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Abstract

Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching
morphogenesis occurs during the pseudoglandular stage (weeks 9–17 of human gestation, embryonic days (E)11.5–16.5 in
mouse) in a hypercalcaemic environment (,1.7 in the fetus vs. ,1.1–1.3 mM for an adult). Previously we have shown that
fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition,
earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca2+ channels (VGCC), inhibits fetal
lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of
VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type
(CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was
investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time,
that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung.
Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the
presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-
482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye
DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic
occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and
functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic
epithelial depolarisations evoked by airway peristalsis would allow for branching to match growth and distension within the
developing lung.
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Introduction

Efficient gas exchange in the postnatal lung requires optimal

formation of the bronchial tree in the fetus [1,2]. Lung

development begins around embryonic day (E)9.5 in mice and

week 3–4 post-conception in humans and comprises of five stages

[1]. During the pseudoglandular stage (E11.5 - 16.5 in mice, weeks 5

– 17 in humans), the developing epithelium grows into the

mesenchyme where it undergoes stereotypic branching and

budding, leading to airway formation [3]. Secretion of lung fluid

into the lumen throughout gestation generates the distending

pressure for normal growth [4]. Excessive or reduced lumen

distension [5,6] yields hyperplastic or hypoplastic lungs, respec-

tively [1]. At the same time, rhythmic peristaltic contractions

causing transient and cyclic airway occlusions develop, persisting

throughout gestation [1,7,8] and create the mechanical stimulus

that propels the fluid secreted into the airway lumen towards the

tips of the developing lung [8,9]. Spontaneously occurring, cyclic

intracellular calcium waves present in airway smooth muscle cells

immediately precede the peristaltic waves. While it is well

established that these airway smooth muscle waves require the

presence of both intracellular calcium ions (Ca2+
i) and extracel-

lular calcium ions (Ca2+
o), a firm link between generation of

airway smooth muscle waves, airway peristalsis and lung

development has never been established.

Development of the fetal lung occurs in a relatively hypercal-

caemic environment, as free ionized extracellular calcium

concentration ([Ca2+]o) is approximately 1.6–1.7 mM in both

humans and mice [10]. This level is significantly higher than the

adult concentration of 1.1–1.3 mM, and this relative fetal

hypercalcaemia is maintained irrespectively of maternal [Ca2+]o

[11] and is thought to be required for skeletal accrual of Ca2+ by
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the fetus [10]. In addition to fulfilling a role in optimal bone

formation, we have demonstrated that this relative fetal hypercal-

caemia regulates organ development in utero [12,13]. Indeed, using

a lung culture model, we showed previously that [Ca2+]o similar to

that seen in gestation (i.e. 1.7 mM) suppresses lung branching

morphogenesis and cellular proliferation while increasing fluid

secretion [12]. In contrast, [Ca2+]o comparable to those seen in the

adult (i.e. 1.0 – 1.2 mM) induce the opposite effect - an increase in

lung branching morphogenesis and a suppression of fluid

secretion. These effects of Ca2+
o on lung branching and fluid

secretion are mediated through the extracellular calcium-sensing

receptor (CaSR) [12,14], a G protein-coupled receptor whose

expression, in the developing mouse and human lung, is confined

to the pseudoglandular phase [12,15–17]. In addition to CaSR-

mediated effects on lung development, previous studies have

demonstrated the importance of L-type Ca2+ channels in lung

development. Indeed, treatment of pseudoglandular mouse lung

rudiments with nifedipine prevents airway peristalsis and causes

lung hypoplasia [18,19]. These results suggest that, in addition to

their ability to suppress branching morphogenesis through the

CaSR, calcium ions regulate lung growth through voltage-gated,

L-type calcium channels. Yet, the identity of the voltage-gated

calcium channels (VGCC) in the fetal lung and the existence of a

functional link with lung growth are unknown.

In this study, we sought to determine if, in addition to its

established effects through the CaSR, the hypercalcaemic envi-

ronment of the fetus could regulate branching morphogenesis

through activation of VGCC present in the developing lung.

Initially, we determined the expression of a variety of L, P/Q, N,

R and T-type VGCC by performing immunohistochemistry on

serial sections of human lungs at 9 weeks post-conception and of

mice at an equivalent stage of gestation (i.e., E12.5). Subsequently,

we assessed the effects of selective inhibitors of VGCC on

branching morphogenesis in pseudoglandular mouse lung rudi-

ments cultured in chemically defined, serum-free conditions.

