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Abstract 

Alcohol is a rich drug affecting both the γ-amino butyric acid (GABA) and glutamatergic 

neurotransmitter systems. Recent findings from both modelling and pharmacological manipulation 

have indicated a link between GABAergic activity and oscillations measured in the gamma frequency 

range (30-80Hz), but there are no previous reports of alcohol’s modulation of gamma-band activity 

measured by magnetoencephalography (MEG) or electroencephalography (EEG). In this single-blind, 

placebo-controlled crossover study, 16 participants completed two study days, one in which they 

consumed a dose of 0.8g/kg alcohol, and the other a placebo. MEG recordings of brain activity were 

taken before and after beverage consumption, using visual grating and finger abduction paradigms 

known to induce gamma-band activity in the visual and motor cortices respectively. Time-frequency 

analyses of beamformer source reconstructions in the visual cortex showed that alcohol increased 

peak gamma amplitude and decreased peak frequency. For the motor task, alcohol increased gamma 

amplitude in the motor cortex. These data support the notion that gamma oscillations are dependent, 

in part, on the balance between excitation and inhibition. Disruption of this balance by alcohol, 

through increasing GABAergic inhibition at GABAA receptors and decreasing glutamatergic 

excitation at NMDA receptors, alters both the amplitude and frequency of gamma oscillations. The 

findings provide further insight into the neuropharmacological action of alcohol. 
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Introduction  

Alcohol affects many neurotransmitter systems via the disruption of receptor functioning. The two 

most universal effects are blockade of glutamatergic N-methyl-D-aspartic acid (NMDA) receptors to 

induce brain-wide decrease in excitation (Grant and Lovinger, 1995; Valenzuela, 1997), and 

enhancement of γ-aminobutyric acid (GABA) type A receptors to increase post-synaptic chloride ion 

flux and hyperpolarisation (see Weiner & Valenzuela, 2006 for a comprehensive review). Thus in 

vitro, ethanol is known to increase the amplitude and duration of evoked GABAA inhibitory post-

synaptic potentials (IPSPs) and inhibitory post-synaptic current (IPSC) in a slice of the rat central 

amygdala nucleus (Roberto et al, 2003; Wan et al, 1996). Such alterations are likely to disrupt the fine 

balance between excitation and inhibition throughout the brain, but the effect of alcohol on dynamic 

cortical circuits in vivo in humans is not well understood.  

Evidence from modelling, multimodal imaging and pharmacological intervention suggest that changes 

to synchronous oscillations in the gamma frequency band (30-80Hz), although they do not directly 

measure neuronal firing, can be an indicator of disruption to the excitation/inhibition balance, since 

gamma oscillations are thought to be underpinned by reciprocally connected networks of inhibitory 

GABAergic interneurons and excitatory glutamatergic pyramidal cells (Buzsáki and Wang, 2012). At 

a microcircuit level, active GABAergic synapses transiently decrease the probability of pyramidal 

cells firing, following which synchronised firing of spikes and local field potential oscillations occur 

(Gonzalez-Burgos and Lewis, 2008). Since alcohol is expected to produce an increase in IPSC decay 

time, it would lengthen the return time from inhibition and therefore lower the oscillatory frequency. 

Consistent with this, pharmacological manipulation of GABAergic function in vitro by the barbiturate 

thiopental reduced the frequency of both fast gamma (>70 Hz) and slow gamma (30-70 Hz) 

oscillations in rat visual cortex (Oke et al, 2010).  

A further prediction is that lower frequencies could facilitate recruitment of pyramidal cells into the 

network, which would increase oscillatory power (Gonzalez-Burgos and Lewis, 2008). Although this 

prediction is counter to the intuition that enhancing inhibition should reduce power, it is supported by 
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evidence that benzodiazepines acting at the GABAA receptor increase resting gamma power in 

occipital and pre-frontal areas (diazepam, Hall et al, 2010), in addition to decreasing alpha power in 

the visual cortex (lorazepam, Ahveninen et al, 2007) and increasing beta power and decrease beta 

frequency in sensori-motor cortex (Jensen et al, 2005).  

Very few articles have studied alcohol intoxication using MEG/EEG (e.g. Kovacevic et al, 2012; 

Marinkovic et al, 2012; Nikulin et al, 2005), and these have focused on changes to beta, alpha and 

theta-band oscillations. As such alcohol’s effects on gamma activity are incompletely known. 

