurements have been presented, and the insight gained from these measurements

has been discussed.

It may be surprising to the reader that the resonance suppression techniques of

Chapter 3 were not utilised in the design of the power amplifier prototypes presented

in this chapter. However, for these particular designs, the upper bandwidth limit was

the transistor and the low-pass response of its package, as discussed previously. The

best performance could be obtained by designing the half-wavelength resonance of the

balun to be above the cut-off frequency of the packaged transistor. For a design where

the bandwidth is limited by the half-wavelength resonance, the theory and procedure of

suppressing the resonance using ferrite should provide an effective technique of extending

the bandwidth. The design choices made in this chapter in no way invalidate the design

methodology of Chapter 3.

The realisation of prototype amplifiers serves to demonstrate that the push-pull

topology is a promising solution to the challenge of designing high-power, high-efficiency

multi-octave power amplifiers.

119





Chapter 6

Conclusions

The aim of the work presented in this thesis was to investigate the push-pull topology as

a method of achieving high power, high efficiency performance across a wide bandwidth

at microwave frequencies. The uses for such an amplifier include wireless communication

and military applications, as discussed in the introduction.

There are four main conclusions that can be drawn as a result of the work presented

in this thesis.

The first, and most important, conclusion is that the push-pull topology has been

shown to be a valid method of simultaneously achieving high efficiency and high output

power over multi-octave bandwidths at microwave frequencies. Two prototype power

amplifiers were developed to demonstrate the achievable performance, and there is po-

tential to improve performance, as will be discussed in Chapter 7. The amplifiers compare

favourably to those reviewed in the literature, and the first prototype was believed at

the time to give the best combination of efficiency, output power and bandwidth at the

particular frequencies of operation. The push-pull amplifier is not traditionally used at

microwave frequencies, and it is hoped that these results will lead to more widespread

investigation into its use.

The second conclusion that can be drawn is that the mode of operation inside

the push-pull power amplifier at microwave frequencies is significantly different to the

conventional ‘textbook’ view of the push-pull amplifier. Instead of two Class B amplifiers

operating 180° out of phase, the transistors are presented with an open circuit at the

even-order harmonics and a resistive impedance at the odd-order harmonics, which has

a profound effect on the performance figures and time-domain waveforms. It has been

shown in Chapter 4 that the push-pull mode of operation resembles an ‘inverted mode’,

and shows an increase in output power of 1.5 dB compared to Class A. Perhaps most

importantly, these modes of operation can be maintained over much wider bandwidths

than conventional PA modes. This is due to the transmission line balun’s ability to

present two different impedances at the same frequency, depending on whether the
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excitation is odd- or even-mode.

In Chapter 3 it was shown that the bandwidth of a coaxial cable transmission line

balun can be greatly extended through the addition of ferrite beads. The conventional

use for this material has been to enhance the low-frequency performance by making use

of its reactive permeability, however it has been shown that the resistive permeability

can be utilised to suppress the half-wavelength resonance of the balun. This dual role of

ferrite materials can greatly extend the balun’s bandwidth, at the expense of increased

loss. The balun is the key component in the push-pull power amplifier, and so extending

the bandwidth of the balun enables the development of multi-octave microwave power

amplifiers. This design methodology could also potentially be applied to the design of

baluns for other applications, such as mixers.

Lastly, a measurement system was developed to further investigate the characteristics

of the microwave push-pull power amplifier. The amplitude and phase balance of the

differential inputs could be varied in order to evaluate the effect that this has on the

amplifier’s large-signal performance. The output voltage waveforms could be measured

using the same system, and applications for this have been discussed. The software also

captures the measured data, removing the need for the measurements to be conducted

manually.

This thesis has introduced a number of novel contributions that have resulted in

interesting and valuable developments in the area of push-pull power amplifiers. These

contributions enable a vast number of possible future developments, some of which are

discussed in the next chapter.
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Future Work

7.1 Introduction

In the preparation of this thesis, a large amount of work has been completed across a

wide variety of areas. For instance, assembly of prototype coaxial cable transmission line

baluns has been interspersed with programming an automated power amplifier measure-

ment system in C#. This inevitably means that there are many areas where there is

much left to investigate, and some of the most interesting and intriguing of these will

be outlined in this chapter.

The development of a third prototype amplifier is documented first. At the time of

writing, this amplifier was not available for measurement, so only simulated results can

be presented. The advantages of chip-and-wire assembly are discussed, and investigation

into the ‘dual-mode’ of operation is presented.

In addition, five further directions for future work are suggested, spanning the range

of balun developments to push-pull amplifier measurements. It should be noted that

there are many more possibilities for investigation that are not discussed here.

7.2 Push-Pull Power Amplifier Version 3

7.2.1 Chip-and-wire Assembly

Attempting to achieve multi-octave, high-efficiency operation at high power levels is

significantly hampered by the reactances introduced by the package of the transistor.

By shifting the optimum output impedance to a lower value, these reactive elements

make the task of impedance matching more difficult, as outlined in Section 2.3.2.

One approach to overcome this limitation is to use an unpackaged, or ‘bare die’ tran-

sistor in a ‘chip-and-wire’ assembly. The semiconductor wafer is sawn up into individual

die, which are then attached directly to the circuit board using eutectic solder, and the

gate and drain pads are wire-bonded to the transmission lines.
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In effect, removing the package is equivalent to eliminating the reactances Ltab1,

Ltab2 and Ctab in Fig. 4.9. As a series inductor combined with a parallel capacitor acts

as a low-pass filter, removing these elements should improve the high-frequency response

of the amplifier. A secondary benefit is the reduced loss from eliminating the package.

A chip-and-wire approach also results in higher gain values, due to lower inductance

in the source path to ground, and also due to reduced feedback from the output to the

input.

One downside to a chip-and-wire design is that the circuit designer has to take greater

responsibility for the thermal management compared to a packaged device design. The

quality of the die attach is critical, especially for GaN devices, which dissipate a lot of

heat in a relatively small area. The absence of a package also means the transistor is

at greater risk to damage from its environment. Bond wires, in particular, are thin and

fragile and hence are susceptible to accidental damage.

However, for the development of the third prototype amplifier, PA v3, the benefits

of a chip-and-wire assembly were judged to outweigh the disadvantages, and so this

approach was pursued.

7.2.2 ‘Dual-mode’ Push-Pull

During the simulation stage of the design of PA v3, it was found that the addition of

output matching capacitors to ground significantly improved the high frequency perfor-

mance. However, this resulted in a significant dip in performance around the centre of

the amplifier’s operating bandwidth. This dip in performance can be seen in Figs. 7.1

and 7.2.

Figure 7.1: Output power of PA v3 preliminary simulations

The frequency at which the dip occurs is designated the ‘transition frequency’. In-

vestigation into the time-domain waveforms revealed that at frequencies less than the

transition frequency the mode of operation was similar to a non-inverted mode, as shown

in the waveforms of Fig. 7.3. This is indicated by the half-wave rectified shape of the
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Figure 7.2: Drain efficiency of PA v3 preliminary simulations

current waveform, and sinusoidal nature of the voltage waveform, which is flattened

by a third harmonic voltage contribution. Above the critical ‘transition frequency’, the

waveforms, shown in Fig. 7.4, were more similar to an inverted mode of operation. The

current can be observed to be approximately sinusoidal, with the voltage resembling a

half-wave rectified sinusoid. In this way, it can be observed that the PA is, in effect,

working in a ‘dual mode’ of non-inverted operation below the transition frequency and

inverted above it.

The harmonic voltage magnitudes at the transition frequency are greatly increased

compared to the rest of the band, resulting in the highly irregular waveforms of Fig. 7.5

and reduced output power and efficiency. The variation in fundamental and harmonic

voltage magnitudes with frequency is shown in Fig. 7.6.

Figure 7.3: Simulated time-domain waveforms below the transition frequency

This is a highly interesting phenomenon, however it should be noted that it would

be necessary to build a prototype amplifier with the transition frequency deliberately

included to verify that this dip in performance could be observed through measurement.
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Figure 7.4: Simulated time-domain waveforms above the transition frequency

Figure 7.5: Simulated time-domain waveforms at the transition frequency

Figure 7.6: Harmonic voltage magnitudes with output matching included
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It is possible that this dip is related to the one observed in the measured results of PA

v2, although this cannot be determined at present.

If the ‘dual mode’ is discovered to be present in prototype amplifiers, this suggests

that frequency-dependent biasing should be investigated, as the biasing requirements

differ for inverted and non-inverted modes of operation. Analysis of the waveforms

should be able to provide information on the optimum condition for each frequency. It is

unlikely that one bias point is optimum for all frequencies, especially over the bandwidths

being considered in this thesis.

7.2.3 Design and Simulated Results

It was decided that, as with the first two prototype designs, good performance at all

frequencies across the band would be targeted, as opposed to a ‘dual-band’ design with a

dip in performance at the transition frequency. Efforts were made to eliminate the dip in

performance without removing the output matching capacitors and hence compromising

the performance across the rest of the bandwidth. The best performance was obtained

by implementing a ‘virtual ground’ between the two halves of the amplifier, where the

output matching capacitors were connected together via an area of copper microstrip

which was not grounded. Interestingly, this was also required for the input matching

capacitors, and further investigation is needed to establish why this is. The final layout

is shown in Fig. 7.7, and the simulated performance compared to the second prototype

amplifier is shown in Figs. 7.8 and 7.9.

Figure 7.7: Layout of PA v3
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Figure 7.8: Comparison of simulated output power for PA v2 and PA v3

Figure 7.9: Comparison of simulated drain efficiency for PA v2 and PA v3

It can be seen in Fig. 7.8 that the output power is similar to PA v2 across most

of the band, which is to be expected, but that it is improved at higher frequencies.

However, the drain efficiency, shown in Fig. 7.9, is significantly improved across almost

all of the bandwidth. This is a very promising result, and shows the potential perfor-

mance improvements of the chip-and-wire approach combined with appropriate output

matching. It should be noted that this is simulated data, however it is hoped that

the improved performance in simulation will be realised in practice and reflected in the

measured results.
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7.3 Additional Future Work

In this section, a number of potential areas for future research are outlined.

7.3.1 Ferrite Materials

In Chapter 3, three different types of ferrite material were evaluated for use in suppressing

the half-wavelength resonance of a coaxial cable balun, all manufactured by Fair-Rite.

However, there are many more ferrite manufacturers from whom ferrite beads could be

evaluated, which may be found to be more suitable for this application. As it is possible

for ferrite materials to be machined to custom dimensions, it would also be useful to

investigate the effect of varying the ferrite bead’s length and inner and outer diameters.

The design of custom ferrite beads would be greatly aided by 3D electromagnetic

simulations. 3D electromagnetic simulations using COMSOL were briefly described in

Chapter 3 as a method of simulating the outer characteristic impedance of a transmis-

sion line balun. The simulation of ferrite material was also attempted using COMSOL,

however it was found that it was extremely difficult to define a ferrite material’s char-

acteristics in the simulator, largely due to the fact that most of its parameters are

frequency-dependent. This requires mathematical expressions for the frequency rela-

tionship to be developed, which is a time-consuming process. If it were possible to

simulate the ferrite beads accurately in a 3D EM simulator, it should be possible to de-

sign a complete transmission line balun whose half-wavelength resonance is suppressed

using ferrite. This would result in shorter development times and fewer prototype baluns

being required due to a more comprehensive design methodology.

Another possible development would be to investigate ferrite beads of different ma-

terials on the same balun to optimise both resonance suppression and low frequency

performance. For example, #73 material ferrite could be used to improve low-end per-

formance, with unaffected resonance suppression, whilst #61 material could be used to

suppress the half-wavelength resonance. In this way the optimum combination of ferrite

beads could be found.

7.3.2 Alternatives to Coaxial Cable Baluns

One problem with the transmission line baluns used in this thesis is that they are difficult

to manufacture and assemble reliably. As each balun is assembled by hand, the quality

of the assembly is variable and it can be difficult to find faults in the balun once the

whole PA has been assembled.

Planar baluns can be manufactured more reliably, but in general these do not per-

form as well as coaxial cable baluns. This largely stems from the fact that the inner

transmission line is no longer shielded from the ground plane, as happens in the coaxial

cable case. A vertical balun design, an example of which is shown in Fig. 7.10, could
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Figure 7.10: Example of vertical balun (adapted from [78])

be used to partially resolve this problem by moving the inner conductor further from the

ground plane. It would also reduce the overall circuit board area, but is less practical

than a standard horizontal planar balun.

7.3.3 Continuous Push-Pull Mode

The time-domain waveforms relating to the mode of operation inside a microwave push-

pull power amplifier were presented in Chapter 4. However, this work was based on an

ideal microwave transmission line balun, which presents an open circuit to even-order

harmonics and a resistance to odd-order harmonics. However, as has been previously

recognised, this does not account for the fact that CDS and other reactances will shift

these impedances away from their theoretical values. Refinements to the existing theory

could lead to better understanding of microwave push-pull amplifiers, and ultimately to

better designs. The voltage waveform formulations can be extended to account for a

reactive element in the second harmonic;

V (ωt) = (1 + α cos(ωt))2(1 + β cos(ωt))(1− λ sin(ωt)) (7.1)

By introducing an extra term in the voltage expression, a continuous version of the

push-pull waveform expression is formed, shown in (7.1). The resulting waveforms for

different values of λ are shown in Fig. 7.11. In the same way as the Class JB continuum

and the continuous Class F mode, a reactive component is added to the fundamental

impedance to compensate for a second harmonic reactance of opposite sign. As with

the other continuous modes, all the waveforms shown in Fig. 7.11 have the same output

power and efficiency.

