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Summary of Thesis 

Glaucoma is an umbrella term for a number of related optic neuropathies which have 

the common pathology of a progressive, irreversible vision loss associated with 

atrophy of retinal ganglion cells.  Together, the various forms of glaucoma constitute 

the second leading cause of vision loss in the developed world.  Current therapies 

for the treatment of glaucoma focus on alleviating the primary risk factor, an 

elevation in intraocular pressure.  These treatments are effective at mitigating the 

progression of vision loss however they cannot recover vision and do not completely 

halt vision loss, limiting their use as treatments.  To better understand the biology 

underlying the loss of retinal ganglion cells in glaucoma, I have examined the role of 

complement in retinal ganglion cell loss.  Complement is a network of cross-reacting 

serine proteases which form part of the humoral immune system and are primarily 

responsible for clearance of apoptotic cells and defence against pathogens. 

To understand the role played by complement in glaucoma I used an inducible 

model of glaucoma to establish the complement activation occurs in the 

glaucomatous retina.  I then used the inhibitor of the classical complement cascade, 

C1 inhibitor to protect the dendrites and cell bodies of retinal ganglion cells and 

found that this protection did not prevent axonal degeneration. Using in vitro and in 

vivo animal models of complement deficiency I established that deficiency in 

complement components C3 and C6 which are further down the cascade, 

exacerbates damage suffered in hypertensive glaucoma. 

This study adds to the existing evidence that the role of complement in central 

nervous system degeneration is a complex, multifactorial process, with elements of 

the complement system being variously protective and damaging.  It does, however, 

add hope to the prospect of developing a treatment for glaucomatous optic 

neuropathy based on manipulation of the complement system. 
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1.1 Glaucoma 

Glaucoma is the collective term for a number of related optic neuropathies which are 

characterised by progressive, irreversible degeneration of the retinal ganglion cells 

and associated visual field loss.  Globally, glaucoma is the second most common 

cause of blindness after age-related macular degeneration and it has been projected 

that, by 2020, more than 11 million people will suffer from bilateral blindness as a 

result of glaucoma (Resnikoff et al. 2004; Quigley & Broman 2006a; Cook & Foster 

2012).   

1.1.1 Risk factors 

An elevation in intraocular pressure is the primary identified risk factor for glaucoma 

and the reduction in intraocular pressure is the primary focus of glaucoma treatment,  

this has been shown to be effective in mitigating the progression of glaucoma (Heijl 

et al. 2002; The Advanced Glaucoma Intervention Study, 2000).  It is however a 

recurrent finding of glaucoma treatment that intraocular pressure reduction does not 

always correlate with a reduction in vision loss and does not halt the progressive 

decline in the visual field.   

Primary open angle glaucoma is characterised by an elevation in intraocular 

pressure with no apparent underlying cause. Genetic factors have been identified 

which are strongly associated with an increased likelihood of developing the disease. 

The gene encoding for the protein myocilin (previously known as TIGR) has been 

identified as a significant risk factor for primary open angle glaucoma (Tamm 2002; 

Kim et al. 2001; Stone et al. 1997).  Although the exact mechanism underlying this 

effect is unknown, it has been hypothesised that mutations in regulatory genes or 

exposure to certain steroids can redirect myocilin to accumulate in peroxisomes of 
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trabecular meshwork cells (Shepard et al. 2007).  These cells then become enlarged 

and cease to function as an effective outflow for aqueous humour, causing an 

increase pressure within the eye.  Numerous genetic factors have been identified 

which contribute to the risk of developing glaucoma, reviewed in Allingham, Liu, & 

Rhee, (2009). 

Unlike primary open angle glaucoma, angle closure glaucoma is a secondary 

syndrome produced by an identifiable, structural/anatomical defect such as pigment 

dispersion from the iris or congenital malformation in the anterior chamber.  Risk 

factors for glaucoma secondary to pigment dispersion are male gender, black race 

and high myopia (Farrar et al. 1989).  Secondary glaucoma may also develop from 

malformations of the anterior chamber such as Peters anomaly or Axenfeld-Rieger 

syndrome (DeLuise & Anderson 1983).  Secondary glaucomas typically cause 

bilateral presentation and an acute elevation in intraocular pressure (Lindberg 1989). 

1.1.2 Pathophysiology 

The pathophysiology of glaucoma is dependent on a number of factors, including 

age, race, gender, myopia and intraocular pressure.  The typical pattern of 

progression in glaucoma is bilateral but asymmetric and corresponds to a thinning in 

the retinal nerve fibre layer (Bertuzzi et al. 2009).  Visual field loss typically conforms 

to a specific topology which varies between species between a superior-inferior 

‘hourglass’ pattern in humans (Quigley et al. 1982) and higher primates (Quigley & 

Addicks 1980a) and a preferential loss of nasal neurones in the DBA/2J mouse 

(Jakobs et al. 2005). 

Glaucoma is marked by an increase in the expression of pro-apoptotic agents 

in the retina, including markers of physiological stress; adenosine triphosphate 
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synthase enzymes, caspases, and proteins of the classical complement cascade 

particularly the subcomponents of the initiator molecule; complement component 1 

(C1) (Tezel et al. 2010; Yang et al. 2004a).  This is accompanied by an increase in 

the inflammatory cytokines; IFN-γ, IL-1b, IL-6 and TNFα at the optic nerve head 

(Nikolskaya et al. 2009). 

The initial site of neuronal injury in glaucoma is the optic nerve head, 

specifically the retinal ganglion cell axons at the myelination transition zone (Chidlow 

et al. 2011, Quigley & Anderson 1976,  Weber et al. 1998a) however whether 

neurodegeneration is directly caused by the mechanical disruption of axons 

preventing axonal transport (Quigley et al., 2000) or as a result of optic nerve head 

astrocytes activating in response to the increase in hydrostatic pressure(Hernandez, 

2000, Hernandez, Agapova, & Yang, 2002, Nikolskaya et al., 2009) is unclear. 

The progression of damage is well characterised, following sustained degeneration 

of retinal ganglion cell axons and associated vision loss there is degeneration and 

apoptosis of retinal ganglion cells (Figure 1.1) (Quigley & Anderson, 1976; Weber et 

al., 1998).   

While axonal degeneration is undoubtedly the initiator of glaucomatous 

damage, the relative contributions of other cellular events is less clear. It may be the 

case that axonal degeneration can be counteracted and regenerating axons may be 

able to reattach at the same point as they did in a pre-disease state, using persistent 

structural supports (Crish et al,.  2010).  It may also be the case that axonal 

degeneration, once it has occurred, cannot be reversed with the restoration of 

function due to the potential for mis-wiring of the regenerated axon terminals. It is 

therefore important to understand the mechanisms of retinal ganglion cell 
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degeneration so that function may be effectively protected and/or restored as early 

as possible during the progress of disease. 
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Figure 1.1 The degeneration of glaucomatous, midget retinal ganglion cells.  Confocal images 

showing examples of midget RGS displaying mild degeneration (A and B), moderate degeneration (C 

and D) and severe degeneration (E and F). Arrow heads indicate axons, note how axonal 

fragmentation is visible proximal to the retinal ganglion cell body where there is severe degeneration. 

(scale bar = 10µm).  Weber et al. (1998). 
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1.1.3 Pharmacotherapy 

The primary risk factor for glaucomatous damage in the population at large is age 

(Broman et al. 2008). Age contributes to the risk of developing glaucoma in a 

number of ways, including alterations in blood flow and extracellular matrices in the 

optic nerve head (Albon et al. 2007, Groh et al. 1996, Hernandez et al. 1989).  As 

such, rather than attempting to remedy the various age-related factors which may 

contribute to the development of glaucoma, the primary aim of treatment is to 

minimise intraocular pressure elevation. The topical administration of anti-

hypertensive agents is regarded as an effective method of mitigating the progression 

of hypertension associated disease.  These drugs are divided into three main 

classes: beta-blockers such as Timolol®, carbonic anhydrase inhibitors such as 

Brinzolamide® and prostaglandin analogues such as Latanoprost®.  The reduction 

of intraocular pressure with pharmacotherapy has proved to slow reliably, the 

progression of vision loss in a manner proportional to intraocular pressure reduction.  

Despite this, in the majority of cases the visual field continues to degenerate and 

cannot be regained (Caprioli & Coleman 2008). 

1.1.4 Surgical therapy. 

Similarly to the pharmacological therapies used to treat glaucoma, the primary focus 

of surgical intervention is to reduce intraocular pressure in the affected eye/eyes.  In 

the case of angle closure glaucoma this can be done surgically with either 

conventional or laser based treatment such iridotomy or iridectomy in which the 

iridocorneal block is bypassed by puncture or ablation of the iris, respectively.  This 

restores the outflow of aqueous humour, effectively reducing intraocular pressure 

and improving the degradation of visual field loss (Robin, 1982; Salmon, 1993). 
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1.1.5 Treatment outcomes 

The advanced glaucoma intervention study (AGIS) (2000)  found a direct correlation 

between post-intervention intraocular pressure and the progression of visual defect 

up to seven years after intervention.  This indicates that although damage reversal is 

not at present possible and areas of visual field deficit cannot be restored, the 

management of intraocular pressure is an effective means of controlling vision loss 

in the long term.  
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1.2 Animal models of glaucoma 

Pharmacological and surgical treatments for glaucoma focus solely on the reduction 

of intraocular pressure and as such are limited to a post-hoc reduction in the rate of 

damage.  In order to better understand the mechanisms which bring about damage 

in glaucoma and thus develop a treatment which may either prevent damage in the 

first instance or repair visual loss, a number of animal models of glaucoma have 

been developed. 

Analysis of human tissue has identified candidates for disease pathways 

which may be manipulated to mitigate glaucomatous optic neuropathy (Hernandez et 

al., 2002, Tezel et al., 2010, Yang et al., 2004a).  These findings can be based only 

on post-mortem tissue and non-invasive inspection of glaucomatous retinas 

restricting the options for manipulating suspected pathways to test novel treatments 

or gather data in human patients.  This has necessitated the development and use of 

animal models of glaucoma.  These models must satisfy a number of factors 

including; accurate replication of the disease processes present in human glaucoma 

as near as is possible, facilitate genetic and/or pharmacological manipulation of the 

ocular tissues and providing this data while keeping animal suffering to a minimum 

(Russell and Burch 1959).  Early work on animal models of glaucoma involved the 

use of macaques, rhesus monkeys and primates (Hiraoka et al. 2012, Allingham et 

al. 2009, Miyahara 2003, Quigley & Anderson 1976).  These are large, visual and 

intelligent animals and as such have associated housing costs which limit numbers 

of animals which can be in a study as well greater ethical concerns when compared 

with traditional lab animals which are less reliant on their visual system (Russell and 

Burch 1959 Chapter 2: The concept of inhumanity - Pain and distress). 
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Subsequent developments of animal models of glaucoma have utilised 

smaller, more traditional laboratory animals such as rats and mice.  These can be 

used in larger numbers facilitating the testing of potential treatments with a higher 

statistical power.  Additionally rats and mice rely on their olfactory system as their 

primary source of information regarding their surroundings rather than their visual 

system, reducing the impact of progressive visual loss on animal welfare compared 

to simian or primate models.  Murine models have been particularly useful given the 

comparative malleability of the mouse genome and the similarity of the murine 

central nervous system to our own (Howell et al. 2008). 