Finally, we tested the possibility that these channels could be

activated using combined electrophysiological and biophysical

methods.

Methods

Ethical approval
Wild type C57BL/6 were housed conventionally with 12 h

light:dark cycle with free access to food and water. All animal

procedures were carried out in the UK and were approved by the

UK Home Office and carried out in accordance with the Animal

(Scientific Procedures) Act 1986.

Human fetal tissue was collected following the guidelines of the

Polkinghorne [20] and Department of Health [21] reports and

with Bro Taf Local Research Ethics Committee approval. Full

written consent was obtained from the maternal donor, following

consent for the termination, as part of the Medical Research

Council (UK)-sponsored, South Wales initiative for transplanta-

tion (SWIFT) program. Human fetal lung tissue was obtained

from ethically-consented maternal donor medical termination at 9

week of pregnancy. Gestational age was first assessed by

ultrasound and confirmed using fetal morphometric parameters

after therapeutic abortion.

Immunohistochemistry
Human fetal lungs (9 week post-conception) or mouse E12.5

embryos were fixed in 4% paraformaldehyde overnight and

subsequently embedded in paraffin. 5 mm thick, paraffin-embed-

ded sections were deparaffinised in xylene and rehydrated using a

decreasing alcohol-water series (100%, 90%, 75% ethanol),

followed by washes in distilled water. After antigen retrieval in

citrate buffer, non-specific staining was prevented by incubating

the slides with blocking solution (phosphate-buffered saline added

with 1% bovine serum albumin and 5% Sea Block – Thermo

Scientific, Cramlington, U.K.) for 1 h at room temperature.

Primary antibodies against L-type (CaV1.2 and CaV1.3), P/Q type

(CaV2.1), N-type (CaV2.2) R-type (CaV2.3) and T-type (CaV3.2

and CaV3.3) Ca2+ channels were diluted in blocking solution (1/

100 for mouse E12.5 whole embryos, 1/50 for human fetal lungs)

and applied to the slide for 12 – 16h at room temperature. Primary

antibody suppliers and dilutions used were [22]:

Cav1.2 - rabbit polyclonal (Alomone Labs; mouse: 1/100,

human: 1/50)

Cav1.3 - rabbit polyclonal (Alomone Labs; mouse: 1/100,

human: 1/50)

Cav2.1 - rabbit polyclonal (Alomone Labs; mouse: 1/100,

human: 1/100)

Cav2.2 - rabbit polyclonal (Millipore; mouse: 1/100, human: 1/

100)

Cav2.3 - rabbit polyclonal (Abcam; mouse: 1/100, human: 1/

100)

Cav3.2 - goat polyclonal (N-18) (Santa Cruz; mouse: 1/100,

human:1/100)

Cav3.3 - goat polyclonal (N-20) (Santa Cruz; mouse: 1/100,

human:1/100)

Secondary antibody suppliers and dilutions were: goat anti-

rabbit horse radish peroxidase (HRP) (Cav 1.2, 1.3, 2.1, 2.2, and

2.3; DAKO, Ely, U.K.; 1:200 for both mouse and human) or

donkey anti-goat HRP (Cav 3.2 and 3.3; Abcam; 1:200 for both

mouse and human).

The secondary, HRP-conjugated antibodies were applied for 1

h at room temperature. Antigen-antibody binding was visualized

with diaminobenzidine (Sigma-Aldrich), after which the slides

were counterstained with haematoxylin. Negative controls were

carried out through substitution of primary antibodies with rabbit

serum. The slides were dehydrated using an increasing alcohol

series (30s in 75% ethanol, 4 min in 100% ethanol) and finally

cleared in xylene before being mounted using DPX mounting

medium (Depex-Polystyrene in xylene, Timstar laboratory Sup-

pliers, Ltd, Marshfield Bank, U.K.). Slides were left to dry

overnight and then photographed using a microscope attached to

an Infinity 2-2C CCD camera (Lumenera, Ottawa, Canada) and/

or scanned using a slide scanner (MIRAX SCAN, Carl Zeiss

MicroImaging GmbH, Göttingen, Germany).

