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Abstract

One of the potential explanations for negative compatibility effects (NCE) in subliminal motor priming tasks has been
perceptual prime-target interactions. Here, we investigate whether the characteristic tri-phasic LRP pattern associated with
the NCE is caused by these prime-target interactions. We found that both the prime-related phase and the critical reversal
phase remain present even on trials where the target is omitted, confirming they are elicited by the prime and mask, not by
prime-target interactions. We also report that shape and size of the reversal phase are associated with response speed,
consistent with a causal role for the reversal for the subsequent response latency. Additionally, we analysed sequential
modulation of the NCE by previous conflicting events, even though such conflict is subliminal. In accordance with previous
literature, this modulation is small but significant.
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Introduction

Behaviour can be changed by masked visual stimuli which are

not perceived consciously [1]. In a typical masked priming task, a

prime is presented and immediately visually masked. Afterwards a

response-relevant target is displayed and the participant responds

to it by pressing corresponding response keys. When the target

immediately follows the prime, a positive compatibility effect

(PCE) typically occurs: responses in compatible trials (prime and

target stimuli are mapped to the same response) are generally

faster and more accurate than responses in incompatible trials

(prime and target stimuli are mapped to alternative responses).

This pattern can counter-intuitively reverse when the inter-

stimulus interval (ISI) increases beyond 100 ms (i.e. responses to

compatible trials are slower and less accurate than responses to

incompatible trials) which results in the emergence of a negative

compatibility effect (NCE; Eimer & Schlaghecken, 1998).

This positive-then-negative pattern (PCE to NCE) of non-

conscious priming has been associated with a tri-phasic pattern of

the Lateralized Readiness Potential (LRP). The LRP is computed

by subtracting event-related potentials (ERPs) of electrodes

ipsilateral to the response hand from contralateral activity. This

is done for each response hand separately and the difference

waveforms are then averaged. The resulting LRP reflects the

lateralized activity linked to the response hand, while subtracting

out all non-lateralised activity. It can therefore measure lateralised

covert response tendencies before the overt motor response is

given [2]).

The following LRP pattern has been found in masked priming

tasks with ISIs .100 ms (e.g. Eimer & Schlaghecken, 1998; [3,4];

Jaśkowski, Białuńska, Tomanek, & Verleger, 2008; Praamstra &

Seiss, 2005). An initial activation corresponding to the primed

direction (prime-related activation) is followed by a ‘reversal phase’

where response tendencies appear to be opposite to the initial

activation. A third phase corresponds to the response execution,

which rises earlier in the incompatible compared to the compatible

condition, reflecting the behavioural latency difference – the NCE.

In this article we will call this phase the target-related response

activation.

The aim of this paper is to test the relationship between the tri-

phasic pattern of the LRP and the NCE, in the light of two types of

explanation for the NCE: reversal of the motor tendency elicited

by the prime and mask versus interactions between the prime and

target.

Reversal of the motor tendency
The critically interesting phase of the LRP pattern, i.e. reflecting

the development of the NCE, is the reversal phase which follows

initial prime-related activation, and appears to delay response

activation to the target. Under three of the main accounts of the

NCE, this phase is thought to represent a reversed motor tendency

elicited by the prime-mask stimuli ([5]a). In these accounts, the

motor representations needed to make the appropriate response

are in an unfavourable state when the target information arrives.

Therefore it is assumed that the occurrence of the reversal phase

(i.e. the different directions of activation preceding the target-

related LRP) causes the response activation in the incompatible
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condition to occur earlier than in the compatible condition, which

in turn causes the behavioural NCE.

Here we test a shared assumption of the three ’motor reversal’

accounts of the NCE that the reversed LRP phase is triggered by

prime and mask before the target information arrives. We do not

attempt to distinguish between the three accounts here, but in

brief, the theories differ in whether and how motor inhibition of

the initial prime-activated motor tendency is initiated, which leads

to the reversal of the motor tendency. Nevertheless, we are giving

a short summary of these three accounts here. Eimer and

Schlaghecken (1998, 2003) attributed the reversed LRP deflection

to a self-inhibitory mechanism in the motor system, which acts to

suppress the initial sub-threshold motor activation evoked by the

prime and provides a mechanism to keep automatic motor

activation in check without the intervention of top-down control

processes. Jaskowski and colleagues [6–8] proposed a variant of

this theory, suggesting that the inhibition of the primed response

tendency is triggered by another potentially relevant stimulus (i.e.

the mask stimulus) that immediately follows the prime. For

example, Jaśkowski et al. (2008) varied the interval of the mask

with respect both to the prime and to the target while the prime-

target interval remained fixed. The LRP peak of the reversal phase

appeared time-locked to the mask rather than to the prime or

target (for further supporting and non-supporting evidence see e.g.