Although age is the primary risk factor in the development of glaucoma, 

simply aging laboratory animals would not provide a suitable means of replicating 

glaucomatous optic neuropathy as the penetrance would be low and housing costs 

would be high.  To replicate glaucomatous neuropathy without resorting to ageing 

strategies typical animal models of diseases rely upon increasing intraocular 

pressure by blocking aqueous humour outflow, which is done using a variety of 

methods. 

1.2.1 Ghost red blood cells 

Early attempts to physically obstruct the outflow of aqueous humour through the 

anterior chamber at the iridocorneal angle utilised fixed, endogenous red blood cells 

(ghost red blood cells) in both the rabbit and primate (Quigley & Addicks 1980).  

These experiments produced a reliable increase in intraocular pressure from one or 

two injections over a period of up to 23 days.  The requirement to draw and process 

blood from each animal (as exogenous blood would be more likely to generate an 

inflammatory response) makes this method unsuitable for a model of inducible 
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glaucoma in large numbers of small animals.  In addition, the same study observed 

that injected ghost red blood cells settled to form a solid mass at the base of the 

angle and that in order to produce a reliable pressure increase 75% of the anterior 

chamber needed to be filled.  The ability of this model to deposit such a large 

number of cells into the anterior chamber is an advantage over models using 

polystyrene microspheres (Sappington et al. 2010; Quigley & Addicks 1980b; Crish 

et al. 2010).  These models would be unable to deposit such a large volume of 

particles in the anterior chamber as it may lead to haemorrhage in the anterior 

chamber due to the greater mass of the microspheres compared to ghost red blood 

cells.   

 

1.2.2 Polystyrene microspheres. 

Injections of fully synthetic particles into the anterior chamber have been undertaken 

extensively in the mouse and rat (Sappington et al. 2010, Cone et al. 2010, Weber & 

Zelenak 2001).  These studies have reported success in producing and sustaining 

an elevation in intraocular pressure for a period of over two weeks.  This model 

does, however, introduce solid microspheres into the anterior chamber.  These 

microspheres follow gravity and pool at the inferior aspect of the iridocorneal angle.  

It is possible that deposition of solid microspheres at the base of the angle may 

interfere with rebound tonometry.  This would come about as the probe striking areas 

of the cornea where beads were resting may encounter more resistance than at 

other areas which were not in contact with beads.  It has also been observed that the 

efficacy of this model is highly variable between mouse strains (Vecino & Urcola 

2006), this is likely to be a result of the degree of genetic variation between in-bred 
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strains of mouse.  This variation effectively limits the number of mouse strains can 

be used to model glaucoma, potentially limiting the number of genetic knock out 

models which can be used to model glaucomatous optic neuropathy. 

1.2.3 Genetic models 

The DBA/2J strain of mouse has mutations in the TRYP1 and GPNMB genes which 

causes a degenerative phenotype with striking similarity to human exfoliative 

glaucoma.  These animals shed pigment from their iris which becomes trapped in the 

trabecular meshwork (Anderson et al., 2002) leading to an elevation in intraocular 

pressure.  This model has an age-related increase in the susceptibility to intraocular 

pressure elevation and a corresponding increase in retinal ganglion cell 

degeneration with 100% of animals developing severe optic nerve degeneration by 

12 months of age.  The similarity of the disease phenotype to the human disease, in 

that age, gender and intraocular pressure are both predictive factors for 

glaucomatous damage, is a distinct advantage to this model.   

However, as these mutations arose spontaneously in an in-bred mouse strain 

they co-exist with a number of other, potentially confounding mutations.  In particular, 

the DBA/2J mouse carries the Hc0 allele of complement component 5 (Nilsson & 

Müller-Eberhard, 1967).  This allele arises from a 2 base-pair deletion, causing a 

frame-shift and truncation of the protein.  This mutation makes studying the role of 

the complement cascade in glaucoma in the DBA/2J mouse model impossible, as 

without C5 the membrane attack complex cannot be formed.  The membrane attack 

complex has been shown to have roles in promoting Wallarian degeneration 

(Ramaglia et al. 2007) and cell survival (Badea et al., 2002, Tegla et al., 2009, 
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Weerth et al. 2003), as such this mutation may prove to be a confounder in the study 

of the mechanisms underlying glaucomatous optic neuropathy.   

Recently, work has been conducted which re-introduces functional C5 

expression in DBA/2J mice (Howell et al. 2013).  This work has identified that C5 

sufficient DBA/2J animals develop more severe glaucoma than those who are C5 

deficient.   The increased deposition of the terminal complement complex at both the 

optic nerve head and retinal ganglion cell soma was identified as the causative factor 

in this C5-mediated worsening of damage.  Also of note from this study, however, is 

the detection of the terminal complement complex on non-glaucomatous retinal 

ganglion cells.  The implications of this will be discussed fully in chapter 7. 

Unlike the rat, guinea pig and human, the mouse have no identifiable lamina 

cribrosa (Morrison et al. 1995) and instead possess a network of glial cells providing 

mechanical support to the optic nerve as it exits the retina.  This structure is central 

to the biomechanical properties of the optic nerve head (Burgoyne 2011). The 

difference of this structure compared to that of the human in this model may produce 

significant biomechanical discrepancies.  These discrepancies may ultimately limit 

the use of the mouse as an animal model of glaucoma. 

1.2.4 Hypertonic injection of saline into episcleral veins - The Morrison 

model. 

The model of experimental glaucoma developed by Morrison et al. (1997) involves 

unilateral injection of hypertonic (1.75M) saline into the episcleral vein of a rat.  This 

procedure produces a reliable and long-lasting increase in intraocular pressure 

following as few as two injections and could be considered the gold standard of 

experimental intraocular pressure elevation.  There are, however, numerous 



P a g e  | 18 

 
practical considerations which limit the usefulness of this model.  The cannulation 

procedure is technically challenging and the pulled-glass micropipettes used for the 

injection are extremely fragile making them difficult to use and store.  The pipettes 

must be completed and watertight before the procedure, meaning that a number of 

cannulae must be manufactured by hand before each procedure to account for 

breakages.  This makes inducing an intraocular pressure elevation in a large number 

of animals both time-consuming and technically demanding.  It was also found that 

intraocular pressure elevation varied between strains of rat, implying an unidentified 

resistance to the sclerotic agent which may further affect the usefulness of this 

model. 
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1.3 Microglia 

Quiescence in retinal ganglion cells has been shown to induce elimination by 

resident microglia (Tremblay et al., 2011, Tremblay, Lowery, & Majewska, 2010).  In 

development this process functions to eliminate aberrant synapses of retinal 

ganglion cells and other neurones.  In both cases this refinement is dependent on 

the activity of the classical complement cascade (Chu et al., 2010, Stevens et al., 

2007).   

Microglia resident in the retina are activated in glaucoma (Bosco et al. 2011, 

Langmann 2007) and components of the classical cascade of complement activation 

are up-regulated in retinal ganglion cells.  This suggests that processes involved in 

microglia-mediated retinal ganglion cell refinement during development may be 

responsible for the removal of retinal ganglion cells during glaucoma.  Removal of 

retinal ganglion cells is a critical step in the development of visual deficits in 

glaucoma as these cells, once lost cannot easily be replaced due to highly specific 

interactions with other cells within the retina and the vision centres of the brain.  

Understanding the ultimate role of microglia in retinal ganglion cell atrophy will 

therefore be important in understanding the progression of glaucoma glaucoma. 

1.3.1 Microglia in glaucoma 

The production of adenosine triphosphate in the retina is increased in response to an 

elevation in intraocular pressure (Reigada et al. 2009), adenosine triphosphate 

triggers protection in neurones which are associated closely with microglia.  

Astrocytes in culture respond to an increase in extracellular adenosine triphosphate 

by further increasing their own production of extracellular adenosine triphosphate 

(Anderson et al. 2004).  In the glaucomatous optic nerve head astrocytes increase 
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production of adenosine triphosphate synthesis and trafficking proteins (Yang et al. 

2004b).  These data suggest that  localised extracellular adenosine triphosphate also 

mediates the translocation of microglia to the site of injury via secondary adenosine 

triphosphate production by astrocytes (Davalos et al. 2005).  This biphasic 

adenosine triphosphate response may be responsible for the translocation of 

microglia to the site of damage in glaucoma. 

1.3.2 Microglia in the healthy and developing brain 

Resting microglia frequently sample the surrounding environment and have been 

shown to make contacts, lasting approximately five minutes every hour, with 

synapses and axons under physiological conditions (Wake et al. 2009) and have 

been shown to selectively prune smaller spines from dendrites of the mouse visual 

cortex (Tremblay et al., 2010), this interaction is depicted in figure 1.2.  Recent 

evidence suggests that this interaction may also play a role in modulation of the 

synapse, hippocampal microglia secrete adenosine triphosphate in response to 

lipopolysaccharide which activates purinergic receptors on astrocytes, triggering the 

release of glutamate and increasing excitatory post-synaptic potentials via α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid  (AMPA) receptors (Ben-Achour & 

Pascual 2010), indicating that glial modulation of synaptic activity is dependent on 

inflammatory state.  It may be that the short half-life of adenosine triphosphate, 

which is rapidly degraded into adenosine in the extracellular space, may be acting to 

positively reinforce cells which are making close contact with microglia while drawing 

activated microglia to the site of injury.   
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 Figure 1.2 Resident microglia in close contact with neuronal tissues.  A 3-dimensional, scanning 

electron micrograph reconstruction of the microglial proximal process.  The microglial process (P) is 

shown in close proximity to axon terminals (blue), dendritic spines (red), and perisynaptic, astrocytic 

processes (green). Phagocytosed neuronal material is indicated in purple., and are surrounded by 

pockets of extracellular space varying in size and shape (white; black arrows) Scale bar = 100nm.  

From Tremblay et al. (2011). 

 

As glial-neurone interactions are regulated by activity (Tremblay et al., 2010), 

the potentiation of activity in neuronal processes which are interacting with microglia 

may be a mechanism for the selective protection of neurones which are structurally 

sound, over those which are degenerating and retracting away from resident, 

inactive microglia.    In mice between post-natal days 5 and 9, microglia are 

responsible for phagocytising inactive retinal ganglion cell axons (Stevens 2011), this 

may be applicable to the clearance of axons and other cellular debris in glaucoma. 

The role of microglia in pathogenesis is highly complex, microglia increase 

phagocytic activity in response to markers of oxidative stress (Bruce-Keller 1999), 

however ischaemic preconditioning and low-level lipopolysaccharide treatment of 

microglia have each been shown to be neuroprotective (Franco et al. 2008).  This 

may be a consequence of ischaemic preconditioning acting via similar mechanisms 
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to lipopolysaccharide and stimulating excitatory post-synaptic potentials via AMPA 

receptors.   