Measurements of lung branching morphogenesis
Lungs explanted from E12.5 mice were cultured for 48 h

according to previously published protocols [12,23–25]. Images

were captured at 0 and 48 h with a dissecting microscope

equipped with a digital camera (Leica Microsystems, Milton

Keynes, UK). Branching morphogenesis was quantified and is

expressed as an ‘increase in branching after 48 h (%)’, determined

using the following equation: (Branches48h – Branches0h)/(Bran-

ches0h) x 100. The [Ca2+]o in the DMEM-F12 medium employed

for these experiments was 1.05 mM, representative for the adult,

‘‘low Ca2+
o’’ conditions. For the fetal, ‘‘high Ca2+

o’’ conditions,

[Ca2+]o in the DMEM-F12 was increased from 1.05 mM [Ca2+]o

to 1.70 mM [Ca2+]o using 1 M CaCl2 (Sigma-Aldrich, Gilling-

ham, UK). The dihydropyridine nifedipine (Sigma-Aldrich,

Gillingham, UK) and the tarantula toxin SNX-482 (Tocris

Bioscience, Bristol, UK) were used as Ca2+ channel blockers.

Nifedipine was dissolved in ethanol (0.001% final concentration)

while SNX-482 was dissolved in DMSO (0.001% final concen-
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tration). Vehicle control experiments were performed by adding

the equivalent amount of ethanol or DMSO to the lung cultures.

Data are presented as the mean 6 the standard error of the mean

(SEM) from multiple pooled experiments. Significance was

determined using a one-way ANOVA with Tuckey’s post hoc test

using GraphPad Prism 6.01 software (GraphPad Software, La

Jolla, CA, USA).

Loading and visualization of the voltage-sensitive probe -
DiSBAC2(3)

Lungs explanted from E12.5 from C57BL/6 mice were

attached to filters, visualized using an Olympus CK41 inverted

microscope (Olympus, Southall, U.K.) and secured using a slice

anchor (Warner Instruments, Hamden, CT, USA). A 5 MV
borosilicate glass electrode (World Precision Instruments, Steve-

nage, U.K.) was filled with a solution containing 5 mM DiS-

BAC2(3) (Invitrogen, Paisley, U.K.) in 0.4% trypan blue/0.85%

saline solution (Invitrogen). Electrodes were slowed pushed into a

terminal lumen whilst maintaining positive pressure, with the

presence of trypan blue in the lumen being indicative of successful

access to the lumen. Slow, continuous positive pressure allowed

entry of the loading solutions to sections of the lumen, and lungs

were then incubated for 30 – 45 min at 37uC. DiSBAC2(3)

fluorescence was visualized using a Cell Map IC confocal laser-

scanning microscope (BioRad, Hemel Hempstead, U.K.), coupled

with a water-immersion BX50WI and a UM Plan Fl 10x/0.30 W

objective (both from Olympus, Southend-on-Sea, U.K.). Lungs

were secured using a slice anchor in a 35 mm cell culture dish in

5 mL of solution containing in (mM): 135 NaCl, 5 KCl, 1.23

MgCl2, 1.0 mM CaCl2, 5 HEPES, 10 glucose, pH 7.4. DiS-

BAC2(3) was excited at 532 nm and images were collected using a

560 nm long pass filter, by the direct method. Images were taken

at 6s intervals over a ten minute time period at room temperature

and then processed and analysed with the software programs

LaserSharp 2000 (Carl Zeiss, Cambridge, U.K.) and ImageJ 1.46r

(National Institute of Health). After 5 minutes, the KCl

concentration in the extracellular solution was increased to

50 mM. For DiSBAC2(3) fluorescence intensity, regions of interest

were selected and then followed in either the vertical or horizontal

plane to correct for lung movement and contractions. Average

pixel intensity was measured using ImageJ, with increases in

fluorescence indicative of depolarization of the membrane, before

being plotted using GraphPad Prism 6.0 (GraphPad).