Boy, Clarke, & Sumner, 2008, and Sumner & Brandwood, 2008).

The ‘‘object updating’’, "active mask", or ‘‘mask-induced

inhibition’’ account proposed a third reason for reversing the

response tendency, suggesting that in some circumstances the

features of the mask could reverse the primed motor tendency

without the need for self-inhibition in the motor system [9–11]

Verleger, Kötter, Jaśkowski, Sprenger, & Siebner, 2006). Specif-

ically, although a rightward prime arrow would initially cause

activation of the right hand response, a mask that contained

features of the primes might then prime the leftward response, so

that by the time the target appears there is motor priming in the

opposite direction from the prime. As the mask used in the current

study does not contain features of the prime stimuli, this account is

less relevant for us here (Sumner, 2008).

Please note, in all three theories, activation or inhibition of one

response tendency is likely to be accompanied by the opposite

effect for the response alternative, via a push-pull mechanism such

as mutual inhibition (e.g. [12,13–16]; [5]a). In their masked

priming study, Praamstra and Seiss (2005) found evidence for this

dynamic reciprocal inhibition of motor cortices during the reversal

phase of the LRP. Similar activation – inhibition patterns were

also reported for the initial phase in the flanker task (Verleger,

Kuniecki, Möller, Fritzmannova, & Siebner, 2009).

The critical assumption based on the accounts stated above and

tested in this article is that the reversal phase of the LRP is entirely

produced by the prime and mask, and would therefore occur even

in trials where the target is omitted. Alternatively, if the reversal

phase would reflect the effect of the prime/mask on the initial

stages of target processing, it would not occur if the target is

absent. This basic assumption has never been tested. Relatedly, if

the reversal phase is causal for the NCE, we would expect changes

in its amplitude to affect response time on trials with targets. We

cannot manipulate the LRP amplitude while holding stimulus

factors constant, but we did test whether it covaries with response

speed as predicted.

Delayed processing through prime-target interaction
The alternative assumption, that the reversal phase is due to

prime-target interactions, comes from another class of theories.

These theories explain the NCE through delayed perceptual or

attentional processing of targets when they share features with the

primes ([17,18],see also [19,20]). Lleras and Enns (2005) also

discussed this idea alongside their object updating theory.

Adaptation-like effects such as ‘‘repetition blindness’’ [21,22],

whereby the system becomes less sensitive to stimuli it has just

previously been exposed to, maybe ubiquitous at many levels of

perceptual and cognitive processing. This can also be seen in EEG

data in metacontrast masked priming studies, where the N2pc,

evoked by selection of a target from two simultaneously presented

stimuli, can be markedly reduced for targets presented after

congruent primes (e.g. Jaśkowski, Skalska, & Verleger, 2003;

Jaśkowski, Van der Lubbe, Schlotterbeck, & Verleger, 2002;

Verleger & Jaśkowski, 2007; Verleger, Żurawska vel Grajewska, &

Jaśkowski, 2012). Related to those habituation accounts is a

proposal that the NCE emerges due to an attentional refractory

period, developed as a computational model by Sohrabi & West

(2008).

While a perceptual locus is not supported by some behavioural

evidence [16]; Boy & Sumner, 2010; Schlaghecken & Eimer,

2004; Schlaghecken, Klapp, & Maylor, 2009), it does appear to be

supported by other recent evidence provided by combining the

masked prime paradigm with the PRP (psychological refractory

period) paradigm (Krüger, Klapötke, & Mattler, 2011). In a dual

task situation, the NCE disappeared when the interval between the

stimuli for the two tasks was short, indicating - by PRP logic - that

the source is before the response selection bottleneck. If response

selection for the second task has to wait for the first task to

complete, then differences in perceptual processing speed would

be absorbed into the slack time, but differences in motor

processing time would remain apparent. Also note that percep-

tual/attentional interactions do not require that primes and masks

occupy the same location, even though co-locality has previously

been seen as a requirement of perceptual theories of the NCE [23].

Many feature-specific cells in visual cortex and temporal cortex

have very large receptive fields. Indeed, this was one of the

motivators for Huber’s (2008) model.

For our purposes, both habituation and attentional accounts

share the critical factor that the NCE stems from interactions

between prime and target processing outside the motor system -

interactions that act to slow the perceptual processing of the target

in compatible trials. These accounts do not predict that a prime/

mask alone would produce reversal of the LRP. Motor effects

corresponding to the NCE should only emerge once the targets are

being processed. Since the reversal phase of the LRP actually

occurs after target presentation, it remains theoretically possible

that it depends, at least partially, on the presence of the target. The

simplest way to test this is to omit the targets from some trials.

