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Abstract

Volume conduction (VC) and magnetic field spread (MFS) induce spurious correlations between EEG/MEG sensors, such that
the estimation of functional networks from scalp recordings is inaccurate. Imaginary coherency [1] reduces VC/MFS artefacts
between sensors by assuming that instantaneous interactions are caused predominantly by VC/MFS and do not contribute
to the imaginary part of the cross-spectral densities (CSDs). We propose an adaptation of the dynamic imaging of coherent
sources (DICS) [2] - a method for reconstructing the CSDs between sources, and subsequently inferring functional
connectivity based on coherences between those sources. Firstly, we reformulate the principle of imaginary coherency by
performing an eigenvector decomposition of the imaginary part of the CSD to estimate the power that only contributes to
the non-zero phase-lagged (NZPL) interactions. Secondly, we construct an NZPL-optimised spatial filter with two a priori
assumptions: (1) that only NZPL interactions exist at the source level and (2) the NZPL CSD at the sensor level is a good
approximation of the projected source NZPL CSDs. We compare the performance of the NZPL method to the standard
method by reconstructing a coherent network from simulated EEG/MEG recordings. We demonstrate that, as long as there
are phase differences between the sources, the NZPL method reliably detects the underlying networks from EEG and MEG.
We show that the method is also robust to very small phase lags, noise from phase jitter, and is less sensitive to
regularisation parameters. The method is applied to a human dataset to infer parts of a coherent network underpinning
face recognition.
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Introduction

As cognitive function arises from the dynamic interaction

between brain regions, there is an increasing interest in moving

cognitive brain imaging beyond the identification of anatomical

loci of functional processes, to the detection of the underlying

functionally connected networks. Functional relationships between

brain regions can be inferred from correlated haemodynamic or

electrophysiological signals. The shortcomings of using the

haemodynamic response as the basis of detecting correlated

regions due to poor temporal resolution have been documented

[3]. The millisecond temporal resolution of electroencephalogra-

phy (EEG) and magnetoencephalography (MEG) should make

them ideal tools to measure functional connectivity, since the time

scales of neural interaction are also of this order. However, two

challenges arise from using scalp recording to infer interacting

networks: Volume conduction (VC) and magnetic field spread

(MFS) cause smearing of the effect of the neural generators at the

surface and result in poor spatial resolution. Further, VC and MFS

introduce spurious and erroneous correlation in the recorded

signals such that the estimated networks are inaccurate. Here we

propose a physiologically valid method to reduce the effects of VC

and MFS in estimating coherent source networks. Before

introducing the proposed method, we review coherence as a

method of inferring functional connectivity and dynamic imaging

of coherent sources (DICS) [2] as a method of estimating

coherence between reconstructed sources. The issues of VC and

MFS are discussed further along with the obstacles they present to

uncovering true source level coherences, as well as previous

attempts to solve the problem.

Beamformers as a Solution to the Inverse Problem
Overcoming the poor spatial resolution of EEG/MEG has been

the focus of a great deal of research (see [4,5] for reviews). This

generally involves the calculation of a linear forward solution, or

lead field, which describes the transformation of the signal from

the neural generators to the surface sensors. This is followed by an

attempt to reverse the calculation to solve its inverse. The inverse

solution is problematic as it attempts to describe a complex

dynamical system from a relatively small number of observations.

The inverse problem is described as ‘ill-posed’ as it has no unique
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solution [6]. Solutions such as the linearly constrained minimum

variance (LCMV) beamformer [7] do not explicitly try to solve the

inverse problem, unlike dipole fitting methods [8], but instead rely

on spatial filters that weight the estimated sources as a function of

the covariance matrix of the time-series. A spatial filter is

constructed for each source point (voxel) such that the variance

of the total source power is minimal while keeping the output of

the filtered lead field constant. This maximises the beamformer

output for the target source while contributions from other sources

are attenuated (however signals from strong, nearby sources may

subdue output from the target source). Beamformers have been

shown to be a useful method for identifying EEG/MEG sources

(see [9] for a review). However, the fact that beamformers assume

that distinct sources are uncorrelated may pose problems when

trying to infer functional connectivity between reconstructed

sources. This issue will be addressed in more detail in the

discussion.

Another issue concerning beamformer methods is that of

regularisation. The spatial filter requires regularisation to prevent

overfitting. Higher regularisation is preferred to reduce the chance

of false positives, but this results in the smoothing of sources.

Lower regularisation allows for more focal sources to be

reconstructed, but is more prone to false positives [10,11]. This

is described mathematically in the theory section.

A common application of the beamformer technique is to

estimate the source-level time-series. This type of approach is often

referred to as ‘‘virtual electrode’’ methods, because they can be

conceptualised as placing virtual electrodes into voxels. The most

obvious method of investigating functional connectivity at the

source level would be to estimate time-series for pairs of voxels and

measure the functional connectivity between them. While

superficially very attractive, this approach needs to be treated

with some caution when used in the context of functional

connectivity estimation, because uncertainties in the reliability of

the reconstructions can give rise to systematic errors, which will

contaminate subsequent connectivity estimates [12]. Our prefer-

ence is to use DICS, a modified beamformer method (described

later), which allows for coherence based source connectivity

estimates to be computed in a single step.

Coherence
Coherence is a statistic that often increases when activity in

neural assemblies is functionally synchronised and as such can be

taken as a measure of functional connectivity in electrophysiolog-

ical data (see [13] for a review). Coherence is thought to be the

mechanism by which percepts are bound together: The ‘‘binding

hypothesis’’ [14,15]. Electrophysiological studies recording multi-

unit activity and local field potentials have illustrated that

coherence accurately reflects both intra-cortical and inter-cortical

communication (see [16–18], for reviews).

In practice, coherence describes how closely related the spectral

densities of two signals are, and so is equivalent to a correlation

coefficient in the frequency domain. Coherence is the absolute

value of coherency, the complex-valued ratio between the cross-

spectral density (CSD) and the individual auto-spectra (or power)

of two signals, i.e. a covariance matrix in the frequency domain.

This can be calculated by Fourier transformation or wavelet

convolution of the cross-covariance of the two time-series [19].

Since the ratio between the individual auto-spectra and the cross-

spectra are complex, they embody both correlation of power

amplitude and phase synchrony of the signals.

While coherence analysis is simple and physiologically-valid, the

interpretation of its spatial characteristics at the sensor level is

difficult, due to the irregular way in which the source activity

manifests. This provides a strong motivation for looking at

connectivity at the source-level. Using the ‘virtual-electrode’

method described above is an obvious means of achieving this.

This however is computationally demanding and can suffer a

number of pitfalls detailed in the sections below.

Dynamic Imaging of Coherent Sources
Dynamic imaging of coherent sources (DICS) [2] is a

beamformer technique that operates under the same principle as

LCMV, but with two principle differences: (1) The covariance

matrix in the calculation of the spatial filter is replaced by the

sensor-level CSD matrix. (2) The filter is applied to the sensor-level

CSD to reconstruct the source-level CSDs of all combinations of

pairwise voxels. From these the source-level coherences between

sources can be estimated. Thus DICS differs from other

beamforming methods in that it directly estimates the interactions

between sources as well as their individual powers.

DICS is advantageous over separate source-reconstruction and

functional connectivity combinations because functional interac-

tions are reconstructed as source pairs. The assumptions

underlying the localisation and the estimation of coherence of

source pairs are the same. This reduces the confounds of

systematic bias on the coherence estimates. Another significant

benefit is the massive reduction in computational demands. The

prospect of whole-brain source-level connectivity inference is more

computationally tractable when the step of reconstructing the

source-level time-series is bypassed.

