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SUMMARY 
 
 

Background 

Numerous studies into the effect of probiotic supplementation in the infirm have been carried out. 

However, research into the effect of long-term probiotic supplementation in healthy individuals is 

lacking. With this in mind the PROHEMI study, a randomized, double-blinded, multi-centre and long-

term (6 months) probiotic feeding study in healthy males was designed and carried out. Through the 

use of varied culture dependent and independent techniques, the effects of long-term probiotic 

consumption were researched. In addition, a study into the effect of freezing faecal material on its 

bacterial composition was also carried out. 

 

 

Results 

Through a community fingerprinting technique and next generation sequencing it was shown that 

the distal gut bacterial community is unaffected by probiotic supplementation. Functional screening 

of faecal material showed a reduction in bacteria expressing protease activity when probiotic 

supplementation began. In addition, bacteria expressing β-galactosidase and β-glucuronidase 

activity increased during probiotic supplementation. Metabonomic analysis showed no difference in 

metabolite profiles attributable to probiotic supplementation. However, differences between the 

gut bacterial community, metabonomic profiles, and bacteria expressing functions were observed 

between the two study centres. Freezing of faecal material at -20°C detrimentally affected its 

bacterial composition between 2 weeks and 3 month storage time-points. Significant reductions in 

the abundance of the Bacteroidetes phylum observed following 6 months of storage at -20°C. 

 

 

Conclusions 

Long-term probiotic administration in healthy individuals did not seem to affect the distal gut 

bacterial community in these individuals and did not affect metabonomic profiles. However, some 

functions expressed by the resident distal gut bacterial community were significantly affected during 

probiotic supplementation. DNA extraction from faecal material should ideally be carried out from 

fresh samples. Failing this it is not recommended to store samples at -20°C for longer than 2 weeks 

prior to DNA extraction. 
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CHAPTER 1 – INTRODUCTION 
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1 INTRODUCTION 

 

1.1 The human gut microbiome 

Human associated microbes referred to as our microbiome, have been extensively studied in 

recent years with a particular focus on bacteria. The Human Microbiome Project (HMP) 

(Turnbaugh et al. 2007) aims to fill in gaps of knowledge from the Human Genome Project. The 

cells, which make up our microbiome, significantly outnumber our own cells by a factor of 10 and 

in this sense we can consider ourselves more microbial than human. Through the significant 

increase in our gene pool, which is provided by these organisms, we can think of humans as 

super-organisms (Lederberg 2000). There is an intimate association between us and our co-

evolved microbiome. The human gut, with an approximate area of a tennis court, harbours most 

of our associated bacteria (Whitman et al. 1998) containing approximately 1014 bacterial cells 

(Ley et al. 2006a). The gut of new-born babies was initially thought to be sterile and becomes 

colonised at birth by bacteria from the mother’s vagina and environment. Succession of microbial 

consortia follows until a fairly uniform microbial community is established (Mändar and Mikelsaar 

1996; Palmer et al. 2007). However, in a more recent study it has been shown that the 

meconium, the first stool passed by new-born babies, is not sterile. It contains bacteria, fungi, 

viruses and Euryarcheota (Koenig et al. 2011). It has been argued by Koenig and co-workers that 

there are four steps in the development of an adult gut in infants. The first step is characterised 

by an abundance of the number of lactose/galactose metabolising genes due to breast milk 

feeding. The steps are separated by life events with events such as fever separating steps 1-2. 

The introduction of solids separates steps 2-3. Finally the commencement of an adult diet in 

conjunction with antibiotic therapy separates steps 3-4. By step 4 the gut microbiota and genes 

expressed resemble an adult gut. With regards to the adult gut, there is a general consensus that 

a core gut microbiome is shared amongst adults. Analysis of the distal microbial community of 3 

adults (43, 50 and 50 years old respectively) showed that the major phyla were the Firmicutes 

and Bacteroidetes (Eckburg et al. 2005). Other phyla such as the Proteobacteria and 

Actinobacteria were present at a lower abundance. While the abundance of phyla remained 

relatively uniform across the subjects, there were inter-person differences at lower taxonomic 

levels, showing that there is variation from person to person in terms of their distal gut 

community. In a more recent analysis of the distal gut community, Turnbaugh and colleagues 

strengthened the notion of inter-personal differences in the distal gut community of individuals 
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(Turnbaugh et al. 2009). However, it was suggested that a core microbiome is present but at the 

gene level rather than at a taxonomic level and gives rise to functional redundancy. In a short 

review Turnbaugh and Gordon suggest that changes to the core microbiome and specifically the 

genes expressed can give rise to obesity in individuals, as genes responsible for energy harvest 

may be more abundant in these individuals (Turnbaugh and Gordon 2009).  

 

1.1.1 The human gut microbiome in health 

Within the gut, services are provided by our microbiota such as vitamin B synthesis (Burkholder 

and McVeigh 1942), the importance of which may have been overlooked previously, as it has 

been shown that carrier mediated absorption of riboflavin occurs in the rat colon (Yuasa et al. 

2000). Our gut microbiota provides protection against pathogens (O'Hara and Shanahan 2006). 

This protection is further highlighted in a study showing that the human gut microbiota decreases 

Shiga toxin 2 (Stx2) production in entero-haemorrhagic Escherichia coli (EHEC) O157:H7 (de 

Sablet et al. 2009). The human gut microbiota also exert immunomodulatory effects (Round and 

Mazmanian 2009). The gut microbiome has been shown to play a pivotal role in intestinal 

homeostasis where it has been suggested that the intestinal microbiota is a selective regulator of 

nuclear receptors (Arulampalam et al. 2006). This regulation in turn gives rise to anti and pro-

inflammatory responses within the gut. The importance of the gut microbiota is now being 

understood in terms of its effect on our endocrine system. There is an increasing volume of 

research in this area and has recently been reviewed (Evans et al. 2013). For instance, the gut 

produces a high level of dopamine and norepinephrine. Murine models show that this occurs 

through the cleavage of their conjugated inactive forms by bacterial β-glucuronidases in the gut 

lumen (Asano et al. 2012). The concept of gut commensals and pathogens driving the correct 

development of the immune system has been researched for some years, especially since the 

advent of the "hygiene hypothesis" concept (Strachan 1989, 2000). However, it has been shown 

in a more recent study that correct intestinal immune system maturation occurs through host 

specific gut commensal microbes and not just any gut commensal (Chung et al. 2012). This was 

shown through the use of germ-free (GF) mice, mouse specific microbiota and human specific 

microbiota. Colonisation of the GF mouse with human specific microbiota resulted in an 

immature intestinal immune system. The human microbiota associated GF mice showed lower 

levels of T-lymphocytes and lower levels of dendritic cells in the small intestine. Furthermore, 

when challenged with Salmonella typhimurium Serovar Typhimurium the human microbiota 

offered the GF mice worse protection than the mouse specific microbiota. Higher loads of the 
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pathogen were observed four days post-infection. There was a highly significant (p<0.001) 

increase in the level of pathogen translocation to the spleen and inflammation of the cecal wall 

observed in the human microbiota GF mice. This research highlights the role that a host's closely 

evolved gut microbiota has upon the development of its own immune system. The gut microbiota 

also drives the development of the gut as an organ. It has been shown that transplantation of a 

normal murine cecal microbiota into GF mice drives vascular remodelling in the small intestine 

(Reinhardt et al. 2012). The authors highlight a novel mechanism whereby the colonisation drives 

an increase in the localisation of tissue factor TF. This localisation in turn leads to coagulation 

cascade activation and leads to vascular remodelling through angiopoietin-1 (Ang-1). Remodelling 

is achieved through a series of steps which involve the phosphorylation of the cytoplasmic 

domain of TF by protease-activated receptor 1 (PAR1). Changes in the morphology of the gut 

have also been observed in GF pigs, where it was observed that GF and mono-associated pig guts 

had long villi and shorter crypts than conventionally raised pigs (Shirkey et al. 2006). Germ free 

animals also exhibit smaller Payer's patches, a decrease in the amount of lamina propria and the 

development of a mega caecum in gnotobiotic rodents (Thompson and Trexler 1971). We should 

therefore think of our gut microbiota as completely necessary for the development of healthy gut 

morphology and function therein.  

1.1.2 The human gut microbiome in disease  

Many studies have highlighted the associated perturbation of the host gut microbiome following 

antibiotic therapy in both mice (Antonopoulos et al. 2009; Sekirov et al. 2008) and in humans 

(Dethlefsen et al. 2008; Jernberg et al. 2007). These perturbations can give rise to complications 

such as antibiotic associated diarrhoea (AAD) (Wiström et al. 2001) and pseudomembranous 

colitis due to overgrowth of Clostridium difficile. Both arise as a result of decreased competition 

(Bartlett et al. 1978; Wiström et al. 2001). Perturbations of the gut microbiome have been linked 

to an increased susceptibility of enteric infections in mice (Sekirov et al. 2008). The gut 

microbiota in many instances has been implicated in the progression of complex disorders within 

the human body including type II diabetes (Larsen et al. 2010; Qin et al. 2012) and controversially 

in both obesity (Ley et al. 2006b; Schwiertz et al. 2009) and autism (Finegold 2008; Sandler et al. 

2000; Song et al. 2004). With regards to obesity, it has been suggested that the gut microbiota of 

some individuals is more adept at extracting energy from food sources (Bäckhed et al. 2004) and 

this contributes to the progression of the disease. Furthermore, it has been shown that the gut 

bacterial community of obese mice is different to those who are not, with a reduction in the ratio 

of Bacteroidetes to Firmicutes, the two major bacteria phyla present in the human gut (Ley et al. 
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2005). However, more recent research, in humans, challenges this observation. Duncan and 

colleagues (Duncan et al. 2008) have shown no significant difference in the percentage of 

Bacteroidetes in obese and non-obese individuals (27.2% vs. 21.9% respectively, p=0.084). It must 

be noted however, that the measure used, body mass index (BMI), does not solely take into 

account body fat percentage. Another study has shown that GF mice also developed obesity 

while on a high fat diet (Fleissner et al. 2010). This confusion highlights the need for further 

research into the effect of the human microbiome in health and disease. 

 

1.2 Methods implemented in order to analyse the gut microbiota 

composition and functions 

In order to analyse the gut microbiota and its functions a whole suite of techniques and methods 

are needed. Initially many of the techniques used to analyse any ecosystem were culture 

dependent. Researchers became aware of the caveats associated with using these techniques 

with the coining of the "great plate count anomaly" (Staley and Konopka 1985). With regards to 

the gut microbiome itself, there was already concern around the issue of biased culture 

dependent methods prior to Staley and Konopka. There was a particular focus on the effect of 

the culturing methods implemented at the time on the recovery of anaerobic bacteria from the 

human gut (Hughes 1972). There have been significant advances in the molecular field of biology. 

These advances include the advent of the polymerase chain reaction (PCR) (Saiki et al. 1985) and 

Sanger sequencing (Sanger et al. 1977). This was followed by next generation sequencing (NGS) 

through pyrosequencing (Margulies et al. 2005) and now through the use of protons (Rothberg et 

al. 2011). There has also been an increase in the understanding of the underlying biology of 

microorganisms. An example of this is the use of ribosomal RNA (rRNA) genes as molecular 

chronographs (Woese et al. 1990), that is to say the use of these genes to provide an account of 

the evolutionary history of bacteria. The advancement in technical expertise and knowledge has 

led to a culture independent revolution in biology.  

 

1.2.1 The use of culture dependent methods in order to analyse the gut microbiota 

and functions 

While culture dependent methods have their drawbacks, they still provide a useful set of tools in 

order to interrogate the gut microbiota and the functions provided therein. It is sometimes 

advantageous or of interest to select for specific groups of bacteria. This can be achieved through 
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the use of selective media such as the use of de Man, Rogosa and Sharpe (MRS) agar for the 

selection of Lactobacilli (De Man et al. 1960). MRS agar has been used in order to recover 

Lactobacillus rhamnosus from human colonic biopsy samples (Alander et al. 1997). Specific media 

formulations also allow for functional screening of the gut microbiota such as cholesterol 

degraders and bile salt hydrolase (BSH) tolerant organisms (Pereira and Gibson 2002). Culture 

dependent methods can also be used in order to test for the genotoxicity of faecal water, that is 

to say the ability of faecal water to induce DNA damage. The genotoxicity of faecal water can be 

measured through the incubation of faecal water with a test organism (Venitt and Bosworth 

1986). 

1.2.2 The use of culture independent methods in order to analyse the gut microbiota 

and functions 

1.2.2.1 The use of 16S rRNA as a target in bacterial communities 

The use of the 16S rRNA as a target for phylogenetic analysis was pioneered by Carl Woese and 

was used, amongst other rRNA targets, in his construction of the three domains of life, namely 

the Bacteria, Archaea and Eucarya (Woese et al. 1990). The 16S rRNA genes are still a target for 

many molecular microbiologists today. The reasons for their use have been previously discussed 

(Janda and Abbott 2007). 16S rRNA genes are essential housekeeping genes and are therefore 

ubiquitous amongst bacteria. The genes according to Janda and colleagues are also big enough 

for informatics use. Following the elucidation of its secondary structure in 1980 (Woese et al. 

1980) it was determined that there are conserved and hypervariable regions, V1-V9. Through 

designing various PCR primers these variable regions, with flanking conserved regions can be 

targeted and phylogenetic information can be gleaned (Chakravorty et al. 2007). Due to the 

variable nature of these regions it can be difficult to design primers which can target all bacteria 

equally. This problem has been recently discussed (Pinto and Raskin 2012) where biases in mutli-

template 16S rRNA PCR affected the relative numbers of bacteria detected through 

pyrosequencing. This is of particular concern as many researchers focus on the relative 

abundance of specific bacterial taxa whilst analysing their datasets. 

1.2.2.2 Community profiling of faecal DNA 

Community profiling of the gut microbiota can be carried out using denaturing gradient gel 

electrophoresis (DGGE) of the 16S rRNA genes obtained from faecal DNA (Simpson et al. 2000), 

terminal fragment length polymorphism (t-RFLP) analysis of faecal DNA (Dicksved et al. 2007) or 

length heterogeneity PCR (LHPCR) of 16S rRNA genes obtained from faecal DNA (Bjerketorp et al. 
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2008). These methods are relatively high-throughput and inexpensive to carry out and are 

appropriate for use in the PROHEMI study, due to their previous published use with faecal DNA. 

With regards to DGGE and LHPCR the primers used in order to amplify the 16S rRNA and the 

products generated are different and this arises from how the products are treated. In their 

analysis Simpson and colleagues (Simpson et al. 2000) used ~200 bp products to run on 

denaturing gradient gels for their DGGE analysis. In contrast, LHPCR utilises a labelled forward 

primer and the use of a capillary sequencer in order to determine the length of fragments 

generated. The primers used are also varied with some researchers generating ~350 bp 

(Bjerketorp et al. 2008) LHPCR products and others generating ~530 bp products (Eusebio et al. 

2011). 

1.2.2.3 NGS and metagenomics in order to determine bacterial community structure and 

functions 

However, recently more emphasis is being placed upon characterisation of complex 

communities, such as the gut microbiome, through NGS. This is due to its high throughput 

nature, vast reduction in cost and volume of information generated. Technologies, such as 454 

pyrosequencing, have been applied to the gut microbiome. NGS of amplified 16S rRNA genes 

from faecal DNA were used in order to assess the composition of the core gut microbiome in 

obese and lean twins (Turnbaugh et al. 2009). NGS technologies are constantly evolving. The use 

of new sequencing platforms such as the Illumina HiSeq and MiSeq have been successfully 

applied to sequence 16S rRNA genes obtained from DNA from a range of sources. These sources 

include the soil, mouth, skin and more importantly human faecal material (Caporaso et al. 2012). 

It is also possible to predict the functions, such as butyrate synthesis or methanogenesis, present 

in a community from sequenced 16S rRNA genes. This information, obtained from the community 

in question, can be analysed using software called PICRUSt (Langille et al. 2013). The software 

utilises databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

database to assign functions for a given 16S rRNA gene sequence. Through this the functions 

present within the community as a whole may be inferred. While this software infers functions 

within communities it is possible to interrogate the functions present within a community 

through metagenomics and metatranscriptomics. Metagenomic approaches have been 

successfully applied to the human gut through the NGS of a metagenomic library. Libraries are 

constructed from human faecal DNA (Qin et al. 2010) and provide a wealth of information on the 

genes present within the community. However, metagenomic libraries generated from DNA do 

not tell us whether the genes are actually expressed within the community under investigation. It 
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is also possible to combine culture independent and dependent approaches in order to answer 

questions about the community we are analysing. This can be achieved through functional 

metagenomics. Metagenomic libraries are created in a host organism such as Escherichia coli or 

Bacillus subtilis. Then screening for a function of interest, for example the screening of protease 

activity (Morris et al. 2012), from a metagenomic library can be carried out. However, 

metagenomic screening does have its drawbacks, such as problems with expression of the gene 

of interest (de Lorenzo 2005). 

1.3 Probiotic supplementation 

The definition of a probiotic has long been disputed with Schrezenmeir and de Vrese arguing for 

the adoption of the following definition: "a preparation of or a product containing viable, defined 

microorganisms in sufficient numbers, which alter the microflora (by implantation or 

colonisation) in a compartment of the host and by that exert beneficial health effects in this host" 

(Schrezenmeir and de Vrese 2001). This wholly encompassing definition has since been simplified 

by the World Health Organisation (WHO) and is generally regarded as the definition of a probiotic 

where probiotics are defined as "live microorganisms which when administered in adequate 

amounts confer a health benefit on the host" (WHO 2002). The probiotic market itself is rather 

lucrative with an estimated market share of $24.23 billion in 2011 (Markets and Markets 2013). 

Much of the revenue generated is due to the health claims which surround these products. These 

health claims are now coming under scrutiny by bodies such as the European Food Safety 

Authority (EFSA). In order to ensure that consumers were not falling prey to smart marketing, 

where there was little or no evidence of a health benefit from a specific probiotic preparation, 

health claims were submitted to the EFSA. These health claims were then reviewed by a panel. Of 

143 health claims submitted for probiotic products none were found to be substantiated by the 

EFSA (Guarner et al. 2011). While protecting consumers from unsubstantiated health claims the 

authors expressed concern that products which did have scientific proof of efficacy were being 

rejected due to too stringent guidelines. In Japan the Labelling Regulation for Foods for Specified 

Health Use (FOSHU) decree has been passed. Industrial producers of probiotic products can 

voluntarily submit evidence of health benefits in order to advertise their claims on the products' 

labels (Rousseaux et al. 2007). 
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Probiotic supplementation has been and is being researched in healthy people and in the infirm. 

Although logic would drive us to assume that research is being directed at their effects solely 

within the gastro-intestinal tract (GIT) this is not the case. It is becoming increasingly apparent 

that the gut microbiota extends an influence on the host far beyond its niche; positively and 

negatively affecting host health and well-being (Sekirov 2010) (Fig. 1.1). All probiotic organisms 

destined for human consumption have been isolated from humans and re-administered. The 

majority of probiotic organisms used are bacteria, including members of the lactic acid bacteria 

(LAB) family such as Lactobacillus acidophilus, Actinobacteria such as Bifidobacterium breve, even 

the archetypical gut commensal E. coli. However, the yeast Saccharomyces boulardii has also 

been used. The choice of probiotic organism used is often driven by cultural and geographical 

reasons. For example, the use of a Weisella strain after isolation from fermented foods in Nigeria. 

LAB strains have also been used due to their isolation from fermented milk in Africa and 

Mongolia and after isolation from the fermented yak milk derived Kurut in China (Fontana et al. 

2013). The safety of a probiotic organism is of utmost concern as these are usually fed at high 

numbers and in many instances to those who are unwell. There has been some concern 

surrounding the use of Lactobacillus rhamnosus GG especially in the infirm, as cases of 

bacteraemia have been reported. In an infant that received heart surgery, broad spectrum 

antibiotics were administered. Upon development of diarrhoea supplementation with L. 

rhamnosus GG (1 x 1010 cells per day) was carried out. This patient developed fever, an increase 

in leukocytes and was blood culture positive for Lactobacillus. Probiotic treatment was halted 

and the patient showed improvement in the 48 to 72 hours following cessation of probiotic 

treatment (Land et al. 2005). The authors also highlighted another case where a 6 year old 

presenting with a urinary tract infection was treated with many courses of antibiotics and 

received L. rhamnosus GG (1 x 1010 cells per day). This was in an effort to combat her perceived 

antibiotic associated diarrhoea. The girl showed symptoms of fever and was blood culture 

positive for Lactobacillus; probiotic treatment was halted and intravenous administration of 

ampicillin was introduced for 10 days. The patient showed no symptoms of fever after 4 days of 

antibiotic treatment and was culture negative for Lactobacillus. Bacteraemia was also seen in two 

patients with short gut syndrome. Blood cultures from these patients tested positive for 

Lactobacillus following treatment with L. rhamnosus GG (Kunz et al. 2004) Lactobacillus 

bacteraemia was also observed in a paediatric ulcerative colitis (UC) patient (Vahabnezhad et al. 

2013). 
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The probiotic yeast Saccharomyces boulardii has also been implicated in fungemia. Four cases of 

this were observed in vascular catheterised patients. It was thought that the opening of packets 

containing the probiotic contaminated the catheters, which in turn acted as a source for the 

fungemia (Hennequin et al. 2000). Fungemia caused by S. boulardii supplementation was also 

seen in seven critically ill patients, 3 of whom were immunocompromised. All patients had 

central venous catheters and all patients were undergoing broad spectrum antibiotic therapy 

(Lherm et al. 2002). The probiotic was administered in an effort to reduce antibiotic associated 

diarrhoea, but instead was linked with fungemia with the exact mechanism unknown. However, 

the authors suggest that central venous catheter contamination may have occurred, in the same 

manner as previously described by Hennequin and colleagues. It has also been suggested that 

overgrowth due to broad spectrum antibiotic therapy, especially in the immunocompromised, 

was another mechanism for the development of the fungemia. In all of the aforementioned cases 

the patients had underlying health problems. It is therefore imperative that the safety testing of a 

specific probiotic strain is carried out prior to mass administration in these ill patients. 
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Figure 1.1| The impact of the gut microbiota on the gut and beyond – the figure has been adapted from (Sekirov 2010) and (Culligan et al. 2012). 



CHAPTER 1 – INTRODUCTION 

30 
 

1.3.1 The use of probiotic supplements in unhealthy individuals 

The literature on the use of probiotic supplementation is growing. There are studies providing 

evidence for symptom and disease management in the infirm. Equally studies show little to no 

effect in some instances. 

Many studies focus on the use of probiotic supplements as treatments or adjuvants to current 

therapies for disorders of the GIT, which is unsurprising due to its microbial load. The positive 

effects of some probiotic species are shown (Table 1.1-1.3) and have been discussed. 

There is an abundance of research showing the positive effects that probiotic supplementation 

can exhibit in the infirm. However, there are also studies which show that supplementation 

exerts no benefits, and in extreme cases can cause worsening of the disease (Table 1.4 and 1.5).  
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Table 1.1| The positive effects of probiotic supplementation in the infirm 

*marks a significant effect (p<0.05) when compared with the placebo group 

 

Ailment Probiotic preparation Dose Period of intervention Effect Reference 

IBS 

B. infantis 35624 
 
 

B. breve Bb99, L. 
rhamnosus GG, L 

rhamnosus LC705 and P. 
freudenreichii ssp. 

Shermanii JS 

1 x 1010/day 
 

1 x 108 CFU/mL 
 
 

 
 
 

8-9 CFU/day 

8 weeks 
 

4 weeks 
 
 

 
 
 

6 months 

Normalisation of IL-10 levels 
 

Reduction in pain and scores 
for bloating, bowel 

dysfunction, incomplete 
evacuation, straining and 

passage of gas 
 

Reduction in symptom score* 

{O'Mahony, 2005 #540 
} 

(Whorwell et al. 2006) 
 
 
 
 
 

(Kajander et al. 2005) 

IBD 

B. longum + FOS + Inulin 
 

S. boulardii 
 
 

E. coli Nissle 1917 

2 x 1011 viable cells + 6 g 
twice daily 

 
250 mg probiotic 

capsule alongside 1 g 
mesalazine treatment 

three times daily 
200 mg capsule 

4 weeks 
 
 

4 weeks 
 
 

12 months 

Reduction in TNF-α and IL-
1α* 

 
Clinical remission 

Reduction in clinical score 
index* 

Probiotic maintained 
remission as effective as 

mesalazine treatment 

(Furrie et al. 2005) 
 
 

(Guslandi et al. 2003) 
 
 

(Kruis et al. 2004) 
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Table 1.2| Continued from Table 1. 1 

*marks a significant effect (p<0.05) and ** marks a highly significant effect when compared with the placebo group 

 

Ailment Probiotic preparation Dose Period of intervention Effect Reference 

Pouchitis VSL#3 9 x 1011CFU/day 1 year 

Lower occurrence * 
 

Maintenance of antibiotic 
induced remission** 

(Gionchetti et al. 2003) 
 

(Mimura et al. 2004) 

AAD 

L. casei, L. bulgaricus and S. 
thermophilus 

 
VSL#3 

1 x 108, 1 x 107 and 1 x 
108 CFU/ml respectively 

twice daily 
 

90 x 1010/day 

During one week of 
antibiotic therapy and one 

week after 
During the course of 

antibiotic therapy and one 
week after 

 
Reduced incidence* 

 
 

Reduced incidence* 

 
(Hickson et al. 2007) 

 
 

(Selinger et al. 2013) 

CDAD 
L. casei, L. bulgaricus and S. 

thermophilus 

1 x 108, 1 x 107 and 1 x 
108 CFU/ml respectively 

twice daily 

During one week of 
antibiotic therapy and one 

week after 
Reduced incidence* (Hickson et al. 2007) 

Liver 
transplant 

P. pentosaceus, Leu. 
paracasei, L. paracasei and 
L. plantarum , betaglucan, 
inulin, pectin and resistant 

starch 

1 x 1010 viable cells with 
2.5 g each of 

betaglucan, inulin , 
pectin and resistant 

starch twice daily 

Started on the day of liver 
transplant and continued for 

14 days after 

Shorter period of antibiotic 
therapy required 

Reduced incidence of 
bacterial infections* 

(Rayes et al. 2005) 



CHAPTER 1 – INTRODUCTION 

33 
 

 

Table 1.3| Continued from Table 1. 1 

*marks a significant effect (p<0.05) when compared with the placebo group 

 

Ailment Probiotic preparation Dose Period of intervention Effect Reference 

NEC 

L. acidophilus and B. 
infantis 

 
B. infantis, S. thermophilus 

and B. bifidus 

25 mg/kg dose twice 
daily 

 
0.35 x 109 CFU/day 

 

 
Until discharged 

 
Continued until VLBW 

infants reached 36 weeks 
post-conceptual age 

 
Reduced incidence* 

 
Reduced incidence* 

Reduced incidence of 
clinically significant NEC 

 
(Lin et al. 2005) 

 
 

(Bin-Nun et al. 2005) 

AE 

 
L. rhamnosus and L. reuteri 

 
L. rhamnosus GG, L. 

rhamnosus LC705, B. breve 
Bb99 and P. freudenreichii 
ssp, shermanii JS + galacto-

oligosaccharides in new-
borns 

 

 
1 x 1010CFU twice daily 

 
5 x 109, 5 x 109, 2 x 108 

and 2 x 109 CFU 
respectively twice daily. 

New-borns also 
received 0.8 g galacto-

oligosaccharides 

 
6 weeks 

 
 

Given to mother's at 35 
weeks of gestational age and 
continued in new-borns for 6 

months 

 
Reduced severity* 

 
 
 

Reduced incidence 

 
(Rosenfeldt et al. 2003) 

 
 
 

(Kukkonen et al. 2007) 
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Table 1.4| The negative and no effects of probiotic supplementation in the infirm 

†when compared with the placebo group 

* marks a significant effect (p<0.05) when compared with the placebo group 

 

Ailment Probiotic 
preparation 

Dose Period of intervention Effect Reference 

Pancreatitis 

L. casei, L. 
salivarius, L. 

lactis, B. 
bifidum, B. 

lactis 

1 x 1010 bacteria/day Maximum of 28 days 

No significant difference in 
primary end-point†. 

More deaths*. 
Increase incidence of bowel 

ischemia*. 

(Besselink et al. 2008) 

IBS VSL#3 9 x 1011 bacteria/day 8 weeks 

No significant difference in 
GIT transit time, relief of 

symptoms, stool frequency, 
consistency or ease of 

passage† 

(Kim et al. 2003) 

IBD 

L. rhamnosus 
GG 

 
L. johnsonii LA1 

1 x 109 CFU twice daily 
 

1 x 109 CFU twice daily 
 

6 months following antibiotic 
induced remission 

 
6 months 

No significant difference in 
antibiotic induced CD 

remission† 
No significant difference in 

recurrence rates† 

(Schultz et al. 2004) 
 

(Marteau et al. 2006) 
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Table 1.5| Continued from Table 2. 1 

†when compared with the placebo group 

* marks a significant effect (p<0.05) when compared with the placebo group 

 

Ailment Probiotic preparation Dose Period of intervention Effect Reference 

Pouchitis L. rhamnosus GG 
0.5-1.0 x 1010 CFU four 

times daily 
3 months 

No significant difference in 
PDAI scores† 

(Kuisma et al. 2003) 

AE 

 
L. acidophilus LAVRI-A1 

 
 
 
 
 
 
 
 

L. rhamnosus GG 

 
3 x 109 bacteria/day 

 
 
 
 
 
 
 
 

5 x 109 CFU twice daily 

 
6 months 

 
 
 
 
 
 
 

4-6 weeks before expected 
birth and 6 months following 

birth 

 
No significant difference in 

rate of AE†. 
Increased rate of sensitisation 

to allergens*. 
 

No significant difference in 
episodes of fever, airway 
infections, IgE levels nor 
sensitisation to inhalant 

allergens†. 
Increased frequency of 

recurrent wheezing 
bronchitis*. 

 
(Taylor et al. 2007) 

 
 
 
 
 
 
 
 
 

(Kopp et al. 2008) 
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1.3.1.1 The positive effects of probiotic supplementation in irritable bowel syndrome 

Irritable bowel syndrome (IBS), "comprises a group of functional bowel disorders in which 

abdominal discomfort or pain is associated with defecation or a change in bowel habit, and with 

features of disordered defecation," (Thompson et al. 1999). IBS is thought to affect around 10-

20% of adults and adolescents worldwide (Longstreth et al. 2006). The exact cause of IBS is 

unknown and is thought to be multi-factorial with genetic factors, motor dysfunction of the GIT, 

visceral hypersensitivity, infection, inflammation, immunity as well as psychopathological factors 

playing roles (Quigley 2003). While most therapies are aimed at reducing patient discomfort, 

studies are now researching the impact of probiotic supplementation as treatment for the 

syndrome. The rationales behind their use are the potential of probiotic organisms to produce 

antibacterial compounds such as bacteriocins (Corr et al. 2007), exertion of immunomodulatory 

effects, improvement of epithelial function and reduction of gut leakiness through tight junction 

strengthening (Corr et al. 2009). The efficacy of Bifidobacterium infantis 35624 and Lactobacillus 

salivarius UCC4331 in the treatment of IBS have been compared (O'Mahony et al. 2005). IBS 

sufferers consumed a daily malted drink containing either 1 x 1010 viable cells of B. infantis or L. 

salivarius for an 8 week period; the malted milk drink alone served as a placebo. Symptom scores 

were taken for each patient throughout the study with B. infantis showing the greatest 

therapeutic response. Measurements of cytokine release from peripheral blood mononuclear 

cells were also taken. The authors studied the ratio of Interleukin (IL)-10 to IL-12 in IBS sufferers 

(n=69±15) and healthy volunteers (n=176±31); the ratio of IL-10 to IL-12 significantly differed 

between the two groups (p=0.003). IBS sufferers had lower levels of IL-10 which, according to the 

authors, suggests a T helper cell type 1 (Th1) proinflammatory state. However, supplementation 

with B. infantis normalised IL-10 levels with pre-feeding and feeding IL-10 levels differing 

significantly (p=0.001). This suggests that B. infantis 35624 can exert anti-inflammatory effects 

through increasing IL-10 levels in IBS patients. Daily supplementation of B. infantis 35624 at 1 x 

108 colony forming units (CFU)/mL also alleviated IBS symptoms in women when compared to a 

placebo taking group (Whorwell et al. 2006). Single strains, such as B. infantis 35624 are not the 

only probiotic preparations which have been studied for their effects on IBS sufferers. The mixed 

preparation containing 8-9 x 109 CFU/day of B. breve Bb99, L. rhamnosus GG, L. rhamnosus LC705 

and Propionibacterium freudenreichii ssp. shermanii JS in equal amounts was taken daily by IBS 

sufferers (n=52). Sufferers were compared to a placebo group (n=51) in a 6 month trial (Kajander 

et al. 2005). The probiotic supplemented group saw a significant total symptom score reduction 

(p=0.037) when compared to the placebo group. It is difficult to assign specific reasons as to why 
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probiotic organisms alleviate IBS symptoms; we may be seeing a multifactorial response in a 

multifactorial syndrome. 

 

1.3.1.2 The positive effects of probiotic supplementation inflammatory bowel disease 

Inflammatory bowel disease (IBD) is caused by the ongoing activation of mucosal immune 

responses by our normal commensal gut microbiota at an inappropriate level. It is driven by 

impaired barrier function at the intestinal mucosal surface and over-reaction of its associated 

immune system (Podolsky 2002). It has been argued that two disease states exist: UC and Crohn's 

disease (CD). However, Podolsky highlights that confusion remains in the literature, are these two 

separate disease states or do these diseases exist on a continuum (Podolsky 2002)? It has been 

argued that genetic factors play a crucial role in the manifestation and progression of IBD e.g. IL-

33 (part of the IL-1 family) and Interleukin receptor like 1 (ILRL1) polymorphism (Latiano et al. 

2013). Environmental factors such as diet and hygiene have also been implicated (Ng et al. 2013). 

Treatment of these diseases has historically centred on the use of corticosteroids. More recently 

inhibitors of specific pro-inflammatory factors within the human body, such as the use of 

infliximab a monoclonal antibody which binds tumour necrosis factor α (TNF-α), have been used 

(Rutgeerts et al. 2004). Surgical intervention is sometimes required in extreme cases. Due to the 

proposed commensal driven dysregulation of immune responses at the gut epithelial surface, it 

follows that modulation of this community could provide an alternative therapy for IBD. 

Probiotics have once again been used for this purpose with studies determining their effect in IBD 

patients alongside prebiotic supplementation. Prebiotics ,as defined by Gibson and colleagues 

(Gibson and Roberfroid 1995), are “nondigestible road ingredients that beneficially affect the 

host by selectively stimulating the growth and/or activity of one or a limited number of bacterial 

species already resident in the colon”. The synbiotic (probiotic and prebiotic) mixture of B. 

longum, at a concentration of 2 x 1011 viable cells, and a 6 g sachet of the prebiotics fructo-

oligosaccharides (FOS) and inulin were fed to active UC patients twice daily for four weeks and 

compared to a placebo group (Furrie et al. 2005). The synbiotic group saw a significant reduction 

in the levels of pro-inflammatory TNF-α (p=0.0177) and IL-1α (p=0.0051). This shows the possible 

anti-inflammatory effects exerted by the probiotic/prebiotic synergistic mixture. 
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The probiotic yeast S. boulardii has also been assessed as a treatment for UC. In one study a 250 

mg capsule of the organism was fed 3 times daily alongside standard anti-inflammatory 

mesalazine treatment (1 g, 3 times daily) for 4 weeks. The results showed clinical remission in all 

cases, as confirmed through sigmoidoscopy, a surgical procedure involving inspecting the bowels 

with a sigmoidoscope. The disease, as with many other diseases, is measured through a clinical 

index score, whereby symptoms are measured in terms of severity and are scored. Combinatorial 

UC therapy with mesalazine and S. boulardii also gave rise to a significant reduction in clinical 

index score (p<0.05) and a deemed successful clinical index score of 5 or less in 68% of cases 

(Guslandi et al. 2003). The study used a probiotic organism in conjunction with traditional 

therapy. However, it has been shown that once UC remission has been achieved E. coli Nissle 

1917 alone is as effective as mesalazine in maintaining remission (Kruis et al. 2004). The probiotic 

group (n=110) and mesalazine placebo group (n=112) showed significant equivalence (p=0.003) in 

patient relapse, 36.4% and 33.9% respectively. Probiotic supplementation has also been used in 

order to treat CD. Active CD patients who failed to reach remission through standard treatment 

were fed a synbiotic mixture of B. breve (3 x 1010 CFU), Lactobacillus casei (3 x 1010 CFU), B. 

longum (1.5 x 1010 CFU) daily in conjunction with 3 daily 3.3 g doses of the prebiotic plant 

psyllium. Crohn's disease activity index (CDAI) scores for these patients were significantly lower 

after therapy (p=0.009) (Fujimori et al. 2007). 

 

The aetiology and development of IBD makes researching how probiotic supplementation 

alleviates this condition difficult. It has been suggested that probiotics exert anti-inflammatory 

effects, and through this drives alleviation of symptoms. Furthermore, a mechanism for how 

these anti-inflammatory effects arise has been suggested. Fernandez and colleagues propose that 

the cell-wall components of probiotic bacteria exert anti-inflammatory effects. Specifically 

muropeptides, arising during the degradation of peptidoglycan, interact with nucleotide-binding 

oligomerisation domain 2 (NOD2) in the cytosol of the host through a specific NOD2 ligand. This is 

associated with a significant down-regulation of pro-inflammatory genes (Macho Fernandez et al. 

2011). The authors also suggest that probiotic bacteria and cell-wall components can be 

internalised through phagocytosis. Internalised cell wall components interact with toll-like 

receptors (TLR) and recruit myeloid differentiation primary response 88 (MyD88) giving rise to 

anti-inflammatory responses. This interaction was highlighted in MyD88 deficient mice where 

peptidoglycan lost the ability to protect against colitis.  
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1.3.1.3 The positive effects of probiotic supplementation in pouchitis 

UC cases can become severe, requiring surgical intervention in the form of a colectomy. Since 

1977 postcolectomy ileal pouch-anal anastomosis has been routinely carried out, in an attempt 

to restore function lost through colectomy (McGuire et al. 2007). Inflammation events can occur 

within the ileal pouch reservoir giving rise to pouchitis. Traditional therapy makes use of anti-

inflammatory compounds. However, there has been much focus on the use of probiotic 

organisms as an alternative treatment and preventative of pouchitis. The multi-species (B. breve, 

B. longum, B. infantis, L. acidophilus, L. plantarum, L. paracasei, L. delbrueckii ssp. bulgaricus (L. 

bulgaricus) and Streptococcus thermophilus at 9 x 1011 viable cells/day) probiotic VSL#3 has been 

researched in this respect. Following ileal pouch-anal anastomosis patients either received the 

probiotic mixture (n=20) or a placebo (n=20) for one year. The number of acute episodes of 

pouchitis was lower in the probiotic group than the placebo group, 10% and 40% respectively. 

There was also an observable difference in the number of relapses with 90% of the probiotic 

group still in remission one year later compared to 60% of patients in the placebo group 

(Gionchetti et al. 2003). In a follow-up study the number of patients in antibiotic induced 

remission, after one year, was significantly higher in the VSL#3 group than the placebo group 

(85% vs. 6% respectively, p<0.0001) (Mimura et al. 2004). 

 

1.3.1.4 The positive effects of probiotic supplementation in antibiotic associated diarrhoea, 

Clostridium difficile associated diarrhoea and bacterial infections following operative 

procedures 

Treatment of bacterial infections often leads to the unwanted side-effect of antibiotic associated 

diarrhoea (AAD). This arises from the perturbation caused by consumption of a broad range 

antibiotic. In turn this leads to diarrhoea, as the commensal gut bacteria are affected. The 

incidence of antibiotic diarrhoea is estimated at 5-39%; lengthening hospital stays and therefore, 

increases costs (Videlock and Cremonini 2012). AAD should not be confused with Clostridium 

difficile associated diarrhoea (CDAD). In this instance administration of a broad spectrum 

antibiotic allows the overgrowth of C. difficile due to reduction of competing gut commensal 

bacteria. CDAD cases have increased each year since 2000 in North American and European 

hospitals (Balassiano et al. 2012). C. difficile infection can give rise to a range of disease states 

from CDAD through to pseudomembranous colitis and toxic megacolon (Balassiano et al. 2012). 

The two latter diseases have the potential to be life threatening. The twice daily consumption of 

a probiotic drink containing L. casei (1 x 108 CFU/mL), L. bulgaricus (1 x 107 CFU/mL) and S. 
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thermophilus (1 x 108 CFU/mL) throughout a week's course of antibiotics, and for one week after 

course completion, has been shown to decrease the incidence of AAD and CDAD (Hickson et al. 

2007). The probiotic group (n=57) showed significantly less cases of AAD than the placebo group 

(n=56), 12% vs. 34% respectively (p=0.007). There was an absolute risk reduction of 22% by 

taking the probiotic mixture. This study also showed a significant reduction in the incidence of 

CDAD (p=0.001) with no cases in the probiotic group and 9 cases in the placebo group. AAD 

incidence has also been shown to decrease upon twice daily administration of the previously 

described probiotic mixture VSL#3 during antibiotic therapy, and a week thereafter (Selinger et 

al. 2013). Per-protocol analysis showed a significant reduction of AAD incidence in the probiotic 

taking group, 0 cases vs. 7 cases in the placebo group (p=0.006). Meta-analysis of the literature 

has also shown that the feeding of probiotics can reduce the relative risk of AAD. Mcfarland has 

shown that out of 25 clinical trials probiotic supplementation significantly reduced the relative 

risk (RR) of AAD (RR = 0.43, p<0.001). The research highlighted a significant reduction in the 

incidence of AAD in 13 trials (52%) when probiotic supplements were administered (McFarland 

2006). However, the remaining 12 trials (48%) showed no difference between the probiotic and 

placebo groups. The author suggests that the ambiguity surrounding the efficacy of probiotic 

supplementation in reducing AAD incidence could be due to many factors. These include the 

range of demographics enrolled in different studies, the probiotic used (species, mixture of two 

or a synbiotic mixture) and also the dose used. It is interesting to note that a high dose of 

probiotic (≥1010 cells/day) exhibited significant efficacy against AAD development in 67% of the 

positive trials. In a more recent meta-analysis, 20 of the aforementioned 25 studies were 

analysed with an additional 14 new studies (Videlock and Cremonini 2012). This study showed a 

reduced relative risk (RR=0.53) in the probiotic supplemented group. Synbiotic supplementation 

has also been shown to decrease the length of post-operative antibiotic administration in liver 

transplant patients, as well as the rate of bacterial infection (Rayes et al. 2005). These patients 

received either the synbiotic mixture (Pediococcus pentosaceus, Leuconostoc paracasei, L. 

paracasei and L. plantarum at 1010 viable cells with the 4 prebiotics betaglucan, inulin, pectin and 

resistant starch at 2.5 g each) twice daily, or a twice daily dose of just the 4 prebiotics (control). 

The synbiotic group (n=33) required a significantly shorter period of antibiotic therapy than the 

control group (n=33), 0.1 ± 0.1 vs. 3.8 ± 0.9 days respectively (p<0.05) and had significantly less 

bacterial infections, 3% vs. 16% respectively (p<0.05).  
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1.3.1.5 The positive effects of probiotic supplementation in necrotising enterocolitis 

Necrotising enterocolitis (NEC) is a poorly understood disease which primarily affects premature 

very low birth weight (VLBW) infants. The disease is associated with high mortality rates ranging 

from 10-50% (Henry and Moss 2009). The exact mechanisms of the disease remain unclear. 