Moreover, previous evidence from pharmacological interventions is mixed. Cortical responses to 

visual stimuli consist of both phase-locked evoked responses and non-phase-locked, induced 

responses. GABA transporter 1 (GAT-1) blockade by tiagabine decreased only evoked responses, 

whereas no changes in induced gamma power and frequency were detected across placebo and drug 

conditions (Muthukumaraswamy et al, 2013a). Sedation by propofol (a GABAA agonist) significantly 

increased induced sustained gamma amplitudes and simultaneously decreased the evoked response 

(Saxena et al, 2013). Both benzodiazepines and propofol are positive allosteric modulators of the 

GABAA receptor, which increase chloride ion flux and induce hyperpolarisation of the postsynaptic 

neuron. Tiagabine, on the other hand, acts to increase endogenous GABA levels via GAT-1 blockade. 

It is possible that these differences in mechanism are responsible for the differences in influence on 

the gamma response, but exactly how is still unknown.  

In motor cortex, simple digit movements induce transient gamma-band frequency oscillations 

(movement related gamma synchronisation, MRGS; Cheyne et al, 2008), as well as post-movement 

beta-rebound (PMBR) and beta event-related desynchronisation (beta-ERD) in sensorimotor areas 

(Jurkiewicz et al, 2006). It is likely that each component is generated by anatomically separate 

cortical circuits (Pfurtscheller & Lopes da Silva, 1999).  Benzodiazepines and tiagabine have both 

been reported to enhance movement induced beta-ERD activity, and tiagabine also reduced PMBR. 

Surprisingly neither drug appeared to modulate MRGS (Hall et al, 2010; Jensen et al, 2005; 

Muthukumaraswamy et al, 2013b).  
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The current study employed two tasks: a gamma inducing visual grating paradigm and a simple motor 

task known to induce gamma and beta band activity. These were completed in both pre- and post-

drink MEG recording sessions. A simple saccadic eye-movement task was also included to measure 

sedation.  

Methods  

Participants and Screening 

Sixteen volunteers (8 male, mean age 25.9 years SD 3.8, mean body weight 75.7kg, SD 12.7) were 

recruited after informed consent (procedures approved by Cardiff University School of Psychology 

Ethics Committee). Participants had no known allergy to alcohol and were taking no medication that 

was affected by alcohol consumption. All participants abstained from alcohol for 12 hours prior to 

participation and gave a Breath Alcohol Concentration (BrAC) of 0 µg/100ml on arrival. Reported 

mean consumption was moderate, males: 23.9 (9.7), females: 16.5 (5.1) UK units per week (1 unit=8g 

ethanol, therefore mean male consumption = 191.2g, females = 132g per week). Participants were 

screened for alcohol dependence using the Alcohol Use Disorders Identification Test (AUDIT; Babor 

et al, 1993) and the Severity of Alcohol Dependence Questionnaire (SADQ; Stockwell et al, 1983);  

Scores were reasonably low (AUDIT 8.4 (2.8); SADQ 6.1 (3.9)) and below the alcohol dependence 

threshold (≥16). None of the participants reported depression or anxiety symptoms in the Hospital 

Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983) at the time of testing (anxiety mean 

= 4.1 (2.2), depression mean = 1.7 (3.0)). For saccadic eye movements and the motor task only 14 full 

datasets were acquired, due to technical difficulties. After screening of data quality by an observer 

blind to condition (poor data quality defined as low amplitude gamma response with no clear peak in 

at least one of the four conditions [pre/post, placebo/alcohol]), four participants were excluded from 

statistical analyses of visual gamma. For transient visual responses, data from an additional participant 

was removed using the same criteria. Individual participant fits and excluded participants can be seen 

in Supplementary Information Figures S1A-F. 
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Alcohol dose and Administration 

Participants attended two testing days separated by at least 24 hours. On one testing day, after the 

initial scanning session, participants were given a dose of alcohol in the form of 40% alcohol by 

volume vodka; males received 0.8g per kg of body weight, while females were given 90% of this dose 

due to differences in body water content  (Sutker et al, 1983; Brumback et al, 2007)). This was made 

up to a 500ml solution with a carbonated citrus juice drink (Orangina) and divided into 10 equal 

aliquots of 50ml each. Participants consumed one aliquot every 3 minutes and then waited for 15 

minutes to allow absorption of the alcohol. In the placebo condition participants were given 10x50ml 

aliquots of Orangina with the rim of the glass sprayed with alcohol and a few drops of alcohol floated 

on top of the drink (Rose and Duka, 2008). Experimenters were not blind to the experimental 

intervention. 