A full description of DICS is given in [2,10]. DICS has been

applied to MEG data to investigate coherence in a number of

cognitive phenomena such as reading [20], motor control [21] and

binocular rivalry [22]. For EEG, there are some recent examples

of applying DICS to EEG data [23,24] although these did not

reconstruct cortico-cortical coherence, but rather sources coherent

with an external EMG signal. To our knowledge, only one study

has successfully inferred cortico-cortical network using DICS with

EEG recordings [25]. They implemented a variation of the

standard DICS method where the real-valued spatial filter in the

direction of maximum variance was used to estimate source CSDs.

Generally, VC limits the applicability of DICS to EEG as detailed

below. In it’s current form, DICS has no means of reducing

artefactual connectivity that arises due to VC. The present study is

the first to use DICS to infer cortico-cortical connections using

EEG, by explicitly minimising the effects of VC.

Volume Conduction (VC) and Magnetic Field Spread
(MFS)

Source reconstruction is generally poorer for EEG than MEG

due to the low conductivity of the skull, which leads to attenuation

and spatial smearing of source currents. A more specific confound

exists with regards to coherence, in that the brain tissue, being

highly conductive in comparison to the skull, can result in currents

being conducted to distal electrodes [26,27]. The current flow is

highly dependant on anatomical factors, including structural

discontinuities in the skull, lesions [28], and anisotropic conduc-

tivity of white matter [29]. Although these currents can be

modelled during source analysis, EEG sensors are generally

maximally sensitive to the region directly beneath the electrode.

Therefore, additional contribution to the EEG signal from distal

sources will significantly impact on the mapping of these signals to

source space. The calculation of the lead field requires precise

tissue segmentation and assigning accurate conductivity values to

each compartment, using boundary element method (BEM) or

more recently, finite element method (FEM) models (see [30] for a

review). This introduces several levels of potential errors that can

Coherent Networks from EEG/MEG without VC/MSF
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have very large effects. For example, even very small holes (less

than 1 mm) in the skull can drastically alter the flow of volume

currents [31], resulting in inaccurate localisation of sources as well

as false positives when reconstructing source-level coherence.

MEG is generally considered less susceptible to VC [27,28,32].

Secondary volume currents can theoretically induce equivalent

magnetic fields confounding the primary neuromagnetic fields;

however, these effects are negligible in comparison to EEG [33].

Head tissues are permeable to magnetic fields, so the neuromag-

netic fields are less dependent on anatomy than EEG. However,

due to the effects of magnetic field spread (MFS), artefacts can still

arise. These artefacts are maximal over short distances but can

extend over large areas of the topographic surface, and therefore

can manifest even at long-range connections. Unlike VC,

however, MFS is not dependent on specific tissue conductivities.

Source localisation can theoretically be attained by simple

inversion of the Biot-Savart law. A volume conductor model is

still necessary to account for the impressed currents of a dipole

[34].

A basic model-free method of overcoming the problem of VC in

EEG in determining surface coherences is to take the Laplacian of

the surface potentials [35,36]. This acts as a high-pass spatial filter,

emphasizing sources at smaller spatial scales. This method is

heavily dependent on the spatial distances between coherent

sources. As such, valid, short-range coherences may be removed

while erroneous, long-range volume currents may be retained.

Imaginary coherency (described below) offers an improvement on

this providing a non-spatially dependent way of removing VC.

Imaginary Coherency
Nolte et al [1] proposed the concept of imaginary coherency as a

model-free way of dealing with VC artefacts when calculating

coherence at the sensor level (this is detailed in the theory section

below). It is based on two critical assumptions: Firstly, that true

neural interactions must have some phase lag and, secondly, that

VC coherences are always instantaneous with zero phase lag. The

first assumption can be justified in that even when studies describe

phase lags between populations as instantaneous, there is still a

phase lag of a few milliseconds or even microseconds [37]. There

may be chance instances of phase difference too small to give a

meaningful imaginary component, but if the CSD is calculated for

a sufficiently long time-series, or is averaged over a sufficient

number of event-related epochs, this effect will be negligible.

There is also the possibility of sustained reciprocal interactions

where there is zero phase lag and the phase lag does not vary at all

over time. Imaginary coherence would not be able to detect this

type of interaction (this issue is elaborated on further in the

discussion).

The second assumption is valid given that VC can be described

by the quasi-static approximation of Maxwell’s equations [38].

The approximation describes the dynamics of VC without time-

derivatives: They are treated as effectively instantaneous and

hence do not contribute any phase lag. There is experimental

evidence that the approximation is justified for frequencies below

1 kHz [39], which is well within the frequency range typically

analysed in human EEG/MEG.

Nolte et al [1] successfully used imaginary coherency to identify

interhemispheric coherence between electrodes on the motor

regions during finger movement. Imaginary coherency has been

used in a number of other EEG studies. For example, [40]

correlated imaginary coherency with certain phases of brain

maturation.

A few recent studies have attempted to utilise this to uncover

phase-lagged coherences at the source level. A recent method for

examining source dynamics with imaginary coherency is that of

Marzetti et al [41]. Here, the imaginary CSD is approximated by a

model in a modified principle component analysis (PCA)

technique to separate contributions of interacting sources. This

is a qualitatively different approach to beamformer, as it does not

scan each source (or source pair) independently for their

contribution to the sensor data. Other recent studies [42–44]

have adopted a two-step approach to the problem, by estimating

source level time-series using the virtual electrode method and

then computing imaginary coherency between the estimated

source-level time-series. This approach reduces spurious interac-

tions that arises from smoothing of the source space inherent in

source localisation algorithms. This approach suffers the same

limitations as other connectivity methods based on reconstructed

source time-series. It also requires additional processing time due

to the separate generation of source time-series and coherence

calculations. This makes it unfeasible to do whole-brain network

analysis [45] As a result a priori selection of regions of interest

(ROIs) has to be performed which can be subjective. In addition to

these drawbacks, VC/MFS artefacts at the sensor-level, if not

accurately modelled, can lead to source mislocalisations [29,32].

While computing imaginary coherency from source-level time-

series will reduce artefactual connectivity estimates, it can not

resolve any effects VC/MFS may be projected to the source space.

To reduce the likelihood of these errors, it would be more prudent

to remove VC/MFS artefacts at the sensor-level prior to source

reconstruction.

Another approach to overcoming VC/MFS at the sensor-level

is the phase lag index (PLI) [46]. This attempts to overcome the

issue with imaginary coherency that it is sensitive to the size of the

phase lag as well as the strength of coupling. For example, if two

interacting pairs of sources have equal coupling strength but one

has a larger phase difference than the other, imaginary coherency

will be biased towards the connection with the larger phase lag.

PLI overcomes this issue by measuring the asymmetry of the

distribution of phase lags, as symmetrical phase lag distributions

are more likely to arise where the phase lag is at 0 or p. As a result,

this measure is less sensitive to the degree of phase lag, only the

presence of phase lag. So far, one study has extended this principle

to infer connectivity between virtual electrode time-series [47].

Aims
This study proposes an adaptation of the DICS method, in

order to reduce the effect of VC and MFS artefacts in

reconstructing source-level coherent networks, and therefore

improve recovery of source-level coherences. In contrast to the

methods cited in the section above, this will allow source-level

CSDs to be computed directly, making the process more

computationally efficient and negating the potential pitfalls of a

separate stage of reconstructing the source-level time series. Our

approach is two-fold. First, we reformulate the approach of

imaginary coherency to increase its sensitivity, by constructing a

non-zero phase-lagged (NZPL) CSD matrix. Secondly, we use the

same approach of DICS to solve a problem analogous to the

standard M/EEG inverse problem, with an additional a priori

assumption that true sources have non-zero phase lags.