Results

Human and mouse pseudoglandular lungs express L-
type and R-type Ca2+ channels

Immunohistochemistry on serial sections of human fetal lungs

show that the airway epithelium expressed Cav1.2, Cav1.3 and

Cav2.3 at the apical membrane (Figure 1), with little or no

expression of Cav2.2 and Cav3.3 (Figure 2). Cav2.1 and Cav3.2

were also observed at the basolateral membrane of the airway

epithelium and in the smooth muscle (Figure 2). A summary of the

Figure 1. The L-type calcium channels, Cav1.2 and Cav1.3, and
the R-type calcium channel, Cav2.3, are expressed in 9 week
human developing lungs. Paraffin-embedded, 5 mm-thick serial
sections from an 9 week human fetal lung were dewaxed and used
for immunohistochemistry. A: Expression of Cav1.2, Cav1.3 and Cav2.3 in
the lung epithelium, visualised using DAB (brown staining). Scale bar =
5000 mm B,C: Higher magnification photomicrographs show expression
of these channels at the apical membrane of the epithelium lumen.
Sections were counterstained with Harris’ hematoxylin (blue staining).
Negative controls were carried out through the substitution of the
primary antibody with an isotype control (top panels). Scale bar =
1000 mm
doi:10.1371/journal.pone.0080294.g001

Figure 2. Further characterisation of the expression of voltage-
gated calcium channels in the developing human lung. 5 mm-
thick formalin-fixed, paraffin-embedded serial sections of 11 week post-
conception human fetal lungs were dewaxed and used for immuno-
histochemistry. A: Expression of P/Q type, Cav2.1, and of T-type, Cav3.2,
calcium channels could be detected at the basolateral side of epithelial
cells and in smooth muscle cells, visualised using DAB (brown staining).
Scale bar = 5000 mm. B,C: Higher magnification images (40x and 100x)
show little-to-no expression of the N-type calcium channel, Cav2.2 or
the T-type, Cav3.3 in the lung parenchyma. Negative controls were
carried out through the substitution of the primary antibody with an
isotype control. Sections were counterstained with Harris’ hematoxylin
(blue staining). Scale bar = 1000 mm.
doi:10.1371/journal.pone.0080294.g002
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types of VGCC found in the human lung, their cellular

distribution and the specific inhibitors is reported in Table 1. In

the mouse, Cav1.2 (cardiac L-type) was expressed in the

developing heart, brain and neuronal outgrowths on the spinal

cord [26] (Figure 3A and 3B). CaV1.3 (neuronal L-type) and

Cav2.3 (R-type) expression were detected within mouse brain

[27,28] and heart [29,30] (Figure 3) and in the cochlea [31]

(Cav1.3, Figure S1). Consistent with what was observed in the

human, expression of all three of these channels was also detected

in the apical membrane of the airway epithelium of the

pseudoglandular mouse lung (Figure 3B and 3C). A summary of

the expression of the different types of VGCC in the human lung is

presented in table 1.

Epithelial voltage changes occur within the epithelium of
the pseudoglandular mouse lung

In order to understand why VGCC are expressed in the fetal

lung epithelium and how they might exert a physiological effect,

the epithelial layer of the explants was loaded with a voltage-

sensitive dye, DiSBAC2(3). This dye was injected directly into the

lung lumen, and this manoeuvre resulted in its exclusive loading

into the epithelial sheet lining the developing airway. Confocal

imaging of DiSBAC2(3) fluorescence in the focal plane of the

epithelium showed robust and reproducible voltage oscillations,

which coincided with the fetal airway peristalsis (Figure 4, Video

S1).

The L- and R-type Ca2+ channel blockers, nifedipine and
SNX-482, rescue the inhibitory effects of fetal
hypercalcaemia on lung branching morphogenesis

To demonstrate that calcium influx through VGCC is directly

responsible for the inhibitory effects of fetal hypercalcaemia on

lung branching morphogenesis, we tested the effects of pharma-

cological blockers of L-type (CaV1.2 and 1.3) or R-type (CaV2.3)

calcium channels on branching morphogenesis. Pseudoglandular

mouse lung rudiments were cultured for 48 h in medium

containing 1.7 mM Ca2+
o in the presence of either SNX-482 or

nifedipine (1 uM for both), and branching morphogenesis was

assessed after 48h. Paired vehicle controls were carried out in the

presence of 0.001% (v/v) ethanol (for nifedipine) or 0.001% (v/v)

DMSO (for SNX-482). Neither ethanol (not shown) nor DMSO

[12] affected branching morphogenesis and data obtained from

these controls were pooled. In accordance with our previously

published results, culturing E12.5 C57BL/6 mouse lung explants

in fetal hypercalcemic conditions (1.7 mM Ca2+
o) led to a

reduction in the number of terminal lung branches, compared

to those in 1.05 mM Ca2+
o from 116.269.15 to 39.864.1 (n = 11,

p,0.001). Addition of nifedipine, presumably acting at both the

epithelial and smooth muscle L type Ca2+ channels, substantially

rescued the inhibitory increase of the high Ca2+ so that branching

in E12.5 mouse lungs cultured in the presence of 1.7 mM Ca2+--
o

and 1 mM nifedipine was 81.1611.7% (n = 6, p,0.01. Figure 5).