Procedure 

On each testing day participants completed a breathalyser measurement, were weighed, ate a small 

sandwich (filling depended upon dietary restrictions, mode calorie content: 427 kcal, range: 359-

473kcal; mode fat content: 23.4g, range: 22.9-26.6g) and completed the AUDIT, SADQ, mini-

international neuropsychiatric interview (MINI; non-alcohol substance abuse section) and HADS 

questionnaires. They were then fitted with MEG coils and electrodes which they kept on for the 

remainder of the session. Participants then completed a ‘pre-drink’ MEG recording. Following this, 

participants completed the drink challenge as described above. After providing a breathalyser 

measurement at 15 minutes from last drink, participants completed the ‘post-drink’ MEG recording, 

after which a further breathalyser measurement was taken at 1 hour from last drink, as well as 

psychological measures of the Biphasic Alcohol Effects Scale (BAES; Martin et al, 1993) and 

Subjective High Assessment Scale (SHAS; Schuckit, 1980).  

Visual task - Participants were presented with a vertical, stationary, maximum contrast, three cycles 

per degree, square-wave grating (8° visual angle) presented on a mean luminance background with a 

central fixation point (Muthukumaraswamy and Singh, 2013). The screen was positioned centrally at 
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eye-level.  For 100 trials the stimulus was presented for 1500ms and a button-press response was 

given at its offset with right-hand index finger to maintain concentration. Participants were given 

750ms to respond and warned when no or late responses were given. This response period was 

followed by a 2000ms inter-stimulus-interval (ISI) (see Figure 1a).  

 Motor task - Participants performed 100 trials of a cued finger movement task, similar to that 

described in Muthukumaraswamy (2010) and Muthukumaraswamy et al (2013b). The participants 

were required to perform ballistic abductions of the right-hand index finger at the onset of an auditory 

tone pip (same volume for all participants) played through insert headphones (4.5 s ISI) placed by the 

participant. All participants confirmed they could hear the tone before the experiment began. The 

participants’ right index finger lightly rested against a small piece of plastic that was attached to an 

optical displacement system. After the auditory pip (1.5s), the participants received on-screen 

feedback with a “virtual ruler” for 1s, indicating how far they had moved relative to a target 

movement criterion (10 mm).  

The visual and motor tasks were presented on a Mitsubishi Diamond Pro 2070 monitor controlled by 

the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). The screen size was 1024 by 768 pixels and 

the monitor frame rate was 100Hz. The monitor was outside the magnetically shielded room and 

viewed at 2.15m through a cut-away portal in the shield. 

Saccadic eye-movement (SEM) – As an objective measure of sedation, we measured the velocity of 

50 saccadic eye movements (Lehtinen et al, 1979), based on a task of Ball et al (1991). 

Electrooculography measurements were used to quantify this velocity. Participants fixated on a red 

square that alternated from left to right every 1500ms, prompting 30-degree saccades along the 

horizontal mid-point. Stimuli were projected onto a screen at 80 cm viewing distance.  

MEG acquisition 

Whole head MEG recordings were made using a CTF 275-channel radial gradiometer system sampled 

at 1200Hz (0-300Hz bandpass). An additional 29 reference channels were recorded for noise 

cancellation purposes and the primary sensors were analysed as synthetic third-order gradiometers 
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(Vrba and Robinson, 2001). Three of the 275 channels were turned off due to excessive sensor noise. 

Participants were fitted with three electromagnetic head coils (naison and pre-auriculars) which were 

localised relative to the MEG system immediately before and after the recording session for each task. 

Participants were also fitted with electrooculography (EOG) electrodes, above and below the pupil of 

the right eye, and 1cm lateral to the outer canthus of each eye. For the motor task, a bipolar 

electromyogram was recorded from right dorsal interosseus. EOG and EMG recordings were sampled 

simultaneously with the MEG recordings. All participants had completed a 1mm isotropic T1 

weighted FSPGR image on the same 3 Tesla full body GE MRI scanner prior to participation, as part 

of a different study, to be used for MEG/MRI co-registration. Fiduciary markers were placed on the 

MR image corresponding to the positions of the electromagnetic head coils as ascertained through 

photographs of the participants on the day of testing.  

