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Summary 

Defects in mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling are the cause 

of a number of heritable human diseases such as Tuberous Sclerosis Complex, 

Neurofibromatosis and Birt-Hogg-Dubé syndrome. Mutations in signalling components in 

the mTORC1 signalling pathway are also present in a significant number of sporadic cancers, 

such as bladder and renal cancer. A number of mTORC1-driven features arise as a result of 

these mutations that offer opportunities to develop selective therapeutic strategies that 

exploit such differences. One such variation that has been suggested is that cells with 

upregulated mTORC1 activity have elevated levels of Endoplasmic Reticulum (ER) stress. The 

clinically approved HIV protease inhibitor, Nelfinavir, has been suggested to exacerbate ER 

stress. The aim of this project was to examine whether Nelfinavir could be used to exploit 

existing basal elevations in ER stress in cells with aberrant mTORC1 signalling to selectively 

induce cell death.  In addition to assessing the therapeutic potential of this drug treatment 

strategy, this project sought to further examine interactions between mTORC1 signalling 

and autophagy, a major survival component of the ER stress response. The results of 

experimentation demonstrated the increased susceptibility of TSC deficient cells to ER stress 

and increased levels of cell death following Nelfinavir treatment. Research also identified a 

complex signalling pathway in which mTORC1 both regulates, and is regulated by the 

autophagy protein ULK1. Following observations of increased autophagy after treatment 

with Nelfinavir, a novel combinatorial therapeutic strategy was formulated that sought to 

exacerbate ER stress in conjunction with autophagy inhibition. Of clinical relevance, this 

novel strategy (using Food and Drug administration (FDA)-approved drugs) significantly and 

selectively induced cell death in TSC2-deficient cell lines and thus offers a promising avenue 

for future trials and research.  
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1. Introduction 

The mechanistic target of rapamycin (mTOR), also known as the mammalian target of rapamycin, 

is critical in the normal function of a cell. mTOR regulates a large number of cellular processes that 

ultimately drive cell growth and proliferation. Although mTOR is best known for its regulation of 

protein synthesis, mTOR is also known to be involved in mitochondrial biogenesis/metabolism, lipid 

synthesis/metabolism, microtubule organisation as well as autophagy. mTOR is a highly evolutionary 

conserved serine/threonine protein kinase that belongs to the phosphoinositide 3-kinase related 

kinase (PIKK) family. mTOR forms two distinct multi-protein complexes: mTOR complex 1 (mTORC1) 

and mTOR complex 2 (mTORC2). 

 

1.12 mTOR complex 1 

mTORC1 consists of five known core components: mTOR, regulatory-associated protein of mTOR 

(Raptor), mammalian lethal with Sec13 protein 8 (mLST8 or GbL), proline-rich AKT substrate 40 kDa 

(PRAS40), and DEP-domain-containing mTOR-interacting protein (Deptor). mTORC1 is often 

considered as a master regulator of cellular growth, proliferation and metabolism. Some substrates 

of mTORC1 are well characterised. mTORC1 is able to phosphorylate eukaryotic initiation factor 4E-

binding protein 1 (4E-BP1), a repressor of translation. Phosphorylation of 4E-BP1 by mTORC1 causes 

4E-BP1 to detach from eukaryotic initiation factor 4E (eIF4E), which is bound to the 5’-end of 

mRNAs. 4E-BP1 dissociation from eIF4E promotes eIF4E-mediated translation of these mRNAs, which 

is often referred to as 5’-cap-dependent translation. Through 4E-BP1/eIF4E, mTORC1 drives protein 

synthesis and increases cellular growth. Some functions of mTORC1 can also occur indirectly via its 

downstream substrate, 70 kDa ribosomal protein S6 kinase 1 (S6K1), which is also considered as a 

regulator of cell growth (Fingar et al, 2002) and proliferation (Fingar et al, 2004). S6K1 is also a 

serine/threonine protein kinase and was originally named through phosphorylation of ribosomal 

protein S6 (rpS6). S6K1 can also phosphorylate eukaryotic elongation factor 2 kinase (eEF2K) 

involved in the elongation phase of protein translation regulate the levels of protein synthesis within 



9 
 

a cell. More recently, S6K1 was shown to phosphorylate a number of translation initiation factors 

including eIF3 and eIF4B to enhance efficiency of protein translation (Holz et al, 2005). 

 

1.13 mTOR complex 2 

mTORC2 is made up of six known core proteins, many of which are common to mTORC1: mTOR, 

rapamycin-insensitive companion of mTOR (Rictor), mLST8, protein observed with Rictor-1 (Protor-

1), mammalian stress-activated protein kinase interacting protein (mSIN1) and Deptor. The main 

difference between the mTOR complexes, is that mTORC2 is not sensitive to inhibition with 

rapamycin (a potent inhibitor of mTORC1). Furthermore, mTORC2 also possesses Rictor instead of 

Raptor, where both these scaffold proteins are integral to either complex. Unlike mTORC1, the 

rapamycin insensitive mTORC2 is less well characterised. It is known that protein kinase B (PKB, also 

known as AKT) is activated by mTORC2 through phosphorylation at Ser473 (Hresko & Mueckler, 

2005) and implicates mTORC2 in the regulation of a number of PKB-mediated cellular processes 

including survival, proliferation and metabolism. mTORC2 is also considered to be involved in 

cytoskeletal organisation as Rictor knockdown is known to affect actin polymerisation and alter 

cellular morphology involving Rho small G-proteins (Tee & Dunlop, 2009; Laplante & Sabatini, 2009). 

 

1.14 Genetic disease and connections with mTOR 

Given that mTORC1 and mTORC2 collectively regulate integral cellular processes such as protein 

synthesis, cellular growth, proliferation, survival as well as cytoskeletal reorganisation, it is 

unsurprising that genetic abnormalities in the genes upstream of these mTOR complexes give rise to 

an array of inherited genetic disorders. For instance, several syndromes are known to occur due to 

inherited mutations within tumour suppressor genes upstream of mTORC1, i.e., Tuberous Sclerosis 

Complex (TSC, caused by mutations within either Tuberous Sclerosis Complex 1 or 2 (TSC1/TSC2)), 

Neurofibromatosis Type 1 (caused by mutations NF1), and Birt–Hogg–Dubé (BHD) syndrome (caused 
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by mutations in Folliculin). The pathology of these diseases is indicative of defects in cellular growth 

and proliferation with the development of benign tumours occurring in a variety of organs. 

 

1.15 Tuberous Sclerosis Complex 

TSC, a hamartoma syndrome that has a prevalence of around 1/5,000 to 1/10,000, occurs as a 

result of inactivating mutations in either of the tumour suppressors TSC1 and TSC2. TSC1 and TSC2 

function as a heterodimer upstream of mTORC1, and act as a GTPase activating protein (GAP) 

towards Rheb. By inactivating Rheb, through conversion of Rheb to a GDP-bound state, TSC1/TSC2 

potently inhibits signal transduction through mTORC1. Inactivating mutations within either of these 

TSC1 or TSC2 genes leads to aberrant activation of mTORC1, which leads to increased cell growth 

and proliferation. As a result of this, TSC patients exhibit extensive tumour formation and growth in 

organs such as the kidneys and brain which can lead to severe clinical symptoms including seizures 

(see reviews Tee & Dunlop, 2009; Yang & Guan, 2007). 

In addition to being prevalent in hamartoma syndromes, mutations in mTOR signalling pathway 

genes have also been found to be present in a number of sporadic cancers. Previous evidence 

indicates that loss of heterozygosity at a region spanning TSC1 is observed in over 50% of bladder 

carcinomas and mutations in the gene occur at a frequency of 14.5%. It has also been identified that 

loss of heterozygosity of TSC2 is also observed in a number of bladder carcinomas (Knowles et al, 

2009). 

 

1.16 mTORC1 and therapy in TSC  

Considerable success has been achieved in developing therapies for patients with TSC. The drug 

rapamycin, an anti-fungal macrolide discovered on Easter Island (Rapa Nui), potently inhibits 

mTORC1 and cell growth. More recently, rapamycin has been used extensively in clinical trials as an 

anti-cancer agent. Rapamycin (as well as rapamycin analogues) have potent immunosuppressive and 

anti-proliferative properties and is clinically approved for use in patients. The mechanism by which 



11 
 

rapamycin acts to suppress mTORC1 is as a FKBP12/rapamycin (protein/drug) dimer. FKBP12 is 

considered an immunophil, although its involvement in the immune system is currently unknown. 

The FKBP12/rapamycin dimer associates with a FKBP12/rapamycin binding (FRB) domain within 

mTOR that lies distal from the kinase domain and blocks mTORC1 kinase activity. Presumably due to 

steric hindrance through differences in conformation. FKBP12/rapamycin does not inhibit the kinase 

activity of mTORC2.  