Interestingly; extracellular adenosine triphosphate triggers the release of the 

neuroprotective cytokine, TNF-α by microglia (Hide et al. 2000; Dolga et al. 2008) by 

the activity of the P2x7 purinergic receptor.  Moreover, the absence of extracellular 

adenosine triphosphate at P2X7 has been shown to trigger phosphatidyl serine-

dependent phagocytosis of non-opsonised beads and microbes by P2X7-transfected 

human embryonic kidney cells (Gu et al. 2011) and of SH-SY5Y neuroblastoma cells 

by macrophages, whereas in the presence of extracellular adenosine triphosphate, 

phagocytosis did not occur.  Together this suggests a complex role for adenosine 

triphosphate in neuronal pathogenesis as a housekeeping molecule, attracting and 

activating microglia while simultaneously providing short-range protection for active 

neurones.  
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1.4 Complement 

1.4.1 Introduction to complement 

The complement system is a network of serum proteins and their soluble and 

membrane-bound regulators.  The activities of this system include opsonisation and 

lysis of pathogenic bacteria as well as the clearance of immune complexes and 

apoptotic self-cells.  Self-cell apoptosis/necrosis can also occur as a result of 

unregulated or aberrant complement expression.  The complement system is 

composed of at least three primary pathways and has been implicated in many 

facets of neurodegeneration, reviewed in Perry & O’Connor (2008a).  In particular 

the classical pathway of complement activation (Summarised in figure 1.3) has been 

implicated in synaptic pruning and glaucomatous retinopathy (Stevens et al. 2007; 

Chu et al. 2010; Howell et al. 2011). 

The common feature of the complement cascades is the formation of a stable 

convertase of the fifth component of complement (C5).  In the classical complement 

cascade this convertase consists of the molecules C2a and C4b, C2 is cleaved by 

the initiator molecule of the classical cascade C1.  Upon binding of C1 to a target cell 

surface by antibodies or proteins on bacterial cell surfaces(Merino et al. 1998), C1 

undergoes a conformational change allowing it to recruit and cleave C2 (Thielens et 

al. 1999), C2a recruits C4 to the target cell surface where it is cleaved to form C4b 

and C4a, the former remains bound to C2a (Gagnon 1984). C2a functions as the 

catalytic site for the cleaving of C3 to C3b and C3a, C3b remains attached to the C3 

convertase and catalyses the proteolysis of C5.  C5 is converted to C5a – a potent 

anaphylotoxin (Kacani et al. 2001) and C5b which recruits C6, C7, C8 and multiple 

molecules of C9 (Peitsch & Tschopp 1991), C6 functions to anchor this terminal 
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complement complex to the cell membrane and interact with host intracellular 

processes (Badea et al. 1998) and C7 recruits C8 which contains a hydrophobic 

domain that binds to a similar domain on C9 allowing multiple molecules of C9 to be 

recruited and form a pore in the cell membrane.  Via these mechanisms the classical 

complement cascade is a mediator of destruction of cells by lysis and phagocytosis 

by cells of the adaptive immune system. 

Stevens et al. (2007) found that the complement components C1 and to a 

lesser extent C3 are a requirement for synaptic refinement in mice and that 

deficiency in either of these proteins can lead to a breakdown in synaptic refinement 

of ipsilateral projections from the retina (figure 1.4).  The role of complement in 

retinal ganglion cell refinement in glaucoma is of relevance to the study of glaucoma 

as; similarly to the deterioration of quiescent, superfluous axons in development, 

glaucomatous neurodegeneration begins with the atrophy of retinal ganglion cell 

axons (Weber et al., 1998b). 
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Figure 1.3 Schematic overview of the three main complement cascades. An outline of the three 

main complement cascades with emphasis on therapeutic complement regulators derived from 

endogenous agents (boxed).  The primary inhibitor of the classical complement cascade is C1-

inhibitor (shown here as ‘C1inh’).  The alternative pathway begins with autohydrolysis of complement 

component C3 to from C3a and C3b, which forms a stable C3 convertase by recruiting factor B, which 

in turn is cleaved by factor D to leave a non-catalytic subunit (Ba) and a catalytic subunit (Bb) which 

remains bound to C3b.  This convertase formation is regulated by factor H and factor I (not shown). 

From Morgan and Harris (2003)   
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Figure 1.4 Defects in synaptic refinement and eye-specific segregation of C1q deficient mice.  

Projection patterns of retinal ganglion cell axons at the geniculate nucleus visualised with injection of 

b-choleratoxin conjugated to AlexaFluor® 594 (red) or AlexaFluor® 488(green) into the right and left 

eyes respectively of C1q sufficient and knockout mice.  C1q knockout mice at postnatal day 10 (A-b) 

and 30 (A-d) have significant overlap (yellow) between retinal ganglion cell inputs from ipsilateral and 

contralateral eyes compared to littermate, C1q sufficient controls (Aa and Ac) (scale bar - 200 mm).  

(B and C) Quantification of the percentage the percentage of the dorsal lateral geniculate nucleus 

which receives overlapping inputs in C1q knockout versus C1q sufficient, littermate controls at 

postnatal days 10 (B) and 30 (C). C1q knockout mice exhibit significantly more overlap than C1q 

sufficient littermates, regardless of threshold.  Stevens et al. (2007).  



P a g e  | 27 

 
1.4.2 Complement in neurodegeneration. 

Complement is responsible for the clearance of apoptotic neurons in the central and 

peripheral nervous systems in both disease and development both in vitro and in 

vivo (Ramaglia et al. 2007; Stevens et al. 2007; Chu et al. 2010).  The first 

component of the classical pathway of complement activation; C1, directly enhances 

the clearance of apoptotic neurons by microglia in a manner that also suppresses 

the production of pro-inflammatory cytokines IL-1α, IL-1β, Il-6 and TNFα (Fraser et 

al. 2010), indicating a protective element for complement activation in 

neurodegeneration. 

Conversely, complement components have been identified as constituents of 

central nervous system plaques in both Alzheimer’s disease and Huntington’s 

chorea (Goldknopf et al., 2006; Singhrao, Morgan, & Gasque, 1999; Webster et al., 

2000) and have been implicated in the subsequent necrosis and neurodegeneration. 

The role of complement in Alzheimer’s disease is unclear, however it has 

been established that both amyloid beta and tau protein, the constituents of senile 

plaques in Alzheimer’s disease each activate the classical complement system 

(Webster et al. 2000; Shen et al. 2001; Ying et al. 1993).  This activation is caused 

by binding of amyloid beta and tau to both the globular heads and the collagen-like 

domains of the C1q molecule.  However it is unclear if this activation increases 

plaque clearance, cytotoxicity or indeed both.   

Polymorphisms in the receptor of activated C3; complement receptor 1 (CR1) 

and the regulator of the terminal complement complex – clusterin, have been 

associated with an increased risk of Alzheimer’s disease in numerous genome-wide 
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association studies (Harold et al., 2009; Lambert et al., 2009; Brit-Maren et al., 

2011).   

Two isoforms of CR1; CR1-S and CR1-F, of CR1 make up the majority of 

CR1 expressed in humans and differ in the number of binding sites for C3b with four 

and three respectively.  The CR1-S isoform has been associated with a 30% 

increase in the risk of developing Alzheimer’s disease and it has been conjectured 

that the additional binding site increases binding affinity for C3b.  This increased 

binding enhances its function as a cofactor for the complement inhibitory molecule; 

factor I leading to increased inhibitory activity on complement (Brouwers et al., 

2011).  However, as there is no data regarding any functional or binding differences 

between the risk associated isoform and the low risk isoform, it is not possible to 

draw any conclusions regarding the exact nature of the role of CR1 in the 

development of Alzheimer’s disease.   

The role of complement activation in Alzheimer’s disease is debated; C1q (an 

activator of complement) and clusterin (a complement regulator) deficiencies have 

each been associated with a reduction in disease severity in mouse models 

(DeMattos et al. 2002; Fonseca et al. 2004).  This suggests that the initial 

complement activation triggers microglial activation, worsening pathology and 

regulation of the terminal complement complex inhibits the clearance of senile 

plaques.    

What is clear from genome-wide association study data is that defects in the 

regulation of complement activation are intrinsically linked to the development of 

pathology in Alzheimer’s disease.  In addition, numerous genome analysis studies 

have directly implicated the complement receptor 1 (CR1) and the regulator of the 
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terminal complement complex: clusterin have been implicated in Alzheimer’s disease 

(Harold et al., 2009).   

It has been observed that the binding of amyloid proteins to C1q increases β-

sheet formation and inhibits the re-suspension of the pathogenic amyloid 1-40 

peptide (Webster, Barr, & Rogers, 1994).  A reduction in re-suspension suggests 

that the development of amyloid beta plaques may be enhanced by C1.  Conversely, 

Fonseca et al. (2004) found that C1q deficiency had no significant effect on the 

amount of amyloid beta plaques in Alzheimer’s disease.   However the role of 

complement in mouse models of Alzheimer’s disease has proven to be highly 

variable between strains (Fonseca et al. 2011).  This complicates the study of 

complement as a whole in Alzheimer’s disease using mouse models.  Blocking the 

receptor of C5a with the inhibitor PMX205 is neuroprotective in Alzheimer’s disease 

(Fonseca et al. 2009) suggesting  that the activation and migration of microglia in 

Alzheimer’s disease is destructive and driven by complement.   

It should be noted that as an inhibitor of C5a receptor, PMX205 would not 

reduce the formation of the terminal complement complex.  The fact that a C5a 

receptor reduces damage suggests that complement mediated neurotoxicity in 

Alzheimer’s disease may be the response of sub-lytic activation.  Additionally, this 

inhibitor acts on a point in the complement system after the formation of the C5 

convertase, as C5a is produced at this step.  Therefore this protective mechanism is 

independent of both pathway and level of activation, be it lytic or sub-lytic.  This 

minimises the information provided by observations of the action of PMX205 as to 

the exact role of complement in Alzheimer’s disease.  This emphasises the scope for 

the potential influence of complement in neurodegenerative disorders. 
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Complement has also been implicated in the progression of Parkinson’s disease.  

Parkinson’s disease is characterised by the progressive degeneration of neurons in 

the substantia nigra pars compacta, resulting in a loss of fine motor control which 

leads to the classical symptoms of Parkinson’s disease ; bradykinesia and resting 

tremor.  The presence of Lewy bodies in the brain is a hallmark of Parkinson’s 

disease, activated complement components and activated microglia have been 

detected in these Lewy bodies (Yamada et al. 1992).  Complement activation has 

been implicated in the death of neurons containing lewy bodies(Togo et al., 2001).  

Indeed the complement cascade has been strongly implicated in the destruction of 

central nervous system xenografts with the apparent preservation of avascular 

immune privilege.  Xenograft destruction under these circumstances indicates that 

complement produced by cells of the central nervous system has the capacity to 

destroy neuronal material in Parkinson’s disease without influence from the adaptive 

immune system (Barker et al., 2000). 

The role of complement in development, maintenance and pathology of the 

central nervous system is multifactorial and complex and the amount of literature 

suggesting a role in glaucomatous degeneration is substantial.  There is evidence for 

activation of the adaptive immune response in glaucoma, however there is little 

evidence that this is a causative agent and much of the evidence for direct 

cytotoxicity by the adaptive immune response is from in vitro experimentation 

(Huang et al. 2009; Perry & O’Connor 2008a; Howell et al. 2007).  There is also 

evidence that mitigation of the adaptive immune response by destruction of bone 

marrow may provide protection against glaucomatous damage (Anderson et al.  

2005).  This evidence is however based on the DBA/2J mouse model of glaucoma 

which involves the adaptive immune response causing an exfoliative degeneration of 
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the retinal pigment epithelium.  As such, dampening of the adaptive immune 

response to the exfoliation syndrome as a result of bone marrow destruction may 

play a role in the mitigation of damage in this case.  It would also be difficult to 

modulate the adaptive immune response without affecting other systems of the body 

and as such I will be working on modulating the complement system in the retina to 

mitigate damage in glaucomatous optic neuropathy. 

