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Summary  
Cystic fibrosis (CF), an autosomal recessive inherited disease, is caused by defective function 

of CF Transmembrane Conductance Regulator (CFTR), an epithelial ion channel that 

facilitates chloride secretion. Previous research has identified a number of ocular complications 

in CF, including impaired dark adaptation (DA) which has been attributed to concomitant 

vitamin A deficiency (VAD) and CF-related diabetes (CFRD). However, CFTR has been 

localised to the retinal pigment epithelium (RPE) and it is proposed that abnormal DA could be 

a primary manifestation of CF. DA is similarly impaired in individuals with type 1 and 2 

diabetes and is thought to be caused by retinal hypoxia as oxygen inhalation ameliorates 

abnormal thresholds.  It is unknown if CFRD similarly affects the retina. The aim of this thesis 

was to investigate DA during oxygen inhalation in CF subjects with and without CFRD to gain 

further insight about the aetiology of this abnormal DA. The work also aimed to examine 

retinal structure using optical coherence tomography (OCT) to determine the consequences of 

CFTR dysfunction at the RPE, with the hypothesis that the retina would be thickened in CF 

due to CFTR dysfunction. 

 

Final DA thresholds were not significantly elevated in CF subjects as a whole compared to 

controls during the inhalation of air. However, when grouped according to diabetic status, 

CFRD subjects showed a significantly elevated final rod threshold which was ameliorated  

following oxygen inhalation. This suggests that the retina is hypoxic in CFRD subjects and that 

impaired DA in CF is secondary to CFRD rather than a primary manifestation of CFTR 

malfunction at the RPE. Contrary to the proposed hypothesis, retinal and RPE/Photoreceptor 

layer thickness was significantly thinner in CF subjects compared to healthy controls. 

However, this was not observed in CFRD subjects. These results suggest that impaired CFTR 

function at the RPE does not directly affect retinal structure. It is subsequently hypothesised 

that retinal thinning in CF may be secondary to accelerated aging, early onset AMD or 

impaired formation of photoreceptor outer segments due to fatty acid deficiency.  

 

In conclusion, this is the first study to determine that retinal structural and functional 

abnormalities are not caused directly by CFTR dysfunction but are a secondary manifestation 

of the disease. Further research is necessary to understand the impact of these findings. 

Following these findings, individuals with CF, particularly those with CFRD, and eye care 

practitioners should be educated about the ocular associations of the disease.
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 Introduction Chapter 1
 

1.1 Outline 
This thesis describes a series of studies which investigate the structure and function of the 

retina in cystic fibrosis (CF). Cystic fibrosis (CF) is the most common lethal hereditary 

autosomal recessive disorder in Caucasian populations (Hurt and Bilton, 2012). Currently, it 

affects over 9,000 people in the UK alone, with an incidence of 1 in 2500 live births (Cystic 

Fibrosis Trust, 2013).   

 

Cystic fibrosis (CF) is caused by defective function of CF Transmembrane Conductance 

Regulator (CFTR), an epithelial ion channel that facilitates chloride secretion. Previous studies 

into the effect of CF on the eye have identified a number of ocular characteristics of the disease 

including dry eye, conjunctival xerosis, reduced crystalline lens transparency, reduced macular 

pigment density, impaired dark adaptation, reduced contrast sensitivity and abnormal 

electrophysiological results. Whilst there is a relatively large body of research on the anterior 

ocular effects of CF, there is little published research on the retina in CF. Additionally, it is 

unclear whether ocular abnormalities seen in CF are caused by primary dysfunction of CFTR 

or due to secondary complications of the disease, including vitamin A deficiency (VAD) and 

CF-related diabetes (CFRD). Therefore, the aim of this thesis is to explore the structure and 

function of the retina in cystic fibrosis, through use of optical coherence tomography (OCT) 

and dark adaptation (DA), respectively.  

 

This thesis begins by providing background information on CF and the ocular complications 

previously described in the literature. It then introduces OCT and DA, the two techniques 

which will be used to investigate the retinal structure and function in this thesis. The following 

chapters present the development of OCT and DA protocols for this study, along with the 

overall results and conclusions.    

 

1.2 Cystic Fibrosis  
1.2.1 Pathogenesis 
The genetic defect in CF is a chromosomal mutation in the middle of the long arm of 

chromosome 7 (Riordan et al., 1989), which results in the defective function of the membrane 

protein, Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Located at the apical 
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membrane of epithelial cells throughout the body, the principle function of CFTR is to act as a 

phosphorylation-dependent chloride ion (Cl-) channel (Li et al., 2007). CFTR is also a key 

channel in chloride mediated fluid transport, and plays a vital role in the homeostasis of fluid 

throughout the body.  

 

Mutations in CFTR result in a variable loss of chloride transport in epithelial cells, causing 

imbalance of fluid and electrolyte levels, resulting in dehydrated viscous secretions. CFTR 

expression has been found in the pancreas, salivary gland, lung, gastrointestinal tract, kidney, 

uterus and testes (Trezise and Buchwald, 1991), and the eyes (Wills et al., 2001; Cao et al., 

2010), amongst other places. Disruption in CFTR expression leads to multi-organ dysfunction, 

with the respiratory, gastrointestinal, hepatobiliary and reproductive systems being most 

affected (Lewis et al., 2003). The pathological finding in these organs is accumulation of thick 

viscous secretions associated with progressive scarring and destruction.  

 

1.2.2 CFTR  
The CFTR protein belongs to the superfamily of adenosine triphosphate (ATP)-binding 

cassette (ABC) transporters. These are integral membrane proteins that use the energy 

generated from ATP to translocate a variety of molecules across cellular membranes  

(Biemans-Oldehinkel, Doeven and Poolman, 2006). CFTR is unique among ABC proteins in 

that its transmembrane domains comprise an ion channel that permits bidirectional permeation 

of anions.  

 

 

1.2.2.1  CFTR Function 
The principle function of CFTR is to act as a phosphorylation-dependent chloride ion (Cl-) 

channel located at the apical membrane of epithelial cells (Anderson et al., 1991; Cheng et al., 

1991; Bear et al., 1992; Li et al., 2007). In addition to conducting Cl- across epithelial cell 

membranes, CFTR also down-regulates transepithelial sodium ion (Na+) transport via the 

epithelial sodium channel (ENaC) (Knowles, Gatzy and Boucher, 1983; Anderson et al., 1991; 

Stutts et al., 1995; Kunzelmann et al., 2000), and regulates calcium-activated chloride channels 

(CaCC) and potassium ion (K+) channels. It is hypothesised that CFTR may also act as a 

regulator of other ion channels such as the outwardly rectifying chloride channels (ORCC). 

CFTR is known to be directly or indirectly involved in bicarbonate ion (HCO3
-) transport in a 

number of tissues, including the airways, intestine and pancreas (Poulsen et al., 1994). 
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However, permeability to HCO3
- is much lower than that of Cl-, and under most conditions 

CFTR principally conducts Cl- transport. Due to the influence of CFTR on other ion channels, 

the overall effect of defective CFTR function not only results in reduced epithelial Cl- 

permeability, but also enhanced Na+ permeability of the cell membrane (Ashcroft, 2000). 

 

CFTR directly or indirectly mediates glutathione efflux (Linsdell and Hanrahan, 1998; Gao et 

al., 1999; Velsor, van Heeckeren and Day, 2001; Ballatori et al., 2009).  Glutathione is an 

antioxidant protein which is required for the immune response and many critical cell processes 

including cell differentiation, proliferation and apoptosis (Ballatori et al., 2009; Galli et al., 

2012). It is also a major component of cellular defense against oxidative stress and injury (Gao 

et al., 1999). In healthy individuals, glutathione is present in the airway surface fluid which 

lines the lung epithelium, and is responsible for breaking disulfide bonds to reduce viscosity of 

mucous, and regulating inflammation and the immune response (Cantin et al., 2007). Whilst 

glutathione is present within the lung itself in CF patients, none is present in the airway surface 

layer of lung epithelia and blood plasma (Roum et al., 1993; Ballatori et al., 2009). Neutrophil 

glutathione may also be decreased in CF patients (Tirouvanziam et al., 2006), indicating that 

glutathione deficiency is systemic (Roum et al., 1993).  

 

1.2.2.2  CFTR Structure 
According to the general domain architecture of ABC transporters, CFTR has two membrane 

spanning domains (MSD), two nucleotide binding domains (NBD) and a central, highly 

charged regulatory (R) domain (Riordan et al., 1989), as shown in Figure 1.1. Each MSD 

contains six membrane-spanning alpha helices, portions of which form a chloride-conductance 

pore to transport  Cl- and other compounds across the membrane (Rowe, Miller and Sorsscher, 

2005). Channel activity is governed by the two NBDs; the ion pore is believed to be opened by 

ATP-binding to the NBDs, and closed by hydrolysis of ATP (Gadsby, 2009). The R domain 

which lies between the first NBD and the second MSD, links the two homologous transporter 

halves and contains multiple phosphorylation sites. Phosphorylation by protein kinase A 

(PKA) at these sites stimulates the ATPase activity and channel gating, hence increasing the 

channel activity (Riordan et al., 1989; Cheng et al., 1991; Ostedgaard, Baldursson and Welsh, 

2001). The final component of CFTR is made up of three amino acids (threonine, arginine, and 

leucine) which are responsible for connecting the C- domain of CFTR to the PDZ-type 

receptors (a common structural domain),  which anchors CFTR to the cytoskeleton (Short et 

al., 1998). 
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Figure 1.1 Schematic diagram of CFTR structure. Image from: Davidson and Dorin (2001) 
Key: MSD, membrane spanning domain; N, nitrogen terminal; ATP, adenosine triphosphate; ADP, adenosine 

diphosphate; P, phosphate; NBD, nucleotide binding domain; PKA, protein kinase A; R, regulatory; C, carbon 

terminal. 
 

1.2.2.3 Mutations in CFTR 
To date, more than 1800 naturally occurring CFTR mutations have been identified (The Cystic 

Fibrosis Genetic Analysis Consortium, 2011) with the effect on CFTR ranging from reduced 

Cl- secretion to complete absence from epithelial membranes (Rowntree and Harris, 2003). The 

different mutations can be classified into groups according to their known or predicted 

molecular mechanism of dysfunction, and the varying consequences on CFTR biogenesis, 

metabolism and function (Zielenski, 2000; Proesman, Vermeulen and De Boeck, 2008). This 

classification system was first proposed by Tsui, 1992, and has subsequently been refined into 

the five main groups as outlined in Table 1.1 (Tsui, 1992; Zielenski, 2000; Proesman et al., 

2008). Population genetics have shown that a single mutation, an in-frame deletion of three 

bases  encoding  phenylalanine  508,  known  as  ΔF508,  accounts   for  approximately 70% of the 

mutant CFTR alleles present in the CF population (Bobadilla et al., 2002). 
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Table 1.1 Classification of CFTR defects in CF 

Defect 
Class 

Type of 
Mutation 

Effect of Mutation Phenotype 
Incidence 
(%) 

Class 1 

Nonsense 

mutations 

e.g. G542X 

No CFTR Synthesis 

Premature termination of CFTR 

translation resulting in no CFTR at the 

apical membrane 

Severe < 7 

Class 2 

Missense; 

Amino Acid 

Deletion 

e.g.  ∆F508 

Abnormal CFTR processing and 

trafficking 

Defective CFTR on the endoplasmic 

reticulum that cannot be trafficked to 

the apical membrane 

Severe 85 

Class 3 

Missense; Amino 

Acid Change e.g. 

G551D 

Abnormal CFTR regulation 

Defective CFTR spans the apical 

membrane, but has defective regulation 

Mild < 3 

Class 4 

Missense; Amino 

Acid Change e.g. 

R117H 

Altered CFTR conductance 

Defective CFTR protein spans the 

apical membrane but has decreased 

chloride conductance 

Mild 

5 

Class 5 

Missense; Amino 

Acid Change e.g. 

A455E 

Reduced CFTR synthesis 

Fully processed functional CFTR but 

with a reduced numbers of transcripts 

Mild 

 

1.2.2.3.1 Genotype-phenotype correlations  

The variation in CF genotypes provides a clear rationale for the phenotypic effects of specific 

mutations. However, genotype-phenotype studies have demonstrated that the process of 

phenotype realisation is complex and variable. Inheritance of the same mutation can result in 

remarkably variable manifestations of the disease (Kerem et al., 1990; McKone et al., 2003), 

suggesting environmental factors and modifying genes play an important role in influencing 

CF disease severity (Zielenski, 2000). The extent to which CF phenotype is determined by 

specific genotypes varies considerably from organ to organ. The degree of correlation between 

CFTR genotype and CF phenotype is highest for pancreatic involvement and lowest for 

pulmonary function (Zielenski, 2000). 
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1.2.3 Characteristics of CF 
As CFTR is expressed in multiple organs throughout the body, the manifestations of CF are 

widespread, allowing classification of CF as a multi-system disorder. Common CF 

characteristics consist of bronchiectasis (Ratjen and Doring, 2003), malnutrition secondary to 

pancreatic insufficiency and increased metabolic rate (Kerem and Kerem, 1996; Durie, 2000), 

diabetes (Couce et al., 1996),  infertility (Oppenheimer et al., 1970) and liver disease (Colombo 

et al., 2002) (Figure 1.2). The main problems encountered by CF patients are briefly outlined 

below.  

 
Figure 1.2 A summary of the health complication associated with CF 
 

1.2.3.1 Lung disease 
Pulmonary disease in CF is believed to stem from a reduction in the airway surface layer 

(ASL), caused by defective CFTR processing. Thinning of the ASL in CF produces a highly 

viscoelastic, adhesive material which traps infectious bacteria and provides the perfect medium 

for pathogen growth (Worlitzsch, Tarran and Ulrich, 2002). This, combined with the 

consecutive breakdown of mucociliary transport and subsequent mucous stasis (Matsui et al., 

1998) causes infection from the trapped bacteria, neutrophillic inflammation and fibrosis. 

Lung  disease 
Bronchiectasis 
Cause  of  mortality  in  90% 

Pancreatic   insufficiency  
and  malnutrition 
-   Vitamin  A  deficiency  

(VAD) 
-   Cystic  fibrosis  

related  diabetes  
(CFRD) 

Infertility 
97%  Males 
20%  Females 

Bone  and  joint  
problems 
Low  bone  mineral  
density 

Liver  disease 
27-35%  Incidence   
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Clinically, this causes chronic bacterial bronchitis, which evolves into a syndrome of 

bronchiectasis (widening of the airways associated with excess mucous), and ultimately leads 

to respiratory failure. Pulmonary complications are the most common cause of mortality in CF 

patients, accounting for up to 90% of all CF deaths (Boucher, 2007). 

 

1.2.3.2 Pancreatic insufficiency and malnutrition 
Up to 90% of CF patients suffer from pancreatic insufficiency as a direct result of the absence 

or dysfunction of CFTR at the apical membrane of pancreatic epithelial cells (Dodge and 

Turck, 2006). This leads to highly concentrated protein-containing secretions, causing 

obstruction of the pancreatic ducts and ultimately results in organ damage secondary to the 

formation of fibrotic tissue (Scheele et al., 1996). Combined with a reduction in the volume of 

the bicarbonate-rich fluid which is essential for the transport of enzymes, this results in reduced 

levels of pancreatic enzymes reaching the small intestine. A reduction of these enzymes, which 

are vital for the absorption of fat, protein and fat soluble vitamins, can cause malnutrition, even 

when patients are administered exogenous enzymes (Karlet, 2000). 

 
1.2.3.2.1 Vitamin deficiency 

Fat-soluble vitamin deficiency (A, D, E and K), particularly vitamin A deficiency (VAD) has 

been associated with CF since the earliest descriptions of the disease (Anderson, 1939), and is 

now known to be attributed to fat maldigestion secondary to pancreatic insufficiency. 

However, it is hypothesised that there may also be specific defects of vitamin A metabolism, 

involving its absorption from the bowel and mobilisation from the liver (Ahmed et al., 1990). 

Despite supplementation with vitamin A and pancreatic enzymes, sporadic deficiency and 

persistent or recurrent deficiency can still occur, highlighting the need for regular monitoring 

of serum vitamin concentration (Morton, 2009). Along with poor growth and increased 

mortality (West, 2003), clinical consequences of VAD also include impaired dark adaptation 

(Fulton et al., 1982), and conjunctival and corneal xerosis (Sommer, 1989; Vernon et al., 1989; 

Brooks, Driebe and Schemmer, 1990; Campbell et al., 1998). Determination of true vitamin A 

status is difficult; circulating serum vitamin A levels are often a poor indicator of true vitamin 

A status, as vitamin A is mostly stored in the liver, bound to tissue membrane (Underwood and 

Denning, 1972; Lindblad et al., 1997). Additionally, research has shown that serum vitamin A 

levels can remain low despite adequate liver stores, suggesting defective vitamin A release 

from the liver in CF (Underwood and Denning, 1972; Tsinopoulos et al., 2000). 
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1.2.3.3 Cystic Fibrosis Related Diabetes 
Cystic fibrosis related diabetes (CFRD) was first recognised as a distinct disease, separate from 

type 1 and type 2 diabetes, in 1955 (Shwachman, Leubner and Catzel, 1955). Whilst the 

pathogenesis of CFRD is not completely understood, increasing evidence suggests that insulin-

deficiency, exacerbated by peripheral insulin resistance, is the primary cause (O'Riordan et al., 

2009). Insulin-deficiency results from  β-cell apoptosis in the pancreas (Kopelman et al., 1985; 

Couce et al., 1996) in   conjunction  with   defective   insulin   secretion   by   the   remaining   β-cells 

(Mohan et al., 2009). Other key factors known to be involved in the development of CFRD 

include genetic variations (Blackman et al., 2009), diminished pancreatic blood flow, chronic 

pancreatic inflammation and oxidative stress (Stecenko and Moran, 2010). Insulin resistance is 

exacerbated by respiratory infection and corticosteroid treatment, and therefore fluctuates over 

time (Moran et al., 1999; Mackie, Thornton and Edenborough, 2003).  

 

Latest reports indicate increasing prevalence of CFRD with advancing age, from 3% in 

children to 45-50% in those over thirty years (Moran et al., 2009), with the mean age of 

diagnosis in the mid-twenties (Milla, Billings and Moran, 2005). Three large scale studies 

(Koch et al., 2001; Marshall et al., 2005; Moran et al., 2009), and several smaller studies 

(Finkelstein et al., 1988; Lanng et al., 1992; Cawood et al., 2006; Bismuth et al., 2008) have 

shown that the presence of CFRD is associated with worse clinical status in CF, specifically, 

more severe pulmonary disease and poorer nutritional status. This has been attributed to both 

the influence of hyperglycaemia on inflammation and infection, and the effect of insulin 

deficiency on protein catabolism and malnutrition (Moran et al., 2009). Although mortality 

rates still remain higher for patients with CFRD, compared to those without, the gap has 

considerably narrowed (Moran et al., 2009), with improvements related to earlier disease 

detection and aggressive treatment regimes.  

 

Currently, as CFRD is often asymptomatic, CF patients are screened for CFRD yearly using 

the recommended oral glucose tolerance test (OGTT) (Mohan et al., 2009; O'Riordan et al., 

2009). Patients are categorised into different groups (Table 1.2), depending on the results of the 

OGTT.  Glycosylated haemoglobin (HbA1c), a test accepted for use to diagnose diabetics in 

the general population, cannot be used in CF patients as measurements are often falsely low 

(Lanng et al., 1995; Solomon et al., 2003). However, HbA1c is useful to monitor the level of 

glucose control in CFRD (Brennan et al., 2004). 

 



                                       Chapter 1:  Introduction 

 9   

Table 1.2 Categories of glucose tolerance based on OGTT in CF. Table adapted from Nathan, 

Laguna and Moran (2010) 

Category of glucose tolerance / 
intolerance 

Fasting plasma glucose 
(mmol/l) 

2 hour glucose 
(mmol/l) 

Normal glucose tolerance < 7.0 < 7.8 

Abnormal glucose tolerance: 

Indeterminate glucose tolerance* 
< 7.0 <7.8 

Abnormal glucose tolerance: 

Impaired glucose tolerance 
< 7.0 7.8 – 11.1 

CFRD without fasting 

hyperglycaemia (CFRD FH-) 
< 7.0 ≥  11.1 

CFRD with fasting 

hyperglycaemia (CFRD FH+) 
≥  7.0 ≥  11.1 

Impaired fasting glucose  5.6 – 6.9 Not applicable 
* Mid-OGTT  glucose  ≥  11.1 

        

1.2.3.4 Low bone mineral density 
Low bone mineral density (BMD) is a common characteristic in patients with CF, and has been 

termed CF-related bone disease (Hahn et al., 1979; Mischler et al., 1979; Buntain et al., 2004; 

Aris et al., 2005). A comprehensive study has shown that BMD decreases with age, beginning 

as normal in children and progressing throughout adolescence to become significantly deficient 

in CF adults (Buntain et al., 2004). The pathogenesis of CF-related bone disease is 

multifactorial and likely to be due to several CF-related factors that also influence bone 

metabolism. These factors include vitamin D and K insufficiency, calcium malabsorption, 

malnutrition, reduced weight-bearing activity, hormonal, steroid use, delayed puberty, 

pulmonary infection/systemic inflammation and the effect of CFTR dysfunction on bone cell 

activity (Aris et al., 2005).  

 

1.2.3.5 Infertility  
Infertility in women with CF is relatively uncommon, though the true fertility rate is unknown 

(Lyon and Bilton, 2002). Although the cause of the reduction in fertility in women remains 

unclear, it is suggested that the accumulation of thick and tenacious cervical mucous 

(Oppenheimer et al., 1970; Kopito et al., 1973), caused by CFTR dysfunction, acts as a barrier 
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to sperm penetration. In contrast to the low levels of infertility in women, the rate of infertility 

in men is very high; at least 97% of men with CF are infertile due to congenital bilateral 

absence of the vas deferens, with resultant obstructive azoospermia (Welsh et al., 1995; Wong, 

1998). The pathological basis for the structural changes in the genital tract may be either 

developmental abnormalities of the reproductive tract (Kaplan et al., 1968), or in-utero 

obstruction of the tract by dehydrated secretions (di Sant'Agnese, 1968), caused by lack of or a 

reduction of functional CFTR.  

 

1.2.3.6 Liver Disease 
Liver disease in CF most commonly presents in the first decade of life; however, a small 

percentage of patients develop decompensated cirrhosis during adulthood (Colombo et al., 

2002). Whilst the incidence of CF liver disease ranges from 27-35%, progression to cirrhosis 

and consequent liver failure is uncommon and only occurs in 3-7% of all patients (Nash et al., 

2008). Though the pathogenesis of liver disease has long been questioned, more recent studies 

suggest that defective CFTR causes liver cell injury or death, leading to activation of hepatic 

stellate cells, which in turn contributes to the development of tissue fibrosis (Kinnman et al., 

2000).  

 

1.2.4 Diagnosis of CF 
Most cases of CF are identified during childhood, with the median age of diagnosis three 

months, and with over 70% of cases being recognised within one year (UK CF Registry, 2013). 

An accurate and timely diagnosis is important, enabling implementation of an appropriate 

treatment regime in order to maximise the lifespan of the patient (Dankert-Roelse and Merelle, 

2005; Rosenfeld, 2005).  

 

In 1996, the Cystic Fibrosis Foundation gathered a panel of experts to develop the criteria for 

the diagnosis of CF. The  panel stated that the diagnosis of CF should be based on: the 

presence of one or more characteristic phenotypic features; a history of CF in a sibling, or a 

positive newborn screening test; plus, confirmation through laboratory evidence of CFTR 

dysfunction (Rosenstein and Cutting, 1998). In the majority of cases, neonatal screening for CF 

is based on the immunoreactive trypsinogen assay, which is relatively inexpensive and 

adaptable to large numbers (Crossley et al., 1981). Acceptable evidence of CFTR abnormality 

includes biological evidence of CFTR dysfunction through elevated sweat chloride 

concentrations (considered to be the   ‘gold   standard’   in   CF   diagnosis)   (Gibson and Cooke, 
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1959), or identification of mutations in each CFTR gene through DNA analysis (Comeau et al., 

2004). For patients in whom sweat chloride concentrations are normal or borderline and in 

whom two CF mutations are not identified, an abnormal nasal potential difference (PD) 

measurement recorded on two separate days can be used as evidence of CFTR dysfunction 

(Rosenstein and Cutting, 1998). 

 

1.2.5 Treatment of CF 
In the  1960’s  three pillars of treatment were established (Matthews et al., 1964):  

 relief of airway obstruction 

 nutritional replacement 

 antibiotic therapy 

 

When implemented, this treatment strategy caused dramatic improvements in survival and 

quality of health in CF (Davis, 2006). Over the years, although the ways in which these aims 

are met have changed as new treatments have become available, aggressive treatment remains 

the foundation of care. A fourth pillar of treatment has also been added (Davis, 2006); the 

suppression of inflammation through use of pharmacologicals, which have been seen to reduce 

the rate of decline in pulmonary function (Eigen et al., 1995; Konstan et al., 1999). The ways 

in which these aims are met are outlined below. 

 

1.2.5.1 Airway clearance techniques  
Airway clearance techniques are used to promote mucociliary clearance of the thick airway 

mucous which is produced as a direct result of malfunctioning CFTR (Robinson and Bye, 

2002). This is of upmost importance as accumulation of this mucous can obstruct the airways, 

trapping bacteria and cellular debris which can cause airway inflammation. Airway clearance 

techniques include percussion and postural drainage, positive expiratory pressure (PEP) (Groth 

et al., 1985), active cycle of breathing techniques (Pryor et al., 1979), oscillatory PEP, high 

frequency chest compression (Hansen and Warwick, 1990), autogenic drainage and exercise 

(Schoni, 1989). 

 

1.2.5.2 Nutrition and Supplements 
Chronic malnutrition with significant weight retardation and growth failure has been 

recognised as a characteristic of CF patients for many years. Maintenance of good nutrition is 
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key in preserving good pulmonary function, with some studies showing strong correlation 

between the degree of malnutrition and the severity of pulmonary disease (Sproul and Huang, 

1964; Kraemer et al., 1978). It has been suggested that patients may require approximately 

110% of the recommended daily calorie allowance to ensure normal growth (Roy, Darling and 

Weber, 1984; Bentur et al., 1996), with 30-40% of the energy consumed to be in the form of 

fat to prevent negative energy balance. Oral supplements can be prescribed for patients with 

poor diets, or alternatively, enteral feedings (feeding through a nasal tube to the stomach) or 

parenteral nutrition (feeding a patient intravenously) can provide additional support. Fat 

soluble vitamin supplementation (vitamins A, D, E and K) is standard clinical practice in CF 

(Borowitz et al., 2009), with the aim to maintain vitamin plasma levels within the normal range 

(Borowitz, Baker and Stallings, 2002). Additionally, supplementation with pancreatic enzymes 

is mandatory in all patients with pancreatic insufficiency to avoid malnutrition caused by 

maldigestion and malabsorption.  

 

1.2.5.3 Pharmaceutical Therapy 
The majority of CF-related morbidity and mortality is a result of chronic respiratory infection. 

Therefore, the basis of CF management is to control respiratory infection in order to reduce 

lung fibrosis and maintain lung function. Therapeutic progress has been realised in the last two 

decades, with improvements seen in health, quality of life, and overall survival (Cystic Fibrosis 

Foundation, 2011). An aggressive approach to CF care is supported by two epidemiological 

studies which show that CF centres which achieve high median pulmonary function test results 

see patients more frequently, obtain more frequent respiratory-tract cultures, and use more oral 

and intravenous antibiotics than centres that achieve lower median lung function results 

(Johnson et al., 2003; Padman et al., 2007). Many different pharmaceutical agents are used in 

the  care  of  CF  patients  including  antimicrobials  (e.g.  β-lactam antibiotics such as penicillin and 

inhaled tobramycin) (Ramsey et al., 1999), anti-inflammatories (e.g. steroids and ibuprofen) 

(Eigen et al., 1995), mucolytics (e.g. inhaled recombinant human DNAse) (Fuchs et al., 1994) 

and osmotic agents (e.g. saline) (Donaldson et al., 2006).  

 

1.2.5.4 Protein Repair  
An understanding of the molecular basis of CFTR mutations has led to the development of 

therapeutic treatment strategies based on the mutation classification. This type of therapy is 

known  as  ‘protein  repair  therapy’ (Zeitlin, 2007; Sloane and Rowe, 2010). There are two main 

classes  of  protein  repair  drugs  available:  ‘correctors’,  which  correct   the  localisation  of  CFTR  
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from the endoplasmic   reticulum   (ER)   to   the   apical   cell  membrane,   and   ‘potentiators’  which  

increase the function of CFTR which is already correctly positioned at the apical cell 

membrane (Sloane and Rowe, 2010). The progress which is being made in finding potential 

compounds that target CFTR paves the way for targeted therapy of the molecular defect in the 

future. 

 

1.2.5.5 Gene Therapy 
Gene   therapy   involves   insertion   of   healthy,   functioning   genes,   into   an   individual’s   cells   and  

biological tissues to replace malfunctioning genes, independent of the class of genetic 

mutation. As CF is essentially a monogenic disorder, it is a good candidate for gene therapy 

based treatment, and offers the hope of a cure for CF. Although the concept of gene therapy is 

straight forward, in practice gene therapy has proven to be particularly difficult, with the 

delivery of the gene to the lungs a complex task (Proesman et al., 2008). Despite this difficulty, 

clinical trials have achieved delivery of the gene to cells, but significant and long lasting effects 

on CFTR function have yet to be seen (Griesenbach and Alton, 2009; Burney and Davies, 

2012; Griesenbach and Alton, 2013). The prospect of gene therapy correcting the defect in CF, 

and sustaining long-term effects remains a realistic hope for the future, with ongoing clinical 

trials examining the efficacy of a new formulation (Alton et al., 2013).  

 

1.2.5.6 Lung Transplants 
Bilateral lung transplantation is the predominant operative approach to end-stage CF lung 

disease. However, it is not an option that is available to every patient due to a shortage of 

organs available, with up to 25% of CF patients dying of progressive lung disease whilst 

awaiting lung transplantation (Quattrucci et al., 2008).  Perioperative mortality is low, and CF 

recipients have significant survivals and functional benefits following transplantation. Three 

year-survival rates following lung transplantation in CF now stands at 70% in the UK, 

dropping to 50% at 10 years (Meachery et al., 2008). Whilst long term results post 

transplantation are good, increasing comorbidities and graft dysfunction occur with time 

(Meachery et al., 2008; Mordant et al., 2010).  

 

1.2.6 Prognosis and life expectancy 
With the advent of earlier and more aggressive treatments for underlying pulmonary and 

gastrointestinal disease, life expectancy continues to improve. Median life expectancy is now  
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41.5 years (UK CF Registry, 2013), a  stark  improvement  compared  to  survival   in   the  1950’s  

when life expectancy was just 5 years of age (Proesman et al., 2008). 

 

1.2.7 CFTR and the eye 
Active trans-epithelial transport of Cl- is known to provide the driving force for subsequent 

osmotically driven fluid secretion, such as basal tear production (Yang et al., 2000; Dartt, 

2002), and subretinal space volume regulation (Ueda and Steinberg, 1994). Abnormal secretion 

of Cl-, caused by malfunctioning CFTR is the known pathogenesis of CF. To date, CFTR has 

been localised to human corneal (Itoh et al., 2000; Cao et al., 2010) and conjunctival 

epithelium (Itoh et al., 2000), corneal endothelium (Sun et al., 2001; Cao et al., 2010) and 

retinal pigment epithelium (Wills et al., 2000; Wills et al., 2001; Weng et al., 2002; Blaug et 

al., 2003) (Table 1.3).  

 

The following sections review Cl- transport across the corneal (section 1.2.1) and conjunctival 

epithelia (section 1.2.2), the corneal endothelium (section 1.2.3) and the RPE (section 1.2.4), 

and discuss the contribution of CFTR in ocular fluid regulation.  
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Table 1.3 CFTR in ocular epithelia 

Reference  Sample  Method Observations 

Corneal Epithelium 

Itoh et al. 

(2000) 

Human corneal 

cDNA  
RT-PCR 

CFTR mRNA expression 

confirmed 

Al-Nakkash 

and Reinach 

(2001) 

Rabbit corneal 

epithelial cells 
RT-PCR 

CFTR mRNA expression and 

function confirmed 

Levin and 

Verkman 

(2005) 

Wild type mice 
Ocular surface PD in the 

presence of CFTR 

agonists and inhibitors 

CFTR function identified 

Homozygous 

G551D-CFTR 

mutant mice 

Evidence of CFTR 

involvement in ocular surface 

Cl- transport 

Cao et al. 

(2010) 

Human corneal 

epithelial cells 

RT-PCR, Western blot 

analysis, and IS  

CFTR mRNA and protein 

expression confirmed 

CFTR expression highest at the 

apical membrane 

Conjunctival Epithelium  

Itoh et al. 

(2000) 

Human corneal 

cDNA 
RT-PCR CFTR expression confirmed 

Turner and 

Candia (2001) 
Rabbit and pig IS and RT-PCR CFTR expression confirmed 

Shiue et al. 

(2002) 
Rabbit 

Western blot analysis, IS 

and RT-PCR 
CFTR expression confirmed 

Turner, 

Bernstein and 

Canada (2002) 

Rabbit, rat and 

pig   

Immunolocalization by 

staining with CFTR 

antibodies  

CFTR expression confirmed 

and located to the apical 

surface in all three species 

Rabbit RT-PCR CFTR expression confirmed 

Levin and 

Verkman 

(2005) 

Wild type mice 
Ocular surface PD in the 

presence of CFTR 

agonists and inhibitors 

CFTR function identified  

Homozygous 

G551D-CFTR 

mutant mice 

Evidence of CFTR 

involvement in ocular surface 

Cl- transport 
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Key: cDNA, complementary DNA; RT-PCR, reverse transcription polymerase chain reaction; PD, potential 

difference; IS, immunofluorescence staining; mRNA, messenger RNA. 

 

Corneal Endothelium 

Sun et al. 

(2001) 

Human, rabbit 

and bovine 

endothelium 

RT-PCR 
CFTR expression confirmed in 

all samples 

Sun and 

Bonanno 

(2002) 

Cultured and 

fresh bovine 

corneal 

endothelial cells 

Immunoprecipitation and 

indirect IS 

CFTR protein expression 

confirmed and localized to the 

apical membrane 

Measuring Cl- 

permeability with a 

CFTR agonist 

CFTR localized to the apical 

membrane 

Cao et al. 

(2010) 

Human corneal 

cells 
IS CFTR expression confirmed 

Retinal Pigment Epithelium 

Peterson et al. 

(1997) 
Bovine Cells 

RT-PCR, western blot 

analysis, and immuno- 

cytochemistry 

CFTR expression confirmed 

and localized to the basal 

membrane 

Wills et al. 

(2000) 

Human foetal 

cells 
Immuno-cytochemistry CFTR expression confirmed 

Wills et al. 

(2001) 
Human adult cells 

Immuno-cytochemistry 

and RT-PCR 
CFTR expression confirmed 

Weng et al. 

(2002) 
Human adult cells 

Western blot analysis and 

RT-PCR 

CFTR expression confirmed 

and localized to the apical 

membrane and the lateral cell 

margins of the basal membrane 

Blaug et al. 

(2003) 

Human foetal 

cells 

Immuno-histochemistry 

by western blot analysis 

and electrophysiology 

CFTR expression confirmed 

and located to the basal and 

apical membranes, though 

dominant functional effect at 

the basolateral membrane 

Loewen et al. 

(2003) 
Canine Cells 

Ussing chamber 

electrophysiology 

CFTR contribution to Cl- and 

fluid transport indicated 
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1.2.7.1 Chloride transport across the corneal epithelium 
Historically, the function of the corneal epithelium has been that of a protective barrier, with no 

role in fluid transport and no capacity to contribute to the maintenance of corneal 

deturgescence. However, it is now accepted that the corneal epithelium has comparatively large 

osmotic and diffusional permeabilities (Fischbarg and Montoreano, 1982), along with Cl- 

secretory mechanisms (Klyce and Crosson, 1985). Hence the corneal epithelium participates in 

the regulation of corneal hydration and maintainence of corneal clarity.  

 

Cl- secretion provides the primary driving force to elicit osmotic movement of water across the 

apical membrane of the corneal epithelium into the tear film. The basolateral membrane of the 

corneal epithelium contains the Na+:K+:2Cl- co-transporter, which functions in parallel with the 

Na+:K+ pump to cause Cl- influx. The rate of Cl- influx at the basolateral membrane is 

regulated by the chloride conductance at the apical membrane. Cl- channels located to the 

apical membrane of the human corneal epithelium and involved in Cl- efflux include CFTR 

(Al-Nakkash and Reinach, 2001; Levin and Verkman, 2006; Cao et al., 2010), and the calcium 

activated chloride channel, CLCA2 (Itoh et al., 2000) (Figure 1.3). Current evidence suggests 

that CFTR has a functional involvement in ocular surface Cl- secretion (Levin and Verkman, 

2005). Recently, Cao et al. 2010, discovered through the use of reverse transcription 

polymerase chain reaction (RT-PCR), Western blot and immunofluorescence staining (IS) that 

human corneal epithelial cells also express the chloride channel (ClC) family of voltage gated 

Cl- channels ClC-2, ClC-3, ClC-4, ClC-6 (Cao et al., 2010).  

 

Aquaporins (AQPs) are believed to provide the principle pathway for water transport across the 

corneal epithelium (Levin and Verkman, 2006). AQP5, a water-selective aquaporin, and 

AQP3, a water-and glycerol-transporting aquaglyceroporin, expression has been identified in 

the corneal epithelium (Levin and Verkman, 2006). AQP5 appears to provide a significant 

epithelial pathway for stromal water uptake and extrusion, with one study showing that AQP5-

deficient corneas are approximately 20% thicker than wild-type corneas (Levin and Verkman, 

2004).  

 

The expression patterns of AQPs and CFTR, along with other Cl- channels in the corneal 

epithelium, suggest their involvement in tear film homeostasis. Thus, it is hypothesised that 

dysfunction of CFTR may cause deficient tear volume, and thus symptoms of dry eye in CF 

patients.   
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Figure 1.3 A simplified diagram showing the ion channels involved in electrolyte and water 

movement across the corneal epithelium. Efflux of Cl- via CFTR and CLCA2 on the apical 

membrane (1), together with Na+ influx via ENaC (2) causes H2O to move out of the corneal 

stroma into the tear film via AQP5 and AQP3 (3). The basolateral Na+:K+:2Cl- co-transporter 

and Na+:K+ pump load the epithelial cell with Cl- (4) to maintain the electrochemical driving 

force for Cl- efflux at the apical membrane.  
 

1.2.7.2 Chloride transport across the corneal endothelium 
Maintenance of corneal transparency requires precise regulation of corneal hydration to ensure 

regular organisation of collagen fibres (Sun and Bonanno, 2002). As the corneal stroma has a 

tendency to swell, the corneal endothelium must continuously secrete water out of the cornea 

to maintain transparency.  

 

Transendothelial fluid secretion is dependent on the presence of HCO3
- (Hodson, 1974; Riley 

et al., 1997) and Cl- (Winkler et al., 1992; Riley et al., 1997) within the corneal endothelial 

cells. HCO3
- and Cl- are loaded into corneal endothelial cells from the stroma by basolateral 

endothelial membrane co-transporters Na+:2HCO3
- (Jentsch et al., 1984), and Na+:K+:2Cl- 

(Jelamskii et al., 2000), respectively. This causes the intracellular concentration of Cl- and 

HCO3
- to rise above the electrochemical equilibrium (Sun et al., 2003), suggesting there is 

potential for apical anion efflux through anion channels (Sun et al., 2001). The mechanisms 

involved in Cl- and HCO3
- secretion at the apical membrane are yet to be fully elucidated. 

However, research suggests that chloride channels, including CFTR, CLCA1, and the anion 
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exchanger Cl-/HCO3
- (Bonanno et al., 1998; Shepard and Rae, 1998; Sun et al., 2001), 

contribute to the secretion and absorption of Cl- and HCO3 (Figure 1.4). 

 

Despite the different roles of the corneal epithelium and endothelium in corneal homeostasis, 

they share expression of at least seven different Cl- channel mRNAs (Davies et al., 2004). This 

finding may suggest that no particular Cl- channel has a key role in epithelial or endothelial 

fluid transport, although this has yet to be discovered. AQPs (AQP1) are also expressed in the 

corneal endothelium, facilitating the movement of water down the osmotic gradient 

(Thiagarajah and Verkman, 2002).  
  

 
Figure 1.4 A simplified diagram showing the ion channels involved in electrolyte and water 

movement across the corneal endothelium. Cl- and HCO3
- are loaded into the endothelial cell 

across the basolateral membrane via the Na+:K+:2Cl-
  and Na+:2HCO3

- co-transporters 

respectively (1). Efflux of Cl- and HCO3
- at the apical membrane via CFTR, CLCA1 and the 

HCO3
-/Cl- exchanger, occurs down the electrochemical gradient (2), and generates an osmotic 

gradient for H2O, drawing it out of the stroma and into the aqueous via AQP1 (3).  
 

1.2.7.3 Chloride transport across the conjunctival epithelium 
The conjunctival epithelium lines the exposed surface of the sclera (bulbar conjunctiva), and 

eyelids (palpebral conjunctiva) and is a mucus-secreting stratified epithelium. Electrolyte and 

accompanying fluid transport by conjunctival cells may contribute to and be important in the 

maintenance of the ocular tear film.   
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The Na+:K+:2Cl- co-transporter and the Na+:K+ pump mediate Cl- influx at the basolateral 

membrane of conjunctival epithelial cells in order to maintain intracellular Cl- above 

equilibrium (Turner et al., 2000; Turner and Candia, 2001), a property which is necessary to 

allow apically directed efflux. CFTR, which has been localised to the apical surface of bulbar 

and palpebral conjunctival epithelia (Turner et al., 2002), then facilitates Cl- efflux (Figure 

1.5). Voltage gated chloride channels ClC-1, ClC-2, ClC-3, ClC-4, ClC-6 and ClC-7 have been 

identified in the conjunctival epithelium, along with CLCA2 (Itoh et al., 2000), which may 

contribution to Cl- transport. An outwardly-rectifying chloride channel (ORCC), which is 

modulated by CFTR, may also be present in the conjunctival epithelium (Itoh et al., 2000) and 

be involved in Cl- transport. Active movement of Cl- out of the conjunctival epithelial cells 

creates an osmotic gradient, drawing H2O out of the cell and into the tear film.  

 

AQP3 is expressed in the conjunctival epithelium (Hamann et al., 1998; Levin and Verkman, 

2004), providing a pathway for the movement of water into and out of the conjunctival 

epithelial cell. However, Levin and Verkman (2004), found that osmotically induced water 

movement across the conjunctiva was not AQP3 dependent, and concluded that AQP3-

facilitated water transport does not play a role in transconjunctival fluid movement.  

 

The conjunctival epithelium has sufficient water permeability and the transporters necessary to 

significantly contribute to production of the tear film (Levin and Verkman, 2006). As CFTR 

plays a role in electrolyte transport across the conjunctival epithelium, it is possible that it has a 

direct effect on tear secretion (Levin and Verkman, 2005), and therefore malfunction may 

contribute to conditions such as dry eye (Dartt, 2002).    
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Figure 1.5 A simplified diagram showing the ion channels involved in electrolyte and water 

movement across the conjunctival epithelium. At the basolateral membrane, the Na+:K+:2Cl- 

co-transporter and the Na+:K+ pump mediate Cl- influx (1) in order to maintain intracellular Cl- 

above equilibrium. At the apical membrane, Na+ is transported into the cell via Na+-glucose 

and Na+-amino acid co-transporters (2). Cl- moves out of the cell across the apical membrane 

via CFTR and CLCA2 down the electrochemical equilibrium (3). This generates an osmotic 

gradient for H2O, drawing it out of the stroma and into the tear film via AQP3, and other 

pathways (4).  

 
1.2.7.4 Choride transport across the RPE 
The RPE is a monolayer of densely packed hexagonal cells that forms a diffusion barrier 

between the photoreceptors in the retina and the choroidal blood supply. The apical membrane 

of the RPE is separated from the photoreceptors by the subretinal space (SRS), which is 

occupied by the inter-photoreceptor matrix (IPM). The IPM is an integral part of the retina, 

permitting communication between the RPE and the photoreceptors. It may also play a part in 

photoreceptor maintenance. It is the responsibility of the RPE to regulate the transport of 

metabolites, electrolytes and fluid between the IPM and the choroidal blood supply. This 

movement of ions is essential in maintaining the correct chemical composition and volume of 

the SRS and the extraceullular choroidal space (Marmor and Wolfensberger, 1998; Strauss, 

2005). Studies on RPE epithelial cells indicate Cl- transport across the RPE is important in 

several RPE functions, including fluid absorption (Miller and Edelman, 1990), volume 
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regulation (Ueda and Steinberg, 1994), and ligand-regulated ion and fluid transport (Peterson et 

al., 1997). 

 

Current evidence suggests Na+-K+-ATPase activity at the apical membrane of RPE cells 

generates a Na+ gradient across the membrane. Na+/HCO3
- co-transporter is also present at the 

apical membrane (Hughes et al., 1989). High levels of extraceullular Na+ are then able to drive 

the uptake of Cl-
 and K+ against the concentration gradient, via a coupled Na+-K+-2Cl- co-

transporter located at the apical membrane, and via a Cl-/HCO3
- exchanger at the basolateral 

membrane. This mechanism allows concentrations of intracellular K+
 and Cl- to be maintained 

above equilibrium. Movement of Cl- out of the RPE cell occurs at the basolateral membrane 

via CFTR and CLCA1 down the electrochemical gradient. Cl- conductance at the basolateral 

membrane is believed to be controlled by intracellular levels of secondary messenger 

molecules including cAMP (Hipper et al., 1995) and Ca2+ (Ueda and Steinberg, 1994) (Figure 

1.6). Cl- efflux is accompanied by the outward flow of Na+ in order to maintain 

electroneutrality. The direction of fluid transport across the RPE is dependent upon the relative 

magnitude of the absorptive and secretory Cl- fluxes, with water passively following the net 

movement of Cl- ions, due to the generated osmotic forces. Cl- secretion at the basolateral 

membrane is initiated by endogenously generated ATP, which initiates purinergic signalling at 

the P2Y2
 receptor on the apical membrane. Signalling triggers elevation of Ca2+ within RPE 

cells, which likely causes an increase in basolateral Cl- conductance, generating flux of ions 

and fluid across the RPE at a higher rate (Peterson et al., 1997). It has been postulated that 

CFTR enhances RPE fluid transport indirectly by generating the ATP needed to induce the 

autocrine purinergic signalling (Reigada and Mitchell, 2005).  

 

Expression of CFTR has been reported in human RPE cells, along with CLCA1 and the ClC 

chloride channels ClC-2, ClC-3 and ClC-5 (Miller et al., 1992; Wills et al., 2000; Blaug et al., 

2003). ClC-3 and ClC-5 have been principally detected at the apical membrane of the RPE 

(Weng et al., 2002). Evidence suggests that the ClC family of voltage gated chloride channels 

may be crucial for retinal function, with transgenic mice deficient in ClC-2, ClC-3 or ClC-7 

shown to develop retinal degenerations and blindness (Bosl et al., 2001; Kornak et al., 2001; 

Stobrawa et al., 2001), though the pathogenesis is yet to be elucidated. ENaC has also been 

discovered  throughout  the  RPE,  however,  it’s  function  is  not  yet  fully  understood (Golestaneh 

et al., 2000). As in the cornea and conjunctiva, AQPs are also present in the human RPE. 
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AQP1 has been localised to human RPE cells by immunofluorescence (Stamer et al., 2001), 

though its function in the RPE remains unknown.  

 

 
Figure 1.6 A simplified diagram showing the ion channels involved in electrolyte and water 

movement across RPE cells. Na+-K+-ATPase activity at the apical membrane generates a Na+ 

gradient across the membrane (1), driving the uptake of Cl-
 and K+ against the concentration 

gradient, via a coupled Na+-K+-2Cl- co-transporter at the apical membrane, and via a Cl-/HCO3
- 

exchanger at the basolateral membrane. Movement of Cl- out of the RPE cell occurs at the 

basolateral membrane via CFTR and CLCA1 down the electrochemical gradient (2). ATP 

enhances Cl- efflux through purinogenic signalling via P2Y2 (3). H2O follows the net 

movement of Cl- out of the cell due to the generated osmotic forces (4).  
 

1.2.8 Ocular Features of Cystic Fibrosis 
To date, numerous studies have investigated and reported upon the ocular abnormalities 

associated with CF. Whilst these studies provide valuable insight into the scope of the ocular 

abnormalities associated with CF, many were conducted prior to the discovery of CFTR within 

the eye. They were therefore unable to discuss the possibility of the abnormalities being a 

primary manifestation of the disorder; due to CFTR malfunction. Rather, the defects were 

generally believed to be secondary manifestations of CF, including VAD and CFRD. Herein 

follows a comprehensive review of current literature available on the ocular abnormalities 

associated with CF, along with discussion of the probable cause of the ocular defect. Due to the 
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nature of this study, particular emphasis will be given to the complications observed in the 

posterior segment. 

 

1.2.8.1 Anterior Eye 
1.2.8.1.1 Blepharitis 

There is a significant degree of variance in the reported frequency of clinically significant 

blepharitis in CF between different studies (Table 1.4). Although all studies show an increased 

prevalence of blepharitis in CF subjects compared to controls, the difference only reached 

significance in two studies, and cohort numbers were small in all cases. Shepphard et al. (1989) 

suggested that the prevalence of blepharitis within their study may have been even more 

pronounced without the use of antimicrobial antibiotics, which are commonly used in CF, and 

were being used at the time of examination by 60% of the cohort. It is suggested that an 

increased prevalence of blepharitis in the CF population may be indicative of lipid dysfunction, 

which could contribute to ocular surface abnormalities (Sheppard et al., 1989; Mrugacz, 

Tobolczyk and Minarowska, 2005b). Lipid abnormalities, most likely caused by meibomian 

dysfunction, is consistent with a generalised glandular defect in CF (Sheppard et al., 1989). 
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Table 1.4 Frequency of blepharitis in CF 

Authors Subjects Frequency 
Statistical 

significance 

Sheppard et al. (1989) 
17 CF 

17 Controls 

88% CF 

29% Controls 
p = 0.001 

Kalayci et al. (1996) 
23 CF 

20 Controls 

13% CF 

5% Controls 
NS* 

Mrugacz et al. (2005b) 
15 CF 

15 Controls 

60% CF 

7% Controls 
p = 0.032 

Mrugacz et al. (2007a) 
24 CF 

24 Controls 

21% CF 

17% Controls 
NS* 

Mrugacz et al. (2007b) 
25 CF 

25 Controls 

20% CF 

16% Controls 
NS* 

Evans (2009) 

30 Juvenile CF 
30 Juvenile Controls 

29% Juvenile CF 

7% Juvenile Control 
p = 0.347 

28 Adult CF 

28 Adult Controls 
28% Adult CF 

18% Adult Control 
p = 0.422 

Key: NS, not significant; *, no p-values stated; bold and shaded cells indicate significance 

 

1.2.8.1.2 The tear film 

The production and turnover of the preocular tear film is essential in providing tissues with the 

necessary nourishment and lubrication in order to maintain ocular health (Tiffany, 2008). 

Classically, the tear film is reported to consist of three layers: an outer lipid layer, a middle 

aqueous layer and an inner mucous layer. Each individual component of the tears is important, 

with a deficiency or abnormality in any one layer causing problems leading to dry eye 

(Rolando and Zierhut, 2001). The lipid layer, which is secreted primarily by the meibomian 

glands, is essential in providing a smooth optical surface for the cornea and in retarding 

evaporation of aqueous from the eye (Mishima and Maurice, 1961; Bron et al., 2004). The 

aqueous layer, which is composed of proteins, electrolytes, enzymes, metabolites and water 

(Mrugacz et al., 2005b) is principally thought to be produced by the lacrimal and accessory 

lacrimal glands, though a small proportion of electrolytes and water is secreted by the cornea 

and conjunctiva, via ion channels (Levin and Verkman, 2006). CFTR channels in the cornea 

and conjunctiva may contribute to aqueous tear production as it has been seen to be a major 
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pathway for Cl- and subsequent water secretion (Levin and Verkman, 2005). Conjunctival 

goblet cells are responsible for secreting the majority of the mucins required to produce the 

inner-most mucous layer which is necessary to facilitate wetting of the cornea and thus allow 

tear film adherence (Tiffany, 2008).   

 

Tears can be classified as either reflex or basal, depending on the secretion type. Reflex tears 

are produced in response to an irritant which stimulates secretion mainly by the lacrimal gland. 

Basal tear secretion occurs normally without the need for stimulation. Basal tears were 

originally believed to be produced mainly from the accessory glands of Krause and Wolfring, 

however, more recent evidence suggests that corneal and conjunctival epithelial fluid transport 

may also be of importance in basal tear production (Shiue et al., 2000; Yang et al., 2000; Li et 

al., 2001b; Candia, 2004). 

 

1.2.8.1.2.1 Dry eye 

Dry eye can be divided into two sub groups; tear deficiency or evaporative, depending on the 

mechanism of tear disruption (Kaercher and Bron, 2008). The causes of dry eye are 

multifactorial and can be related to deficiencies in any of the three components of the tear film 

(Baudouin, 2001). Inflammation is known to play an important role in pathogenesis of dry eye 

(Baudouin, 2001; Pflugflder, 2004).  Diagnosis  of  dry  eye   is  based  upon   the  patient’s  history  

and symptoms along with the application of specific tests including ocular surface staining 

with fluorescein, lissamine green or rose bengal, Schirmer’s, tear break up time (TBUT), tear 

ferning and impression cytology. Some of these techniques have been used to evaluate tear 

volume and quality in CF patients, with widely varying results being obtained (Table 1.5).  

