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ABSTRACT

As electronics become more and more miniaturised, there is much interest in increasing

knowledge about the electronic and transport properties of nano-systems. In particular,

there has been some focus on understanding the physics of nanowires with prescribed

properties. Two different groups of systems have been considered that of 1D organic

molecular nanowires and 2D interconnects based on graphene. In order to develop a

deeper insight of the factors that determine the electronic structure and consequently

the electrical transport properties, it is desirable to carry out computer simulation

studies of these systems.

The work reported in this thesis has focused on studying the porphyrin and

DNA molecules as well as investigating the consequences of engineered 2D graphene

interconnect. The latter class of systems has included graphene nanoribbons (GNRs),

graphene sheets with grain boundaries (GGBs) and graphene nanomeshes (GNMs).

The methodology was to use self-consistent extended Hückel theory (SC-EHT) and

density functional theory (DFT) in combination with non-equilibrium Green functions

(NEGFs) formalism to investigate the electronic and transport properties of these

systems. The SC-EHT calculations were performed using an in-house developed C++

code named EHTransport. While the SIESTA package was employed for the DFT.

It was found that the SC-EHT approach produced comparable results with that

obtained by DFT. This supports the idea that the semi-empirical methods can be as valid

as ab-initio approaches. The findings demonstrated that porphyrin, DNA, and graphene

based systems are very promising candidates to incorporate in future electronics.
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CHAPTER 1

INTRODUCTION

In 1965, Moore anticipated that the density of transistors on an electronic chip would

double every year [1]. Indeed (till now) Moore’s predictions were in line with what

is really achieved in electronic industry especially after the introduction of the first

Ultrabook laptop based on 14 nm process node in September 2013 by Intel. But, sooner

or later, Moore’s law will reach its limits due to some serious technological, physical

limitations and some economical barriers. For instance, shrinking a device size into the

scale of 100 nm requires the use of costly lithography equipment and other facilities.

Moreover, scaling the oxide layer in MOSFETs down to the order of a few angstroms

increases the leakage currents to values comparable to that of ON state which leads to

extremely high dissipation of power and makes the device useless [2]. Table 1.1 shows

the International Technology Roadmap for Semiconductors ITRS trends for MOS devices

covering the interval (2006-2016) [3]. The figures below show the increase in the power

dissipation with decreasing the thickness of oxide layer.

An alternative and potentially very attractive strategy to overcome these challenges

is the ‘bottom-up’ approach. This approach depends on replacing the traditional

semiconductors with an individual molecule to represent a basic unit for building

Table 1.1: The IRTS trends for MOS devices. Adopted from ref. [2]

Year 2006 2007 2010 2013 2016

MPU physical gate length (nm) (Lg) 70 65 45 32 22
Supply voltage (V) 0.9 0.8 0.6 0.5 0.4
Number of transistors per chip (106) 878 1,106 2,212 4,424 8,848
Oxide thickness (nm) (0.02Lg) 1.4 1.3 0.9 0.64 0.44
Max power dissipation (W) 180 190 218 251 288
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a device within the nanometer scale. Building such nanoscale devices requires

connecting a molecule to a metal contact (lead). This connection will considerably

affect the electronic structure of the molecule and consequently its electrical transport

properties. Therefore, setting up theoretical models and developing simulation codes

are required in order to study the factors that affect the I-V characteristics of an

individual molecule “sandwiched" between two or three metal leads. One of the several

procedures used for theoretical modelling of electrical conduction through molecules is

the Non-Equilibrium Green’s function (NEGF) approach. This approach involves firstly,

computing the Hamiltonian of the system under study. Secondly, the Green’s function

of that Hamiltonian is evaluated from which the transmission spectra (and current) at a

particular energy and applied bias voltage are extracted.

To obtain the Hamiltonian H , two main categories of methods can be employed:

ab initio methods like Density Functional Theory (DFT) and semi-empirical approaches

like Extended Hückel Theory (EHT). The main difference between the two is that the DFT

computes the Hamiltonian from “scratch”. Therefore for systems with large numbers of

molecules, it requires enormous computing resources and hence consumes lots of time.

On the other hand, EHT uses parameter sets that are obtained by matching experimental

and theoretical data. As a result, it often uses a smaller basis set; correspondingly it uses

less computer resources and time and most importantly can tackle much larger systems.

Accordingly, these crucial points qualify the EHT to be an effective alternative to DFT for

studying large systems.

Molecular conduction may be viewed at many different levels of complexity. At

its simplest, it is the tunnelling of carriers from one electrode to another across the

molecule. The transport can be band-like or, in some instances, might be described

by hopping. Most of the theoretical investigations to date have utilized a Landauer

description of the tunnelling across the molecule [4–6]. These are effectively within the

framework of the one electron picture and the transport occurs through the molecular

orbitals on a single electronic potential energy surface. Within this description, the

molecular orbitals can be determined through first principles calculations like density

functional theory and configuration interaction (Hartree-Fock), or at an empirical or

semi-empirical level. Whilst the molecular energy spectrum obtained by first principles

techniques is accurate with regard to equilibrium properties, these techniques are
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computationally expensive. Besides, it is not clear to what extent they can be applied

reliably to strongly correlated transport. In addition, DFT techniques are not always

reliable with respect to excited states and so they do not reproduce the correct

conductance.

By contrast, the semi-empirical Self Consistent Extended Hückel Theory (SC-EHT)

method has the advantage of being computationally tractable and also it provides the

flexibility to tailor the band-gap. This is very important in the study of conduction.

Moreover, the non-orthogonal basis set is good for describing chemical bonding which

in turn allows for transferability. It is the transferability 1 that makes the SC-EHT

very effective in describing a wide range of properties across many different systems.

Examples of these studies include the determination of band offsets and Schottky

barriers at semiconductor interfaces and the optical spectra of adatom adsorbed

surfaces [7, 8].

One particular family of molecules being investigated as potential candidates for

molecular conductors are the porphyrins [9–11], characterised by a planar conjugated

ring containing 20 carbon atoms and 4 nitrogen atoms, usually with a metal ion in the

centre (Figure 1.1). This family and its derivatives include many common molecules

in biology, which would be expected to show interesting transport behaviours. It

may also be possible to construct molecular wires using porphyrins as the building

blocks [12, 13]. Experiments have shown that the metal-porphyrins can have multiple

separate conduction states [14], which are believed to be due to conformational

changes. Porphyrin wires have also been studied experimentally, and theoretically by

the DFT/NEGF approach [15]. This combination of interesting electrical properties,

prior results and wide variety of possible chemical and conformational changes make

the porphyrins a useful tool for benchmarking new systems. Although small enough to

run with DFT, the wide variety of these possible structures makes exploring all possible

variations a daunting task.

Another promising class of molecules to be used in molecular electronics is DNA.

The great interest in the DNA molecule as a possible component of molecular electronic

devices is due to its unique recognition and self-assembling properties. These properties

1 The transferability of the EHT parameters for a species is the ability to use them in different physical
and chemical environments.
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Figure 1.1: The structure of porphyrin, (left) a free-base ring and (right) with iron ion at the
center.

offer, in principle, the possibility to build complex circuits with a bottom-up approach

using this biological molecule as a building block. Obviously, the understanding of the

electron transport in DNA molecules is a necessary prerequisite for the development of

a DNA-based molecular electronics [16–19]. Modelling a device with the DNA molecule

using first principles techniques is a very difficult task even with DNA samples of a short

sequence. This difficulty arises from the fact that most of the computing algorithms

used in DFT calculations scale with the number of electrons N considered in the system

as O (N 3). For instance, a DNA molecule of sequence (ACGTACGT), shown in Figure 1.2,

contains 528 atoms with 1512 orbitals and 1780 valence electrons. This indicates the size

of the computer resources required to perform such calculations.

Other potential candidates that have been suggested to play central role in next

generation of microelectronic fabrication are the two dimensional materials, especially

graphene based systems. Since graphene was isolated [20], and the subsequent

observation of its unusual electronic properties [21–23], graphene has captured the

imagination of the scientific community.

Graphene is a single sheet of graphite in which the sp2 hybridization leads to a

trigonal planar structure with strong σ bonds connecting the in-plane carbon atoms

with an equilibrium separation, aC−C , of 1.42 Å. These in-plane covalent sp2 bonds are

among the strongest in nature (slightly stronger than the sp3 bonds in diamond), with a

bonding energy of approximately 5.9 eV [24]. By contrast, the adjacent graphene planes

within a graphite crystal are linked by weak van der Waals interactions (∼ 50 meV) [24]

with a spacing of ∼ 3.35 Å [25]. This crystal structure gives rise to a unique electronic

band structure and a whole range of interesting properties. Among these are:
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Figure 1.2: A DNA strand with ACGTACGT sequence.

1. The strength of C-C bonds result in a robust structure with a Young’s modulus of 1

TPa [26]. This makes graphene 100 times stronger than a hypothetical steel film of

the same thickness.

2. The thermal conductivity of graphene at room temperature is among the highest

of any known material, about (2000−4000 Wm−1K−1) for freely suspended samples

[27–29].

3. Graphene’s uncommon optical properties give an unexpectedly high opacity for

an atomic monolayer in vacuum, absorbingπα f ≈ 3.14
137 = 2.3% of white light, where

α f is the fine structure constant [30].

4. Experimental measurements have shown that graphene has a remarkably high

electron mobility at room temperature, with reported values in excess 15,000

cm2V−1s−1 [22].

These exceptional properties offer a huge advantage in incorporating graphene in future

applications. It is expected that graphene based materials will be important in a wide

range of areas. This will include, high-speed electronic [31], optical devices [32], energy

generation and storage [33–35], hybrid materials [36, 37], DNA sequencing [38–40], and

chemical sensors [41].

The semi-metallicity of pristine graphene due to its zero band gap makes it

impossible to fabricate logical circuits operated at room temperature with low standby

power dissipation. The result is a small current on/off ratio in graphene field-

effect transistors (FETs) [42]. Opening a band gap, therefore, is a fundamental step
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towards creating semiconducting graphene that is to be incorporated in electronic

industry. Several methods have been proposed to accomplish this goal, such as

graphene nanoribbons (GNRs) [43–49], graphene grain boundaries (GGBs) [26, 50–68],

and graphene nanomeshes (GNMs) [69–78].

GNRs are sheets of graphene that are cut to make ribbons. They have two

basic edge shapes which determine the properties of graphene ribbons: zigzag and

armchair. The corresponding ribbons are termed zigzag nanoribbons (ZGNRs) or

armchair nanoribbons (AGNRs). The presence of these edges in graphene has strong

effects on the band structure of graphene at low energies [43, 44, 79]. It has been shown

that ribbons with zigzag edges possess localized edge states with energies close to the

Fermi level. In contrast, edge states are absent for ribbons with armchair edges. By

making such ribbons, the movement of charge carriers is restricted to one dimension

rather than two in graphene. This quantum confinement modifies the linear energy

dispersion near the Dirac points leading to open a gap.

In order to incorporate graphene in future industrial applications, it requires

producing single crystals on a large scale. The most commonly employed method

to fabricate large-scale graphene is the chemical vapor deposition (CVD) method

[80, 81]. This relatively cheap and simple method has been used successfully to

produce extremely large sheets of graphene (up to 30 inches) which can be transfered

to other substrates [81]. However, the graphene samples synthesized by CVD or

some other method is unavoidably polycrystalline where multi single crystals are

stitched together to form the entire sheet (Figure 1.3). The interface between the two

adjacent single crystal is termed a grain boundary (GB). The GBs and other topological

defects in graphene have a significant impact on the electronic properties of graphene.

Understanding how these defects affect the transport properties in graphene is crucial

in developing reliable techniques to help produce large-scale graphene with controllable

electronic transport features.

The graphene nanomesh is another concept of defect engineering used to open and

tune a band gap in pristine graphene. This method was first proposed by Pedersen et al.

[69] and has been subsequently realized experimentally by Bai et al. [70] and Akhavan

[71].

Recently, there has also been strong interest in group-IV graphene-like 2D nanosheets.

6



1. Introduction

Figure 1.3: An optimized structure of the (17,2)|(18,0) grain boundary supercell which contains
1368 carbon atoms with length and width of 7.93 nm and 4.41 nm respectively.

Silicene and germanene, the silicon and germanium based counterparts of graphene,

have progressed from theoretical predications [82] to experimental observations [83] in

only few years. They are found to exhibit electronic characteristics similar to graphene

[84]. Indeed graphene-like silicene based technologies might have the major advantage

of easy integration into existing circuitry because Si is currently the basis of most of the

electronics industry.

Other examples of 2D sheets are molybdenum disulfide MoS2 and hexagonal boron

nitride h-BN. A single layer of MoS2 shows a semi-conducting behaviour with a direct

band gap of (∼ 1.9 eV) [85]. This makes MoS2 a promising material that has the potential

to be incorporated into digital circuits [86, 87] and light-emitting diodes [88]. For

instance, the current on/off ratio of single-layer MoS2 transistors exceeds 108 at room

temperature [89] which is much higher than that (∼ 100) of graphene transistors [20].

A monolayer of h-BN exhibits a band gap of (∼ 6.1 eV) as measured by Kim et al. [90].

While a theoretical study expects that the band gap can be reduced by a factor of half if

the h-BN is fully hydrogenized [91].

In this thesis, we have focused on two classes of systems: molecular quantum wires

and structures based on graphene sheets. The aim has been to investigate the various

factors that contribute to or affect the conductance across these systems. For molecular

wires, the main issues are related to the contact geometry, the length and structure of

the wires and finally the environment which is principally dependent on the solution

around the wires.

For the graphene based systems, as already referred, the aim is to construct

structures that open up a band gap in its electronic bands structure. To this end, various
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graphene based systems have been studied, including GNRs, GBs in graphene sheets

and graphene nanomeshes.

The methodology used was the semi-empirical EHT approach as it provides the most

effective and accurate way of performing the large scale computations. At all stages, DFT

calculations were carried out in order to check the accuracy of the EHT results for smaller

systems. We have used the EHTransport code, which was developed at Cardiff University

by Gareth Jones and written in C++ [92].

The thesis comprises nine chapters. Chapter Two is devoted to presenting an

overview of the most common methods employed to calculate the electronic structure of

materials. A basic introduction to density functional theory and extended Hückel theory

is provided. Also an overview of the DFT-SIESTA package and EHT-EHTransport code

are presented in the same Chapter. The theoretical details of non-equilibrium Green’s

functions (NEGFs) formalism are reported in Chapter Three. It starts by presenting the

one level model and ends with a derivation of an expression for the electric current

flowing through a system in between two contacts. In Chapter Four, we have examined

the reliability of the EHTransport code by comparing its outcomes with that of SIESTA for

porphyrin molecules. In Chapter Five, we applied the EHTransport code to investigate

the factors that affect the electrical conductance of DNA systems. Exploration of

the graphene based systems starts in Chapter Six by studying the characteristics of

one dimensional graphene nanoribbons. While Chapter Seven focuses on research

on the electronic structure and transport properties of grain boundaries in graphene.

In Chapter Eight, the two dimensional sheets of graphene with periodically punched

nanoholes are scrutinized. The concluding Chapter gives a summary of the work

carried out and lists the conclusions of the present thesis. In addition, we point to

further work that could be done with current version of the EHTransport code. Possible

developmental steps to extend the ability of the code are also discussed.
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CHAPTER 2

ELECTRONIC STRUCTURE CALCULATION METHODS

2.1 Introduction

Unavailability of analytical solutions for the problems of solid state physics, except for

the very simple systems like hydrogen atom, makes numerical techniques the only

way to adopt in finding solutions to these problems. The main interest of this field

is finding the electronic structure of solids which is also the concern of this study.

Accordingly, the natural point to commence from is the Schrödinger equation which

is a second-order differential equation. Actually, various numerical approaches are

available which are used to solve this kind of equations such as finite differences

and finite elements. However, the presence of huge number of the particles that are

involved in most solid state physics’ problems, makes applying these tools impossible

in practice. As a result, approximate theories are needed. The implementation of these

approximations theories turns the problem of many particles to be tractable and can be

solved by means of using current available computer resources. In fact, different types

and accuracy levels of approximation are used, for example, considering the massive

nuclei at rest in comparison with the light electrons, neglecting the electron-electron

interaction, etc... . Most of the complex terms that are removed from the original

problem can be handled by using experimental data and/or theoretical based models.

Unfortunately, no universal approach is available to be generalized to all cases. The

reason behind that is simply that each situation demands particular arrangements. In

fact, two main categories of approximate computing methods are in use to study the

electronic structures: ab initio and tight binding methods. In ab initio methods, the
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calculations do not involve using any experimental data. Instead of that, all the physical

quantities are computed using first principles of quantum mechanics. On the other

hand, tight binding methods use parameter sets that are obtained by matching between

experimental and theoretical data.

2.2 Density functional theory

Density Functional Theory (DFT) [93, 94] is one of the most popular ab initio methods

which is interested in the total electronic density at each point in space, rather than

attempting to obtain the many-particle wavefunction directly. We will start this review

of DFT by following the approach of ref. [95]. The ultimate goal of most theoretical

approaches in solid state physics is to solve the time-independent, non-relativistic

Schrödinger equation

ĤΨ(⃗r1, ..., r⃗N , R⃗1, ..., R⃗M ) = ETΨ(⃗r1, ..., r⃗N , R⃗1, ..., R⃗M ) (2.1)

where Ĥ is the Hamiltonian of a system containing N electrons and M nuclei. Ψ is

the many-particle wave function which depends on the electron and nuclei positions

r⃗i and R⃗i respectively, and ET is the total energy of the system. If the system does not

experience any external fields, the Hamiltonian Ĥ takes the following form:

Ĥ =− ~2

2me

N∑
i
∇2

i −
M∑
I

~2

2mI
∇2

I −
N∑

i=1

M∑
I=1

ZI e2

|⃗ri − R⃗I |

+
N∑

i=1

N∑
j>i

e2

|⃗ri − r⃗ j |
+

M∑
I=1

M∑
J>I

ZI ZJ e2

|R⃗I − R⃗ J |

(2.2)

Here, the first two terms are the kinetic energy of the electrons with mass me and

nuclei with mass MI respectively. The other three terms represent, respectively, the

attractive electrostatic interaction between the nuclei and the electrons, repulsive

potential due to the electron-electron and nucleus-nucleus interactions. Solving the

Schrödinger equation with the Hamiltonian given by equation (2.2) is impossible either

analytically or numerically. For this reason making appropriate assumptions is essential

to reduce the complexity of the problem at hand. The first step towards simplifying the

Hamiltonian form is using the Born-Oppenheimer approximation [96]. Due to the fact

10



2.2 Density functional theory

that the nuclei are much heavier than the electrons, they move much more slowly than

the electrons. This means that the nuclear kinetic energy can be ignored and we can

think of the electrons as moving through an effectively field of fixed nuclei. So, the

Schrödinger equation is solved for the electrons in the system, ignoring the motion of

the ions. The Hamiltonian for the electrons is then obtained by removing the second

and last term from equation (2.2), so that

Ĥe =− ~2

2me

N∑
i
∇2

i −
N∑

i=1

M∑
I=1

ZI e2

|⃗ri − R⃗I |
+

N∑
i=1

N∑
j>i

e2

|⃗ri − r⃗ j |

= T̂e + V̂Ne + V̂ee (2.3)

The result of applying the Born-Oppenheimer approximation is to separate the

nuclei and electron motions. The many particle wave function, Ψ(⃗r1, ..., r⃗N , R⃗1, ..., R⃗M ),

is written as a product of the many electron wave function, Ψe (⃗r1, ..., r⃗N ) and the many

ion wavefunctionΨI . Hence, equation (2.1) for the electrons can be re-written as

ĤeΨe = EeΨe (2.4a)

or (
T̂e + V̂Ne + V̂ee

)
Ψe = EeΨe (2.4b)

where Ee is the electronic energy and the total energy of the system is then given as

the sum of Ee and a constant term represents the repulsion between nuclei. Hence

employing the Born-Oppenheimer approximation reduces the complexity of equation

(2.1). However, even equation (2.4) is generally unsolvable 1. To obtain an estimate of

the electron energies, the variational principle is applied. For a system in quantum state

Ψ, the expectation value of the energy is given by

E [Ψ] = 〈Ψ|Ĥ |Ψ〉
〈Ψ|Ψ〉 (2.5)

To get the lowest energy state, we apply the variational principle which states that the

1 From now on the subscript ‘e’ will be dropped.
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energy calculated by using a trial wavefunction Ψ̃ is an upper bound to the real ground

state energy E0. This can be expressed mathematically as follows:

E0 = min
Ψ→N

E [Ψ] = min
Ψ→N

〈Ψ|T̂ + V̂Ne + V̂ee |Ψ〉 (2.6)

where Ψ → N indicates that Ψ is an allowed wavefunction describing a system of N

electrons. The question then arises, “What is the form of the proposed ground state

wavefunction?". In the Hartree-Fock approximation, the ground state wavefunction Ψ0

is defined as a Slater determinant

Ψ0 ≈ΨHF = 1p
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(⃗r1) · · · φi (⃗r1) · · · φN (⃗r1)

φ1(⃗r2) · · · φi (⃗r2) · · · φN (⃗r2)
...

...
...

φ1(⃗rN ) · · · φi (⃗rN ) · · · φN (⃗rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.7)

The minimization of the energy functional (to get energy of of ground state E0) and using

Slater determinant as an approximation to the ground state wavefunction lead (Ψ0) to

what are called Hartree-Fock differential equations:

F̂φi = ϵiφi , i = 1,2, ..., N (2.8)

This set of N equations has the form of an eigenvalue equation in which ϵi are the

eigenvalues of the operator F̂ which is an effective one-electron operator that is defined

as:

F̂ =− ~2

2me
∇2

i −
M∑
A

e2ZA

ri A
+VHF (i ) (2.9)

The first two terms are the kinetic energy and the potential energy due to the electron-

nucleus attraction. VHF (i ) is the Hartree-Fock potential, the average repulsive potential

experienced by the i th electron due to the remaining (N −1) electrons.

2.2.1 The Hohenberg-Kohn Theorems

The corner stone of the DFT as it is known today is the the so-called Hohenberg-Kohn

Theorems published in 1964 [94]. The first Hohenberg-Kohn theorem states that the

12



2.2 Density functional theory

electron density is uniquely determined by the Hamiltonian operator and thus so are all

the properties of the system. This implies that the external potential Vext (⃗r ) is (to within

a constant) a unique functional of electronic density ρ(⃗r ). As the external potential

Vext (⃗r ) specifies the whole Hamiltonian, the full many particle ground state is a unique

functional of electron density ρ(⃗r ). Thus, ρ(⃗r ) determines the number of electrons N

and the external potential Vext (⃗r ) and consequently all the properties of the ground state.

The total energy functional E [ρ] can be written as,

E [ρ] =
∫
ρ(⃗r )Vext (⃗r )dr⃗ +FHK [ρ] (2.10)

where

FHK [ρ] = T [ρ]+Eee [ρ] (2.11)

The first term in equation (2.10) represents the potential energy due to the electron-

nuclei interaction, and FHK [ρ] is an unknown, but otherwise universal functional of the

electron density ρ(⃗r ) only. If it was known, the solubility of Schrödinger equation would

be possible for any system. The FHK [ρ] functional consists of a kinetic energy functional

T [ρ] and electron-electron repulsive interaction functional Eee [ρ].

The second Hohenberg-Kohn theorem is nothing more than the variational prin-

ciple. It states that the electronic density that minimises the total energy is the exact

ground state density. That is for a trial density ρ̃(⃗r ), we have

E0 ≤ E [ρ̃(⃗r )] = T [ρ̃]+
∫
ρ̃(⃗r )Vext (⃗r )dr⃗ +Eee [ρ] (2.12)

which means that the energy resulting from equation (2.10), using the trial density ρ̃(⃗r ),

represents an upper bound to the true ground state energy E0. E0 is the outcome if and

only if the exact ground state density is used in equation (2.12).

2.2.2 The Kohn-Sham Theory

It has been shown that the ground state energy of a system is given as

E0 = min
ρ→N

(∫
ρ(⃗r )Vext (⃗r )dr⃗ +FHK [ρ]

)
(2.13)

13
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where the functional FHK [ρ] can be defined as

FHK [ρ] = T [ρ]+Eee [ρ]

= T [ρ]+ J [ρ]+Enc [ρ] (2.14)

where T [ρ], J [ρ], and Enc [ρ] are respectively the kinetic energy, the classical Coulomb

interaction and the non-classical functional. Of these functionals, only J [ρ] is known

and is given by

J [ρ] = 1

2

Ï
ρ(⃗r1)ρ(⃗r2)

|⃗r1 − r⃗2|
dr⃗1dr⃗2 (2.15)

The main goal now is to find the forms of T [ρ] and Enc [ρ]. The Kohn-Sham theorem

provides an effective way to express these two functionals. The idea of the Kohn-Sham

approach is to use the kinetic energy of a fictitious non-interacting system Ts with the

same electronic density as the real interacting one instead of the true kinetic energy T [ρ],

where

Ts =− ~2

2m

N∑
i
〈ψi |∇2|ψi 〉 (2.16)

and

ρs (⃗r ) =
N∑
i

∑
ς

|ψi (⃗r ,ς)|2 = ρ(⃗r ) (2.17)

ψi (⃗r ,ς) are then the spin-orbital wave functions of the fictitious non-interacting system.