The continuous push-pull concept has not been verified either through simulation or

measurement, and this would be required to validate the preliminary extension to the
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Figure 7.11: ‘Continuous’ push-pull mode voltage and current waveforms

theory presented. However, this is an exciting extension to the basic push-pull mode

theory, and also serves to demonstrate another application for the continuous modes of

operation.

7.3.4 Higher Power PAs and Impedance Transforming Baluns

The push-pull configuration was used to investigate multi-octave bandwidth applications,

but its 4:1 impedance advantage can also be utilised for narrow-band applications, espe-

cially where high-power transistors are to be used. In narrower band applications, there

is the possibility of combining the impedance-transforming advantages of the push-pull

topology with Doherty or envelope tracking techniques to improve back-off efficiency, or

with the balanced amplifier configuration for improved return loss and additional power

combining.

As outlined in Chapter 1, high output powers are desirable for a number of reasons.

For communications systems, the increased signal power improves SNR and hence data

capacity, and for radar and jamming systems the increased signal power increases effec-

tive range. The main challenge in developing higher power amplifiers is matching to the

low optimum impedances of high-power transistors.

Impedance-transforming transmission line baluns, based on the quarter-wave trans-

former, were discussed in Chapter 3. It was seen that higher impedance transformation

ratios were possible, albeit with a greatly reduced bandwidth. Another possible approach

is to investigate ‘Guanella’ baluns, based on the classic 1944 paper [79]. The essence

of the technique is to combine a number of transformer ‘building blocks’ so as to in-

crease the overall transformation ratio. Each ‘building block’ is a basic 1:1 balun (or 2:1,

depending on the position of ground at the balanced port). These building blocks are

connected in series at the unbalanced end of the balun and in parallel at the balanced
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Figure 7.12: Guanella 8:1 balun compared to ‘standard’ 2:1 balun

end of the balun.

Figure 7.12 shows that the bandwidth of a simulated Guanella balun is reduced

compared to the ‘standard’ transmission line balun considered in the rest of the thesis.

However, its bandwidth is significantly wider than that of the quarter-wave impedance-

transforming baluns of Chapter 3, and its impedance transformation ratio is 8:1, com-

pared to 2:1 for the standard transmission line balun. Assuming a 50 Ω external

impedance environment, this balun would potentially be suitable for matching to tran-

sistors with an optimum impedance of 6.25 Ω. This would allow the concepts presented

in this thesis to be extended to higher power levels through the use of larger transistors.

As well as developing higher power amplifiers using GaN, another advantage in de-

veloping baluns with higher transformation ratios is to enable the use of different semi-

conductor materials, such as LDMOS, which have lower optimum impedances for the

same output power compared to GaN. The implementation of push-pull power amplifiers

using LDMOS transistors would yield significant cost savings.

It would also be interesting to investigate whether ferrite materials could be used

to extend the bandwidth of Guanella impedance transforming baluns using the same

design methodology presented in Chapter 3 for ‘standard’ coaxial cable transmission line

baluns.

7.3.5 Amplitude Balance and Voltage Probing Measurements

The measurement system for making amplitude balance and voltage probing measure-

ments was described in Chapter 5, along with preliminary results. These initial inves-

tigations could be taken forward to develop a powerful methodology for understanding

microwave push-pull power amplifier operation. Initial measurements showed that per-

formance improvements could be realised by setting the optimum amplitude balance,

and that voltage probing measurements could be used to study the behaviour of the

amplifiers.
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The primary focus for further amplitude balance work would be to establish whether

there is a correlation between the optimum amplitude balance and frequency, as initial

measurements were only made at a small number of widely spaced frequency points.

This data could be used to improve the design of the matching networks or baluns, or to

provide motivation for the development of an active amplitude balance control system.

Follow-on work could also investigate the relationship between optimum phase bal-

ance and frequency, and how tuning the phase balance could improve the performance

of the amplifier.

A voltage probe, whether in the form of a simple voltage divider or an electric

field probe, could provide valuable insight into optimum amplitude and phase balances

through waveform analysis. Identifying why a particular amplitude or phase balance

value results in the highest performance would be useful for the designer. It should

be noted that it would be necessary to develop a robust calibration procedure for the

voltage probe before detailed analysis of the time-domain waveforms would be possible.

The ability to measure voltages would also be useful for verifying the push-pull mode

of operation theory introduced in Chapter 4, and could be combined with future work

into the ‘continuous push-pull mode’ discussed in Section 7.3.3. It may also be of interest

to study the waveforms’ harmonic content to provide further insight.

7.4 Chapter Summary

The push-pull topology provides many opportunities for future work, some of which are

ongoing at the time of writing.

The simulations of push-pull PA v3 show the advantages of the chip-and-wire as-

sembly, and also highlight a potential new opportunity to better understand push-pull

operation at microwave frequencies over significant bandwidths.

There are many other opportunities for future research across all the areas covered

in this thesis. Further ferrite material investigations and alternative balun designs could

yield significant performance improvements. The continuous push-pull mode has been

introduced, and the potential for using impedance-transforming baluns to achieve higher

power levels has been outlined. Finally, it is suggested that amplitude and phase balance

measurements and time-domain voltage-probing measurements could be used to further

extend knowledge of push-pull operation at microwave frequencies.

It has been shown in this chapter how the work presented in this thesis may be

continued and expanded upon, and it is hoped that valuable research could develop

from these suggestions.
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Abstract  — A new methodology is presented for designing baluns 
exhibiting multi-decade bandwidths at microwave frequencies. 
Simulations show that resistors terminating the outer 
transmission line suppress the half-wavelength resonance and 
greatly extend the bandwidth. Using linear measurements at 
microwave frequencies, ferrite beads have been shown to behave 
as resistors with a small reactance, suitable for terminating the 
outer transmission line. This paper shows that ferrite beads can 
perform the dual role of improving magnetic coupling at low 
frequency and suppressing resonance at higher frequencies. The 
design methodology was applied to produce a balun that operates 
between 30MHz and 6GHz, displays less than 1dB of power loss 
up to 4.4GHz, and delivers an impedance transformation of 2:1. 

Index Terms — Broadband amplifiers, design methodology, 
ferrites, impedance matching, transmission lines, wideband. 

I. INTRODUCTION 

This paper describes the design and realization of an     
ultra-broadband balun, spanning more than two decades of 
bandwidth with low loss and a resonance-free flat frequency 
response. A key element in this work has been the evolution of 
an a priori design methodology, based on detailed 
measurement and understanding of the function of the ferrite 
elements in the final structure. 

Baluns are used for a range of applications including    
push-pull amplifiers, balanced mixers and antenna feeds. One 
of three primary functions of the balun is to convert an 
unbalanced signal to a balanced signal (or vice versa). The 
second is a 2:1 impedance transformation, and the third is a 
suppression of even-mode signals.  

Up to VHF frequencies, baluns make use of inductive 

coupling between wires, and ferrite materials are widely used 
to improve this coupling. However, most ferrite materials 
display rapidly decreasing real permeability at 100MHz and 
above [1], and therefore above this frequency baluns are based 
on the properties of transmission lines.  

The transmission line properties force the voltage difference 
across the inner and outer conductor to remain constant along 
its length, so that a differential voltage appears across the 
balanced termination at the remote end. This structure has two 
bandwidth limitations. Firstly, the outer conductor forms a 
short-circuited stub with the ground plane, causing mid-band 
resonances, and secondly it appears as a short circuit on the 
unbalanced input at the lower end of the frequency band. The 
frequency response of a typical coaxial-cable balun is shown 
in Fig. 1. 

The use of ferrimagnetic materials to improve the low 
frequency performance of transmission line baluns is 
widespread and described in [2]-[3]. A model for the      
ferrite-loaded balun at low frequencies is presented in [4]. At 
low frequencies, multi-octave bandwidths can be achieved 
through the use of ferrite materials [5], however the 
decreasing inductance of these materials greatly reduces the 
effectiveness of this technique at microwave frequencies. For 
some ultra-broadband baluns the ground plane is required to 
be as far away from the structure as possible for optimum 
performance [6], limiting the practical use of the device.  

In this paper, a novel design methodology for                
ultra-broadband, low-loss baluns is presented. The low-
frequency performance and resonance problems are overcome, 
and because the ground plane is integrated into the structure 
the balun is suitable for use in practical applications. The 
constructed balun exhibits low power loss and constant phase 
imbalance through a bandwidth of 30MHz to 6GHz.  

II. BALUN MODELING 

The transmission line balun is modeled by the circuit shown 
in Fig. 2. It comprises two parallel transmission lines; one is 
formed between the centre and the outer conductors of the 
coaxial cable, the other between the outer conductor and the 
ground plane. The outer transmission line resonates at the 
half-wavelength frequency, limiting the bandwidth. Increasing 
the characteristic impedance of the outer transmission line, 
ZOUTER, reduces the amplitude imbalance between the balanced 

Fig. 1. Typical frequency response of a ferrite-less coaxial cable 
balun. 
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ports. For non-ferrite baluns, a higher ZOUTER also increases the 
Q-factor of the resonance and hence increases the bandwidth. 

The key innovation in this work is the introduction of a 
terminating resistor at the unbalanced end of the outer 
transmission line (position A in Fig. 2). Fig. 3 shows that 
when the resistance is equal to the characteristic impedance of 
the outer transmission line (ZOUTER) the resonance is 
eliminated entirely and a flat insertion loss is achieved over 
multiple decades. 

It should be noted that introducing resistance at the 
unbalanced end of the outer transmission line increases 
amplitude imbalance between the balanced ports. Additional 
resistance can be added at the balanced end of the outer 
transmission line (position B in Fig. 2) to increase the shunt 
impedance terminations across Ports 2 and 3 and reduce this 
imbalance. According to simulation, the resistance at position 
B should be as high as possible to reduce amplitude 
imbalance. 

III. MEASUREMENTS 

A. Ferrite Measurements 

In this section we show that the terminating resistor can be 
realized in practice using a ferrite bead. Manufacturer data is 
readily available on ferrites up to 100MHz or 1GHz, but is 
rarely, if ever, available for higher frequencies. In this section 
we show that simple 2-port S-parameter measurements using a 

Vector Network Analyzer (VNA) can be used to characterize 
ferrite beads well into the GHz range. Fig. 4 shows the 
measurement configuration, which is a single bead placed on a 
single piece of wire having the same length as the bead, a    
so-called “bead-on-lead”. It should be noted that due to the 
measurement configuration, 50Ω should be subtracted from 
the measured value to obtain the bead’s true resistance. 

S-parameter measurements were made between 30MHz and 
6GHz on several beads made from Fair-Rite NiZn              
#61-material. As  Fig. 5 shows, the inductive properties of the 
ferrite bead decrease, and essentially vanish, at higher 
frequencies. This shows that the imaginary permeability, 
which manifests itself as a resistance, becomes much higher 
than the real permeability at microwave frequencies. As noted 
in [4], the reactance becomes capacitive at the higher end of 
the frequency range. Crucially, these measurements show that 
at higher frequencies the bead-on-lead behaves like a 
resistance with a small series resonant reactance.  

The measured resistances can be used to select the most 
appropriate ferrite bead for a given characteristic impedance. 
We consider this use of a ferrite bead as a terminating resistor, 
rather than as a high permeability core to boost even mode 
impedance, to be an entirely novel aspect of this work. 

Fig. 5. Frequency response of three #61-material ‘beads-on-
leads’ of different lengths between 30MHz and 6GHz.  
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Fig. 4. Test fixture for measuring ferrite beads. 
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Fig. 2. Circuit model of a coaxial cable balun.  

Fig. 3. Effect of resistor at the unbalanced end of the outer 
transmission line (ZOUTER=150Ω). 
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B. Coaxial Cable Measurements 

The test fixture, shown in Fig. 6, was constructed from 
Rogers PTFE circuit board backed with a thick layer of 
aluminum. By milling a gap in the aluminum layer, the 
characteristic impedance between the outer conductor of the 
coaxial cable and the ground plane could be set. Two-port      
S-parameter measurements were made to test the effect of 
varying width and depth on ZOUTER. Using (1), ZOUTER was 
calculated from the measured value,  

 

€ 

ZOUTER = Zmeasured . Zload . (1) 

Table I shows that thinner coaxial cable and greater test 
fixture depth result in a higher characteristic impedance of the 
‘outer’ transmission line. As mentioned earlier, increased 
characteristic impedance (ZOUTER) decreases balanced port 
amplitude imbalance. These measurements show that a    
trade-off is needed between test fixture size and balun power 
loss, which increases for smaller coaxial cable diameters. 

IV. DESIGN METHODOLOGY 

The ferrite and coaxial cable measurements described in the 
previous section are now used in a design procedure to 
increase the usable bandwidth of a coaxial-cable balun to 
multiple decades. To verify this design procedure a balun was 
constructed with a target frequency range of 30MHz to 6GHz, 
a greater than double-decade bandwidth. The assumption 
made in the design methodology is that that commercial off-
the-shelf (COTS) ferrite beads and coaxial cable are used. The 
balun was constructed using the same method as the coaxial 
cable test fixture in the previous section, shown in Fig. 6. 