 

Several studies report increased prevalence of sodium fluorescein staining in CF subjects 

compared to controls (Botelho, Goldstein and Rosenlund, 1973; Sheppard et al., 1989; Kalayci 

et al., 1996; Mrugacz et al., 2005b). However, this difference only reached significance in one 

case (Sheppard et al., 1989). In this instance, it was suggested that the most likely cause for the 

increased prevalence of corneal fluorescein staining was aqueous deficiency (Sheppard et al., 

1989).  An  increased  prevalence  of  abnormal  Schirmer’s  test  result  in  CF  subjects compared to 

controls, as found in four studies (Sheppard et al., 1989; Mrugacz et al., 2005a; Mrugacz et al., 

2007a; Mrugacz et al., 2007b), further suggests that CF patients suffer from aqueous tear 

deficiency. Castagna et al. (2001), found that Schirmer’s  test  results and TBUT were correlated 

to the vitamin A status of patients, with subjects who had more severe vitamin A deficiency 
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(VAD) having lower levels of wetting and reduced TBUTs. These results would suggest that 

VAD is the cause of a reduction in aqueous tear secretion in CF, yet, reduced tear section 

levels have also been noted in CF subjects who were vitamin A sufficient (Morkeberg et al., 

1995; Mrugacz et al., 2007a; Mrugacz et al., 2007b). 

 

Given the evidence of tear film abnormalities and dry eye in patients with CF, both with and 

without VAD, and in light of the localisation of CFTR to the conjunctival and corneal 

epithelium, it is highly possible that dry eye is a primary manifestation of CF. Additional 

evidence from tear ferning studies which have found abnormal tear ferning patterns in CF, 

believed to be caused by altered electrolyte levels in the tears, also adds strength to this theory 

(Rolando, Baldi and Calabria, 1988; Kalayci et al., 1996; Evans, 2009). As survival rates 

continue to improve, eye care practitioners may begin to see more CF patients developing signs 

and symptoms of dry eye later in life.  
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Table 1.5 Dry eye in CF 

Authors Subjects Tests Conducted Observations Statistical Significance 

Sheppard et al. 

(1989) 

17 CF 

17 Controls 

Schirmer’s Wetting after 5 minutes with anaesthetic: 9.5mm CF; 16mm Controls. p = 0.002 

TBUT Mean (seconds): 17 CF; 17 Controls NS* 

Fluorescein staining Frequency: 82% CF; 11.8% Controls p = 0.002 

Rose Bengal staining Frequency: 19.4% CF; 14.3% Controls NS* 

Copenhagen Frequency of dry eye: 18% CF, 12% Controls - 

Morkeberg et al. 

(1995) 

25 CF 
0 Controls 

Schirmer’s 
31% CF abnormal (Where abnormal is defined as less than 5mm 

wetting in 5 minutes) 
- 

TBUT 49% CF reduced (Reduced TBUT defined as less than 10 seconds) - 

Rose Bengal 23% CF showed increased staining - 

Copenhagen Frequency of dry eye: 26% CF - 

Kalayci et al. 

(1996) 

13 CF 

19 Controls 

Schirmer’s  Test 
Wetting in 5 minutes without anaesthetic: 19.1mm CF, 23.1mm 

Controls 
NS* 

Fluorescein staining 
Frequency: 9% CF 0% Controls 

 
NS* 

Ansari et al. 

(1999) 
28 CF 
25 Controls 

Rose Bengal staining Frequency: 7% CF 0% Controls - 

Schirmer’s Frequency of abnormality: 0% CF, 0% Controls - 

TBUT Frequency of reduced TBUT: 7% CF, 0% Controls - 

Copenhagen Frequency of dry eye: 7.1% CF - 

Castagna et al. 

(2001) 
40 CF 
24 Controls 

Schirmer’s Reduced wetting in CF subjects - 

TBUT Reduced TBUT in CF, worse with VAD - 
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Mrugacz et al. 

(2005b) 
15 CF 
15 Controls 

Fluorescein staining Frequency: 60% CF, 13.3% Controls NS* 

Schirmer’s Frequency of abnormality: 33.3% CF, 0% Controls NS* 

TBUT Frequency of reduced TBUT: 53.5% CF, 13.3% Controls NS* 

Copenhagen Frequency of dry eye: 33.3% CF, Controls not noted - 

Mrugacz et al. 

(2005a) 
18 CF 
18 Controls 

Schirmer’s Frequency of abnormality: 81% CF Yes* 

Mrugacz et al. 

(2007b) 
25 CF 
25 Controls 

Schirmer’s 
Wetting in 5 minutes without anaesthetic: 9.68mm CF, 25.21mm 

Controls 
p < 0.0001 

TBUT Mean (seconds): 5.3 CF, 9.9 Controls p < 0.0001 

Copenhagen Frequency of dry eye: 48% CF, Controls not noted - 

Mrugacz et al. 

(2007a) 
24 CF 
24 Controls 

Schirmer’s 
Wetting in 5 minutes without anaesthetic: 9.65mm CF, 25.15mm 

Controls 
p < 0.001 

TBUT Mean (Seconds): 5.4 CF, 9.7 Controls p < 0.0001 

Evans (2009) 
58 CF  

58 Controls 

NIBUT Marginally reduced in CF juveniles and adults p = 0.357; p = 0.509 

FBUT Marginally reduced in CF juveniles and adults p = 0.154; p < 0.05 

Fluorescein staining  
Frequency: 25% juvenile CF, 22% controls 

53% Adult CF, 32% controls  

p = 0.794; 

p = 0.079 

 
Key: NS, not significant; *, p-value not stated; -, statistical tests not performed; TBUT, tear break-up time; NIBUT, non-invasive tear break-up time; FBUT, fluorescein tear 

break-up time; Copenhagen criterion, standard used to confirm presence or absence of dry eye based on two abnormal findings from TBUT,  rose  bengal  and  schirmer’s;;  bold  

and shaded cells indicate significance.  
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1.2.8.1.3 Xerophthalmia 

Xerophthalmia refers to the entire clinical spectrum of ocular manifestations caused by VAD 

(Suan et al., 1990). It is the leading cause of childhood blindness worldwide, but is uncommon 

in developed countries (Sommer, 1998). The primary manifestation of xerophthalmia is 

extreme dryness of the conjunctiva and cornea due to failure of the secretory activity of the 

conjunctival goblet cells. Xerophthalmia also encompasses night blindness, retinopathy, Bitot 

spots and corneal ulceration or keratomalacia (Brooks et al., 1990). Early descriptions of CF 

found a high prevalence of xerophthalmia (Gamble, 1940; Phillipsborn, Lawrence and Lewis, 

1944), however, with improvements in vitamin A supplementation, reports of xerophthalmia in 

CF  were  described  as  ‘almost  eliminated’  in  the  1990s  (Brooks et al., 1990). Nevertheless, in a 

study carried out in 2000, mild xerophthalmia was noted in 71% of CF subjects examined 

(Tsinopoulos et al., 2000). In cases of adequate vitamin A supplementation in CF patients who 

present with xerophthalmia, it is likely that vitamin A levels are still reduced due to a 

combination of poor adherence to therapy, CF associated liver disease and liver malabsorption 

(Campbell et al., 1998). 

 

Conjunctival xerosis (Figure 1.7) presents as dryness of the conjunctiva in the interpalpebral 

zone with loss of goblet cells and squamous metaplasia. This finding has previously been noted 

during slit lamp examination of CF subjects in many case studies (Sommer, 1989; Vernon et 

al., 1989; Brooks et al., 1990; Campbell et al., 1998). In all instances conjunctival xerosis was 

associated with low vitamin A levels, and signs, along with any associated symptoms were 

resolved upon increasing vitamin A supplementation.  

 

Whilst reports of xerophthalmia are now less commonplace due to vast improvements in 

nutritional supplementation, previous findings highlight the importance of considering VAD in 

CF patients who present with ocular complications (Campbell et al., 1998). It also 

demonstrates the importance of regular eye examinations for those with CF, with any patients 

found to have conjunctival or corneal xerosis being referred on for further ophthalmological 

assessment including dark adaptation (DA) and/or electoretinography to confirm clinical 

vitamin A deficiency before treatment is commenced (Vernon et al., 1989).  
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Figure 1.7 Conjunctival and corneal xerosis with punctuate epithelial keratopathy and corneal 

haze. Image from Campbell et al. (1998) 

 

1.2.8.1.4 The cornea 

CFTR expression has previously been localised to the apical membrane of the corneal 

endothelium (Sun et al., 2001; Sun and Bonanno, 2002; Cao et al., 2010), where it is known to 

facilitate fluid efflux in order to maintain corneal desturgesence (Sun et al., 2001). It is 

therefore reasonable to predict that loss of CFTR function in CF could cause an increase in 

corneal thickness and a decrease in transparency, unless other Cl- channels provide a certain 

level of compensation. To date, only two studies have been identified which have investigated 

corneal thickness in CF, with conflicting results being found. The older study found corneal 

thickness to be increased in CF, as determined using corneal video specular microscopy (Lass 

et al., 1985). Conversely, the most recent study which used the Oculus Pentacam, found no 

significant difference in either central or peripheral corneal thickness in CF subjects compared 

to healthy controls (Evans, 2009). This lack of increase in corneal thickness in CF may indicate 

that there is a certain degree of corneal endothelial compensation for CFTR dysfunction in CF 

by other Cl- channels. Morphological changes including reduced endothelial cell area, 

increased endothelial cell density, increased endothelial cell permeability and increased relative 

endothelial pump rate (Lass et al., 1985) may also compensates for impaired Cl- transport via 

CFTR. Further investigations are needed to give a more detailed view of corneal changes in CF 

 

1.2.8.2 The Posterior Eye 
1.2.8.2.1 The Crystalline lens 

Crystalline lens transparency has been reported to be significantly reduced in CF subjects 

(Fama et al., 1998; Castagna et al., 2001), when measured with Opacity Lens Meters, despite 
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slit lamp examinations reveal no clinical signs of cataract. Lens transparency in CF has been 

correlated to the level of digestive insufficiency, with those patients with the most severe 

digestive insufficiency having the most reduced levels of lens transparency (Fama et al., 1998). 

A decrease in lens transparency has also been associated with an increase in the level of 

conjunctival xerosis (Fama et al., 1998; Castagna et al., 2001). Additionally, measures of 

maximal lens density and anterior lens thickness have been found to be higher in CF subjects 

compared to controls (Evans, 2009). 

 

The occurrence of cataract is known to be associated with reduced intake of vitamins and 

minerals, with vitamins C and E providing a protective function against cataract development 

and progression (Varma et al., 1984; Leske, Chylack and Wu, 1991; Chiu and Taylor, 2007). 

Therefore, reduced lens transparency in CF may be due to vitamin deficiency secondary to 

malabsoprtion of nutrients caused by pancreatic insufficiency. The role of oxidative stress in 

the etiology of cataract formation has also been clearly established (Chiu and Taylor, 2007). 

Persistent pulmonary infection in CF is known to increase the levels of oxidative stress (Brown 

and Kelly, 1994). This, combined with decreased levels of antioxidants which usually protect 

the crystalline lens (Fama, Castagna and Salmeri, 1993), will contribute to the development of 

decreased lens transparency in CF. Fama et al. (1998) postulated that low concentrations of 

vitamin A in the aqueous humour of CF patients could induce a lowering of ascorbic acid 

concentration in the aqueous humour and lens, which may precipitate a reduction in lens 

transparency.   

 

Diabetes and steroid use are known risk factors for the development of cataract in the normal 

population (Hollister and Bowyer, 1987; Klein, Klein and Lee, 1998; Beneyto et al., 2007). 

Development of posterior subcapsular cataracts following administration of prednisone in CF 

patients has previously been documented (Majure, Mroueh and Spock, 1989). One study which 

investigated the effect of CFRD on lens density whilst there was a trend towards increased lens 

density in CFRD compared to controls, statistical significance was not reached (Evans, 2009).  

 

To date, whilst chloride ion currents have been recognised, the presence of CFTR has not been 

detected in the lens epithelium and fluid transport within the lens remains widely 

uncharacterised (Candia, 2004); therefore, it is impossible to speculate whether reduced lens 

transparency in CF is a primary manifestation of the disorder.  Reduced lens transparency in 
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CF is most likely attributed to a combination of vitamin deficiency and increased levels of 

oxidative stress, along with CFRD and steroid use.  

   

1.2.8.2.2 Diabetic retinopathy in CFRD 

Previously, due to the increased mortality of CF patients with CFRD, life expectancy was 

considered to be too short for the development of diabetic complications, including diabetic 

retinopathy. However, increasing longevity of CF patients has been accompanied by increasing 

reports of microvascular complications (Dolan Jr, 1986; Sullivan and Denning, 1989).  

 

The frequency of diabetic retinopathy (DR) in CFRD, as found in several studies, is outlined in 

Table 1.6. DR in CFRD is predominantly seen in patients with a duration of diabetes of at least 

10 years (Yung et al., 1998; Andersen et al., 2006; Schwarzenberg et al., 2007).  DR has 

generally been reported to be less common in CFRD than in type 1 and 2 diabetes (Fong et al., 

2004). One study found the frequency of DR in type 1, insulin dependent diabetics, to be 60% 

after 10 years duration, in comparison to 16-36% frequency after 10 years in CFRD patients 

(Yung et al., 1998; Andersen et al., 2006; Schwarzenberg et al., 2007). In a study by van den 

Berg et al. (2008), microvascular complications were examined in CFRD patients who were 

matched to type 1 diabetics for age and duration of insulin dependence (van den Berg et al., 

2008). Retinopathy was present in 10% of CFRD patients, in comparison to 24.3% of type 1 

diabetics, providing a statistically significant difference. Several factors may account for the 

reduced frequency of retinopathy in CFRD; firstly, hyperglycaemia is less severe in CFRD as 

patients retain variable degrees of endogenous insulin secretion. Secondly, there appears to be 

a role for dislipoproteinemia in the pathogenesis of DR (Lyons et al., 2004), but cholesterol 

levels are low in CF. Van den Berg (2008), concluded that the difference in frequency of 

retinopathy was best explained by the tendency towards better diabetic control in CF patients.  

 

In light of increasing life expectancy in CF, more patients are likely to develop CFRD, and 

associated diabetic changes, including DR. It is therefore prudent that the importance of regular 

ocular screening for all patients with CFRD is stressed. Andersen et al. (2008), suggested that 

CFRD patients follow identical retinopathy screening programmes as patients with type 1 

diabetes. 
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Table 1.6 Frequency of DR in CFRD 

Author and Year 
CFRD patients 
examined 

Frequency of DR 

Rodman, Doershuk 

and Roland (1986) 
24  

Unknown treatment 
2 subjects (8.3%) had DR; 1 background, 1 

maculopathy 

Sullivan and Denning 

(1989) 
19  
All insulin treated 

3 subjects (15%) had DR, all of which 

progressed to proliferative DR 

Lanng et al. (1994) 
41 
70% of patients on 

insulin 
2 subjects (4.9%) had DR; both background 

Yung et al. (1998) 
32 
All insulin treated 

5 subjects (15.6%) had DR; 3 background, 1 

proliferative and 1 maculopathy. 
16% incidence DR in CFRD duration 
≥  5  years;;  23%  incidence  DR  in  CFRD  duration  

≥  10  years 

Andersen et al. (2006) 
38 
All insulin treated 

9 subjects (23.7%) had DR; 6 mild, 1 moderate, 

2 proliferative. 
36%  incidence  DR  in  CFRD  duration  ≥  10  years 

Schwarzenberg et al. 

(2007) 

84 CFRD FH+ 
All insulin treated 
57 CFRD FH- 
Majority not insulin 

treated 

6 subjects (7%) with CFRD FH+ had DR; 16% 

incidence of DR in CFRD FH+ duration > 10 

years 
0 CFRD FH- subjects had DR 

van den Berg et al. 

(2008) 
79 
All insulin treated 

7 subjects (10%) had DR 

Key: DR, diabetic retinopathy; CFRD, CF-related diabetes; CFRD FH+, CFRD with fasting hyperglycaemia; 

CFRD FH-, CFRD w ithout fasting hyperglycaemia.  

 

1.2.8.2.3 Macular pigment density  

Although supplementation of the major vitamins is common practice in patients with CF, 

carotenoids are often neglected, resulting in low carotenoid concentrations (Winklhofer-Roob 

et al., 1996; Rust et al., 2000). Carotenoids, including lutein and zeaxanthin, are antioxidant 

micronutrients (Krinsky and Yeum, 2003), and are particularly important in CF patients who, 



                                       Chapter 1:  Introduction 

 35   

due to persistent pulmonary infection, are susceptible to higher levels of oxidative stress 

(Brown and Kelly, 1994). 

 

Lutein and zeaxanthin accumulate at the macula and are believed to play a major part in 

protecting the retina from free-radicals, by absorbing the phototoxic effects of short-

wavelength light and through their action as free radical scavenging antioxidants (Snodderly, 

1995; Mitchell et al., 2002c). Previously, it has been discovered that low plasma concentrations 

of lutein and zeaxanthin is associated with an increased incidence of macular degeneration 

(Marse-Perlman et al., 2001). Additionally, patients with macular degeneration have been 

reported to have 32% lower concentrations of macular pigment (a measure which is related to 

macular carotenoid levels), compared to normals (Bernstein et al., 2002). As CF patients are 

known to have a low concentration of carotenoids, along with increased levels of oxidative 

stress, it is postulated that their serum levels of carotenoids would be reduced. CF patients 

would therefore be more likely to exhibit an acceleration of normal age-related changes in 

visual function.  

 

Schupp et al. (2004) investigated these hypotheses by measuring the plasma and retinal 

concentrations of lutein and zeaxanthin, and their correlation with visual performance in CF 

subjects (n=10; aged 21-47 years). CF subjects were found to have significantly lower serum 

concentrations of lutein and zeaxanthin compared to normal controls, with these low 

concentrations correlating with low retinal concentrations at all retinal locations, as measured 

by macular pigment density. However, the severe degree of retinal carotenoid depletion was 

not associated with any visual abnormalities as tested by contrast sensitivity, colour 

discrimination and multi-focal electroretinogram. Considering these results, although no visual 

abnormalities were found in this study, as the life expectancy of CF patients increases, it is 

reasonable to predict that CF patients may increasingly show signs of decreased retinal 

carotenoid concentrations, including age-related macular degeneration (AMD). Drusen (as 

found in macular degeneration) have been noted previously in two CF subjects in one 

particular study (Evans, 2009). Interestingly, both subjects were between the ages of 20-25 

years old, and suffered from CFRD.  

 

CFTR is known to mediate transport of glutathione, a major antioxidant peptide. Several 

studies have shown that glutathione depletion increases the risk of oxidative injury (Thor et al., 

1982; Wefers and Sies, 1983). Exogenous supply of glutathione to the RPE is known to protect 
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against oxidative damage (Sternberg et al., 1993), and recently a positive relationship has been 

found between macular pigment and blood glutathione levels (Qin et al., 2011). Blood plasma 

levels of glutathione have been observed to be reduced in CF patients (Roum et al., 1993). It 

could be hypothesised that impairment in glutathione transport by malfunctioning CFTR may 

further contribute to an increased risk of premature AMD in CF.  

 

Considering the findings of reduced macular pigment in CF patients, as the survival age of CF 

patients increases, CF patients may increasingly show signs of premature onset AMD, 

secondary to retinal carotenoid depletion. It may therefore be appropriate to recommend 

dietary supplementation of lutein and zeaxanthin to help reduce the possible increased risk of 

AMD development in patients with CF. Additionally, with impaired trans-epithelial RPE 

transport implicated in AMD pathogenesis (Strauss, 2005) dysfunctional CFTR at the RPE 

may contribute to the development of premature age-related macular changes.  

  

1.2.8.3 Visual Function  
Several measures of visual function have been noted to be reduced in patients with CF. These 

measures are discussed below. 

 

1.2.8.3.1 Visual acuity, refractive error and binocular vision 

A number of studies have reported reduced visual acuity (VA) in individuals with CF  

(Table 1.7), with the cause of loss attributed to diabetic retinopathy (Spaide et al., 1987), optic 

neuropathy secondary to chloramphenicol use (Spaide et al., 1987), and VAD (Campbell et al., 

1998). Conversely, other studies have found the vast majority of CF subjects to have normal 

VA (Fulton et al., 1982; Morkeberg et al., 1995; Fama et al., 1998; Castagna et al., 2001; 

Schupp et al., 2004; Whatham et al., 2009).  

 

Refractive error in CF has been reported in a number of studies (Table 1.7). Fama et al. (1998) 

and Castagna et al. (2001) found 27.5% of its CF cohort to be myopic, and 12.5% to be 

hypermetropic. These results agree with those found by Morkeberg et al. (1995) and Evans 

(2009), who found 31% and 36% of CF patients to be myopic respectively.  The only study to 

make direct comparisons between CF and healthy controls found a small but significant 

reduction in VA, but no difference in binocular status or refractive error between the two 

(Evans, 2009). A number of studies have reported the presence of strabismus and/or amblyopia 

in CF subjects (Fulton et al., 1982; Morkeberg et al., 1995). In light of these findings, it 
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appears that normal emmetropisation and orthophorisation occurs in CF subjects , however, 

larger scale studies would be useful to confirm these conclusions.  

 

Table 1.7 Visual acuity and refraction in CF 

Authors Subjects Visual Acuity Refractive Error 

Fulton et al. 

(1982) 
56 CF 

All patients VA 6/6 (Excluding 

two patients with congenital 

strabismus) 

Not noted 

Spaide et al. 

(1987) 

32 CF 

 

23 patients VA 6/7.5 or better; 

9 patients VA < 6/7.5, 3 of 

which had VA < 6/30  

Not noted 

Morkeberg et al. 

(1995) 

35 CF 

 

All patients VA 6/6 or better 

(Excluding one eye with 

amblyopia and VA 6/60) 

11 patients (31%) myopic 

(range – 0.38 dioptres (D) to 

– 6.25 D; median – 1.75 D) 

Fama et al. (1998) 40 CF All patients VA 6/6  

11 patients (27.5%) myopic, 

5 patients (12.5%) 

hypermetropic 

Castagna et al. 

(2001) 
40 CF All patients VA 6/6 

11 patients (27.5%) myopic, 

5 patients (12.5%) 

hypermetropic 

Schupp et al. 

(2004) 
10 CF 

All patients VA 6/6 or better 

(Excluding one with a retinal 

vein occlusion and one with 

previous ocular trauma) 

Maximum refractive error  

-2.00 D 

Evans (2009) 
28 CF 

28 Controls 

VA significantly better in 

controls compared to CF 

subjects (P < 0.05) 

36% CF subjects myopic 

0% CF hypermetropic 

 

1.2.8.3.2 Dark adaptation  

The visual system in humans is able to function over a wide range of light intensities, covering 

more than 10log10 units, by means of light and dark adaptation (DA). Light adaptation occurs 

extremely rapidly, allowing adjustment to different levels of illumination within a few seconds. 

However, this relationship breaks down when entering the dark following exposure to an 
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intense light source, which  ‘bleaches’  a  large  proportion  of  visual  photopigment. The process 

by   which   the   eye   recovers   visual   sensitivity   following   this   exposure   is   known   as   ‘dark  

adaptation’.   The   recovery   of   sensitivity   can be plotted onto a graph (Figure 1.8), which 

measures the log threshold of perceivable light against time. (The processes involved in dark 

adaptation are discussed in detail in section 1.3.2.2.) 

 
Throughout this thesis several parameters will be used to evaluate and describe the recovery of 

sensitivity during DA. Definitions of these parameters are given in Table 1.8, and example 

curves are shown with corresponding values in Figure 1.9. 

 

 
 

 

Figure 1.8 Dark adaptation curve for a normal subject. The normal DA curve features an initial 

rapid recovery in sensitivity which is mediated by the cone system (a). This recovery then 

reaches  a  plateau,  until  there  is  a  ‘rod-cone  break’  at  approximately  10  minutes (b), where rod 

sensitivity exceeds that of the cones. The threshold gradually falls over the next 20 minutes (c), 

until the absolute threshold is achieved. Image adapted from: Hecht (1937). 

 

 
 
 

a b c 
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Table 1.8 DA recovery parameters 

Parameter Definition 

Cone constant 
The time constant of cone recovery, representing the cone decay 

characteristics. A larger number represents a slower rate of recovery. 

Final cone 

threshold  
The lowest threshold value reached by the cone component of recovery 

Rod-cone break 

time  

The inflection point between the cone and rod components of recovery. 

This point represents the time when rod-sensitivity first exceeds that of 

cone-sensitivity 

Rod-rod break 

time  

The inflection point between the first and second rod components of 

recovery 

Final rod 

threshold  
The lowest threshold value reached by the rod component of recovery 

 

 
Figure 1.9 Example dark adaptation curves obtained from two healthy subjects on a 

computerized dark adaptometer showing the parameters as described in Table 1.8.  

 

It has long been established that vitamin A deficiency (VAD) results in impaired DA (Wald, 

Jeghers and Arminio, 1938), with nyctalopia being the earliest clinical feature of xerophthalmia 

(Campbell et al., 1998). As vitamin A levels become deficient, there is a decrease in the rate of 

pigment regeneration and thus DA (Kemp, Faulkner and Jacobson, 1988). However, given 
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sufficient adaptation time, a normal DA threshold can still be achieved. The effects of VAD 

can be reversed by oral supplementation of vitamin A. Kemp et al. (1988) found dark 

adaptation to return to almost normal within one week of vitamin A supplementation, and 

another study found restoration of dark adaptation after only one day (Cideciyan et al., 1997). 

The rapid recovery of dark adaptation thresholds upon supplementation with vitamin A makes 

it unlikely that VAD causes structural abnormalities in the photoreceptors or RPE. Instead, the 

recovery has been attributed to the restoration of the concentration of 11-cis-retinal, a product 

of vitamin A in the RPE (Lamb and Pugh, 2004). 

 

As VAD is a known characteristic of CF, several studies have investigated DA in CF subjects, 

both with and without VAD (Table 1.9). Results demonstrate that DA is reduced in CF patients 

with reduced plasma retinol concentrations with one study showing a correlation between low 

plasma retinol levels and an elevated DA threshold (Fulton et al., 1982). As with healthy 

subjects, retinal sensitivity can recover to normal levels in CF patients through high-dose 

supplementation of vitamin A (Fulton et al., 1982; Rayner et al., 1989). However, high dose 

vitamin A supplementation should be given with caution due to the risk of hepatotoxicity and 

intracranial hypertension (Huet et al., 1997). It was previously thought that supplementation 

with zinc alone may not resolve night blindness, but only act to potentiate vitamin A.  

However, supplementation with zinc alone has also been shown to improve nyctalopia in CF 

patients (Tinley et al., 2008). This may be due to the involvement of zinc in modifying plasma 

membranes in photoreceptors, regulating the light-rhodopsin reaction within the photoreceptor, 

and acting as an anti-oxidant in the RPE and retina (Grahn et al., 2001).  
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Table 1.9 Dark adaptation in CF 

Authors Subjects Method Observations 

Fulton et al. 

(1982) 

56 CF 

8 Controls 

Two-alternative forced-choice procedure. 

Full DA curves for 15 CF and 7 controls 

using a Maxwellian-view adaptometer 

6 CF patients (10.7%) had abnormal DA thresholds* 

Mean DA thresholds significantly higher in CF.  Mean retinol values lower in CF 

patients. Low plasma retinol levels correlated to elevated DA value in CF. 

Rayner et al. 

(1989) 

43 CF 

4 Controls 

Modification of Friedman Field Analyser 

and a computer system 

8 CF patients (18.6%) had abnormal DA thresholds* 

Abnormal DA associated with significantly lower serum vitamin A and retinol 

binding protein 

Neugebauer 

et al. (1989) 

31 CF 

28 Controls 

Friedman Field Analyser and a computer 

system 

6 CF subjects (19%) had abnormal DA thresholds* 

CF patients with vitamin A levels <30 microgm/dL had raised DA (p<0.02) 

Morkeberg et 

al. (1995) 
35 CF Goldmann-Weekers Adaptometer 

DA normal for all CF patients 

No reduction in serum retinol concentration in CF patients 

Huet et al. 

(1997) 
10 CF Beyne Optometer 

3 CF subjects (30%) had reduced DA#; 2 CF subjects (20%) had pathological DA 

No significant statistical correlation between DA and serum retinol 

Ansari et al. 

(1999) 

28 CF 

25 Controls 
Friedman Field Analyser 

DA normal for all CF patients (No patients with VAD) 

No statistical correlation between DA and serum retinol 

Evans (2009) 
26 CF 

28 Controls 
Goldmann-Weekers Adaptometer 

DA thresholds significantly higher in CF (P < 0.005) 

Abnormal DA* in 9 CF subjects (35%), but no controls 

DA thresholds significantly higher in VAD CF patients compared to controls (P 

<0.0001) 

DA significantly  worse  in  ΔF508  homozygote  group  compared  to  controls 

DA significantly worse in CFRD subjects compared to controls 
* Abnormal DA defined as two standard deviations above the normal mean 
# Reduced DA defined as dark adaptation 0.12 to 0.23 candela/hectometer2 
^ Pathological  DA  defined  as  dark  adaptation  ≥  0.23  candela/hectrometer2 
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The correlation of reduced DA with decreased serum retinol levels suggests that DA is not a 

primary manifestation of CF, rather a secondary consequence caused by maldigestion and 

malabsoprtion of nutrients. In more recent years, the incidence of abnormal DA in CF appears 

to have decreased (Morkeberg et al., 1995; Ansari et al., 1999). This is likely to be due to the 

improvement in care of CF as knowledge on correct nutrition and supplementation has 

increased. 

 

It is well documented that DA is also adversely affected in type 1 and type 2 diabetes. 

Specifically, there have been reports of slowed DA and an elevated final threshold, even in the 

absence of DR (Henson and North, 1979; Arden, Wolf and Tsang, 1998; Arden et al., 2005; 

Holfort, Jackson and Larsen, 2010). The only study to investigate the effect of CFRD on DA, 

found comparable results to those of type 1 and type 2 diabetic subjects: DA appeared to be 

significantly worse in subjects with CFRD compared to healthy controls (p < 0.0001), and to 

non-CFRD subjects (p < 0.005) (Evans, 2009). It is likely that DA is particularly affected by 

diabetes, as scotopic conditions are known to greatly increase the metabolic demands of rod 

photoreceptors (Arden et al., 2005).  

 

It has been postulated that DA is impaired in type 1 and type 2 diabetes due to increased levels 

of retinal hypoxia (Arden et al., 1998; Drasdo et al., 2002). Findings of abnormal DA 

thresholds in diabetes have led to experiments investigating the effect of oxygen inhalation on 

the DA in diabetic subjects. Results indicate that inhalation of oxygen improves cone and rod 

sensitivity in diabetic patients (Kurtenbach et al., 2006). It would be of considerable interest to 

repeat the oxygen inhalation experiments as carried out by Kurtenbach et al. (2006) on CF 

subjects both with and without CFRD, to further the understanding of the cause of the visual 

deficit in CF and CFRD. If, like in type 1 and type 2 diabetes, oxygen inhalation improves DA 

in subjects with established CFRD who are receiving treatment, this would prove that hypoxia 

is present at the level of the retina. Similarly, if improvements are also seen in patients 

diagnosed as having impaired glucose tolerance, it may be beneficial to commence more 

intense diabetic therapy diabetic. Conversely, if no improvement in DA is seen upon oxygen 

inhalation in CFRD subjects, this would point to another cause for the deficit, which would 

further distinguish CFRD from type 1 and type 2 diabetes.  
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1.2.8.3.3 Electrophysiology  

Electro-diagnostic techniques can be used as non-invasive, objective methods for assessing the 

integrity of the visual pathway, from the retina to the visual cortex. Electrodiagnostic tests 

include the electro-oculogram (EOG), the electroretinogram (ERG) and the visual evoked 

potential (VEP). A summary of electrophysiological studies in CF subjects is presented in 

Table 1.10. 

 

The EOG measures the standing electrical potential that exists between the cornea and the 

posterior pole of the eye during dark and light adaptation whilst the subject alters fixation 

between two horizontal lights separated by 30 degrees. It measures the function and integrity of 

the RPE-photoreceptor complex (Steinberg, Linsenmeier and Griff, 1985). The Arden ratio, a 

ratio of the light peak to dark trough, is the preferred clinical measure obtained by the EOG, 

with a value of approximately 1.8 being considered normal (Arden, 2006). The Arden ratio has 

been shown to be reduced in certain ocular dystrophies before any clinically apparent fundus 

changes have been observed (Arden, 2006). Certain parameters of the EOG have been noted to 

be abnormal in CF, including the Arden ratio (Leguire et al., 1992; Constable, Lawrenson and 

Arden, 2006) and the fast oscillations (FO) (Miller et al., 1992). FO are produced following 

movement of Cl- in response to light (Gallemore and Steinberg, 1993). Reduction in FO in CF 

has previously led to claims that CFTR forms the basis of basal chloride conductance (Miller et 

al., 1992). However, in more recent studies, the FO were found to be normal in CF (Constable 

et al., 2006), therefore, it is likely that there is an alternative mechanism that does not rely 

solely on CFTR to produce FO (Wu, Marmorstein and Peachey, 2006).  Results from EOGs in 

CF patients suggest that CFTR is most likely interacting with other ion channels to modulate 

the time-course of the EOG, but does not appear to be responsible for the alteration in the 

RPE’s  electrical  potential  (Constable et al., 2006).  

 

The ERG measures the current flowing within and across the retina in response to stimulation. 

It is a physiological measure which provides an objective assessment of retinal function, 

providing information regarding the integrity of a variety of retinal structures, from the RPE 

through to the ganglion cell layer (Weisinger, Vingrys and Sinclair, 1996). The ERG may 

detect  early  cone  and  rod  dysfunction.  Several  studies  have  found  abnormal  ERG’s  in  patients  

with CF (Willison et al., 1985; Leguire et al., 1991; Suttle and Harding, 1998; Tsinopoulos et 

al., 2000; Schupp et al., 2004), with the abnormality generally associated with VAD and seen 

to improve following vitamin supplementation. The scotopic ERG appears to be most affected 
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in CF, suggesting abnormal rhodopsin function, and relatively normal cone function (Suttle 

and Harding, 1998). However, in the most recent study, results from photopic and scotopic 

ERGs in CF were comparable to those from normal controls (Whatham et al., 2009).  

 

The VEP is the electrophysiological response to visual stimulation, recorded from 

encephalographic activity (Fishman and Sokol, 1990). It is useful to determine the macula 

function in patients with dense media opacities, and also to evaluate the integrity of the visual 

pathways and cortex in non-verbal or un-cooperative patients (Arden, 2006). The VEP has 

been noted to be abnormal in CF (Messenheimer et al., 1984; Willison et al., 1985; Spaide et 

al., 1987; Kaplan et al., 1988). A significant latency in VEP response has been noted in patients 

previously on chloramphenicol therapy (Spaide et al., 1987). This supports the concept that 

chloramphenicol causes optic nerve disease in CF. Vitamin E deficiency is also seen to have a 

detrimental effect on the VEP, with abnormal results normalising upon vitamin E 

supplementation (Messenheimer et al., 1984; Willison et al., 1985; Kaplan et al., 1988). These 

results show the importance of vitamin E in normal visual functioning.  
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Table 1.10 Electrophysiology in CF 

Authors Subjects Method Observations 

Messenheim

er et al. 

(1984) 

1 CF VEP 

VEP initially abnormal when the patient was 

vitamin A, D and E deficient. Normalised following 

vitamin E supplementation. 

Willison et 

al. (1985) 

1 CF 
VEP and 

ERG 

Patient severely vitamin E deficient 

VEP bilaterally delayed and degraded 

ERG not detectable following pattern reversal and 

very degraded following flash stimulation. 

10 CF 
VEP and 

ERG 

2 patients had abnormal flash ERGs, 1 of the two 

also had prolonged VEP latencies.  

Both cases were vitamin E deficient, but vitamin A 

sufficient 

Spaide et al. 

(1987) 
17 CF VEP 

29% of patients had delays of the VEP. Mean 

latency of the P100 wave significantly delayed in 

patients who had previously used chloramphenicol.  

Abnormality in VEP associated with 

chloramphenicol optic neuropathy. 

Kaplan et al. 

(1988) 
10 CF VEP 

30% had abnormal VEPs  

All subjects were vitamin E deficient 

Leguire et al. 

(1991) 
1 CF   

Scotopic 

and 

photopic 

ERG 

Scotopic and photopic ERG abnormal when patient 

had VAD; results normalised following vitamin A 

supplementation 

(Leguire et 

al., 1992) 
1 CF EOG 

Abnormal Arden ratio when patient had VAD; 

results normalised following vitamin A 

supplementation 

Miller et al. 

(1992) 

13 CF 

15 Controls 
EOG 

FO significantly reduced in CF subjects compared 

to controls 

Suttle and 

Harding 

(1998) 

1 CF  

Scotopic 

and 

photopic 

ERG; VEP 

Photopic and fast-flicker ERG within normal range. 

Scotopic ERG absent until 6 weeks after treatment 

for CF. 
VEP abnormal both before and after treatment. 
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Tsinopoulos 

et al. (2000) 

41 CF 

41 

Controls 

Scotopic 

and 

photopic 

ERG 

No significant difference in ERG responses 

between CF and control groups. 

65.7% CF patients had abnormally low serum retinol 

concentrations 

Schupp et al. 

(2004) 

10 CF 

10 

Controls 

Multifocal 

ERG 

20% CF patients showed delayed latencies but 

normal response densities 

Constable et 

al. (2006) 

6 CF 

9 Controls 

Light-EOG 

Alcohol-

EOG 

Alcohol and light-EOG amplitude normal.  

Ratio of light peak to dark trough alcohol-EOG 

significantly higher (p = 0.0297) in CF than 

controls.  

ΔF508  homozygotes  showed  no  significant  

difference in DR:LT ratio or timing. 

DR:LT  ratio  significantly  greater  in  ΔF508  

heterozygotes compared to controls and  ΔF508  

homozygotes;;  time  to  FO’s  was  significantly  slower  

in  ΔF508  heterozygotes  compared  controls, but not 

ΔF508  homozygotes. 

Whatham et 

al. (2009) 

41 CF; 

29 PI, 12 

PS 

Scotopic 

and 

photoptic 

flash ERG 

No significant difference between ERG measures in 

PI and PS groups. 

Results broadly similar to data from healthy 

subjects in another study. 
Key: FO, fast oscillation; DR:LT, dark rise: light trough; PI, pancreatic insufficient; PS, pancreatic insufficient  

 

1.2.8.3.4 Colour vision 

Colour vision (CV) begins at the level of the retina, with three cone types maximally sensitive 

to short, medium or long wavelengths. It is then mediated throughout the rest of the visual 

system by parallel neural pathways. Normal ageing is known to be associated with overall 

losses in the sensitivity of the cone pathway (Werner, Bieber and Schefrin, 2000), whereas 

retinal and optic nerve disorders can cause selective losses (Krastel and Moreland, 1991). 

Congenital CV deficiency affects approximately 8% of males and 0.4% of females in the 

normal Caucasian population (Birch, 1998; Swanson and Cohen, 2003). Very little literature on 

CV in CF is available, however, that found is summarised in Table 1.11. Spaide et al. (1987) 
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and Morkeberg et al. (1995) found a similar prevalence of CV abnormalities in CF subjects, 

reporting 16% and 14% respectively. In the study carried out by Spaide et al. (1987) all 

patients found to have CV abnormalities had a history of chloramphenicol use, and had 

associated VEP delays. Therefore, the CV abnormalities were attributed to optic neuropathy 

secondary to chloramphenicol use. In a study carried out by Morkeberg et al. (1995), three CF 

patients were found to have abnormal red-green CV, including one deuteranomal, one 

deuteranope and one protanope. It was not noted whether these defects were acquired or 

congenital, so unfortunately results do not offer any insight on the effect of CF on CV. The 

most recent study which investigated CV in CF found all CF patients to have colour vision 

within the normal range, with no significant difference found between CF and normal subjects 

(Evans, 2009).  

 

VAD would be expected to affect colour vision due to the importance of vitamin A in the 

regeneration of photopigment. One study which investigated the effect of VAD on CV, showed 

that some measures of CV were significantly reduced in vitamin A deficient CF subjects 

compared to controls, suggesting there may be subtle levels of cone dysfunction (Evans, 2009). 

Type 1 and type 2 diabetes is also known to have a detrimental effect on CV, even in the 

absence of DR (Di Leo et al., 1992; North et al., 1997). It is unknown whether this relationship 

is similar in CFRD, as the only study to investigate the effect of diabetic status on CV, found 

there to be no significant reduction in measures of CV in subjects with CFRD compared to 

healthy controls (Evans, 2009).  
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Table 1.11 Colour vision in CF 

Authors Subjects Method Observations 

Spaide et al. 

(1987) 

31 CF 

 
Ishihara*  

5 CF patients (16%) had CV 

defects. Type not specified.  

Leguire et al. 

(1991) 

Case study: 1 

CFRD 
Not noted No CV abnormality  

Morkeberg et al. 

(1995) 

35 CF 

0 Controls 

Ishihara and 

American Optical 

Hardy Rand Ritler  

Nagel’s  

anomaloscope 

Three men (14% of men) had 

abnormal red-green CV. One 

deuteranomal, one 

deuteranope and one 

protanope.  

Schupp et al. 

(2004) 
10 CF 

10 Controls 

Cambridge Colour 

Test Presented 

Landolt C patterns on 

a computer monitor 

CF patients had colour 

discrimination well within the 

normal range. No significant 

difference between CF patients 

and control subjects for protan, 

deutan or tritan defects. 

Evans (2009) 
27 CF 

28 Controls 

Saturated and 

desaturated 

Farnsworth D15 

No acquired CV defects. Some 

measures of CV significantly 

reduced in VAD subjects 
* Result considered abnormal if 3 or more plates incorrect 

 

1.2.8.3.5 Contrast sensitivity  

Several studies have investigated the effect of CF on the contrast sensitivity function (CSF) 

(Table 1.12). In the earlier studies, optic nerve dysfunction secondary to chloramphenicol use 

was believed to be the cause of reduced CS in CF patients, as CS was seen to be reduced at all 

spatial frequencies (SF) (Spaide et al., 1987). However, the CSF remained reduced in patients 

who had not received chloramphenicol therapy. It was therefore concluded that other factors, 

such as iatrogenic, nutritional or primary effects of the disease must contribute to the loss of 

CS in CF.  

 

It is well established that vitamin A is essential for photoreceptor function (Sommer, 1983). 

Reduction of CS in CF has been previously attributed to subtle losses of photoreceptor function 



                                       Chapter 1:  Introduction 

 49   

associated with VAD (Leguire et al., 1991). This hypothesis is supported by the improvement 

in CS seen in a 16 year old boy with CF following an increase in vitamin A supplementation 

(Leguire et al., 1991). In contrast, in two studies carried out by Ansari et al. (1999), and 

Morkeberg et al. (1995) CS was still seen to be reduced in CF patients who were considered to 

be vitamin A sufficient, as measured by their serum retinol concentration. These results would 

suggest that the cause of low contrast sensitivity in CF is not to be found in the retina 

(Morkeberg et al., 1995). However, problems exist in establishing if a patient is vitamin A 

sufficient or deficient as VAD may exist even when serum retinal A levels are measured to be 

normal (Wechsler, 1979). Morkeberg at al. (1995), suggested that tear film abnormalities in CF 

may cause a CSF defect, as the tear film forms the anterior refracting surface of the optical 

system. However, no significant correlation was found between the occurrence of dry eye and 

decreased CS.  

 

Additional factors which have not been addressed in previous studies could contribute to the 

reduction of CS in CF. A reduction in CS has been noted previously in subjects with type 1 and 

type 2 diabetic subjects, in the absence of diabetic retinopathy (North et al., 1997). Similar 

results have been found in subjects with CFRD, with CS measuring significantly lower (p < 

0.0001) in CFRD subjects compared to controls (Evans, 2009). Retinal hypoxia, caused by 

abnormal retinal perfusion and ischaemia in diabetes is believed to be responsible for this 

defect (North et al., 1997; Kurtenbach et al., 2006).  
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Table 1.12 Contrast sensitivity in CF 

Authors Subjects Method Observations 

Spaide et al. 

(1987) 

29 CF 

12 Controls 

Bekesy interactive CS 

technique, with 6 SF 

from 0.5-22.8 cpd 

CS significantly lower at all SF 

in CF, even with exclusion of 

subjects with reduced VA or 

using chloramphenicol  
(P < 0.01).  

Leguire et al. 

(1991) 

Case report  

1 CF 

15 Controls 

Wall mounted CS 

chart, 8 contrast levels 

at 5 SF 

CSF decreased at all SF in CF 

during VAD. CSF improved by 

94% following vitamin A 

supplementation  

Morkeberg et al. 

(1995) 

35 CF 

 

Mesoptometer, 8 

levels, CS determined 

at 2 luminance levels 

(0.1 and 0.03 cd/m2), 

and following blinding 

glare 

CF patients had significantly 

decreased CS in all tests (P < 

0.001) compared to a reference 

population. 

CS was most reduced following 

blinding glare  

Ansari et al. 

(1999) 

28 CF 

25 Controls 

Vistech chart, 5 SF 

from 1.5-1.8 cpd 

29% of CF patients had reduced 

CS at intermediate and high SF 

Schupp et al. 

(2004) 

10 CF 

10 Controls 

Sinusoidal gratings on 

a computer monitor at 

optical infinity at 6 SF 

from 0.55-18 cpd and 

a luminance of 45 

cd/m2 

No significant difference in CS 

at all SF (P < 0.05) 

Evans (2009) 
28 CF 

28 Controls 

Pelli-Robson at 3m, SF 

of 3 cpd, luminance 

160 cd/m2 

CS significantly lower in CF  

(P < 0.005) 

CS significantly worse in 

CFRD compared to controls 

( P < 0.0001) 
Key: SF, spatial frequency; cpd, cycles per degree; CSF, contrast sensitivity function  
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1.2.8.3.6 Summary: CF and visual function 

The hypothetical aetiology for changes in visual function suggests that any changes observed 

are primary manifestations of CF. CFTR has been localised to the RPE where it is believed to 

contribute to Cl- efflux (Reigada and Mitchell, 2005). Unless this fundamental CFTR 

dysfunction is compensated by other Cl- channels, normal photoreceptor function may be 

affected by altered IPM composition. This could potentially result in photoreceptor dysfunction 

and reduced visual function.  

 

It is well established that vitamin A is essential for normal photoreceptor function (Sommer, 

1983). VAD in CF has therefore been identified as a causative factor for impaired measures of 

visual function including CS (Leguire et al., 1991), dark adaptation (Fulton et al., 1982; 

Neugebauer et al., 1989; Rayner et al., 1989), and electrophysiological findings (Messenheimer 

et al., 1984; Leguire et al., 1991; Leguire et al., 1992). Though low serum concentrations may 

reflect hepatic depletion (Olson and Tanumihardjo, 1998; Tsinopoulos et al., 2000), they do not 

adequately mirror the concentrations of vitamin A in the liver, which is the main site of storage 

(Underwood and Denning, 1972; Lindblad et al., 1997). It is therefore difficult to draw clear 

conclusions based upon the serum A concentrations. The observed relationship between 

abnormal dark adaptation and decreased serum retinol levels (Fulton et al., 1982; Rayner et al., 

1989) in CF subjects suggests that dark adaptation is not a primary manifestation of CF, but a 

secondary consequence of maldigestion and malabsorption of nutrients. However, elevated DA 

thresholds despite normal VA serum concentrations (Huet et al., 1997; Ansari et al., 1999) may 

suggest another cause for the abnormality.  

 

With the presence of dysfunctional CFTR at the RPE in CF patients, it is possible that normal 

RPE Cl- efflux function is disrupted. Without compensation by other apical chloride channels, 

altered IPM composition could have an impact on normal RPE and photoreceptor function.  

With   the   RPE’s   involvement in several functions important for the maintenance of normal 

visual function, including transport of nutrients to photoreceptors, recycling of substances 

involved in the visual cycle and retinal regeneration (Strauss, 2005), it seems clear that RPE 

impairment could result in photoreceptor degradation and reduced visual function. If this were 

the case, those patients with the most severe CFTR mutations would be expected to show the 

most severely impaired measures of visual function. This was demonstrated by Evans (2009), 

when  ∆F508  homozygous  subjects  showed  significantly  reduced  VA,  CS  and  DA  compared  to  

controls,  whilst  less  severe  ∆F508  heterozygotes  showed  no  difference.   
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There is substantial evidence that dark adaptation, (Henson and North, 1979; Arden et al., 

1998; Arden et al., 2005; Holfort et al., 2010) colour vision (Di Leo et al., 1992; North et al., 

1997), and contrast sensitivity (North et al., 1997) are adversely affected in type 1 and type 2 

diabetes, even in the absence of DR. Retinal hypoxia, secondary to abnormal retinal perfusion 

and ischaemia in diabetes has been identified as the cause of this defect (North et al., 1997; 

Kurtenbach et al., 2006). As DA has similarly been seen to be reduced in CFRD subjects 

compared to both NGT CF subjects and healthy controls, it is reasonable to predict that 

abnormal retinal perfusion and ischaemia is also the cause of visual functional problems in 

CFRD. Further work is needed to determine whether this is the case. 

 

1.2.8.4 CF and the Eye Summary  
To date, CFTR has been localised to the corneal and conjunctival epithelium, corneal 

endothelium and the RPE, where it is believed to play an important role in Cl- conductance. 

The movement of Cl- across epithelia is known to be important in the maintenance of 

electrolyte and fluid balance of cells. CFTR is therefore likely to facilitate a number of ocular 

processes which rely upon Cl- transport to establish an electrochemical gradient, thereby 

allowing the passive movement of fluid. These processes include: basal tear production from 

the cornea and conjunctival epithelium, maintenance of normal corneal integrity by the corneal 

endothelium, and maintenance of the SRS by the RPE. It is therefore, reasonable to predict that 

malfunction of CFTR in CF may have a direct influence on the ocular status and cause visual 

function abnormalities.  

 

Previous studies into the effect of CF on the eye have identified a number of ocular 

characteristics of the disease including dry eye, conjunctival xerosis, reduced crystalline lens 

transparency, reduced macular pigment density, impaired dark adaptation, reduced contrast 

sensitivity and abnormal electrophysiological results (Figure 1.10). However, many of these 

studies have limitations due to small sample size, lack of healthy matched control patients, and 

failure to take into account confounding factors including VAD and CFRD which could impact 

the results. Also, as the majority of studies were conducted prior to the localisation of CFTR 

within the eye, little thought has been paid to the possibility of certain ocular abnormalities 

being primary manifestations of the disease.  
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Due to dramatic improvements in patient treatment and management, average life expectancy 

is now approaching 41.5 years (UK CF Registry, 2013) and is anticipated to further increase in 

the future (Cystic Fibrosis Foundation, 2009). As a consequence, ocular complications which 

may have previously gone undetected, may become more of a pressing concern. It is therefore 

important that not only do health practitioners understand the full breath of ocular 

complications associated with CF, but that practitioners also become more aware of their 

association with the general health of the CF patient. In this way, ocular complications may act 

as  a  biomarker,  giving  health  care  practitioners  valuable  insight   into  the  patient’s  general  CF  

status.   
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Figure 1.10 A summary of the ocular abnormalities in CF.  

 

 

Tear film abnormalities: 
1. Reduced TBUT 
2. Decreased aqueous tear 

secretion  
3. Altered electrolyte and 

glycoprotein levels in the 
mucous layer  

 

Ocular surface abnormalities: 
1. Increased incidence of corneal 

sodium fluorescein staining  
2. Conjunctival xerosis  
3. Reduced goblet cell density  
4. Conjunctival squamous 

metaplasia  
5. Increased concentration of 

inflammatory markers  

 

Corneal abnormalities: 
1. Increased corneal thickness 
2. Increased endothelial cell density  
3. Decreased endothelial cell area  
4. Increased endothelial permeability  
5. Increased endothelial pump rate   

 Crystalline lens abnormalities: 
1. Significantly reduced transparency 

 

Macular  and retinal 
abnormalities: 

1. Low retinal concentrations of 
lutein and zeaxanthin 

2. Diabetic retinopathy in 
CFRD subjects 

 
Visual function abnormalities: 

1. Reduced VA 
2. Impaired dark adaptation  
3. Reduced contrast sensitivity  
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1.3 The Retina  
1.3.1 Investigating Retinal Structure 
CFTR has been localised to the basal membrane of the RPE (Wills et al., 2000; Wills et al., 

2001; Weng et al., 2002; Blaug et al., 2003), where it may contribute to Cl- flux from the SRS 

to the choroid (section 1.2.4). Studies on RPE epithelial cells indicate Cl- transport across the 

RPE is important in several RPE functions, including fluid absorption (Miller and Edelman, 

1990), volume regulation (Ueda and Steinberg, 1994) and ligand-regulated ion and fluid 

transport (Peterson et al., 1997).  Disturbance of normal CFTR activity could cause 

complications such as oedema and serous retinopathy (Bird, 1994); however, there have been 

no reports of such complications in CF subjects to date. In addition to the dysfunction of CFTR 

at the RPE, the retina may also be compromised in CF due to increased levels of oxidative 

stress caused by chronic recurrent respiratory infection and decreased levels of protective 

antioxidants including lutein and zeaxanthin (Schupp et al., 2004).  Furthermore, the 

observation of premature drusen in CF subjects could indicate an increased risk of premature 

age related macular degeneration (Evans, 2009). 

 

An important part of understanding the aetiology of clinical differences in visual function in 

CF is to assess for differences in structure. Assessing the living retina in vivo has previously 

been limited to two-dimensional, surface retinal examination and photography. However, with 

the advent of optical coherence tomography (OCT) in the 1990s, visualization of the retinal 

structure in vivo is now possible, aiding in the early diagnosis of age-related macular 

degeneration and retinal oedema (Drexler, 2004). Retinal imaging by OCT in CF patients and 

healthy controls will allow for quantitative comparisons of the RPE/photoreceptor complex for 

the first time in this disease group. In addition, qualitative assessment will allow detection of 

inter-retinal signs of early age-related changes in CF, which may have previously gone un-

noticed with less sophisticated fundus photography. 

 

The following section explores the retinal structure, reviews the pathogenesis of AMD and 

introduces OCT, which will be used to investigate the retinal structure in CF.  