Importantly, 1 mM SNX-482, which can only inhibit the Cav2.3

channel in the epithelium, also partially rescued the suppressive

effect of high Ca2+. Thus, airway branching increased from

39.864.1% to 70.664.5% (n = 9, p,0.05. Figure 5). These

observations indicate that: i) blocking Ca2+
o influx through VGCC

partly rescues Ca2+
o-dependent inhibition of branching morpho-

genesis, and that; ii) the hypercalcaemic suppression of branching

is due, in part, to calcium influx through R-type channels,

Table 1. Summary of the expression of VGCC in the pseudoglandular human lung.

Epithelium (apical) Epithelium (basolateral) Smooth muscle Blocker

Cav1.2 (L-type, A1C) Y Y Y Nifedipine

Cav1.3- (L-type, A1D) Y N N Nifedipine

Cav2.1 (P/Q-type, A1A) N N Y Agatoxin

Cav2.2 (N-type, A1B) N N N v-Conotoxin

Cav2.3 (R-type, A1E) Y N N SNX-482

Cav3.2 (T-type, A1H) N Y Y None

Cav3.3 (T-type, A1I) N N N None

doi:10.1371/journal.pone.0080294.t001

Figure 3. The L-type calcium channels, Cav1.2 and Cav1.3, and
the R-type calcium channel, Cav2.3, are expressed in the
epithelium of E12.5 mouse lungs. A: Immunohistochemistry carried
out on 5 mm-thick, paraffin-embedded serial sections of C57BL/6 E12.5
whole embryos shows expression of Cav1.2, Cav1.3 and Cav2.3 in the
heart (all), neuronal outgrowths on the spinal cord (Cav1.2) and CNS
(Cav1.2 and Cav2.3) (brown staining). Scale bar = 50 mm. B, C: Higher
magnification images demonstrate that Cav1.2, Cav1.3 and Cav2.3 are
also expressed apically in the epithelium of the developing lung.
Sections were counterstained with Harris’ haematoxylin (blue staining).
Negative controls were performed by substitution of the primary
antibody with an isotype control (A-C, top panels). Scale bar =
1000 mm.
doi:10.1371/journal.pone.0080294.g003
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expressed exclusively in the apical membrane of the airway

epithelium.

Discussion

Fetal development occurs in a hypercalcaemic environment,

compared to that of the adult. We have demonstrated previously

that this relative fetal hypercalcemia is an important signal in the

pseudoglandular lung, balancing branching morphogenesis with

fluid secretion via developmentally regulated expression of the

CaSR [12,14]. In addition to the CaSR, a functional role for

VGCC has been postulated in the developing lung. The existence

of L-type Ca2+ channels in the fetal mouse lung has been

previously hypothesised by Roman who showed that treatment of

pseudoglandular lung rudiments with nifedipine led to the

formation of hypoplastic lungs [19]. Because nifedipine blocks

voltage-gated Ca2+ channels, these effects have been ascribed to

loss of the spontaneous airway peristalsis, which would occur as a

consequence of its inhibition of voltage-gated Ca2+ channels in the

parabronchial smooth muscle cells surrounding the developing

airways [19,32]. However, evidence that nifedipine treatment does

not affect cleft formation between branch points [19], together

with the fact that branching morphogenesis precedes the

development of airway contractions [19] seem to rule out an

exclusive role of airway peristalsis in branching morphogenesis. To

evaluate the contribution that VGCC make to lung development,

we assessed the functional expression of a variety of VGCC in the

developing human and mouse lung, and the impact of their

pharmacological manipulation on branching morphogenesis.