The first stage in the design is to select the coaxial cable 
diameter and length. Transmission line properties, on which 
the fundamental operation of this design depends, require that 
the length of cable should be a substantial fraction of a 
wavelength. A longer cable therefore exhibits better low 

frequency performance, but the longer length increases the 
power loss. A trade-off can be made between low-frequency 
performance and loss when setting the cable length.  

When selecting the coaxial cable diameter, measurements 
show that a trade-off must be made between ZOUTER and power 
loss. Thicker coaxial cable exhibits less power loss but also 
requires a greater gap depth, and so a larger overall structure, 
to achieve the same value of ZOUTER.  

Once the cable diameter has been selected, ZOUTER is set by 
the width and depth of the gap. Whilst a high value of ZOUTER 
is preferable, as described earlier, a greater ferrite resistance is 
required to suppress the resonances, and with COTS 
components this requires series connection of the ferrite 
“resistors” which may limit the high-end performance.  
Simple 2D electromagnetic simulations can be used to 
calculate the required width and depth of the gap.  

Using measurements made in the previous section, it is then 
possible to select ferrite beads to place at the unbalanced end 
of the outer transmission line and hence eliminate the 
resonance. The resonant frequency can be easily calculated 
from the cable’s length, then a ferrite bead which satisfies the 
condition R=ZOUTER at that frequency can be chosen.  

For the constructed balun, the resonant frequency was 
3.75GHz and ZOUTER=135Ω. Three ferrite beads, which as  
Fig. 7 shows have R=43Ω at 3.75GHz, were placed in series 
to give a combined resistance of 129Ω. The beads provide a 
terminating resistance approximately equal to ZOUTER. 

V. BALUN MEASUREMENTS 

The realized balun is shown in Fig. 8. Three-port                
S-parameter measurements were made on the constructed 
balun between 30MHz and 6GHz, with both balanced ports 
terminated into 25Ω. A resistance of 43Ω was used at the 
balanced end of the cable to increase the shunt impedance. 
Although simulations showed that making the balanced-end 
ferrite resistance as high as possible was beneficial, in practice 
it was found that doing this significantly increased the power 
loss at 3GHz and above. 

Figs. 9 and 10 show the performance of the ferrite-loaded 
balun. Comparing Fig. 9 to Fig. 1, it should be noted that the 
resonance has been eliminated entirely, and the performance 

TABLE I 
ZOUTER FOR GAP WIDTH OF 7.5MM 

 Outer Coaxial Cable Diameter 
Gap Depth 0.86mm 1.19mm 

2mm 136Ω 116Ω 
3mm 157Ω 137Ω 

 

Fig. 7. Frequency response of #61-material bead used on balun. 
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at the low-end of the band has been greatly improved. At UHF 
and below, it is clear the ferrite is still performing its 
‘traditional’ role as an inductor. The insertion loss of the balun 
is relatively flat across the full 30MHz to 6GHz bandwidth. It 
is possible that the series connection of ferrite beads is 
diminishing the performance at higher frequencies, as 
mentioned in Section IV. 

It should be noted that some of the insertion loss results 
from an uneven power split between the inner and outer 
transmission lines, and that this could be reduced by 
increasing ZOUTER. This amplitude imbalance would not have 
been apparent if back-to-back measurements had been 
conducted, as is often the case in published balun 
measurements. In most practical applications, this imbalance 
can be compensated and has minimal impact on the final 
balanced performance. The power loss is less than 1dB up to 
4.4GHz, and the balun remains usable up to 6GHz. 

The balun when used in a push-pull amplifier would serve 
as a power combiner and matching network, giving an 
effective 2:1 impedance transformation over the entire 
bandwidth. Such a feat of matching would be impossible using 
conventional filter-style matching networks that are 
commonly used in GHz frequency amplifiers. Compared to 
parallel combining, this technique offers a 4:1 impedance 
advantage.  

VI. CONCLUSION 

A novel design procedure is presented for multi-decade 
coaxial cable baluns based on a new understanding of the dual 
role of ferrite beads. Measured beads are shown to act as 
series resistors at microwave frequencies, and so can be used 
to suppress resonances on the outer transmission line. At VHF 
and UHF, the established practice of using ferrite beads to 
improve magnetic coupling is used. Using this new design 
method, a balun was constructed that exhibits flat, low-loss 
performance between 30MHz and 6GHz. The power loss in 
the balun is less than 1dB up to 4.4GHz. The development of 
the balun opens up the possibility of a push-pull power 
amplifier operating over a bandwidth greater than two 
decades. Using detailed measurements and an understanding 
of the individual components of the balun, an a priori design 
methodology was developed.  
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Fig. 8. Constructed balun including ferrite beads. 
 

Fig. 10. Phase response of S21 and S31 for the ferrite-loaded balun 
(solid line) compared to the ferrite-less balun (dotted line). 
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Johannes Benedikt, and Steve C. Cripps, Fellow, IEEE

Abstract—Push-pull power amplifiers (PAs) operating at HF
through to GHz frequencies typically employ a transmission line
balun structure. This letter demonstrates that their performance
characteristics in high efficiency PA applications are critically
different from conventional transformers. For the first time, the
effect of the even-mode open-circuit termination on the output
waveforms is measured. A novel mathematical formulation is
proposed to describe the time-domain waveforms by defining the
harmonic impedance environment in terms of odd and even mode
excitation rather than tuned harmonics. Experimental verification
using harmonic load-pull measurements showed good agreement
with the theoretical waveforms generated from factorized wave-
form expressions.

Index Terms—Balun, high-efficiency, load-pull, microwave am-
plifiers, power amplifiers (PAs), push-pull.

I. INTRODUCTION

T HIS letter outlines the general formulation for high-ef-
ficiency modes in a push-pull power amplifier (PA) that

differ significantly from existing theory. Push-pull amplifiers
employ a balun structure, either based on magnetic coupling or
transmission line coupling. A simple transmission line balun
(TLB) structure, based on a piece of coaxial cable, has the
generic form shown in Fig. 1. A method of suppressing the
half-wavelength resonance of such a balun, whilst minimizing
the insertion loss [1], has made multi-decade microwave
push-pull PAs a more realizable prospect.

The bandwidth potential of the push-pull configuration
has been shown at lower frequencies through the use of
magnetically coupled transformers [2], and at higher frequen-
cies through transmission line baluns with harmonic traps to
short-circuit the even harmonics [3]. At microwave frequencies,
transmission line baluns are required due to the low-frequency
nature of magnetically coupled transformers.

The use of transmission line baluns in the design of push-pull
amplifiers will result in important differences when compared to
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Fig. 1. Simple schematic of a coaxial cable transmission line balun.

the classical push-pull amplifier, in which two anti-phased half-
wave rectified current waveforms are combined using a mag-
netically coupled balun transformer to form a complete sinu-
soid. Classical theory assumes that the even voltage harmonics
at each device are shorted by the action of a center-tapped output
transformer, but it is not clear whether this cancellation will
still take place when the ideal transformers are substituted with
TLBs.

The key property of the matched transmission line balun is
that it maintains constant signal voltage amplitude along its
length. Thus, if at one end the outer sheath is connected to
a common ground point, and the remote end is connected to
a balanced load with the centre tap returned to the common
ground point, the voltage at the balanced end will be forced
to be differential about ground. As a result, an odd-mode
excitation at the balanced port will result in combined power
at the unbalanced port. It is also clear, albeit less familiar,
that the balanced port will not support an even-mode current
component, since the transmission line properties require the
inner and outer conductor terminal currents to be equal and
opposite. When using such baluns in a push-pull amplifier
design, the even harmonic current components in the transistors
will thus be presented with an open-circuit termination rather
than a short. This even-mode open-circuit termination has
been previously recognized [4], but to the best of the authors’
knowledge, the time-domain waveforms inside a microwave
push-pull PA have never been explicitly addressed or measured.
This letter reconsiders the voltage and current waveforms
present in a push-pull amplifier, based on these less familiar
harmonic loading conditions.

II. WAVEFORM FORMULATIONS

The concept of using factorized expressions to describe
voltage waveforms was first introduced by Cripps [5] and since
has been used to describe families of voltage waveforms with
high efficiencies maintained over extended bandwidth.

For the first time, this analytical approach is used to describe
the current and voltage waveforms in a push-pull PA.

1531-1309/$31.00 © 2012 IEEE
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The push-pull waveform expressions permit two impedances
to be defined; odd- and even-mode, corresponding to odd and
even harmonic excitation at the output of a push-pull amplifier.
A suitable voltage expression was required to contain compo-
nents at all three harmonics, since although there will be no
second harmonic current, second harmonic voltage is permis-
sible. This is analogous to the situation for the third harmonic in
the Class F case. A “design space” of appropriate voltage wave-
forms can be defined as

(1)

where and are “slack” parameters which generate a set of
“zero-grazing” voltage waveforms having fundamental, second
and third harmonics. Experience at GHz frequencies has shown
that the restriction to three harmonics represents a good prac-
tical approximation using current semiconductor power tech-
nologies. In (1), only cosinusoidal terms are required, as the
scope of the present work only extends to resistive terminations.

The voltage expression in (1) can be expanded, to give the
following expressions for the harmonic components

(2)

An expression for the time-domain current waveforms is
now developed. As previously mentioned, the current wave-
forms are not allowed to contain even harmonic components.
Fundamental and odd harmonic impedances are however equal.
The current waveform can therefore be described by

(3)

(4)

where is a scaling factor to restore the zero-grazing condition
for a given value of . relates to the bias condition of a tran-
sistor, where corresponds to a raised cosinusoidal cur-
rent waveform, or Class-A bias. As a transistor is biased deeper
into Class-AB and eventually Class-B, the third harmonic cur-
rent component increases and has a ‘squaring-off’ effect on the
waveform.

The next stage in the analysis is to take account of the
impedance restrictions imposed by the balun

(5)

where is the odd mode impedance of the balun when one
half of the balanced output is measured with respect to ground.

Fig. 2. Drain efficiency plotted against � for different values of � .

Fig. 3. Drain efficiency plotted against � with � � �
�
�.

Using (2), (3) and (5), can be defined in terms of and
by setting the fundamental and third harmonic impedances to be
equal

(6)

The above equations define the current and voltage wave-
forms, whilst ensuring that the impedance conditions imposed
by the balun are met. It is now possible to plot the drain effi-
ciency against the slack parameter , as shown in Fig. 2. No-
tably, this shows that the maximum drain efficiency occurs at
the value of for all values of . Fig. 3 plots drain
efficiency against , and shows that the maximum theoretical
efficiency is 71.65% at .

A case of particular interest is when is close to zero. This
corresponds to a raised cosinusoidal current waveform, which
typically allows 3 dB additional power gain when compared
to deep Class-AB operation. The theoretical waveforms for
this case, shown in Fig. 4, closely resemble inverted Class B
waveforms, though it should be noted that the third harmonic
impedance in this case is a finite resistance instead of an open
circuit. As such, the push-pull configuration provides a method
of presenting an open-circuit second harmonic impedance over
a much broader bandwidth as compared to a single-ended
topology. Inverted modes are, in effect, the ‘natural’ modes for
push-pull PAs using transmission line baluns. The analytical
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Fig. 4. Theoretical and measured device plane RF voltage and current wave-
forms for � � �����.

Fig. 5. Theoretical and measured device plane RF voltage and current wave-
forms for � � �����.

expressions predict that a push-pull PA, with the transistors
biased in a high quiescent current state, can be implemented
over multi-octave bandwidths with drain efficiencies of 70%.
However, due to the high quiescent current, the drain efficiency
would decrease more rapidly than conventional Class-AB mode
when input power is backed off.

Theoretical waveforms are generated directly from (1) and (3)
and are plotted in Figs. 4 and 5, with drain efficiencies of 71.1%
and 66.1%, respectively. The theoretical waveforms have been
scaled to enable comparison with measurements.

III. MEASUREMENTS

Using the active harmonic load-pull system developed
at Cardiff University [6], measurements were made on a
Cree CGH40010F Gallium Nitride (GaN) power transistor at
900 MHz. Package parasitics and drain-source capacitance
were de-embedded, such that specific output loads could be
presented to the first three harmonics at the current generator
plane. For both sets of measurements, the odd-mode impedance
was 50 , the even mode impedance was an open circuit and
the drain voltage was 28 V.

For the results of Fig. 4, measured output power was
40.8 dBm, drain efficiency was 73.7% and transducer gain was
18.2 dB. A gate voltage of V gave a corresponding
value of 0.076. For the waveforms presented in Fig. 5, measured
output power was 39.4 dBm, drain efficiency was 68.1% and
transducer gain was 15.8 dB. A gate voltage of V gave a
corresponding value of 0.219.

It can be observed that the measured waveforms and drain
efficiencies closely match those predicted by theory for two dif-
ferent bias voltages. It is believed that the measured drain ef-
ficiency is slightly higher than that predicted by theory due to
the beneficial effect of the current at the fourth harmonic (not
shown), which flattens the current waveform and allows the fun-
damental current component to be increased.

In theory, a push-pull PA using TLBs has no inherent band-
width limitation, a key advantage over harmonically tuned
single-ended PA modes. This is an important observation, and
is a result of the properties of transmission line baluns. In con-
trast to a conventional output matching network, a balun is able
to present two impedances at the same frequency, depending
on the mode of excitation. This eliminates the ‘crossover’
frequency problem that usually limits the bandwidth of har-
monically tuned PAs.