The complement system is a vital part of development, homeostasis and host 

defence, particularly in the central nervous system where the adaptive immune 

system is largely absent.  For these reasons I will examine the role of complement in 

retinal ganglion cell loss in glaucoma. 

 

1.5 Outline of work 

I will begin by developing a model of glaucoma in the rat utilising paramagnetic 

microspheres.  This model will function to allow me to establish in complement is up-

regulated in glaucoma and then test potential treatment methodologies.  As this is an 

inducible model of glaucoma it will be possible for me to administer agents before or 

during the elevation in intraocular pressure.  This will allow me to combat early stage 

biochemical changes in the retina, such as complement activation (Howell et al. 

2011) which would not be possible with an age dependent model of glaucoma such 

as the DBA/2J mouse model. 

In developing this model, to overcome the drawbacks and risks associated 

with the deposition of beads and other technical challenges in existing models of 

inducible glaucoma we have developed an inducible model of glaucoma utilising 

polystyrene microspheres with a paramagnetic, iron-oxide core.  These 
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microspheres can be manipulated with a hand-held magnet following injection, which 

will allow them to be drawn into the trabecular meshwork around the entire 

circumference of the angle.  This will induce a reliable and sustained increase in 

intraocular pressure. 

Using antibodies specific for proteins of the classical complement cascade 

and those produced by complement activation, C1q and C3b/iC3b respectively, I will 

establish if the classical complement cascade is producing activated complement 

components in glaucomatous retinas. 

Using retinas from rodents with complement knockout mutations, cultured 

under elevated hydrostatic pressure and rats with elevated intraocular pressure 

treated with the classical complement cascade inhibitor C1 inhibitor, I will examine 

the nature of the relationship between complement and glaucoma at various stages 

of the complement cascade. 

1.6 Hypothesis and aims 

The classical cascade of complement activation plays an established role in 

both the loss of retinal projections during development and neurodegeneration at 

large.  At present, all treatments for glaucoma simply reduce the rate of progression 

of the disease.  This is a consequence of a reactionary mode of treatment, aimed at 

reducing elevated intraocular pressure after a significant visual field deficit has 

already developed. Complement activation has been identified as an early molecular 

event in glaucomatous optic neuropathy.  Given the established role of complement 

in retinal degeneration, it is reasonable to expect a pathological role for this 

activation in the progression of glaucomatous optic neuropathy.  Establishing the role 

of complement in retinal ganglion cell degeneration in glaucoma may allow the 
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development of treatments which can overcome the inevitable progression of visual 

degeneration in glaucoma patients.  Treatments for human disease which are based 

on manipulation of the complement system are already widely used, specifically, the 

inhibition of the classical complement cascade with C1 inhibitor in hereditary 

angioedema.  The existence of such treatments could drastically speed the 

development of glaucoma treatments based on complement system manipulation if 

that proves to be a suitable option.  

The aims of this study are: to identify if complement is activated in an animal 

model of glaucoma, to determine the effects of complement deficiency on retinal 

ganglion cell survival following hydrostatic pressure elevation and to attempt to 

prevent retinal ganglion cell degeneration in animal glaucoma with an inhibitor of the 

classical complement cascade.    
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Chapter Two: Materials and Methods 
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2.1 Introduction 

Existing animal models of glaucoma have been used to identify the underlying 

mechanisms of the disease and test potential treatments.  In order to examine the 

role of complement in retinal ganglion cell loss in glaucoma, I will develop a rat 

model of glaucoma that is robust, inducible and reproducible.  With this model I will 

use specific detection of activated complement and synaptic density to correlate the 

activation of the complement cascade with retinal neurodegeneration in glaucoma.  

Using complement deficient animal models and Sholl analysis of retinal ganglion cell 

dendritic integrity I will attempt to establish what, if any, is the effect of complement 

deficiency in retinal ganglion cell loss.  Finally, I will use the inhibitor of the classical 

complement cascade – C1 inhibitor – in the model of glaucoma developed here to 

attempt to treat glaucomatous neurodegeneration and establish if complement 

inhibition is a viable treatment in glaucoma. 

 Recently, the cell line which has previously been used to study glaucomatous 

optic neuropathy, the RGC5 cell line, has been shown to be a less than ideal model 

of retinal neurons (Van Bergen et al. 2009).  This requires the use of animal models 

in the study of glaucoma.  The use of animals in this body of work is detailed in table 

1. 
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Table 1: Overview of animal use in experimental chapters. 

Chapter Rats killed Mice killed Total animals 

culled 

3 – Microsphere model 

development 

31 0 31 

4 – Complement activation in 

experimental glaucoma 

20 0 20 

5 - In Vivo and In Vitro Pressure 

Elevation in Complement 

Deficient Animals 

12 14 26 

6 - Inhibition of the classical 

complement cascade in 

experimental glaucoma. 

28 0 28 
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2.2 Paraformaldehyde and buffer preparation 

Four per cent (weight/volume) paraformaldehyde was prepared by dissolving 40g of 

anhydrous paraformaldehyde (Sigma-Aldrich, UK) in 500ml of deionised water 

produced by an Advantage A10 Ultrapure Water Purification System (Merck-

Milipore, Germany) and adding 1 molar NaOH (Sigma-Aldrich, UK), dropwise to the 

solution until it cleared.  The resulting solution was then added to a 2X concentrated 

solution of phosphate buffered saline consisting 9g of NaCl (Sigma-Aldrich, UK) of 

10.9g of anhydrous Na2HPO4 (Sigma-Aldrich, UK) and 6.4g NaH2PO4 (Sigma-

Aldrich, UK) in 500ml of deionised water.  The pH of the solution was altered to 7.8 

using either 1M HCl (Sigma-Aldrich, UK) or 1M NaOH.  The pH of solutions was 

measured with an Orion 420A pH meter (Gemini BV, Netherlands). 

Standard (0.1M) phosphate buffer was prepared by dissolving 10.9g of 

anhydrous Na2HPO4 and 6.4g NaH2PO4 in 1000ml of deionised water. 

Solutions of 1 molar tris buffer were prepared by dissolving 121.136g of 

Trizma® base (Sigma-Aldrich, UK) in 1 litre of deionised water, the pH was adjusted 

with the addition of 1M NaOH.. 
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2.3 Animal husbandry  

All animal procedures were carried out under the provisions of the Animals in 

Scientific Procedures Act (1986), project licence 30/2470 and personal licence 

30/8485 and the ARVO statement on animal welfare. 

Adult, retired breeder, Brown Norwegian rats (Rattus norvegicus from Charles 

River, UK), aged between six and nine months and weighing between 340 and 450g 

were fed on rodent global diet pellet (Harlan, UK) and given water ad libitum.  To 

minimise diurnal fluctuations in intraocular pressure, animals were housed in 

constant low light (90lux). 

Six month old mice from a C57BL/6 background were provided by Dr Timothy 

Hughes.  These animals were housed overnight with food and water ad libitum on a 

twelve hour light/dark cycle.  All mice were killed by cervical dislocation, without any 

regulated procedures being performed. 

 

2.3.1 Animal culling  

Animals whose retinas were needed for culture were killed by exposure to a rising 

concentration of carbon dioxide until loss of consciousness and failure of the corneal 

reflex, death was confirmed by cervical dislocation. 

Animals whose retinas were to be sectioned for immunofluorescence were 

killed by perfusion fixation.  Animals were restrained by the scruff of the neck and a 

1ml dose of Euthetal® (200mg sodium pentobarbitone/ml) was administered under 

the peritoneum with a 26 gauge needle.  
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Following the termination of the corneal reflex and heartbeat, the animal was 

transferred to a fume hood, the thoracic cavity was opened, the diaphragm was 

incised and the rib cage was opened with rib spreaders (Duckworth and Kent, UK), 

exposing the heart.  The heart was cannulated through the wall of the left ventricle 

with a large-bore needle attached to 8mm tubing (Cole Parmer, UK), the needle was 

clamped using a surgical clamp (Cole-Parmer, UK).  Phosphate buffered saline 

(Sigma-Aldrich, UK) was then fed through the tubing into the heart using a peristaltic 

pump (Stoelting, Germany) at a rate of 8ml/minute.  A hole was cut quickly in the 

right atrium to allow the escape of fluid.  Once the fluid leaving the heart no longer 

contained traces of blood 4% paraformaldehyde was fed through the tubing, at the 

same rate. 

Once paraformaldehyde exposure-related muscle twitching had ceased the 

clamp and cannula were removed and the ocular tissue was removed with micro 

scissors (Duckworth and Kent, UK).   



P a g e  | 40 

 

2.4 Paramagnetic microsphere preparation 

2.4.1 Corpuscular microspheres 

Five-micron diameter microspheres were obtained from corpuscular (USA).  These 

microspheres were prepared for in vivo use by; removing the supernatant by 

centrifugation in a bench-top centrifuge at 7000rpm for 7 minutes and re-suspending 

in deionised water.  This was repeated three times before the water was replaced 

with an equal volume of balanced salt solution (Mid Optic, UK) with a pipette.   

2.4.2 Invitrogen microspheres. 

Four and a half micron-diameter, epoxy-coated microspheres were purchased from 

Invitrogen UK.  These beads were designed for use in immunoprecipitation assays 

and contained reactive epoxy groups on its surface.  To terminate these reactive 

groups, 1ml of bead solution was added to 50ml of 1M tris buffer solution at pH11 

and this solution was mixed on a horizontal roller for 24 hours at 4°C.  Beads were 

removed from the solution by affixing a pair of magnets to the tube and returning to 

the roller for ~4 hours.  The tris buffer was replaced and the procedure was 

repeated.  The tris buffer was then removed and the beads were washed with 1ml 

deionised water and resuspended in 500µl of balanced salt solution (Mid Optic, UK).   

Balanced salt solution was used as the injection fluid rather than normal 

saline or the original fluid provided by the bead manufacturer (distilled water) to 

reduce any effect on the corneal endothelium that may influence the reading of 

intraocular pressure (Edelhauser et al. 1975). 
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2.4.3 Gamma irradiation 

The bead solutions were aliquotted into 100µl/200µl amounts and sealed in 600µl 

Eppendorf tubes (StarLab, UK) which were sealed with parafilm (StarLab, UK).  The 

tubes were then sterilised using a Gammacell (Gammacell, US) gamma irradiator 

with a dose of 2000cGy and refrigerated until use.  Before use, microsphere 

preparations were vortexed for thirty seconds using a Vortex-genie 2 (Cole-Parmer, 

UK).  This was to ensure an even distribution of microspheres in the solution.  
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2.5 Induction of experimental glaucoma 

2.5.1 Anaesthesia 

Anaesthesia was induced in rats by the administration of Isoflurane (Bayern-Bayern, 

Germany) suspended in medical oxygen (BOC, UK) at a flow rate of 2l/min.  Animals 

were first placed in a custom-designed Plexiglas chamber until light anaesthesia was 

produced and then transferred to a custom face mask to facilitate examination of the 

left eye while maintaining deep anaesthesia.   

2.5.2 Bead injections 

Following anaesthesia, topical 0.5% chloramphenicol (Mid Optic, UK) was 

administered to the surface of the cornea of the left eye.  The sclera of the left eye 

was grasped with cup-toothed forceps (Duckworth and Kent, UK) and an incision 

was made with a 32 gauge tri-bevelled needle attached to a 100µl Hamilton syringe 

(WPI Europe, Germany) containing the volume of bead solution to be injected.  The 

incision was made as described in Langerman (1994), an initial incision was made 

part-way into the cornea at a right angle.  The needle was then partially removed and 

the angle changed so that it was closer to orthogonal with the cornea and the 

incision was made into the anterior chamber. 