 

1.3.1.1 Retinal Structure   
The primary role of the retina is the detection of light and the subsequent translation of light 

into a neural signal for processing in the visual cortex. Observation of the retina by light 

microscopy (Figure 1.11) reveals a highly organised structure, made up by several distinct 



                                       Chapter 1:  Introduction 

 56   

layers according to the cell bodies and synapses contained within them (Figure 1.12). The 

retinal pigment epithelium, which lies just behind the retina, and the photoreceptor layer will 

be described below.  

 

 
Figure 1.11 A light micrograph of a vertical section through a central portion of the human 

retina with retinal layers and cell types identified. Image from Kolb (1995). Key ILM, inner 

limiting membrane; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer 

plexiform layer; ONL, outer nerve fibre layer; OLM, outer limiting membrane.  

 
Figure 1.12 A schematic drawing of the neural retina, depicting the major retinal layers. Image 

from Kolb (1995) 
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1.3.1.1.1 The Photoreceptor Layer 

The photoreceptor layer is made up of two types of photoreceptor cells; rods and cones. The 

distribution of these cells varies across the retina, with cone density maximal at the fovea, and 

rod density maximal at approximately 18° from the centre of the fovea (Osterberg, 1935; 

Curcio et al., 1987) (Figure 1.13). The average human retina contains approximately 4.6 

million cones and 92 million rods (Curcio et al., 1990). Cone photoreceptors can be further 

divided into three sub-types based upon their spectral sensitivity, giving blue- (short 

wavelength), green- (medium wavelength) and red- (long wavelength) cones, and enabling 

high acuity, trichromatic vision at high levels of illumination. In contrast, rod-derived vision is 

monochromatic, and is optimised for much dimmer levels of illumination, and only provides a 

low visual acuity.  

.  

Figure 1.13 Rod and cone densities along the horizontal meridian. Image adapted from 

Osterberg (1935)  

 

Both rods and cones are structurally similar; they both comprise: 

1. an outer segment, which contains the visual pigment (iodopsin in cones and rhodopsin 

in rods) embedded upon membranous discs; 

2. an inner segment containing mitochondria, ribosomes and golgi apparatus for the 

production of opsin and ATP energy; 

3. a cell body containing the nucleus of the photoreceptor (this forms the outer nuclear 

layer); and  

4.  a synaptic terminal where neurotransmitter is released to second order retinal neurons 

(bipolar and horizontal cells).   
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However,  whilst   rods   are   slim   ‘rod-shaped’   structures  which   stretch   down   to   the  RPE  cells,  

cones have a  ‘conical’  shape  which  tend  to  be shorter in length (Figure 1.14).  

 

  
Figure 1.14 A histological section of the human outer retina, showing the thinner, longer rods 

and shorter, fatter cones. Short wavelength cones (blue arrows) are commonly found occurring 

next to a longer wavelength cone (red arrow). Image from (Kolb, 2013). 

 
1.3.1.1.2 The Retinal Pigment Epithelium 

The RPE is a monolayer of densely packed hexagonal pigmented cells. Each cell is bound to 

the next by a tight junction, forming a blood-retinal barrier. The apical membrane of the RPE 

contains surface microvilli which project inwards toward the photoreceptor outer segments. 

The RPE and photoreceptors are separated by the SRS, occupied by the inter-photoreceptor 

matrix (IPM), enabling interaction between the RPE and the outer segments (Strauss, 1995). 

The   basolateral   membrane   of   the   RPE   is   in   contact   with   Bruch’s   membrane,   allowing  

interaction between the RPE and the choroidal bloody supply (Guymer, Luthert and Bird, 

1999).  

 

The RPE has many important functions (Strauss, 2005), with the main ones identified as 

(Figure 1.15):  

 Absorption of stray light by pigment, improving optical quality and maintaining visual 

function 

 Protection against photo-oxidative damage 

 Transepithelial transport of nutrients, ions, water and metabolic waste products  
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 The isomerisation of all-trans-retinal to 11-cis-retinal as part of the visual cycle 

 Maintenance of the ion composition of the SRS, a process which is essential for the 

maintenance of photoreceptor excitability  

 Phagocytosis of shed photoreceptor outer segments 

 Secretion of a variety of growth factors and immunosuppressant factors which help to 

maintain the integrity of the retina, choriocapillaries and the immune privilege of the 

eye 

 

 
Figure 1.15 A summary diagram showing the main functions of the RPE. Image from Lamb 

and Pugh (2006). Key: VEGF, vascular endothelial growth factor; PEDF, pigment epithelium derived growth 

factor 
 
1.3.1.2 Age-related Macular Degeneration  
Age-related macular degeneration (AMD) is the principle cause of irreversible blindness 

among those aged over 65 years in the western world (Klein, Klein and Linton, 1992; Klein et 

al., 1995; Resnikoff et al., 2004). Currently, the prevalence of AMD in adults is approximately 

3% (Klein R et al., 2010), however, this is likely to increase with increasing longevity, and a 

shift towards an ageing society (Williams et al., 1998). With the previous finding of early onset 

drusen in two patients with CF aged 23 and 24 years by fundus photography, it is pertinent that 

further research is carried out using more sophisticated instrumentation to determine whether 

sub-clinical signs of AMD are present in a larger proportion of the CF population. The clinical 

features and pathogenesis of AMD is explored herein. 
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1.3.1.2.1 Clinical features of AMD 

AMD can be broadly classified into two states: wet and dry (Figure 1.16). Dry AMD, 

characterised by drusen within the macular region is the most common type, accounting for up 

to 90% of all cases of AMD (Ambati et al., 2003).  It is generally accepted that dry AMD 

precedes wet AMD (Donoso et al., 2006), which is characterised by growth of new vessels 

from the choroid (choroidal neovascularisation) (Lim et al., 2012). Dry AMD causes gradual 

deterioration of central vision as a result of retinal and RPE atrophy, whereas visual loss is 

sudden in wet AMD due to neovascularisation and subsequent leakage from the new, weak 

vessels (Fine et al., 2000; Khandhadia et al., 2012b). Whilst both forms can cause significant 

visual loss, wet AMD accounts for approximately 75% of cases with severe vision loss (Klein 

et al., 1997). The characteristics of both wet and dry AMD are discussed below.  
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Figure 1.16 Retinal changes in AMD in comparison to the healthy retina (a). In dry AMD (b) 

specific anatomical changes occur including accumulation of drusen between RPE cells and 

Bruch’s   membrane,   and   the   formation   of   reticular   drusen   between   the   RPE   layer   and  

photoreceptors.  Bruch’s  membrane  becomes  thickened  and  atrophy  and  hyperatrophy  of  RPE  

cells occurs, along with choriocapillary atrophy. Wet AMD (c) is characterised by the presence 

of a choroidal neovascular membrane, which forms in the choroid and enters the RPE through 

a  break  in  Bruch’s  membrane.  Image from Khandhadia et al. (2012b). 

 

1.3.1.2.1.1 Drusen 

Drusen, the hallmark of AMD (Augood et al., 2006; Nowak, 2006), consist of extracellular 

deposits of material, collected between the basal lamina of the RPE and the inner layer of 
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Bruch’s  membrane  (Ambati et al., 2003) (Figures 1.17 and 1.18b). Drusogenesis is a complex 

and multifactorial process, taking place over many years and resulting in the physical 

displacement of the RPE and photoreceptors (Nowak, 2006). Two main methods of drusen 

formation have been identified; entrapment of membrane bound bodies between the basement 

membrane   of   the   RPE   and   the   collagen   fibrils   of   the   inner   collagenous   zone   of   Bruch’s  

membrane (McConnell and Silvestri, 2005), and deposits of plaques as focal excrescences on 

the   inner   surface   of   Bruch’s   membrane   (Hageman et al., 2001). Common constituents of 

drusen include RPE remnants, complement, lipids, lipoproteins, dendritic cell processes, 

cholesterol esters, fibrinogen, class II antigens and immunoglobulins (Johnson et al., 2000; 

Mullins et al., 2000; Anderson et al., 2002; Donoso et al., 2006). The presence of inflammatory 

mediators, including complement, in drusen has led to the suggestion that immunological and 

inflammatory processes may contribute to the development of AMD (Klein et al., 2003b).  

 

Drusen can be classified morphologically as either hard or soft (Ambati et al., 2003), 

depending on their size and shape (Algvere and Seregard, 2003). Hard drusen are typically 

smaller than 63µm in diameter, appearing as pinpoint yellow-white lesions with well 

demarcated edges. Whilst numerous hard drusen represent a risk factor for the development of 

visual loss from AMD, small numbers are common and can be found in at least 95% of the 

aged population (Fine et al., 2000), therefore they are not considered to be a risk factor for 

AMD development (Hageman et al., 2001). Soft drusen (Figure 1.18b), considered 

pathogonomic of AMD (Sarks, Sarks and Killingsworth, 1994), are typically larger than hard 

drusen   (≥125-250µm) (Nowak, 2006) with less distinct boarders (Khandhadia et al., 2012b) 

and the tendency to coalesce and become confluent (Ambati et al., 2003).  
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Figure 1.17 Light micrograph image depicting the appearance of hard drusen and their location 

between   the   basal   lamina   of   the   RPE   and   the   inner   layer   of   Bruch’s   membrane.   The   large  

drusen causes attenuation of photoreceptor outer segment layer. Image from Hageman et al. 

(2001). Key: * = drusen; CH = choroid; OS = outer segments; IS = inner segments; ONL = outer nuclear layer; 

INL = inner nuclear layer; GCL = ganglion cell layer. 
 

1.3.1.2.1.2 Pigmentation abnormalities 

Pigmentary irregularities in AMD are caused by hypertrophy, hyperplasia or atrophy of RPE 

cells (Khandhadia, Cherry and Lotery, 2012a). Pigmentary abnormalities present as focal areas 

of hyperpigmentation and hypopigmentation within the RPE (Figure 1.18c), and are a common 

sign of early AMD (Klein et al., 2004). Focal hyperpigmentation of the RPE has been 

identified as a risk factor for progression to wet AMD (Bressler et al., 1990). 

Hypopigmentation signifies areas of RPE cell loss (Green and Key, 1977).  
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Figure 1.18 Fundus photographs showing features of AMD in comparison to a healthy retina 

(a). Soft drusen (b) and RPE pigmentary irregularities (c) in early dry AMD. Haemorrhage 

secondary to a choroidal neovascular membrane in acute wet AMD (c). A large area of sharply 

demarcated RPE atrophy and underlying choroidal vessel atrophy, representing geographic 

atrophy in late AMD (d). Retinal haemorrhage (e) caused by an underlying choridal 

neovascular membrane in wet AMD. A disciform scar (f) formed following involution of 

neovascularisation in wet AMD. Image from Khandhadia et al. (2012b) 
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1.3.1.2.1.3 Atrophy  

Atrophic AMD  accounts for approximately 25% of cases with severe central visual loss (Klein 

et al., 1997). It is characterised by RPE dysfunction and death, leading to the loss of 

photoreceptors which are unable to survive without the nutritional and metabolic support of the 

RPE (Green and Key, 1977). Consequently, visual loss is often slowly progressive. Underlying 

choriocapillary atrophy often accompanies retinal atrophy (McLeod et al., 2002). Large areas 

(≥175µm   diameter)   of   atrophy   are   termed   ‘geographic   atrophy’   (Figure   1.18d) (Green and 

Key, 1977; Klein et al., 2008), representing end-stage dry AMD and accompanied by severe 

visual loss.  Geographic atrophy can develop following fading of drusen, involution of CNV or 

following a resolving pigment epithelium detachment (Ambati et al., 2003). It is characterised 

by sharply demarcated areas of depigmentation, with increased visualisation of underlying 

choroidal vasculature. Geographic atrophy often develops in the parafoveal region, sparing the 

fovea until late in the disease (Maguire and Vine, 1986; Sarks, Sarks and Killingsworth, 1988; 

Gass, 2003). Accumulation of RPE lipofuscin may be associated with the pathogenesis of 

geographic atrophy (Ambati et al., 2003).  

 

1.3.1.2.1.4 Neovascularisation 

Development of choroidal neovascularisation is the hallmark of wet AMD, a stage found in 

approximately 10% of all AMD cases (Ambati et al., 2003). Choroidal neovascularisation 

(CNV) refers to the growth of new blood vessels from the choroid, which may remain beneath 

the RPE   (“occult”  CNV)   or   breach   the  RPE   and   enter   the   subretinal   space   (“classic”  CNV)  

(Ambati et al., 2003). The neovascular processes in AMD are thought to result from a local 

imbalance of growth factors (Witmer et al., 2003; Roth et al., 2004), including anti-angiogenic 

pigment epithelial derived factor (PEDF) and angiopoetin 1, along with pro-angiogenic 

vascular endothelial growth factor (VEGF) and angiopoetin 2 (Hangai, Murata and Miyawaki, 

2001; Roth et al., 2004; Nowak, 2006).  In wet AMD, over expression of the pro-angiogenic 

VEGF from RPE cells (Lopez et al., 1996), potentially stimulated by hypoxia (Aiello et al., 

1995) or inflammation (Anderson et al., 2002), induces development of new vessels (Roth et 

al., 2004).  

 

Clinically, the earliest sign of CNV is often subretinal or sub-RPE haemorrhage due to the 

fragility of the new vessels (Figure 1.18e). Fluid and hard exudates may also be present 

(Khandhadia et al., 2012b). Patient symptoms include sudden onset of a significant reduction 

in central vision, and metamorphopsia (Lim et al., 2012) which can be clearly visualised with 
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an Amsler grid. This is caused by disruption to normal photoreceptor orientation and 

organisation (Khandhadia et al., 2012a). Repeated leakage of blood, serum, and lipid in wet 

AMD can stimulate fibroglial reorganisation leading to formation of a disciform scar (Figure 

1.18f) (Khandhadia et al., 2012b).  

 

Currently, whilst no treatment is available for dry AMD, anti-VEGF intravitreal injections (e.g. 

Bevacizumab and Ranibizumab), given via the sclera can be used in wet AMD, leading to an 

improvement in vision in up to 30% of patients (Brown et al., 2006; Rosenfeld et al., 2006).  

 

1.3.1.2.2 Risk Factors for AMD 

Epidemiological studies are responsible for determining the various risk factors associated with 

the development of AMD. Knowledge of the risk factors not only facilitates early detection, 

but also offers insight into the aetiology of the disease. A full review of the risk factors 

associated with AMD is beyond the scope of this work, therefore only the main risk factors are 

discussed below. For comprehensive reviews on the risk factors for AMD see Evans (2001), 

Chakravarthy et al. (2010) and Seddon and Chen (2004).  

       

1.3.1.2.2.1 Age                                                                                                                                                    

The prevalence, incidence and progression of all forms of AMD have been demonstrated to 

rise steeply with advancing age across all races studied (Leibowitz et al., 1980; Klein et al., 

1992; Klein et al., 1997; Seddon, Cote and Rosner, 2003; Friedman et al., 2004; Varma et al., 

2004; Kawasaki et al., 2008). In the Beaver Dam Study, the prevalence of late ARM or AMD 

was 7.1% in people over 75 years of age, compared to 0.6% in those aged 55 to 64 years, and 

0.1% in those aged 43 to 54 years (Klein et al., 1992).   

 

1.3.1.2.2.2 Gender 

Whist women are commonly believed to be at higher risk of developing AMD (Mitchell et al., 

2002a), few studies have been able to demonstrate this finding with certainty (Evans, 2001). 

Pooled data from three large scale AMD studies (The Blue Mountains Eye Study, the Beaver 

Dam Eye Study and the Rotterdam Study) showed a slightly increased risk for AMD in women 

compared to men in the older age groups (Smith et al., 2001), however, all age effects may not 

have been excluded. Evans (2001) concurs with these findings, however a more recent meta-

analysis by Chakravarthy et al. (2010), suggested there was no significant increase in 
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prevalence of late AMD in females. Due to varying conclusions, further research is required to 

determine if a true difference in prevalence exists across gender.  

  

1.3.1.2.2.3 Ethnicity 

The majority of current literature suggests that all forms of AMD are more common in whites 

than among black and Hispanic races (Sommer et al., 1991; Pieramici et al., 1994; Friedman et 

al., 1999; Klein et al., 2003a; Leske et al., 2004; Seddon and Chen, 2004). This has led to the 

suggestion that melanin may be protective against development of AMD, and specifically CNV 

(Ambati et al., 2003). However, a study by Berendschot et al. (2002) found no difference in 

macular or melanin pigment densities between eyes with and without early AMD (Berendschot 

et al., 2002), suggesting that racial differences in AMD prevalence may be due to factors other 

than pigmentation (Ambati et al., 2003), including genetics or differences in lifestyle between 

groups.  

 

1.3.1.2.2.4 Genetics  

There is considerable evidence from twin concordance studies (Klein, Mauldin and Stoumbos, 

1994a; Meyers, Greene and Gutman, 1995; Gottfredsdottir et al., 1999; Grizzard, Arnett and 

Haag, 2003), familial aggregation (Seddon, Ajani and Mitchell, 1997; Klaver et al., 1998), 

genomewide scans (Weeks et al., 2000; Schick et al., 2003; Weeks et al., 2004) and candidate 

gene studies (Allikmets et al., 1997; Seddon et al., 2001a; Schmidt et al., 2002) implicating a 

genetic basic for AMD (Evans, 2001). However, due to difficulties associated with the 

investigation of the genetics behind AMD, the degree of heritability and its relative role against 

environmental factors is still unknown. It is likely that AMD inheritance is a complex trait 

which is controlled by many genes, rather than a single one (Ambati et al., 2003). Siblings of 

ARM sufferers are reported to have a three to six fold higher risk for developing ARM 

compared to non-sufferers (Feigl, 2009), and twin studies suggest greater than 90% 

concordance in monozygotic twins (Klein et al., 1994a; Meyers et al., 1995; Gottfredsdottir et 

al., 1999).  

 
1.3.1.2.2.5 Light exposure 

The relationship between light exposure and the risk of AMD remains unclear, possibly due to 

the difficulty associated with quantifying lifetime light exposure in humans (Evans, 2001). 

Numerous studies have examined the relationship between sunlight exposure and development 

of AMD (Hyman et al., 1983; Taylor et al., 1990; Taylor et al., 1992; The Eye Disease Case-
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Control Study Group, 1992; Cruickshanks, Klein and Klein, 1993; Darzins, Mitchell and 

Heller, 1997). Results from the Beaver Dam Eye Study were conflicting; no association was 

found with lifetime exposure to ultraviolet light, however, increased leisure time spent 

outdoors in the summer was significantly associated with increased exudative AMD and late 

maculopathy (Cruickshanks et al., 1993). The Eye Disease Case Control Study Group showed 

no significant association between advanced AMD and cumulative sunlight exposure (The Eye 

Disease Case-Control Study Group, 1992). Darzins et al (1997) found that whilst controls had 

significantly greater average yearly ocular sun exposures, cases with AMD were more likely to 

report that they did not tan well, indicating that sensitivity to sunburn may be a risk factor 

(Darzins et al., 1997).  

 

The suggested mechanistic hypothesis for the link between light exposure and AMD is that 

light stimulates photo-oxidative damage, leading to the production of reactive oxygen 

intermediates within the outer retina and choroid (see Section 6.3.3.1) (Gottsch et al., 1993).  

 

1.3.1.2.2.6 Diet 

In a study including over 70,000 men and women, total fat intake was found to be positively 

associated with risk of AMD, whilst higher intake of fish was associated with a lower risk of 

AMD (Cho et al., 2001). Specifically, high linolenic acid was associated with 49% increased 

risk of AMD, and high docosahexaenoic acid with a 30% reduced risk of AMD. Similar 

findings were made in another study (Seddon et al., 2001b). However, no association was 

found between dietary fat intake and AMD in another large cross sectional survey (Heuberger 

et al., 2001). High intake of fat may  be  associated  with  increased  deposition  of  fat  in  Bruch’s  

membrane, hindering the supply of nutrients and removal of waste from the RPE.  

 

High intake of cholesterol has similarly been associated with a higher risk of AMD (Mares-

Perlman et al., 1995; Smith, Mitchell and Leeder, 2000). The Eye Disease Case Control Study 

reporting a statistically significant fourfold increased risk of exudative AMD with high 

cholesterol  (>6.75  mmol/L)  compared  to  people  with  lower  values  of  serum  cholesterol  (≤4.89  

mmol/L).  However, results are not consistent and other studies have found either a decreased 

risk of AMD with high cholesterol (Goldberg et al., 1988), or no association at all (Klein and 

Klein, 1982). The proposed mechanism by which high cholesterol would increase risk of AMD 

suggests that raised levels of cholesterol in the bloodstream increase the risk of atherosclerosis 

(Evans, 2001), which may in turn lead to choroidal vasculature deficiencies causing 
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deterioration of the RPE secondary to ischaemia or build up of waste products (Friedman et al., 

1995).  

 

1.3.1.2.2.7 Smoking  

Smoking has been associated with an increased risk of both dry and wet AMD in many 

population based epidemiologic studies (Klein, Klein and Moss, 1998; Age-Related Eye 

Disease Study Reasearch Group, 2000; Smith et al., 2001; Mitchell et al., 2002c), with prior 

and current smokers developing AMD 5 to 10 years before non-smokers, respectively 

(Mitchell et al., 2002b). The Physicians Health Study was able to demonstrate a dose-response 

effect; men who smoked more than 20 cigarettes a day were at increased risk of AMD 

compared to those who smoked less than 20 cigarettes a day (Christen et al., 1996).  

 

Two potential mechanisms have been identified by which smoke may lead to an increased risk 

of AMD; it may reduce the level of plasma antioxidants through oxidative damage (see section 

6.3.3.1) or it may have direct effects on the choroidal blood flow (see section 6.3.3.3) as 

nicotine acts as a vasoconstrictor (Evans, 2001; Ambati et al., 2003). Additionally, nicotine has 

been found to stimulate neovascularisation by inducing endothelial cell proliferation and 

accelerating fibrofascular growth (Heeschen et al., 2001). This may account for the increased 

rates of recurrent CNV after laser photocoagulation in smokers (Macular Photocoagulation 

Study Group, 1986).   

 

1.3.1.2.2.8 Medications 

Use of certain medication may be associated with altered risk of developing AMD, however 

results are rather mixed. Whilst the Beaver Dam Eye Study found no association between any 

medication use and early AMD (Klein et al., 2001), other studies have shown a borderline 

statistically significant increased risk of early ARM with use of antihypertensive medications, 

particularly  β-blockers (Hyman et al., 2000). Use of cholesterol lowering drugs such as statins 

have been reported to be associated with a decreased rate of CNV among AMD patients (Hall 

et al., 2001; Wilson et al., 2004). Conversely, in an Australian cohort study, statin use was 

associated with an increased risk of AMD (McCarty et al., 2001). Further work is required in 

this area before any concrete conclusions can be made.  
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1.3.1.2.3 Pathogenesis  

AMD is recognised as a complex, multifactorial disease, with the true pathogenesis of the 

condition not fully understood, though it is likely to involve the disruption of multiple 

physiological pathways. The hypothesised pathogenesis models for AMD are discussed below.  

 
1.3.1.2.3.1 Oxidative Stress 

Cumulative oxidative damage has been implicated in the pathogenesis for many age-related 

pathologies, including AMD (Beatty et al., 2000). Oxidative damage is caused by reactive 

oxygen intermediates (ROI), or free radicals, including hydrogen peroxide (H2O2) and singlet 

oxygen (1O2).  

 

In vivo, ROI are continually formed as normal by-products of cellular metabolism (Kukreja 

and Hess, 1992), photochemical reactions (Ambati et al., 2003) and by the immune system as a 

defence against pathogens (Khandhadia et al., 2012a). The major source of ROI production is 

the micochondira (Liang and Godley, 2003). Stimuli known to increase ROI production 

include aging, inflammation, irradiation and smoking (Borish et al., 1987; Machlin and 

Bendich, 1987). Oxidative damage by ROI leads to point mutations and deletions in 

mitochondrial DNA (Golden and Melov, 2001) and leads to earlier senescence, possibly due to 

damage of telomeric DNA (Rubio, Davalos and Campisi, 2004). The retina,  and especially the 

macula, is particularly vulnerable to oxidative damage due to its high oxygen consumption 

(Alder and Cringle, 1985), high levels of cumulative irradiation (Beatty et al., 2000),  high 

concentrations of polyunsaturated fatty acids in photoreceptor outer segments which are readily 

oxidised (Bazan, 1989), high levels of chromophores (Delmelle, 1978; Gaillard et al., 1995) 

and phagocytosis in the RPE which generates ROI (Tate, Miceli and Newsome, 1995). 

Oxidative stress may also promote neovascularisation; ROIs have been found to reduce the 

expression of PEDF (Ohno-Matsui et al., 2001) and upregulate VEGF in the RPE (Kuroki et 

al., 1996). 

 

As antioxidants are important in scavenging ROI, many studies have investigated the effect of 

dietary supplementation of antioxidants on AMD development and progression. Most 

noticeably, the AREDS study (AREDS, 2001), a multicentre randomised double masked 

clinical trial including over 3600 participants with early signs of AMD, showed that 

supplementation with high doses of antioxidant vitamins and minerals (ascorbic acid, 500mg/d; 

vitamin E, 400IU/d; beta carotene, 15 mg/d; zinc oxide, 80 mg/d; and cupric oxide, 2mg/d) 
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reduced the risk of progression to advanced AMD from 29% to 20%, and the rate of at least 

moderate vision loss from 29% to 23%. A similar multicentre study also found a positive 

association between higher serum levels of catotenoids and antioxidants and a decreased risk of 

exudative AMD (EDCCS, 1993).  Several other studies concur with these findings (Goldberg 

et al., 1988; Sanders et al., 1993; Seddon et al., 1994). These results indicate that not only may 

supplementation be beneficial in preventing progression of AMD, but also that oxidative 

damage may be involved in progression of AMD. However, numerous other large scale studies 

show no evidence for the protective effect of dietary antioxidants or supplementation for AMD 

(Smith et al., 1999).  

 

1.3.1.2.3.1.1 Lipofuscin formation 

Lipofuscin, a lipid-protein aggregate of phagosomal, lysosomal and photoreceptor origin 

(Nowak, 2006), accumulates in the lysosomal compartment of the RPE (Delori et al., 1995; 

Kennedy, Rakoczy and Constable, 1995) with age due to the incomplete phagocytosis of 

photoreceptor outer segment discs (Roth et al., 2004). This implicates malfunction of 

lysosomal activity with age (Roth et al., 2004). The lipofuscin content of RPE cells has been 

shown to increase from 1% in the first decade of life, to 19% in the eighth decade (Feeney-

Burns, Hilderbrand and Eldridge, 1984). Histopathological studies have shown an association 

between high levels of lipofuscin and degeneration of RPE cells and adjacent photoreceptors 

(Dorey et al., 1989), indicating that lipofuscin may play a role in compromising RPE function 

(Beatty et al., 2000). Holz et al. (2001) also showed by autofluorescence imaging that 

lipofuscin accumulation in RPE cells was directly associated with the development of 

geographic atrophy (Holz et al., 2001). Lipofuscinogenesis has therefore been implicated in the 

pathogeneiss of AMD.  

 

1.3.1.2.3.2 Inflammation 

AMD  is  associated  with  chronic  inflammation  in  the  RPE,  Bruch’s  membrane  and  the  choroid  

(Anderson et al., 2002). The theory of inflammation in the pathogenesis of AMD was proposed 

by Hageman et al. (1999) following the discovery of inflammatory mediators within drusen 

deposits (Hageman and Mullins, 1999). Although intraocular inflammation is not clinically 

apparent in AMD, the presence of HLA-DR and immunoglobulins in drusen, suggest that 

inflammatory immune processes are involved in drusen biogenesis (Hageman et al., 1999; 

Johnson et al., 2000; Crabb et al., 2002). The complement system is known to play a key role 

in host defence against pathogens, the elimination of apoptotic cells and adaptive immune 
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responses (Walport, 2001). Several studies have found evidence of compliment components in 

drusen (Johnson et al., 2000; Mullins et al., 2000; Johnson et al., 2001; Nozaki et al., 2006), 

and there is growing evidence that the complement system plays a vital role in the pathogenesis 

of AMD (Khandhadia et al., 2012b), with drusen acting as a focus for chronic inflammation 

(Anderson et al., 2002). Specifically, fragments of C3a and C5a have been found in drusen and 

are known to induce VEGF expression in RPE cells (Nozaki et al., 2006). The presence of 

inflammatory  cells  within  Bruch’s  membrane  has  also  been  demonstrated  through  anatomical  

studies (Hageman et al., 2001).  

 

Macrophage distribution has been found to correlate with arborizing CNV in both human 

(Grossniklaus et al., 2000) and animal models (Nishimura et al., 1990), suggesting a possible 

role in the pathogenesis of wet AMD (van der Schaft et al., 1993; Grossniklaus et al., 2002). 

Activated macrophages, along with other inflammatory cells secrete enzymes that can damage 

cells of Bruch membrane (Oh et al., 1999).  Thus  breaks  in  Bruch’s  membrane  are  likely  to  be  

the result, not the cause of CNV (Heriot et al., 1984).  

 

1.3.1.2.3.3 Hemodynamic changes and ischemia 

AMD pathogenesis was attributed to impairment of choroidal blood flow as early as 1937 

(Verhoeff and Grossman, 1937). Evidence suggests that choroidal blood flow is impaired in 

patients with AMD, however, the exact nature of this impairment is not fully understood 

Impaired choroidal blood flow may lead to hypoxia and impaired retinal metabolism 

(Stefansson, Geirsdottir and Sigurdsson, 2011), causing waste material to accumulate in the 

outer  part  of  Bruch’s  membrane  (Ambati et al., 2003). Vascular defects have been identified in 

both dry and wet AMD patients by fluorescein angiography (Pauleikhoff et al., 1999), laser 

Doppler flowmetry (Grunwald et al., 1998), indocyanine green angiography (Grunwald et al., 

2005), histology (Sarks, 1976) and pulsatile ocular blood flow methods (Ciulla, Harris and 

Martin, 2001; Ambati et al., 2003; Stefansson et al., 2011).  

 

Laser Doppler imaging has shown reduced flow velocities in the posterior ciliary arteries in dry 

AMD, suggesting abnormal choroidal perfusion (Ciulla et al., 1999). With changes also seen in 

the central retinal artery, it is suggested that there may be a more generalised perfusion 

abnormality in AMD (Stefansson et al., 2011). In-vivo findings are supported by histological 

evidence showing choriocapillaris dropout adjacent to areas of neovascularisation in eyes with 

wet AMD (McLeod et al., 2009).  Vascular dropout will presumably lead to RPE hypoxia, 
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which may result in increased VEGF production by the RPE, stimulating CNV (McLeod et al., 

2009). Similarly, lower pulsatile ocular blood flow in subjects with wet AMD, will likely also 

play a role in inducing neovascularisation via stimulation of angiogenic factors by hypoxia 

(Mori, 2001; Mori et al., 2001).  

 
1.3.1.2.4 AMD in Cystic Fibrosis 

Pancreatic insufficiency and reduced bile production result in malabsorption of fab-soluble 

nutrients,   vitamins   A,   D,   E   and   K,   and   antioxidants   beta   (β)-carotene and coenzyme Q10. 

Despite supplementation with multivitamins and pancreatic enzymes as standard in CF, 

deficiencies of vitamins D and K and antioxidants have been demonstrated (Feranchak et al., 

1999; Grey et al., 2008; Laguna et al., 2008; Maqbool and Stallings, 2008). Additionally, due 

to chronic infection and inflammation associated with CF lung disease, CF patients experience 

elevated levels of oxidative stress and increased free radical production (van der Vliet et al., 

1997; Lezo et al., 2012). A recent study has even shown oxidative stress markers to be elevated 

in stable clinical conditions, and with antioxidants within the normal range (Lezo et al., 2012). 

Consequently, the antioxidant/oxidant balance is impaired in CF. This imbalance is thought to 

contribute to disease progression in CF (Back et al., 2004).  

 

CFTR is known to mediate transport of glutathione, a major antioxidant peptide. Several 

studies have shown that glutathione depletion increases the risk of oxidative injury (Thor et al., 

1982; Wefers and Sies, 1983). Exogenous supply of glutathione to the RPE is known to protect 

against oxidative damage (Sternberg et al., 1993), and recently a positive relationship has been 

found between macular pigment and blood glutathione levels (Qin et al., 2011). Blood plasma 

levels of glutathione have been observed to be reduced in CF patients (Roum et al., 1993). It 

could be hypothesised that impairment of glutathione transport by malfunctioning CFTR may 

contribute to increased risk of AMD in CF.  

 

Drusen have previously been noted in two young CF patients (aged 20-25 years old). With 

oxidative stress identified as having a potential role in the development of AMD, it is 

reasonable to predict that due to increased oxidative stress and reduced antioxidant status in 

CF, that patients may show signs of early onset AMD.  
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1.3.1.3  Optical Coherence Tomography 
OCT is a non-invasive, non-contact, transpupillary imaging technique, able to produce high 

resolution images of retinal structures in vivo. OCT generates cross-sectional or three-

dimensional images by utilising low coherence interferometry to detect and measure the depth 

and magnitude of back scattered (reflected) light (Drexler and Fujimoto, 2008).   

 

Since OCT was first demonstrated in 1991 (Huang et al., 1991), it has rapidly developed as the 

only non-invasive diagnostic technique able to provide images of the retinal microstructure, 

which directly relate to the histological structure of the retina  (Figure 1.19) (Anger et al., 

2004).   

 
Figure 1.19 OCT of a healthy macular showing the retinal layers. Image from Sheth, Rush and 

Natarajan (2012). Key: RPE CC, retinal pigment epithelium chorio capillary complex; OS, outer segment; IS,  

inner segment; ELM, external limiting membrane; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, 

inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; NFL, nerve fiber layer; ILM, internal 

limiting membrane. 

  

1.3.1.3.1 Operating Principles 

Optical coherence tomography is based upon the principles of Michelson interferometry 

(Huang et al. 1991). Low coherence near-infrared light (typically 800-1400nm) is emitted from 

a superluminescent diode laser (Guedes et al. 2003), and travels to the interferometer where it 

is split into two equal components by a semi-transparent mirror. One component is then 

directed towards the retina through the ocular media (the measurement beam), whilst the other 

component is directed to a reference mirror (the reference beam). The distance between the 

beam-splitter and the reference mirror is continuously varied until the distance between the 

light source and the retinal tissue is equal to the distance between the light source and reference 

mirror.  When this occurs the reflected light from the retinal tissue being imaged, and the light 

from the reference mirror interact to produce an interference pattern which is detected by a 
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photosensitive detector and processed into a signal (Figure 1.20). Light reflected  from  deeper 

retinal layers have longer time-delays  than  that  reflected from more  superficial   layers  (Figure  

1.21). The amplitude of reflected light is dependent upon the tissue reflectivity, and can be 

plotted against the time delay to produce an a-scan (Costa et al., 2006).  

              
Figure 1.20 A simplified depiction of an OCT system. Output from the superluminescent 

diode (SLD) is split into the sample and reference arms. Sample and reference reflections are 

recombined to create an interference pattern which is detected and processed into a signal. 

Image adapted from Huang, Tan and Fujimoto (2005).  

         
Figure 1.21 OCT time delay of retinal layers. The OCT measurement beam (1) is directed 

towards the retina. The delay of a superficial reflection (2) is shorter than that of a deeper 

reflection (3). Image from Huang et al. (2005).  
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A two-dimensional, cross-sectional retinal image is produced as the light source scans across 

the retina, stacking and aligning consecutive axial-scans (A-scans) side by side to produce a 

two-dimensional transverse-scan (B-scan) (Figure 1.22 and Table 1.13) (Costa et al., 2006).  

Eye movements are corrected by digital processing (cross-correlation scan registration) to align 

the A-scans, and digital smoothing techniques are used to further reduce image noise (Swanson 

et al. 1993).  The image produced resembles that of a histological section, with contrast 

produced by differences in the refractive index and scattering properties of the different retinal 

layers.  

 

 
Figure 1.22 Representation of how an OCT B-scan (grey-scale image) is generated by building 

up and aligning multiple A-scans (red plot lines). Image from Huang et al. (2005). 

 

Table 1.13 Definitions of terms used in OCT 

Term Definition 

Pixel A pixel represents an individual data point within an OCT image  

a-scan The a-scan represents the reflectivity of the sample with increasing depth. It 

comprises a series of adjacent pixels.  

b-scan The b-scan is a cross sectional tomograph generated by laterally combining a series 

of adjacent a-scans to generate a 2D cross section of the sample. 

c-scan A c-scan is a 3D  image generated by stacking adjacent b-scans.  
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1.3.1.3.2 Time Domain and Fourier Domain OCT 

Since its introduction in 1991, technological OCT parameters have progressed significantly, 

enabling a substantial improvement in retinal imaging. Original OCT instruments required 

manual adjustment of the reference mirror to sequentially measure the echo time delay of 

reflected light. These systems are classed as Time Domain OCT (TD-OCT). Due to the manual 

nature of image capture with these early devices, acquisition speed was rather limited, resulting 

in a maximum capture speed of 400 A-scans per second and axial resolutions of approximately 

10μm. 

 

More recently, the advent of Fourier Domain OCT (or Frequency Domain OCT; FD-OCT) has 

enabled data acquisition speeds of up to 18,000-50,000 A-scans per second (Potsaid et al., 

2008; Srinivasan et al., 2008)., and a resolution of 2-3µm (Ultrahigh resolution OCT, UH-

OCT), enabling in vivo sub-cellular resolution of the intraretinal structure (Drexler and 

Fujimoto, 2008). In contrast to TD-OCT, FD-OCT employs the use of a stationary reference 

mirror to obtain an interference spectrum. This spectrum then undergoes computer operated 

Fourier transformation allowing simultaneous assessment of all the echo time delays 

(Wojtkowski, Leitgeb and Kowalczyk, 2002).  

 

The significantly higher acquisition speeds achieved by FD-OCT reduces eye motion artefacts 

in B-scans and enables better delineation of the intraretinal layers due to higher axial 

resolution, smaller speckle size, and an increase in the number of A-scans (Drexler and 

Fujimoto, 2008).  High acquisition speeds of FD-OCT also enables in vivo three-dimension 

ultrahigh resolution OCT (3D-OCT) (Figure 1.23).   

 

The improvements gained in axial resolution can be attributed to advances in broad-bandwidth 

light source technology, providing enhanced image contrast and tissue penetration.  Significant 

improvements in transverse resolution have also been achieved by simultaneous measurements 

of all light echoes from different axial depths, and through coupling OCT with emerging 

adaptive optics technologies, moving OCT closer towards cellular resolution imaging (Leitgeb, 

Hitzenberger and Fercher, 2003). Adaptive optics (AO) improves transverse resolution and 

reduces granular artifacts by correcting for ocular aberrations (e.g. coma, spherical aberration) 

in real time through computer manipulation of a deformable mirrors and liquid crystal spatial 

light modulators (Drexler and Fujimoto, 2008). Integration of adaptive optics into OCT has 
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enabled an improvement in transverse resolution from 15-20μm to 5-10μm (Hermann et al., 

2004). 

 

 
Figure 1.23 Standard resolution OCT (upper picture) versus ultrahigh-resolution OCT (lower 

picture) of the human retina. Image from Drexler and Fujimoto (2008) 

 

1.3.1.3.3 Transverse image magnification  

Whilst the axial component of an OCT image is laser dependent, and is therefore unaffected by 

magnification effects of varying axial length, transverse parameters are affected by optical 

magnification. Therefore, correction should be applied when measuring along the transverse 

direction of an OCT image. Littmann (1982) first proposed a method which could correct for 

transverse magnification in retinal imaging, which has since been modified by Bennet et al. 

(1994) to give the following equation: 

 

    t = pqs          Equation 1 

 

Where t = true size of retinal feature, μm 

           p =correction factor based on the optics of the imaging devise  

           q = correction factor based on the optical dimensions of the eye 

           s =  measured  size  of  retinal  feature,  μm 

Research by Bennett et al. (1994) found that whilst q can be calculated according to the 
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ametropia, keratometery, refractive indices and the lens curvature of the eye, that axial length 

has the largest effect on value q. Thus q can be defined by the following equation, known as 

the  ‘adjusted  axial  length  method’:   

 

    q = 0.01306(x – 1.82)     Equation 2 

 

 Where q = eye correction factor 

             x = axial length (mm) 

 

The value of p has been calculated for OCT systems as 3.3822 through the use of telecentric 

devices (Leung et al. 2007). This gives the following equation, which should be used to correct 

for transverse measurements in OCT images: 

 

        t = 3.3822(0.01306(x – 1.82))s     Equation 3 

 

Where: t =  true  size  of  retinal  feature,  μm 

 x = axial length, mm 

 s = measured size of retinal feature,  μm 

 

1.3.1.3.4 Establishing normal retinal thickness  

OCT has become increasingly popular for real-time quantitative and objective evaluation of 

retinal thickness (RT), due to its ability to detect the inner and outer retinal boundaries to a 

high degree of accuracy, automatically producing a retinal thickness value. However, different 

OCT instruments give different measures of RT (Table 1.14).  A study that compared the RT 

values obtained by six different instruments, found a variation of up to ±175µm may exist 

when measuring the same area of retina (Giani et al., 2010).  However, the eyes measured 

within this experiment not only included healthy eyes, but also those with exudative and non-

exudative age-related macular degeneration (AMD), epiretinal membranes, cystoid macular 

oedema, macular hole and branch retinal vein occlusion.  Other studies investigating RT with 

different instruments have also observed considerable disparity.  Using Bland-Altman analysis, 

Leung et al. (2008) found the largest value for the limit of agreement to be 38.6µm, 

demonstrating a relatively poor level of agreement between different OCT instruments.  
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The main cause of this disparity is likely to be that different instruments employ different 

automated segmentation protocols, and define RT using different retinal boundaries. For 

example, the Zeiss Stratus, delineates the outer retinal boundary at the photoreceptor 

inner/outer segment junction (Giani et al., 2010), whereas the Topcon 3D-OCT 1000 identifies 

the outer boundary at the level of the photoreceptor outer-segment tip (Sull et al., 2010).  

Whilst this is an important source of variability, instruments that use identical boundaries still 

measure retinal thickness differences (Huang et al., 2009; Giani et al., 2010).  
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Table 1.14 Retinal thickness (RT) in healthy subjects at the central area of the Early Treatment 

Diabetic Retinopathy Study (ETDRS) grid  

Authors Subjects Instrument 
RT (µm) 
Mean ± SD 

Huang et al. 

(2011a) 

n = 60; 33 Males, 27 Females 

Ethnicity: Chinese 

Mean age: 40.87 ± 10.17 years 

Topcon 3D-OCT 1000 222 ± 16 

Zeiss Cirrus HD 244 ± 19 

Zeiss Stratus 191 ± 17 

Sull et al. (2010) 

n = 40; 21 Males, 19 Females 

Ethnicity: 22 White, 13 Asian, 3 Hispanic, 2 

Black 

Mean age: 36.1 ±15.9 years 

Topcon 3D-OCT 1000 231 ± 16 

Zeiss Cirrus HD 262 ± 16 

Optovue RTVue-100 267 ± 15 

Stratus OCT 203± 17 

Wolf-

Schnurrbusch et 

al. (2009) 

n = 20; 9 Males, 11 Females 

Ethnicity: Not stated 

Mean age: 37.1 ± 12.8 years 

Stratus OCT 213 ± 19 

Heidelberg Spectralis 288 ± 16 

Spectral OCT / SLO 243 ± 25 

Zeiss Cirrus HD 276 ± 17 

SOCT Copernicus 246 ± 23 

Optovue RTVue-1000 245 ± 28 

Bruce et al. 

(2009) 

n = 10; 7 Males, 3 Females 

Ethnicity: Not stated 

Mean age: 32 years 

Topcon 3D-OCT 1000 244 ± 17.84 

Sayanagi, 

Sharma and 

Kaiser (2009) 

n = 8; Gender not stated 

Ethnicity: Not stated 

Mean age: 37.0 ± 11 years 

Topcon 3D-OCT 1000 222 ± 23 

Leung et al. 

(2008) 

n = 35; Gender not stated 

Ethnicity: Not stated 

Mean age: 36.4 ± 12.6 years 

Topcon 3D-OCT 1000 260 ± 12.2 

Stratus OCT 195.6 ± 17.2 

Witkin et al. 

(2006) 

n = 36; 11 Males, 25 Females 

Ethnicity: Not stated 

Mean age: 43 years 

Stratus OCT 228.4 ± 15.6 

Chan et al. 

(2006) 

n = 37; 11 Males, 26 Females 

Ethnicity: Not stated 

Median Age: 43 years 

Stratus OCT 212 ± 20 

Paunescu and 

Schuman (2004) 

n = 10; 6 Males, 4 Females 

Ethnicity: 8 White, 2 Other 

Mean Age: 30.5 ± 7.4 years 

Stratus OCT 203.8 ± 19.5 
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1.3.1.3.4.1 Repeatability of retinal thickness measures   

The repeatability of any test is important to ensure diagnostic accuracy. Repeatability, as 

defined   by   ISO   standards,   and   according   to   the   British   Standards   Institute,   refers   to   “test  

conditions   that  are  as  constant  as  possible”  and  indicates  “the  strength  of  agreement  between  

repeated  measures”,  respectively.  It  is  a  measure  of  the  precision of the instrument.  

 

Repeatability can be defined by several parameters: 

 Coefficient of variation (CoV): the ratio of the standard deviation to the mean 

 Intraclass correlation coefficient (ICC): a measure of the correlation and similarity of 

two different groups 

 Coefficient of repeatability (CoR): defined as 1.96 x the standard deviation of 

differences between visit 1 and 2. CoR represents the value below which approximately 

95% of the absolute differences between two repeated tests would be expected to lie.   

 

Several studies have investigated the intra-session repeatability of retinal thickness measures 

using the Topcon 3D-OCT 1000 (Table 1.15).  Leung et al. (2008) found that the Topcon 3D-

OCT 1000 demonstrated high repeatability of macular thickness measurements, with the ICC 

ranging from 92% to 99% in normal eyes for all areas measured within the Early Treatment 

Diabetic Retinopathy Study (ETDRS) grid (Figure 1.24). All macular measurements had CoV 

at or less than 1%, with the exception of foveal thickness, which had a CoV of 2.42%. This 

equates to total macular thickness measures repeatable to within 6.3µm in 95% of cases. Bruce 

et al. (2009) obtained similar results, concluding that repeatability of macular thickness 

measures with the Topcon 3D OCT-1000 was within ± 6µm for a single scan.  However, 

repeatability appeared to reduce with age. 
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Figure 1.24 Circular ETDRS macular thickness map superimposed upon a fundus photograph. 

The central area represents the fovea and has a diameter of 1mm.  

 

Repeatability of measurements with the Topcon 3D OCT 1000 appears to remain acceptable 

even in the presence of ocular abnormality (Ho et al., 2009; Menke et al., 2009).  In a study of 

52 patients with varying ocular pathologies, the Topcon 3D-OCT 1000 demonstrated excellent 

repeatability at the central foveal region with an ICC of 96% (Ho et al., 2009).  However, the 

parafoveal and perifoveal regions had greater variability, with ICCs reaching 21% and 54% in 

the superior parafoveal and inferior perifoveal areas, respectively. Greater variability at these 

regions may be attributed to the presence of eccentric fixation, leading to higher rates of retinal 

layer segmentation errors, and hence inaccurate measures of retinal thickness (Ho et al., 2009).  

It has been suggested that inter-test variability in measurements as a result of eccentric fixation 

may potentially be minimised by registration of OCT scans to landmarks features, such as 

retinal vessels (Sull et al., 2010).  

 

Menke et al. (2009) investigated the repeatability of retinal thickness in dry and wet AMD.  

The mean CoV for the dry and wet AMD groups were 1.8% and 3.6% respectively, indicating 

a good level of repeatability, particularly in the dry AMD cohort. Increased thickness 

variability in wet AMD is attributed to the severe morphological changes that occur in wet 

AMD, making differentiation of retinal layers by the OCT software more difficult (Menke et 

al., 2009). It has been suggested that this problem can be tackled by manually correcting 
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segmentation errors, or by employing specially developed software programs for error 

correction and quantitative subanalysis (Sadda et al., 2007). Repeatability was found to be 

highest in peripheral macular areas, compared to the central macular, regardless of AMD type. 

This finding is in contrast to those of Ho et al. (2009). It is suggested that decreased 

repeatability in the central region could be associated with this area being most severely 

affected by morphological changes, making correct segmentation of retinal layers more 

difficult. Lack of manual correction for errors in fixation in the study by Menke et al. may 

account for the differences in repeatability seen over different retinal areas compared to the 

study by Ho et al. (2009). Despite significantly higher CoV, repeatability was also deemed 

acceptable in wet AMD. 
 

Table 1.15 Intra-session repeatability of macular thickness measures for the Topcon 3D-OCT 

1000 in healthy and pathological eyes 

Authors Subjects Scan Type  CoV (%) ICC (%) 

Huang et al. 

(2011a) 
60 Healthy Macular cube^  0.95 ± 0.55* 97.70* 

Sull et al. 

(2010) 
40 Healthy 

Macular cube^ - 96.59* 

Radial (6 mm) 

1024 A scans per line 
- 97.88* 

Leung et al. 

(2008) 
35 Healthy Macular cube^ 2.42* 91.80* 

Menke et al. 

(2009) 

10 Dry AMD 

Macular cube^ 

1.8 ± 0.6α - 

12 Exudative 

AMD 
3.6 ± 1.4α - 

Pierro et al. 

(2010) 
18 Healthy Macular cube^ - 78.0* 

Ho et al. 

(2009) 

52 Range of 

ocular 

pathology 

Macular cube^ - 96.0* 

^
 Macular cube scan: 512×128 (6×6 mm) 

* All values relate to Area 1 of the ETDRS plot (Figure 2.6) 
α  All values relate to the mean of the macular scan area 
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1.3.1.3.4.2 The contribution of intrinsic and external factors on OCT retinal thickness measurements 

1.3.1.3.4.2.1 Age 

Song et al. (2010) investigated the relationship between age and macular thickness with the 

Cirrus HD-OCT in 198 healthy subjects (age range 17-83 years).  Results demonstrated an 

overall decrease in macular thickness and volume with increasing age, except in the central 

foveal subfield (ETDRS area 1) (Song et al., 2010).  These results concur with those by 

Manassakorn et al. (2008) who found a significant negative correlation between macular 

thickness and age in all ETDRS areas except the centre (Manassakorn et al., 2008).  Eirksson 

and Alm (2009), also reported a significant negative correlation between macular thickness and 

age for all ETDRS areas (Eriksson and Alm, 2009).  Histological retinal studies similarly show 

a decrease in the density of photoreceptors, ganglion cells, and RPE cells with age (Gao and 

Hollyfield, 1992; Panda-Jonas, Jonas and Jackobczyk-Zmija, 1995).  
 

In contrast, a number of other OCT studies have reported the absence of any significant 

relationship between retinal thickness and age (Gobel, Hartmann and Haigis, 2001; Massin et 

al., 2002; Wakitani et al., 2003; Wong, Chan and Hui, 2005; Chan et al., 2006; Lam et al., 

2007; Sull et al., 2010).  However, these studies either contained small sample sizes or failed to 

control for confounding factors, which may have masked any relationship between retinal 

thickness and age.  Additionally, the study carried out by Lam et al. (2007) utilised the Stratus 

OCT, which generates a macular thickness map from only six linear line scans over 360°. 

Results therefore require interpolations to generate thickness estimations for the spaces, which 

could mask areas of retinal thickening or thinning, leading to inaccurate results.  

 
1.3.1.3.4.2.2 Axial Length / Refractive error 

Histopathological studies have demonstrated that axial myopia is associated with increased 

scleral and retinal thinning (Yanoff and Fine, 1982).  This increased thinning is believed to be 

caused by stretching beyond normal ocular dimensions and is secondary to elongation of the 

globe. In a recent study investigating the correlation between AL and macular thickness, 

average outer macular thickness, overall macular thickness and overall macular volume were 

seen to decrease as AL increased (Song et al., 2010).  However, there was no such relationship 

between AL and central foveal thickness.  These results confirm findings by Lam et al. (2007) 

who observed a significant negative correlation between total macular thickness and AL, and a 

positive correlation between central foveal thickness and AL.  This positive correlation was 

also noted by Lim et al. (2005), but was attributed to poor fixation in highly myopic eyes. 
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Conversely, Lam et al. (2007) suggested this increase in central foveal thickness in myopia 

could be due to photoreceptor outer segment elongation or early vitreoretinal traction.  

 

Earlier studies investigating the relationship between AL and macular thickness utilised first 

and second generation OCT instruments.  The majority of these studies identified no 

association between macular thickness and AL of the eye, or myopia (Wakitani et al., 2003; 

Lim et al., 2005). This lack of association could stem from lack of control of possible 

confounding factors including patient age and gender. Additionally, the relatively low scanning 

resolution and sampling density of earlier instruments is likely to impact on the accuracy of 

averaged thickness measures. However, Wakitani et al. (2003) suggest no association was 

found in their study due to exclusion of eyes with pathological myopia, which have a greater 

tendency to exhibit decreased thickness (Yanoff and Fine, 1982).   

 

It has been proposed that the periphery, rather than the central retina, is thinner in myopic eyes 

due to reduced resistance of the peripheral retina to traction and stretch (Wakitani et al., 2003).  

Decreased peripheral retinal thickness may compensate for the stretching force applied over the 

whole retina in order to preserve central macular thickness, which is critically important for 

visual function. Although previous studies have not reached a common consensus on the effect 

of refractive error and axial length on retinal and macular thickness, observations suggest that 

AL should be taken into consideration in the interpretation of RT values generated by OCT.  

This can be achieved by using linear regression analysis to correct raw data when a significant 

relationship is found (Wood et al., 2011).  