IV. CONCLUSION

For the first time, the ‘factorized waveform’ approach has
been applied to the time-domain RF waveforms of push-pull
PAs that use transmission line baluns. The effect of the harmonic
loading conditions presented by a transmission line balun has
been measured on a GaN transistor for two bias conditions. In
both cases, good agreement between the theoretical and mea-
sured waveforms is observed. These measurements demonstrate
the potential for multi-octave microwave push-pull amplifiers
that make use of the impedances presented by a transmission
line balun.
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PUSH-PULL	  POWER	  AMPLIFIERS	  
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Abstract	  -	  Using	  differential	  linear	  measurements,	  the	  harmonic	  impedance	  conditions	  
presented	   by	   simple	   transmission	   line	   baluns	   are	   identified.	   These	   impedances	   are	  
shown	  to	  differ	  significantly	  from	  the	  harmonic	  conditions	  usually	  associated	  with	  push-‐
pull	   amplifiers.	   When	   taking	   into	   account	   these	   impedance	   conditions,	   a	   family	   of	  
waveforms	  corresponding	  to	  the	  theoretical	  waveforms	  inside	  a	  push-‐pull	  amplifier	  can	  
be	   described	   mathematically	   and	   measured	   using	   a	   harmonic	   load-‐pull	   system.	   The	  
wideband	  nature	  of	   transmission	   line	  baluns	  can	  be	  utilised	  to	  design	  and	  build	  push-‐
pull	  microwave	  power	  amplifiers	  that	  can	  operate	  over	  multiple	  octaves	  and	  at	  higher	  
efficiencies	   than	   conventional	   broadband	   amplifiers.	   This	   concept	   has	   been	  
demonstrated	   through	   the	   design	   and	   test	   of	   a	   push-‐pull	   PA	   prototype	   that	   uses	  
packaged	  GaN	  HEMTs. 

1.	  Introduction	  
The	   design	   of	   high-‐efficiency,	   broadband	   power	   amplifiers	   at	   microwave	   frequencies	  
has	   always	   presented	   significant	   challenges	   to	   microwave	   engineers.	   A	   trade-‐off	  
between	  bandwidth	  and	  efficiency	  is	  necessary,	  and	  higher	  power	  devices	  increase	  the	  
transformation	   ratio	   required	   of	   the	   matching	   network.	   Two	   common	   approaches	   to	  
designing	  power	  amplifiers	  for	  bandwidths	  greater	  than	  an	  octave	  are	  Class	  A	  designs,	  
usually	  employing	  some	  feedback,	  and	  distributed	  amplifiers,	  commonly	  used	  at	  higher	  
frequencies.	   Both	   of	   these	   approaches	   yield	   low	   efficiencies,	   however.	   At	   microwave	  
frequencies,	   most	   amplifier	   designs	   are	   based	   around	   a	   single-‐ended	   configuration.	  
However,	  at	   lower	  frequencies	  the	  push-‐pull	  configuration	  is	  used	  far	  more	  widely.	  To	  
understand	  this	  difference	  in	  approaches,	  it	  is	  necessary	  to	  consider	  the	  structures	  that	  
perform	   the	   balanced-‐to-‐unbalanced	   transformation,	   or	   'balun'	   function.	   At	   lower	  
frequencies,	   magnetically	   coupled	   centre-‐tapped	   transformers	   are	   used.	   They	   act	   as	  
low-‐loss	   power	   combiners	   and	   present	   a	   short	   circuit	   to	   even-‐mode	   signals.	  
Unfortunately,	  the	  properties	  of	  the	  ferrite	  materials	  used	  in	  these	  transformers	  prevent	  
operation	  above	  the	  VHF	  or	  UHF	  bands.	  As	  Fig.	  2	  shows,	  the	  reactive	  permeability	  (also	  
known	  as	  real	  permeability)	  decreases	  dramatically	  as	  frequency	  increases.	  

Fig.	  1:	  Push-‐pull	  power	  amplifier	  configuration,	  showing	  back-‐to-‐back	  balun	  
arrangement.	  	  
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Fig.	  2:	  Permeability	  versus	  frequency	  for	  Fair-‐Rite	  material	  no.	  61	  (measured	  data	  
courtesy	  of	  Fair-‐Rite,	  www.fair-‐rite.com).	  

At	   microwave	   frequencies,	   the	   use	   of	   transmission	   line	   baluns	   is	   necessary.	   The	  
limitations	  of	   these	  baluns,	  and	  how	  these	  can	  be	  addressed,	  are	  discussed	  in	  the	  next	  
section.	  	  	  

2.	  Transmission	  Line	  Baluns	  
We	  identified	  early	  on	   in	   the	  project	   that	   the	  key	  component	   to	  be	   investigated	   in	   the	  
design	   of	   broadband,	   high	   efficiency	   push-‐pull	   power	   amplifiers	   was	   the	   balun.	   The	  
operational	  bandwidth	  of	  the	  balun	  has	  a	  large	  impact	  on	  the	  bandwidth	  of	  the	  amplifier	  
as	   a	   whole,	   and	   the	   insertion	   loss	   of	   the	   output	   balun	   is	   critical	   in	   achieving	   high	  
efficiency	  performance.	  The	  baluns	  we	  have	  been	  considering	  for	  this	  project	  are	  simple	  
coaxial	  cable	  designs,	  such	  as	  the	  one	  shown	  in	  Fig.	  3.	  The	  balun	  is	  made	  from	  low-‐loss	  
RT/duroid	   5880	   circuit	   board	   backed	   with	   aluminium.	   A	   channel	   is	   milled	   in	   the	  
aluminium	  to	  set	   the	  outer	  transmission	   line	  characteristic	   impedance.	  The	  cable	  used	  
was	  50Ω	  semi-‐rigid	  coaxial	  cable	  with	  a	  diameter	  of	  1.19mm	  (47mil).	  This	  design	  was	  
chosen	  to	  allow	  investigation	  into	  the	  effect	  of	  ferrite	  beads	  on	  the	  balun	  performance,	  
as	  described	  below.	  	  

We	  can	  model	  the	  balun	  using	  the	  circuit	  schematic	  in	  Fig.	  4.	  We	  use	  a	  standard	  floating	  
transmission	  line	  to	  model	  the	  coaxial	  cable	  itself.	  We	  then	  model	  the	  transmission	  line	  
between	   the	   outer	   of	   the	   coaxial	   cable	   and	   the	   ground	   plane	   using	   a	   parasitic	  
transmission	  line,	  which	  we	  refer	  to	  as	  the	  ‘outer’	  transmission	  line.	  	  

	  

Fig.	  3:	  Simple	  coaxial	  cable	  transmission	  line	  balun.	  	  
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Fig.	  4:	  Circuit	  model	  for	  the	  simple	  coaxial	  cable	  transmission	  line	  balun.	  	  

2.1	  Bandwidth	  Extension	  
As	  can	  be	  seen	  in	  Fig.	  5,	  there	  are	  two	  key	  areas	  where	  the	  transmission	  line	  balun	  is	  not	  
performing	  the	  unbalanced-‐to-‐balanced	  transformation;	  at	  the	  low	  frequency	  end	  of	  the	  
band,	  and	  at	  around	  3.75GHz.	  The	  low	  frequency	  performance	  can	  be	  explained	  by	  the	  
inability	  of	  the	  transmission	  lines	  to	  couple,	  as	  the	  length	  of	  the	  transmission	  lines	  is	  no	  
longer	  a	   substantial	   fraction	  of	  a	  wavelength.	  The	   resonance	  at	  3.75GHz	  occurs	  as	   the	  
coaxial	   cable	   length	   is	   half	   of	   the	   wavelength	   of	   the	   signal,	   and	   therefore	   the	   'outer'	  
transmission	   line	   is	   a	   short	   circuit.	   Ferrite	   beads	   can	  be	   added	   to	   the	   coaxial	   cable	   in	  
order	  to	  boost	  the	  magnetic	  coupling	  at	  the	  low	  frequency	  end	  of	  the	  bandwidth.	  This	  is	  
a	  familiar	  result	  and	  is	  widely	  used.	  	  

A	   less	   familiar	   role	   that	   the	   ferrite	   beads	   can	   perform	   is	   the	   suppression	   of	   the	   half-‐
wavelength	  resonance.	  This	  was	  first	  presented	  in	  [1].	  Referring	  back	  to	  Fig.	  2,	  it	  can	  be	  
seen	  that	  although	  the	  reactive	  permeability	  has	  decreased	  to	  negligible	  values	  at	  1GHz,	  
there	   is	   some	   resistive	   permeability	   remaining.	   In	   other	   words,	   at	   microwave	  
frequencies	   the	   ferrite	   beads	   can	   act	   as	   resistors	   on	   the	   outer	   transmission	   line.	   By	  
adding	  resistance	  to	  the	  end	  of	  the	  outer	  transmission	  line,	  the	  impedance	  of	  the	  outer	  
transmission	   line	   at	   the	   resonant	   frequency	   is	   a	   finite	   resistance	   rather	   than	   a	   short	  
circuit.	  The	  effect	  of	  adding	  ferrite	  beads	  to	  the	  coaxial	  cable	  can	  be	  seen	  in	  Fig.	  6.	  The	  
low	  frequency	  performance	  has	  been	  improved,	  and	  the	  resonance	  is	  no	  longer	  present.	  
It	   is	  worth	   noting	   that	   there	   is	   an	   uneven	   power	   split	   between	   the	   two	   halves	   of	   the	  
balanced	  port,	  and	  that	  there	  is	  a	  180°	  phase	  difference	  (not	  shown).	  The	  performance	  
of	  the	  balun	  extends	  from	  30MHz	  to	  6GHz,	  a	  bandwidth	  greater	  than	  two	  decades.	  	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

Fig.	  5.	  Unbalanced	  to	  balanced	  transmission	  magnitude.	  	  	  
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Fig.	  6.	  Unbalanced	  to	  balanced	  transmission	  magnitude,	  with	  ferrite	  beads	  added.	  

2.2	  Impedances	  Presented	  by	  a	  Transmission	  Line	  Balun	  
Both	  magnetically	  coupled	  transformers	  used	  at	  VHF	  frequencies	  and	  transmission	  line	  
baluns	  present	  different	  impedances	  at	  their	  balanced	  ports	  depending	  on	  whether	  the	  
excitation	   is	   common-‐mode	   (even-‐mode)	   or	   differential-‐mode	   (odd-‐mode).	   For	   the	  
magnetically	   coupled	   transformer	  balun,	   the	  even-‐mode	   impedance	   is	   close	   to	  a	   short	  
circuit,	   and	   hence	   any	   second	   harmonic	   currents	   are	   cancelled.	   In	   contrast,	   a	   simple	  
transmission	   line	   balun	   presents	   an	   open-‐circuit	   to	   even-‐mode	   signals,	   i.e.	   even	  
harmonics.	   This	   is	   a	   significant	   observation,	   as	   it	   affects	   the	   operation	   of	   the	   PA	   and	  
needs	  to	  be	  accounted	  for	  in	  the	  design.	  	  

	  

Fig.	  7.	  Odd	  and	  even	  mode	  impedances	  of	  a	  transmission	  line	  balun.	  	  

The	  measured	  odd-‐	  and	  even-‐mode	  impedances	  of	  a	  transmission	  line	  balun	  are	  shown	  
in	  Fig.	  7.	  The	  two	  traces	  around	  25Ω	  are	  the	  odd-‐mode	  impedances	  presented	  by	  each	  
half	   of	   the	   balanced	   port.	   The	   high-‐impedance	   trace	   is	   the	   even-‐mode	   impedance	  
presented	   by	   the	   balanced	   port.	   The	   balun’s	   open	   circuit	   at	   the	   even	   harmonics	   has	  
previously	   been	   identified	   in	   [2]	   for	   mixer	   applications,	   but	   seems	   to	   have	   received	  
limited	  attention	  for	  power	  amplifier	  applications.	  	  
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3.	  Push-‐Pull	  PA	  Modes	  of	  Operation	  
As	   the	  balun	   impedances	  differ	   significantly	   from	   the	   traditional	  push-‐pull	   impedance	  
conditions,	   the	   waveforms	   inside	   a	   push-‐pull	   PA	   using	   microwave	   baluns	   were	  
reconsidered.	  The	  waveform	  analysis	  will	  be	  published	   in	  a	   forthcoming	   issue	  of	   IEEE	  
Microwave	   and	   Wireless	   Components	   Letters	   [3].	   Using	   the	   factorised	   waveform	  
approach	  first	  described	  by	  Cripps	  [4],	  analytical	  expressions	  for	  the	  voltage	  and	  current	  
time-‐domain	  waveforms	  inside	  a	  push-‐pull	  PA	  were	  developed.	  Due	  to	  the	  open-‐circuit	  
at	  the	  even	  harmonics,	  the	  waveforms	  bear	  a	  closer	  resemblance	  to	  inverted	  modes	  than	  
conventional	  PA	  modes,	  as	  shown	  in	  Fig.	  8.	  The	  maximum	  theoretical	  drain	  efficiency	  for	  
push-‐pull	  amplifiers	  using	  ideal	  transmission	  line	  baluns	  was	  found	  to	  be	  71.7%.	  This	  is	  
lower	  than	  the	  78.5%	  drain	  efficiency	  theoretically	  possible	  using	  magnetically	  coupled	  
centre-‐tapped	  transformers,	  but	  higher	  than	  alternative	  broadband	  approaches	  such	  as	  
single-‐ended	  Class	  A	  or	  distributed	  architectures.	  	  