Summary of predictions
In sum, our main question is whether the prime and mask

stimuli are sufficient to induce the full reversal phase of the tri-

phasic LRP, as predicted by the motor tendency accounts.

Alternatively, if prime-target interactions account for the NCE

the reversal phase of the LRP should not occur in the no-target

condition. Of course, it could also be a combination of both

accounts, reflected in a reduced magnitude of the incorrect

response activation in the no-target condition. Note that it is

essential to embed no-target (‘prime/mask only’) trials within

blocks that contain targets on most trials in order for the primes to

have associated response tendencies and produce priming at all.

Our second question was whether response speed to targets

covaries with the amplitude of the reversal phase, as expected if

this reversal is causal for slowing or facilitating responses and thus

creating the NCE. Lastly, our design affords the opportunity to
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analyse the effect of go and nogo trials on subliminal priming in

the subsequent trial. Such sequential effects have been often

reported in other conflict tasks (Gratton, Coles, & Donchin, 1992;

Stürmer, Leuthold, Soetens, Schröter, & Sommer, 2002; Praam-

stra & Plat, 2001), and they have been explained with enhanced

cognitive control after trials with conflicts (Botvinick, Braver,

Barch, Carter, & Cohen, 2001). The sequential modulation of the

NCE is strongly reduced in masked priming tasks where the

conflict is not consciously perceived, as reported by Praamstra and

Seiss (2005). It was predicted to find a similar reduction of the

sequential modulation of the NCE in the current study, but it was

unclear what happens to the NCE after response inhibition in the

previous trial, i.e. when the previous event is a no target (nogo)

trial. This research question was not the original aim of the

project, but we provide the data to stimulate future research.

Methods

Participants
The study was conducted with 12 participants. Two were

omitted from the analysis; one identified the prime even when all

mask lines were presented in the staircase (ceiling effect), the other

one had a poor signal-to-noise ratio in the EEG. The mean age of

the remaining 10 participants (8 women) was 21.664.1 years. All

had normal or corrected-to-normal vision and were right-handed

(HQ: 0.960.2), except one who was ambidextrous (HQ: 0.05;

Edinburgh Handedness Inventory; [24]. The study was conducted

at the University of Surrey and it was approved by the University

of Surrey Ethics Committee. Written informed consent was

obtained from all participants for this study.

Stimuli and experimental procedure
The stimuli were displayed in black on a white background on a

60 Hz screen 100 cm from the participant in a dimly lit room.

Prime and target stimuli were left and right pointing double arrows

(,, and .., size 0.6u60.4u). The masks were comprised of 20

randomly drawn lines on a virtual grid (0.8u60.5u). A new mask

was constructed in each trial. The fixation cross (sized 0.2u60.2u)
and the target stimuli were displayed in the screen centre, whereas

the two prime and the two mask stimuli were shown at a distance

of 0.8u (centre to centre measurement) to the left and right from

the centre of the screen. The two simultaneously presented primes

always pointed in the same direction. Responses were measured

with ERTS response keys (Berisoft Cooperation, Frankfurt am

Main, Germany).

The trial began with an empty screen for 300 ms, followed by a

fixation cross for 1500 ms and another empty screen for 200 ms.

Primes were displayed for 33 ms, immediately followed by mask

stimuli shown for 100 ms. After an empty screen for 33 ms, the

target occurred for 100 ms on two-thirds of the trials. On the

remaining third, no target stimulus was presented (’no-target’

condition). The task was to respond swiftly and accurately to the

direction of the target arrow by pressing corresponding response

keys with the left or right index finger. No response was required

in the no-target condition. Responses were registered for 2000 ms

after target onset until the prime presentation of the next trial.

Before the main experiment, participants performed a practice

block of 36 trials. The main experiment consisted of 6 blocks with

120 trials. An equal number of compatible (prime and target

arrows point in the same direction), incompatible (primes and

target point in different directions) and no-target trials (prime and

mask only) trials were presented randomly in each block.

At the end of the experiment, mask efficiency was evaluated

using a staircase procedure determining the individual prime

identification thresholds, as described in Seiss & Praamstra (2004).

The presentation of prime and mask was identical to no-target

conditions in the main experiment. Participants attempted to

discriminate the direction of the prime. The number of masking

lines was adapted using a fixed-step 1-up/2-down procedure,

starting with an unmasked prime. Following an accurate response

one random line was added to the mask; following a false response

two lines were removed. The staircase lasted for 126 trials.

Identification performance approaches 66% correct with this

procedure [25].

EEG data acquisition and pre-processing
The BrainVison Recorder and Analyzer (Brain Products,

Munich, Germany) was used for EEG recording and analysis.