Our data show that several members of the Cav family are

highly expressed in pseudoglandular mouse and human lung not

only in the smooth muscle, but surprisingly also within the

epithelium of the developing human and mouse lung. Specifically,

we demonstrated significant expression of the L-type calcium

channels, Cav1.2 and Cav1.3, and also the R-type calcium

channel, Cav2.3, in the lung epithelium. In addition, the human

fetal lung epithelium exhibits abundant expression of the P/Q-

type Cav2.1 and of the T-type Cav3.2. Although mostly expressed

in cardiac, neuronal and endocrine cells, VGCC expression has

been previously reported in a limited number of epithelial cells of

the postnatal lung, with Cav2.3 being expressed in Clara-like cells

and airway smooth muscle bundles, and Cav1.3 expressed in the

apical membranes of a small number of epithelial cells [22].

Cav3.2 expression has also been previously described in other non-

Figure 4. Peristaltic contractions lead to increases in voltage-dependent fluorescence in the epithelium of the developing lung.
Lung explants from E12.5 C57BL/6 mice were cultured for 48 hours before being loaded with DiSBAC2(3) through intra-luminal injection. A: a lung
successfully loaded with DiSBAC2(3) with regions of interest (ROI) for the graph in B. The yellow square demonstrates the area showed in C. B:
changes in DiSBAC2(3) fluorescence intensity (arbitrary units, a.u.) for the ROIs shown in A, with increases in DiSBAC2(3) fluorescence intensity
indicative of membrane depolarization. The dotted line shows that airway occlusion, evoked by 50 mM KCl, is accompanied by a slow but sustained
depolarization of the membrane. Asterisks show spikes in fluorescence intensity, which correlate with contraction of the lungs during peristalsis, as
seen in C. C: zoomed-in area of the lung, as shown by the yellow square in A. White dotted lines highlight the apparent movements of the luminal
area during normal airway peristalsis (control) or after the addition of 50 mM KCl. Note that yellow asterisks correlate with lung airway contraction
and an apparent spike in fluorescence intensity (also highlighted by black asterisks in B), suggesting that changes in epithelium membrane
polarization occurs during peristalsis.
doi:10.1371/journal.pone.0080294.g004
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excitable tissues, namely the adult human kidney and lung

endothelium [22,33]. However, this is the first study to report

on the expression of such a range of voltage-gated Ca2+ channels

in the embryonic lung, many of which are expressed within the

epithelium. Since Cav1.2 is absent from the postnatal mouse lung

[22], our study suggests that, similarly to what we observed

previously for the CaSR [12], Cav1.2 expression is also

developmentally regulated and confined to the fetal lung,

suggesting that this channel plays a role in embryonic lung

development. Recent evidence suggests that single nucleotide

polymorphisms in Cav1.2 are associated with a range of

psychiatric disorders, including autism spectrum disorders [34].

Interestingly, a study carried out in 459 subjects revealed that, of

the 49 of these who exhibited defective branching (i.e., ‘‘doublets’’)

in the lower airway, all of them had autism spectrum disorders.

Indeed, the authors have proposed airway doublets as markers for

autism [35].

Having ascertained the expression of VGCC in the pseudo-

glandular human and mouse lungs, we set out to determine their

contribution to lung development. To dissect peristalsis-driven

events from epithelial Ca2+ channel-mediated effects, we used

inhibitors of VGCC present in both smooth muscle and

epithelium (namely Cav1.2 and 1.3), i.e., nifedipine, and a

specific blocker of channels expressed solely within the

epithelium (namely Cav2.3), i.e., SNX-482. Our observations

show that nifedipine rescues the inhibitory effects of fetal

hypercalcemia on lung branching morphogenesis to a level,

which is comparable to that seen in the presence of medium

containing the lower [Ca2+]o [12], suggesting that Ca2+
o influx

through VGCC contributes to the hypercalcaemic suppression

of branching. More importantly SNX-482 also rescues the

inhibitory effects of fetal hypercalcaemia on branching mor-

phogenesis. SNX-482 is a specific blocker of Cav2.3 present

exclusively in the developing human and mouse lung epitheli-

um, and therefore ineffective at blocking airway peristalsis.

Therefore, our results suggest that airway peristalsis contributes

to, but cannot fully account for, the Ca2+-dependent regulation

of branching morphogenesis.