The	   impedances	   of	   an	   ideal	   balun	   were	   emulated	   using	   the	   active	   hamonic	   load-‐pull	  
measurement	  system	  at	  Cardiff	  University	  [5],	  and	  the	  measured	  waveforms	  were	  found	  
to	  verify	  the	  theoretical	  waveforms.	  	  

	  

Fig.	  8.	  Theoretical	  push-‐pull	  waveforms	  for	  a	  shallow	  Class	  AB	  bias.	  	  

The	   analysis	   of	   the	  waveforms	   shows	   that	   although	   the	   push-‐pull	  mode	   of	   operation	  
yields	  lower	  efficiencies	  than	  harmonically	  tuned	  modes,	  the	  efficiencies	  are	  higher	  than	  
those	  that	  could	  be	  achieved	  by	  the	  Class	  A	  or	  distributed	  amplifier	  approaches.	  Because	  
the	  odd-‐	  and	  even-‐mode	  impedances	  are	  maintained	  over	  the	  operational	  bandwidth	  of	  
the	  balun,	  this	  means	  that	  the	  push-‐pull	  mode	  can	  be	  maintained	  over	  multiple	  octaves,	  
in	   contrast	   to	   harmonically	   tuned	   modes	   that	   are	   limited	   to	   less	   than	   an	   octave	   of	  
bandwidth.	  	  

4.	  Push-‐Pull	  Power	  Amplifier	  Prototype	  
A	  prototype	  power	  amplifier	  was	  built	  and	  tested	  to	  investigate	  whether	  the	  theoretical	  
performance	  could	  be	  realised	  in	  practise.	  It	  should	  be	  noted	  that	  the	  PA	  only	  consisted	  
of	  an	  output	  stage,	  and	  so	  may	  not	  be	  regarded	  as	  a	   ‘complete’	  PA.	  The	  full	  design	  and	  
measurements	   of	   the	   PA	   will	   be	   published	   at	   the	   next	   International	   Microwave	  
Symposium	  [6].	  	  

The	   output	   balun	   provided	   a	   2:1	   impedance	   transformation	   ratio	   at	   the	   fundamental	  
frequency,	   which	   greatly	   reduces	   the	   matching	   requirement.	   Two	   Cree	   CGH400025F	  
packaged	  GaN	  HEMTs	  were	  used,	  whose	  optimum	  output	  impedances	  are	  close	  to	  25Ω.	  
This,	  in	  theory,	  reduces	  the	  need	  for	  conventional	  matching	  networks.	  	  
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The	  prototype	  power	  amplifier	   exhibited	  46dBm	  output	  power	  and	  greater	   than	  45%	  
drain	  efficiency	  between	  700MHz	  and	  2GHz.	  Between	  250MHz	  and	  3.1GHz,	  a	  minimum	  
of	   43dBm	   output	   power	   is	   achieved.	   High	   drain	   efficiencies	   of	   at	   least	   60%	   were	  
measured	   between	   350MHz	   and	   1GHz,	   a	   greater	   than	   octave	   bandwidth.	   The	   PA	  was	  
observed	  to	  have	  the	  soft	  gain	  compression	  characteristics	  that	  are	  typical	  of	  GaN-‐based	  
amplifiers.	  	  

The	  half-‐wavelength	  resonance	  was	  designed	  to	  be	  outside	  the	  fundamental	  frequency	  
band,	  and	  for	   the	   initial	  measurements	  no	   ferrite	  was	  added	  to	  the	  balun.	  The	  PA	  was	  
designed	  with	  differential	  inputs,	  to	  allow	  the	  effects	  of	  phase	  and	  amplitude	  imbalance	  
to	   be	  measured.	  Due	   to	   the	  minimal	   output	  matching	   on	   the	  PA,	   it	   is	   anticipated	   that	  
these	  results	  can	  be	   improved	  upon,	  especially	   if	  a	  chip-‐and-‐wire	  approach	   is	  adopted	  
for	  a	  future	  PA.	  

5.	  Conclusions	  
The	  potential	  for	  using	  the	  push-‐pull	  configuration	  to	  realise	  high-‐efficiency,	  broadband	  
microwave	  power	  amplifiers	  was	  investigated.	  A	  key	  component	  in	  the	  amplifier	  is	  the	  
balun,	  whose	  operational	  bandwidth	  can	  be	  increased	  with	  the	  addition	  of	  ferrite	  beads.	  
The	  odd-‐	  and	  even-‐mode	  impedances	  presented	  by	  a	  transmission	  line	  balun	  were	  used	  
to	  evaluate	  the	  voltage	  and	  current	  waveforms	  at	  the	  output	  of	  the	  transistors	  through	  
the	  factorised	  waveform	  approach.	  The	  wideband	  nature	  of	  transmission	  line	  baluns	  can	  
be	  utilised	  to	  design	  and	  build	  push-‐pull	  microwave	  power	  amplifiers	  that	  can	  operate	  
over	  multiple	  octaves	  and	  at	  higher	  efficiencies	  than	  conventional	  broadband	  amplifiers.	  
This	   concept	   has	   been	   demonstrated	   through	   the	   design	   and	   test	   of	   a	   push-‐pull	   PA	  
prototype,	  which	  has	  produced	  encouraging	  preliminary	  results.	  
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Abstract — A high-efficiency push-pull power amplifier has 

been designed and measured across a bandwidth of 250MHz to 
3.1GHz. The output power was 46dBm with a drain efficiency of 
above 45% between 700MHz and 2GHz, with a minimum output 
power of 43dBm across the entire band. In addition, a minimum 
of 60% drain efficiency and 11dB transducer gain was measured 
between 350MHz and 1GHz. The design was realized using a 
coaxial cable transmission line balun, which provides a 
broadband 2:1 impedance transformation ratio and reduces the 
need for bandwidth-limiting conventional matching. The 
combination of output power, bandwidth and efficiency are 
believed to be the best reported to date at these frequencies.  

Index Terms — Balun, high efficiency, microwave amplifiers, 
power amplifiers, push-pull, wideband. 

I. INTRODUCTION 

Designing a power amplifier (PA) to deliver high efficiency 
over a bandwidth of greater than an octave is a significant 
challenge at microwave frequencies, and the challenge 
increases as the power level is raised. The conventional 
approach for designing broadband microwave power 
amplifiers has been to use a single device biased in Class A, 
usually with some feedback, however this approach generally 
yields low efficiency amplifiers. At higher frequencies a 
distributed architecture is frequently used, but this is also not a 
high efficiency approach. Previous works on push-pull power 
amplifiers have either presented wide bandwidths but modest 
efficiencies and output powers [1] or high power and 
efficiency over limited bandwidths [2].  

A high-power, push-pull PA is presented in [3]. Using 
ferrite-based magnetically coupled transformers, high 
efficiency and output power is maintained across a bandwidth 
of 100MHz to 1GHz. However, attempts to extend this 
performance above 1GHz will be limited by the ferrite 
materials currently available for constructing transformers. 

For applications above 1GHz, it is necessary to use an 
alternative design of balun that uses the properties of a 
transmission line rather than magnetic coupling.  

 
 
 
 
 
 

Fig. 1. Simple schematic of a coaxial cable transmission line 
balun.   

Such a balun may be made from a straight piece of coaxial 
cable mounted above a ground plane, where the length of the 
cable is chosen to be less than a half wavelength at the 
specified upper frequency limit. This structure has a wide 
useable bandwidth, which can be further extended as 
described in [4], albeit with increased insertion loss.  

In this paper, we describe the design and manufacture of a 
push-pull power amplifier output stage using a ferrite-less 
coaxial cable balun that outputs 40W (46dBm) output power 
at greater than 45% drain efficiency between 700MHz and 
2GHz. Furthermore, the amplifier output power is above 
43dBm between 250MHz and 3.1GHz, a bandwidth greater 
than a decade. These results clearly demonstrate the 
advantages of the push-pull configuration in designing high 
efficiency PAs for broadband microwave applications. 

II. ADVANTAGES OF THE PUSH-PULL CONFIGURATION 

Single-ended power amplifiers designed to operate over 
significant bandwidths tend to use transistors biased in Class 
A with filter-based matching networks, the design of which is 
well documented [5]. As the required transformation ratio 
between the 50Ω system impedance and the optimum device 
impedance increases, the Q factor of the matching network 
also increases and hence the bandwidth is reduced. This is 
particularly problematic for higher power devices, where the 
output impedance of a device can be of the order of one Ohm 
or less, and a high transformation ratio is required. 

The push-pull configuration, where two transistors are 
operated 180° out of phase, greatly alleviates the limitations of 
conventional matching networks. The simple transmission line 
balun of Fig. 1 presents an odd-mode impedance of 
approximately 25Ω to each half of the balanced output, as 
shown in Fig. 2. The impedance presented to Port 3 of the 
balanced output decreases at low frequencies as the length of 
coaxial cable ceases to be a substantial fraction of a 
wavelength. At higher frequencies, the Port 3 impedance tends 
towards a short circuit due to the half-wavelength resonance.  

The 2:1 transformation ratio is maintained over the 
operational bandwidth of the balun. It can therefore be 
reasonably stipulated that in an equal power comparison, 
using identical device types, the push-pull configuration not 
only offers a 4:1 benefit in matching Q-factor, but also 
achieves this using a structure that is inherently much broader 
band than filter-based matching networks. 

outer conductor centre conductor 

unbalanced port balanced port 

Port 1 Port 2 

Port 3 
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Fig. 2. Measured odd-mode impedance presented to each half of 
the balanced output port of a coaxial cable transmission line balun.  
 

Due to its transmission line properties, the balun will not 
support any even-mode current component and thus presents 
an open circuit termination to signals at the even harmonic 
frequencies. This represents an important difference between 
high frequency push-pull design using transmission line 
baluns, and low frequency designs based on magnetically 
coupled transformers, since in the latter case the even 
harmonic voltages at each device will be conveniently 
cancelled. A key element in this design is to recognize, and 
design for, even harmonic open circuit terminations at the 
balanced balun port. 

III. LOAD-PULL TRANSISTOR MEASUREMENTS 

To investigate the effects of the transmission line balun 
impedance conditions on a real device, a three-harmonic 
active load-pull measurement system was used to measure a 
Cree CGH40025F Gallium Nitride (GaN) high electron-
mobility transistor (HEMT). The odd-mode impedance of an 
ideal balun, 25Ω, was presented to the fundamental and third 
harmonics, with an open circuit presented to the second 
harmonic.  A model of the package parasitic components and 
an estimation of the drain-source capacitance (CDS) were used 
to de-embed the waveforms to the current generator plane.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Measured device plane RF voltage and current waveforms 
when presented with ideal balun impedances.  

The waveforms shown in Fig. 3 were measured at 2GHz 
with the transistor operating in Class AB bias. As expected, 
due to the open circuit even-mode impedance, the current 
waveform contains no second harmonic component, but the 
third harmonic component has a small ‘squaring off’ effect, 
increasing the efficiency compared to a pure sinusoid.   

The drain efficiency of this waveform is 65.80%, 
demonstrating the performance that would be achievable if the 
ideal balun impedances could be presented to the transistor at 
the current generator plane. In practice, CDS and package 
parasitics, in addition to non-ideal balun structures will lower 
the drain efficiency. 

IV. DESIGN OF PUSH-PULL BROADBAND POWER AMPLIFIER 

The same Cree GaN HEMTs that were measured on the 
active harmonic load-pull system were used for the realized 
push-pull power amplifier. As has been previously outlined, 
filter-based matching networks limit the performance of the 
power amplifier for very broadband applications. For this 
design, a very simple matching topology was sufficient, based 
on the fact that the individual transistor loadline resistance 
was close to the odd-mode balun impedance of 25Ω. 

The amplifier was designed with differential input ports, 
since a multistage design will very likely retain differential 
operation in at least the first driver stage. We also wished to 
allow for future investigations into the effects of input 
amplitude and phase imbalance. The current generator plane 
impedances presented by the differential output matching 
network are shown in Fig. 4. Note that the even harmonic 
impedances are reactive, due to the action of the balun. 
Although the spread of reactance over a decade bandwidth is 
not optimum for Class AB operation, the impedance 
environment is largely compatible with the ‘Class B-J’ design 
space described in [6]. 

A simple shunt-capacitor matching network was used at the 
inputs of the PA to increase the gain at higher frequencies. 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
Fig. 4. Odd- and even-mode impedances presented to the 
transistor at the current generator plane from 400MHz to 3.25GHz.    

Odd Mode Impedance 

Even Mode Impedance 
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It is expected that the output matching can be further 
improved by compensating for the package parasitic 
reactances at higher frequencies; this was not implemented in 
the present design since a chip-and-wire hybrid approach may 
be used in the future.  

V. REALIZED PUSH-PULL POWER AMPLIFIER PERFORMANCE 

The design described in the previous section was 
manufactured on low-loss aluminium-backed circuit board. 
The slot required for the coaxial cable balun was milled 
directly into the aluminium, which served as the ground plane. 
The realized push-pull PA is shown in Fig. 6. 