The EEG was continuously DC-recorded using 32 Ag/AgCl scalp

electrodes (Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FCz,

FC2, FC6, T7, T8 C3, Cz, C4, CP5, CP1, CP2, CP6, P7, P3, Pz,

P4, P8, O1, Oz, O2, PO7, PO8), positioned according to the

International 10–20 electrode system (American Electroencepha-

lographic [26]). The ground electrode was AFz. Bipolar horizontal

(HEOG) and vertical electro-oculogram (VEOG) derivations were

used to record eye movements. The QuickAmp Signal Acquisition

Device was used for the recording of the EEG and EOG signals

(500 Hz sampling rate; 40 Hz low-pass filter). Offline the EEG

was digitally re-referenced to the linked left and right mastoid and

segmented in epochs from 100 ms before to 700 ms after prime

onset. Baseline correction was applied (2100–0 ms) and trials with

horizontal eye movements (Horizontal EOG threshold: 630 mV

relative to baseline), eye blinks (vertical EOG threshold: 680 mV)

or other artefacts (threshold: 680 mV) were omitted from

subsequent analysis.

For the compatible and incompatible conditions, we calculated

prime-locked LRPs, where electrode sites ipsilateral to the

response hand were subtracted from those contralateral to the

response hand for each response hand separately, and subse-

quently averaged together to form the LRP. This was not possible

for the no-target condition, as no response was required.

Therefore, we also calculated prime-locked lateralized ERPs (L-

ERPs) separately for each condition (compatible, incompatible and

no-target) by subtracting the activity at electrode sites ipsilateral to

the prime arrow direction (e.g. left hemisphere for left arrows)

from contralateral electrode sites relative to the prime arrow

direction (e.g. right hemisphere for left arrows). Subsequently,

these difference waveforms were averaged. It should be noted that

an LRP is a special name for an L-ERP that is recorded over

motor cortical areas (C3/C4) and computed to relative to the

response hand. All other potentials are called L-ERPs in the

article. Please also note that the L-ERP computed relative to the

prime arrow direction is the same as the LRP for the compatible

condition (because the prime arrow direction, target arrow

direction and response side are the same), and inversed in polarity

compared to the LRP for the incompatible condition (because the

prime arrow direction is opposite to the response –relevant target

arrow direction).

L-ERP and LRP amplitudes were measured in the time

windows of 220–270 ms (prime-related activation), 320–370 ms

(reversal phase), and 470–520 ms (target-related activation) after

prime onset. For the L-ERP analysis of fast vs. slow responses we

added an analysis time window for the late reversal phase (370–

420 ms), especially to cover the reversal phase activity for slow

responses. Peak amplitudes (40 ms time window around the peak)

and latencies were measured for the compatible and incompatible

conditions. For the statistical analysis, amplitudes for the

compatible, incompatible, no-target conditions were compared

Prime-Target Interactions in Masked Priming
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against the three corresponding baselines with two-tailed t-tests.

Amplitudes and latencies were compared against each other using

one way repeated measure ANOVAs with the within-participant

factor Condition (compatible versus incompatible versus no-target)

for the prime-related activation, reversal phase, and the target-

related activation, separately.

Results

Behavioural Findings
Mean reaction times (RTs) were only analysed for correct

responses in the time window of 100–1000 ms. As shown in

Figure 1A, RTs were significantly longer in the compatible

(Mean 6 SE: 39069.9 ms) compared to the incompatible

condition (36168.9 ms; t(9) = 6.3, p,.0.001). Note that these

response time effects are similar to those in previous studies with

arrow targets (e.g. Eimer & Schlaghecken, 1998; Seiss &

Praamstra, 2004; Praamstra & Seiss, 2005; Sumner & Brandwood,

2008; Boy et al., 2010), indicating that there has not been

considerable response slowing and NCE reduction due to the

intermingled nogo trials. Mean choice error rates were low

(4.5861.2%). Choice error rates were significantly higher in the

compatible (7.762.1%) compared to the incompatible condition

(1.560.5%, t(9) = 3.1, p = 0.012). Anticipatory responses (,

100 ms) were recorded in 0.01%, late responses (.1000 ms) in

0.03%, and missed responses in 0.25% of all trials. The false alarm

rate in the no-target condition was 0.6%.

In addition, we found a small, but significant, conflict

modulation by previous events (Figure 1B). Specifically, the

interaction between previous compatibility (compatible, incom-

patible, no-target) x current compatibility (compatible vs. incom-

patible) was significant for RT (F(2,18) = 6.6, p = 0.009). The size

of the NCE was 223 ms when preceded by a no-target trial,

229 ms for previous compatible trials, and 237 ms for previous

incompatible trials. The NCE difference between the previous no-

target and the previous incongruent conditions was the largest

(14 ms) and significant (t(9), 3.9, p = 0.006). The other pairwise

comparisons did not reach significance (previous compatible vs.

previous incompatible: 8 ms, t(9) = 1.8, p = 0.10; previous no-

target vs. previous compatible: 6 ms, t(9) = 1.8, p = .093; no

Bonferroni correction). No significant effects were found in the

error rate analysis.