Clinical trials have revealed that rapamycin is capable of significantly shrinking tumours in TSC 

patients. However, once treatment is ceased, the tumours regrow back to the original size or in 

some cases grow larger. This is perhaps unsurprising given that the rapamycin acts to restore the 

normal function of mTORC1. Rapamycin also promotes cell survival characteristics, which may in 

part be due to feedback mechanisms that activate mTORC2 and PKB as well as induce autophagy. An 

alternative therapeutic approach for TSC patients and those suffering from other conditions 

featuring aberrant mTORC1 activity could be to try to use a drug that selectively induces cell death 

as opposed to acting in a corrective manner. The idea of using combination therapy has also been 

suggested. Currently, using rapamycin in combination with autophagy inhibitors has shown additive 

effects in killing cell lines lacking TSC2 (Yang & Guan, 2007; Sampson, 2009). 

 

1.17 Endoplasmic Reticulum Stress 

The Endoplasmic Reticulum (ER) is a cellular organelle that is responsible for ensuring that 

proteins are folded/processed correctly and that misfolded proteins are eliminated. Should the 

amount of unfolded or misfolded proteins within a cell increase, the ER becomes overloaded with 

unfolded protein to cause cellular stress. As a mechanism to offset this increased protein load on the 

ER, the ER activates a process termed the Unfolded Protein Response (UPR).  During the UPR, the 

degradation of misfolded proteins and the ER’s protein folding capacity is upregulated to remove the 

unfolded protein, whereas protein synthesis is down regulated to reduce further burden on the ER. 

This dual action of the UPR to remove unfolded protein and to prevent further accumulation of 
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proteins alleviates the stress and restores ER homeostasis. Initiators of the UPR are the type-I 

transmembrane kinases, inositol-requiring enzyme-1 (IRE-1) and PKR-like endoplasmic reticulum 

kinase (PERK), and a type-II transmembrane protein activating transcription factor-6 (ATF6). 

Activation of PERK causes the phosphorylation of eukaryotic translation initiation factor 2 alpha 

(eIF2a) which functions to globally reduce translation initiation. IRE-1 functions to activate c-Jun 

amino-terminal kinase (JNK) via tumour necrosis factor (TNF) receptor-associated factor-2 (TRAF-2) 

and apoptosis signal regulating kinase-1 (ASK-1). JNK then activates stress and inflammatory 

responses. IRE-1 also functions to cleave X-box binding protein-1 (XBP-1) mRNA which allows for the 

translation of the protein spliced form of XBP-1 (XBP-1S).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: ER Stress Pathway.  eIF2α phosphorylation by PERK is a repressor of translation initiation, 

and if eIF2α is phosphorylated for a prolonged duration (which occurs when ER homeostasis is not 

efficiently restored), can lead to apoptosis through enhanced translation of ATF4 and gene-

expression of CHOP. CHOP is further regulated through additional signalling pathways of the ER 

Stress pathway, through IRE1-mediated splicing of XBP1 and through transcriptional upregulation of 

ATF6. 
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As a transcription factor, this spliced form functions as one of the main regulators of the ER. 

Autophagy, a cellular process responsible for the recycling of proteins within a cell and is also 

activated during the UPR to remove unfolded protein within the ER that further reduces ER stress. 

These multiple processes that coordinate to reduce ER stress clearly function in a pro-survival 

manner to attempt to allow the cell to recover.  However, should ER stress occur at too high a level 

or for an extended duration, pro-apoptotic events are instead initiated as part of the ER stress 

response. The transcription factors XBP-1, ATF4 and ATF6 induce the expression of CCAAT/enhancer-

binding protein homologous protein (CHOP). This protein regulates B-cell CLL/lymphoma 2 (Bcl-2) 

family members which function to induce apoptosis via the mitochondrial pathway. JNK signalling is 

also known to regulate the Bcl-2 proteins. In addition, IRE-1 and TRAF-2 recruit pro-caspase-12, an 

ER specific caspase (Hosoi et al, 2010; Ozcan et al, 2008; Healy et al, 2009). Please refer to figure 1.1 

for a visual overview of the ER stress response pathway. 

 

1.7 Autophagy 

As mentioned previously, autophagy is a critical cell process that becomes activated during 

ER stress as a survival mechanism. Autophagy is employed by the cell to degrade and recycle 

proteins and organelles. During this process, organelles and protein aggregates become 

encapsulated in double membrane vesicles to form autophagosomes. Autophagosomes sequentially 

fuse with lysosomes and these vesicle structures are known as autolysosomes. The active fusion of 

autophagosomes to lysosomes is referred to as autophagic flux. This process requires vesicular 

trafficking and is a measure of autophagic activity. Once fusion has occurred, lysosomal hydrolases 

degrade sequestered material which allows for permeases to transport amino acids and lipids into 

the cytoplasm for use in either biosynthesis or the generation of energy (Nijholt et al, 2011; He & 

Klionsky, 2009). 
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1.8 mTORC1 and ULK1 in the regulation of autophagy 

It is known that mTORC1 plays a significant role in the autophagic process and this occurs 

through negative regulation of Unc51 like kinase 1 (ULK1), the initiating Ser/Thr protein kinase for 

autophagy. In nutrient sufficient conditions, mTORC1 phosphorylates ULK1. mTORC1 

phosphorylation of ULK1 restricts ULK1 kinase activity and represses autophagy. During nutrient 

deprivation or rapamycin treatment, the mTORC1-ULK1 complex dissociates and ULK1 kinase activity 

is no longer suppressed. ULK1 is then able to autophosphorylate as well as phosphorylate ATG13 and 

FIP200, which are tightly bound to ULK1 as a core complex. This activated ULK1-ATG13-FIP200 

autophagy initiation complex localises to phagophores, the precursors of autophagosomes and is 

necessary for autophagy initiation. The nucleation process is then dependent on the production of 

Phosphatidylinositol 3-phosphate (PtdIns(3)P) by the protein complex comprised of class III 

phosphoinositide 3-kinase hVps34, Beclin 1 and p150/hVps35. The elongation and closure process 

results in the formation of double-membrane autophagosomes. This process is dependent on the 

activity of the large Atg16 protein complex which also facilitates lipidation and sequential 

localisation of MAP1LC3 (LC3) to the phagophore. As LC3 protein is synthesised, LC3 is cleaved to 

form the cytosolic LC3-I isoform. This then conjugates with phosphatidylethanolamine (PE) when 

autophagy becomes activated. This conjugated (or lipidated) isoform of LC3 is known as LC3-II and 

localises to the autophagosomal membrane where it is tethered. The final process of 

autophagosomal maturation is when the autophagosome fuses with a lysosome, which creates an 

autolysosome. It is here within the autolysosome that the encapsulated proteins and organelles 

become degraded by the acidic hydrolases that were contained within the lysosome (Rosenfeldt & 

Ryan, 2011). 

At this time, AMBRA1 is the only known ULK1 substrate that is directly part of the autophagy 

machinery although it is not an integral component of the ULK1-Atg13-FIP200 complex (Di 

Bartolomeo et al, 2010). The identification of other downstream targets of ULK1 will be essential to 

better understand how ULK1 governs autophagy. 
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In addition to known interactions between mTORC1 and ULK1, it is known that AMPK positively 

regulates ULK1 through binding and phosphorylation. This interaction functions to induce autophagy 

during conditions of energy stress (Lee et al, 2010; Egan et al, 2011; Bach et al, 2011). It has also 

been reported that ULK1 can be further negatively regulated by AMPK, suggesting a possible 

feedback mechanism, where ULK1 phosphorylates all three AMPK subunits to reduce AMPK 

activation (Loffler et al, 2011; Kim et al, 2011).  

 

1.9 Other forms of autophagy 

In actuality, there are two other types of autophagy in addition to the above described process 

known as macroautophagy (Benbrook & Long, 2012). The second type of autophagy is known as 

chaperone-mediated autophagy which is controlled by heat shock protein A8 (HSPA8) (also known 

as heat shock cognate 70). During this process, the chaperone directly binds specific proteins which 

are then transported into the lysosome (Lee et al, 2011). The chaperone specifically targets 

molecules with a particular amino acid sequence, a motif related to KFERQ (Lys-Phe-Glu-Arg-Gln) 

(Dice et al, 1986). It may be that these sequences appear directly on the molecule’s surface or 

alternatively, they may be in unexposed regions of the molecule and only become exposed as a 

result of damage or denaturation. Once HSPA8 has identified a molecule featuring this motif, it is 

transported to the lysosome where the chaperone docks to LAMP-2A (Lysosome-associated 

membrane protein type 2A). Here, numerous interactions with other chaperones occur to facilitate 

the transference of the molecule through LAMP-2A to another HSPA8 molecule within the lysosome 

where ultimately the molecule can be degraded (Agarraberes et al, 1997). Chaperone-mediated 

autophagy occurs after macroautophagy following nutrient deprivation in a mutually inhibitory 

fashion: as one form increases, the other decreases (Bejarano & Cuervo, 2010).  