The theory for the NZPL CSD and its application to DICS is

presented first, followed by the results from experimental

simulations comparing network reconstruction using DICS with

the full CSD to that using the NZPL CSD. Simulations were

carried out to comparing the performance of these two methods at

different levels of phase jitter, phase lags and regularisation

parameters. Finally, the applicability of the method is illustrated

on a set of real EEG recordings.

Coherent Networks from EEG/MEG without VC/MSF
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Theory

Source Reconstruction
All reconstruction methods estimate the solution to the inverse

problem:

X~
X

k

LkYT
k ð1Þ

The lead field, Lk, is an ns63 matrix, which describes the

contribution of source k to the sensors in 3 directions in Cartesian

space where ns is the number of sensors. X is the sensor data in the

time or frequency domain. The beamformer method estimates a

solution to the inverse problem by using a spatial filter Wk to create

an estimate of the source activity
~
Y.

~
Yk~XWk ð2Þ

In the LCMV and DICS beamformers, Wk is estimated by

solving the constrained minimisation problem:

Wk~ min
Wk

E Wkpj j2
n o

zc Wkj j2
h i

, subject to WT
k Lk~I3 ð3Þ

Where E denotes the expected value, p is the Fourier

transformed data and c is the Tikhonov regularisation parameter.

The solution to this is given by [7]:

Wk~ LT
k C{1

X Lk

� �{1
LkC{1

X ð4Þ

For DICS, the spatial filter for two source points are multiplied

with the sensor level CSD (sCSD), CX to create a 363 matrix of

reconstructed source CSDs (rCSD) between the 3 Cartesian

components of sources k and l.

~
CYkl

~WT
k CXWl ð5Þ

The highest singular value of this matrix is treated as the

amplitude of the rCSD between k and l [2] when this is

significantly larger than the next singular value. Otherwise, the

trace of the matrix is taken. The spatial filter accommodates

Tikhonov regularisation by substituting CX for:

CX?CXzcI where c~a CXj j ð6Þ

Where c is the absolute regularisation parameter, which is a

multiple of the Euclidian norm of the sCSD matrix, while a is the

relative regularisation [10]. This parameter prevents over-fitting in

a minimum norm solution to an ill-posed problem. It adjusts the

sensitivity of the spatial filter according to the expected distribution

of sources. More focal sources are favoured by low regularisation,

but risks introducing false positives, while sources that are more

diffuse are favoured by high regularisation, but risks making false

negatives. Larger a, therefore reduces the acuity of the spatial

filter, so given data of sufficient quality, lower regularisation

parameters are preferred. Until recently there was no robust

benchmark for choosing an appropriate regularisation for spatial

filtering. However, there is a recent method for estimating the

optimal regularisation parameter from the condition number of

the matrix [11].

Imaginary Coherency
This section describes the motivation for using the imaginary

coherency [1] to quantify true neural interactions from sensor-

level time-series.

The Fourier transformed sensor time-series p from sensor i, is

given by:

pi fð Þ~ x
i

tð Þe{2pitf dt ð7Þ

For simplicity and clarity, the notation f is removed from here

on; all variables are still functions of frequency. i denotes the

imaginary unit. As per the convolution theorem, the cross-spectra

can be calculated directly from the complex conjugate product of

the two Fourier transformed signals. These are averaged across a

number, ne, of epochs to estimate the true cross-spectral density

(CSD) matrix.

cij~Spip
�
j Tne ð8Þ

The complex coherency function between two signals i and j is

the ratio of the cross-spectra to the auto-spectra:

mij~
cijffiffiffiffiffiffiffiffiffi
ciicjj
p ð9Þ

The absolute value of which is usually taken as a measure of

coherence, while the imaginary part is a measure of the phase-

lagged coherence. The Fourier transformed data can be expressed

in polar form:

pi~rie
iwi ð10Þ

Where ri is the amplitude and wi is the phase, the CSD for a

single sample can be expressed as:

pip
�
j ~rirje

iDwij ~rirj cosDwijzi sinDwij

� �
ð11Þ

Where Dwij~wi{wj is the phase lag between signals i and j.

When there is no phase lag (Dw = 0), cos Dw = 1 while sin Dw = 0

and when the lag is maximum (Dw = p/2), cos Dw = 0, while sin

Dw = 1. When averaged across samples, the amplitudes rirj will also

Coherent Networks from EEG/MEG without VC/MSF
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affect the imaginary coherency (unless the amplitude is constant

across all trials, which is unlikely).

The real and imaginary parts of coherency can, in this case, be

treated as representing the proportion of the CSD with zero phase

lag and that with maximal phase difference (p/2). Independent

signals will lead to random wi but also small ri so these will not

contribute significantly to imaginary coherency. As VC/MFS

coherence is only instantaneous, the removal of the real part

removes the contribution of VC/MFS (at least the first order

effects) to the connectivity inferred from the coherence calcula-

tions.

Non-Zero Phase-Lagged (NZPL) CSD and Coherence
In this section we reformulate the principle of imaginary

coherency to improve its sensitivity to non-zero phase lags.

While instantaneous and phase-lagged components can be

easily separated in the off-diagonal elements, the contribution of

these two components to the full power is still unknown. The

existing imaginary coherency approach does not take into account

the dependence of phase lag on the imaginary CSD. This results in

a biased estimate of non-instantaneous interactions (see appendix

S1). We therefore wish to identify the components in the power

that contribute only to the imaginary part of the CSD. To

demonstrate this, we consider the eigenvector decomposition of

the full CSD, for each sample to give the full power, p.

The CSD calculation in equation 8 can be expressed as an outer

product of two vectors, averaged across samples:

C~Spp{Tne ð12Þ

The decomposition of a single sample is given by:

pp{~QLQ{1 ð13Þ

Where Q = [q1…qns] is a matrix of column eigenvectors and

L = [l1…lns]
D is a diagonal matrix of corresponding eigenvalues.

This decomposition yields one non-zero eigenvector/eigenvalue,

which satisfies:

p02
�� ��~ q021 l1

�� �� ð14Þ

The superscript u2 represents the Hadamard (element-wise)

square function. We can obtain an equivalent representation of the

power contributing only to the imaginary part of the CSD by

performing the same decomposition on the imaginary CSD:

Any matrix can be uniquely decomposed into one symmetric (or

Hermetian) and one anti-symmetric (or anti-Hermetian) matrix. In

this case, these equate to the real and imaginary parts, respectively.

These two matrices can then be decomposed further into two sets

of eigenvectors/eigenvalues.

pp{~Re pp{
� �

ziIm pp{
� �

~Q
^

L
^

Q
^{1

ziQ
_

L
_

Q
_{1

ð15Þ

In the case of the symmetric real part, there are two non-zero

eigenvector/eigenvalues ( q
^

1, l
^

1and q
^

2, l
^

2), which represent

the instantaneous contributions to the power. In the case of the

anti-symmetric imaginary part, there are two non-zero eigenvec-

tor/eigenvalues. These eigenvectors are purely imaginary and

exist as a complex conjugate pair (i.e. q
_

1~ q
_�

2 and l
_

1~ l
_�

2).

The eigenvectors yielded by the real decomposition relate to the

full power in a similar way to equation 14, by satisfying:

p02
�� ��~ q

^02
1 l
^

1

����
����z q

^02
2 l
^

2

����
���� ð16Þ

A term representing the power that arises due to the phase-

lagged interactions can therefore be obtained by using the

analogous terms from the imaginary decomposition ( q
_02

1 l
_

1

����
����).