However, it has been suggested that the disease is multifactorial with inflammation and bacterial 

overgrowth playing roles (Ballance et al. 1990). Often surgical intervention is used as treatment 

for the disease. It has been argued that the gut bacterial make up of NEC infants is different to 

that of healthy infants. Using sequencing approaches it has been shown that NEC infants have a 

significantly lower number of operational taxonomic units (OTU)s than healthy infant controls 

(10.4±6.1 vs. 19±6.7 respectively, p=0.008), indicating a lower level of diversity (Wang et al. 

2009). This study also showed that the relative abundance of Proteobacteria compared to other 

phyla was significantly higher in the NEC infant group (p<0.01). This suggests that the gut 

bacterial composition of NEC infants is different from healthy infants. 

 

Conversely however, in a more recent study using 16S rRNA gene 454 pyrosequencing of faecal 

samples, NEC infants (n=10) were compared to control infants (n=10) over 7 weeks. No significant 

difference in the gut bacterial community of NEC infants was observed (Normann et al. 2013). 

While there were no differences between the two groups overall there were observable, albeit 

non-significant, differences between the two groups during the first week. The samples of NEC 

infants during the 1st week were dominated by Enterobacteriaceae and Bacillales, while 

Enterococcus was more abundant in the samples from healthy individuals. While these 

differences were non-significant, the authors suggest that differences in the gut bacterial 

community of preterm babies could play a pivotal role in the onset and progression of this 

disease. It therefore follows that modulation of the gut bacterial community in VLBW infants 

could provide a normalising effect. To this end the efficacy of probiotic supplementation as a 

prophylactic treatment for NEC development is now being researched. Supplementation of the 

probiotic organisms L. acidophilus and B. infantis in VLBW infants has been carried out (Lin et al. 

2005). The probiotic group (n=180) showed a significantly lower NEC incidence than the control 

group (n=187), 1.1% vs. 5.3% (p=0.04). When data for the incidences of death, NEC or sepsis were 

combined there was a significant difference between the probiotic treatment group and control 

(17.2% vs. 32.1% respectively, p<0.009). The authors suggest that feeding probiotic organisms to 

VLBW infants may provide competition against pathogens at the epithelial surface. This could 

also give rise to an increased barrier to translocation of bacteria and their products across the 
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epithelial surface. In another study the feeding of a different set of probiotic organisms (B. 

infantis, S. thermophilus and Bifidobacterium bifidus all at 0.35 x 109 CFU/day) alongside either 

mother's or formula milk also showed a significantly reduced NEC incidence, at 4% in the active 

group vs. 16.4% in the control group (p=0.03) (Bin-Nun et al. 2005). It was shown that only 1% of 

NEC cases were clinically significant in the probiotic group compared to 14% of cases in the 

placebo group. This was a statistically significant difference (p=0.013), suggesting that if probiotic 

administration fails to protect against the onset of NEC it can decrease the severity. This study is 

in concurrence with the previously mentioned study by Lin and co-workers. The authors of this 

study suggest that probiotics exert their protective effects through strengthening intestinal 

epithelial barrier function. The authors also suggest that bacteriocin production could play a 

crucial role in bacterial exclusion at the mucosal surface.  

 

Meta-analysis of the literature on the effect of probiotic administration on NEC in in preterm 

VLBW infants has been carried out by Deshpande and colleagues (Deshpande et al. 2010). 

Probiotic organisms administered in the 11 studies used for meta-analysis included LAB, 

Bifiodobacteria, and S. boulardii with the majority being administered at 109 CFU/day. The 

authors show that a higher proportion of VLBW infants developed NEC in the placebo group 

(n=1082) than the probiotic group (n=1094), 6.56% vs. 2.37% respectively. In addition there was a 

significantly lower risk of developing NEC in the probiotic group, with a relative risk of 0.35 

(p<0.0001). Probiotic supplementation showed a reduced risk of mortality versus the control 

group with a relative risk of 0.42 (p<0.00001). In their conclusions Deshpande and colleagues 

highlight that parents, in light of the favourable evidence, would be unlikely to take a chance with 

their infant's health and would opt for probiotic treatment instead of taking part in a clinical trial.



CHAPTER 1 – INTRODUCTION 

43 
 

1.3.1.6 The positive effects of probiotic supplementation in atopic eczema  

Interactions within the gut can have implications far beyond its locality. Atopic eczema (AE), an 

inflammatory skin condition, was shown to affect 20% of children under 12 months in England in 

Wales during 2006 (Schofield et al. 2011). The ailment cost an estimated £465 million to treat in 

1996 (Ellis et al. 2002). In a review of the literature by Williams and Grindlay the causes of AE 

were suggested as being method of birth (vaginal vs. caesarean) and mutations in the gene 

filaggrin (Williams and Grindlay 2010). The influence of the gut and its resident microbiota were 

overlooked in this instance. Characterisation of the gut microbiota of AE sufferers has been 

carried out in a recent study (Abrahamsson et al. 2012). Next generation sequencing of the 16S 

rRNA gene amplified from faecal sample DNA from infants with atopic eczema and healthy 

controls has shown differences in their associated microbiota. Shannon diversity indices show 

that AE infants have a significantly lower total diversity (p=0.04) at one month. Furthermore, 

there is significantly lower diversity of Bacteroidetes and specifically Bacteroides spp. within the 

phylum (p=0.02 and p=0.01 respectively) at one month. The study also highlighted lower diversity 

of Proteobacteria and Bacteroidetes at 12 months in the AE group (p=0.02 and p=0.08 

respectively). The results suggest that AE sufferers have lower bacterial diversity than healthy 

controls. The authors have also shown a lower abundance of Proteobacteria in infants presenting 

with AE and highlight that the cell walls of the bacteria in this phylum contain lipopolysaccharide 

(LPS) which has the ability to elicit an immune response, in particular the response of Th1. The 

authors highlight the findings of another study (Gehring et al. 2001) in which low exposure to LPS 

in infancy was linked with a higher risk of AE. The lower level of LPS coupled with low bacterial 

diversity could possibly play a role in the development of the disease through poor stimulation of 

the immune system. However, it must be noted that the effect of the gut microbiota on the 

incidence and progression of AE is difficult to elucidate and indeed is likely to be multifactorial.  

 

Considering that there is a link between our gut microbiota and the incidence of AE, it follows 

that the efficacy of probiotic supplementation as a preventative measure and also as a treatment 

for AE has been researched. In a cross over study it has been shown that twice daily 

administration of L. rhamnosus and Lactobacillus reuteri significantly (p=0.001) reduced the 

severity of the eczema in the patients' opinion. Following treatment 56% of active patients (n=39) 

believed that their eczema severity had decreased vs. 15% in the placebo group (n=39) 

(Rosenfeldt et al. 2003). In another study, expectant mothers of children at high-risk of 

developing immunoglobulin E (IgE) associated atopic diseases were randomised to a placebo 
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group or active group at 35 gestational weeks (Kukkonen et al. 2007). The active probiotic group 

received a twice daily capsule containing L. rhamnosus GG (5 x 109 CFU), L. rhamnosus LC705 (5 x 

109 CFU), B. breve Bb99 (2 x 108 CFU) and P. freudenreichii ssp. shermanii JS (2 x 109 CFU) up until 

delivery. Supplementation was continued after birth where a single capsule was opened and 

mixed with 20 drops of sugar syrup and 0.8g of galacto-oligosaccharides (prebiotic), and fed daily 

to the new-borns for 6 months after birth. The placebo group (expectant mothers) received twice 

daily capsules  containing micro-crystalline cellulose while the new-borns received a single open 

placebo capsule mixed with 20 drops of sugar but no prebiotic. Probiotic treatment reduced the 

incidence of atopic eczema by 34% when compared to the placebo group. In a meta-analysis of 

the literature it was shown that probiotics given in a pre and/or post-natal manner reduced the 

risk of prolonged AE as much as 61% (Lee et al. 2008). The analysis showed that probiotic 

supplementation is effective as a preventative measure, but showed no statistical significance as 

a treatment. 

 

1.3.1.7 The negative effects of probiotic supplementation in pancreatitis 

Inflammation of the pancreas, pancreatitis, is characterised by 3 phases which include: activation 

of trypsin, induction of inflammatory pathways giving rise to inflammation of the pancreas and 

inflammation that is not localised to the pancreas (Banks and Freeman 2006). It is estimated that 

there are 210,000 admissions of acute pancreatitis each year in the US (Banks and Freeman 

2006). In this disease pancreatic tissue can become necrotised, due to translocation of intestinal 

bacteria as a result of the pro-inflammatory response arising from this disease. This in turn gives 

rise to infectious complications within this tissue (Besselink et al. 2008). Probiotic 

supplementation has been investigated as a prophylactic treatment for patients who were 

predicted to develop severe acute pancreatitis (Besselink et al. 2008). Patients admitted with a 

first episode of acute pancreatitis were enrolled in the multi-centre, randomised placebo-

controlled study. The probiotic group (n=153) received a mixture of L. acidophilus, L. casei, L. 

salivarius, Lactococcus lactis, B. bifidum, Bifidobacterium lactis at a total dose of 1010 bacteria 

with cornstarch and maltodextrins daily. However the placebo group received cornstarch and 

maltodextrins only. Both groups received treatment for a maximum of 28 days. There was no 

significant difference between the two groups in terms of primary endpoint (any infectious 

complication, infected necrosis, bacteraemia, pneumonia, urosepsis and infected ascites). 

Alarmingly however, there were significantly more deaths in the probiotic group than the 

placebo group (16% vs. 6% respectively, p=0.01). Bowel ischaemia occurred at a significant 
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number in the probiotic group (9 patients vs. 0 patients in the placebo group, p=0.004), 8/9 

patients passed away. It has therefore been advised that probiotic supplementation should not 

be given to patients likely to develop severe acute pancreatitis  

1.3.1.8 The little to no effects of probiotic supplementation in irritable bowel syndrome 

The aetiology and symptoms of IBS have previously been discussed, as have the positive effects 

that probiotic supplementation can have on sufferers. However, probiotics can sometimes have 

no effect upon the sufferer. The probiotic mixture VSL#3 was fed twice daily (4.5 x 1011 bacteria 

per day) to sufferers who exhibited diarrhoea predominant IBS (n=12). Whereas the placebo 

group (n=13) received a powder which contained starch. Both groups received treatment for 8 

weeks. There were no significant differences between GIT transit times, relief of symptoms, stool 

frequency, consistency and ease of passage between the two groups. The only positive metric 

from this study was a significant reduction of bloating (p=0.05) (Kim et al. 2003). In a follow-up 

study using the same treatment regime (active group n=24, placebo n=24) in IBS sufferers with 

significant abdominal bloating, VSL#3 did not exert positive effects once again (Kim et al. 2005). 

Treatment with this mixture showed no significant effect on urgency, pain, ease of passage and 

stool form. Furthermore, in contradiction to the previous study bloating was not significantly 

reduced in the active group. In this study the only symptom which showed a significant difference 

was the score for flatulence (p=0.01).  

 

1.3.1.9 No effect of probiotic supplementation in inflammatory bowel disease 

Whilst there is an abundance of evidence for the positive effects of probiotic supplementation in 

IBD sufferers in general, there are studies which show that probiotic supplementation has no 

effect upon CD sufferers. It has been shown that feeding L. rhamnosus GG to CD sufferers at 2 x 

109 CFU/day made no significant difference to time in antibiotic induced remission. The median 

time to relapse in this instance was 16 ± 4 weeks in the probiotic group and 12 ± 4.3 weeks in the 

placebo group (p=0.5) (Schultz et al. 2004). The use of another probiotic organism, L. johnsonii 

LA1, has been assessed as a prophylactic treatment for CD (Marteau et al. 2006). In this study the 

active group (n=48) received two daily doses of L. johnsonii (2 x 109 CFU per dose), and the 

placebo group (n=50) received maltodextrin. Both treatments were given for a 6 month period. 

Although the recurrence rate was lower in the probiotic group than the placebo group (49% and 

64% respectively) the effect failed to reach significance (p=0.15). Recurrence differences, as 

measured through endoscopy, also failed to reach significance. Recurrence was observed in 63% 
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of the placebo group compared to 49% of the active group (p=0.21). Severe endoscopic 

recurrence occurred in 26% of the placebo group and 21% of active patients (p=0.61). The 

authors therefore concluded that L. jonsonii LA1 at the dose given did not provide a statistically 

significant benefit.  

 

The treatment of ileal pouch-anal anastomosis following postcolectomy in UC patients has 

previously been discussed, as have the benefits of probiotic supplementation. The use of L. 

rhamnosus GG has also been researched in the treatment of pouchitis (Kuisma et al. 2003). 

Participants were enrolled if they had been treated for pouchitis at least once. Gelatine capsules 

of L. rhamnosus (0.5-1.0 x 1010 CFU/capsule) were fed 4 times daily for 3 months to participants 

in an active group (n=10). Microcrystalline cellulose was fed to the placebo group (n=10). There 

was no significant difference in pouchitis disease activity index (PDAI) scores between the two 

groups; with a pre-treatment PDAI mean score of 8.4 ±0.7 in the placebo group and 8.0 ± 0.8 in 

the active group (p=0.44). This trend was not altered by probiotic administration as the mean 

PDAI scores were highly similar in both post-treatment groups (8.0 ±0.7 in the placebo group and 

8.0 ± 1.1 in the active group, p=0.97). 

 

1.3.1.10 No effect and the negative effect of probiotic administration in atopic eczema 

Studies have suggested that probiotic administration is beneficial for the prevention of IgE 

associated AE. However, ambiguity still remains as there are studies which show that probiotic 

supplementation has no effect upon this ailment. High-risk new-borns, that is to say new-borns 

from mothers with atopic disease, were recruited for a feeding study (Taylor et al. 2007). 

Treatments were administered for 6 months with the active group (n=89) receiving a daily dose 

of 3 x 109 L. acidophilus LAVRI-A1 and the placebo group (n= 89) receiving maltodextrin. The rates 

for AE were similar between the active and placebo group after 6 months of feeding, 25.8% and 

22.7% respectively (p=0.629). When patients were reassessed at 12 months there were no 

significant differences in AE rate nor severity between treatment groups (p=0.581 and p=0.995 

respectively). It was in fact shown that probiotic supplementation in this instance was linked to a 

higher rate of sensitisation to common allergens (p=0.03). This suggests that supplementation 

with this organism in this instance can potentially have negative effects as opposed to positive 

ones.  
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Twice daily prenatal (4-6 weeks before delivery) and postnatal feeding (for 6 months) with L. 

rhamnosus GG at 5 x 109 CFU/dose showed no significant difference in outcome when compared 

to a microcrystalline cellulose placebo (Kopp et al. 2008). For this study 105 pregnant women 

were recruited from families with ≥ 1 member suffering from an atopic disease. The criteria 

included mother, father or any other children in the family. The probiotic group (n=50), at the age 

of 2 years, showed no significant difference in episodes of fever, airway infections, total IgE nor 

sensitisation to an inhalant allergen (p=0.22, p=0.23, p=0.38 and p=0.61 respectively). Although 

there were no beneficial significant differences, there was a detrimental significant difference. 

Recurrent episodes of wheezing bronchitis (≥5 episodes) occurred significantly more frequently in 

the probiotic group than the placebo group (26% vs. 9.1%, p=0.03). Once again there is evidence 

that probiotic supplementation can have no effect and furthermore can exacerbate the 

condition. 

 

1.3.2 The use of probiotic supplements in healthy individuals 

While many researchers focus on the effects of probiotics in the infirm, others research the 

effects of probiotic supplementation in healthy individuals. Many healthy people purchase 

probiotic supplements therefore it is imperative that scientific research into their effects is 

carried out to benefit the individual and the producing company (due to EFSA guidelines). 

1.3.2.1 Gut bacterial modulation and survivability of probiotic strain in the GIT 

Much attention has been focused on whether probiotic consumption can modulate the gut 

bacterial community in healthy individuals. It has been shown in numerous instances that the 

organism which is fed can be recovered after passage through the GIT, and the organism 

increases the levels of its own genus. Feeding of B. lactis HN019 at 1.9 x 107 CFU/day with 2.4 

g/day of prebiotic galacto-saccharide in healthy children showed a significant increase in B. lactis 

in faecal material when compared to a placebo group (p<0.001) (Prasad et al. 2013). L. casei has 

the ability to survive GIT transit with a study showing that L. casei Shirota levels were 7.1 ± 0.4 

Log10 CFU/gram of faeces after 7 days of supplementation. This level was maintained with no 

significant difference for 21 days during the feeding study and persisted for a further 7 days after 

the study. (Tuohy et al. 2007). There was also a significant increase in the total numbers of 

lactobacilli recovered in faecal material throughout the study.  

Another strain of L. casei, DN-114001, was delivered to healthy individuals (n=12) three times 

daily for 10 days in milk which this organism had fermented along with S. thermophilus and L. 
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bulgaricus at a total of 108 CFU/mL (Rochet et al. 2006). Faecal samples were taken at day 0 

(before supplementation), day 10 (end of supplementation) and at day 20 (10 days after 

supplementation ceased). There was a significant (p<0.01) increase in the number of L. paracasei 

group specific quantitative PCR (qPCR) products (of which L. casei is part) per gram of faeces at 

day 10. Research has shown that recovery of B. lactis BB12 occurs in a dose-dependent manner 

(Larsen et al. 2006). BB12 was fed with L. paracasei CRL-431 at 108, 109, 1010 or 1011 CFU/day and 

compared to a placebo group (n=15 per group). The results showed a dose dependent response 

in faecal recovery when the dose was treated as a linear and continuous variable. L. paracasei 

CRL-431 however, was not detected in any of the faecal samples.  

While these studies have shown that recovery of the fed organism occurs, there is no significant 

impact on the gut microbiota as a whole from feeding these probiotic organisms. Tuohy and 

colleagues show no significant changes in Bacteroides spp., Eubacterium rectale group and 

Atopobium group numbers (Tuohy et al. 2007). Rochet and co-workers showed no significant 

changes in mean proportions of Atopobium, Bacteroides-Preveotella, Bifidobacterium, 

Clostridium coccoides, Faecalibacterium prausnitzii, Enterobacteria and Lactobacillus-

Enterococcus groups (Rochet et al. 2006). Similarly Larsen and associates saw no significant 

change in major gut bacterial groups including Bacteroides and Clostridia (Larsen et al. 2006). The 

administration of the probiotic yeast S. boulardii also did not alter the global gut bacterial 

community of healthy individuals. The probiotic yeast was fed at a daily concentration of 2.5 x 

109 viable cells for 4 weeks (Vanhoutte et al. 2006). However the daily feeding of lactulose, a 

prebiotic, at 10 g showed a bifidogenic response with a significant increase in total bifidobacteria 

observed during feeding than levels at baseline (p=0.007). The aforementioned studies suggest 

that probiotics are unable to alter the global community of the gut microbiota. However, it has 

been shown that probiotic consumption can modify the gut bacterial community. Healthy but 

over-weight individuals (n=28) received either a control yoghurt, yoghurt containing 1.39 x 109 

CFU L. amylovorus or yoghurt containing 1.08 x 109 CFU L. fermentum in a cross-over trial. All 

participants received each treatment for 43 days separated by a 6 week washout period (Omar et 

al. 2013). Both L. amylovorus and L. fermentum significantly (p=0.008) increased its own genus 

Lactobacillus spp., as measured through qPCR of faecal DNA, mirroring the previously mentioned 

studies. However in contradiction to the previously mentioned studies, L. amylovorus 

supplementation gave rise to a significant (p<0.038) 2-log fold reduction in Clostridium cluster IV 

as measured by qPCR of faecal DNA. These data suggest that modulation of gut bacterial 
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community can be achieved, in this instance, through the consumption of this probiotic 

organism. 

 

1.3.2.2 Immunomodulatory effects 

Probiotic organisms are often regarded as beneficial due to the immunomodulatory effects which 

they reportedly exert. Researchers are keen to answer whether or not probiotic strains exert 

these effects in healthy individuals. In order to assess this question Olivares and colleagues 

recruited 30 healthy individuals. These individuals were randomly assigned to receive control 

yoghurt (yoghurt made with the conventional starters L. bulgaricus and S. thermophilus) or 

probiotic yoghurt. The probiotic yoghurt was made using S. thermophilus, at the same 

concentration as the placebo. However, L. bulgaricus was replaced with Lactobacillus 

coryniformis CECT5711 and L. gasseri CEC5714 at 2 x 109 CFU each as starter cultures (Olivares et 

al. 2006). Participants received either the control or probiotic yoghurt daily for 4 weeks and 

provided a weekly faecal sample. Leukocyte subset proportions were analysed, and 

immunoglobulin and cytokine measurements were taken. Comparisons were carried out against 

week 0. After two weeks of consumption the probiotic group showed a significant (p<0.05) 

increase in proportion of monocytes and T lymphocytes. A significant increase was also observed 

in the proportion of neutrophils and a significant (p<0.05) decrease of lymphocytes at week 2 in 

the control group. Whilst there was a significant difference in neutrophil and lymphocyte 

proportions in the control group, highly significant differences were observed in the probiotic 

group. These included a highly significant (p<0.01) increase in neutrophil proportion and a highly 

significant (p<0.01) decrease in lymphocyte proportion. Comparisons between week 0 and week 

4 showed a highly significant (p<0.01) decrease in B lymphocytes in the control group; no other 

leukocyte subsets were significantly different. However, comparisons of leukocyte subset 

proportions between week 0 and week 4 in the probiotic group showed a highly significant 

(p<0.01) increase in the proportion of neutrophils. A highly significant (p<0.01) decrease in T 

lymphocytes and significant (p<0.05) decreases in the proportion of lymphocytes, T memory cells 

and B lymphocytes was also observed. Furthermore, at week 2 there was a significant (p<0.05) 

increase in the proportion of natural killer (NK) cells in the probiotic group when compared to 

week 0. This trend returned to a non-significant difference after 4 weeks. The 

immunomodulatory effect at two weeks was also shown through a significant (p<0.05) increase 

in IL-4, IL-10 and a significant (p<0.05) decrease in IgE. This study suggests that probiotics may 

exert immunomodulatory effects in the short-term.  



CHAPTER 1 – INTRODUCTION 

50 
 

Immunomodulatory effects may well be strain specific as while the previous study shows that this 

probiotic mixture exerts these effects, the same cannot be said for other probiotic species. B. 

lactis BB12 and L. paracasei ssp. paracasei CRL-431 were fed to healthy adults who were 

randomised to receive the probiotic mixture at either 108, 109, 1010, 1011 CFU/day-or a placebo 

(n=15 for each group) daily for 3 weeks (Christensen et al. 2006). There was no significant 

difference between the probiotic groups and placebo group at any concentration in terms of 

phagocytosis difference (difference between activity before intervention and immediately after). 

No significant change in faecal immunoglobulin A (IgA) and no significant difference in stimulated 

blood sample production of interferon-γ (IFN-γ) and IL-10 was also observed. The authors also 

measured the recovery of B. lactis BB12 and L. paracasei CRL-431 from faecal material. L. 

paracasei CRL-431 could not be recovered while B. lactis BB12 could. When the authors plotted 

IFN-γ difference (difference in levels before intervention and immediately after) against recovery 

of B. lactis BB12 (log CFU/g-1) a significant negative (p=0.011) correlation was observed. Increased 

B. infantis BB12 recovery correlated with a decrease in IFN-γ difference. This work furthers the 

idea that different probiotic strains possess different immunomodulatory capabilities. 

Furthermore, this evokes the notion that survivability of the chosen probiotic organism is a key 

factor for exertion of any positive effects.   

 

1.3.2.3 Effects on bowel habit and incidence of diarrhoea 

Probiotic supplementation in healthy individuals has also been shown to exert other benefits. 

One such benefit is the improvement in bowel habits with multiple species showing a positive 

effect. It has been shown that supplementation with B. lactis BB12 at an increasing dose has a 

significant (p=0.018) linear effect on faecal consistency whereby the stool became looser as the 

probiotic dose increased from 108 CFU/day through to 1011 CFU/day (Larsen et al. 2006). 

Improvements in bowel habits were also seen through the consumption of L. rhamnosus IMC 501 

and L. paracasei IMC 502 in food products (both species were at 1 x 109 CFU per serving) 

(Verdenelli et al. 2011). Active participants (n=25) were told to consume at least one portion of 

these functional foods per day for 12 weeks, while placebo participants (n=25) consumed the 

same foods with no probiotic organisms added. Participants recorded their bowel habits using a 

zero to ten scale (0 = worse, 5 = no change, 10 = best). There was a significant (p<0.05) increase 

in intestinal regularity and stool volume observed in the probiotic group when compared to the 

placebo group. These two studies suggest a role for probiotics in improving the well-being of 
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healthy individuals. Participants did not have bowel complaints, but probiotic supplementation 

still improved these two facets of bowel function.  

 

Closely linked to intestinal well-being, the effect of probiotic supplementation on acute diarrhoea 

in healthy infants has been researched (Thibault et al. 2004). Formula fed infants were 

randomised to receive either formula fermented by B. breve C50 and S. thermophilus 065 (n=464) 

or standard formula (n=449). The incidence, number of episodes, duration and severity of 

diarrhoea were recorded. There was no significant difference in the incidence, number of 

episodes, duration of diarrhoea or number of hospitalisations between the two groups. However, 

there was a significant reduction in signs of dehydration (p=0.01) and prescriptions of oral 

rehydration salts (p=0.003) in the probiotic group. The data suggest that in those infants who 

require hospitalisation due to the severity of diarrhoea (0.9% in the probiotic group and 0.5% in 

the placebo group), probiotics may exert a positive effect through alleviating the level of 

dehydration. In another study young and healthy male soldiers were recruited to assess the 

effect of L. casei DN-114 on diarrhoea. The incidence of diarrhoea was non-significantly reduced 

(12.2% in the probiotic group and 16.1% in the placebo group, p=0.207) (Pereg et al. 2005). The 

probiotic was provided in the form of a commercially available fermented yogurt which 

contained 108 CFU/mL of the organism which was taken daily for 6 days per week for 8 weeks. 

There was also no significant difference in mean duration of diarrhoea, fever, vomiting or 

abdominal pain (p=0.276, p=0.12, p=0.082) between the two treatment groups. We can 

therefore surmise that strains exert specific effects and that the age of the participants and 

length of treatment can all play a role in the end result. 

1.3.2.4 Effects in other illnesses 

It is thought that probiotics exert immuomodulatory effects and through these effects can prime 

the immune system. It is therefore logical to study the effect of probiotics on the prevention of 

some infectious illnesses such as the common cold. Healthy Taiwanese school children (age 8-13) 

were randomised to receive either a twice daily capsule containing L. acidophilus and B. bifidum 

(both at 1x 109 per capsule) or a placebo for 3 months (Rerksuppaphol and Rerksuppaphol 2012). 

The probiotic group (n=40) had significantly fewer children developing fever and cough (p=0.025 

and p=0.01 respectively) and significantly fewer secondary outcomes of school absence and cold-

related school absence (p<0.001 and p=0.001 respectively). However, probiotic supplementation 

did not decrease the number of children developing vomiting, diarrhoea or decrease antibiotic 

usage (p=0.600, p=0.630 and p=0.432 respectively). The data suggest a role for probiotic 



CHAPTER 1 – INTRODUCTION 

52 
 

supplementation in the prevention of common school acquired ailments and could decrease 

absenteeism due to illness. The age at which intervention is administered seems to have an 

impact on the efficacy of probiotic supplementation in the prevention of infectious illnesses. 

Formula fed infants (4 to 10 months old) from child care centres were recruited to assess the 

effect of probiotic supplementation on acquired infections (Weizman et al. 2005). Participants 

were randomised to receive either a control milk formula (n=60) or the control milk formula 

enriched with either B. lactis BB12 (n=73) or L. reuteri (n=68) each at 1 x 107 CFU/g of formula 

powder for 12 weeks. Species specific effects were once again observed with L. reuteri 

significantly reducing the number of days with fever, clinic visits, absences from child care centres 

and prescriptions of antibiotics (p<0.001, p=0.002, p=0.015 and p=0.037 respectively). Whereas 

both L. reuteri and B. lactis showed a significant decrease in the number of fever episodes, days 

with diarrhoea and episodes of diarrhoea (p=<0.001) in each instance. Probiotic supplementation 

did not have a complete protective effect however. The number of days and episodes of 

respiratory illness did not differ significantly between the placebo group and either of the 

probiotic groups.  
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1.4 The Probiotics in Healthy Gut Microbiota (PROHEMI) study 

There is an apparent discrepancy in the number of studies which look at the effect of 

probiotic supplementation in healthy individuals. Furthermore, in these recent studies the 

active period is relatively short and therefore only addresses effects seen in the short term. 

In an older study the effect of 6 months of probiotic supplementation in healthy individuals 

was carried out, which constitutes a far more long-term study than the more recent 

literature (Tannock et al. 2000). The aim of the study was to determine whether the gut 

microbiota and functions therein could be modulated in healthy individuals through long-

term probiotic supplementation. The probiotics in healthy gut microbiota (PROHEMI) study 

was the vehicle for data generation in order to answer our global questions. This pilot study 

aimed to determine whether daily supplementation with a probiotic supplement had an 

effect upon healthy individuals. I aimed to achieve this through the use of both culture 

dependent and independent approaches. The PROHEMI probiotic mixture has previously 

been researched with regards to its efficacy in the infirm; where a difference in the number 

of elderly patients who were C. difficile toxin positive (46% in the probiotic group vs. 78% in 

the placebo group) was observed (Plummer et al. 2004). The same probiotic mixture has 

been shown to reduce the symptom severity scores in IBS sufferers (Williams et al. 2009). It 

must be noted however, that in this study significant reductions in symptom score were also 

apparent in the placebo group; this highlights a rather marked placebo effect in this 

instance. Even though symptom score reduction was also seen in the placebo group, the 

biggest reduction in symptom score was seen in the probiotic group. Strain type tracking 

through random amplified polymorphic DNA (RAPD) of L. acidophilus Cul21 has also been 

carried out. Recovery of this strain was observed in the faecal material of 10/12 healthy 

participants following daily feeding of this strain for 14 days (Mahenthiralingam et al. 2009). 

This study shows that this strain can survive transit through the GIT.  
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1.5 Project aims 

This PhD studentship was funded by a Knowledge Economy Skills Scholarship (KESS) with 

funding from European Social Funds (ESF). KESS aims to promote knowledge exchange 

between higher education institutions and small and medium enterprises (SMEs). The 

overall aim of the project was to determine the efficacy of a probiotic product produced by 

Cultech (Cultech Ltd., Port Talbot, UK) in healthy human males. The specific hypotheses of 

the project were as follows: 

1. Probiotic administration affects the distal gut bacterial community of healthy male 

individuals (Chapters 3 and 5) 

Through the use of community fingerprinting and next generation sequencing 

techniques we aim to determine whether long-term probiotic consumption 

modulates the distal gut bacterial community of healthy male individuals or not 

 

2. Probiotic administration affects functions provided by the commensal distal gut 

microbiota of healthy male individuals (Chapter 4) 

Culture dependent techniques will be utilised in order to screen faecal samples from 

healthy male individuals for a range of functions provided by the commensal gut 

microbiota. We aim to determine whether long-term probiotic consumption affects 

the expression of these functions in healthy male individuals or not. 

 

3. Probiotic administration affects the genotoxicity of faecal waters from healthy 

male individuals (Chapter 4) 

Using a bacterial genotoxicity testing strain, the effect of long-term probiotic 

supplementation on the genotoxicity of healthy male faecal waters will be tested. 
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4. Probiotic administration affects the metabonomic profiles of faecal waters from 

healthy male individuals (Chapter 5) 

1H Nuclear Magnetic Resonance spectroscopic analysis will be carried out in 

partnership with Dr. Jia Li (Imperial College London) in order to determine whether 

long-term probiotic supplementation affects the metabonomic profiles of healthy 

male individuals. 

 

5. There are no geographical differences in the gross distal gut bacterial community, 

functions, and metabonomic profiles of faecal waters of healthy male individuals 

in the UK (Chapters 3, 4 and 5) 

The gross bacterial community, functions and metabonomic profiles of faecal waters 

of healthy male individuals from the UK will be compared in order to determine 

whether there are geographical differences. 

 

6. Freezing faecal material affects its bacterial composition 

The effect of storage at -20°C on the bacterial composition of faecal material will be 

determined in a 6 month study. 
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2. GENERAL METHODS AND MATERIALS 

2.1 The PROHEMI study design 

2.1.2 The probiotic mixture 

The probiotic supplement used in this pilot study was a mixture of Bifidobacterium bifidum 

(Cul20, NCIMB 30153), Bifidobacterium lactis (Cul34, NCIMB 30172) and two strains of 

Lactobacillus acidophilus (Cul21, NCIMB 30156) and (Cul60, NCIMB 30157) at 2.5 x 1010 

viable cells  and was produced by Cultech.  

2.1.2 Ethical approval 

Ethical approval for the PROHMEI study was granted by Cardiff School of Biosciences, Cardiff 

University (Cardiff University’s Research Ethics Committee. Ref: 1010-3) and the University 

of Sheffield Research Ethics committee (Ref: SMBRER168).  

2.1.3 Study design 

Healthy male adults (n=36), with an age range of 21-48 years old were enrolled for this 

placebo controlled, double blinded, multi-centre (Cardiff/Port Talbot and Sheffield) pilot 

study. The Cardiff/Port Talbot arm of the study comprised of a Pre-feeding period with no 

supplementation, an Active period of 6 months where supplementation took place and a 

Washout period. Participants from the Cardiff/Port Talbot (n=18) arm of the study were 

anonymised through random number assignment and randomly assigned to an Active group 

or placebo group. The Active group were instructed to consume a probiotic capsule daily 

with a meal, while the placebo group received a daily dummy capsule containing 

maltodextrin (300 mg). Both types of capsule looked identical and were provided in identical 

bottles labelled with the participant’s unique number (Fig 2.1). The Sheffield arm (n=18) of 

the study was carried out in the same manner where all participants were anonymised. 

However, all received the Active probiotic treatment for 6 months, this was due to ethical 

reasons and the initial Pre-feeding period was slightly longer (Fig 2.2). During the course of 

the study there were withdrawals with participant PH33 from the Cardiff/Port Talbot arm 

giving no samples, and participants PH3 and PH10 from the Sheffield arm withdrawing 

during the Pre-feeding period. Other withdrawals occurred during the course of the study 

(Fig 2.3). All participants were instructed not to consume other foods which contained 

probiotic organisms. Power and sample size calculations were not carried out for the 

PROHEMI study as it was a small-scale pilot study. Following completion of the Active 
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period, participants were asked to return any capsules which were not taken in order to 

calculate compliance. Participants who remained in the study throughout had a compliance 

percentage of >80% (data not shown), this was in line with other probiotic feeding trials  



CHAPTER 2 – GENERAL METHODS AND MATERIALS 

58 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1| Schematic of the Cardiff arm of the PROHEMI study  
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Figure 2.2| Schematic of the Sheffield arm of the PROHEMI study 
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Figure 2.3| The PROHEMI study enrolment – the numbers of participants enrolled in each 

arm of the study are shown. Withdrawals have been shown along with their respective 

participant numbers. 
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2.2 Processing of faecal samples 

Both study sites followed the same protocols for faecal sample processing whereby fresh 

faecal samples were weighed and scored using the Bristol Stool form Scale (Heaton 1999). 

Samples were homogenised with a spatula. Homogenised faecal samples were separated 

into relevant tubes for storage. 

2.2.1 Storage of faecal material for DNA extraction and for preparation of faecal 

water 

The homogenised faecal material (5 g) was stored at -20°C in preparation for DNA extraction 

and faecal water preparation within one week of freezing. 

2.2.2 Storage of faecal material in order to preserve bacterial cells 

Homogenised faecal material (1 g) was placed in 9 mL of maximum recovery diluent  (Oxoid 

Ltd, Basingstoke, England) which contained 20% w/v glycerol (Fisher Chemical, 

Loughborough, Leicestershire, UK) and 0.5% w/v L-cysteine hydrochloride (Sigma Aldrich 

company Ltd. Dorest, UK). The faecal material and cryo-protective liquid was mixed by 

vortex until a uniform suspension was achieved. The faecal suspension was stored at -80°C 

for future work. 

 

2.3 DNA extraction from bacterial cells 

2.3.1 SOP for DNA extraction from faecal material 

DNA extractions were carried out at both study centres from their respective participant 

samples using the same equipment, reagents, consumables and no sample transportation. 

DNA was obtained from human faecal material by using the QIAamp® DNA Stool Mini Kit 

(QIAGEN LTD. West Sussex, UK) according to manufacturer’s guidelines. However, an 

additional bead beating step was used, whereby 0.5 g of 0.1 mm zirconia/silica beads 

(BioSpec products Inc. Bartlesville, OK 74005, USA) were added to each sample and the cells 

lysed by 3 one min bursts at 5 m/s using a Fastprep®-24 machine (MP Biomedicals, Solon, 

OH 44139, USA). This bead beating step was carried out following the addition and mixing of 

the faecal sample with the first buffer. 

2.3.2 DNA extraction from single species 

Over-night culture (1 mL) was dispensed into a 1.5 mL microcentrifuge tube and centrifuged 

at a relative centrifugal force of 4,000 g for 2 min. The supernatant was removed and the 
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pellet was resuspended in 100 µL of 10 mM TRIS/EDTA (10 mM TRIS/HCl pH8 and 10 mM 

EDTA pH8) (MP Biomedicals, Aurora, Ohio). The cell suspension was transferred to a 2 mL 

tube which contained 0.5 mL of 0.1 mm zirconia/silica beads (BioSpec products Inc. 

Bartlesville, OK 74005, USA). To this 500 µL of lysis buffer (50 mM TRIS/HCl pH8, 70 mM 

EDTA pH8, 1% sodium dodecyl sulphate (SDS)) (Fisher Scientific, Loughborough, 

Leicestershire, UK) and 20 µl proteinase K (20 mg/mL) (QIAGEN LTD. West Sussex, UK) was 

added. The bacterial cells were lysed at 5 m/s for 30 s using a Fastprep®-24 machine (MP 

Biomedicaps, Ohio, USA). The cells were incubated at 37°C for 30 min before 200 µl of 

saturated ammonium acetate was added and vigorously mixed by vortex and tube inversion. 

To this suspension 600 µl of chloroform (Fisher Scientific, Loughborough, Leicestershire, UK) 

was added and vigorously mixed by vortex and tube inversion. The suspension was 

centrifuged at a relative centrifugal force of 14,000 g for 5 min before 700 µL of the clear 

supernatant was taken and transferred into a sterile 1.5 mL microcentrifuge tube. To this 

700 µL of propan-2-ol (Fisher Scientific, Loughborough, Leicestershire, UK) was added and 

mixed vigorously by tube inversion. The suspension was incubated at -20°C for 30 min 

before centrifugation at 14,000 g for 10 min. The supernatant was removed, leaving a white 

pellet of DNA which was washed with 100 µL of ethanol. Excess ethanol was removed and 

the remaining ethanol and DNA were centrifuged for 15 s at 14,000 g to form a pellet. The 

ethanol was removed and the sample was allowed to air dry before resuspension of the 

pellet in 200 µL of TRIS/HCl (10 mM, pH8).  

 

2.4 Ethanol precipitation of DNA samples 

NaCl (1 M) was added as a ratio of 0.3 to the volume of the DNA sample. To the combined 

DNA and NaCl, 2 volumes of cold 100% ethanol was added and mixed by inversion before 

incubation at -20°C over-night. The following morning, the mixture was centrifuged at 

16,000 g at 4°C for 15 min. The supernatant was poured off and 600 µL of cold ethanol (70%) 

was added before centrifugation at 16,000 g at 4°C for 15 min. The supernatant was poured 

off and the sample was allowed to air dry until all remaining ethanol had evaporated. The 

remaining pellet was resuspended in 30 µL of 10 mM TRIS/EDTA (10 mM TRIS/HCl pH8 and 

10 mM EDTA pH8). 
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2.5 SOP for faecal water generation from PROHEMI faecal samples 
Faecal water generation was carried out at both study centres from their respective 

participant samples using the same equipment, consumables and no sample transportation 

as previously described (Marchesi et al. 2007). Briefly, thawed faecal material was weighed 

and 2 volumes (v/w) of sterile phosphate buffered saline (1.9 mM Na2HPO4, 8.1 mM 

NaH2PO4, 150 mM NaCl, pH 7.4) was added. Homogenisation of this mixture was achieved 

through vortex mixing for 60 s in order to generate faecal slurries. The slurry was then 

centrifuged at 3,000 g for 15 min. Following this, the supernatant was removed and filtered 

through a 30 μm filter (Whatman 113V, GE Healthcare Life Sciences, Buckinghamshire, UK). 

The filtrate was further filtered through a 0.2 μm centrifugal filter (VWR International Ltd, 

Leighton Buzzard, UK) at 14,000 g for 15 min.  
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3. COMMUNITY PROFILING OF FAECAL DNA FROM THE PROHEMI STUDY 

3.1 Introduction 

Culture independent analysis of microbial communities has provided a wealth of knowledge 

and has the main advantage of negating “the great plate count anomaly” (Staley and 

Konopka 1985). The method, DGGE, was initially developed in order to discern differences in 

DNA mutation (Fischer and Lerman 1983). However, the technique has also been used as a 

community fingerprint method through the use of 16S rRNA genes (Muyzer et al. 1993). The 

method has been used in order to discern the bacterial community community of complex 

ecosystems. These ecosystems include the soil (Ellis et al. 2003) and more importantly the 

human distal gut (Schwiertz et al. 2003). DGGE has the advantage of the user being able to 

sequence excised bands in order to determine which organism/organisms are present within 

the sample. The advantages and disadvantages of this method have previously been 

discussed (Kirk et al. 2004). Although highly reproducible, this method relies on good 

laboratory techniques in order to compare gels. These techniques include, but are not 

limited to, good pipetting technique when setting up the PCR mixture and the ability to pour 

gels of a consistent volume. The difficulty in comparing different gels becomes apparent 

when band intensity is measured as a proxy for the abundance of a particular organism or 

organisms in the sample. 

Fingerprinting methods such as LHPCR, ribosomal intergenic spacer analysis (RISA) and 

automated ribosomal intergenic spacer analysis (ARISA) provide a snapshot of the 

community as a whole. These methods however, do not easily provide information on the 

specific bacterial make up of a community. It must be noted that DGGE, ARISA and LHPCR 

suffer with the 16S rRNA gene bias. Organisms of potential importance with a low copy 

number of 16S rRNA genes within a community may be overlooked, while those with a high 

copy number are not (Crosby and Criddle 2003). Due to the fact that these techniques rely 

on PCR prior to analysis, many biases can be introduced. These biases and problems have 

previously been discussed (V. Wintzingerode et al. 1997). This then produces a biased 

community fingerprint. These techniques however, can be used in order to assess gross 

changes within the community under investigation. LHPCR has been shown to be 

reproducible and has been successfully applied to complex communities, such as the soil 

(Ritchie et al. 2000) and more importantly the gut (Bjerketorp et al. 2008). LHPCR has also 

been used as a screening method for interesting samples which can be put forward for next 
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generation sequencing (Gillevet et al. 2010). ARISA has also been applied to assess complex 

communities such as freshwater (Fisher and Triplett 1999) and RISA to assess the microbiota 

associated with plant biomass in the herbivore gut (Larue et al. 2005). Both LHPCR and 

ARISA have the benefits of being high-throughput and the abundance of a peak can be easily 

calculated using dedicated software packages.  