The third, less well described form of autophagy is known as microautophagy. In this process, 

aberrant molecules and organelles are engulfed directly into the lysosome where they are degraded 

and their components are then recycled (Lee et al, 2012). The first event of this process involves 
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active invagination at the lysosome membrane forming tube-like bodies (Müller et al, 2000). The 

subsequent processes of vesicle expansion, vesicle scission and vesicle degradation and recycling 

involve LC3 lipidation, mTOR controlled ubiquitin-like systems and other Atg machinery similar to 

macroautophagy (Li et al, 2012). Unlike the mutually inhibitory processes of macroautophagy and 

chaperone-mediated autophagy, microautophagy operates synergistically alongside them (Cuervo, 

2004).  

Unless expressly stated otherwise, when the term autophagy is used throughout this thesis, it is 

referring to the first form of autophagy, macroautophagy.  

 

1.10 ER stress inducing agents and therapy 

Given that cells lacking TSC2 exhibit constitutively activated mTORC1 signalling, higher levels of 

protein synthesis and disturbances in nutrient signalling, it is not surprising that TSC2 deficient cells 

show elevated levels of ER stress. Research has shown that TSC deficient cells have increased levels 

of PERK phosphorylation, CHOP and XBP-1s, showing that they are exhibiting higher basal levels of 

ER stress and have activated the UPR. It was also shown that this stress response could be ceased 

upon reconstitution of TSC2 in deficient cells (Ozcan et al, 2008). 

There might be potential therapy options to treat human diseases (such as cancer) featuring 

heightened mTORC1 activation, by further intensifying the already present ER stress. For instance, 

cancerous cells with heightened mTORC1 activation would already be experiencing an increased 

level of ER stress compared to normal cells. By using an agent that would further enhance ER stress, 

it might be possible that these cancerous cells with aberrant mTORC1 signalling would be more 

susceptible to trigger the pro-apoptotic mechanism of the UPR, as the level and duration of ER stress 

would be pushed significantly greater. While in contrast, the moderately stressed normal cells would 

only experience the pro-survival aspects of the UPR and fully compensate. 
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1.11 Nelfinavir as an ER stress inducer 

Nelfinavir is a clinically approved anti-retroviral drug that has been used for over a decade to 

treat patients suffering from HIV infection. Following the observation that Nelfinavir caused 

regression of Kaposi’s sarcomas in HIV patients, this drug has been shown to induce apoptosis in a 

number of different tumour cell lines. Although the exact mechanisms of Nelfinavir’s anti-tumour 

effect have not been elucidated, it has been observed that Nelfinavir is capable of inducing ER stress 

and autophagy. This effect appears to occur due to the drugs ability to inhibit proteases within a 

cell’s proteasome. As a result, misfolded and unfolded proteins would accumulate within the cell, ER 

stress would occur and the UPR would become activated. Because of these drug effects in patients 

as well as limited toxicity, it was postulated that Nelfinavir might be a potential agent to treat 

diseases with aberrant mTORC1 activity, which already have a high level of basal ER stress (Cho et al, 

2009). 
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2. Methods and Materials 

2.1 Plasmid details 

HA-Raptor (Addgene Inc, Massachuttes, U.S.A.),  

V5 tagged ULK1 and ULK2 (generated by Dr. Elaine A. Dunlop (Cardiff University) using gateway 

system (Invitrogen, Paisely, UK), 

pRK7, S6K1 and HA-S6K1 (Kind gift from Prof. John Blenis (Harvard University), 

Q64LRheb generated via site-directed mutagenesis of the Flag-Rheb/pRK7 vector that was 

generated by Dr A.R.Tee (Cardiff University). 

Poly Ubiquitinated protein Plasmid (Addgene), 

shRNA constructs including ULK1, ULK2 and non-target control (MISSION shRNA SIGMA). 

 

2.2 Antibodies and other biochemicals 

Cell Signaling Technology, Inc., Massachuttes, U.S.A: 

Anti eIF2α, #9722 

Anti Phospho-eIF2α (Ser51), #3597 

Anti rpS6, #2217 

Anti Phospho-rpS6 (Ser235/236), #4858 

Anti S6K1, #2708 

Anti Phospho-S6K1 (Thr389), #9234 

Anti AMPK, #2603 

Anti Phospho-AMPK (Thr172), #2535 

Anti ACC, #3676 

Anti Phospho-ACC (Ser79), #3676 

Anti Beta Actin, #8457 

Anti AKT, #4685 

Anti Phospho AKT (Thr308). #4056; Anti Phospho AKT (Ser473). #4060 
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Santa Cruz, California, U.S.A.: 

Anti ULK1 (N-17), #sc-10900 

Anti ULK2 (E-19), #sc-10907 

Anti Rheb (N-19). #sc-6342 

 

Other: 

Anti HA Mouse (16B12) #ab24779 (Abcam plc, Cambridge, UK), 

Anti HA Rat (clone 3F10) #11867423001 (Roche, Basel, Switzerland), 

Anti V5 (2F11F7) #377500 (Invitrogen), 

Anti LC3 #NB100-2220 (Novus Biologicals), 

Anti p62 (SQSTM1) C-terminal antibody (GP62-C) #DS-160211 (Progen Biotechnik) 

Anti Ubiquitin #BML-PW8810-0100 (Bio Mol), 

Secondary Antibodies (SIGMA). 

 

2.3 Cell Lines 

CRUK 293 cells, HEK 293 cells (from ATCC), TSC1-/- and TSC2-/- p53-/- mouse embryonic fibroblasts 

(MEFs), ELT3-V3 and ELT3-T3 were utilised in experiments. 

 

2.4 Drugs 

Sigma-Aldrich Company Ltd., Dorset, UK: 

Nelfinavir (Viracept tablets) - dissolved in 100% Ethanol,  

Thapsigargin, Celecoxib, MG132, Bafilomycin A1 - dissolved in DMSO,  

Chloroquine - dissolved in double distilled deionised water, 

Insulin in solution. 
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Calbiochem Ltd: 

Rapamycin - dissolved in DMSO. 

 

2.5 Cell culture and transfection 

CRUK293 and HEK293 cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) also 

containing 10% foetal calf serum (FCS), 100 g/ml penicillin and 100 g/ml streptomycin (Gibco, 

Paisley, UK). Cells were stored in cryogenic vials under liquid nitrogen in freeze media (8 % DMSO in 

FCS). Cells were washed with 1ml Optimem (Gibco), 1.8 mls DMEM containing 10% FCS  was added 

and Lipofectamine 2000 (Invitrogen) transfections were performed to introduce Q64L Rheb or pRk7 

empty vector to the CRUK293 cells or combinations of V5 tagged ULK1, V5 tagged ULK2, HA tagged 

Raptor, Rheb, S6K1 and pRK7 to the HEK293 cells. At 4 h post-transfection, the media on the cells 

was replaced with 2 mls DMEM containing 10% FCS, 100 g/ml penicillin and 100 g/ml 

streptomycin. Cells were then incubated at 37 oC and harvested 24h later. 

 

2.6 Drug treatments, Cell lysis and Cell buffers 

Drugs were dissolved in a suitable solvent as indicated above. For cell treatments, suitable dilutions 

were made of the drug master stocks and DMEM so as to produce the final drug concentrations 

required (as indicated, along with treatment times, in the figure legends of the results section).  

 

Cells were lysed in Blenis Lysis Buffer (unless stated otherwise), 200µl per 35mm plate: 

10 mM KPO4 / 1mM EDTA pH 7.05 

5 mM EGTA pH 7.2 

10 mM MgCl2 

50 mM β-Glycerol Phosphate pH 7.2 

0.5% NP-40, 0.1% (v/v)Brij-35 

1 mM Na2VO4
3-  
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2 mM DTT 

40 µg/ml PMSF 

50 µg/ml Pepstatin A 

10 µg/ml Leupeptin 

 

2.7 Western blotting 

Protein levels of samples were standardised by performing a Bradford assay.  Samples from figures 1 

and 3 were boiled at 95 °C for 5 min and resolved on a 12% Protogel (National Diagnostics, Atlanta, 

U.S.A.) whereas other samples were boiled at 70°C for 10 min and resolved on 3-8 % or 4-12 % 

Novex precast gradient gels (Invitrogen) (200V for 90 mins). Proteins were transferred to 

Polyvinylidene Difluoride (PVDF) membranes (Millipore) (25V for 2 hours) , blocked in 5 % (w/v) dry 

milk powder/Tris buffered saline 0.1 % (v/v) Tween (TBS-T), then probed using the required primary 

antibody and Horse Radish Peroxidase (HRP)-conjugated secondary antibody (Sigma-Aldrich). 