Data Analysis 

Visual task data was epoched from -2s before to 2s after the stimulus onset. For the Motor task, data 

pre-processing was similar to our previous work (Hamandi et al, 2011; Muthukumaraswamy, 2010). 

In short, EMG onsets were marked using an automated algorithm that marked increases in the 

rectified EMG signal by 3SDs above the noise floor (Cheyne et al, 2008), subject to the constraint that 

they occurred within 750ms of the tone pip. Data were then epoched from 1.5s before, to 3.0s after the 

EMG markers. For both tasks each trial was visually inspected and discarded if there were excessive 

MEG signal artefacts (e.g. head movements/jaw clenches, blinks); motor trials were further inspected 

for irregular movement displacements (e.g. double movements) or irregular EMG activity. Mean 

number of trials analysed; visual task: Pre-alcohol 82.6 (SD=17.8), post-alcohol 85 (SD=11.2), pre-

placebo 82.4 (SD=14.5), post-placebo 77.2 (SD=16.1), motor task: pre-alcohol 83.9 (SD=6.4), post-

alcohol 86.3 (SD=10.9), pre-placebo 85.9 (SD=9.1), post-placebo 83.5 (SD=10.3).   

Synthetic aperture magnetometry (SAM; Robinson and Vrba, 1999) was used for source localisation 

in the gamma frequency band (visual task: 30-80Hz, Gaetz et al, 2012; motor task: 60-90Hz, 

Muthukumaraswamy et al, 2013b). Additional SAM source localisation was conducted in the beta-
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band (15-30Hz, Muthukumaraswamy et al, 2013b). Global covariance matrices were generated for 

each bandpass-filtered dataset and beamformer weights were calculated for the whole brain at a 4mm 

isotropic voxel resolution using the beamformer algorithm (Robinson and Vrba, 1999).   

For the visual data student t-images of source power changes were calculated using a baseline period 

of -1.5 to 0s and an active period of 0 to 1.5s. The voxel with the largest power increase in the gamma 

frequency band was located in the occipital lobe for each recording for each participant. In order to 

generate a time-frequency representation of the stimulus response, the virtual sensor at this voxel was 

repeatedly band-pass filtered between 1 and 100Hz at 0.5Hz frequency step intervals with an 8Hz 

bandwidth (third-order Butterworth filter, Le Van Quyen et al, 2001) and at each frequency step the 

amplitude envelope was calculated from the analytic signal using the Hilbert transform. A similar 

analysis was performed on the motor data but using the following times (as used in 

Muthukumaraswamy et al, 2013): baseline MRGS = -1.3s --1s active MRGS = 0-0.3s, baseline beta-

ERD = -1.25s - -0.5s, active beta-ERD = -0.25s – 0.5s, baseline PMBR = -1.25s - -0.5s active PMBR 

= 1s – 1.75s. Time-frequency spectra were computed as a percentage change from the pre-stimulus 

baselines by frequency band. MEG auditory responses to the tone pip were not analysed as they are 

known to not contaminate gamma-band responses in the motor cortex (Muthukumaraswamy, 2010).  

For the production of grand-average SAM maps, individual SAM images were first spatially 

normalised onto the MNI (T1) average brain using FMRIB’s Linear Affine Registration Tool 

(Jenkinson and Smith, 2001). This was done by first obtaining a set of warping parameters by 

registering the participant’s anatomical MRI with the average brain an then applying these parameters 

to the SAM source power maps.  

Visual time-frequency spectra were split into two epochs: transient responses (0.0-0.3s from stimulus 

onset) and sustained responses (0.3-1.5s), as typical for this kind of stimulus (Swettenham et al., 

2009). The amplitude spectrum for each of these epochs was calculated by averaging the time-

frequency maps over these respective time ranges and skewed Gaussian functions were fit to a 20Hz 

window centred on the average peak frequency across conditions for each participant, in order to 
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remove noise in the estimation of peak frequencies (Figure 1b and Supplementary Information 

Figures S1A-F for individual participant fits). For each visual time-frequency epoch, peak amplitude 

and corresponding frequency were taken from the fitted functions. For the motor MRGS response, 

peak frequency and amplitude were taken from the fitted functions. 