 

1.3.1.3.4.2.3 Ethnicity 

The most recent study to investigate the relationship between RT and ethnicity found no 

significant difference in macular thickness according to race (Sull et al., 2010). These findings 

contradict those from earlier studies which suggest there is an association between macular 

thickness and ethnicity.  Kelty et al. (2008) investigated macular thickness using the Stratus 

OCT in 83 healthy subjects.  Mean foveal thickness was discovered to be 32µm thinner in 

African-Americans compared to Caucasians, a value which reached statistical significance.  A 

number of other studies, have also reported central and inner macular thickness (according to 

the ETDRS plot) to be significantly thinner in blacks and Asians than in Caucasians 

(Asefzadeh, Cavallerano and Fisch, 2007; El-Dairi et al., 2009; Duan et al., 2010; Wagner-

Schuman et al., 2010).  
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1.3.1.3.4.2.4 Gender 

Several studies have reported findings of significantly reduced macular thickness in women, in 

comparison to men (Massin et al., 2002; Wakitani et al., 2003; Wong et al., 2005; Lam et al., 

2007; Kelty et al., 2008; Duan et al., 2010; Kashani et al., 2010; Song et al., 2010; Wagner-

Schuman et al., 2010), suggesting an influence of gender on central retinal thickness 

measurements.  A finding of reduced macular thickness in females is synonymous with 

increased risk of macular hole (Evans et al., 1998), development of which is known to begin 

with retinal thinning.  

 

1.3.1.3.4.2.5 Diurnal variation 

Few studies have investigated the effect of diurnal variation on macular thickness in healthy 

subjects using OCT.  Polito et al. (2006) investigated diurnal variation in diabetic macula 

oedema compared to healthy controls with the Stratus OCT.  All healthy subjects, along with 

diabetic patients with a baseline foveal thickness of <300µm, were found to have no significant 

variation in macular thickness throughout the day. Results concur with those by Larsen et al. 

(2005) who reported that macular thickness remains stable throughout the night in healthy 

subjects (Larsen, Wang and Sander, 2005). Conversely, diabetic patients with baseline foveal 

thickness   of   ≥300µm   were   found   to   display   a   significant   decrease   in   retinal   thickness  

throughout the day, with an average decrease of 9.4% (Polito et al., 2006).  This finding is 

consistent with results from studies performed by Danis et al. (2006), and Larsen et al. (2005).  

However, it was concluded that the diurnal reduction of retinal thickness is generally of small 

magnitude, and only occasionally achieves levels that would be considered clinically relevant 

(Danis et al., 2006).  Patients suffering from central retinal vein occlusion have also 

demonstrated decreasing levels of macula oedema throughout the course of the day (Gupta et 

al., 2009).  Changes in macular thickness throughout the day in patients with macular oedema 

are thought to be caused by postural changes (mean decrease by 20% when upright) (Polito et 

al., 2007), arterial pressure (Paques et al., 2005), and/or increased nocturnal retinal metabolism 

(Gupta et al., 2009).  

 

1.3.1.3.4.2.6 Inter-ocular differences 

No significant difference in central retinal thickness has been noted between eyes (Massin et 

al., 2002; Kelty et al., 2008; Wolf-Schnurrbusch et al., 2009; Duan et al., 2010). Similarly, 
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ocular dominance has been shown to have no significant effect on macular and retinal 

thickness (Samarawickrama et al., 2009).   

 

1.3.2 Investigating retinal function 
Impaired dark adaptation (DA) has been observed in CF subjects with VAD (Fulton et al., 

1982; Neugebauer et al., 1989; Rayner et al., 1989; Evans, 2009) and with CFRD (Evans, 

2009).   However,   DA   was   significantly   worse   in   ΔF508   homozygotes   compared   to  

heterozygotes suggesting function is similarly affected by genotype (Evans, 2009).  Therefore, 

it remains unclear if impaired DA in CF subjects can be considered secondary to VAD or 

CFRD, or if it is actually a primary manifestation of the disease directly related to CFTR 

dysfunction.  

 

It is well documented that DA is adversely affected in type 1 and type 2 diabetes. Specifically, 

there have been reports of slowed DA and an elevated final threshold, even in the absence of 

DR (Henson and North, 1979; Arden et al., 1998; Arden et al., 2005; Holfort et al., 2010). It 

has been postulated that DA is impaired in type 1 and type 2 diabetes due to increased levels of 

retinal hypoxia associated with micro vascular abnormalities (Arden et al., 1998; Drasdo et al., 

2002), and oxygen inhalation in diabetic subjects has demonstrated temporary normalisation of 

DA thresholds (Kurtenbach et al., 2006). Repeating oxygen inhalation studies in CF subjects 

with and without CFRD should further understanding of the aetiology of impaired DA in CF. 

An absence of improvement in DA with oxygen inhalation in CF subjects would provide 

support for the hypothesis that impaired DA is a primary manifestation of the disease. 

 

The following section discusses current knowledge on retinal haemodynamics, retinal oxygen 

consumption and the processes involved in dark adaptation.  

 

1.3.2.1 Retinal haemodynamics 
The retina is one of the most metabolically active tissues in the body, consuming oxygen more 

rapidly than the brain (Ames, 1992). The human retina is supplied by two sources: the central 

retinal artery (CRA) and the choroidal blood vessels, both of which originate from the 

ophthalmic artery (Figure 1.25).  
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Figure 1.25 The retinal and choroidal blood supply. Image from Anand-Apte and Hollyfield 

(2009)   

 

The inner retina is supplied by the CRA which receives 20-30% of the total ocular blood flow 

(Kolb, 1995) and enters the eye at the optic nerve head where it divides into two major 

branches. These branches in turn divide into arterioles (superior, inferior, nasal and temporal) 

which extend away from the optic disc to supply separate areas of the retina (Figure 1.26). 
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` 
Figure 1.26 The retinal blood supply showing the superior temporal (ST), superior nasal (SN), 

inferior temporal (IT) and inferior nasal (IN) arcades.  

 

The larger retinal arteries lie in the retinal nerve fibre layer, just beneath the internal limiting 

membrane. Retinal arterioles give rise to a plexus of capillaries which form an interconnecting 

network: the first capillary layer is located in the retinal nerve fibre layer and ganglion cell 

layer, whilst the second capillary layer extends down to the inner nuclear layer (Figure 1.27) 

(Pournaras et al., 2008). 

 

 

 

IT 
IN 
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Figure 1.27 Retinal and choroidal blood supply to the various retinal layers. Image from 

Anand-Apte and Hollyfield (2009)   

 

The retinal vasculature has a relatively low blood flow rate and a high oxygen extraction ratio, 

resulting in a high arteriovenous oxygen saturation difference and a low venous oxygen tension 

(Hickam, Sieker and Frayser, 1959; Lange and Bainbridge, 2012).  

 

The choroid receives 65-85% of ocular blood flow (Kolb, 1995) and is vital for the 

maintenance of the avascular outer retinal layers, particularly the photoreceptors. It has the 

highest perfusion rate of any vascular bed within the human body, reflecting the high metabolic 

activity of the photoreceptors (Maleki et al., 2011). The vascular bed of the choriocapillaries 

lies adjacent   to  Bruch’s  membrane  and   is   supplied  primarily  by   the   long  and   short  posterior  

ciliary arteries (both of which are branches of the ophthalmic artery), with minor contribution 

from the anterior ciliary arteries. Each posterior ciliary artery supplies a localised region of the 

choroid by breaking up into fan-shaped lobules of capillaries (Hayreh, 1975). The choroidal 

circulation has a very low rate of oxygen extraction resulting in a low arteriovenous oxygen 

saturation difference and a high venous oxygen tension (Alm and Bill, 1972; Lange and 

Bainbridge, 2012). Choroidal blood is thought to be drained exclusively through the vortex 

veins (Ruskell, 1997) 
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1.3.2.1.1 Retinal Oxygen Consumption  

The retinal oxygen distribution varies across the retina in accordance with the retinal cell class 

and their associated level of metabolic activity (Figure 1.28).  The highest oxygen tension is 

found in the choroid, and the lowest at the level of the photoreceptor inner segments, reflecting 

the high oxygen consumption rate of the tightly packed mitochrondria in this region (Cringle et 

al., 2002). Whilst the choroid has a high oxygen tension, the extraordinarily high oxygen 

demand of the photoreceptors, combined with the avascular nature of the outer retina, results in 

a substantially increased risk of these cells experiencing hypoxic episodes. This risk is further 

increased in dark adapted conditions when oxygen consumption at the inner segments is at its 

highest in order to produce the ATP necessary to maintain the dark current. Oxygen tension 

has been shown to drop to to 0 mmHg at the outer nuclear layer in rats in dark adapted 

conditions (Kimble, Svoboda and Ostroy, 1980; Linsenmeier, 1986; Lange and Bainbridge, 

2012).  

 

Studies show that the choroid contributes approximately 90% of the oxygen consumed by the 

photoreceptors in the darkness, and all of the oxygen consumed during light adaptation 

(Linsenmeier and Braun, 1992). In order to maintain sufficient oxygenation , the outer retina 

may increase oxygen utilisation from the deep retinal capillaries (Caprara and Grimm, 2012), 

suggesting a dynamic regulation of the outer retinal oxygen supply.  
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Figure 1.28 Oxygen distribution throughout the retina. (A) Schematic representation of the rat 

retina. Red circles represent blood vessels, blue arrows show the direction of oxygen diffusion.  

(B) Intraretinal oxygen distribution profile of a rat retina in light and dark adapted conditions. 

Image from Caprara and Grimm (2012). Key: ch, choroid; RPE, retinal pigment epithelium; os, outer 

segments; is, innger segments; ONL, outer nerve fibre layer; OPL, outer plexiform layer; INL inner nuclear layer; 

IPL, inner plexiform layer; GCL, ganglion cell layer; NFL, nerve fibre layer.  

 
1.3.2.1.2 Autoregulation 

Autoregulation describes the ability of the blood vessels to control the level of blood flow in 

accordance with the metabolic demands of the tissue through release of local factors including 

nitric oxide and endothelin, to modulate the tone of the vessels (Pournaras et al., 2008).  Local 

factors may be either ionic or molecular, or related to arterial blood gas modifications, and 

released by the vascular endothelium and/or neural tissue surrounding the vessels (Pournaras et 

al., 2008). Autoregulation is achieved by compensatory changes in artierial and arteriolar 

diameter, a response which also serves to protect microvasculature from blood-pressure 

induced damage (Justesen et al., 2010).  

 

With the potential influence of the autonomic innervation excluded (Ye, Laties and Stone, 

1990), and the contribution of hormones and neurotransmitters negligible due to the blood-

retinal barrier (Delaey and Van De Voorde, 2000), the retinal vasculature is believed to have 

well-developed, intrinsic autoregulatory mechanisms (Flammer and Mozaffarieh, 2008). 
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Hyperoxia (increased partial pressure of oxygen (PaO2) in arterial blood), achieved through the 

inhalation of 100% oxygen has been shown to result in retinal vasoconstriction in healthy 

subjects (Hickam and Sieker, 1960; Riva et al., 1983b; Grunwald et al., 1984a; Jean-Louis, 

Lovasik and Kergoat, 2005; Gilmore et al., 2007a; Gilmore et al., 2007b). Conversely, 

hypercapnia (increased partial pressure of carbon dioxide (PaCO2)) and hypoxia (decreased 

PaO2) induce vasodilation of the retinal arterioles causing an increase in retinal blood flow 

(Pournaras, Tsacopoulos and Chapuis, 1978; Venkataraman et al., 2006). It is thought that the 

autoregulatory abilities of the retinal blood supply compensate for the increased oxygen 

demand in dark adapted conditions in healthy subjects (Caprara and Grimm, 2012).  

 

The choroidal circulation is controlled by autonomic innervation, with blood flow mediated by 

activation of sympathetic and parasympathetic innervation of the smooth muscle cells 

(Kawarai and Koss, 1998; Kur, Newman and Chan-Ling, 2012). Human choroidal vasculature 

has demonstrated little reactivity to changes in PaO2 (Schmetterer et al., 1995; Geiser et al., 

2000), and its autoregulatory capacity is thought to be negligible (Wangsa-Wirawan and 

Linsenmeier, 2003).   

 

1.3.2.1.2.1 Retinal effects of hyperoxia  

An increase in PaO2 through inhalation of 100% O2 has consistently shown to induce 

vasoconstriction of retinal vessels in humans (Grunwald et al., 1984b; Fallon, Maxwell and 

Kohner, 1985; Sponsel, DePaul and Zetlan, 1992; Langhans, Michelson and Groh, 1997; Kiss 

et al., 2002; Werkmeister et al., 2012), with the effect most marked in the inner retinal 

arterioles (Jean-Louis et al., 2005). These findings suggest that arterioles are the main site of 

the autoregulatory response (Riva, Grunwald and Sinclair, 1983b; Kiss et al., 2002). Venular 

and arterial constriction have been reported in the range of 11-14.9%, and 9.2-14.9%, 

respectively (Hickam, Frayser and Ross, 1963; Riva et al., 1983b; Kiss et al., 2002; Jean-Louis 

et al., 2005). 

 

All vasoconstriction induced by hyperoxia has been shown to occur within the first five 

minutes of onset of inhalation and was negatively correlated with baseline vessel diameter 

(Kiss et al., 2002). These findings support the notion that the small pre-capillary arterioles and 

small post-capillary venules play a key role in the increase in vascular resistance during 

hyperoxia (Kiss et al., 2002). Vasoconstriction in response to hyperoxia serves to maintain 

retinal PaO2 at a constant level (Pournaras et al., 1989). As the retinal oxygen tension gradient 
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from the choroid is much steeper during hyperoxia following inhalation, a greater portion of 

the  retina’s  demands  can  be  supplied  via  the  choroid  during  hyperoxia,  compared  to  periods of 

normoxia (Wangsa-Wirawan and Linsenmeier, 2003).  

 

1.3.2.1.3 Effect of illumination on ocular haemodynamics 
1.3.2.1.3.1 Retina 

Elevation of oxygen consumption by photoreceptors in the dark compared to light has been 

established in animal models both in vitro (Zuckerman and Weiter, 1980; Haugh-Scheidt, 

Linsenmeier and Griff, 1995) and in vivo (Linsenmeier, 1986; Linsenmeier and Braun, 1992; 

Birol et al., 2007).  Given the autoregulatory ability of the retinal blood supply, changes in 

retinal haemodynamics would be expected to meet any increased oxygen demand that results 

during dark adaptation.  

 

Retinal haemodynamic studies investigating the effect of illumination have previously utilised 

a range of techniques, including measurements of blood velocity in the main retinal arteries, 

retinal vessel diameter and tissue oxygen saturation. Measurement of blood velocity and vessel 

diameter by laser Doppler flowmetry in two studies have shown an increase in retinal blood 

flow of 40-70% upon transition from light to dark conditions (Feke et al., 1983; Riva, 

Grunwald and Petrig, 1983a). This active haemodynamic response has been attributed to an 

increase in blood flow velocity rather than to a change in retinal vessel diameter. Observations 

by Havelius and colleagues, that systolic and diastolic blood flow velocities in the CRA were 

markedly increased in dark conditions, support this view (Havelius et al., 1999).  However, 

these results are inconsistent with findings from a more recent study utilising laser Doppler 

velocimetry, which demonstrated only a transient rise in blood flow (Hardarson et al., 2009) 

suggesting that earlier observations may have been a consequence of the transition from light 

itself, rather than the effect of darkness (Riva, Petrig and Grunwald, 1987; Hardarson et al., 

2009).  

 
1.3.2.1.3.2 Choroid 

Recent investigations have shown that transition from light to dark in humans is associated 

with a considerable decrease in choroidal blood flow of up to 15% (Longo, Geiser and Riva, 

2000; Fuchsjager-Mayrl et al., 2001; Fuchsjager-Mayrl et al., 2003), with the reduction 

reported in both eyes when only one was subjected to dark adaptation (Fuchsjager-Mayrl et al., 

2001). The change in choroidal blood flow was attributed to local vasoconstriction of the 
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choriocapillaris (Longo et al., 2000). It is unlikely that this change in choroidal blood flow 

during dark adaptation is secondary to increased oxygen consumption in the outer retina as 

choroidal circulation has been shown to be insensitive to PaO2 changes (Geiser et al., 2000), 

and no change would be observed in the contralateral eye. In addition, increased oxygen 

consumption in the dark by photoreceptors would be expected to lead to an increase in 

choroidal blood flow, rather than the decrease observed. Furthermore, a change in oxygen 

consumption of the photoreceptors would only occur in the stimulated eye (Kur et al., 2012). 

The contralateral eye response to light stimulation suggests a neuronal mechanism is involved. 

This theory supports previous findings  which indicate that the choroid is under tight neural 

control (Kiel, 1999).  This neural circuit, which is believed to mediate this response, has not 

been identified in humans to date (Longo et al., 2000).  

 
1.3.2.1.4 Retinal changes and blood flow in diabetes 

Retinal diabetic pathophysiology involves pericyte loss (Ejaz et al., 2008), vascular leakage, 

retinal vessel angiogenesis, changes to inner and outer retinal neurones, and alteration to the 

structure and function of glial cells (Rungger-Brandle, Dosso and Leuenberger, 2000; Phipps et 

al., 2006). Whether or not retinal blood flow differs in diabetic patients compared to healthy 

controls remains controversial, with observations appearing contradictory (for a thorough 

review see Pournaras et al. (2008) and Clermont and Bursell (2007)). However, the 

combination of vascular wall damage and impaired rheological blood properties suggest that 

regulation of retinal blood flow would be affected in diabetes (Pournaras et al., 2008).  

 

Blood flow speeds in retinal arteries of type 1 diabetic patients have been found to be 

significantly slower compared to healthy subjects, even before the clinical appearance of 

diabetic retinopathy (Arend et al., 1991; Feke et al., 1994; Bursell et al., 1996). Konno et al. 

(1994) found arterial blood flow speeds reduced with increasing duration of diabetes, a finding 

which is consistent with previous studies (Rimmer, Fallon and Kohner, 1989; Feke et al., 

1994). This decrease in blood flow is an effect of increasing resistance in the retinal vascular 

network with increasing duration of diabetes. This is in line with findings of abnormal 

synthesis or action of vasodilators, and increased expression and action of vasoconstrictors, 

resulting in a net vasoconstrictory effect in early diabetes (Clermont and Bursell, 2007).  

 

As retinopathy progresses and becomes more severe, retinal blood flow in major arteries ceases 

to decrease and begins to increase (Konno et al., 1996).  It is suggested that this increase 
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represents a decrease in the resistance to blood flow secondary to the development of 

anastomoses (Konno et al., 1996), a hypothesis which is supported by histological findings 

(Cogan and Kuwabara, 1963). Chronic hyperglycaemia in diabetes is associated with decreased 

total retinal blood flow, even in the absence of diabetic retinopathy (Bursell et al., 1996). 

However, as the disease progresses, bulk retinal blood flow is generally above normal, as 

confirmed by laser Doppler flowmetry and video fluorescein angiography (Grunwald et al., 

1993). 

 

1.3.2.1.4.1 Retinal oxygenation in diabetes 

Diabetes causes a series of circulatory/vascular changes throughout the body including: 

stiffening of red blood cell walls which reduces the ease of transport through capillaries, and 

vessel basement membrane thickening (Arden et al., 2005). Additionally, within the retina, 

retinal capillaries show loss of pericytes and endothelial cells, changes which are expected to 

impair the quality of retinal perfusion (Trick and Berkowitz, 2005). These changes are 

hypothesised to result in a reduction in the retinal oxygen supply. In diabetic cats, inner retinal 

oxygen tension is reduced by half even in the absence of capillary dropout (Linsenmeier et al., 

1998), and in rat models of diabetes, hypoxia is evident via magnetic resonance imaging 

oximetry (Trick and Berkowitz, 2005). Similarly, in humans with diabetes, oxygen tension in 

the mid vitreous (which is believed to mirror oxygenation of the inner retina) (Wangsa-

Wirawan and Linsenmeier, 2003) is reduced, as measured using an optical oxygen probe 

(Lange et al., 2011) 

 

There are various lines of evidence to suggest rod-driven hypoxia triggers the development of 

diabetic retinopathy (DR). DR does not occur in patients with diabetes and retinitis 

pigmentosa, where rod outer segments are reduced (Arden 2001). DR is often successfully 

treated with pan-retinal photocoagulation, which is believed to work by destroying rods and 

consequently reducing the retinal oxygen demand (Yu and Cringle, 2001). Furthermore, some 

studies show that oxygen inhalation can reverse early functional deficits including impaired 

colour vision (Dean, Arden and Dornhorst, 1997), dark adaptation (Drasdo et al., 2002; 

Kurtenbach et al., 2006) and contrast sensitivity (Harris et al., 1996), along with reducing 

macular oedema (Nguyen et al., 2004) . It is hypothesised that these deficits are secondary to 

relative retinal oxygen desaturation caused by abnormal retinal perfusion and ischaemia, which 

is seen in early diabetes.  

 



                                       Chapter 1:  Introduction 

 98   

1.3.2.1.4.2 Autoregulation in diabetes  

It is understood that diabetes impairs retinal autoregulation (Ciulla et al., 2002). Previous 

studies have shown a reduction in the autoregulatory constriction response of the retinal 

arteries and veins in diabetics following inhalation of 100% oxygen, even in those with no DR 

(Hickam and Sieker, 1960; Grunwald et al., 1984a). One of the earliest defects in diabetes is 

the loss of perictyes (Ansari et al., 1998) which regulate retinal vascular tone (Shepro and 

Morel, 1993).  Damage to these cells causes disruption to retinal haemodynamics (Ciulla et al., 

2002). Diabetic patients have been shown to suffer from impaired autoregulatory capacity in 

proportion with the disease severity (Ciulla et al., 2002). Subjects with proliferative retinopathy 

showed a 24% reduction in retinal vessel bulk upon inhalation of oxygen compared to those 

with background retinopathy who had a 38% reduction (Grunwald et al., 1984a). Magnetic 

resonance imaging retinal oximetry has demonstrated that patients with diabetes show an 

exaggerated rise in retinal PaO2 following exposure to hyperoxia, suggesting abnormal retinal 

autoregulation (Trick et al., 2006).  

 

1.3.2.1.4.3 Retinal effects of hyperoxia in diabetes  

Numerous studies show that the arteriolar vasoconstrictor response to breathing 100% oxygen 

is reduced in patients with type 1 diabetes compared to non-diabetic controls (Hickam and 

Sieker, 1960; Grunwald et al., 1984b; Justesen et al., 2010). Reduced arterial constriction in 

response to hypoxia indicates defective reactivity of retinal arterioles in diabetes. The 

mechanism that causes reduced artieriolar reactivity to hyperoxia is not yet fully understood. 

However, is has been suggested that hyperglycaemia may play a role in the impaired response 

to hyperoxia in diabetes (Justesen et al., 2010) following the finding that induced 

hyperglycaemia reduced vasoconstriction in response to hyperoxia in non-diabetic subjects 

(Gilmore et al., 2008). 

  

In contrast, venules appear to show no significant response to hyperoxia (Hickam and Sieker, 

1960; Justesen et al., 2010), except in those subjects with retinopathy or with co-existing 

hypertension, in which case vasoconstriction was observed (Hickam and Sieker, 1960).   

 
1.3.2.1.4.4 Retinal effects of hyperglycaemia  

Hyperglycaemia mediates endothelial cell dysfunction, and thus affects vascular reactivity, 

causing impairment in vasodilation. Increased extracellular glucose concentrations in 

hyperglycaemia leads to an increase in the intracellular glucose concentration and the 
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metabolic rate. This increase in intracellular glucose may initiate abnormalities including 

increased oxygen consumption (Clermont and Bursell, 2007).  

 

Previous studies have demonstrated increased retinal blood flow during hyperglycaemia in 

diabetes through examination by Doppler velocimetry and video fluorescein angiography 

(Grunwald et al., 1987; Bursell et al., 1996). This increase is related to the duration of diabetes, 

with those individuals with the shortest duration showing the greatest increase, hence 

demonstrating  retained autoregulatory capacity, whilst those with the longest duration lacked 

this ability (Tiedeman et al., 1998). Further research by Tiedeman et al. (1998), provided 

substantial evidence that increased blood flow during acute hyperglycaemia is related to 

increased retinal oxygen consumption.  

 

Other studies examining the retinal vascular response to hyperglycaemia report no change in 

the retinal blood flow (Fallon et al., 1987; Gilmore et al., 2007b). The disparity in these results 

may be partly attributed to the various methods used to measure retinal haemodynamics, the 

varying glycaemic control of participants, and the various methods used to induce 

hyperglycaemia. Furthermore, the lack of blood flow response to hyperglycaemia in diabetic 

patients in these studies may be explained by a loss of vascular reactivity (Gilmore et al., 

2007b).  

 

1.3.2.2 Dark adaptation  
As discussed in section 1.2.8.3.2, the human visual system is able to function over a wide range 

of light intensities, covering more than 10log10 units, by means of light and dark adaptation 

(DA). Light adaptation occurs extremely rapidly, allowing individuals to adjust to different 

levels of illumination within a few seconds. However, this relationship breaks down upon 

entering the dark following exposure to an intense light source which   ‘bleaches’   a   large  

proportion of visual photopigment. The process by which the eye recovers visual sensitivity 

following  this  exposure  is  known  as  ‘dark  adaptation’ and typically takes 30-40 minutes.  

 

1.3.2.2.1 The retinoid cycle 

Recovery of visual sensitivity following exposure to an intense light is associated with the 

‘retinoid   cycle’   of   visual   pigment   regeneration   (Lamb and Pugh, 2004). The retinoid cycle 

refers to the biochemical processes involved in removing the products of light absorption from 
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the photoreceptors and the regeneration of visual photopigments. Figure 1.29 and Table 1.16 

summarise the sequence of events involved in the retinoid cycle. 

 

 
Figure 1.29 The retinoid cycle of vision. Numbers relate to the different steps involved in the 

retinoid cycle as outlined in Table 3.1. Image adapted from Lamb and Pugh (2004). Key: Rh = 

rhodopsin; RAL = retinal; ROL = retinol; IRBP = interphotoreceptor retinol binding protein; CRBP = cellular 

retinol binding protein; LRAT = lecithin retinol acyl transferase; CRALBP = cellular retinaldehyde-binding 

protein; RGR = retinal G-protein coupled receptor; OS = outer segment; IPM = inter-photoreceptor matrix; RPE = 

retinal pigment epithelium 
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Table 1.16 Steps of the retinoid cycle. Adapted from Lamb and Pugh (2004) 
Step Process  Enzyme  Chaperone protein  

1 Photoactivation of photopigment   

2 Opsin protein re-arrangement  Opsin (metarhodopsin) 

3 
Hydrolysis of the covalent bond between 

all-trans retinal and opsin 
 Opsin (metarhodopsin) 

4 Reduction of the retinal aldehyde RDH Opsin (Ops-trans RAL) 

5 Release of all-trans retinol  Opsin (Ops-trans RAL) 

6 Flippase ABCR  

7 Transport across the IPM and RPE  
 IRBP 

CRBP 

8 Esterification LRAT CRBP 

9 Isomerisation Isomerase RPE65 

10 Oxidation of the alcohol cis RDH  

11 Transport across the RPE and IPM  
CRALBP 

IRBP 

12 
Non-covalent binding of opsin to 11-cis-

retinal to form opsin-11-cis retinal 
  

13 

Spontaneous formation of Schiff-base 

bond and conformation change to yield 

rhodopsin 

  

14 

Photoisomerisation – a subsidiary step of 

the retinoid cycle which requires light 

energy 

RGR  

Key: RDH = retinol dehydrogenase; RAL = retinal; CRALBP = cellular retinaldehyde-binding protein; IRBP = 

interphotoreceptor retinol binding protein; CRBP = cellular retinol binding protein;  LRAT = lecithin retinol acyl 

transferase; RGR = retinal G-protein coupled receptor.  

 

Photopigment molecules comprise a protein, opsin, which is covalently bound to the 

chromophore, 11-cis-retinal (Schertler, Villa and Henderson, 1993). Absorption of a photon of 

light by a photopigment molecule triggers photoisomerisation of 11-cis-retinal to its all-trans 

form and begins the cycle of bleaching and regeneration of photopigment. This reaction is the 

initial stage of phototransduction (see section 1.3.2.2.3), which leads to visual perception 

(McBee et al., 2001).  The  photopigment  protein  molecule  known  as  ‘metarhodopsin’  can  exist  

in a number of interchangeable forms (M1,M2, M3).  Metarhodopsin 1 (M1) is rapidly converted 

into metarhodopsin 2 (M2),   which   causes   a   shift   in   the   λmax
 towards the near UV range, 

resulting   in   loss  of  visual  pigment  colour,  hence  why   light   is   said   to   ‘bleach’  photopigment.  
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Once in the M2 state, rhodopsin becomes susceptible to hydrolysis, producing Opsin-all-trans 

retinal. Retinol dehydrogenase is then able to reduce the aldehyde to all-trans retinol. At this 

stage it is believed that all-trans   retinol   is   still   bound   to   opsin   at   an   ‘exit   site’   (Heck et al., 

2003; Schadel et al., 2003). Evidence suggests that all-trans retinol can only be released from 

opsin once the entrance site is again occupied by 11-cis-retinal (Schadel et al., 2003).  

 

Once released, all-trans-retinol is chaperoned across the inter-photoreceptor matrix (IPM) by 

interphotoreceptor retinol binding protein (IRBP) (Qtaishat, Wiggert and Pepperberg, 1999), 

one of the most abundant proteins in the photoreceptor/RPE layers (Liou, Geng and Baehr, 

1991). All-trans-retinol is then chaperoned by cellular retinol binding protein (CRBP) within 

the RPE, and undergoes esterification by lecithin retinol acyl transferase (LRAT) to form 

retinyl esters (Trehan, Canada and Rando, 1990). A steady supply of fatty acid is essential for 

this esterification reaction (Lamb and Pugh, 2004). All-trans-retinol ester, formed by LRAT, is 

chaperoned by RPE65 (Gollapalli, Maiti and Rando, 2003; Mata et al., 2004), a protein which 

is essential for the production of 11-cis-retinal (Redmond et al., 1998). Isomerisation of the 

retinyl ester by isomerohydrolase produces 11-cis-retinol which then inhibits further acitivity 

of isomerohydrolase (Gollapalli and Rando, 2003). Oxidation of 11-cis-retinol by 11-cis retinol 

dehydrogenase (RDH) is the final step in the production of the 11-cis-retinal chromophore. 

Studies suggest that IRBP is then able to facilitate the release of 11-cis-retinal from the RPE 

and chaperone it across the IPM (Carlson and Bok, 1992; Edwards and Adler, 2000). No 

chaperone molecule for 11-cis-retinal has been identified within the photoreceptor outer 

segments (OS), therefore 11-cis-retinal is believed to move unchaperoned through the water 

space to reach rod discs where the opsin is bound (Lamb and Pugh, 2004). Opsin and 11-cis-

retinal spontaneously recombine (de Grip, Daemen and Bonting, 1972),   at   opsins   ‘entrance  

site’   (Schadel et al., 2003) before a Schiff base bond is formed between the two, causing 

transformation to reform rhodopsin.  

 
1.3.2.2.2 The iodopsin visual cycle  

Whilst light exposure bleaches rod and cone pigment at equal rates (Harosi, 1975), their 

quantum efficiency is identical (Dartnall, 1972), and their excitation coefficients are very 

similar (Shichida et al., 1994), cone recovery is much more rapid in comparison to rods (3-4 

minutes versus 30 minutes, respectively) (Hecht, Haig and Chase, 1937; Wang and Kefalov, 

2011). As pigment regeneration is essential for the restoration of dark adapted sensitivity, these 

differences in recovery times between cones and rods suggest that cone photopigment is 
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regenerated substantially faster than that of rods. Pigment regeneration is rate-limited by the 

supply of 11-cis-retinal to the photoreceptors (Lamb and Pugh, 2004), therefore, rapid cone 

recovery suggests chromophore is supplied significantly faster to cones than rods, possibly by 

a different, cone-specific retinoid cycle (Wang and Kefalov, 2011).   

 

1.3.2.2.2.1 The Müller cell hypothesis 

There is increasing evidence of an alternate processing pathway for the regeneration of cone 

photopigment, separate to the RPE (Wang and Kefalov, 2009; Wang and Kefalov, 2011). The 

expression of retinoid binding proteins CRBP and CRALBP within Müller cells, allowing the 

conversion of all-trans retinol to 11-cis-retinol within the retina, suggests Müller cells might be 

involved in a separate chromophore processing pathway (Bok, Ong and Chytil, 1984; 

Eisenfeld, Bint-Milam and Saari, 1985; Mata et al., 2002). In further studies, only cone cells 

have demonstrated ability to regenerate pigment by oxidation of 11-cis-retinol to 11-cis-retinal, 

suggesting the Müller cell pathway is only available to cones, and not rods (Wang and Kefalov, 

2009; Wang and Kefalov, 2011).  

 

A summary of the cone-specific visual pathway based upon current knowledge is shown in 

Figure 1.30. Following photolysis, all-trans retinal is reduced to all-trans retinol within the 

cone outer segment. All-trans retinol is then transported across the IPM to Müller cells, 

possibly chaperoned by IRBP (Jin et al., 2009; Parker et al., 2009). Once within the Müller 

cells, all-trans retinol is chaperoned by CRBP and undergoes isomerisation to 11-cis-retinol 

(Mata et al., 2002). 11-cis-retinol is then transported to the cone inner segment (Parker et al., 

2009), where it can then move freely to the outer segment, where oxidisation to 11-cis-retinal 

completes pigment regeneration (Mata et al., 2002; Miyazono et al., 2008).  This additional 

pathway for cone photopigment regeneration facilitates rapid photopigment regeneration 

during photopic conditions.  
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Figure 1.30 The cone-specific retinoid cycle. Image adapted from Wang and Kefalov (2011) 
Key: Rh = rhodopsin; RAL = retinal; ROL = retinol; IRBP = interphotoreceptor retinol binding protein; OS = 

outer segment; IS = inner segment; IPM = inter-photoreceptor matrix; RDH = retinol dehydrogenase) 
 

1.3.2.2.3 Phototransduction 

In dark adapted conditions, cyclic guanosine monophosphate (cGMP) binds to and holds open 

light sensitive ion channels found in the plasma membrane of outer semgments, allowing 

influx of Na+ and Ca+  ions from the extracellular matrix, down the electrochemical gradient 

(Figure 1.31) (Baylor, Lamb and Yau, 1979; Fesenko, Kolesnikov and Lyubarsky, 1985; Lamb 

and Pugh, 2006).  This  inward  current,  known  as  “dark  current”,  causes  partial  depolarisation  of  

the photoreceptor, and triggers the release of the neurotransmitter glutamate from their synaptic 

terminals, to second order neurones in the retina (i.e. bipolar and horizontal cells). Complete 

depolarisation is prevented by a Ca2+/K+ ion exchanger in the outer segment, pumping Ca2+ and 

K+ out and Na+ in along the concentration gradient (Bauer, 2002).  
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When exposed to light, cGMP levels drop, causing closure of cation channels in the 

photoreceptor outer segments, leading to photoreceptor hyperpolarisation. The extent of 

hyperpolarisation is proportional to the intensity of retinal illumination, and leads to a graded 

reduction in the release of glutamate.  

 
Figure 1.31 Ion circulation across a rod photoreceptor. In the dark (a), cGMP gated channels 

are open, allowing Na+ and Ca2+ influx and cell membrane depolarisation. The Na+/Ca2+ 

exchanger maintains Ca2+ balance, and the Na+/K+ ATP driven exchanger maintains Na+ 

balance. In light (b), a proportion of cGMP channels close, resulting in hyperpolarisation, since 

the Na+/K+ pump continues to operate. Hyperpolarisation causes a proportional decrease in 

glutamate release. Image adapted from Smith (2006). 
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Phototransduction refers to the process by which light is converted into electrical neural signals 

within the outer segment of a rod or cone photoreceptor (Wang and Kefalov, 2011). The 

process of phototransudction can be summarised in 5 steps (Figure 1.32). Upon absorption of a 

photon of light by rhodopsin, isomerisation of the 11-cis-retinal chromophore occurs, 

converting rhodopsin to its active form, metarhodopsin II (R*) (step 1). R* is then able to 

transiently bind to and activate the G-protein transducing to G-GTP, which is found at the 

surface of the rhodopsin outer segment disc membrane, before dissociation occurs (step 2). R* 

is not altered in any way by this interaction, so whilst it remains active it is able to repeat this 

process indefinitely. Activated tranducin (G*) in turn activates the phosphodiesterase enzyme 

(PDE) (step 3), which catalyses hydrolysis of the intracellular messenger cGMP, and results in 

a subsequent drop in cGMP concentration (step 4). This reduced concentration causes cGMP to 

unbind   from   the   ion   channels   within   the   cell’s   plasma  membrane   (Yau, 1994), resulting in 

channel closure and causing a reduction in the circulating current and a consequent 

hyperpolarisation (step 5). As a result, glutamate release is reduced, thus converting the light 

signal to postsynaptic neurons as an electrical signal (Yau and Hardie, 2009). 

 

In order to maintain responsiveness, the phototransduction cascade must be terminated. This is 

achieved by the protein arrestin inactivating all the transduction components, and recovering 

the levels of cGMP, thereby allowing the ion channels to re-open and depolarisation to occur 

(Wang and Kefalov, 2011).  
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Figure 1.32 The phototransduction cascade.  Image from Lamb and Pugh (2006) Key: hv, photon; 

R,   rhodopsin;;  R*,   activated   rhodopsin;;  G,  G  protein;;  Gα,  G  protein  α   sub-unit; PDE, phosphodiesterase; GTP, 

guanine tri-phosphate; GDP, guanine di-phosphate; GMP, guanine mono-phosphate; cG, cyclic GMP; GC, 

guanylyl cyclase; CNGC, cyclic nucleotide-gated channels. 

 

1.3.2.2.4 Theories behind threshold elevation in dark adaptation  
1.3.2.2.4.1 The photochemical hypothesis 

The photochemical explanation of dark adaptation states that threshold following a bleaching 

light was directly proportional to the concentration of unbleached photopigment (Hecht et al., 

1937). If this theory were to be true, 50% regeneration of rhodopsin would result in 50% 

recovery of threshold. The increase in threshold predicted by this method dramatically 

underestimates the threshold elevation measured during dark adaptation, and the theory was 

later disproved with retinal densitometry results showing that when 90% rhodopsin was 

regenerated, threshold was still elevated by three log units (Campbell and Rushton, 1955; 

Leibrock, Reuter and Lamb, 1998). 

 

Following research, it was proposed that there is a linear relationship between the log threshold 

and the concentration of bleached rhodopsin (Dowling, 1960; Rushton, 1961). This 

relationship is known as the Dowling-Ruston relationship (Equation 1).  This relationship has 

since been verified for rhodopsin (Rushton and Powell, 1972) and cone photopigment (Hollins 

and Alpern, 1973), however, it only holds true for almost total bleaches, and is incorrect for 
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small bleaches (Rushton and Powell, 1972; Pugh, 1975). In addition, the constant, a, has been 

shown to vary with bleaching intensity (Pugh, 1975). 

 

log(𝐼 𝐼⁄ ) =   𝛼𝐵      Equation 1 

 

Where It is the visual threshold at a given time, Ia is the final dark adapted threshold, α   is  a  

constant and B is the proportion of pigment bleached.  

 

1.3.2.2.4.2 The equivalent background theory 

Stiles and Crawford (1932) proposed  the  ‘equivalent  background  theory’  which  stated  that  at  

any given time during dark adaptation, the visual threshold is equivalent to that caused by 

adaptation   to   an   ‘equivalent   background’   light   .   This   theory   suggests   that   during   dark  

adaptation, the  visual  system  experiences  a  source  of  light  (the  ‘equivalent  background’)  that  is  

equivalent to a real background light (Blakemore and Rushton, 1965). During the course of 

dark   adaptation   the   equivalent   background   slowly   ‘fades   away’   as   the   threshold   decreases 

(Leibrock et al., 1998). This equivalent background is proposed to be due to the presence and 

decay of a metarhodopsin photoproduct, free-opsin (Lamb, 1981; Leibrock et al., 1998; Lamb 

and Pugh, 2004). The proposed mechanism behind threshold elevation involves the 

photoproducts   generating   ‘photon-like-fluctuations’,   causing   direct   activation   of  

phototransduction (Okada, Nakai and Ikai, 1989; Leibrock et al., 1998; Lamb and Pugh, 2004). 

The recovery time course during rod dark adaptation is therefore determined by the removal of 

free-opsin as it recombines with 11-cis retinal to regenerate rhodopsin.  

 

1.3.2.2.5 Dark adaptation in diabetes 

There is evidence of rod malfunction in diabetic subjects: diabetic subjects show subnormal 

rates of DA and higher absolute thresholds compared to healthy controls (Figure 1.33) 

(Amemiya, 1977; Henson and North, 1979; Greenstein et al., 1993; Arden et al., 1998; 

Kurtenbach et al., 2006). This is observed even in patients with little or no retinopathy 

(Greenstein et al., 1993; Kurtenbach et al., 2006). Elevation of final rod threshold is positively 

correlated with duration of diabetes (Henson and North, 1979). However, there is a wide 

spread of results, with some subjects showing significantly elevated thresholds after only a few 

years of diabetes and others showing no elevation many years after disease onset. It has been 

postulated that this variation may be due to varying levels of glycaemic control between 

individuals and variation of sensitivity across different retinal areas in each subject (Henson 
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and North, 1979). Studies also show that rod threshold is sensitive to the serum glucose level; 

patients with a lower serum glucose of around 60 mg/dl show a threshold that is approximately 

1 log cd/m2 higher that than of a subject with a serum glucose of around 150 mg/dl 

(Kurtenbach et al., 2006).  

 

 

 
Figure 1.33 Mean dark adaptation curves for diabetic and control subjects under normal 

conditions, with the shaded regions showing the 95% confidence intervals. The final rod 

threshold for diabetic subjects was significantly raised compared to controls. Image from 

Kurtenbach et al. (2006).  

 

1.3.2.2.5.1 Effect of oxygen inhalation on dark adaptation  

It has been hypothesised that rod-driven hypoxia, present at the inner photoreceptor level 

during DA, is responsible for the development and progression of diabetic retinopathy. This 

hypothesis is supported by the absence of diabetic retinopathy in retinitis pigmentosa (Arden, 

2001), by the efficacy of pan-retinal photocoagulation, which reduces the retinal oxygen 

demand, and increases available retinal PaO2, and by the reduction in progression of DR seen 

when dark adaptation is prevented by implementation of light therapy (Arden et al., 2010; 

Arden et al., 2011). Retinal hypoxia in diabetes is hypothesised to result from both 
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abnormalities in oxygen delivery secondary to altered retinal blood flow, and from decreased 

oxygen release from haemoglobin (Ditzel, 1972; Greenstein et al., 1993).   

 

Kurtenbach et al. (2006), examined the effect of 100% oxygen inhalation on dark adaptation in 

12 Type 1 diabetic subjects with no or mild retinopathy. Whilst the final rod sensitivity was 

unaffected by 100% oxygen breathing in healthy controls, there was a significant improvement 

in diabetic subjects, with recovery of the rod threshold to within the normal range (Figure 

1.34). Whilst this change in sensitivity only occurred in 6 of the 12 patients examined, in 

general it occurred in those with the lowest rod sensitivities. These result support the 

hypothesis that the retina becomes hypoxic early in diabetes due to the large energy 

requirements of rods in their dark adapted state (Kurtenbach et al., 2006). This hypoxia, along 

with oxidative stress (Brownlee, 2005), is believed to contribute to the development of DR 

(Curtis, Gardiner and Stitt, 2009) through hypoxia driven up-regulation of vascular endothelial 

growth factor (VEGF) (Arden et al., 2011). 

 

Oxygen inhalation in both diabetic and healthy control subjects results in improved final cone 

thresholds (0.15 log cd/m2 and 0.27 log cd/m2, respectively). This finding is in contrast to that 

seen in the rod system in control subjects. It is suggested that the different behaviour of the two 

photoreceptor systems indicates two distinct metabolic processes (Kurtenbach et al., 2006). In 

monkeys, cones have been shown to have a volume of mitochondira that is 10 times higher 

than that of rods (Hoang et al., 2002). It is therefore proposed that under normal conditions, 

maximal metabolic rates may have been reached in rods which already use most of the oxygen 

available from the circulation (Wangsa-Wirawan and Linsenmeier, 2003), but not cones, 

allowing them to increase their sensitivity during oxygen inhalation (Kurtenbach et al., 2006). 

The cone-specific Muller-cell pathway of photopigment regeneration may also contribute to 

the sensitivity increase gained by oxygen inhalation (Kurtenbach et al., 2006), enabling a faster 

regeneration rate of 11-cis-retinal (Lamb and Pugh, 2004). The reduced response of cone 

threshold to oxygen inhalation in the diabetic subjects compared to controls may reflect 

impaired vascular reactivity to hyperoxia that has been demonstrated in diabetic subjects 

(Grunwald et al., 1984a; Justesen et al., 2010).  
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Figure 1.34 Mean dark adaptation curves for diabetic subjects during the inhalation of air and 

oxygen, with the shaded regions showing the 95% confidence intervals. The final rod threshold 

for diabetic subjects was significantly reduced on inhalation of oxygen compared to air. Image 

from Kurtenbach et al. (2006).  

 

1.4 Thesis Aims 
To date, there has been little investigation into the ocular effects of CF at a retinal level. With 

the localisation of CFTR to the apical membrane of the RPE, and the importance of Cl- 

transport for regulation of the SRS, it is hypothesized that abnormalities may be present at the 

level of the photoreceptors and RPE in CF, including increased SRS volume. Additionally, 

reduced levels of antioxidants at the macular region in CF patients, combined with increased 

levels of oxidative stress, is likely to make CF patients more susceptible to early onset age 

related changes such as AMD. Through the use of sophisticated imaging techniques such as 

Optical Coherence Tomography (OCT), the RPE can be directly observed in-vivo in order to 

investigate these theories through quantitative and qualitative analysis. If structural retinal 

differences are noted between CF patients and controls, there is potential that this difference 

could be utilised in the future as a non-invasive outcome measure to test the efficacy of new 

CF therapies.  
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Impaired DA has been observed in CF subjects with VAD and CFRD; however, DA is also 

affected by CF genotype. Therefore, it is unclear if impaired DA in CF is secondary to VAD or 

CFRD, or if it is a primary manifestation of the disease caused by CFTR dysfunction. Reduced 

DA in Type 1 and Type 2 diabetes is thought to be caused by retinal hypoxia, and oxygen 

inhalation in diabetic subjects has shown temporary improvement in DA thresholds. Repeating 

oxygen inhalation studies in CF subjects (with known vitamin A sufficiency), with and without 

CFRD will further our understanding of the cause of impaired DA in CF.  

 

Established CFRD is difficult to diagnose as glucose tolerance fluctuates with periods of 

disease exacerbation. The decision to commence treatment for CFRD is therefore difficult. The 

investigation of the effect of oxygen inhalation on DA thresholds in CF subjects with known 

diabetic status could provide support for CFRD diagnosis and management, and act as an 

indicator of the presence or absence of retinal hypoxia. 

 

Therefore, the main objectives of this thesis are: 

1. Quantitative and qualitative investigation of the retina and RPE with OCT to determine 

the primary and secondary effects of CF at a retinal level. 

2. To identify if abnormal dark adaptation in CF is a primary manifestation of the disease 

caused by CFTR dysfunction, or is secondary to VAD or CFRD, through use of oxygen 

inhalation studies on subjects with known vitamin A and diabetic status. Through 

conducting these investigations, further knowledge may be gained which could improve 

the diagnosis and management of CFRD.  
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 Development of an OCT Protocol Chapter 2
 

2.1 Introduction  
This chapter describes the development of the OCT protocol to be used in this thesis for the 

investigation of retinal structure in CF. 

 

2.2 Experimental Aims 

 Refine an OCT protocol for retinal imaging which can later be used for the quantitative 

and qualitative examination of the retina in CF patients. 

 Determine the least number of OCT scans required in order to minimise data variability 

and subject participation time. 

 Establish the intra-session and inter-session repeatability of retinal thickness measures 

using the Topcon 3D OCT-1000 for a particular operator. 

 Investigate the effect of diurnal variation on retinal thickness measures using the 

Topcon 3D OCT-1000. 

 Verify a suitable scan protocol in order to produce high resolution retinal scans which 

can be used to accurately measure the RPE/photoreceptor layer thickness. 
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2.3 Subjects 
Twenty 1  healthy Caucasian adults were recruited from School of Optometry and Vision 

Sciences, Cardiff University.  Inclusion criteria comprised: best-corrected visual acuity (VA) 

of 6/7.5 or better, age range between 18-40 years, and no known disease of the retina or visual 

pathways.  Exclusion criteria included any ocular or systemic condition known to affect retinal 

thickness and composition, pregnancy, spherical equivalent refraction (SER) exceeding 

±6.00D, media opacities, or any previous ocular trauma. 

 

Informed consent was obtained from all subjects. Ethical approval was given by the Human 

Science Research Ethics Committee, School of Optometry and Vision Sciences, Cardiff 

University.  All procedures conformed to the tenets of the Declaration of Helsinki.  

 

2.4 Methods 
2.4.1 Phase 1 - Investigating the effect of multiple OCT scans on the standard deviation of 

retinal thickness.  
Ten consecutive 256x256 (vitreous reference) scans were performed with the Topcon 3D OCT-

1000 (Topcon, Tokyo, Japan) on one randomly selected eye in five subjects (two males, three 

females, age range 22-32 years, mean age ± SD, 25.6 ± 3.78 years).  Each scan was performed 

by the same examiner with room lights extinguished and without pupillary dilation.  

 
2.4.2 Phase 2 – Investigating intra-session and inter-session repeatability and the effect of 

diurnal variation on macular thickness. 
Twenty subjects were recruited (8 males, 12 females, age range 21-34 years, mean age ± SD, 

26.6 ± 3.9 years). Each subject was required to attend on three separate occasions.   

 

Session one – Conducted on all participants between 9 and 11am.  Each patient answered 

questions regarding their age, gender, ethnic origin, personal and family general and ocular 

health. Distance vision or VA (right and left) was recorded with a LogMAR ETDRS chart 

(Precision Vision, La Salle, IL, USA) at three meters (luminance 160 candelas/meter2 (cdm2)). 

                                                 
1 Power calculations were based upon data from Sull et al. (2010) and numbers were calculated using the Altman 
Nomogram for paired t-tests 
Retinal  thickness  in  healthy  subjects  =  231  ±  16μm   
Smallest  clinical  difference  =  10μm  (Calculated  as  twice  the  axial  resolution  of  the  Topcon  3D  OCT-100) 
Standardised difference 2x10/16 = 1.25  
Subject number = 20 paired observations  
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Axial length was determined as the average of five readings using the IOLMaster (Zeiss, 

Germany) and objective refraction was determined for each eye using an auto-refractor 

(Topcon KR-7500; Topcon, Newbury, UK), and the average of three readings recorded. 

 

Three consecutive 256x256 resolution (vitreous reference) macular OCT scans were obtained 

for the right eye using the Topcon 3D-OCT 1000. Scans with quality measures below 40 were 

rejected then repeated (Ho et al., 2009).  Images with artefacts, or missing parts due to fixation 

errors or patient blinking were rejected and scans repeated.  For each scan, the ETDRS grid 

(Figure 1.15) was placed onto the scan using the automated software algorithms and average 

retinal thickness and volume was recorded for each area.  

 

Session Two - Carried out five days after session one at approximately the same time of day (± 

one hour). A single 256x256 macular OCT scan was performed on the right eye and retinal 

thickness and volume recorded.  

 

Session Three - Conducted five hours after the commencement of session two. A single 

256x256 macular OCT scan was performed on the right eye, and retinal thickness and volume 

recorded.  

 
2.4.3 Phase 3 – Determination of the optimal OCT scan type for imaging the 

RPE/photoreceptor layer 
Twelve different raster scan types were consecutively performed on one randomly selected eye 

of ten subjects (six males, four females, age range 22-40 years, mean age 27.4 ± 5.66) (Table 

2.1). For each subject, scan order was randomised and images were coded. A study group of 

four experienced observers viewed all scans and selected the two scans which most clearly 

delineated the photoreceptor and RPE layers for each patient. Scans were then decoded to 

determine which scan type was identified most frequently as producing the clearest image.  

 

 

 
Table 2.1 Scan protocols used for imaging the RPE/photoreceptor layer 

Scan Resolution Reference B-Scan length (mm) Number of Averages 

1 4096 Vitreous 6 0 
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2 4096 Choroid 6 0 

3 4096 Vitreous 4.5 0 

4 4096 Choroid 4.5 0 

5 1024 Vitreous 6 4 

6 1024 Vitreous 6 8 

7 1024 Choroid 6 4 

8 1024 Choroid 6 8 

9 1024 Vitreous 4.5 4 

10 1024 Vitreous 4.5 8 

11 1024 Choroid 4.5 4 

12 1024 Choroid 4.5 8 

 
2.4.4 Phase 4 – Investigating repeatability of manual measures of RPE/Photoreceptor layer 

thickness 
Measurement of the RPE/photoreceptor layer thickness was conducted over three days. 

Measurements were taken using the calipers integrated into the Topcon 3D OCT-1000 software 

(Figure 2.1), and using the scan type determined in phase 3 for each of the 10 subjects. 

Measurements were taken using the B-scan with the greatest macular dip for each patient, at 

the point of minimum retinal thickness. Computer monitor and mouse settings were adjusted to 

optimize image quality and pointer sensitivity.  

 

  
Figure 2.1 Caliper measurement of the RPE/Photoreceptor layer on the Topcon 3D OCT-1000 
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2.4.5 Statistical Analysis 
All results were analysed with SPSS 20 software (IBM, Armonk NY). Results for the retinal 

thickness values were normally distributed (Shapiro-Wilk; p = 0.200). As data was normally 

distributed, parametric statistical analysis was applied.  

 

One-way repeated measures analysis of variance (ANOVA), interclass correlation coefficient 

(ICC) and coefficient of repeatability (CoR) were used to assess the intra-session repeatability 

of retinal thickness values, and manual measures of photoreceptor and RPE layer thicknesses. 