Proteins were visualised using Enhanced Chemiluminescent (ECL) solution (GE Healthcare) and 

Fujifilm Super RX X-ray film (Jencoms (a VWR Division), Leicestershire, UK). 

 

2.8 S6K1 assay 

HEK293 cells were transfected with combinations of HA-S6K1, V5-ULK1, Rheb and pRK7 using 

Lipofectamine 2000 (Life Technology Ltd.) according to the manufacturer’s protocol. 4 h post-

transfection, media was changed on the cells and they were incubated for 24 h before lysis. Cells 

were lysed using 10 mM K2PO4 (pH 7.4), 1 mM EDTA pH 7.05, 5 mM EGTA pH 7.2, 10 mM MgCl2, 50 

mM -Glycerol Phosphate, 1 mM Na3VO4, 2 mM DTT, 0.5 % (v/v) NP-40, 0.1 % (v/v) Brij-35 and 

protease inhibitors. Lysates were incubated for 2 h at 4oC with protein G-Sepharose beads, and anti-

HA antibody. HA immunoprecipitates were washed once each with Buffer A (10 mM Tris, 1 % (v/v) 

nonidet P-40, 0.5 % (v/v) sodium deoxycholate, 100 mM NaCl, 1 mM EDTA and protease inhibitors, 

pH 7.2), Buffer B (10 mM Tris, 0.1 % (v/v) Nonidet P-40, 0.5 % (v/v) sodium deoxycholate, 1 M NaCl, 
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1 mM EDTA, plus protease inhibitors pH 7.2), and ST Buffer (50 mM Tris-HCL, 5 mM Tris-base, 150 

mM NaCl, plus protease inhibitors, pH 7.2). S6K1 complexed beads were incubated for 10 min at 

30oC in 20 mM HEPES, 10 mM MgCl2, 50 µM ATP unlabelled, 5 µCi of [-32P]ATP (PerkinElmer Life 

Sciences), 3 ng/µl PKI, pH 7.2, in the presence of recombinant GST-S6 peptide (32 final amino acids 

of ribosomal S6). Reactions were subjected to SDS-PAGE, and the relative levels of [32P]-labelled GST-

S6 was determined by autoradiography. Setting up of the experiments was carried out by me, while 

handling of the radioactive material was performed by Dr A. Tee. 

 

2.9 ULK1 kinase assay 

HEK293 cells were washed and incubated in 2 ml of phosphate-free DMEM containing 0.2 mCi [32P]-

orthophosphate for 4 h. Following incubation, cells were treated with rapamyicn and insulin 

stimulated as required. After these treatments, the cells were lysed in mTORC1 lysis buffer (40 mM 

HEPES (pH 7.4), 2 mM EDTA, 10 mM β-glycerophosphate, 400 mM NaCl, 0.3% (w/v) CHAPS and 

protease inhibitors) and subsequently sonicated. ULK1 was immunoprecipitated for 2 h with anti-

ULK1 antibody (N-terminal from Santa Cruz) bound to protein G-Sepharose. The sepharose beads 

were washed 3 times with the mTORC1 lysis buffer. Immunopreciptated radiolabelled [32P]-ULK1 

was resolved on SDS-PAGE, fixed in 40% (v/v) methanol, 10% (v/v) acetic acid, dried down in a gel 

dryer and then exposed to film. 

 

2.10 RNA Extraction 

RNA was extracted from 35 mm2 tissue culture plates using RNeasy Plus Mini Kit (Qiagen) using the 

suppliers protocol. 
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2.11 Reverse Transcription (RT) Polymerase Chain Reaction (PCR) 

1 µg of RNA was reverse transcribed using Quantitect Reverse Transcription Kit (Qiagen) using the 

protocol of the supplier. 

 

2.12 Quantitative real time PCR (QPCR) 

QPCR reactions were set up using Sybr Green PCR Master mix (Qiagen), cDNA and distilled H2O 

following the suppliers protocol. The 12.5 µl reactions were placed into 96 well plates and were run 

using the following protocol: 

Initial Denaturation - 95°C for 15 mins – 1 Cycle 

Denaturation - 94°C for 15 secs 

Annealing - 55°C for 30 secs              – 40 Cycles 

Extension - 72°C for 40 secs 

 

2.13 Cyquant Assay 

 CyQUANT® Cell Proliferation Assays | Life Technologies - Invitrogen 

Experiments were undertaken according to manufacturer’s instructions. The CyQUANT reagents 

were prepared in advance by combining 550 µl CyQUANT GR dye with 11 mls Cell lysis buffer. 

Concentrated cell suspensions in growth medium were generated and then serial dilutions were 

prepared and transferred to a clear based 96 well plate. A hemacytometer was used to calculate the 

dilutions necessary to give 2000 cells per 200 µl in each well. The plates were incubated overnight at 

37°C to allow the cells to adhere. Each well was then drug treated and incubated for a further 24 

hours. Following incubation, the plates were gently inverted and blotted on paper towels to remove 

http://www.google.co.uk/url?q=http://www.invitrogen.com/site/us/en/home/brands/Molecular-Probes/Key-Molecular-Probes-Products/CyQuant-Cell-Proliferation-Assays.html&sa=U&ei=b2KCUeTQGaHz0gXX5oHoBA&ved=0CCMQFjAA&usg=AFQjCNFesYbEl1idCWWnfy5qoYDvzqgNww
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the medium.  200 µl of CyQUANT reagent was added to each well and the plates were incubated at 

room temperature for 5 mins, wrapped in aluminium foil to protect from light. Fluorescence was 

then measured in a microplate reader with filters for ~480 nm excitation and ~520 nm emission 

maxima. To quantify cell number, a dilution series was set up from a concentrated cell suspension in 

which cell number had been calculated using a hemacytometer. The assay was performed on these 

dilutions to produce a standard curve in which cell number could be determined from the 

fluorescence values. 

 

2.14 Cell Death Assay 

Cell Death Detection ELISA - Roche Applied Science.  

Experiments were undertaken according to manufacturer’s instructions. The immunoreagent was 

prepared in advance by mixing 1/20 volume Anti-DNA-POD, 1/20 volume Anti-histone-biotin with 

18/20 volumes Incubation buffer. Cells were grown and drug treated in a 96 well plate as described 

previously for the CyQUANT assay. Following the drug treatments, the plate was centrifuged for 10 

mins at 200 x g and the supernatant was carefully removed from the wells using a pipette. The cell 

pellets were then resuspended in 200 µl lysis buffer and incubated at room temperature for 30 mins. 

Following incubation, the lysates were centrifuged at 200 x g for 10 mins before 20 µl of supernatant 

was transferred into the streptavidin coated multiwell plate. 80 µl of immunoreagent was added to 

each well and an adhesive cover foil was added to the plate which was then incubated on a shaker at 

300 rpm for 2 hours at room temperature. The solution was then removed from each well using a 

pipette and each well was rinsed 3 times with 300 µl incubation buffer (which was carefully removed 

following the final rinse). 100 µl ABTS solution was added to each well and the plate was incubated 

on a shaker at 250 rpm for 10 mins at room temperature. Finally, 100 µl ABTS Stop solution was 

added to each well. A plate reader was used to measure absorbance at 405 nm. 

 

 

http://www.google.co.uk/url?q=http://www.roche-applied-science.com/proddata/gpip/3_5_3_21_2_1.html&sa=U&ei=l2KCUYuNM4iy0QWBq4GACA&ved=0CCcQFjAA&usg=AFQjCNETAnnPoAJf_nFN-XfAJkXeBcEkIw


25 
 

2.15 Replicates and data analysis 

All experiments were performed at least in triplicate. For numerical data, Microsoft Excel was used 

to calculate standard error bars and these are displayed on the graphs. Statistical significance was 

confirmed by performing a Student’s t-test and p-values less than 0.05 are indicated on graphs by *. 

For other experiments (including western blots), the results shown are representative of the 

observations seen in three or more separate experiments. 
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3. Results 

 

3.1 Nelfinavir induces ER stress 

Previous preliminary research by Dr Davies within Cancer and Genetics (Cardiff University) upon 

screening various clinically approved drugs implied Nelfinavir might induce selective toxicity to 

mouse embryonic fibroblasts (MEFs) that lack TSC2.  Although Nelfinavir is commonly used as an 

anti-HIV drug, it is also being tested as an anti-cancer agent. One drug action of Nelfinavir is through 

enhancing ER stress. Given that Nelfinavir is an ER stress inducer (Cho et al, 2009), the sensitivity of 

these TSC2 null cells to Nelfinavir might be as a consequence of an already existing ER stress burden.  