Source-level evoked responses were calculated from visual virtual sensor data. A low pass filter of 

40Hz and a baseline of -0.2 - 0s were applied. For group-level analysis, to ensure all virtual sensors 

had the same polarity data were assigned polarity based upon the 80 ms component direction.  

For motor beta values, mean power collapsed across 15-30Hz for the respective active and baseline 

periods for each participant were calculated.  

All statistical analyses were performed using 2 (drug: placebo/alcohol) by 2 (time: pre-drink/post-

drink) within-subjects ANOVAs, with the interaction term being of most interest. Within-subject 

standard errors are used to express variance throughout.  

Results 

Confirmation of intoxication  

Participants reached a mean peak BrAC of 36.4 µg/100ml (SD = 6.2 µg/100ml). Saccadic Eye 

Movements could be analysed for 14 participants, and as expected there was an alcohol-induced 

slowing of eye-movement velocity compared to placebo (significant drug*time interaction: F(1,13) = 

15.92, p = .002). In the subjective questionnaires, 13 full datasets were analysed; 3 were incomplete. 

Significant differences were observed between the placebo and alcohol conditions for both sedative 

(F(1,12) = 35.32 , p = <.001), and stimulant feelings (F(1,12) = 6.28, p = .028) measured by the 

BAES. A significant difference was also observed between placebo and alcohol for the SHAS 

(F(1,12) = 27.66, p <.001). Reaction time to the offset of visual stimuli was also slower following 

intoxication, while it was faster following placebo (drug*time interaction F(1,15) = 5.70, p = .031). 

No significant drug*time interactions were observed from behavioural motor data for both peak 

movement displacement (F(1,13) = 0.114, p = .741)  and the latency at which peak displacement was 
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reached (F(1,13) < 0.000,  p =  .993). Descriptive statistics for these effects can be found in 

Supplementary Information Table S1C. 

Visual Gamma  

As indicated in Figure 1d, significant drug*time interactions were found for both peak amplitude 

(F(1,11) = 5.317, p = .042) and frequency (F(1,11) = 13.31, p = .004) of sustained visual gamma 

responses, such that alcohol increases visual gamma peak amplitude, and decreases mean peak 

frequency.  Grand-averaged time frequency spectrograms for peak gamma-band locations for each 

condition are presented in Figure 1c.  The increase in amplitude can be observed in the spectrogram 

for the post-alcohol condition as a darker red colour.  

The spectrograms also show that preceding the narrow-band sustained gamma response there is an 

initial broadband transient gamma response, which is typically present for this type of visual stimulus, 

though less reliable (Swettenham et al, 2009). As for the sustained data, the mean transient peak 

frequency decreased with alcohol (F(1,10) = 5.50, p = .041, Figure 2a), but the drug*time interaction 

for amplitude, though in the same direction, failed to reach significance (F(1,10) = 3.99 , p = .074). 

Activity within the pre-stimulus baseline period showed a possible elevation of alpha power in the 

post-alcohol condition (F(1,11) = 3.904, p = .074) and no differences in the gamma-band (F(1,11) = 

1.04 , p = .331 ; see Figure 2b, descriptive statistics in Supplementary Information Tables S1A-B). 

Analysis of evoked responses found no differences between pre- and post-drink recordings for both 

alcohol and placebo, see Figure 2c. 

Motor Gamma 

A significant drug* time interaction was found for peak MRGS amplitude (F(1,13) = 9.46, p = .009) 

but no significant interaction was observed for frequency (F(1,13) = 2.02, p = .179) (Figure 3). Peak 

gamma amplitude increased under the influence of alcohol. 

Grand-averaged time-frequency spectrograms for the activity recorded during the motor task are 

shown in Figure 3. The spectrograms display a typical response: a transient gamma response (MRGS) 
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in the 60-90 Hz range at 0–0.3s, beta-ERD evident at -0.25s to 0.5s and the sustained PMBR at 1 to 

1.75s both in the 15-30 Hz range.  Grand-averaged SAM maps indicate the pattern of activity of the 

MRGS, PMBR and beta-ERD responses (Figure 3).  

No significant differences in mean gamma amplitude during the baseline period were anticipated 

therefore gamma amplitude was calculated as a percentage change from baseline.  However, a near 

significant drug*time interaction was observed for baseline gamma (F(1,13) = 4.41, p = .056), non-

baselined analyses were conducted which still revealed a significant drug*time interaction for 

residual, active – baseline period  gamma amplitude (F(1,13) = 6.42, p = .025). 