It is difficult to ascertain which bacterial species are responsible for generating a fragment of 

a given length when using LHPCR and ARISA. However, it is not impossible to estimate which 

bacterial species will give rise to a fragment of a given length. In the instance of ARISA there 

is a dedicated database for this purpose. The ADAPT system takes ARISA data and uses 

multiple databases to assign taxonomic information to the submitted data (Schmieder 

2008). To my knowledge, there is no such database for LHPCR data. Therefore, an in silico 

LHPCR experiment using 16S rRNA gene information obtained from the ribosomal database 

project (RDP) (Maidak, 2000) was carried out This information can be combined with LHPCR 

data for rough taxonomic identity assignment for a given fragment length.  

Research into the effects of probiotic supplementation focuses on the potential of these 

organisms to exert immunomodulatory effects and to protect against disease. Some 

research has also focused on the ability of probiotics to modulate the gut bacterial 

community of individuals. Much of the research makes use of in vitro models, such as the 

anaerobic faecal batch culture system (Saulnier et al. 2008), in order to assess the ability of 

probiotics to modulate bacterial community. Due to the increasing evidence that the gut 

bacterial community of individuals may impact upon diseases such as obesity, it follows that 

modulation of our commensal gut bacterial community could be used as a therapy. There is 

a scarcity of research on the effect of probiotic supplementation in healthy individuals. 

Research into the effect of probiotic supplementation on the gut bacterial community of 

healthy individuals is scarcer. Therefore, in this study a mixture of community fingerprint 

profiling techniques were tested and applied in order to answer whether the long-term 

consumption of a probiotic, in healthy individuals, modulates the gut bacterial community. 
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3.1.1 Chapter Aims 

The aims of this chapter are as follows: 

 

1. to develop and apply published community profiling techniques on extracted faecal 

DNA from PROHEMI participants; 

 

2. to determine whether probiotic administration affects the gross bacterial community of 

healthy male individuals; 

 

3. to determine whether there is a difference in the gross bacterial community of 

individuals from the two study centres. 
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3.2 Materials and methods 

3.2.1 Length heterogeneity PCR (LHPCR) 

The universal 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) primer was labelled with the 

fluorescein molecule 6-FAM at the 5’ end (Sigma Aldrich, United Kingdom) and used in 

conjunction with 3 different reverse primers: 338R (5'-GCTGCCTCCCGTAGGAGT-3') (Rogers 

et al. 2003), 358R (5′-ACTGCTGCCTCCCGTAGGAGT-3′) (Bjerketorp et al. 2008) and 534R (5’-

ATTACCGCGGCTGCTGG-3’) (Eusebio et al. 2011). Reactions (20 µL) were set-up as previously 

described. The thermal cycler (C1000™; BIO-RAD, Hertfordshire, UK) was programmed with 

an initial denaturing step of 95°C for 1 min, followed by 30 cycles of 95°C for 1 min, 55°C for 

1 min, 72°C for 1 min with a final extension step of 72°C for 10 min.  

All products were visualised by gel electrophoresis using the 2-log ladder DNA standard 

(New England Biolabs® Inc. Ipswich, MA 01938-2723) as a reference. Products were 

concentrated using the Eppendorf concentrator 5301 (Eppendorf UK Limited, Cambridge, 

UK). Hi-Di™ Formamide (10 µL) (Applied Biosystems, Cheshire, UK) and 0.25 µL of MRK 1000 

ROX ladder (Gel Company, San Fransisco, CA 94107, US) were added to each concentrated 

product. Fragment analysis of products was carried out using the ABI 3130xl Genetic 

Analyzer (Applied Biosystems, Life Technologies Corporation, CA 92008, US).  

3.2.1.2 Duplex target length heterogeneity PCR (DT-LHPCR) 

The use of a dual reverse primer combination for LHPCR was trialled. DT-LHPCR was carried 

out by setting-up 20 µL reactions as previously described. However; both 338R and 534R 

primers were added at a concentration of 0.04 µM each with 0.08 µM 6-FAM labelled 27F to 

give a final primer concentration of 0.16 µM. The thermal cycler programme used was the 

same as previously described for LHPCR. Products were visualised and treated as previously 

described for LHPCR. 
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3.2.1.3 Length heterogeneity PCR (in silico) 

Sequences for gut bacterial rRNA genes were obtained from the Ribosomal Database Project 

(available at: http://rdp.cme.msu.edu). The sequences were aligned using the ClustalW 

(Larkin et al. 2007) programme in BioEdit v7.0.5.3 (Hall 1999). Forward and reverse primers 

(27F and 358R respectively) were aligned to the sequences with excess bases and gaps 

subsequently removed. Sequences were uploaded as FASTA files to the compute sequence 

length function in Galaxy tools (available at: https://main.g2.bx.psu.edu/). The sequence 

length for a given bacterial species was used to assign an approximate bacterial species to a 

given peak in the electropherograms generated through LHPCR. The approximate fragment 

sizes generated are shown in Appendix I. 

3.2.1.4 LHPCR analysis of the probiotic organisms used in the study 

DNA from over-night cultures of B. bifidum (Cul 20), L. acidophilus (Cul 21) and L. acidophilus 

(Cul 60) was extracted as previously described (see Chapter 2.3.2). DNA from B. lactis (Cul 

34) was not extracted due to problems culturing the organism from freezer stocks. The 

extracted DNA was subjected to LHPCR analysis using the 358R primer as previously 

described. 

3.2.1.5 Bioinformatic analysis of LHPCR products 

Fragment analysis files generated from LHPCR products were imported into SoftGenetics 

GeneMarker Version 1.91 (SoftGenetics LLC, PA 16803, USA). Electropherograms were 

generated from fragment analysis files in the programme. These were inspected in order to 

ensure that the file was not corrupted or missing data. The areas for given peaks within a 

sample were exported and normalised. This was achieved by calculating the area ratio for 

each peak through dividing the area for a given peak by the total peak area within a sample. 

Normalised proportional peak area ratios (NPPARs) for given samples were imported into R 

Statistical software (R-Core-Team 2012). Heatmaps of data were generated using the 

heatmap2 function in the package gplots (Warnes 2010), or through the aheatmap function 

of the NMF package (Gaujoux and Seoighe 2010). Heatmaps were coloured using the colour 

palettes available in the RColorBrewer package (Neuwirth 2007) (Appendix II). Samples 

within the heatmap were clustered together by hierarchical clustering using calculated 

Euclidean distances of NPPARs through Ward's method. Principal coordinate analysis (PCoA), 

using calculated Euclidean distances of NPPARs, was carried out in R statistical software. This 

was achieved through the use of a custom script which utilised both vegan (Oksanen et al. 

http://rdp.cme.msu.edu/
https://main.g2.bx.psu.edu/
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2011) and labdsv (Roberts 2010) packages (Appendix II). Agglomerative nested clustering 

(AGNES), using Ward's method, of the calculated Euclidean distances of NPPARs and export 

in Newick format was carried out in R statistical software. In order to carry AGNES a custom 

script was used. The script utilised ape (Paradis et al. 2004), BiodiverstiyR (Kindt  and Coe 

2005) and cluster (Maechler et al. 2005) packages (Appendix II). Once exported in Newick 

format, the tree was manipulated using interActive tree of life (iTol) software online (Letunic 

and Bork 2011). 

Percentage changes between samples from the same individual were calculated as 

previously described (Marzorati et al. 2008). Pearson's r correlation coefficients were 

calculated between samples using SPSS (IBM, Portsmouth, UK) and subtracted from 100 in 

order to give the percentage change. The mean percentage change was calculated. 

Normality testing of data followed by Kruskal – Wallis H tests were carried out using IBM 

SPSS statistics 20 (IBM, Portsmouth, UK). 

 

3.2.2 Ribosomal Intergenic Spacer Analysis (RISA) 

RISA of faecal sample DNA was carried out by amplifying the intergenic region between the 

16S rRNA genes and 23S rRNA genes. Amplification of the ribosomal intergenic spacer region 

was achieved through the primer combination of 1406F (5’-TGYACACACCGCCCGT-3’) and 

23SR (5’-GGGTTBCCCCATTCRG-3’) (Fisher and Triplett 1999). PCR reactions (20 µL) were set-

up as previously described however; each reaction contained 40 ng of template DNA. The 

thermal cycler was programmed with an initial denaturing step of 95°C for 3 min, followed 

by 40 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s with a final extension step of 72°C 

for 5 min. 

Products were initially visualised by gel electrophoresis before being loaded into either an 

Agilent 1000 or 7500 DNA chip (Agilent Technologies, Edinburgh, UK). Samples in the chip 

were visualised using the Agilent BioAnalyser 2100 (Agilent Technologies, Edinburgh, UK) 

micro-fluidics platform following manufacturer’s guidelines.  

3.2.2.1 Bioinformatic analysis of RISA products 

RISA data was exported from the Agilent Bioanalyser 2100 and was imported into 

GelCompar®II Version 4.5 (Applied Maths NV, Sint-Martens-Latem, Belgium) using a custom 

script. The script took the comma separated data from the Bioanalyser and converted the 
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data to GelCompar®II format Cluster analysis of percentage similarities between samples, as 

generated through Pearson's correlation coefficient, was carried out using Ward's method. 

Calculated Pearson's correlation coefficients for each sample were exported from the 

software. 

3.2.2.2 Automated Ribosomal Intergenic Spacer Analysis (ARISA) 

The same primers were used for ARISA as those in RISA. However, the primer 1406F was 

labelled with the fluorescein molecule 6-FAM at the 5’ end. ARISA products were treated as 

previously described for LHPCR. 

3.2.2.3 Bioinformatic analysis of ARISA products 

ARISA fragment analysis files were imported into SoftGenetics GeneMarker Version 1.91 and 

were processed as previously described for LHPCR. 

Raw AB1 ARISA fragment analysis files, generated through fragment analysis, were also 

uploaded to the ADAPT (Schmieder 2008) database for analysis. 
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3.3 Results 

3.3.1 Length heterogeneity PCR (LHPCR) testing 

3.3.1.1 Primer testing 

The single 6-FAM labelled 27F primer was tested with 3 different reverse primers (338R, 

358R and 534R) and a combination of 2 reverse primers (338R and 534R). For this 

experiment primer combination reproducibility was tested through the amplification of a 

single DNA sample in quadruplicate reactions using each primer combination. Through PCoA 

it was found that all primer combinations were highly reproducible (Fig. 3. 1). Both 534R and 

the dual target combination of 338R and 534R, clustered closely together. In order to inspect 

the reproducibility further, a heatmap (Fig. 3. 2) was generated which consolidated all the 

information from the electropherograms (Fig. 3. 3) of all the quadruplicate primer reactions. 

Samples NO9-NO16 appear to be clustered closely together, with no differentiation between 

the 534R primer alone and when it is combined with 338R as a dual target. Further 

inspection of the heatmap shows that the peaks generated by the 338R primer in the dual 

reaction (NO13-NO16) are low in their proportional abundance. Therefore, separate 

clustering of these 4 replicates from the 534R primer replicates (NO9-NO12) was not 

achieved. For further LHPCR experiments 358R will be used as the primer of choice, as this 

primer has previously been applied to LHPCR analysis of human faecal samples (Bjerketorp 

et al. 2008). 
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Figure 3.1| PCoA of LHPCR primer combinations– the first and second principal coordinates 

have been plotted, the variance explained is shown in brackets. The reverse primer used in 

conjunction with 6-FAM 27F have been colour coded, 338R, 358R, 534R and 338+534R are 

black, red, green and blue respectively. 
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Figure 3.2| Heatmap of LHPCR primer reproducibility– samples are shown on the right of 

the heatmap, NO1-NO4 = 338R, NO5-NO8 = 358R, NO9 -NO12 = 534R and NO13-NO16 = 

338/534R. Fragment sizes are shown in base pairs (bp) on the bottom of the heatmap. The 

proportion of each peak shown within a given sample is represented by a colour, which is 

shown in the Key. The software clusters the most similar samples next to one and other. 
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Figure 3.3| Electropherogram of a 534R LHPCR sample – Fragment sizes are shown on the 

bottom of the electropherogram and the fragment abundance, measured by fluorescence 

intensity, is shown by the peak height (which is measured on the left of the 

electropherogram). 
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3.3.1.2 Stability of the 6-FAM label on LHPCR products 

DNA was extracted from the 1st set of Cardiff faecal samples and subjected to LHPCR 

analysis. Products were subjected to immediate fragment analysis and also stored at -20°C 

for 2 weeks and 1 month before fragment analysis, to give 3 replicates for a given sample. 

The heatmap (Fig. 3. 4) shows that most replicates of a given sample clustered together (e.g. 

PH35 and PH30), while some replicates in a given sample did not (e.g. PH21 and PH25). 

Percentage change of samples, after storage at -20°C for 2 weeks and 1 month, was also 

calculated. This was achieved by comparing peak area ratios of stored LHPCR samples to 

their respective samples where fragment analysis was carried out immediately. The mean 

percentage change after storage for 2 weeks and 1 month was 15.71% (standard deviation 

from the mean (SD) = ± 16.9%) and 16.69% (SD = 18.8%) respectively (Fig. 3. 5). Therefore, it 

was decided that samples will be sent for fragment analysis without delay after LHPCR 

product generation. 

3.3.1.3 Reproducibility of LHPCR using the 358R primer and the reproducibility of faecal 

DNA extraction 

LHPCR was carried out twice on a single DNA sample obtained from three participants. The 

two LHPCR results for a given individual cluster together. Importantly individuals S1, S2 and 

S3 cluster separately from one and other (Fig. 3. 6). Through Pearson's correlation 

coefficient it is possible to see that S1 A and S1 B share 100% similarity, S2 A and S2 B share 

99.9% similarity and S3 A and S3 B share 99.5% similarity (Table 1). Therefore it is possible to 

conclude that intra-sample similarity is higher than the inter-sample similarity. For example 

S3 A and B share 89.2% and 88.9% similarity with S1 A respectively. This suggests that the 

technique is highly reproducible and can distinguish between DNA samples from different 

individuals.  

Five DNA extractions were performed on a single faecal sample and LHPCR analysis carried 

out on the DNA. After analysis and export of NPPARs the data was subjected to Pearson’s 

correlation coefficient analysis (Table 2). It is possible to see that the majority of the samples 

are highly similar. However, Extraction 3 shows a lower percentage similarity to the other 

extractions. This highlights the importance of the extraction method in a fingerprinting 

technique. 

 

.
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Figure 3.4| Heatmap to show 6-FAM stability – samples which were sent for fragment 

analysis immediately are shown in black, after 2 weeks of storage at -20°C in green and after 

4 weeks of storage at -20°C in blue. The proportional abundance of a fragment is 

represented by a colour, as shown in the key. 

 Proportion in sample 

       0      0.25      0.5    0.75 



CHAPTER 3 – COMMUNITY PROFILING OF FAECAL DNA FROM THE PROHEMI STUDY 

77 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6| PCoA of two LHPCR analyses of a single DNA sample from 3 individuals – The 

first and second principal coordinates have been plotted, the variance explained is shown in 

brackets.  
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Figure 3.5| Mean percentage change in normalised peak area ratios of samples after storage at -

20°C – normalised peak area ratios of stored samples were compared to normalised peak area ratios 

of the same samples following immediate fragment analysis; error bars represent standard deviation 

from the mean. 
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Table 3.1| Pearson's correlation of two LHPCR runs from 3 individuals  

Single DNA extractions from 3 individuals (S1, S2 and S3) were subjected to LHPCR analysis 

twice; A = 1st LHPCR analysis and B= 2nd LHPCR analysis.  

 

S1 A S1 B S2 A S2 B S3 A S3 B 

S1 A 1.000      

S1 B 1.000 1.000     

S2 A .987 .987 1.000    

S2 B .988 .988 .999 1.000   

S3 A .892 .892 .893 .884 1.000  

S3 B .889 .889 .892 .884 .995 1.000 
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Table 3.2| Pearson's correlation of 5 DNA extractions using a single faecal sample  

5 DNA extractions were performed in a single faecal samples and were subjected to LHPCR 

analysis followed by Pearson’s correlation. 

 

Extraction 1 Extraction 2 Extraction 3 Extraction 4 Extraction 5 

Extraction 1 1.00     

      

Extraction 2 0.958 1.00 

  

 

     

 

Extraction 3 0.693 0.802 1.00 

 

 

     

 

Extraction 4 0.95 0.987 0.839 1.00  

     

 

Extraction 5 0.848 0.901 0.84 0.938 1.00 
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3.3.1.4 LHPCR analysis of probiotic strains used in study 

When subjected to LHPCR analysis the two L. acidophilus strains (Cul 21 and 60) showed a 

peak (fragment) at 372 bp while B. bifidum (Cul 20) showed a peak (fragment) at 351 bp. 

This information will be used while analysing the LHPCR profiles generated from study 

samples. 

 

3.3.2 LHPCR analysis of PROHEMI faecal DNA samples 

3.3.2.1 LHPCR analysis of all PROHEMI samples from Cardiff/Port Talbot and Sheffield 

based upon study period 

All Cardiff/Port Talbot and Sheffield faecal DNA samples were subjected to LHPCR analysis. 

PCoA of NPPARs based upon study period shows no effect of probiotic supplementation on 

the gross community profiles. Pre-feeding, Active and Washout samples clustered together 

(Fig. 3. 7). In order to interrogate the dataset further, the study centres were analysed 

separately. Probiotic supplementation showed no effect upon gross community profiles as 

shown by PCoA of Sheffield samples as Pre-feeding, Active and Washout samples clustered 

together (Fig. 3. 8). The same was observed in the Cardiff/Port Talbot samples where the 

Active and placebo groups were separated from one another and blindly assigned either 

Active group 1 (A1) or Active group 2 (A2). These two Active groups clustered together with 

Pre-feeding and Washout (Fig. 3. 9) following PCoA. It must be noted that outliers were 

observed in all groups, however, the majority of samples from each group clustered 

together. 

3.3.2.2 LHPCR analysis of all PROHEMI samples from Cardiff/Port Talbot and Sheffield 

based upon study centre 

PCoA of NPPARs, generated through LHPCR analysis, shows clustering based upon the study 

centre. Cardiff/Port Talbot and Sheffield samples clustered separately from one another (Fig. 

3. 10). Although there is an observable overlap between the two study centre clusters due to 

a few samples, it is clear that the two study centres cluster separately.  
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Figure 3.7| PCoA of all PROHEMI LHPCR samples with study period shown – study periods 

are shown on the plot (P = Pre-feeding, A = Active, W = Washout) and variation explained 

shown for each axis. PCoA was carried out using calculated Euclidean distances of NPPARs. 
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Figure 3.8| PCoA of Sheffield PROHEMI LHPCR samples with study period shown – study 

periods are shown on the plot (P = Pre-feeding, A = Active, W = Washout) and variation 

explained shown for each axis. PCoA was carried out using calculated Euclidean distances of 

NPPARs.
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Figure 3.9| PCoA of Cardiff/Port Talbot PROHEMI LHPCR samples with study period shown 

– study periods are shown on the plot (P = Pre-feeding, A1 = Active group 1, A2 = Active 

group 2, W = Washout) and variation explained shown for each axis. PCoA was carried out 

using calculated Euclidean distances of NPPARs. 
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Figure 3.10| PCoA through distance of all PROHEMI LHPCR samples with study centre 

shown – study centres are shown on the plot (C = Cardiff/Port Talbot, S = Sheffield) and 

variation explained shown for each axis. PCoA was carried out using calculated Euclidean 

distances of NPPARs. 
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3.3.2.3 LHPCR analysis of all PROHEMI samples from Cardiff/Port Talbot and Sheffield 

based upon study centre and study period 

Cluster analysis of all samples from both study centres suggests that samples cluster 

together due to the study centre and not study period (Fig. 3. 11). It is possible to see that 

Sheffield samples cluster together to the right hand side of the dendrogram, while 

Cardiff/Port Talbot samples cluster together to the left of the dendrogram. There are a few 

samples from Sheffield which cluster with the Cardiff/Port Talbot samples and vice versa. 

This would explain the slight overlap in clusters generated through PCoA (Fig. 3. 10). In 

addition a heatmap, generated through LHPCR analysis, was applied to the cluster analysis. 

The observed study centre clustering is driven by a difference in the community profiles of 

participants from the two study centres (Fig. 3. 12). Sheffield samples appear to have high 

proportional abundance of two to three peaks, as represented by the deep red colour. 

However, Cardiff/Port Talbot samples show a far lower proportional abundance of a range 

of peaks. This observation was further investigated through the generation of a heatmap 

from selected samples from different portions of the dendrogram (Fig. 3. 13). Sheffield 

samples cluster together and have a high proportional abundance of a peak at 356 base-

pairs (bp). Cardiff/Port Talbot samples have a range of peaks at a lower proportional 

abundance. Samples from Cardiff/Port Talbot also have peaks at 365-367 bp which are 

absent to low in the Sheffield samples. Furthermore, it is possible to see that samples which 

cluster with samples from the other centre, do so due to similar NPPARs e.g. 6PH36 and 

11PH7 (Fig. 3. 13). This information was combined with an in silico LHPCR experiment. 

Through the combination of these two methods, I hypothesise that the major driver for the 

separate clustering of Sheffield samples from Cardiff/Port Talbot samples, is the high peak 

area proportion seen in these samples at 356 bp. According to my in silico LHPCR experiment 

this fragment corresponds to the Bacteroidetes group of bacteria. Low and sometimes non-

existent proportional peak area abundances at 363-367 bp in the Sheffield samples were 

also observed. The in silico LHPCR experiment suggest that the Firmicutes group of bacteria 

would generate fragments of this size. The high abundance of the 356 bp fragment coupled 

with the low and sometimes non-existent proportional peak area abundance observed 

between 365-367 bp, drives the separate clustering of these two study centres (Appendix I).  
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Figure 3.11| Cluster analysis of all PROHEMI LHPCR samples with study centre and study 

period shown – study centre is shown on the inner ring (Cardiff/Port Talbot = blank and 

Sheffield = black) while study period is shown on the outermost ring (Pre-feeding = red, 

Active = green and Washout = blue). 
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Figure 3.12| Cluster analysis of all PROHEMI LHPCR samples with a heatmap of the 

community profile, generated through LHPCR, applied – electropherograms, generated 

through LHPCR, for a given sample were converted into a heatmap and applied to the cluster 

analysis. Proportional abundance is represented through a colour continuum from yellow 

(lowest) to orange to red (highest). Sheffield samples are represented by a black line on the 

inner side of the heatmap while Cardiff samples have been left blank. 
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Figure 3.13| Heatmap of selected samples from different study centres – generated 

through LHPCR analysis of PROHEMI samples. Participant sample is shown (Cardiff/Port 

Talbot = red and Sheffield = blue) with LHPCR fragment size and a key for proportional 

abundance.  
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It is also possible to see this difference in centre proportional peak abundances in another 

heatmap, where all the treatment groups and study periods are represented along with the 

study centre (Fig. 3. 14). It is once again possible to see a high proportional abundance of 

the fragments at 356 bp and also 358 bp in the Sheffield samples with little to no 

proportional abundance of fragments between 365-367 bp. Cardiff/Port Talbot samples 

exhibit an increased distribution of fragment sizes at lower abundance levels. The 

proportional abundances of 356, 363, 365, 366 and 367 fragments were plotted in a box-plot 

(Fig. 3. 15) In order to determine whether there was a significant difference in these 

proportional abundances the Kruskal-Wallis H test was utilised. The data were not normally 

distributed therefore, this test was used. The ranked mean of the 356 bp fragment was 

significantly higher in Sheffield samples than Cardiff samples [χ2 (1) = 42.349, p < 0.001]. 

Conversely, the mean rank of fragments, at 365-367 bp, were significantly higher in the 

Cardiff samples than Sheffield samples ([χ2 (1) = 113.763, p<0.001], [χ2 (1) = 64.285, p<0.001) 

and [χ2 (1) = 53.753, p<0.001] respectively). 
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Figure 3.14| Heatmap of all PROHEMI LHPCR samples – study centre is shown (C = Cardiff/Port Talbot and S = Sheffield) with study period (P = Pre-feeding, 
A = Active Sheffield, A1 = Active group 1 Cardiff/Port Talbot, A2 = Active group 2 Cardiff/Port Talbot and W = Washout) and proportional abundance key. 
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Figure 3.15| The abundance of NPPARs from PROHEMI LHPCR samples – the fragment size 

is shown in bp with a key for the centre where the sample came from. Box-plots represent 

the median, first and third quartiles of a given group of samples while outliers are 

represented by black dots. *denotes a significantly higher mean rank (p<0.05) 
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3.3.2.4 LHPCR analysis of Sheffield faecal samples and comparison with pervious LHPCR 

data 

Stored faecal samples from Sheffield participants were obtained and DNA was extracted 

from these samples at Cardiff University. LHPCR analysis was carried out on the newly 

extracted DNA. Repeat fragment analysis was also carried out on LHPCR products obtained 

from the corresponding original Sheffield DNA extractions, which were stored at -20°C. The 

newly generated LHPCR profiles were compared to the original LHPCR profiles generated 

from Sheffield DNA extractions, and also the LHPCR profiles generated from stored LHPCR 

products. Therefore, there are 3 repeats of LHPCR analysis for participants from the same 

time point. The results show a stark difference between the samples. Freshly extracted DNA 

clustered separately from the stored LHPCR products and original LHPCR profiles (Fig. 3. 16). 

Further inspection through the generation of a heatmap shows the driver for separate 

clustering (Fig. 3. 17). While the original Sheffield extractions showed a high proportional 

abundance of the fragments at 365-367 bp, this is not seen in the later LHPCR analysis of 

DNA extracted from the same samples at Cardiff. In this instance what there appears to be 

little to no proportional abundance of these fragments. Instead there is a high proportional 

abundance of the 365 bp fragment. This is a complete reverse to what was originally seen. 

Fragment analysis of stored LHPCR products from the same original Sheffield samples cluster 

with the original Sheffield LHPCR profiles. This is likely as a result of the stability of the 6-

FAM molecule as previously discussed. 
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Figure 3.16| PCoA of multiple LHPCR analyses on the same samples after storage – samples 

are clustered together based on the condition (1 = original LHPCR profiles from DNA 

extracted at Sheffield, 2 = LHPCR products of DNA extracted at Sheffield after storage at -

20°C and 3 = LHPCR profiles obtained from DNA extracted at Cardiff University after storage 

of the faecal sample). The variation explained for each axis is shown. 
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Figure 3.17| Heatmap of multiple LHPCR analyses carried out on the same samples after 

storage – the heatmap shows the proportional abundance of fragments within a sample. 

Conditions for each sample are indicated by colour with black = original LHPCR profiles from 

DNA extracted at Sheffield, red = LHPCR profiles of LHPCR products from DNA extracted at 

Sheffield after storage at -20°C and green = LHPCR profiles obtained from DNA extracted at 

Cardiff University after storage of the faecal sample. 
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3.3.2.5 Percentage changes in LHPCR profiles of all PROHEMI samples from Sheffield based 

upon study period 

The average percentage change between LHPCR profiles within a given study period was 

calculated. One-way ANOVA showed no significant difference [F (2, 799) = 0.411, p=0.663] 

between the Pre-feeding, Active and Washout periods was observed (Fig. 3. 18). Percentage 

changes for Pre-feeding, Active and Washout periods were 19.61%, 19.3% and 16.39% 

respectively. The average percentage change was also calculated on an individual basis for 

each study period (Fig. 3. 19). There were different observed responses to probiotic 

administration. Participants PH6 and PH9 showed a lower percentage change during the 

Active period which increased upon cessation of the probiotic. However, participants PH1, 

PH4 and PH17 showed an increase in percentage change during the Active period which 

decreased upon cessation of the probiotic. In addition, some participants such as PH5 and 

PH16, showed little response to probiotic administration with similar percentage changes for 

all study periods. It was not possible to calculate percentage changes for some participants, 

such as PH12 and PH18, due to a lack of samples. 
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Figure 3.18| Percentage change between Sheffield LHPCR samples within a given study 

period – the average percentage change between LHPCR profiles from Sheffield within a 

given study period is shown with error bars representing the standard deviation from the 

mean. 

 

Figure 3.19| Percentage change between Sheffield participants’ LHPCR samples within a 

given study period – the average percentage change in LHPCR profiles of individuals from 

Sheffield within a given study period is shown.  
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3.3.3 Ribosomal Intergenic Spacer Analysis (RISA) of faecal DNA 

RISA profiles of 3 individuals at two different time points (before the feeding study and one 

week into the study) were tested along with an extra individual’s sample from before the 

commencement of the study (Fig. 3. 20). Three DNA extractions from a single sample (PH27 

1, PH27 2 and PH27 3) were also compared. The RISA products obtained were bunched 

closely at the 700-1000bp region, making it difficult to identify inter and intra individual 

differences (Fig. 3. 21). The RISA products were then loaded onto a 7500 chip and the 

products were once again bunched (Fig. 3. 22). Pearson's correlation coefficient analysis of 

the two chips shows ≥95% similarity with the 1000 chip and ≥98% with the 7500 chip. Both 

inter and intra individual differences are highly similar. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20| RISA of faecal DNA from the PROHEMI study - lanes 1-5 show the RISA profiles 

participants PH25, PH26, PH27, PH29 and PH30 respectively at the beginning of the feeding 

study. Lanes 6-9 show the RISA profiles participants PH25, PH26, PH27 and PH29 

respectively following one week of probiotic supplementation. While lanes 10-12 show the 

RISA profiles of 3 DNA extractions from one homogenised faecal sample. 
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Figure 3.21| Composite dendrogram generated through RISA of PROHEMI samples using the Bioanalyzer 1000 chip – samples are clustered based on 

percentage similarity where P = Pre-feeding and A= Active. The analysis also contains three sets of RISA products from a single DNA extraction of DNA 

obtained from participant PH27. The figure shows the RISA profile generated for each sample also. 
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Figure 3.22| Composite dendrogram generated through RISA of PROHEMI samples using the Bioanalyzer 7500 chip – samples are clustered based on 

percentage similarity where P = Pre-feeding and A= Active. The analysis also contains three sets of RISA products from a single DNA extraction of DNA 

obtained from participant PH27. The figure shows the RISA profile generated for each sample also. 
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Table 3.3| Pearson's correlation coefficient analysis of RISA products obtained from a Bioanalyzer 1000 chip  

The table contains 5 Pre-feeding samples from different participants (P), 4 Active samples (A) from different participants and 3 RISA products from different DNA 
extractions from PH27 at a single time-point (PH27 1, PH27 2 and PH27 3). 

 Sample 

 

PH27A PH30P PH25P PH29P PH26P PH27P PH29A PH25A PH27 1 PH27 2 PH27 3 PH26A 

PH27A 1.000 

           
PH30P 0.994 1.000 

          
PH25P 0.993 0.991 1.000 

         
PH29P 0.99 0.993 0.988 1.000 

        
PH26P 0.985 0.989 0.981 0.984 1.000 

       
PH27P 0.989 0.991 0.988 0.989 0.991 1.000 

      
PH29A 0.989 0.986 0.98 0.985 0.983 0.98 1.000 

     
PH25A 0.979 0.987 0.977 0.986 0.984 0.98 0.966 1.000 

    
PH27 1 0.988 0.993 0.985 0.986 0.987 0.989 0.977 0.99 1.000 

   
PH27 2 0.99 0.999 0.986 0.977 0.983 0.989 0.977 0.976 0.993 1.000 

  
PH27 3 0.988 0.985 0.985 0.971 0.976 0.982 0.977 0.967 0.988 0.996 1.000 

 
PH26A 0.974 0.974 0.974 0.968 0.955 0.964 0.965 0.951 0.966 0.97 0.97 1.000 
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Table 3.4| Pearson's correlation coefficient analysis of RISA products obtained from a Bioanalyzer 7500 chip 

 Sample 

 PH29P PH30P PH26P PH25P PH27P PH25A PH27 1 PH27 3 PH27A PH27 2 PH29A PH26A 

PH29P 1.000 

           PH30P 0.996 1.000 

          PH26P 0.996 0.995 1.000 

         PH25P 0.996 0.994 0.993 1.000 

        PH27P 0.995 0.994 0.995 0.997 1.000 

       PH25A 0.99 0.987 0.989 0.993 0.989 1.000 

      PH27 1 0.995 0.996 0.992 0.991 0.991 0.986 1.000 

     PH27 3 0.992 0.993 0.999 0.993 0.988 0.984 0.997 1.000 

    PH27A 0.994 0.993 0.99 0.992 0.991 0.987 0.995 0.996 1.000 

   PH27 2 0.999 0.988 0.988 0.991 0.99 0.989 0.99 0.993 0.993 1.000 

  PH29A 0.987 0.983 0.985 0.987 0.985 0.986 0.982 0.987 0.993 0.995 1.000 

 PH26A 0.986 0.979 0.98 0.984 0.982 0.983 0.981 0.981 0.986 0.986 0.985 1.000 

The table contains 5 Pre-feeding samples from different participants (P), 4 Active samples (A) from different participants and 3 RISA products from different DNA 
extractions from PH27 at a single time-point (PH27 1, PH27 2 and PH27 3). 
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3.3.3.1 Automated Ribosomal Intergenic Spacer Analysis (ARISA) of faecal DNA 

RISA profiles were successfully generated from faecal DNA using the newly 6-FAM labelled forward primer 

(Fig. 3. 23). However, analysis using GeneMarker and analysis using the ADAPT system was not possible due 

to the generation of incomplete fragment analysis files. 

 

 

 

 

 

 

 

 

Figure 3.23|. Gel electrophoresis of ARISA products using a 6-FAM labelled forward primer – successful 

amplification of 16 faecal DNA samples with a negative control and 2-log ladder. 
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3.4 Discussion 

3.4.1 Length heterogeneity PCR (LHPCR) 

LHPCR has previously been used as a community fingerprinting method using faecal DNA as 

the template material. However, studies such as these are often short-term and often have a 

limited number of subjects, e.g. one patient and only 3 samples (Bjerketorp et al. 2008), or 

sampling only occurs once (Suzuki et al. 1998). The long-term PROHEMI study scrutinised the 

suitability of LHPCR as a viable fingerprinting method for long-term use and for multiple 

individuals. While all LHPCR primer combinations showed promise, with the exception of the 

DT-LHPCR primers, it was decided that the primer combination of 27F and 358R would be 

used. This primer combination has previously been applied to the human gut (Bjerketorp et 

al. 2008). Pearson's correlation coefficient analysis of multiple DNA extractions from one 

individual, shows that the extraction method can impact upon the LHPCR profile obtained. 

However, LHPCR analysis itself appears to be highly reproducible as intra-sample similarity is 

higher than inter-sample similarity. This is provided that LHPCR samples are subjected to 

fragment analysis as soon as possible due to stability of the 6-FAM label.  

Following primer and reproducibility testing, LHPCR was applied in order to monitor the 

community fingerprints of individuals' faecal DNA samples during the course of the study. 

The results show no gross change in the LHPCR profiles when samples are analysed within 

distinct period groups. Samples from each period and group (Pre-feeding, Active Sheffield, 

Active group 1, Active group 2 and Washout) cluster together through AGNES clustering and 

PCoA. Percentage change analysis was also carried out on Sheffield samples alone and 

showed no significant difference between the Pre-feeding, Active and Washout periods. This 

suggests that probiotic supplementation does not alter the gross bacterial community of a 

healthy individual. In order to scrutinise the dataset further, information from my in silico 

LHPCR experiment, fragment sizes of the probiotic organisms and LHPCR data from the 

PROHEMI samples were combined. There was no increase in fragment abundance at 372 bp 

or 351 bp, the fragment sizes expected to be generated by L. acidophilus (Cul 21 and 60) and 

B. infantis (Cul 20) respectively from my analyses, while probiotic supplementation takes 

place. It must be noted that the dendrogram generated through AGNES clustering of LHPCR 

samples shows clustering of Active Sheffield samples. However, I do not believe that this is 

due to probiotic supplementation. Instead, I believe this is due to geographical differences in 

the distal gut bacterial community of individuals and this will be discussed later. 
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Analysis was also carried out on an individual basis using Sheffield samples alone. This was in 

order to ensure that participants who potentially showed a response to probiotic treatment 

were not masked by those who did not. Varied responses to the consumption of the 

probiotic were observed. Some participants, such as PH4, show an increase in percentage 

change while consuming the probiotic supplement suggesting a bacterial modulating effect. 

However some participants, such as PH6, show a decrease in percentage change while 

consuming the probiotic suggesting a potential stabilising effect. This observed duality in 

responses is further complicated by participants, such as PH16, who show little change in 

response to probiotic supplementation. It is therefore difficult to draw any conclusions from 

this particular analysis. It may be that there is a case of responders to supplementation 

against non-responders. The incidence of responders and non-responders to probiotic 

treatment is not unheard of (Reid et al. 2010). This phenomenon is often seen when the 

infirm are treated with probiotics. However, these results suggest that this occurs in healthy 

individuals also. The responders group is further complicated by different responses. This 

suggests that the response to probiotic supplementation is individual and differs from 

person to person. While some individual changes were observed during probiotic treatment, 

there is no clear response across the whole probiotic taking cohort. This makes the role of 

probiotic supplementation in modulating the gut bacterial community difficult to elucidate. 

Analysis of LHPCR data was carried out based upon study period also, with Cardiff/Port 

Talbot samples being compared to Sheffield samples. The analyses show separate clustering 

of samples based upon study centre. PCoA shows separate clustering of the two study 

locations in agreement with the dendrogram generated through AGNES clustering. In order 

to ascertain the driving force between the observed clustering a heatmap was applied to the 

dendrogram. There is a large abundance of a few fragments in the Sheffield samples while 

there is a lower abundance of a larger range of fragments in the Cardiff/Port Talbot samples. 

Where samples from Cardiff/Port Talbot cluster with Sheffield samples, it is possible to see a 

similar fingerprint profile in Cardiff/Port Talbot samples to the Sheffield samples and vice 

versa. Samples from each cluster were selected and a heatmap generated in order to 

determine the fragment sizes observed. This data was once again combined with my in silico 

LHPCR experiment in order to assign an approximate taxonomic identity to the fragment of a 

given size. Following the in silico LHPCR experiment I believe that the Sheffield samples have 

a high abundance of Bacteroidetes fragments as shown by the significantly high proportional 

abundance of the 356 bp fragment. The Sheffield samples show a significantly lower 

proportional abundance of fragments at 365-367 bp than the Cardiff samples. The in silico 
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LHPCR experiment suggests that the Firmicutes would generate fragments of this size and 

are therefore present at low numbers in the samples obtained from Sheffield (Appendix I). 

Investigation of the samples obtained from Cardiff/Port Talbot shows a greater distribution 

of fragments at lower proportional abundance. In addition, the putative fragment sizes 

generated by the Bacteroidetes and Firmicutes are generally evenly represented in samples 

from Cardiff/Port Talbot.  

It has been noted previously that the ratio of Firmicutes/Bacteroidetes alters with age 

(Mariat et al. 2009). The authors show that the level of Firmicutes is lower in infants than in 

adults and the elderly. However, Bacteroidetes levels remain fairly uniform in infants, adults 

and the elderly. The participants in the study were all adults and not elderly. Therefore, the 

results suggest geographical differences between the gut bacterial community of individuals 

as Cardiff and Port Talbot are in Wales, while Sheffield is in the north of England. It has been 

shown previously that geographical differences can drive changes in the gut bacterial 

community of an individual, usually with diet being the major driver. The gut bacterial 

community of children from the European Union (EU) has been compared to children from 

Burkina Faso (De Filippo et al. 2010). Children from the EU had a significantly higher level of 

Firmicutes than children from Burkina Faso (63.7% vs. 27.3% respectively, p = 7.89 x 10-5). 

The expected reverse was shown in children from Burkina Faso as a significantly higher level 

of Bacteroidetes was observed compared to children from the EU (57.7% vs. 22.4%, p = 1.19 

x 10-6). The believed reasons behind this difference are different diet habits. In another study 

PCoA of unweighted Unifrac distances derived from 16S rRNA datasets, show separate 

clustering of USA adults from Malawians and Amerindians. The Malawian and Amerindian 

populations clustered together (Yatsunenko et al. 2012). These studies show differences 

between very different populations, with different ethnicities and from very different 

countries.  
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However, my results suggest a possible difference in the gut bacterial community of 

individuals based on geographical location in the UK. I believe that the 

Firmicutes/Bacteroidetes ratio is responsible for the clustering of Active Sheffield samples. 

During the Active period of the study a larger number of samples were provided. Therefore, 

the Firmicutes/Bacteroidetes ratio difference gives the appearance of clustering due to 

probiotic supplementation. While a geographical difference in gut microbiota composition is 

an interesting conclusion it would be prudent to meet this conclusion with some scepticism. 

Due to the nature of this study, DNA extractions were carried out at the two study centres 

and not at one alone. However, the apparent lack of Firmicutes in the Sheffield samples 

immediately raises the question of whether DNA extraction protocol was followed correctly; 

particularly the need to bead beat the samples. In order to ensure that there were no lab 

generated differences, I carried out DNA extractions on faecal samples from Sheffield which 

had DNA extracted previously. When compared, there was a completely different 

community fingerprint from the original extracted DNA observed. That is to say that the DNA 

extraction which I carried out generated different results to the DNA which was originally 

extracted at Sheffield. When the more recent DNA extractions were compared to their 

respective original DNA extractions, a difference in the fragments and abundances 

generated was seen. The recent extractions showed a high proportional abundance of 

fragments at 365-367 bp, putatively Firmicutes, and a low proportional abundance of the 

356 bp, putatively Bacteroidetes. This observable antithesis between community fingerprints 

obtained from the same faecal samples is most likely due to the effect of storage on the 

faecal sample. The effect of storage and the effect of DNA extraction method on the 

bacterial community acquired has been discussed in Chapter 6. It is difficult to say with 

complete certainty that there is a geographical difference in the gut bacterial community of 

individuals in this study. Unfortunately, the possibility of a methodological artefact in this 

instance cannot be ruled out.  
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LHPCR has been successfully applied to a range of complex ecosystems. The technique has 

been applied to monitor changes in bacterial composition of industrial processes. Tiirola and 

colleagues monitored the change in bacterial composition of a thermophilic biofilm process 

for the treatment of pulp and paper ill white-water lining (Tiirola et al. 2003). For this study, 

a different primer combination was used. The primer fD1 (5'-AGAGTTTGATCCTGGCTCAG-3'), 

which was designed to amplify the majority of eubacteria (Weisburg et al. 1991) was used as 

a forward primer in combination with 518R (5'-ATTACCGCGGCTGCTGG-3') (Muyzer et al. 

1993). In this instance the reverse primer was labelled with the fluorescent molecule IRD-

800. Differences in LHPCR profiles were observed between attached and suspended 

biomass. Furthermore, LHPCR profiles altered following pH shocks in the biofilm. This shows 

that LHPCR can discern differences in communities and also can detect differences in the 

bacterial community community following perturbations. LHPCR has also been applied in 

order to monitor the succession of LAB during the ensiling of maize (Brusetti et al. 2006). In 

this study, the universal primer 27F was used in conjunction with 338R primer (Rogers et al. 

2003). The technique showed changes in the microbial composition as the fermentation 

process progressed from day 0 to day 30. This study shows that the technique can be used in 

order to measure the differences in a microbial community temporally.  