The first aim of this work was to determine the levels of ER stress within cell models of 

heightened mTORC1 signalling upon treatment of Nelfinavir. To examine whether Nelfinavir was 

capable of elevating levels of ER stress within cells, eIF2 phosphorylation at Ser51 was examined in 

HEK293 cells (Figure 3.1). Phosphorylation of eIF2 at Ser51 is one of the most commonly utilised 

indicators of ER stress elevation that occurs in the early stages of the ER stress response (Saito et al, 

2011). Upon treatment with Nelfinavir, western blots indicate a modest elevation of eIF2 

phosphorylation in insulin-stimulated HEK293 cells relative to the untreated controls (Figure 3.1). 

Such a finding implies that you need to drive cell growth, i.e., through activation of the PI3K/Akt 

pathway, in combination of Nelfinavir treatment to see a stress response via eIF2α phosphorylation. 

The effects of Nelfinavir on immediate ER stress markers, autophagy and mTORC1 signalling (which 

are part of the ER stress response) was then examined. Protein levels of p62 were analysed to 

examine whether autophagy might be affected in cells treated with Nelfinavir. The marked reduction 

in p62 upon Nelfinavir treatment, indicates induction of autophagy, as was previously described with 

use of Nelfinavir on cell lines as well as in animal models (Gills et al, 2007). Celecoxib was then 

compared alongside Nelfinavir. This drug is a COX-2 (cyclooxygenase-2) inhibitor that has also been 

suggested to exacerbate ER stress (Huang et al, 2013). The results indicate that this drug also 

modestly enhanced the level of eIF2α phosphorylation under insulin stimulation. Of interest, 
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Nelfinavir treatment potently reduced rS6 phosphorylation upon insulin stimulation, while Celecoxib 

had little effect. Unlike Nelfinavir, Celecoxib had no effect on the protein levels of p62, which shows 

that Nelfinavir induces autophagy through mechanisms that are separate from ER stress induction 

(given that both Nelfinavir and Celecoxib are both ER stress inducers). 

Figure 3.1 

 

Figure 3.1. Nelfinavir increases eIF2 phosphorylation. HEK293 cells (serum starved/insulin 

stimulated) were treated with Nelfinavir (30 µM) or Celecoxib (50 µM) for 24 h and total lysates were 

examined by western blotting. Modest increases in eIF2 phosphorylation were observed in the 

Nelfinavir conditions in addition to significant reductions in the levels of p62 and rpS6 

phosphorylation. These observations are indicative of potent induction of autophagy by Nelfinavir 

and subsequent repression of mTOR signalling. Densitometry was carried out using Image J (1.47v). 
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3.2 ER stress is greater in cells with constitutively activated mTOR signalling 

The idea that constitutively active mTORC1 might enhance basal levels of ER stress was then 

tested. This was done using a GTP-bound mutant of Rheb (Q64L), which has lost its intrinsic GTPase 

activity. Consequently, RhebQ64L is a potent activator of mTORC1 when expressed in HEK293 cells 

(figure 3.2), as observed by an increase in rpS6 phosphorylation when RhebQ64L was expressed.  

 

Figure 3.2 

 

Figure 3.2.  Increased levels of eIF2α phosphorylation are observed in cells with constitutively 

activated mTOR signalling compared to wild type cells. This suggests increased basal levels of ER 

stress in cells with aberrant mTORC1 activity. CRUK 293 cells were transfected as described in 

‘materials and methods’ with either 2 µg empty pRK7 or 2 µg Q64L Rheb. Cells were then treated 

with either 20 µM Nelfinavir or 300 nM Thapsigargin for 24 h. Cells were then lysed in Blenis Lysis 

Buffer and protein levels were assessed via Western blotting. 

 

Importantly, when Rheb/mTORC1 signalling was enhanced, the levels of eIF2α phosphorylation 

was substantially elevated. Such data supports the idea that constitutive activation of mTORC1 can 

lead to high levels of ER stress. Treatment of either Nelfinavir or Tharpsigargin for 30 min, was 
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sufficient to block this high level of eIF2α phosphorylation, which is likely due to inhibition of 

mTORC1 (as observed by a reduction in rpS6 phosphorylation). Both Nelfinavir and Thapsigargin are 

inducers of autophagy and autophagy is known to repress mTORC1 signalling (via an undetermined 

mechanism). Therefore, it is possible that autophagy induction by both Nelfinavir and Thapsigargin 

could lead to inhibition of mTORC1.  

 

3.3 TSC deficient cells have a truncated ER stress response 

Having made these observations relating to Nelfinavir’s effects on eIF2α phosphorylation, the 

effects on another marker of ER stress, CHOP, were then examined. To achieve this, QPCR was 

employed to measure mRNA levels in TSC2-/- and TSC2+/+ MEFS following treatments with varying 

concentrations of Nelfinavir (Figure 3.3). Of interest, lower levels of CHOP mRNA were observed in 

the TSC2-/- MEFs following treatment (when compared to the controls). This suggests that cells with 

aberrant mTORC1 activity have a truncated ER stress response. It should be noted that mRNA levels 

do not necessarily mirror the levels of protein and thus future experiments should be performed to 

confirm CHOP protein levels and confirm this observation. 

One of the key elements of the ER stress response pathway is autophagy, where autophagy 

heavily influences whether a cell survives or undergoes apoptosis following ER stress. Given the 

observation that Nelfinavir seemed to potently activate autophagy, the next stage of research 

sought to gain a better understanding of the molecular mechanisms of autophagy and how mTORC1 

is involved in this ER stress response pathway. This line of investigation also sought to determine the 

apparent resistance of TSC2-deficient cells to ER stress induced by Nelfinavir. 
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Figure 3.3 

 

Figure 3.3. Nelfivavir does not induce higher levels of CHOP expressions in TSC1 deficient cells. 

Following 24 h incubation in the presence of 10 µM, 20 µM or 30 µM Nelfinavir, RNA was extracted 

from TSC1+/+ and TSC1-/- cells (following manufacturer’s instructions in the QIAGEN kit) and subjected 

to QPCR analysis using primers specific to CHOP. Results were standardised to a β-actin control and 

the fold difference of CHOP expression relative to the TSC1+/+ control was calculated. Levels of CHOP 

mRNA were lower in all TSC1-/- cell conditions inferring that ER stress is lower. As suggested by other 

research, a lower level of CHOP mRNA may be due to the ER stress response being truncated in the 

TSC1-/- cells (Kang et al, 2011).  

 

3.4 ULK1 phosphorylates Raptor  

To examine autophagy in more detail with regards to mTORC1, an ULK1 mammalian 

expression vector was used. ULK1 is one of the principal components of the autophagy pathway in 

eukaryotes. Firstly, the impact of ULK1 activity on mTORC1 signalling was assessed by co-transfecting 

ULK1 and Raptor into HEK293 cells. In these experiments, an upwards mobility shift was observed 

when Raptor was resolved in SDS-PAGE. This is indicative of a phosphorylation event, which was not 
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observed in the control conditions in which ULK1 was not co-transfected (Figure 3.4). Interestingly, a 

Raptor mobility shift (albeit to a lesser extent) was also observed when ULK2 was co-transfected in 

place of ULK1, suggesting that there is some functional redundancy between these proteins. When 

Raptor protein that was excised from gels was subjected to MALDI-TOF (thanks to Prof. John Blenis 

(Harvard University, Boston, USA)), multiple ULK1-mediated protein phosphorylation events were 

identified within Raptor (please refer to discussion for more information and (Dunlop et al, 2011)). 

 

Figure 3.4 

  

Figure 3.4. ULK1 causes a mobility shift of Raptor, indicative of a phosphorylation event(s). HEK 

293 cells were transfected with 1 µg HA-Raptor and either 1 µg V5-ULK1 with 3 µg pCDNA3 or 4 µg 

ULK2. Following incubation overnight, cells were either amino acid starved in Kreb’s Ringer Buffer 

(made up of 115 nm NaCl, 5 mM KCl, 10 mM NaHCO3, 2.5 mM MgCl2, 2.5 mM CaCl2, 20 mM HEPES 

and dH2O with a pH of 7.4) or DMEM plus FCS was added. After 4 h, cells were lysed and the proteins 

were visualised through Western blotting. The mobility shift observed is likely due to the 

phosphorylation of Raptor by ULK1. The finding that the mobility shift also occurs due to ULK2 

indicated that some level of functional redundancy exists between ULK1 and ULK2. 
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3.5 ULK1 inhibits mTORC1 

It was also observed that over-expression of ULK1 was capable of potently reducing the 

levels of S6K1 phosphorylation at Thr389 and also to reduce the levels of S6K1 kinase activity against 

recombinant ribosomal protein S6 (rpS6) (figure 3.5). This data implies that ULK1-mediated 

phosphorylation of Raptor is inhibitory to signal transduction through mTORC1.  