Paired-samples (2-tailed) t-tests and CoR was used to determine the inter-session repeatability, 

and to establish the effect of diurnal variation on macular thickness values.  Significance was 

set at the 0.05 level.  
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2.5 Results 
2.5.1 Phase 1 – The effect of multiple OCT scans on the cumulative standard deviation of 

retinal thickness values 
Figure 2.2 shows the effect of multiple retinal thickness measures on the cumulative standard 

deviation (SD).  Results demonstrate that repeated retinal thickness measures had limited 

clinical effect on the cumulative SD for the central ETDRS area. The SD of three repeated 

scans was approximately 3µm. In order not to compromise instrument repeatability against 

patient comfort and chair time it was agreed that three scans would be used to assess the 

within-session repeatability at session one.  

 

 
Figure 2.2 The effect of repeated measures of retinal thickness on the cumulative standard 

deviation 
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2.5.2 Phase 2 - Investigating intra-session and inter-session repeatability and the effect of 

diurnal variation on macular thickness. 

2.5.2.1 Intra-session analysis 
Twenty eyes from 20 healthy subjects (8 males, 12 females, age range 21-34 years, mean age ± 

SD, 26.6 ± 3.9; mean axial length ± SD, 23.85 ± 0.98; mean refractive error ± SD, -1.44 ± 

1.68) were analysed. 

 

There was no significant difference in retinal thickness measures for all ETDRS areas (paired-

samples (2-tailed) t-test, 0.43 < p < 1.00) (Table 2.2).  Retinal thickness measures were highly 

repeatable for all ETDRS areas, with ICCs exceeding 0.9 in all cases, and CoR between 

4.13μm and 7.66μm. 
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Table 2.2 Intra-session repeatability of retinal thickness 

ETDRS 
area 

Scan  
number 

Retinal Thickness 
Mean ± SD (µm) 

ANOVA ICC CoR (μm) 

CS 

1 250.95 ± 17.90 

0.55 0.97 
7.45 

2.99% 
2 249.00 ± 13.20 

3 249.15 ± 13.25 

NI 

1 313.55 ± 15.18 

0.58 0.98 
7.29 

2.33% 
2 312.75 ± 17.04 

3 314.30 ± 14.46 

TI 

1 295.95 ± 14.30 

0.55 0.97 
7.62 

2.58% 
2 294.55 ± 15.03 

3 295.80 ± 13.56 

SI 

1 308.15 ± 16.71 

0.43 0.98 
5.04 

1.64% 
2 308.45 ± 16.38 

3 209.50 ± 14.06 

II 

1 304.20 ± 20.44 

0.91 0.96 
7.66 

2.53% 
2 303.35 ± 14.83 

3 303.90 ± 18.49 

NO 

1 284.25 ± 13.63 

0.87 0.99 
4.13 

1.45% 
2 284.10 ± 14.25 

3 284.00 ± 13.63 

TO 

1 246.20 ± 12.11 

0.84 0.95 
4.51 

1.83% 
2 245.55 ± 13.33 

3 246.80 ± 11.73 

SO 

1 262.35 ± 12.30 

0.66 0.97 
5.85 

2.24% 
2 261.70 ± 11.89 

3 262.95 ± 12.04 

IO 

1 255.30 ± 11.06 

1.00 0.92 
7.64 

2.99% 
2 255.25 ± 12.29 

3 255.20 ± 9.65 
Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; ANOVA, analysis of variance; ICC, interclass correlation 

coefficient; CoR, coefficient of repeatability 
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2.5.2.2 Inter-session analysis 
No significant difference was noted between the retinal thickness values obtained at session 

one and session two for any of the ETDRS areas (Paired-samples (2-tailed) t-test; 0.13 < p < 

0.94) (Table 2.3). CoR ranged from 3.68μm to 8.05μm, and the mean difference between visits 

was close to zero for all areas, with a maximum difference of 2.10μm (Figure 2.3).  

 

Table 2.3 Inter-session repeatability of retinal thickness  

ETDRS 
area 

Retinal Thickness 
Session 1 (µm) 
(Mean ± SD) 

Retinal Thickness 
Session 2 (µm) 
(Mean ± SD) 

Paired T-test CoR  (μm) 

CS 250.95 ± 17.90 251.60 ±  20.74 0.67 6.89    (2.78%) 

NI 313.55 ± 15.18 313.45 ± 13.77 0.92 6.59    (2.09%) 

TI 295.95 ± 14.30 295.60 ±12.57 0.70 7.92    (2.68%) 

SI 308.15 ± 16.71 306.60 ± 13.34 0.52 7.06    (2.30%) 

II 304.20 ± 20.44 300.30 ± 17.64 0.38 7.81    (2.59%) 

NO 284.25 ± 13.63 283.70 ± 14.86 0.21 3.68    (1.30%) 

TO 246.20 ± 12.11 246.25 ± 11.30 0.94 6.08    (2.47%) 

SO 262.35 ± 12.30 260.25 ± 12.34 0.13 8.05    (3.08%) 

IO 255.30 ± 11.06 258.10 ± 17.61 0.20 6.87    (2.69%) 
Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; CoR, coefficient of repeatability. 
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Figure 2.3 Bland-Altman plot for inter-session repeatability of the central ETDRS area. The 

mean difference between session 1 and 2 is shown by the solid horizontal line, whilst the 

dotted lines indicate the 95% limits of agreement. 

 

2.5.2.3 Diurnal variation analysis 
Retinal thickness appeared to show no significant diurnal variation from the morning to the 

afternoon for all ETDRS areas, apart from SO, which was significantly thicker in the afternoon 

(Paired-samples (2-tailed) t-test, p < 0.05) (Table 2.4). However, as the difference in thickness 

(1.95μm)  is  smaller  than  the  CoR,  it  is  of  limited clinical relevance.  CoR ranged from 4.47μm 

to 7.31μm, and the mean difference between visits was close to zero for all areas, with a 

maximum difference of 1.20μm (Figure 2.4). 
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Table 2.4 Diurnal variation of retinal thickness  

ETDRS area 
Retinal Thickness 
AM (Mean ± SD) 

Retinal Thickness 
PM  (Mean ± SD) 

Paired-samples 
t-test  

CoR  (μm) 

CS 251.60 ±  20.74 251.75 ± 20.92 0.93 6.95 (2.76%) 

NI 313.45 ± 13.77 312.30 ± 12.94 0.15 6.74 (2.15%) 

TI 295.60 ±12.57 294.90 ± 12.74 0.29 5.69 (1.93%) 

SI 306.60 ± 13.34 305.25 ± 15.52 0.19 7.31 (2.39%) 

II 300.30 ± 17.64 301.85 ± 13.75 0.38 7.07 (2.04%) 

NO 283.70 ± 14.86 284.20 ± 14.58 0.34 4.47 (1.58%) 

TO 246.25 ± 11.30 246.85 ± 11.76 0.48 7.26 (2.95%) 

SO 260.25 ± 12.34 262.20 ± 12.23 0.00 5.26 (2.01%) 

IO 258.10 ± 17.61 257.50 ± 18.11 0.67 5.28 (2.06%) 
Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; CoR, coefficient of repeatability. 

 

 
Figure 2.4 Bland-Altman plot for diurnal variation of the central ETDRS area. The mean 

difference between session 2 and 3 is shown by the solid horizontal line, whilst the dotted lines 

indicate the 95% limits of agreement. 
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2.5.3 Phase 3 – Determination of the best OCT scan type for imaging the RPE/photoreceptor 

layer 
The scan protocol identified by the study group to produce the best image of the 

RPE/photoreceptor layer had the following parameters (Figure 2.5): 

 Transverse resolution: 1024 A scans per B scan 

 B-scan length: 6mm 

 Reference: choroid 

 Averaging: 8 

 

 
Figure 2.5 Example of OCT scans obtained in phase 3. (A) Optimal scan protocol; (B) Poor 

visualisation of external limiting membrane; scan parameters: resolution 4096 A scans per B 

scan, choroid reference, 0.15mm pitch, 6mm scan length, no averaging; (C) Poor visualisation 

of RPE limits; scan parameters: resolution 4096 A scans per B scan, vitreous reference, 

0.15mm pitch, 4.5mm scan length, no averaging. 

 
 
 
 

B 

C 

A 
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2.5.4 Phase 4 –Repeatability of manual measures of RPE/Photoreceptor layer thickness 
Table 2.5 shows the mean and standard deviation of manual photoreceptor and RPE layer 

thickness measurements (Figure 2.6) obtained over three sessions using the scan protocol 

outlined above. There was no significant difference in thickness measures over the three 

collection sessions (One-way repeated measures ANOVA; p = 0.422).  

 

Table 2.5 Repeatability of RPE/Photoreceptor layer thickness measurements 

Session  
RPE/Photoreceptor thickness 
(µm) (Mean ± SD)  

ANOVA ICC CoR (μm) 

1 106.60 ± 3.95 

0.422 0.905 
3.90 

(3.55%) 
2 110.10 ± 2.85 

3 109.60 ± 2.76 

 

 
Figure 2.6 Manual measures of photoreceptor and RPE layer thickness using integrated 

calipers. Measurements were made with both pseudo-colour (A), and grey scale (B) scans.  

 

 

  

 A 

B 



                                         Chapter 2: Development of an OCT Protocol 
  

 126   

2.6 Discussion  
High measurement repeatability is of paramount importance in the quantitative application of 

OCT for retinal research in cystic fibrosis.  The repeatability of macular thickness measures for 

healthy eyes using the Topcon 3D-OCT has been reported in a number of previous trials 

(Leung et al., 2008; Pierro et al., 2010; Sull et al., 2010; Huang et al., 2011a).  The results of 

this study strongly concur with past studies, finding intra-session repeatability to be very high, 

with ICC’s   in   excess  of  0.90,   and  CoR   lower   than  7.66μm for all ETDRS areas.  Similarly, 

inter-session repeatability was also high, with no significant difference being found in 

thickness values obtained over session one and two, and CoR lower than 7.92μm for all 

ETDRS areas. These results are highly favourable, as they permit the use of a reduced number 

of OCT scans on patients, without the loss of reliability. High levels of repeatability for the 

Topcon 3D-OCT 1000 may be attributable to its fast scan rate and increased sampling frames, 

which allow for detailed mapping of the macular in a short period of time and require less 

estimation of retinal thickness in areas between scans.  It is likely that repeatability was found 

to be so high in this study due to the exclusion of eyes with any pathology, which is known to 

decrease OCT instrument repeatability (Menke et al., 2009), additionally, the subject cohort 

was young with good VA, allowing accurate fixation. As the retinal changes hypothesized to 

occur in CF are unlikely to disrupt retinal architecture to such a degree that retinal 

segmentation is compromised, it is expected that repeatability of retinal thickness measures 

will remain high. 

 

The high levels of intra-session and inter-session repeatability observed in this study suggest 

that one OCT scan would be sufficient for the majority of patients to ensure macular 

measurement accuracy. However, there were some clear outliers that showed significant 

degrees of variation in retinal thickness measures. Higher degrees of variation in these subjects 

may be attributed to fixation errors, or insufficient OCT image quality (Huang et al., 2011b). 

Therefore, it may be of benefit to conduct three OCT scans on CF patients, who may present 

with ocular pathology. This measure should ensure recorded measures of macular thickness are 

reliable.  

 

Inter-ocular difference in retinal thickness was not investigated in this study as previous 

research indicates there is no significant difference (Massin et al., 2002; Kelty et al., 2008; 

Wolf-Schnurrbusch et al., 2009; Duan et al., 2010).  Although this suggests that only one eye 
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of CF patients requires imaging in order to evaluate macular thickness, both eyes will be 

scanned to allow a larger sample of images for qualitative retinal assessment.   

 

Earlier research has demonstrated that females have areas of significantly reduced macular 

thickness in comparison to men (Massin et al., 2002; Wakitani et al., 2003).  It is therefore 

pertinent that in the following experiments, all subjects are gender matched to eliminate the 

risk of any relationship having an impact on results.  

 

Whilst diurnal variation significantly affected retinal thickness in patients suffering from 

diabetic macular oedema (Larsen et al., 2005; Danis et al., 2006; Polito et al., 2006) and other 

retinal diseases (Gupta et al., 2009), healthy subjects have displayed no evidence of true  

diurnal variation (Larsen et al., 2005; Polito et al., 2006). In line with these findings, healthy 

subjects in the present study displayed no diurnal variation in retinal thickness, except in the 

SO area, which increased from 260.25μm in the morning, to 262.20μm in the afternoon.  

Despite statistical significance, the mean difference is within the instrument repeatability and 

can be considered clinically irrelevant. Additionally, this apparent relationship is likely 

attributed to one subject who displayed a large change in retinal thickness from the morning to 

the afternoon, possibly due to poor fixation and subsequent errors in ETDRS grid placement. It 

is likely that with a larger sample size of patients, that the effect of this outlier would 

significantly reduce.  These results are comparable to those of Jo et al. (2011), who observed a 

3.5µm increase in retinal thickness over the day in healthy subjects when measured with a time 

domain (TD)-OCT (Stratus OCT). However, this trend was not observed with a more advanced 

spectral-domain OCT instrument (Cirrus HD-OCT). The increase in retinal thickness observed 

with the Stratus OCT was therefore attributed to poor equipment repeatability, rather than any 

“true”  diurnal  variation  (Jo et al., 2011).  

 

As retinal thickness in patients with retinal diseases has been noted to decrease throughout the 

day, it seems reasonable to hypothesise that CF patients (particularly those with CFRD) will 

display similar changes. Whilst it would be of considerable interest to examine this hypothesis 

fully by imaging CF patients in the morning and evening, this will not be viable due to 

restrictions in appointment times caused by intense treatment regimes. To maximize the 

possibility of observing differences between the two cohorts, whenever possible, CF patients 

will be examined in the morning, when any potential retinal oedema is likely to be exacerbated.  
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With the localisation of CFTR to the apical membrane of the RPE, and the importance of Cl- 

transport for the regulation of the SRS, it is hypothesised that abnormalities will be present at 

the level of the RPE/photoreceptor layer in CF, including increased SRS volume. In order to 

determine if the SRS is increased in thickness in CF patients compared to controls, any 

measurements of these areas must be highly repeatable. Within this study, manual measures of 

RPE/photoreceptor layer thickness were seen to be highly repeatable. This is an important 

finding as it suggests that any difference between controls and CF patients will be identified 

using the same equipment and techniques employed by the observer in this instance.   

 

In line with the findings discussed above, the following protocol is suggested to investigate 

retinal integrity in CF: three retinal thickness scans per eye, each with a quality score of > 60 

and one high quality RPE/photoreceptor layer scan per eye. All CF patients will be age, gender 

and ethnicity matched to controls to account for any relationships with retinal thickness, and 

where possible all CF patients will be imaged in the morning when any potential oedema will 

be maximal. As axial length matching would be unrealistic, raw retinal thickness data will be 

corrected using linear regression analysis.  
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 Development and Verification of a Computerised Dark             Chapter 3
Adaptometer 

 

3.1 Introduction  
The Goldmann-Weekers (GW) adaptometer is considered  to  be  the  ‘gold  standard’  method  for  

the investigation of dark adaptation. However, it is no longer commercially available, and its 

repeatability has recently been questioned (Gaffney, Binns and Margrain, 2011).  

 

Extensive research of available literature revealed that whilst other dark adaptometers exist and 

are in use (for example, AdaptDx (Holfort et al., 2010), SST-1 by LKC technologies (Abbott-

Johnson et al., 2011), modified Humphrey Visual Field Analyser (Haimovici et al., 2002), and 

the modified Friedmann Field Analyser (Rayner et al., 1989)), currently none are commercially 

available which meet the requirements of this experiment. In vitamin A deficiency (Fulton et 

al., 1982; Neugebauer et al., 1989) and diabetes (Henson and North, 1979; Arden et al., 1998; 

Arden et al., 2005; Holfort et al., 2010), the final rod threshold is most noticeably affected, 

therefore a dark adaptometer is required which is able to measure over the full threshold range. 

Other researchers have tackled these problems by using custom made dark adaptometers 

(Hecht, 1937; Jackson, Owsley and McGiwin, 1999), using computer programming and 

cathode ray tube computer screens to present the stimuli (Dimitrov et al., 2008).  

 

The aim of this study was to create a computer controlled dark adaptometer using Matlab 

(R2012b; MathWorks Ltd; Massachusettes, USA) programming and a cathode ray tube 

computer screen. This chapter presents the development and verification of a suitable 

computerised dark adaptometer (CDA) 

 

3.2 Computerised Dark Adaptometer Development  
Cathode ray tubes (CRTs) have served as useful stimulus generators in vision research since as 

early as 1971 (Sperling, 1971).  They are universally available and offer the ability to create a 

variety of static or mobile stimuli, with accurate rendering when correctly calibrated and used 

within their operating limits (Metha, Vingrys and Badcock, 1993; Brainard, Pelli and Robson, 

2002; Zele and Vingrys, 2005).  
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CRT monitors produce light by electron beam excitation of phosphor, which is applied as a 

coating to the front of the monitor (Figure 3.1) (Brainard et al., 2002). Images are formed by 

the sequential activation of discrete pixel elements in a raster scan pattern across the screen, 

from left to right and top to bottom during each frame (Brainard et al., 2002; Zele and Vingrys, 

2005). The time taken to complete a scan of the screen determines the frame rate. Electron 

beam intensity is modulated during a raster scan so that the amount of light varies with the 

spatial position on the monitor.  

 

Colour CRT monitors contain three different phosphor types – red, green and blue – which are 

interleaved, arranged as dots or stripes across the monitor. These dots or stripes are finer than a 

pixel, so observers are unable to resolve the pattern at a typical viewing distance. Three 

separate electron beams and a shadow mask are arranged within an evacuated glass tube so that 

each beam only illuminates one of the three phosphor types (Figure 3.1) (Metha et al., 1993; 

Brainard et al., 2002). Electron beams are focused and deflected by precise internal 

electromagnetic fields.  

 

 
Figure 3.1 A representation of a colour CRT monitor. The shadow mask principle is displayed 

on the far right, whereby the spatial arrangement of the electron guns and the shadow mask 

ensure that each gun excites only one phosphor type. Image from Metha et al. (1993). 

 

Whilst, as stated, CRTs offer the ability to produce a flexible and user specific stimulus, 

several drawbacks exist. The entire range of cone and rod recovery spans five to six log units 

(Lamb and Pugh, 2004), however, CRTs only operate over approximately three log units 

(Travis, 1991), leaving a shortfall of three log units. Additionally, the lowest achromatic 

luminance of standard CRT hardware is approximately 0.08 cd/m-2, which is three-four log 
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units above the normal rod absolute threshold (Dimitrov et al., 2008). In order to expose the 

full range of cone and rod recovery, neutral density filters can be used over the CRT monitor to 

further attenuate luminance.  

 

It has been shown that CRT luminance can vary by as much as ±1% over a period of eight 

hours. This is an acceptable level of fluctuation for most experimental applications, as the 

changes in output are not abrupt, therefore will not be perceived (Metha et al., 1993). However, 

up to 6% fluctuation in luminance can occur during CRT warm up, with a stable luminance 

only achieved after 60 and 150 minutes following warm (restart after 20 minutes off following 

a three hour on period) and cold (off period greater than 14 hours) starts, respectively (Metha et 

al., 1993). It is therefore recommended that CRTs are given a suitable warm-up period to 

ensure output is stable before any experiments proceed.  

 

Properties of a CRT may vary across the space of the monitor. Luminance at the edge of a CRT 

screen has been found to be 20% less than that in the centre (Brainard, 1989). Whilst Brainard 

(1989) found that this spatial inhomogeneity of a monitor could be characterised by a light-

attenuation factor at each location, this was not necessary for the purposes of this study, where 

the stimulus was only presented centrally, with calibration measures calculated according to 

the used stimulus.  

 

CRTs do not behave as linear devices; the voltage applied to the guns is not linearly related to 

the luminance output or number of photons emitted. The cathode supplies an electron beam 

current (I), which is regulated by the cathode to grid voltage (E), resulting in a power function 

relationship, known as the gamma function, such that I ∝ E (Metha et al., 1993; Brainard et al., 

2002). Each CRT monitor has a different gamma function, therefore the gamma function for 

the CRT monitor used throughout these experiments was determined as an initial step in the 

experimental process. The Matlab code used can be found in Appendix A.  

 

3.2.1 Matlab script  
Matlab software with Psychophysical Toolbox (PTB3) (Brainard, 1997) extensions was used to 

develop a programme which would present the CRT stimulus required for this study. The full 

DA Matlab code can be found in Appendix B. All CDA stimulus parameters were based upon 

the  GW  adaptometer,  in  order  to  mimic  the  current  ‘gold  standard’  as  closely  as  possible.   
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3.2.1.1 Stimulus presentation 
Due to luminance variations across the CRT screen (Brainard, 1989) the stimulus was 

presented centrally, indicated by four peripheral luminescent fixation markers (Figure 3.2). An 

achromatic spot target of 10.8° diameter was utilised so that with the patient viewing straight 

ahead, both cone and rod photoreceptors would be stimulated and that the full range of dark 

adaptation could be measured (Hecht, Haig and Wald, 1935). The stimulus was programmed to 

flash for a period of one second every two seconds (i.e. 0.5Hz). For the first five minutes, 

during cone recovery, threshold was measured continuously. After five minutes, threshold was 

measured every 50 seconds, with the commencement of measurement signalled by a 

computerised  ‘beep’.   

                  

 
Figure 3.2 A diagram showing the CRT display. The CRT monitor positioned at a distance of 

30cm from the subject, with a neutral density filter (a) fixed over the central area, surrounded 

by card. Subjects were instructed to fixate at the centre of the screen, marked by four 6.5° x 1° 

luminescent fixation markers (b). The 10.8° achromatic stimulus (c) was presented in the 

middle of the fixation markers. 

 
 

   

32cm   

  24cm   

a   

b   
c   
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3.2.1.2 Psychophysical technique 
Two different psychophysical techniques were used during the course of the computerised dark 

adaptation programme. The first, used over the first five minutes to measure rapid cone 

recovery, was a modified staircase procedure, based on a method previously described by 

Jackson et al. (1999). If the subject reported perception of the stimulus, by depressing a key on 

the keyboard within a 600 milli-seconds (msec) response window, stimulus luminance was 

reduced by 0.3 log units for the next presentation. If the subject took longer than 600msec to 

respond to the stimulus, or failed to respond, stimulus intensity was increased by 0.1 log units 

for the next presentation. Threshold was recorded as the first visible stimulus on an ascending 

staircase.  

 

The second psychophysical procedure was used after the first five minutes to measure slower 

rod photoreceptor recovery. In order to mimic the GW, a computer adapted method of 

ascending limits was employed, whereby stimulus intensity was gradually increased in 0.05 log 

unit steps, from 0.6 log units below the last recorded threshold. Threshold was recorded when 

the subject first reported perception of the stimulus within a 600 msec response window. If the 

subject took longer than 600 msec to respond to the stimulus, or failed to respond, stimulus 

intensity was increased by a further 0.05 log units until threshold was recorded. Once threshold 

was recorded, a 50 second break would be given before threshold was measured again. All 

threshold measures were exported to an Excel spreadsheet (2007; Microsoft; Washington, 

USA) following completion of the programme.  

 

3.3 Retinal Bleach 
In order to bleach a constant and known portion of photopigment for dark adaptation 

experiments, the retinal illuminance and duration of exposure must be under stringent control. 

Such control is obtained using a Maxwellian view system (Margrain and Thomson, 2002), 

which allows efficient light transmission and strict control over light source parameters 

(Leibowitz, 1954).  

 
3.3.1 Maxwellian-View 
In Maxwellian viewing, instead of directly viewing a source of light, the light source is imaged 

in the pupil of the eye using a lens (Westheimer, 1966).  Provided the image of the light source 

is smaller than the pupil, all of the light enters the eye (Beer, MacLeod and Miller, 2005). As 
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all light emerging from the viewing system enters the pupil, the quantity of light reaching the 

retina is greatly increased. The principle advantage of the Maxwellian view technique is that 

whilst the retinal illuminance remains the same as in a standard viewing system, a larger retinal 

area is illuminated (Leibowitz, 1954) (Figure 3.3). Maximum illumination is achieved when 

the lenses in the Maxwellian viewing system remain unobstructed (Westheimer, 1966).  

    

 
Figure 3.3 A schematic diagram showing the principles of Maxwellian viewing. A larger area 

of retina is illuminated under Maxwellian view conditions (a), in comparison to an ordinary 

viewing system (b).   

 

3.3.2 Calibration of retinal bleach  
The Maxwellian view optical system used to administer retinal bleach in these experiments 

consisted of a super bright white LED source and two 15 dioptre (D) lenses (Figure 3.4). An 

eyepiece was positioned so that the image of the source would fall in the pupil plane. Retinal 

illuminance was calculated by measuring the luminance (B) of a perfectly diffusing surface of 

known reflectance (r mL), at a set distance (x m) beyond the source image that would normally 

be in the plane of the eye, using the equation below, given by Westheimer, 1966.  

 

𝑅𝑒𝑡𝑖𝑛𝑎𝑙  𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒  (𝑡𝑑) =   10 𝐵 𝑥 𝑟⁄     Equation 2 

 

    

   

a.  Maxwellian  view  optical  system 

b.  Ordinary  viewing  system 
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Figure 3.4 Diagram of the set-up of the Maxwellian view 

 

The Maxwellian view was set up with the image projected onto a uniform surface of 

reflectance 84.2% at 0.185m. The luminance of the surface was measured with a photometer 

(LS-110; Konica Minolta, Osaka, Japan) at a range of different voltages until a luminance of 

1.14 cd/m2 was achieved, which, using Equation 2 (Westheimer, 1966), gives a retinal 

illuminance of 145593.64 td which would give the desired level of rhodopsin and iodopsin 

photopigment bleach (see Section 3.3.3). The Maxwellian view was set at this luminance 

throughout all dark adaptation experiments, with luminance checked before every bleach. 

 

3.3.3 Calculating photopigment bleach  

3.3.3.1 Rhodopsin Bleach  
The level of rhodopsin bleach obtained by the Maxwellian view system was calculated using 

Equation 3, given by Thomas and Lamb (1999).  

 

𝐵 =    1 − 𝑒𝑥𝑝 1 +                                 Equation 3 

 

Where B is the percentage of rhodopsin photopigment bleached, I is the retinal illuminance, t is 

the exposure duration in seconds, IRh is the bleaching constant  and  τRh is the time constant of 

rhodopsin regeneration.  

 

When rhodopsin is bleached by a steady light of illuminance I, it regenerates according to a 

first order reaction with a time constant (𝜏 ) of 420 seconds (Thomas and Lamb, 1999). The 

bleaching constant (IRh) has previously been measured by retinal densitometry and is within the 
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range of 6.8-7 Log10 Td.s (Rushton and Powell, 1972; Thomas and Lamb, 1999). For these 

calculations a value of 7.0 log Td.s was used. Using these two time constants, IRh
 can be 

calculated using Equation 4, giving a value of 23,809 td.  

 

𝐼 =                            Equation 4 

 

Where IRh is the light intensity at which half the rhodopsin is bleached, LRh is the rhodopsin 

bleaching  constant,  and  τRh is the time constant of rhodopsin regeneration. (Thomas and Lamb, 

1999) 

 

When: 

I  145,593.64 td  

IRh  23,809 td 

t  120 s 

𝜏  420 s 

Rhodopsin bleach = 74.7%  

 

3.3.3.2 Iodopsin bleach  
The level of rhodopsin bleach obtained by the Maxwellian view system was calculated using 

Equation 5, given by Paupoo et al. (2000) (originally described by Thomas and Lamb (1999)) 

for rhodopsin bleach.  

 

  𝐵 =    1 − 𝑒𝑥𝑝 1 +                              Equation 5 

 

Where B is the percentage of iodopsin photopigment bleached, I is the retinal illuminance, t is 

the exposure duration in seconds, IP is   the   bleaching   constant   and   τP is the time constant of 

iodopsin regeneration.  

 

For a total bleach, the cone bleaching constant (IP) has been measured as 30,000 Td, with a 

time  constant  of  cone  regeneration  (τP) of 105 seconds for equilibrium bleaches (Hollins and 

Alpern, 1973).  
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When: 

I  145,593.64 td 

IP  30,000 td 

t  120 s 

𝜏  105 s 

Iodopsin bleach = 82.8%  

 
3.3.3.3 Bleach duration 
A bleach time of two minutes was employed for these experiments in order to achieve suitable 

levels of rhodopsin and iodopsin bleach whilst utilising a light source which would not be 

uncomfortably bright for patients (Hollins and Alpern, 1973; Lamb and Pugh, 2004). With an 

equilibrium bleach of this kind, transient fixation losses and blinking are unlikely to have a 

large impact on the level of photopigment bleached (Figure 3.5), ensuring a constant level of 

bleach is obtained for each study participant.  

 

 
Figure 3.5 Percentage of rhodopsin and iodopsin photopigment bleached against time, 

calculated using Equation 3 and Equation 5.  

 

3.3.3.4 Extent of retinal bleach  
The total area of retinal bleach was calculated as shown in Figure 3.6. Retinal distances are 

described as an angular measure of the eyes object space. The length of the eye was based upon 

Bennett-Rabbetts schematic eye model (2.409 cm) (Bennett and Rabbetts, 1998). 
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θ = Tan 
.

 = 16.72° 

     α = Tan 16.72 × 2.409 = 7.234cm 

     2α = 14.468cm 

     1° = 288µm (Drasdo and Fowler, 1974) 

     Retinal area bleached = 14.468 × 2.88 = 41.6° 
Figure 3.6 Calculation of the total area of retinal bleach. 
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3.3.4 Comparison of the GW and CDA 
This section describes methods used for the comparison of the CDA to the GW, as the gold-

standard for DA, to ensure comparable results were obtained.  

 

3.3.4.1 Subjects  
Dark adaptation curves were obtained from 11 eyes of 11 healthy adults2 (8 males, 3 females, 

age range 21-34 years, mean age 25.8 ± 3.5 years) recruited from School of Optometry and 

Vision Sciences, Cardiff University. Inclusion criteria comprised: age range between 18- 40 

years, and no known disease of the media, retina or visual pathways. Exclusion criteria 

included any ocular or systemic condition known to affect dark adaptation, diabetes, 

photosensitive epilepsy, pregnancy, a Van Herrick anterior chamber angle of grade 1 or less or 

any history of a previous attack of acute angle closure glaucoma following Tropicamide use.  

 

Informed consent was obtained from all subjects. Ethical approval was given by the Human 

Science Research Ethics Committee, School of Optometry and Vision Sciences, Cardiff 

University. All procedures conformed to the tenets of the Declaration of Helsinki.  

 

3.3.4.2 Methods 
Subjects were required to attend a single session for 1.5 hours. Each subject answered 

questions regarding their age, ethnic origin, gender, medication, family general and ocular 

history and personal general and ocular history. Distance vision and/or VA (right and left) was 

recorded with a LogMAR ETDRS chart (Precision Vision, La Salle, IL, USA) at three meters 

(luminance 160 candelas/meter2 (cd/m2)). Anterior chamber depth was assessed by Van 

Herrick assessment (Friedman and He, 2008) with a slit lamp biomicroscope and intraocular 

pressure was determined using a non-contact tonometer (CT-80, Topcon, Tokyo, Japan) for 

both eyes.   

 

                                                 
2 Power calculations were based upon data from  Gaffney et al. (2011) and numbers were calculated using the 
Altman Nomogram for paired t-tests 
GW final cone threshold = -1.81 ± 0.21 cd/m2 
CDA final cone threshold = -2.05 ± 0.62 cd/m2  
Difference in means 2.05 – 1.81 = 0.24 
Standardised difference 2 x 0.24/0.21 = 2.29 
Subject number = minimum 8 paired observations  
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One drop of Tropicamide 1% (Bausch and Lomb Pharmaceuticals; Florida, USA) was instilled 

into one randomly selected eye and pupil size was monitored until it equalled or exceeded 7mm 

diameter. Whilst waiting for adequate dilation, the two dark adaptometers were demonstrated to 

the patient and clear instructions given on their use. Once dilation was adequate, the non-dilated 

eye was patched and  a  long  duration  ‘equilibrium’  bleach  was  provided    to  the  dilated  eye  with  

a  Maxwellian-view optical system providing a white light of 5.16 log td for a period of two 

minutes, which bleached approximately 74.7% rhodopsin and 82.8% iodopsin. Upon bleach 

cessation, the subject was randomly allocated to either the GW or CDA where dark adaptation 

was monitored for 25 minutes in the dilated eye. A wash out period of 15 minutes after 

completion of the first adaptation measurement was given before the second bleach to avoid 

carry-over effects. Immediately after the second bleach, dark adaptation was measured on the 

second dark adaptometer (Figure 3.7). 

 

 
Figure 3.7 Timeline for assessment of dark adaptation 

 
3.3.4.2.1 Goldmann-Weekers 

The GW adaptometer (Figure 3.8) employed a method of ascending limits and recorded the 

dark adaptation function directly onto logarithmic paper (Figure 3.9). The investigator 

manually increased the intensity of the 10.8° diameter achromatic spot stimulus until the 

subject reported that it was just seen by tapping the table. Threshold was recorded at this point 

by marking the recording paper, before the stimulus intensity was reduced and the procedure 

repeated. Threshold was determined continuously for the first 5 minutes. After this, threshold 

was measured every minute for the remaining 20 minutes. The subject was instructed to focus 

straight ahead throughout the test.  

 

 15m  2m 

Bleach Break 

Method  1  –  Dark   
adaptation  recording 
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Figure 3.8 The Goldmann-Weekers adaptometer. 1 = patient chin rest; 2 = light stimulus; 3 = 

examiner controls to adjust stimulus illumination; 4 = rotating drum and logarithmic paper. 

 

 
Figure 3.9 The logarithmic paper used by the Goldmann-Weekers adaptometer, enabling 

immediate recording of the visual threshold. 

 

3.3.4.2.2 CDA 

The computerised dark adaptometer presented a flashing stimulus on a calibrated cathode ray 

tube (CRT) monitor, driven by a graphics board under software control (Matlab). The monitor 

luminance  was  γ-corrected and modified by three neutral density filters (2.0 ND, 1.2 ND and 
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2.4 ND) mounted on the screen at specific points throughout the experiment in order to expose 

the full range of visual recovery. In order to avoid any fluctuations in luminance having an 

impact on dark adaptation results, the CRT was given at least 1.5 hours to warm up before dark 

adaptation recordings began. The programme utilised a modified staircase procedure to 

determine threshold, with threshold recorded when the stimulus first became visible on the 

ascending staircase. Threshold was measured continuously for the first five minutes. After this, 

threshold was measured every minute up to 25 minutes. The subject was instructed to focus 

straight ahead as indicated by four peripheral fixation markers. Threshold results were 

automatically transferred to an Excel spreadsheet upon programme completion.  

 
3.3.4.2.3 Calibration  

The GW adaptometer records luminance in units of log microapostilbs, rather than cd/m2. In 

order to convert measurements to log cd/m2 accurately, the luminance of the GW stimulus was 

calibrated using a photometer (LS-110; Konica Minolta, Osaka, Japan). The luminance output 

of the GW was measured at 0.2 log microapostilbs increments with the phototometer, and an 

average taken from three readings. The relationship between the measured luminance output 

and the log microapostilbs value was described by an equation which was then used to 

calculate the log cd/m2 luminance value from any given log microabostilbs value.  

 

3.3.5 Repeatability of the CDA 
To further assess the suitability of the CDA for the assessment of DA, the intra-session 

repeatability was examined. All procedures were carried out as described in sections 3.4.1.2 

and 3.4.1.2.2, except each measurement of dark adaptation was taken on the CDA.  

 

3.3.5.1 Subjects  
Dark adaptation curves were obtained from five eyes of five healthy adults (2 males, 3 females, 

age range 23-26 years, mean age 24.6 ± 1.14 years) recruited from School of Optometry and 

Vision Sciences, Cardiff University. Inclusion criteria comprised: age range between 18- 40 

years, and no known disease of the retina or visual pathways. Exclusion criteria included any 

ocular or systemic condition known to affect dark adaptation, diabetes, photosensitive epilepsy, 

pregnancy, a Van Herrick anterior chamber angle of grade 1 or less or any history of a previous 

attack of acute angle closure glaucoma following Tropicamide use.  
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Informed consent was obtained from all subjects. Ethical approval was given by the Human 

Science Research Ethics Committee, School of Optometry and Vision Sciences, Cardiff 

University. All procedures conformed to the tenets of the Declaration of Helsinki.  

 

3.3.5.2 Statistical Analysis  
The parameters of both cone and rod recovery were determined by fitting a multiple 

component exponential function (Equation 6) (McGwin, Jackson and Owsley, 1999), on a least 

squares basis using the Solver Function in Microsoft Excel (2010).  

 

𝑇(𝑡) =    𝑎 + 𝑏. 𝑒𝑥𝑝( / ) + 𝑐. 𝑚𝑎𝑥(𝑡 − 𝑟𝑐𝑏, 0) + 𝑑. 𝑚𝑎𝑥(𝑡 − 𝑟𝑟𝑏, 0)     Equation 6  

 

Where  T = threshold (log cd/m2) at time t after cessation of bleach 

 a = final cone threshold (log cd/m2) 

b =change in cone threshold from t = 0 

τ  =  time constant of cone recovery (minutes) 

c = slope of the second component of rod recovery 

max = a logic statement  

rcb = time from bleach offset to the rod-cone break  

d = slop of the third component of rod recovery  

rrb = time from bleach offset to the  rod-rod break  

 

Data was analysed with SPSS (Version 18.0; PASW for Windows; Chicago, USA). Final cone 

threshold, cone time constant, rod-cone break time, rod-rod break time, final rod threshold and 

area under the curve (AUC) were all normally distributed (Shapiro-Wilk; p > 0.05 for all 

parameters). Therefore, parametric statistical analysis was applied.  

 

Paired samples (2-tailed) t-test was used to assess differences in final cone threshold, cone time 

constant, rod-cone break time, rod-rod break time, final rod threshold and AUC between the 

GW and CDA. The repeatability of the CDA was assessed by evaluating the data from each 

visit using established statistical techniques (Bland and Altman, 1986; McAlinden, Khadka and 

Pesudovs, 2011) and by calculating the coefficient of repeatability (CoR). Significance was set 

at the 0.05 level.   
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3.4 Results  
3.4.1 Comparison of GW and CDA 
There was no significant difference in the cone constant, rod-cone break and rod-rod break 

between the two devices (Paired-samples (2-tailed) t-test, 0.338 < p < 0.858) (Table 3.1 and 

Figure 3.10). A statistically significant difference was observed between final cone threshold, 

final rod threshold and AUC between the GW and CDA (Paired samples t-test; p = 0.001, p = 

0.000 and p = 0.004 respectively). The final cone threshold for the CDA was significantly 

lower than the GW with a mean difference of 0.20 log cd/m2. The final rod threshold decreased 

from the GW to the CDA by a mean of 0.52 log cd/m2. The AUC also decreased  from the GW 

to the CDA by 6.18 log cd/m2.min. 

 
Table 3.1 Comparing the GW and CDA 

Parameter 
GW 

(Mean ± SD) 
CDA 

(Mean ± SD) 
Paired t-test 

95% CI 

Lower Upper 

Final cone threshold 
(log cd/m-2) 

-2.25 ± 0.82 -2.45 ± 0.14 < 0.005 0.102 0.278 

Cone Constant  
(minutes) 

1.93 ± 0.36 1.82 ± 0.48 0.620 -0.345 0.550 

Rod-Cone break 
(minutes) 

12.05 ± 1.16 11.99 ± 0.87 0.858 -0.717 0.846 

Rod-Rod break 
(minutes) 

18.73 ± 2.43 17.88 ± 1.17 0.338 -1.026 2.719 

Final rod threshold 
(log cd/m2) 

-4.17 ± 0.07 -4.69 ± 0.12 < 0.005 0.466 0.565 

AUC (log cd/m2.min) -55.77 ± 43.10 -61.95 ± 46.54 < 0.005 2.47 9.90 

Key: GW, goldmann-weekers; CDA, computerized dark adaptometer; CI, confidence interval; AUC, area under 

the curve; bold and shaded cells indicate significance. 
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Figure 3.10 Mean dark adaptation functions for the Goldmann-Weekers (GW) and the 

computerised dark adaptometer (CDA). Error bars represent ± SD. 

 

3.4.2 Repeatability of the CDA 
There was no significant difference in the final cone threshold, cone constant, rod-cone break, 

rod-rod break,  final rod threshold and AUC between measurement 1 and measurement 2 on 

the CDA (Paired-samples (2-tailed) t-test, 0.592 < p < 0.966) (Table 3.2 and Figure 3.11). The 

difference between all parameters recorded during measurement 1 and measurement 2 are 

plotted as a function of the mean in Bland-Altman plots (Figure 3.12).  
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Table 3.2 Repeatability of the CDA 

Parameter 
M 1 

(Mean ± SD) 

M 2 

(Mean ± SD) 

Paired 

T-Test  

95% CI 
COR COR% 

Lower Upper 

Final cone threshold 

(log cd/m-2) 
-2.33 ± 0.12 -2.33 ± 0.13 0.966 -0.120 0.124 0.19 8.15 

Cone Constant  
(minutes) 

1.62 ± 0.56 1.52 ± 0.27 0.592 -0.377 0.577 0.85 54.14 

Rod-Cone break  

(minutes) 
10.56 ± 1.32 10.52 ± 1.06 0.945 -1.476 0.1556 2.43 23.06 

Rod-Rod break 

(minutes) 
17.90 ± 2.98 18.08 ± 2.51 0.768 -1.784 1.420 2.35 13.06 

Final rod threshold 
(log cd/m2) 

-4.64 ± 0.65 -4.68 ± 0.22 0.726 -0.256 0.336 0.51 10.94 

AUC (log cd/m2.min) -76.92 ± 4.33 -77.45 ± 3.14 0.612 -2.16 3.23 4.79 6.21 

Key: M1, measurement 1; M2, measurement 2; COR, coefficient of repeatability; CI, confidence interval; AUC, 

area under the curve 

 
Figure 3.11 Mean dark adaptation functions for the CDA, showing results from measurement 

1 and 2. Error bars represent ± SD.  
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Figure 3.12 Bland-Altman plots for final cone threshold (a), cone constant (b), final rod threshold (c), rod-cone break (d), rod-rod break (e) and AUC (f). 

The difference between the values recorded during measurement 1 (M1) and measurement 2 (m2) is plotted as a function of the mean value for all subjects 

(solid line) and 95% limits of agreement, 1.96 × SD (dotted lines). 
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3.6 Discussion  
Investigation of dark adaptation   has   traditionally   been   measured   with   the   ‘Gold   standard’  

instrument, the Goldmann-Weekers dark adaptometer (Gaffney et al., 2011). With limited 

access to functioning Goldmann-Weekers dark adaptometers, the current trend in the 

measurement of dark adaptation involves the use of specially developed computerised dark 

adaptometers (Dimitrov et al., 2008). Before the data obtained from these custom made dark 

adaptometers can be considered reliable, it is important that the equipment is verified according 

to the current gold standard.  

 

The CDA developed for this study was compared to the GW. Whilst previous reports on DA 

have used only rod thresholds and rod/cone break time as the primary outcome measures, more 

recent reports utilise non-linear regression analysis (McGwin et al., 1999) to accurately 

interpret DA parameters (Herse, 1995; Omar and Herse, 2004; Christoforidis and Zhang, 

2011). Non-linear regression analysis was therefore used to analyse data for this experiment. 

Both the GW and the CDA were capable of monitoring and recording the changes in visual 

threshold that occurred during dark adaptation, with data successfully recorded from all 

participants. Results from both the GW and the CDA showed two distinct regions of recovery, 

dominated by the cones and rods, respectively. There was no significant difference in the cone 

constant, rod-cone break time, or rod-rod break time between the two techniques. This is 

reassuring as the parameters of dark adaptation are determined by the physiology of the visual 

cycle and should therefore be independent of equipment and psychophysical procedures used. 

However, final cone threshold and final rod threshold did show a significant difference 

between the two techniques. In both cases, the CDA produced lower measures of threshold. 

This may be attributed to the different psychometric procedure employed by the CDA, and the 

lack of examiner influence on the final result, as with the GW.  

 

Repeatability of the CDA was found to be acceptable, with all parameters analysed showing no 

significant difference between measurement 1 and 2. No DA parameters demonstrated a 

learning effect between test and retest, an effect which is often a feature of ophthalmologic 

psychophysical procedures, but has not previously been shown to cause a problem when 

testing dark adaptation (Christoforidis and Zhang, 2011). Assessment of COR is important in 

the evaluation of a technique for clinical use, as it indicates the extent of inherent variability 

(Bland and Altman, 1986), giving the smallest change which may be considered clinically 

significant (Bland and Altman, 1986). The parameter which is of most importance for this 

a. b. 

c. d. 

e. f. 
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study is the final rod threshold, which has previously been shown to be significantly higher in 

CF subjects compared to controls (Fulton et al., 1982; Neugebauer et al., 1989; Rayner et al., 

1989; Huet et al., 1997; Evans, 2009). The COR values found in this study for the CDA, are 

within a similar range to those previously found for the GW when measuring cone adaptation 

(0.85 and 1.32 minutes  for  cone  τ  for  the  CDA  and  GW,  respectively)  (Gaffney et al., 2011), 

suggesting the CDA has similar level of repeatability as the gold standard. Previous research 

showed mean differences greater than 1 log cd/m2 between CF subjects and controls (Evans, 

2009). These differences are greater than the final rod COR of 0.51 log cd/m2, suggesting that 

the CDA is able to reliably differentiate between healthy controls and CF subjects with 

abnormal dark adaptation.  
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 Experimental Methods  Chapter 4
This chapter outlines the methodology used throughout data collection for this thesis, bringing 

together the protocols developed in Chapters 2 and 3. All techniques were performed 

identically on CF subjects and controls, with all data collected between September 2011 and 

April 2013. Results are presented in Chapters 5 and 6.  

 

4.1 Subjects  
CF subjects were recruited from the All Wales Adult Cystic Fibrosis Centre, University 

Hospital, Llandough, Cardiff, in collaboration with Dr Ian Ketchell (FRCP PhD), Consultant 

Physician of Respiratory and General Medicine and Director of the All Wales Adult Cystic 

Fibrosis Centre. Healthy controls were recruited from undergraduates, postgraduates and staff 

from Cardiff University. 

 

Ethical approval was gained from the Cardiff and Vale Trust Research and Development 

Office, South East Wales Research Ethics Committee (REC reference: 12/WA/0011; Protocol 

Number: SPON 1054-11)1 and the Human Science Research Ethics Committee, School of 

Optometry and Vision Sciences, Cardiff University. All procedures conformed to the tenets of 

the Declaration of Helsinki. All subjects were provided with an information sheet and given the 

opportunity to discuss the study with the researchers prior to giving written consent.  

 

                                                 
1 NHS ethics power calculations  
Currently, 204 adult patients attend the CF clinic, approximately half of which have impaired glucose tolerance or 
CF related diabetes. For the sake of convenience, it is thought that only patients from within a reasonably close 
proximity will be interested in participating in the study; therefore, it is expected that a maximum of 50 patients 
will be recruited. 

Power calculations for the DA experiments were based on a previous study by Fulton et al (1982) and numbers 
were calculated using the Altman Nomogram. 
CF subjects; mean log threshold = 4.53 ± 0.42 
Healthy Subjects; mean log threshold = 4.29 ± 0.18 
Difference in means 4.53 - 4.29 = 0.24   
Standardised difference: 0.24/0.42 = 0.57 
Subject number = 44  

Power calculations for the OCT experiments were based on a previous study by Oshitari et al. (2009). As retinal 
thickness has not previously been investigated in CF, instead results from diabetic patients were used. Number 
were calculated using the Altman Nomogram.  
Healthy subjects; mean retinal thickness = 210.7 ± 28.6μm   
Diabetic subjects; mean retinal thickness = 195.6 ± 23.3μm   
Difference in means: 15.1μm    
Standardised difference: 15.1/23.3 = 0.65 
Subject number = 34 subjects per group 
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4.1.1 Inclusion and exclusion criteria  
The inclusion criteria for CF volunteers required all subjects to be over 18 years of age, have a 

positive diagnosis of CF and to have given valid informed consent. CF subjects were excluded 

if they were pregnant or breast feeding, had a history of respiratory failure, chronic bronchitis, 

smoking, emphysema or previous chest surgery, suffered from photosensitive epilepsy, or 

previous acute angle closure following pupil dilation.  Furthermore, subjects were excluded if 

Dr Ketchell advised that the patient was not well enough to participate, or that oxygen 

inhalation carried associated risks for the patient.  

 

For gender-matched healthy controls, inclusion criteria required subjects to have a date of birth 

within 12 months of their CF match, no diagnosis of cystic fibrosis, be healthy and free from 

systemic problems, and to have given valid informed consent. Controls were excluded if they 

were pregnant, had an immediate family history of CF, suffered from diabetes, had a history of 

respiratory failure, chronic bronchitis, smoking, emphysema or previous chest surgery, suffered 

from photosensitive epilepsy or have previously had acute angle closure following pupil 

dilation.  

 
4.2 Experimental Procedure 
All subjects attended the School of Optometry and Vision Sciences, Cardiff University, for a 

single data collection session lasting two hours. The various tests and their order are shown in 

Figure 4.1. All subjects answered questions regarding current and previous ocular health, 

vision, and family ocular health. Medications and reports of general health were recorded in 

control subjects. The following information regarding the general health and medications taken 

by CF patients was obtained from their medical records via a member of the CF team at 

University Hospital, Llandough, with all identifiable patient information removed: 

 

 Premature birth and gestation period  

 Age at diagnosis of CF 

 Genotype 

 Medications and supplements  

 Organ transplant history (as applicable) 

 Forced Expiratory Volume in one second (FEV1 %) – an indication of lung function 

expressed as a percentage of their personal predicted value  
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 CFRD status – classed as normal glucose tolerance (NGT), impaired glucose tolerance 

(IGT) or CF-related diabetes (CFRD)  

 Glucose tolerance – determined by the oral glucose tolerance test (OGTT). (See Section 

1.3.3 and Table 1.2) 

 Glycosylated haemoglobin (HbA1c) – used to monitor glycaemic control (Brennan et 

al., 2004).  

 Serum vitamin A concentration – an indication of vitamin A deficiency  

 Northern Score – a chest radiograph scoring system based upon an anteroposterior 

chest radiograph, with a maximum score of 20, indicating the most severe level of 

disease (McCormick, Conway and Mehta, 2007)  

 

 
Figure 4.1 Timeline showing the order of data collection (m = minutes).  

 
4.2.1 Preliminary measurements  
Distance   vision   and/or   visual   acuity   (VA)   was   recorded   (right   and   left)   with   the   patient’s  

habitual correction in place using a LogMAR ETDRS chart (Precision Vision La Salle, IL, 

USA) at three meters (luminance 160 cd/m2). Acuity was scored on an individual letter basis. 

Near visual acuity (right and left) was recorded with a Bailey-Lovie word near vision chart 

(Clement Clarke International Ltd., Essex, UK) chart at 25cm. Objective refraction was 

determined for each eye using an auto-refractor (Topcon KR-7500; Topcon, Tokyo, Japan), 

and the average of three readings was recorded.  

 

Intraocular pressure was measured for each eye using a non-contact tonometer (CT-80, 

Topcon, Tokyo, Japan), and an average taken from four readings. Temporal anterior chamber 

angles were assessed by Van Herrick technique (Friedman and He, 2008) using a slip lamp 

biomicroscope and graded between 0-4. Any subjects who had a Van Herrick angle of grade 1 
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or less were excluded from this point forward due to increased risk of acute angle closure 

(Wolfs et al., 1997).  

 

One drop of Tropicamide 1% (Bausch and Lomb, Laboratoire Chauvin, France) was instilled 

into the lower fornix of each eye and pupil size was monitored until it equalled or exceeded 

7mm diameter. Tropicamide batch number and expiry date were recorded for each patient. 

Possible adverse reactions associated with Tropicamide were discussed and patients were 

advised on the appropriate action to take should they suspect an adverse reaction. Additionally, 

all patients were advised not to drive to the appointment and warned not to drive until they felt 

their vision was back to a normal level, which could take up to six hours.  

 

Axial length was determined for each eye using the IOL Master (Zeiss, Germany). An average 

was taken from five readings, each with a signal to noise ratio (SNR) of five or above.  

 

4.2.2 Retinal Imaging  
Three consecutive 256x256 resolution (vitreous reference) macular Optical Coherence 

Tomography (OCT) scans were obtained for each eye using the Topcon 3D-OCT 1000 

(Topcon, Tokyo, Japan). Scans with quality measures below 60 were rejected and repeated. 

Images with artefacts, or missing sections due to fixation errors or patient blinking were 

rejected and scans repeated. For each scan, retinal thickness and volume was recorded for each 

area of the ETDRS plot.  

 

One high resolution OCT scan was obtained for each eye, using the following parameters: 

transverse resolution 1024, 6mm B scan length, choroid reference, 0.15mm pitch and 8 

averages.  

 

Qualitative and quantitative analysis of high resolution scans was undertaken at a later date. 

Each scan was evaluated and any abnormal features, including presence of drusen, were 

recorded. Measurements of RPE/photoreceptor layer thickness were taken using the callipers 

integrated into the Topcon 3D OCT-1000 software. Measurements were taken by an 

experienced examiner using the B-scan with the greatest macular dip for each patient, at the 

point of minimal retinal thickness and 1.1mm temporally and nasally. Computer monitor and 

mouse settings were adjusted to optimise image quality and pointer sensitivity prior to 



                                                  Chapter 4: Experimental Methods 

 154   

measurements being taken. Manual measurements of RPE/photoreceptor layer thickness for all 

scans were conducted on the same day to reduce variation in examiner decision criteria.  