Certainly, the two kinetic energies of the real and fictitious system are different, however,

this difference is taken into account by introducing a new functional called exchange-

correlation energy which contains everything that is unknown for us. Hence the

functional FHK [ρ] takes the following new form

FHK [ρ] = Ts[ρ]+ J [ρ]+EXC [ρ] (2.18)

and

EXC [ρ] = T [ρ]−Ts[ρ]+
(
Eee [ρ]− J [ρ]

)
= T [ρ]−Ts[ρ]+Enc [ρ] (2.19)

14



2.2 Density functional theory

Calculating the Ts[ρ] requires knowing the orbitals ψi of the non-interacting system.

This takes us to search for the potential that delivers a Slater determinant which is

characterized by the same density as the real system. This can be done by re-writing

equation (2.10) with using equation (2.18) to get

E [ρ] =
∫
ρ(⃗r )Vext (⃗r )dr⃗ +Ts[ρ]+ J [ρ]+EXC [ρ] (2.20)

Using equations (2.15) through (2.18) in (2.20) and applying the variational principle [95]

gives the following set of Kohn-Sham equations:

(
− ~2

2m
+Ve f f (⃗r1)

)
ψi = εiψi (2.21)

where the effective potential Ve f f (⃗r1) is given by

Ve f f (⃗r1) =
∫

ρ(⃗r2)

|⃗r1 − r⃗2|
dr⃗2 +VXC (⃗r1)−

M∑
A

ZAe2

|⃗r1 − r⃗ A|
(2.22)

The second term in Ve f f represents the exchange-correlation potential and defined as

the derivative of energy functional with respect to electronic density, i.e.

VXC = δEXC

δρ
(2.23)

Knowing the three terms in equation (2.22), determines the potential Ve f f which

consequently determines the energy and electronic density of the ground state. As

the potential Ve f f depends on density, the Kohn-Sham equations have to be solved

iteratively. It is worth pointing out that if the exact forms of EXC and VXC were known,

the Kohn-Sham approach would lead to the exact ground state energy. Unfortunately,

these functionals have unknown forms and using the Kohn-Sham in practice requires

finding reasonable approximations first for the exchange-correlation functionals.
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2.2.3 The exchange-correlation functionals

2.2.3.1 The local density approximation LDA

The first expression for the exchange-correlation functional EXC was originally derived

to describe the exchange effects in a homogeneous electron gas (HEG) without DFT in

mind. In HEG, the electrons move in the presence of a background of positive charge

which ensures the overall charge neutrality of the system. As the exchange energy

of a HEG depends upon the local value of electronic density, the term “local density

approximation (LDA)” is used to refer to those functionals based on HEG. The LDA is

the basis of all approximate exchange-correlation functionals. According to LDA, the

energy functional EXC can be expressed in the form

EXC [ρ] =
∫
ρ(⃗r )ϵXC ([ρ], r⃗ )dr⃗ (2.24)

where ϵXC ([ρ], r⃗ ) is the exchange-correlation energy per electron, at position (⃗r ), of a

uniform electron gas of density ρ(⃗r ). For the unpolarized system, this energy depends

only on the value of electronic density in some neighborhood of position (⃗r ). The

quantity ϵXC can be partitioned into two parts, termed the exchange and correlation

contributions as follows

ϵXC ([ρ], r⃗ ) = ϵX [ρ]+ϵC [ρ] (2.25)

The first term, derived by Bloch in 1929 [97], is given by

ϵX =−3

4

(
3ρ(⃗r )

π

)1/3

(2.26)

No such explicit expression is available for the correlation term, ϵC , except for some

limited cases. For instance, expressions for ϵC have been derived in both the low and

high density limits (or when the electronic density approaches zero or infinity) [98, 99].

However, various analytical expressions have been since obtained for intermediate

densities using interpolations of accurate numerical results of calculations made by

Ceperley and Alder, who used a quantum Monte Carlo simulations of the HEG [100].
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2.2 Density functional theory

One of these expressions, as proposed by Perdew and Wang (PW) [101], is

ϵPW
C =−2A (1+α1rs) ln

[
1+ 1

2A
(
β1r 1/2

s +β2rs +β3r 3/2
s +β4r 2

s
)] (2.27)

where A = 0.031091, α1 = 0.21370, β1 = 7.5957, β2 = 3.5876, β3 = 1.6382, β4 = 0.49294,

and rs represents the density parameter which is given by

rs =
(

3

4πρ

)1/3

(2.28)

In fact, rs characterizes the density and is defined as the radius of a sphere containing

one electron on average in HEG with density ρ. Thus it is a measure of the average

distance between electrons.

More general versions of LDA have been developed to take into account the systems

with unbalanced spin population of states, i.e. polarized systems. In this extended

version, which is known as local spin-density approximation (LSDA), the exchange-

correlation functional EXC has spin dependency form in addition to the spatial one.

Introducing the electron density of spin up, ρ↑(⃗r ), and down, ρ↓(⃗r ) states with ρ(⃗r ) =
ρ↑(⃗r )+ρ↓(⃗r ), equation (2.24) now reads

E LSD A
XC [ρ↑,ρ↓] =

∫
ρ(⃗r )ϵXC (ρ↑,ρ↓, r⃗ )dr⃗ (2.29)

2.2.3.2 The generalized gradient approximation GGA

An inspection of the LDA functional shows that it is only the first term in an expansion

of the exchange-correlation energy in terms of the gradient of the density. A more

systematic way to extend the ability of the LDA functional is to include nonlocal

corrections by adding additional terms from this expansion. This means constructing

a functional that depends not only on the value of the density ρ at each point in space

but also upon the magnitude of gradient of the density |∇ρ|. This new functional is

known as gradient expansion approximation GEA and was originally proposed by Kohn

and Sham [102] and used later by Herman et al. [103]. However, the GEA does not lead

to consistent improvement over LDA and sometimes produces worse results than the

LDA. There are various sum rules that must be satisfied by the true exchange-correlation
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functional, such as the fact that the exchange hole should displace exactly one electron.

The basic problem is that gradients in real materials are so large that the expansion

breaks down. To solve this problem, generalized gradient approximations (GGA) were

designed [104]. The basic idea of GGA is employing functionals that tame the behavior at

large gradients while still preserving the desired properties of sum rules. The exchange-

correlation functional within the framework of the GGA can be written as

EGG A
XC [ρ↑,ρ↓] =

∫
f (ρ↑,ρ↓, |∇ρ↓|, |∇ρ↑|, ...)dr⃗ (2.30)

where the function f is chosen according to some criteria and a variety of different forms

are proposed and employed in the literature for it.

EGG A
XC [ρ↑,ρ↓] =

∫
ρ(⃗r )ϵXC (ρ↑,ρ↓, |∇ρ↓|, |∇ρ↑|, ...)dr⃗

≡
∫
ρ(⃗r )ϵhom

X (ρ)FXC (ρ↑,ρ↓, |∇ρ↓|, |∇ρ↑|, ...)dr⃗ (2.31)

where FXC is dimensionless quantity known as the exchange-correlation enhancement

factor, and ϵhom
X is the exchange energy of the unpolarized HEG given in equation (2.26).

For the exchange term, it can be proved that [105]

EX [ρ↑,ρ↓] = 1

2

(
EX [2ρ↑]+EX [2ρ↓]

)
(2.32)

where EX [ρ] is the exchange energy for an unpolarized system of density ρ. Hence, the

spin-unpolarized factor FX (ρ, |∇ρ↑|) is only to be considered in the case of the exchange

energy. An analytical expression for the FX has been formulated

FX = 1+ 10

81
s2

1 +
146

2025
s2

2 + .... (2.33)

where sm is a dimensionless quantity given by

sm = |∇mρ|
ρ(2kF )m

= |∇mρ|
2m(3π2)m/3ρ1+m/3

(2.34)

with the Fermi wavevector kF = 3
√

3π2ρ = 3
p

18π/rs .

A variety of different forms for FX (n, s), where s = s1, have been proposed and three
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2.2 Density functional theory

of the most widely employed ones in the literature are illustrated in Figure 2.1. The (B88)

form was proposed by Becke in 1988, which was followed by the formulation of Perdew

and Wang (PW91), and Perdew, Burke, and Enzerhof [106, 107]. The later was revised

three years later by Hammer et al. [108]. Generalization of these functions falls between

B88 and PBE curves [109]. For more details, see ref. [110] where a very interesting

analysis of the GGAs is provided.

The correlation energy is more difficult to cast in terms of a functional, but its

contribution to the total energy is typically much smaller than the exchange. For

large density gradients the magnitude of the correlation energy decreases and vanishes

as s1 → ∞. This decrease can be qualitatively understood since large gradients are

associated with strong confining potentials that increase level spacings and reduce the

effect of interactions compared to the independent-electron terms.

Figure 2.1: Exchange enhancement factor FX as a function of the dimensionless density gradient
s for various GGAs. (Adopted from ref. [111])

2.2.3.3 Hybrid functionals

Usually the exchange contributions are significantly larger than the corresponding

correlation effects. Therefore, an accurate expression for the exchange functional is a

prerequisite for obtaining meaningful results from density functional theory. In this

sense, it is important to note that the exchange energy of a Slater determinant can be

computed exactly. This fact has motivated the construction of what is called hybrid

functionals because they are a combination of orbital-dependent Hartree-Fock and an

explicit density functional. These are the most accurate functionals available as far as
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energetics is concerned and are the method of choice in the chemistry community. The

hybrid functionals differ in the way in which the exchange HF energy is mixed with the

exchange-correlation energy of a density functional. Becke [112] argued that the total

exchange-correlation energy can be approximated by

EXC = E HF
X +E DF A

XC

2
, (2.35)

where DFA denotes an LDA or GGA functional. Later Becke presented parameterized

forms that are accurate for many molecules, such as “B3P91" [112, 113], a three-

parameter functional that mixes Hartree-Fock exchange, the exchange functional of

Becke (B88), and the correlation of Perdew and Wang (PW91). Currently the most

popular hybrid functional is the so called B3LYP 2 that uses LYP correlation functional

[114]. In this case the definition of the exchange-correlation energy is

EXC = E LD A
XC +a0

[
E HF

X −E DF A
X

]+aX E Becke
XC +aC EC (2.36)

where the coefficients ai are empirically adjusted to fit atomic and molecular data.

2.2.4 The pseudopotential method

The fundamental idea of a “pseudopotential" is the replacement of one problem with

another. The primary application in electronic structure is to replace the strong

Coulomb potential of the nucleus and the effects of the tightly bound core electrons

by an effective ionic potential acting on the valence electrons. A pseudopotential

can be generated in an atomic calculation and then used to compute properties of

valence electrons in molecules or solids, since the core states remain almost unchanged.

Furthermore, the fact that pseudopotentials are not unique allows the freedom to choose

forms that simplify the calculations and the interpretation of the resulting electronic

structure. The advent of “ab initio norm-conserving" and “ultrasoft" pseudopotentials

has led to accurate calculations that are the basis for much of the current research and

development of new methods in electronic structure [105].

Most modern pseudopotential calculations are based upon ab initio norm-conserving

2 B3LYP stands for Becke, 3-parameter, and Lee-Yang-Parr.
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2.2 Density functional theory

potentials. The requirement of norm-conservation is the key step in making accurate,

transferable pseudopotentials, which is essential so that a pseudopotential constructed

in one environment (usually the atom) can faithfully describe the valence properties in

different environments including atoms, ions, molecules, and condensed matter.

Pseudopotentials generated by calculations on atoms (or atomic-like states) are

termed “ab initio" because they are not fitted to experiment. The concept of norm-

conservation has a special place in the development of ab initio pseudopotentials; at

one stroke it simplifies the application of the pseudopotentials and it makes them

more accurate and transferable. Quantum chemists and physicists have devised

pseudopotentials called, respectively, shape-consistent [115, 116] and norm-conserving

[117]. The starting point for defining norm-conserving potentials is the list of

requirements for a good ab initio pseudopotential given by Hamann, Schluter, and

Chiang (HSC) [117]:

1. All-electron and pseudo valence eigenvalues agree for the chosen atomic reference

configuration.

2. All-electron and pseudo valence wavefunctions agree beyond a chosen core radius

Rc .

3. The logarithmic derivatives of the all-electron and pseudo wavefunctions agree at

Rc .

4. The integrated charge inside Rc for each wavefunction agrees (norm-conservation).

5. The first energy derivative of the logarithmic derivatives of the all-electron and

pseudo wavefunctions agrees at Rc .

From points 1 and 2, it follows that the norm-conserving pseudopotential equals the

atomic potential outside the core region of radius Rc ; this is because the potential is

uniquely determined (except for a constant that is fixed if the potential is zero at infinity)

by the wavefunction and the energy ε, that need not be an eigenenergy. Point 3 follows

since the wavefunction ψl (r ) and its radial derivative ψ
′
l (r ) are continuous at Rc for any

smooth potential. The dimensionless logarithmic derivative D is defined by

Dl (ϵ,r ) ≡ rψ
′
l (ϵ,r )

ψl (ϵ,r )
= r

d

dr
lnψl (ϵ,r ) (2.37)
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Inside the core region the pseudopotential and radial pseudo-orbitalψPS
l differ from

their all-electron counterparts; however, point 4 requires that the integrated charge,

Ql =
∫ Rc

0
r 2|ψl (r )|2dr, (2.38)

is the same for ψPS
l as for the all-electron radial orbital ψAE

l for a valence state. The

conservation of Ql insures that the total charge in the core region is correct, and the

normalized pseudo-orbital is equal to the true orbital outside of Rc (equality can be

strictly enforced only for local functionals).
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Figure 2.2: The wave functions, charge density, pseudopotetials and their Fourier transform for
silicon. (a) Comparison of the radial all electron and pseudo wave function of s and p orbitals.
(b) The valence and core charge density for all electron and pseudopotentials. (c) The real space
representation of the pseudopotentials for the s, p, d , and f orbitals, and (d) their corresponding
Fourier transform. These graphs were calculated using ATOM utility built-in SIESTA package
(section 3.5) where Troullier-Martins scheme and LDA with Ceperley-Alder exchange-correlation
flavour were implemented.
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2.3 The tight binding model

2.3 The tight binding model

The tight binding model (TBM) is one of the many methods used to solve for the

electronic structure in molecules and solids. It was first proposed by Bloch [118] in 1929.

The TB model is primarily suited to description of low-lying narrow bands for which

the shell radius is much smaller than the lattice constant. An example is the 3d band

in transition metals. The spirit of TBM is expressing the total wavefunction as a linear

combination of atomic-like orbitals localized (centered) around the different atomic

positions. Therefore, the TB is known as the linear combination of atomic orbitals

(LCAO) method. In the TB model, the total potential through the crystal is assumed

to be represented by the superposition of the individual atomic potentials. As the name

suggests, the TB model supposes that the electrons bound tightly to the atom to which

they belong. When an electron is captured by an ion during its motion through the

lattice, it remains there for a long time before tunnelling to the next ion. During this

capture, its state is essentially that of an atomic orbital for isolated atom, uninfluenced

by the surrounding atoms. Moreover, the full periodic Hamiltonian of the crystal, in the

vicinity of each lattice point, can be approximated by that of a single atom located at that

lattice point with the Schrödinger equation

ĤΦ= EΦ (2.39)

The one-electron wavefunctionΦ can be determined depending upon the system under
study which can be either finite (isolated) such as a molecule or an infinite periodic

system as crystallized materials. In the first case, the wavefunction can be expressed

as

Φ(⃗r ) =∑
jβ

c jβϕβ(⃗r − R⃗ j ) (2.40)

where c jβ are the expansion coefficients and ϕβ(⃗r − R⃗ j ) represents the state that

corresponds to the localized atomic orbitalβ that is centered around the atomic position

R⃗ j . Substituting Φ(⃗r ) in equation (2.39) and multiplying it from left by Φ∗(⃗r ) yields the

following set of equations for the coefficients c’s

∑
iα, jβ

[
Hiα, jβ−ESiα, jβ

]
ciα, jβ = 0 (2.41)
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where Siα, jβ (the overlap between the orbitals ϕα and ϕβ centered on R⃗i and R⃗ j ) and

Hiα, jβ are given respectively by

Siα, jβ =
∫

dr⃗ϕ∗
α(⃗r − R⃗i )ϕβ(⃗r − R⃗ j ) (2.42)

and

Hiα, jβ =
∫

dr⃗ϕ∗
α(⃗r − R⃗i )Ĥϕβ(⃗r − R⃗ j ) (2.43)

The set of equations (2.41) have non trivial solution if only

∣∣H −ES
∣∣= 0 (2.44)

The roots of this secular equation yield the eigenvalues (energy levels) of the finite sys-

tem and the eigenfunctions are the corresponding wavefunctions (molecular orbitals) of

the system. The dimension of the matrices in equation (2.44) is simply the total number

of the orbitals employed in the calculation. In the case of a periodic system, the wave-

function is constructed using Bloch’s theorem as follows

Φiα(⃗k, r⃗ ) = 1p
N

∑
l

ei⃗k.R⃗lϕα(⃗r − R⃗l − b⃗i ) (2.45)

where N is the number of unit cells, ϕα(⃗r − R⃗l − b⃗i ) is the atomic-like orbital of type

α centered on the position (R⃗l + b⃗i ), and R⃗l is the position vector of the lattice point

that associates with the l th unit cell within which the position of i th atom is defined by

b⃗i as illustrated in Figure 2.3. Inserting the wavefunction Φiα(⃗k, r⃗ ) in the Schrödinger

equation leads to the following secular equation

∣∣∣H (⃗k)−ES (⃗k)
∣∣∣= 0 (2.46)

This eqaution differs from equation (2.44) as the former depends on the wave vector k⃗.

The matrix elements of the overlap and Hamiltonian matrices are given by

Siα, jβ(⃗k) =∑
l

ei⃗k.R⃗l

∫
dr⃗ϕ∗

α(⃗r − R⃗l − b⃗i )ϕβ(⃗r − b⃗ j ) (2.47)

24



2.3 The tight binding model

x

y

z

 lth unit cell

Rl

Rl  +

bi

bi

 atom i

Figure 2.3: Schematic diagram shows how the vectors r⃗ , R⃗ and b⃗i are related.

and

Hiα, jβ(⃗k) =∑
l

ei⃗k.R⃗l

∫
dr⃗ϕ∗

α(⃗r − R⃗l − b⃗i )Ĥϕβ(⃗r − b⃗ j ) (2.48)

Here the origin point of our coordinate system is fixed at some lattice point with adopting

the unit cell associated to it as a reference unit. The element matrix Siα, jβ(⃗k) describes

the overlap between the orbital α that belongs to atom i within the unit cell l and the

orbital β of atom j in the reference unit cell as shown in Figure 2.4. It is clear that in the

case of one unit cell, these equations are reduced to that of an isolated system where only

the Γ point is considered. Obtaining the band structure ϵµ(⃗k) and the corresponding

eigenvectors Qµ(⃗k) of the periodic system requires solving the generalized eigenvalue

problem (2.46) at each k-point in reciprocal space. An important quantity for many

purpose is the density of states per unit energy. The partial density of states (PDOS)

projected onto a given atom, orbital and spin (represented by the index ν) is defined as

follows:

PDOSν(E) = 1

Nk

∑
k⃗,µ

∣∣Qν,µ
∣∣2
δ(ϵµ(⃗k)−E)

= Ωcel l

(2π)d

∑
µ

∫
B Z

dk⃗
∣∣Qν,µ

∣∣2
δ(ϵµ(⃗k)−E) (2.49)

whereΩcel l is the volume of the unit cell and d is the dimensionality of the system.
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Figure 2.4: Schematic diagram shows how the position vectors are related in a periodic system.

2.3.1 Extended Hückel Theory

Extended Hückel Theory [119] (EHT) is the semi-empirical version of the tight binding

method. As the name suggests, EHT is an extension of an earlier (non-extended)

Hückel theory (NEHT). The latter was developed by Erich Hückel [120–123] in 1930s

as linear combination of atomic orbitals (LCAO) method. Hückel used this simple

method to investigate the energies of molecular orbitals of the π electrons in conjugated

hydrocarbons systems, such as ethene, benzene, and butadiene. In NEHT, all the

electrons are ignored but π electrons which determine most electronic properties of

conjugated hydrocarbons molecules. In the extended version of Hückel theory that was

developed later in 1963 by Roald Hoffmann [119], the σ orbitals were included. This

increases the applicability of the Hückel theory beyond the conjugated hydrocarbons.

NEHT uses no explicit real-space orbitals and instead assumes that the overlap matrix

is the identity matrix, and then the Hamiltonian is parametrised based on atomic type

and position. By comparison, the defining feature of EHT is the assumption that each

element of the Hamiltonian matrix Hi j is directly proportional to the corresponding

element of the (non-diagonal) overlap matrix Si j

Hi j = 〈ψi |Ĥ |ψ j 〉 ≈ ci j 〈ψi |ψ j 〉 = ci j Si j , (2.50)
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2.3 The tight binding model

where ψ are the basis set functions and ci j are some parametrised constants that are

independent of the basis set properties, removing the requirement for any complex three

or higher central integrals. The Slater type orbitals (STOs) are often used as the basis set

in an EHT calculation. The STO, χ(⃗r − R⃗o), centered at atomic position R⃗o , is taken to be

the product of a radial wave function and an appropriate spherical harmonic term

χnlm (⃗r − R⃗o) = (2ζnl )n

√
2ζnl

(2n)!
|⃗r − R⃗o |n−1e−ζnl (⃗r−R⃗o )Y m

l (⃗r − R⃗o) (2.51)

where R⃗o is the position vector of the atom and n, l , and m are the principle, angular

and magnetic quantum numbers respectively, ζnl is the Slater exponent (an empirical

chosen parameter). Figure 2.5 shows the radial part of the STO with n = 3 and various

values for the exponents ζ. It is clear that, the more the Slater exponent the narrower

the curve and more localized the orbital is. On other hand, increasing the value of the n

makes the orbital spread away from the nucleus.

For more accurate representations of the real atomic orbital, a linear combination of

STOs can be used:

φnlm =∑
ciχi (⃗r − R⃗o) (2.52)

The number of the STOs used in construction gives the name to the resulting φnlm

orbital. For instance, using two STOs gives the double zeta orbital (DZO) and three

of STOs gives the triple zeta orbital (TZO). In most cases, DZO is accurate enough to

perform the EHT calculation.

The key approximation in the EHT is the assumption that the diagonal elements of
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Figure 2.5: The radial part of the STO for (left) n = 3 and different values of exponent ζ and (right)
for ζ= 1.5 and various values of the quantum number n.
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the Hamiltonian matrix H are set equal to J , an empirically chosen parameter. That is

Hi i = 〈ψi |Ĥ |ψi 〉 ≈Ji (2.53)

The parameter Ji , entering the expression for ci j in equation (2.50), is regarded as the

ionisation potential of the state ψi . For each orbital of each atomic species included in

the calculation, a value for Ji is assigned. While the off-diagonal elements Hi j are taken

to be either the arithmetic or the geometric average of Ji and J j

Hi j =


κSi j

Ji +J j

2
arithmetic average,

κSi j

√
Ji +J j geometric average,

(2.54)

Here κ is an additional scaling factor known as the Wolfsberg-Helmholtz constant and

the commonly used value is 1.75.

Bonding atoms of different electonegativities with each other causes charge to

transfer between them. This transfer of charge modifies the ionisation potentials of

the orbitals which has negative effects on transferability of the EHT parameters. To

cope with this problem, an iterative scheme is employed, in which corrections to

the Hamiltonian are determined at each iteration, and the new Hamiltonian used to

compute new corrections until self-consistency is reached. Various schemes are used

to calculate the atomic charges, such as the Mulliken population analysis [124], natural

charges [125], and integrating the electronic charge density in real space. Once the

excess charge on each atom has been specified, the ionisation potential Jαi can be

calculated using the formula 3

Jαi (q) =J o
αi +βαi (δqi ) (2.55)

in which the ionisation potential Jαi of the orbital α in the atom i is assumed to be

a linear function of the excess charge (δqi ). J o
αi is the α orbital energy of the neutral

atom i , and βαi is the change in the orbital energy of atom i due deviation from charge

3 Higher powers of δqi with additional parameters can be added to obtain more accurate values of
ionisation potentials. The physical meaning of the expression for Jαi (q) is that an electron in an orbital α
on atom i has a binding energy J o

αi corresponding to a neutral system and experiences a potential due to
the accumulation of charge on that site.
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2.3 The tight binding model

neutrality. Other schemes for calculating the potentials also exist like Poisson solvers

[126] or Non-equilibrium Green function (NEGF) methods [127].

2.3.1.1 Computing the overlap matrix

Computing the overlap matrix is the heart of the EHT calculation. The element Si j of the

overlap matrix is given by

Si j =
∫
φ∗

i φ j d v = 〈φi |φ j 〉 (2.56)

where Si j represents the overlap integral between the orbitals i and j . As mentioned

before, STOs are usually employed in EHT calculation to approximate the real atomic

orbital such that

φnlm (⃗r − R⃗o) ≈χnlm (⃗r − R⃗o) (2.57)

The overlap integral Si j can be computed either using numerical techniques, which

are time consuming, or by using more efficient analytical expressions, whenever they

are available, especially for large physical systems. One of the analytical expressions

for overlap integrals of STOs was developed by Talman [128] and is used in this work.