 

Figure 3.5 

 

Figure 3.5. ULK1 inhibits mTOR activity. HEK 293 cells were transfected and immunoprecipitations 

performed as described in the S6K1 Assay section of ‘material and methods’. Total lysates were used 

to assess levels of V5-ULK1, Rheb and Thr389 S6K1. Results indicate a large reduction in Thr389 

phosphorylation of S6K1 and in the levels of rpS6[32p]. This is indicative of a substantial inhibition of 

the mTORC1 pathway.  
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3.6 ULK1 knockdown alleviates mTORC1 inhibition 

These initial observations that ULK1 might be involved as a negative regulator of mTORC1 

were reinforced by undertaking ULK1 knockdown experiments (figure 3.6). Upon transfecting shRNA 

to target ULK1 mRNA, mTORC1 signalling in HEK293 cells was observed to be elevated (as indicated 

by enhanced phosphorylation of rpS6).  

 

Figure 3.6 

  

Figure 3.6. Inhibition of mTORC1 is alleviated following knockdown of ULK1. HEK 293 cells were 

transfected with either scrambled shRNA (non-target) or ULK1 shRNA vectors, where indicated. 

Immunoprecipitations were undertaken to assess levels of ULK1 (and thus confirm successful 

knockdown) and total lysates were used to examine rpS6 phosphorylation. As shown by increased 

rpS6 phosphorylation, knockdown of ULK1 increases/restores mTORC1 activity. 

 

3.7 mTORC1 inhibition by ULK1 occurs independently of AMPK signalling 

It was speculated that AMP-dependent protein kinase (AMPK) signalling may also be 

involved in mTORC1 repression by ULK1, given that AMPK and ULK1 are known to interact and AMPK 
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can enhance ULK1 activation. Furthermore, AMPK is known to phosphorylate Raptor directly (Gwinn 

et al. 2008). Phosphorylation levels of AMPK and ACC (acetyl-CoA carboxylase, a downstream 

substrate of AMPK) were therefore analysed following different co-transfections with ULK1, ULK2 

and Raptor. No appreciable differences were observed in the levels of AMPK and ACC 

phosphorylation suggesting that the Raptor mobility shift and mTORC1 inhibition is occurring 

independently of AMPK signalling (figure 3.7). 

 

Figure 3.7 

 

Figure 3.7. Inhibition of mTOR by ULK1 occurs independently of AMPK signalling. HEK 293 cells 

were transfected as described previously with HA-Raptor and V5-ULK1 or V5-ULK2. Western blotting 

of total lysates was used to assess phosphorylation levels of AMPK and ACC. As increases in AMPK 

and ACC phosphorylation were not observed alongside the Raptor mobility shift, the inhibition of 

mTORC1 by ULK1 and ULK2 is assumed to be independent of AMPK signalling.  
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3.8 mTORC1 signalling inhibits ULK1 

Following these observations of the effects of ULK1 to repress mTORC1 signalling, the effects 

of mTORC1 on ULK1 were then examined. Autophosphorylation of ULK1 (which is considered a 

measure of ULK1 kinase activity) was significantly reduced upon 30 min insulin stimulation and was 

partially rescued upon rapamycin treatment, suggesting that mTORC1 was repressing ULK1 (figure 

3.8). To examine mTORC1 signalling in more detail, Rheb was overexpressed in HEK293 cells and the 

total protein levels of ULK1 was measured. Interestingly, lower levels of ULK1 protein were observed 

in the conditions of Rheb over-expression suggesting that some of the reduction/inhibition of ULK1 

activity is likely due to mTORC1-mediated degradation of ULK1 (figure 3.9). 

 

Figure 3.8 

 

Figure 3.8. mTORC1 signalling inhibits ULK1 through ULK1 degradation. [32P]-orthophosphate in 

vivo radiolabelling of HEK 293 cells were carried out to examine [32P]-incorporation into ULK1 after 

being immunoprecipitated. Cells were starved and then stimulated with insulin for 30 min in the 

presence or absence of 100 nM Rapamycin (30 min pre-treatment). Levels of ULK1[32p] were 

significantly reduced following insulin stimulation but this effect was minimised in the presence of  

Rapamycin. This evidence indicates that mTORC1 signalling is inhibitory towards ULK1 and therefore 

autophagy.  
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3.10). Having completed this functional work, the next stage of research was to return to 

investigating the therapeutic potential of Nelfinavir with regards to also targeting autophagy. 

 

Figure 3.9 

 

Figure 3.9. Rheb expressing HEK 293 cells have reduced stability of ULK1 protein. HEK 293 cells 

were transfected with V5-ULK1 and Rheb as described previously (high ULK1 was 4 µg plasmid versus 

low ULK1 that was 1 µg plasmid). Relative levels of V5-ULK1 protein was determined from 25 µg of 

total protein cell lysates. In the presence of Rheb expression, which is known to potently enhance 

mTORC1 signalling, significantly lower levels of ULK1 protein was observed. Such evidence suggests 

that increased mTORC1 activity may cause increase degradation of ULK1.  

Figure 3.10 

Figure 3.10. Illustrative diagram of mTOR and 

ULK1 interactions. An inhibitory feedback 

network appears to exist between the 

autophagy and mTOR pathways. Additional 

regulation occurs through AMPK signalling 

which functions to inhibit mTOR and activate 

autophagy. 
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3.9 Nelfinavir induces autophagy and inhibits mTORC1 

It was shown in previous experiments that Nelfinavir, similarly to the positive control of 

Thapsigargin, was capable of increasing phosphorylation of eIF2α and thus increase the levels of ER 

stress. It was also observed that Nelfinavir treatment significantly reduced levels of rpS6 

phosphorylation suggesting that Nelfinavir was potently inhibiting signal transduction through 

mTORC1. Given that experiments had previously established that ULK1/autophagy were inhibitory 

towards mTORC1, it was reasonable to assume that the reduction in mTORC1 activity upon 

Nelfinavir treatment was due (in part) to an induction of autophagy. This hypothesis was supported 

by reductions in the level of p62 and increases in the proportion of the lower lipidated form of LC3 

(LC3-II) in cells treated with Nelfinavir, which are both indicators of increased autophagy. Protein 

levels of ULK1 were also shown to be elevated upon treatment with Nelfinavir (figure 3.11). As 

expected, potent impairment of rpS6 phosphorylation was also observed upon treatment with 

Nelfinavir, as one would expect given the increased levels of ULK1 protein and enhanced autophagy.  

These findings suggest that autophagy is being exploited by cells as a survival mechanism to 

withstand the stress induced by Nelfinavir (presumably through ER stress) as well as Thapsigargin. It 

was postulated that Nelfinavir could induce ER stress through inhibition of the proteosome (Kraus et 

al, 2013). 
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Figure 3.11 

 

Figure 3.11. Nelfinavir causes induction of autophagy and inhibition of mTORC1. HEK 293 cells were 

treated as described previously with Nelfinavir (30 µM). The positive control of Thapsigargin (300 

nM) was also included as well as a Rapamycin (100 nm) control. Reductions in p62 and rpS6 

phosphorylation and increases in the lower isoform of lipidated LC3 (LC3-II) indicates upregulation of 

autophagy and inhibiton of mTORC1 in both the Nelfinavir and Thapsigargin conditions. Also in these 

conditions, increased levels of ULK1 protein was observed, which again highlights increased protein 

stability of ULK1 when mTORC1 signalling is reduced. 
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To examine whether Nelfinavir could inhibit the proteosome within HEK293 cells, removal of 
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expressed in these HEK293 cells as a way to mark polyubiquitinated protein. A potent inhibitor of 

the proteasome, MG132, was shown to block clearance of the polyubiquitinated protein whereas 

this effect was not evident following Nelfinavir treatment (figure 3.12). This suggests that the effect 

of Nelfinavir on enhancing autophagy is probably not due to proteasomal inhibition alone. There 

does not appear to be any inhibitory effects of Nelfinavir on the proteasome at this 4 h time point. 

Due to the lack of sensitivity of this assay, there is a possibility that there might be a very small level 

of inhibition of the proteasome. 