By populating the diagonal of the imaginary CSD with this term,

we obtain:

C
_

~SIm pp{
� �

z q
_02

1 l
_

1

����
����
D

Tne ð17Þ

Where the superscript D indicates a vector expressed as a

diagonal matrix. In this version of the CSD, a more accurate

estimate of the auto-spectra contributing to the non-instantaneous

interaction within that sample is used. The NZPL coherence can

then be computed in the same way as standard coherence:

m
_

ij~
c
_

ijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
_

ii c
_

jj

q ð18Þ

This results in a more sensitive measure of non-instantaneous

interactions and is less susceptible to bias from phase lag. This

approach as the same advantage as the PLI method [46], however,

by manipulating the CSD directly, the NZPL approach can be

extended to source localisation directly, without the need to

reconstruct virtual electrodes [47] (see below).

Higher-Order Artefacts
It should be noted that imaginary coherency, PLI and the

NZPL method are restricted to removing first order artefacts, that

is artefacts that arise due to spurious interactions between the true

signal and its VC ‘echo’. While this interaction will be

instantaneous, if there is a true (phase-lagged) interaction with a

second source, this will inevitably be phase-lagged with respect to

the VC echo of the first source and, therefore, produce a phase-

lagged coherence. We will refer to this interaction as a second

order artefact. In addition, if a VC echo of the second source

arises, then there will also be phase-lagged coherence with the first

VC echo. This we call a third-order artefact. The issue is

represented graphically in figure 1.

While the NZPL CSD in itself does not deal with this issue, its

application to spatial filtering can minimise the effects of

higher order artefacts. Assuming a VC echo is always smaller

in magnitude than the originating signal, the higher-order

Coherent Networks from EEG/MEG without VC/MSF
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interactions will likely be small enough to be adequately

suppressed by the correlation minimisation constraint of the

spatial filter. This approach is detailed in the section below.

It should be noted that while an imaginary component in the

CSD in sensor space implies a phase-lagged interaction in source

space, the absence of the imaginary component in sensor space

does not necessarily imply the lack of a phase-lagged interaction in

source space. Therefore there are many potential source

interactions that will be invisible to the sensors. This issue is

inherited from the general ill-posed nature of the EEG/MEG

inverse problem.

Reconstructing NZPL Sources
Having established a method to more accurately identify non-

instantaneous interactions, we apply the new NZPL CSD matrix

to the problem of reconstructing coherent sources. We impose

additional assumptions to that of the standard DICS approach (see

[48–52] for similar approaches). Using the a priori assumption that

truly interacting sources will always have non-zero phase lag, we

create a representation of these signals as projected to the sensor

level. To estimate this we need representations of both the auto-

spectra and cross-spectra of these signals.

The projection of the full CSD from sources to sensors can be

expressed as:

CX~LCYLT ð19Þ

The imaginary part of the sCSD can be obtained using the same

projection.

Im CXð Þ~LIm CYð ÞLT ð20Þ

The NZPL CSD at the source level can also be projected in the

same way.
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The projection of the imaginary cross-spectra of the formula

can be derived easily from the imaginary sCSD.

C
_

X~Im CXð ÞzL S q
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l
_

1Y

����
����
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However, the NZPL auto-spectra part of the equation cannot

be easily derived from the sensor data as it requires a priori

knowledge of the separation of instantaneous cross-talk from the

real part of the phase-lagged interaction. We therefore make a

second assumption that the NZPL operation applied to the sCSD

will sufficiently model the projection of the NZPL source power to

the sensor level.

C
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X&Im CXð ÞzS q
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1X
l
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����
����
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T
ne

ð23Þ

This formulation comes at the expense of omitting the cross-talk

that inevitably arises in this projection of the auto-spectra. Our

assumption is that there is sufficient information about this cross-

talk in the higher-order artefacts (see above) that remain in the

imaginary part of the sCSD.

This estimate of the projected source NZPL CSD is then used to

compute a spatial filter optimised to recover NZPL interactions,

using the same covariance minimisation constraint as per the

existing DICS method.

Figure 1. An illustration of the effects of higher order artefacts. Contralateral 1st order artefacts are instantaneous, but there are smaller 2nd
order artefacts from the true sources and the ipsilateral VC ‘source’ that are phase-lagged. In addition, there are also much weaker 3rd order artefacts
between the VC ‘sources’. This is a simplified representation of the coherence patterns reported in supplementary material.
doi:10.1371/journal.pone.0081553.g001
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The use of the NZPL sCSD in the spatial filter calculation

provides a more optimal reconstruction of the rCSD than the

standard spatial filter. The NZPL filter selectively supresses signals

that do not arise from non-instantaneous interacting sources,

compared to the standard filter, which treats instantaneous and

non-instantaneous interactions equally. This results in more signal

from non-instantaneous interacting sources being attributed to the

target sources (essentially treating a pair of phase-lagged interact-

ing sources as a single source). This has two advantages: (1) It will

lead to a beneficial overestimation of the non-instantaneous

interactions when projecting sensor data to source space. (2) It will

lead to an increase in the apparent SNR of the signal, resulting in

greater spatial acuity of the filter [11]. The NZPL filter is still able

to supress the higher-order artefacts that remain present in the

imaginary part of the sCSD. These artefacts are much weaker

than the true instantaneous interactions and therefore more

readily suppressed by the filter. Appendix S2 uses a simple

simulation, based on more straightforward mapping between

sensors and sources, to illustrate the properties and benefits of the

NZPL spatial filter compared to the standard filter.

Once the NZPL spatial filter is constructed, it is straightforward

to project the NZPL sCSD to source space in the same way as

DICS (as per equation 5):

~
CYkl

~W
_T

k C
_

XW
_

l ð25Þ

This creates an rCSD where non-instantaneous interactions are

overestimated. 1st order artefacts are removed completely by the

NZPL manipulation while higher-order artefacts are reduced by

the minimisation constraint of the spatial filter. This approach

significantly reduces the projection of artefactual VC/MFS

interactions into the rCSD, improving the accuracy of the inferred

connectivity.

Experiments

General Method
A simulation of a simple coherent network was used to test the

performance of the NZPL DICS method. From this, the forward

solution was used to calculate simulated EEG and MEG

recordings. These were used to reconstruct a source-level coherent

network using an sCSD calculated in the standard way (full sCSD)

or the NZPL sCSD. A number of experimental manipulations

were carried out to test the effects of phase-jitter, phase lag and

regularisation on the performance of DICS in each case. A

quantification of the effect of phase lag and noise on coherence

computed with NZPL CSDs is also made.

Network Simulation
Neural activity was simulated in a regular 7.5 mm3 grid of 1454

dipoles restricted to superficial grey matter in a standard MNI T1-

weighted MRI template. All dipoles were orientated orthogonally

to the head surface. All dipole time-series were simulated with

Gaussian white noise to simulate the presence of non-correlated

activity. Two cortical regions in opposite occipital lobes were

selected as nodes for the coherent network (MNI coordinates:

[240.5 272.5 17] and [42 272.5 17] separated by a distance of

82.5 mm). One voxel was selected as the centre of the node and

activity in that node was smoothed to surrounding voxels with a

FWHM of 5 mm3 (see figure 2).

Equal pre- and post- stimulus periods of 1000 ms were used. In

the post-stimulus period, activity in the two occipital nodes was

simulated using a 33 Hz sinusoidal wave. The two sources were

synchronised with a jittered phase lag sampled from a von Mises

distribution (a Gaussian distribution across a circle) with mean of

0.5p radians and a FWHM of 0.25p radians. In the pre stimulus

period, noise was generated from the same oscillatory activity used

in the post-stimulus period, but with a completely random phase

lag sampled from a uniform circular distribution. This ensured the

pre- and post- stimulus periods has the same power in the

frequency band of interest. Additional Gaussian noise was

superimposed on the signal with a signal-to-noise proportion

(SNP) of 0.9, equivalent to an SNR of 9.54 dB, which is in the

range of SNRs typically seen in evoked EEG responses [53]. The

amplitude of the total signal was constant at 1 nA. These

simulations were repeated over 100 epochs.