The output stage was driven by two signal sources with 
180° phase offset. As can be seen in Fig. 5, the prototype 
push-pull PA exhibits 46dBm output power and greater than 
45% drain efficiency between 700MHz and 2GHz. The PA 
has a minimum output power of 43dBm and high efficiency 
between 250MHz and 3.1GHz. In addition, a transducer gain 
and drain efficiency of over 11dB and 60% respectively were 
measured between 350MHz and 1GHz. Considering that 
packaged devices were used, the bandwidth and power levels 
presented are especially noteworthy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Push-pull power amplifier with integrated coaxial cable 
transmission line balun at output.   

VI. CONCLUSION 

In order to realize a broadband, high-efficiency push-pull 
power amplifier at microwave frequencies, a coaxial cable 
transmission line balun was used to present a 2:1 impedance 
transformation ratio over a very wide bandwidth. When used 
with transistors with a comparable loadline resistance, the 
need for conventional filter-based matching is greatly reduced.  

The bandwidth potential of the push-pull configuration has 
been demonstrated through the measurement of a prototype 
output stage PA. Output powers greater than 43dBm and high 
drain efficiencies were measured over a bandwidth greater 
than a decade. To the best of the authors’ knowledge, the 
combination of bandwidth, output power and efficiency is the 
best reported to date.  
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Fig. 5. Measured output power, transducer gain and drain efficiency of the realized push-pull output stage power amplifier.  
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A broadband, high efficiency push-pull power amplifier is presented between 0.5GHz and 1.5GHz.
Coaxial cable transmission line baluns are utilised to transform the impedance environment of the
transistors down to 25Ω, greatly simplifying the matching, whilst still providing a 50Ω environment
to interface with other components. Using packaged GaN HEMT transistors, typical output powers
of 45dBm and efficiencies of 44% to 75% have been measured across a 3:1 bandwidth. The small
signal input match is less than -10dB and small signal gain is greater than 10dB across the entire
band.

1 Introduction

Achieving broadband operation at microwave frequencies is a challenge which has confronted power
amplifier designers for many years. If high-power operation and reasonable power efficiency is also
required, the challenge is significantly increased. High-efficiency operation using continuous modes
such as Continuous Class F can be shown to extend to a bandwidth of an octave [1], however for larger
bandwidths a different approach is required. The push-pull configuration has demonstrated excellent
performance at frequencies below 1GHz [2] but is rarely found at higher frequencies. In this paper two
prototype push-pull power amplifiers are presented, demonstrating encouraging performance across
significant bandwidths.

2 The Microwave Push-Pull Approach

Previous work [3] has demonstrated the advantages of the push-pull configuration at microwave fre-
quencies, where it is not traditionally used. The transmission line baluns that convert an unbalanced
signal to a balanced signal, and vice versa, also transform the system reference impedance down by
a factor of two. For an amplifier designed to interface with a 50Ω system, the individual transis-
tors are presented with a 25Ω system impedance. This is an advantage when matching high-power
transistors, which typically have an optimum output impedance much lower than 50Ω. The output
balun also serves as a power combiner, so that double the output power is produced by the overall
amplifier. Therefore, for a particular transistor it can be stated that the push-pull configuration offers
a 4:1 advantage compared to a conventional, single-ended amplifier.

The other advantage of the push-pull amplifier is that its operation can be maintained across
a very wide bandwidth. Baluns present odd- or even-mode impedances, depending on how they
are excited, and these impedances can be maintained over very wide bandwidths. The operational
bandwidth of the amplifier is highly dependent on the balun components. The insertion loss of the
baluns should be kept to a minimum, as loss in the output balun will decrease output power and
efficiency, and loss in the input balun will reduce gain and power-added efficiency (PAE). The baluns
used in this work are simple coaxial cable transmission line baluns, such as the one shown in Fig. 1.

ARMMS April 2013 1
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Figure 1: Coaxial cable transmission line balun

Figure 2: S21 and S31 of coaxial cable balun without ferrite

Figure 3: S21 and S31 of coaxial cable balun with ferrite

It has been shown in [4] that for coaxial cable baluns, ferrite beads can be used to suppress
the balun’s half-wavelength resonance. This increases the upper cut-off frequency of the balun and
hence increases its bandwidth. The effect of adding ferrite beads to the coaxial cable can be seen by
comparing Fig. 2 to Fig. 3. The low frequency performance has been improved, and the resonance
is no longer present. The performance of the balun extends from 30MHz to 6GHz. The insertion
loss of the balun is shown in Fig. 4. It can be seen that insertion loss is increased when ferrite is
added, but that the bandwidth of the balun is also increased.

There are many methods of implementing baluns, including in planar form. An excellent source
of information on the various types of baluns at RF and microwave frequencies can be found in [5].
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Figure 4: Insertion loss of coaxial cable balun with and without ferrite

Figure 5: Prototype amplifier v1

3 Prototype Amplifier v1

A prototype power amplifier was presented in [6] in order to demonstrate the performance that could
be achieved by the push-pull configuration in practice. The PA, shown in Fig. 5, consists of a single
output stage, and is driven by differential inputs.

The output balun provided a 2:1 impedance transformation ratio at the fundamental frequency,
which greatly reduces the matching requirement. Two Cree CGH400025F packaged GaN HEMTs
were used, and load-pull measurements indicated that their optimum output impedances were close
to 25Ω. GaN transistors are well suited to broadband applications, due to their low drain-source
capacitance (CDS) and high output impedances compared to LDMOS or GaAs. This reduces the
need for conventional matching networks. Gate bias tees were omitted to simplify the design.

Fig. 6 shows the amplifier’s performance across frequency, where the phase between the inputs
has been varied to obtain optimum performance. The input power is also varied with frequency in
order to compensate for the amplifier’s gain variation with frequency and hence keep the output
power constant.

The prototype power amplifier exhibited 46dBm (40W) output power and greater than 45% drain
efficiency between 700MHz and 2GHz. Between 250MHz and 3.1GHz, a minimum of 43dBm (20W)
output power is achieved. High drain efficiencies of at least 60% were measured between 350MHz
and 1GHz.

ARMMS April 2013 3
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Figure 6: Large signal measurements of PA v1

Figure 7: Push-pull power amplifier measurement setup with differential input

3.1 Differential Measurement Setup

The differential input provides an opportunity to investigate the push-pull power amplifier in greater
depth. In order to measure the effect of amplitude and phase balance, a measurement setup had to
be developed that was capable of providing the necessary phase difference between the inputs. The
setup is shown in Fig. 7.

Two Electronic Signal Generators (ESGs) are phase locked together to provide a differential input.
When the phase lock between the ESGs is established, there is an arbitrary phase difference. This
phase difference is measured using a digital sampling oscilloscope, and the measurement software
changes the phase of one of the ESGs to achieve the desired phase difference. Similarly, the amplitude
of each ESG can be varied in order to set the amplitude balance of the differential input.

3.2 Amplitude and Phase Balance

Fig. 8 shows the variation in output power of the PA with amplitude balance. The total power
driving the PA is the same for all cases, as shown in Table 1.

It can be seen that the PA is relatively tolerant to a change in amplitude balance. There is clearly
an advantage to trying to set the amplitude balance correctly, but the amplifier’s operation is not
dependent on achieving a particular balance. The variation in output power is only 0.4dBm for a
wide range of amplitude balance conditions. It is speculated that the transistors influence each other
through the coupling between the two halves of the balanced port of the output balun. The output
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Amplitude
Balance

Input A
(dBm)

Input B
(dBm)

Input A
(W)

Input B
(W)

Total
Power (W)

P
(dBm)

- 3.0 dB 25.236 28.236 0.334 0.666 1 30

- 2.5 dB 25.562 28.062 0.360 0.640 1 30

- 2.0 dB 25.876 27.876 0.387 0.613 1 30

- 1.5 dB 26.175 27.675 0.415 0.585 1 30

- 1.0 dB 26.461 27.460 0.443 0.557 1 30

- 0.5 dB 26.733 27.233 0.471 0.529 1 30

0.0 dB 26.990 26.990 0.500 0.500 1 30

0.5 dB 27.233 26.733 0.529 0.471 1 30

1.0 dB 27.461 26.461 0.557 0.443 1 30

1.5 dB 27.675 26.175 0.585 0.415 1 30

2.0 dB 27.876 25.876 0.613 0.387 1 30

2.5 dB 28.062 25.562 0.640 0.360 1 30

3.0 dB 28.236 25.236 0.666 0.334 1 30

Table 1: Amplitude balance and corresponding input powers for a total input power of 1W

Figure 8: Output power variation with amplitude balance

power from one transistor is fed back through the balun to effectively ‘load-pull’ the other transistor.
Further work will be done to investigate this effect.

4 Prototype Amplifier v2

The first prototype provided promising results, but is not suited to practical implementation. Several
factors make it difficult to use in practical applications, the primary one being its differential inputs.
For this reason, the second prototype included an input balun, so that the amplifier could be driven
by a single-ended input. A target input return loss of -10dB was set. This was only achievable
by including a resistive element in the input matching network, which reduced the gain of the
amplifier. As with the first prototype, the output match consisted of minimal components, as
the 25Ω impedance environment provides a reasonable match for this particular device. Gate bias
networks were integrated into the amplifier, obviating the need for external bias tees.

The second prototype used the same GaN transistors as the first. For larger devices with lower
impedances, the 25Ω environment reduces the matching ratio and increases bandwidth compared to
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Figure 9: Prototype amplifier v2

Figure 10: S21 of PA v2

Figure 11: S11 of PA v2

a single-ended design into 50Ω. The disadvantage of the input balun is that the loss in the input side
of the PA is increased and so the overall gain of the amplifier is reduced.

4.1 Small-Signal Measurements

Between 500MHz and 1.5GHz, a small signal gain greater than 12dB was measured, as shown in
Fig. 10. The input match, shown in Fig. 11, was better than -10dB across most of the band, but
degrades with frequency.

ARMMS April 2013 6
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Figure 12: Large signal measurements of PA v2

4.2 Large-Signal Measurements

Preliminary large signal measurements for the second prototype amplifier are shown in Fig. 12.
Measurements were made at 100MHz intervals from 0.5GHz to 1.5GHz. Over a 3:1 bandwidth, the
efficiency is around 60% for much of the band, falling to 44% at 1.5GHz. Unlike the first prototype,
it was not possible to vary the amplitude and phase balance to optimise performance. The output
power varies between 44.5dBm and 46.5dBm. Input power is varied with frequency in order to
compensate for the gain variation of the PA.

One problem with using coaxial cable baluns is the difficulty in assembling the baluns reliably.
As each balun is assembled by hand, the quality of the assembly is variable and it is difficult to find
faults in the balun once the whole PA has been assembled. Planar baluns can be manufactured more
reliably, but in general these do not perform as well as coaxial cable baluns.

Further measurements are to be carried out on the amplifier to establish its performance under
different conditions, included modulated signals.

5 Conclusions

The advantages of the push-pull configuration for microwave power amplifiers have been outlined.
Two prototype amplifiers have been shown to exhibit good performance across wide bandwidths.
This shows that the push-pull configuration has potential for use in the realisation of very broadband
amplifiers at microwave frequencies, an area where it has rarely been used. It is probable that further
improvement can be achieved by adopting a chip-and-wire approach, and by further investigation into
the balun structures. The push-pull configuration was used to investigate broadband applications,
but its 4:1 impedance advantage can also be utilised for narrow-band applications, especially where
high-power transistors are to be used.
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Appendix F

List of symbols and abbreviations

A, mA Amperes, milliAmperes

AM Amplitude Modulation

AWR Applied Wave Research (developers of Microwave Office)

BJT Bipolar Junction Transistor

C Capacitance (F)

c Speed of light in a vacuum (≈ 3 x 108 m/s)

CAD Computer-Aided Design

CAPEX Capital Expenditure

Class F-1 Inverse Class F

COTS Commercial Off The Shelf

dB Decibels

dBm Decibels referenced to 1mW

DC Direct Current

D.E. Drain Efficiency (PRF / PDC)

DSO Digital Sampling Oscilloscope

DUT Device Under Test

ECM Electronic Counter Measures

Ec Electric field for breakdown (V/cm)
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Eg Energy Gap (eV)

EM Electromagnetic

EMI Electromagnetic Interference

ESG Electronic Signal Generator

eV Electron Volts

EW Electronic Warfare

F, pF Farads, picoFarads

FEM Finite Element Method

FET Field Effect Transistor

Freq., f Frequency

GaAs Gallium Arsenide

GaN Gallium Nitride

GUI Graphical User Interface

H, nH Henries, nanoHenries

HBT Hetrojunction Bipolar Transistor

HEMT High Electron Mobility Transistor

HFET Hetrostructure FET

Hz, GHz Hertz, Gigahertz

I, i Current

I-V Current-voltage relationship

III-V Compound semiconductor of Group III and Group V elements

Idq Quiescent drain current

IMAX Maximum drain current

InP Indium Phosphide

ISM Industrial, Scientific, Medical

K Thermal conductivity
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L Inductance (H)

LDMOS Laterally Diffused Metal Oxide Semiconductor

LNA Low Noise Amplifier

LTE Long Term Evolution

MAG Maximum Available Gain

MMIC Monolithic Microwave Integrated Circuit

NDPA Nonlinear Distributed Power Amplifier

OPEX Operational Expenditure

PA Power Amplifier

PAE Power Added Efficiency

PAR Peak-to-Average Ratio

PBO Power Back Off

PCB Printed Circuit Board

PLL Phase Locked Loop

Q-factor Quality Factor

R Resistance (Ω)