While LHPCR is a useful technique for comparing microbial communities in terrestrial 

ecosystems and industrial processes, it has also been applied to assess changes within the 

human body. Sputum from cystic fibrosis patients was compared using this technique 

(Rogers et al. 2003). The previously mentioned reverse primer 338R was used in conjunction 

with 8F (5'-AGAGTTTGATCCTGGCTCAG-3'), which was labelled with 700IR. The technique 

showed differences in the bacterial community community of individuals. The technique 

showed 10 distinct LHPCR profiles for 14 cystic fibrosis individuals. The technique has also 

been utilised in order to assess whether alcoholism affects the colonic microbiome (Mutlu et 

al. 2012). Faecal material was not the source of DNA in this study instead; biopsies of the 

colonic tissue were taken. The study use the universal primer 27F labelled with 6-FAM in 

conjunction with 355R (5'-GCTGCCTCCCGTAGGAGT-3') in order to generate LHPCR profiles. 

PCoA and plotting of the first, second and third components showed that alcoholics with and 

without alcoholic liver disease clustered away from the healthy controls. The results show 

that LHPCR is a suitable technique in order to determine lifestyle driven differences in the 

composition of the mucosa-associated bacterial community.  
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Mutlu and colleagues used colonic biopsy material as a source of DNA (Mutlu et al. 2012). 

However, faecal material has also been used as a source of DNA. Bjerketorp and colleagues 

used faecal samples of a healthy man before, during and after antibiotic intervention as a 

source of DNA for LHPCR analysis (Bjerketorp et al. 2008). The primers used, 27F and 358R, 

were utilised in this study. The reproducibility of this primer pair was tested and also applied 

in order to determine differences in the bacterial community composition following 

antibiotic therapy. The technique shows differences in the LHPCR profiles between the three 

samples from different times of treatment. Preliminary testing of this primer combination 

during the PROHEMI study also showed that the technique is reproducible. While the 

technique itself is highly reproducible, variability in LHPCR profiles was generated through 

DNA extraction. Researchers should be aware of this before drawing biological conclusions 

on a low sample dataset. This method can be applied to a large study in order to assess 

changes in bacterial community composition of the human distal microbiome. The method is 

relatively high-throughput and inexpensive to carry out. Researchers may use the technique, 

as Mutlu and colleagues (Mutlu et al. 2012) have, in order to select samples of interest for 

next generation sequencing. 

 

3.4.2 Ribosomal Intergenic Spacer Analysis (RISA) and Automated Ribosomal 

Intergenic Spacer Analysis (ARISA) 

RISA has been successfully applied to monitor changes in complex ecosystems such as the 

soil (Ranjard et al. 2001) and freshwater (Fisher and Triplett 1999). The technique has also 

been applied to monitor gut bacterial DNA in faecal material, obtained from colorectal 

cancer patients (n=20) (Scanlan et al. 2008). Patients were followed for a period of 3 

months, showing the suitability of the technique to monitor bacterial community 

fingerprints over a period of time. Due to its precedent of use in complex ecosystems, the 

aim was to use RISA/ARISA as another community fingerprinting method to complement 

LHPCR. Initially RISA samples were separated using the Bioanalyzer 1000 chip. The chip used 

in this instance provided poor fragment separation as samples from different individuals 

showed ≥95% similarity. I therefore separated the RISA fragments through the use of a 

Bioanalyzer 7500 chip. Inspection of the composite dendrogram shows that the 7500 chip 

also provided poor fragment separation. Further analysis through Pearson’s correlation 

coefficient analysis shows that samples from different individuals show ≥98% similarity 

when RISA products are separated using the 7500 chip. Therefore this chip was poorer than 

the 1000 chip in terms of fragment separation. Due to the encountered problems with poor 
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separation of bands using the Bioanalyzer microfluidics platform I experimented with the 

use of ARISA. The forward RISA primer was labelled with the fluorescein molecule 6-FAM 

with the aim to carry out fragment analysis in a similar manner to LHPCR. Unfortunately, 

fragment analysis of these samples generated incomplete files which did not contain the size 

standard in its entirety and did not contain complete ARISA profiles. Therefore, downstream 

processing of the samples could not be carried out. I believe that the size of fragments 

generated from ARISA exceeds the capabilities of the ABI 3130xl machine and through this 

generates incomplete files.  

Owing to the results from RISA and ARISA, it was decided not to apply this technique to the 

dataset. RISA profiles generated through the use of the Bioanalyser microfluidics platform 

were too similar, due to poor fragment separation, to discern small differences. LHPCR 

showed a greater amount of inter-sample variation than RISA and was therefore seen as a 

more viable method to use in the study. It was hoped that ARISA could be used in 

conjunction with LHPCR as fragment analysis using the ABI 3130xl machine would have 

provided greater fragment separation than the Bioanalyser. However, the generation of 

incomplete fragment analysis files ensured that this technique could not be utilised in this 

study. 
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3.5 Conclusions 

The main conclusions for this chapter are as follows: 

1. LHPCR can be used successfully in order to monitor gross changes in the community 

fingerprint of faecal DNA; 

 

2. probiotic supplementation does not appear to modify the gross community 

fingerprint of faecal DNA; 

 

3. there appears to be a geographical difference in the community fingerprint of faecal 

DNA of PROHEMI participants with a difference in the ratio of Bacteroidetes to 

Firmicutes observed; 

 

4. through an in silico LHPCR experiment it is possible to assign broad taxonomic 

identities to peaks in LHPCR profiles. 
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4. CULTURE DEPENDENT ANALYSIS OF FAECAL MATERIAL AND FAECAL 

WATERS FROM THE PROHEMI STUDY 

4.1 Introduction 

In recent years there has been more of a focus on the use of culture independent methods 

in order to analyse complex ecosystems. These ecosystems include the soil (Janssen 2006), 

freshwater (Glöckner et al. 2000) and humans (The Human Microbiome Consortium 2012). 

While 16S rRNA gene cataloguing of ecosystems has become fairly routine, due to the 

reduction in sequencing costs, the technique does not directly show the functions expressed 

within an ecosystem. In order to meet this requirement PICRUSt was developed in order to 

predict the functions present within a community using only 16S rRNA genes as the starting 

point (Langille et al. 2013). However, the technique only infers possible expression and 

presence of functions. Metagenomic libraries may be screened for functions of a particular 

interest, through functional metagenomics in a surrogate host. This technique has been 

applied to identify functional bile salt hydrolases (BSH) in the human gut (Jones et al. 2008). 

Studies such as this hint at the functions which may be expressed within a given community. 

Alternatively, RNA can be converted into complementary DNA (cDNA) in order to create a 

metagenomic library of expressed genes. The technique has been applied in order to analyse 

ocean surface waters (Frias-Lopez et al. 2008). Drawbacks with the use of metagenomic 

interrogation strategies have previously been discussed (de Lorenzo 2005), and include the 

inability of a host to correctly express the gene of interest. 

While the importance of community profiling of 16S rRNA gene sequencing cannot be 

overlooked, it is also important to understand the functions which are being expressed. With 

regards to our microbiome, it is estimated that 100-fold more unique genes are expressed 

by this virtual organ (Qin et al. 2010). Bacterial encoded enzymes, which may have 

previously seemed insignificant, are now beginning to attract attention. Polysaccharides, 

including starch and pectin, have been shown to be broken down by bacterial glycosidases 

and polysaccharidases (Englyst et al. 1987). Recent research has also shown that bacterial 

encoded β-glucuronidases are also important. These enzymes, expressed in the gut, are 

responsible for a high level of free catecholamines in the gut lumen (Asano et al. 2012). -

glucuronidases in the gut free catecholamines from their conjugated inactivated forms, with 

dopamine the highest catecholamine produced. Furthermore, bacterial β-glucuronidases 

affect the body's excretion of toxic compounds, undoing the process of glucuronidation. It 
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has been shown that the glucuronide form of bisphenol A, an oestrogen which has been 

shown to damage the reproductive system of animals, is deconjugated in the cecum of rats 

(Sakamoto et al. 2002). It has also been shown that the glucuronidation of the carcinogen 2-

amino-3-methylimidazo[4, 5-f] quinioline is reversed by bacterial β-glucuronidase (Humblot 

et al. 2007). Deconjugation of its inActive form releases the Active carcinogen in the gut 

lumen. Research such as this shows the pivotal role that bacterial β-glucuronidases have 

upon the body's excretion of toxic compounds. 

As well as producing enzymes to break down carbohydrates, gut bacteria also produce 

proteases. Proteases have been implicated in the progression of IBS and IBD. Research has 

shown that proteolytic activity was 2-3 and 6-fold higher in IBS and IBD patients respectively, 

than healthy patients (Cenac et al. 2007). Metalloproteinases, including collagenases, have 

been implicated in the progression of IBD. UC patients have a significantly (p = 0.0051) 

higher level of metalloproteinase activity at inflamed areas of the mucosa than unaffected 

areas. Furthermore, the unaffected mucosal areas of UC patients had a significantly (p < 

0.001) higher level of metalloproteinase activity than unaffected areas in control patients. 

The proteases implicated in the progression of these two inflammatory conditions were 

thought to be host-derived. However, the importance of bacterial proteases in the 

progression of these two conditions is now being researched. The bacterial gelatinase 

enzyme GelE has been shown to contribute to the development of experimental colitis in a 

murine model (Steck et al. 2011). GelE is produced by the abundant gut commensal 

Enterococcus faecalis, suggesting a role for our resident commensal microbiota in the 

progression of this disease. Bacterially encoded proteases, such as elastase-like enzyme 

from Pseudomonas spp. and mirabilysin of Proteus mirabilis, are also capable of degrading 

immunoglobulin G1 (IgG1) (Brezski and Jordan 2010). It is thought that these proteases act as 

virulence factors and may be an evasion tactic employed by these bacteria. 
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Cholesterol, a sterol produced by our own bodies and obtained from our diet, is a major risk 

factor for cardiovascular disease development (British Heart Foundation 2013). It has been 

shown that bacteria, such as soil dwelling Streptomycetes, express a cholesterol oxidase 

enzyme (choA) and has been expressed in E. coli (Solaiman and Somkuti 1991). Earlier 

research hinted that the ability to degrade cholesterol is not limited to Streptomycetes. The 

feeding of milk fermented with Streptococcus thermophilus lowered the plasma levels of 

cholesterol in male rats and also lowered liver cholesterol levels (Rao et al. 1981). In a more 

recent study, faecal bacteria of healthy individuals were shown to assimilate cholesterol 

(Pereira and Gibson 2002). Amongst the cholesterol assimilators were bifidobacteria, 

lactobacilli and enterococci. The lactobacilli and bifidobacteria shown to exhibit cholesterol 

assimilation were isolated from faecal material and commercial probiotic products. 

Cholesterol assimilating enterococci were isolated from faecal material. The results highlight 

the ability of our resident microbiota to degrade and assimilate cholesterol as well as 

bacteria used in commercial products. 

Gastric and pancreatic lipases break down complex lipids into monoglycerides for intestinal 

absorption (Carriere et al. 1993). These enzymes also play a pivotal role in essential 

mammalian processes such as non-shivering thermogenesis. This is where thermogenin 

(uncoupling protein), produced in the mitochondrion, produces heat in brown adipose 

tissue. Within brown adipose tissue the expression of lipoprotein lipase is upregulated, 

increasing triglyceride turnover and therefore making more energy available for heat 

production (Cannon and Nedergaard 2004). Bacteria also produce lipases; this has been 

previously discussed in detail (Jaeger et al. 1994). These enzymes are used as colonisation 

factors by Propionibacterium acnes and Staphylococcus epidermidis (Jaeger et al. 1994) and 

are thought to act as a virulence factors in some instances. Research has shown that the 

ExoU cytotoxin, produced by Pseudomonas aeruginosa, is a lipase (Sato et al. 2003). 

Furthermore, the cytotoxin appears to require activation or modification by Eukaryotic 

factors. 
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Probiotic administration has been shown to affect functions, provided by our resident gut 

microbiota. The multi-probiotic VSL-3 (3 x 1011 CFU/g) was fed daily to 10 patients with IBS 

and 4 patients with functional diarrhoea for 20 days. Urease activity was significantly (p < 

0.01) decreased and β-galactosidase activity was significantly (p < 0.01) increased through 

probiotic administration (Brigidi et al. 2001). Colon cancer model mice were fed daily with 

yoghurt containing S. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (2 x 108 

cells/mL), yoghurt supernatant or milk. Results showed that the probiotic yoghurt 

consuming mice had a significantly (p < 0.01) lower level of β-glucuronidase activity than 

mice consuming yoghurt supernatant or milk (De Moreno et al 2005). Research such as this 

suggests that probiotic administration can have a significant impact on the functions 

expressed in our gut. 

Changes to human diet in recent years have been implicated in the increase of diseases such 

as chronic kidney disease (Pecoits-Filho 2007), obesity and cardiovascular disease (CVD) 

(Fung et al. 2001). The "Western diet" has also been implicated in increasing the 

genotoxicity of faecal water (Rieger et al. 1999). Genotoxic compounds can cause DNA 

damage in the host and have been linked with colorectal cancer (Hughes et al. 2000). 

Genotoxicity testing was classically carried out using the Ames tester strain through 

screening for histidine reversion (Ames et al. 1975). Efforts have been made in order to 

make screening quantitative as opposed to qualitative e.g. the E. coli SOS test (Quillardet et 

al. 1982). This organism utilises β-galactosidase as a measurable colorimetric indicator of 

SOS induction and therefore, by proxy determines the genotoxicity of a given compound. 

Genotoxicity testing protocols, such as the comet assay, have been developed in order to 

make the process more biologically relevant to eukaryotic cells (Collins 2004).  

With regards to probiotic administration, it has been shown that probiotics can decrease the 

genotoxicity of faecal water (Oberreuther-Moschner et al. 2004). The genotoxicity of faecal 

waters of individuals who consumed a daily dose of ~109 L. acidophilus 145 and B. longum 

913 were compared to faecal waters of individuals who consumed control yoghurt. The 

probiotic yoghurt significantly (p < 0.05) reduced the induction of DNA strand breaks, as 

measured through a comet assay of HT-29 stem cells. There is therefore a precedent for 

probiotic organisms to modulate genotoxicity levels of faecal waters in humans. The 

research not only highlights the ability of the organisms to survive passage through the GIT 

but also their ability to exert anti-genotoxic effects. 
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4.1.2 Chapter Aims 

The aims of this chapter are as follows: 

 

1. to determine whether the numbers of bacteria expressing functions including protease, 

esterase/lipase, β-galactosidase, β-glucuronidase and cholesterol degrading activity are 

affected by probiotic administration; 

 

2. to determine whether there is a difference in the numbers of bacteria expressing 

functions including protease, esterase/lipase, β-galactosidase, β-glucuronidase and 

cholesterol degrading activity between the two study centres; 

 

3. to determine whether probiotic administration affects the genotoxicity of faecal waters 

from healthy individuals. 
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4.2 Methods and materials  

4.2.1 Culture conditions and bacterial strains used for culture dependent analysis 

During the course of the PROHEMI study many bacterial strains were used (Table 4.1 and 

Table 4.2). These strains were used in the development of functional media and genotoxicity 

testing. 

4.2.2 Functional screening media 

4.2.2.1 Development of the screening media 

4.2.1.1.1 Skimmed milk agar for the detection of extracellular protease activity 

This agar was made as previously described (Jones et al. 2007a). Briefly, sterile skimmed milk 

was added to the appropriate base medium at a final concentration of 1% (w/v) after 

sterilising through autoclaving at 121°C for 15 min. B. subtilis MY2016 was used as a positive 

control for protease activity while B. subtilis WB800N was used as a negative control (Table 

4.1). Tryptone soya agar (TSA) (see section 4.2.3) was used as the base medium for B. 

subtilis. 

4.2.1.1.2 Buffered Protease Agar (BPA) for the detection of extracellular protease activity 

Skimmed milk agar was made as previously described (Jones et al. 2007b). The pH of the 

medium was adjusted to 7.2 and buffered through the addition of a phosphate buffer to the 

agar base at a final concentration of 0.01 M. Phenol red, at a concentration of 100 mg/L, was 

also added to the agar base before sterilising through autoclaving at 121°C for 15 min. The 

phenol red served as a pH indicator changing from red to yellow when it becomes acidified. 

BPA plates were also made with a concentration of 0.1 M phosphate buffer, while all other 

components remained unchanged. In order to develop the agar B. subtilis MY2016 and B. 

subtilis WB800N were used as protease positive and negative controls respectively (Table 

4.1). TSA was used as the base medium for B. subtilis. The 0.01 M phosphate BPA plate was 

also incubated following the spread of a faecal slurry. Luria Bertani (LB) agar (see section 

4.2.3) was used as the base medium for the faecal slurry. 

The ability of the 0.1 M BPA agar to withstand acidification of the medium was tested 

through hydrochloric acid. A 10-fold serial dilution of concentrated hydrochloric acid (~11.65 

M) (Sigma-Aldrich company Ltd. Dorset, UK) was made and applied to the agar in a single 

drop. 
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Table 4.1| Bacterial strains and culture conditions used in the PROHEMI study 

 

 

 

Species Strain Notable feature Growth conditions Reference 

Escherichia coli 

EPI300 
(pCCFOS110 clone) 

β-galactosidase activity 

Luria Bertani (LB) broth + 
12.5µg/mL chloramphenicol 

at 37°C 

(Jones et al. 2007b) 
 

 
EPI300 

 
Lipase/esterase activity 

 
(Jones et al. 2007b) 

 
EPI300 
(choA) 

 
Cholesterol degrading 

activity 

 
(Jones et al. 2007b) 

 
Nissle 

 
β-glucuronidase activity 

 
Lab collection 

Saccharomyces cerevisiae BY4741 Genotoxicity testing strain 
TGA + 50 µg/mL ampicillin at 

37°C 
(Zhang et al. 2008) 

Bacillus subtilis 
MY2016 Protease activity 

TSA/TSB at 30°C 
Lab collection 

WB800N No protease 
Activity 

(Murashima et al. 2002) 

Bifidobacterium bifidum CUL 20 β-galactosidase activity 
MRS agar 

or MRS-X agar at 37°C 
(Allen et al. 2012) 
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Table 4.2| Bacterial strains and culture conditions (continued from Table 4.1) 

 

 

 

Species Strain Notable feature Growth conditions Reference 

Bifidobacterium lactis CUL 34 
 MRS agar or MRS-X agar at 

37°C 
(Allen et al. 2012) 

 
Lactobacillus acidophilus 

 

CUL 21 
 

β-galactosidase activity 
 

MRS agar or MRS-X agar at 
37°C 

(Allen et al. 2012) 

CUL 60 β-galactosidase activity (Allen et al. 2012) 

Salmonella typhimurium TA1535/pSK1002 
 

Genotoxicity testing strain 
 

TGA + 50 µg/ml ampicillin (Reifferscheid et al. 1991) 
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4.2.1.2.3 X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) agar for the detection 

of extracellular β-galactosidase activity 

The appropriate medium was prepared and sterilised by autoclaving at 121°C for 15 min. 

The sterile medium was allowed to cool to 50°C before the addition of sterile X-Gal (Melford 

Laboratories Ltd, Ipswich, Suffolk, UK) at a final concentration 40 µg per mL of agar. In order 

to develop the agar E. coli was used. The strain, from a metagenomic study, contained an 

EPI300 plasmid expressing β-galactosidase activity (Table 4.1). This strain was used as a 

positive control. LB agar (see section 4.2.3) was used as the base medium for E. coli. 

4.2.1.3 X-Gluc (5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid) agar for the detection of 

extracellular β-glucuronidase activity 

The appropriate medium was prepared and sterilised by autoclaving at 121°C for 15 min. 

The sterile medium was allowed to cool to 50°C before the addition of sterile X-Gluc (Apollo 

Scientific Ltd, Stockport, Cheshire, UK) at a final concentration 40 µg per mL of agar. The 

agar was developed through the use of E. coli Nissle. This strain expresses β-glucuronidase 

activity and was used as a positive control (Table 4.1). LB agar (see section 4.2.3) was used 

as the base medium for E. coli. 

4.2.1.4 Cholesterol agar for the detection of extracellular cholesterol degrading enzymes 

Cholesterol (1 g) (Sigma-Aldrich Company Ltd. Dorset, UK) was dissolved in 100 mL of 

ethanol to make a 1% w/v solution. This solution was added to the prepared appropriate 

medium at a concentration of 0.1% v/v. This was sterilised by autoclaving at 121°C for 15 

min before the plates were poured. The agar was developed through the use of an E. coli 

strain from a metagenomic study. The strain contained an EPI300 plasmid expressing the 

cholesterol oxidase gene choA (Solaiman and Somkuti 1991) (Table 4.1). This strain is able to 

degrade cholesterol and was therefore used as a positive control. LB agar (see section 4.2.3) 

was used as the base medium for E. coli. 

4.2.1.5 Tributyrin agar for the detection of extracellular lipases/esterases 

Tributyrin agar consists of neutral tributyrin and a tributyrin agar base (Sigma-Aldrich 

company Ltd. Dorset, UK). The tributyrin agar base was prepared by following the 

manufacturer’s guidelines and 10 g/L of neutral tributyrin was added to the base. The 

mixture was blended together for 1 min using a food processor before sterilisation by 

autoclaving at 121°C for 15 min. The agar was developed through the use of a 

lipase/esterase producing E. coli, from a metagenomic study (Jones et al. 2007b). This was 

used as a positive control as it contained an EPI300 plasmid expressing a lipase/esterase 
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gene (Table 4.1). E. coli expressing β-galactosidase activity was used as a negative control 

(Table 4.1). LB agar (see section 4.2.3) was used as the base medium for E. coli. 

 

4.2.2 Application of functional screening media 

4.2.2.1 Functional screening of the probiotic organisms used in the PROHEMI study 

The probiotic organisms used in the PROHEMI study were screened for expressed functions. 

The base media and culture conditions used to screen for these functions are shown in Table 

4.3. 

4.2.2.2 Functional screening of faecal samples from the PROHEMI study 

Serial dilutions to 10-9 of faecal samples were made in maximum recovery diluent (MRD) 

containing L-cysteine (see section 4.2.4). These dilutions were plated out onto the functional 

media. The base medium used for the functional media, growth conditions and dilutions 

plated are shown in Table 4.4. Colonies expressing the function of interest were counted 

and expressed as CFU/g of faeces at Cultech Ltd. 

4.2.4 Media used in the study 

4.2.4.1 TSA 

TSA was prepared according to the manufacturer's guidelines (Oxoid Ltd, Hampshire, UK). 

The medium was sterilised by autoclaving at 121°C for 15 min. 

4.2.4.2 LB agar 

LB agar was prepared according to the manufacturer's guidelines (Sigma-Aldrich Company 

Ltd. Dorset, UK). The medium was sterilised by autoclaving at 121°C for 15 min. 

4.2.4.3 de Man, Rogosa, Sharpe (MRS) agar 

MRS agar was prepared following manufacturer's guidelines (Oxoid Ltd, Hampshire, UK). The 

medium was sterilised by autoclaving at 121°C for 15 min. 

4.2.4.4 MRS agar with polymyxin 

MRS agar was prepared following manufacturer's guidelines (Oxoid Ltd, Hampshire, UK). The 

medium was sterilised by autoclaving at 121°C for 15 min. Media was allowed to cool to 

50°C in a waterbath before sterile polymyxin B was added at 120 units/mL of agar. 
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4.2.4.5 MRS-X agar 

MRS agar was prepared following manufacturer's guidelines (Oxoid Ltd, Hampshire, UK). 

However, Lithium chloride, Sodium propionate and L-cysteine hydrochloride (Sigma-Aldrich 

Company Ltd. Dorset, UK) were added at 2 g/L, 3 g/L and 0.5 g/L respectively before 

sterilisation by autoclaving at 121°C for 15 min. The medium was allowed to cool to 45°C 

before the addition of defibrinated Sheep's blood (Oxoid Ltd, Hampshire, UK) at a final 

concentration of 5% v/v. 

4.2.4.6 Plate count agar  

Plate count agar was prepared following manufacturer's guidelines (Oxoid Ltd, Hampshire, 

UK). The medium was sterilised by autoclaving at 121°C for 15 min. 

4.2.4.5 Maximum recovery diluent (MRD) containing 0.5% L-cysteine 

MRD was prepared following manufacturer's guidelines (Oxoid Ltd, Hampshire, UK). L-

cysteine hydrochloride (Sigma-Aldrich Company Ltd. Dorset, UK) was added at a 

concentration of 0.5% w/v before sterilisation by autoclaving at 121°C for 15 min.  
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Table 4.3| Culture conditions used for functional screening of the probiotic organisms used 

in the PROHEMI study 

 

 

 

 

 

 

 

 

 

 

 

Organism Medium 
Incubation 

conditions 

L. acidophilus 

(Cul 21) 
MRS agar 

37°C for 72 h in aerobic 
and anaerobic 

conditions 

L. acidophilus 

(Cul 60) 
MRS agar 

37°C for 72 h in aerobic 
and anaerobic 

conditions 

B. bifidum 

(Cul 20) 

MRS and MRS – X 
agars 

37°C for 72 h in 
anaerobic conditions 

B. lactis 

(Cul 34) 

MRS and MRS – X 
agars 

37°C for 72 h in 
anaerobic conditions 
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Table 4.4| Culture conditions used for functional screening of PROHEMI faecal samples 

 

 

Functional screening plate 
Base medium used for functional 

screening 
Faecal dilutions plated Culture conditions 

BPA 

(Protease activity) 
LB agar 10-1 to 10-6 37°C for 48 h 

X-gal agar 

(β-galactosidase activity) 
Plate count agar 10-1 to 10-6 37°C for 48 h 

X-gluc agar 

(β-glucuronidase activity) 
Plate count agar 10-1 to 10-6 37°C for 48 h  

Tributyrin agar 

(Lipase/esterase activity) 
Tributyrin agar base 10-1 to 10-6 37°C for 48 h  

Cholesterol agar 

(Cholesterol degrading activity) 
Plate count agar 10-1 to 10-6 37°C for 5 days 
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4.2.5 Genotoxicity testing 

Genotoxicity testing was carried out with  

4.2.5.1 Genotoxicity testing using Saccharmomyces cerevisiae BY4741 

A genotoxicity testing protocol for this organism was followed (Jia and Xiao 2004; Zhang et 

al. 2008). S. cerevisiae BY4741 (0.5 mL) over-night culture was added to separate aliquots of 

2.5 mL fresh YPD medium (20 g/L peptone, 10 g/L yeast extract and D-glucose 20 g/L) and 

incubated for a further 2 h. Methyl methanesulfonate (MMS) was added to the separate 

aliquots at final concentrations of 0.01 - 0.1% v/v; a control with no MMS was also used. 

These aliquots were further incubated for 4 h. 1 mL was taken from each of the aliquots and 

the cell density measured at OD600nm. Remaining cells were collected by centrifugation at 

13,000 g for 5 s and washed twice using distilled water. Supernatant was discarded and cells 

were resuspended in 1 mL of buffer Z (16.1 g/L Na2HPO4∙7H2O, 5.5 g/L NaH2PO4∙H2O, 0.75 

g/L KCl, 0.246 g/L MgSO4∙7H2O, 2.7 mL β-mercaptoethanol, pH 7.0) (Miller 1972) To this 50 

µL of a 0.1% w/v SDS solution and 50 µL of chloroform were added before being vortexed for 

10 s at high speed. To the now permeabilized cells 200 µL of a 4 mg/mL o-nitrophenyl-β-

galactoside (ONPG) in dimethyl sulfoxide (DMSO) solution was added followed by incubation 

in an orbital shaker set at 150 rpm for 20 min at 30°C. The reaction was stopped by the 

addition of 1 M Na2CO3. Aliquots were centrifuged at 1,500 g for 5 min in order to obtain the 

supernatant, which was measured at OD420nm. The level of β-galactosidase activity was 

determined by following the equation: 
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4.2.5.2 Genotoxicity testing using Salmonella typhimurium (TA1535/pSK1002) 

The initial SOS/umuC test (Oda et al. 1985) using this organism was further developed 

(Reifferscheid et al. 1991) and this protocol was followed. The known mutagens methyl 

methanesulfonate (MMS) and 4-nitroquinoline-N-oxide (4-NQO) were used as mutation 

inducing agents to test the protocol. Briefly, S. typhimurium was revived from a freezer stock 

onto a TGA agar plate containing 50 µg/mL ampicillin (Amp). From this an over-night culture 

was set-up in TGA broth supplemented with 50 µg/mL Amp. The following morning the over-

night culture was centrifuged at 3000 g for 5 min. The supernatant was discarded and the 

remaining bacterial pellet was resuspended in 1 mL of TGA. 20 mL of TGA broth was 

inoculated with 0.5 mL of the resuspended pellet and incubated at 37°C over-night until an 

optical density of 1.5 was obtained (OD600). The over-night culture was diluted, through the 

addition of fresh TGA broth, and incubated at 37°C until an optical density of 0.15 (OD600) 

was reached. The tester culture (290 μL) was distributed into microplates (Fisher Scientific 

UK Ltd, Loughborough, UK). Two-fold serial dilutions of MMS and 4-NQO in DMSO (10 - 

0.15625 % v/v) were added to the tester culture and incubated at 37°C for 2 h in an orbital 

shaker. Absorbance at 420 nm and 600 nm was determined using a Tecan Infinite M200 Pro 

plate reader (Tecan UK Ltd, Reading, UK). The β-galactosidase activity was calculated as 

previously described (Miller 1972). 

4.2.5.3 Genotoxicity testing using the SOS – Chromo Test™ system 

The SOS – Chromo Test™ system was purchased from Environmental Bio-Detection Products 

Inc. (EBPI, Ontario, Canada). The test was carried out according to the manufacturer's 

protocol with faecal water as the test chemical. Genotoxicity of faecal waters was tested 

using faecal waters which were made as previously described (Marchesi et al. 2007). In order 

to ensure that the faecal water cytotoxicity was not masking its genotoxicity, faecal waters 

were also diluted 10-fold in PBS and tested. Test faecal waters and controls were incubated 

with the test organism in duplicate plates. The layout of the test plate is shown in Fig. 4.1. 

Induction of the SOS system in test plates was measured for the through the use of a Tecan 

Infinite M200 Pro plate reader (Tecan UK Ltd, Reading, UK) at 600 nm with the addition of 

faecal waters before (pre-incubation) and after (post-incubation) incubation at 37°C. 

Following SOS system induction measurement alkaline phosphatase activity was measured 

at 420 nm. This measure was achieved through the addition of a colorimetric substrate. 
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 Figure 4.1| Layout of test samples and controls for the SOS ChromoTest™ system – faecal water of participants are denoted by their respective PH 

numbers followed by the sample number. The period of the study is also shown, P = Pre-feeding, A = Active and W = Washout.  

 

 
1 2 3 4 5 6 7 8 9 10 11 12 

 
Control 

4-NQO (μg/mL)            

A 10 
PH1 1 

(P) 
PH2 2 

(P) 
PH6 9 

(A) 
PH11 1 

(P) 
PH24 7 

(A) 
PH26 11 

(A) 
PH1 16 

(W) 
PH2 17 

(W) 
PH9 2 

(P) 
PH11 16 

(W) 
PH26 1 

(P) 

B 5 
PH1 2 

(P) 
PH2 9 

(A) 
PH6 13 

(A) 
PH11 2 

(P) 
PH24 11 

(A) 
PH26 14 

(W) 
PH1 17 

(W) 
PH6 1 

(P) 
PH9 13 

(A) 
PH11 17 

(W) 
PH26 2 

(P) 

C 2.5 
PH1 9 

(A) 
PH2 13 

(A) 
PH6 16 

(W) 
PH11 9 

(A) 
PH24 14 

(W) 
PH26 15 

(W) 
PH2 1 

(P) 
PH6 2 

(P) 
PH9 17 

(W) 
PH24 2 

(P) 
PH26 7 

(A) 

D 1.25 
PH1 13 

(A) 
PH2 16 

(W) 
PH9 1 

(P) 
PH11 13 

(A) 
PH24 15 

(W) 
PH1 1 

(P) 
PH2 2 

(P) 
PH6 9 

(A) 
PH11 1 

(P) 
PH24 7 

(A) 
PH26 11 

(A) 

E 0.625 
PH1 16 

(W) 
PH2 17 

(W) 
PH9 2 

(P) 
PH11 16 

(W) 
PH26 1 

(P) 
PH1 2 

(P) 
PH2 9 

(A) 
PH6 13 

(A) 
PH11 2 

(P) 
PH24 11 

(A) 
PH26 14 

(W) 

F 0.313 
PH1 17 

(W) 
PH6 1 

(P) 
PH9 13 

(A) 
PH11 17 

(W) 
PH26 2 

(P) 
PH1 9 

(A) 
PH2 13 
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(W) 
PH26 15 

(W) 

G 0.16 
PH2 1 

(P) 
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(P) 
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(W) 
PH24 2 

(P) 
PH26 7 

(A) 
PH1 13 

(A) 
PH2 16 

(W) 
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(P) 
PH11 13 

(A) 
PH24 15 

(W) 
Blank 

H DMSO 
Blank Blank Blank Blank Blank Blank Blank Blank Blank Blank Blank 
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4.2.6 Statistical analysis 

Box-plots of total bacterial counts, counts obtained from functional media and absorbances 

for genotoxicity screening were generated in R statistical software (R-Core-Team 2012). The 

plots were generated through a custom scripts which utilised gglpot2 (Wickham 2009) and 

reshape2 (Wickham 2007) packages (Appendix II). Box-plots show the median, 1st and 3rd 

quartiles and outliers of a sample or study period. 

Normality testing, Kruskal-Wallis H tests and single pair-wise comparisons were carried out 

in IBM SPSS statistics 20 (IBM, Portsmouth, UK). 
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4.3 Results 

4.3.1 Functional media testing 

The media used in the study were developed and tested using positive and negative control 

organisms (Fig. 4.2 A-G).   

4.3.1.1 Cholesterol degrading activity 

Relevant media containing cholesterol were used as a screen for this activity. E. coli 

expressing the gene choA was used as a positive control (Fig. 4.2 A). It was possible to see 

zones of clearing around this organism where the cholesterol has been degraded. In order to 

ensure that the observed function was cholesterol degradation, a negative control was used. 

For this purpose E. coli was once again used. However, a frame-shift mutation was 

previously introduced into the inserted choA gene. Therefore, the gene was no longer 

expressed and the organism was no longer able to degrade cholesterol, producing no zone 

of clearing (Fig. 4.2 B).  

4.3.1.2 β-galactosidase activity 

The indoxyl glycoside X-gal was added to the relevant media in order to screen for β-

galactosidase activity. E. coli expressing β-galactosidase activity was used as a positive 

control. Colonies which are positive for β-galactosidase activity appear blue in colour (Fig. 

4.2 C). 

4.3.1.3 β-glucuronidase activity 

The indoxyl glucuronide X-gluc was added to the relevant media in order to screen for β-

glucuronidase activity. In order to develop the medium E. coli Nissle 1917 was used. This 

organism expresses β-glucuronidase activity. Colonies which are positive for β-glucuronidase 

activity appear blue in colour (Fig. 4.2 D). 

4.3.1.4 Lipase/esterase activity 

The lipid tributyrin with a carbon chain length of 15 was used in order to screen for 

lipase/esterase activity. The suitability of the medium was tested through the use of a 

lipase/esterase expressing E. coli. Bacterial colonies which are positive for lipase/esterase 

activity produce a zone of clearing (Fig. 4.2 E). 
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Figure 4.2| Functional media screens – (A) Cholesterol LB agar with E. coli expressing choA 

as shown by the zones of clearing around the colonies. (B) Cholesterol LB agar with no zones 

of clearing around the colonies. E. coli with a frame-shift mutation in the choA gene was 

used. (C) X-gal LB agar with two different E. coli strains expressing β-galactosidase activity as 

shown by the blue colour of the colonies. (D) X-gluc agar with blue colonies of E. coli due to 

the expression of β-glucuronidase. (E) Tributyrin agar with two strains of E. coli. The strain in 

the bottom half expresses a lipase/esterase gene and therefore produces zones of clearing 

around the colonies. The strain in the top half expresses a β-galactosidase gene and 

therefore does not produce a zone of clearing. 

 

A B C 

D E 
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4.3.1.5 Protease activity 

4.3.1.5.1 Skimmed milk agar 

The protease positive B. subtilis MY2016 showed zones of clearing around its colonies on 

skimmed milk agar (Fig. 4.3 A). However, the agar was further developed in order to avoid 

false positives. 

4.3.1.5.2 BPA  

B. subtilis MY2016 was once again used in order to test the medium with a phosphate buffer 

at 0.01 M. The organism showed zones of clearing around its colonies, indicative of protease 

activity. The agar at 0.01 M buffering was also tested through the plating of a faecal slurry 

(Fig. 4.3 B). Some colonies showed zones of clearing suggesting protease activity. However, 

the colour of the pH indicator phenol red changed to orange-yellow. This suggests that the 

pH has dropped and therefore false positives are difficult to rule out.  

To this end, the concentration of the phosphate buffer was increased to 0.1 M. The clearing 

of the plate, following the spread of an over-night culture of B. subtilis MY2016, shows that 

the plate detects protease activity (Fig. 4.3 C). Furthermore, the plate remains bright red and 

therefore shows that no drop in pH occurs. In contrast, the spreading of an over-night 

culture of B. subtilis WB800N does not clear the plate (Fig. 4.3 D). Therefore, for correct 

assignment of protease production in an organism or sample using BPA plates, a zone of 

clearing needs to be produced while the plate remains red. These plates show a strong 

colour change when concentrated hydrochloric acid (11.65 M) is placed on a BPA plate (Fig. 

4.3 E). Colour change is also observable when a 1/10 dilution (~1.165 M) is dropped onto a 

BPA plate. However, there is no colour change when more dilute acid (~0.1165 M) is 

dropped onto the BPA plates. This further highlights the buffering capacity of the phosphate 

buffer. 
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Figure 4.3| Functional media for the detection of extracellular proteases – (A) Skimmed 

milk LB agar with zones of clearing produced by B. subtilis MY2016. (B) BPA with 0.01 M 

phosphate buffer. The plates have been incubated with a faecal slurry and show a 

yellow/orange colour as well as zones of clearing around some of the colonies. (C) BPA with 

0.1 M phosphate buffer. The plate was incubated with an over-night culture of the protease 

positive B. subtilis MY2016, clearing the plate while it remains red in colour. (D) BPA with 0.1 

M phosphate buffer. The plate was incubated with an over-night culture of the protease 

deficient B. subtilis WB800N, producing no clearing. (E) Serial dilution of hydrochloric acid 

and drop application onto a 0.1 M BPA plate. 
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4.3.2 Functional screening of the probiotic mixture 

The results of functional screening of the probiotic mixture are shown in Table 4.5. From the 

experiment it is possible to observe that both stains of L. acidophilus (Cul21 and Cul60) and 

B. bifidum (Cul20) produce extracellular β-galactosidase activity (Fig. 4.4 A-C). However, 

none of the other tested functions are exhibited by these probiotic organisms. 

 

Table 4.5| Functions expressed by the probiotic organisms used in the PROHEMI study 

 Organism 
Function 

expressed 
B. bifidum 

(CUL20) 
B. lactis 
(CUL34) 

L. acidophilus 
(CUL21) 

L. acidophilus 
(CUL60) 

 
Protease 
activity 

- - - - 

 
Lipase/esterase 

activity 
- - - - 

 
Cholesterol 
degrading 

activity 

- - - - 

 
β-galactosidase 

activity 
+* - +** +** 

 
β-glucuronidase 

activity 
- - - - 

* denotes that the function was positive when MRS and MRS-X were used as the base 

media. 

**denotes the function was positive when L. acidophilus was cultured aerobically and 

anaerobically. 
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Figure 4.4|β-galactosidase activity exhibited by the probiotic organisms used in the 
PROHEMI study – (A) shows B. bifidum (Cul20) growing on MRS-X and MRS (left to right). 
(B) shows L. acidophilus (Cul21) growing on MRS agar following anaerobic and anaerobic 
incubation (left to right). (C) shows L. acidophilus (Cul60) growing on MRS agar following 
aerobic and anaerobic incubation (left to right) 

A B

 

C  
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4.3.3 Functional media screening of faecal samples 

The functions expressed, based on which study centre the samples come from,  have been 

plotted. Box-plots show that there are outliers for the expression of tested functions (Fig. 

4.5). It is possible to see that there are samples which express high levels of β-galactosidase 

and β-glucuronidase activity in both study centres. There are also outliers for protease 

production in both study groups and there are outliers also for lipase/esterase production 

but to a lesser extent. Cholesterol degrading bacteria were not detected in either of the 

study groups. Bacterial counts for functions expressed were not normally distributed 

therefore, a Kruskal – Wallis H test was carried out on the data. The test showed no 

significant difference between the mean ranks the two centres in terms of bacterial 

numbers expressing protease activity [χ2 (1) = 0.569, p = 0.451] and lipase/esterase activity 

*χ2 (1) = 0.05, p = 0.946]. However, there were significant differences between the mean 

ranks of the two centres in terms of β-galactosidase activity *χ2 (1) = 33.36, p < 0.001+ and β-

glucuronidase activity *χ2 (1) = 26.74, p < 0.001]. 
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Figure 4.5| Box-plot of functions expressed by PROHEMI samples based upon the study 

centre – there are two box-plots for each tested expressed function, with Cardiff samples on 

the left of the two and Sheffield samples on the right. The box-plot shows the median, 1st 

and 3rd quartiles. Outliers are represented by •. The numbers of bacteria expressing each 

function are shown in CFU/g of faecal material. *denotes a significant difference between 

the ranked means of the two centres (p < 0.001). 

 

* * 
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Functions expressed by bacteria were also analysed by study period separately for each 

study centre. Box-plots of the tested functions expressed by Sheffield samples show outliers 

once again (Fig. 4.6). Due to the outliers it is difficult to discern differences between the 

study periods. It is especially difficult as outliers for a given function such as β-galactosidase 

activity are much higher than outliers from other functions such as esterase/lipase activity. 

Therefore, box-plots were generated for protease (Fig. 4.7), β-galactosidase and β-

glucuronidase activity (Fig. 4.8). Bacterial counts for functions expressed from Sheffield were 

not normally distributed so a  Kruskal – Wallis H test was carried out on the data. The test 

showed significant differences between the mean ranks of the three study periods in terms 

of protease [χ2 (2) = 10.27, p = 0.006], β-galactosidase *χ2 (2) = 9.85, p = 0.007] and β-

glucuronidase *χ2 (2) = 30.15, p < 0.001] expression by bacteria. Post-hoc analysis through 

single pairwise comparisons showed that the mean rank of bacteria expressing protease 

activity was significantly higher in the Pre-feeding group than both the Active and Washout 

groups at the 0.05 level. This difference can be viewed in the box-plot (Fig. 4.7) where the 

median and 3rd quartile are higher in the Pre-feeding period than the Active and Washout 

periods. Through post-hoc analysis it was shown that the mean ranks of bacteria expressing 

β-galactosidase and β-glucuronidase activities were significantly higher in the Active and 

Washout groups than the Pre-feeding group at the 0.05 level. Box-plots show that the 

medians and 3rd quartiles for β-galactosidase and β-glucuronidase activities are higher in the 

Active and Washout periods than the Pre-feeding period (Fig. 4.8). Furthermore, the 

numbers of bacteria expressing these activities are highest during the Active period.  
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Figure 4.6| Box-plot of functions expressed by PROHEMI samples obtained from Sheffield 

based upon study period - there are three box-plots for each tested expressed function, 

with Pre-feeding, Active and Washout samples shown left, middle and right respectively for 

each function. The box-plot shows the median, 1st and 3rd quartiles. Outliers are represented 

by •. The numbers of bacteria expressing each function are shown in CFU/g of faecal 

material. 
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Figure 4.7| Box-plot of protease activity expressed by PROHEMI samples obtained from 

Sheffield based upon study period – three boxplots are shown with a corresponding key. 