In summary, typical behavioural NCE effects were recorded for

RTs and error rates in this study. In addition, there was a small,

but significant, modulation of the NCE by the previous trial, which

was largest when comparing the previous incompatible (no

conflict) and the no-target conditions (response inhibition).

Lateralized Event-Related Potentials (L-ERPs)
The prime-locked L-ERPs for the compatible, incompatible and

no-target conditions are displayed in Figure 2. Figure 2A shows

L-ERPs that were computed by subtracting the activity of ipsi-

from contralateral electrode sides relative to the prime direction

(left vs. right pointing arrow). This allows a more straight forward

comparison of prime-related activation and reversal phases as they

have the same polarity for all three experimental conditions. Please

note that the target-related response activation is of opposite-

polarity for the compatible and incompatible trials, as the

lateralisation for prime and target/response activation have the

same direction in congruent trials, but they are of opposite polarity

in incongruent trials. Figure 2B displays the LRPs for the

compatible and incompatible conditions, calculated by subtracting

the activity of ipsi- from contralateral electrode sides relative to the

target direction/response hand. In this part of the figure the

target-locked activation of the LRP is of the same polarity for the

compatible and incompatible conditions, but the prime-related

activation and reversal phase are of opposite polarity. In addition,

a combined LRP was computed by averaging the compatible and

incompatible conditions, in order to estimate the onset of the

target-related activation, after subtracting the prime-related

activation. As can be seen from Figure 2B the onset of the

target-related activation in the combined LRP waveform is at

about 200 ms after the target onset. This time point corresponds

with the time when the activations of the congruent and

incongruent condition also diverge in Figure 2A. Finally, the

no-target L-ERP, calculated relative to the prime direction and

identical to the one already displayed Figure 2A, was added to

Figure 2B.

Figure 1. Lateralized event-related potentials (L-ERPs) for the
three conditions at the electrode sites C3/C4 computed
relative to (A) prime arrow direction (B) target arrow direc-
tion/response hand. (in this case the L-ERP is the same as an LRP).
The upwards pointing arrow in these graphs indicates the activation in
the same direction as the prime arrow/response hand (correct
response). The downwards pointing arrow indicates the activation
opposite to the prime arrow direction/alternative (incorrect) response
hand. The grey LRP waveform represents the average of the compatible
and incompatible conditions. It was added to estimate the target-
related activation onset after subtracting the prime-related activation.
Time scale is aligned at prime onset (0 ms). The grey bars indicate the
prime-related activation, reversal phase, and target-related LRP.
Displayed waveforms were additionally filtered at 12 Hz.
doi:10.1371/journal.pone.0093876.g001
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The most striking result in Figure 2 is that the no-target L-ERP

appears to have, besides the initial prime-related activation, a

reversal L-ERP phase comparable to the compatible and the

incompatible conditions (Figure 2A), whereas its target-related

negative activation is absent (Figures 2A and 2B).

Prime-related activation (Figure 2A). As displayed in

Figure 2A and confirmed by statistical analysis, mean amplitudes

were significantly different from baseline for all three conditions

(all t(9).2.74, all p,0.05). However, there was no difference

between the amplitudes when comparing the conditions with a

one-way ANOVA, F(2,18) = 1.12, p = 0.347 (all ANOVAs were

corrected for non-sphericity using the Huynh-Feldt correction).

Reversal Phase (Figure 2A). Mean amplitudes were signif-

icantly different from baseline in all three conditions (all t(9).2.65,

all p,0.05) and the one-way ANOVA revealed no significant

main effect of Condition, F(2,18) = 0.37, p = 0.694.

Target-related activation (Figure 2B). Mean amplitudes of

the compatible and incompatible condition differed significantly

from baseline (all t(9).8.08, all p,0.05). This was not the case for

the no-target condition (t,1). The one-way ANOVA revealed a

significant difference between all three conditions, F(2,18) = 60.13,

p,0.001. The amplitude of the no-target condition was signifi-

cantly reduced compared to the compatible (t = 9.48, p,0.001)

and incompatible conditions (t(9) = 11.07, p,0.001). The LRP

peak amplitude was significantly reduced in the incongruent

compared to the congruent condition, t(9) = 3.5, p = 0.006.

The peak latency of the target-related activation was earlier in

the incompatible compared to the compatible condition

(Figure 2B; t(9) = 5.01, p = 0.001). The difference between

incompatible and compatible LRP peak latencies also correlated

with the behavioural NCE in RTs (Kendall tau, r = .67, p = .007).