RF Radio Frequency

S-parameters Scattering parameters

Si Silicon

SiC Silicon Carbide

SiGe Silicon Germanium

SNR Signal-to-Noise Ratio

TOSM Thru-Open-Short-Match

V Voltage / Volts

VCCS Voltage Controlled Current Source

VDS Drain-source voltage
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VGS Gate-source voltage

VNA Vector Network Analyser

W mW Watts, milliwatts

X Reactance

Z Impedance

Z0 Characteristic Impedance

εr Relative Permittivity

η Efficiency

µ Permeability

Ω Ohms
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Appendix G

Radar Band Designations

Radar Band Letter Designation Frequency Range

High Frequency (HF) 3 - 30 MHz

Very High Frequency (VHF) 30 - 300 MHz

Ultra High Frequency (UHF) 300 MHz - 1000 MHz

L-band 1 - 2 GHz

S-band 2 - 4 GHz

C-band 4 - 8 GHz

X-band 8 - 12 GHz

Ku-band 12 - 18 GHz

K-band 18 - 27 GHz

Ka-band 27 - 40 GHz

V-band 40 - 75 GHz

W-band 75 - 110 GHz

mm 110 - 300 GHz

Reproduced from [80].
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Appendix H

Cree CGH40025F Datasheet
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1Subject to change without notice.
www.cree.com/wireless

CGH40025
25 W, RF Power GaN HEMT

Cree’s CGH40025 is an unmatched, gallium nitride (GaN) high electron 

mobility transistor (HEMT). The CGH40025, operating from a 28 volt 

rail, offers a general purpose, broadband solution to a variety of RF 

and microwave applications. GaN HEMTs offer high efficiency, high 

gain and wide bandwidth capabilities making the CGH40025 ideal for 

linear and compressed amplifier circuits. The transistor is available 

in a screw-down, flange package and solder-down, pill packages.
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FEATURES

• Up to 6 GHz Operation

• 15 dB Small Signal Gain at 2.0 GHz

• 13 dB Small Signal Gain at 4.0 GHz

• 30 W typical PSAT

• 62 % Efficiency at PSAT

• 28 V Operation

APPLICATIONS

• 2-Way Private Radio

• Broadband Amplifiers

• Cellular Infrastructure

• Test Instrumentation

• Class A, AB, Linear amplifiers suitable 

for OFDM, W-CDMA, EDGE, CDMA 

waveforms

Package Type: 440196 and 440166PN: CGH40025P and CGH40025F 
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Absolute Maximum Ratings (not simultaneous) at 25˚C Case Temperature

Parameter Symbol Rating Units

Drain-Source Voltage VDSS 84 Volts

Gate-to-Source Voltage VGS -10, +2 Volts

Storage Temperature TSTG -65, +150 ˚C

Operating Junction Temperature TJ 225 ˚C

Maximum Forward Gate Current IGMAX 7.0 mA

Soldering Temperature1 TS 245 ˚C

Screw Torque τ 60 in-oz

Thermal Resistance, Junction to Case2 RθJC 4.8 ˚C/W

Case Operating Temperature2,3 TC -40, +150 ˚C

Note:
1 Refer to the Application Note on soldering at www.cree.com/products/wireless_appnotes.asp
2 Measured for the CGH40025F at PDISS = 28 W.
3 See also, the Power Dissipation De-rating Curve on Page 6.

Electrical Characteristics (TC = 25˚C)

Characteristics Symbol Min. Typ. Max. Units Conditions

DC Characteristics1

Gate Threshold Voltage VGS(th) -3.8 -3.3 -2.3 VDC VDS = 10 V, ID = 7.2 mA

Gate Quiescent Voltage VGS(Q) – -3.0 – VDC VDS = 28 V, ID = 250 mA

Saturated Drain Current IDS 5.8 7.0 – A VDS = 6.0 V, VGS = 2.0 V

Drain-Source Breakdown Voltage VBR 120 – – VDC VGS = -8 V, ID = 7.2 mA

RF Characteristics2 (TC = 25˚C, F0 = 3.7 GHz unless otherwise noted)

Small Signal Gain GSS 12 13 – dB VDD = 28 V, IDQ = 250 mA

Power Output3 PSAT 20 30 – W VDD = 28 V, IDQ = 250 mA

Drain Efficiency4 η 55 62 – % VDD = 28 V, IDQ = 250 mA, PSAT

Output Mismatch Stress VSWR – – 10 : 1 Y
No damage at all phase angles, 
VDD = 28 V, IDQ = 250 mA, 
POUT = 25 W CW

Dynamic Characteristics

Input Capacitance CGS – 9.0 – pF VDS = 28 V, Vgs = -8 V, f = 1 MHz

Output Capacitance CDS – 2.6 – pF VDS = 28 V, Vgs = -8 V, f = 1 MHz

Feedback Capacitance CGD – 0.4 – pF VDS = 28 V, Vgs = -8 V, f = 1 MHz

Notes:
1 Measured on wafer prior to packaging.
2  Measured in CGH40025-TB.
3 PSAT is defined as IG = 0.72 mA.
4 Drain Efficiency = POUT / PDC
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Typical Performance

Swept CW Data of CGH40025 vs. Output Power with Source 
and Load Impedances Optimized for PSAT Power in CGH40025-TB

VDD = 28 V, IDQ = 250 mA, Freq = 3.7 GHz

Maximum Available Gain and K Factor of the CGH40025
VDD = 28 V, IDQ = 250 mA
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Vdd = 28 V, Idq = 250 mA, Freq = 3.7 GHz

8

9

10

11

12

13

14

15

20 25 30 35 40 45

Output Power (dBm)

G
ai

n 
(d

B
)

0

10

20

30

40

50

60

70

D
ra

in
 E

ffi
ci

en
cy

 (%
)

Gain (dB)

Drain Eff. (%)

185



5 CGH40025 Rev 3.0

Cree, Inc.
4600 Silicon Drive

Durham, NC 27703
USA Tel: +1.919.313.5300

Fax: +1.919.869.2733
www.cree.com/wireless

Copyright © 2007-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and 
the Cree logo are registered trademarks of Cree, Inc. 

Typical Noise Performance

Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH40025F
VDD = 28 V, IDQ = 250 mA

Electrostatic Discharge (ESD) Classifications

Parameter Symbol Class Test Methodology

Human Body Model HBM 1A > 250 V JEDEC JESD22 A114-D

Charge Device Model CDM 1 < 200 V JEDEC JESD22 C101-C 
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Source and Load Impedances

Frequency (MHz) Z Source Z Load

500 7.75 + j15.5 20 + j5.2

1000 3.11 + j5.72 17 + j6.66

1500 2.86 + j1.63 16.8 + j3.2

2500 1.2 - j3.26 9.41 + j3.2

3500 1.31 - j7.3 5.85 - j0.51

Note 1. VDD = 28V, IDQ = 250mA in the 440166 package.

Note 2. Optimized for power gain, PSAT and PAE.

Note 3. When using this device at low frequency, series resistors 

should be used to maintain amplifier stability.

CGH40025 Power Dissipation De-rating Curve

Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2).
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CGH40025-TB Demonstration Amplifier Circuit Schematic

CGH40025-TB Demonstration Amplifier Circuit Outline
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CGH40025-TB Demonstration Amplifier Circuit Bill of Materials

Designator Description Qty

R2 RES,1/16W,0603,1%,47 OHMS 1

R1 RES,1/16W,0603,1%,100 OHMS 1

C6 CAP, 470PF, 5%,100V,  0603 1

C16 CAP, 33 UF, 20%, G CASE 1

C15 CAP, 1.0UF, 100V, 10%, X7R, 1210 1

C8 CAP 10UF 16V TANTALUM 1

C13 CAP, 100.0pF, +/-5%, 0603 1

C1 CAP, 0.8pF, +/-0.1pF, 0603 1

C2 CAP, 0.5pF, +/-0.1pF, 0603 1

C9,C10 CAP, 1.0pF, +/-0.1pF, 0603 2

C4,C11 CAP, 10.0pF,+/-5%, 0603 2

C5,C12 CAP, 39pF, +/-5%, 0603 2

C7,C14 CAP,33000PF, 0805,100V, X7R 2

J3,J4 CONN SMA STR PANEL JACK RECP 2

J1 HEADER RT>PLZ .1CEN LK 5POS 1

- PCB, RO4350B, Er = 3.48, h = 20 mil 1

- CGH40025F or CGH40025P 1

CGH40025-TB Demonstration Amplifier Circuit
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Typical Package S-Parameters for CGH40025
(Small Signal, VDS = 28 V, IDQ = 100 mA, angle in degrees)

Frequency Mag S11 Ang S11 Mag S21 Ang S21 Mag S12 Ang S12 Mag S22 Ang S22

500 MHz 0.902 -151.72 11.80 92.09 0.025 6.22 0.393 -140.34

600 MHz 0.901 -157.13 9.89 87.31 0.025 2.28 0.402 -143.54

700 MHz 0.900 -161.20 8.49 83.18 0.025 -0.99 0.412 -145.64

800 MHz 0.900 -164.41 7.42 79.49 0.025 -3.82 0.424 -147.11

900 MHz 0.901 -167.04 6.58 76.10 0.024 -6.33 0.436 -148.22

1.0 GHz 0.902 -169.26 5.89 72.93 0.024 -8.60 0.449 -149.12

1.1 GHz 0.903 -171.19 5.33 69.93 0.024 -10.69 0.462 -149.91

1.2 GHz 0.904 -172.89 4.86 67.07 0.023 -12.61 0.476 -150.65

1.3 GHz 0.905 -174.43 4.45 64.33 0.023 -14.39 0.489 -151.38

1.4 GHz 0.906 -175.84 4.10 61.68 0.022 -16.06 0.503 -152.12

1.5 GHz 0.907 -177.14 3.80 59.12 0.022 -17.61 0.517 -152.87

1.6 GHz 0.909 -178.36 3.54 56.64 0.022 -19.05 0.531 -153.65

1.7 GHz 0.910 -179.52 3.30 54.22 0.021 -20.38 0.545 -154.46

1.8 GHz 0.912 179.38 3.09 51.87 0.021 -21.62 0.558 -155.29

1.9 GHz 0.913 178.33 2.90 49.58 0.020 -22.75 0.571 -156.15

2.0 GHz 0.914 177.30 2.73 47.34 0.020 -23.78 0.584 -157.04

2.1 GHz 0.916 176.31 2.58 45.15 0.019 -24.70 0.596 -157.95

2.2 GHz 0.917 175.34 2.44 43.02 0.019 -25.52 0.608 -158.88

2.3 GHz 0.918 174.39 2.31 40.92 0.018 -26.22 0.620 -159.82

2.4 GHz 0.920 173.46 2.19 38.88 0.018 -26.82 0.631 -160.78

2.5 GHz 0.921 172.54 2.09 36.87 0.017 -27.29 0.642 -161.76

2.6 GHz 0.922 171.63 1.99 34.91 0.016 -27.64 0.652 -162.74

2.7 GHz 0.923 170.73 1.90 32.98 0.016 -27.85 0.662 -163.73

2.8 GHz 0.925 169.84 1.82 31.09 0.015 -27.92 0.672 -164.73

2.9 GHz 0.926 168.95 1.74 29.24 0.015 -27.85 0.681 -165.73

3.0 GHz 0.927 168.07 1.67 27.41 0.014 -27.61 0.690 -166.74

3.2 GHz 0.929 166.30 1.54 23.86 0.013 -26.63 0.706 -168.76

3.4 GHz 0.931 164.54 1.42 20.42 0.013 -24.89 0.721 -170.79

3.6 GHz 0.932 162.78 1.33 17.08 0.012 -22.30 0.735 -172.82

3.8 GHz 0.934 161.00 1.24 13.84 0.011 -18.80 0.748 -174.85

4.0 GHz 0.935 159.21 1.16 10.67 0.011 -14.40 0.759 -176.88

4.2 GHz 0.936 157.39 1.10 7.58 0.010 -9.18 0.769 -178.90

4.4 GHz 0.937 155.55 1.04 4.55 0.010 -3.38 0.778 179.07

4.6 GHz 0.938 153.67 0.98 1.57 0.010 2.65 0.787 177.04

4.8 GHz 0.939 151.77 0.94 -1.36 0.011 8.52 0.794 175.00

5.0 GHz 0.939 149.82 0.89 -4.25 0.011 13.87 0.801 172.96

5.2 GHz 0.939 147.82 0.86 -7.11 0.012 18.48 0.807 170.90

5.4 GHz 0.939 145.78 0.82 -9.95 0.013 22.25 0.812 168.83

5.6 GHz 0.940 143.68 0.79 -12.78 0.014 25.17 0.817 166.74

5.8 GHz 0.939 141.53 0.77 -15.59 0.016 27.32 0.821 164.62

6.0 GHz 0.939 139.31 0.74 -18.41 0.017 28.77 0.825 162.48

Download this s-parameter file in “.s2p” format at http://www.cree.com/products/wireless_s-parameters.asp
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Typical Package S-Parameters for CGH40025
(Small Signal, VDS = 28 V, IDQ = 250 mA, angle in degrees)