 

4.2.3 Dark Adaptation 
DA was assessed in the eye with the best VA for each patient, whilst the other eye was 

patched. If no difference in VA existed, the right eye was selected. Each patient was randomly 

allocated to receive either medical air (20% oxygen, 80% nitrogen) or 100% oxygen first from 

one of two concealed gas cylinders (British Oxygen Supplies, Cardiff, Wales). The patient was 

masked to which gas they were receiving. Both oxygen and medical air was administered via 

sterile disposable 60% venti masks (Intersurgical Ltd, Berkshire, UK), at a flow rate of 15 

L/min (Drasdo et al., 2002).  Inhalation of gases began two minutes prior to dark adaptation 

testing commencement (during light adaption), and continued throughout the duration of the 

experiment (Figure 4.2). Prior inhalation was necessary to allow time for retinal oxygenation, 

as the autoregulation response to oxygen inhalation occurs in less than 1.5 minutes (Riva, 

Grunwald and Sinclair, 1983b). Arterial oxygen saturation was recorded prior to gas inhalation, 

after two and five minutes of inhalation, then at five minute intervals up to 25 minutes using a 

fingertip pulse oximeter (Medisupplies Ltd, Dorset, UK).  

 

A long  duration  ‘equilibrium’  bleach  was  provided  to  the  selected eye with a  Maxwellian-view 

optical system (Westheimer, 1966) (Figure 4.3), providing a white light of 5.16 log td for a 

period of two minutes, which bleached approximately 74.70% rhodopsin and 82.80% iodopsin 

(see section 3.3.3 for supporting calculations). Upon bleach cessation, the patient was 

immediately transferred to the chin rest in front of the dark adaptometer (Figure 4.4), and 

instructed to press any button on the keyboard to begin the dark adaptation programme.   

 

 
Figure 4.2 Timeline showing the order of dark adaptation data collection. 
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Figure 4.3 Photograph showing the Maxwellian View optical system used to administer an 

equilibrium bleach.  

 

 
Figure 4.4 Photograph showing the set-up of equipment for testing dark adaptation whilst 

inspiring medical air or oxygen.  

 

The computerised dark adaptometer presented a flashing stimulus on a calibrated cathode ray 

tube (CRT) monitor, driven by a graphics board under software control (Matlab) (see Appendix 

B for Matlab script). The monitor luminance was γ-corrected (Metha et al., 1993) and modified 

by three screen mounted neutral density filters (Dimitrov et al., 2008) (2.0 ND, 1.2 ND and 2.4 

ND, respectively) at specific points throughout the experiment in order to expose the full range 
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of visual recovery. The programme utilised a modified staircase procedure to determine 

threshold (Jackson et al., 1999). Threshold was recorded when the stimulus first became visible 

on the ascending staircase Threshold was measured continuously for the first five minutes. 

After this, threshold was measured every 50 seconds for the remaining 20 minutes. The subject 

was instructed to focus straight ahead as indicated by four peripheral fixation markers. Each 

patient received full instructions, a demonstration and a practice session prior to threshold 

measurement. All results were automatically exported to Microsoft Excel following completion 

of the programme. 

 

A 15 minute break and washout period followed the first measurement of dark adaptation, 

where the patient was provided with refreshments. The procedure was then repeated with the 

second gas, using the same eye. The parameters of both cone and rod recovery were 

determined by fitting a multiple component exponential function (Equation 7) (McGwin et al., 

1999), on a least squares basis using the Solver Function in Microsoft Excel (2010).  

 

𝑇(𝑡) =    𝑎 + 𝑏. 𝑒𝑥𝑝( / ) + 𝑐. 𝑚𝑎𝑥(𝑡 − 𝑟𝑐𝑏, 0) + 𝑑. 𝑚𝑎𝑥(𝑡 − 𝑟𝑟𝑏, 0)  Equation 7  

 

Where  T = threshold (log cd/m2) at time t after cessation of bleach 

 a = final cone threshold (log cd/m2) 

b =change in cone threshold from t = 0 

τ  =  time  constant  of  cone  recovery  (minutes) 

c = slope of the second component of rod recovery 

max = a logic statement  

rcb = time from bleach offset to the rod-cone break  

d = slop of the third component of rod recovery  

rrb = time from bleach offset to the  rod-rod break  

 

4.2.4 Post-dilation measurements 
Distance vision/VA and IOP (methods as described in 4.1.2.1) were re-measured at the end of 

the data collection session to monitor for adverse effects following pupillary dilation.  
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4.2.5 Statistics  

4.2.5.1 OCT data  
All data was checked for normality using the Shapiro-Wilk test. All retinal thickness results 

were normally distributed (controls, 0.08 < p < 0.95; CF, 0.14 < p < 0.90). Some 

RPE/Photoreceptor complex thickness results were non-normally normally distributed for CF 

subjects (0.00 < p < 0.513). Despite a non-normal distribution of the RPE/Photoreceptor 

complex thickness data, the results are a small sample of continuous data, which is 

representative of a normal distribution. Therefore, parametric statistics were applied (Bland 

and Altman, 2009).  Thickness measurements at each retinal location were assessed for a 

relationship  with  axial  length  using  Pearson’s  correlation  coefficient  as  CF  and  control  groups 

were not matched for this factor. Where a statistically significant correlation was identified (p 

< 0.05), linear regression was used to correct retinal thickness values. Independent-samples (2-

tailed) t-tests were used to assess the difference in retinal thickness between CF and controls. 

Whilst multiple comparisons increase the risk of type 1 error, this risk is reduced as retinal 

thickness values are correlated. Therefore, a conservative approach to multiple statistical 

testing, such as Bonferroni correction, was not appropriate (Bland and Altman, 1995). 

Significance was set at the 0.05 level.  

 

4.2.5.2 Dark adaptation data 
All data was checked for normality using the Shapiro-Wilk test. All parameters analysed were 

normally distributed. Paired-samples t-tests were used to compare the effect of oxygen 

inhalation within the CF and control groups. Independent-samples t-tests were used to compare 

data between CF and control groups. Two-tailed t-tests were used for all comparisons, 

excluding those where the hypothesis states a specified direction of change. One-tailed t-tests 

are indicated by a *. One-way repeated measures ANOVA was used to examine the effect of 

oxygen/air inhalation on SaO2 in both CF and control groups. As multiple comparisons 

increase the risk of type 1 error, Bonferroni correction was applied where appropriate (Bland 

and Altman, 1995). One-way ANOVA was used to examine the effect of vitamin A status and 

genotype.  Bonferroni’s  test  was  used  for  post-hoc comparisons. Correlation was assessed with 

Pearson’s  product  moment  correlation  coefficient.  Significance  was  set  at  the  0.05  level.   
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 Dark Adaptation and Oxygen Inhalation in Cystic Fibrosis Chapter 5
 

5.1 Introduction  
This chapter presents the results of the study investigating the effect of oxygen inhalation on 

dark adaptation in cystic fibrosis. All methods were carried out as outlined in Chapter 4. 

 

5.2 Experimental Hypothesis  
Considering the literature as discussed in Chapter 1, if changes in DA in CF are only secondary 

complications of CFRD, the following hypotheses are proposed: 

1. CFRD subjects will show raised final rod thresholds compared to controls when 

inhaling medical air. This impairment will be ameliorated during 100% oxygen 

breathing, indicating the presence of retinal hypoxia in CFRD subjects. 

2. CFRD subjects will show a smaller improvement in cone threshold compared to 

controls during 100% oxygen breathing, demonstrating impaired vascular reactivity. 

3. NGT CF patients will show no impairment in any DA parameters when inhaling 

medical air, and will therefore show no change during 100% oxygen breathing.  

 

However, if changes in DA are a primary manifestation of the disease, caused directly by 

malfunction of CFTR at the RPE, it would be expected that: 

1. All CF subjects will show impaired DA, both during the inhalation of air and oxygen, 

with impairment correlated to the severity of disease. 

2. CFRD patients will show improvement in threshold upon inhalation of oxygen, but the 

final rod threshold will not recover to levels comparable to age-matched controls.  

 
5.3 Results 
5.3.1 Subjects 
An overview of disease involvement in all subjects who took part in the DA experiment is 

shown in Table 5.1, then broken down into groups based upon diabetic status in tables 5.2-5.4, 

and based upon vitamin A status in tables 5.5-5.6 (Figure 5.1). Whilst a total of 28 CF subjects 

were recruited, DA was not carried out on 3 subjects due to programme errors and the results 

of 2 subjects were excluded due to unreliable data; it was apparent the subjects did not 

understand the examination. The average age of the 23 participants was 29.70 ± 8.72 years for 
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controls and 29.52 ± 8.34 years for CF subjects. Four females and 19 male controls and CF 

patients were examined. All controls were not diabetic and assumed to be vitamin A sufficient. 

 

 
Figure 5.1 Diagram showing the diabetic distribution of CF subjects. (For guidelines on the 

classification of CFRD, IGT and NGT refer to Table 1.2) 

 

  

23 CF 
19 Male, 4 Female 

Average age: 29.70 ± 8.72  years 

11 CFRD  
10 Male, 1 Female 

Average age: 31.45 ± 8.56 years 

3 IGT 
3 Male, 0 Female 

Average age: 27.00 ± 3.00 years 

9 NGT 
6 Male, 3 Female 

Average age: 28.00 ± 9.55 years 
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Table 5.1 Disease characteristics of the CF subjects for DA (n = 23) 

Variable Description 

Genotype 

n  =  14  ∆F508  homozygous 

n  =  7  ∆F508  heterozygous 

n = 1 non-∆F508 

n = 1 unidentified 

Pancreatic 
Function 

n = 23 pancreatic insufficient 

Serum Vitamin A 
concentration 

Range: 0.78 – 1.97  μmol/L  (Normal  range:  1.10  – 2.60  μmol/L)* 

Mean  ±  SD:  1.37  ±  0.35  μmol/L 

Vitamin A Status 
n = 19 vitamin A sufficient 

n = 4 vitamin A deficient 

CFRD status n = 9 NGT;  n = 3 IGT;  n = 11 CFRD 

HbA1c 
Range: 28 – 111 mmol/mol (Normal range 26-48 mmol/mol)* 

Mean ± SD: 49.08 ± 18.59 mmol/mol 

Predicted FEV1 
Range: 28 – 96% 

Mean ± SD: 59.83 ± 21.60 % 

Northern Score 
Range: 0 – 12 

Mean ± SD: 6.26 ± 3.19 

Age 
Range: 18 – 49 years 

Mean ± SD: 29.52 ± 8.34 

Gender 
19 Male 

4 Female 
* Normal values obtained from laboratory  

Key: NGT, normal glucose tolerance; IGT, impaired glucose tolerance; CFRD, cystic fibrosis related diabetes; 

HbA1c, glycosylated haemoglobin; FEV1, forced expiratory volume in 1 second. 
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Table 5.2 Disease characteristics of the CFRD subjects for DA (n = 11) 

Variable Description 

Genotype 

n = 6 ∆F508  homozygous 

n = 4 ∆F508  heterozygous 

n = 1 unidentified 

Pancreatic 
Function 

n = 11 pancreatic insufficient 

Serum Vitamin A 
concentration 

Range: 0.78 – 1.97  μmol/L  (Normal  range:  1.10  – 2.60  μmol/L)* 

Mean ± SD: 1.51 ± 0.42 μmol/L 

Vitamin A Status 
n = 9 vitamin A sufficient 

n = 2 vitamin A deficient 

HbA1c 
Range: 35 – 111 mmol/mol (Normal range 26-48 mmol/mol)* 

Mean ± SD: 59.723 ± 22.09 mmol/mol 

Predicted FEV1 
Range: 32 – 96% 

Mean ± SD: 67.23 ± 23.51 % 

Northern Score 
Range: 0 – 12 

Mean ± SD: 5.77 ± 3.49 

Age 
Range: 18 – 44 years 

Mean ± SD: 31.45 ± 8.56 

Gender 
10 Male  

1 Female 
* Normal values obtained from laboratory  

Key: NGT, normal glucose tolerance; IGT, impaired glucose tolerance; CFRD, cystic fibrosis related diabetes; 

HbA1c, glycosylated haemoglobin; FEV1, forced expiratory volume in 1 second. 
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Table 5.3 Disease characteristics of the NGT subjects for DA (n = 9) 

Variable Description 

Genotype 

n  =  5  ∆F508  homozygous 

n = 3 ∆F508  heterozygous 

n = 1 non-∆F508 

Pancreatic 
Function 

n = 9 pancreatic insufficient 

Serum Vitamin A 
concentration 

Range: 0.92 – 1.82  μmol/L  (Normal  range:  1.10  – 2.60  μmol/L)* 

Mean ± SD: 1.25 ± 0.26 μmol/L 

Vitamin A Status 
n = 7 vitamin A sufficient 

n = 2 vitamin A deficient 

HbA1c 
Range: 28 – 51 mmol/mol (Normal range 26-48 mmol/mol)* 

Mean ± SD: 39.56 ± 6.29 mmol/mol 

Predicted FEV1 
Range: 31 – 89% 

Mean ± SD: 52.33 ± 19.58 % 

Northern Score 
Range:  0 – 11 

Mean ± SD: 6.67 ± 3.43 

Age 
Range: 20 – 49 years 

Mean ± SD: 28.00 ± 9.55 

Gender 
6 Male 

3 Female 
* Normal values obtained from laboratory  

Key: NGT, normal glucose tolerance; IGT, impaired glucose tolerance; CFRD, cystic fibrosis related diabetes; 

HbA1c, glycosylated haemoglobin; FEV1, forced expiratory volume in 1 second. 
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Table 5.4 Disease characteristics of the IGT subjects for DA (n = 3) 

Variable Description 

Genotype n  =  3  ∆F508  homozygous 

Pancreatic 
Function 

n = 3 pancreatic insufficient 

Serum Vitamin A 
concentration 

Range: 1.20 – 1.29 μmol/L  (Normal  range:  1.10  – 2.60  μmol/L)* 

Mean ± SD: 1.24 ± 0.46 μmol/L 

Vitamin A Status n = 3 vitamin A sufficient 

HbA1c 
Range: 35 – 41 mmol/mol (Normal range 26-48 mmol/mol)* 

Mean ± SD: 38.67 ± 3.21 mmol/mol 

Predicted FEV1 
Range: 50 – 89 % 

Mean ± SD: 69.67 ± 19.50 % 

Northern Score 
Range:  2 – 7  

Mean ± SD: 4.67 ± 2.52 

Age 
Range: 24 – 30 years 

Mean ± SD: 27.00 ± 3.00 

Gender 3 Male 
* Normal values obtained from laboratory  

Key: NGT, normal glucose tolerance; IGT, impaired glucose tolerance; CFRD, cystic fibrosis related diabetes; 

HbA1c, glycosylated haemoglobin; FEV1, forced expiratory volume in 1 second. 
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Table 5.5 Disease characteristics of the vitamin A sufficient subjects for DA (n = 19) 

Variable Description 

Genotype 

n  =  11  ∆F508  homozygous 

n  =  7  ∆F508  heterozygous 

n = 1 unidentified 

Pancreatic 
Function 

n = 19 pancreatic insufficient 

Serum Vitamin A 
concentration 

Range: 1.10 – 1.97  μmol/L  (Normal  range:  1.10  – 2.60  μmol/L)* 

Mean  ±  SD:  1.47  ±  0.29  μmol/L 

CFRD status n = 7 NGT;  n = 3 IGT;  n = 9 CFRD 

HbA1c 
Range: 35 – 111 mmol/mol (Normal range 26-48 mmol/mol)* 

Mean ± SD: 50.21 ± 19.74 mmol/mol 

Predicted FEV1 
Range: 32 – 91% 

Mean ± SD: 61.42 ± 20.06 % 

Northern Score 
Range: 0 – 12 

Mean ± SD: 5.84 ± 3.11 

Age 
Range: 18 – 49 years 

Mean ± SD: 29.00 ± 8.71 

Gender 
15 Male 

4 Female 
* Normal values obtained from laboratory  

Key: NGT, normal glucose tolerance; IGT, impaired glucose tolerance; CFRD, cystic fibrosis related diabetes; 

HbA1c, glycosylated haemoglobin; FEV1, forced expiratory volume in 1 second. 
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Table 5.6 Disease characteristics of the VAD subjects for DA (n = 4) 

Variable Description 

Genotype 
n  =  3  ∆F508  homozygous 

n = 1 non-∆F508 

Pancreatic 
Function 

n = 4 pancreatic insufficient 

Serum Vitamin A 
concentration 

Range: 0.78 – 1.03  μmol/L  (Normal  range:  1.10  – 2.60  μmol/L)* 

Mean  ±  SD:  0.90  ±  0.10  μmol/L 

CFRD status n = 2 NGT;  n = 2 CFRD 

HbA1c 
Range: 28 – 54 mmol/mol (Normal range 26-48 mmol/mol)* 

Mean ± SD: 43.75 ± 12.28 mmol/mol 

Predicted FEV1 
Range: 31 – 96% 

Mean ± SD: 52.25 ± 30.26 % 

Northern Score 
Range: 5 – 11 

Mean ± SD: 8.25 ± 3.20 

Age 
Range: 25 – 40 years 

Mean ± SD: 32.00 ± 6.78 

Gender 4 Male 
* Normal values obtained from laboratory  

Key: NGT, normal glucose tolerance; IGT, impaired glucose tolerance; CFRD, cystic fibrosis related diabetes; 

HbA1c, glycosylated haemoglobin; FEV1, forced expiratory volume in 1 second. 
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5.3.2 The effect of oxygen inhalation on SaO2 

As expected, both CF and control subjects exhibited a significant increase in mean SaO2 during 

oxygen inhalation compared to air from two to 25 minutes (Table 5.7, paired-samples (1-tailed) 

t-test, p < 0.005, following Bonferroni correction). Comparing the groups, SaO2 for CF 

subjects was significantly lower than controls when inhaling air from two to 25 minutes 

(independent-samples (2-tailed) t-test, p < 0.05, following Bonferroni correction), indicating 

CF subjects are hypoxic. Conversely, SaO2 similar between CF subjects and controls with 

100% oxygen inhalation (independent-samples (2-tailed) t-test, p > 0.05, following Bonferroni 

correction). There was no significant effect of time on SaO2 during inhalation of air in controls 

and CF patients (one-way repeated measures ANOVA p = 0.63, p = 0.21 controls; ANOVA p 

= 0.53, p = 0.065 CF) (Figure 5.2 and 5.3). There was a significant effect of time on SaO2 

during inhalation of oxygen in controls  (ANOVA  p  <  0.005;;  Bonferroni’s  p  <  0.005)  and  CF  

patients   (ANOVA   p   <   0.005;;   Bonferroni’s   p   <   0.005)   with   a   significant   difference   seen  

between pre-inhalation (0 minutes) and all other time points measured. When analysed 

according to diabetic status, there was no significant difference between mean SaO2 during 

inhalation of air or oxygen between CFRD and NGT subjects (independent samples (2-tailed) 

t-test p = 0.44 and p = 0.19, respectively. 
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Table 5.7 SaO2 during inhalation of oxygen and air in control and CF subjects  
 SaO2 (%)   

Time 

(Minutes) 

Controls (n = 23) CF (n = 23) Independent-samples (2-tailed) t-test 

Air Oxygen 
Paired samples 

(1-tailed) t-test 
Air Oxygen 

Paired samples 

(1-tailed) t-test 
Air: CF vs Controls 

Oxygen: CFvs 

Controls 

0  97.22 ± 1.68 97.61 ± 0.58 0.322 95.91 ± 1.95 96.22 ± 1.28 0.365 0.019 < 0.005 

2 97.68  ± 0.48 98.91 ± 0.29 < 0.005 96.13 ± 1.98 98.43 ± 0.79 < 0.005 < 0.005 0.040 

5 97.70 ± 0.47 99.00 ± 0.30 < 0.005 96.52 ± 1.41 98.78 ± 0.74 < 0.005 0.001 0.200 

10 97.52 ± 1.04 98.86 ± 0.46 < 0.005 96.70 ± 1.18 98.78 ± 0.60 < 0.005 0.016 0.583 

15 97.48 ± 0.73 99.13 ± 0.34 < 0.005 96.48 ± 1.59 98.78 ± 0.67 < 0.005 0.010 0.090 

20 97.78 ± 0.52 98.96 ± 0.47 < 0.005 96.30 ± 1.29 98.78 ± 0.60 < 0.005 < 0.005 0.281 

25 97.65 ± 0.57 98.96 ± 0.47 < 0.005 96.48 ± 1.34 98.87 ± 0.69 < 0.005 < 0.005 0.623 

Key: SaO2, arterial oxygen saturation; bold and shaded cells indicate significance.  
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Figure 5.2 Mean SaO2 for controls (n = 23) during inhalation of oxygen and air. Error bars 

show the standard deviation.  

Figure 5.3 Mean SaO2 for CF subjects (n = 23) during inhalation of oxygen and air.  Error 

bars show the standard deviation.  
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5.3.3 The effect of oxygen inhalation on DA 

5.3.3.1 Controls 
For control subjects, inhalation of 100% oxygen was associated with significant reduction in 

the time to reach the rod-cone break (11.17 ± 1.12 minutes versus 10.53 ± 1.21 minutes 

respectively, paired-samples (2-tailed) t-test; p = 0.03). Changes in other parameters were 

evident but failed to reach statistical significance (Table 5.8 and Figure 5.4). The cone 

constant demonstrated a reduction upon inhalation of 100% oxygen, indicating an increase in 

the speed of cone recovery (1.85 ± 0.45 minutes versus 1.68 ± 0.50 minutes respectively), 

however, this failed to reach significance (paired-samples (2-tailed) t-test; p = 0.14).  

   
Table 5.8 The effect of oxygen inhalation on DA in controls (n=23) 

Parameter 
Air 

(Mean ± SD) 
Oxygen 

(Mean ± SD) 
Paired 

t-test 

Cone Constant 
(minutes) 

1.85 ± 0.45 1.68 ± 0.50 0.14 

Final Cone Threshold 

(log cd/m2) 
-2.34 ± 0.16 -2.28 ± 0.17 0.24 

Rod- Cone Break Time 
(minutes) 

11.17 ± 1.12 10.53 ± 1.21 0.03 

Rod-Rod Break Time 

(minutes) 
17.28 ± 1.41 17.44 ± 1.24 0.60 

Final Rod Threshold 

(log cd/m2) 
-4.60 ± 0.15 -4.64 ± 0.19 0.21 

Key: bold and shaded cells indicate significance 

 

5.3.3.2 CF subjects 
For CF subjects, inhalation of 100% oxygen was associated with a significant decrease in the 

final rod threshold from -4.50 log cd/m2 to -4.59 log cd/m2 (paired-samples (1-tailed) t-test: p 

= 0.03). There was no significant difference in any of the other parameters upon inhalation of 

oxygen (paired-samples (2-tailed) t-test, 0.4 < p < 0.81) (Table 5.9 and Figure 5.4). 
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Table 5.9 The effect of oxygen inhalation on DA in CF (n = 23) 

Parameter 
Air 

(Mean ± SD) 
Oxygen 

(Mean ± SD) 
Paired  
t-test 

Cone Constant 
(minutes) 

1.47 ± 0.75 1.41 ± 0.47 0.71 

Final Cone Threshold 

(log cd/m2) 
-2.22 ± 0.56 -2.23 ± 0.15 0.81 

Rod- Cone Break Time 
(minutes) 

9.83 ± 2.41 9.45 ± 2.01 0.40 

Rod-Rod Break Time 

(minutes) 
16.93 ± 2.73 17.22 ± 1.49 0.59 

Final Rod Threshold 

(log cd/m2) 
-4.50 ±0.27 -4.59 ± 0.21 0.03* 

Key: bold and shaded cells indicate significance; * Indicates 1-tailed t-test when the hypothesis indicates a 

relationship in a specified direction 
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Figure 5.4 Final rod thresholds for controls (n = 23) and CF (n = 23) subjects for oxygen and 

air inhalation. Diabetic and vitamin A status for CF subjects can be identified according to 

the key as shown.   

 

5.3.3.3 CFRD subjects  
CFRD subjects showed a significant decrease in final rod threshold upon the inhalation of 

100% oxygen from -4.48 log cd/m2 to -4.62 log cd/m2  (paired-samples (1-tailed) t-test p = 

0.04) (Table 5.10 and Figure 5.5). The difference in threshold upon the inhalation of oxygen 
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is larger for the CFRD group compared to the CF group (0.14 log cd/m2 and 0.9 log cd/m2 

reductions, respectively) (Figure 5.5). The cone threshold reduced upon inhalation of oxygen, 

however, the difference did not reach significance (paired-samples (2-tailed) t-test;  p = 0.30). 

There was no significant difference between the cone constant, final cone threshold, rod-cone 

break or rod-rod break upon inhalation of oxygen in the CFRD group (paired-samples (2-

tailed) t-test, p = 0.80, p = 0.30, p = 0.35, p = 0.16, respectively).   

 
Table 5.10 The effect of oxygen inhalation on DA in CFRD subjects (n = 11) 

Parameter 
Air 

(Mean ± SD) 
Oxygen 

(Mean ± SD) 
Paired  
t-Test 

Cone Constant 
(minutes) 

1.14 ± 0.34 1.19 ± 0.40 0.80 

Final Cone Threshold 

(log cd/m2) 
-2.09 ± 0.22 -2.16 ± 0.12 0.30 

Rod- Cone Break Time 
(minutes) 

8.94 ± 2.14 8.68 ± 1.70 0.35 

Rod-Rod Break Time 

(minutes) 
15.56 ± 2.55 16.84 ± 1.74 0.16 

Final Rod Threshold 

(log cd/m2) 
-4.45 ± 0.31 -4.60 ± 0.18 0.04* 

Key: bold and shaded cells indicate significance; * Indicates 1-tailed t-test when the hypothesis indicates a 

relationship in a specified direction 
 

5.3.3.4 NGT CF subjects  
There was no significant difference in any of the DA parameters upon inhalation of oxygen in 

NGT CF subjects (Table 5.11 and Figure 5.5). Whilst significance is not reached, the rod-

cone break occurred earlier and the rod-rod break occurred later during the inhalation of 

oxygen compared to air.  
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Table 5.11 The effect of oxygen inhalation on DA in NGT CF subjects (n = 9) 

Parameter 
Air 

(Mean ± SD) 
Oxygen 

(Mean ± SD) 
Paired 
t-Test 

Cone Constant 
(minutes) 

1.44 ± 0.36 1.42 ± 0.36 0.90 

Final Cone Threshold 
(log cd/m2) 

-2.31 ± 0.17 -2.29 ± 0.14 0.80 

Rod- Cone Break Time 
(minutes) 

10.86 ± 2.31 10.20 ± 2.31 0.45 

Rod-Rod Break Time 
(minutes) 

17.51 ± 1.43 18.48 ± 2.68 0.26 

Final Rod Threshold 
(log cd/m2) 

-4.57 ± 0.28 -4.57 ± 0.28 0.98 

 

 
Figure 5.5 The effect of oxygen inhalation on final rod threshold in CF (n = 23), CFRD (n = 

11), and NGT (n = 9) subjects (paired-samples (1-tailed) t-test; p = 0.03, p = 0.04 and paired-

samples (2-tailed) t-test, p = 0.98 respectively). Star indicates significance.  
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5.3.3.5 IGT CF subjects  
Rod-rod break occurred significantly later during the inhalation of oxygen compared to air 

(17.67 ± 0.34 minutes and 16.81 ± 0.20 minutes, respectively, paired-samples (2-tailed) t-test, 

p = 0.04). There was no significant difference in any of the other DA parameters upon 

inhalation of oxygen (Table 5.12). However, final rod threshold decreased from -4.50 ± 0.08 

log cd/m2 to  -4.60 ± 0.13 log cd/m2 upon inhalation of oxygen, with the difference nearly 

reaching significance (paired-samples (1-tailed) t-test, p = 0.06). As there were only three 

IGT subjects, these results must be interpreted with caution. When considered separately, two 

of the IGT subjects showed no decrease in threshold upon inhalation of oxygen, whilst the 

other one showed a reasonable decrease in threshold (Figure 5.4 B). 

 
Table 5.12 The effect of oxygen inhalation on DA in IGT CF subjects (n = 3) 

Parameter 
Air 

(Mean ± SD) 
Oxygen 

(Mean ± SD) 
Paired 
t-test 

Cone Constant 
(minutes) 

2.67 ± 1.49 2.13 ± 0.21 0.63 

Final Cone Threshold 
(log cd/m2) 

-2.43 ± 0.45 -2.32 ± 0.24 0.77 

Rod- Cone Break Time 
(minutes) 

9.72 ± 3.24 9.75 ± 1.53 0.99 

Rod-Rod Break Time 
(minutes) 

16.81 ± 0.20 17.67 ± 0.34 0.04 

Final Rod Threshold 
(log cd/m2) 

-4.50 ± 0.08 -4.60 ± 0.13 0.06* 

Key: bold and shaded cells indicate significance; * Indicates 1-tailed t-test when the hypothesis indicates a 

relationship in a specified direction 
 

5.3.3.6 Correlation of DA parameter with HbA1c 
Glycosylated haemoglobin (HbA1c) provides a guide to the average blood glucose reading 

over a 8-12 week period. There was no significant correlation between HbA1c for any DA 

parameter measured both during air and oxygen inhalation (Table 5.13). However, a medium, 

non-significant negative correlation was apparent between HbA1c and the cone constant 

during  inhalation  of  oxygen  (Pearson’s  r  =  -0.34; p = 0.12), suggesting that increasing HbA1c 

is associated with increased speed of cone recovery. This correlation reduced upon inhalation 
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of   air   (Pearson’s   r   =   -0.13; p = 0.55). Final cone threshold showed moderate positive 

correlation   with   HbA1c   during   the   inhalation   of   oxygen   (Pearson’s   r   =   0.33;;   p   =   0.13),  

suggesting that increasing HbA1c is associated with a higher final cone threshold. This 

correlation  once  again  reduced  upon  inhalation  of  air  (Pearson’s  r  =  0.21;;  p  =  0.33).  Final  rod  

threshold similarly showed a moderate positive correlation during the inhalation of both 

oxygen  (Pearson’s  r  =  0.27;;  p  =  0.21)  and  air  (Pearson’s  r  =  0.23;;  p  =  0.30),  again  suggesting  

that increasing HbA1c is associated with higher final rod threshold.  

 

Table 5.13 Correlation of HbA1c with DA parameters (n = 23) 

Parameter 
Pearson 

Correlation  
Independent  

t-test 

Cone Constant 

(minutes) 

Oxygen -0.34 0.12 

Air -0.13 0.55 

Final Cone Threshold 

(log cd/m2) 

Oxygen 0.33 0.13 

Air 0.21 0.33 

Rod- Cone Break Time 
(minutes) 

Oxygen -0.10 0.67 

Air -0.03 0.90 

Rod-Rod Break Time 

(minutes) 

Oxygen 0.04 0.85 

Air -0.08 0.71 

Final Rod Threshold 

(log cd/m2) 

Oxygen 0.27 0.21 

Air 0.23 0.30 
Key: HbA1c, glycosylated haemoglobin 

 

5.3.4 The effect of disease status on DA 

5.3.4.1 CF vs Controls 
CF had no significant effect on any of the DA parameters during both air and oxygen 

inhalation except for the rod-cone break, which occurred significantly earlier in CF subjects 

compared to controls (independent-samples (2-tailed) t-test; p = 0.01 and p = 0.04, 

respectively). The difference in final rod threshold during inhalation of air approaches 

significance (independent-samples (1-tailed) t-test; p = 0.07), with the control threshold lower 

than that of the CF subjects (-4.60 and -4.50 log cd/m2, respectively). This difference 

becomes much less significant upon oxygen inhalation. There is a clear trend towards less 

variability (as shown by smaller SD) of data during inhalation of oxygen compared to air in 
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CF subjects for all DA parameters examined. It is likely that the larger variability of the CF 

data during the inhalation of air causes several DA parameters to not reach significance.  

Similarly, the difference between DA parameters is much less significant during the 

inhalation of oxygen compared to air for the CF group. (Table 5.14 and Figures 5.6-5.7).  

 
Table 5.14 The effect of CF on dark adaptation during inhalation of air and oxygen (n=23 CF 

and n = 23 controls) 

Parameter Controls 

(Mean ± SD) 
CF 

(Mean ± SD) 
Independent 

t-test 

Cone Constant 

(minutes) 

Oxygen 1.68 ± 0.50 1.41 ± 0.47 0.07 

Air 1.85 ± 0.45 1.48 ± 0.74 0.05 

Final Cone Threshold 

(log cd/m2) 

Oxygen -2.12 ± 0.90 -2.23 ± 0.15 0.29 

Air -2.34 ± 0.16 -2.22 ± 0.26 0.06 

Rod-Cone Break 
Time (minutes) 

Oxygen 10.53 ± 1.21 9.45 ± 2.01 0.04 

Air 11.17 ± 1.12 9.71 ± 2.42 0.01 

Rod-Rod Break Time 

(minutes) 

Oxygen 17.44 ± 1.24 17.22 ± 1.49 0.60 

Air 17.28 ± 1.41 16.69 ± 2.90 0.39 

Final Rod Threshold 

(log cd/m2) 

Oxygen -4.64 ± 0.19 -4.59 ± 0.21 0.37 

Air -4.60 ± 0.15 -4.50 ± 0.27 0.07* 
Key: bold and shaded cells indicate significance; * Indicates 1-tailed t-test when the hypothesis indicates a 

relationship in a specified direction 
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Figure 5.6 A graph showing the mean thresholds for CF and control subjects during the inhalation of air with error bars showing the standard 

deviation (n = 23 CF; n = 23 controls). 
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Figure 5.7 A graph showing the mean thresholds for CF and control subjects during the inhalation of oxygen with error bars showing the 

standard deviation (n = 23 CF; n = 23 controls). 
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5.3.4.2 CFRD vs controls  
The cone constant was significantly lower in CFRD subjects compared to controls during 

both oxygen (1.19 ± 0.40 minutes and 1.69 ± 0.51 minutes, respectively; independent-

samples (2-tailed) t-test, p = 0.02) and air inhalation (1.19 ± 0.36 minutes and 1.89 ± 0.47 

minutes, respectively; independent-samples (2-tailed) t-test, p = 0.00), indicating a quicker 

cone recovery in CFRD subjects. Final cone threshold was significantly higher in CFRD 

subjects compared to controls during inhalation of both oxygen (-2.16 ± 0.11 log cd/m2 and -

2.30 ± 0.17 log cd/m2, respectively; independent-samples (2-tailed) t-test, p = 0.04) and air   

(-2.09 ± 0.22 log cd/m2 and -2.39 ± 0.12 log cd/m2, respectively; independent-samples (2-

tailed) t-test, p < 0.005). The rod-cone break occurred significantly earlier in CFRD subjects 

compared to controls during inhalation of both oxygen (8.68 ± 1.70 minutes and 10.33 ±1.35 

minutes, respectively; independent-samples (2-tailed) t-test, p = 0.02) and air (8.77 ± 2.10 

minutes and 11.34 ± 0.96 minutes, respectively; independent-samples (2-tailed) t-test,            

p < 0.005). Considering the rod-rod break, this occurred later in the controls compared to the 

CFRD subjects. Whilst the difference approached significance during inhalation of air it did 

not achieve statistical significance during either condition (Independent-samples (2-tailed) t-

test, p = 0.26 and p = 0.06 for oxygen and air, respectively).  Final rod threshold during the 

inhalation of air was significantly elevated in CFRD subjects compared to controls (4.45± 

0.31 and -4.64 ± 0.16, respectively; independent-samples (1-tailed) t-test, p = 0.04), with this 

difference ameliorated upon the inhalation of 100% oxygen (-4.60 ±  0.18 log cd/m2 and        

-4.65 ±  0.22 log cd/m2, respectively; independent-samples (2-tailed) t-test, p = 0.61).  This is 

summarised in Table 5.15 and Figures 5.8 – 5.14. 
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Table 5.15 The effect of diabetic status on DA in CF; CFRD vs Controls (n = 11 CFRD; n = 

11 controls) 

Parameter 
Controls 

(Mean ± SD) 
CFRD 

(Mean ± SD) 
Independent  

t-test 

Cone Constant 
(minutes) 

Oxygen 1.69 ± 0.51 1.19 ± 0.40 0.02 

Air 1.89 ± 0.47 1.14 ± 0.34 0.00 

Final Cone Threshold 
(log cd/m2) 

Oxygen -2.30 ± 0.17 -2.16 ± 0.12 0.04 

Air -2.39 ± 0.12 -2.09 ± 0.22 0.00 

Rod- Cone Break 
Time (minutes) 

Oxygen 10.33 ± 1.35 8.68 ± 1.70 0.02 

Air 11.34 ± 0.96 8.94 ± 2.14 0.00 

Rod-Rod Break Time 
(minutes) 

Oxygen 17.68 ± 1.57 16.84 ± 1.74 0.26 

Air 17.13 ± 1.76 15.56 ± 2.55 0.06 

Final Rod Threshold 
(log cd/m2) 

Oxygen -4.65 ± 0.22 -4.60 ± 0.18 0.61 

Air -4.64 ± 0.16 -4.45 ± 0.31 0.04* 
Key: bold and shaded cells indicate significance; * Indicates 1-tailed t-test when the hypothesis indicates a 

relationship in a specified direction 
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Figure 5.8 A graph showing the mean thresholds for CFRD and control subjects during the inhalation of air with error bars showing the standard 

deviation (n = 11 CFRD; n = 11 controls). 

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 5 10 15 20 25

Th
re

sh
ol

d 
(l

og
 c

d/
m

m
2 )

 

Time (minutes) 

CFRD
Control



                                         Chapter 5: Dark Adaptation and Oxygen Inhalation in Cystic Fibrosis 

 182   

 
Figure 5.9 A graph showing the mean thresholds for CFRD and control subjects during the inhalation of oxygen with error bars showing the 

standard deviation (n = 11 CFRD; n = 11 controls). 

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 5 10 15 20 25

Th
re

sh
ol

d 
(l

og
 c

d/
m

2 )
 

Time (minutes) 

CFRD
Control



                                         Chapter 5: Dark Adaptation and Oxygen Inhalation in Cystic Fibrosis 

 183   

  
Figure 5.10 The effect of diabetic status on final cone threshold during inhalation of oxygen 

(p = 0.02) and air (p < 0.005) (n = 11 CFRD; n = 11 controls). Error bars indicate the 95% 

confidence interval. Star indicates significance. 

 
Figure 5.11 The effect of diabetic status on cone constant during inhalation of oxygen  

(p = 0.04) and air (p < 0.005) (n = 11 CFRD; n = 11 controls). Star indicates significance. 
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Figure 5.12 The effect of diabetic status on rod-cone break during inhalation of oxygen  

(p = 0.02) and air (p = 0.00) (n = 11 CFRD; n = 11 controls). Star indicates significance.  

.  

Figure 5.13 The effect of diabetic status on rod-rod break during inhalation of oxygen  

(p = 0.26) and air (p = 0.06) (n = 11 CFRD; n = 11 controls). 
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Figure 5.14 The effect of diabetic status on final rod threshold during inhalation of oxygen   

(p = 0.61) and air (p = 0.04) (n = 11 CFRD; n = 11 controls). Star indicates significance.  

 

5.3.4.2.1 CFRD with diabetic retinopathy 

One CFRD subject showed signs of diabetic retinopathy on fundus photography. This subject 

also showed the greatest reduction in final rod threshold upon inhalation of 100% oxygen, 

with a decrease in threshold of 0.78 log cd/m2 from -3.67 log cd/m2 to -4.45 log cd/m2 

(Figure 5.15) This difference is much larger than 0.15 log cd/m2, which is the mean change 

for the CFRD subjects as a whole. Interestingly, whilst this subject was the only one to 

display signs of diabetic retinopathy, the recorded HbA1c (54 mmol/mol) was just outside the 

normal range (26-48 mmol/mol) and was certainly not the highest value recorded across all 

subjects (range 28 – 111 mmol/mol).  
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Figure 5.15 A graph showing the dark adaptation curves during inhalation of oxygen and air for a CFRD subject with diabetic retinopathy. DA 

parameters are shown for both oxygen (blue) and air (red). 
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5.3.4.3 NGT vs controls  
There was no significant difference in any of the parameters between NGT subjects and 

controls both during inhalation of air and oxygen (Table 5.16).  

 
Table 5.16 The effect of diabetic status on DA; NGT vs Controls (n = 9 NGT; n = 9 controls) 

Parameter Controls 
(Mean ± SD) 

NGT 
(Mean ± SD) 

Independent 
t-test 

Cone Constant 
(minutes) 

Oxygen 1.62 ± 0.54 1.42 ± 0.36 0.37 

Air 1.79 ± 0.49 1.44 ± 0.36 0.10 

Final Cone Threshold 
(log cd/m2) 

Oxygen -2.28 ± 0.16 -2.29 ± 0.14 0.94 

Air -2.32 ± 0.15 -2.31 ± 0.17 0.87 

Rod- Cone Break 
Time (minutes) 

Oxygen 10.74 ± 1.23 10.20 ± 2.31 0.55 

Air 11.08 ± 1.43 10.86 ± 2.31 0.82 

Rod-Rod Break Time 
(minutes) 

Oxygen 17.04 ± 0.73 17.51 ± 1.43 0.39 

Air 17.57 ± 0.86 18.48 ± 2.68 0.36 

Final Rod Threshold 
(log cd/m2) 

Oxygen -4.62 ± 0.18 -4.57 ± 0.28 0.61 

Air -4.56 ± 0.15 -4.57 ± 0.28 0.93 
Key: NGT, normal glucose tolerance 

 

5.3.4.4 IGT vs controls  
There was no significant difference in any of the parameters between IGT subjects and controls 

both during inhalation of air and oxygen, although the difference in final rod threshold between 

IGT subjects and controls was larger during the inhalation of air compared to oxygen, with the 

significance values reflecting this difference (0.08 log cd/m2 difference vs 0.03 log cd/m2, 

respectively) (Table 5.17). However, as there were only three IGT subjects, these results must 

be viewed with caution. 
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Table 5.17 The effect of diabetic status on DA; IGT vs Controls (n = 3 NGT; n = 3 controls) 

Parameter Controls 
(Mean ± SD) 

IGT 
(Mean ± SD) 

Independent 
t-test 

Cone Constant 
(minutes) 

Oxygen 1.88 ± 0.41 2.13 ± 0.21 0.40 

Air 1.82 ± 0.33 2.67 ± 1.49 0.39 

Final Cone Threshold 
(log cd/m2) 

Oxygen -2.20 ± 0.28 -2.32 ± 0.24 0.62 

Air -2.23 ± 0.28 -2.43 ± 0.45 0.56 

Rod- Cone Break 
Time (minutes) 

Oxygen 10.76 ± 0.62 9.75 ± 1.53 0.35 

Air 11.49 ± 1.14 9.72 ± 3.24 0.42 

Rod-Rod Break Time 
(minutes) 

Oxygen 17.80 ± 1.25 17.67 ± 0.34 0.87 

Air 16.95 ± 1.67 16.81 ± 0.20 0.88 

Final Rod Threshold 
(log cd/m2) 

Oxygen -4.63 ± 0.09 -4.60 ± 0.13 0.76 

Air -4.58 ± 0.14 -4.50 ± 0.08 0.20* 
Key:  IGT, impaired glucose tolerance; * Indicates 1-tailed t-test when the hypothesis indicates a relationship in a 

specified direction 

 

5.3.4.5 NGT vs CFRD 
The final cone threshold was significantly lower in NGT compared to CFRD subjects during 

oxygen inhalation (-2.29 ± 0.14 and -2.16 ± 0.11 log cd/m2, respectively; independent-samples 

(2-tailed) t-test, p = 0.04) and air inhalation (-2.31 ± 0.17 and -2.09 ± 0.22 respectively, 

independent-samples (2-tailed) t-test, p = 0.3). Rod-cone break occurred significantly later in 

NGT compared to CFRD subjects during inhalation of air (10.86 ± 2.31 and 8.77 ± 2.10 

minutes, respectively; independent-samples (2-tailed) t-test, p = 0.05)). Rod-rod break occurred 

significantly later in NGT compared to CFRD subjects during the inhalation of air (18.48 ± 

2.68 and 15.19 ± 2.71 minutes, respectively; independent-samples (2-tailed) t-test, p = 0.1). No 

other significant differences were found between NGT and CFRD subjects for the other 

parameters (Table 5.18). 
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Table 5.18 The effect of diabetic status on DA; NGT vs CFRD (n = 9 NGT; n = 11 CFRD) 

Parameter 
CFRD 

(Mean ± SD) 
NGT 

(Mean ± SD) 
Independent 

t-test 

Cone Constant 
(minutes) 

Oxygen 1.19 ± 0.40 1.42 ± 0.36 0.22 

Air 1.19 ± 0.36 1.44 ± 0.36 0.14 

Final Cone Threshold 
(log cd/m2) 

Oxygen -2.16 ± 0.11 -2.29 ± 0.14 0.04 

Air -2.09 ± 0.22 -2.31 ± 0.17 0.03 

Rod- Cone Break 
Time (minutes) 

Oxygen 8.68 ± 1.70 10.20 ± 2.31 0.12 

Air 8.77 ± 2.10 10.86 ± 2.31 0.05 

Rod-Rod Break Time 
(minutes) 

Oxygen 16.84 ± 1.74 17.51 ± 1.43 0.38 

Air 15.19 ± 2.71 18.48 ± 2.68 0.01 

Final Rod Threshold 
(log cd/m2) 

Oxygen -4.60 ± 0.18 -4.57 ± 0.28 0.12 

Air -4.45 ± 0.31 -4.57 ± 0.28 0.19* 
Key: CFRD, cystic fibrosis related diabetes; NGT, normal glucose tolerance; bold and shaded cells indicate 

significance; * Indicates 1-tailed t-test when the hypothesis indicates a relationship in a specified direction 

 

5.3.5 The effect of vitamin A status on DA 
Vitamin A status had no significant effect on any of the DA parameters when compared to 

controls (ANOVA > 0.05) (Table 5.19). However, VAD subjects showed a trend towards an 

elevated final rod threshold upon inhalation of air compared to both controls and vitamin A 

sufficient subjects (-4.35± 0.47, -4.60 ± 0.15 and -4.53 ± 0.22 log cd/m2 respectively, ANOVA 

p = 0.47) (Figure 5.16). It is likely that this difference did not reach significance due to small 

numbers of VAD subjects (n = 4). However, it is unlikely that the final rod threshold is 

impaired in the VAD subjects due to low vitamin A serum levels as recovery to normal levels 

is shown upon oxygen inhalation, indicating that hypoxia was the causative factor. Table 5.6 

and Figure 5.4B show that two of the VAD subjects also had CFRD, and demonstrated two of 

the largest improvements in threshold upon oxygen inhalation of all subjects studied, therefore 

skewing the VAD data significantly.  
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Table 5.19 The effect of vitamin A status on DA (n = 23 controls; n = 19 vitamin A sufficient; 

n = 4 vitamin A deficient).  

Parameter 
Controls 

(Mean ± SD) 

CF 

ANOVA Vitamin A 
Sufficient 

Vitamin A 
deficient 

Cone Constant 
(minutes) 

Oxygen 1.68 ± 0.50 1.47 ± 0.39 1.04 ± 0.81 0.07 

Air 1.85 ± 0.45 1.51 ± 0.80 1.34 ± 0.34 0.13 

Final Cone Threshold 
(log cd/m2) 

Oxygen -2.12 ± 0.90 -2.26  ± 0.14 -2.11±0.19 0.77 

Air -2.34 ± 0.16 -2.25 ± 2.36 -2.10 ± 0.19 0.08 

Rod- Cone Break 
Time (minutes) 

Oxygen 10.53 ± 1.21 9.66 ± 1.80 8.12 ± 3.16 0.32 

Air 11.17 ± 1.12 9.93 ± 2.36 8.37 ± 2.82 0.14 

Rod-Rod Break Time 
(minutes) 

Oxygen 17.44 ± 1.24 17.48 ±1.27 14.44 ± 1.25 0.07 

Air 17.28 ± 1.41 17.00 ±2.65 15.23 ± 3.99 0.25 

Final Rod Threshold 
(log cd/m2) 

Oxygen -4.64 ± 0.19 -4.56 ±0.21 -4.72 ±0.18 0.23 

Air -4.60 ± 0.15 -4.53 ±0.22 -4.35 ± 0.47 0.47 
Key: ANOVA, analysis of variance 

 

 
Figure 5.16 The effect of vitamin A status on final rod threshold (n = 23 controls; n = 19 

vitamin A sufficient; n = 4 vitamin A deficient).  
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5.3.6 The effect of genotype on DA 
CF genotype had no significant effect on any of the DA parameters when compared to controls 

(ANOVA > 0.05) (Table 5.20).  

 

Table 5.20 The effect of CF genotype on DA (n = 23 controls; n = 7 heterozygous; n = 14 

homozygous) 

Parameter 
Controls 

(Mean ± SD) 

CF 

ANOVA 
∆F508 

Heterozygous 
(Mean ± SD) 

∆F508 
Homozygous 
(Mean ± SD) 

Cone Constant 
(minutes) 

Oxygen 1.68 ± 0.50 1.39 ± 0.37 1.50 ± 0.51 0.30 

Air 1.85 ± 0.45 1.34 ± 0.55 1.56 ± 0.87 0.14 

Final Cone Threshold 
(log cd/m2) 

Oxygen -2.12 ± 0.90 -2.29 ± 0.07 -2.24 ± 0.16 0.78 

Air -2.34 ± 0.16 -2.24 ± 0.32 -2.22 ± 0.25 0.24 

Rod- Cone Break 
Time (minutes) 

Oxygen 10.53 ± 1.21 10.04 ± 2.59 9.48 ± 1.50 0.17 

Air 11.17 ± 1.12 10.46 ± 2.63 9.31 ± 2.47 0.06* 

Rod-Rod Break Time 
(minutes) 

Oxygen 17.44 ± 1.24 17.32 ± 1.30 17.42 ± 1.59 0.98 

Air 17.28 ± 1.41 16.41 ± 3.81 16.61 ± 2.47 0.56 

Final Rod Threshold 
(log cd/m2) 

Oxygen -4.64 ± 0.19 -4.52 ± 0.25 -4.61 ± 0.20 0.37 

Air -4.60 ± 0.15 -4.50 ± 0.28 -4.49 ± 0.29 0.30 
Key: ANOVA, analysis of variance; * indicates Brown-Forsythe test (assumption of homogeneity of variance for 

ANOVA was violated) 

 
5.3.7 Correlation with CF lung disease  
Lung function, as expressed by FEV1 (Forced Expiratory Volume in 1 second) and Northern 

Score (a score used to describe lung disease on a scale of 0-20, with 0 being no disease) were 

used to investigate the effect of lung disease severity on DA. FEV1 had a small, non-significant 

negative correlation with final rod threshold during the inhalation of air (Figure 5.17;;  Pearson’s  

r = -0.18; p = 0.42), and a moderate correlation during the inhalation of oxygen, with the 

relationship tending towards significance (Figure 5.18;;  Pearson’s  r  =  -0.38; p = 0.08). A similar 

trend was seen with the Northern score, with a small positive correlation seen with the final rod 

threshold on inhalation of air (Figure 5.19;;   Pearson’s   r   =   0.19;;   p   =   0.38),   and   a   moderate  

correlation on inhalation of oxygen (Figure 5.20;;  Pearson’s  r  =  0.32;;  p  =  0.14). 
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Figure 5.17 The correlation of lung function as expressed by FEV1 with final rod threshold 

during   inhalation   of   air   (Pearson’s   r   =   -0.18; p = 0.42). Dashed lines show 95% confidence 

intervals.  

 
Figure 5.18 The correlation of lung function as expressed by FEV1 with final rod threshold 

during  inhalation  of  oxygen  (Pearson’s  r  =  -0.38; p = 0.08). Dashed lines show 95% confidence 

intervals.  
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Figure 5.19 The correlation of Northern Score with final rod threshold during inhalation of air 

(Pearson’s  r  =  0.19;;  p  =  0.38). Dashed lines indicate 95% confidence intervals.  

 

 
Figure 5.20 The correlation of Northern Score with final rod threshold during inhalation of 

oxygen  (Pearson’s  r  =  0.32;;  p  =  0.14). Dashed lines indicate 95% confidence intervals.  
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5.3.8 Summary of findings 

 

 CF subjects had significantly lower SaO2 duration inhalation of air compared to healthy 

controls. Inhalation of oxygen caused a significant increase in SaO2 in CF and control 

patients within two minutes of commencing inhalation, resulting in no significant 

difference in SaO2 between groups.   

 

 Control subjects showed no improvement in final rod threshold upon the inhalation of 

oxygen 

 

 Final rod threshold was elevated in CFRD subjects compared to controls during the 

inhalation of air, but recovered to normal levels upon the inhalation of oxygen. These 

results suggest abnormal DA in CFRD can be reversed upon oxygen inhalation. 

 

 Final rod threshold during inhalation of both air and oxygen in NGT CF subjects was 

not significantly different to controls. No significant improvement in threshold was 

seen upon the inhalation of oxygen in these subjects.   

 

 Final rod threshold was elevated in IGT subjects compared to controls during inhalation 

of air, though this difference failed to reach significance, likely due to the small number 

of subjects included in this group. Similar to CFRD subjects, IGT subjects showed an 

improvement in threshold upon inhalation of oxygen, though this again just failed to 

reach significance.  

 

 Final rod threshold showed a small negative correlation with FEV1 and a moderate 

positive correlation with Northern score during the inhalation of oxygen, suggesting 

elevation of final rod threshold is associated with decreasing lung function. 
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5.4 Discussion  
 

Air  

CF is characterised by chronic airway inflammation and progressive airflow obstruction 

secondary to chronic hypersecretion of mucous (Bradley et al., 1999; van der Giessen et al., 

2012). CF subjects have previously demonstrated reduced SaO2 levels, with hypoxemia 

increasing as lung disease progresses (Tepper, Skatrud and Dempsey, 1983; Frangolias and 

Wilcox, 2001). Similarly, in this study SaO2 was significantly lower in CF subjects compared 

to heathly controls during the inhalation of air, indicating low levels of hypoxia exist under 

normal conditions.  

 

When comparing DA parameters during the inhalation of air between all CF subjects and 

controls, whilst rod-cone break time was seen to occur significantly earlier in CF, no other 

parameters, including final rod threshold, showed any significant difference, despite lower 

SaO2 in CF. However, when grouped according to their diabetic status, differences between 

CFRD subjects and controls emerged. CFRD subjects showed significantly elevated final rod 

thresholds compared to controls during the inhalation of air. This finding is in line with 

previous studies on type 1 and 2 diabetic subjects (Henson and North, 1979; Arden et al., 1998; 

Kurtenbach et al., 2006). Similar elevations in threshold can also be seen during oxygen 

deprivation studies in healthy subjects (McFarland and Evans, 1939; McFarland and Forbes, 

1940). 