According to Talman, the overlap integral between two Slater orbitals centered at

different points in space is given by

I (n1, l1,m1,ζ1,n2, l2,m2,ζ2, R⃗) = (−1)m1
∑
Λ

AΛ

 l1 l2 Λ

0 0 0


×

 l1 l2 Λ

m1 −m2 m2 −m1

Y m1−m2
Λ (R⃗)

(2.58)

where (n, l , m) and ζ are the quantum numbers and the Slater exponents of the two

overlapped orbitals respectively, the vector R⃗ is joining the first orbital center to the

second one, Y m1−m2
Λ are the standard complex spherical harmonics, the quantities in

square brackets are the 3− j coefficients and finally the factor AΛ is given as

AΛ(n1, l1,m1,ζ1,n2, l2,m2,ζ2, R⃗) =
l1∑
λ=0

∑
L
ΥΛλLQλL (2.59)
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where

ΥΛλL = (−1)l+λ(2L+1)[4π(2Λ+1)(2l1 +1)(2l1 +1)]1/2

× Θ(l2L;λ)Θ(LΛ; l1 −λ)

Θ(Λl2; l1)

(2.60)

Let t = i + j +k, then

Θ(i j ;k) = (t/2)!(t −2k)!

(t +1)![(t −2i )/2]![(t −2 j )/2]![(t −2k)/2]!
(2.61)

Here any non-integer values resulting from the divisions by 2 are rounded towards zero

before performing the factorial. The second factor QλL in equation (2.59) is defined as

follows:

QλL =
[L/2]∑
k=0

L−2k∑
p=0

DLkp |R⃗|l1−λ+L−2k−2p−1Ξ(n2 +λ+2k −L,n1 − l1, p) (2.62)

where [L/2] is the largest integer less than or equal to L/2, D and J are given respectively

by

DLkp = (−1)k (2L−2k)!

22L−2k k !(L−k)!p !(L−2k −p)!
(2.63)

Ξ(M , N ,P ) = |R⃗|M+N+2p+2
M+N∑
µ=0

BM NµFµ+p (u)ΠM+N−µ+p (v) (2.64)

in which

BM Nµ = 1

2M+N+1

max(0,µ−N )∑
b=min(µ,M)

(−1)N−µ+b

 M

b

 N

µ−b

 (2.65)

here the bracketed quantities represent the binomial coefficients,

Fs(u) = s!
e−u

us+1

s∑
i=0

ui

i !
(2.66)

and

Πs(v) = s!

2v s+1

[
ev

s∑
i=0

(−v)i

i !
−e−v

s∑
i=0

v i

i !

]
(2.67)

where

u = (ζ2 +ζ1)|R⃗|
2

(2.68)
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2.3 The tight binding model

and

v = (ζ2 −ζ1)|R⃗|
2

(2.69)

The limits of the summations 4 over Λ and L in equations (2.58) and (2.59) respectively

are given by

max(|l1 − l2|, |m1 −m2|) ≤Λ≤ l1 + l2 (2.70)

max(|l2 −λ|, |Λ+λ− l1|) ≤ L ≤ min(|l2 +λ|, |Λ+ l1 −λ|) (2.71)

In the case of equation (2.67), numerical instabilities can arise from adding terms of

opposite signs and which leads to non-convergent results. There are three special cases

depending on the value of v which are listed below:

1. For large value of v , equation (2.67) can be used to compute theΠs(v) without any

difficulty.

2. For small value of v , equation (2.67) is used for the values of s that satisfies the

following condition

e−v
s∑

i=0

v i

i !
< 0.9 . (2.72)

Otherwise, the following alternative formula forΠs(v) is used

Πs(v) = s!

2v s+1

[
e−v

∞∑
i=s+1

v i

i !
−ev

∞∑
i=s+1

(−1)i v i

i !

]
(2.73)

3. For v = 0, both expressions (2.67) and (2.73) give 0/0. This case is very common,

occurring in any system with more than one atom of the same atomic species.

Hence giving rise to overlaps for which ζ1 = ζ2. For this special case the following

equation will be used

Πs(v = 0) =


0 if s is odd,

1

s +1
if s is even

(2.74)

4 The limits are bounded by the range of possible values, e.g. by the range of values for which the 3− j
coefficients are defined in the case of λ.
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One final source of numerical divergence is the case of R⃗ approaching zero. This

situation occurs when two atoms approach to each other closely which could not

happen in real systems 5. The other possibility of R⃗ being zero is the case of multiple

orbitals centred on the same atom. The solution to this case is trivially given by

I (n1, l1,m1,ζ1,n2, l2,m2,ζ2, R⃗ = 0) = δn1n2 δl1l2 δm1m2 (2.75)

2.3.1.2 The real form of overlap integral

Up to this point the expression (2.58) for the overlap integral is in terms of the complex

spherical harmonics. This yields a complex value for I and consequently for both

the overlap and the Hamiltonian matrices. Performing the calculation with complex

matrices would require further steps of computation as much as a factor of four [92].

Moreover, visualisation of any real space properties of a system following a calculation

needs to know the exact representations of the orbitals in use in real space. Finally,

for molecules or large systems where the unit cell is big enough to consider only the

Γ point in calculation, it is preferable for I to have a real value in order to obtain real

and symmetric overlap and Hamiltonian matrices at the Γ point. For these motivations

it is worth recasting the result into a real form using tesseral spherical harmonics which

are related to complex ones by the equations

Zl m =



1p
2

(Y m
l + (−1)mY −m

l ) for m > 0

Y 0
l for m = 0

1

i
p

2
(Y −m

l − (−1)mY m
l ) for m < 0

(2.76)

By using these definitions, the real form of the overlap integral IR takes nine different

forms depending on the different ways of combination between the values of m1 and m2

as follows:

IR (m1,m2, ...) = sign(m2)(−1)l1+l2+m1+m2IC (m1,m2, ...) (2.77)

where

5 In programming terms, this is implemented by making sure that any two atoms do not approach
closely beyond a predefined specific distance, otherwise the code will stop.
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2.3 The tight binding model

• if m1 = 0 and m2 = 0,
IC (m1,m2) =I (m1,m2) (2.78)

• if m1 = 0 and m2 > 0,

IC (m1,m2) = 1p
2

[I (m1,m2)+ (−1)m2I (m1,−m2)] (2.79)

• if m1 = 0 and m2 < 0,

IC (m1,m2) = 1

i
p

2
[I (m1,−m2)+ (−1)m2I (m1,m2)] (2.80)

• if m1 > 0 and m2 = 0,

IC (m1,m2) = 1p
2

[I (m1,m2)+ (−1)m1I (−m1,m2)] (2.81)

• if m1 > 0 and m2 > 0,

IC (m1,m2) = 1

2
[I (m1,m2)+ (−1)m1I (−m1,m2)

+ (−1)m2I (m1,−m2)+ (−1)m1+m2I (−m1,−m2)]
(2.82)

• if m1 > 0 and m2 < 0,

IC (m1,m2) = 1

2i
[I (m1,−m2)+ (−1)m1I (−m1,−m2)

− (−1)m2I (m1,m2)− (−1)m1+m2I (−m1,m2)]
(2.83)

• if m1 < 0 and m2 = 0,

IC (m1,m2) = 1

i
p

2
[I (−m1,m2)+ (−1)m1I (m1,m2)] (2.84)

• if m1 < 0 and m2 > 0,

IC (m1,m2) = 1

2i
[I (−m1,m2)− (−1)m1I (m1,m2)

+ (−1)m2I (m1,−m2)− (−1)m1+m2I (m1,−m2)]
(2.85)

• if m1 < 0 and m2 < 0,

IC (m1,m2) =−1

2
[I (−m1,−m2)− (−1)m1I (m1,−m2)

− (−1)m2I (−m1,m2)+ (−1)m1+m2I (m1,m2)]
(2.86)

As the double zeta orbitals are commonly used in EHT, especially for the d orbitals

in the transition metals, extending the overlap expression I is required. The double

zeta Slater orbital is expressed as a linear combination of two single standard orbitals, as
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given by equation (2.51), each with different exponent ζ (but otherwise identical)

χD Z
nlm =

2∑
i=1

ciχnlm(ζi ) (2.87)

Hence the overlap integral (I D Z ) between two DZSOs can be written as

I D Z =
2∑

i=1

2∑
j=1

c(i )
1 c( j )

2 I (ζ(i )
1 ,ζ( j )

2 ) (2.88)

where ζ(i )
1 is the i th exponent of the first DZSO. The inspection of the set of equations

(2.58-2.69) shows that the only Fs(u) and Πs(v) quantities are ζ dependence. As these

two quantities appear only within the definition of the quantity Ξ in equation (2.64),

performing the whole calculation more than once is not necessary. So using the DZ

orbitals in EHT can be taken into account computationally by modifying the equation

(2.64) into:

Ξ(M , N ,P ) = |R⃗|M+N+2p+2
M+N∑
µ=0

BM Nµ

2∑
i , j=1

Fµ+p

(
u(ζ(i )

1 ,ζ( j )
2 )

)
×ΠM+N−µ+p

(
v(ζ(i )

1 ,ζ( j )
2 )

)
c(i )

1 c( j )
2

(2.89)

with

u(ζ(i )
1 ,ζ( j )

2 ) = ζ(i )
1 +ζ( j )

2

2
|R⃗| (2.90)

v(ζ(i )
1 ,ζ( j )

2 ) = ζ(i )
2 −ζ( j )

1

2
|R⃗| (2.91)

The coefficients c’s may be treated as adjustable parameters like the ζ exponents, but

usually their values are normalised such that the overlap of the DZ orbital with itself is

set to one. This leads to

c2 = 1

2
−b ∓

√
b2 +4−4c2

1 (2.92)

with

b = c1
22n+2(ζ1ζ2)n+0.5

(ζ1 +ζ2)2n+1
(2.93)

Hence, one of the two roots that yields 0 ≤ c2 ≤ 1 is chosen. In the case that the c’s

coefficients are determined in different way, the overlap is required to be less than one;
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2.3 The tight binding model

this is equivalent to normalise a triple zeta orbital to one where ζ3 →∞. In many cases a

single zeta orbital is used with a value of c1 less than one which is equivalent to a double

zeta orbital with ζ2 →∞.

For an isolated system, a single unit cell is employed to perform the calculation of the

overlap matrix S which holds the overlaps between all the atoms. In the case of periodic

system, unlimited number of overlap matrices is required to fully describe it. Each one

represents the overlap between atoms in the reference (original) unit cell with each atom

in different cells. However, exploiting the fact that the overlap I goes to zero when the

distance |R⃗|, separated overlapped orbitals, is large, provides a limit on how many of

the matrices are required to be constructed. Hence, for those unit cells whose centres

are located outside of a sphere centred at the reference unit cell with radius equal to

some cut off distance Rc will be ignored (Figure 2.6) 6. For large unit cell with their three

dimensions being greater than the cut off distance, only the nearest neighbour cells are

needed, giving 3, 9, and 27 overlap matrices in total for 1D, 2D, and 3D case respectively.

After constructing the overlap matrices, the final S matrix can be calculated using the

formula

Si j =
∑
ℓ

Sℓi j ei(⃗k.R⃗ℓ) (2.94)

where the sum runs over all the unit cells that considered in calculation. The phase factor

ei(⃗k.R⃗ℓ) is computed at each k point for all the lattice positions R⃗ℓ.

           
           
           
           
           
           
           
           
           
           
           

Rc 

Figure 2.6: Schematic diagram of 2D square lattice showing the original unit cell in red and the
cells to be considered in constructing the overlap matrix in green.

6 It has been assumed here that the lattice vectors are orthogonal.

35





CHAPTER 3

THEORY OF MOLECULAR CONDUCTANCE

3.1 Introduction

According to Ohm’s law, the resistance R of a conductor is directly proportional to its

length L and inversely proportional to its cross sectional area A; that is,

R = V

I
= ϱL

A
(3.1)

where ϱ is the resistivity and it is characteristic of the conductor material. The reciprocal

of the resistance is the conductance G

G = 1

R
=σA

L
(3.2)

where σ = 1/ϱ is the conductivity. Equation (3.2) suggests that the conductance of a

conductor increases indefinitely by decreasing its length. However, the experimental

results showed that this ohmic behaviour breaks down at some critical value of the

conductor length. Below this specific length, the conductance reaches its maximum

value and decreasing the length has no effect on G . In other words, as illustrated

schematically in Figure 3.1, the resistance of any conductor cannot be reduced to

less than a minimum finite value R0. The question raised here is intriguing: what

is the origin of this resistance? The proper answer of this question was first pointed

out by Imry [130], who associated the finite resistance with the resistance arising at

the interfaces between leads and the sample in between them. As the length of the

conductor is reduced to the atomic scale such that the conductor is just an individual
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Figure 3.1: The resistance of a conductor vs its length. Adapted from ref. [129].

molecule, the effect of quantum phenomena becomes more important and dominates

the conducting process. This can lead to an unexpected and incongruous behaviour

to the classical one, such as a resistance that is independent of molecule length [131],

non-linear I-V characteristics and even negative differential resistance [132]. One of the

most interesting and important results is the quantization of conductance [133]; for any

energy level within a conducting channel, the conductance cannot exceed a finite value

G0 which can be introduced as “a quantum of conductance". This value is defined in

terms of two fundamental physical quantities: the elementary charge e and Planck’s

constant h, as

G0 = e2

h
= 38.7µS = (25.8kΩ)−1 (3.3)

In some descriptions, an extra factor of 2 is included to account for spin up and down

quanta.

A conductor would exhibit various transport regimes depending upon its dimensions

relative to three characteristic length scales: the phase relaxation (coherent) length Lφ,

the mean free path ℓ and the de Broglie wavelengthλ. These regimes can be summarized

as the following [95]:

1. Mesoscopic if λ<< L < Lφ,

2. Diffusive if L >>λ and L >> ℓ,

3. Ballistic if λ<< L < ℓ,

4. Quantum transport if λ∼ L.
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3.2 One level model

The diffusive and ballistic transport can be described using classical or semi-classical

laws, whereas quantum transport phenomena (where the typical dimensions of the

sample are within atomic-scale) are fully governed by quantum mechanics. The

mesoscopic regime would be a separate kingdom governed by separate laws that are

neither purely quantum nor purely classical; rather, a synthesis of the two. If the

dimensions of the conductor are much larger than each of the three length scales, the

conductor shows ohmic behaviour. The above classification of the different transport

regimes should not be taken as completely rigorous and one may imagine situations

where the electrons in a device behave ballistically at low temperature and diffusively at

high temperature.

3.2 One level model

To study the quantum transport through an individual molecule, we will introduce a

simple model for electronic transport which is the one level model. We will follow the

derivation given by Paulsson et al. [134]. Figure 3.2 shows the energy level diagram of

a molecule with single energy level sandwiched between metal leads. Both leads are

assumed to contain a completely flat continuum of states, which extends to all energies,

and which is filled up to some Fermi level µL and µR . The molecule is coupled to both

leads with coupling constants ΓL and ΓR which have units of energy. Physically, ΓL and

ΓR (divided by ~) represent the rate at which an electron in the molecule’s energy level ε

would escape into left lead and right lead, respectively. The stronger coupling the higher

probability for escaping. If the energy level of the molecule was in equilibrium with the

left lead, then the number of electrons occupying the level would be given by

NL = 2 f (ε,µL) (3.4)

where the factor 2 is for spin up and down and

f (ε,µ) = 1

1+exp

[
ε−µ
kBT

] (3.5)
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Figure 3.2: A molecule with one energy level in between two leads.

is the Fermi distribution function. Similarly, if the level was in equilibrium with the right

lead, the number of electrons occupying the level would be

NR = 2 f (ε,µR ) (3.6)

Under non-equilibrium conditions, the number of electrons N will be somewhere in

between NL and NR . To determine this number, we write the net current IL at the left

junction:

IL = eΓL

~
(NL −N ) (3.7)

and the net current at the right junction:

IR = eΓR

~
(N −NR ) (3.8)

Steady state requires IL = IR , from which we obtain

N = 2
ΓL f (ε,µL)+ΓR f (ε,µR )

ΓL +ΓR
(3.9)
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3.2 One level model

So that from equation (3.7) or equation (3.8) we obtain the current:

I = 2e

~
ΓLΓR

ΓL +ΓR

[
f (ε,µL)− f (ε,µR )

]
(3.10)

Equation (3.10) illustrates few basic facts about the process of current flow:

1. No current will flow if f (ε,µL) = f (ε,µR ).

2. A level that is at lower energy than both Fermi levels µL and µR will have f (ε,µL) =
f (ε,µR ) = 1 and will not contribute to the current.

3. A level that is at higher energy than the µL and µR and has f (ε,µL) = f (ε,µR ) = 0

will not contribute also to the current.

4. It is only when the molecule’s level lies between µL and µR (or within a few kBT of

µL and µR ) that we have f (ε,µL) ̸= f (ε,µR ), and a current flows.

From equation (3.10) we can see that, the maximum current that can flow through

one molecular level is equal to

Imax = 2e

~
ΓLΓR

ΓL +ΓR
(3.11)

Figure 3.3 shows a typical I-V characteristics of one energy level calculated from equation

(3.10) for different parameters. It can be seen that, at small bias voltages, the current is

zero because both µL and µR are above the molecule energy level. When the voltage

becomes sufficiently high, the µR drops below the energy level and the current increases

to the maximum value Imax . It is worth noting that, the size of the gap in the current-

voltage curve is equal to 4|E f −ε0|. E f is the Fermi level of the system (left lead + molecule

+ right lead) at equilibrium, i.e. V = 0.

3.2.1 Charging effects

When the current flows through the molecule of single energy level, electrons are added

to or removed from the level continuously leading to what is called “charging effects”.

These effects have not been taken into account in the simple picture provided in the

previous section. The change in electron occupation of the energy level modifies the
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Figure 3.3: (Right) The current-voltage (I-V) characteristics of a single energy level with µL =
E f − eV

2 , µR = E f + eV
2 , E f = −5.0 eV, ε0 = −5.5 eV and ΓL = ΓR = 0.2 eV. (Left) The voltage

dependence position of the energy level relative to the µL and µR .

potential in the molecule. In order to make our one level model more realistic, we should

include effects of charging. This can be done by assuming that the single energy level has

the following form

ε= ε0 +USC (3.12)

That is, the energy level ε floats up or down by the amount of the potential USC ,

calculated self-consistently, which is given by

USC =U (N −2 f (ε0,E f )) (3.13)

where f (ε0,E f ) is the Fermi distribution function of the initial occupation of the

molecule at zero bias voltage. N is the electronic population at a particular bias

voltage V . Because of the mutual dependence of the potential (USC ) and the electronic

population (N ) on each other, both need to be calculated self-consistently by iterating

over equations (3.9), (3.12) and (3.13). Figure 3.4 shows the current and conductance

versus voltage with (U = 1.0 and 2.0 eV) and without (U = 0.0 eV) charging effects.

3.2.2 Unrestricted model

Up to this point, we have assumed that the two electrons, with spin up and down, occupy

the energy level with the same population and hence they feel the same potential USC .

But in reality there is no such restriction. This effect can be included in our model by
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Figure 3.4: The current-voltage (I-V) characteristics (left) and conductance-voltage (G-V) (right)
of a single energy level with E f =−5.0 eV, ε0 =−5.5 eV and ΓL = ΓR = 0.2 eV.

replacing equation (3.12) with the following two equations for spin up and down

ε↑ = ε0 +U (N↓− f (ε0,E f )) (3.14)

ε↓ = ε0 +U (N↑− f (ε0,E f )) (3.15)

These equations tell that, the up-spin level experiences a potential due to the down-spin

electrons and vice-versa. Equations (3.14) and (3.15) reduce back to the case of restricted

model represented by equation (3.12) when the U approaches zero. However, for a large

value of the potential U , it is very likely that the occupation of one level, with either

spin up or down, is large. This shifts the other level, with the opposite spin, to some

position out of the window (µL −µR ) between the two leads. Hence, this shifted level is

not involved in conduction until the bias voltage becomes large enough to overcome the

effect. This effect is known as a Coulomb blockade and it is illustrated in Figure 3.5.

3.2.3 Broadening of the energy level

In addition to the effects of charging and differing in spin population of the energy level,

there is still another important factor that we have not considered yet, the broadening

effect. The broadening of the level is caused by the coupling to the leads as shown

in Figure 3.6. This causes part of the energy level to spread outside the energy range

between µL and µR where current flows. The actual current is then reduced below what
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for restricted (dashed line) and unrestricted models (solid line) of a single energy level with
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is expected from equation (3.10) by a factor representing the fraction of the level that lies

in the window between µL and µR .
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Figure 3.6: The broadening of one energy level because of the coupling to the leads.

The broadening effect can be taken into account by replacing the discrete energy

level with an appropriate density of states function. The DOS of the broadened level

could in principle have any shape, but the simplest one is the Lorentzian function

centered around E = ε:

Dε(E) = 1

2π

Γ

(E −ε)2 + (Γ/2)2
(3.16)

where Γ = ΓL +ΓR is the broadening parameter. When the broadening tends to zero

(Γ → 0), the Dε(E) tends to take the shape of delta function. Clearly Dε should have
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3.2 One level model

the property to hold only one electron, hence its energy integral is equal to one. It is

then quite intuitive to re-define the expressions for the number of electrons N and the

current across the two terminals in terms of the DOS associated to Dε as follows

N = 2
∫ ∞

−∞
dEDε(E)

ΓL f (E ,µL)+ΓR f (E ,µR )

ΓL +ΓR
(3.17)

and

I = 2e

~

∫ ∞

−∞
dEDε(E)

ΓLΓR

ΓL +ΓR

[
f (E ,µL)− f (E ,µR )

]
(3.18)

The Γ’s have been intentionally left inside the integral since the broadening can be a

function of the energy in general. It is worth mentioning that, the argument of the

integral in equation (3.17) is nothing but the electron charge density at the steady state

ρ(E) = Dε(E)
ΓL f (E ,µL)+ΓR f (E ,µR )

ΓL +ΓR
(3.19)

To see the broadening effect on conduction, the I-V characteristics of a molecule with a

single energy level are depicted in Figure 3.7 for restricted and unrestricted models. In
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Figure 3.7: The current-voltage (I-V) characteristics of a molecule with a single energy level
showing the broadening effects, in the case of restricted (left) and unrestricted (right) model.
For both figures, the following parameters were used; E f =−5.0 eV, ε0 =−5.5 eV, U = 1.0 eV and
ΓL = ΓR = 0.2 eV (a) and ΓL = ΓR = 0.05 eV (b).

the case of the restricted model, the main effect of broadening is to make the I-V curve

smother as shown in Figure 3.7a. The same is true for the unrestricted model as long

45



3.

as the broadening is much smaller than the charging energy Figure 3.7b. But moderate

amounts of broadening can destroy the Coulomb blockade effects completely and make

the I-V characteristics look identical to the restricted model.

3.3 NEGF formalism

Although the simple model introduced in the previous section shed some light on basic

factors that influence molecular conduction, it does not describe two important aspects

of a real device: the electronic structure of the contacts and the details of the scattering

region Hamiltonian. These are replaced respectively by the Fermi distribution functions

and by a single energy level. In reality, the molecular devices typically have multiple

energy levels that broaden and overlap with each other and with the contacts levels.

A general formalism is needed to include these details. The non-equilibrium Green’s

function (NEGF) formalism described in this section does just that.

Figure 3.8 shows a typical molecule in between two metal leads. To investigate the

electrical conduction through the molecule, the system is divided into three regions:

the left lead, the right lead, and the scattering (central) region where the molecule of

interest is located. The part of the scattering region where the atom positions follow the

periodic arrangement of the leads is called the left and right lead extension. A sufficient

fraction of the leads are included in the scattering region to screen out the perturbation

of the scatterer , i.e. the molecule, in the outermost part of the scattering region. Since

the two leads are semi-infinitely extended to the left and right sides (where the periodic

boundary conditions are applied), the Hamiltonian of the whole system will be infinite

in size. However, it can be computed by exploiting the periodic nature of the leads from

smaller calculable components.

To calculate the Hamiltonian of the system, for each lead a principal unit cell of

calculation is chosen, which is at minimum the smallest number of atomic layers

required so that no coupling exists between next nearest unit cells. As illustrated in

Figure 3.9, each principal unit cell now has a finite Hamiltonian HL and HR , and

another matrix which describes the coupling between each principal unit cell and its

next nearest unit HLC and HRC . The scattering region also has a finite Hamiltonian

HS and coupling matrices between itself and each lead HSLC and HSRC . The infinite
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3.3 NEGF formalism

Figure 3.8: Zinc porphyrin molecule sandwiched between two bulk gold leads.

Hamiltonian describing the system can then be written as

H =



. . . HLC 0 0 0 0 . . .

H †
LC HL HLC 0 0 0 0

0 H †
LC HL HSLC 0 0 0

0 0 H †
SLC HS HSRC 0 0

0 0 0 H †
SRC HR HRC 0

0 0 0 0 H †
RC HR HRC

. . .
0 0 0 0 H †

RC
. . .



(3.20)

Figure 3.9: Schematic diagram shows how the Hamiltonian of the one dimensional system is
built up. In this example, each red rectangle, with two atoms, represents one principal unit cell of
the lead, and the blue rectangle represents the scattering region which consists of left and right
lead extensions and the molecule of interest.
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The overlap matrix S can be obtained in the same manner:

S =



. . . SLC 0 0 0 0 . . .