In sum, the target-related activation is absent in the no target

condition, but present in the other two conditions. The target-

locked peak latency differences between the compatible and

incompatible conditions are correlated with the behavioural NCE.

Sequential effects. Following the small sequential effects in

the behavioural NCE we analysed the L-ERPs based on previous

trial type. Note that the study was not designed for this analysis,

and it is rather difficult to measure L-ERP differences for effects as

small as 8–14 ms, especially when the LRPs are calculated from a

very small trial numbers (approx. 15–35 trials per prime arrow

direction for each L-ERP/LRP waveform), but we include it as a

hint for future research. There were no significant effects of

previous trial on the L-ERPs, but there was a hint that prime-

related activation might be smaller following a nogo trial

(p = 0.14), consistent with carry over of response inhibition to

the subliminal prime activity. This would be an interesting topic

for further investigation.

In summary, the main finding of this subsection, and the entire

study, is that the no-target L-ERP has a reversal phase comparable

to the compatible and the incompatible conditions.

Mean split of fast and slow responses: Behavioural and
L-ERP data

It has previously been assumed that the reversal phase of the

LRP is causally related to the behavioural NCE, delaying

responses in compatible trials and speeding them in incompatible

trials (Eimer & Schlaghecken, 1998), but there is actually little

evidence that directly speaks to this assumption. If this is the case,

the reversal phase should be larger for slower compatible trials, but

larger for faster incompatible trials. To assess this, we analysed

Figure 2. Prime-locked L-ERPs computed relative to the prime
arrow direction and displayed for the three conditions at
electrode pair C3/C4. L-ERPs are shown for fast responses (A) and
slow responses (B). The grey bars indicate the prime-related activation,
early reversal phase and late reversal phase. Displayed waveforms were
filtered at 12 Hz.
doi:10.1371/journal.pone.0093876.g002

Figure 3. Prime-locked L-ERPs for fast and slow responses
computed relative to the prime arrow direction and displayed
for the compatible (red colour) and incompatible condition
(blue colour) at electrode pair C3/C4. L-ERPs for fast responses are
displayed as solid lines, and L-ERPs for slow responses as dashed lines.
The grey bars indicate the prime-related activation, the early reversal
phase, and the late reversal phase. Displayed waveforms were filtered at
12 Hz.
doi:10.1371/journal.pone.0093876.g003

Prime-Target Interactions in Masked Priming

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e93876



LRPs for compatible and incompatible conditions using a mean

split based on the behavioural RT (Figure 3).

Behavioural analysis. The mean reaction times for fast

responses were 33867.8 ms and for slow responses 428611.3 ms.

The fast NCE (22765.0 ms) was similar to the slow NCE (2

2865.5 ms), indicating that the NCE remains constant across

response speeds (i.e. the ’delta plot’ is on average flat, at least at the

resolution of a mean split; Ridderinkhof, 2004).

Prime-related activation. As Figure 3 shows, the prime-

related activation of the L-ERP for the compatible and incom-

patible condition did not differ between fast and slow responses

(Compatibility x Response speed interaction: F,1).

Reversal phase. This picture changed for the reversal phase.

In the compatible condition, the L-ERP for slow responses had a

stronger reversal phase compared to the L-ERP for fast responses,

as predicted. Specifically, the positive deflection was comparable

in the time window between 320–370 ms (t,1), but enhanced for

the slow L-ERP in the time window between 370–420 ms

(t(9) = 2.9 = 0.02). The pattern was opposite for the incompatible

condition, also as predicted. The incompatible L-ERP was larger

for fast vs. slow responses in both time windows (320–370 ms:

t(9) = 3.6, p = 0.006; 370–420 ms: t(9) = 5.6, p,0.001). For faster

responses, it established quickly and was significantly different

from baseline (320–370 ms: (t(9) = 3.9, p = 0.003; 370–420 ms:

t(9) = 5.6, p,0.001). Its amplitude increased steadily, as it merged

with the target-related activation. In contrast, the slow L-ERP did

not reverse after the initial prime-related activation. It was

hovering around zero (320–370 ms: t,1; 370–420 ms: t,1)

before the onset of the target-related activation.

Target-related activation. Figure 2 shows that the shape

of the target-related activation phase of the L-ERP seems to be

bimodal in the incompatible condition. Figure 3 shows a bimodal

shape with an enhanced first peak for the fast L-ERP, and a

unimodal shape for the slow L-ERP. The combination of these

waveforms explains the shape of the target-related activation in

Figure 2.