 

In addition to a significantly elevated final rod threshold, CFRD subjects also showed 

significantly faster cone recovery and significantly elevated final cone threshold compared to 

controls. These findings are in contrast to type 1 diabetic subjects in a study by Kurtenbach et 

al. (2006), who showed no significant differences in cone parameters compared to controls. 

Cone DA kinetics have shown a deceleration with increasing age within a healthy population, 

as demonstrated by a larger cone constant (Coile and Baker, 1992; Gaffney, Binns and 

Margrain, 2012). RPE and photoreceptor cell loss (Gao and Hollyfield, 1992; Curcio et al., 

1993) and accumulation of lipofuscin in the RPE (Roth, Bindewald and Holz, 2004) have been 

reported to occur with increasing age. It is likely that these changes are responsible for 

impaired pigment regeneration with age, and therefore contribute to a slower cone dark 

adaptation recovery (Gaffney, 2012). Due to accelerated aging in CF, secondary to chronic 

respiratory infection and the subsequent increased levels of oxidative stress, CF subjects as a 
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whole were expected to show slower cone recovery times compared to age and gender matched 

controls. However, whilst significance was not reached, there was a clear trend towards quicker 

cone recovery in CF patients compared to controls during the inhalation of air, with this 

relationship becoming significant when considering CFRD subjects alone. It is therefore not 

clear why CF subjects tended to recover cone sensitivity quicker than controls. The 

maxwellian-view optical system was employed to deliver equilibrium bleaches to reduce the 

risk of subjects receiving different levels of bleach, which would directly affect recovery 

parameters. As control subjects were recruited from the School of Optometry and Vision 

Sciences and were often experienced observers, they may have fixated more steadily during 

bleaching, resulting in them receiving a greater percentage photopigment bleach. This may 

account for slower cone recovery in controls.  

 

Similar to CFRD subjects, final rod threshold was elevated in IGT subjects compared to 

controls during inhalation of air, though this difference failed to reach significance, possibly 

due to the small number of subjects included in this group. Conversely, NGT subjects showed 

no significant differences in any parameters compared to controls during the inhalation of air. 

This leads to the suggestion that impaired DA in CF is secondary to CFRD and not a primary 

manifestation of CF caused by malfunction of CFTR at the RPE or caused by reduced SaO2 

under normal conditions. Subjects with chronic pulmonary insufficiency (and no diabetes) 

have similarly shown no impairment in their dark adapted threshold secondary to reduced SaO2 

(Thylefors, Piitulainen and Havelius, 2009). Further evidence that impaired DA is not a 

primary manifestation of CF is that genotype was seen to have no significant effect on any DA 

parameters, an outcome which is contrary to that of previous research (Evans, 2009). 

Considering this difference, previous analysis may have included confounding factors, such as 

vitamin A and diabetic status, which were markedly worse within the homozygous group. Lack 

of impairment of DA parameters in the NGT subjects suggest that slightly reduced SaO2 in CF 

subjects does not negatively impact DA. 

 

Oxygen 

Inhalation of 100% oxygen caused a significant increase in SaO2 in CF and controls within two 

minutes, bringing SaO2 between the two groups to comparable levels. This increase in SaO2 is 

a finding which is consistent with previous research in Type 1 diabetic subjects and controls 

(Anderson, 1968; Kurtenbach et al., 2006). It has previously been shown that maximal retinal 

oxygenation is reached within two minutes of oxygen inhalation (Anderson, 1968), despite 
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autoregulation promoting a vasoconstrictive response. Supplementary oxygen has been shown 

to increase oxygenation in all retinal layers in rats, as measured in-vivo with microelectrodes 

(Yu et al., 1999). It is reasonable to predict that inhalation of 100% oxygen will have caused a 

similar increase in retinal oxygenation in this experiment, though the study of Yu et al. (1999) 

could be repeated in CF knockout mice to prove they are truly behaving in the same way. 

 

An increase in SaO2 upon oxygen breathing had no significant effect on any parameters of DA 

in controls. Conversely, CFRD subjects showed a decrease in final rod threshold, bringing 

threshold to a level comparable to controls. Recovery of final rod threshold with inhalation of 

oxygen, observed for the first time in CFRD subjects, implies that retinal hypoxia is present in 

CFRD subjects, as previously seen in Type 1 diabetic subjects (Kurtenbach et al., 2006).  

Whilst CFRD is classed as distinctly separate from Type 1 and 2 diabetes, this finding 

demonstrates that similarities exist on a microvascular level. 

 

Retinal oxygen tension during dark adaptation is known to approach zero in healthy subjects 

(Lange and Bainbridge, 2012) due to the high consumption of oxygen by the sodium channels 

of photoreceprots to maintain the dark current (Kurtenbach et al., 2006). With impaired oxygen 

delivery in diabetes, secondary to retinal vascular changes (Little, 1976) and decreased oxygen 

release from haemoglobin (Ditzel, 1972), this tension is believed to drop below zero, resulting 

in retinal hypoxia (Arden et al., 1998). It is this rod-driven retinal hypoxia which is believed to 

be the driving force for development of proliferative diabetic retinopathy (Arden, 2001; Yu and 

Cringle, 2001).  

 

Whilst over half of the CFRD subjects showed a decrease in rod threshold upon inhalation of 

100% oxygen, one subject showed no change and, paradoxically, three showed a small 

increase. It is possible that some of this variability is due to differences in duration of diabetes 

(Henson and North, 1979), but it may also be attributed to varying regions of ischaemic retina 

in each subject, a problem which is associated with only testing one area of the retina (Henson 

and North, 1979). Results may also be affected by varying glucose levels across subjects at the 

time of testing (Henson and North, 1979). Hyperglycaemia has previously been shown to 

decrease cone threshold (Kurtenbach et al., 2006), whilst rod threshold is known to increase 

during periods of hypoglycaemia (Mc, Halperin and Niven, 1946). It may therefore be of 

benefit to check blood glucose levels at the time of examination, so this effect can be 

accounted for.  As expected, the increase in threshold with inhalation of oxygen was largest in 
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the subject who displayed diabetic retinopathy, suggesting retinal hypoxia is most severe in 

patients with more advanced disease (Kurtenbach et al., 2006).  

 

In a previous study, cone threshold decreased in control subjects upon the inhalation of oxygen 

(Kurtenbach et al., 2006). Whilst a significant reduction was not evident in this study, the cone 

constant did demonstrate a non-significant reduction upon oxygen breathing in controls, 

indicating an increase in the speed of cone recovery. Conversely, rod threshold showed no 

change upon inhalation of 100% oxygen in healthy subjects, which is also in agreement with 

previous research (Anderson, 1968; Kurtenbach et al., 2006). It was suggested by Kurtenbach 

et al. (2006) that the different responses by the rod and cone systems upon inhalation of oxygen 

indicate that each system has a distinct metabolic process. Cones have been shown to have 

approximately 10x the volume of mitochondria compared to rods (Hoang et al., 2002). It may 

therefore be suggested that under normal conditions, maximal metabolic rates may have been 

reached in rods (Wangsa-Wirawan and Linsenmeier, 2003), but not in cones, thus allowing 

them to further improve their speed of adaptation with the addition of supplemental oxygen. 

The Mȕller cell pathway in cones, allowing an additional and faster mechanism for opsin 

regeneration (Mata et al., 2002), may also account for the increased speed of recovery seen in 

cones, but not in rods. Whilst Type 1 diabetics have also previously demonstrated similar 

improvement in cone threshold upon the inhalation of oxygen (Kurtenbach et al., 2006), CFRD 

subjects showed neither an increase in the cone constant or final cone threshold, indicating that 

CFRD subjects may not behave in exactly the same way to Type 1 diabetics.  

 

In contrast to CFRD subjects, NGT subjects showed no change in any DA parameters upon the 

inhalation of oxygen, despite an increase in SaO2. Absence of a change in NGT subjects lends 

further support to the conclusion that DA impairment in CF is secondary to CFRD and not a 

primary manifestation of CFTR dysfunction at the RPE, or due to hypoxia under normal 

conditions. It has long been known that healthy persons with altitude induced hypoxia have 

impaired dark adaption (McFarland and Evans, 1939; McFarland and Forbes, 1940). The effect 

of oxygen inhalation on DA in subjects with chronic respiratory insufficiency, and hence 

reduced SaO2 under normal conditions, similarly showed no improvement in DA upon oxygen 

inhalation in a different study (Thylefors et al., 2009).  It is hypothesised that subjects with 

chronic respiratory insufficiency do not show impaired DA despite reduced SaO2 due to the 

combined effect of hypoxia and hypercapnia inducing vasodilation in both the retinal and 

choroidal circulation, resulting in a blood flow that would be sufficient to compensate for 
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reduced arterial oxygen saturation (Harris et al., 1996; Thylefors et al., 2009). In contrast, high 

altitudes create a state of hypoxia and hypocapnia, which results in reduced oxygenation, but 

no compensatory increased blood flow due to the vasoconstrictive effects of hypocapnia 

(Fallon et al., 1985; Kergoat and Faucher, 1999; Poulin et al., 2002; Thylefors et al., 2009).  

 

Established CFRD is often difficult to diagnose as glucose tolerance fluctuates with periods of 

disease exacerbation (Mackie et al., 2003), and HbA1c is not always reliable in CF, with 

readings appearing falsely low (Lanng et al., 1995; Solomon et al., 2003). The decision to 

commence treatment for CFRD is hence rather challenging. Therefore, one of the aims of this 

study was to assess the effect of oxygen breathing on DA in IGT subjects, in the hope of 

determining whether hypoxia existed in these patients. If hypoxia was indeed found to exist in 

IGT subjects, this would demonstrate a level of impairment similar to CFRD subjects, which 

would lead to the suggestion for prompt diabetic treatment. Whilst significance was not 

reached, possible due to small subject numbers, IGT subjects tended towards having a higher 

final rod threshold during the inhalation of air compared to controls, with the difference 

reduced upon the inhalation of oxygen. When considered separately, two of the IGT subjects 

showed no decrease in threshold upon inhalation of oxygen, whilst the other showed a 

reasonable decrease in threshold. The latter subject is likely to have done so due to retinal 

hypoxia, secondary to diabetic changes, therefore it is possible that this subject would benefit 

from the commencement of diabetic treatment. This finding indicates that there is reasonable 

promise for the use of DA in identifying IGT subjects who may benefit from diabetic 

treatment, when measures like HbA1c would not help with this distinction (Lanng et al., 1995; 

Solomon et al., 2003). 

 

Only four of the 23 subjects who participated in this study had VAD, representing 17.4% of the 

cohort. This represents a dramatic reduction in prevalence over the last 5 years, as a study 

which was carried out in 2008 found 42.9% of their cohort had VAD (Evans, 2009). This 

reduction demonstrates improved management of pancreatic insufficiency and subsequent 

vitamin deficiencies. As only four subjects had VAD in this study, statistical analysis between 

controls, vitamin A sufficient (VAS) and VAD groups must be interpreted with caution. VAD 

subjects had elevated final rod threshold during the inhalation of air compared to controls and 

VAS (though significance was not reached). Vitamin A is known to play a key role in the 

regeneration of photopigment in the retinoid cycle of vision (Lamb and Pugh, 2004), therefore, 

it is unsurprising that VAD has previously been shown to produce an increase in final rod 
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threshold which is reversible upon vitamin A supplementation (Kemp et al., 1988). However, it 

is unlikely that the threshold was elevated due to low serum A levels  in this study as recovery 

to normal levels was shown upon oxygen inhalation, indicating that hypoxia was the causative 

factor.  

 

In summary, NGT subjects showed no impairment in DA compared to controls, along with no 

improvement in any DA parameters upon oxygen inhalation, whilst CFRD subjects 

demonstrated impaired rod threshold, a defect which was ameliorated upon oxygen inhalation. 

Together, these findings suggest that DA is impaired in CF secondary to retinal hypoxia in 

CFRD, not by the primary dysfunction of CFTR at the RPE. This is the first study to 

demonstrate the presence of retinal hypoxia in CFRD subjects. Whilst no firm conclusions can 

be drawn from the results obtained on the IGT subjects due to small participant numbers, the 

results show considerable promise that DA may be used to identify IGT patients who show 

signs of retinal impairment and who therefore may benefit from earlier treatment.  
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 Investigating Retinal Integrity in Cystic Fibrosis Chapter 6
 

6.1 Introduction 
CFTR has previously been localised to the basal membrane of the RPE (Wills et al., 2000; 

Wills et al., 2001; Weng et al., 2002; Blaug et al., 2003), and has been indicated to have a 

functional role in chloride ion (Cl-) transport from the sub-retinal space (SRS) to the choroid 

(Miller and Farber, 1984; Blaug et al., 2003). Studies on the RPE indicate that Cl- transport 

across the RPE is important in several RPE functions, including fluid absorption (Miller and 

Edelman, 1990), volume regulation (Ueda and Steinberg, 1994) and ligand-regulated ion and 

fluid transport (Peterson et al., 1997). The retina produces a large amount of water as a 

consequence of its high metabolic turnover in photoreceptors and neurons (Strauss, 2005). This 

creates a need for continual removal of water from the retina to the choroid via the RPE 

(Marmor, 1990). Epithelial transport of Cl- and potassium ions provides the driving force for 

epithelial water transport via trans-cellular pathways, including AQP-1 (Hamann et al., 1998; 

Stamer et al., 2003; Strauss, 2005).  

 

Disturbance of normal CFTR activity in CF, unless compensated by other Cl- channels, could 

cause complications such as oedema and serous retinopathy. Active trans-epithelial chloride 

transport is known to generate an osmotic gradient, driving fluid secretion. It is hypothesised 

that reduced secretion of Cl- from the SRS to the choroid via the RPE would result in 

accumulation of fluid within the RPE and photoreceptor complex, recognised as increased 

retinal thickness as measured by OCT.  The retina in CF may also be compromised due to 

increased levels of oxidative stress caused by chronic recurrent respiratory infection (van der 

Vliet et al., 1997; Lezo et al., 2012), decreased levels of protective antioxidants including 

lutein and zeaxanthin (Feranchak et al., 1999; Schupp et al., 2004; Grey et al., 2008; Laguna et 

al., 2008; Maqbool and Stallings, 2008) and impaired transport of glutathione (Qin et al., 

2011). Furthermore, the observation of premature drusen in CF subjects could indicate an 

increased risk of premature age related macular degeneration (AMD) (Evans, 2009). 

 

This chapter explores the retinal structure and the pathogenesis of AMD and investigates the 

effect of defective CFTR functioning in CF on the retinal structure through quantitative and 

qualitative evaluation of retinal optical coherence tomography (OCT) scans. All methods were 

carried out as outlined in Chapter 4. 
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6.2 Experimental Aims  
To quantitatively and qualitatively investigate the retina and RPE in CF through OCT 

examination, in order to determine the primary and secondary structural effects of CF at the 

retinal level. 

 
6.2.1 Experimental Hypothesis  

1. Reduced secretion of chloride ions from the SRS to the choroid by dysfunctional CFTR 

in CF will result in accumulation of fluid within the RPE and photoreceptor complex. 

Therefore, CF subjects are hypothesised to show significantly increased retinal 

thickness, as measured by OCT, compared to controls.  

2. OCT examination will reveal sub-clinical signs of premature aging within the CF 

population compared to controls, secondary to increased levels of oxidative stress and 

reduced availability of antioxidants due to pancreatic insufficiency and impaired 

glutathione transport via CFTR. 

 

6.3 Results 
56 eyes from 28 CF subjects, and 56 eyes from 28 control subjects were examined. An 

overview of the disease profile of CF subjects is given in Table 6.1 All retinal thickness 

measurements for each location were assessed for a relationship with axial length; where a 

statistically significant correlation was found, the individual values were corrected by linear 

regression analysis. Individual thickness values for each participant are shown in Appendix C.  
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Table 6.1 Disease characteristics of CF subjects  
Variable Description 

Genotype n  =  14  ∆F508  homozygous 

n  =  11  ∆F508 heterozygous 

n = 1 non-∆F508 

n = 2 unidentified 

Pancreatic Function n = 27 pancreatic insufficient 

n = 1 pancreatic sufficient 

Transplant History n = 1 Lung Transplant 

n = 1 Liver Transplant 

Serum Vitamin A 

concentration 

Range: 0.78 – 1.97  μmol/L  (Normal range: 1.10 – 2.60  μmol/L) 

Mean  ±  SD:  1.38  ±  0.35  μmol/L 

Vitamin A Status n = 23 vitamin A sufficient 

n = 5 vitamin A deficient 

Serum Vitamin D 

concentration 

Range: 5 – 57.90  μg/L  (Normal  range:  30  – 100  μg/L) 

Mean  ±  SD:  23.52  ±  11.71  μg/L 

Vitamin D Status n = 15 vitamin D sufficient 

n = 13 vitamin D deficient 

Serum Vitamin E 
concentration 

Range: 12.70 – 53.60  μmol/L  (Normal  range:  11  – 47  μmol/L) 

Mean  ±  SD:  25.27  ±  10.00  μmol/L 

Vitamin E status n = 27 vitamin E sufficient 

n = 1 vitamin E deficient 

CFRD status n = 13 NGT;  n = 4 IGT;  n = 11 CFRD 

HbA1c Range: 28 – 111 mmol/mol (Normal range 26-48 mmol/mol) 

Mean ± SD: 46.97 ± 17.19 mmol/mol 

CF Liver disease  n = 12 

FEV1 Range: 0.79 – 4.11 L 

Mean ± SD: 2.25 ± 0.98 L 

% Predicted FEV1 Range: 28 – 96% 

Mean ± SD: 58.03 ± 21.46 % 

Northern Score Range: 0 – 12 

Mean ± SD: 5.71 ± 3.54 

Key: * Normal range obtained from laboratory results; CFRD, cystic fibrosis related diabetes; NGT, normal 

glucose tolerance; IGT, impaired glucose tolerance; HbA1c, glycosylated haemoglobin; FEV1, forced expiratory 

volume in 1 second 

 

6.3.1 Automated retinal thickness measures – Controls vs CF 
Mean automated retinal thickness measures for CF and control subjects are summarised in 

Table 6.2. There was no significant difference in retinal thickness between right and left eyes 
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for control subjects for all ETDRS areas (paired-samples (2-tailed) t-test, p > 0.05). There was 

no significant difference in retinal thicknesses between right and left eyes for CF subjects for 

all ETDRS areas apart from the NI (paired-samples (2-tailed) t-test, p = 0.01) and NO (paired-

samples (2-tailed) t-test, p = 0.00) areas. As previous studies have shown no significant 

differences in retinal thicknesses between right and left eyes (Massin et al., 2002; Kelty et al., 

2008; Wolf-Schnurrbusch et al., 2009; Duan et al., 2010), data from the right eyes only will be 

used for further analysis.  

 

Mean retinal thickness for CF and control groups is shown as a function of eccentricity in 

Figure 6.1. All areas analysed were thinner in CF subjects compared to controls, reaching 

significance in the all outer retinal zones of the ETDRS plot (Table 6.3). For these areas, CF 

retinas  were  between  7.01μm  (temporal  outer)  to  10.42μm  (nasal  outer)  thinner.   
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Table 6.2 Automated retinal thickness measures (Control, n = 28; CF, n = 28)  

Retinal Area 

Control 
Mean ± SD 

CF 
Mean ± SD 

Right Left Right Left 

Axial length 24.07 ± 1.32 25.86 ± 1.16 23.80 ± 0.89 23.75 ± 0.90 

CS (µm) 254.81 ± 20.89 254.05 ± 12.94 243.51 ± 24.72 244.64 ± 26.53 

NI (µm) 313.52 ± 11.72 310.69 ± 19.14 304.61 ± 26.31 310.10 ± 16.00 

TI (µm) 295.44 ± 10.48 293.33 ± 14.10 289.83 ± 14.02 289.19 ± 13.88 

SI (µm) 308.58 ± 11.76 309.86 ± 12.16 303.98 ± 14.78 304.51 ± 13.57 

II (µm) 304.05 ± 10.30 303.38 ± 13.01 301.65 ± 15.85 302.32 ± 14.56 

NO (µm) 283.76 ± 12.70 284.33 ± 13.35 273.34 ± 15.77 276.74 ± 15.92 

TO (µm) 245.83 ± 11.54 239.94 ± 22.92 238.82 ± 10.62 232.64 ± 24.09 

SO (µm) 262.02 ± 12.03 262.29 ± 12.23 254.26 ± 11.30 255.71 ± 14.66 

IO (µm) 254.04 ± 11.78 253.96 ± 14.34 247.02 ± 12.91 248.50 ± 13.00 

Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; bold and shaded cells indicate significance 
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Table 6.3 Retinal thickness in Controls vs CF (Controls, n = 28; CF, n = 28) 

Retinal Area 
Control 

(Mean ± SD) 
CF 

(Mean ± SD) 
Independent-
samples t-test 

CS (µm) 254.81 ± 20.89 243.51 ± 24.72 0.07 

NI (µm) 313.52 ± 11.72 304.61 ± 26.31 0.15 

TI (µm) 295.44 ± 10.48 289.83 ± 14.02 0.10 

SI (µm) 308.58 ± 11.76 303.98 ± 14.78 0.20 

II (µm) 304.05 ± 10.30 301.65 ± 15.85 0.51 

NO (µm) 283.76 ± 12.70 273.34 ± 15.77 0.01 

TO (µm) 245.83 ± 11.54 238.82 ± 10.62 0.02 

SO (µm) 262.02 ± 12.03 254.26 ± 11.30 0.02 

IO (µm) 254.04 ± 11.78 247.02 ± 12.91 0.04 

Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; bold and shaded cells indicate significance 
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Figure 6.1 Retinal thickness for controls and CF subjects. Error bars show the standard deviation. Areas where the difference between groups was 

statistically significant (p < 0.05) are shown by a star (*).  
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6.3.2 RPE/photoreceptor layer thickness 
Mean RPE/photoreceptor layer thickness for the CF and control groups is shown as a function 

of eccentricity in Figure 6.2. Mean RPE and photoreceptor layer thickness was significantly 

thinner in CF subjects at all locations analysed, with the greatest difference seen centrally 

(3.68μm)  (Table  6.4).   

 

Table 6.4 RPE/photoreceptor layer thickness in Controls vs CF (Controls, n = 28; CF, n = 28) 

Retinal Area 
Control 

(Mean ± SD) 
CF 

(Mean ± SD) 
Independent-
samples t-test 

Central, µm 108.50 ± 4.21 104.82 ± 3.89 0.00 

Nasal, µm 84.86 ± 4.04 82.79 ± 2.87 0.03 

Temporal, µm 84.25 ± 2.98 81.86 ± 2.82 0.00 

Key:  bold and shaded cells indicate significance 

 
Figure 6.2 RPE/photoreceptor layer thickness for control and CF subjects. Error bars show the 

standard deviation. Areas where the difference between groups was statistically significant (p < 

0.05) are shown by a star (*). 
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6.3.3 The effect of diabetic status on retinal thickness  
When grouped according to their diabetic status, in general the CFRD group shows a smaller 

reduction in total retinal thickness compared to the NGT and IGT groups (Table 6.5).  

 

Table 6.5 Retinal thickness grouped according to diabetic status (Control, n = 28; NGT, n = 

13; IGT, n = 4; CFRD, n = 11) 

Retinal Area 
Control 

(Mean ± SD) 

Diabetic Status 

NGT IGT CFRD 

CS (µm) 254.81 ± 20.89 
241.33 ± 

26.32 
242.42 ± 22.67 246.48 ± 24.47 

NI (µm) 313.52 ± 11.72 307.64 ± 9.69 302.08 ± 9.38 311.03 ± 22.16 

TI (µm) 295.44 ± 10.48 290.67 ± 8.91 282.41 ± 14.75 291.54 ± 18.55 

SI (µm) 308.58 ± 11.76 
303.03 ± 

10.00 
302.25 ± 18.35 305.73 ± 19.06 

II (µm) 304.05 ± 10.30 
298.92 ± 

11.77 
295.58 ± 10.51 307.09 ± 20.55 

NO (µm) 283.76 ± 12.70 270.43 ± 9.66 265.58 ± 14.32 279.60 ± 20.49 

TO (µm) 245.83 ± 11.54 239.69 ± 5.82 232.75 ± 18.22 240.64 ± 14.84 

SO (µm) 262.02 ± 12.03 254.23 ± 9.32 250.08 ± 10.57 255.82 ± 14.06  

IO (µm) 254.04 ± 11.78 
244.61 ± 

11.54 
242.58 ± 7.31 251.48 ± 15.38 

RPE/Photoreceptor 
Central (µm) 

108.50 ± 4.21 104.92 ± 4.34 106.25 ± 4.50 104.18 ± 3.28 

RPE/Photoreceptor  
Nasal (µm) 

84.86 ± 4.04 82.92 ± 3.38 84.00 ± 2.83 82.18 ± 2.27 

RPE/Photoreceptor 
Temporal (µm) 

84.25 ± 2.98 82.00 ± 3.14 83.00 ± 2.45 81.27 ± 2.65 

Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer 
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6.3.3.1 CFRD vs Controls  
When CFRD subjects are compared to controls, there are no significant differences between 

the two groups for any areas of full retinal thickness, with no trend towards a thinner retina in 

CFRD (independent-samples (2-tailed) t-test, p > 0.05).  However, there is a clear trend 

towards thinner RPE/Photoreceptor layer in CFRD subjects, with this difference reaching 

significance centrally and temporally (independent-samples (2-tailed) t-test, p < 0.005; p < 

0.05, respectively) (Table 6.6).  
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Table 6.6 Retinal thickness in Controls vs CFRD (Controls, n = 11; CFRD, n = 11) 

Retinal Area 
Control 

(Mean ± SD) 
CFRD 

(Mean ± SD) 
Independent-
samples t-test 

CS (µm) 250.79 ± 26.76 246.48 ± 24.47 0.70 

NI (µm) 309.54 ± 11.04 311.03 ± 22.16 0.85 

TI (µm) 294.70 ± 8.21  291.54 ± 18.55 0.62 

SI (µm) 305.18 ± 11.39 305.73 ± 19.06 0.94 

II (µm) 300.45 ± 8.57 307.09 ± 20.55 0.34 

NO (µm) 282.52 ± 15.11 279.60 ± 20.49 0.71 

TO (µm) 243.67 ± 9.39  240.64 ± 14.84 0.57 

SO (µm) 261 ± 14.73 255.82 ± 14.06  0.33 

IO (µm) 250.58 ± 14.14 251.48 ± 15.38 0.89 

RPE/Photoreceptor Central, 

(µm)  
109.72 ± 3.85 104.18 ± 3.28 0.00 

RPE/Photoreceptor Nasal, 

(µm)  
84.64 ± 3.35 82.18 ± 2.27 0.06 

RPE/Photoreceptor 

Temporal, (µm)  
83.91 ± 2.84 81.27 ± 2.65 0.04 

Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; bold and shaded cells indicate significance 

 
6.3.3.2 NGT vs Controls 
When NGT subjects are compared to controls, the trend towards a thinner retina in CF is 

apparent with all ETDRS areas thinner in NGT compared to controls. This difference reaches 

significance in the NO, TO and IO ETDRS areas (independent-samples (2-tailed) t-test, p < 
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0.005; p < 0.05; p = < 0.05, respectively). Whilst significance is not reached in any of the other 

ETDRS areas, all values tend towards significance. Whilst the RPE/photoreceptor layer also 

shows a trend towards being thinner in NGT, significance is not reached in any of the areas 

(independent-samples (2-tailed) t-test, p > 0.05) (Table 6.7).  

 

Table 6.7 Retinal thickness in Controls vs NGT (Controls, n = 13; CFRD, n = 13) 

Retinal Area 
Control 

(Mean ± SD) 
NGT 

 (Mean ± SD) 
Independent-
samples t-test 

CS (µm) 254.56 ± 13.82  241.33 ± 26.32 0.13 

NI (µm) 315.08 ± 9.22 307.64 ± 9.69 0.06 

TI (µm) 296.59 ± 9.91 290.67 ± 8.91 0.12 

SI (µm) 310.18 ± 10.54 303.03 ± 10.00 0.09 

II (µm) 306.56 ± 8.99 298.92 ± 11.77 0.08 

NO (µm) 284.62 ± 9.93 270.43 ± 9.66 0.00 

TO (µm) 248.69 ± 11.28 239.69 ± 5.82 0.01 

SO (µm) 261.59 ± 9.86 254.23 ± 9.32 0.06 

IO (µm) 256.82 ± 11.73 244.61 ± 11.54 0.01 

RPE/Photoreceptor Central, 

(µm)  
107.15 ± 4.36 104.92 ± 4.34 0.20 

RPE/Photoreceptor  

Nasal, (µm)  
84.00 ± 4.40 82.92 ± 3.38 0.49 

RPE/Photoreceptor 

Temporal, (µm)  
83.69 ± 3.15 82.00 ± 3.14 0.18 

Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; bold and shaded cells indicate significance 
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6.3.3.3 IGT vs Controls  
When IGT subjects are compared to controls, there is a trend towards a thinner retina in IGT 

subjects, however, possibly due to the small numbers (n = 4), significance is not reached for 

any of the full thickness ETDRS areas (independent-samples (2-tailed) t-test, p > 0.05). There 

is a similar trend towards a thinner RPE/Photoreceptor layer in IGT, with a significant 

difference seen for the temporal area only (independent-samples (2-tailed) t-test, p < 0.05) 

(Table 6.8). 
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Table 6.8 Retinal thickness in Controls vs IGT (Controls, n = 4; IGT, n = 4) 

Retinal Area 
Control 

(Mean ± SD) 
IGT 

 (Mean ± SD) 
Independent-
samples t-test 

CS (µm) 266.67 ± 22.98 242.42 ± 22.67 0.18 

NI (µm) 319.42 ± 19.37 302.08 ± 9.38 0.18 

TI (µm) 293.75 ± 18.99 282.41 ± 14.75 0.38 

SI (µm) 312.75 ± 17.05 302.25 ± 18.35 0.43 

II (µm) 305.75 ± 17.58 295.58 ± 10.51 0.37 

NO (µm) 284.42 ± 16.94 265.58 ± 14.32 0.14 

TO (µm) 242.50 ± 18.13 232.75 ± 18.22 0.48 

SO (µm) 263.75 ± 13.63 250.08 ± 10.57 0.16 

IO (µm) 254.58 ± 14.54 242.58 ± 7.31 0.19 

RPE/Photoreceptor Central, 

(µm)  
109.50 ± 4.43 106.25 ± 4.50 0.34 

RPE/Photoreceptor  

Nasal, (µm)  
88.25 ± 3.69 84.00 ± 2.83 0.12 

RPE/Photoreceptor 

Temporal, (µm)  
87.00 ± 1.15 83.00 ± 2.45 0.03 

Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; bold and shaded cells indicate significance 

 
6.3.3.4 Correlation with HbA1c 
There was no correlation between HbA1c and any of the ETDRS full retinal thickness areas, or 

the  RPE/Photoreceptor  layer  areas  (Pearson’s,  p  >  0.05).   
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6.3.4 Correlation with lung disease severity  
Lung function, as expressed by FEV1 (Forced Expiratory Volume in 1 second) and the 

Northern Score (a score used to describe lung disease on a scale of 0-20, with 0 being no 

disease) were used to investigate the effect of disease severity on DA. FEV1 had no significant 

correlation with any ETDRS full retinal thickness areas or any area of the RPE/Photoreceptor 

layer  (Pearson’s,  -0.13< r <0.18, 0.37< p <0.95). Similarly, Northern Score had no significant 

correlation  with   any  measures   of   retinal   thickness   or   RPE/Photoreceptor   layer   (Pearson’s,   -

0.35< r <0.09, 0.07< p <0.99). The only area that tended towards significance was the nasal 

RPE/Photoreceptor layer (Figure 6.13), where the retinal thickness decreases with an increase 

in  Northern  Score  (Pearson’s  r  =  -0.35, p = 0.07). 

 

 
Figure 6.3 The correlation of Northern Score with the nasal RPE/Photoreceptor layer. 

(Pearson’s  r  =  -0.35, p = 0.07). Dotted lines indicate the 95% confidence intervals.  

 
6.3.5 The effect of vitamin status on retinal thickness 
Vitamin A, D and E levels did not significantly correlate with any measure of retinal thickness 

(Pearson’s,  -0.33< r <0.32, 0.1< p <0.98; 0.33< r <0.32, 0.1< p <0.98; 0.33< r <0.32, 0.1< p 

<0.98, respectively).  
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When grouped according to vitamin A status, full retinal thickness was significantly different 

in the NO area only (ANOVA; p < 0.05). Post hoc comparisons indicated that there was a 

significant difference between controls and the vitamin A sufficient group (Bonferroni; p = 

0.01), with the vitamin A sufficient group having a thinner retina. The TO, SO, IO areas also 

tended towards significance (ANOVA; p = 0.06, p = 0.07, p = 0.09, respectively). In each area, 

post hoc comparisons indicated that retinal thickness was  tending towards significantly thinner 

in the vitamin A sufficient group compared to controls (Bonferroni; TO, p = 0.06; SO, p = 

0.09; IO, p = 0.09). RPE/photoreceptor layer thickness was significantly different centrally, 

nasally and temporally (ANOVA; p < 0.005, p = 0.01, p = 0.01, respectively). In the central 

and temporal areas, post hoc comparisons indicate a significant difference between controls 

and the vitamin A sufficient group, with the vitamin A sufficient group having a thinner 

RPE/photoreceptor layer (Bonferroni; Central, p = 0.00; Temporal, p = 0.01). However, post 

hoc comparison of the nasal area indicates a significant difference between controls and the 

vitamin A deficient group, with the vitamin A deficient group having a thinner 

RPE/photoreceptor layer (Games-Howell, p = 0.00). As the VAD group only has 5 subjects, 

these results must be viewed with caution (Table 6.9). 
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Table 6.9 The effect of vitamin A status on retinal thickness (Controls, n = 28; Vitamin A 

sufficient, n = 22; Vitamin A deficient,  n = 5)  

Retinal Area 
Control 

(Mean ± SD) 

Vitamin A Status 
ANOVA 

VAS VAD 

CS (µm) 254.81 ± 20.89 241.11 ±24.71 248.94 ± 26.17 0.12 

NI (µm) 313.52 ± 11.72 306.12 ± 15.73 318.40 ± 13.20 0.08 

TI (µm) 295.44 ± 10.48 288.85 ±14.60 295.00 ± 12.86 0.17 

SI (µm) 308.58 ± 11.76 302.77 ± 14.87 310.20 ± 15.87 0.26 

II (µm) 304.05 ± 10.30 300.29 ± 15.14 309.20 ± 19.91 0.35 

NO (µm) 283.76 ± 12.70 271.06 ± 14.16 284.20 ± 21.11 0.01 

TO (µm) 245.83 ± 11.54 238.17 ± 10.85 240.06 ± 11.05 0.06 

SO (µm) 262.02 ± 12.03 254.62 ± 10.84 253.80 ± 15.38 0.07 

IO (µm) 254.04 ± 11.78 246.18 ± 12.21 252.07 ± 17.17 0.09 

RPE/Photoreceptor 

Central, (µm)  
108.50 ± 4.21 104.32 ± 3.78 107.40 ± 4.04 0.00 

RPE/Photoreceptor  

Nasal, (µm)  
84.86 ± 4.04 82.91 ± 3.10 81.60 ± 0.89 0.01 

RPE/Photoreceptor 

Temporal, (µm)  
84.25 ± 2.98 81.82 ± 2.68 81.00 ± 2.92 0.01 

Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; bold and shaded cells indicate significance 
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6.3.6 The effect of liver disease on retinal thickness 
When grouped according to presence or absence of CF-liver disease (CFLD), full retinal 

thickness was significantly different in the NO area only, and RPE/photorecptor thickness was 

significantly different at each location (ANOVA; p < 0.05) (Table 6.10). Considering the ON 

area, post-hoc comparisons indicated that the retina was significantly thinner in Non-CFLD 

subjects compared to controls (Bonferroni; p = 0.04). Post-hoc comparisons of the central 

RPE/photoreceptor layer indicated that thickness was reduced in both CFLD and non-CFLD 

compared to controls (Bonferroni; p = 0.02 and p = 0.04, respectively). For the nasal and 

temporal RPE/Photoreceptor layer, thickness was reduced in the CFLD group compared to 

controls (Bonferroni; p = 0.04 and p = 0.02, respectively). There were no significant 

differences in thickness between CFLD and non-CFLD subjects.  
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Table 6.10 The effect of CFLD on retinal thickness (Controls, n = 28; CFLD, n = 12; Non-

CFLD, n = 16) 

Retinal Area 
Control 

(Mean ± SD) 

CF 
ANOVA 

CFLD Non-CFLD 

CS (µm) 254.81 ± 20.89 248.61 ± 24.85 239.69 ± 24.72 0.12 

NI (µm) 313.52 ± 11.72 306.53 ± 15.99 309.42 ± 15.65 0.31 

TI (µm) 295.44 ± 10.48 289.81± 12.34 289.85 ± 15.56 0.25 

SI (µm) 308.58 ± 11.76 302.53 ± 14.71 305.06 ± 15.22 0.40 

II (µm) 304.05 ± 10.30 301.39 ± 15.81 301.85 ± 16.40 0.80 

NO (µm) 283.76 ± 12.70 273.11 ± 19.35 273.52 ± 13.15 0.03 

TO (µm) 245.83 ± 11.54 238.78 ± 11.87 238.85 ± 12.22 0.09 

SO (µm) 262.02 ± 12.03 253.42 ± 12.39 254.90 ± 10.79 0.05 

IO (µm) 254.04 ± 11.78 247.31 ± 15.31 246.81 ± 11.30 0.14 

RPE/Photoreceptor 

Central, (µm)  
108.50 ± 4.21 104.42 ± 3.55 105.13 ± 4.21 0.01 

RPE/Photoreceptor  

Nasal, (µm)  
84.86 ± 4.04 81.83 ± 2.37 83.50 ± 3.08 0.01 

RPE/Photoreceptor 

Temporal, (µm)  
84.25 ± 2.98 81.42 ± 3.45 82.19 ± 2.31 0.04 

Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; bold and shaded cells indicate significance 
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6.3.7 The effect of genotype on retinal thickness 
When grouped according to CF genotype, there was no significant effect on full retinal 

thickness when compared to controls (ANOVA; p > 0.05) (Table 6.11). However, central and 

temporal RPE/photoreceptor layer thickness was significantly different (ANOVA; p = 0.01, p 

= 0.02, respectively). For the central RPE/photoreceptor layer, post hoc comparisons indicated 

that  the  RPE/photoreceptor  layer  was  significantly  thinner  in  ∆F508  heterozygotes  compared  to  

controls (Bonferroni; p = 0.02). Conversely, post hoc comparisons of the temporal 

RPE/photoreceptor  layer  indicated  that  this  layer  was  thinner  in  ∆F508  homozygotes  compared  

to controls (Bonferroni; p = 0.04). No significant differences in thickness were seen between 

the  ∆F508  hetereozygous and homozygous subjects.   
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Table 6.11 The effect of genotype on retinal thickness (Controls, n = 28; Hetereozygous, n = 

11; Homozygous, n = 14) 

Retinal Area 
Control 

(Mean ± SD) 

CF 

ANOVA ∆F508 
Heterozygous 
(Mean ± SD) 

∆F508 
Homozygous 
(Mean ± SD) 

CS (µm) 254.81 ± 20.89 241.11 ±24.71 248.94 ± 26.17 0.12 

NI (µm) 313.52 ± 11.72 310.82 ± 15.60 308.55 ± 15.14 0.52 

TI (µm) 295.44 ± 10.48 292.09 ± 16.18 290.64 ± 11.69 0.45 

SI (µm) 308.58 ± 11.76 306.64 ± 13.85 304.55 ± 15.21 0.64 

II (µm) 304.05 ± 10.30 304.48 ± 16.13 302.86 ± 15.27 0.95 

NO (µm) 283.76 ± 12.70 276.30 ± 10.31 273.16 ± 19.26 0.67 

TO (µm) 245.83 ± 11.54 239.91 ± 10.60 239.48 ± 12.66 0.17 

SO (µm) 262.02 ± 12.03 256.85 ± 10.51 253.19 ± 11.47 0.07 

IO (µm) 254.04 ± 11.78 249.91 ± 13.21 246.40 ± 13.16 0.20 

RPE/Photoreceptor 

Central, (µm)  
108.50 ± 4.21 104.36 ± 4.22 105.57 ± 4.01 0.01 

RPE/Photoreceptor  

Nasal, (µm)  
84.86 ± 4.04 82.91 ± 3.11 82.43 ± 2.10 0.07 

RPE/Photoreceptor 

Temporal, (µm)  
84.25 ± 2.98 81.86 ± 2.66 81.91 ± 2.84 0.02 

Key: CS, central; NI, nasal inner; TI, temporal inner; SI, superior inner; II, inferior inner; NO, nasal outer; TO, 

temporal outer; SO, superior outer; IO, inferior outer; bold and shaded cells indicate significance 
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6.3.8 Qualitative Analysis  

6.3.8.1 Drusen  
Drusen were noted in only one CF subject within this study (Figure 6.4). The subject was a 69 

year old male of unknown genotype with NGT, HbA1c of 49mmol/mol, FEV1 18% predicted, 

and vitamin A sufficiency. Distance VA was slightly reduced at R 0.18 logMAR (6/9.5), L 0.3 

logMAR (6/12), but near VA remained acceptable at R 0.4 logMAR (N4), L 0.4 logMAR 

(N4).   

 

 
Figure 6.4 Black and white fundus photography (A) and pseudo-colour OCT scan (B) showing 

scattered macular drusen.  

A
. 

B
. 
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6.3.8.2 Epiretinal membrane  
An epiretinal membrane (Figure 6.5) was noted in the left eye of an asymptomatic 31 year old 

female   ∆F508   homozygous   CF   patient,   with   NGT,   HbA1c   of   40mmol/mol,   FEV1 92% 

predicted and vitamin A sufficiency. Distance and near VA was unaffected at L 0.02 LogMAR 

(6/6) and 0.0 (N2), respectively.  

 

 
Figure 6.5 Fundus photograph (A) and pseudo-colour OCT scan (B) showing a temporal 

epiretinal membrane.  
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6.3.8.3 Branch retinal vein occlusion  
A superior-temporal branch retinal vein occlusion (BRVO) (Figure 6.6) was noted in the left 

eye  of  an  asymptomatic  35  year  old  male  ∆F508  homozygos  CF  patient,  with  NGT,  HbA1c  of  

28mmol/mol, FEV1  31% predicted and VAD. The subject had had a liver transplant at 20 

years old. Medications at the time of examination included: pancreatic enzyme replacement 

therapy, the fat soluble vitamins A,D,E & K, calcium supplements and a bisphosphonate for 

osteoporosis, inhaled steroid and bronchodilators, nebulised mucolytics DNAse and hypertonic 

saline; and prophylactic antibiotics including nebulised ceftazidime and oral  Azithromycin and 

flucloxacillin. All medications have no known associated risk with BRVO. Distance VA was 

normal, measured at -0.06 LogMAR right and left. Further exploratory blood tests results are 

given in Table 6.12. 2 

 

 
Figure 6.6 Left superior branch retinal vein occlusion with a retinal haemorrhage spanning two 

disc-diameters and no macular involvement. 
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Table 6.12 Exploratory blood test results 

 Measured level Normal value 

Vitamin E  27.12 umol/l 11-47 umol/l 

Fibrinogen  5.6 g/l 2-4 g/l 

Cholesterol  2.3 mmol/l 2.5-5.2 mmol/l 

Platelet Count 276 x 10 g/l 150-400 x 10 g/l 

C Reactive protein  69 mg/l < 6 mg/l 

Liver function tests 

Total protein  82 g/l 60-80 g/l 

Albumin  33 g/l 35-50 g/l 

Total Bilirubin  9 umol/l 1-22 umol/l 

Alkaline Phosphatase 81 IU/l 30-130 IU/l 

Alanine Transferase  8 u/l < 59 u/l 

Globulin 49 g/l 22-42 g/l 
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6.3.9 Summary of Findings 

 All retinal areas analysed were thinner in CF subjects compared to controls, reaching 

significance in all outer retinal zones of the ETDRS plot. RPE/photoreceptor layer was 

significantly thinner in CF subjects at all locations analysed compared to controls. 

 

 CFRD subjects alone showed no trend towards a thinner retina compared to controls. 

However, there is a clear trend towards thinner RPE/photoreceptor layer thickness in 

CFRD subjects, with the difference reaching significance centrally and temporally. 

 

 NGT subjects show a clear trend towards a thinner retina compared to controls, with 

differences reaching significance in the NO, TO and IO ETDRS areas. The 

RPE/photoreceptor layer also shows a trend towards being thinner in NGT compared 

to controls, but significance was not reached. 

 

 IGT subjects show a trend towards a thinner retina compared to controls, however, 

significance is not reached for any of the ETDRS areas. The RPE/photoreceptor layer 

also shows a trend towards being thinner in IGT subjects compared to controls, with a 

significant difference seen for the TO area only.  

 

 HbA1c, FEV1 and Northern Score showed no significant correlation with any of the 

ETDRS areas, or the RPE/photoreceptor layer areas. However, correlation between 

nasal RPE/photoreceptor layer thickness and Northern Score approaches significance, 

with retinal thickness decreasing with an increase in Northern Score. 

 

 Vitamin A, D and E levels did not significantly correlate with any measure of retinal 

thickness. When grouped according to vitamin A status, retinal thickness and 

RPE/photoreceptor layer tended to be thinner in VAS subjects compared to controls, 

with this difference reaching significance in the NO area, centrally and temporally. 

Nasal RPE/photoreceptor layer was significantly thinner in VAD subjects compared to 

controls.   

 

 Retinal thickness was not significantly affected by disease severity, with homozygotes 

and heterozygotes showing no differences in retinal thickness. 
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6.4 Discussion  
Quantitative Analysis 

The retinal thickness values obtained for controls in this study are comparable to those 

obtained in other studies which used the Topcon 3D OCT -100 (Leung et al., 2008; Bruce et 

al., 2009). Also, in line with other studies, retinal thickness was found to be thinnest in the 

central region of the ETDRS plot (Wood et al., 2011).  

 

Studies on RPE epithelial cells indicate Cl- transport across the RPE is important in several 

RPE functions, including fluid absorption (Miller and Edelman, 1990), volume regulation 

(Ueda and Steinberg, 1994), and ligand-regulated ion and fluid transport (Peterson et al., 

1997). Disruption to the ion flux and accompanied movement of water into and out of the RPE 

cells can result in the accumulation of fluid in the SRS and result in conditions such as serous 

retinopathy and retinal detachment (RD) (Bird, 1994). With the localisation of CFTR to the 

RPE and the importance of chloride ion transport in several RPE functions, malfunction of 

CFTR in CF would be expected to cause problems such as serous retinopathy. The results of 

this study demonstrate that contrary to the proposed hypothesis, retinal thickness and 

RPE/photoreceptor layer thickness tends towards being thinner in CF subjects compared to 

controls, with significance reached for all outer ETDRS areas, and for all areas of the 

RPE/photoreceptor layer analysed. It therefore appears that other Cl- channels may be 

responsible for the majority of Cl- transport across the basal membrane of the RPE. Results 

from electrophysiological experiments on canines suggest that CFTR may indeed be less 

important than other Cl- channels as a mediator of basal RPE Cl- transport (Loewen et al., 

2003).  

 

Retinal thickness is known to decrease with increasing age, due to the age-related loss of 

retinal cells (Curcio et al., 1993). CF patients are known to demonstrate accelerated aging, 

secondary to increased levels of oxidative stress (Ballatori et al., 2009) which may account for 

the general trend towards a thinner retina in CF. Age-related losses in retinal cells are reported 

to begin inferiorly and then spread to cause greatest loss in an annular ring between 0.5 to 3mm 

in eccentricity (Curcio et al., 1993). However, in this study, retinal thickness was found to be 

most reduced in the outer ETDRS areas, which relates to an eccentricity greater than 3mm.   

 

Retinal thinning has been reported in early AMD (Kaluzny et al., 2009; Malamos et al., 2009; 

Schuman et al., 2009; Wood et al., 2011), with thinning localised to outer retinal areas directly 
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overlying drusen (Schuman et al., 2009). This thinning to believed to be secondary to 

photoreceptor degeneration in AMD (Kaluzny et al., 2009; Malamos et al., 2009; Schuman et 

al., 2009), a hypothesis which is supported by histological findings (Curcio, Medeiros and 

Millican, 1996). Whilst an increased prevalence of AMD was hypothesised to be seen in CF 

subjects, signs of age-related changes were only noted in one CF patient. Therefore, whilst the 

retinal thinning in CF subjects in this study appeared to be localised to the RPE and 

photoreceptor layers, it cannot be attributed to clinically-significant early onset AMD. 

Longitudinal studies which monitor CF patients over time may be useful to monitor the 

occurrence of AMD in CF.  

 

Interestingly, when results from CFRD subjects were examined as a group, they showed no 

trend towards a thinner retina compared to controls, whilst NGT and IGT subjects with CF did. 

Previous studies on retinal thickness in type 1 and 2 diabetics with no diabetic retinopathy are 

varied, with some studies suggesting there is no change in retinal thickness (Bressler et al., 

2008; Kashani et al., 2010; Demir et al., 2013), whilst others suggest there is a decrease 

(Browning, Fraser and Clark, 2008; Esmaeelpour et al., 2011) or an increase (Sánchez-Tocino 

et al., 2002; Sugimoto et al., 2005; Sng et al., 2012) in retinal thickness compared to controls. 

Some of the discrepancy in previous findings may be accounted for by lack of control of 

confounding factors including age, gender, ethnicity and refractive error (Sng et al., 2012), and 

varying recruitment criteria. There is more common consensus upon increased retinal thickness 

in diabetic subjects with more severe diabetic retinopathy, where retinal thickness is seen to be 

increased compared to controls (Schaudig et al., 2000; Sánchez-Tocino et al., 2002; Sng et al., 

2012). Such increases in retinal thickness with increasing retinopathy may be explained by the 

break-down of the blood-retinal barrier and increased vascular permeability of perifoveal and 

macular capillaries (Sng et al., 2012). Whilst only one CFRD subject had signs of background 

diabetic retinopathy, the observed increased retinal thickness secondary to diabetes, as seen in 

previous studies on type 1 and 2 diabetics,is likely to account for the increased retinal thickness 

in CFRD subjects compared to NGT and IGT subjects. Whilst CFRD is classed as a distinct 

disease compared to type 1 and 2 diabetes, these results in CFRD subjects suggest that there 

may be microvascular similarties at the retinal level.  

 

All but one subject who participated in this study were pancreatic insufficient, a common 

feature of CF which results in reduced levels of pancreatic enzymes reaching the small 

intestine and causes fat maldigestion (Karlet, 2000). Despite pancreatic enzyme replacement 
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therapy, CF patients have still been found to have an alteration in their plasma fatty acid 

profile, with decreased concentrations of linoleic acid and docosahexaenoic acid (DHA) 

(Aldamiz-Echevarria et al., 2009).  DHA is the most abundant fatty acid found in rod outer-

segments (Anderson, 1970; Anderson and Maude, 1972), and is known to be derived from 

dietary DHA (Li, Chen and Anderson, 2001a). DHA is not only an important structural 

component of retinal membranes (SanGiovanni and Chew, 2005), but may also play a role in 

the regeneration of rhodopsin as it transports 11-cis-retinal from the RPE (Chen et al., 1996). 

Reduced availability of DHA for the generation of rod photoreceptor outer-segments in CF 

may account for the finding of a thinner retina, and RPE/Photoreceptor layer compared to 

controls. Rod photoreceptor density is known to be maximal approximately 5.5mm from the 

central fovea (Curcio et al., 1990), which may explain the trend towards a greater difference in 

thickness between controls and CF subjects in the outer retinal zones. As the liver plays an 

essential role in synthesising DHA from its precursor linoleic acid (Scott and Bazan, 1989), the 

effect of CF-liver disease (CFLD) was examined, with the expectation that CFLD subjects 

would have thinner retinas, however, this was not apparent in this study. This may be due to 

small group numbers, or confounding factors including CFRD which may mask underlying 

trends.  

 

One potential limitation of this study was that transverse magnification was not taken into 

account when taking measurements of the RPE/Photoreceptor layer. Whilst the axial 

component of an OCT image is laser dependent, and is therefore unaffected by magnification 

effects of varying axial length, transverse parameters are affected by optical magnification. 

Therefore, correction should be applied when measuring along the transverse direction of an 

OCT image (as discussed in Section 1.3.1.3.3), as per the following equation (Littmann, 1982; 

Bennett et al. 1994; Leung et al. 2007): 

 

        t = 3.3822(0.01306(x – 1.82))s     Equation 1 

 

Where: t = true size of retinal feature,  μm 

 x = axial length, mm 

 s =  measured  size  of  retinal  feature,  μm 

 

Based upon Equation 1, the magnification factor for the shortest (21.71 mm) and longest 

(27.22 mm) axial lengths included in this study would be 0.88x and 1.12x, respectively. This 
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transverse magnification was not taken into account when taking manual measurements of 

retinal thickness as the retina appears to be a constant thickness at the eccentricity chosen.  

 

Qualitative Analysis 

AMD 

CF subjects were hypothesised to display signs of premature aging, secondary to increased 

levels of oxidative stress (van der Vliet et al., 1997; Lezo et al., 2012), reduced availability of 

antioxidants (Feranchak et al., 1999; Grey et al., 2008; Laguna et al., 2008; Maqbool and 

Stallings, 2008) and impaired transport of glutathione (Qin et al., 2011). However, drusen were 

only noted in one 69 year old male CF subject, which given the advancing age was not 

unusual. In a study conducted in 2008, drusen were noted in two young CF patients (aged 20-

25 years old) (Evans, 2009). It is possible that the absence of signs of premature aging in this 

study reflect the improvement in nutritional supplementation and management of inflammation 

and infection. 

