
Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
A new computerised system can continuously measure functional activities of patients in a stroke rehabilitation unit

Arshi Iqbal1, Przemyslaw Woznowski2, Dr Allison Cooper3, Prof Alun Preece2, Prof Robert van Deursen1
1. School of Healthcare Studies, Cardiff University
2. School of Computer Science and Informatics, Cardiff University
3. College of Human and Health Sciences, Swansea University
iqbalAS@cardiff.ac.uk

1) Introduction and Purpose

To be able to measure patient activity in a continuous and unobtrusive manner we are developing a new automated system based on Real Time Location Technology.1 This would also allow us to overcome limitations of the current activity monitoring methods.2

The system makes use of Radio Frequency Identification (RFID) tags with an in-built motion sensor, room locators and a reader. The tags receive infra-red location signals from a room locator fitted on a wall or ceiling. The tags relay their location and movement signals to a computer every 10 to 20 seconds (Figure 1).

Having established excellent reliability (Intraclass Correlation Coefficients ≥ 0.90), we subsequently validated the system against Observational Behaviour Mapping Technique (OBMT).

We found a high level of agreement between the two methods.3 Over 12 hours (720 minutes) a mean difference of 1 minute was found between the methods for measuring the time spent in Own Room (System = 570 mins; OBMT = 569 mins) and the time spent in Physiotherapy Room (System = 49 mins; OBMT = 48 mins).

Currently we are measuring functional activities of patients from admission to discharge. In this study we report the individual activity profiles of 5 patients based on the tag location and movement signals.

2) Methods

The system has been set up in the Regional Stroke Unit, Cardiff. Room locators were fitted in all rooms accessed by the patients. Each participant wore the RFID tag on the unaffected wrist. Through the tag signals, information about where the patients were and when they were moving about was automatically collected for the entire duration of their stay in the stroke unit.

Bespoke software programmes were developed for data processing. The amount of time patients spent at a given location and the movement detected at that location was calculated between 7:00 am and 9:00 pm each day. Total time = 14 hours (840 minutes). Descriptive statistics and charts were used for analysis. Percentages were calculated as:

1. Time spent at each location = total minutes / 840
2. Movement detected at each location = total movement / 840
3. Time active at each location = movement detected / time spent

3 (a) Results

The average movement detected in the tag is representative of the quantified daily activity of the patient. An example of the difference in the activity patterns of these patients over days is seen in Graph 2. The activity levels of Patient 2 and Patient 5 remain consistently high. The activity levels of Patient 1 and Patient 4 increase while that of Patient 3 steadily decreases over a 4 week period.

3 (b) Results

4) Conclusions

- The results indicate that the new automated system is capable of long term patient activity monitoring.
- The next step is to determine the system’s ability to measure the time spent undertaking various activities at these locations during the day or a week. For example, the time spent walking outside of therapy hours or on weekends.
- The potential of the system to generate individual patient reports on a daily or weekly basis is being explored further.
- Ultimately, the aim is to generate a better understanding of early rehabilitation post stroke.

Table 1: Demographic details

<table>
<thead>
<tr>
<th>Patients</th>
<th>Sex</th>
<th>Age in yrs</th>
<th>Type of stroke</th>
<th>Side affected</th>
<th>FAC score</th>
<th>Days post admn</th>
<th>Follow up days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>58</td>
<td>Lt MCA Infarct</td>
<td>Rt</td>
<td>Yes</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>75</td>
<td>Lacunar Infarct</td>
<td>Lt</td>
<td>Yes</td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>75</td>
<td>Rt Mid Pontine Inf</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>84</td>
<td>Lt Thalamic Infarct</td>
<td>No</td>
<td>0</td>
<td>4</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>88</td>
<td>Pontine Infarct</td>
<td>Lt</td>
<td>Yes</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2: Time active% (Movement detected/ time spent*100)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Own Room</th>
<th>PT</th>
<th>OT</th>
<th>Day Room</th>
<th>Total time active</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52 %</td>
<td>82</td>
<td>90</td>
<td>79 %</td>
<td>54 %</td>
</tr>
<tr>
<td>2</td>
<td>69 %</td>
<td>73</td>
<td>--</td>
<td>69 %</td>
<td>70 %</td>
</tr>
<tr>
<td>3</td>
<td>54 %</td>
<td>97</td>
<td>94</td>
<td>--</td>
<td>56 %</td>
</tr>
<tr>
<td>4</td>
<td>62 %</td>
<td>87</td>
<td>92</td>
<td>81 %</td>
<td>63 %</td>
</tr>
<tr>
<td>5</td>
<td>82 %</td>
<td>96</td>
<td>95</td>
<td>88 %</td>
<td>83 %</td>
</tr>
</tbody>
</table>

References


Acknowledgement : We would like to thank the patients and the staff at the Regional Stroke Unit, Cardiff. Philippe Nicol, Theo Khan -Cardiff University and Rachel Andrews from ‘Involving People’.