The median, 1st and 3rd quartiles and outliers are represented by •. The numbers of bacteria 

expressing each function are shown in CFU/g of faecal material. *denotes a significantly 

higher ranked mean than the Active and Washout period (p<0.05). 

 

* 
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Figure 4.8| Box-plot of β-galactosidase and β-glucuronidase activity expressed by 

PROHEMI samples obtained from Sheffield based upon study period – three boxplots are 

shown for each function with a corresponding key. The median, 1st and 3rd quartiles and 

outliers are represented by •. The numbers of bacteria expressing each function are shown 

in CFU/g of faecal material. *denotes a significantly higher ranked mean than the Pre-

feeding period (p<0.05). 

 

* * 

* 
* 
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Samples from Cardiff were also analysed separately. In a similar fashion to Sheffield samples, 

outliers for expressed functions were observed (Fig. 4.9). These outliers made it difficult to 

discern difference in bacterial counts expressing functions between the study periods. 

Therefore, box-plots of protease activity (Fig. 4.10), β-galactosidase and β-glucuronidase 

activities (Fig. 4.11) were plotted separately. Bacterial counts for functions expressed were 

not normally distributed. Therefore, a Kruskal-Wallis H test was carried out on the data. The 

test showed significant differences between the mean ranks of the four study periods in 

terms of protease [χ2 (3) = 13.67, p = 0.003+, and β-glucuronidase activities gluc *χ2 (3) = 

28.06, p < 0.001]. Through post-hoc analysis it was shown that the Pre-feeding group had a 

significantly higher mean rank of bacteria expressing protease activity than Active group 1, 

Active group 2 and Washout periods at the 0.05 level. It is possible to see that the median 

and 3rd quartile are higher in the Pre-feeding group in the box-plot (Fig 4.10). Post-hoc 

analysis showed that the mean rank of bacteria expressing β-glucuronidase activity was 

significantly higher in the Active group 1, Active group 2 and Washout periods than the Pre-

feeding period at the 0.05 level (Fig 4.11). 
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Figure 4.9|Box-plot of functions expressed by PROHEMI samples obtained from Cardiff 

based upon study period - there are four box-plots for each tested expressed function, with 

Pre-feeding, Active group 1, Active group 2 and Washout samples shown left, middle left, 

middle right and right respectively for each function. The box-plot shows the median, 1st and 

3rd quartiles. Outliers are represented by •. The numbers of bacteria expressing each 

function are shown in CFU/g of faecal material 



CHAPTER 4 - CULTURE DEPENDENT ANALYSIS OF FAECAL MATERIAL AND FAECAL WATERS 
FROM THE PROHEMI STUDY 

142 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10| Box-plot of protease activity expressed by PROHEMI samples obtained from 

Cardiff based upon study period – four boxplots are shown for each function with a 

corresponding key. Pre-feeding, Active group 1, Active group 2 and Washout samples are 

shown from left to right respectively. The median, 1st and 3rd quartiles and outliers are 

represented by •. The numbers of bacteria expressing each function are shown in CFU/g of 

faecal material. *denotes a significantly higher ranked mean than the Active group 1, Active 

group 2 and Washout periods (p<0.05). Active group 1 and Active group 2 cannot be seen as 

the protease level is significantly lower than the Pre-feeding period. 

* 
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Figure 4.11| Box-plot of β-galactosidase and β-glucuronidase activity expressed by 

PROHEMI samples obtained from Cardiff based upon study period – four boxplots are 

shown for each function with a corresponding key. The median, 1st and 3rd quartiles and 

outliers are represented by •. The numbers of bacteria expressing each function are shown 

in CFU/g of faecal material. *denotes a significantly higher ranked mean than the Pre-

feeding period (p<0.05). 
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4.3.4 Genotoxicity testing of faecal waters 

Genotoxicity testing was carried out using Saccharmomyces cerevisiae BY4741 and 

Salmonella typhimurium (TA1535/pSK1002). However, the results were inconclusive and will 

not be discussed in this thesis. 

 

4.3.4.3 Genotoxicity testing using the E. coli SOS – ChromoTest™ system 

The genotoxic agent 4-NQO was used as a positive control and illustrated the SOS induction 

response of this E. coli strain (Fig. 4.12). The absorbance at 605 nm increased as the 

concentration of 4-NQO increased. However, the curve begins to plateau between 5-10 

μg/mL of 4-NQO.  

 

Figure 4.12| The response of the SOS system and alkaline phosphatase activity to 

increasing concentrations of 4-NQO – the absorbance at 605 nm is plotted, before and after 

incubation, against 4-NQO at increasing concentrations.  
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Analysis of the data through comparison of study periods shows that faecal waters from Pre-

feeding, Active and Washout period induce a response from the SOS system. Neat and 

diluted faecal waters from the 3 study periods show no significant difference in SOS 

induction from the control, prior to incubation (Fig. 4.13 and Fig 4.14 respectively). 

However, a significant difference in SOS induction was observed post-incubation (Fig. 4.13 

and Fig. 4.14 respectively). The data were not normally distributed; therefore, a Kruskal-

Wallis H test was carried out on the data. Analysis of neat samples in this manner showed 

that there was a significant difference in the mean ranks of the 3 study periods and the 

control group [χ2 (3) = 23.653, p < 0.001]. Post-hoc analysis through pairwise comparison 

showed that Pre-feeding, Active and Washout periods had a significantly higher ranked 

mean than the control samples at the 0.05 level. Although not statistically significant, 

analysis showed that the median absorbance at 605 nm was higher in the Active and 

Washout groups than the Pre-feeding group (0.518, 0.514 and 0.463 respectively). Kruskal-

Wallis H test analysis of the diluted faecal waters showed a similar pattern; with no 

significant difference between the study periods and control samples prior to incubation. 

However, there was a significant difference between the 3 study groups and control samples 

following incubation *χ2 (3) = 19.774, p < 0.001]. Pairwise comparison post-hoc analysis 

showed that the ranked means of Pre-feeding, Active and Washout samples were 

significantly higher than the control groups at the 0.05 level. The observation of higher 

absorbance medians was emulated in this dataset; with the Active and Washout groups 

exhibiting a higher median absorbance than the Pre-feeding group (0.454, 0.437 and 0.422 

respectively).  
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Figure 4.13| The effect of neat faecal waters on SOS induction in the SOS ChromoTest™ 

system – a box-plot of the absorbance at 605 nm pre-incubation and post-incubation is 

shown. The absorbance of neat faecal waters from the 3 study periods is shown along with 

the absorbance of control samples. Outliers are represented by •.*denotes a significant (p = 

0.05) difference between the study period and control.  

 

* * * 



CHAPTER 4 - CULTURE DEPENDENT ANALYSIS OF FAECAL MATERIAL AND FAECAL WATERS 
FROM THE PROHEMI STUDY 

147 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14| The effect of diluted faecal waters on SOS induction in the SOS ChromoTest™ 

system - a box-plot of the absorbance at 605 nm pre-incubation and post-incubation is 

shown. The absorbance of diluted faecal waters from the 3 study periods is shown along 

with the absorbance of control samples. Outliers are represented by •*denotes a significant 

(p = 0.05) difference between the study period and control. 

 

* * 
* 
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Neat and diluted faecal waters were also analysed by individual (Fig.4.15 and Fig. 4.16). The 

data was not normally distributed; therefore a Kruskal-Wallis H test analysis was carried out. 

Analysis of neat faecal water prior to incubation showed that there was a significant 

difference between the absorbance of participants' faecal water and the controls at 605 nm 

*χ2 (7) = 26.327, p <0.001] (Fig. 4.15). Post-hoc analysis through pairwise comparison showed 

that the ranked mean absorbance, at 605 nm, of PH11, PH26 and PH6 was significantly 

higher than the control ranked means at the 0.05 level. Analysis of neat faecal waters, 

following incubation, showed a significant difference between participants and control 

faecal waters *χ2 (7) = 40.073, p < 0.001]. Pairwise comparison post-hoc analysis showed that 

PH26 and PH11 had a significantly higher ranked mean absorbance at 605 nm than the 

controls at the 0.05 level. Furthermore, PH11 had a significantly higher ranked mean than 

PH1 at the 0.05 level. Analysis of the diluted faecal waters (Fig 4.16) gave different results to 

the neat faecal water (Fig 4.15). There was no significant difference between the ranked 

means of participants and controls at 605 nm prior to incubation. However, there was a 

significant difference between the ranked mean absorbance at 605 nm of participants and 

controls following incubation *χ2 (7) = 38.204, p < 0.001]. Post-hoc analysis through pairwise 

comparison showed that PH1, PH24 and PH26 had a significantly higher ranked mean 

absorbance, at 605 nm, than controls. In addition, PH1 and PH24 had a significantly higher 

ranked mean absorbance at 605 nm than PH11. The results of the 1/10 dilution show that 

the faecal waters of PH1 are genotoxic while the SOS system was not induced by its 

respective neat faecal water. 

 



CHAPTER 4 - CULTURE DEPENDENT ANALYSIS OF FAECAL MATERIAL AND FAECAL WATERS 
FROM THE PROHEMI STUDY 

149 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15| The effect of neat faecal waters on SOS induction in the SOS ChromoTest™ 

system - a box-plot of the absorbance at 605 nm pre-incubation and post-incubation is 

shown. The absorbance of neat faecal waters from PROHEMI participants is shown along 

with the absorbance of control samples. Outliers are represented by •. *denotes a 

significant (p = 0.05) difference between the study period and control, †denotes a significant 

difference between the sample and PH1. 

* * * 

* 

* 
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Figure 4.16| The effect of diluted faecal waters on SOS induction in the SOS ChromoTest™ 

system - a box-plot of the absorbance at 605 nm pre-incubation and post-incubation is 

shown. The absorbance of diluted faecal waters from PROHEMI participants is shown along 

with the absorbance of control samples. Outliers are represented by •. *denotes a 

significant difference between the study period and control, †denotes a significant 

difference between the sample and PH11. 

 

* 
† * 
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4.4 Discussion 

Culture dependent methods provide a means to interrogate a microbial community for 

functions of interest. Through the use of specialised agars, we have screened faecal material 

and the probiotic organisms used in the PROHEMI study for such functions. It has previously 

been shown that B. bifidum and some strains of L. acidophilus express β-galactosidase 

activity (de Vrese et al. 2001; Møller et al. 2001). Furthermore, the consumption of a 

probiotic organism, capable of increasing β-galactosidase activity, has been linked with 

alleviating clinical symptoms of lactose maldigestion (de Vrese et al. 2001). Previous studies 

are in accordance with my results, whereby B. bifidum (Cul20, NCIMB 30153) and L. 

acidophilus (Cul21, NCIMB 30156) and (Cul60, NCIMB 30157), express β-galactosidase 

activity. The results show a significant difference in β-galactosidase activity following 

probiotic administration in the Sheffield cohort, where activity increased. This difference 

may be due to expression of β-galactosidase activity by the two strains of L. acidophilus and 

B. bifidum. It has previously been shown that the consumption of L. acidophilus and B. 

bifidum for a 3 week period, in healthy individuals, did not increase β-galactosidase 

expression (Marteau et al. 1990). On the one hand the results suggest that probiotic 

consumption, for a much longer period, does increase β-galactosidase expression. However, 

in agreement with the findings of Marteau and colleagues Active Group 1, Active Group 2 

and Washout period, from the Cardiff cohort did not show an increase in β-galactosidase 

activity. This result seems counter-intuitive. I would expect to see an increase in the activity 

of this enzyme in one of the groups, as one of the groups received the Active treatment. 

While there appears to be no evidence for geographical differences in response to probiotic 

administration, this may be the underlying reason for a differential response.  

Bacterial β-glucuronidases are now receiving more attention, as they are becoming 

increasingly recognised as problem enzymes during drug therapy. Bacterial forms of the 

enzyme can have a significant impact upon the human body's efforts to excrete toxic 

compounds. The Phase I clinical trial of the anti-cancer compound CPT-11 (irinotecan) was 

linked with granulocytopenia, nausea, vomiting and diarrhoea (Shinkai et al. 1994). It has 

since been argued that the toxicity of this compound in the GIT, and therefore its side-effect 

of diarrhoea, is due to bacterial β-glucuronidase activity (Takasuna et al. 1996). Following 

this finding, research published this year determined the efficacy of an E. coli β-

glucuronidase inhibitor in the prevention of CPT-11 induced diarrhoea (Roberts et al. 2013). 

One such inhibitor was found to protect against CPT-11 induced diarrhoea in mice. The 

probiotic strains used in the PROHEMI study do not express β-glucuronidase activity. 
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However, all Active groups from Sheffield and Cardiff as well as both Washout groups 

showed a significant increase in β-glucuronidase activity compared to their respective Pre-

feeding levels. It has previously been shown that the feeding of L. acidophilus and B. bifidum, 

in the short-term, non-significantly increased β-glucuronidase activity (Marteau et al. 1990). 

The PROHEMI study used a longer Active feeding period of 6 months. Therefore, if B bifidum 

and L. acidophilus have the means to increase β-glucuronidase activity, the longer feeding 

period may explain the significant increase. The diet of the individual can impact the level of 

β-glucuronidase activity. Through the use of a murine model, it has been shown that a diet 

high in fat and/or protein can significantly increase β-glucuronidase activity (Reddy et al. 

1977). The authors further suggest the toxicity, excretion and reabsorption of carcinogens 

can be impacted by an increase in β-glucuronidase activity. Bacterial encoded 

glucuronidases can deconjugate these carcinogenic substances from inActive glucuronide 

conjugates bound for excretion. The role of probiotic administration in protection against 

colorectal cancer has recently been reviewed (Uccello et al. 2012). One discussed 

mechanism of protection was the ability of some probiotic bacteria to decrease β-

glucuronidase activity. Uccello and colleagues discussed the potential for L. acidophilus to 

decrease β-glucuronidase activity in humans. However, my results show the potential for an 

increase in the activity of this enzyme; with the potential to detrimentally affect host-health. 

Furthermore, probiotic administration in patents receiving particular drug therapies will 

need to be considered carefully, as an increase in β-glucuronidase activity may lead to drug 

toxicity.  

Bacterially encoded proteases can be detrimental to human health. These enzymes have 

been implicated in the progression of IBD and IBS (Steck et al. 2012). It has been shown that 

the metalloproteinase gelitinase (GelE) from Enterococcus faecalis contributes to the 

development of colitis in an experimental mouse model (Steck et al. 2011). It is believed that 

GelE cleaves E-cadherin leading to loss of epithelial barrier function. In addition, bacterial 

proteases are believed to play a pivotal role in immune evasion by pathogenic bacteria. The 

proteases produced to this end are various, numerous and have been discussed previously 

(Potempa and Pike 2009). One such mechanism is the resistance of pathogens to 

antimicrobial peptides through the degradation of such compounds by proteases (Nizet 

2006). The importance of proteases in the progression of inflammatory disease of the gut is 

now being recognised. Through this recognition it has been suggested that the inhibition of 

proteases should be used as a novel therapy for inflammatory diseases of the GIT (Sałaga et 

al. 2013). The effect of probiotic consumption on the protease activity of the distal gut is 
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sparse. My results suggest that probiotic consumption can decrease protease activity with 

the potential to positively affect host health. The positive effects of some probiotic species 

and strains in the treatment of IBD and IBS have been discussed in Chapter 1. In addition to 

this discussion, the results hint at a potential mechanism for the beneficial effects exerted in 

this disease state. Probiotic bacteria may decrease the inflammatory potential of pathogenic 

bacteria through decreasing their pro-inflammatory effector molecules.  

The potential for modulation of the gut microbiota to promote degradation of dietary 

cholesterol has attracted attention. L. plantarum has been shown to exhibit 

hypocholesterolemic effects (Jeun et al. 2010). Following a 4 –week intervention, where 6-

week old C57BL/6 mice were fed 109 CFU/day, total cholesterol levels were significantly (p < 

0.05) lower in the probiotic group than the control. The authors suggest that this lowering is 

not as a direct result of cholesterol degradation by the bacteria. It was suggested that the 

cholesterol lowering potential of this probiotic organism is mediated through elevation of 

bile acid excretion and decreased cholesterol uptake in the intestine. As previously 

discussed, some bacterial species possess cholesterol degrading enzymes. The 

Streptomycete cholesterol oxidase enzyme ChoA has been expressed in E. coli (Solaiman and 

Somkuti 1991). Further to this work, this enzyme has also been expressed in B. longum (Park 

et al. 2008). The authors suggest that the system used to express choA in this organism can 

be used in order to produce dairy products with useful proteins in them. Whether the 

authors aim to produce dairy products containing ChoA is unclear. Throughout the PROHEMI 

study, no cholesterol degrading activity was observed from any sample, at any time-point. 

This hints at the rarity/non-existence of direct cholesterol degradation, at least at a 

detectable level, in the human gut. 

The importance of lipase/esterase activity has been discussed previously and probiotic 

administration can affect the expression of these enzymes also. Research has shown that in 

children receiving ceftriaxone treatment probiotic administration with a range of 

organisms/strains increased lipase/esterase activity (Zoppi et al. 2001). The data, however, 

were not shown. Furthermore, to what extent probiotic administration in this cohort 

increased lipase/esterase was not discussed either. My results show that lipase/esterase 

activity was unaffected by probiotic consumption. The general level of this activity was low 

throughout samples from all study periods.  
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Assessing the genotoxicity of compounds through a bacterial strain has been used for many 

years. Ames developed histidine auxotrophic Salmonella typhimurium strains in order to 

screen compounds for mutagenic properties (Ames et al. 1975). Three published strains 

were used in order to screen for different types of mutagenic potential. Strain TA1535 was 

utilised to screen for base-pair substitutions while strains TA1537 and TA1538 detected 

frameshift mutations. In addition, an E. coli strain, which is auxotrophic for tryptophan, has 

also been used in order to screen for mutagenic compounds (Tarmy et al. 1973). While these 

tester strains were useful for qualitative purposes, a given compound has mutagenic 

potential or not, they were not useful for direct quantification of the mutagenic/genotoxic 

potential of a compound. To this end, new bacterial strains with a means to directly quantify 

the genotoxic potential of a compound were developed. Quillardet and colleagues 

developed the PQ37 strain of E. coli (Quillardet et al. 1982). This strain contained a sifA::lacZ 

fusion operon, whereby the expression of β-galactosidase was regulated by the cell division 

inhibitor SfiA (also known as SulA) (Huisman and D'Ari 1981). The sfiA/sulA gene is part of 

the SOS response in E. coli and is expressed when DNA is damaged (Mizusawa et al. 1983). 

Quillardet and colleagues utilised this strain to screen for genotoxic compounds. This was 

achieved through the induction of β-galactosidase activity, and its measurement through the 

enzymatic cleavage of the colorimetric substrate ONPG, by genotoxic agents. Sensitivity to 

genotoxic agents was further increased by making E. coli PQ37 deficient for the gene uvrA 

and therefore, unable to carry out excision repair. It can be argued that the genotoxic 

potential of a compound in a prokaryote model is not directly applicable to eukaryotic cells 

With this in mind, a yeast genotoxicity reporter strain was developed (Jia et al. 2002). This 

strain once again utilises lacZ, in conjunction with the ribosomal component encoding RNR3 

gene, for colorimetric determination of the genotoxic potential of a compound. The authors 

argue that this system is a more "faithful" model of the genotoxic effect of compounds in 

mammalian cells. The responses of a single-cell eukaryote will be closer to a mammalian cell 

than the responses of a prokaryotic cell. Sensitivity of this model was further increased 

through the deletion of cwp genes encoding cell wall mannoproteins (Zhang et al. 2008). In 

addition to the utilisation of β-galactosidase activity as a proxy measurement for the 

genotoxic potential of a compound, lux genes have also been used. Yagur-Kroll and 

colleagues have developed a sulA::luxCDABE E. coli strain (Yagur-Kroll et al. 2010). For their 

experiments the SOS inducing quinolone nalidixic acid was used. In response to the induced 

DNA damage, E. coli become bioluminescent and this bioluminescence acts as a proxy for 

the quantification of genotoxic potential of a compound.  
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Bacterial reporter strains allow high-throughput and relatively simple screening of 

compounds in order to determine their genotoxic potential. While efforts have been made 

in order to make the results of these experiments applicable to humans, studies using 

human and animal cell populations are difficult to surpass. The comet assay and its 

methodological variations have previously been discussed (Fairbairn et al. 1995). One 

advantage of this assay is the ability to test the genotoxicity of a compound on a particular 

cell-line of interest. The immortal cell-line HT-29 was first isolated from a colon tumour in 

1964 (Fogh et al. 1977) and can be used in the comet assay. Faecal water genotoxicity has 

been tested using HT-29 cells in the comet assay. It is possible to argue that detected 

genotoxic potentials of faecal waters in this system are biologically relevant to humans, as 

genotoxic faecal waters will come into contact with cells of the colon.  

Reviewing the literature highlights the impact on diet upon the cytotoxicity and genotoxicity 

of faecal water. It has been shown that a reduction in dairy product consumption is linked 

with a significant lower HT-29 cell survival (34% vs. 20% respectively, p = 0.025) in the HT-29 

cytotoxicity test (Glinghammar et al. 1997). However, the genotoxicity of faecal waters 

following dairy rich and dairy free diets was not significantly different. Other research 

however, has shown that a diet high in fat but low in dietary fibre increases the genotoxic 

potential of faecal water (Rieger et al. 1999). Tail intensity, following the incubation of faecal 

waters from two diets (rich in fat and low in fibre vs. high in dietary fibre and low in fat) with 

HT-29 cells in a comet assay, were significantly different (28.7% vs. 17.5% respectively, p = 

0.02). In an effort to negate the potential of diet induced faecal water genotoxicity, the 

effect of probiotic supplementation has been studied. AD sufferers and healthy subjects 

received a placebo yoghurt drink or a probiotic drink containing L. paracasei Lpc-37, L. 

acidophilus 74-2 and B. lactis 420 (7.8 x 1010, 5.8 x 106 and 1.2 x 107 CFU/day respectively) 

for 8 weeks. While there was no significant difference in the genotoxic activity of faecal 

waters of healthy individuals, there was a significant difference between AD sufferers. 

Patients with AD who received the probiotic yoghurt had a significantly (p = 0.029) lower 

level of faecal water genotoxicity (Roessler et al. 2012).  

While the genotoxicity experiment used only a limited number of samples, probiotic 

administration showed no significant effect upon faecal water genotoxicity. Neat and diluted 

faecal waters from all study periods showed significant SOS induction compared to the 

control. In a study where various LAB strains were incubated with faecal water prior to 

incubation with HT-29 cells in a comet assay, a significant difference was observed (Burns 
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and Rowland 2004). Burns and colleagues did not incubate the HT-29 cells directly with the 

bacterial faecal water suspension due to bacterial cell interference with the comet assay. B. 

bifidum BB12, B. lactis 420, L. plantarum and L. bulgaricus showed a significant reduction in 

genotoxicity compared to control faecal water incubated with PBS (68%, 24%, 63% and 37% 

reduction respectively, p < 0.05). While this research shows that probiotic organisms can 

decrease the genotoxicity of faecal water, it is not entirely clear how applicable the results 

are to probiotic supplementation. The authors selected the bacterial strains as previous 

research showed that these strains could survive GIT transit. However, their effects in vivo 

still need to be corroborated as my results suggest that probiotic supplementation in vivo 

does not decrease the genotoxic potential of faecal water. 

My results highlight that there are inter-individual differences in the genotoxicity of faecal 

water. This has previously been shown where the genotoxic potential of faecal waters from 

6 individuals induced varying levels of genotoxicity (Oßwald et al. 2000). Furthermore, faecal 

waters from one individual over 6 weeks showed varying levels of genotoxicity with 

significant differences ranging from no significant difference to the control to highly 

significant (p < 0.001). Results from the PROHEMI study show that the neat faecal waters of 

PH1, PH2, PH6, PH9 and PH24 are not statistically different from the controls while PH11 and 

PH26 are different. However, once diluted the faecal waters of PH1 and PH24 do become 

significantly more genotoxic than controls. This suggests that while neat, the faecal waters 

of PH1 and PH24 were too cytotoxic for the SOS ChromoTest™ reporter strain and therefore, 

the SOS system was not induced. However, once diluted the cytotoxicity of the samples 

decreased and therefore, SOS system induction could take place. The SOS ChromoTest™ 

system utilises the E. coli PQ37 strain developed by Quillardet and colleagues (Quillardet et 

al. 1982). This strain is constitutive for alkaline phosphatase activity and can be measured 

through the use of a colorimetric substrate. Spill-over from the colour produced through the 

β-galactosidase reaction interferes with this readout and therefore, makes it difficult to 

attribute whether absorbance is linked with alkaline phosphatase activity (viability) or β-

galactosidase activity (genotoxicity). The concept of responders to a treatment has been 

discussed previously. Due to the inter-participant variation seen, it would be of interest to 

stratify the results based on participant and to then determine whether probiotic 

administration has a genotoxic reducing effect. It would be particularly interesting to 

determine the effect of probiotic administration on those with particularly high genotoxic 

faecal water. Unfortunately, the effect of probiotic administration on faecal water 

genotoxicity in this instance was underpowered. While there are enough numbers to carry 



CHAPTER 4 - CULTURE DEPENDENT ANALYSIS OF FAECAL MATERIAL AND FAECAL WATERS 
FROM THE PROHEMI STUDY 

157 
 

out study period and participant analysis, I was unable to stratify the results based upon 

individual in a given study period. However, repeating the experiment with faecal waters 

from participants with high genotoxicity alone may give rise to a responder response to 

probiotic administration. 
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4.5 Conclusions 

The main conclusions for this chapter are as follows: 

1. screening for β-galactosidase, β-glucuronidase, protease, esterase/lipase and cholesterol 

degrading activities can be carried out on faecal material using functional media; 

 

2. probiotic administration reduces the numbers of bacteria expressing protease activity in 

healthy males; 

 

3. the numbers of bacteria expressing β-galactosidase and β-glucuronidase activity in 

healthy males increases during probiotic supplementation; 

 

4. there are geographical differences between the two study centre in terms of the 

numbers of bacteria expressing β-galactosidase and β-glucuronidase activity 

 

5. the genotoxicity of faecal waters are unaffected by probiotic supplementation in healthy 

males; 

 

6. there are individual differences in faecal water genotoxicity levels in healthy males. 
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5. CULTURE INDEPENDENT ANALYSIS OF FAECAL MATERIAL AND FAECAL 

WATERS FROM THE PROHEMI STUDY 

5.1 Introduction 

While microbiology has historically utilised classical culture dependent techniques, there has 

been a shift in recent years to the use of culture independent techniques. Researchers have 

been aware of the bias that culture dependent analysis can introduce since Staley and 

Konopka coined the phrase, "the great plate count anomaly" (Staley and Konopka 1985). 

This notion has previously been discussed by Rappé and Giovannoni. Meta-analysis of 

published GenBank 16S rRNA gene sequences from 1993 – 2002 showed that deposition of 

sequences from culture independent studies were over 2-fold greater than those from 

culture dependent studies (Rappe and Giovannoni 2003).  

Many culture independent techniques rely on the use of the 16S rRNA gene as a molecular 

chronograph (Woese 1987) and biomarker for organisms through their subsequent 

sequencing. With regards to sequencing, there have been significant advances since the 

advent of Sanger sequencing by Frederick Sanger (Sanger et al. 1977). The NGS technology 

454 pyrosequencing, through the use of emulsion PCR, has been applied to sequence and 

assemble the genome of Mycoplasma genitalium (Margulies et al. 2005). The method has 

also been applied to analyse complex microbial communities such as the deep sea "rare 

biosphere" (Sogin et al. 2006), the soil (Roesch et al. 2007) and the gut microbiome in obese 

and lean twins (Turnbaugh et al. 2009). NGS technologies are still evolving with sequencing 

platforms such as the Ion Torrent, which utilises protons (Rothberg et al. 2011) and the 

further development of optical based platforms such as Illimina-Solexa sequencing (Bentley 

et al. 2008). Illumina-Solexa sequencing, through the use of HiSeq2000 and MiSeq platforms, 

has been applied to sequence complex microbial communities (Caporaso et al. 2012). These 

complex communities included the human oral cavity, the skin and faecal material. 

Sequencing technologies allow researchers to interrogate the importance of both culturable 

and as yet uncultivated unculturable bacteria that make up the human distal gut 

microbiome. 
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Metabonomics, as defined by Nicholson and colleagues, is "the quantitative measurement of 

the dynamic multiparametric metabolic response of living systems to pathophysiological 

stimuli or genetic modification" (Nicholson et al. 1999). This technique can be considered 

culture independent as biological fluids are generally the source of information and are 

analysed through spectroscopic methods. The technique has been applied in order to 

analyse urine and plasma (Beckonert et al. 2007) and has been successfully applied in the 

detection of epithelial ovarian cancer (Odunsi et al. 2005). 

With regards to the gut, it is understood that the commensal gut microbiota play a pivotal 

role in the metabolism of compounds. Therefore, it follows that the dysbiosis of the gut 

microbial community, and the subsequent impact upon host health, will give rise to different 

metabonomic signatures. Antibiotic treatment with enrofloxacin in mice affected their faecal 

and urinary metabonomic profiles (Romick-Rosendale et al. 2009). Analysis through principal 

component analysis (PCA) showed that samples prior to antibiotic treatment clustered 

separately from post-treatment samples. In humans 1H nuclear magnetic resonance (NMR) 

analysis of faecal waters obtained from IBD patients, showed significant differences to 

healthy controls. Namely, there was a significant (p < 0.05) depletion in the SCFAs acetate 

and butyrate in UC patients (Marchesi et al. 2007). This research highlights that disruptions 

in normal gut function can have pronounced effects upon the metabonomic profiles of an 

individual. 

Novel high-throughput methods such as NGS and metabonomic analysis shed light on our 

complex gut microbial ecosystem. However, there is very little in the literature as to the 

effect of probiotic administration on metabonomic profiles in humans. In addition there is 

very little research into the effect of probiotic administration into the gut bacterial 

community of healthy individuals. The response of the infirm to various probiotic strains and 

prebiotics has been well documented (Tuohy et al. 2003). However, there is a gap in 

knowledge with respect to the changes, if any, in the gut microbiota of healthy individuals 

during probiotic intervention.  
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5.1.1 Chapter Aims 

The aims of this chapter are as follows: 

 

1. to determine whether probiotic administration affects the bacterial community of 

healthy males; 

 

2. to determine whether there is a difference between the bacterial community of healthy 

males from the two study centres; 

 

3. to answer whether the gross metabonomic profiles of healthy individuals are affected 

by probiotic administration; 

 

4. to answer whether probiotic administration in healthy males affects chemical shifts 

associated with SCFAs; 

 

5. to determine whether there are differences in the gross metabonomic profiles and 

SCFA profiles of healthy individuals from the two study centres. 
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5.2 Methods and materials 

5.2.1 Illumina MiSeq sequencing of PROHEMI faecal DNA 

Previously extracted faecal DNA from the PROHEMI study was diluted to a concentration of 

5 ng/μL.. The primers, 515F (5'- GTGCCAGCMGCCGCGGTAA) and 806R (5'- 

GGACTACHVGGGTWTCTAAT), were synthesised with the necessary Illumina adapters as 

previously described (Caporaso et al. 2012) in order to amplify the V4 region of the 16S rRNA 

gene. Multiplex sequencing of the DNA samples was achieved through the synthesis of a 

unique sample barcode in the reverse primer. Each DNA sample was amplified in triplicate 

25 μL reactions through the PCR. Briefly, each reaction contained 5 ng of template DNA, 0.7 

μM of total primers, 0.7 μM mixed dNTPs, 2.5 U KAPA HiFi Taq DNA polymerase (Kapa 

Biosystems Inc., Boston, US) and 1 X accompanying reaction buffer (2 mM MgCl2). The 

thermal cycler (Bioer Gene Pro, Bioer Technology, China) was programmed with an initial 

denaturing step of 95°C for 5 min, followed by 25 cycles of 98°C for 20 s, 60°C for 30 s and 

72°C for 40 s with a final extension step of 72°C for 1 min. Triplicate reactions were pooled 

and visualised through gel electrophoresis. Visualised bands of correct size were excised and 

purified using the QIAquick gel extraction kit (QIAGEN, Crawley, West Sussex, UK) following 

manufacturer's guidelines. Product concentration was quantified using the Qubit® 2.0 

fluorometer system (Life Technologies Ltd, Paisley, UK) following manufacturer's guidelines. 

All samples were diluted to a final concentration of 2.5 ng/μL and were pooled in equal 

volumes. One final visual check was carried out through gel electrophoresis, where the 

desired result was a single clear product. Following the final visual check, the equimolar 

pooled samples were subjected to 250 bp paired end Illumina MiSeq sequencing (Illumina 

United Kingdom, Essex, UK) following manufacturer's guidelines. 
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5.2.2 Bioinformatic analysis of MiSeq results 

Mothur, an open-source programme was used for the majority of the analysis (Schloss et al. 

2009). In order to carry out the analysis a tab separated file, which contained the sample ID 

and file names of both paired end reads for a given sample, was created (Appendix III). This 

served to associate the relevant sequence files with the correct sample. 

Sequences were processed using Mothur through custom batch files (Appendix IV) based 

upon a protocol developed by Schloss and colleagues (Schloss et al. 2011). Mothur utilised a 

current version of the RDP training set (training set 9) and the Silva 16S rRNA gene FASTA 

reference sequences (Pruesse et al. 2007) in order to carry out the analysis. Briefly, contigs 

were constructed from the two paired-end reads for a given sample and associated with the 

respective sample. Sequences were shortened to a maximum length of 275 bp and any 

sequences with ambiguous bases removed. In order to reduce the computational power 

needed to carry out the analysis, unique sequences were kept and multiples of unique 

sequences removed. Unique sequences were aligned to the reference Silva 16S rRNA FASTA 

sequences. The need for computational power was once again reduced by selecting unique 

sequences and discarding multiples of the unique sequence. Chimeras were identified and 

removed before an OTU table was generated using an 80% cut-off. Sequences which were 

not bacterial, including archaeal, mitochondrial and chloroplast DNA, were removed. OTUs 

were classified using a 97% similarity cut-off to the genus level. Normalisation of OTUs was 

achieved through sub-sampling to 1370 and 10197 sequences. Samples were initially sub-

sampled to 1370 sequences in order to maintain a high level of samples for analysis. Sub-

sampling to 10197 sequences was carried out to maintain a higher level of sequences for 

analysis. However, sub-sampling to 10197 sequences removed some samples with sequence 

counts below 10197 from further analyses. Computations including the inverse Simpson's 

diversity and Jaccard similarity coefficient indices, Yue and Clayton θ similarity coefficients, 

weighted and unweighted UniFrac  (Lozupone and Knight 2005) distances were carried out 

in Mothur. Ordination through non-metric multi-dimensional scaling (nMDS) and principal 

co-ordinate analysis (PCoA) of some of the previous indices were also carried out in Mothur. 

Generated axes from the ordination techniques were plotted using R statistical software (R-

Core-Team 2012) through the use of a custom script (Appendix II). The script utilised the R 

packages, labdsv (Roberts 2010), vegan (Oksanen et al. 2011) and calibrate (Graffelman 

2012) packages. Normality, homogeneity of variance testing and Kruskal – Wallis H tests 

were carried out in IBM statistics 20 (IBM, Portsmouth, UK). 
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Extended error bar plots of mean proportions of phyla and families were created using 

STAMP: Statistical Analysis of Metagenomic Profiles v2.0.0 software (Parks and Beiko 2010). 

Study centres and periods were analysed through a two-sided Welch's t-test with Bonferroni 

multiple test correction.  

 

5.2.3 Metabonomic analysis of PROHEMI faecal waters 

5.2.3.1 Generation of faecal waters from PROHEMI faecal samples 

Faecal waters were generated as previously described (see Chapter 2.5).  

5.2.3.2 1H NMR analysis of PROHEMI faecal waters 

Metabonomic analysis of faecal waters was carried out through proton NMR spectroscopy at 

Imperial College London. The protocol followed has previously been described (Marchesi et 

al. 2007). Briefly, 180 μL of faecal water was added to 320 μL of deuterium oxide and 100 μL 

of 0.2 M sodium phosphate buffer (pH 7.4). This buffer contained 100% deuterium oxide, for 

the magnetic field lock, and 0.01% 3-(trimethylsilyl)-[2,2,3,3-2H4] propionic acid sodium salt, 

for the spectral calibration. The buffer also contained 3 mM of sodium azide as a 

precautionary antibacterial measure. The faecal water, deuterium oxide and sodium 

phosphate buffer mixture was centrifuged at 10,000 g for 5 min before 580 μL was 

dispensed into 5 mm thickness, 7 inch borosilicate NMR tubes (Cortecnet , France). These 

tubes were subjected to NMR analysis. 1H NMR spectra of faecal waters were obtained using 

a Bruker 600 MHz spectrometer (Bruker, Rheinstetten, Germany) at the operating 1H 

frequency of 600.13 MHz at a temperature of 300 K. A standard NMR pulse sequence 

(recycle delay -90°-t1-90°-tm-90°-acquisition) was applied to acquire one-dimensional 1H 

NMR spectral data, where t1 was set to 3 μs and tm (mixing time) was set to 100 ms. The 

water peak suppression was achieved using selective irradiation during a recycle delay of 2 s 

and tm. A 90° pulse was adjusted to 10 μs. A total of 256 scans were collected into 64 k data 

points with a spectral width of 20 ppm. 

5.2.3.3 Assignment of SCFAs to chemical shifts 

Chemical shifts for acetate, propionate, butyrate and valerate were obtained from the 

Madison Metabolomics Consortium Database (Cui et al. 2008). Chemical shifts 

corresponding to these compounds were manually selected from the dataset and exported. 



CHAPTER 5 –  CULTURE INDEPENDENT ANALYSIS OF FAECAL MATERIAL AND FAECAL WATERS 
FROM THE PROHEMI STUDY 

165 
 

5.2.3.4 Statistical analysis of the 1H NMR data 

The proportional abundances of the chemical shifts for NMR spectra were calculated. 

AGNES, using Ward's method, of the calculated Euclidean distances of the proportional 

abundances of NMR chemical shifts and export in Newick format was carried out in R 

statistical software. In order to carry out AGNES a custom script was used. The script utilised 

the R packages, ape (Paradis et al. 2004), BiodiverstiyR (Kindt  and Coe 2005) and cluster 

(Maechler et al. 2005) packages (Appendix II). Once exported in Newick format, the tree was 

manipulated using iTol software online (Letunic and Bork 2011). PCoA, using calculated 

Euclidean distances of the proportional abundances of chemical shifts, was carried out in R 

statistical software. A custom script was used which utilised vegan (Oksanen et al. 2011) 

calibrate (Graffelman 2012) and labdsv (Roberts 2010) R packages (Appendix II). 

 



CHAPTER 5 –  CULTURE INDEPENDENT ANALYSIS OF FAECAL MATERIAL AND FAECAL WATERS 
FROM THE PROHEMI STUDY 

166 
 

5.3 Results 

5.3.1 Illumina MiSeq DNA sequencing of 16S rRNA genes obtained from PROHEMI 

DNA samples 

5.3.1.1 The effect of normalisation on the dataset 

Sequence counts for a given sample are shown in Appendix V. The lowest number of 

sequences was 33 while the highest was 279,029 sequences. Samples were sub-sampled to 

1370 and 10197 with sequence counts below the two cut-offs removed from β-diversity, 

phylum and family level analyses.  

5.3.1.2 α – diversity of samples 

Samples were compared by study centre and study period. Inverse Simpson diversity results 

were plotted based upon the study period (Fig. 5.1) and study centre (Fig. 5.2) prior to and 

following normalisation. Analysis through the Kruskal – Wallis H test showed no significant 

difference between the Simpson diversity indices of non-normalised and both sets of 

normalised sequences. Furthermore, there was no significant difference in the Simpson 

diversity indices of samples based upon study period. However, Kruskal – Wallis H test 

analysis showed a significant difference between the mean ranks of samples based upon 

study centre, *χ2 (1) = 33.104, p<0.001].  
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Figure 5.1| Study period inverse Simpson diversity indices of PROHEMI faecal DNA – non – 

normalised, normalised through sub-sampling to 10197 sequences and 1370 sequences are 

shown based upon study period 

 

 

 

 

 

 

 

 

 

Figure 5.2| Study centre inverse Simpson diversity indices of PROHEMI faecal DNA – non – 

normalised, normalised through sub-sampling to 10197 sequences and 1370 sequences are 

shown based upon study centre. * denotes a significant difference between Sheffield and 

Cardiff samples (p<0.05). 
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5.3.1.2 β – diversity analysis of PROHEMI faecal DNA samples 

β-diversity ordination plots for the 1370 sub-sample are not shown as the results were 

similar to those obtained from sub-sampling to 10197 sequences. 

 

5.3.1.2.1 Analysis of all PROHEMI faecal DNA samples by study period 

PROHEMI faecal samples were subjected to PCoA analysis of Jaccard similarity coefficient 

indices and Yue and Clayton θ similarity coefficients. Data, which were normalised through 

sub-sampling to 1370 and 10197 sequences, showed no separate clustering of Pre-feeding, 

Active and Washout periods (Fig. 5.3 A-B ).  

In addition, nMDS analysis of both unweighted and weighted UniFrac distances of the two 

sub-samples showed no separate clustering of samples based upon study period (Fig. 5.4 A-

B).  
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Figure 5.3| The effect of probiotic administration on the faecal DNA β-diversity of all individuals from the PROHEMI study following normalisation 

through sub-sampling to 10197 sequences – In both plots P = Pre-feeding, A = Active and W = Washout periods. The percentage of variation explained is 

shown for each axis. (A) shows PCoA of Jaccard similarity coefficient indices of PROHEMI samples. (B) shows PCoA of Yue and Clayton θ similarity 

coefficients of PROHEMI samples. 
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CHAPTER 5 –  CULTURE INDEPENDENT ANALYSIS OF FAECAL MATERIAL AND FAECAL WATERS FROM THE PROHEMI STUDY 

170 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4| The effect of probiotic administration on the faecal DNA UniFrac distances of all individuals from the PROHEMI study following normalisation 

through sub-sampling to 10197 sequences – In both plots P = Pre-feeding, A = Active and W = Washout periods. (A) shows nMDS of unweighted UniFrac 

distances of PROHEMI samples. (B) shows nMDS of weighted UniFrac distances of PROHEMI samples. 

A B 
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5.3.1.2.2 Analysis of Cardiff PROHEMI faecal DNA samples by study period 

β-diversity analysis was also carried out by study period through splitting the data into their 

respective study centres. With respect to the Cardiff study centre, PCoA of Jaccard similarity 

coefficient indices, using both sub-sample sets, shows samples clustered together regardless 

of the study period (Fig. 5.5 A). Analysis through PCoA of Yue and Clayton θ similarity 

coefficients of the two sub-sample sets showed similar results (Fig. 5.5 B). However, the Pre-

feeding group did not cluster tightly with the other groups as was observed in PCoA analysis 

of the Jaccard similarity coefficient indices.  