 

Epiretinal Membrane 

Epiretinal membranes (ERM) develop at the vitreoretinal interface and consist of glial cells 

which have gained access to the retinal surface through breaks in the internal limiting 

membrane (Meyer et al., 2004). ERM may be idiopathic, occurring in otherwise healthy 

individuals, or secondary to retinal breaks, ocular surgery or ocular inflammation (Trese, 

Chandler and Machemer, 1983; Fraser-Bell et al., 2003). Idiopathic ERM most commonly 

develop following posterior vitreous detachment and are generally observed in patients over 50 

years of age (Appiah, Hirose and Kado, 1988), with a prevalence of 7-11% (Klein et al., 

1994b; Mitchell et al., 1997). As ERM occurs bilaterally in 31% of cases, a systemic cause is 

suggested (Mitchell et al., 1997), with diabetes identified as a risk factor (Mitchell et al., 1997). 

Whilst an ERM was noted in an asymptomatic, 31 years old, NGT, female patient, there is no 

reason to believe that the occurrence is related to CF. 

 

BRVO 

Despite BRVO being relatively uncommon in patients under 65 years of age (Weger et al., 

2005), a superior-temporal BRVO was spotted identified in an asymptomatic 35 year old male 

CF patient during this study. Retinal vascular abnormalities have previously been reported in 

CF patients, with retinal vein tortuosity and engorgement and retinal haemorrhages noted only 

in those patients with moderate to severe pulmonary disease, and often showing resolution with 
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improvement  of  respiratory function (Bruce, Denning and Spalter, 1960). Similar retinal 

vascular findings have been reported in patients with chronic pulmonary insufficiency and 

carbon dioxide retention from other causes (Spalter and Bruce, 1964). CF patients may be at 

increased risk of RVO for numerous reasons, including: 

 

 Approximately 50% of CF patients over 30 years of age suffer from diabetes, a known 

risk factor for RVO (Rehak and Wiedemann, 2010). 

 Increased incidence of vascular thrombosis has been described in CF patients fitted 

with totally implantable venous access devices (TIVADs) (Munck et al., 2004), with 

the insertion site significantly influencing the incidence of thrombosis.  

 Oxidative stress, which is exacerbated in CF during times of pulmonary infection, has 

also been implicated in the development of thrombosis. Oxidative stress may be  a 

constant local feature at epithelial surfaces in CF, because CFTR is not only a chloride 

channel but also a channel for the antioxidant glutathione (Leoncini et al., 2009). 

 CF patients show an increase in circulating activated platelets, and platelet-leukocyte 

complexes (O'Sullivan et al., 2005). Previous data have shown platelet activation and 

hypercoaguability inducing thrombus formation may be an important factor in the 

development of RVO (Leoncini et al., 2009).  

 

Whilst the exact pathogenesis of RVO remains unclear, the primary mechanism is considered 

to be a multifactorial process involving a combination of haemodynamic changes, degenerative 

changes of the vessel wall and blood hypercoagulability (Rehak and Rehak, 2008). Identified 

risk factors include: systemic atherosclerotic vascular disease, hypertension, diabetes mellitus, 

dyslipidaemia, high body mass index and smoking (Rehak and Wiedemann, 2010). The 

pathogenesis in younger persons is poorly understood; the association with cardiovascular 

disease is less common and it is suggested that thrombophilic disorders may play a greater role 

(Rehak et al., 2008). An acquired prothrombotic condition is often present in CF secondary to 

protein C and S deficiency due to poor vitamin K absorption (protein S is a vitamin K-

dependent co-factor which forms a complex with activated protein C) and some degree of liver 

failure (Takemoto, 2012). In this case, the likely cause of BRVO is elevated fibrinogen levels 

resulting in an increased risk of thrombosis (Koster et al., 1994). Fibrinogen is an acute phase 

reactant; its concentration rises in inflammatory conditions (Lind, 2003), explaining why 
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fibrinogen levels may be raised in CF and why retinal changes may be noted at times of 

pulmonary exacerbation.  

 

In summary, investigation of the retinal structure in CF through OCT has provided evidence to 

suggest that primary dysfunction of CFTR at the RPE does not cause an increase in retinal 

thickness. In contrast to the proposed hypothesis, retinal and RPE/photoreceptor layer 

thickness was significantly reduced in CF subjects compared to controls, with accelerated 

aging, early onset AMD and fatty acid deficiency all proposed as possible causes for this 

reduction in thickness. No overall retinal thickness differences were seen in CFRD subjects 

alone, possibly due to retinal thickening secondary to break down of the blood retinal barrier. It 

is clear that further work is necessary to determine the cause of reduced retinal thickness in CF, 

and if this reduced thickness has any functional consequences. Secondary manifestations of 

CF, including an elevated inflammatory state secondary to chronic lung infection, may be 

associated with increased risk of retinal occlusive events and AMD, both of which were 

observed in asymptomatic CF subjects in this study.   
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 Conclusions and Future work  Chapter 7
 
7.1 Conclusions  
The primary objective of this thesis was to investigate the retina in Cystic Fibrosis (CF) 

through dark adaptation (DA) and optical coherence tomography (OCT) examination, in 

order to determine whether malfunction of CFTR at the RPE has direct, primary effects on 

both retinal structure and function. Oxygen inhalation studies on DA aimed to increase 

understanding of the aetiology behind impaired DA in CF, with the hope of also gaining 

additional insight into CF-related diabetes (CFRD).  

The experimental hypotheses were: 

 

OCT 

1. Primary dysfunctional of CFTR in CF will result in accumulation of fluid within the 

RPE and photoreceptor complex; therefore CF subjects were hypothesised to show 

significantly increased retinal thickness compared to controls. 

2. OCT examination will reveal sub-clinical signs of premature aging within the CF 

population compared to controls, secondary to increased levels of oxidative stress and 

reduced availability of antioxidants due to pancreatic insufficiency and impaired 

glutathione transport via CFTR. 

 

Dark Adaptation 

3. Impaired DA in CF is secondary manifestation of CF caused by CFRD, therefore 

CFRD subjects will show improvements in DA thresholds upon inhalation of 100% 

oxygen breathing.  

 
Chapter 1 introduced the pathogenesis of CF and discussed the current literature available on 

the ocular manifestations of CF in relation to the localisation of CFTR to ocular epithelia. 

Chapters 2 and 3 were developmental chapters towards the protocols. Chapter 2 discussed the 

principles of OCT and described the development of a suitable imaging protocol for reliably 

assessing retinal thickness and RPE/photoreceptor layer thickness with the Topcon 3D OCT-

1000. The protocol developed in Chapter 2 was later used during the CF study, as described 

in Chapter 6.  In Chapter 3 the development of a specialised computerised dark adaptometer 

(CDA) using a cathode ray tube screen and Matlab programming software was described. 

The CDA was verified against the current gold-standard for dark adaptation assessment, the 
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Goldmann-Weekers adaptometer, with results showing that parameters of dark adaptation 

were comparable between the two. Repeatability of the CDA was also assessed, with results 

indicating the CDA had high levels of repeatability. This led to the use of the CDA to 

investigate DA  in CF subjects, as described in Chapter 5. Chapter 4 brought together the 

findings of the preliminary experiments as described in Chapters 2 and 3 and set out the 

experimental protocol which was used for the study of DA and retinal structure in CF.  

 

Chapter 5 investigated the effect of oxygen inhalation on DA in CF subjects and healthy 

controls. DA was shown to be impaired in the CF group as a whole compared to controls 

during the inhalation of air, as shown by elevated final rod threshold. When CF subjects were 

grouped according to their diabetic status, only CFRD subjects showed a significant elevation 

in final rod threshold compared to controls. This finding suggests for the first time that 

impaired dark adaptation in CF is secondary to CFRD, and not a primary manifestation of 

CFTR malfunction at the RPE. Upon inhalation of oxygen, whilst controls and normal 

glucose tolerance (NGT) CF subjects showed no significant improvement in final rod 

threshold, CFRD subjects showed a significant decrease in threshold, bringing threshold to a 

level comparable to controls. This response is in line with previous findings in type 1 and 

type 2 diabetic subjects (Kurtenbach et al., 2006), and leads to the suggestion that CFRD 

subjects have retinal hypoxia. These findings suggest that DA is impaired in CF secondary to 

retinal hypoxia in CFRD, not by the primary dysfunction of CFTR at the RPE. Whilst one of 

the aims of this study was to investigate how CF subjects with impaired glucose tolerance 

(IGT) responded to inhalation of oxygen, no firm conclusions could be drawn from the 

results due to small participant numbers. However, with a trend towards improvement in final 

rod threshold upon inhalation of oxygen, results show considerable promise that DA may be 

used to identify IGT patients who are showing signs of retinal hypoxia and who therefore 

may benefit from earlier treatment. This is the first time this has been noted in CF. 

 

Chapter 6 described the investigation of retinal and RPE/photoreceptor layer thickness in CF 

subjects compared to controls using the Topcon 3D OCT-1000. Results demonstrated for the 

first time, and contrary to the proposed hypothesis, that retinal thickness and RPE/ 

photoreceptor layer thickness is thinner in CF subjects compared to controls. It therefore 

appears that other Cl- channels may be responsible for the majority of Cl- transport across the 

basal membrane of the RPE. It was suggested that a thinner retina may be secondary to 

accelerated aging in CF , as retinal thickness is known to decrease with increasing age due to 
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age-related loss of retinal cells (Curcio et al., 1993). Other theories put forward as to why the 

retina may be thinner in CF include thinning associated with early onset AMD (Kaluzny et 

al., 2009; Malamos et al., 2009; Schuman et al., 2009; Wood et al., 2011), and impaired 

formation of photoreceptor outer segments due to fatty acid deficiency in CF (Anderson, 

1970; Anderson and Maude, 1972; Aldamiz-Echevarria et al., 2009). Interestingly, CFRD 

subjects showed no decrease in retinal thickness compared to controls. It was postulated that 

any CF related thinning was negated in CFRD subjects due to retinal thickening secondary to 

break down of the blood retinal barrier as seen in type 1 and 2 diabetic subjects (Sánchez-

Tocino et al., 2002; Sugimoto et al., 2005; Sng et al., 2012). Whilst qualitative analysis of 

OCT scans was hypothesised to show early onset aging changes in CF subjects compared to 

controls, secondary to reduced availability of antioxidants and increased levels of oxidative 

stress, only one 69 years old CF subject displayed signs of drusen. In a study conducted in 

2008, drusen were noted in two young CF patients (aged 20-25 years old) (Evans, 2009).  It is 

possible that the absence of signs of premature aging in this study reflect the improvement in 

nutritional supplementation and management of inflammation and infection.  

 

In conclusion, primary dysfunction of CFTR at the RPE does not appear to have a direct 

impact on retinal structure or function in CF. This is a particularly important finding as it 

suggests that other ion channels compensate for CFTR dysfunction. Impairment of DA in CF 

appears to be secondary to retinal hypoxia in CFRD, therefore hope remains that DA and 

oxygen inhalation may be used to identify IGT subjects who would benefit from earlier 

diabetic treatment. A reduction in retinal thickness in CF, specifically at the 

RPE/photoreceptor layer, may be secondary to premature aging, early onset AMD or 

impaired formation of photoreceptor outer segments due to fatty acid deficiency. Whilst 

premature signs of aging were not seen in younger CF subjects in this study, a branch retinal 

vein occlusion (BRVO) was observed in one subject. CF subjects may be at increased risk of 

retinal occlusive events secondary to an elevated inflammatory state. Given the findings of 

this thesis, it is important that CF subjects are educated about the importance of regular eye 

examinations, and that eye care professionals are aware of the potential systemic implications 

of ocular findings in CF. 

 
7.2 Future work 
Following on from the DA research, it would be of considerable benefit to examine larger 

numbers of IGT subjects, to strengthen the findings in this group and determine whether DA 
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could be used as a diagnostic tool to identify those subjects who require diabetic treatment. 

However, recruitment of CF subjects will always be difficult, due to the relatively small 

number of sufferers, and the severity of the condition, which can result in many subjects 

being too ill to participate. Conducting the study at the hospital may improve participation in 

the study, as in-patient subjects would not have to travel and data collection could be split 

into two smaller, more manageable sessions.  

 

Given the chance findings of AMD, BRVO and epiretinal membrane in CF subjects in this 

study, it would be of considerable interest to use OCT to image a larger group of CF patients 

to determine whether the occurrence of these abnormalities is more common place in CF. It 

would also be of interest to conduct a longitudinal study which images the same subjects on 

multiple occasions, both during pulmonary exacerbations and during times of relative health, 

in order to build up a picture of how acute periods of increased oxidative stress affect retinal 

integrity. Performing assessments at the hospital, during both inpatient and outpatient clinics 

would again improve subject participation and improve the strength of any results obtained.  

 

Whilst only one subject with AMD was noted in this study through structural examination 

with OCT, previous research has shown that CF subjects have lower levels of macular 

pigment compared to controls (Schupp et al., 2004), suggesting they are more susceptible to 

developing AMD. Increased levels of oxidative stress (Lezo et al., 2012), and reduced 

availability of antioxidants in CF (Feranchak et al., 1999; Grey et al., 2008; Laguna et al., 

2008; Maqbool and Stallings, 2008) further increases the risk. It would be of considerable 

interest to determine whether CF subjects display functional signs of early onset aging 

changes. One way this could be achieved is through the electroretinogram (ERG) photostress 

test, a dynamic test of outer retinal function which has the capacity to differentiate between 

healthy controls and subjects with early age-related maculopathy (Binns and Margrain, 

2007).  

 

Recently, a histological examination of the lacrimal gland of a CF subject showed increased 

in vacuole density (Alghadyan et al., 2013), despite CFTR not being localised to the lacrimal 

gland epithelia. Given the presence of CFTR at the RPE, and the findings in this study of 

decreased retinal thickness in CF, as opposed to the increase expected, it would be of 

considerable interest to histologically examine the retina and RPE in CF. Staining of the 

photoreceptor layer with Oil Red O (Rudolf and Curcio, 2009), a stain which identifies fatty 
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acids, and comparing the relative amount of staining in a CF sample to a control sample may 

help to determine if reduced retinal thickness in CF is secondary to diminished levels of fatty 

acids. The RPE/photoreceptor layer could also be imaged with electron microscopy, enabling 

a more detailed view of the structure than can be obtained with OCT.  

 

Type 1 and 2 diabetic subjects have previously demonstrated reduced corneal nerve 

sensitivity compared to controls, secondary to peripheral neuropathy (Schwartz, 1974; Daubs, 

1975; Nielsen, 1978; Rogell, 1980). It would be of substantial interest to investigate corneal 

sensitivity in CFRD, IGT and NGT subjects to see if diabetic CF subjects display similar 

reductions in corneal sensitivity. If corneal sensitivity is indeed reduced in CFRD, corneal 

aesthesiometry may prove to be a simple, non-invasive, cost effective technique to determine 

IGT subjects who are displaying signs of diabetic nerve damage, and hence may require more 

aggressive diabetic therapy.  Assessment of corneal nerves by in-vivo corneal confocal 

microscopy may aid in the examination of corneal nerves CFRD subjects (Tavakoli, 

Petropoulos and Malik, 2012), giving a structural map of nerve architecture which could be 

used in conjunction with sensory function.   
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Appendix A 

 
Monitor Calibration  
 
 

function [ gammaTable1, gammaTable2, displayBaseline, displayRange, 

displayGamma ] = CalibrateMonitorPhotometer( numMeasures ) 
 

global vals; 
global inputV; 
  
if(nargin < 1) 
numMeasures = 17; 
end 
  
input(sprintf(['When black screen appears, point photometer, \n' ... 
           'get reading in cd/m^2, input reading using numpad and press 

enter. \n' ... 
           'A screen of higher luminance will be shown. Repeat %d times. ' 

... 
           'Press enter to start'], numMeasures)); 
        
origclut = repmat([0:255]'/255,1,3);  
psychlasterror('reset'); 
     
try 
SpotSize = 5.4*20.8; 
offsetCenteredspotRect = [640-SpotSize  512-SpotSize  640+SpotSize  

512+SpotSize]; % size and position of spot on screen 
win = Screen('OpenWindow', 0, 0); 
  
BackupCluts;         
Screen('LoadNormalizedGammaTable', win, origclut ); 

  
vals = []; 
inputV = [0:256/(numMeasures - 1):256];  
inputV(end) = 255; 
for i = inputV 
Screen('FillRect',win,0); 
Screen('FillOval', win, i, offsetCenteredspotRect) 
Screen('Flip',win); 

  
fprintf('Value? '); 
resp = GetNumber; 
fprintf('\n'); 
vals = [vals resp];  
end 
         
RestoreCluts; 
Screen('CloseAll'); 
catch 
RestoreCluts; 
Screen('CloseAll'); 
psychrethrow(psychlasterror); 
end 
  
displayRange = (max(vals) - min(vals)); 
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displayBaseline = min(vals); 
     
%Normalize values 
vals = (vals - displayBaseline)/(max(vals) - min(vals)); 
inputV = inputV/255; 
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Appendix B 

 
Computerised Dark Adaptometer 
 

 
clear all 

  
subjectID = input('Please enter subject ID >','s'); 
  
% Input co ordinates and sizes for cross and spot 
HorizontalLocation = 0 
VerticalLocation = 0 
SpotSize = 5.4 * 20.8; % size of spot in pixels (There are 20.8 pixels per 

degree horizontally) 

   
KbName('UnifyKeyNames'); 
% The Try, Catch, End commands will respond to bugs / problems 
try 
% Set up all the parameters 
whichScreen = 0; 
window = Screen(whichScreen,'OpenWindow'); 
white = WhiteIndex(window); % pixel value for white 
black = BlackIndex(window); % pixel value for black 
gray = (white+black)/2;  
inc = white-gray; 

    
% Set the parameters for the spot, 1st and 3rd numbers give the horizontal 

position 
offsetCenteredspotRect = [640-SpotSize,512-

SpotSize,640+SpotSize,512+SpotSize]; 
offsetCenteredspotRect2 = [640-SpotSize+17.5,512-

SpotSize+17.5,640+SpotSize-17.5, 512+SpotSize-17.5]; 

  
% Set up the sounds 
correctSound = sin(2*pi*100*[0:0.00125:2.0]); 
incorrectSound = sin(2*pi*40*[0:0.00125:2.0]); 
NewFilterSound = sin (2*pi*200*[0:0.00125:10.0]);    
thresholdSound = sin (2*pi*300*[0:0.00125:5.0]); 

     
% Intial psychophysical increment step size 
incrementStep = 0.4; 
SpotLuminance = 1.5; 
     
% Set up various flags  
response = 0; 
responseCounter = 0; 
reversalCounter = 1; % counts reversals (reset after each threshold) 
DarkAdptCounter = 0; % counts the number of thresholds recorded. 
presentationCounter=1; % counts all presentations 
dataCounter=1; % counts all reversals 
thresholdCounter = 1; % counts the number of threshold points 
AdjustmentFilter1 = 2.0; % optical density of the first ND filter 
AdjustmentFilter2 = 0; % optical density of the second ND filter 
AdjustmentFilter3 = 0; % optical density of the third ND filter 
 

SecondNDFIlterFlag = 0; % flag to stop the luminance being raised if the 

spot       luminance hits it's lowest level a second time 
resultTime = 1; 
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resultThreshold = 1; 
BreakFlag=0; 

     
% Set keys up. 
rightKey = KbName('RightArrow'); 
leftKey = KbName('LeftArrow'); 
escapeKey = KbName('ESCAPE'); 

     
% Screen instructions 
Screen(window, 'FillRect', 0);     
Screen('DrawText', window, 'DARK ADAPTATION GOLDMANN-WEEKERS', 300, 200, 

white); 
Screen('DrawText', window, 'Hit any key to start experiment', 300, 400, 

white); 
Screen(window, 'Flip'); 
KbWait;% duration of instruction presentation 
     
% Set up the timer. 
startTime = now; 
durationInSeconds = 1500; 
durationEachThreshold = 1; 
numberOfSecondsRemaining = durationInSeconds;  
SecondsRemaining = durationEachThreshold; 

     
% Screen calibration variables 
MinScreenLum = 0.103; % Keep: contrast = 100 & brightness = 63 
GammaFunc = 2.22; 
MaxScreenLum = 155.2; 

  
% Experiment loop. 
fprintf('Experiment started'), 
StartExptSecs = GetSecs; % this times the experiment 
     
while GetSecs - StartExptSecs < durationInSeconds% Keep experiment running  
                
% Set up flags to re enter the threshold loop 
stopRule = 1; %keeps loop running till stop rules met, then =0 
  
while stopRule > 0 % Keep looking for threshold  

  
GammaCorrectSpotLum = 255*(((10^SpotLuminance) MinScreenLum)/MaxScreenLum) 

^(1/GammaFunc); 
%This calculates the grey scale required for the desired luminance 
%SpotLuminance raised to power of 10 to 'un-log' the number 

 

%Procedure for the first 5 minutes            
if GetSecs - StartExptSecs <= 300 

 

% Present stimulus 
Screen('DrawText', window, ['GammaCorr: ' num2str(SpotLuminance,4)], 970, 

940, [0,0,240]); 
LineSpectrum = [256 0 0]; 
Screen('FillOval', window, GammaCorrectSpotLum, offsetCenteredspotRect); % 

draws white spot 
Screen(window, 'Flip'); % presents test 
WaitSecs (0.2); % presentation time 
                   
%Remove stimulus 



  Appendix                                                                                                                                                     
                                                                                       

 285   

Screen('DrawText', window, ['GammaCorr: ' num2str(SpotLuminance,4)], 970, 

940, [0,0,240]); 
Screen(window, 'Flip'); 
ResponseSecs = GetSecs; 

 

% Procedure for after 5 minutes           
elseif GetSecs - StartExptSecs > 300   

 

Screen('DrawText', window, ['GammaCorr: ' num2str(SpotLuminance,4)], 970, 

940, [0,0,240]); 
if GetSecs - StartExptSecs == 300 
end 

                     
LineSpectrum = [256 0 0]; 
Screen('FillOval', window, GammaCorrectSpotLum, offsetCenteredspotRect); % 

draws white spot 
Screen(window, 'Flip'); % presents test 
WaitSecs (0.2); % presentation time 
                   
%Remove stimulus 
Screen('DrawText', window, ['GammaCorr: ' num2str(SpotLuminance,4)], 970, 

940, [0,0,240]); 
Screen(window, 'Flip'); % blanks out test 
ResponseSecs = GetSecs;% gets the time the stimulus was flipped out  
end 

             
% Threshold procedure for first 5 minutes 

if GetSecs - StartExptSecs <= 300 
% Wait for a response 
while 1 
[ keyIsDown, timeSecs, keyCode ] = KbCheck; 
if keyIsDown 
                     
if keyCode(escapeKey)% Escape loop 
BreakFlag=1; 
break 
end 
 

if (timeSecs - ResponseSecs)<0.6; 
response = 1; % this means the response was correct 
sound(correctSound)                      
else 
response = -1; %  incorrect response (too slow) 
sound (incorrectSound)  
break 
end 
         
while KbCheck; end % avoids KbCheck reporting multiple events 
break 
end 
  
% If no button is pressed 
SecsNow = GetSecs; 
timeSincePresentation = (SecsNow - ResponseSecs); 
if timeSincePresentation > 1; 
response = -1; % incorrect response (missed) 
break 
end 
end  
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if BreakFlag==1  % Escape loop 
break 
end 
             
% Record each presentation. 
presentationTime(presentationCounter)= (GetSecs - StartExptSecs); 
presentationThreshold(presentationCounter)= SpotLuminance-

AdjustmentFilter1-AdjustmentFilter2-AdjustmentFilter3; 
presentationCounter = presentationCounter + 1; 
             
% Adjust next stimulus increment on the basis of the response 
if response > 0; % correct 
                 

if incrementStep > 0.0; % this is a threshold 
resultTime (thresholdCounter) = (GetSecs - StartExptSecs); 
resultThreshold (thresholdCounter) = SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2-AdjustmentFilter3; 
thresholdCounter = thresholdCounter + 1; 
stopRule = -1;  

end 

                  
incrementStep = -0.3; % next increment = down 0.3 log units 
WaitSecs (0.5 + rand(1.5)) 
end 
             
if response < 0; % incorrect 
incrementStep = 0.1; 
WaitSecs (rand(1.0)) 
end 
             
% Adjust stimulus for next presentation 
SpotLuminance = SpotLuminance + incrementStep;   
if SpotLuminance > 2 
SpotLuminance = 2; 
end 
                 
% Reset the stimulus intensity when the minimum luminance is reached 
if SpotLuminance < -0.6; 
SecondNDFIlterFlag = SecondNDFIlterFlag + 1;  
sound (NewFilterSound) % inset new filter 
if SecondNDFIlterFlag == 1  
AdjustmentFilter2 = 1.2; 
WaitSecs (5.0) 
SpotLuminance = SpotLuminance + AdjustmentFilter2; % resets stimulus 

intensity to the maximum brightness 
end 
if SecondNDFIlterFlag == 2  
AdjustmentFilter3= 2.4; 
WaitSecs (5.0) 
SpotLuminance = SpotLuminance + AdjustmentFilter3; % resets the stimulus 

intensity to the maximum brightness 
end    
 

end 
                 
% this presents the stimulus every minute after 5 minutes 
elseif GetSecs - StartExptSecs > 300              

while 1[ keyIsDown, timeSecs, keyCode ] = KbCheck; 
if keyIsDown 
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if keyCode(escapeKey)% Escape loop 
BreakFlag=1; 
break 
end 

 
if (timeSecs - ResponseSecs)<0.8; 
response = 1; % correct 
responseCounter = responseCounter + 1; 
sound(correctSound)  
else 
response = -1; % incorrect (too slow) 
responseCounter = responseCounter - 1; 
sound (incorrectSound)  
break 
end 

         
 

while KbCheck; end % avoids KbCheck reporting multiple events 
break 
end 

  
% If no button is pressed 
SecsNow = GetSecs; 
timeSincePresentation = (SecsNow - ResponseSecs); 
if timeSincePresentation > 1; 
response = -1; %  incorrect (missed) 
break 
end 
end  
  
if BreakFlag==1 % escape loop  
break 
end 

             
% Record each presentation. 
presentationTime(presentationCounter)= (GetSecs - StartExptSecs); 
presentationThreshold(presentationCounter)= SpotLuminance-

AdjustmentFilter1-AdjustmentFilter2-AdjustmentFilter3; 
presentationCounter = presentationCounter + 1; 
             
 

% Adjust next stimulus increment on the basis of the response 
if response > 0; % correct 

                 
if incrementStep > 0.0; % that is, threshold was raised up on the last 

step, this must be a threshold 
resultTime (thresholdCounter) = (GetSecs - StartExptSecs); 
resultThreshold (thresholdCounter) = SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2-AdjustmentFilter3; 
thresholdCounter = thresholdCounter + 1; 
stopRule = -1;  
end 
               
incrementStep = -0.6; 
WaitSecs (40); 
sound (thresholdSound);  
if BreakFlag==1 % escape loop 
break 
end 
end 
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if response < 0; % incorrect 
incrementStep = 0.05; 
WaitSecs (rand(1.0)) 
end 

             
% Alter stimulus for next presentation 
SpotLuminance = SpotLuminance + incrementStep;   
if SpotLuminance > 2 
SpotLuminance = 2; 
end 
                
% Reset stimulus intensity when the minimumluminance is reached 
if SpotLuminance < -0.6; 
SecondNDFIlterFlag = SecondNDFIlterFlag + 1;  
sound (NewFilterSound)  
if SecondNDFIlterFlag == 1  
AdjustmentFilter2 = 1.2; 
WaitSecs (5.0) 
SpotLuminance = SpotLuminance + AdjustmentFilter2; % resets stimulus 

intensity to maximum brightness 
end 
 

if SecondNDFIlterFlag == 2 % This is the 2nd loop i.e. the 2nd time the 

subject reaches -0.5 log cd/m2 
AdjustmentFilter3= 2.4; 
WaitSecs (5.0) 
SpotLuminance = SpotLuminance + AdjustmentFilter3; % resets stimulus 

intensity to the maximum brightness 
end    
end 
end 
             
end % this ends the search for a threshold 
beep 

      
if BreakFlag==1 % escape loop 
break 
end    
       
end  

  
% Display the results 
presentationTime = presentationTime (:);  
presentationThreshold = presentationThreshold (:);  
plot(presentationTime, presentationThreshold,'b*')% plots every 

presentation 
xlabel('Time(s)') 
ylabel('Log Threshold') 
axis ([0 300 -1.5 2.5]) 
hold on 

         
resultTime = resultTime(:); 

resultThreshold = resultThreshold(:); 
plot(resultTime, resultThreshold,':ko') % plots the threshold 
         
Screen('CloseAll'); 

     
% Output all the data to Excel spreadsheet 
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presentationData = [presentationTime, presentationThreshold]; 
thresholdData = [resultTime, resultThreshold]; 
xlswrite(strcat('c:\RachelHiscox\Results\DarkAdaptation_',subjectID,'.xls')

, presentationData,'Model','A2'); 
xlswrite(strcat('c:\RachelHiscox\Results\DarkAdaptation_',subjectID,'.xls')

, thresholdData,'Model','D2'); 
xlswrite(strcat('d:\RachelHiscox\Results\DarkAdaptation_' 

,subjectID,'.xls'), presentationData,'Model','A2'); 
xlswrite(strcat('d:\RachelHiscox\Results\DarkAdaptation_' 

,subjectID,'.xls'), thresholdData,'Model','D2'); 
 

catch 
Screen('CloseAll'); 
rethrow(lasterror); 
psychrethrow(psychlasterror); 
end 
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Appendix C 

 

 

 

 

CF Subject 
Number 

Retinal Location 
OS IS ON IN C IT OT1 II OI 

001 246.00 299.67 267.33 310.33 258.67 290.33 222.13 305.33 237.33 
002 251.00 287.67 271.67 299.67 210.67 272.67 241.77 279.67 245.00 
003 253.67 279.33 257.33 285.33 246.00 270.67 239.30 287.00 239.33 
004 240.67 304.33 264.33 316.67 249.67 299.00 249.78 309.00 235.33 
005 236.67 274.33 257.33 274.67 217.00 256.67 245.45 273.33 229.67 
006 269.67 326.00 287.33 327.00 242.00 301.33 229.69 323.67 268.00 
007 263.00 310.33 274.67 308.00 262.00 299.67 240.74 302.00 249.00 
008 233.67 279.33 246.33 277.33 201.67 266.67 242.09 278.00 227.00 
009 268.00 307.33 290.00 314.33 259.33 294.33 257.01 302.00 264.00 
010 259.33 319.33 295.33 327.67 231.33 303.33 234.75 322.67 257.00 
011 250.00 298.67 263.33 295.67 196.67 286.67 239.06 293.00 243.33 
012 264.67 307.67 272.00 313.33 275.33 294.00 241.64 299.33 246.00 
013 246.33 291.67 257.00 293.67 214.33 281.00 253.29 280.33 223.33 
014 259.00 312.00 275.33 310.67 229.33 293.00 241.02 308.00 248.00 
015 247.67 298.33 258.33 302.33 251.67 286.00 236.28 299.33 247.33 
016 259.67 309.00 275.00 312.33 216.33 297.67 225.95 305.33 249.67 
017 253.33 297.33 273.00 302.00 271.67 271.33 235.19 287.00 244.33 
018 235.00 279.67 244.33 289.67 240.67 268.33 254.16 286.00 232.33 
019 260.00 314.00 285.67 335.67 276.00 314.33 225.00 330.00 265.33 
020 268.67 308.67 288.33 319.67 266.00 293.33 240.43 298.33 246.33 
021 248.67 299.33 269.33 302.33 269.33 285.67 215.19 294.00 240.33 
022 245.00 331.00 302.33 336.00 256.00 304.00 240.19 335.00 274.67 
023 252.33 312.67 271.33 316.00 244.67 303.00 246.33 306.67 239.67 
024 257.00 295.67 269.00 300.00 203.00 285.00 225.87 291.67 241.33 
025 268.67 320.00 288.00 318.00 240.00 303.33 225.00 317.33 263.33 
026 280.00 315.33 311.33 323.67 283.67 296.33 246.86 315.67 265.67 
027 252.33 323.00 270.00 304.33 241.00 292.33 237.54 304.00 244.00 
028 249.33 309.67 268.33 312.67 264.33 305.33 255.18 312.67 250.00 
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Control 
Subject 
Number 

Retinal Location 

OS IS ON IN C IT OT II OI1 

111 265.67 317.67 281.00 334.67 273.67 314.33 256.33 327.00 253.67 
112 261.00 314.67 280.67 319.00 259.33 312.33 263.00 316.00 251.33 
113 249.33 293.00 271.00 303.00 257.67 280.00 227.67 297.00 249.33 
114 254.00 303.00 279.33 309.00 264.33 289.33 240.33 307.33 248.67 
115 245.00 298.00 276.67 311.67 240.67 288.00 238.33 303.67 253.00 
116 265.33 300.33 275.00 297.00 209.00 279.33 241.33 285.33 242.67 
117 251.67 298.67 267.67 303.33 236.67 284.67 231.33 294.67 241.00 
118 252.00 303.33 273.67 311.00 278.00 298.67 236.67 304.33 243.00 
119 257.33 301.33 281.67 313.33 267.33 290.33 236.67 298.33 255.67 
120 254.33 301.33 279.00 306.00 212.33 299.67 248.00 301.33 246.00 
121 270.00 328.00 293.33 337.33 292.33 309.00 248.33 322.67 261.00 
122 292.00 319.33 312.33 321.33 258.00 299.00 261.00 309.67 272.67 
123 265.33 314.00 299.33 313.67 252.00 294.67 244.33 295.33 254.00 
124 280.33 313.67 292.33 306.00 227.67 305.33 258.00 307.00 270.33 
125 253.33 297.33 273.00 302.00 271.67 271.33 225.00 287.00 244.33 
126 269.33 313.67 284.33 313.33 238.33 299.33 246.67 310.00 253.33 
127 266.33 319.00 287.67 317.67 243.33 304.00 248.33 308.00 256.67 
128 276.00 330.00 299.33 329.00 269.00 302.33 256.33 315.33 279.33 
129 243.67 301.67 257.00 305.33 252.33 294.00 233.00 296.33 225.00 
130 243.00 283.67 263.67 301.00 290.33 281.67 235.67 292.67 236.67 
131 271.67 307.00 284.00 307.00 246.00 292.33 263.00 297.67 271.33 
132 268.00 318.67 297.00 332.67 281.33 302.00 234.00 313.67 261.33 
133 264.67 316.67 285.00 317.00 237.00 299.33 242.00 305.33 251.33 
134 260.33 308.33 284.00 310.00 253.00 298.33 248.67 304.00 251.00 
135 271.67 319.67 302.00 321.67 251.67 292.33 263.33 304.67 278.00 
136 252.00 292.00 280.67 295.33 270.33 292.67 242.00 291.33 243.67 
137 280.00 327.00 303.67 335.00 266.00 310.00 265.33 318.67 272.00 
138 253.33 299.33 281.00 305.33 235.33 288.00 248.67 299.00 247.00 

1 Corrected for axial length 
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Appendix D 
 
Peer reviewed poster presentations  

1. Hiscox R, North R, Purslow C and Evans K. The repeatability of optical coherence tomography 

in the investigation of retinal thickness. British Congress of Vision Science, Birmingham, 

September 2011 

2. Hiscox R, Purslow C, North R,. Ketchell I, Evans K. Dark Adaptation and the effect of Oxygen 

Inhalation in Cystic Fibrosis. ARVO, Seattle, May 2013 

 

Published abstracts 
1. Hiscox R, North R, Purslow C and Evans K (2012) The repeatability of optical coherence 

tomography in the investigation of retinal thickness. Ophthalmic and Physiological Optics 32: 

169 

2. Hiscox R, Purslow C, North R, Ketchell I, and Evans K (2013) Dark Adaptation and the effect of 

Oxygen Inhalation in Cystic Fibrosis. ARVO Meeting Abstracts 54: 3016 

 

Other publications 
1. Hiscox R, Purslow C, North R, Evans K (2013) Vision in Cystic Fibrosis. Optometry Today, 53 

(18): 51-55 
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Cystic !brosis (CF) is the most common lethal autosomal disorder in Caucasian populations. It is characterised 
by a variable degree of pulmonary infections, pancreatic enzyme insu"ciency and premature death. Ocular 
complications in CF range from abnormal tear volume to impaired dark adaptation. With improvements in CF life 
expectancy, ocular complications are of greater relevance to the optometrist. This article provides an overview of 
the ocular complications associated with CF.

The eye in cystic fibrosis
Rachel Hiscox BSc (Hons), MCOptom; Katharine Evans PhD, BSc (Hons), MCOptom, FBCLA, FHEA; 
Christine Purslow PhD, BSc (Hons), MCOptom, FBCLA, FIACLE; Rachel North PhD, MSc, FCOptom 
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research interests in diabetes mellitus and glaucoma. She is a member of British Universities Committee of Optometry, Optometry Wales and the 
Vision 2020 Eye Research Group.

Course code C-33362 | Deadline: October 18, 2013
Learning objectives 
To obtain relevant history and symptoms for patients presenting 
with CF (Group 1.1.1)
To recognise the manifestations of ocular disease in CF  
(Group 6.1.13)

Learning objectives
Understand the implications of the manifestations of ocular disease in 
CF (Group 8.1.5)
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Cystic !brosis (CF) is the most common 
lethal autosomal recessive disorder (see 
Figure 1) in Caucasian populations,1 
currently a"ecting over 9,000 people 
in the UK alone.2 It results from the 
defective functioning of an epithelial 
membrane protein known as Cystic Fibrosis 
Transmembrane Conductance Regulator 
(CFTR). CFTR acts as a chloride ion channel 
and is found in the epithelial cells of many 
organs, including the pancreas, lung, 
gastrointestinal tract, kidneys and the 
eyes.3,4 Chloride transport is the driving 
force for maintaining the correct balance 
of electrolytes and #uids within many 
di"erent organs. Without proper chloride 
transport via CFTR, organs such as the lungs 
and the pancreas can become damaged 
with thick, viscous secretions. There is a 
wide spectrum of genetic mutations in CF; 
some are very mild, causing only a slight 
decrease in normal chloride transport, while 
other mutations, which result in complete 
absence of CFTR from the epithelium, cause a 
particularly severe form of the disease. 

As CFTR is found in multiple organs 
throughout the body, the e"ects of CF are far-
reaching, leading to multi-organ and system 
dysfunction. The lungs are most critically 
a"ected in CF, with progressive lung disease 
and secondary pulmonary complications 
accounting for over 90% of all deaths in CF.5

Vitamin de!ciencies (A, D, E and K) and 
CF-related diabetes (CFRD) are common 
secondary complications of CF. Vitamin 
de!ciency in CF is the result of fat maldigestion 
due to damaged pancreatic cells which are not 
releasing the necessary pancreatic enzymes. 
Along with poor growth and increased 
mortality,6 clinical consequences of vitamin A 
de!ciency (VAD) also include impaired dark 
adaptation,7 in addition to conjunctival and 
corneal xerosis.8-11 

CFRD a"ects 45-50% of CF patients over 

the age of 30.12 While it has features common 
to both Type 1 and Type 2 diabetes which 
optometrists are more familiar with, it is 
classi!ed as a distinctly di"erent disease. 
Although the pathogenesis of CFRD is not 
completely understood, increasing evidence 
suggests that insulin-de!ciency, exacerbated 
by peripheral and liver insulin resistance, 

is the primary cause.13-15 Insulin-de!ciency 
results from β-cell apoptosis in the pancreas 

in conjunction with defective insulin secretion 
by the remaining β-cells.16-19 CFRD is often 
particularly di%cult to control as insulin 
resistance is aggravated by respiratory 
infection and corticosteroid treatment, and 
therefore #uctuates over time.20,21 

Due to the wide-reaching health 
complications associated with CF, many 
di"erent forms of treatment are required to 
adequately manage the disease. Treatment 
regimes include physiotherapy, nutritional 
supplementation, pancreatic enzyme 

replacement and pharmaceutical 
treatment to control chronic respiratory 
infection and in#ammation. Gradual 
progress is being made in emerging 
protein repair and gene therapy, both 
of which aim to develop therapeutic 
strategies which target speci!c CFTR 
mutations, in order to improve or restore 
CFTR function.22-27 Although further 
development is needed before these 
emerging therapies become a viable 
option, it is hoped that they may continue 
to change the outlook for CF patients in 
the future. Until then, lung transplantation 
remains the only de!nitive treatment 
option for patients with progressive 
respiratory failure.28,29 

Following dramatic improvements in 
patient treatment and management, the 
median predicted survival age is now 41.5 
years, and that is expected to increase 
in the future with the development of 

gene therapy.30  This is a major improvement 
compared to survival in the 1950s when life 
expectancy for those diagnosed with CF 
was just !ve years of age. However, with the 
improvement in CF life expectancy, ocular 
complications associated with the disease are 
likely to become more of a pressing concern. 

CFTR and the eye 
To date, CFTR has been found in human 
corneal and conjunctival epithelium, 

corneal endothelium and retinal pigment 
epithelium,34 where it has been shown to 
play an active part in chloride ion secretion 
across cell membranes. Active transport of 
chloride ions is known to provide the driving 
force for subsequent osmotically-driven 
#uid secretion. Within the eye, chloride ion 
transport is involved in: basal tear production, 
the preservation of corneal transparency 
via the endothelial pump, and subretinal 
space volume regulation.31-37 The absence 

Figure 1 Autosomal recessive inheritance of CF

Carrier Carrier

25% CF 50% carrier 50% carrier 25% una!ected
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decreased tear break-up time in CF subjects 
compared to healthy controls indicates poor 
tear quality in CF.46 Additionally, reports of 
corneal !uorescein staining in 60-82% of CF 
patients,42,43 along with increased expression of 
in!ammatory markers adds further evidence to 
the link between dry eye and CF.47,48

With the localisation of CFTR to the 
corneal and conjunctival epithelium, and its 
known contribution to basal tear secretion, 
it is thought that dry eye could be a primary 
manifestation of CF. However, as increased 
vitamin A de"ciency (VAD) has been correlated 
with reduced TBUT in CF,46 it is possible that 
this secondary complication also adds to the 
clinical observation of dry eye in CF. In light of 
these "ndings, practitioners should be aware 
of the increased likelihood of CF patients 
su#ering from signs and symptoms of dry eye. 
It may, therefore, be appropriate to ask CF 
patients tailored questions relating to dry eye 
when taking their history and symptoms.

Xerophthalmia 
As discussed, vitamin A de"ciency (VAD), is 
a common secondary complication of CF. 
Xerophthalmia refers to the entire clinical 
spectrum of ocular manifestations caused 
by VAD.49 It is the leading cause of childhood 
blindness worldwide, but is uncommon 
in developed countries.50 The primary 
manifestation of xerophthalmia is extreme 
dryness of the conjunctiva and cornea due to  

a failure of the secretory activity of the mucin-
secreting goblet cells of the conjunctiva. 
Xerophthalmia also encompasses night 
blindness, conjunctival and corneal xerosis, 
Bitot spots and corneal ulceration.10 Early 
descriptions of CF found a high prevalence 
of xerophthalmia.51,52,53 However, with recent 
improvements in supplementation for CF 
patients, reports of xerophthalmia have almost 
been eliminated.10 

Although cases of xerophthalmia in patients 
with CF are rare, it highlights the importance 
of considering VAD in those patients who 
present with ocular complications.11 It also 
demonstrates the importance of regular eye 
examinations, with any patients showing signs 
of xerophthalmia being referred appropriately 
for further examination by their CF consultant 
to con"rm clinical vitamin A de"ciency before 
treatment is commenced.9 

Corneal morphology and integrity 
CFTR expression has previously been 
localised to the apical membrane of the 
corneal endothelium,31,33,54 where it is 
known to facilitate !uid e$ux in order 
to maintain corneal transparency.33 It is, 
therefore, reasonable to predict that loss 
of CFTR function in CF could cause an 
increase in corneal thickness and a decrease 
in transparency, unless other Cl- channels 
provide a certain level of compensation.

Only two studies have investigated corneal 
thickness in CF, with equivocal outcomes. The 
most recent study, which used the Oculus 

of normal CFTR activity in CF suggests 
that ocular structure and function may 
be compromised. It is, therefore, possible 
that ocular abnormalities in CF are primary 
manifestations of the disease. However, 
with vitamin A de"ciency and CFRD being 
common complications in CF, it is likely 
that some ocular defects are secondary 
manifestations.

Ocular complications in CF
The Tear Film 
Classically, the tear "lm is reported to consist 
of three layers: an outer lipid layer, a middle 
aqueous layer and an inner mucous layer. 
The production and turnover of the pre-
ocular tear "lm is essential in providing 
tissues with nourishment and lubrication, 
and for maintaining ocular health.38 The 
aqueous layer, which is composed of proteins, 
electrolytes, enzymes, metabolites and 
water39 is principally produced by the lacrimal 
gland and accessory lacrimal glands, although 
recent evidence suggests a small proportion 
of electrolytes and water are secreted by the 
cornea and conjunctiva, via ion channels,40 
including CFTR (see Figure 2).41

Several clinical studies have reported an 
increase in signs of dry eye in CF patients 
compared to controls. Abnormally low tear 
secretion, as assessed by Schirmer’s test, has 
been observed in 29-81% of CF patients in a 
number of separate studies.42-45 Findings of 

53

Figure 2 Diagram of a simpli!ed corneal epithelial cell. Movement of chloride ions (Cl-) out of 
the cell via CFTR and other Cl- channels on the apical membrane (1), together with sodium ion 
(Na+) movement into the cell (2), causes water (H2O) to move out of the corneal stroma into 
the tear !lm (3). Basal membrane transporters load the epithelial cell with Cl- to maintain the 
electrochemical driving force for Cl- movement at the apical membrane (4)

Figure 3 Fundus photograph of a male 
patient aged 40 with a 13-year duration of 
CFRD, showing dot and "ame haemorrhages 
indicating background diabetic retinopathy 
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Pentacam, found no signi!cant di"erence 
in either central or peripheral corneal 
thickness in CF subjects compared to healthy 
controls.55 Conversely, a preceding study 
found corneal thickness to be increased 
in CF, as determined using contact video 
specular microscopy.56 Reduced endothelial 
cell area, elevated endothelial cell density 
and permeability, as well as increased relative 
endothelial pump rate were also observed. 
These morphological di"erences suggest 
that the corneal endothelium actively 
compensates for impaired Cl- transport via 
CFTR.

Cataracts 
Steroid use, a known risk factor for the 
development of posterior subcapsular 
cataracts, is commonplace in CF for 
managing pulmonary in#ammation. It 
is, therefore, unsurprising that posterior 
subcapsular cataracts have been observed in 
CF patients receiving steroid treatment.57 

Antioxidants, including vitamins A, C 
and E are associated with reduced cataract 
formation.58,59 Digestive insu$ciency, 
secondary to pancreatic insu$ciency in 
CF, causes vitamin de!ciency and lowers 
antioxidant availability.60 Therefore, a higher 
incidence of cataract may be expected. 
Crystalline lens transparency can be 
signi!cantly reduced in CF patients, with 
the greatest reduction in transparency 
seen in those with more severe digestive 
insu$ciency.46,61 

The role of oxidative stress in the aetiology 
of cataract formation has been clearly 
established,59 and persistent pulmonary 
infection in CF is known to increase levels 
of oxidative stress.62 This, combined with 
decreased levels of antioxidants, which 
usually protect the crystalline lens,63 could 
contribute to the development of decreased 
lens transparency in CF. While diabetes is also 
strongly associated with the development of 

the pathogenesis of diabetic retinopathy,71 
but cholesterol levels are low in CF due to 
digestive insu$ciency70 

development of DR,72,73 is generally mild in 
CF70

control in CF due to regular outpatient 
appointments.65 

Retinal vascular abnormalities have 
previously been reported in CF patients, with 
retinal haemorrhages, retinal vein tortuosity 
and engorgement, noted only in those 
patients with moderate to severe pulmonary 
disease, and often showing resolution with 
improvement of respiratory function.74 
Similar retinal vascular !ndings have been 
reported in patients with chronic pulmonary 
insu$ciency and carbon dioxide retention 
from other causes.75

The macula
Although supplementation of the major 

cataracts,58,64 the e"ect of CFRD on the lens in 
CF is yet to be determined. 

The retina and diabetic retinopathy 
Due to the increased mortality of CF 
patients with CFRD, life expectancy was 
previously considered to be too short for 
the development of diabetic complications, 
including diabetic retinopathy (DR).65 

However, greater longevity of CF patients 
has been accompanied by increasing reports 
of microvascular complications.66,67 DR is 
predominantly seen in patients with duration 
of CFRD of at least 10 years (see Figure 
3).68-70 Interestingly, the prevalence of DR 
in CFRD has been found to be signi!cantly 
lower compared to age and disease duration 
matched Type 1 diabetic subjects.65 

Several factors may account for the lower 
prevalence of DR in CFRD compared to other 
forms of diabetes:

secretion, which may have a protective e"ect 
on cell survival70

Figure 4 Summary of the ocular complications associated with CF
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Tear !lm abnormalities 
1. Reduced TBUT 
2. Decreased aqueous tear secretion 
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1.  Increased incidence of corneal 

sodium !uorescein staining
2. Conjunctival xerosis 
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4.  Conjunctival squamous 
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5.  Increased concentration of 

in!ammatory markers

Crystalline lens abnormalities 
1.  Signi"cantly reduced 

transparency

Visual function abnormalities 
1. Possible reduced VA 
2. Impaired dark adaption 
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1.  Low retinal concentrations of 

lutein and zeaxanthin
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subjects
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macular examination in all CF patients seen 
in practice.

Visual function 
To date, a large-scale assessment of visual 
acuity, ametropia and binocular status 
in CF patients has not been undertaken. 
However, one small-scale study reported 
that VA, binocular status and refractive 
error in CF adults was comparable to 
matched controls,55 suggesting normal 
emmetropisation85 and orthophorisation 

occur in CF.86 However, low birth weight and 
prematurity are associated with CF,87 which 
are both linked with a greater incidence 
of ametropia, strabismus and amblyopia,88 
highlighting the importance of regular eye 
examinations in children with CF. 

Contrast sensitivity, colour vision and 
dark adaptation have all been found to 
be impaired in CF patients.7,55,89-92 CFTR 
has been localised to the RPE where it is 
believed to contribute to Cl- transport.93 
Unless other Cl- channels compensate for 
this fundamental CFTR dysfunction, normal 
photoreceptor function may be a!ected 
by altered inter-photoreceptor matrix 
composition. With the RPE’s involvement in 
several functions, vital for the maintenance 
of normal visual function, including 
transport of nutrients to photoreceptors 
and retinal regeneration,94 it seems clear 
that RPE impairment could result in 
photoreceptor degradation and reduced 
visual function.

It is well established that vitamin A 
is essential for normal photoreceptor 
function,95 therefore it is unsurprising 
that VAD in CF has been identi"ed as a 
causative factor for impaired measures 
of visual function including contrast 
sensitivity90 and dark adaptation.7,92,96 The 
observed relationship between abnormal 

Sponsored by

vitamins is common practice in patients 
with CF, this does not typically include 
carotenoids, resulting in low carotenoid 
concentrations.76,77 Carotenoids, including 
lutein and zeaxanthin, are antioxidant 
micronutrients,78 and are particularly 
important in CF patients who, due to 
persistent pulmonary infection, are 
susceptible to higher levels of oxidative 
stress.62

Lutein and zeaxanthin accumulate at the 
macula and are believed to play a major part 
in protecting the retina from free-radicals, by 
absorbing the phototoxic e!ects of short-
wavelength light and through their action 
as free radical scavenging antioxidants.79,80 
Low plasma concentration of lutein and 
zeaxanthin is associated with an increased 
incidence of macular degeneration.81 
Lutein and zeaxanthin are responsible 
for macular pigment and account for the 
yellow colouration of the macula due 
to their absorption of short wavelength 
light.82 Patients with macular degeneration 
have been reported to have signi"cantly 
lower concentrations of macular pigment, 
compared to those with normal vision.83

As CF patients are known to have low 
concentrations of carotenoids, combined 
with increased levels of oxidative stress, 
it could be predicted that their macular 
carotenoid levels would be reduced, making 
CF patients more susceptible to premature 
age-related macular changes. Indeed, the 
literature demonstrates that CF patients have 
signi"cantly lower serum concentrations of 
lutein and zeaxanthin compared to controls, 
correlated with lower retinal macular 
pigment density concentrations;84 these 
"ndings may explain the observation of 
premature drusen in two young CF patients 
(aged 20 to 25 years) in a recent study,55 
and highlight the importance of a thorough 
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dark adaptation and decreased serum 
retinol levels7,92 in CF subjects suggests that 
abnormal dark adaptation is not caused 
by dysfunctional CFTR at the RPE, but is a 
secondary consequence of maldigestion 
and malabsorption of nutrients. However, 
elevated dark adaptation thresholds, despite 
normal vitamin A serum concentrations97,98 
may suggest another cause for the 
abnormality. 

While there are no published studies 
on visual function levels in CFRD subjects, 
there is substantial evidence that dark 
adaptation,99-102 colour vision,103,104 and 
contrast sensitivity104 are adversely a!ected 
in type 1 and type 2 diabetes, even in the 
absence of DR. Retinal hypoxia, secondary 
to abnormal retinal perfusion and ischaemia 
in diabetes has been identi"ed as the cause 
of this defect.104,105 It is reasonable to predict 
that visual function would be similarly 
a!ected by CFRD, and may account for some 
of the reductions in visual function seen in 
previous studies. 

Conclusion 
It is apparent that numerous ocular 
complications exist in CF (see Figure 4). It 
is, therefore, important that CF patients are 
advised to have regular eye examinations, 
and those with CFRD to attend annual 
retinal screening. Eye care practitioners 
must be aware of the breadth of ocular 
complications associated with CF in order 
to provide tailored and appropriate care to 
CF patients. Further improvements in life 
expectancy in CF are likely to be coupled 
with increases in the frequency of DR, 
cataract and potentially, AMD. Given the risk 
of signi"cant visual loss associated with DR 
and AMD, CF patients should be educated to 
take appropriate action, in the event of any 
visual problems. 