Forward Calculations
Lead fields for both EEG and MEG were calculated using

FieldTrip [54]. The EEG lead field was based on a VC model

created using the boundary element method (BEM) [30]. The

MNI template brain was segmented into brain, skull and scalp

compartments defining 3 homogeneous conductive mediums with

conductivity values of 33 mS/m, 0.41 mS/m and 33 mS/m,

respectively. The scalp potentials were calculated using the

forward solution (equation 1) and sampled by 64 scalp electrodes

based on a Biosemi64 scalp electrode array with the reference

electrode placed at infinity.

The MEG lead field was based on a single-shell model from a

grey-matter segmentation of the same MRI template brain. The

lead field was calculated using the quasi-static approximation of

the magnetic forward model, described by the Biot–Savart law

[34]. The forward solution was used to calculate simulated

readings for 148 axial gradiometer sensors based on the

configuration of a 4D MAGNES 2500 WH scanner. The sensor

data for both modalities was obtained from the linear forward

solution in equation 1. Example forward solutions for one

simulation are shown in appendix S3.

Figure 2. Positions of sources used in all simulations. MNI
coordinates: [240.5 272.5 17] and [42 272.5 17]. Colour bar indicates
normalised source strength.
doi:10.1371/journal.pone.0081553.g002
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Sensor-Level Cross Spectral Density (sCSD)
The Fast Fourier transform was applied to the full length of the

time-series to obtain the complex spectra for each channel. The

full sCSD, and the NZPL sCSD were calculated as per equations

12 and 17, respectively. The sCSD was averaged over the

frequency band of interest (25–40 Hz) and across the 100 epochs.

Source Coherences
DICS [2] was performed to reconstruct source coherence across

all voxel combinations, using the same source positions defined in

the source simulations (1454 sources restricted to superficial grey

matter). Spatial filters were calculated using either the full, or

NZPL sCSDs, as per equations 4 and 24, respectively. A relative

regularisation parameter of a= 1026 was used. The rCSDs

corresponding to the two sCSD types were then estimated using

equations 5 and 25, respectively. Source-level coherences for both

rCSD types were calculated in the standard way using equation 9

for the pre and post stimulus matrices. Systematic bias and filter

leakage was removed by subtracting the pre-stimulus reconstruc-

tion from the post-stimulus reconstruction. This noise-contrasted

matrix was used as the measure of reconstructed source-level

coherences.

Performance Measurement
The performance of the whole-brain network reconstruction

was evaluated by comparing the ‘‘true’’ matrix with the

reconstructed matrix across a range of thresholds. The ‘‘true’’

matrix consisted of the signal from the active source pair smoothed

out across the connection space using a Gaussian kernel with a

FWHM of 5 mm3. The Gaussian-smoothed network deals with

spatial inaccuracies across a gradient of distance by progressively

penalising reconstruction performance as it moves further away

from the centre of true activity. The noise-contrasted reconstruct-

ed network was thresholded at 120 equally spaced values from the

lowest to the highest values in the matrix. The true positive rate

(TPR) and false positive rate (FPR) were calculated from the

proportions of all sources, which are identified as true or false at

the given threshold. The TPR and log FPR provided the points for

the log receiver-operator characteristic (ROC) curve. The log

ROC curve was used in preference to a standard ROC curve

because of the large number of negative values. This was proposed

as a method of scaling the ROC curve where there is a large ratio

of negatives to positives, as there is here [55]. Finally, the area

under the log ROC curve (AUC) was calculated by integrating the

log ROC curve using the trapezium rule. The AUC measure gives

a single value that quantifies the accuracy of each reconstruction.

10 runs of each experiment were carried out to provide a measure

of variance for these AUC values.

Statistical Analysis
Log ROC AUCs for each condition were tested for significant

increase from a critical AUC value using one-tailed single sample

t-tests. The critical AUC was defined as the log ROC AUC

computed for an overlap between the FPR and TPR distributions

of p = 0.05 (with the assumption that the FPR and TPR

distributions are Gaussian). The critical AUC is approximately

3.84. Paired sample t-tests were also performed to test for

significant increases in AUCs for the reconstructions with the

NZPL sCSD compared to the reconstructions for the full sCSD.

Bonferroni correction was applied to all t-tests.

Reconstruction Performance and Effects of Phase Jitter
Method. To assess the effects of phase jitter (i.e. the FWHM

of the phase lag distribution) the simulations were repeated where

the phase jitter between the two oscillatory sources was varied.

FWHMs of 0, p/32, p/16, p/8, p/4, p/2 and p radians were

tested.

Results. Examples of reconstructed networks for unjittered

and jittered (FWHM = p/4) conditions are shown in figure 3 for

each reconstruction method and imaging modality. The corre-

sponding log ROC curves are shown in figure 4. For the EEG full

sCSD, there is very poor reconstruction of the original network in

both jittered and unjittered conditions. There was improvement

when using the NZPL sCSDs, which appears to provide good

reconstruction of the original network in both conditions. For

MEG, the full sCSD without jitter partially reconstructs the

correct network but with some false positives. The jittered

conditions show poor performance as with EEG. In both cases,

the NZPL CSD provides a very accurate reconstruction.

The AUCs for reconstructions across all jitter FWHMs are

shown in figure 5 and summarised in table 1. Single sample t-tests

show that in EEG and MEG, all reconstructions using the full

sCSD were not significantly above the critical AUC, with the

exception of the unjittered MEG reconstruction (t(9) = 17.74,

p,1027), indicating DICS with the full sCSD is very intolerant

of phase jitter. In contrast, the AUCs for reconstructions using the

NZPL sCSD were significantly above the critical AUC across all

jitter FWHMs, with the exception of the largest FWHM (p
radians), where EEG reconstruction was non-significant and MEG

reconstruction was borderline significant (t(9) = 2.86, p = 0.0094).

This shows that DICS with the NZPL sCSD is much more robust

to phase jitter. For paired-sampled t-tests comparing the two

methods, NZPL sCSD performed significantly better than the full

sCSD in all cases, with the exception of unjittered MEG

reconstruction (t(9) = 2.31, p = 0.023).

Effects of Phase Lag
Method. To understand the effects of phase lag, simulations

were repeated with the mean of the phase lag distribution varied.

Phase lags of 0, 0.0625p, 0.125p, 0.25p, 0.5p, p, 1.5p and 2p
radians were tested. Phase jitter and regularisation were fixed at

FWHM = p/4 and a = 1026, respectively.

Results. AUCs for all phase lags are shown in figure 6 and t-

test results are summarised in table 2. AUCs for all reconstructions

with the full sCSD were not significantly higher than the critical

AUC. For the NZPL CSD all non-instantaneous phase lags were

significantly above the critical AUC (although the AUC for

0.0625p in EEG was borderline). In EEG all instantaneous phase

lags (0, p and 2p) were non significant and in MEG all

instantaneous phase lags were borderline significant. 1-way

ANOVAs showed there was a significant effect of phase lag in

EEG (F(7,72) = 134.41, p,10238) and MEG (F(7,72) = 14.32,

p,10211). The effect is much stronger in EEG than MEG.

Testing for differences in between the methods all showed a

significant increase in AUC for the NZPL method at all phase lags

in both EEG and MEG (all significant at p,1024).

Quantifying Phase Lag Tolerance
Method. A more detailed quantification of the expected

phase lag tolerance of the NZPL method was obtained across a

range of SNPs. Given that the full coherence between two signals

with no noise is equal to 1, the coherences obtained from these

simulations are a measure of the level of coherence that is retained

as phase lag reduces, which we use as a metric for phase lag

tolerance. Two sinusoidal waves with the same amplitude and
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frequency were generated, with the same parameters described

previously. SNP and phase lag were systematically manipulated

across different simulations: SNP was varied between 0 (all noise,

no signal) and 1 (all signal, no noise); phase lags were varied

between 0 and 0.5p radians. Coherence (equation 9) was

calculated from the NZPL sCSD (equation 17) for each SNP

and phase lag. For comparison, the imaginary coherency was also

computed between the two signals.