 

Figure 3.12 

 

 

Figure 3.12. The increases in autophagy caused by Nelfinavir are not due to proteasomal inhibition 

alone. HEK 293 cells were transfected with a vector expressing a polyubiquitinated protein and 

treated with either Nelfinavir (30µM) or MG132 (10 mM) for 4 h. An accumulation of the 

polyubiquitinated protein was not observed in the Nelfinavir treatment condition suggesting the 

proteasome was not inhibited.  
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3.11 Nelfinavir’s effects are dominant to Chloroquine 

The findings to this point led to the hypothesis that a potential therapeutic strategy for diseases 

with dysfunctional mTORC1 activity would be to treat cells with both the ER stress inducing drug 

Nelfinavir in combination with an inhibitor of autophagy. This treatment would hypothetically 

differentially effect cells with high/constitutively active mTORC1 signalling and wild-type cells with 

normal levels of mTORC1 activity due to different basal levels of ER stress. It was thought that this 

combination treatment, at the correct concentrations, would moderately stress wild-type cells and 

thus only induce cell survival mechanisms but stress the mutant cells with high mTORC1 signalling to 

a greater degree. The expectation was that mTORC1 active cells would not tolerate this drug 

combination of ER stress and autophagy inhibition and thus induce apoptotic events. 

A known inhibitor of autophagy, Chloroquine, was used to test this strategy given its status as a 

clinically approved and viable drug used in the treatment of malaria in humans.  Following a number 

of combination treatments at varying concentrations, western blotting indicated that the levels of 

autophagy induction and inhibition of mTORC1 signalling were not restored by Chloroquine 

suggesting that the effects of Nelfinavir on cells is dominant (figure 3.13). Bafilomycin A1, another 

autophagy inhibitor was also employed as a positive control. 

It should be noted that in figure 3.11, Nelfinavir was causing accumulation of LC3-II whereas this 

was not observed in figure 3.13. It may be that at shorter time points (such as 4 hours in figure 3.13) 

Nelfinavir is driving autophagy but at later time points (such as 24 hours in figure 3.11), it may be 

having a similar effect to Thapsigargin and is perturbing autophagosome-lysosome fusion. This 

would account for the differing observations of LC3-II accumulation and also the observation of 

numerous small intracellular entities seen in Nelfinavir treated cells (observed via microscopy and 

discussed later), which could be autophagosomes that have accumulated. 
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Figure 3.13 

 

Figure 3.13. Nelfinavirs activation of autophagy is dominant to the inhibitory effects of 

Chloroquine and Bafilomycin A1. HEK293 cells were treated with combinations of Nelfinavir (30 µM), 

Chloroquine (50 µM) and Bafilomycin A1 (2.5 nM) (another inhibitor of autophagy) for 4 h. Levels of 

p62 and the proportion of the lower lapidated isoform of LC3 (LC3-II) in the combination treatment 

conditions resembled that of the Nelfinavir only condition, suggesting Nelfinavir’s effects were 

dominant.  

 

3.12 Chloroquine enhances cell death induced by Nelfinavir 

The effects of the combination treatment were then observed through microscopy of ELT3 

cells, another cellular model of TSC, that have either loss of TSC2 (ELT3-V3) or TSC2 re-expressed 

(ELT3-T3) (figure 3.14). This strategy allowed for the preliminary qualitative assessment of cell death 

by bright field microscopy. Minimal reduction in cell numbers or evidence of apoptotic cells was 

observed in those cells treated with Chloroquine alone, in both ELT3 cell lines without TSC2 or cells 

re-expressing TSC2. A reduction in cell numbers and increased evidence of cell death was observed 

in the Nelfinavir treatment conditions and these effects were more pronounced as concentrations of 

Nelfinavir was increased. In the combination treatment with both Nelfinavir and Chloroquine, the 

effects of Nelfinavir were greatly increased and suggests that Chloroquine was having an additive 
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effect. Most importantly to note, was that these drug effects were significantly greater in the ELT3-

V3 cells that lack TSC2 compared to the TSC2 expressing rescue cells. Such findings demonstrate that 

this combination treatment was acting selectively. 

Figure 3.14 

 

 

Figure 3.14. Enhanced cell death observed in cells lacking TSC2 following Nelfinavir and 

Chloroquine treatment. ELT3 cells were treated for 24 h at the drug concentrations indicated (5, 10 

& 20 µM Nelfinavir and 50 µM Chloroquine) and then visualised using bright field microscopy. 

Apparent increased cell death was observed as Nelfinavir concentration increased and the greatest 

amount of cell death was observed in the combination treatment conditions. Most importantly, the 

effects were greater in the TSC2 null cells relative to the TSC2+/+ cells showing that this treatment 

strategy operates selectively.  
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3.13 Nelfinavir and chloroquine dramatically and selectively induce cell death in TSC deficient cells 

The final stage of experimentation sought to quantify the levels of cell death, as observed 

previously through microscopy. Firstly, cyquant cellular proliferation assays were undertaken and 

this allowed for the quantification of cell numbers in different treatment conditions. The difference 

in cell number relative to control could then be determined and this difference would represent the 

extent of cell death that had been induced by the treatments. The results of these assays on TSC2 

cells mirrored the microscopy observations of the ELT3 cells in that Nelfinavir increased cell death in 

the TSC2 null cells (shown through a significant reduction in cell number) in the single drug 

treatment condition. The differences between the levels of cellular death observed in the TSC2+/+ 

cells compared to the TSC2-/- cells was slight. In the combination treatment condition, however, the 

reduction in cell numbers (and inferred levels of cell death induction) was considerably higher and 

the differences between the TSC2+/+ and TSC-/- cells were more significantly pronounced (figure 

3.15). 
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Figure 3.15 Nelfinavir and Chloroquine significantly and selectively reduce cell number in TSC2-

deficient cells. TSC2 +/+ and TSC2 -/- MEFS were treated with combinations of Nelfinavir (30 µM) and 

Chloroquine (25 µM) for 24 h. Cyquant cellular proliferation assays indicated a significant reduction 

in cell number in the Nelfinavir and Chloroquine combination treatments. 

 

Cell death ELISAs were then performed to reinforce the observations of the cell proliferation 

assays. The results of the ELISAs reiterated what was observed previously, in that some cell death 

was observed in both single drug treatments of Nelfinavir and Chloroquine. The most significant 

levels of cell death were observed in the combination treatment and it was in this condition that 

there was the greatest difference in the level of cell death between TSC2+/+ and TSC2-/- cells (figure 

3.16). It should be noted that this assay does not distinguish between necrosis and apoptosis. In 

future, further experimentation should be undertaken such as caspase cleavage assays to confirm 

the type of cell death that is being observed. 

 

Figure 3.16   
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Figure 3.16. Nelfinavir and Chloroquine significantly and selectively induce cell death in TSC2-

deficient cells. TSC2 +/+ and TSC2 -/- MEFS were treated with combinations of Nelfinavir (30 µM) and 

Chloroquine (25 µM) for 24 h. Cell Death ELISAs showed that the highest amount of cell death 

occurred in the combination treatment condition. By comparing results to the controls and solo 

treatment conditions, it is evident that combined treatment with both Nelfinavir and Chloroquine 

induces significant and selective cell death in TSC2 null cells. 

 

Figure 3.17 

 

Figure 3.17 Diagram of the crosstalk and interactions between various signalling pathways. 

Illustration of the molecular interactions between Nelfinavir, Chloroquine and the various signalling 

pathways. Nelfinavir is shown to target and enhance ER stress which, in combination with autophagy 

inhibition by Chloroquine, induces cell death.   
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4. Discussion 

The primary aim of this investigation was to examine whether it was possible to utilise the 

clinically viable drug Nelfinavir to specifically induce cell death in cells exhibiting aberrant mTOR 

activity. This investigation was able to successfully show that Nelfinavir was capable of inducing ER 

stress and subsequently cell death in TSC2 null cells and this effect was selective in that the results 

were more pronounced compared to cells expressing wild type TSC2. It was however observed that 

many of the cells, both mutant and wild type, were able to survive following Nelfinavir treatment 

inferring that some form of cell survival mechanism was being exploited. It was found that upon 

treatment of Nelfinavir, autophagy was induced. This is one of the major events in the unfolded 

protein response and is a mechanism by which cells attempt to restore normal cellular protein levels 

and homeostasis. It appeared that TSC2 null cells were heavily reliant on this survival pathway in 

order to withstand the effects of Nelfinavir and avoid the cell death inducing features of the ER 

stress response. Another mechanism that is employed by cells to restore protein homeostasis and 

which occurs prior to the aggregation of unfolded/misfolded proteins is via the proteasome 

(Rubinsztein, 2006). Previous research has indicated that Nelfinavir acts to inhibit the proteasome 

and this would account for its ability to induce ER Stress and observed elevations in autophagy levels 

(Bono et al, 2012; Gupta et al, 2007).  