S†
LC SL SLC 0 0 0 0

0 S†
LC SL SSLC 0 0 0

0 0 S†
SLC SS SSRC 0 0

0 0 0 S†
SRC SR SRC 0

0 0 0 0 S†
RC SR SRC

. . .
0 0 0 0 S†

RC
. . .



(3.21)

Because of the infinite size of the overlap matrix S and the Hamiltonian H , the

problem is insoluble. However, these matrices can be converted into something

tractable by using the non-equilibrium Green’s function (NEGF) formalism. For a single

energy level ε, the Green’s function is defined as:

G(E) =
(
E −ε+ i

ΓL +ΓR

2

)−1

, (3.22)

and in the case of the whole (infinite) system, the Green’s function equation is given by

[
(E + iτ)S −H

]
G(E) = I (3.23)

where τ is infinitesimal small positive number added to avoid singularity in calculation.

I is the identity matrix with the same size of S and H . Equation (3.23) can be written in

full form as follows:


(E + iτ)



. . . SLC 0 0 . . .

S†
LC SL SLC 0 0

0 S†
LC SS SRC 0

0 0 S†
RC SR SRC

. . .
0 0 S†

RC
. . .


−



. . . HLC 0 0 . . .

H †
LC HL HLC 0 0

0 H †
LC HS HRC 0

0 0 H †
RC HR HRC

. . .
0 0 H †

RC
. . .





×


. . .

... . . .

· · · GS(E) · · ·
. . . ...

. . .

= I (3.24)
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3.3 NEGF formalism

What is required to calculate the current is the central block of the Green’s function that

corresponds to the scattering region (i.e. the molecule + leads extensions). A reduced

version of the last equation then could be written in the following form:

[
(E + iτ)SS −HS −ΣL −ΣR

]
GS(E) = I (3.25)

Inverting this equation yields:

GS(E) = [
(E + iτ)SS −HS −ΣL −ΣR

]−1, (3.26)

where Σ is a new matrix added such that the matrix GS becomes equal to that results

from equation (3.24). This new matrix is known as the leads self-energy matrix, and can

be calculated (for left lead) as follows:

ΣL = [
(E + iτ)S†

LC −H †
LC

]
GL

[
(E + iτ)SLC −HLC

]
(3.27)

where GL represents the surface Green’s function of the left lead, which is the bottom

right block of the full semi-infinite Green’s function representing the lead. The self-

energy matrices, ΣL and ΣR , are generally complex energy dependence matrices

containing all the details of the electronic structure of the leads and their coupling

with the molecule. The broadening in the molecule levels can be described using two

matrices, ΓL and ΓR , which are defined as the anti-hermitian parts of the corresponding

self-energy matrix:

ΓL(R) = i
[
ΣL(R) −Σ†

L(R)

]
(3.28)

Knowing the Green’s function of the scattering region allows us to calculate the

current through a molecule by integration over energy spectrum:

I = 2e

h

∫ ∞

−∞
dE Trace

{
ΓL GS ΓR G†

S

}[
f (E ,µL)− f (E ,µR )

]
(3.29)

The trace term, Trace
{
ΓL GS ΓR G†

S

}
, represents the electronic transmission through

the scattering region at the particular energy E and it is of a central importance to the
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calculation. Thus in terms of transmission, equation (3.29) becomes

I = 2e

h

∫ ∞

−∞
dE T (E)

[
f (E ,µL)− f (E ,µR )

]
(3.30)

The transmission T (E) through the scattering region can be expressed as the product

of transmission probability per a channel, Tm(E), and the total number of channels

available for conduction, M(E). Then equation (3.30) takes the following form:

I = 2e

h

∫ ∞

−∞
dE Tm(E)M(E)

[
f (E ,µL)− f (E ,µR )

]
(3.31)

This is the voltage and temperature generalised Landauer formula for an electric current

flows through a molecular conductor in between two electrodes. At low-temperature,

the Fermi-Dirac distributions (3.5) are reduced to step functions, and the integral in

equation (3.31) is evaluated between µL and µR . Also, for low applied biases, the integral

is confined to the vicinity of the Fermi level, so that Tm(E) and M(E) may be assumed

to take the constant values Tm(E f ) and M(E f ), respectively. Under these conditions, the

current can now be written as:

I = 2e

h
T (E f )(µL −µR ) (3.32)

Using the fact that µL −µR = eV , the conductance (G = I /V ) is given by the following

two terminals Landauer formula:

G = 2e2

h
T (E f )

=G0T (E f ) (3.33)

In the case of a ballistic regime, i.e. when the mean free path of the electrons in

the conductor is much less than the object’s length, the transmission probability for all

channels is unity, and it follows from equation (3.33) that the conductance will be an

integer multiple of G0. This behaviour was first observed using semiconductor structures

at 4 K [135, 136] and also was demonstrated at room temperature on gold contacts [133].

This implies that even a perfect conductor will exhibit a resistance of approximately
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(12.9/M(E f )) kΩ. This resistance arises from the interface between the conductor and

the contacts. The current is carried in the contacts by infinite number of channels but

inside the conductor by only a few channels. This requires the current to be redistributed

to the limited number of current carrying channels, causing a bottleneck [135].

3.4 EHT parameters

Since EHT is an semi-empirical method, it depends on a set of parameters that must

be chosen prior to performing any calculations. Commonly used values for the Slater

coefficients and uncharged energy parameters exist and include the Hoffman [137, 138],

Müller [139–141] and Cerda [142] parameter sets 1. Most of these parameters are

applicable to non-self consistent calculation and do not account for the charge transfer

and consequently the energy changes owing to that. Owing to the absence of well-known

and tabulated values of SC-EHT parameters, they are calculated using the ATOM script

which is one of the SIESTA built-in utilities. The ATOM code performs all-electron DFT

calculations on an isolated atom and computes the Kohn-Sham energies of each atomic

orbital populated with a specific charge. By adding and removing different fractions

of electronic charge from an orbital, we can obtain a set of data for the orbital energy

against excess charge. Then the values of the parameters are calculated numerically by

fitting the resulted data to second order polynomial. It is worth noting that the ATOM

procedure fails if the eigenvalue of any occupied state becomes positive. As a result, the

range of excess charge is somewhat limited. As shown in the Figure 3.10, a complete

electron can be removed, but only fraction can be added to the system. However, the

obtained data is sufficient to compute a best fit. It is worth mentioning that, there are

separate EHT parameters values for each l quantum number; i.e. one for each of the s, p

and d orbitals. The EHT parameters used in our calculations are tabulated in Table 3.1.

3.5 Software packages

Two software packages that are capable of computing transmission spectra were used:

SIESTA [144–147] which stands for “Spanish Initiative for Electronic Simulations with

1 A complete lists of the EHT parameter can be found on Quantumwise web site
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Figure 3.10: A plot of orbital energy against excess charge for the valence orbitals of a single
isolated atom. From left to right and top to bottom, the atomic species are carbon, nitrogen, zinc
and gold. Over the range shown, the curves are very close to quadratic.

Thousands of Atoms”, and EHTransport. SIESTA is an MPI-based DFT code which uses

a numerical localised basis set. This set has a strictly limited range (i.e.) rather than the

exponentially decaying tail that may be expected for localised atomic orbitals. The basis

set is constructed to be exactly zero beyond a certain cutoff distance [148, 149]. This

is beneficial for the NEGF calculations for a number of reasons: firstly, the computed

Hamiltonian is already in a localised form that makes the calculations straightforward;

secondly, the strict cutoff ensures that the matrix is sparse which improves the efficiency

of the matrix operations involved in the Green’s function calculations. SIESTA also

includes the subcomponents Transiesta and TBTrans, which perform the required

Green’s function calculations [150, 151].

TranSiesta provides the ability of modelling open-boundary systems where ballistic

electron transport takes place. Using TranSiesta one can compute electronic transport

properties, such as the zero bias conductance and the I-V characteristic, of a nanoscale

system in contact with two electrodes at different electrochemical potentials. The

method is based on using NEGFs, that are constructed using the density functional
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Table 3.1: The EHT parameters set used in the calculations. Theαi andβi are measured by (eV−1)
and the ionisation energies J in (eV), whereas the respective units of weights ci and exponents ζi

are Bohr−3/2 and Bohr−1. For graphene based systems and atomic chain of gold, the parameters
sets are symbolized as C† and Au‡ in the Table.

Species Orbital J αi βi ζ1 ζ2 c1 c2 κ

H[137] 1s -13.6 -11.249 -2.454 1.300 NA 1 0 1.75

C[143] 2s -21.4 -10.321 -1.896 2.100⋆ NA 1 0 1.75
2p -11.4 -9.874 -2.024 1.300⋆ NA 1 0 1.75

C†[137] 2s -20.316 -10.321 -1.896 2.037 NA 0.741 0 2.25⋆

2p -13.670 -9.874 -2.024 1.777 3.249 0.640 0.412 2.80

B[142]
2s -21.717 -8.484 -1.824 1.606 0 0.668 0 2.30
2p -14.168 -7.100 -1.964 1.636 0 0.990 0 2.30
3d -5.554 -0.302 -1.101 0.893 0 0.654 0 2.30

N[137] 2s -26.0 -12.096 -2.026 1.950 NA 1 0 1.75
2p -13.4 -11.665 -2.140 1.950 NA 1 0 1.75

O[137] 2s -32.3 -13.853 -2.072 2.275 NA 1 0 1.75
2p -14.8 -13.424 -2.186 2.275 NA 1 0 1.75

F[137] 2s -40.0 -15.582 -2.115 2.425 NA 1 0 1.75
2p -18.1 -15.147 -2.229 2.425 NA 1 0 1.75

P[137] 3s -18.6 -8.433 -0.979 2.122⋆ NA 1 0 1.75
3p -14.0 -7.853 -0.946 1.827⋆ NA 1 0 1.75

S[137] 3s -20.0 -9.487 -0.994 2.122 NA 1 0 1.75
3p -11.0 -8.915 -0.963 1.827 NA 1 0 1.75

Fe[137]
4s -9.10 -7.590 -1.221 1.900 NA 1 0 1.75
4p -5.32 -5.199 -3.229 1.000⋆ NA 1 0 1.75
3d -12.6 -12.113 -2.197 5.350 2.0 0.551 0.626 1.75

Zn[137] 4s -12.41 -7.100 -1.142 2.010 NA 1 0 1.75
4p -6.530 -5.489 -1.412 1.700 NA 1 0 1.75

Au[142]
6s -12.134 -6.945 -0.506 2.316 NA 0.603 0 2.30
6p -6.740 -4.943 -0.990 1.745 NA 0.627 0 2.30
5d -14.026 -7.807 -0.633 2.327 5.445 0.376 0.794 2.30

Au‡[92]
6s -10.929 -6.945 -0.506 2.602 NA 1 0 1.75
6p -5.550 -4.943 -0.990 2.293 NA 1 0 1.75
5d -12.605 -7.807 -0.633 2.292 NA 0.596 0 1.75

⋆ Customized values.

theory where the Hamiltonian is obtained from a given electron density. A new density is

computed using the NEGF formalism, which closes the DFT-NEGF self consistent cycle.

EHTransport is a custom written OpenMP based code developed in Cardiff Univer-

sity by Gareth Jones. It uses the semi-empirical Extended Hückel Theory to compute

the Hamiltonian of a given system in a localised basis set of Slater orbitals. It also uses

the NEGF method to compute the transmission spectra. It is written in C++. For more

details, see [92].
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3.5.1 Modifications to the EHTransport

The original version of EHTransport code was developed using Microsoft Visual Studio

(MVS) to work on Windows machines with the only option to compile the source code via

GUI of the MVS. This limits the ability of using EHTransport only for Windows systems.

Modifications to the original version of EHTransport were necessary to be made for the

code to be compatible with Linux operating system. By doing this we were able to use

the code on Raven, the HPC cluster at Cardiff, to run multi-jobs concurrently which

increases the productivity of using the code.

The calculation of the band structure requires specifying the lines along which band

energies are calculated. The EHTransport code considers only the k-points to be given in

terms of the reciprocal lattice vectors. Within the code, these k-points are converted into

units of (2π/a) using a particular formula. A minor bug was found in the implementation

of this formula which led to wrong values of k-points. While, in case of orthogonal unit

vectors, this mistake has no effect on the calculations because the terms that contained

the error turn to become zero. However, using any other unit vectors to define the lattice

e.g. graphene, generates wrong values of k-points which in turn gives incorrect band

structure of the system at hand.

It might happen sometimes that a calculation terminates before converging,

examples for such cases include: if a job runs over its allocated walltime in a queue, the

convergence is not reached within the set number of maximum iterations, etc... While in

other cases, the calculation is convergent but a new smaller value for convergent criteria

is required. In all these cases, it will be absolutely better to resume the job from the

point it stopped or is intentionally terminated rather than starting the calculation from

scratch. This important feature was missed in the original version of the EHTransport.

Adding such utility requires storing all the necessary information to a hard disc which is

necessary for resuming the run of the job. This information includes the overlap matrix,

Hamiltonian matrix and the excess charge for each atomic orbitals that are involved in

the calculation. The feature of resuming the calculation was added successfully and

employed for various cases especially the ones that take long time such as DNA systems.
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CHAPTER 4

PORPHYRIN MOLECULES

4.1 Introduction

There has been much interest in the study of quantum transport in molecular nanowires

due to their possible importance in molecular electronic devices. As the devices become

smaller, it is important to understand the factors that govern the electrical conductance

across single molecules. In this chapter, we used the SC-EHT to investigate the effect

of various factors on the conductance of the n-porphyrin molecules. In particular, we

studied how the conductance varies with the length of the n-porphyrin molecule, the

metal atom in the porphyrin ring and the in presence of explicit water molecules.

Since the seminal article by Aviram and Ratner [152], in which the authors

demonstrated, by means of a theoretical model, that a single molecule could act as a

rectifier, there has been much interest and activity directed towards the possible use of

single molecules or molecular arrays in electronic devices. The promise of molecular

electronics is in the possible exploitation of its two features: its size and its functionality.

In principle, an electronic device can be as small as a single molecule, thus allowing for

the fabrication of ultra-small devices. It is, however, the functional aspect that does not

only distinguish molecular electronics from conventional electronics, but also allows for

its greater flexibility. The prospect of adding molecular components to conventional

electronic devices to enhance their function may indeed be the short term driver for

greater research into molecular electronics. The molecular energy levels are highly

sensitive to the molecular structure and its environment. Thus, it might be possible to

engineer different functionalities by tuning the molecular electronic energy levels.
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Over the last decade, there has been much interest in understanding the nature of

quantum transport in molecular nanowires [153]. This has become more important

as efforts in fabricating molecular electronic devices have increased. There have been

many measurements of charge transport across single molecules or groups of molecules

across metal contacts [154–156], and it is clear that molecular conduction depends on

a number of different factors. These include the nature of the molecular bonding at the

metal surface, the conformation of the molecule (which is especially important in the

case of large organic molecules), the details of the environment and the details of the

molecule.

Selzer et al. [157] showed that the conductance of a molecule can be orders of

magnitude higher in a self-assembled monolayer, rather than as an isolated molecule.

They attributed this behaviour to the importance of both environmental thermal effects

and electrostatic interactions of neighbouring molecules. Fatemi et al. [158] found that

solvents increase the conductance of 1,4 benzenediamine (BDA)-Au molecular junction.

With reference to calculations, they explained this increase as resulting from a shift in the

Au contact work function induced by the solvents. It is not clear if these environmental

effects are important in all molecules and so it is of interest to develop a scheme whereby

the effect of the various extrinsic factors may be determined and quantified.

The details of the molecule are also very important as they provide the means

of tuning the molecule to its desired functionality. Among the many classes of

molecules that have been investigated, the π-conjugated porphyrin oligomers have

attracted serious attention because they allow for great flexibility in their specifications.

Additionally, they can be synthesised into ring and square structures for “light

harvesting”. Oligomers comprising metal-porphyrin monomer units may be made

arbitrarily long. Hence, this system is one in which the conductance as a function

of molecular length may be studied in a consistent manner. Thus, the porphyrin

group of molecules makes for an almost ideal test system to carry out the conductance

calculations.

With this molecular group, thiol end groups may easily be introduced to bond

to Au substrates and consequently have been the object of both experimental and

theoretical/computational investigations [159, 160]. Another variable of the system is in

the type of metal atom at the centre of the ring structure and it is of particular interest to
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investigate how the electronic structure of the metal atom and consequently the charge

distribution affects the conductance of the molecule. Much of the work reported has

been on Zn-porphyrin structures and it is of interest to study other metal-porphyrins,

such as the redox-active Fe-porphyrin structures. Finally, the effect of solvents on the

conduction can be determined by performing calculations on systems which include

water molecules as well as the porphyrin oligomers.

4.2 Results

The n-porphyrin systems studied, in the present work, consisted of porphyrin rings

linked together by either two or four carbon atoms. These are referred to as the 2C-

porphyrins and the 4C-porphyrins respectively. In order to make a good contact to the

gold leads, thiol groups were attached to both ends of the porphyrin molecule. The

electrodes were modelled as either Au linear chains or as the (111) surface of bulk gold.

The former would correspond to a situation in which the S-atom is adsorbed on to a

single Au atom chain, while the latter represents the contact made by the deposition of

the molecule on to a Au (111) surface.

In performing the computations, periodic boundary conditions were applied. With

the linear chain contact, each electrode comprised 4 Au atoms with spacing 2.51 Å while

the extended molecule comprised the porphyrin molecule and 2 Au atoms on either

side (Figure 4.1a). The bulk surface Au contacts were taken to be the (111) surface with

the lead modelled as 3 layers, each layer consisting of 4×4 atoms. In this scenario, the

extended molecule comprised the porphyrin plus 2 Au bulk layers on each side (Figure

4.1b).

4.2.1 Molecular bonding at the Au-contact interface

It is commonly recognised that the particulars of the contact can have a huge influence

on the conductance of molecular wires. The interaction between the Au electrode and

the molecule determines the electron energy levels and hence the transmission. So,

before any conductance calculations were carried out, it was important to establish

the optimal contact geometry of the system. In the case of the linear Au contacts, the
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(a)

(b)

Figure 4.1: Atomic configuration of the porphyrin molecule with the (a) linear chain Au
electrodes and (b) with Au(111) surface contacts.

only variable is the Au-S spacing. In order to determine this spacing, the structure

of the isolated molecule was optimised by first using classical force fields followed by

running the SIESTA code with PBE exchange-correlation and a 300 Ry mesh cutoff to

minimise the total energy. Further total energy DFT calculations were carried out on

the Au-molecule-Au system with the energy optimised molecular structure and the Au-S

distance corresponding to the minimum energy was found to be 2.27 Å.

For the (111) Au-surface contact, there are 4 possible sites for the S-atom to position

itself: the atop, the bridge or one of two hollow sites (FCC and HCP) (see Figure 4.2).

Again, total energy DFT calculations with these geometries and varying the S-Au surface

distances were performed. It was found that the FCC hollow site had the lowest energy,

and in subsequent calculations with the bulk surface contact, this was taken as the

Figure 4.2: (Left) The four possible positions of the sulfur atom to be located on the Au (111)
surface. Three layers of gold atoms are shown with C layer (the biggest yellow balls) being on the
surface, followed by the B layer (bigger green balls) and A layer (big red balls). The four sites are as
follows: atop (circle), bridge (triangle), HCP hollow site (diamond) and FCC hollow site (square).
(Right) the top view of the S atom position relative to the Au(111) surface.
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adsorption site. This is in accordance with other calculations (see, for example, the

review by Häkkinen [161]).

4.2.2 The effect of molecular conformation on the conductance

Having established the contact geometries of the Au-porphyrin-Au system, we investi-

gated the effect of the molecular conformation on the conductance. Previous studies

[160] have suggested that at room temperature the molecule has sufficient energy for

the two porphyrin rings to rotate, both with respect to the substrate and relative to each

other. We considered two types of rotations. First the molecule as a whole was allowed

to rotate around the molecular axis. This type of rotation probes the dependence of the

local structure at the adsorption site on the density of states and hence the transmis-

sion. This effect was found to be very small when compared to the rotation of the por-

phyrin rings relative to each other. In considering this rotation, which is characterised

by the dihedral angle (ϑ) between the two porphyrin ring planes (Figure 4.3a), the po-

tential energy as a function of ϑ was calculated using the DFT code SIESTA. From the

results shown in Figure 4.3b, we can see that the potential barrier for relative motion

is about 70 meV. This is of a similar order to that found by Kocherzhenko et al. [160]

in their study of Zn-porphyrin based molecular wires using a generalised charge transfer

integral approach. At ambient temperature, the thermal energy kB T is equivalent to 25.6

meV which corresponds to a dihedral angle of 30◦ as shown in Figure 4.3b. This indicates

that the structural fluctuations need to be considered in the transmission calculations.
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Figure 4.3: (a) The Zn-diporphyrin molecular conformation for dihedral angle ϑ = 45◦ and (b)
the energy barrier for rotation as a function of dihedral angle ϑ.
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As the size of this system was not too large for carrying out DFT calculations, it

was seen as a test system which could be used to test the validity of using our SC-EHT

approach in conductance calculations. Hence, the electron density of states and the

transmission function for varying ϑ were calculated using both the SC-EHT and SIESTA

codes.

From the results depicted in Figure 4.4, we see that there is a fair agreement between

the results using the two approaches giving confidence in the use of the SC-EHT for these

type of calculations. This is especially the case where the interest is in identifying the

relative importance of the various factors on the conductance of n-porphyrin molecules.

However, there are some differences in the details between the two sets of results. While

there is some ambiguity in assigning the Fermi level in a DFT calculation, in EHT,

the Fermi levels are defined by the ionization energy. In order to provide a proper

comparison between the two sets of results, the energy scale is shifted so that the main

peak close to the Fermi level in both calculations are matched. The difference in the

order of DOS magnitude appears between the SIESTA and SC-EHT calculations due to

the small energy range over which the DOS is displayed. In fact the integration of the

DOS over the whole energy range gives almost the same value which actually represents

the total number of the electron in the system. The differences in the density of states are

not unexpected, and are similar to that seen for example by Tada et al. [162] in their study

of the transmission in molecular wires when using different basis sets and correlation

functionals. Thus, we conclude that the SC-EHT method is a suitable method to use in

conductance studies of organic molecules.

Both sets of results (Figure 4.4) show that the transmission reduces as the angle is

increased indicating that thermal fluctuations would have the effect of reducing the

transmission and hence the conductance. Also, the energy difference between highest

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO),

EHL , is found to increase with increasing ϑ going from 9.6 meV at ϑ= 0◦ to 18.9 meV for

ϑ= 90◦. This is in contrast with what is observed in the isolated molecule in which EHL is

almost independent of the dihedral angle. This reinforces the notion of the importance

of the Au contact geometry in determining the conductance and also demonstrates how

the contact geometry can act as a constraint on the molecular conformation.
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Figure 4.4: The density of states (DOS) and the transmission for different dihedral angles ϑ for
the diporphyrin molecule using (a, b) SIESTA and (c, d) SC-EHT for bulk Au contacts.

4.2.3 The conductance as a function of polymer length

The SC-EHT method was then used to investigate the conductance of the 4C-n-

porphyrins as a function of the number of porphyrin rings or molecular length. There

have been many studies aimed at investigating the length dependence of charge

transport in molecular wires not least because of the interest in identifying any crossover

from tunnelling to hopping transport (see, for example, Sedghi et al. [163]). That

particular question is beyond the scope of this thesis as we are using a method that

does not take into account vibronic contributions or phonon baths. However, it is still of

interest to examine how the conductance varies with length and in particular to see if it

deviates greatly from the exponential dependence expected in simple barrier models.

Before investigating the Au-molecule-Au system, the isolated molecule was exam-

ined. Electronic structure calculations using the SC-EHT method were carried out on
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isolated n-porphyrin molecules as a function of the porphyrin length (which is of course

proportional to the number of monomers). The energy gap EHL so determined is plotted

in Figure 4.5 as a function of porphyrin length and is well fitted by the function

EHL (eV) = 1.537 e−0.028L +1.166 (4.1)

Thus, the HOMO-LUMO gap for the infinite molecule is 1.166 eV which is good

agreement with experiment.

Next, the n-porphyrins were then attached to the gold (111) surface contacts and the

density of states, the transmission and the conductance at various energies close to the

Fermi level are determined. While the HOMO energy level remains fairly constant with

length, the LUMO energy level is found to shift towards the Fermi level resulting in a

narrowing of the gap, EHL . The magnitude of this gap energy is less than that seen for

the isolated molecule.
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Figure 4.5: The variation of the energy gap, EHL for the isolated molecule as a function of the
n-porphyrin length. The line shows the exponential best fit curve.

The dependence of the transmission on molecular length is more complicated

(Figure 4.6b). We see that in the energy region just below the Fermi level, there is sizeable

decrease in transmission, but just above the Fermi level, the shift in LUMO energy level

results in an increase in transmission at specific energies. This is a consequence of

the downward shift of the LUMO energies. We would therefore expect non-linear I-V

characteristics for these systems. In order to compare our results with those of other

workers, the conductance as a function of molecular length was calculated for a few

62



4.2 Results

−1.0 −0.5 0.0 0.5 1.0

E−Ef (eV)

101

102

D
O

S
(1
/e

V
)

monomer
dimer
trimer
4x
5x

(a)

−1.0 −0.5 0.0 0.5 1.0

E−Ef (eV)

10−5

10−4

10−3

10−2

10−1

100

T
(E

)

monomer
dimer
trimer
4x
5x

(b)

Figure 4.6: The DOS (a) and transmission spectra (b) of a zinc-porphyrin wire of various lengths
between two bulk Au electrodes.

energies in the region where the transmission decreases with increasing molecular size

(Figure 4.7b).