Beads were injected into the anterior chamber using a gentle and constant 

pressure on the syringe.  Beads were then drawn away from the syringe and 

directed into the iridocorneal angle with the hand-held magnet (figure 2.1) and a 

small amount of fluid (1-2µl) was withdrawn from the anterior chamber and re-

injected, this was done to flush beads from the dead space of the needle.  The 

beads were then manipulated within the anterior chamber with the needle still in 



P a g e  | 43 

 
place, beads were drawn around the circumference of the iridocorneal angle before 

the needle was removed.  
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Figure 2.1 Positioning of paramagnetic microspheres within the anterior chamber of the eye 

with a hand-held magnet.  The beads (arrow head) can be observed migrating from their initial 

deposition site at the inferior angle of the anterior chamber under the influence of the magnet.  This 

migration allows the beads to embed in the nasal, temporal and superior aspects of the iridocorneal 

angle. This allows a larger portion of the angle to be occluded than would be possible with 

polystyrene microspheres. Scale bar = 1cm. 
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2.5.3 Intraocular pressure measurement 

Animals were restrained gently and topical oxybuprocaine hydrochloride (mid-optic, 

UK) was administered to the surfaces of both corneas.  A Tonolab® tonometer 

(Tiolat, Finland) was used to measure the intraocular pressure.  Keeping the 

tonometer as level as possible in the horizontal plane to minimise variation in results 

due to positional inaccuracy (Prashar et al,.  2007).  The tonometer is activated by 

pressing a small button on the grip (Figure 2.2), which activates a small plastic 

probe, which bounces off the cornea with the returning force being used to calculate 

the intraocular pressure.  The tonometer takes six such measurements, the highest 

and lowest values are discarded and the remaining four used to calculate a single 

value which is displayed to the user.  Six of these values are averaged to give a 

measure of intraocular pressure for a single time point.  Intraocular pressure 

measurements were recorded using a database based on the CRITTER design 

(Lees et al. 1993) and developed by Gavin Powell of '+10 technologies’. 
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Figure 2.2 The Tonolab® tonometer. The trigger (arrow) is pressed to activate probe (arrowhead) 

which contacts the animal’s cornea to take a measurement of the intraocular pressure.  (Image from 

TioLat, Finland).  The placement of the activation button on the handle allows for single-handed 

operation, leaving one hand available for gently restraining the animal which is being measured.  The 

small contace surface of the probe (1mm in diameter) allows for measurements to be taken soley 

from the centre of the cornea, preventing any confounding effects which may be produced by the 

probe striking microspheres in the iridocorneal angle.  
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2.6 Retinal dissection 

Fourteen days following the induction of elevated intraocular pressure, animals were 

killed  and eyes were immediately enucleated and placed into iced Hank’s balanced 

salt solution (Sigma-Aldrich, UK) in cell culture dishes (Gibco, UK).  A puncture was 

made in the orbit with a large gauge needle (Cole-Parmer, UK) at the level of the ora 

serrata and the eye was cut in two at that level using micro-scissors (Cole-Parmer, 

UK).  A cut was made in the eye cup at the superior aspect for the purposes of 

orientation of the retina.  The cup was then turned inside-out to release the retina 

and two further incisions were made to give a three-leafed retina.    

For tissue culture experiments, including diolystic labelling and in vitro 

hydrostatic pressure elevation retinas were then placed onto a cell culture insert 

(Millipore, UK) which were then rested on suitable culture medium.   

For wholemount immunofluorescence, retinas were mounted directly onto 

slides and excess buffer solution was drawn off with foam buds (Star labs, UK).  
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2.7 Diolistics and analysis of retinal ganglion cell morphology  

Disected retinas were shot placed on a culture medium Cell culture medium adapted 

from Sun, Li, & He, (2002) which was produced by pipetting 1ml Neurobasal 

medium, 2mM L-glutamate, 200µl B27 supplement and 100µl N2 supplement 

(Gibco, UK) into a 1.5ml Eppendorf tube (Starlab, UK). Medium was only produced 

as needed and was not stored for any length of time to prevent bacterial 

contamination.  

 Retinas were labelled with the DiO and DiI carbocyanine bullets using a 

Helios® gene gun (Bio-rad, UK), in a similar manner to Neely, Stanwood, & Deutch, 

(2009) and Sun et al., (2002).   

The bullets were prepared as in Sun et al., (2002), 8mg of DiI (Invitrogen UK, 

UK) and 16mg of DiO (Invitrogen UK, UK) were dissolved in 800µl of 

trichloromethane (Sigma-Aldrich, UK), the resultant solution was pipetted on to a 

glass slide with 100mg of fine tungsten particles (Invitrogen UK, UK).  The 

trichloromethane was then allowed to evaporate under a fume hood and the 

remaining powder was tapped into a 45cm length of 8mm diameter vinyl tubing (Cole 

Parmer, UK).  In order to coat the tubing with the powder, the tube was placed on a 

rotating platform for a minimum of 24 hours in darkness before being cut into 1cm 

bullets with a razor blade. 

The Helios® gene gun uses a 12 cartridge cassette to hold a single 1cm 

length of tubing containing the carbocyanine dye in the path of a volume of helium 

pressurised at 120 pounds/inch2 (figure 2.3) followed by a second release of helium 

at 90 pounds/inch2 to ensure clearance of the cartridge.  To prevent dense clumps of 

DiI/DiO-coated tungsten beads hitting the retina, a 3µm-pore filter (Falcon) was 
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positioned over the cell culture dish.  Retinas were incubated for 30 mins at 37°C in 

95% air/5% CO2, the culture medium was discarded prior to fixation in 4% 

paraformaldehyde and sealed with Parafilm® (BioStar, UK) and stored at 4°C for 25 

minutes.  Paraformaldehyde was discarded and the membrane of the culture insert 

was cut in order to remove the retinas, which was subsequently mounted on a 

Histobond® (Marienfeld, Germany) slide and circled with a hydrophobic pen (Vector 

Laboratories, UK). ToPro-3® solution was added to the retinae on the slide and 

incubated for 10 minutes at room temperature in the dark, removed with a three 

washes of 1ml phosphate buffered saline.  The retinas were mounted with ProLong 

Gold® (Invitrogen, UK) under a glass coverslip which was sealed with clear nail 

varnish. 
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Figure 2.3 Diagram of modified Helios® gene gun. Diagram showing approximate, relative position 

at the time of use.  A – Helio® gene gun with barrel removed to allow for closer proximity to the filter.  

The red circle shows the barrel containing the DiI/DiO loaded tubing.  B – Falcon-filter in position to 

scatter the fired tungsten particles.  This was designed to create a more uniform spread of particles 

and filter out larger particles to reduce kinetic damage to the tissue. C – Cell culture insert with retina 

to be labelled mounted on the upper surface.   Scale bar = 1cm. 
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2.7.1 Sholl analysis.   

All image processing and data acquisition was carried out masked.  This was done 

using the ‘Masked images’ macro for the ImageJ platform (see appendix).  Each file 

in a specified folder is opened within the memory of the computer without displaying 

the image to the user, a random number of a length specified by the user is 

generated and the file is saved in a new directory/folder with that number as the file 

name.  A key file is then generated containing a table of the masked and original file 

names in the source directory/folder.  

Image analysis was carried out using the ImageJ software (NIH, USA), z-

stack images were processed using ‘Sholl processing’ macro (see appendix) to 

automate image processing once aberrant staining caused by bead aggregation and 

other artefacts had been manually removed.  The relevant colour channel pertaining 

to the dye which had labelled the cell in question was isolated.  Images were 

discarded if the morphological criteria of a retinal ganglion cell (no axon or cell 

nucleus not residing in the ganglion cell layer as indicated based on ToPro-3® 

labelling).   

The image slices were z-projected using the sum of the slices of the stack to 

produce a single image which contained as many features of the dendrites as 

possible.  Images were then converted to 8-bit .jpeg files for Sholl analysis. Sholl 

analysis of confocal images was performed using a custom MatLab® (MathWorks, 

USA) plugin developed by Professor Alun Davies, detailed in Gutierrez & Davies 

(2007), briefly, the user delineates the scale bar, identifies the dendritic roots, 

bifurcations and terminals and the plugin calculates the number of dendritic branches 

at a specified number of regularly spaced distances from the soma, in this case 
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calculations were made for 30 distances from the cell soma at 10µm intervals 

(Illustrated in figure 2.4).  This generated a graph referred to as a ‘Sholl plot’, 

containing two key metric which are relevant in the analysis of dendritic health; the 

number of intersections at a given distance from the cell and the area under the 

curve (AUC).   The AUC of the Sholl plot represents the total number of intersections 

in a retinal ganglion cell dendritic field and will be used as a single indicator of 

dendritic integrity.  
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Figure 2.4 Schematic representation 

of a Sholl analysis.  A - Cell soma 

and axon are indicated, red-dashed 

lines indicate the positions of the 

theoretical concentric circles.  The 

intersections of cell dendrites with the 

circles are calculated to quantify the 

retinal ganglion cell’s dendritic 

integrity. (B – E) Illustration of changes 

in Sholl plots as retinal ganglion cell 

morphology changes, number of 

intersections are represented on the y-

axis and the distance of the 

intersections is represented on the x-

axis.  
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2.8 Confocal imaging 

2.8.1 Diolistically labelled cells 

Images were acquired using a confocal microscope (LM510, Zeiss, Germany) using 

a x20 objective lens, excitation at 543nm for DiI, 488nm for DiO and 633nm for 

ToPro, scaling at; 0.38432µm/pixel on the x and y axes and 0.19 µm/pixel on the z 

axis at an image resolution of 1024x1024 pixels (x and y axes, respectively), this 

produced an image 393.54 µmx393.54 µm, stacks were taken through the thickness 

of the retinal ganglion cell and inner plexiform layers, resulting in scan depths of 

between 7.3 µm and 151.4 µm.  

2.8.2 Immunofluorescence 

Three dyes were used for all immunofluorescence, AlexaFluor® 488, AlexaFluor® 

594 and ToPro-3 iodide (Invitrogen UK, UK).  These were imaged using a confocal 

microscope (Zeiss, Germany) with laser excitation at the wavelengths 488nm, 

543nm and 633nm and psedo-coloured green, red and blue respectively.  Z-stacked 

images were taken through each retinal section with 20x objective lenses, laser 

settings were adjusted only between experiments so that comparable results were 

produced within each experiment.   

Grey values corresponding to the detection of each dye were obtained using 

ImageJ (NIH, USA) by isolating the channel of interest, converting the image to 8-bit 

and measuring the total antibody detection present in the region of interest. In 

images of wholemounted retinas the region of interest was obtained by manually 

segmenting the inner plexiform and ganglion cell layers from a single field of view 

393.54x393.54µm at 1.5mm from the optic nerve head.   
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In images of fluorescently labelled sections this was a 100µm region of the 

inner plexiform and retinal ganglion cell layers measured from the right edge of the 

image, this was done to correct for slanting of images. The area measured was then 

divided by the total value of the pixels counted to give a mean grey scale value.  This 

value is represented in arbitrary units with a theoretical maximum of 9294/µm (with a 

voxel size of 0.38x.038x0.19µm and the maximum pixel value for an 8-bit image 

being 255) for wholemount images and 4647/µm (voxel size of 0.38x0.38x0.38µm) 

for sections. 