For beta-ERD and PMBR both baselined and non-baselined time-frequency analyses were conducted 

and revealed that there were differences in baseline period beta power following alcohol ingestion 

(Figure 4). Using non-baselined data, for both the peak beta-ERD contralateral location and PMBR 

location there were no significant time*drug interactions for the baseline period (beta-ERD  F(1,13) = 

0.067, p = .800; PMBR F(1,13) = 0.112, p = .743), the active period (beta-ERD F(1,13) = 0.341, p = 

.570; PMBR F(1,13) = 0.282, p = .604) or the residual strength, i.e. active - baseline (beta-ERD 

F(1,13) = 0.497, p = .492; PMBR F(1,13) = 0.065, p = .802).   

Exploratory correlational analyses indicated significant correlations between the absolute change in 

visual gamma frequency from baseline to post-alcohol with BrAC, r=-.605, n=12, p=.037. Full 

correlational matrices can be found in the Supplementary Information Tables S2A-B.  

Discussion 

The present experiment examined the effect of a moderate dose of alcohol on temporally organised 

synchronous neuronal oscillations in human participants. An alcohol-induced increase in peak gamma 

amplitude was observed for both visual and motor stimulus responses, and a decrease in peak 

frequency for visual gamma was observed. Since responses were analysed at posterior sensors, these 

findings are not likely to be confounded by any alcohol-induced changes in eye-movements (Carl et 

al, 2012). Also, checks for eye-movement related activity on grand-averaged SAM spatial maps found 

no evidence of gamma-band activity in areas near extra-ocular muscles. Similar findings to ours are 
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echoed in the in vitro animal literature. For example, under the administration of the barbiturate 

thiopental, Oke et al (2010) observed an increase in gamma amplitude and a slowing of gamma 

frequency in rat visual cortex slices.  

Positive allosteric modulation of GABAA receptors may be the key driver of changes to synchronous 

gamma oscillations. Alcohol is known to increase the duration of IPSCs and the amplitude of IPSPs 

(Roberto et al, 2003; Wan et al, 1996), which in turn is expected to decrease the oscillation frequency 

of the network (Gonzalez-Burgos and Lewis, 2008), as we observed for visual gamma. The increases 

in gamma amplitude we also observed are broadly consistent with the further prediction that there 

could be greater pyramidal cell recruitment (Gonzalez-Burgos and Lewis, 2008) and also match a 

previous report that visual gamma amplitude is increased during propofol administration (Saxena et 

al, 2013). Propofol, like alcohol, is a positive allosteric modulator of the GABAA receptor that 

similarly alters the IPSCs and IPSPs (Orser et al, 1994). However, with propofol an influence on 

frequency was not detected, possibly due to two methodological differences. Our experiment used a 

more optimal visual stimulus, filling a larger proportion of the visual field eliciting a greater 

amplitude response (Muthukumaraswamy and Singh, 2013). Secondly, we used a fitting procedure 

whereas Saxena et al (2013) extracted peak frequency directly from the data, possibly allowing any 

decrease in frequency to be masked by noise.   

Our findings are also in broad concordance with previously observed positive correlations between 

visual gamma frequency and GABA concentration in the visual cortex measured by Magnetic 

resonance spectroscopy (MRS) (Muthukumaraswamy et al, 2009). During alcohol intoxication MRS 

has indicated a decrease in GABA concentration (Gomez et al, 2012). Therefore, a decrease in gamma 

frequency by alcohol fits this trend. However, it is unknown how this pattern should be related to 

another finding that tiagabine had no detectable effect on amplitude or frequency of visual gamma 

responses; rather, a reduction of visual evoked responses was detected (Muthukumaraswamy et al, 

2013a). Tiagabine acts via the blockade of GABA transporter 1 to increase endogenous GABA levels 

(Borden et al, 1994). It remains unclear why this should have a different effect to direct enhancement 

of GABA at GABAA receptors, or to naturally occurring individual differences in GABA levels as 
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measured by MRS. One possibility is that increased concentrations of extracellular GABA may 

translate to decreased availability for release and/or greater baseline receptor activity could affect 

network timing or synchrony due to fewer available binding sites for the next release. 