The conductance, shown in Figure 4.7b, does display the expected exponential decay

with length

G =G0 e−βL (4.2)

with β equals to 0.149 Å−1 and L is the separation between the two sulfur atoms. In their

investigations on the tape porphyrin system, which would be expected to have a slower

tail off, Tagami et al. [159] also found a exponential dependence with β ≈ 0.0095 Å−1.

Sedghi et al. [164], in a study of a homologous series of butadiyne-linked oligo-

porphyrins, found a remarkably shallow decay of the conductance with molecular length

with an attenuation factor β≈ 0.04 Å−1. This attenuation value is of course smaller than

those found for oligo-para-phenylenes (β ≈ 0.4 Å−1) [165] or for the oligothiophenes

β≈ 0.1 Å−1 [166].

4.2.4 The effect of changing the metal ion in the porphyrin ring

As mentioned in the introduction of this chapter, one of the advantages of introducing

molecular wires in electronic devices is due to the potential changes in functionality

arising from small modifications to the molecular composition and structure. In the

metal-porphyrin system, the type of metal atom at the centre of the porphyrin rings can

be viewed as a functional modifier. Most of the work done to date on the porphyrin

systems has focussed on the Zn porphyrins. In order to get a better understanding
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Figure 4.7: The I-V characteristics at temperature 298 K (a) and conductance at bias voltage 0.25
V and temperature 298 K (b) for a zinc-porphyrin wire of various lengths between two bulk Au
electrodes.

of the possible influence of the metal atom in the conductance process, we computed

the bond current pathways and the localised charge distribution in the molecular wire

complex with either Zn or Fe metal atoms occupying the centre of the ring structures.

The bond current pathways show the bonds along which the electrons (holes) move

during transmission. This is, of course, intimately connected to the localised charge

densities on the molecule.

For the Zn-4C-porphyrin wire, the current flows along the bonds around both sides

of the ring structure without passing through the metal atom (Figure 4.8a). A detailed

analysis of the charge densities and conduction shows that the Zn atoms have an excess

of 0.22 electrons and that the conduction around the ring structure is carried by the p-

orbitals. So, the electrons on the C-skeleton (the π orbitals) are the primary conduits for

charge conduction in this system.

With the Zn atoms replaced by Fe atoms, the electronic structure and density of states

are modified such that metal atoms are now positively charged (charge excess of +0.15 e)

and new localised states are seen around the Fermi energy (Figure 4.9a). These changes

have a profound effect on the conductance. Now, the charge carriers no longer go around

the ring structure, but instead pass through the metal atom due to coupling with Fe d-

states (Figure 4.8b). The effect of this is to increase the conductance at E f (Figure 4.9b).

The main conclusion to be drawn from this part of the present study is that the

charge carrier paths depend on the nature of the metal atom at the centre of the ring.

In particular, there is a clear distinction between donor and acceptor metal atoms. This
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could have implications for molecular engineering, especially where the robustness of

the molecule becomes an important factor.

4.2.5 Modifications of the conductance due to the inclusion of solvent

molecules

Extrinsic or environmental factors have an important influence on the conductance of a

molecule [167]. Recently, Fatemi et al. [158] measured the conductance at individual

BDA-Au molecular junctions using a STM based on break junction techniques and

found that the presence of solvents can increase the conductance by as much as 50%.

They ascribed this increase to a shift in the Au contact work function resulting from

solvent atoms binding to it. It is clear from this and other studies [167] that the

solvent and counter-ions can have a profound effect on molecular conduction. We have

endeavoured to address this issue by carrying out conductance calculations on the Zn-

porphyrin molecular system in the presence of explicit water molecules representing the

solvent. This was done by introducing water molecules directly into the computational

cell. Water molecules were randomly placed throughout the unit cell with the proviso

that there were no other atoms within a range of 4 Bohr of the O-atom or within 3 Bohr

of the H-atom of each water molecule. The resulting system, with 59 water molecules

added to the system and corresponding to a density near to 60% of normal density of

water is shown in Figure 4.10.

(a)

(b)

Figure 4.8: Bond current plots for (a) the Zn-porphyrin and (b) the Fe-porphyrin molecules
between linear Au electrodes at energy equal to E f .
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Figure 4.9: (a) Comparison of the electron density of states of the Fe-porphyrin and Zn-
porphyrin molecules and (b) the transmission for the Fe-porphyrin molecule as compared with
Zn-porphyrin between linear Au electrodes.

Figure 4.10: The computational unit cell with water molecules added to the Zn-porphyrin dimer
in between bulk Au electrodes. For clarification, the hydrogen atoms of water molecules and
those bonded to carbon have been visualised using white and cyan balls respectively.

Although the distribution of real water molecules in the vicinity of a molecule

and a surface is known not to be random, these calculations are meant to illustrate

the sensitivity of molecular conductance to the presence of water. Furthermore,

in performing the calculations we have also considered the possible effects of the

polarisability of the water molecules on the molecular conductance. To do this, two sets

of calculations were carried out; one with the water molecules randomly oriented and

the other with the water molecules polarised along the direction of the applied voltage.

A comparison of the density of states resulting from these separate calculations

(Figure 4.11a) shows that most of the prominent features arising from the presence of

water are to be found in the energy range −1 to −0.5 eV relative to E f and around the

Fermi energy. These new states cause the transmission to increase quite sharply around

the Fermi level E f .

The change in the DOS around the HOMO level results in the observed increase in

transmission (Figure 4.11b), The effect of the LUMO level changes are barely noticeable

66



4.2 Results

−1.0 −0.5 0.0 0.5 1.0

E−Ef (eV)

101

102

103

104

D
O

S
(1
/e

V
)

Molecule
Unpolarised water and molecule
Polarised water and molecule
Polarised water

(a)

10−2

10−1

100

−1.0 −0.5 0.0 0.5 1.0
E − Ef (eV)

10−3

10−6

10−9

T
(E

)

Molecule
Unpolarised water and molecule
Polarised water and molecule
Polarised water

(b)

Figure 4.11: (a) The electron DOS and (b) transmission spectra for the Zn-diporphyrin molecule
in unpolarised and polarised water. The results with the water on its own between the bulk Au
electrodes are also shown. The y-axis of the transmission spectra was broken and different scale
used for the transmission spectrum of water for better visualization.

as the shift in the LUMO energy is quite small. So, the presence of the water molecules

appears to have more of an effect on hole transport for this molecular system. The

increase in conductance at energies just below E f is similar to that reported by Fatemi

et al. [158]. In order to understand how the water molecules affect the transmission, a

localised charge distribution plot was made and this is shown in Figure 4.12. The gold

electrodes become charged inducing a shift in the surface work function. This is what

gives rise to an upward shift in the HOMO energy level towards the Fermi energy. The

increased conductance support the findings of Fatemi et al. [158].

Figure 4.12: The localised charges in the computational unit cell containing polarised water
molecules along with the Zn-diporphyrin between bulk Au electrodes. Here red denotes negative
charge and blue is positive.

An examination of the bond current plots in Figure 4.13 for this system at E f shows

very little difference from that obtained without the presence of water. This is only to be

expected as the transmission plots would suggest this. At 2 eV below E f , the electron

states of the water become dominant and can be accessed resulting in conduction
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between the electrodes through the water. So, we see that at different biases, different

components become important in charge transport.

(a)

(b)

Figure 4.13: Bond current plots for the porphyrin molecule + water between bulk Au electrodes
at energy equal to (a) E f and (b) E f −2 eV.

4.3 Conclusions

We have undertaken a comprehensive study to investigate the relative influence of

various factors on the electrical conductance of molecular wires, taking the Au-

porphyrin contact as the test system. With a view to performing large system

calculations beyond the scope of DFT ab initio calculations, we have employed a SC-

EHT code that has been tested against the DFT code, SIESTA, for the Zn-di-porphyrin

molecular wire. The relatively good agreement supports the tenet that this semi-

empirical approach is useful in undertaking such studies.

The SC-EHT code was then used to investigate the transmission and conductance

of the porphyrin system as a function of the molecular length and on the metal atom

inside the ring structures. The length dependence was found to be exponential in form

which is in broad agreement with the results of similar studies. The d-states of the Fe-

ion in Fe-porphyrin are found to be responsible for the increased conduction around E f .

This, together with the observed conduction pathways, have implications in developing

molecular electronics with varying functionality.
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4.3 Conclusions

Finally the effect of environment in the form of introducing explicit water molecules

on the molecular conductance was studied. The presence of the water molecules was

found to induce shifts in the Au surface work function which in turn causes the HOMO

level to shift closer to the Fermi level so increasing the conductance.

In conclusion, the SC-EHT method has been shown to be a useful approach in the

study of electrical conduction of relatively large molecular systems. The importance of

the environment on the single molecule junction transport has also been demonstrated.
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CHAPTER 5

DNA BASED SYSTEMS

5.1 Introduction

Although the nucleic acids were first discovered in 1869 by Friedrich Miescher, their

chemical structure were not fully perceived until the early 1940s. Basically, nucleic acids

are divided into two main types: deoxyribonucleic (DNA) and ribonucleic (RNA). A DNA

molecule is composed of two strands that twist together to form a double helix. Each

individual strand is a repeated pattern of a small building unit called the nucleotide

which in turn consists of three subgroups of molecules: pentose sugar, phosphate group,

and organic base. The first two are bound to each other forming what is called the

backbone to which the organic bases are attached. Two different kinds of pentose

sugar exist in nucleic acids: ribose and deoxyribose which are solely present in RNA

and DNA respectively. The only difference between them, as shown in Figure 5.1, is the

absence of an oxygen atom in the deoxyribose sugar. The final piece of the nucleotide

building unit is the base. Four different bases can be found in DNA (their structural

formulas are shown in Figure 5.2): Adenine (A), guanine (G), cytosine (C) and thymine

(T) 1. Interestingly, although there are four bases, each base on one strand is always

paired with just specific base on the opposite strand. In particular, adenine binds to

thymine while cytosine binds only to guanine. The coupling between a base and its

complimentary counterpart occurs through hydrogen bonds. This arrangement of the

two bases binding together across the double helix is called a base pair and the list of

bases attached to a single strand is known as base pair sequence.

1 A fifth base uracil (U) also occurs in nature, but is typically found incorporated into RNA strands rather
than DNA, where it substitutes for thymine.
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Figure 5.1: The two types of pentose sugar present in nucleic acids. The carbon atoms in the
pentose ring are numbered from 1 to 5 with a small dash by each number. This labeling is
necessary to distinguish conveniently where the other building units of the DNA and RNA are
attached.

Figure 5.2: The structure of the four bases that form DNA. The atoms in the structures are:
hydrogen (white), carbon (brown), oxygen (red) and nitrogen (blue).

DNA can exist in different conformations depending on several factors of which the

hydration level and surrounding environment are the most important ones (Figure 5.3).

The two main forms of DNA that are of interest in this study are known as A-DNA and B-

DNA [168–170]. The B-DNA is the most common naturally formed which is found under

physiological conditions that occurs at the high levels of hydration (more 90% [168]) and

presents in living cells. When humidity levels drop below 75%, we have dry DNA and

the structure of the molecule changes into the A form. Z-form is a third conformation of

DNA which is found in a living cell with traces. The Z-DNA is unstable and is not found

individually. Instead, it is a transient structure that is occasionally induced by biological

activity and then quickly disappears [171].
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5.1 Introduction

Figure 5.3: Top and side views of (a) A-, (b) B- and (c) Z-type DNA, where one full turn is formed
by 11, 10 and 12 base pairs, respectively. When moving to the next base pair on A-, B- and Z-type
DNA, the height increases by 2.56, 3.38 and 3.70 Å and the rotation angle by 32.7◦, 36.0◦, and
30.0◦, respectively.

The side and top views of the three DNA forms are shown in Figure 5.3 with one full

turn of each. We can notice that the atomic arrangements are significantly different.

Firstly, the stacked bases are aligned perpendicular to axis of the helical structure in B-

and Z-DNA and at an angle in the case of A-DNA. Secondly, the twisting angle has also

changed. In the case of B-DNA, the angle between stacked base-pairs is 36◦ whereas in

A-DNA, it is 32.7◦. This means that we need ten base pairs in the former case and eleven

in the latter in order to have one full turn of the double helix structure (a periodic cell) in

the solid state sense.

Conduction through a DNA molecule of repeating base pair sequence is thought

to occur through the π bonds of the base pairs [172]. This conduction mechanism is

similar to what occurs in certain stacked aromatic crystals, like Bechgaard salts, which

behave as metals. This mechanism of charge carriers transferring in DNA suggests that
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the base sequence can be very important since theπ-orbitals of the individual bases may

be different. Moreover, the conformation is important because it determines the overlap

between the base pairs. Finally, in order to have a measurable electrical current in a DNA

junction, it is crucial to make sure that theπ-system hybridizes strongly with the metallic

states of the lead atoms.

Over the last twenty years, it was reported that it was possible to measure charge

motion across a double helix DNA segment [172–179]. The charge transfers were found

to occur over long distances (up to 4 nm) leading to the possibility of using DNA in

nanodevices. However, many of the subsequent experimental findings appear to give

seemingly contradictory results. Thus, it has been shown that DNA acts as an insulator

[180], semi-conductor [181] or conductor [182–185] and even in some exceptional case

induced-superconductor [186]. Different reasons can affect the DNA conductivity and

lead to really complex behavior of the DNA and experimental discrepancies in the

results:

1. The base sequence,

2. The DNA structure (A-, B-, or Z-type),

3. The DNA-contact interface topology,

4. The environment surrounding the examined DNA sample, and finally

5. The length of the DNA segment.

The first two dependences refer to the importance of the electronic structure and

correspondingly to the orbital overlap across the molecule. The length dependence of

the conductance gives some clues as to the mechanism for charge transport. With much

interest in exploiting the functionality of biomolecules in molecular electronics, the self-

assembling and self-recognition properties of DNA lends itself to being an important

molecule in this field.

In performing the conductance calculations, there is a number of aspects that need

to be considered. In this chapter, these aspects are discussed in detail.
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5.2 Calculation details

5.2 Calculation details

5.2.1 The geometry of the leads

The (111) surface is often the one used in experiment, although the (100) surface is

sometimes favoured in theoretical calculations due to the smaller repeating unit and

typically smoother transmission spectra from the Green’s function method [92]. In the

(111) direction, the gold atoms form planes with a repeating ABC structure. The lead

principal layer consists of 3 planes, i.e. one single ABC group which is the smallest

possible repeating unit. The scattering region contains 5 gold layers, in an ABCAB -

molecule - BCABC pattern. The repeat of the B layer allows for simple positioning of the

molecule with symmetric contacts. A bulk gold calculation was carried out with SIESTA

to compute the optimal unit cell size. This calculation utilised a single orthogonal FCC

unit cell, containing two gold atoms. This cell was found to have length 4.134 Å which

corresponds to 2.92 Å of Au-Au bond length. The calculations using bulk contacts used

a 4×4×5 gold surface for each contact in the scattering region, which was found to be

sufficient to avoid (or neglect if any) interactions between periodic images of the DNA

molecule. One principal layer of the lead consisted of three layers of gold atoms, or a

single period of the periodic structure along the (111) lattice direction. In total, there

were 160 gold atoms within the scattering region. Despite the periodicity, due to the large

size of the DNA systems, calculations were performed at only one point- the Γ point.

Figure 5.4: The pattern ABCAB-BCABC where the molecule of interest is sandwiched in between
two gold bulk electrodes. The direction of conduction is from left to right.
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5.2.2 DNA geometrical structure

In the present calculations, the DNA structures were generated via the web interface of

the application W3DNA [187]. For our calculations, an initial base pair sequence was

entered and a pdb 2 file containing the atomic coordinates created. This pdb file was fed

back into W3DNA to generate a base pair file containing the sequence and positioning of

the bases. This was modified as required in order to introduce mismatched base pairs or

other alterations to the sequence and fed back to W3DNA to generate a second pdb file

containing both atomic positions and bond information. The utility software package

Avogadro [188, 189] was then utilised to add the H-atoms to the skeleton structure

assuming a neutral pH. Avogadro is also used to add the thiol groups by replacing one of

the hydrogen atoms at the ends of DNA strand by sulfur.

5.2.3 The position of thiol linker

Among the four different positions for the sulfur atom to be bound to the Au (111) surface

as illustrated in Figure 4.2, the FCC site was found to be the most energetically favourable

one [92, 161]. Since a DNA molecule consists of two interwoven strands, there is a choice

as to which of the two backbones are connected to the Au leads. Calculations were

carried with two configurations as shown in Figure 5.5: one with both Au leads attached

to S-atoms on the same backbone using 3’ and 4’ carbon atoms (labeled 3’-4’) and the

other having the Au contacts attached to S-atoms on different backbones using 3’ and

3’ carbon atoms (labeled 3’-3’). The results for both configurations are broadly similar,

although there are some differences which are referred to later.

5.2.4 Adding water molecules

To investigate the influence of water on the DNA conductivity, water molecules were

added randomly to the Au-DNA-Au system using a python script. The water molecules

were placed between the two gold leads within a virtual cubic box which contained

the whole DNA fragment. Minimum distances of 4 and 3 Bohr have been employed

to separate any oxygen or hydrogen atom of a water molecule from the other atoms

2 pdb stands for Protein Data Bank. A pdb file is a textual file format describing structures of molecules.
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Figure 5.5: The two configurations of connecting a DNA molecule to Au(111) leads via the sulfur
thoil (top) S-atoms are attached to different backbones using 3’ and 3’ carbon atoms (labeled 3’-
3’). (bottom) S-atoms are attached to the same backbone using 3’ and 4’ carbon atoms (labeled
3’-4’).

respectively. Different water density systems were considered. The density of water

is determined by dividing the total volume of the cubic box by the effective volume

occupied by a water molecule at the standard conditions. Table 5.1 shows the number of

water molecules required to be added for each system to obtain a density of one gm/cm3.

5.3 Results

The results of the SC-EHT and conductance calculations as the different factors were

varied are presented below. In the first instance, the effect of the contact of the DNA

molecule with the leads was investigated. This was followed by varying the DNA

fragment length and sequence order. Finally, the effect of the environment was studied

by the introduction of water molecules into the system.

Table 5.1: The total number atoms Ntot al for the system Au-S-[(CG)n+H2O]-S-Au and the
number of water molecules NH2O added to obtain a density of one gm/cm3.

DNA segment NH2O Ntot al

(CG)3 491 2027
(CG)4 625 2559
(CG)5 696 2902
(CG)6 687 3005
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5.3.1 The importance of contact leads

The DNA sample is often connected, in experiments, to the electrodes by a thiol group 3

linker using 3’ and 5’ ends of the same backbone. This linker, with general the formula:

R-SH where R is an alkyl or aryl group, contains many atoms meaning that is long enough

for easy fabrication and for setting the system. However, in the current work we used

only sulfur atom as a linker between the leads and the DNA sample. Our choice for using

the carbon atoms 3’-3’ and 3’-4’ is determined by the best possible configurations among

others to prevent any interfacing between DNA atoms and the leads.

The thiol linker was attached to the DNA by replacing one of the hydrogen atom

in pentose sugar ring, at the two ends of the same backbone or the opposite ones, by

sulfur atom. Then the semi-empirical geometry optimization algorithms in Avogadro

was used to refine the S atom position. Among different positions of the S-atom, only

two were suitable for the calculation. This is because the other positions make the DNA

atoms very close to leads or even interfere leading to unphysical situation. Therefore,

using a larger thiol has the advantage of offering more options and flexibility in selecting

the carbon to which the thiol is attached. The DOS and transmission calculations were

carried on (CG)n DNA sequence (n = 3−6) using the two configurations. Figure 5.6 shows

a typical results for the (CG)4 case. It is noticeable that using the same backbone to

connect between the DNA and the leads produces higher transmission probability for

the charge carriers especially above the Fermi level. This trend was found in all (CG)n

sequence. These differences in the DOS and transmission might be caused by the short

distance separating between the leads and the DNA in the case of (3’-4’) as shown in

Figure 5.5. This means that some of the current can follow into the DNA not only though

the S-atom but also through DNA atoms itself.

5.3.2 The effect of DNA fragment length on the conductance

The conductance of DNA fragments comprising different sequences has been widely ex-

plored. These include measurements on polymer units comprising a single nucleobase,

eg. poly(G), or single base pairs, eg. poly(CG), or indeed mixed base pair sequences. In

3 Thiol group is a organic sulfur compound composed of an alkyl or aryl group and a sulfur-hydrogen
group.
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Figure 5.6: The DOS (left) and transmission spectra (right) of a DNA molecule of (CG)4 strand
trapped between gold surfaces (111) using different positions of attaching the sulfur atoms to the
DNA backbones, namely, (3’-3’) C of the same backbone and (3’-4’) C of opposite backbone.

order to investigate the conductance dependence on fragment length, we have carried

out calculations on (CG)n sequences for n = 3, 4, 5, and 6. The experiments indicate that

a sequence of repeating CG base pairs give the best conductance and that this decreases

with increasing length according to an inverse power relation [183].

As the HOMO and LUMO energies play a significant role in the transmission

function, these are plotted in Figure 5.7a as a function of the number of CG units. We

see the expected reduction in the HOMO-LUMO (H-L) gap which is consistent with

measurements of Xu et al. on the thiophenes [190]. The excess charge plot on the (CG)3

DNA fragment (Figure 5.8) shows a depletion of electrons from the Au electrodes which

go to the DNA molecule.
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Figure 5.7: (a) The HOMO (up triangle) and LUMO (down triangle) energies together with the H-
L band gap (full line) as a function of (CG) base pairs. The HOMO-Fermi energy separation has
been fixed. (b) The I-V characteristics of DNA molecule of various lengths in between Au (111)
surfaces. The sulfur atoms are attached to (3’-3’) C atoms of the opposite backbones.
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Figure 5.8: The xz view of the excess charge plot on the (CG)3 DNA fragment between two gold
electrodes. The spheres are centered on each atom with the blue denoting electron excess and
the red pointing to a depletion of electrons. The size of each sphere was made proportional to
the magnitude of the excess charge on each atom.

The DOS and transmission spectrum of various lengths of DNA fragments are

depicted in Figure 5.9. Although the differences in T (E), as the number of base-pairs

is increased, is seemingly very small, the I-V plots shown in Figure 5.7b demonstrate

the sensitivity of the conductance on the T (E) resolution. From the I-V plots, the

conductance is readily obtained and the results are given in Table 5.2 for varying base-

pair numbers for both types of contacts to the Au surface. The general trend of the

reduction in conductance with length is clear. Also, it may be seen that this is not an

exponential decrease but is more in agreement with the inverse length dependence as

reported by Xu et al. [183].
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Figure 5.9: (a) The logarithm of the DOS and (b) transmission coefficient for the (CG)n sequences
at 298 K. The scale on the vertical axes is for the n = 3 sequence. The other transmission curves
are shifted up by 10 units successively in order to display the changes.
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Table 5.2: The conductance G in 10−3 ×G0 unit at 298 K and 0.5 V for the varying lengths and
different surface contact geometries.

DNA segment 3’-3’ 3’-4’ Average
(CG)3 6.187 8.431 7.309
(CG)4 3.045 3.658 3.352
(CG)5 1.233 6.349 3.791
(CG)6 2.355 0.448 1.402

5.3.3 The effect of DNA sequence on the conductance

While the conductance of (AT)n sequences has been found to be of similar magnitude

to (CG)n sequences, the addition of AT base pairs into a poly (CG) sequence has

been found to reduce the conductance [183]. Other studies investigating sequence

dependence considered the examining of the substitutional disorder effects and the

removing or adding of nuleobases into a particular sequence. We investigated the

effect of incorporating sequence disorder into the DNA fragment, by substituting (CG)

base-pairs with (AT) base-pairs in the (CG)6 hexamer. For this particular fragment, we

carried out the calculations on the (CG)2AT(CG)3 and (CG)2(AT)2(CG)2 hexamers and

compared the results with the original (CG)6 hexamer. We found that the effect of these

substitutions is to induce a shift in the HOMO and LUMO energy states such that the H-L

gap increases with the number of (AT) pairs. Although these findings are limited to fairly

small number of base pairs, this trend should hold true for increasing the number of base

pairs. Figure 5.10 shows the DOS and the transmission for the three different hexamers

studied on the same axes to highlight the differences. As can be seen, the effect of

introducing (AT) base pairs increases the H-L gap which reduces the conductance. The

substitution of one (AT) base pair leads to a halving of the conductance from 2.4×10−3 G0

to 1.1×10−3 G0 and the inclusion of two (AT) base pair substitutions leads to a further

reduction in the conductance to 0.8×10−3 G0.