Results. Figure 7 shows the coherences estimated with NZPL

sCSD across variation in phase lags and SNP. NZPL is clearly

quite tolerant of small phase lags and low SNPs. Applying a

suitable threshold to these coherence values allows the identifica-

tion of minimum acceptable SNPs and phase lags. For example,

the white line in figure 7 delineates the region where the simulated

activity generates coherences of at least 0.9. This region encloses

most of the available space indicating that the method performs

well over a wide range of values. This contrasts with the coherence

estimates using imaginary coherency, which is much less tolerant

of variation in phase lag and SNP.

Effects of Regularisation Parameter
DICS is sensitive to regularisation: An optimal regularisation

parameter should be chosen based on the expected spatial

distribution of sources. Lower regularisation increases the sensi-

tivity of the beamformer but also is more likely to result in false

positives, whereas a higher regularisation decreases sensitivity,

while reducing false positives [10]. The reduction of VC/MFS

artefacts in NZPL sCSD has been shown to improve the

localisation of the coherent network and reduce the number of

false positives in reconstructed source-level networks that would

ordinarily arise in standard DICS. By eliminating these confound-

ing factors prior to the spatial filter calculation, the dependency of

reconstruction accuracy on regularisation should be less pro-

nounced. Here, the performance of the sCSD types was tested on

a range of regularisation parameters with the expectation that the

NZPL method will be less sensitive to the exact value of the

parameters.

Method. The simulations were repeated with phase lag fixed

at Dw = p/2 and jitter FWHM fixed at p/4 radian and the

Figure 3. Reconstructed network with phase jitter FWHM of 0 and p/4 calculated from full and NZPL sCSDs for EEG and MEG. Colour
code indicates the proportion of trials in which a voxel pair lies in the top 0.01% of the coherence matrix. Blue indicates location of the original
network nodes.
doi:10.1371/journal.pone.0081553.g003
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regularisation parameter was varied using a-values between 0 and

log10-8 in log-increments of log100.5.

Results. Figure 8 shows the log ROC AUCs for reconstruct-

ed networks from full and NZPL sCSDs. For EEG, AUCs for full

sCSD are low across much of the range with small, but still

insignificant peaks at a = 1 and a = 0.01 (log100 and log10-2 on the

x-axis). Full CSD for MEG showed a similar pattern with a small

but insignificant peak at a= log102.5 with a mean AUC of 5.01.

The AUCs for NZPL sCSD are uniformly high and significantly

above the critical AUC for EEG (all p,10214) and MEG (all

p,10223) with the exception of a$0.1, where the AUCs shows a

sudden drop off.

Application to Human Data
To demonstrate the applicability of the NZPL modification to

DICS in real human EEG recordings, the method was applied to

Figure 4. Log ROC curves for performance of the DICS reconstruction for noise-normalised coherences for EEG and MEG
reconstructions, plotted for full and NZPL sCSDs, for zero and non-zero (p/4) phase jitters. FPR = false positive rate, TPR = true positive
rate.
doi:10.1371/journal.pone.0081553.g004

Figure 5. Log ROC AUCs calculated for noise-normalised coherence for EEG and MEG reconstructions, across phase jitter FWHMs.
doi:10.1371/journal.pone.0081553.g005
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identify coherent network components that underpin face recog-

nition during the primary visual response that takes place in the

first 400 ms of visual face presentation.

Method. 128-channel BioSemi EEG Data for visual presen-

tation of faces and scrambled images in a single subject [56] were

obtained from the SPM website (downloaded from http://www.fil.

ion.ucl.ac.uk/spm/data/mmfaces/). The paradigm consisted of

85 randomised trials of 500 ms fixation cross, followed by 600 ms

presentation of either a face or a scrambled image [57]. The pre-

processing was carried out using FieldTrip [54]. Data was

epoched, band pass filtered at 2-45 Hz, baseline corrected and

de-trended. Source reconstruction was carried out using the same

procedure described for the simulations. NZPL sCSDs were

calculated in a 0–400 ms, theta band (4–8 Hz) time-frequency

Hanning-window for both conditions and averaged across all

epochs. The BEM model and lead fields were computed from a

subject-specific anatomical T1-weighted MRI using the same

procedure to generate the head model for the EEG simulations.

Table 1. Results of all t-tests comparing AUCs with critical AUC, and comparing AUCs between sCSD types for all phase jitter
FWHMs.

EEG MEG

Jitter FWHM (p
radians)

Full sCSD. Critical
AUC

NZPL CSD. critical
AUC

NZPL CSD. Full
CSD

NZPL CSD. critical
AUC

Full sCSD. Critical
AUC

NZPL CSD. Full
CSD

0 t(9) = 255.70, t(9) = 65.59, t(9) = 101.78, t(9) = 17.74, t(9) = 2535.28, t(9) = 2.31,

n.s. p,10212 p,10214 p,1027 p,10227 p = 0.023

0.03125 t(9) = 254.15, t(9) = 162.10, t(9) = 105.54, t(9) = 27.52, t(9) = 2994.72, t(9) = 30.93,

n.s. p,10216 p,10214 n.s. p,10227 p,10210

0.0625 t(9) = 2132.45, t(9) = 311.74, t(9) = 242.35, t(9) = 228.92, t(9) = 2195.15, t(9) = 83.63,

n.s. p,10219 p,10218 n.s. p,10226 p,10213

0.125 t(9) = 2137.70, t(9) = 88.20, t(9) = 124.89, t(9) = 218.00, t(9) = 3350.15, t(9) = 54.02,

n.s. p,10214 p,10215 n.s. p,10228 p,10212

0.25 t(9) = 2121.67, t(9) = 83.23, t(9) = 120.49, t(9) = 238.38, t(9) = 1484.72, t(9) = 113.44,

n.s. p,10213 p,10215 n.s. p,10225 p,10215

0.5 t(9) = 2210.40, t(9) = 10.01, t(9) = 30.84, t(9) = 240.73, t(9) = 497.42, t(9) = 123.77,

n.s. p,1025 p,10210 n.s. p,10220 p,10215

1 t(9) = 2126.51, t(9) = 25.96, t(9) = 7.52, t(9) = 249.22, t(9) = 2.86, t(9) = 7.59,

n.s. n.s. p,1024 n.s. p = 0.0094 p,1024

doi:10.1371/journal.pone.0081553.t001

Figure 6. Log ROC AUCs calculated for noise-normalised coherence for EEG and MEG reconstructions, across phase lags.
doi:10.1371/journal.pone.0081553.g006
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DICS was performed using this lead field and the epoch-averaged

NZPL sCSD to obtain the source-level rCSDs. The coherence

between all source pairs was then calculated. To obtain contrasts,

analogous noise coherences were estimated using the same

procedure applied to a pre-stimulus period of equal length. The

true and noise coherences were Fisher transformed and then

contrasted.

Results. Results are shown in figure 9. The highest noise

contrasted coherences are plotted to visualise the most highly

coherent regions. The results show that the strongest coherences in

both conditions take place in primary visual cortex and the right

superior temporal gyrus and precentral gyrus (figure 9a). Contrasts

between the two conditions (figure 9b) show faces elicit higher

coherences in the left lateralised occipital and temporo-occipital

Table 2. Results of all t-tests comparing AUCs with critical AUC, and comparing AUCs between sCSD types for all phase lags.