2.9 Retinal sectioning 

Animals were killed at by exposure to a rising concentration of CO2, confirmed by 

cervical dislocation.  Eyes were enucleated and fixed for 1hour in 

4%paraformaldehyde at room temperature , the anterior chamber was then cut away 

and removed at the limbus and the eye was cryoprotected by submerging in 

increasing concentrations of sucrose at (10-20-25%) concentrations.  These 

solutions were prepared by dissolving 10, 20 and 30 grams of sucrose powder 

(Sigma-Aldrich, UK) in 100ml of deionised water. 

Eyes were then embedded in optimum cutting temperature medium (Tissue-

Tek, UK) and snap-frozen in liquid nitrogen-cooled isopentane (Sigma-Aldrich, UK) 

and sectioned at 7µm.  The frozen tissue block was trimmed until observation of 

beginning of the structures associated with the optic nerve head before sections 

were taken to ensure uniformity of the retina in the sections.  Eight sections were 

taken from each eye for each set of stains that were required in addition to eight 

sections for control stains. Sections were removed from the cryostat by touching the 

section to the room temperature slides, ensuring that 3-4 evenly spaced sections 
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were on each slide.  Sections were stored at -20°C in sealed slide boxes until 

required.  Slides were defrosted at room temperature for 30 minutes prior to 

immunofluorescent staining.   
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2.10 Retinal section immunofluorescence 

Blocking solution, consisting of 10% donkey serum in phosphate buffered saline was 

added to the retinal sections.  The blocking solution was made by diluting 1ml of 

donkey serum with 9ml of phosphate buffered saline.  This solution was left on for 1 

hour at room temperature before being pipetted off. 

For complement and neuronal marker detection: Primary antibody solution 

(Table 2) consisting of 1 part in 50 monoclonal mouse antibody to rat C3b/iC3b and 

either 1 part in 400 polyclonal rabbit antibody to rat neuronal marker PSD95 (Cell 

Signalling, UK) or 1 part in 100 polyclonal rabbit antibody to rat C9 (Courtesy of Dr 

Claire Harris, Cardiff University) diluted in phosphate buffered saline.  50µl of primary 

antibody solution was added to each retinal section and incubated at room 

temperature for 1.5 hours.  

For C1 inhibitor or C1q detection: either 1 part in 1000 rabbit anti-human C1 

inhibitor (Provided by Dr Svetlana Hakobyan, Cardiff University) or 1 part in 100 

rabbit anti-rat C1q antibody (Cell Signalling, UK) was diluted in phosphate buffered 

saline and 75µl primary antibody solution was added to each slide and incubated 

overnight (minimum 16 hours) at 4°C (C1q staining was carried out by Dr Claudia 

Calder, Cardiff University).  The primary antibody solution was then washed off by 

rinsing with phosphate buffered saline three times. 
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Table 2 Primary antibodies used for immunofluorescence 

Target Raised in Dilution Other 

PSD95 Rabbit 1:400 Polyclonal 

C3b/iC3b Mouse 1:50 Monoclonal 

C1 inhibitor Rabbit 1:1000 Polyclonal 

C9 Rabbit 1:150 Polyclonal 

C1q Rabbit 1:100 Polyclonal 

 

The relevant secondary antibody solution (detailed in table 3) was then added to the 

sections.  The secondary antibody solution was incubated for 1.5 hours at room 

temperature and then pipetted off.  Sections were washed three times in phosphate 

buffered saline and mounted with prolong gold ® antifade reagent (Invitrogen, UK) 

prior to imaging. 

Table 3 Secondary antibodies used for immunofluorescence. 

Target Raised in Dilution Flurophore Other 

Rabbit Donkey 1:400 AF488  

Mouse Donkey 1:400 AF594  

Rabbit Donkey 1:400 AF488 ab2 fragment 
only 

Mouse Donkey 1:400 AF594 ab2 fragment 
only 
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2.11 Statistical analysis 

Statistical analysis was performed using SPSS (IBM, US).  For all datasets that were 

to analysed, the Anderson-Darling test was used to test for normality.  The outcome 

of this test determined what further statistical analysis was carried out. 

2.11.1 Intraocular pressure measurements 

Baseline intraocular pressure measurements and those from control, uninjected eyes 

were typically normally distributed, whereas those of microsphere-injected eyes were 

not.  This is a consequence of the large changes in intraocular pressure associated 

with microsphere injection.  In order to compare normally distributed control 

intraocular pressure values with those of microsphere injected eyes the Mann-

Whitney U test was used.  This test was used under these circumstances as it 

compares the ranking of the data sets rather than the means.  This quality is 

advantageous as the intraocular pressure of a microsphere injected eye may be 

highly variable and as such the mean may not be representative of any values in the 

dataset.   

2.11.2 Sholl analysis 

The data points that make a Sholl curve are complex and universally not normally 

distributed.  A typical Sholl plot is a positively skewed dataset, with a large number of 

dendrites closer to the cell soma compared to a decreasing number at greater 

distances.  Preferential loss of secondary and tertiary dendrites increases the 

positive skew of the dataset (illustrated in figure 2.5), meaning that changes between 

data sets are not even (Sun et al. 2002).  In order to account for these factors a 

statistical test which accounts for factors other than distribution was needed.  To 

account for these factors a Kolmogorov–Smirnov test was used to compare Sholl 
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plots as this test also analyses skewness of a dataset (Toutenburg 1975).  This test 

was performed on the means of the measured number of intersections at each 

distance from the cell soma for each group of cells.  The AUC for each dataset is 

included in the analysis for illustrative purposes as this gives a representative value 

for the integrity of the dendritic fields. 

 

 

Figure 2.5 An example of normal and glaucomatous Sholl plots.  Illustration of the effect of 

glaucomatous degeneration on a Sholl plot derived from primate retinal ganglion cells.  The 

glaucomatous Sholl plot (Triangles) has preserved denrites up to 40µm radius compared to the 

normal Sholl plot (Circles), whereas dendrites over this radius are lost.  This has the effect of 

changing the skewness of the Sholl curve, meaning that a statistical test which accounts for changes 

in skew is usefull in comparing glaucomatous and healthy Sholl plots.  Figure modified from Weber & 

Harman (2005). 
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Chapter Three: Microsphere Model Development 
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3.1  Introduction 

Existing models of glaucoma in laboratory animals have achieved a great deal in the 

modelling of disease progression and pathology.  This includes: identifying specific 

details regarding the patterns of axonal loss (Jakobs et al. 2005; Quigley & Addicks, 

1980; Quigley & Anderson, 1976), isolation of genes involved in retinal ganglion cell 

apoptosis and clearance (Guo et al., 2010; Hernandez, Agapova, & Yang, 2002; 

Howell et al., 2011; Khalyfa et al. 2007; Miyahara, 2003; Tezel et al., 2010) and the 

investigation of novel treatments for glaucomatous optic neuropathy (Anderson et al. 

2005).  Despite these advances, each of the currently available models has inherent 

limitations. 

These existing models of glaucomatous optic neuropathy have been shown to 

be capable of replicating acute or chronic, unilateral or bilateral, and 

pseudoexfoliative or angle closure glaucoma.  However, they each have their own, 

specific weaknesses.  The aim of this section is to develop a model of glaucoma that 

addresses as many of these concerns as possible. 

To demonstrate the efficacy of any treatment and remove any possibly 

confounding influence of age-related degeneration, the most time-and cost-efficient 

model for the testing of neuro-protective agents in glaucoma should be one that is 

inducible rather than inherited. This would also allow glaucoma to be either unilateral 

or bilateral and allow intervention to begin before or concurrently with the onset of 

disease.  Inducing unilateral glaucoma has the advantage of providing an internal 

control in the contralateral, normotensive eye.  Inducing bilateral glaucoma may 

allow the testing of two different treatments within the same animal, potentially 

removing confounding variables that may occur between animals.  As there are no 
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data already available for this model, robust control tissue will be necessary from the 

outset.  With this in mind, it was decided that the model of glaucoma developed here 

would involve a unilateral intraocular pressure elevation.  Existing models of 

microsphere injection have been demonstrated by other groups to be useful and 

straightforward.  As a result of these factors, it was decided that trabecular 

meshwork occlusion with microspheres was a suitable starting point for development 

of a model of glaucoma.  Polystyrene microspheres, once injected, follow gravity and 

sink to the inferior aspect of the anterior chamber.  This behaviour creates three 

problems: (i) only the inferior aspect is effectively occluded, limiting the subsequent 

intraocular pressure elevation, (ii) the contact of the beads on the cornea may 

interfere with tonometry measurements and (iii) the number of beads injected is 

limited by the physical stress on the inferior aspect of the anterior chamber.   

The use of paramagnetic microspheres was considered to remedy these 

issues as they can be externally manipulated post-injection to draw the microspheres 

into the trabecular meshwork.  This would cause the microspheres to become 

physically trapped around the entire circumference of the iridocorneal angle rather 

than simply the inferior aspect.  This in turn would allow for a greater number of 

beads to be used with greater trabecular outflow obstruction and minimal effect on 

the cornea.   

In order to establish the optimum protocol for inducing a unilateral elevation in 

intraocular pressure, different concentrations of paramagnetic microspheres will be 

used with or without magnetic manipulation.  
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3.2 Methods 

3.2.1 Toxicity assay  

To determine whether or not paramagnetic microspheres were inherently toxic to 

neuronal cells, microspheres were cultured with cells from an SH-SY5Y 

neuroblastoma cell line.  The viability of the cells was assessed using an 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. Paramagnetic 

microspheres were prepared as in section 2.4.2 Invitrogen microspheres. The SH-

SY5Y neuroblastoma cell line was kindly provided by Professor Robert Maclaren 

(University of Oxford, UK), and cell culture and viability assays were performed by Dr 

Debbie Tudor. Cells were grown in (1:1) Ham′s F12 (Sigma-Aldrich, UK), Eagle’s 

minimum essential medium (Invitrogen, UK) supplemented with 2 mM L-Glutamine, 

1% non-essential amino acids, 15% foetal bovine serum and 100U/ml penicillin and 

100μg/ml streptomycin (Invitrogen, UK), maintained at 37°C in air with a constant 

CO2 concentration of 5%.  Cells were seeded at 3x104 per well in 96 well flat bottom 

culture plates (Star lab, UK).  One hundred microliters of paramagnetic microsphere 

preparations were then added to each well at concentrations of 2x10, 2x102, 2x103, 

2x104, 2x105 and 2x106 per well.  Positive controls for cell toxicity were carried out 

using 0.1% Triton X® and 5mM H2O2 (Sigma-Aldrich, UK) in PBS in place of 

microsphere preparations. Cultures were continued for a further 48 hours prior to 

MTT assay to determine the toxicity of the paramagnetic microspheres. 

 The MTT assay was carried out according to the manufacturer’s (Millipore, 

UK) instructions.  Ten microliters of MTT solution was added to each well and 

incubated at 37oC for four hours, after which, ten microliters of a 0.04M solution of 

HCl in isopropanol was added to each well.  After one additional hour one hour the 



P a g e  | 65 

 
absorbance of the wells at a wavelength of 570nm was measured using a 

Versamax® (Molecular devices, US) plate reader.  Absorbance was compared to 

that of a well containing a fresh culture of 3x104 cells, which allowed me to determine 

if the beads were an inhibitor of growth or actively toxic to cells.   Cultures and 

toxicity assays were performed in triplicate.  The results of cell viability assays were 

normally distributed and for that reason, viability assays were compared using a two-

sample t-test. 