5.3.4 The effect of DNA environment on conductance

Because of the excess charges on the atoms comprising the DNA (Figure 5.8), it might

be expected that the presence of water molecules would have a very profound effect on

the electron energy levels and consequently on the transmission and conductance. In

order to make quantitative study of the effect of water on the conductance, calculations
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Figure 5.10: The DOS (a) and transmission spectra (b) of a DNA molecule trapped between gold
surfaces (111) showing the effect of replacing CG and CGCG sequence with an AT and ATAT
respectively in a (CG)6 strand. The sulfur atoms are attached to the 3’ and 3’ carbon atoms of
the opposite backbones.

were carried out by adding water molecules in the computational cell containing a

(CG)n trimer between two Au electrodes with n = 3− 6. Figure 5.11 shows the results

for (CG)3 and (CG)4 where 491 and 625 of water molecules were added to the cell

respectively. These numbers of water molecules correspond to the density of water to

being approximately one gm/cm3 at STP.
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Figure 5.11: The logarithm of transmission spectrum of a DNA molecule using (3’-4’) contact
geometry with (a) (CG)3 and (b) (CG)4 sequences. The results in presence of water compared
with that with no water are represented by the dashed and solid lines, respectively. The scale on
the vertical axes is for the DNA without water. The transmission curve for the DNA with water is
shifted up by 10 units in order to display the changes.

The results of the calculations with water molecules were then compared with

that without water molecules by analyzing the excess charge distributions across the

molecule and Au electrodes and by studying the partial density of states. We found
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that there is an increase in the electrode polarization which in turn affects those base

pair atoms close to the contact region. The partial density of states showed that new

energy states are formed in gap region which arise from both the base pair molecules and

from the water molecules. The transmission function is dominated by the polarization

field of water molecules affecting the electron energy levels of the base-pairs. This in

turn causes a dramatic increase in the molecular conductance almost doubling it from

8.4× 10−3 G0 to 0.0155 G0. This increase in conductivity is in general agreement with

other experimental [167] and theoretical [191] findings. Although we have considered

only one configuration of water molecules in this study, it is likely that the effect of water

molecules would dominate the conductance. A more complete study would need to

allow the water molecules to fluctuate in position but that is beyond the scope of this

study.

5.3.5 The effect of the type of the leads

The Au(111) surface is often used as leads by theorists and experimentalists, but carbon

nanotubes are good alternative to be used as leads [192, 193]. To investigate the effect

of the leads on the DNA conductivity, we replaced the bulk gold leads by armchair

carbon nanotubes. CNTs can be classified into three types depending on their energy

gap [194]: metallic with zero energy gap, semi-metallic with very small gap (< 1.0 eV),

and semiconductors with a moderate gap. All armchair CNTs show metallic behavior

and this is the reason behind using armchair CNT (5,5) as leads in our calculations. We

chose the DNA fragment (CG)3 to carry on the calculations of DOS and transmission. As

illustrated in Figure 5.12, the DNA fragment was connected to the capped ends of the

CNT leads by using the same backbone and carbon atoms 3’ and 4’.

Figure 5.13 shows a comparison between the Au(111) and CNT(5,5) leads for DOS

and transmission of DNA fragment (CG)3. As can be seen, the conductance of the DNA

fragment reduces dramatically when the CNT(5,5) is used as leads instead of Au(111).

Moreover, the DOS follows the same trend of transmission. This might be the main

reason for this considerable reduction in conductivity especially that the H-L gaps in

both cases are equal. In addition, the DOS for the CNTs leads is generally much less than

that of Au leads. This also affects the transmission because the availability of electronic
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Figure 5.12: A DNA fragment of (CG)3 sequence in between two leads of capped CNT (5,5). The
DNA molecule is attached to leads via sulfur atoms (yellow balls).

states plays an important role in charge transfer through a molecule. Furthermore, the

capped part of the CNT leads includes pentagon-heptagon pair which leads to orbitals

hybridization from sp2 to sp3 and causes the armchair CNT to be imperfect metal. This

might be also a reason for showing a low conductance. Therefore, using CNTs with open

ends rather than capped ones could produce more comparable results for DNA with that

of gold.
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Figure 5.13: The DOS (left) and transmission spectrum (right) of DNA molecule with (CG)3

sequences using two types of leads: Au (111) and armchair CNT (5,5). In both cases, the sulfur
atoms are attached to (3’- 4’) carbon atoms on the same backbone.

5.4 Conclusions

We used the Landauer formalism to calculate the conductance of DNA base pair

polymers in different configurations and in different environments. We did not

consider atomic vibrations and their contribution to the conduction through polaron

effects. These are thought to be important in considering the electrical transport across

84



5.4 Conclusions

biological molecules. However, from the results of our study, we are able to demonstrate

that the reduction in conductance across a base pair sequence with length can arise

due to a non-uniform broadening of the density of states near the Fermi level. One

of the problems we encountered in this study is in the determination of the Fermi

level. Although this ought to be clearly defined in the EHT approach, as the number

of atoms considered increases, there is a need to improve the energy resolution of the

transmission function. This is in part responsible for the slightly ambiguous results

shown in Table 5.2. The dependence of transmission on the sequence of the base pairs

was found to be in general agreement with experiments for the hexamers considered.

Finally, because the EHT method can be applied to systems not readily accessible to ab

initio methods, we were able to investigate the effect of water on the conductance of

these base pair polymers. The results for the conductance are also in agreement with

both experimental and theoretical findings.
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CHAPTER 6

GRAPHENE NANORIBBONS

6.1 Introduction

The nature of the semi-metalicity of pristine graphene with zero band gap does not allow

it to be incorporated directly in the fabrication of electronic devices. Therefore, opening

and tuning a small band gap in graphene is a fundamental step towards exploiting its

remarkable thermal and electrical properties in future applications. The behaviour of

charge carriers in 2D lattice of graphene changes dramatically when a gap is created.

In the case of the zero gap, with linear energy dispersion relation around the Dirac

points (K and K′) (Figure 6.1), the carriers move roughly as fast as photons because their

effective mass is almost equal to zero. The onset of a gap causes charge carriers to travel

slower because of the increase in their effective mass as well as their low conductivity.

Over the last decade, various approaches have been proposed to accomplish this goal,

such as quantum confinement [195–201], substrate interaction [202–205], chemical

functionalization [206–210], doping [211–214], applying perpendicular electric field

[215–218], straining the graphene layers [219–223], breaking the honeycomb lattice

symmetry via introducing topological defects and grain boundaries [26, 50–68] (as

presented in Chapter 7) and punching a graphene sheet with periodic holes [69–78] (as

discussed in Chapter 8).
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6.

Figure 6.1: The electronic band structure of graphene as calculated using tight binding model
with first neighbour interactions. Also shown are Brillouin zone (red hexagonal), reduced
Brillouin zone (black triangle with vertexes Γ, K, and M). The six corners of the hexagonal
Brillouin zone, where the conduction and valence bands touch each other, are known as Dirac
points. Two of these six Dirac points (K and K’) are inequivalent.

6.2 Band structure and DOS of pristine graphene

The most important step in performing EHT calculations is in the determination of

the appropriate parameters. These parameters significantly affect the outcome of EHT

calculations and play a crucial role in obtaining reliable results for the systems under

study. So, the first step towards investigating graphene based materials was to reproduce

the electronic band structure of 2D pristine graphene using EHT by comparing the

results with that obtained by ab initio methods. Because of the different behaviours of

carbon atoms in 2D systems from that of isolated molecules, the EHT parameters used

for porphyrin and DNA are not appropriate in determining the correct band structure

of graphene. Therefore, a different set of parameters are required. We have adapted the

set proposed by Keilen et al. [143] which is tabulated in Table 3.1. For example, Keilen et

al. used the value of 2.8 for the Wolfsberg-Helmholtz constant for both s and p orbitals.

In our calculations, we have found that using the value of 2.25 for s orbital results in a

band structure very similar to that obtained by the SIESTA code. In Figure 6.3, the results

using EHTransport and SIESTA are plotted for the band structure and DOS of graphene.

The agreement is very good 1.

1 In the case of SIESTA calculation, we used the generalised gradient approximation (GGA) in flavour
of the Perdew-Burke-Ernzerhof (PBE) for the exchange-correlation term. Moreover, the default built-in
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6.2 Band structure and DOS of pristine graphene

Figure 6.2: (Left) The two different unit cells used to define the honeycomb lattice of graphene.
The lattice vectors a⃗1 and a⃗2 define a rhombic primitive unit cell with two carbon atoms, while
the rectangular conventional cell contains four atoms and is defined by a⃗3 and a⃗4 lattice vectors.
(Right) The corresponding Brillouin zones with the high symmetry points in k-space. The
black hexagonal one is for the primitive cell, while the blue rectangular one corresponds to the
conventional cell. The red point inside the conventional cell indicates the Dirac point.
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Figure 6.3: The DOS (left) and band structure (right) of pristine graphene calculated using
EHTransport with the parameter set shown in Table 3.1 and SIESTA.

The band structure calculations were carried out using rhombic primitive unit cell

with two carbon atoms as illustrated in Figure 6.2. The Monkhorst scheme [224] was

used to sample the 2D Brillouin zone of graphene with a progressing denser grid of k-

points. It was found that a minimum separation of 0.01 Å−1 in k-space was required to

ensure convergent results for the DOS. This corresponds to a k-point grid of 300×300×1.

Moreover, in the case of EHTransport, the convergence of the result depends also on the

double-ζ polarized (DZP) basis set was employed to represent the valence orbitals of carbon atoms with
an energy cutoff of 0.5 eV and mesh cutoff of 450 Ry. Tight tolerances of 10−5 and 10−5 eV on the density
matrix error and the total energy, respectively, were used as combined criteria to achieve the convergence
in the self-consistent cycle.
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broadening parameter η that is employed to smooth the DOS curve shape. For instance,

the DOS curve is smoother with η = 0.04 compared to η = 0.02 for the same grid of k-

points as illustrated in Figure 6.4. In other words, a convergent DOS can be achieved

with 150×259×1 k-grid for η= 0.04, but denser grid is required for η= 0.02. In order to

investigate the influence of the number of points in the energy window, the DOS over

energy range (-5.0 to 5.0) eV was calculated by using 5001, 10001, and 20001 points

which correspond to energy spacings of 0.002, 0.001, and 0.0005 eV, respectively. The

calculations showed that no noticeable difference. Thus, an energy spacing of 0.002 eV

was found to be sufficient for the DOS calculations.
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Figure 6.4: The DOS of pristine graphene calculated by EHTransport (left) with k-grid of 100×
100×1 and various broadening parameter η, and (right) with η = 0.04 and three different mesh
of k-points.

6.3 Graphene nanoribbons (GNRs)

GNRs, which are sheets of graphene cut to make ribbons, have two basic edge shapes:

zigzag and armchair. The corresponding ribbons are termed zigzag nanoribbons

(ZGNRs) or armchair nanoribbons (AGNRs). These two edges have a 30◦ difference

in their orientation within the graphene sheet. Large differences in the π-electronic

structures are induced by these two types of graphene edges. In particular, a zigzag

edge exhibits localized states, whereas an armchair edge does not exhibit such localized

states. The appearance of graphene edge states may directly contribute to the peculiar

magnetic, electronic and transport properties of nanoscale graphene as will be discussed

in the following sections. The width of a graphene nanoribbon is defined by an integer
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6.3 Graphene nanoribbons (GNRs)

N , which represents, in the case of an armchair ribbon, the number of carbon atoms,

while in the case of a zigzag ribbon, it is the number of dimer (two carbon sites) lines

that are located along the cross section of the ribbon (Figure 6.5). The same number N

for both types of ribbons does not mean that the ribbons have the same physical width

when the same unit of length are used to measure them. Therefore, to compare the

physical quantities of armchair and zigzag ribbons, it is more convenient to define the

width of a ribbon in terms of the lattice constant a or C-C bond length aC−C as follows

[43]:

WA = N −1

2
a ≡

p
3

2
(N −1) aC−C for the AGNR, (6.1)

and

WZ =
(p

3

2
N − 1p

3

)
a ≡

(
3

2
N −1

)
aC−C for the ZGNR. (6.2)

1
2
3

Na

. . . . .

4
A B

1

2

3

Nz

......

A

B

Figure 6.5: The two types of graphene nanoribbons: (left) armchair and (right) zigzag. A and B
represent the two sublattice sites. Adapted from ref. [43].

Tight-binding calculations have shown [225] that the conductivity of graphene

nanoribbons is highly dependent on their width and edge type. For AGNRs, when

N = 3m −1 (with m = 1,2,3, ...) the ribbons turn out to be metallic. For N = 3m and N =
3m+1, they are semiconductors with their energy gaps decreasing almost exponentially

as N increases and approaches zero in the limit of very large N . By contrast, all the

zigzag nanoribbons are metallic. This is mainly due to the additional energy states which

appear at their edges [44].
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6.3.1 Electronic band structure of GNRs

Figure 6.6 shows the electronic band structure of ZGNR (N=2) and AGNR (N=3)

calculated using both EHTransport and SIESTA codes. It is clear that, both codes give

very comparable results. This provides us with the confidence to use EHTransport

with the defined parameter set to study larger systems of GNRs. Accordingly, The

EHTransport code used to calculate the electronic band structure and density of states

of both nanoribbon structures with 3 ≤ N ≤ 30 for AGNRs and 2 ≤ N ≤ 30 for ZGNRs.

Typical results for both types of GNRs are shown in Figures 6.7 and 6.8.
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Figure 6.6: The band structure of zigzag (left) and arm chair (right) nanoribbons with width N=2
and 3, respectively. The calculations were performed using both SIESTA and EHTransport.

As already mentioned, the presence of a graphene edge has a strong impact on the

electronic states of Dirac electrons. In this section, we will see that graphene exhibits a

significant nanoscale edge effect by studying the electronic structures of the graphene

nanoribbon using the tight binding model. It is assumed that all dangling bonds at

graphene edges are terminated by hydrogen atoms and thus do not contribute to the

electronic states near the Fermi level.

Figure 6.7 shows the band structure and DOS of armchair ribbons for four different

ribbon widths. In all these instances, the top of the valence band and the bottom of the

conduction band are located at Γ point (ka = 0). However, the ribbon width determines

whether the system is metallic or semiconducting. From Figure 6.7 (N = 8 and N = 26),

we see that the system is metallic (i.e. when N = 3m − 1, where m = 1,2,3, ...). For

semiconducting ribbons, the direct bandgap decreases with increasing ribbon width and

approaches zero in the limit of very large N .

For zigzag ribbons, however, a remarkable feature arises in the band structure, as
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6.3 Graphene nanoribbons (GNRs)
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Figure 6.7: The band structure and DOS of armchair nanoribbons with various widths: N = 6, 8,
26, and 30 calculated using EHT.

can be seen in Figure 6.8. The top of the valence band and the bottom of the conduction

band are always degenerated at the boundary of the Brillouin zone ka =π (X point), and

the degeneracy of the center bands at ka = π does not originate from the intrinsic band

structure of the graphene sheet. These two special center bands flatten with increasing

ribbon width. A pair of partial flat bands appears within the region 2π/3 ≤ |ka| ≤π (from

2/3 ΓX to X), where the bands are located in the vicinity of the Fermi level. The electronic

states in the partial flat bands region of the zigzag ribbons can be understood as localized

states near the zigzag edge. Examining the charge density distribution theoretically

[43, 44, 79] and experimentally [226–228] has shown that these bands are completely

localized at the edge site when ka = π and starts to gradually penetrate into the inner

sites when ka deviates from π, reaching an extended state at ka = 2π/3.

6.3.2 The energy bandgap

From the tight binding analysis of GNRs considering only the nearest neighbor

interactions, the following formula for the energy gap that occurs at Γ in an AGNR can
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Figure 6.8: The band structure and DOS of zigzag nanoribbons with various widths: N = 6, 8, 26,
and 30 calculated using EHT.

be obtained [45]:

∆a =



2γ

[
1+2cos

(
2m +1

3m +1
π

)]
if N = 3m,

0 if N = 3m −1,

2γ

[
1+2cos

(
2m +1

3m +2
π

)]
if N = 3m +1.

(6.3)

where γ is the tight binding nearest neighbor interaction parameter and m is positive

integer. By expressing N in terms of the ribbon width WA (equation (6.3)) and

performing the Taylor expansion under the condition 1/WA ≪ 1, the leading order of

∆a/γ for N ̸= 3m −1 behaves as
∆a

γ
∼ π

WA/a
(6.4)

It is clear that, the energy gap is inversely proportional to width of the graphene ribbon.

This suggests that the physical quantities related to the energy gap can be scaled by the

ribbon width. For the case of armchair nanoribbons with N = 3m − 1, the energy gap

closes in the tight-binding scheme. However, the incorporation of the electron-phonon
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Figure 6.9: The energy band gap of armchair (left) and zigzag (right) ribbons as a function of
ribbon width N calculated using EHT.

interaction results in an opening of the gap [46]. This behavior is also confirmed from

the first principle DFT calculations with the local density approximation (LDA) [47]. This

feature is also reproduced in the SC-EHT calculations as shown in Figure 6.9.

In the case of ZGNRs, the TB analysis gives the following expression for the energy

gap which appears at k = 2π/3 [45]

∆z = 4γcos

(
N

2N +1
π

)
. (6.5)

A Taylor expansion with employing the condition 1/N ≪ 1 yields

∆z

γ
∼ π

N
= π

2p
3

WZ

a
− 2

3

. (6.6)

Here WZ is the ribbon width in terms of the lattice constant as defined in equation (6.2).

Thus, the energy gap ∆z is also inversely proportional to the ribbon width. Figure 6.9

shows how the energy gap varies with the width for both the armchair and the zigzag

ribbons as calculated using SC-EHT.

6.3.3 Conductance of GNRs

To investigate the electrical transport properties of perfect GNRs, the transmission

spectra was calculated for both types of edges with various widths. The results for
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AGNR (N = 3,6) and ZGNR (N = 2,5) are depicted in Figure 6.10. As can be seen,

the transmission spectra behaves as Heaviside step function for both types of GNRs

showing the quantized nature of conductance. The value of transmission at a particular

energy is simply the number of sub-bands available for conduction at that energy. This

means that, the transmission for a GNR can be expressed by T (E) = G0 M(E), where

M(E) represents the number of sub-bands (number of available transport channels)

with energy E . The act of the transmission reveals that the charge carriers transport

ballistically without scattering across the perfect GNRs.
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Figure 6.10: The transmission function of armchair (top) and zigzag (bottom) ribbons for
different ribbon widths using EHT.

We can also see that, AGNRs show a transport gap, which is equal to that which

appears in the band structure, with almost exponential dependence on the ribbon width.

While ZGNRs exhibit zero transport gap with a minimum transmission value equal to G0

for all the ZGNRs regardless their widths. This entails that, in ZGNRs there is always

at least one channel available for transport. In addition, there is an enhancement in
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6.3 Graphene nanoribbons (GNRs)

conductance at the Fermi level E f which results directly from the edge states that are

localised at E f . Again, the characteristics of transmission are related directly to the

electronic band structure. As an example of this relation, in the case of ZGNR (N = 5),

the transmission at E f is 3G0. This indicates that three conduction channels exist at E f .

Indeed, a closer look at the band structure around the Fermi level revealed that a double

crossing occurs to E f by a sub-band.

6.3.4 GNRs with periodic nanoholes

Very recently the electronic band structure and transport properties of graphene

nanoribbons with periodically hexagonal nanoholes have been investigated using DFT

methods [48]. In their work, Tian et al. studied both types of the GNRs (armchair and

zigzag) with various widths. We have carried out similar calculations using the SC-EHT

code. To make a hexagonal nanohole in a ribbon, six carbon atoms (i.e. a single benzene

ring) were removed and the resulted dangling bonds were passivated with hydrogen

atoms. In addition, the outer edges of ribbons were also passivated by hydrogen. Figure

6.11 shows four examples of the superlattice models that we considered. The size of a

supercell is determined by two factors: the width of the ribbon N and the neck width w .

The neck width is defined as the minimum separation distance between opposite edges

of the adjacent nanoholes. Hence, to distinguish between a perfect GNR and punched

GNR, we refer to the former as A(Z)GNR (N ) and the latter as A(Z)GNR (w ,N ) 2. It can

be seen from Figures 6.11a, 6.11c and 6.11d, a supercell has only one hexagonal hole,

but the super cell shown in Figure 6.11b contains two nanoholes. The reason for that is,

for the AGNR(w ,N ), the centers of the nanoholes do not align up in the same straight

line when the neck width w is an odd number, therefore the supercell containing two

nanoholes is the smallest repeatable unit.

As was mentioned earlier in this chapter, the quantum confinement can significantly

modify the electronic band structure of 2D pristine graphene and introducing periodic

nanoholes in GNRs strengthens this confinement. The details of the punched GNRs are

controlled through various geometric parameters which include: the neck width w , the

position of a hole relative to the outer edge of a ribbon, and the edge shapes of mini-

2 Actually, the same representation used by Tian et al. is used here.
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(a) AGNR (2,12) (b) AGNR (3,12)

(c) ZGNR (2,6) (d) ZGNR (3,6)

Figure 6.11: The superlattice models of GNRs with periodic nanoholes. The rectangle box
indicates the supercell used in calculations.

nanoribbons along the ribbon axis and its width. The mini-ribbons in between two

adjacent nanoholes and those in between edge of a hole and the outer edge of a ribbon

are termed “neck-subprime nanoribbon (NSNR)” and “edge-subprime nanoribbon

(ESNR)” respectively [48]. As can be seen from Figure 6.11, ESNR is orientated along

the ribbon axis (i.e.) the direction of transport with the same edge shape as that for the

prime ribbon. While NSNR has opposite edges shapes of that for prime ribbon and it is

orientated along the ribbon width (i.e.) the perpendicular to the transport direction.

Figure 6.12 shows the electronic band structure and transmission spectra of

ZGNR(w ,6) with three different values of the neck width w = 2,3, and 4. The results

of perfect ZGNR(6) is also plotted for comparison. It is clear that, the band structure

of the punched ZGNR(w ,6) is varied greatly from that of perfect ZGNR(6). However, the

semi-metallicity is the common feature of both perfect and punched ZGNRs. This results

from the fact that there are always sub-bands passing across the Fermi level regardless

the neck width. Moreover, the region over which the bands are flattened is noticeably

increasing. In other words, the edge states become more localised around the Fermi level

when ZGNRs are punched with nanoholes. This is expected because punching holes

increases the edge structures of a ribbon.

Regarding the transmission spectra of ZGNR(w ,6), shown in the right panel of Figure

6.12, we can see that the transmission is actually nothing more than a reflection of

98



6.3 Graphene nanoribbons (GNRs)

Γ X
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
−
E
f

(e
V

)
Z

Γ X

w=2

Γ X

w=3

Γ X

w=4
0

1

2

3 Z

0

1

2

3

T
(E

)

w=2

0

1

2

3 w=3

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
E−Ef (eV)

0

1

2

3 w=4

Figure 6.12: The energy band structure and transmission spectra of ZGNR(w ,6) with different
neck widths w = 2, 3, and4. The letter Z represents the case of the perfect ZGNR(6).

the electronic band structure. Moreover, the transmission coefficients of the punched

ZGNR(w ,6) still have high values in comparison with the perfect ZGNR(6). However, this

trend of the transmission function is considerably deviated in the vicinity of the Fermi

level. Hence, the presence of nanoholes in ZGNRs leads to lowering their metallicity due

to the effect of quantum confinement [48].

The electronic band structure and transmission spectra were calculated for three

widths of AGNRs. These include N = 12,14 and 16 representing the three categories of

AGNRs: N = 3m, N = 3m − 1, and N = 3m + 1 respectively. The results are depicted

in Figure 6.13. Inspection of the band structure of AGNR(w ,16) shows three main

characteristics: firstly, the band gaps exist for the all values of neck width w . Secondly,

the maximum band gap occurs at the neck width w = 2 which differs from that of perfect

AGNR(16) by 0.36 eV. Thirdly, two different trends can be observed in the values of energy

gaps of AGNR(w ,16) depending on the neck width being an odd or even number. The

reason for the large gaps in the punched AGNR(w ,16) is ascribed to the influence of the

ESNR. For AGNRs, as illustrated in Figure 6.11c, the ENSR has always armchair shaped

edges which enhance the original band gap. In addition, the maximum band gap for

AGNR(2,16) is due to the strongest effect of quantum confinement that occurs when

w = 2 [48].
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Figure 6.13: The energy band structure and transmission spectrum of AGNRs with three different
widths N : (a) and (b) N = 12, (c) and (d) N = 14, and (e) and (f) N = 16. For each ribbon width,
four graphs are plotted: (A) refers to perfect AGNR, and the other three are for different neck
widths w .
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6.3 Graphene nanoribbons (GNRs)

The even-odd fluctuations of the band gaps with increasing the neck width can

be understood by looking at Figures 6.11a and 6.11b. When the neck width w equals

an even number, the centres of the neighboring nanoholes are queue up in the same

straight line. However, when w takes an odd number, the centres of nanoholes are

unaligned in the same straight line but with a staggered distance in the direction of

the ribbon width for the two adjacent nanoholes. These geometric details considerably

affect the electronic properties of AGNRs. To have deeper insights, we can think of

punching nanoholes in the ribbon as introducing infinite potential wells. Certainly, the

locations of these potential wells within the ribbon potential map have great impact

on the determination of the electronic band structure and hence the transport features.