Analysis through nMDS of weighted and unweighted UniFrac distances was also carried out. 

Through analysis of the 1370 sequence and 10197 sequence sub-samples it was shown that 

samples from all 4 study periods clustered together (Fig. 5.6 A-B). 
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Figure 5.5| The effect of probiotic administration on the β-diversity of Cardiff/Port Talbot faecal DNA from the PROHEMI study following normalisation 

through sub-sampling to 10197 sequences – In both plots P = Pre-feeding, A1 = Active group 1, A2 = Active group 2 and W = Washout periods. The 

percentage of variation explained is shown for each axis. (A) shows PCoA of Jaccard similarity coefficient indices of Cardiff/Port Talbot PROHEMI samples. 

(B) shows PCoA of Yue and Clayton θ similarity coefficients of Cardiff/Port Talbot PROHEMI samples.  
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Figure 5.6| The effect of probiotic administration on the faecal DNA UniFrac distances of Cardiff/Port Talbot individuals from the PROHEMI study 

following normalisation through sub-sampling to 10197 sequences – In both plots P = Pre-feeding, A1 = Active group 1, A2 = Active group 2 and W = 

Washout periods. (A) shows nMDS of unweighted UniFrac distances of Cardiff/Port Talbot PROHEMI samples. (B) shows nMDS of weighted UniFrac 

distances of Cardiff/Port Talbot PROHEMI samples. 

A B 
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5.3.1.2.3 Analysis of Sheffield PROHEMI faecal DNA samples by study period 

Analysis of Sheffield samples alone through PCoA analysis of Jaccard similarity coefficient 

indices of the two sub-sample datasets showed no effect of probiotic administration (Fig. 5.7 

A). Samples from the Pre-feeding, Active and Washout periods clustered together. PCoA 

analysis of Yue and Clayton θ similarity coefficients also showed no effect of probiotic 

administration on the β-diversity of Sheffield PROHEMI faecal DNA, as samples from all 3 

study periods clustered together (Fig 5.7B).  

Through nMDS analysis of unweighted and weighted UniFrac distances of both sub-samples, 

no probiotic driven change in β-diversity of Sheffield samples was observed (Fig. 5.8 A-B). 

Samples from all three study periods clustered together once again. 
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Figure 5.7| The effect of probiotic administration on the faecal DNA β-diversity of Sheffield individuals from the PROHEMI study following normalisation 

through sub-sampling to 10197 sequences – In both plots P = Pre-feeding, A= Active and W = Washout periods. The percentage of variation explained is 

shown for each axis. (A) shows PCoA of Jaccard similarity coefficient indices of Sheffield PROHEMI samples. (B) shows PCoA of Yue and Clayton θ similarity 

coefficients of Sheffield PROHEMI samples.  
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Figure 5.8| The effect of probiotic administration on the faecal DNA UniFrac distances of Sheffield individuals from the PROHEMI study following 

normalisation through sub-sampling to 10197 sequences – In both plots P = Pre-feeding, A= Active and W = Washout periods. The percentage of variation 

explained is shown for each axis. (A) shows nMDS of unweighted UniFrac distances of Sheffield PROHEMI samples. (B) shows nMDS of weighted UniFrac 

distances of Sheffield PROHEMI samples. 

A B 
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5.3.1.2.4 Analysis of all PROHEMI faecal DNA samples by study centre 

In addition to analysis by study period, DNA samples from the PROHEMI study were also 

analysed by study centre. PCoA analysis of Jaccard similarity coefficient indices and Yue and 

Clayton θ similarity coefficients of 1370 and 10197 sequence sub-samples was carried out 

(Fig. 5.9 A-B). Results showed samples clustering based upon study centre, with Sheffield 

and Cardiff samples clustering relatively separately. However, there is a degree of overlap 

between the two study centres with samples from Cardiff clustering with Sheffield samples 

and vice versa.  

Analysis through nMDS of unweighted and unweighted UniFrac distances based on study 

period showed similar results. Results of weighted and unweighted UniFrac distances of the 

1370 and 10197 sequence sub-samples showed separate clustering of the samples based 

upon study centre (Fig. 5.10 A-B). It must be noted that both sub-samples show a degree of 

overlap between the two study centres, with samples from Cardiff clustering with Sheffield 

samples and vice versa.  
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Figure 5.9| The β-diversity of PROHEMI study faecal DNA samples by study centre following normalisation through sub-sampling to 10197 sequences – 

In both plots C = Cardiff and S= Sheffield study centres. The percentage of variation explained is shown for each axis. (A) shows PCoA of Jaccard similarity 

coefficient indices of PROHEMI samples. (B) shows PCoA of Yue and Clayton θ similarity coefficients of PROHEMI samples. 

A B 
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Figure 5.10| UniFrac distances of PROHEMI study faecal DNA samples by study centre following normalisation through sub-sampling to 10197 sequences 

– In both plots C = Cardiff and S= Sheffield study centres. The percentage of variation explained is shown for each axis. (A) shows nMDS of unweighted 

UniFrac distances of PROHEMI samples. (B) shows nMDS of weighted UniFrac distances of PROHEMI samples. 

A B 
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5.3.1.2.5 Phylum level analysis of all PROHEMI faecal DNA samples by study period 

Although there was no observed separate clustering of samples based upon study period, 

the samples were analysed at the phylum level. Extended error bar plots of phyla from each 

study period, after sub-sampling to 1370 and 10197 sequences, were compared (Fig. 5.11 A-

C and Fig. 5.12 A-C). Comparisons of the 1370 sequence sub-sample showed a significant 

difference. The Proteobacteria were significantly (p < 0.05) higher in the Active group than 

the Pre-feeding group (Fig. 5.11 A). No significant differences in the mean proportions of all 

other phyla were observed between study periods in both sets of sub-samples.  
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Figure 5.11| Extended error bar plot of phylum level abundance in PROHEMI samples 

based upon study period from the 1370 sequence sub-sample – for each plot the mean 

proportional abundances are shown for the phyla and the differences between the mean 

proportions of phyla with 95% confidence interval error bars are shown. Respective p-values 

for a given phylum have been displayed with * denoting a significant (p < 0.05) difference 

through Welch's t-test with Bonferroni correction for multiple comparisons. (A) shows the 

mean proportional abundances of phyla in both Pre-feeding and Active groups as well as the 

differences in the mean proportions of phyla between Pre-feeding and Active groups. (B) 

shows the mean proportional abundances of phyla in both Active and Washout groups as 

well as the differences in the mean proportions of phyla between Active and Washout 

groups. (C) shows the mean proportional abundances of phyla in both Pre-feeding and 

Washout groups as well as the differences in the mean proportions of phyla between Pre-

feeding and Washout groups. 
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Figure 5.12| Extended error bar plot of phylum level abundance in PROHEMI samples 

based upon study period from the 10197 sequence sub-sample – for each plot the mean 

proportional abundances are shown for the phyla and the differences between the mean 

proportions of phyla with 95% confidence interval error bars are shown. Respective p-values 

for a given phylum have been displayed with * denoting a significant (p < 0.05) difference 

through Welch's t-test with Bonferroni correction for multiple comparisons. (A) shows the 

mean proportional abundances of phyla in both Pre-feeding and Active groups as well as the 

differences in the mean proportions of phyla between Pre-feeding and Active groups. (B) 

shows the mean proportional abundances of phyla in both Active and Washout groups as 

well as the differences in the mean proportions of phyla between Active and Washout 

groups. (C) shows the mean proportional abundances of phyla in both Pre-feeding and 

Washout groups as well as the differences in the mean proportions of phyla between Pre-

feeding and Washout groups 
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5.3.1.2.6 Phylum and family level analysis of all PROHEMI faecal DNA samples by study 

centre 

Due to the observed separate clustering of samples based upon study centre, as previously 

discussed in section 5.3.1.2.4, samples were analysed at the phylum and family level. 

Analysis of the 1370 sub-sample showed that Cardiff samples have a significantly (p < 0.05) 

higher mean proportion of Firmicutes and Actinobacteria than Sheffield samples (Fig. 5.13). 

However, Sheffield samples have a significantly (p < 0.05) higher mean proportion of 

Bacteroidetes and Proteobacteria than Cardiff samples (Fig 5.13). Family level analysis of the 

1370 sub-sample shows that in terms of the significant difference observed in the mean 

proportions of Bacteroidetes from the two study centres there are differences. The mean 

proportion of Prevotellaceae and Porphyromonadaceae are significantly higher in the 

Sheffield samples than Cardiff samples (Fig. 5.14). However, no significant difference was 

observed in the mean proportions of Bacteroidaceae and Rikenellaceae between the two 

study centres (Fig. 5.14). In terms of the difference in the mean proportions of Firmicutes 

differences were also observed at the family level. There was a significantly higher 

proportion of Ruminococcaceae, Lachnospiraceae, Peptostreptococcaceae and 

Streptococcaceae in Sheffield samples than Cardiff samples (Fig. 5.14). However, no 

significant difference in the mean proportions of Clostridiaceae, Veillonellaceae nor 

Acidaminococcaceae was observed between the two study centres (Fig. 5.14). 
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Figure 5.13| Extended error bar plot of phylum level abundance in PROHEMI samples 

based upon study centre from the 1370 sequence sub-sample – the mean proportional 

abundances of phyla are shown for Cardiff/Port Talbot and Sheffield samples. The 

differences in the mean proportions of phyla between Cardiff/Port Talbot and Cardiff with 

95% confidence interval error bars are also shown. Respective p-values for a given phylum 

have been displayed, calculated using Welch's t-test with Bonferroni correction for multiple 

comparisons. All differences in mean proportions were highly significant (p < 0.001).  
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Figure 5.14| Extended error bar plot of family level abundance in PROHEMI samples based 

upon study centre from the 1370 sequence sub-sample – the mean proportional 

abundances of families are shown for Cardiff/Port Talbot and Sheffield samples. The 

differences in the mean proportions of families between Cardiff/Port Talbot and Cardiff with 

95% confidence interval error bars are also shown. Respective p-values for a given family 

have been displayed, calculated using Welch's t-test with Bonferroni correction for multiple 

comparisons where * denotes a significant difference (p < 0.05). 
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Analysis of the 10197 sub-sample at the phylum level shows the same trend as the 1370 sub-

sample. Cardiff samples show a significantly (p < 0.05) higher mean proportion of Firmicutes 

than the Sheffield samples (Fig. 5.15). The mean proportion of Bacteroidetes is significantly 

higher in the Sheffield samples than Cardiff samples (Fig. 5.15). Analysis at the family level 

showed that there were differences in the mean proportions of members of the Firmicutes 

and Bacteroidetes at the family level. The mean proportion of Ruminococcaceae, 

Lachnospiraceae, Peptostreptococcaceae, Streptococcaceae, Erysipelotrichaceae and 

Clostridiaceae families were significantly (p < 0.05) higher in the Cardiff group than the 

Sheffield group (Fig. 5.16). This finding is slightly different as the mean proportion of 

Clostridiaceae was not significantly higher in the Cardiff group than the Sheffield group in 

the 1370 sub-sample. However, there was no significant difference between the mean 

proportions of Veillonellaceae, Acidaminococcaceae, Peptococcaceae, Lactobacillaceae nor 

Leuconostocaceae of the two study centres (Fig. 5.16). In a similar fashion to the Firmicutes, 

family level differences were observed in the Bacteroidetes. The mean proportions of the 

Prevotellaceae, Porphyromonadaceae and Bacteroidaceae were significantly (p < 0.05) 

higher in the Sheffield samples than Cardiff samples. Unlike the 1370 sub-sample, the 10197 

sub-sample showed a significantly (p < 0.05) higher mean proportion of Bacteroidaceae in 

Sheffield samples. The mean proportions of both Rikenellaceae and Flavobacteriaceae 

showed no significant difference between the two study centres (Fig. 5.16). 

While there are observable differences in the phyla and families of bacteria within samples 

from Cardiff and Sheffield, differences were also observed between the two sub-samples. 

Differences in the mean proportions of families, such as the Clostridiaceae and 

Bacteroidaceae, which did not reach significance in the 1370 sub-sample, reach significance 

in the 10197 sub-sample. Furthermore, the mean proportion of Proteobacteria between the 

two study centres does not exhibit a significant difference in the 10197 sub-sample while the 

phylum does in the 1370 sub-sample. Through sub-sampling to 10197 sequences, there is an 

increase in observable families over sub-sampling to 1370 sequences e.g. the 

Lactobacillaceae and Leuconostocaceae families.  
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Figure 5.15| Extended error bar plot of phylum level abundance in PROHEMI samples 

based upon study centre from the 10197 sequence sub-sample – the mean proportional 

abundances of phyla are shown for Cardiff/Port Talbot and Sheffield samples. The 

differences in the mean proportions of phyla between Cardiff/Port Talbot and Cardiff with 

95% confidence interval error bars are also shown. Respective p-values for a given phylum 

have been displayed, calculated using Welch's t-test with Bonferroni correction for multiple 

comparisons. All differences in mean proportions were highly significant (p < 0.001).  
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Figure 5.16| Extended error bar plot of family level abundance in PROHEMI samples based 

upon study centre from the 10197 sequence sub-sample – the mean proportional 

abundances of families are shown for Cardiff/Port Talbot and Sheffield samples. The 

differences in the mean proportions of families between Cardiff/Port Talbot and Cardiff with 

95% confidence interval error bars are also shown. Respective p-values for a given family 

have been displayed, calculated using Welch's t-test with Bonferroni correction for multiple 

comparisons where * denotes a significant difference (p < 0.05)..  
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5.3.2 Metabonomic analysis of PROHEMI faecal waters 

5.3.2.1 Analysis of gross metabonomic profiles 

Cluster analysis of all gross metabonomic profiles, obtained from the faecal waters of 

PROHEMI participants, appears to show no effect of probiotic administration (Fig. 5.17). 

Samples from all 3 study periods appear to cluster together randomly. Furthermore, analysis 

of the gross metabonomic profiles through PCoA showed no separate clustering between 

the 3 study periods (Fig. 5.18) 

In order to ensure that a response to probiotic administration was not being masked by 

differential study centre responses, gross metabonomic profiles were also analysed 

separately. Analysis, through PCoA, of Cardiff/Port Talbot faecal water metabonomic profiles 

showed no separate clustering due to study period (Fig. 5.19). The figure shows that samples 

from the Pre-feeding, Active group 1, Active group 2 and Washout periods cluster together. 

PCoA of Sheffield faecal water metabonomic profiles showed a similar result, with Pre-

feeding, Active and Washout periods clustering together (Fig. 5.20). Therefore, the results 

suggest that probiotic administration has no effect on the gross faecal metabonomic profiles 

of healthy individuals. 
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Figure 5.17| Cluster analysis of PROHEMI faecal metabonomic profiles based on study 

period – the study period is represented by a coloured ring on the outside of the 

dendrogram. Samples from the Pre-feeding period are red, Active period are green and 

Washout period are blue. 
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Figure 5.18| PCoA through Euclidean distance of all PROHEMI faecal metabonomic profiles 

based on study period – the first two principal co-ordinates have been plotted with the 

percentage of variation explained shown. Pre-feeding samples are shown in red, Active 

samples are shown in green and Washout samples are shown in black. 
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Figure 5.19| PCoA through Euclidean distance of Cardiff PROHEMI faecal metabonomic 

profiles based on study period – the first two principal co-ordinates have been plotted with 

the percentage of variation explained shown. Pre-feeding samples are shown in green, 

Active group 1 samples are shown in black, Active group 2 samples in red and Washout 

samples are shown in blue. 
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Figure 5.20|PCoA through Euclidean distance of Sheffield faecal metabonomic profiles 

based on study period – the first two principal co-ordinates have been plotted with the 

percentage of variation explained shown. Pre-feeding samples are shown in red, Active 

samples are shown in black and Washout samples are shown in green. 
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In contrast to cluster analysis of PROHEMI faecal metabonomic profiles by study period, 

analysis by study centre shows a degree of clustering by study centre (Fig. 5.21). The 

dendrogram shows large clusters of samples from a given study centre interspersed with 

samples from the other study centre.  

Gross faecal metabonomic profiles were also subjected to PCoA analysis by study centre 

(Fig. 5.22). Through plotting the first two components it is possible to see that the 

metabonomic profiles of the two study centres cluster separately. It is likely that the 

observed interspersed study centre samples observed in Fig. 5.21 are those samples which 

appear close together in Fig. 5.22. These results suggest a geographical difference in the 

gross metabonomic profiles of PROHEMI participants as Sheffield and Cardiff/Port Talbot 

samples appear to cluster separately.  
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Figure 5.21| Cluster analysis of PROHEMI faecal metabonomic profiles based on study 

centre – the study centre is represented by a ring on the outside of the dendrogram with 

Sheffield in black  and Cardiff samples with no colouring. 
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Figure 5.22| PCoA through Euclidean distance of all PROHEMI faecal metabonomic profiles 

based on study centre – the first two principal co-ordinates have been plotted with the 

percentage of variation explained shown. Sheffield samples are shown in red and Cardiff 

samples are shown in black. 
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5.3.2.2 Analysis of SCFA metabonomic profiles 

Exported chemical shifts of acetate, propionate, butyrate and valerate were analysed by 

study period through cluster analysis. Samples appeared to cluster together irrespective of 

study period (Fig. 5.23). The data were also analysed through PCoA based upon study period 

(Fig. 5.24). However, samples from all 3 study periods clustered together once again.  

SCFA metabonomic profiles were also analysed by study period for each study centre. 

Analysis through PCoA showed no separate clustering due to probiotic administration in the 

Cardiff/Port Talbot samples (Fig. 5.25). In accordance with this observed result, samples 

from Sheffield clustered together irrespective of study period also (Fig. 5.26). These results 

suggest that probiotic administration has no effect upon the SCFA profiles of healthy male 

subjects. 
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Figure 5.23| Cluster analysis of PROHEMI faecal SCFA metabonomic profiles based on 

study period – the study period is represented by a coloured ring on the outside of the 

dendrogram. Samples from the Pre-feeding period are red, Active period are green and 

Washout period are blue. 
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Figure 5.24| PCoA through Euclidean distance of all PROHEMI faecal SCFA metabonomic 

profiles based on study period – the first two principal co-ordinates have been plotted with 

the percentage of variation explained shown. Pre-feeding samples are shown in red, Active 

samples are shown in black and Washout samples are shown in green. 
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Figure 5.25| PCoA through Euclidean distance of Cardiff PROHEMI faecal SCFA 

metabonomic profiles based on study period – the first two principal co-ordinates have 

been plotted with the percentage of variation explained shown. Pre-feeding samples are 

shown in green, Active group 1 samples are shown in black, Active group 2 samples in red 

and Washout samples are shown in blue. 
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Figure 5.26| PCoA through Euclidean distance of Sheffield faecal SCFA metabonomic 

profiles based on study period – the first two principal co-ordinates have been plotted with 

the percentage of variation explained shown. Pre-feeding samples are shown in red, Active 

samples are shown in black and Washout samples are shown in green. 
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The SCFA metabonomic profiles of PROHEMI samples were also analysed by study centre 

through cluster analysis and PCoA. Cluster analysis of the samples showed a degree of 

clustering based upon study centre (Fig. 5.27). However, unlike the cluster analysis of gross 

faecal metabonomic profiles (Fig. 5.21), there appeared to be a greater degree of sample 

interspersing.  

PCoA analysis of SCFA metabonomic profiles based upon study centre appeared to show 

separate clustering (Fig. 5.28). However, unlike PCoA analysis of the gross faecal 

metabonomic profiles of PROHEMI participants by study centre (Fig. 5.22), there was a 

larger degree of overlap between the two clusters. This overlap is the probably reason for 

the observed greater degree of Cardiff/Port Talbot and Sheffield sample interspersing 

observed in Fig.5.27. The results suggest that there is a geographical difference in the SCFA 

metabonomic profiles of participants, with Cardiff/Port Talbot and Sheffield samples 

showing a degree of separate clustering. However, it must be noted that the separate 

clustering observed in analysis of SCFA metabonomic profiles of PROHEMI participants is not 

as distinct as the separation observed in their respective gross metabonomic profiles.  
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Figure 5.27| Cluster analysis of PROHEMI faecal SCFA metabonomic profiles based on 

study centre – the study period is represented by a ring on the outside of the dendrogram. 

Samples from the Cardiff study centre are blank while samples from the Sheffield study 

centre are black. 
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Figure 5.28| PCoA through Euclidean distance of all PROHEMI faecal SCFA metabonomic 

profiles based on study centre – the first two principal co-ordinates have been plotted with 

the percentage of variation explained shown. Sheffield samples are shown in red and Cardiff 

samples are shown in black. 
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5.4 Discussion 

5.4.1 Illumina MiSeq NGS of PROHMI faecal DNA 

There appears to be a need for research into the effect of probiotic administration on the 

gut bacterial community and its effect on the metabonomic profiles of individuals needs to 

be carried out. I have shown that long-term probiotic administration does very little with 

respect to the alteration of the gut bacterial community of healthy individuals. In addition, 

gross metabonomic profiles and profiles associated with SCFA are also unaffected. 

 

Analysis through Mothur showed there was a high degree of variability in terms of sequence 

counts for a given sample. This is due to methodological issues prior to and during the 

sequencing run. Normalisation, through sub-sampling to 1370 and 10197 sequences, was 

carried out in order to avoid sequencing bias (Schloss et al. 2011). Sub-sampling to the 

lowest possible number of sequences would have severely lowered the number of 

sequences in all samples to 33 sequences. The dataset would have been severely reduced 

with a loss of 278996 sequences from the highest sample. Sub-sampling to 1370 sequences 

and 10197 sequences removed 3 and 42 samples respectively from subsequent analysis. 

While this was not ideal, the samples were from all study periods and centres. Therefore, it 

is unlikely that bias was introduced from sub-sampling.  

 

Inverse Simpson diversity indices show that there was no significant difference in the 

diversity of samples following sub-sampling and no significant difference between study 

periods. However, there was a significant difference between the two study centres, with 

Sheffield samples showing a decreased level of diversity in non-normalised and both 

normalised datasets. It has recently been shown that the α-diversity of the faecal microbiota 

of infants differs as they age with the highest diversity seen at 2 years and the lowest 

diversity seen at 4 months (Avershina et al. 2013). Differences in α-diversity have not only 

been observed across different ages. In a recent study, the distal gut microbiome diversity of 

healthy Bangladeshi children was compared to healthy children from the US. Bangladeshi 

children were shown to have a significantly (p < 0.001) higher α-diversity than US children 

(Lin et al. 2013). My results highlight a geographical difference in the α-diversity of the distal 

gut microbiota of healthy male subjects within the UK and should be researched further. 

There appears to be a discrepancy in knowledge regarding inter-centre differences in gut 
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bacterial diversity. Published studies seem to focus on a single study centre alone and when 

comparisons are carried out they are often comparisons of disparate locations. To my 

knowledge there are no comparisons between locations in the UK in terms of differences in 

the diversity of the gut bacterial community of individuals. Therefore, I cannot say whether 

this is in line with other research in this area or not.  

β-diversity measurements were carried out using Mothur (Schloss et al. 2009). This open-

source software utilises Jaccard similarity coefficient indices in order to determine the 

dissimilarity between communities in question (Schloss et al. 2009). The technique was 

developed and applied by Jaccard in order to describe the diversity of plants in the Alps 

(Jaccard 1912). Effectively, the technique takes the presence/absence of an OTU into 

account and not its abundance. Conversely however, the Yue and Clayton θ similarity 

coefficient analysis takes the abundance of a given OTU into account. Analysis through these 

two measurements showed no clustering due to probiotic administration. The results of 

PCoA on these two measures showed that all samples clustered together, regardless of 

study period, for each sub-sample. Furthermore, when the two study centres were analysed 

separately all study periods still clustered together.  

 

UniFrac distance analysis, a comparatively new technique, has been applied in order to 

analyse complex microbial communities (Lozupone and Knight 2005). In a similar manner to 

Jaccard similarity coefficient indices analysis, the unweighted method of UniFrac does not 

take in to account the abundance of a given OTU. This form of the metric measures the 

presence/absence of a given OTU instead. It is therefore ideal in order to compare differing 

microbial communities as the OTU composition is likely to be different. However, the 

weighted method takes the abundance of a given OTU into account, in a similar fashion to 

the Yue and Clayton θ similarity coefficient analysis. Analysis through both unweighted and 

weighted UniFrac distance analysis emulated the results obtained from Jaccard similarity 

coefficient indices and Yue and Clayton θ similarity coefficient analysis. Ordination through 

nMDS of weighted and unweighted UniFrac distances showed no effect of probiotic 

administration as all samples clustered together, irrespective of study period. In addition, 

samples clustered together regardless of study period once both study centres were 

analysed separately. All four β-diversity measurements used suggested that probiotic 

administration did not affect the presence/absence or abundance of OTUs. 
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The data were analysed by study centre also and while probiotic administration showed no 

effect on β-diversity, there were observable differences between the two study centres. 

PCoA of Jaccard similarity coefficient indices and Yue and Clayton θ similarity coefficients 

showed separate clustering of samples from the two study centres. There was an observable 

overlap between samples from the two study centres however, in general separate 

clustering was observed. Ordination of weighted and unweighted UniFrac distances through 

nMDS showed similar results for both sub-samples. PROHEMI samples appeared to cluster 

separately due to study centre with some sample overlap between the two study centres. 

The results suggest a geographical difference between the presence/absence and 

abundance of OTUs.  

 

Sequence data were analysed at the family and phylum level also. Analysis of the 1370 sub-

sample showed a significant increase in the mean proportion of Proteobacteria between the 

Active and Pre-feeding periods. However, this was not shown in the 10197 sub-sample. This 

result suggests that the difference seen is probably due to a bias introduced from sub-

sampling as opposed to a real biological effect. There were no other observed significant 

differences at the phylum level between the study periods.  

 

Phylum level analysis of the sequence data showed a significant difference between the two 

study centres in both sub-samples. Sheffield samples were shown to have a higher mean 

proportion of Bacteroidetes while Cardiff/Port Talbot samples had a higher mean proportion 

of Firmicutes. Significant differences were also observable at the family level. However; in 

contrast to the phylum level analysis both sub-samples showed differences in the families 

exceeding significance. It is interesting to note that sub-sampling affected the number of 

bacterial families which exceeded significance with 9 families and 14 families reaching 

significance in the 1370 sub-sample and the 10197 sub-sample respectively. The observed 

difference between the two sub-samples is likely to be due to a sub-sampling artefact. 

Families which exceeded significance in the 1370 sub-sample also exceeded significance in 

the 10197 sub-sample. The evaluation of different sub-sampling methods has previously 

been researched and was shown to impact upon the sequence dataset in question (Carcer et 

al. 2011). 
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Analysis at the phylum leads us to believe that Cardiff/Port Talbot samples have a higher 

mean proportion of Firmicutes than Sheffield. However, family level analysis shows that not 

all mean proportions of the Firmicutes are significantly higher. Similarly, phylum level 

analysis leads us to believe that Sheffield samples have a higher mean proportion of 

Bacteroidetes than Cardiff/Port Talbot samples. However, family level analysis once again 

shows that not all mean proportions of Bacteroidetes are significantly higher.  

My results suggest that probiotic administration does not impact upon the bacterial 

community of healthy individuals. It has recently been shown that the ratio of Bacteroidetes 

to Firmicutes was significantly (p < 0.05) increased following administration of L. salivarus 

(1010 CFU/day) for 12 weeks in obese adolescents (Larsen et al. 2013). Research into the 

effect of the administration of B. longum in combination with an inulin-based prebiotic in 

older healthy individuals has recently been carried out (Macfarlane et al. 2013). In this 

cohort, the consumption of 2 x 1011 B. longum with 6 g of the prebiotic twice daily 

significantly increased Bifidobacteria, Actinobacteria and Firmicutes (p < 0.0001, p < 0.0004 

and p < 0.0001 respectively). This recent research suggests that probiotic administration can 

impact the composition of the gut microbiota. However, one study cohort was not healthy, 

as the participants were obese (Larsen et al. 2013), and the age of participants from the 

other study group ranged from 65-90 (Macfarlane et al. 2013). These two study cohorts are 

not indicative of the general population who take probiotic supplements daily. In accordance 

with my results, it has recently been shown that probiotic yoghurt consumption did not 

impact the gut microbiota of healthy subjects. Filteau and colleagues showed that the daily 

consumption of L. acidophilus LA-5 (109 CFU/day) with increasing doses of B. animalis ssp. 

lactis BB-12 (109
 and 1010 CFU/day) and 40 mg/day green tea extract for 4 weeks did not 

affect the distal gut microbiota of healthy individuals. Vanhoutte and colleagues have also 

shown that the consumption of S. boulardii (2.5 x 109 viable cells/day) for 4 weeks did not 

impact upon the DGGE profiles of healthy volunteers. Therefore, my research is in 

accordance with these studies; it seems probiotic administration, in healthy individuals, does 

not impact upon the distal gut microbiota. The reasons behind this observation are unclear. 

However, there is a possibility that the probiotic organisms used in the PROHEMI study do 

not possess the ability to modulate the gut bacterial community of individuals. It has 

previously been shown that the feeding of B. longum 46 and B. longum 2C (total of 109 

CFU/mL) for 6 months gave rise to a bifidogenic response (Lahtinen et al. 2009). The 

organisms used were different to the organisms used in the PROHEMI study and the 

observed differences were in an elderly cohort. This gives rise to another possible reason for 
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the lack of distal gut bacterial modulation observed. PROHEMI participants were healthy 

males and were not elderly. Perhaps modulation cannot be achieved in this healthy cohort 

as the distal gut microbiota is established and not under dysbiosis. It is also possible that not 

all of the probiotic mixture given to PROHEMI participants reaches the large intestine. While 

previous research has shown that the L. acidophilus strains used in the PROHEMI can be 

detected in the faecal material of healthy individuals following feeding (Mahenthiralingam et 

al. 2009), the same has yet to be shown for the bifidobacteria used in the study. The 

bifidobacteria used in the PROHEMI study may possess bifidogenic properties however; they 

may not reach the large intestine in sufficient numbers to exert these effects.  

Analysis by study centre suggests that there are geographical differences in the gut bacterial 

community of individuals across the UK. There is a significant difference between the 

proportional abundances of the two major distal gut phyla, the Bacteroidetes and 

Firmicutes, across the two study centres. Previous research by Gordon and colleagues using 

obese mice suggests that the abundance of Firmicutes are significantly (p < 0.05) higher in 

obese mice while the abundance of Bacteroidetes are significantly (p < 0.05) lower (Ley et al. 

2005). This observation was strengthened by analysis of obese and lean human twins by 

Turnbaugh and colleagues (Turnbaugh et al. 2009). Once again there was a significant (p = 

0.003) reduction in the abundance of Bacteroidetes in obese subjects. However, there was 

no significant difference in the abundance of Firmicutes. My research, using healthy 

individuals, suggests a difference in the ratio of Bacteroidetes and Firmicutes due to 

geographical difference. Geographical differences in the composition of the distal gut 

microbiota have previously been discussed. NGS of the V3-V4 16S rRNA genes from the 

faecal DNA of Bangladeshi and USA children showed differences in the relative abundances 

of OTUs corresponding to the Firmicutes and Bacteroidetes (Lin et al. 2013). Bangladeshi 

children showed a higher abundance of Firmicutes to Bacteroidetes (60% vs. 20% 

respectively) while children from the USA showed a more even abundance (46% vs. 43%). 

Interestingly, this observation was extended to Bangladeshi adults also, with a high 

abundance of Firmicutes (50%) and a very low abundance of Bacteroidetes (6%). The authors 

cannot give an exact reason for the observed difference. However, they suggest that 

differences in diet, genetics and environmental factors, including socioeconomic factors, 

may play a role. 
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With regards to the effect of diet on the microbiome, newly published research has shown 

diet can modulate the distal gut microbiome in healthy subjects (David et al. 2013). Healthy 

subjects either followed an animal-based diet or plant-based diet for 5 days. Comparisons 

were made to a pre-diet period and post-diet period, where participants were instructed to 

eat normally. α-diversity analysis of the data showed no significant difference of Shannon 

diversity indices attributable to either diet. However, β-diversity was significantly affected by 

the animal-based diet. Furthermore, it was shown that log2 fold changes of the Firmicutes 

were significantly affected by both diets while log2 fold changes of the Bacteroidetes were 

significantly affected by the animal diet. My results show a difference in the gut bacterial 

community of individuals from the UK. These differences are unlikely to be due to 

socioeconomic factors however, differences in diet and lifestyle are likely drivers for the 

observed differences in the ratio of Bacteroidetes to Firmicutes observed in the samples. 

The differences in the abundances of Firmicutes in the PROHEMI study are not a trivial 

matter. Previous research has shown that members of the Firmicutes phylum, namely 

members of clostridial cluster XIVa, play a pivotal role in the production of butyrate 

(Barcenilla et al. 2000). Of the isolated butyrate producers 80% clustered within clostridial 

cluster XIVa. Barcenilla and colleagues highlighted that the most abundant group of isolates 

(42%) clustered with E. rectale and Roseburia cecicola. Previously published data suggests 

that diet can affect the abundance of clostridial cluster XIVa members. Duncan and 

colleagues have shown that a reduced dietary intake of carbohydrates is linked with a 

reduction in the abundance of Roseburia spp. and the E. rectale subgroup of clostridial 

cluster XIVa in obese subjects (Duncan et al. 2007). Furthermore, the research was 

strengthened as Duncan and colleagues showed a decrease in butyrate concentrations in the 

faecal material. Research by Walker and colleagues has also shown that a diet high in 

resistant starch significantly (p < 0.001) increases the clostridal cluster XIVa member E. 

rectale and Ruminococcus bromii in overweight males (Walker et al. 2011). It is therefore 

apparent that diet can impact upon members of the Firmicutes. With regards to my data 

there is a significantly (p < 0.0001) higher mean proportion of Lachnospiraceae and 

Ruminococcaceae in Cardiff/Port Talbot samples. Both of these families lie within clostridial 

XIVa group and suggest that diet may be the driver for the observed difference. This idea is 

further strengthened by the previously discussed newly published research by David and 

colleagues (David et al. 2013). Healthy participants following an animal-based diet showed a 

significant reduction in E. rectale and Roseburia faecis. However, an animal-based diet 

significantly increased members of the Bactroidetes including the Porphyromonadaceae. 
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5.4.2 1H NMR metabonomic analysis of PROHEMI faecal waters 

Metabonomic analysis of the PROHEMI dataset showed similar results to the NGS results 

from the study. There appeared to be no effect of probiotic supplementation on the gross 

metabonomic and SCFA metabonomic profiles of individuals. The data were analysed by 

period separately for the two study centres with individuals clustering together regardless of 

the study period. There have been studies which have used metabonomic profiling following 

probiotic administration in murine models. In an experimentally induced colitis mouse 

model the efficacy of L. brevis HY7401, Lactobacillus sp. HY7801 and B. longum HY8004 

(combined concentration of 3 x 109 CFU/mL) has been assessed (Hong et al. 2010). Colitis, in 

this model, was induced by dextran sulphate sodium. Probiotic fed mice showed increased 

levels of SCFA than mice which did not receive probiotic treatment. Administration of the 

probiotic species L. acidophilus La5 and B. lactis BB12 (109 CFU/day) for 30 days in aged (16 

months) mice has also been researched (Brasili et al. 2013). Differences in the faecal and 

urinary metabolites were observed between the two study groups. Research into the effect 

of feeding L. paracasei NCC2461 (108/day) in a humanised mouse model has been carried 

out (Martin et al. 2008). Analysis of SCFAs in this model showed a significant (p < 0.001) 

decrease in acetate, a significant (p < 0.001) increase in isobutyrate, a significant (p < 0.001) 

increase in butyrate and a significant (p < 0.01) increase in isovalerate compared to the 

control group. Furthermore, 1H NMR analysis also showed a significant (p < 0.01) decrease in 

acetate following probiotic consumption compared to the control group. My results suggest 

that there is no effect of probiotic administration on faecal metabolites. However, the 

dataset needs to be analysed in more detail in order to ensure that specific changes are not 

being masked by metabolites which do not respond. In addition, branched SCFA were not 

included in my analysis and need to be considered in future analyses. 
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While probiotic administration did not seem to affect the gross metabonomic and SCFA 

metabonomic profiles of individuals, study centre differences were once again observed. 

Samples from Cardiff/Port Talbot and Sheffield clustered separately when gross faecal 

metabolites were analysed. Analysis of SCFA metabolites also showed a degree of separate 

clustering based upon study centre. However, there was a larger degree of sample overlap 

from the two study centres. The effect of diet on the distal gut microbiota has previously 

been discussed (Duncan et al. 2007; Walker et al. 2011). Furthermore, its impact upon the 

production of compounds such as SCFA has also been discussed. My data therefore suggest 

that there is a geographical difference in the metabolite profiles of individuals enrolled in 

the PROHEMI study. The results showed a difference between the gut bacterial community 

of individuals also and from previously published research there is a hint that these two 

observations are intrinsically linked. It is possible that differences in lifestyle or diet are 

driving changes in the distal gut bacterial community of individuals and in turn drives a 

difference in faecal metabolite profiles. 

 

Further research needs to be carried out in order to ensure that the results are a true 

biological phenomenon and not merely methodological driven. With regards to the 

sequencing data, the effect of faecal material storage and the DNA extraction method 

followed on the variability of results has been discussed in Chapter 6. 
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5.5 Conclusions 

The main conclusions for this chapter are as follows: 

1. probiotic administration does not affect the distal gut bacterial community of healthy 

males; 

 

2. there are difference in the distal gut bacterial community of healthy males from the 

two study centres; 

 

3. NGS backs up the observations made following LHPCR analysis and validates the 

technique for use in analysing human faecal DNA; 

 

4. there are no effects of probiotic administration upon the gross metabonomic and SCFA 

profiles of healthy individuals; 

 

5. 1H NMR analysis reveals a difference in the gross and SCFA metabonomic profiles of 

PROHEMI participants from the two studies centres.  
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6. THE EFFECT OF FREEZING FAECAL MATERIAL ON ITS BACTERIAL 

COMPOSITION 

6.1 Introduction 

The ability of the human gut microbiota to influence host health and well-being has become more 

apparent in recent years. Studies are highlighting the link between the host gut microbiota and 

the hypothalamic-pituitary-adrenal (HPA) axis (Ait-Belgnaoui et al. 2012), controversially with 

obesity (Ley et al. 2006b) and autism (Song et al. 2004). Konopka and Staley described the “great 

plate count anomaly” in nonphotosynthetic microorganisms from aquatic and terrestrial 

environments (Staley and Konopka 1985). The anomaly is equally applicable to the human gut, as 

the number of cultivable bacteria is significantly less than the total numbers of bacteria residing 

in the gut. The inability of culture dependent approaches to acquire all of the information has 

recently been highlighted. The impact of diet on the gut bacterial community of 14 overweight 

men was determined through 16S rRNA analysis (Walker et al. 2011). Of the 320 phylotypes 

identified in the study, only 33.4% showed 98% identity with cultured bacteria. The authors 

suggest that this is due to poor culture dependent coverage of less abundant bacterial groups. It 

was further suggested that the culture independent to dependent discrepancy arises through 

poor anaerobic isolation work; and not due to the inability of these organisms to be cultured.  

Faecal material provides a non-invasive alternative for the collection of data on the distal colon. 

Therefore it has been the source of information for many studies from animals (Simpson et al. 

2000) to humans (Eckburg et al. 2005). In order to obtain a snapshot of the distal gut microbiota 

and functions therein, many researchers extract DNA from faeces. The extraction method that 

should be followed has been debated, as the DNA obtained should be a true representation of 

the distal gut microbial community. That is to say that the method followed should not create 

biases in the data generated. Efficacy of commercially available faecal DNA extraction kits 

(McOrist et al. 2002), modified DNA extraction protocols using bead beating (Salonen et al. 2010), 

and modification of commercially available kits (Maukonen et al. 2012) have been evaluated. 

There is no clear consensus from the papers published over the last decade comparing extraction 

methods, which is the correct protocol to follow? 

The confusion regarding which DNA extraction protocol to follow is further complicated by the 

confusion over the correct method for faecal storage prior to the highly variable results obtained 

from DNA extraction. Even in 2012 uncertainty remains (Table. 6.1). When DNA was extracted 
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from the faecal samples of 4 individuals (2 healthy controls and 2 irritable bowel syndrome 

patients) stored at 1, 4, 6, 8 and 24 h, samples clustered based on the individual and not due to 

the storage method or time stored (Carroll et al. 2012). In another piece of work it has also been 

shown that microbial diversity of faecal samples (n=4) is not significantly affected by storage at 

room temperature, up to 24 h. DNA was degraded and a significant change in the proportion of 

bacteria was observed after 2 weeks storage at room temperature (Cardona et al. 2012). 

In order to overcome the effect of DNA degradation and loss of bacterial diversity that arises from 

storage at room temperature, faecal samples are often frozen. However, this in itself cannot 

guarantee the integrity of the DNA information obtained. It has been shown that the ratio of the 

two major phyla of the human gut, the Firmicutes and Bacteroidetes, is altered after faecal 

sample storage at -20°C for 53±5 days. There was a reduction in abundance of Bacteroidetes 16S 

rRNA genes obtained after extraction (Bahl et al. 2012). Faecal samples can also be stored at -

80°C. It has been shown, in a similar manner to storage at room temperature up to 24 h, that 

samples cluster together based upon individual and not due to storage method or time. The 

weighted and unweighted UniFrac values of 16S rRNA gene sequences obtained from samples 

frozen at -80°C up to 6 months show significant similarity to their corresponding fresh samples 

(Carroll et al. 2012). Another layer of complexity is added when the thawing of frozen faecal 

samples is consider. It has been shown that thawing faecal samples from -80°C over an h or 3 h 

both cause DNA degradation. There is also a loss of bacterial 16S rRNA sequences from the 

Bacteroides genus (Cardona et al. 2012). 

The confusion arising from varied results and different storage methods adds to the difficulty of 

carrying out inter study comparisons. It is also difficult to compare results from studies as 

different extraction methods are often followed. In collaborative studies, researchers may decide 

to overcome inter-centre variation by transporting faecal samples to one centre for DNA 

extraction. However, the implications of the effect of thawing frozen faecal samples shows that 

caution should be taken when transporting faecal samples from different locations. The extracted 

DNA may not provide a true representation of the community. While the stability of faecal 

microbial communities appear to be unaffected by storage at -80°C for 6 months, long-term 

storage at -20°C has not been fully researched. However, freezers at -20°C may be more readily 

available than -80°C freezers in developing countries. Therefore, there is a need for further 

research into the effect of storage at -20°C on the faecal bacterial community. It has been shown 

that the storage of faecal material at -20°C affects the ratio of Firmicutes to Bacteroidetes. 

However, it is unclear how long a sample may be stored at this temperature before the microbial 
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community is affected. Lyophilisation of faecal material from pigs prior to extraction has also 

been suggested as a method to increase the DNA recovery, as shown by restriction fragment 

polymorphism (Ruiz and Rubio 2009). However, this has not been applied to human faecal 

samples and there is a need for investigation through next generation sequencing. 