For motor gamma responses, pharmaco-MEG investigations using diazepam (Hall et al, 2010) and 

tiagabine (Muthukumaraswamy et al, 2013b) have found no modulation of the amplitude or frequency 

of the gamma response. Propofol has not been studied in the context of motor gamma, but like 

alcohol, diazepam is a positive allosteric modulator of GABA at GABAA receptors, and thus the 

apparent lack of any effect contrasts with the clear effect of alcohol on motor gamma amplitude found 

here. Further, in contrast to the visual gamma findings, our motor gamma did not show an alcohol-

induced alteration to frequency. A possible explanation for this could be the different physiological 

mechanisms underlying the visual and motor gamma responses. Motor gamma oscillations are 

thought to be driven sub-cortically by the subthalamic nucleus (Litvak et al, 2012). This subthalamic 

drive may make pharmacological manipulations of local circuits in motor area M1 less likely to affect 

frequency. 

Above we have focussed on the role of GABA, but the action of alcohol on glutamatergic NMDA 

receptors may also play a critical role. As already mentioned, increases in gamma amplitude may 

reflect recruitment of additional pyramidal cells in the post-inhibition excitation phase. Alcohol 

inhibits the excitatory post-synaptic currents (EPSCs) and potentials (EPSPs) induced by NMDA 

receptors (Lovinger et al, 1989, 1990) further reducing excitation. Counter-intuitively, this could in 

turn lead to the recruitment of further pyramidal cells, increasing gamma amplitude (Pfurtscheller and 

Lopes da Silva, 1999; Singer, 1993).  

A limitation of our findings is the method for administering alcohol and placebo. Anecdotally, a 

number of participants reported knowledge of the drink condition they had been assigned on each day, 

which is impossible to avoid given that participants are familiar with the symptoms of mild alcohol 

doses. This may have altered their attention during experimental tasks affecting their gamma band 

response (Kahlbrock et al, 2012). However, unlike broadband visual gamma, the narrow-band 
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response studied here has previously been shown to be insensitive to attentional manipulation 

(Koelewijn et al, 2013), suggesting it is purely a bottom-up driven stimulus response. The method of 

administration was selected because it has been successfully used by a number of studies 

administering alcohol (Nutt et al, 2007; Rose and Duka, 2008).  

Supplementary information can be found on the Neuropsychopharmacology website. 
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Figure Legends 

Figure 1: (A) Paradigm for visual task (B) An example of skewed Gaussian function fitting to visual 

data (red) from one participant. Peak amplitude and corresponding frequency are taken from the fitted 

function (grey), (C) Time-frequency spectrograms of visual task responses. The location of transient 

responses, thought to be generated from long-ranging bottom-up connections from the thalamus 

upward to the cortex (Castelo-Branco et al, 1998) and sustained responses, most likely generated by 

intracortical mechanisms reflecting local cortical circuit activity (Castelo-Branco et al, 1998). Grand-

averaged source activity is presented on a 3D-rendered MNI template brain indicating the stimulus-

induced increase in gamma power is located in the primary visual cortex.  

(D) Grand averaged amplitude by frequency plots of raw, non-fitted sustained visual gamma 

responses for each condition. Shaded areas represent ± 1 within-subject standard error.  

Figure 2: (A) Grand averaged amplitude by frequency plots of raw, non-fitted transient visual gamma 

responses for each condition. Shaded areas represent ± 1 within-subject standard error.  (B) 

Amplitude by frequency plots of pre-stimulus baseline period activity . The bottom figure indicates 

only gamma-band activity (C) Visual evoked responses. 

Figure 3: Grand-averaged time-frequency spectrograms of motor responses for each condition and a 

map of grand-averaged source activity across all conditions shown on MNI template brains. For 

MRGS responses a power by frequency plot of average non-fitted data is presented with shaded 

within-subject error. There is a clear alcohol-induced increase in amplitude.  

Figure 4: Beta event related desynchronisation (beta ERD; top) and post-movement beta rebound 

(PMBR; bottom) data from the motor task. Time by amplitude plots indicate the mean time course of 

the amplitude of beta activity throughout a trial. Non-baselined plots indicate a discrepancy between 

conditions in the baseline pre-stimulus period. Plots of mean amplitude across the baseline and active 

periods and the difference between the two periods indicate no significant interactions between drug 

and time. Shaded areas and error bars indicate ± 1 within-subject standard error.     
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