3.3 Factors affecting induction of an elevation in intraocular pressure 

3.3.1 Microsphere size 

Paramagnetic microspheres of 1-3µm diameter induced no significant intraocular 

pressure elevation in 5 injected animals (Figure 3.1 A) (mean intraocular pressure of 

28.71mmHg, SD=4.88mmHg) compared to the uninjected control eye 

(Mean=27.04mmHg, SD=4.07mmHg, p=0.92 Mann-Whitney U test).  A sustained 

intraocular pressure elevation was produced in 7 animals injected with 5µm diameter 

beads, with a mean elevation of 21.22mmHg (Figure 3.1 B, n=7 animals, p<0.05 

Mann-Whitney U test)) and 3 animals requiring a second injection at day 15 to 

maintain elevation.   Beads of 10-12µm diameter could not be injected as they 

became trapped in the needle during injection.   These data suggest that the 

optimum diameter of beads injected into the anterior chamber for the purpose of 

increasing intraocular pressure is approximately 5µm.  
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 Figure 3.1 Microspheres of a minimum 5µm in diameter are required to generate an increase 

in intraocular pressure.  (A) Intraocular pressure elevation profiles (injected eye pressure – 

uninjected eye pressure) of five animals injected with 1-3µm beads, showing no intraocular pressure 

elevation in the injected eye (mean intraocular pressure of 28.71mmHg) compared to the 

contralateral, control eye (Mean=27.04mmHg, n=5 animals, p=0.92 Mann-Whitney U test).  (B) Mean 

intraocular pressure elevation profiles of seven animals which had a unilateral injection of 

paramagnetic microspheres (5µm in diameter).  The mean intraocular pressure of the injected eyes 

was elevated by and average of 21.22mmHg (n=7 animals, p<0.05 Mann-Whitney U test) over the 

course of the experiment. 
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3.3.2 Microsphere concentration and manufacture. 

Beads purchased from Corpuscular, Inc (NY, USA), had a higher variance in 

concentration and size than those purchased from Invitrogen UK.  Inspection of 

corpuscular beads using a transmission electron microscope (Courtesy of Dr Guy 

Jones, Cardiff University) revealed a variation in size from 5.2-7.5µm (Figure 3.2).  In 

addition, the beads supplied by Invitrogen were more tolerant of use at elevated 

concentrations and could be injected at a concentration (i.e. 8x108 beads/ml, which 

is two times the stock concentration or 8x106 beads in a 10µl injection).  In future, 

this property of the Invitrogen supplied beads may prove useful as a means to titrate 

the bead particle dosing and gain finer control of the induced elevation in intraocular 

pressure.  It was also observed that after repeated injections with a single syringe 

using the Corpuscular microspheres, even when washing syringes with 10mM 

ethylenediaminetetracetic acid (Sigma-Aldrich, UK) after use, syringes would block 

up at unpredictable intervals.  This characteristic may be associated with the 

variation in microsphere size and roughness of the microsphere surface apparent in 

figure 3.2A.  For these reasons, the microspheres produced by Invitrogen were used 

exclusively in the later work in the project. 
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Figure 3.2 There is a large variation in the diameter of Corpuscular-manufactured 

paramagnetic microspheres.  (A) Transmission electron micrograph of magnetic microspheres 

supplied by Corpuscular, Inc., showing a noticeable variation in bead particle size, scale bar = 10µm.  

(B) Measurements of 44 paramagnetic microspheres imaged by electron microscopy (mean 

thickness=5.8µm, minimum diameter=5.2µm, maximum  diameter=7.5µm).  Error bars indicate 

standard deviation of 0.46µm.  This variation may explain the occasional blocking of the syringe 

observed during work.  Future work may benefit from filtration of the microspheres prior to injection. 
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3.3.3 Magnetic manipulation 

In this experiment, rats received unilateral injections of either 10µl or 20µl of 

Corpuscular microspheres (2 animals each group) as described in section 2.5, 

without manipulation with a magnet to determine the effect of bead injection alone on 

intraocular pressure.  Animals were housed for 20 days to monitor the development 

of any increase in intraocular pressure.  

Of the two animals injected with 10µl of microspheres, the mean intraocular 

pressure elevation over 20 days was 2.11mmHg, although this was not statistically 

significant (SD=8.9mmHg, p=0.09 Mann-Whitney U) (Figure 3.3 A).  At day one post-

injection, there was a dramatic and very similar increase in intraocular pressure in 

the injected eyes of both animals (21.2 and 21.6mmHg).  However, this elevation 

immediately disappeared, and the intraocular pressure of the injected eyes was not 

significantly different from uninjected control eyes until day 20.   

Of the two animals in the group injected with 20µl of beads, one developed an 

initial spike in intraocular pressure of 29.4mmHg over the contralateral eye at day 

one following injection.  This elevation was not sustained, and the intraocular 

pressure of the injected eye was not significantly different from that of the control at 

any further time point.  In this animal, the mean intraocular pressure in the injected 

eyes (Figure 3.3 B mean=24.07 mmHg, SD=10.94mmHg) was not significantly 

different from that of the uninjected, control eye (mean=20.31 mmHg, 

SD=4.03mmHg, p=0.10 Mann-Whitney U).    

The other animal in this group showed an intraocular pressure elevation of 

40.8mmHg over that of the control, uninjected eye 1 day following microsphere 

injection.  The pressure elevation fluctuated between -0.8 and +26 over the following 
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five days (Figure 3.3 C). This animal then developed a substantial haemorrhage in 

the anterior chamber, which caused blood to pool on top of the beads and a 

noticeable corneal ectasia (see figure 3.4).  As a result of the intraocular 

haemorrhaging, the animal in question was culled early to prevent unnecessary 

suffering.  Post-mortem, the microspheres in the eyes of all animals that did not 

undergo post-injection magnetic manipulation were still visibly motile within the 

anterior chamber.   

In light of the increased damage caused by microspheres without magnetic 

manipulation, it was decided that closer monitoring of animals was necessary.  With 

that in mind the experiment was redesigned and 5 animals were injected with 20µl of 

standard Corpuscular bead solution without magnetic manipulation over the standard 

time period. The eyes of the animals were inspected twice daily to monitor for 

anterior chamber haemorrhage and corneal ectasia.  Beads remained motile in the 

anterior chamber (Figure 3.5), and no significant intraocular pressure elevation was 

observed in the injected eyes compared to the contralateral controls (Figure 3.6 n=5 

animals, mean= 28.9mmHg, SD=3.2mmHg and mean=27.08mmHg, SD=3.3mmHg 

respectively, p=0.35). 

When paramagnetic microspheres were manipulated with a hand-held 

magnet after injection into the anterior chamber, they remained evenly distributed 

around the entire iridocorneal angle.  The manipulated microspheres remained static 

upon movement of the animal, did not adhere to the iris and did not remain in the 

visual axis (Figure 3.7).  The paramagnetic microspheres, which were manipulated 

with a hand-held magnet, were also not associated with any cases of intraocular 

haemorrhaging.   
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These observations indicate that post-injection manipulation of the 

paramagnetic microspheres is required for the safe and reliable induction of an 

elevation in intraocular pressure.  This is a crucial observation as it validates the 

hypothesis underlying the mechanism of the model – that the distribution of 

microspheres around the iridocorneal angle is an important element of a stable 

intraocular pressure elevation. 
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 Figure 3.3  Paramagnetic microsphere injection without magnetic manipulation produces 

erratic or minimal elevation in intraocular pressure.  (A) Mean intraocular pressure elevation 

profile of two animals injected with 10µl of Corpuscular microsphere solution; error bars are 

standard deviations.  Both animals developed an elevation of intraocular pressure one day after 

injection (mean=21.4mmHg, n=2 animals).  By day two there was no significant difference between 

the uninjected, control eye and the injected eye until day twenty where there was a mean pressure 

elevation of 10.8mmHg (11.4mmHg and 10.2mmHg).  Over the twenty days, the mean intraocular 

pressure of the injected eyes (Mean=28.48mmHg, SD=10.01mmHg) was not significantly different 

from that of the uninjected, control eyes (Mean=26.37mmHg, SD=4.2mmHg, p=0.09 Mann-Whitney 

U).  (B – C) Individual intraocular pressure elevation profiles for 2 animals injected with 20µl of 

microspheres without magnetic manipulation.  One animal (B) developed an elevation in intraocular 

pressure of 29.4mmHg at day one following injection.  This elevation dropped to 6mmHg at day two 

and no further elevation was observed.  The mean intraocular pressure over the twenty day time 

period for the microsphere-injected eye (mean=24.07 – mmHg, SD=10.94mmHg) was not 

significantly different from that of the uninjected, control eye (mean 20.31=mmHg, SD=4.03mmHg, 

p=0.10 Mann-Whitney U).  The other animal in this group developed an increase in intraocular 

pressure, varying from -0.8mmHg to +40.8mmHg over the first 6 days following injection.  However, 

the animal also manifested a number of health problems associated with the injection (See figure 

3.4). 
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Figure 3.4 Magnetic manipulation is required for the safe administration of paramagnetic 

microspheres into the anterior chamber of the eye.  Arrows indicate the position of the injected 

beads, with marked neovascularization present in the inferior aspect of the cornea.  Arrow head 

shows a pool of blood resting on the beads.  The dotted line indicates the ‘Tide mark’ left by the 

beads as they moved around in the eye of the animal.  The starred line indicates the position of the 

pupil, note the deformation of the pupil; at the inferior aspect, which may result from the adherence of 

beads to the iris.  There is a noticeable corneal ectasia at the level of the beads indicated by the shift 

in light reflection, highlighted by the black box.  Markings indicate nasal (N), superior (S), temporal (T) 

and inferior (I) aspects of the eye. 
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Figure 3.5  Bead injection without magnetic manipulation causes pooling of free beads in the 

inferior aspect of the iridiocorneal angle.  Arrow indicates beads resting at the inferior aspect of the 

anterior chamber, and dotted lines delineate the motile beads that roll around the eye during normal 

animal movement.  Markings indicate nasal (N), superior (S), temporal (T) and inferior (I) aspects of 

the eye. 
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Figure 3.6 Magnetic manipulation of paramagnetic magnetic microspheres is required to 

induce an elevation in intraocular pressure.  Mean intraocular pressure elevation over fourteen 

days of 5 animals injected with paramagnetic microspheres and not manipulated with a magnet.  Un-

injected, contralateral eyes had a mean pressure of 27.08mmHg (SD=3.3mmHg, n=5 animals).  The 

intraocular pressure of eyes which received injections of paramagnetic microspheres without 

magnetic manipulation were not significantly elevated with a mean intraocular pressure of 28.9mmHg 

(SD=3.2mmHg, p>0.05 by Mann-Whitney U test, error bars are standard deviations). 
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Figure 3.7 Bead injection with magnetic manipulation results in an even distribution of beads 

around the iridocorneal angle.  Following the manipulation of paramagnetic microspheres with a 

hand-held magnet, beads were trapped in the trabecular meshwork, preventing pooling of beads at 

the inferior angle.  Moreover his was associated with an absence of ocular haemorrhage and corneal 

ectasia.  There is no apparent vascularisation of the cornea or deformation of the pupil, and the beads 

are uniformly distributed around the circumference of the irirdocorneal angle as indicated by the 

dotted lines.  The absence of motile beads in the anterior chamber following magnetic manipulation is 

indicative of a more efficient distributio,n which helps to explain the greater elevation of intraocular 

pressure produced. 
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3.3.4 Microsphere injection 