The confusion in the literature highlights the need for further investigation and development of a 

standard operating procedure. There is a need to minimise the variation generated by 

methodological differences. Real biological effects may be masked or false biological effects 

generated through a methodological artefact. 
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Table 6.1|The effect of different storage conditions on DNA extraction results 

Storage method Duration Effect Reference 

Freezing at -20°C 53 ± 5 days Shift in the ratio of Firmicutes to Bacteroidetes (Bahl et al. 2012) 

Room temperature* 

(not defined) 

 

 

 

 

Time taken to thaw 

from -80°C before 

re-freezing at 

-80°C 

 

3 h 

 

24 h 

2 weeks 

 

 

1 h 

 

 

 

3 h 

No effect 

 

DNA is degraded 

Reduction in the mean proportion of sequences of uncultured bacteria 

from the Bacteroides, Prevotellaceae and Bifidobacterium taxa 

DNA is degraded 

Reduction in the mean proportion of sequences from an uncultured 

bacterium from the Bacteroides genus 

DNA is degraded 

Reduction in the mean proportion of sequences of uncultured bacteria 

from the Bacteroides, Prevotellaceae and Bifidobacterium taxa 

DNA is degraded 

(Cardona et al. 2012) 

Room temperature** 

(approx. 25°C) 

Freezing at -80°C ** 

1, 4, 6, 8, 24 h 

1 week 

1, 2, 3, 4, 5, and 6 months 

Clustering of faecal samples due to the individual and not storage 

method/time. 

No significant differences in the bacterial group DNA after storage 

(Carroll et al. 2012) 

*when compared to the same sample frozen at -20°C 

**all samples had DNA extracted after 30 min at room temperature prior to storage; this acted as a baseline for comparison 
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6.1.1 Chapter Aims 

The aims of this chapter are as follows: 

 

1. to determine whether the freezing of faecal material at -20°C prior to DNA extraction 

affects its bacterial composition; 

 

2. if the bacterial composition of a faecal sample is affected by freezing at -20°C, I aim to 

determine how long a sample can be stored before it is detrimentally affected. 
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6.2 Methods and materials  

6.2.1 454 FLX Titanium NGS for analysis on the effect of freezing faecal samples and 

the effect of homogenisation 

Faecal samples from 9 individuals were processed and DNA extracted, as previously 

described (see Chapter 2.3.1). DNA was extracted from fresh samples and after samples had 

been frozen at -20°C for 24 h, 2 weeks, 3 months and 6 months. Extracted faecal DNA was 

subjected to 454 FLX Titanium PCR. The forward and reverse primers 338F (5’-

ACTCCTACGGGAGGCAGCAG) and 926R (5’- CCGTCAATTCMTTTRAGT) were synthesised with 

454 FLX Titanium adapters B (5’-CCTATCCCCTGTGTGCCTTGGCAGTCTCAG) and A (5’- 

CCATCTCATCCCTGCGTGTCTCCGACTCAG) respectively (Haas et al. 2011). The reverse primer 

was also synthesised with a unique sample barcode for downstream identification of 

sequences. Each sample was amplified in triplicate 50 µl reactions. Each reaction contained 

50 ng of template DNA, 0.4 µM of total primers , 0.4 µM of mixed dNTPs, 2.5 U of NEB Taq 

DNA Polymerase (New England Biolabs® Inc. Ipswich, MA 01938-2723) and 1X accompanying 

standard reaction buffer (10mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2, pH 8.3 at 25°C). The 

thermal cycler (C1000™; BIO-RAD, Hertfordshire, UK) was programmed with an initial 

denaturing step of 94°C for 3 min, 20 cycles of 94°C for 30 s, 53°C for 30 s and 72°C for 3 min 

with a final extension step of 72°C for 3 min Products were visualised by gel electrophoresis. 

The triplicate reactions were pooled and concentrated by ethanol precipitation, as 

previously described (see Chapter 2.4). The concentrated products were purified using the 

QIAquick PCR purification kit (QIAGEN, Crawley, West Sussex, UK) and correct sized products 

were selected by gel electrophoresis. The gel bands were purified using the QIAquick gel 

extraction kit (QIAGEN, Crawley, West Sussex, UK). Emulsion PCR and sequencing were 

carried out according to the manufacturer’s protocol. 
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6.2.2 Bioinformatic analysis of NGS results 

Mothur, an open-source programme, was used for the majority of the analysis (Schloss et al. 

2009). The .sff file generated from 454 pyrosequecning was opened in Mothur. This 

generated two files, the sequence file in FASTA format and a quality file. Using the RDP's 

pyrosequencing pipeline, the sequence and quality files were uploaded to the pipeline initial 

process utility (available at: http://rdp.cme.msu.edu/). The utility also required the forward 

and reverse primer sequences as well as the unique sample barcodes used. The minimum 

quality score was set to q20.  

Sequences with a score were then obtained through download. Mothur requires a group file 

whereby sequences are associated with their respective samples. The group file was created 

using Mothur.  

All relevant files were placed in the same directory as the Mothur executable file along with 

a current version of the RDP training set (training set 9) and the Silva 16S rRNA gene FASTA 

refrence sequences (Pruesse et al. 2007). Analysis in Mothur was carried out through the use 

of custom batch files (Appendix VI) based upon a protocol developed by Schloss and 

colleagues (Schloss et al. 2011). Briefly, sequences were shortened to 300bp, in order to 

increase quality, and aligned to the Silva 16S rRNA gene FASTA sequences. Unique 

sequences were selected, in order to reduce computing power, and chimeras were removed. 

The OTU table was generated using a 97% (0.03) cut-off. Normalisation of the OTU table was 

achieved through sub-sampling of the sequence data to the lowest number of sequences 

present in a given sample e.g. PH25 3M contained 699 sequences. Therefore, all other 

samples were sub-sampled in order to contain 699 sequences. This step omitted PH27 2W 

and PH34 3M from further analysis, as the number of sequences within these samples was 

markedly lower than 699. Remaining sample sequences were taxonomically identified using 

the RDP training set. Computations including the Yue and Clayton θ similarity coefficient, 

weighted and unweighted UniFrac distances, inverse Simpson's diversity and Jaccard 

similarity coefficient indices were carried out in Mothur. Non-metric multi-dimensional 

scaling (nMDS) and principal co-ordinate analysis (PCoA), of some of these measures, was 

also carried out in Mothur. The axes generated from nMDS and PCoA were plotted using R 

statistical software (R-Core-Team 2012) through the use of a custom script (Appendix II). 

The script utilised labdsv (Roberts 2010), vegan (Oksanen et al. 2011) and calibrate 

(Graffelman 2012) packages. Normality, homogeneity of variance testing, one-way ANOVA 

and Kruskal-Wallis H tests were carried out on the data in SPSS (IBM, Portsmouth, UK). 

http://rdp.cme.msu.edu/
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Bacteroidetes OTU abundances were exported into SPSS (IBM, Portsmouth, UK) statistics 

software. The data were tested for normality and for homogeneity of variance also. One-way 

ANOVA and Tamhane's T2 post-hoc test was also carried out on the data. 

Phylum data, unweighted and weighted UniFrac distances were imported into R statistical 

software (R-Core-Team 2012). AGNES clustering, using Ward's method, of normalised OTU 

abundances and UniFrac distances followed by export in Newick format was carried out in R 

statistical software. This was achieved through a custom script which utilised ape (Paradis et 

al. 2004), BiodiverstiyR (Kindt  and Coe 2005) and cluster (Maechler et al. 2005) R packages 

(Appendix II). Once exported in Newick format, the dendrogram was manipulated using iTol 

software online (Letunic and Bork 2011). The ratio of Bacteroidetes to Firmicutes was also 

applied to the dendrogram in the form of a bar-chart. 
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6.3 Results 

6.3.1 α - diversity of samples 

Samples were compared based upon storage time and the individual also. The inverse 

Simpson diversity indices have been plotted based upon the participant (Fig. 6.1) and time 

stored at -20°C (Fig. 6.2), before and after normalisation. There was no significant difference 

in the diversity between participants before and after normalisation, as shown by one-way 

ANOVA [F (8, 34) = 1.651, p=0.147] and [F (8, 34) = 1.680, p=0.139] respectively. Analysis 

based upon storage time shows a similar pattern. One-way ANOVA shows no significant 

difference in diversity between the samples after varying lengths of storage at -20°C before 

and after normalisation, [F (4, 38) = 0.71 p=0.590) and [F (4, 38) = 0.511, p=0.728]. 

Therefore, the level of diversity is not significantly different after storage at -20°C up to 6 

months. Furthermore, inter-individual diversity also appears to be relatively uniform. 
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Figure 6.1| Inverse Simpson's diversity index of OTUs obtained from 454 pyrosequencing 

of DNA after different storage times – average inverse Simpson's diversity indices are 

shown from all storage times for each participant (n=9). Both normalised and non-

normalised OTU datasets were subjected to the diversity index. Error bars show SD from the 

mean.
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Figure 6.2| Inverse Simpson's diversity index of OTUs obtained from 454 pyrosequencing 

of DNA after different storage times – average inverse Simpson's diversity indices are 

shown for all storage time. Where 24H = 24 h, 2W = 2 weeks, 3M = 3 months and 6M = 6 

months. Both normalised and non-normalised OTU datasets were subjected to the diversity 

index. Error bars show SD from the mean. 
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6.3.2 The effect of storage at -20°C on the bacterial community of a faecal sample 

The similarity in community structure of samples following storage at -20°C for varying 

lengths of time has been analysed. To this end nMDS analysis of Jaccard similarity coefficient 

indices and the Yue and Clayton θ similarity coefficients of samples has been carried out. 

Samples from Fresh, 24H, 2W and 3M groups cluster together through Jaccard similarity 

coefficient index analysis. However, the 6M group shows a degree of separate clustering 

(Fig. 6.3). The results obtained through the Yue and Clayton θ similarity coefficient show a 

more dramatic change (Fig. 6.4). While Fresh, 24H and 2W groups cluster together the 3M 

group begins to cluster separately. The 6M group clusters completely separately from the 

Fresh, 24H and 2W groups. However, there is some overlap between the clusters generated 

from 3M and 6M. 

UniFrac distance analysis was also carried out on the dataset. In a similar manner to the 

Jaccard similarity coefficient, PCoA of unweighted UniFrac distances of the samples show a 

degree of separate clustering following 6 months of storage at -20°C (Fig. 6.5A). The degree 

of separate clustering of 6M samples along with the samples which overlap with other 

storage periods can be seen through AGNES of the unweighted UniFrac distances (Fig. 6.5B). 

Cluster analysis of the unweighted UniFrac distances also shows that samples, with the 

exception of 6M samples, tend to cluster together based upon the individual and not due to 

time stored (Fig. 6.5B). Analysis through PCoA of weighted UniFrac distances shows separate 

clustering of 6M samples, in a similar fashion to the Yue and Clayton θ similarity coefficient 

(Fig. 6.6A). This cluster of 6M samples also appears tighter than its unweighted counterpart 

(Fig. 6.5A). Cluster analysis, through AGNES, of the weighted UniFrac distances shows that 

all but 2 of the 6M samples cluster together (Fig. 6.6B). Furthermore, unlike the unweighted 

iteration, weighted UniFrac distances of samples do not seem to cluster based upon the 

individual any longer. Instead, samples cluster with samples from different individuals at the 

same time-point and different time-points alike. 
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Figure 6.3| nMDS plot of the Jaccard similarity coefficient indices obtained from samples 

following storage at -20°C – samples have been coloured based upon their duration stored 

at -20°C, F = Fresh, 24H = 24 h, 2W = 2 weeks, 3M = 3 months and 6M = 6 months.  
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Figure 6.4| nMDS plot of the the Yue and Clayton θ similarity coefficients obtained from 

samples following storage at -20°C – samples have been coloured based upon their duration 

stored at -20°C, F = Fresh, 24H = 24 h, 2W = 2 weeks, 3M = 3 months and 6M = 6 months. 
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Figure 6.5| Unweighted UniFrac distance analysis of faecal DNA following storage at -20°C – (A) shows PCoA of the unweighted UniFrac distances where, 

the first and second components are plotted with the percentage of variation explained. Samples are colour coded, F = Fresh, 24H = 24 h, 2W = 2 weeks, 

3M = 3 months and 6M = 6 months. (B) shows AGNES clustering of the unweighted UniFrac distances between samples. The samples are colour coded to 

match the PCoA plot. 

(B) (A) 
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Figure 6.6| Weighted UniFrac distance analysis of faecal DNA following storage at -20°C – (A) shows PCoA of the weighted UniFrac distances where, the 
first and second components are plotted with the percentage of variation explained. Samples are colour coded, F = Fresh, 24H = 24 h, 2W = 2 weeks, 3M = 3 
months and 6M = 6 months. (B) shows AGNES clustering of the weighted UniFrac distances between samples. The samples are colour coded to match the 
PCoA plot. 

(A) 

(B) 
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The proportional abundances of assigned OTUs at the phylum level have been plotted (Fig. 

6.7). The majority of the samples contain a high abundance of Firmicutes and Bacteroidetes 

and the Actinobacteria are also abundant. The Proteobacteria are present but to a lesser 

extent. The ratio of Bacteroidetes to Firmicutes decreases as the storage time increases. This 

is further highlighted in a heatmap which clusters the most similar samples (Fig. 6.8). In the 

heatmap it is possible to see that 6 month (black) and the majority of 3 month (purple) 

samples cluster together. The reason for the clustering is due to the high number of OTUs in 

the Firmicutes phylum relative to the number of OTUs in the Bacteroidetes phylum. Cluster 

analysis through AGNES shows that the majority of samples after 6 months and 3 months of 

storage cluster together (Fig. 6.9). It is also possible to observe that the ratio of Firmicutes to 

Bacteroidetes in these samples is higher than in any of the other samples. 

In order to inspect this difference further OTU counts for the Bacteroidetes phylum were 

collected, exported and plotted (Fig. 6.10). The average OTU counts for the Bacteroidetes at 

Fresh, 24 h, 2 weeks, 3 months and 6 months were 141.33, 155.33, 121.75, 65.25 and 16.33 

respectively. The data were not normally distributed so a Log10 transformation was carried 

out. One – way ANOVA showed a highly significant difference between the mean of the 

Bacteroidetes counts [F (4, 38) = 14.504, p<0.001). Although after transformation the data 

were normal, there was no homogeneity of variance [Levene statistic (4, 38) = 4.588, 

p=0.004). Therefore, the Tamhane's T2 post-hoc test, which does not assume homogeneity 

of variance, was used. This post-hoc test showed that the average Bacteroidetes OTU counts 

for 6 months significantly differ from the counts obtained from Fresh, 24 h and 2 weeks 

storage at -20°C at the .05 significance level. There was no significant difference between 

Fresh, 24 h, 2 weeks and 3 months. Similarly there was no significant difference between the 

average Bacteroidetes OTU counts for 3 months and 6 months.  
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Figure 6.7| The effect of faecal material storage at -20°C on the bacterial community at the phylum level – proportional abundances of phyla are shown. 

Participant numbers are followed by the time stored at -20°C. F= fresh, 24H = 24 h, 2W = 2 weeks, 3M = 3 months and 6M = 6 months. Phyla are 

represented by colours and a key is shown. 
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Figure 6.8|Heatmap to show the effect of faecal material storage at -20°C on the bacterial 

community at the phylum level – the heatmap shows absolute numbers of OTUs for a given 

phylum, these are represented by colour. The time stored at -20°C is also represented by 

colour in a horizontal bar at the top of the heatmap. Colour keys are shown and similar 

samples are clustered together. 
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Figure 6.9|Cluster analysis to show the effect of storage at -20°C on the ratio of Firmicutes 

to Bacteroidetes – AGNES of OTUs at the phylum level was carried out. The inner circle 

shows the time stored at -20°C on a grayscale colour continuum. Blanks represent Fresh 

samples and the shade becomes darker to represent a longer period of storage with Black 

(the darkest) representing 6 months' storage. The proportional abundance of Firmicutes 

(blue) to Bacteroidetes (red) is also shown as a bar chart. 
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Figure 6.10|The effect of storage at -20°C on the number of Bacteroidetes OTUs – the 

absolute number of Bacteroidetes OTUs are shown for each storage time; 24H = 24 h, 2W = 

2 weeks, 3M = 3 months and 6M = 6 months. The error bars represent SD from the mean. 

***denotes a highly significant difference (p<0.001) between the given storage period and 

the 6 months storage period.  
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In order to determine whether a specific member of the Bacteroidetes phylum was affected 

by storage at -20°C or not, the dataset was analysed at the family level also. Box-plots of 

OTU abundance for the Bacteroidetes at the family level were therefore plotted (Fig 6.11 

and Fig. 6.12). The data were not normally distributed therefore, Kruskal – Wallis H tests 

were carried out. The ranked means were significantly different between the times stored at 

-20°C for Bacteroidaceae *χ2 (4) = 20.130, p < 0.001], Rikenellaceae *χ2 (4) = 10.393, p = 

0.034], and Porphyromonadaceae *χ2 (4) = 20.494, p < 0.001]. Post-hoc analysis through pair-

wise comparisons shows that the mean ranks of Bacteroidaceae, Rikenellaceae and 

Porphyromonadaceae families were significantly higher at Fresh, 24 h and 2 weeks than 3 

months and 6 months at the 0.05 level. There was no significant difference between the 3 

months and 6 months' time-point in any of families and furthermore there was no significant 

difference between the ranked means of the Prevotellaceae family following storage at -

20°C. 
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Figure 6.11| Box-plot showing the effect of storage at -20°C prior to DNA analysis on 

members of the Bacteroidetes phylum at the family level – the box-plots show the median, 

1st and 3rd quartiles for 3 families at different storage periods, these are represented by 

colour and a key is shown. Outliers are represented by black dots. *denotes a significant 

difference between the rank mean of that given storage period and the ranked mean after 6 

months of storage (p<0.05). 
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Figure 6.12| Box-plot showing the effect of storage at -20°C prior to DNA analysis on the 

Bacteroidaceae family of the Bacteroidetes phylum - the box-plots show the median, 1st 

and 3rd quartiles for the Bacteroidaceae family at different storage periods, these are 

represented by colour and a key is shown. Outliers are represented by black dots. *denotes 

a significant difference between the rank mean of that given storage period and the ranked 

mean after 6 months of storage (p<0.05). 
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6.4 Discussion 
The effect of storage upon the bacterial community of a faecal sample has been shown to be 

significant. Many researchers use faecal material as a proxy for the distal gut and the large 

intestine. It is therefore fundamentally important that this source of information represents 

the community truly. I have shown that the storage of this material at -20°C can affect the 

results.  

The inverse Simpson diversity indices show that there are no significant differences in the 

diversity of the samples after storage. There is also no significant difference in the diversity 

of samples based upon the individual. By plotting the normalised and non-normalised 

diversity indices it is possible to see that sub-sampling has not decreased the diversity. This 

is desirable as sub-sampling should still represent the initial community. Sub-sampling is also 

an essential step in order to negate sequencing generated biases. The effect of storage on 

the diversity of the faecal bacterial community has previously been researched. In 

agreement with my observations, the diversity of the community as a whole was not 

affected by storage conditions (Cardona et al. 2012). It has also been shown that faecal 

samples may be kept at room temperature for 72 h before storage at -80°C, with no 

significant change to the community as a whole (Roesch et al. 2009).  

The effect of storage at -20°C on the bacterial community of a sample becomes apparent 

when the β-diversity of the samples is analysed. nMDS analysis of Jaccard similarity 

coefficients generated from OTUs shows a moderate effect of storage on the community. 

This classical method was initially applied to describe the diversity of plants in the Alps 

(Jaccard 1912). Mothur utilises Jaccard's principle in order to describe the dissimilarity 

between communities (Schloss et al. 2009). This measure uses presence/absence of OTUs 

and does not take into account the abundance of a given OTU. This method shows moderate 

separate clustering of samples following 6 months of storage at -20°C. When the data are 

analysed through nMDS analysis of the Yue and Clayton θ similarity coefficients, a greater 

effect of storage is observed. Through this analysis it becomes apparent that samples cluster 

separately after 6 months of storage at -20°C. These samples show a degree of clustering 

with samples after 3 months of storage at -20°C. Similarity coefficients generated through 

the Yue and Clayton θ method (Schloss et al. 2009) take the abundance of a given OTU into 

account. Therefore, it is possible to surmise that the presence or absence of OTUs are not 

greatly affected by storage. However, the abundance of specific OTUs are affected by 

storage and furthermore, drive separate clustering of samples.  
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UniFrac distance analysis is a relatively new comparative method which has been applied to 

complex microbial communities (Lozupone and Knight 2005). The method determines the 

phylogenetic distance between samples or communities through the use of a phylogenetic 

tree. The unweighted version of the metric was applied in order to compare microbial 

communities from different types marine environments (Lozupone and Knight 2005). The 

unweighted metric does not take into account the abundance of a given OTU when 

comparing samples. Therefore, it is a useful technique in order to compare samples from 

different communities. The application of the unweighted form of this measure to my 

dataset shows that samples tend to cluster together based upon the individual and not time 

stored, with the exception of the 6M samples. This suggests that individuals have their own 

community of OTUs which drives this individual based clustering. With regards to the 

clustering of 6M samples, it appears that the storage of the faecal material negates inter-

individual differences in gut bacterial community and is probably due to the loss of 

Bacteroidetes OTUs. Samples from other time-points generally do not cluster together 

however, the 6M samples do cluster together. The weighted version of UniFrac does take 

into account the abundance of OTUs (Lozupone et al. 2007). When this measure is applied to 

the dataset inter-individual variation becomes less apparent. Samples from different 

individuals cluster with the same time-points from other individuals and different time-

points also. Once again, a large cluster of 6M samples can be observed with some 3M 

samples too. Therefore, I can conclude freezing does not greatly affect the 

presence/absence of OTUs up until 6 months as samples from individuals cluster together. 

However, freezing even for short periods seems to detrimentally affect the abundance of 

OTUs and through this decreases inter-individual variation. However, the abundances are 

not greatly affected until 6M of storage at -20°C. 
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Taxonomic assignment of OTUs at the phylum level show that the bacterial community of 

faecal samples resembles what has been previously shown (Ley et al. 2006a). In the fresh 

samples, the two major phyla are the Firmicutes and Bacteroidetes with Actinobacteria and 

Proteobacteria also present. In addition, the proportion of Bacteroidetes decreases as time 

stored at -20°C increases. This decrease in Bacteroidetes OTU abundance is responsible for 

the clustering observed in the nMDS plot of the Yue and Clayton θ similarity coefficients and 

in the PCoA and AGNES clustering of weighted UniFrac distances. Analysis, through the 

generation of a heatmap, shows that samples after storage for 3 months which cluster with 

samples after 6 months of storage do so due to a similar number of Firmicutes and 

Bacteroidetes OTUs. Analysis of the number of Bacteroidetes OTUs alone shows a highly 

significant reduction after 6 months of storage at -20°C. There was no significant difference 

between the 3 month storage period and 6 month storage period. This suggests that the 3 

month period is a transition point between Fresh, 24 h, 2 weeks and 6 months. Although 

there is a decrease in the numbers of Bacteroidetes OTUs, they do not completely disappear. 

This further explains why separate clustering was not observed through Jaccard similarity 

coefficient and unweighted UniFrac distance analysis. Bacteroidetes OTUs are still present 

and therefore these measures do not show separate clustering of samples from the 6 month 

storage period. The Yue and Clayton θ similarity coefficient and weighted UniFrac distances 

do take into account the abundance of OTUs. Therefore, separate clustering at 6 months is 

observed due to the reduction in the number of Bacteroidetes OTUs 
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My results suggest that storage does not affect the bacterial diversity of a faecal sample as a 

whole. However, storage at -20°C does affect the Bacteroidetes phylum, a major phylum in 

the human gut. Although a significant difference in Bacteroidetes OTU abundance was not 

observed until 6 months of storage, there was a marked reduction after 3 months of 

storage. Due to there being no significant difference between the Bacteroidetes OTU 

abundance at 3 months and 6 months, it is advisable not to store faecal samples at -20°C for 

longer than 2 weeks prior to DNA extraction. It has previously been shown that storage at -

20°C for 53 ± 5 days affects the ratio of Firmicutes to Bacteroidetes (Bahl et al. 2012). This 

period falls between the sampling points of 2 weeks to 3 months in my study where 

observable differences in the Bacteroidetes abundance become apparent. It is difficult to 

assign a reason for this decrease. It has been shown that the Bacteroidetes phylum is 

generally unaffected by freeze thawing in Arctic tundra soil (Männistö et al. 2009). It is 

therefore unlikely that freeze thawing of the faecal sample is directly causing a decrease in 

the Bacteroidetes. Members of this genus have been shown to degrade complex 

polysaccharides, including chitin (McBride et al. 2009). The commensal Bacteroidetes 

thetaiotaomicron has been shown to produce enzymes which degrade complex 

polysaccharides also (Xu et al. 2003). It has also been suggested that Porphyromonas 

gingivalis, a member of the Bacteroidetes phylum, lacks the protein secretion machinery 

which is common to other Gram negative bacteria (Sato et al. 2010). Many members of the 

Bacteroidetes genus contain the outer membrane protein porT. The researchers highlight 

that there are no orthologs of the porT gene in Bacteroides fragilis or B. thetaiotaomicron. 

However, the secretion machinery of Bacteroidetes may be affected by freezing and 

therefore export of the many carbohydrate degrading enzymes these bacteria produce 

cannot take place. My results show that the Bacteroidaceae and Porphyromonadaceae 

families decrease following storage at -20°C. Therefore, it could be possible that members of 

these families are degraded, due to their plethora of complex carbohydrate degrading 

enzymes. The subsequent DNA release may then be degraded from enzymes present within 

the faecal sample. 
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The effect of storage, combined with the already discussed variable results of DNA 

extraction on bacterial community community, gives the researcher much to consider. 

Indeed the effect of storage must be considered while designing experiments. It would 

appear that there is a finite window for the extraction of DNA to obtain a true 

representation of the faecal bacterial community. Roesch and colleagues have highlighted 

concerns that the faecal bacterial community needs to be a true representation of the distal 

gut (Roesch et al. 2009). It is especially important as much research focuses on the effect of 

our gut microbiota on the onset of diseases. New research suggests a link between our gut 

microbiota and the development of obesity. Researchers are especially interested in the 

proportion of Firmicutes to Bacteroidetes (Ley et al. 2006b; Turnbaugh et al. 2009). The 

results of Ley and colleagues’ work have not been emulated in another study (Fleissner et al. 

2010). My research shows that storage can affect the proportion of Firmicutes to 

Bacteroidetes. This raises questions as to how samples from the aforementioned studies 

were treated and stored. It may be prudent to ensure that observed differences in the ratio 

of Firmicutes to Bacteroidetes of already published work are true biological effects and not 

methodologically driven. 
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6.5 Conclusions 

The main conclusions for this chapter are as follows: 

1. freezing faecal material at -20°C gives rise to a significant reduction in the Bacteroidetes 

phylum; 

 

2. significant reductions in the Bacteroidetes phylum occurs between 2 weeks and 3 

months and it is therefore advisable not to store faecal material for longer than 2 weeks 

prior to DNA extraction.  
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7. GENERAL DISCUSSION, PERSPECTIVES AND FUTURE RESEARCH  

7.1 Conclusions 

The effect of long-term probiotic administration in healthy male individuals has been 

researched in the PROHEMI study, a pilot feeding study. Participants' distal gut bacterial 

composition, gut functions, genotoxicity and metabonomic profiles of their faecal waters 

have been researched through the use of a suite of techniques. In addition samples from 

Cardiff/Port Talbot and Sheffield have been compared against one and other. 

Recent research has hinted that the method of faecal material storage and subsequent DNA 

extraction can give rise to variable results. With regards to faecal material, it has been 

shown that storage can detrimentally impact upon the ratio of Bacteroidetes to Firmicutes, 

the two major phyla in the human gut. Therefore a 6 month study was undertaken in order 

to strengthen the body of knowledge in this area. 

The main conclusions of the studies now follow: 

7.1.1 Probiotic administration does not affect the distal gut bacterial community of 

healthy male individuals (Chapters 4 and 5) 

Through the community fingerprinting technique LHPCR it was shown that probiotic 

administration does not appear to affect the gross bacterial community of the distal gut in 

healthy individuals. Ordination techniques showed samples clustered together regardless of 

study period.  

NGS through Illumina-Solexa technology strengthened this finding. Sequencing of the 16S 

rRNA V4 region of PROHEMI faecal DNA showed no change attributable to probiotic 

administration. Ordination techniques once again did not show separate clustering of 

samples due to probiotic supplementation. In addition, phylum analysis showed no 

significant difference between study periods in terms of the abundance of detected phyla. 

Meta-analysis of the literature leads us to believe that modulation of human diet in turn will 

give rise to a change in the gut bacterial community of an individual {Walker, 2011 #813}. 

The efficacy of prebiotic feeding has also been carried out with phylum specific responses to 

given prebiotics shown {Gibson, 1999 #912}{Langlands, 2004 #913}. However, research into 

the effect of long-term probiotic supplementation upon the distal gut microbiota seems to 
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be lacking. Results from the PROHEMI study indicate that long-term probiotic 

supplementation does not affect the distal gut bacterial community of healthy individuals. 

 

7.1.2 Probiotic administration differentially affects functions provided by the 

commensal microbiota of healthy male individuals (Chapter 3) 

Probiotic administration appears to leave some functions provided by our distal gut 

microbiota unchanged while affecting others. Bacterial numbers expressing protease activity 

was reduced during probiotic supplementation in both study centres. The numbers of 

bacteria expressing β-glucuronidase activity in both Cardiff/Port Talbot samples and 

Sheffield samples increased during supplementation. β-galactosidase activity in Sheffield 

samples also increased during probiotic supplementation. Cholesterol degrading activity and 

esterase/lipase activity were low across all study periods and unaffected by probiotic 

supplementation.  

Many studies focus upon metagenomic strategies in order to interrogate the functions 

provided by our resident gut microbiota {Gill, 2006 #892}{Qin, 2010 #51}. However, my 

research utilised functional media and direct culture from faecal material. Through 

functional screening of the faecal microbiota differential responses in gut functions have 

been shown during probiotic treatment. This study gave rise to an agar screening method 

for protease activity which avoids false positives from β-galactosidase producing bacteria 

{Morris, 2012 #295}. Bacterial proteases have been implicated in the onset of intestinal 

inflammation {Steck, 2011 #839} and in the development of IBS and IBD {Steck, 2012 #836}. 

Probiotic supplementation may provide a means to decrease the expression of gut bacterial 

proteases and reduce intestinal inflammation. While there is a potential benefit in probiotic 

supplementation for the reduction of bacteria expressing protease activity, the increase in 

number of bacteria expressing β-glucuronidase activity is alarming. β-glucuronidases are 

responsible for the reversal of glucuronidation, uncoupling inactive toxic compounds so they 

become active once more. The results from this study suggest that further research needs to 

be carried out into the effect of probiotic supplementation on β-glucuronidase activity in the 

gut. These findings pose questions as to whether probiotic supplementation should be given 

to individuals receiving drug therapy as drug toxicity may be increased. 
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7.1.3 Probiotic administration does not affect the genotoxicity and metabonomic 

profiles of faecal waters of healthy male individuals (Chapters 3 and 5) 

 

Research into the effect of probiotic consumption on the reduction of carcinogen 

genotoxicity has previously been carried out. Meta-analysis by Burns and Rowland has 

shown that probiotic supplementation can reduce the genotoxic effect of carcinogens in vivo 

and in vitro {Burns, 2000 #916}. More recent research by Burns and Rowland has shown that 

the genotoxic potential of faecal water of a healthy individual was decreased in HT-29 cell 

comet assay {Burns, 2004 #151}. In this study, probiotic LAB bacteria were incubated with 

HT-29 cells directly prior to administration of faecal water. While this study showed the anti-

genotoxic potential of probiotic bacteria, their effects following passage through the human 

GIT needs to be researched. 

With this in mind, the aim was to determine whether long-term probiotic administration 

gives rise to anti-genotoxic effects. My research showed that the levels of genotoxicity 

across all study periods remained relatively uniform. Genotoxicity levels neither increased 

nor decreased upon induction of probiotic supplementation. The protocol followed for 

genotoxicity testing served as a pilot experiment. The results showed significant differences 

in the faecal water of individuals. It would therefore have been interesting to analyse 

PROHEIMI participants individually throughout the course of the pilot feeding study in order 

to determine whether there are responders and non-responders to probiotic treatment.  

Metabonomic analysis has been applied in order to screen faecal water for metabolites 

indicative of disease {Marchesi, 2007 #205}{Odunsi, 2005 #897}. The technique has also 

been applied in order to determine whether LAB modify the metabonomic profiles of an 

experimental colitis mouse model {Hong, 2010 #898}. I aimed to determine whether 

probiotic supplementation in healthy individuals affects their metabonomic profiles. 

Metabonomic analysis of PROHEMI participants' faecal waters showed no effect on the gross 

and SCFA metabonomic profiles following probiotic supplementation. Ordination techniques 

showed samples clustering together, irrespective of the study period.  
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7.1.4 There are differences in the distal gut bacterial community, functions and 

metabonomic profiles of individuals from the two study centres (Chapters 3, 4 and 

5) 

The PROHEMI study has given rise to an interesting observation as there appears to be 

differences between the two study centres in many respects. Community profiling, through 

LHPCR, showed a difference in the gross bacterial community of individuals. In addition, NGS 

through Illumina-Solexa technology also showed differences between the two study centres 

in terms of distal gut bacterial community. Metabonomic analysis also showed differences 

between the faecal waters of Cardiff/Port Talbot and Sheffield samples. The research has 

inadvertently given rise to results which suggest geographical differences in the gut bacterial 

community, functions and metabonomic profiles of individuals in the UK. Many studies focus 

upon continental differences in the gut bacterial community of individuals {Lin, 2013 

#900}{De Filippo, 2010 #767} and differences in the gut bacterial community and 

metabonomic profiles of single cohorts, such as the elderly {Claesson, 2011 #76}{Claesson, 

2012 #296}. To my knowledge there has been no seminal comparison between individuals 

from the UK, as researchers seem to focus upon a single study centre within the UK. Further 

research needs to be carried out in order to confirm this observation. However, my research 

hints that there are indeed geographical differences within the UK. The exact reason for this 

observation remains unclear. However, lifestyle and diet may play a pivotal role in the 

observed difference. As previously discussed, modifying the diet of over-weight men exerted 

differences upon the abundance of member of the Firmicutes {Walker, 2011 #813}. Another 

reason for the observed difference may the water drank by individuals on the PROHEMI 

study. There appears to be no published research into the effect of different water supplies 

upon the distal gut bacterial community of individuals. However, water in Wales in supplied 

by Dŵr Cymru while water in Sheffield is supplied by Yorkshire Water and this may give rise 

to the observed differences. 
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7.1.5 Freezing faecal material prior to DNA extraction detrimentally affects its 

bacterial composition 

There is a growing body of evidence that leads us to believe that the freezing of faecal 

material at -20°C affects its bacterial composition. Bahl and colleagues highlighted that the 

ratio of Bacteroidetes to Firmicutes is affected by storage at -20°C {Bahl, 2012 #358}. In my 6 

month study I aimed to determine if this observation was true and if so how long could a 

sample be stored before this ratio was affected. The results show that between 2 weeks and 

3 months, the Bacteroidetes become severely depleted in the faecal samples. From this 

observation it is recommended to carry out DNA extractions immediately from fresh 

samples. If samples need to be stored, they should not be stored longer than 2 weeks at -

20°C. Freezing samples also adds further complications as it has been shown that thawing of 

faecal samples can also affect its bacterial composition {Cardona, 2012 #422}. In order to 

avoid detrimentally affecting the bacterial composition of faecal material researchers may 

opt to freeze samples at -80°C. However, these freezers may not be available to those in 

other countries where sampling is taking place. These results have implications for those 

who aim to complete sampling prior to DNA extraction. Indeed, the effect of storage upon 

the bacterial community of a faecal sample may have implications already published studies. 

There is a growing body of evidence implicating the ratio of Bacteroidetes to Firmicutes in 

disorders such as obesity {Ley, 2005 #202}. However, questions need to be asked as to the 

method of storage of this faecal material. Are these observations truly biological or merely 

an artefact of the sampling methodology followed? Searching the NCBI PubMed database 

(http://www.ncbi.nlm.nih.gov/pubmed) with the following search terms “(((bacterial) AND 

faecal) AND DNA) AND extraction” gave 106 publications over the past decade. This stands 

to highlight the importance of bacterial DNA extraction in the field of biology. Researchers 

need to be aware of the effect of storage upon the bacterial community of faecal material. 

Inferred distal gut bacterial community community in humans, and animals also, can be 

affected by something as fundamental as the storage of this source of information. 

http://www.ncbi.nlm.nih.gov/pubmed
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7.2 Knowledge exchange from my research to Cultech (industrial partner) 

Funding for the PROHEMI study came from an EU initiative, KESS, with funding from the ESF. 

This scholarship aims to develop links between SMEs, from convergence areas in Wales, and 

higher education institutions. PhD or Masters students have the opportunity to work with a 

company in their research area and to see how research is translated into viable product or 

services. The company receives research to bolster their products or services and have the 

opportunity to acquire research techniques and skills applicable for future research projects. 

7.2.1 Community profiling of faecal DNA through LHPCR 

The successful application of LHPCR in the PROHEMI study resulted in the adoption of the 

technique by Cultech. This method has been applied to screen faecal DNA obtained from 

babies following probiotic administration. Following this technique, samples of interest were 

subjected to NGS.  

7.2.2 Functional media for faecal material and pure bacterial cultures screening 

During the course of the PROHEMI study agar plates designed to screen for functions of 

interest were developed. One week was spent at the company in order to show how these 

plates were made. Subsequently, these plates have been used to screen other probiotic 

organisms the company has interest in and may be used for future research projects.  

7.2.3 Multivariate statistical methods 

The majority of statistical analysis carried out at Cultech was not multivariate. This was 

probably due to their previous preference and expertise in culture dependent methods, 

which rarely need multivariate analysis. However, as the company began to use more 

culture independent techniques, such as LHPCR and NGS, multivariate data analysis was 

needed. Using R statistical software {R-Core-Team, 2012 #210} custom scripts were 

developed in conjunction with Cultech in order to address their needs. Furthermore, time 

was spent showing how to use R, relevant packages and which techniques should be used in 

order to analyse their data. 
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7.2.4 Research into the effect of Cultech’s probiotic supplement in healthy 

individuals 

The project did not show many effects the company’s probiotic supplement in healthy 

individuals. However, the research gives Cultech an advantage as their scientific portfolio 

has been bolstered by a long-term pilot feeding study. Regardless of the outcome, there is a 

benefit to the company from this research. The pilot study can give Cultech data to work 

with in order to calculate power and sample sizes for future feeding studies in healthy 

males. In addition, the EFSA has applied pressure upon producers of probiotics in recent 

years. Through its Nutrition and Health Claims Regulation (Regulation (EC) No 1924/2006) 

the EFSA aims to protect consumers from products with false health benefit claims or claims 

which simply do not have scientific evidence. It is therefore imperative for companies such 

as Cultech to carry out research into their products in order to ensure that they may sell 

without legislation impacting upon their sales. 
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7.3 General discussion 

7.3.1 The value of the PROHEMI dataset  

Many studies focus on the dysbiosis of the human gut microbiota in infirm and the effects 

from such imbalances. However, this pilot study has provided a useful data source on many 

parameters associated with healthy humans. Probiotic intervention aside, the PROHEMI 

study dataset has provided a wealth of information on healthy human males, by following 

them for a year. The baseline period served to provide information on the characteristics of 

the human gut and was continued throughout the intervention and washout periods. The 

application of other culture independent techniques, such as functional metagenomics, to 

this dataset could shed light onto functions expressed within the healthy human gut. 

Extracted DNA and faecal waters from the PROHEMI study can be stored for use with such 

techniques in the future. 

7.3.2 Probiotic supplementation in healthy individuals 

Probiotic intervention does not appear to impact upon the bacterial community of the distal 

gut in healthy human males. It therefore stands to reason that this community is relatively 

stable and resistant to modulation through probiotic feeding. During the intervention 

period, a reduction in protease expression in cultured bacteria was observed. Therefore, it is 

possible to surmise the probiotic organisms used in the PROHEMI study can modulate 

functions within the human gut without modifying the gross bacterial community. This 

seems advantageous as any detrimental effects exerted by the probiotic may be reversed 

upon cessation of its consumption.  

Metabonomic profiles of PROHEMI participants were also unaffected by probiotic 

supplementation. Recent research has shown that probiotic supplementation with the 

VSL#3 preparation in diet-induced obese mice increased butyrate production {Yadav, 2013 

#919}. This study shows probiotics have the potential to modulate gut metabolites. 

However, this study utilised a murine model which with an induced condition. Metabonomic 

analysis of samples from the PROHEMI showed no effect on gross metabonomic profiles or 

the profiles of SCFAs. It may be possible that in a similar fashion to gut bacterial modulation, 

probiotics do not exert effects in healthy hosts with an established gut microbiota.  
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7.3.3 Geographical differences in the gut microbiota, gut functions and 

metabonomic profiles of faecal waters 

The PROHEMI study has given rise to an interesting observation; there appears to be a 

geographical difference in the gross bacterial community of individuals in the UK. 

Furthermore, there is also a difference in gut functions and the metabonomic profiles of 

PROHEMI participants from the two study centres. The differences observed suggest that 

this is a real biological phenomenon and not an artefact of lab differences in sample 

preparation. To my knowledge, there has not been a comparison of this kind between 

healthy individuals in the UK. Most research seems to focus on a single study centre; this is 

more than likely in effort to overcome study centre differences in results. However, a 

fundamental difference in the gut bacterial community, functions and metabonomic profiles 

has been overlooked. The concept of personalised medicine aims to provide personalised 

healthcare for a given individual based upon the genes that that person expresses. The 

importance of the gut microbiome in this field is becoming increasingly understood. 

Expression of bacterial enzymes and the metabolism of compounds by commensal gut 

bacteria may play a role in drug therapy. Differences in the gut bacterial community of 

individuals will differentially affect the metabolism of compounds in the gut. It therefore 

follows that individuals from Cardiff/Port Talbot and Sheffield could require completely 

different personalised healthcare programmes due to their difference in gut bacterial 

community. 
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7.3.5 The effect of freezing faecal material prior to DNA extraction 

The observed loss of Bacteroidetes following the freezing of faecal samples at -20°C is of 

concern. This phylum is one of the most abundant in the human gut. However, my research 

has shown that storage of faecal material for 6 months at -20°C significantly decreases the 

abundance of this phylum. If researchers stored faecal samples at -20°C for this length of 

time or greater, the sample would no longer be a true representation of the distal gut 

community. The difference in the ratio of Bacteroidetes to Firmicutes was highlighted in my 

community fingerprint study; where Sheffield samples stored at -20°C for some time no 

longer resembled their initial LHPCR profiles (Fig. 3.17). The observation is of particular 

concern to those who have previously published data on the ratio of Bacteroidetes to 

Firmicutes. Researchers may not have been aware of the effect of storage upon the faecal 

microbial community. Samples may have been stored for some time prior to DNA extraction 

and analysis. If so observed differences in the ratio of Bacteroidetes to Firmicutes may not be 

a true biological difference but instead methodologically driven. Research into the effect of 

storage and its effects needs to be carried out as the use of faecal material as a proxy for the 

distal gut bacterial community is widespread. Storage method and DNA extraction method 

needs to be seriously considered by researchers in order to avoid masking true biological 

differences in the distal gut communities of samples.  
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7.4 Future research directions 

7.4.1 qPCR of specific bacterial groups 

While NGS and community profiling showed no difference in the gross bacterial community 

of individuals following probiotic supplementation, qPCR would strengthen this finding. It 

would also be advantageous to use this technique in order to strengthen the finding of 

differences in the ratio of Bacteroidetes to Firmicutes between Cardiff/Port Talbot and 

Sheffield samples. 