Figure 6.13f shows the transmission spectra for the perfect AGNR(16) and the punched

AGNR(w ,16) (w=2, 3 and 4). The common feature to all the graphs is the absent of

transport at Fermi level and in its vicinity. But the transmission function starts to behave

differently over the range of energy that is away from the Fermi level.

For the ribbon width N = 12 which belongs to N = 3m category, the band structure

and transmission are plotted in Figures 6.13a and 6.13b respectively for the perfect

AGNR(12) and the punched AGNR(w ,12) with w=2, 3 and 4. Two distinct differences

can be seen between the AGNR(w ,12) and AGNR(w ,16):

1. The energy gaps of the punched AGNR(w ,12) are less than the gap of the perfect

AGNR(12) on contrast of AGNR(w ,16). This means that, increasing the quantum

confinement in AGNR(w ,12) leads to decrease in energy gaps. This feature shows

the sensitivity of the electronic band structure of the AGNRs with periodically

nanoholes for any change in geometric parameters. Tian et al. ascribed this oddity

of AGNR(w ,12) to the possible effects of the ESNR and NSNR [48]. For example,

NSNR has zigzag shaped edges with metallic propreties which might modify the

electronic band structure and the gap sizes of AGNR(w ,12).

2. The even-odd oscillation feature is missing in AGNR(w ,12) in comparison with

AGNR(w ,16), instead the gap increases with increasing the neck width w .

Finally, in the case of N = 3m − 1, the nanoribbon with width N = 14 was selected

as a representative. The bands structure and transmission coefficient plots are shown in

Figures 6.13c and 6.13d. The main characteristics are similar to that of AGNR(w ,16). For
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example, the energy gaps for the punched AGNR(w ,14) are larger than that of the perfect

AGNR(14), the even-odd oscillations of energy gaps is found again and the transmission

spectra is closely related to the band structure over the whole displayed range of energy.

Our EHT results are generally in agreement with that of Tian et al. except the

following:

• All the energy gaps in the case of AGNRs(w ,N ), punched with periodically

hexagonal nanoholes, predicated by EHT calculations are smaller than that

obtained by Tian et al. using DFT.

• In Tian et al. results, the even-odd oscillation of band gaps occurs in the AGNRs

that belong to categories N = 3m and N = 3m + 1 and disappears in the case of

N = 3m − 1. While in our EHT results, this feature was observed in the case of

N = 3m −1 and N = 3m +1 and was absence when N = 3m.

• Tian et al. have found that the energy gap decreases, as a general trend, with

increasing the neck width w regardless the width of the AGNRs, N . On the other

hand, our findings showed this trend when N = 3m+1, otherwise the gap increases

with increasing w .

6.4 Conclusions

The EHT parameters for 2D pristine graphene were customised to produce electronic

band structure similar to that of DFT approach. Following this, we have employed the

SC-EHT method to examine the band structure and transmission spectra across the

graphene nanoribbon structures without and with periodically hexagonal nanoholes.

We have demonstrated that the results are in general agreement with those reported by

other researches on similar systems using different approaches.

Inspection of the band structure of the three families 3m, 3m −1 and m +1 (Figures

6.13a, 6.13c and 6.13e) shows the following main characteristics for the AGNRs punched

with hexagonal nanoholes:

1. Energy gap appears in all cases of punched AGNRs(w ,N ).
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6.4 Conclusions

2. For AGNR(w ,12), the energy gap decreases with increasing the neck width w .

While an even-odd oscillation feature is noticed in the case of AGNRs(w ,14) and

AGNRs(w ,16) when varying the neck width.

3. The energy gaps of punched AGNRs(w ,12) are less than the energy gap of perfect

AGNR(12). The opposite scenario occurs with AGNR(w ,14) and AGNR(w ,16) in

which the gaps are greater than that of perfect nanoribbon.
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CHAPTER 7

GRAIN BOUNDARIES IN GRAPHENE

7.1 Introduction

To use graphene in future microelectronic devices, it needs to be produced on an

industrial scale and most importantly with large-area sheets of single crystal. The most

commonly employed method to fabricate large-scale graphene is the chemical vapor

deposition (CVD) method [80, 81]. In this technique, a metal foil, often copper, is used

as the substrate on which the graphene is deposited. The size of the produced graphene

sheet is therefore restricted only by the size of the metal foil used. The graphene samples

grown by CVD are polycrystalline where multi-single crystals are stitched together to

form the entire sheet. Each of these single crystals is called a domain or grain and the

interface between the two adjacent grains is termed a grain boundary (GB). The GBs and

other topological defects in graphene could affect its properties and may have benefits or

drawbacks on employing graphene in technological applications [50, 51]. This leads us

to the two long term aims in the graphene research community: developing a reliable

technique to produce large-scale graphene and control on the type and number of

defects. Achieving these aims opens up endless possibilities for graphene applications

[229]. Graphene specimens are prepared as either monolayers deposited on a substrate

of another material or free standing membranes. Generally, defects in graphene are due

to imperfections and/or pre-existent defects on the substrate surface. With free standing

sheets, buckling of the sheets can occur due to the elastic strains created by defects

[26, 52].

In this chapter, we focus on one of these defect structures, namely the grain
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boundaries that occur in large sheet of graphene in order to determine the effects

of these GBs on the sheet conductance. Because of the size of these structures, it

is necessary to employ a semi-empirical scheme as it would be beyond the scope

of ab initio calculations. The EHT method was used to determine the electronic

band structures of the graphene sheets with GBs. The transmission spectrum is also

investigated.

7.2 The GBs structure

The atomic structure of a GB in polycrystalline graphene can be described by two

translational vectors T⃗L and T⃗R of left and right domains respectively as illustrated in

Figure 7.1 [53]. The two vectors T⃗i , (where i refers to left or right domain), are defined in

terms of the primitive unit vectors of graphene hexagonal lattice a⃗1 and a⃗2 as follows

T⃗i = ni a⃗1 +mi a⃗2 ≡ (ni ,mi ) (7.1)

wher ni and mi are integers. The crystallographic directions of the left and right domains

in respect to the normal of the GB line can be described by two angles θL and θR

respectively,

θi = tan−1
( p

3mi

mi +2ni

)
(7.2)

Hence, the misorientation angle θ between the two domains is the sum of θL and θR . For

an infinite GB with periodically arranged defects, the periodic length along the GB for

left and right grains are given by

di = |T⃗i | = a
√

n2
i +ni mi +m2

i (7.3)

where a = |a⃗1| = |a⃗2| = 2.46 Å is the lattice constant of graphene. The mismatch between

the left and right grain boundaries can be described by the following formula

δ= |dL −dR |
dL +dR

(7.4)
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a

(5, 3) (7, 0)

(5, 0)

θ

(0, 3)

a1 a2
a1

a2

d

L

θR

Figure 7.1: The geometry of nonsymmetric GB (5,3)|(7,0) with misorientation angle θ = θL+θR =
8.2◦ + 30.0◦ = 38.2◦. The figure shows, as well, the relationship between the primitive lattice
vectors a⃗1 and a⃗2 and the translational vectors T⃗L and T⃗R of the left and right grains, respectively.
For this special case, the two periodic lengths of left and right grains are exactly equal |T⃗L | = |T⃗R | =
7.0a. Adapted from ref. [53].

The graphene grain boundaries (GGBs) can be classified into two categories: symmetric

and nonsymmetric depending on the indices pairs (nL ,mL) and (nR ,mR ). If nL = nR and

mL = mR , the formed GB is symmetric, otherwise it is nonsymmetric. It follows that for

symmetric GBs, θL = θR and lattice mismatch δ is zero as dL = dR (see equation (7.4)). By

contrast, for nonsymmetric ones, θL ̸= θR and either dL = dR or dL ̸= dR .

To form a physically realistic GB, the periodic lengths of the left and right domains

must be equal or be very close to being equal in addition to a reasonably low formation

energy which is given by the formula

Ef or m (eV/nm) = EGB −N Eg r aphene

2d
(7.5)

where Ef or m is the GB formation energy per unit length, EGB is the energy of the whole

GB supercell, Eg r aphene is the energy per carbon atom for the pristine graphene, N is

the number of carbon atoms in the supercell, d is the periodic length along the GB and

finally the factor 2 accounts for the two GBs in one supercell.
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7.3 Constructing a GB

Constructing the geometry of a GB model in graphene is not a trivial task especially in the

case of nonsymmetric ones. The coincidence site lattice (CSL) theory [230] is commonly

used to generate the geometrical structure of symmetric GBs [54, 55]. But generating

nonsymmetric GBs geometries necessitates employing a more general approach which

is based on carbon nanotubes theory [194]. This approach has been used to construct

and study the dangling bonds of GGBs [56]. In this work, an initial structure of a GB

was created using a python script. This structure was then edited for further manual

configuring to be ready for a coarse geometry optimization using Avogadro software.

Finally, the Long-range Carbon Bond Order Potential (LCBOPII) scheme was employed

for fine optimization of the GB structure. Figures 7.2 and 7.3 show the geometries of GBs

investigated in this study with periodic length d < 2 nm.

As illustrated in Figure 7.2, in the case of symmetric GBs, which are formed by

attaching two identical grains of graphene sheets tilted at some angle, there are two

different scenarios for the atoms to reconstruct. In the first one, the atoms forming the

GB are distributed perfectly around the GB line as in the two isomers (3,1)|(3,1)-i1 and

(4,1)|(4,1)-i1, while in the case of their counterparts (3,1)|(3,1)-i2 and (4,1)|(4,1)-i2, the

GB atoms are not distributed symmetrically. To distinguish between the two cases, we

refer to them by perfect symmetric and non-perfect symmetric GBs, respectively.

7.4 Computational details

Two dimensional periodic boundary conditions PBC were applied in the GB plane, i.e.

in the directions perpendicular (x) and parallel (y) to the boundary. To avoid any

interactions between a graphene sheet and its periodic image, a vacuum space of 40

Å was used to separate the graphene sheets along z-direction. Our calculations were

carried out using a supercell containing two GBs of opposite tilt angles to implement

the periodicity along graphene plane. Furthermore, a minimum separation distance was

kept between the two GBs in a supercell to exclude any boundary-boundary interactions

thereby giving the properties of an isolated GB. The GB-GB separation distance is equal

to half the size of the supercell along the perpendicular axis to the boundary as illustrated
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Figure 7.2: Geometries of GBs considered in this work. The Carbon atoms forming the GB are
shown in blue (black) and the rings along the GB are highlighted as follows: pentagons are green
(grey), hexagons are purple (dark grey) and heptagons are yellow (light grey).

in Figure 7.4. A previous DFT calculation [57] showed that a distance of 15 Å is large

enough for the formation energy of the studied GBs to converge. The details of the GBs

investigated here are shown in Table 7.1 where a minimum GB-GB separation of ∼ 18 Å

was employed in the case of the symmetric GB (3,2)|(3,2).
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Figure 7.3: Continued of figure 7.2.

The 2D Brillouin zones of the GBs were sampled using Monkhorst scheme with

equally spaced (about 0.01 Å−1) mesh of k-points. Most of the GBs models considered in

this work were adopted from ref. [58]. Based on the theory of carbon nanotubes [194],
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7.5 Formation energy calculation

an initial structure of a GB was created using a python script. This structure was then

edited by Avogadro software for further manual configuring to be ready, in the final step,

for a coarse geometry optimization using CG algorithm as implemented in Avogadro.

 

 

6
.5
1
Å

 

47.95Å 

Figure 7.4: The structure of the GB (2,1)|(2,1). The red rectangle shows the boundaries of
supercell (which contains 120 atoms) used in the calculation.

7.5 Formation energy calculation

The formation energy calculations of the investigated GBs were carried out using

the Long-range Carbon Bond Order Potential (LCBOPII) [231–233]. The potential

parameters were optimized to reproduce the elastic properties of carbon in a variety

of configurations. The structure relaxations with the LCBOPII were performed with a

dedicated Monte Carlo code, through an annealing cycle. To do this, the initial 2D

structure of a GB was heated up in steps up to 700 K and then cooled stepwise down to 10

K. Previous simulations [55] showed that the formation energies calculated (on smaller

unit cells) with LCBOPII reproduce very accurately the DFT values, so that it is possible

to obtain accurate formation energies for grain boundaries with significantly larger unit

cells than those accessible by direct ab initio calculations.

After determining the periodic length of a GB (d), the total energy of the GB supercell

(EGB ), and the energy per atom for pristine graphene (Eg r aphene = −7.347 eV) using

LCBOPII, the formation energies were computed using equation (7.5) and tabulated in

Table 7.1. As can be seen from the table, the values of the formation energies compare

favourably with previous simulation results performed by DFT [58], DFTB [59], and MD

using Tersoff-Brenner potential [60]. In addition, the experimentally measured value

of periodic length (0.67 nm) of the (2,1)|(2,1) GB [61] is well reproduced (0.651 nm) by
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our calculations. This indicates that the approach employed in this work is reliable in

describing GB properties.

The values of formation energies of the considered GBs in this work range from

2.24 to 8.42 eV/nm which are noticeably less than the formation energy of bare

edges in graphene (∼ 10 eV/nm) [234]. Energetically, this suggests that these GBs

have a high chance to exist in realistic polycrystalline graphene. For instance, a GB

with misorientation angle 5.5◦ has been observed experimentally [62] but not studied

theoretically as yet. Among the various possible combinations of left and right graphene

grains to form a GB with this angle, we chose the (17,2)|(18,0) for detailed investigation.

It was found that, this small angle GB has a low formation energy of just 3.36 eV/nm

with periodic length of 4.41 nm. The formation energy of a GB is an essential indicator

for probability of its formation in real samples of graphene. However, it is not the only

factor, as GBs are not equilibrium structures when they synthesised experimentally [63].

Figure 7.5 shows the plotting of formation energies of GBs vary with misorientation

angle θ, periodic length d , and mismatch δ, respectively.
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Figure 7.5: The formation energy (Ef or m) vs misorientation angle θ, periodic length d , and
mismatch δ of graphene GBs. The blue circles and red squares stand for the symmetric and
nonsymmetric GBs, respectively.

7.6 Electronic DOS

The existence of defects in a graphene sheet breaks the translation symmetry of the

honeycomb lattice which in turns leads to creating some extra electronic states at the

Fermi level and in its vicinity [61, 64, 65]. Mesaros et al. [66], have shown theoretically

112



7.6 Electronic DOS

Table 7.1: The misorientation angle (θ), the mismatch (δ), and the length of the GB supercell
(L). The formation energy (Ef or m) per unit length of the relaxed periodic length (d) of the GB
as calculated in this work compared with that calculated by previous studies (E pr e.

f or m). The most
previous data have been taken from ref. [58], otherwise the reference is stated. To distinguish
different isomers of the same GB, we used the suffixes i1, i2, etc. following the notation used in
ref. [58].

GB θ (◦) δ (%) L (nm) d (nm) Ef or m (eV/nm) E pr e.
f or m (eV/nm)

(2,1)|(2,1) 21.79 — 4.795 0.651 3.389 3.44[58], 3.30[57],
4.00[59], 4.30[60],
3.38[53]

(3,1)|(3,1)-i1 32.20 — 3.954 0.885 4.412 5.03
(3,1)|(3,1)-i2 32.20 — 4.715 0.888 2.813 2.91[58], 3.00[54],

4.34[59], 3.80[60]

(3,2)|(3,2) 13.17 — 3.332 1.068 3.107 3.51[58], 4.20[57]

3.13[59], 4.79[60]

(4,1)|(4,1)-i1 38.21 — 5.332 1.123 4.301 4.62
(4,1)|(4,1)-i2 38.21 — 4.428 1.125 3.862 3.99
(4,3)|(4,3) 9.43 — 4.628 1.488 2.237 2.85[58], 4.0[57]

(5,1)|(5,1)-i1 42.10 — 3.876 1.364 3.435 4.26
(5,1)|(5,1)-i2 42.10 — 6.115 1.365 3.430 4.27
(6,1)|(6,1)-i1 44.82 — 4.675 1.595 3.219 4.81
(6,2)|(6,2)-i1 32.20 — 4.248 1.761 3.948 4.83
(6,2)|(6,2)-i2 32.20 — 5.723 1.771 3.785 3.23
(6,2)|(6,2)-i3 32.20 — 5.786 1.775 2.814 4.19
(3,1)|(2,2)-i1 16.10 2.00 4.470 0.868 4.108 3.82
(3,1)|(2,2)-i2 16.10 2.00 7.197 0.860 8.123 8.23
(4,0)|(3,2) 36.59 4.29 7.363 1.013 8.421 5.91
(4,2)|(3,3) 10.89 0.91 3.974 1.284 2.950 3.23
(5,0)|(3,3) 30.00 1.92 5.574 1.239 4.594 5.03
(5,1)|(4,2) 31.95 2.54 7.925 1.315 5.803 6.05
(5,2)|(6,1) 36.31 2.44 5.181 1.547 2.771 —
(5,3)|(7,0) 38.20 0.00 5.458 1.713 3.999 4.57
(5,3)|(6,2)-i1 24.32 1.49 6.738 1.727 2.417 3.19
(6,0)|(4,3)-i1 34.70 0.68 5.266 1.480 4.369 5.75
(6,0)|(4,3)-i2 34.70 0.68 5.605 1.478 3.960 4.72
(7,0)|(4,4) 30.00 0.52 7.167 1.702 3.955 —
(9,1)|(6,5) 27.80 0.00 8.073 2.342 3.966 —
(12,0)|(7,7) 30.00 0.52 6.835 2.931 4.021 —
(12,2)|(10,5) 33.30 0.43 6.220 3.222 3.802 —
(17,2)|(18,0) 5.50 0.23 7.931 4.413 3.361 —
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that the GBs in graphene can enhance the local density of states (LDOS) both near E f

as well as away from E f . The results of our calculations are illustrated in Figure 7.6.

We see that DOS for some of GBs show enhancements in the LDOS, at E f and away

from E f when compared with that of perfect graphene. For instance, the symmetric GB

(2,1)|(2,1) shows enhancements in the DOS especially at the energies (1.12 and 1.25 eV)

under and above Fermi level respectively. This feature for the GBs is in agreement with

previous theoretical study [66] and DFT simulation results [58]. This enhancement in

DOS is essentially owing to the rehybridization of σ and π-orbitals in the vicinity of the

GB as well as due to the effect of changing in the C-C bond lengths between the carbon

atoms that form the GB (Figure 7.7) [51]. The existence of energy levels at Fermi level

and/or in its vicinity is crucial for the electric current to flow through the GB, however, it

is not the only factor as we will see in section 7.8.
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Figure 7.6: The total DOS (red solid line) of various GBs and and partial DOS (blue dotted line) of
the atoms forming them in comparison of that of perfect graphene (green dashed line).

7.7 Band structure

Figure 6.2 shows the honeycomb lattice of graphene and the corresponding Brillouin

zone with the high symmetry points in k-space. The Γ−Y direction is along the GB,
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7.7 Band structure

Figure 7.7: The bonds lengths (in Å) between the carbon atoms that form the GBs (left to right)
(3,1)|(3,1)-i2, (3,1)|(2,2)-i1, and (5,0)|(3,3).

and the Γ−X is perpendicular to it. The Γ−X and Γ−Y directions in the GB reciprocal

supercell converge to the Γ−K and Γ−M directions in the pristine graphene Brillouin

zone respectively as the misorientation angle approaches zero (θ → 0). A previous

DFT calculation [57] has shown that the electronic structure of polycrystalline graphene

evolves to that of pristine graphene of single crystal when the misorientation angle

approaches zero. In addition, the Dirac K point locates under the Fermi level and goes up

with decreasing the misorientation angle. Tuning the band structure of polycrystalline

graphene by applying an external strain has been explored theoretically by Wu et. al.

[67]. They have found that, applying external strain has no effect on the electronic

structure of symmetric GBs which still exhibits zero band gap. On the other hand, a band

gap, up to 0.19 eV in the case of GB (5,5)|(3,7), can be opened in some nonsymmetric GBs

by applying external stains. For the intrinsic strain, which is caused by the mismatch

between the two grains of nonsymmetric GB, it slightly affects the band gap of the

polycrystalline graphene.

Figure 7.8 shows the bands structure of various GBs. We classified them into two

main categories depending on the similarity with the band structure of perfect graphene.

The first group of GBs, as depicted in panels (a-e), has very similar bands of that of

perfect graphene and preserves its semimetallic nature, while the second group of GBs,

panels (f-j), shows considerably changes in their band structure in comparison with

perfect one. From Figure 7.2, we can realize that the common feature between the first
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Figure 7.8: The band structure of various GBs. The top row shows the GBs that preserve
the semimetallic nature of pristine graphene while the GBs whose band structures exhibit
modifications are shown in the bottom row.

group members is that they are perfect symmetric GBs with two absolutely identical left

and right grains. This matching between the left and right grains is mainly the reason for

the GBs to inherit their band structure from perfect graphene. However, the Dirac points

occur at two different points in k-space: either at k = (0,1/3) alongΓ−Y direction as in (a-

d) or at k = (1/3,0) along Γ−X as in (e). This behaviour results from the different sizes of

GBs supercells and consequently the different folding into the conventional rectangular

unit cell of perfect graphene. In the other group of GBs whose band structure differs

considerably from that of perfect graphene (f-j), only the GB (3,1)|(2,2) shows metallic

characteristics where the conduction and valence bands are interfaced, otherwise, a

small band gap is opened in most cases. Zhang and Zhao have found, depending on

DFT calculation, that a DOS band gap can be opened by 0.2 eV and 0.15 eV in (4,1)|(4,1)-

i1 and (4,1)|(4,1)-i2 GBs, respectively [58]. By contrast, our EHT calculations revealed

that the (4,1)|(4,1)-i1 GB has zero gap while the (4,1)|(4,1)-i2 GB has a gap of 0.3 eV

which is comparable with the findings of Zhang and Zhao. This can be explained by

the fact that measuring the gap depending on the DOS data is not accurate enough as

the numerical computing of DOS depends on several parameters which must be chosen

carefully. Zhang and Zhao ascribed the opening of a small gap to the deviations in bond

116



7.8 Transport properties

lengths and bond angles in the GB rings from those in the perfect graphene lattice [58].

Moreover, the local rehybridization of carbon atoms orbitals, that form the GB, from sp2

to sp3 may play a role in opening the gap. Indeed, checking the bond lengths for three

GBs, as illustrated in Figure 7.7, confirms this trend.

It is also worth noting that, applying PBCs along the perpendicular direction to the

GB line may result in some interaction between the two GBs with a supercell. This

finite size effect can be responsible for opening a small gap. To investigate the effect

of GB-GB interfacing, we increased the supercell size along the x-axis for different GBs

and no difference was noticed in the formation energy and band gaps. For instance,

we extended the width of (2,1)|(2,1) GB from 25.92 Å to 71.05 Å with 64 and 176 atoms,

respectively, with not recognizing of the difference in band structure around the Fermi

level. Moreover, the formation energy convergent to 3.39 eV at a separating distance of

about 15 Å between the two GBs. These findings are in agreement with other previous

calculation performed using DFT [57, 68].

7.8 Transport properties

The misorientation between the left and right domains of a GB, makes their Brillouin

zones to be rotated by the same amount. This effective rotation in Brillouin zone is

experienced by the charge carriers when they try to cross the GB line. For a carrier to

transit through the GB elastically without scattering, both energy and the momentum

component, k||, parallel to the GB line must be conserved. By folding the momentum

space from 2D Brillouin zone of graphene into that of 1D of grain boundary, we can

demonstrate how the corresponding momentums in the two Brillouin zones are related

to each other. Depending on the geometry of left and right domains, there are two

possibilities for the Dirac points K and K′ to be mapped onto the 1D Brillouin zone of

the GB. If n −m = 3p with (p = 0,1,2...), the Dirac points are mapped onto the Γ point,

otherwise, they are folded separately onto k|| = −2π/(3d) and k|| = 2π/(3d) and hence

the distance to the Γ point is k|| = 2π/(3d). Based on this basic idea, Yazyev and Louie

concluded that most of the GBs are transparent and the charge carriers can transmit

perfectly through them [53]. Although a GB with nL −mL = 3p and nR −mR ̸= 3p (or

117



7.

nL −mL ̸= 3p and nR −mR = 3p) would show a transport gap given by

ET G (eV) = ~νF
2π

3d
≈ 1.38

d(nm)
(7.6)

where νF is the Fermi velocity (∼ 106 m/s). The transport gaps tabulated in Table 7.2

are generally comparable with that predicted by YL’s model and that from previous

DFT studies [68]. This confirms that crossing the GB by charge carriers is determined

completely by the GB periodicity and its orientation with respect to the crystalline

lattices of the two grains of polycrystalline graphene. However, the slight difference of

0.05 eV between the values of the transport gaps of the (3,1)|(2,2) GB isomers suggest

that the topological details of the GB rings do have some effect also on the transport

gap. It is worth noting that (as shown in 7.9), the transmission curve shows symmetric

behaviour (similar to that of perfect graphene) around Fermi level for the GBs (2,1)|(2,1)

and (3,1)|(3,1)-i1. In these two GBs, the defect rings are distributed symmetrically

along the GB line and their structures are closer to that of perfect graphene. Moreover,

disruption of the graphene lattice perfection leads to a reduction in the transmission

coefficient for both types of GBs that exhibit zero and some transport gap. However

this reduction is less for the former which is expected as the deviation from the perfect

graphene is less. Despite the fact that, the availability of the electronic states in vicinity

of Fermi level is essential for any conduction process to occur, however, it is not enough.