Finally, to assess whether the epithelial VGCC can be

activated by a depolarising stimulus, we measured changes in

membrane potential in cells lining the lumen of the developing

mouse bronchi by injecting the voltage-sensitive fluorescent dye

DiSBAC2(3) directly into the lung lumen 30–45 min before

experimenting. DiSBAC2(3) is a membrane potential dye, which

enters the cell upon depolarisation where it binds to intracellular

proteins and, as such, unlikely to leak out the cell from the

basolateral side into the mesenchyme. Our observations show

that, in fetal hypercalcemic conditions, rhythmic depolarisation

and hyperpolarisation can be observed, which coincide with

airway peristalsis, as shown by cyclic occlusion of the lung

lumen. Airway peristalsis is initiated by spontaneous smooth

muscle cell contractions in the pacemaker regions of the

proximal airway [9]. It produces a pulsatile wave of fluid

towards the tip of the growing lung, and is thought to be

essential to lung growth, as shown by experiments demonstrat-

ing that manoeuvres aimed at inhibiting or accelerating airway

peristalsis result in impaired or increased lung growth in vitro

[1,9]. Our study suggests that peristalsis-driven cycles of

depolarisation and hyperpolarisation can also lead to activation

of epithelial voltage-gated calcium channels. This mechanism

would allow for branching morphogenesis to proceed in a

synchronous manner with the airway expansion driven by the

mechanical stimulus provided by fluid being propelled within

the airway lumen.

In conclusion, ambient fetal calcium plays a crucial role in

lung development. Hypercalcaemic conditions present within

the fetus suppress branching morphogenesis by acting on

proteins whose expression is developmentally confined to the

fetal lung, namely the CaSR and VGCC. Whether the

consequence of CaSR activation, or influx via VGCC,

ultimately increases in [Ca2+]i are likely to provide the

underpinning stimulus for the suppressive effects of fetal

hypercalcemia on branching morphogenesis. Sub-optimal lung

development could result from alterations in fetal [Ca2+]o and

therefore predispose to pathological conditions later on in life,

such as interstitial lung disease, via the CaSR[36], or to a

reduction in airway diameter and branching defects, yielding

impaired airway and secretion clearance, via VGCC [34].

Supporting Information

Figure S1 Expression of Cav1.3 in sensory cells in the
developing mouse. Immunohistochemistry carried out on

5 mm-thick, paraffin-embedded serial sections of C57BL/6 E12.5

whole mouse embryos shows expression of Cav1.3 in sensory cells

(photoreceptors and cochlear cells, arrows) and neuronal out-

growths of the spinal cord (brown staining). Scale bar = 1000 mm.

(TIF)

Video S1 Time-lapse video of DiSBAC2(3) loaded lung
epithelium. A lung explant from an E12.5 C57BL/6 mouse was

cultured for 48 h before being loaded with DiSBAC2(3) through

intra-luminal injection. DiSBAC2(3) fluorescence was visualized

using a Cell Map IC confocal laser-scanning microscope with a

water-immersion BX50WI and a UM Plan Fl 10x/0.30 W

objective. Lungs were secured using a slice anchor in a 35 mm cell

culture dish in 5 mL of solution containing in (mM): 135 NaCl, 5

KCl, 1.23 MgCl2, 1.0 mM CaCl2, 5 HEPES, 10 glucose, pH 7.4.

DiSBAC2(3) was excited at 532 nm and images were collected

Figure 5. L-type/R-Type Ca2+
o channel blockers rescue Ca2+

o-
dependent inhibition of lung branching morphogenesis. Effect
of the calcium channel blockers, SNX-482 and nifedipine, in the
presence of 1.70 mM Ca2+

o on lung branching morphogenesis in
C57BL/6 E12.5 mouse lungs after 48 h in culture. Lungs cultured in
presence of 1 mM SNX-482 and 1 mM nifedipine showed significant
rescue of Ca2+-dependent suppression of branching compared to those
cultured in medium containing 1.70 mM Ca2+

o alone. Data were pooled
from 3 – 4 separate isolations for each condition and are presented as
mean 6 SEM. *, p,0.05; **, p,0.01; ***, p,0.001.
doi:10.1371/journal.pone.0080294.g005
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using a 560 nm long pass filter, by the direct method. Images were

taken at 6s intervals over a ten minute time period at room

temperature and after 5 minutes, the KCl concentration in the

extracellular solution was increased to 50 mM.

(TIF)
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