EEG MEG

Phase lag (p
radians)

Full sCSD. Critical
AUC

NZPL CSD. critical
AUC NZPL CSD. Full CSD

NZPL CSD. critical
AUC

Full sCSD. Critical
AUC NZPL CSD. Full CSD

0 t(9) = 2113.25, t(9) = 25.89, t(9) = 6.50, t(9) = 2149.70, t(9) = 2.76, t(9) = 7.30,

n.s. n.s. p,1024 n.s. p = 0.011 p,1024

0.0625 t(9) = 2118.36, t(9) = 2.71, t(9) = 17.05, t(9) = 2186.32, t(9) = 33.5, t(9) = 55.32,

n.s. p = 0.012 p,1027 n.s. p,10210 p,10212

0.125 t(9) = 2121.51, t(9) = 23.36, t(9) = 55.70, t(9) = 2167.98, t(9) = 595.81, t(9) = 521.39,

n.s. p,1028 p,10212 n.s. p,10221 p,10221

0.25 t(9) = 2144.07, t(9) = 100.00, t(9) = 183.74, t(9) = 265.67, t(9) = 502.80, t(9) = 172.20,

n.s. p,10214 p,10216 n.s. p,10220 p,10216

0.5 t(9) = 2106.39, t(9) = 142.72, t(9) = 198.92, t(9) = 222.55, t(9) = 909.55, t(9) = 63.04,

n.s. p,10215 p,10217 n.s. p,1023 p,10212

1 t(9) = 281.51, t(9) = 23.37, t(9) = 16.64, t(9) = 219.53, t(9) = 4.43, t(9) = 7.80,

n.s. n.s. p,1027 n.s. p = 0.0008 p,1024

1.5 t(9) = 2152.60, t(9) = 103.81, t(9) = 174.85, t(9) = 255.59, t(9) = 1076.97, t(9) = 156.91,

n.s. p,10214 p,10216 n.s. p,10223 p,10216

2 t(9) = 2124.59, t(9) = 25.89, t(9) = 6.56, t(9) = 2150.05, t(9) = 2.76, t(9) = 7.31,

n.s. n.s. p,1024 n.s. p = 0.011 p,1024

doi:10.1371/journal.pone.0081553.t002

Figure 7. Estimated coherence calculated from imaginary coherency and NZPL coherence for a pair of sources with varying phase
lag and SNR. White lines indicates estimated thresholds for coherences of 0.9.
doi:10.1371/journal.pone.0081553.g007

Coherent Networks from EEG/MEG without VC/MSF

PLOS ONE | www.plosone.org 12 December 2013 | Volume 8 | Issue 12 | e81553



cortex and the right superior temporal region. The most strongly

connected source pairs (the highest 0.01% of the connectivity

matrix) within this contrast are those between the primary visual

cortex and right superior temporal gyrus (figure 9c). This suggests

that perceiving faces engages a direct coherent interaction between

the primary visual cortex and the superior temporal gyrus. This

region has been implicated in face recognition and more

specifically in detecting gaze and emotion propensity [58–60].

Discussion

This study aimed to optimise the dynamic imaging of coherent

sources [2] method to reconstruct only non-zero phase-lagged

(NZPL) interactions using a variation of imaginary coherency [1].

This approach reduces the impact of spurious interactions arising

due to volume conduction (VC) and magnetic field spread (MFS)

on the reconstructed source networks. To generate an unbiased

symmetrical estimate of the sensor cross-spectral density (sCSD)

that only embodies phase-lagged interactions, the diagonal of the

imaginary part of the sCSD matrix was replaced with an estimate

of NZPL-only components of the power, using eigenvector

decomposition of the imaginary sCSD. This CSD is an

approximation of the phase-lagged interactions with reduced

phase lag bias. Using the NZPL sCSD as an approximation of the

projected NZPL source interactions, an NZPL-optimised spatial

filter was constructed. The projection of the NZPL sCSD using

this filter significantly reduces the confounding effects of VC/MFS

on source localisation are reduced. The application of the NZPL

sCSD to the filter calculation is advantageous as it deliberately

overestimates the signal arising from phase-lagged interactions

while suppressing weaker interactions. This improves the spatial

acuity of the filter. This method offers significant improvement

compared to using the full sCSD for both EEG and MEG. NZPL

significantly improves accuracy of the source reconstruction

compared to using the full sCSD. This is shown consistently for

a range of non-instantaneous phase lags and noise levels (in the

form of phase jitter) and is true for both MEG and EEG data. In

the case of phase jitter, using DICS with the full CSD is highly

intolerant of phase jitter, unlike DICS with the NZPL CSD, which

shows tolerance to even very wide distributions of phase jitter (up

to FWHM = p/2). The intolerance of standard coherence

measures to phase jitter has been reported previously [61].

In the case of instantaneous phase lag, the accuracy is much

more inconsistent in NZPL, which is to be expected, although in

the case of MEG at least, the accuracy is still good. The presence

of phase jitter in these simulations means that the coherent activity

can still be detected, but with much more variable accuracy. The

small variances of AUCs across repetitions for NZPL compared

with the full sCSD (figures 5,6 and 8) also suggest the NZPL

method is more robust to noise as there is more consistency in the

responses across noise-varied trials. This is consistent with the

principle of imaginary coherency where the imaginary component

of coherency is reduced with increasing noise [1]. Noise is

attenuated by the loss of the real components and hence will not

be modelled in the spatial filter or the subsequent rCSD. However,

the amplitude of the phase-lagged interactions will be reduced.

This may introduce scaling issues if making contrasts between

networks with different levels of noise [45].

The study has also shown that the NZPL sCSD performance is

more invariant to regularisation compared to the full sCSD.

Regularisation reduces the sensitivity of DICS to false positives,

but also increases the probability of false negatives. Higher

regularisation comes at the expense of lower spatial acuity. The

removal of spurious interactions by the NZPL manipulation before

computation of the filter reduces the need for regularisation.

NZPL therefore allows the use of spatial filters with the highest

possible spatial acuity (i.e. where regularisation is set to, or close to

zero).

An interesting point to note is that across all experiments the

performance of the NZPL sCSD in EEG reaches a maximum

AUC of about 6, while for MEG this was about 9. In addition,

EEG was slightly less tolerant of small phase lags and high degrees

of jitter than MEG. This is to be expected given the greater spatial

acuity MEG offers in comparison to EEG and the fact that in

MEG, there is less distortion of the magnetic field compared to the

smearing of electrical potentials in EEG. In our simulations, this is

Figure 8. Log ROC AUCs for noise normalised coherences for EEG and MEG reconstructions, across regularisation parameters a.
doi:10.1371/journal.pone.0081553.g008
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not an issue as the NZPL method was able to reconstruct EEG

networks with a high degree of accuracy. However, there may be

conditions where the spatial distribution of the sensor data is too

smooth to permit sufficiently accurate reconstruction. A quanti-

fication of the data smoothness such as the condition number [11]

may be used as a criterion for the feasibility of source

reconstruction in such cases.

In addition to tests on simulated data sets, the NZPL DICS

analysis was tested using human data that compares the

identification of faces with scrambled images. This appeared to

elicit increased coherence between primary visual cortex and the

right superior temporal cortex in the first 400 ms. The superior

temporal cortex has previously been implicated in analysis of facial

features, which is prominently right-lateralised [60,62], suggesting

this is a plausible subcomponent of a face recognition network.

Other parts of the network may be uncovered by examining other

time windows and frequency bands.