Frequency Mag S11 Ang S11 Mag S21 Ang S21 Mag S12 Ang S12 Mag S22 Ang S22

500 MHz 0.917 -157.22 12.62 91.45 0.018 7.56 0.458 -158.97

600 MHz 0.916 -161.92 10.57 87.33 0.018 4.70 0.465 -160.93

700 MHz 0.916 -165.46 9.07 83.78 0.018 2.41 0.472 -162.19

800 MHz 0.916 -168.28 7.94 80.58 0.018 0.51 0.478 -163.04

900 MHz 0.916 -170.61 7.05 77.64 0.017 -1.12 0.485 -163.64

1.0 GHz 0.916 -172.60 6.33 74.88 0.017 -2.55 0.493 -164.09

1.1 GHz 0.917 -174.33 5.74 72.25 0.017 -3.82 0.500 -164.45

1.2 GHz 0.917 -175.88 5.24 69.73 0.017 -4.94 0.508 -164.77

1.3 GHz 0.918 -177.28 4.82 67.30 0.017 -5.95 0.516 -165.06

1.4 GHz 0.918 -178.57 4.46 64.94 0.017 -6.84 0.525 -165.36

1.5 GHz 0.919 -179.78 4.14 62.65 0.016 -7.63 0.533 -165.67

1.6 GHz 0.919 179.09 3.87 60.41 0.016 -8.31 0.542 -165.99

1.7 GHz 0.920 178.01 3.62 58.22 0.016 -8.90 0.550 -166.35

1.8 GHz 0.921 176.98 3.40 56.07 0.016 -9.39 0.559 -166.73

1.9 GHz 0.921 175.99 3.21 53.97 0.015 -9.77 0.568 -167.14

2.0 GHz 0.922 175.03 3.03 51.90 0.015 -10.06 0.577 -167.59

2.1 GHz 0.923 174.09 2.87 49.87 0.015 -10.24 0.585 -168.07

2.2 GHz 0.924 173.17 2.73 47.87 0.014 -10.31 0.594 -168.57

2.3 GHz 0.924 172.27 2.60 45.91 0.014 -10.27 0.602 -169.11

2.4 GHz 0.925 171.39 2.47 43.97 0.014 -10.12 0.610 -169.67

2.5 GHz 0.926 170.51 2.36 42.07 0.014 -9.85 0.619 -170.26

2.6 GHz 0.926 169.65 2.26 40.19 0.013 -9.46 0.626 -170.88

2.7 GHz 0.927 168.79 2.16 38.34 0.013 -8.95 0.634 -171.52

2.8 GHz 0.928 167.93 2.08 36.52 0.013 -8.31 0.642 -172.17

2.9 GHz 0.928 167.08 1.99 34.72 0.013 -7.54 0.649 -172.85

3.0 GHz 0.929 166.24 1.92 32.94 0.013 -6.65 0.656 -173.55

3.2 GHz 0.930 164.54 1.78 29.45 0.012 -4.49 0.670 -175.00

3.4 GHz 0.931 162.85 1.66 26.05 0.012 -1.85 0.683 -176.50

3.6 GHz 0.932 161.14 1.55 22.72 0.012 1.19 0.695 -178.06

3.8 GHz 0.933 159.42 1.46 19.46 0.012 4.55 0.706 -179.66

4.0 GHz 0.933 157.68 1.38 16.27 0.012 8.08 0.716 178.70

4.2 GHz 0.934 155.91 1.31 13.12 0.012 11.64 0.726 177.02

4.4 GHz 0.934 154.11 1.24 10.03 0.013 15.08 0.735 175.30

4.6 GHz 0.935 152.28 1.18 6.97 0.013 18.26 0.743 173.56

4.8 GHz 0.935 150.41 1.13 3.95 0.014 21.09 0.750 171.78

5.0 GHz 0.935 148.49 1.08 0.96 0.015 23.50 0.756 169.97

5.2 GHz 0.935 146.53 1.04 -2.00 0.016 25.48 0.762 168.12

5.4 GHz 0.935 144.52 1.00 -4.96 0.017 27.02 0.768 166.24

5.6 GHz 0.935 142.45 0.97 -7.90 0.018 28.12 0.773 164.32

5.8 GHz 0.934 140.31 0.94 -10.84 0.020 28.83 0.777 162.36

6.0 GHz 0.934 138.12 0.91 -13.79 0.021 29.18 0.781 160.36

Download this s-parameter file in “.s2p” format at http://www.cree.com/products/wireless_s-parameters.asp
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Typical Package S-Parameters for CGH40025
(Small Signal, VDS = 28 V, IDQ = 400 mA, angle in degrees)

Frequency Mag S11 Ang S11 Mag S21 Ang S21 Mag S12 Ang S12 Mag S22 Ang S22

500 MHz 0.924 -159.12 12.64 91.13 0.015 8.27 0.485 -163.72

600 MHz 0.923 -163.56 10.58 87.23 0.015 5.84 0.491 -165.34

700 MHz 0.923 -166.92 9.08 83.86 0.015 3.96 0.497 -166.41

800 MHz 0.923 -169.60 7.95 80.83 0.015 2.43 0.502 -167.13

900 MHz 0.923 -171.82 7.06 78.03 0.015 1.16 0.508 -167.65

1.0 GHz 0.923 -173.72 6.34 75.40 0.015 0.08 0.514 -168.05

1.1 GHz 0.923 -175.39 5.75 72.89 0.015 -0.84 0.520 -168.36

1.2 GHz 0.924 -176.88 5.26 70.48 0.015 -1.62 0.526 -168.63

1.3 GHz 0.924 -178.24 4.84 68.15 0.015 -2.29 0.533 -168.88

1.4 GHz 0.924 -179.50 4.48 65.89 0.015 -2.85 0.539 -169.13

1.5 GHz 0.925 179.33 4.17 63.68 0.014 -3.31 0.546 -169.38

1.6 GHz 0.925 178.22 3.89 61.52 0.014 -3.67 0.553 -169.65

1.7 GHz 0.926 177.17 3.65 59.41 0.014 -3.93 0.560 -169.94

1.8 GHz 0.926 176.16 3.43 57.34 0.014 -4.09 0.568 -170.26

1.9 GHz 0.927 175.18 3.24 55.30 0.014 -4.16 0.575 -170.60

2.0 GHz 0.927 174.24 3.07 53.29 0.014 -4.13 0.582 -170.97

2.1 GHz 0.928 173.32 2.91 51.32 0.013 -4.00 0.589 -171.36

2.2 GHz 0.928 172.41 2.76 49.38 0.013 -3.76 0.597 -171.79

2.3 GHz 0.929 171.53 2.63 47.46 0.013 -3.43 0.604 -172.24

2.4 GHz 0.929 170.65 2.51 45.57 0.013 -2.99 0.611 -172.71

2.5 GHz 0.929 169.79 2.40 43.71 0.013 -2.44 0.618 -173.22

2.6 GHz 0.930 168.93 2.30 41.87 0.013 -1.79 0.625 -173.75

2.7 GHz 0.930 168.08 2.20 40.05 0.012 -1.04 0.632 -174.30

2.8 GHz 0.931 167.24 2.12 38.26 0.012 -0.18 0.638 -174.87

2.9 GHz 0.931 166.40 2.04 36.48 0.012 0.77 0.645 -175.47

3.0 GHz 0.932 165.56 1.96 34.73 0.012 1.82 0.651 -176.08

3.2 GHz 0.932 163.88 1.82 31.28 0.012 4.18 0.663 -177.37

3.4 GHz 0.933 162.20 1.70 27.91 0.012 6.83 0.675 -178.72

3.6 GHz 0.934 160.51 1.60 24.60 0.012 9.69 0.686 179.86

3.8 GHz 0.934 158.80 1.51 21.35 0.012 12.64 0.696 178.39

4.0 GHz 0.935 157.07 1.42 18.16 0.013 15.58 0.706 176.88

4.2 GHz 0.935 155.32 1.35 15.01 0.013 18.40 0.715 175.31

4.4 GHz 0.935 153.53 1.29 11.91 0.014 21.01 0.723 173.70

4.6 GHz 0.935 151.70 1.23 8.84 0.014 23.33 0.730 172.05

4.8 GHz 0.935 149.84 1.17 5.80 0.015 25.32 0.737 170.36

5.0 GHz 0.935 147.93 1.13 2.79 0.016 26.96 0.743 168.63

5.2 GHz 0.935 145.98 1.09 -0.20 0.017 28.24 0.749 166.86

5.4 GHz 0.935 143.97 1.05 -3.19 0.018 29.16 0.754 165.05

5.6 GHz 0.934 141.91 1.01 -6.16 0.020 29.75 0.759 163.20

5.8 GHz 0.934 139.78 0.98 -9.14 0.021 30.02 0.763 161.30

6.0 GHz 0.933 137.58 0.96 -12.12 0.023 29.99 0.767 159.35

Download this s-parameter file in “.s2p” format at http://www.cree.com/products/wireless_s-parameters.asp
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Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet 

to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other 

rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent 

or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products 

for any particular purpose. “Typical” parameters are the average values expected by Cree in large quantities and are 

provided for information purposes only. These values can and do vary in different applications and actual performance 

can vary over time. All operating parameters should be validated by customer’s technical experts for each application. 

Cree products are not designed, intended or authorized for use as components in applications intended for surgical 

implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result 

in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear 

facility. 

For more information, please contact:

Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
www.cree.com/wireless

Ryan Baker
Marketing
Cree, Wireless Devices
919.287.7816

Tom Dekker
Sales Director
Cree, Wireless Devices
919.313.5639
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Coaxial Cable 
Semi-Flex & Semi-Rigid

• .034, .047, .086, .141, .250 ins. O/D
• Copper, Aluminium & Composite
• Choice of Plating
• Lengths to 50ft, 15m
• Choice of Impedance
• Very Cost Effective

Tel. +44 (0) 1376 550220   Fax. +44 (0) 1376 552145   Email: sales@AtlanTecRF.com   www.AtlanTecRF.com
40A Springwood Drive, Braintree, Essex CM7 2YN, England

Section 8 • Cable, Connectors & Cable Assemblies • Page 60

 

Certificate No. 3875

General Specifications 
Impedance 50 ohms
Outer Conductor Material See table
Dielectric Material PTFE
Centre Conductor Material Table code
Silver Plated Copper-clad Steel SPST
Silver Plated Copper SPC
Operating Temperature Range -55+125C
Attenuation data is at +20C, Sea level, dB/100m max.
Power Rating data is at 5GHz, +20C, Sea level, CW, watts
Power Rating Increases for frequencies below 5GHz

Decreases for frequencies above 5GHz 
Please contact factory for additional 
information

(1) SF = Semi Flexible, SR = Semi Rigid 
(2) C/TC = Copper/Tin Composite, A/TP = Aluminium, Tin Plated, PC = Plain Copper, C/TP = Copper, Tin Plated

Data for Capacitance, Corona, Voltage Withstand and Moding Frequency is also available. Please contact factory for additional information.
Options: • Alternative Impedances

• FEP Jacket for Semi-Flexible types
• Silver Plated Copper Outer Conductor for Semi-Rigid types
• Silver Plated Copper Centre Conductor for some .086 and .141 types
• Low Loss versions are also available – See separate data sheet.
• Fully Flexible Cables are also available – See separate data sheet.

Note:
Material options will affect electrical and mechanical performance, including attenuation and power rating. 
Please contact factory for additional information. 

We reserve the right to change standard product specifications without notice but will be pleased to consider control drawings for quotation.

Overall Attenuation (dB/100m) max. Inside Power
Part Nom. Type (1) Outer Outer Centre Centre Bend at 5GHz

Number O/Dins. Conductor Dia. Conductor Conductor 0.5 1 5 10 20 Radius (watts)
Material (2) (mm) Material Dia. (mm) (GHz) (GHz) (GHz) (GHz) (GHz) (mm) min.   max.

ASF-047 .047 SF C/TC 1.19 SPST 0.29 79 112 258 373 544 4.00 19.1
ASF-086 .086 SF C/TC 2.10 SPST 0.51 45 64 151 222 329 6.00 52.2
ASF-141 .141 SF C/TC 3.52 SPST 0.92 26 39 92 138 210 8.00 126.7
ASF-250 .250 SF C/TC 6.10 SPC 1.65 17 25 63 98 N/A 30.00 210.0
ASR-086 .086 SF A/TP 2.20 SPST 0.51 45 64 151 222 329 7.63 52.2
ASR-141 .141 SF A/TP 3.58 SPST 0.92 26 38 91 137 209 12.50 126.7
ASR-250 .250 SF A/TP 6.35 SPC 1.65 16 24 61 94 N/A 22.23 265.3
CSR-034 .034 SR PC 0.86 SPST 0.20 112 159 362 520 752 3.00 11.1
CSR-047 .047 SR PC 1.19 SPST 0.29 79 113 259 374 544 4.20 24.7
CSR-086 .086 SR PC 2.20 SPST 0.51 45 64 151 222 329 7.63 69.8
CSR-141 .141 SR PC 3.58 SPST 0.92 26 38 91 137 209 12.50 174.4
CSR-250 .250 SR PC 6.35 SPC 1.65 16 24 61 94 N/A 22.23 364.4

CSR-034T .034 SR C/TP 0.86 SPST 0.20 112 159 362 520 752 3.00 9.5
CSR-047T .047 SR C/TP 1.19 SPST 0.29 79 113 259 374 544 4.20 20.7
CSR-086T .086 SR C/TP 2.20 SPST 0.51 45 64 151 222 329 7.63 57.2
CSR-141T .141 SR C/TP 3.58 SPST 0.92 26 38 91 137 209 12.50 140.4
CSR-250T .250 SR C/TP 6.35 SPC 1.65 16 24 61 94 N/A 22.23 290.0
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