7.4.2 Further metabonomic analysis of the PROHEMI samples 

Further analysis into the metabonomic profiles of PROHEMI samples needs to be carried out. 

More sophisticated methods may give rise to differences between samples from the study 

periods. Furthermore, with regards to the observed differences in the metabonomic profiles 

of the two study centres, it may be possible to determine which metabolites are driving the 

separate clustering. My analysis looked a short chain fatty acids, it would be useful to 

include branched chain fatty acids and other metabolites also in future analyses. 

7.4.3 Genotoxicity testing of a greater number of PROHEMI sample faecal waters 

Analysis of more PROHEMI samples would allow independent study centre analysis of the 

effect of probiotic consumption on the genotoxicity of faecal water. Due to costs for 

commercial kits, I was not able to carry this out. Furthermore, inquiring into the diet of 

individuals would be useful as individual differences may be attributable to the diets of 

these individuals. 

7.3.4 Further research into geographical differences in gut bacterial community 

and metabonomic profiles of healthy individuals in the UK 

Studies which research differences in the gut bacterial community of individuals seem to 

compare individuals from disparate locations. Following my research, it would be of value to 

strengthen the notion that there are differences in the gut bacterial community and 

metabonomic profiles of individuals from locations across the UK. Further research would 

also shed light onto the reason behind this observed difference. 
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9. APPENDICES 

Appendix I – Fragment sizes of 16S rRNA sequences obtained from the RDP 

(http://rdp.cme.msu.edu/) following an in silico LHPCR experiment 

 

Generated fragment sizes for an in silico LHPCR experiment are available at: 

https://drive.google.com/file/d/0ByapqDVxrBNqWHFHUmZwbFpTazA/edit?usp=sharing 

 

 

Appendix II – Example R scripts used during the PROHEMI study 

 

Example R scripts are available at: 

https://drive.google.com/file/d/0ByapqDVxrBNqNm1GeWdJR1c5MEU/edit?usp=sharing 

Lines with # symbols have been commented out and do not serve any function in R 

statistical software {R-Core-Team, 2012 #210}. 

 

 

Appendix III – Stability file for Illumina MiSeq contig assembly from 2 paired 

end reads 

 

The stability file utilised by Mothur in the 1st step in MiSeq data analysis is available at: 

https://drive.google.com/file/d/0ByapqDVxrBNqLTNITU9wOHR5LTA/edit?usp=sharing 

 

http://rdp.cme.msu.edu/
https://drive.google.com/file/d/0ByapqDVxrBNqWHFHUmZwbFpTazA/edit?usp=sharing
https://drive.google.com/file/d/0ByapqDVxrBNqNm1GeWdJR1c5MEU/edit?usp=sharing
https://drive.google.com/file/d/0ByapqDVxrBNqLTNITU9wOHR5LTA/edit?usp=sharing
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Appendix IV – Mothur batch files used in Mothur analysis of the MiSeq 

dataset 

 

Mothur has the ability to run in batch mode where commands may be stored in a file and 

ran sequentially. Lines with # symbols are comments and are not executed by Mothur. 

Example batch files used for the analysis of the PROHEMI MiSeq dataset are available at: 

https://drive.google.com/file/d/0ByapqDVxrBNqbXk2TjNhU0t0ZUE/edit?usp=sharing  

 

 

Appendix V – Sequence counts for PROHEMI samples subjected to Illumina 

MiSeq NGS 

 

The number of sequences obtained from Illumina MiSeq NGS for given sample is available 

at: 

https://drive.google.com/file/d/0ByapqDVxrBNqQUd5Y2lxY1NrQk0/edit?usp=sharing 

 

 

Appendix VI – Mothur batch files used in 454 analysis of DNA obtained from 

frozen faecal material 

 

Mothur has the ability to run in batch mode where commands may be stored in a file and 

ran sequentially. Lines with # symbols are comments and are not executed by Mothur. 

Example batch files used for the analysis of the 454 dataset obtained from faecal DNA frozen 

at -20°C for up to 6 months are available at: 

https://drive.google.com/file/d/0ByapqDVxrBNqTWJ4NjF5ekh1OHc/edit?usp=sharing 

https://drive.google.com/file/d/0ByapqDVxrBNqbXk2TjNhU0t0ZUE/edit?usp=sharing
https://drive.google.com/file/d/0ByapqDVxrBNqQUd5Y2lxY1NrQk0/edit?usp=sharing
https://drive.google.com/file/d/0ByapqDVxrBNqTWJ4NjF5ekh1OHc/edit?usp=sharing
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Appendix VII – Publications during my PhD studies: 

 

Morris, L. S., Evans, J. and Marchesi, J. R. (2012). A robust plate assay for detection of 

extracellular microbial protease activity in metagenomic screens and pure cultures. Journal 

of Microbiological Methods 91:144-146. 

 

Evans, J. M., Morris, L. S. and Marchesi, J. R (2013). The gut microbiome: The role of a 

virtual organ in the endocrinology of the host. Journal of Endocrinology 
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A robust, efficient and cost-effective agar that utilises lactose free milk powder for identification of bacterial
protease activity in pure cultures and metagenomic screens has been developed and tested on protease
positive bacteria, selected strains and false protease positives isolated from a previously constructed
metagenomic library.

© 2012 Elsevier B.V. All rights reserved.
The deficiency of current culture techniques to isolate most micro-
organisms from some environments has led to the emergence and
progression of functional metagenomics as a means for unearthing
the vast and relatively untapped biological resources of the microbial
world. Its ability to do so has been demonstrated with the discovery
of novel and biotechnologically useful molecules (Uchiyama and
Miyazaki, 2009) (Schloss and Handelsman, 2003) and clinically rele-
vant antibiotic resistance genes (Allen et al.).

One function of interest here is microbial proteases as these are an
important target for metagenomic screening due to their extensive
possibility for use in industry (Rao et al., 1998) and also because of
their role as virulence factors (Lantz, 1997; Maeda and Molla, 1989;
Miyoshi and Shinoda, 2000). However there is a current deficit in
metagenomic screens successfully isolating these enzymes. While
there are a number of reasons for this scarcity, one problem that we
aim to resolve with this research is the current issue of false positives
arising from the use of skimmed milk agar as a standard means for
screening metagenomic libraries for proteolytic activity. Previous re-
search by Jones et al. (Jones et al., 2007) found that an initial 231
metagenomic clones deemed positive for protease activity by the for-
mation of distinctive halos of clearing around colonies on standard
skimmed milk agar (SSMA) were in fact, glycoside hydrolases which
produced acetic acid from lactose fermentation and the pH drop
was responsible for the phenotype, not protease activity. The demon-
strated ineffectiveness of this agar has lead us to question the validity
of putative proteases detected using this method, for example Pailin
et al. (2001) used SSMA to identify extracellular protease activity in
: +44 29 20874305.
esi).

rights reserved.
strains of the lactic acid bacteria; Streptococcus thermophilus and
Lactobacillus bulgaricus.

Therefore it can be concluded that while SSMA could be appropri-
ate for identifying lactose utilisation and the presence of galactosi-
dases, it is not a sufficiently robust screening technique for protease
activity and an alternative needs to be developed in order to save
time and money. Here, we have developed a simple and easy way
to prepare media which utilises lactose-free and fat-free skimmed
milk powder as the substrate for detecting protease activity and al-
lows discrimination against acid production since lactose hydrolysis
is no longer an issue.

Bacillus subtilisMY2016 was used as a positive control for protease
activity on all types of agar used in this study since it is known to
secrete a number of extracellular proteases. Theses cultures were rou-
tinely grown on all agar at 30 °C. Strains of Streptococcus thermophilus
2483 and Lactobacillus bulgaricus 859 were obtained from the culture
collection of University College cork, Department of Microbiology.
Cultures were revived on MRS agar (Thermo Scientific, Oxoid) and in-
cubated at 37 °C in an anaerobic chamber (Merck, Darmstadt, Germany)
and examined after 48 hour incubation.

False protease positive glycoside hydrolase metagenomic clones were
obtained from a previous metagenomic library (Jones et al., 2007) and
were routinely revived from freezer stock on LB (Luria-bertani) agar
supplemented with 12.5 μg/ml chloramphenicol. All cultures were rou-
tinely re-streaked every one–two days for the duration of this research.

SSMAwas prepared as follows: 10% semi-skimmedmilk solutionwas
prepared in deionised water and autoclaved at 121 °C for 15 min. 1.5%
(w/v) purified agar (Thermo Scientific) was also prepared in deionised
water and autoclaved at 121 °C for 15 min. Upon sterilisation, both
were kept at 55 °C in a water bath then the semi-skimmed milk solution

http://dx.doi.org/10.1016/j.mimet.2012.08.006
mailto:MarchesiJR@cardiff.ac.uk
http://dx.doi.org/10.1016/j.mimet.2012.08.006
http://www.sciencedirect.com/science/journal/01677012


Fig. 1. Plate assays for protease activity. From top left; B. subtilis MY2016 clearing LF-SMA and a negative control, top middle; S. thermophilus 859 and L. bulgaricus2483 failing to
clear LF-SMA, top right; a glycoside hydrolase positive metagenomic clone failing to clear LF-SMA, bottom left; two glycoside hydrolase positive metagenomic clones clearing SMA,
bottom middle; S. thermophilus 859 clearing SMA, bottom right; L. bulgaricus 2483 beginning to clear SMA. Cultures were incubated according to their appropriate conditions on all
types of agar. Cultures were re-streaked every one to two days for the duration of this research to ensure the initial phenotype observed was replicable.
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Fig. 2. Protease activity as measured by the release of acid-soluble substance from
azocasein (5 mg/ml) in HCl buffered Tris to a pH of 8.0 incubated at 37 °C for 4 h. Re-
sults are shown as the mean value of the results that were in triplicate and are shown
as a relative percentage of total protease activity. 1 = B. subtilis MY2016, 2 = Glyco-
side hydrolase clone, 3 = glycoside hydrolase clone.
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was added to the agar to give a final volume of 1% (w/v) semi-skimmed
milk.

Lactose-free semi-skimmed milk powder was obtained from Valio
(suomikauppa.fi) and agar was prepared in the same manner as
described above to give a final concentration of 1% (w/v). After inocula-
tion, cultures were incubated according to their appropriate conditions.
Cultures were re-streaked every one to two days for the duration of this
research to ensure the initial phenotype observed was replicable.

In order to prepare crude cell free extracts (CCFE) for protease as-
says, cells were grown overnight in appropriate media supplemented
with the appropriate antibiotic. An aliquot (1%) of this starting cul-
ture was used to inoculate 50 ml of fresh media and grown to an
optical density of 0.5 (600 nm). After this point cultures were left to
grow for a further 3 h. Cells were harvested by centrifugation at
4000 rpm for 10 min. The pellet was re-suspended in 2 ml of Phos-
phate buffered saline (PBS) and each sample was bead beaten
(0.1 mm diameter glass beads, 0.5 g) for 30 s and repeated a further
2 times with cooling on ice for 5 min between each beating. Samples
were centrifuged at 20,000×g for 10 min and the resulting superna-
tant was taken as the cell free extract. An aliquot of the CCFE
(100 μl) was added to 100 μl azocasein (5 mg/ml in 50 mM Tris–
HCl) protease substrate and the mixture was incubated at 37 °C for
4 h, the reaction was terminated by the addition of 400 μl of 10%
(w/v) trichloroacetic acid (TCA). Protein was precipitated by centrifuga-
tion at 12,000×g for 5 min and the resulting supernatant was trans-
ferred to a clean tube containing 700 μl of a 525 mM NaOH solution.
The absorbance of the liberated azo-dye was measured using a spectro-
photometer at 442 nm. Each reaction was carried out in triplicate.

It was found that the putative protease deficient strains used were
capable of degrading skimmed milk agar but not lactose-free milk
agar. Similarly the metagenomic clones had a corresponding outcome
whereas for the bacterial strains known to be proteolytically active; a
positive phenotype was observed on both types of media (Fig. 1). To
affirm this, cultures were further subject to azocasein assay (Fig. 2)
where B. subtilis was shown to degrade the azocasein substrate
and glycoside hydrolase metagenomic clones showed less than 20%
activity.

From our study, Valio™ lactose-free milk agar was found to be an
effective and robust agar for correctly identifying proteases by way of
distinct zones of clearing around a bacterial colony. From the screens
undertaken in this study no false positives arose with the use of this
type of agar. We would suggest that this agar would be much more
appropriate for future screening of metagenomic libraries for prote-
ase activity. The robustness of this agar will allow for more efficient
characterisation of enzyme activity which can then lead to identifica-
tion of clinically or industrially relevant proteases.

image of Fig.�2
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Abstract
The human microbiome contains a vast array of microbes and genes that show greater

complexity than the host’s own karyome; the functions of many of these microbes are

beneficial and show co-evolution with the host, while others are detrimental. The

microbiota that colonises the gut is now being considered as a virtual organ or emergent

system, with properties that need to be integrated into host biology and physiology. Unlike

other organs, the functions that the gut microbiota plays in the host are as yet not fully

understood and can be quite easily disrupted by antibiotics, diet or surgery. In this review, we

look at some of the best-characterised functions that only the gut microbiota plays and how

it interacts with the host’s endocrine system and we try to make it clear that the 21st-century

biology cannot afford to ignore this facet of biology, if it wants to fully understand what

makes us human.
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Introduction
In the many years of studying the human body, it has

become accepted that all the organs are known and well

characterised in terms of their main functions. The whole

discipline of anatomy has been focused on documenting

the fine structure of these organs, while physiology and

biochemistry have been determining their functions and

specific chemical reactions. In the last 10years, a significant

revolution has been progressing, which started with the

notion that for the best part of a hundred years we have

been trying to describe how mammals function while

ignoring one of themain organs in the body. However, this

organ is not found or described in any conventional

textbook and there are no clinical experts who can

understand its functions and the pathologies that arise

when it becomes diseased. This dearth of information is

because this organ does not conform to the current
definition of being an organ, i.e. ‘a fully differentiated

and functional unit’, and should probably best be thought

of as a virtual organ (O’Hara & Shanahan 2006) since it is

composedofmicrobes andall its functions arederived from

these parts. In fact, it most probably should be considered

as a system in the samewaywe look at our immune system,

which is made of different cells, each having its own set of

functions and roles. This paradigm shift is still undergoing

some refinement, but it does beg the question ‘what would

biologists do if they were suddenly presented with a whole

new organ/system?’ Furthermore, why should we even

think of it as an organ or system? To answer the last

question first, we see this as a virtual organ/system due to

the genetic and metabolic diversity that resides within it.

Microbiologists have coined a phrase for this system,

the microbiome, which is defined as the ‘the genetic

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0131
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material (DNA) within a microbial community’; this can

also be referred to as the metagenome of the microbiota.

The largest contributors to the humanmicrobiome are the

bacteria present in the intestinal tract, which have been

estimated to be in the range of 100 trillion cells, ten times

more cells than there are human cells in the host’s body.

In terms of the total non-redundant genetic load found in

the human gut microbiome, it is 150 times larger than the

host’s karyome ((Qin et al. 2010), which is between 20 000

and 26 000 genes (Pennisi 2003, Collins et al. 2004)), and

each individual has w540 000 bacterial genes in the gut

(21–27!the human karyome). While the karyome is

generally regarded as fixed with respect to the gene

catalogue, and at this stage ignoring any epigenetic

mechanisms, the gut microbiome is far more random

and each individual will contain a unique collection of

microbes that are easily altered (see below). Humans are

born either sterile or colonised with a very basic

microbiome, and analysis of the meconium has shown

that any microbes that are present are not necessarily

those that ultimately colonise the adult gut (Koenig et al.

2011). The microbiome that is obtained is partly inherited

from the mother and partly from the exposure to the

environment in the first 2 years of life. Hence, there is a

degree of determinism (both by exposure to the mother

and due to genetic selection (Tims et al. 2013)) and also a

significant proportion of random colonisation. However,

it is striking that after 2 years of age, all adults’ colons

will be predominantly colonised with members of two

phyla, namely Bacteroidetes: Gram-negative, anaerobic,

non-spore-forming bacteria, which are enriched with

carbohydrate-degrading enzymes, and Firmicutes: Gram-

positive, formerly called ‘the low-GC bacteria’, anaerobic,

spore-forming bacteria, which ferment simple sugars to

produce a variety of short-chain fatty acids (SCFAs), such

as butyrate, acetate and propionate (Fischbach &

Sonnenburg 2011). Between them, these phyla can

constitute over 90% of the bacteria present in the large

intestinal lumen (Turnbaugh et al. 2009, Qin et al. 2010,

Claesson et al. 2011, HMPC et al. 2012) and mucosa

(Eckburg et al. 2005, Chen et al. 2012, Harrell et al. 2012),

and the proportion of each phylum in the colon ranges

from being nearly 90% Firmicutes, at one end of the

continuum, to 90% Bacteroidetes, at the other end. What

dictates this distribution is unclear, and the consequences

for the host are also unclear. Furthermore, our view of the

intestinal environment is skewed towards the large

intestine and is predominantly focused on faecal material,

and even then we are very bacteria centric (Marchesi

2010). Bearing this biased view of the intestinal
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0131 Printed in Great Britain
environment in mind, we have begun to determine what

functions this collection of organisms plays in the host.
A virtual organ/system with functions
of importance to the host

In the last 10 years, it has become increasingly apparent

that the gut microbiota plays a significant role in host

biology. We have a substantial body of evidence that these

functions can be beneficial or detrimental to the host, and

if they were assets, we would wish to maximise the former

and somehow offset the latter. A significant portion of the

evidence that supports a role for the gutmicrobiota in host

development and function comes from studying sterile

animals, especially rodents (Fig. 1). A recent comprehen-

sive review of the use of such animals has shown how

widespread the impact of not having a gut microbiota is

(Smith et al. 2007). Some of the best studied of these

bacterial functions include providing the host with energy

in the form of SCFAs such as butyrate (Louis & Flint 2009)

and propionate (Macfarlane & Macfarlane 2011), bile salt

metabolism (Jones et al. 2008, Swann et al. 2011) and role

in the brain–gut axis (Collins et al. 2012). Many ecological

analyses of the colonic microbiota have shown that while

it is relatively stable (Scanlan et al. 2006, Jalanka-Tuovinen

et al. 2011, Kolmeder et al. 2012), it can be significantly

perturbed by antibiotics (Dethlefsen et al. 2008, Jernberg

et al. 2010), diet (Claesson et al. 2012, Ravussin et al. 2012)

and surgery (Zhang et al. 2009, Li et al. 2011). Unlike a

conventional organ, the functions of this virtual organ can

be significantly altered or removed due to these environ-

mental factors, which can result in disease in the host, e.g.

Clostridium difficile-associated diarrhoea (Kachrimanidou

&Malisiovas 2011), or a significant alteration of the host’s

metabolite profile (Yap et al. 2008), the significance of

which still remains unclear. The variability in the gut

microbiome and its functions are important in two

respects: the functions that one inherits and acquires are

driven mainly by a random process and once established

they can be perturbed by interventions.
Bile metabolism and gut bacteria

Bile acids/salts are cholesterol-derived host metabolites

that play a role in several host processes (Fig. 2). Their

principal functions are to aid in fat adsorption and prevent

small intestinal bacterial overgrowth. Both these functions

can be explained by the fact that bile acids are surfactants

(not detergents), with a hydrophilic taurine or glycine

group covalently bound to a hydrophobic steroid
Published by Bioscientifica Ltd.
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Schematic representation of areas of the rodent system that are significantly

impacted by the absence of a normal microbiome; all the changes are those

that are measured/observed in the sterile animal (adapted from Smith K,

McCoy KD & Macpherson AJ 2007 Use of axenic animals in studying the
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(predominantly a C24 structure (Russell 2003))-derived

moiety that is wholly derived from cholesterol. This

surfactant nature allows them to associate with fat

molecules to formmicelles, which are ultimately absorbed

by the host, thus facilitating fat metabolism. Additionally,

being a surfactant allows them to be antimicrobial also, as

they can disrupt the plasma membrane of the bacteria,

causing them to lyse and die; thus in a niche where food is

plentiful, bile helps to prevent the bacteria in the small

intestine from overgrowing and becoming a health issue.

A secondary role for bile involves regulating the host’s

cholesterol levels, on a typical day,w0.5 g of this steroid is

used to synthesise bile acids in hepatocytes and accounts

for 90% of the cholesterol usage (Russell 2003). Once the

hormonal signal has been sent to the gall bladder, the bile

acids are excreted into the small intestine, where they

interact with the dietary lipids and fat-soluble vitamins.

These complexes are eventually reabsorbed in the terminal

ileum; this process is part of the enterohepatic circulation

that ensures that 95% of the bile acids are recovered from

the gut. The remaining 5% that escapes this pathway
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0131 Printed in Great Britain
enters the large intestine, where it becomes available for

metabolism by bacteria. Interestingly, the gut bacteria

have evolved several enzymes capable of modifying the

primary bile acids such as the taurine- and glycine-

conjugated cholic and chenodeoxycholic acids and

removing the taurine and glycine parts of the molecules

to produce secondary bile salts, such as cholic, lithocholic

and deoxycholic acids. While some of these secondary bile

acids are excreted in the faeces, a significant proportion

are passively absorbed and returned to the liver. These

secondary bile acids then enter the enterohepatic circula-

tion and the general bile metabolite pool. The bacterial

enzymes responsible for the deconjugation of either

taurine or glycine are collectively known as bile salt

hydrolases (BSHs), choloylglycine hydrolases or bile acid

hydrolases (EC 3.5.1.24) and catalyse the hydrolytic

removal of taurine or glycine from the corresponding

primary bile acids. However, as with many gut functions,

the diversity and abundance of BSHs are highly variable as

are their substrate ranges (Jones et al. 2008). Additionally,

studies on germ-free rodents (i.e. sterile or gnotobiotic)
Published by Bioscientifica Ltd.
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have shown that the bile pool is significantly and

dramatically altered in other non-liver or non-gut

compartments too, e.g. heart tissue (Fig. 3), which begs

the question of the significance of having a specific BSH

profile in the gut and the host’s own physiology. Bile

acids interact at an endocrinological level via three

major signalling mechanisms, as ligands for the
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0131 Printed in Great Britain
G-protein-coupled receptor TGR5, activators of the MAPK

pathways and activators of the nuclear hormone receptors

such as farnesoid X receptor a (FXRa; NR1H4). While the

primary bile acids are of significant interest as they have

been shown to regulate lipid, energy and glucose

metabolism, the secondary bile acids can also interact

with these receptors. However, the availability of the
Published by Bioscientifica Ltd.
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Figure 3

Differences in the bile profiles of sterile and normally colonised rats. (A) If

the bar is above the origin (set at 0), the bile salt is enriched in the sterile

animal when compared with the conventional animal and vice versa.

(B) Changes in bile metabolites when rats are treated with the antibiotics

streptomycin and penicillin. (Values are means of the scaled dataGS.E.M.

Statistical significance was determined using Student’s t-test. *P!0.05;

**P!0.01; ***P!0.001 (modified from Swann JR, Want EJ, Geier FM,

Spagou K, Wilson ID, Sidaway JE, Nicholson JK & Holmes E 2011 Systemic

gut microbial modulation of bile acid metabolism in host tissue

compartments. PNAS 108(Suppl 1) 4523–4530. (doi:10.1073/pnas.

1006734107)). Unconjugated bile acids are those that are produced by

bacterial metabolism of the host conjugated acids.
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secondary bile acids is not as tightly controlled since it is

driven by the variable and dynamic diversity and

expression of BSHs in the gut. Hence, the gut microbiota

can be thought of as another environmental factor

controlling an up-and-coming endocrine factor that is

not stable and influenced by diet and medications.
SCFAs and the endocrine system

One of the most fundamental contributions that the gut

microbiota makes to host function is the provision of

SCFAs. These relatively simple molecules, predominantly

butyrate, acetate and propionate, are all produced when

certain classes of bacteria ferment a variety of carbon

sources anaerobically. Although SCFAs are the end

products of metabolism for some bacteria, they are a

significant source of energy for the host. Both termites
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0131 Printed in Great Britain
(Warnecke et al. 2007) and ruminants (Brulc et al. 2009)

have evolved a mutualistic relationship with the organ-

isms that synthesise SCFAs, and it seems that humans

too have co-evolved with these bacterial functions. The

G-protein-coupled receptors free fatty acid receptor 2

(FFAR2, GPR43) and FFAR3 (GPR41) are the two endogen-

ous receptors that have been identified to interact with

SCFAs (Brown et al. 2003, Le Poul et al. 2003, Nilsson et al.

2003). FFAR2 and FFAR3 interact with the SCFAs (mM–mM

range) with a carbon chain length greater than six atoms

and are those that are most likely to have evolved in

response to the fermentation products of the gut bacteria.

Both receptors are found in a variety of tissues including

the gut and have been shown to be expressed in

enteroendocrine cells that are producing peptide YY

(PYY; Table 1). SCFAs have been shown to stimulate the

release of PYY and 5-hydroxytryptamine (5-HT) from the
Published by Bioscientifica Ltd.

http://dx.doi.org/10.1073/pnas.1006734107
http://dx.doi.org/10.1073/pnas.1006734107
http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0131


Table 1 Characteristics of free fatty acid receptor 2 and free

fatty acid receptor 3

Nomenclature FFAR2 FFAR3

Agonist (FFA) Short-chain
C3wC4wC2

Short-chain C3O
C4[C2

Gene GPR43 GPR41
Localisation 19q13.1 19q13.1
Expression outside
of the gut

Adipose tissue Adipose tissue

Physiological role PYY secretion Leptin production
5-HT secretion PYY secretion
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ileum and colon (Cherbut et al. 1998, Fukumoto et al.

2003). Mice that have had their FFAR3 knocked out

(Samuel et al. 2008) show an associated reduction in the

expression of PYY, increased intestinal transit rate and

reduced harvest of energy (SCFAs) from the diet. These

authors concluded that FFAR3 is involved in the

regulation of host energy balance, which is ultimately

driven by the gut microbiota and its metabolites.

Additionally, the FFARs have been proposed to be

involved in glucose intolerance and thus diabetes

(Tolhurst et al. 2012). Tolhurst et al. have shown in their

study that both FFAR2 and FFAR3 are more greatly

expressed in glucagon-like peptide-1 (GLP1)-secreting

cells. Additionally, when mice that were homozygous

negative for both FFARs were exposed to SCFAs, there was

a significant reduction in SCFA-triggered GLP1 secretion.

The other significant role that these bacterially derived

metabolites play is the stimulation of leptin production in

adipocytes (Xiong et al. 2004); however, the exact

mechanism is still being elucidated (Zaibi et al. 2010).

Since leptin is involved in a wide range of physiological

processes, such as feeding behaviour, reproduction and

metabolic rate, any molecules that stimulate its pro-

duction are of significant interest. All of the SCFAs have

been shown to stimulate plasma leptin levels (Yonekura

et al. 2003, Xiong et al. 2004), and when propionate is

delivered orally, these levels are raised and the effect can

be blocked by small-interfering RNAs targeted towards

GPR41 in Ob-Luc cells (Xiong et al. 2004).

Although SCFAs have been shown to interact with

their own cognate receptors, they have also been shown to

modulate hepatic glucose production in humans

(Thorburn et al. 1993). The intake of fibre, which acts as

a prebiotic and is only metabolised by the gut bacteria, has

been reported to be inversely associated with the risk of

type 2 diabetes and heart disease (Pereira et al. 2002). The

hypothesis that fibre is digested eventually to SCFAs is an

important one in the area of the gut microbiota, because it
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0131 Printed in Great Britain
assumes that fibre ingested will be digested to SCFAs and

that this leads to eventual benefits to the host. However,

this treats the gut microbiota as a ‘black box’ and does not

consider that individuals’ capacity to metabolise the

different components of the fibre and to ferment these

degradation products to SCFAs is conditional on them

having the necessary bacterial functions present in the

first place. Bearing this in mind, it may be explained why

the evidence is not strong as to the beneficial role of fibre

in the reduction of the risk of developing diabetes and

other diseases (Williams 2012, Caricilli & Saad 2013).
The brain–gut axis

The hypothalamic–pituitary–adrenal (HPA) axis has

received much attention in recent years, in particular, its

association with the gut and its resident microbiota. It is

becoming increasingly apparent that this association can

both positively and negatively affect host health, with

implications for the gut microbiota itself and the

endocrine system.

Studies using in vitro and in vivomodels have hinted at

the possible underlying mechanisms of the effect of stress

on the gut through the HPA axis. It has been shown that

this axis responds to stress (Herman et al. 2003) through

the secretion of corticotropin-releasing hormone (CRH)

from the hypothalamus, in turn triggering the release of

ACTH from the pituitary gland and driving the release of

catecholamines and cortisol from the cortex (Mawdsley &

Rampton 2005). CRH has been shown to stimulate the

release of pro-inflammatory cytokines such as TNFa, IL1b

and IL6 in in vitro and in vivo murine models (Agelaki et al.

2002), while the in vivo stimulation of b-adrenergic

receptor, a receptor for the catecholamines nor-

epinephrine and epinephrine, has been shown to increase

the levels of circulating IL1 and IL6 (Johnson et al. 2005).

The production of cytokines, in particular, TNFa, has been

shown to affect the gut epithelial barrier function in both

in vitro (Schmitz et al. 1999) and in human studies, where

one study has shown the restoration of the gut epithelial

barrier function in Crohn’s disease patients through the

administration of infliximab, a chimeric MAB against

TNFa (Suenaert et al. 2002). Bacterial cells can also disrupt

the function of the gut epithelial membrane through

lipopolysaccharide (LPS) and its interaction with myosin

light chain kinase, a regulator of tight junctions (Shen

et al. 2006). It has also been shown that the stress response

of the HPA axis and ‘leakiness’ of the gut epithelial barrier

inmice can be attenuated through feeding of the probiotic

organism Lactobacillus farciminis (Ait-Belgnaoui et al.
Published by Bioscientifica Ltd.
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2012). This highlights the two-way nature of the HPA axis

and our resident gut microbiota.

A very commondiagnosis in gastroenterological practice

worldwide is irritable bowel syndrome (IBS), which is

characterised by abnormal bowel function, bloating and

abdominal painor discomfort relievedbydefaecation (Spiller

et al. 2007). IBS significantly affects quality of life (Simren et

al. 2006) and is a substantial economic burden to healthcare

systems (Nyrop et al. 2007). IBS has been reported to be

present in up to 10% of the population and responsible for

3.6% of GP consultations. So, understanding this syndrome

is an important goal, and recently, in a landmark study,

Dinan et al. (2006) have shown that in an IBS cohort the

levels of cortisol and thepro-inflammatory cytokines IL6 and

IL8 are elevated. Prior to this study, they had also used a

bacterial intervention, in the form of two separate probiotics

(Lactobacillus salivarius UCC4331 or Bifidobacterium infantis

35624), and shown that B. infantis is able to normalise the

IL10:IL12 ratio. Hence, this again leads us to the conclusion

that the variable levels of some organisms in the gut may be

responsible for diseases/syndromes as they signal to a variety

of host effectors.
Microbially derived endocrine molecules

Endocrinemolecules are not solely produced by the human

body; gut microbes can also produce thesemolecules. It has

been shown previously that there is a significant level of

dopamine production in the human gut (Eisenhofer et al.

1997). The importance of the gut microbiota in the

generation of this compound has been overlooked, and in

a subsequent piece of work, it has been shown that the gut

microbiota plays a critical role in the production of

norepinephrine and dopamine in the gut (Asano et al.

2012). This production is due to the expression of

b-glucuronidases by commensal gut bacteria, generating

dopamine and norepinephrine through the cleavage of

their inactive conjugated forms. Gut microbes can also

produce non-noradrenergic, non-cholinergic transmitters

such as nitric oxide, which plays a pivotal role in the

regulation of gastric emptying (Orihata & Sarna 1994),

through the anaerobic reduction of nitrate to nitrogen

(Sobko et al. 2005, Cutruzzolà 2012). The inhibitory

transmitter g-aminobutyric acid can be generated by

Lactobacillus brevis and Bifidobacterium dentium (Barrett

et al. 2012); both of these organisms can be isolated from

humans (Rönkäet al. 2003, Ventura et al. 2009). Studies

such as these are highlighting the previously unrealised

importance of our own gut microbiota in generating

compounds that interact with our own endocrine system.
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0131 Printed in Great Britain
Diabetes and gut bacteria

Diabetes is a chronic metabolic disorder that affects an

estimated 347million people throughout the world (WHO

2012). Type 1 diabetes, also known as juvenile diabetes, is

a state of absolute deficiency of insulin, while type 2

diabetes is a state of relative insulin deficiency in the

presence of obesity and insulin resistance; the prevalence

of the latter is increasing among children due to the

adoption of a sedentary lifestyle. There is increasing

evidence that the gut microbiota plays a role in the

development of this disorder. In the non-obese diabetic

(NOD) murine model, which was also deficient for the

adapter protein MYD88, researchers have shown that the

gut microbiota plays a role in the development of type 1

diabetes (Wen et al. 2008). In this study, the islets of

Langherans of germ-free, specific pathogen-free and

altered Schaedler flora (Dewhirst et al. 1999) Myd88

knockout NOD mice were histologically compared; the

germ-freemice exhibited a greater level of islet infiltration.

The authors showed that the gut commensal bacteria can

modify the development of this disease. With this in

mind, research has been carried out to determine which

bacterial species and groups in humans are most prevalent

in the sufferers of type 1 diabetes. In a recent study

(Giongo et al. 2011), the distal gut microbiota of four

children with autoimmunity, who went on to develop

type 1 diabetes, has been compared with that of four

healthy children through pyrosequencing of faecal DNA

extracted at three time points. The results highlighted

differences between the two major phyla in the gut,

Bacteroidetes and Firmicutes. There was an increase in the

number of DNA sequences from the Bacteroidetes phylum

as autoimmunity developed to type 1 diabetes and a

reduction in the number of DNA sequences obtained from

the Firmicutes phylum. In contrast, the four healthy

children exhibited the opposite pattern, with the number

of Bacteroidetes sequences decreasing and that of Firmicutes

sequences increasing as each time point was analysed. It

was also shown that the healthy control children had a

higher diversity of bacterial species than the children with

autoimmunity, suggesting a link between low bacterial

species diversity and type 1 diabetes. This low diversity is

indicative of a non-normal gut microbiota, which has

been suggested to combine with intestinal leakiness and

altered intestinal immune responsiveness to generate a

‘perfect storm’ for the development of type 1 diabetes

(Vaarala et al. 2008).

The gut microbiota, through LPS, has been shown to

exert a pro-inflammatory effect and when combined with
Published by Bioscientifica Ltd.
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a high-fat diet leads to the onset of insulin resistance and,

therefore, the development of type 2 diabetes in a mouse

model (Cani et al. 2007, 2008). In accordance with what

has been observed in type 1 diabetes, a metagenomic

analysis of faecal samples of type 2 diabetes sufferers has

shown a slight level of dysbiosis in their gut bacterial

make-up; type 2 diabetes sufferers exhibited higher levels

of opportunistic pathogens (Qin et al. 2012). Arguably

more important is the fact that this research showed a

reduction in the number of butyrate-producing bacteria, a

SCFA that modulates the activity of NF-kB (Inan et al.

2000), hinting that the loss of bacterial species may not be

as important as the loss of functions that they play.
Microbial modulation of neurotransmitters:
serotonin

One metabolic pathway of interest is the metabolism of

tryptophan, a precursor for a number of metabolites, but

particularly for the production of serotonin or 5-HT.

Serotonin is a well-documented monoamine neurotrans-

mitter that has been extensively studied due to its

hypothesised role in the regulation of learning, mood,

sleep, anxiety and other psychiatry-related afflictions. In

recentyears, serotoninhasalsogained increasing interest for

its role in the area of gut pathophysiology (Gershon & Tack

2007) and its role as a signalling molecule linking the brain

and the gut. Research has been fairly conclusive in

demonstrating that bacteria can affect serotonin levels

indirectly by stimulating secretion. However, recent evi-

dence suggests a role for the gut microbiota in actually

modulating the levels of the serotoninprecursor tryptophan

andhencehavinga control over serotonin levels in thehost.

Research by Desbonnet et al. (2008) has suggested a role for

tryptophan producers such as B. infantis as probiotics

specifically to aid in combating psychiatric disorders such

as depression. Other groups have also shown a role for

bacteria in modulating neurotransmitter precursors (Rhee

et al. 2009, Wikoff et al. 2009, Heijtz et al. 2011).

Around 90% of serotonin is located in the enter-

ochromaffin cells of the human gastrointestinal tract

(Keszthelyi et al. 2009) and, therefore, must be intimately

associated with the gastrointestinal mucosa and its

microbiota. Enterochromaffin cells release serotonin in

response to certain bacterial stimuli such as LPS, enzymes

and other bacterial toxins to help increase gastric transit

and rid the host of the toxin as quickly as possible (result is

often diarrhoea). As a result of a bacterial stimulus, there is

release of serotonin, which acts as a signalling molecule to

activate primary sensory neurons to communicate with
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0131 Printed in Great Britain
the brain and ultimately alter secretory reflexes. Conse-

quently, an ongoing brain–gut interaction is developed,

exerting various effects on gut physiology. This relation-

ship has resulted in serotonin potentially being one of the

most significant molecules related to the pathophysiology

of intestinal disorders such as inflammatory bowel disease

and IBS and is also intrinsically linked to the anxiety and

depression associated with such disorders.

If serotonin is in charge of mood and sleep and low

levels are associated with the onset of depression, etc.,

then varying levels of its precursor, tryptophan, are likely

to have an effect on available serotonin levels (Heijtz et al.

2011). Studies have shown that germ-free rats have

depleted levels of tryptophan, but upon administration

of certain bacteria, such as bifidobacterial species, trypto-

phan levels are increased (Desbonnet et al. 2008), thus

suggesting that bacteria can alter the available serotonin

pool and ultimately elicit communication between the gut

and the brain. Some microbes, such as Candida spp.,

Streptococcus spp., Escherichia spp. and Enterococcus spp.,

have been shown to directly produce serotonin (Cryan &

Dinan, 2012), although much more research is needed

into the impact that this has on the host.
Conclusions

In the last decade, the paradigm that the human genome

is the predominant driver of host health has shifted

towards a more superorganism-based viewpoint, with the

microbiome playing a significant role in influencing host

physiology and function. This review has not sought to

cover all the areas where there is evidence for a role of the

host’s microbiota and has unapologetically focused on the

gut microbiota, since the gut is the best-studied and most

densely populated niche. There are numerous other niches

in the human body that are colonised and in which the

adapted microbiome interacts with the host, and in due

course, these will be explored and their interactions with

the host described. We hope to have made it more obvious

to the reader that the microbiome needs to be understood

inmore depth and integrated into the endocrine system as

it is being integrated into the immune system. In the

future, more ‘omic’ approaches will further uncover more

associations between the human microbiome and the

endocrine system, which may be drugable and thus

modulated to the benefit of the host.

Declaration of interest

The authors declare that there is no conflict of interest that could be

perceived as prejudicing the impartiality of the review.
Published by Bioscientifica Ltd.

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0131


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review J M EVANS and others Role of a virtual organ in host
endocrinology

218 :3 R45
Funding

This research did not receive any specific grant from any funding agency in

the public, commercial or not-for-profit sector.
Author contribution statement

All authors contributed equally to the writing of this manuscript.
Acknowledgements

The authors thank the BBSRC (for funding L S M’s studentship) and

Knowledge Economy Skills Scholarships (KESS; for funding J M E’s

studentship).
References

Agelaki S, Tsatsanis C, Gravanis A & Margioris AN 2002 Corticotropin-

releasing hormone augments proinflammatory cytokine production

from macrophages in vitro and in lipopolysaccharide-induced

endotoxin shock in mice. Infection and Immunity 70 6068–6074.

(doi:10.1128/IAI.70.11.6068-6074.2002)

Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L,

Houdeau E, Fioramonti J, Bueno L & Theodorou V 2012 Prevention of

gut leakiness by a probiotic treatment leads to attenuated HPA response

to an acute psychological stress in rats. Psychoneuroendocrinology 37

1885–1895. (doi:10.1016/j.psyneuen.2012.03.024)

Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y &

Sudo N 2012 Critical role of gut microbiota in the production of

biologically active, free catecholamines in the gut lumen of mice.

American Journal of Physiology. Gastrointestinal and Liver Physiology 303

G1288–G1295. (doi:10.1152/ajpgi.00341.2012)

Barrett E, Ross RP, O’Toole PW, Fitzgerald GF & Stanton C 2012

g-Aminobutyric acid production by culturable bacteria from the

human intestine. Journal of Applied Microbiology 113 411–417.

(doi:10.1111/j.1365-2672.2012.05344.x)

Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D,

Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ et al. 2003 The orphan

G protein-coupled receptors GPR41 and GPR43 are activated by

propionate and other short chain carboxylic acids. Journal of Biological

Chemistry 278 11312–11319. (doi:10.1074/jbc.M211609200)

Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC,

Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P et al. 2009

Gene-centric metagenomics of the fiber-adherent bovine rumen

microbiome reveals forage specific glycoside hydrolases. PNAS 106

1948–1953. (doi:10.1073/pnas.0806191105)

Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM,

Fava F, Tuohy KM, Chabo C et al. 2007Metabolic endotoxemia initiates

obesity and insulin resistance. Diabetes 56 1761–1772. (doi:10.2337/

db06-1491)

Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM &

Burcelin R 2008 Changes in gut microbiota control metabolic

endotoxemia-induced inflammation in high-fat diet-induced obesity

and diabetes in mice. Diabetes 57 1470–1481. (doi:10.2337/db07-1403)

Caricilli AM & Saad MJA 2013 The role of gut microbiota on insulin

resistance. Nutrients 5 829–851. (doi:10.3390/nu5030829)

Chen W, Liu F, Ling Z, Tong X & Xiang C 2012 Human intestinal lumen

and mucosa-associated microbiota in patients with colorectal cancer.

PLoS ONE 7 e39743. (doi:10.1371/journal.pone.0039743)

Cherbut C, Ferrier L, Roze C, Anini Y, Blottiere H, Lecannu G&Galmiche JP

1998 Short-chain fatty acids modify colonic motility through nerves

and polypeptide YY release in the rat. American Journal of Physiology 275

G1415–G1422.
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0131 Printed in Great Britain
ClaessonMJ, Cusack S, O’SullivanO, Greene-Diniz R, deWeerdH, Flannery E,

Marchesi JR, Falush D, Dinan T, Fitzgerald G et al. 2011 Composition,

variability, and temporal stability of the intestinal microbiota of the

elderly. PNAS 108 4586–4591. (doi:10.1073/pnas.1000097107)

Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S,

Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O et al.

2012 Gut microbiota composition correlates with diet and health in

the elderly. Nature 488 178–184. (doi:10.1038/nature11319)

Collins FS, Lander ES, Rogers J & Waterson RH 2004 Finishing the

euchromatic sequence of the human genome. Nature 431 931–945.

(doi:10.1038/nature02945)

Collins SM, Surette M & Bercik P 2012 The interplay between the intestinal

microbiota and the brain. Nature Reviews. Microbiology 10 735–742.

(doi:10.1038/nrmicro2876)

Cryan JF & Dinan TG 2012 Mind-altering microorganisms: the impact of

the gut microbiota on brain and behaviour.Nature Reviews. Neuroscience

13 701–712. (doi:10.1038/nrn3346)
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