This can be seen from inspection the transmission graphs depicted in Figure 7.9. For

instance in the case of the GB (5,0)|(3,3), although electronic states exist at Fermi level

(Figure 7.6), however, the transmission and consequently conductance exhibits a gap of

1.28 eV around Fermi level. This behavior can be completely understood in the frame of

the momentum conservation model proposed by Yazyev and Louie.

Table 7.2: The periodic length d in (nm) and the theoretical transport gap (ET G ) computed using

equation (7.6) compared with that calculated using DFT (E d f t
TG ) and calculated in this work (E eht

TG ).
All the energies are in (eV).

(nL ,mL)|(nR ,mR ) d E eht
TG E d f t

T G
[68] ETG

(3,1)|(2,2)-i1 0.868 1.36 1.45 1.59
(3,1)|(2,2)-i2 0.860 1.31 1.54 1.60
(2,0)|(1,1) 0.435 2.61 — 3.17
(5,0)|(3,3) 1.239 1.28 1.03 1.11
(7,0)|(4,4) 1.723 0.72 — 0.80
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Figure 7.9: The transmission spectrum of perfect graphene and various GBs that show zero (left)
and a finite transport gap (right).

7.9 Conclusions

The EHT method together with NEGFs formalism was used to study the electronic

and transport properties of grain boundaries in polycrystalline graphene. Additionally,

we employed the LCBOPII potential, as implemented by Fasolino and Los [231–233],

to calculate the formation energies of the GBs. Our results are in agreement with

other previous DFT simulations, theoretical models, and experimental observations.

Most GBs preserve the semi-metallicity of perfect graphene, however, a few (which

have specific geometrical structure of left and right domains) show a gap in transport

spectrum around the Fermi level that depends mainly upon the periodic length of the

GB. These features can be used for controlling and tuning the electrical properties of

polycrystalline graphene.

Experiments have shown that, multiple domains of single crystals can coexist in

synthesised graphene sheets of large area. Studying and understanding the properties

of such systems theoretically is very important especially if the aim is to incorporate

them in future microelectronics. It should also be possible to dope the grain boundaries

with acceptor and donor atoms such as boron and nitrogen [235], respectively, which

would result in semiconductors of p and n-type. These are areas for future research, both

theoretically and experimentally. Topological defects in graphene grown on a substrate

are caused by the imperfections and pre-existent defects on the substrate surface. By

controlling these imperfections with desirable patterns, it should be possible to design

precisely the form of the GBs together with its specified electrical properties.
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CHAPTER 8

GRAPHENE NANOMESHES (GNMS)

8.1 Introduction

Recently, tremendous efforts have been made to construct a graphene sheet with

periodically nanoscale holes punched in it, known as graphene nanomeshes (GNMs)

or graphene antidots. This is because making a nanohole in a graphene sheet leads

to quantum confinement of electrons movement through the 2D lattice and distorts

the linear dispersion relation ε(⃗k) of pristine graphene near the Dirac points. As a

consequence, a band gap may open up. The size of which can be controlled by adjusting

various parameters of the GNM lattice. The hole shape, hole size, lattice geometry, and

the periodicity of the holes along x- and y-axis are parameters that all play a crucial role

in determining the size of the band gap, which, for technological applications, should

be at least of the order of tenths of an electron-volt [77]. Moreover, n-type and p-

type semiconductors could be obtained by doping the punched graphene sheet with

donor and acceptor impurities such as nitrogen and boron. These ambitious future

perspectives are motivated by some successful experimental fabrications of single layer

of graphene into which an array of nanoholes are punched [70, 71]. Bai et al. [70] have

showed that GNM-based FETs had on/off ratios similar to those of GNR devices and

more importantly, the GNM devices can carry currents much greater than that of a single

GNR. GNMs have been explored via many theoretical models to predict any potential

change in their electronic structures due to lattice modification by perforating [69, 72–

78]. As in all graphene based materials, the electronic structure of a GNM is essentially

determined by the π electrons. Therefore, the main electronic features of the GNMs can
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Figure 8.1: A 2×2 super lattice of the (6×8)h2 GNM. The cyan (gray) and brown (black) spheres
represent hydrogen and carbon atoms respectively. The unit cell (determined by a rectangular
solid line) has been replicated twice along x and y axis, Wx and Wy are the neck widths along x
and y-axis respectively.

be discovered using a simple tight binding model considering only the nearest neighbor

interaction. For instance, Pedersen et al. [69] found a scaling rule for the energy gap of a

GNM with respect to the numbers of carbon atoms removed and the original carbon

atoms in a unit cell. However, first principles DFT calculations have revealed more

detailed information in the electronic structures of GNMs. DFT computations carried

by Ouyang et al. [72] have predicted that half of GNMs were semimetals and the rest

were semiconductors, while Şahin and Ciraci [73] pointed out that only one-third of their

calculated GNMs had significant nonzero band gaps.

As shown in Figure 8.1, the holes periodicity Wx along x and Wy along y-axis

represent the shortest distance between two neighboring holes along corresponding

direction. This distance is termed as neck width and play an important role in

determining the electronic properties of GNMs. To classify the different unit cells of

GNMs, we followed the same approach as suggested in ref. [74]. As illustrated in Figure

8.2, the unit cells of GNMs are classified by pair of integer numbers (P and Q) which

represent the number of the repeating conventional rectangular cells for the pristine

graphene along the x (armchair) and y (zigzag) directions, respectively. Thus, we refer to
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8.1 Introduction

Figure 8.2: (Top row) three different unit cells of GNMs with rectangular nanohole. All the units
have the same periodicity along x axis with P = 6 while the lattice parameter Q along the y axis
has the values 7,8, and 9 (from left to right), respectively. The rectangular hole for all the cases
has dimensions of 5.05× 16.02 Å with 40 removed carbon atoms. The shaded rectangular area
represents the conventional unit cell of pristine graphene. (Bottom raw) three different unit cells
of GNMs with hexagonal nanohole. The periodicity along x axis is 5 while the lattice parameter
Q along the y axis has the values 7, 8, and 9 (from left to right), respectively. The hexagonal hole
for all the cases has a diameter of 7.72 Å with 24 removed carbon atoms.

a GNM with lattice parameters P and Q as (P ×Q) GNM; for example, those in top panel

of Figure 8.2 are named as (6×7), (6×8), and (6×9) GNM, respectively. Then, we add the

information of the hole using either (r) or (h) letter, to denote a rectangular or hexagonal

hole, followed by an integer indicating the size of the hole (Figure 8.3). For instance, the

GNMs shown in Figure 8.2 are described as follows: (6×7)r1, (6×8)r1, (6×9)r1, (5×7)h2,

(5×8)h2, and (5×9)h3 from top to bottom and left to right.

The electron energy calculations were performed using a 9×9×1 mesh of k-points

in the BZ as this was found to be sufficient to obtain convergent results for the large unit

cells of the investigated GNMs. To prevent any interaction between a GNM sheet and its

periodic image, a vacuum spacing of 40 Å was used along the perpendicular to the GNMs

plane (z-axis).

The systems studied in this work were taken to have rectangular unit cells, as

shown in Figure 8.2, with two different hole shapes and different sizes: rectangular
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Figure 8.3: The hexagonal and rectangular nanoholes that used to punch the graphene sheet.
Two different colors are used here to easily distinguish between different sizes of the holes.

and hexagonal holes. The dangling carbon bonds at the hole edges were passivated by

hydrogen atoms. The lattice parameters P and Q range from 6 to 12 for both hole shapes.

This corresponds to GNM unit cells dimensions along x and y-axis range from (25.26 to

51.15 Å) and (14.77 to 29.53 Å) respectively. With regard to the hole size, for hexagonal

holes, the diameter was varied between 3.34 and 24.32 Å while for rectangular hole the

dimensions were varied between (15.98×4.73 Å) and (15.98×17.35 Å). These different

holes are shown in Figure 8.3.

8.2 Electronic band structure of GNMs

Figure 8.4 shows the electronic band structures of three different GNMs with hexagonal

holes. It is noticeable that the conduction and valence bands are nearly symmetrical

around the Fermi level. This feature may be ascribed to the behavior of π electrons

in graphene. The energy dispersion of pristine graphene, based on the tight binding

formalism, reveal clearly this fact where the occupied and unoccupied bands are

symmetrical (Figure 6.1). The electronic band structures of the explored GNMs can be

classified into two main categories: semimetals with zero (or roughly zero) band gap

and semiconductors with a direct gap at the Γ point. In the case of the first category, the

valence and conduction bands touch each other at two different k-points depending on

the lattice parameters P and Q of the associated GNM. For example, in case of the (6×7)

GNM, the matching occurs at a point along the k path (Y → Γ), while the bands meet

exactly at the Y point for the (6×8) GNM. Other GNMs considered have band structures

similar to one of these three, depending on their lattice parameters P and Q. It follows
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Figure 8.4: Electronic band structures of GNMs with the hexagonal hole h2 of 24 removed C
atoms and different lattice parameters P and Q. The top graphs are for P = 6 and Q = 6,7, ...,11
and bottom are for Q = 6 and P = 6,7, ...,11.

that a third of the GNMs show semiconducting behavior and two thirds preserve the

original semimetallic nature of pristine graphene.

The set of graphs in the top row of Figure 8.4 show that changing the lattice parameter

Q, whilst keeping P constant, results in opened or closed gaps in h-GNMs. For Q = 3m+1

or 3m + 2 (where m = 1,2, ...), the h-GNMs have zero (or nearly zero) gap with similar

band structures. However, if Q = 3m, the h-GNMs exhibit a band gap of between 0.18

and 0.64 eV (Table 8.1). This shows semiconducting behavior. Again, the band structures

of these structures are similar. By contrast, keeping Q fixed and varying P results in the

energy gap reducing progressively with increasing lattice parameter P . The essential

features of the band structure are similar for these configurations.

A different scenario is observed in the case of a graphene sheets perforated with

periodic rectangular holes. As can be seen in Figure 8.5, the band structures were

computed for various GNMs using rectangular hole h2 with 40 C atoms removed. As in

hexagonal hole instances, the investigated r-GNMs can be classified into three categories

depending on the value of Q: 3m, 3m +1, and 3m +2. The first two groups of r-GNMs

are semiconductors with a direct band gap at Γ and Y points respectively, while the

semimetallic nature of graphene with zero-gap is perpetuated in the case of Q = 3m +2.
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Table 8.1: The energy band gap (Eg ) in eV for various GNMs with two different nanoholes:
hexagonal (h2) and rectangular (r1) hole with 24 and 40 carbon atoms removed, respectively.

❍❍
❍❍❍❍P

Q Hexagonal hole Rectangular hole
6 9 12 6 7 9 10 12

5 0.788 0.522 0.385
6 0.641 0.451 0.337 0.783 0.522 0.508 0.337 0.377
7 0.542 0.393 0.296 0.632 0.345 0.424 0.240 0.318
8 0.469 0.346 0.263 0.533 0.215 0.366 0.159 0.277
9 0.414 0.310 0.236 0.462 0.123 0.322 0.095 0.246

10 0.370 0.279 0.214 0.407 0.051 0.288 0.045 0.221
11 0.335 0.255 0.195 0.364 0.010 0.261 0.006 0.200
12 0.306 0.233 0.179 0.329 0.003 0.238 0.002 0.184
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Figure 8.5: Electronic band structures of GNMs with a rectangular hole and different lattice
parameters P and Q. The top graphs are for P = 6 and Q = 6,7, ...,11 and bottom are for Q = 6
and P = 6,7, ...,11.

Hence, the distinctive difference between GNMs with hexagonal and rectangular hole is

that, in former case, only one third of investigated samples have a gap while, in the latter,

a gap can be opened in two thirds of GNMs samples.

Pedersen et al. [69] carried out band structure calculations using a tight binding

model and found that the energy gap of a GNM scaled according to the formula

Eg =ωN 1/2
r

Nt
, (8.1)
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Figure 8.6: The energy band gap (Eg ) of GNMs as a function of lattice parameter P for various
values of Q, where (left) is for hexagonal hole of 24 removed carbon atoms and (right) is for
rectangular hole of 40 removed carbon atoms. The data are fitted to equation (8.1).

where Nt is the total number of carbon atoms in a unit cell before making a hole, Nr

is the number of carbon atoms removed when a hole is punctured and ω is a constant

whose value is determined numerically by fitting the calculated energy gaps to equation

(8.1). For a rectangular unit cell, Nt = 4PQ, and for a particular value of the lattice

parameter Q and fixed hole (Nr = constant), the energy gap is inversely proportional

to P (i.e. Eg ∝ 1/P ). Figure 8.6 shows the energy gap Eg as a function P and Q for

hexagonal and rectangular holes. The calculated values of Eg are in agreement with that

determined by the Pedersen et al. formula viz. that Eg ∝ 1/P for fixed Q. The fitted value

of ω for each case is tabulated in the bottom row of Table 8.2.

In case of hexagonal nanohole, the fitted values ofω for Q = 6,9, and 12 are about 19,

20, and 20 eV, respectively, in comparison withω= 25 eV fitted by Pedersen et al. for their

TB results. Moreover, the result of Oswald and Wu revealed the values of 19 and 16 eV for

Q = 9 and 12, respectively [74]. In case of the rectangular nanohole, it was found that the

calculated energy gaps are fitted well to Pedersen’s scaling rule (8.1) only when Q = 6,9,

and 12 (i.e. when Q = 3m) with a value of ω ranges between 16.5 and 17 eV (Table 8.2).

While for Q = 7 and 10 (i.e. Q = 3m+1), the gaps do not obey the formula (8.1). To obtain

better fitting, we modified the Pedersen formula by including an exponential term such

that the energy gap takes the following form

Eg =ωN 1/2
r

Nt
−b ecNr /Nt (8.2)

where b and c are adjusted parameters. Using this formula gives better fitting for all
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Table 8.2: The fitting parameters ω, b, and c using different formulas. ω and b are measured in
eV and c is dimensionless.

Q
Hexagonal hole Rectangular hole

6 9 12 6 7 9 10 12

ω† 18.69 19.95 20.01 16.47 — 16.80 — 16.89
ω‡ — — — 20.54 28.59 18.36 26.79 17.48
b‡ — — — 0.133 0.575 0.034 0.370 0.00958

c‡×10−4 — — — -0.755 1.85 10.0 5.60 3.58

† Fitted to equation (8.1).
‡ Fitted to equation (8.2).

the values of Q (i.e Q = 3m and 3m + 1) as shown in Figure 8.7. The values of fitting

parameters ω, b, and c are tabulated in Table 8.2.
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Figure 8.7: The energy band gap (Eg ) of GNMs with rectangular nanohole as a function of lattice
parameter P for various values of Q. The data are fitted to equation (8.2).

Fixing the unit cell of a GNM (P and Q are fixed) and changing the hole size (Nr ),

result in Eg varying with Nr as shown in Figure 8.8. In this figure, the dashed lines

represent fitting our data according to the scaling rule (8.1). This is not a very good fit, but

the fit can be improved by allowing the exponent of Nr to vary as suggested by Oswald

and Wu [74]. That is, the modified formula reads

Eg =ωNσ
r

Nt
, (8.3)

where the exponent σ is used instead of 1/2 and is regarded as a fitting parameter.

Oswald and Wu found that σ= 0.3, with ω= 35 and 42 for the GNMs (5×9) and (7×12)
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Figure 8.8: The energy band gap (Eg ) as a function of the size of hexagonal hole punched in a
GNM with fixed lattice parameters (P and Q). The dashed lines are fitted of the calculated points
to the Pedersen formula (8.1). The solid lines represent the fitting of our data to Oswald formula
(8.3) (left) with σ= 0.3 and (right) with σ treated as a scaling parameter.

respectively, gives better fitting than formula (8.1) does. Figure 8.8 shows the fitting

of our data to Pedersen and Oswald formulas represented by dashed and solid lines

respectively. In panel (a), the exponent σ has treated as a constant equal to 0.3 while in

(b) we allowed for the exponent to vary as additional scaling parameter alongside ω. As

can be seen, the agreement is good in the case of the GNMs (5×9) and (7×12), however,

with larger GNMs we can see that the Pedersen return to give better description of the

energy gap.

The mechanism of opening a gap in GNMs could be understood within the tight

binding model considering π bonding orbitals and nearest neighbour interaction.

However, deriving an analytical expression for the Hamiltonian that describes a GNM is

not trivial owing to its huge unit cell and the complex boundary conditions at hole edges.

Alternatively, we can imagine that, the periodic holes in graphene produce a periodic

Table 8.3: The fitting parameters of equation (8.3) for various GNMs punched with hexagonal
nanohole of different sizes. The exponentσwas treated as fixed and adjustable parameter. In the
case of fixed σ, the only scaling parameter is ω.

P ×Q
σ is fixed σ is varied

ω† ω‡ ω σ

5×9 16.13 32.81 30.44 0.32
7×12 18.02 36.38 26.37 0.39
8×12 18.63 37.54 25.37 0.41
9×15 19.56 39.33 24.61 0.44

† Fitted to equation (8.1) (i.e. σ= 0.5).
‡ Fitted to equation (8.3) (i.e. σ= 0.3).
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perturbation which in turn modifies the band structure of pristine graphene and opens

a gap. In the neighbourhood of the Dirac point, the energy dispersion takes the linear

form

ε∓(q⃗) = E0 ∓~νF q⃗ (8.4)

where q⃗ is a small wave vector 1 and is measured relatively to the Dirac point as q⃗ = k⃗−K⃗,

νF is the electron’s Fermi speed (∼ 106 m/s), E0 is the top of the valence band and finally

the (+) and (-) signs refer to the conduction and valence bands respectively.

Punching periodic holes in a graphene sheet can be viewed as “digging” infinite

wells in the graphene potential land. These potential wells of unpenetrated walls cause

the electronic wave functions to vinish at the hole edge. Consequencely, the linear

relashionship between energy and momentum (equation (8.4)) is modified and the point

apex of Dirac cone becomes smoother similar to those for GNRs and CNTs [74].

Many of the energy bands originate directly from that of pristine graphene without

noticeable changes, except for those that appear around Fermi energy. To compare the

band structure of a system with a unit cell rather than primitive one, the folded bands

are necessary to be considered. The six Dirac points of the primitive hexagonal BZ of

graphene are folded to the ky axis in the BZ for conventional rectangular unit cell. In

the case of a GNM described by P ×Q rectangular unit cell, further folding of the k

points in the BZ of the conventional unit cell occurs into the BZ of the GNM. The k

points are folded P − 1 and Q − 1 times along kx and ky axes respectively. Therefore,

the original Dirac point is located somewhere along the Γ−Y direction of GNM’s BZ

where the opening of a gap might occur. As a result, varying Q in a GNM changes

the energy dispersion characteristics along the Γ−Y direction, while changing P only

gradually modifies the dispersion quantitatively.

8.3 Transport properties

The transmission spectrum of various GNMs with hexagonal hole were calculated to

inspect the dependency of the conductance on the lattice parameters P and Q and the

hole size. By comparing the transmission graphs depicted in Figure 8.9 with that of band

1 The assumption of smallness of q⃗ is required to ensure that the linearity of the energy dispersion is
valid.
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Figure 8.9: The transmission spectrum of various GNMs with a hexagonal hole, (a) for different
hole sizes using (5×9) GNM, (b) for Q = 9 and different P , and (c) for P = 6 and different Q. In the
case of (b) and (c) a hexagonal hole with 24 carbon atoms has been used.

structure shown in Figure 8.4, we can see clearly that the conductance behaviour of the

GNMs is originated directly from the electronic band structure. The only exception is

the (6×9) GNM, that is because transmission spectra exhibits a gap of 0.625 eV while the

band structure calculations reveal a gap of 0.451 eV. In addition, the conductance totally

vanishes over the range −1.0 to 0.38 eV except a little (ramp) plateau around −0.33 eV.

8.4 Conclusions

We demonstrated that GNMs provide great flexibility in engineering structure with

desired band gaps. This is because a number of factors can be varied. This includes

the size of the structure which in turn is determined by the repeat distance of the

conventional unit cell of pristine graphene. In addition, the size and shape of the

holes affect the band gap, band structure and transport properties making the GNMs

an exciting for the future applications.
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CHAPTER 9

CONCLUSIONS

9.1 Summary

In this thesis, a C++ code named EHTransport, developed at Cardiff University and based

on the self consistent extended Hückel theory, was used to investigate the electronic

band structure and electrical transport properties of various systems. These systems

include the biological molecules, porphyrin and DNA, and graphene based materials

represented by nanoribbons, grain boundaries and nanomeshes. One of the aims of the

present work was to demonstrate that EHT is able to produce reliable results for small

systems such as porphyrin molecules which are comparable to those obtained by ab

initio methods. Having established this, EHT was applied to study larger systems beyond

the scope of ab initio techniques. Two classes of systems were investigated: molecular

wires and 2D graphene based interconnects.

In studying molecular wires, the SC-EHT approach was used to investigate the factors

that influence the electronic and transport properties of porphyrin molecules. This

included the molecular length, metal atom at the centre of porphyrin ring, molecular

conformation, and the effect of water molecules surrounding the molecule. It was

found that the conductance of a nanowire made from porphyrin showed an exponential

dependence on the wire’s length with an attenuation factor β equals to 0.149 Å−1. This

exponential dependence reveals that the main mechanism of the electronic transport

in porphyrin based systems is the coherent tunneling. It was also shown that changing

the central metal atom in porphyrin ring can affect the behaviour of the transmission

function. In addition, investigating the pathways of bond current showed that most

of the current flows through the central metal atom in the case of Fe-porphyrin, while

the path around the sides of the porphyrin ring is preferable if the metal atom is Zn.
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Finally, our calculations revealed that porphyrins surrounded by water molecules exhibit

an enhancement in their conductance.

As with the porphyrin wires, transmission through DNA systems was also found

that it depends on a number of factors. Among the important factors are: the length,

the base sequence, the base type, and the environment. For example, our calculations

showed that the transmission is inversely proportional to the DNA length in agreement

with experimental observations. The sequence dependence was demonstrated by

calculations that showed the CG sequence to have better conduction than AT sequence.

Finally, the presence of water molecules around the DNA fragment also helped

improve the conductance. We have been able to demonstrate that the reason for the

enhancement of the conductance across molecular wires in solution is a consequence of

the change in work function at the contacts. This change in the work function is directly

related to the electrostatic interactions and to the polarization of the water.

For the graphene based systems, the EHT parameter set was optimised so that the

results for the electronic band structure and DOS of pristine graphene agreed with

that found using DFT. Then, the SC-EHT was used to explore various configurations

that opened the gap in graphene which is an important control for its electronic and

transport properties.

Cutting the 2D graphene into ribbons is one of such methods used to modify its

electronic band structure around the Dirac points. These nanoribbons are of two types

depending on their edges shape: armchair and zigzag. The armchair ribbons were

confirmed to be semiconductors which their energy gap is inversely proportional to

the ribbon width. By contrast, the zigzag ribbons preserve the semi-metalitiy nature of

pristine graphene. The step function behaviour of the transmission spectra for graphene

nanoribbons reveals that the conduction through them occur ballistically. The electronic

and transport properties of graphene nanoribbons can be further refined by several

methods, including for example, by punching periodic holes in it. Such configurations

were also considered and the EHT results were found to be in a good agreement of a

previous DFT study.

Graphene sheets with grain boundaries is another approach that can be used for gap

engineering. Although, most of grain boundaries structure in polycrystalline graphene

show zero gap in the conductance spectra, a few of them, under particular geometrical
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circumstances, exhibit a gap which depends mainly on the periodic length of the grain

boundary. This feature can be explained usefully by a theoretical model proposed by

Yazyev and Louie [53].

Finally, 2D graphene sheets with periodically punched nanoholes were explored. The

advantage of this technique is its flexibility in designing the desirable feature through

changing various factors. These factors include, the shape and size of the hole, the neck

widths that separate the adjacent holes along armchair Wx ∝ P and zigzag (Wy ∝ Q)

edges of the sheet, the size of the supercell, and the passivater atoms at the inner edges

of the holes. From EHT results, one third of the samples punched with hexagonal

holes turn out to be semiconductors with an energy gap decreasing inversely with the

neck width Wx . The shape of the holes in the nanomesh also has important effect.

Thus a rectangular shaped hole results in a gap in two thirds of the samples with

the same trend of energy gap dependence on Wx . Moreover, for the semiconductors

graphene nanomeshes with hexagonal holes, it was demonstrated that the energy

gap increases with increasing the size of the hole. Most of these characteristics can

be understood by imagining that punching nanoholes in 2D sheet of graphene is

equivalent to introducing infinite potential wells. These wells can considerably modify

the electronic and transport properties of GNMs.

9.2 Further work

Future research can be made on two different aspects:

1. Extending the ability of the EHTransport code. There are many potential

approaches to extend and improve the efficiency of the current version of the

EHTransport code, such as, using parallel algorithms wherever it is possible,

developing a graphic user interface (GUI) software to help set up the geometrical

structures of systems to be investigated, and adding some other features like

energy optimization.

2. Exploring other systems for example the two dimensional graphene like materials,

such as MoS2 and hexagonal boron nitride, GNRs with periodically nanoholes

using different passivater atoms at the ribbons edges, and dopping GGBs with

some impurities such as nitrogen and boron.
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