An attractive aspect of imaginary coherency is that it offers a

model-free method of reducing VC/MFS artefacts [1]. This

feature emerges from the fact that spurious VC/MFS interactions

will always have zero phase lag. The contribution of these

interactions can therefore be reduced by considering only the

imaginary components. We anticipate that this attractive feature,

when applied to DICS, will help to prevent the reconstruction of

artefactual interactions in source space that can arise from

inaccurate VC models, or from sources of electromagnetic

interference external to the brain. An issue that remains however

is that of higher-order VC artefacts. In any mixing of sources

where there are non-zero phase lags, there will be artefactual

phase-lagged coherences, both between true sources and VC

artefacts, and between different artefacts. In the data presented

here, this problem was not observed to any great extent, so it can

be reasonably assumed that higher order artefacts are sufficiently

small in NZPL as to not give rise to any false positives when

reconstructing the source network. However, for more complex

networks it may be more of a problem. This issue of mixing phase-

lagged signals has been previously raised by Lachaux et al [63] in

response to the assumption that VC/MFS coherences have no

phase lag. In the data from the simulations presented here a small

effect can be seen in the simulated sensor data (appendix S3,

figure 2). The EEG full coherence plot shows first-order VC

artefacts between the occipital bilateral electrodes to frontal

bilateral (both contralateral and ipsilateral) electrodes. This is due

to the source activity conducting to opposite sides of the head. In

the NZPL coherence plot, higher order-artefacts can be seen,

where occipital bilateral electrodes are weakly coherent with

ipsilateral frontal electrodes, but not contralateral electrodes. The

contralateral 1st order artefacts were removed by NZPL while the

ipsilateral 2nd order artefacts remain. This is the same effect

illustrated graphically in figure 1.

The issue described above is fundamentally the same as the

EEG/MEG inverse problem, which the spatial filter resolves. The

artefacts not eliminated by NZPL are still attenuated by the spatial

filter. It is therefore reasonable to conclude that while the NZPL

manipulation eradicates first order artefacts, higher order artefacts

will remain and are still dependant on the performance of the

spatial filter, and hence the accuracy of the forward model. The

minimisation constraint (equation 3) will resolve this issue in the

Figure 9. Source Coherence estimates from human EEG using DICS with NZPL sCSD. (a) shows the maximum value for each voxel value in
the noise-normalised coherence matrix for faces (top) and scrambled (bottom) images at 0–400 ms, 4–8 Hz. (b) shows the maximum of the contrast
between faces and scrambled connectivity matrices. (c) shows the top 0.01% of the face-scrambled contrast matrix.
doi:10.1371/journal.pone.0081553.g009
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same way it does in standard DICS analysis. Additionally, the

relaxation of the suppression of signals for phase-lagged sources

increases the apparent SNR of the sCSD, improving its spatial

accuracy (see also appendix S2). Higher-order artefacts are

substantially smaller in magnitude than first-order artefacts (see

appendix S3, figure 2b). However, the importance of the accuracy

or complexity of the VC model to the calculation of an accurate

spatial filter in the presence of higher-order artefacts remains a

question. Further investigation is required to quantify this

relationship.

Of course beamformers are not the only reconstruction method

that can be used to explore source level connectivity and

coherence is not the only functional connectivity measure that

could be employed. Any functional connectivity measure can

theoretically be applied to reconstructed sources to infer functional

networks in source space. For instance source time-series could be

estimated using the ‘virtual electrode’ method, and this could then

be used to calculate coherence, synchronisation, Granger causality

or transfer entropy. However, making deterministic connectivity

inferences between reconstructed sources should be done with

caution, as there is uncertainty about the accuracy of these

reconstructions. Each reconstruction method carries with it a set of

assumptions, which will give rise to some systematic error, which

can contaminate connectivity estimates [12]. In particular, VC/

MFS artefacts if not accounted for in the spatial filter will lead to

mislocalisations of sources [29,32]. There is also the issue of

increase computational demands of separate source time-series

reconstruction and coherence estimates and the issue of VC/MFS

artefacts. DICS overcomes these issues as source connectivity

estimates are made in a single step without the intermediary step of

reconstructing the time-series. However, a particular point of

concern that has arisen in connection with DICS (and any other

connectivity analysis based on beamformer data) is that the

covariance minimisation constraint on the spatial filter appears

contradictory to the aim of identifying coherence in the source

activity. The consequence of this is that reconstructed coherences

are likely to be attenuated by the spatial filter. Hipp et al [25]

regard this as an advantage because the false positive rate for

reconstructed coherence is markedly reduced. This is apparent in

this study by the absence of the higher-order artefact from the

source reconstruction using NZPL shown in figure 3 (also see

appendix S3, figure 2). It is certainly true that in the cases reported

here, the covariance minimisation has not prevented the reliable

detection of coherent sources, both from simulated and human

data. The over-estimation of phase-lagged interaction on the

NZPL CSD, compared to the full CSD, resulted in their

preservation when projected to source space.

As previously discussed, the inference of connectivity in the

current study depends on there being some phase lag between

sources. Based on previous experimental evidence [39], it is

assumed that true neural interactions would never have instanta-

neous phase. Given that the improvement in performance is

maintained even at very small phase lags tested, Dw = 0.0625p it

seems likely that this assumption will only rarely be violated.

Indeed, the data in figure 7 demonstrates the robustness of NZPL

to even smaller phase lags. Treating these coherence values as a

metric for retention of the true coherence by NZPL for decreasing

SNPs and phase lags, it can be shown that even at SNP = 0.5

(equal signal and noise), NZPL will tolerate (with 90% of

coherence retained) a phase difference as small as Dw = 0.025p
(approx. 4.5u). This feature addresses an issue previously raised

with imaginary coherency, which is the sensitivity to the size of the

phase lag. One other method shown to overcome this drawback is

the phase lag index (PLI) [46], which measures the asymmetry of

the distribution of phase lags. The method presented here offers a

similar advantage over the original imaginary coherency method.

We have shown the bias in variability of the imaginary CSD arises

from the size of the phase lag (appendix S1). Removal of this bias

by eigenvector decomposition therefore results in CSD estimates

that remain consistent across a range of phase lags. Only when

SNR is low is there an increased bias from the size of the phase lag

on the inferred coherence. The reduction in SNR manifests in the

case where the phase lag distribution is centred around 0 or p
radians. The absence of an imaginary component at the peak of

the distribution means the spatial filter has to rely on the signal

obtained from the much weaker imaginary components at the

periphery of the distribution. The effect is also seen in the EEG

reconstruction where small phase lags are tolerated less than for

MEG. However, as only two sources were simulated, we are

making a generalisation from the two-source case to one with

multiple sources, which may be less tolerant on small phase lags

due to increased mixing between multiple sources. Further study is

required to quantify the effect of number of interacting sources on

phase lag tolerance.

In addition to the tolerance to small phase lags, averaging the

sCSD over sufficient event-related epochs will ensure functionally

relevant phase-lagged interactions are retained. This raises an

issue about assumptions made concerning how neural populations

interact. As noted previously, one assumption is that the

probabilistic nature of encoding within stochastic firing patterns

means that it is unlikely that two functionally connected neural

populations are ever perfectly in phase within a given epoch. By

averaging sCSDs across epochs, a different assumption is made,

based on the same premise: that there is sufficient phase lag

variability between epochs to render the chance occurrence of

zero-lagged coherences trivial. Some other functional connectivity

methods, such as phase locking value (PLV) [63], which treat

phase lag consistency as a measure of functional connectivity will

not detect these type of interactions. Fortunately, NZPL sCSD

averaged across epochs will be sensitive to both types of

interaction, with only one exception - when there is exactly zero

phase lag with very low phase lag variability. It is assumed this type

of interaction is sufficiently rare as to not significantly increase the

false negative rate of the NZPL method.

In conclusion, NZPL DICS offers a method of significantly

improving localisation of coherent networks. The method is also

less computationally demanding than separately reconstructing

source time-series and inferring functional networks, making it

feasible to compute and perform statistical inferences on whole

brain networks. This modification allows DICS to be a much more

accurate tool for inferring functional connectivity from EEG and

MEG recordings.
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