Given these findings, it was hypothesised that an inhibitor of autophagy in combination with 

Nelfinavir might further enhance cell death in TSC2 null cells. The drug selected for use was 

Chloroquine, a drug already approved for clinical use in the treatment of malaria, which raises 

lysosomal pH and inhibits lysosomal protein degradation and autophagy. It was shown that through 

inhibiting autophagy with Chloroquine, TSC2 null cells became vulnerable to Nelfinavir-induced cell 

death whereas wild type TSC2 cells were able to tolerate the drug combination and survive. This 

demonstrates that these two drugs operate synergistically to significantly and selectively induce cell 

death in TSC2 null cells. Furthermore, this therapeutic strategy of ER stress induction combined with 

autophagy inhibition has previously been shown to induce cell death in breast cancer as well as 
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other TSC deficient cell models (Parkhitko et al, 2011; Thomas et al, 2012). This suggests that this 

strategy of targeting both ER stress and autophagy may be more broadly applicable for a wider 

range of cancers and diseases.  

This research highlights the importance that TSC2 has in a normal ER stress response. The 

sensitivity of the TSC2 null cells to Nelfinavir is likely caused in part by the inability of these TSC2 null 

cells to fully inhibit mTORC1. Inhibition of mTORC1 through TSC2 appears necessary to reduce ER 

stress, i.e., the rate of protein synthesis would be reduced that would consequently limit further 

stress of the ER from newly generated protein. The inhibition of mTORC1 is also required for a more 

potent autophagy response (via ULK1 activation) to effectively remove unfolded protein aggregates 

in the ER.  

Direct interactions between TSC2 and the ER stress pathway have previously been described. 

The ER stress regulatory protein CHOP (aka GADD34), has been shown to recruit Protein 

Phosphatase 1 (PP1) to TSC2 which activates it through de-phosphorylation (Uddin et al, 2011; 

Watanabe et al, 2007; Kojima et al, 2003) and subsequently mTORC1 is inhibited. Difficulties were 

experienced in measuring later markers of the ER stress response such as CHOP protein during 

research despite cell death being apparent.  The difficulties I observed with detecting CHOP protein 

was also observed from other groups  where they also revealed that cells lacking TSC2 have a 

truncated ER stress response (Kang et al, 2011).  

In addition to the work assessing the effectiveness of drug treatments, another aspect of this 

study was to examine interactions between mTORC1 signalling and ULK1, a major component of the 

autophagy pathway. Experiments demonstrated that ULK1 had a potent inhibitory effect on 

mTORC1 signalling shown through marked reduction in mTORC1 activity, as observed through 

phosphorylation of rpS6 and S6K1 when ULK1 is overexpressed. As evidenced by an upward Raptor 

mobility shift when resolved by SDS-PAGE, this inhibition of mTORC1 was due to Raptor 

phosphorylation by ULK1. ULK1 knockdown experiments by shRNA confirmed that ULK1 

phosphorylated Raptor, and was a negative regulator of mTORC1 signal transduction. Interestingly, 
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Raptor mobility shifts were also observed when ULK2, another member of the Ulk protein family, 

was overexpressed suggesting some level of functional redundancy between both ULK1 and ULK2. 

Subsequent work has validated these observations and these ULK1-mediated phosphorylation 

events, which have been characterised. It was shown that ULK1 causes phosphorylation of Raptor at 

multiple sites. In particular, Ser855 and Ser859 residues of Raptor were strongly phosphorylated 

whilst Ser792 was moderately phosphorylated by ULK1. Functional work identified that ULK1 did not 

alter protein-protein interactions of mTORC1 components; while ULK1 phosphorylation of Raptor 

instead hindered binding of the substrate 4E-BP1 to Raptor. Overall, this research demonstrates 

ULK1’s ability to inhibit mTORC1 signalling occurs via interference of substrate docking to Raptor 

(Dunlop et al, 2011).  

In addition to the regulation of mTORC1 by ULK1, this study also observed that mTORC1 had an 

inhibitory effect on ULK1. Through the use of kinase assays, ULK1 activity was shown to be 

significantly reduced following insulin stimulation. This reduction was markedly lessened by the 

mTORC1 inhibitor, rapamycin. These findings highlight that homeostatic signalling interplay exists 

between mTORC1 and ULK1, which would switch depending on nutrient and energy status of the 

cell.  

Although the effects of ULK1 on Raptor were shown to be independent of AMPK signalling in this 

study, other research has shown this signalling pathway to impact significantly both on autophagy 

and mTORC1; perhaps unsurprisingly given mTORC1’s critical role in energy sensing. Research in 

HeLa cells demonstrated that similarly to observations seen in yeast, AMPK signalling directly 

influences autophagy in that when it is AMPK is inhibited, so too is autophagy (Meley et al, 2006). It 

has also been demonstrated that AMPK regulates mTORC1 activity through phosphorylation of TSC2 

and also through phosphorylation of Raptor (Inoki et al, 2003). Therefore, a complex pathway 

involving crosstalk and feedback exists between these three critical kinases, mTORC1, AMPK, and 

ULK1. 
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In conclusion, this study has allowed for the identification of novel signalling mechanisms 

between mTORC1 and autophagy. It has also enabled us to ascertain that combinatorial therapies 

which function to induce or exacerbate ER stress and simultaneously inhibit autophagy are capable 

of selectively inducing cell death in cells with aberrant mTORC1 signalling. 

In the future, this research should be advanced through pre-clinical work to test whether the 

combination of Nelfinvavir and Chloroquine has benefits in TSC mouse models or other cancer 

models with heightened mTORC1 signalling. Should these pre-clinical trials prove to be similarly 

successful in the murine models as was observed in the cell lines of this study, the next stage would 

be to trial the combination treatment in humans. As both Nelfinavir and Chloroquine are clinically 

approved and commonly used agents in humans, maximum tolerated doses have already been 

established and this should expedite the trial process. Patients with Tuberous Sclerosis or patients 

with sporadic cancers whose cancer genotype features mutations in TSC1 or TSC2 resulting in 

upregulated mTORC1 signalling would be ideal preliminary candidates for such a trial. If successful, 

the trials could be expanded to patients with other heritable mTORC1 associated disorders such as 

Neurofibromatosis (which occurs as a result of mutations in the NF1 gene) or Burt Hogg Dubé 

Syndrome (which occurs as a result of mutations in the gene encoding Folliculin).  

A further avenue of research could be to investigate alternative combinations of drugs that 

target ER stress and autophagy. As targeting ER stress and autophagy in combination has been 

shown to be an effective therapeutic strategy for cells with aberrant mTORC1 activity, the 

experiments undertaken as described could be reproduced but using alternative clinically viable 

drugs that target the same pathways but perhaps via different mechanisms. An example could be to 

use Bortezomib, a clinically approved drug commonly used in chemotherapy that induces ER stress 

via inhibition of the 26S proteasome, in place of Nelfinavir (Vaeteewoottacharn et al, 2013). The 

availability of alternative drugs that inhibit autophagy and that are clinically viable is considerably 

more limited compared to viable ER stress inducers. One clinically viable alternative that has been 

shown to have promise as an inhibitor of autophagy is Lucanthone, a drug already used in 
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chemotherapy, and so perhaps this could be investigated as a replacement for Chloroquine (Carew 

et al, 2011). By undertaking these experiments using a variety of different viable agents, the 

combination which results in the highest level of cell death induction in mutant cells and lowest level 

of cell death in wild type cells could be identified (i.e., the greatest difference in levels of cell death 

between mutant and wild type cells and therefore the most selective treatment). In addition to 

identifying the combination treatment with the greatest effectiveness in terms of selectivity, these 

experiments would also allow for cost-benefit analysis to be assessed by taking into account the 

toxicity profiles of the drugs used. This way the optimal treatment with the least intrusive or minimal 

side effect profile could be selected. 

The final potential avenue for future research would be to investigate lipid metabolism in cells 

with aberrant mTORC1 activity. During this study, it was observed via microscopy that following the 

treatments with Nelfivavir, numerous small intracellular entities became evident within the mutant 

cells. As suggested previously in the results section, these may be autophagosomes. Alternatively, 

these could be lipid accumulations, an assumption that would appear sensible given that research 

has demonstrated that ER stress perturbs lipid metabolism (Fang et al, 2013). Given the observation 

that there appears to be differences in lipid metabolism in cells with aberrant mTORC1 activity 

compared to wild type cells following Nelfinavir treatment, this may present another pathway that 

could be exploited in a selective treatment strategy. 
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