Finally, peak latencies were measured and compared in an

ANOVA with the factors response speed (fast vs. slow) and

compatibility (compatible vs. incompatible). The main effects of

speed (45669.2 ms vs. 49568.3 ms; F(1,9) = 44.95, p,0.001) and

compatibility (c vs. ic: 48967.7 ms vs. 46369.9 ms; F(1,9) = 15.2,

p = 0.004) were significant, but there was no significant interaction

between the factors (F,1). This is consistent with the behavioural

data, in which the NCE remains constant for faster and slower

responses.

The main finding of this subsection is that the reversal phase

was modulated by response speed. In the compatible condition,

the amplitude of the reversal phase increased for slow compared to

fast responses in the time window between 370–420 ms, whereas it

was reduced (in fact it was absent) from the slow L-ERPs in the

incompatible condition. This is consistent with the reversal phase

playing a causal role in delaying compatible responses and

speeding incompatible responses.

Control measures
The efficacy of masking was measured with a staircase

procedure. The thresholds, expressed as the mean number of

lines required in the mask to prevent conscious perception was

13.863.0 lines, which is well below the number of lines (i.e. 20)

used for masking in the main experiment. The primes were

successfully masked and, hence, subliminal.

Discussion

The present study examined whether a target stimulus is

necessary to produce the first two deflections of the L-ERP pattern

associated with the masked prime paradigm. The main findings

were, firstly, a typical NCE for reaction times and error rates that

was also reflected in the LRP waveform for the compatible and

incompatible conditions, replicating Eimer & Schlaghecken

(1998), Seiss & Praamstra (2004). Secondly, and novelly, the

prime-related and reversal LRP phases were both present in the

no-target condition, and of similar magnitude as in the compatible

and incompatible conditions, while the target-related activation

was absent as expected. Thirdly, the reversal phase of the

compatible and incompatible conditions varied with response

speed, in accordance with our prediction that it is causal for

speeding or delaying responses. Additionally we observed a small

but significant sequential modulation of the NCE by the previous

trial type. These findings will be discussed in the following

subsections.

Reversal phase in the no target condition
Based on the finding that the prime-related and reversal L-ERP

phases were both present in the no-target condition, and of similar

magnitude as in the compatible and incompatible conditions, it

can be inferred that it is not a modulation of target processing by

prime-target interactions [27] that is responsible for the occur-

rence of the reversal L-ERP phase. Instead, the results are fully

consistent with a reversal of motor tendency induced by the prime

and mask, as suggested by the predominant theories of the NCE:

motor self-inhibition (Eimer & Schlaghecken, 1998), object-

updating (Lleras & Enns, 2004) or mask-triggered inhibition [7].

Our L-ERP results are also consistent with behavioural

experiments that analysed either false alarm rates for nogo stimuli

or neutral targets that required a free choice response (Schla-

ghecken & Eimer, 2004; Schlaghecken et al., 2009). These studies

showed an increase in false alarm rates (in nogo) and a preference

(in free choice) for the response that was not primed initially,

implying that a motor tendency opposite to the primed direction is

created by the prime and mask. Further converging behavioural

data has shown that when the target-response mapping is changed

during a task (for example the target that used to require a left

response now requires a right response), the prime/mask stimuli

continue for while to create an NCE with respect to the previous

response mapping, not the new one (Boy & Sumner, 2010). This

again implies that the prime/mask modulates response tendency

rather than interacting with the current target stimulus.

Association of reversal phase with response speed
While it has previously been assumed that the reversal phase of

the LRP is causally related to the behavioural NCE, there is

actually little evidence that directly speaks to this assumption. The

timings of the response-related phase have been found to correlate

with the NCE both in this study, and previously (Eimer &

Schlaghecken, 1998; Boy & Sumner, unpublished result). In turn,

the latency of the response phase is thought to be related to the

direction and amplitude of the reversal LRP phase [28], but this

assumption was not previously tested.

In order to explore this, we analysed the association of response

speed with the prime-activation and reversal phases of the L-ERP.

Our findings showed that the size of the behavioural NCE was not

modulated by response speed, which replicates previous behav-

ioural findings showing that the NCE does not disappear with

longer RTs. The prime-related activation was also not changed by

response speed. However, the reversal phase was larger for slower
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responses in the compatible condition, as would be predicted if the

reversal phase is responsible for delaying compatible trials and

creating the NCE. In incompatible trials, a normal reversal pattern

was observed for fast responses, whereas the reversal phase was

absent for slow responses. Again this is the direction predicted if

the reversal phase is responsible for speeding incompatible

responses. Of course, these are correlational results, and cannot

prove cause, but they did have the potential to disprove a causal

relationship if the reversal phase was not associated with response

time, or the association was opposite to what we found.

Interestingly, the results imply that the balance of causes for the

NCE gradually shifts from fast to slow responses. For fast

responses, there are approximately equal reversal phases for

compatible and incompatible trials, from which we might infer

approximately equal contribution of response slowing in compat-

ible trials and response speeding in incompatible trials. For slow

responses, on the other hand, the reversal phase is absent for

incompatible trials, implying that the NCE comes entirely from

the extra pronounced reversal in compatible trials. To test these

inferences further would need a comparison to trials with neutral

primes, which this study did not include.

Status of the perceptual accounts of the NCE
Taken together, the above-discussed results support the motor-

reversal accounts of the NCE and do not support the accounts of

perceptual or attentional prime-target interaction. While this is

fully consistent with the working assumptions of many researchers

in this area, recently the perceptual/attentional accounts had

gained some ground. Previous evidence for and against perceptual

accounts of the NCE has been purely behavioural. Lleras and

Enns [27] found an NCE when the prime and target were

presented at the same location, but a PCE when they were

displayed at different locations, consistent with the prime-target

interaction account where reduced repetition blindness effect is

predicted for different locations. In contrast, Sumner, Tsai, Yu, &

Nachev [29] reported equivalent NCEs when comparing these two

conditions, and large NCEs were found in other studies where

prime and targets were displayed at different locations [3_EN-

REF_3,4,30]. However, as mentioned in the introduction,

perceptual accounts like Huber’s (Huber et al., 2001, 2002) are

actually quite capable of encompassing different prime and target

locations because in many parts of visual cortex have large

receptive fields.

Converging evidence from other studies appeared to favour

response tendency modulation rather than perceptual interaction,

because, as mentioned above, prime/masks can affect nogo or

choice trials (Schlaghecken & Eimer, 2004; Schlaghecken et al.,

2009), and they also continue to prime previous rather than

current target-response mappings for several trials after a change

of stimulus-response rule (see Boy & Sumner, 2010, for further

explanation). On the other hand, most recently, Krüger et al.

(2011) embedded the masked priming paradigm in a PRP dual

task paradigm and found that the NCE disappeared when the

interval between the stimuli for the two tasks was short. By PRP

logic, this indicates that the source is before the response selection

bottleneck (i.e. perceptual effects). However, we do not believe that

this data is inconsistent with our results, because the PRP logic

assumes an absolute central bottleneck where no motor activity

related to the second task takes place before the bottleneck stage

for the first task is complete. In contrast, we expect masked primes

to automatically activate their associated motor plans immediately.

If the activation of target-related response plans is then delayed

due to the dual task bottleneck, the source of any motor

interference, as well as any perceptual interference, from the

primes could dissipate before the target responses are activated.

Thus the PRP results do not uniquely support the perceptual

account and can also be consistent with the assumption of a motor

or response-mapping source for the NCE.

Sequential modulation of masked priming effects
The topic of cognitive control or adaptation of behaviour based

on conflicts in previous events is an interesting one, especially since

subliminal primes allow us to investigate the interaction between

conscious and non-conscious conflict and inhibition processes.

Sequential modulations have been previously reported with other

conflict tasks (Gratton et al., 1992, Stürmer et al., 2002; Praamstra

& Plat, 2001; Boy et al., 2010; McBride, Sumner, & Husain,

2012b) and are explained by enhanced cognitive control after

conflict trials (Botvinick et al., 2001). Praamstra and Seiss (2005)

investigated the sequential modulation of the behavioural NCE

with a subliminal masked priming task in order to evaluate if this

modulation still occurs when the conflict is subliminal and not

openly perceived (for further discussion, see McBride, et al.,

2012a). They reported that the NCE modulation by a conflict in

the previous event was very small in masked priming (9 ms) and

strongly reduced compared to other conflict tasks where the

conflicting information is visible (at least compared to the size of

published effects).

In the current study, we found a similar, but non-significant,

sequential modulation (8 ms) when comparing NCEs for previ-

ously presented compatible (conflict) and incompatible (no conflict)

trials. Interestingly this sequential modulation was enhanced to

14 ms, and significant, when comparing the NCE for the previous

incompatible (no conflict) and previous no-target events. The

reduced NCE in the previous no target condition cannot be

explained by a conflict between prime and target information, but

can only be due to the absence of the target and the related

response. This could stem from enhanced inhibition either

carrying over from response inhibition in the nogo trial, or from

openly visible disruption in regular sequence of events. This might

be worth exploring further with other conflict tasks (e.g. systematic

manipulation of the target or response presence and its relevance

for the sequential modulation of conflict effects).

Conclusions
Taken together, the present results favour the hypothesis that

the reversal phase of the LRP is a reversal of motor tendency

elicited by the prime and mask, and is directly related to

subsequent response speed to the target. The sequential modula-

tion of the NCE by previous conflicting events replicated previous

findings by Praamstra and Seiss (2005) but also revealed that nogo

trials might enhance cognitive control carrying over from response

inhibition or a disruption of the regular task sequence.
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