It was necessary to ascertain whether injection of balanced salt solution in 

conjunction with exposure to a magnetic field could illicit an increase of intraocular 

pressure to confirm that it was the paramagnetic microspheres that were responsible 

for any observed increase.  To that end, five animals were injected with 20µl of 

balanced salt solution (Alcon, US) into the anterior chamber, and the eye was 

treated with the hand-held magnet similarly to the standard protocol.  The mean 

intraocular pressure of the injected eyes over a fourteen day period was 30.0mmHg 

compared to a mean control pressure of 26.1mmHg (Figure 3.8), which indicated an 

elevation of 3.9mmHg that was not statistically significant when compared with a 

Mann-Whitney U test (p>0.05).  These results indicate that balanced salt solution 

vehicle and exposure to a localised magnetic field are not sufficient to induce an 

elevation in intraocular pressure.  This is an important determination in the use of 

this model as it eliminates the vehicle and procedures involved in the method as 

potential confounders in the proposed mechanism of paramagnetic microsphere 

induced intraocular pressure. 
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Figure 3.8 Vehicle injection and magnetic manipulation are not sufficient for a significant 

elevation in intraocular pressure.  Graph showing the mean intraocular pressure elevation in five 

animals that underwent unilateral, balanced salt solution injections.   The mean intraocular pressure 

of eyes injected with balanced salt solution was 30.0mmHg with a standard deviation of 3.2mmHg.  

This compares to a mean intraocular pressure in the contralateral, uninjected eyes of 26.1mmHg with 

a standard deviation of 2.9mmHg.  There was no significant difference between eyes which 

underwent balanced salt solution and exposure to a magnetic field and contralateral, untreated eyes 

over a fourteen day period when pressures were compared with a Mann-Whitney U test(n=5, error 

bars are standard deviations). 
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3.4 Microsphere toxicity 

To determine whether the paramagnetic polystyrene microspheres are toxic to 

neuronal cells, SH-SY5Y neuroblastoma cells were incubated with the microspheres 

for 48 hours and cell viability was measured by an MTT viability assay.  With a 

microsphere concentration of 2x106/ml, at a ratio of 66.67 microspheres to SH-SY5Y 

cells, the beads induced 20.1% (SD=3.898, p<0.05, t-test, figure 3.9, n=3) cell death, 

whilst the positive controls for cell death, H2O2 and 0.1% Triton-X, induced 34.7% 

(SD=1.784, p<0.01) and 90% (SD=0.714, p<0.005) cell death, respectively.  The 

greatest number of microspheres injected into a single eye was 8x106 (10µl injection 

of 8x108 Invitrogen microspheres/ml). Assuming that 10% of all injected 

microspheres leak from the anterior chamber of the eye into the vitreous chamber, 

there would be up to 8x105 microspheres in the vitreous chamber.  Assuming that 

there are, on average 86,282 (Fileta et al. 2008) retinal ganglion cells in the retina of 

a brown Norwegian rat, this would produce a ratio of 9.27 microspheres per retinal 

ganglion cell.   

This is a worst-case scenario for estimating the level of microsphere toxicity, 

as it assumes a very high level of microsphere efflux that has not been observed 

during these experiments (See figure 3.7).  This scenario also assumes that all 

microspheres entering the vitreous chamber associate with retinal ganglion cells.  

This is unlikely as retinal ganglion cells constitute only a minority of the cells in the 

retina.  In addition, there is no reason to suspect that microspheres would be able to 

migrate through the dense vitreous humour.  Even in this worst-case scenario, the 

ratio of microspheres to retinal ganglion cells is below that at which microspheres are 

observed to cause toxicity.  This is an important observation for the use of 
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paramagnetic microspheres in a model of glaucoma as it establishes that the 

microspheres themselves are not responsible for any toxicity observed in the model. 

 

Figure 3.9.  At elevated concentrations, paramagnetic microspheres exhibit minimal toxicity. 

SH-SY5Y cell viability was not significantly reduced compared to the freshly seeded wells  (100% 

viabilty) when cultured with Invitrogen microspheres at concentrations lower than 2x10
6
 microspheres 

per well.  At 2x10
6
 microspheres per well, there was a 20.1% (SD=3.89%, two sample t-test, p<0.05, 

n=3) reduction in cell viability.  This compares with reductions  of 34.7% (SD=1.78%, p<0.01) and 

90% (SD=0.71%, p<0.001) in cells cultured with H2O2 and Triton-X®, respectively.   These data show 

that at microsphere to cell ratios of lower than 66.67:1, there is no observable toxicity associated with 

paramagnetic microspheres. 
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3.5 Discussion 

In this chapter, I have detailed how injection and manipulation of 

paramagnetic microspheres can induce a sustained elevation in intraocular pressure.  

I have controlled for each factor of the procedure: the act of injecting carrier solution, 

injection of paramagnetic microspheres and magnetic manipulation.  None of these 

factors is sufficient to induce an elevation in intraocular pressure on its own, 

However, the entire procedure induces a sustained and significant elevation in 

intraocular pressure.  The results of these control experiments were included in the 

initial publication of this model by  Samsel et al. (2011).  It should be noted that the 

use of paramagnetic microspheres does not interfere with rebound tonometry.  The 

rebound tonometer uses a metal probe, which is propelled towards the eye by a 

magnetic field, to determine the intraocular pressure.  The magnetic field used to 

propel the probe is contained within the hand-held device, which does not come into 

direct contact with the eye.  The paramagnetic nature of the microspheres means 

they do not generate a magnetic field.  These facts indicate that there is no direct 

interaction between the probe (or it’s associated magnetic field) and the 

paramagnetic microspheres injected into the eye. 

When discussing existing models of glaucoma that utilise microsphere 

injection, it should be noted that in several studies using polystyrene microspheres 

the intraocular pressure was measured with a Tonopen XL ®.  This device has a 

contact surface of 1cm3.  This is exceedingly large compared to the cornea of a 

rodent eye and would result in the surface of the probe contacting cornea which has 

microspheres resting on it, this would undoubtedly have influenced the measured 

intraocular pressure.  For this reason, during model development, I used the 

TonoLab ® (Tiolat, Finland) tonometer, which uses much smaller probes (1mm 
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diameter).  A previous study carried out in this lab (Prashar et al. 2007) showed that 

positional inaccuracies when using the TonoLab® have no significant impact on the 

measurement of intraocular pressure.  However, this study identified that the first 

measurement obtained with the TonoLab was significantly different from following 

measurements.  For this reason, a total of six measurements were taken and the first 

was discarded to leave five comparable measurements for each time point. 

One potential drawback of the model may be the presence of a spike in 

intraocular pressure following injection.  Although this did not cause a noticeable 

increase in retinal ganglion cell death, which continued over time, it is possible that 

this initial elevation triggers both chronic and acute stressors within the retina.   

Beyond the formation of a self-sealing corneal incision, the injection of 

paramagnetic microspheres is a relatively simple procedure.  As I had no prior 

surgical experience and was able to become proficient in the implementation of the 

model, it is reasonable to surmise that there is little technical challenge to the 

implementation.  With this in mind, it is reasonable to suggest that a titration of 

beads, where repeated and progressively smaller injections are used, induces a 

more gradual rise in intraocular pressure. The only likely confounder observed during 

the use of this model thus far, is that animals have typically adapter to the increase 

in intraocular pressure, which has typically fallen over a period of approximately 

fourteen days. The ease of use of this model has other benefits such as reducing the 

potential for mistakes which may lead to unnecessary animal culling or confounding 

factors resulting from damaged blood vessels, which may occur in episcleral vein 

injection or laser cautery models. 
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The data presented in this chapter establish that the injection of paramagnetic 

microspheres into the anterior chamber can reliably induce an elevation in 

intraocular pressure.  It is also established that paramagnetic microspheres are not 

directly toxic to neuronal cells and therefore the retinal ganglion cell toxicity observed 

can be attributed to the increase in intraocular pressure. 

Injecting the paramagnetic microspheres without magnetic manipulation 

established that the beads themselves were insufficient to sustain an elevation in 

intraocular pressure.  This experiment also demonstrated that, without manipulation 

post-injection, microspheres follow gravity and sink to the inferior aspect of the 

anterior chamber. This replicates observations made in other models that are based 

on polystyrene microspheres.  The effect of magnetic manipulation is to greatly 

increase the efficiency of the microsphere distribution at the iridocorneal angle, 

improving the induced intraocular pressure.  This is achieved while reducing 

damaging and potentially confounding side-effects to the front of the eye.  Further 

control experiments established that the elevation in intraocular pressure shown in 

this model is caused specifically by by the paramagnetic microspheres. This was 

achieved by showing that injection of vehicle solution and magnetic manipulation 

alone are insufficient for the induction of an elevation in intraocular pressure.   

The proposed method of action for this model is that, upon injection of vehicle 

solution, the anterior chamber of the eye increases in volume temporarily.  This has 

the effect of increasing the iridocorneal angle.  The injected paramagnetic 

microspheres are then drawn into the angle with the hand-held magnet.  As the 

vehicle solution drains from the eye, the angle returns to normal, trapping the 

microspheres in place; this effect is illustrated in figure 3.7.  The use of a self-sealing 

incision prevents excess fluid leaving the eye through the injection site.  This may 
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lead to some microspheres coming free from the angle in the time it takes the excess 

fluid to drain via the trabecular meshwork.  These beads would then sink to the 

inferior aspect of the eye.  This may be responsible for the slightly greater amount of 

beads in the inferior aspect observable in figure 3.7.  The self-sealing incision is 

necessary, however, to prevent collapse of the anterior chamber.  This would lead to 

an efflux of beads through the injection site and a drop in intraocular pressure.  The 

drawbacks to the use of the self-sealing incision are, however, minimal.  Beads are 

present at all aspects of the iridocorneal angle and beads at the inferior aspect are 

not motile and are effectively trapped in the trabecular meshwork.   

This model represents a reliable, reproducible and technically straightforward 

way of elevating intraocular pressure in the laboratory rat.  It was crucial to establish 

this and properly control for all aspects of the surgical procedure in order to be able 

to examine the role of complement in glaucomatous retinal ganglion cell loss.  Using 

this model, I will examine the activation of the complement cascade in the 

glaucomatous retina.  The use of an inducible model of hypertonic glaucoma will also 

allow me to pre-treat diseased retinas with an inhibitor of the classical complement 

cascade and allow me to test the hypothesis that activation of the classical 

complement cascade is a mediator of damage in glaucomatous optic neuropathy. 
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Chapter Four: Complement Activation in Experimental Glaucoma 
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4.1 Introduction 

The early components of the classical cascade of complement activation, up to the 

point of the formation of a stable C3 convertase enzyme have been identified in 

human and animal glaucoma (Howell et al., 2011; Tezel et al., 2010).  To establish if 

comparable processes are activated in our model of glaucoma, I will carry out 

Immunofluorescent labelling using an antibody which specifically binds to the 

activated fragments of C3 – C3b and iC3b.  This will allow me to detect not only an 

increase in the native protein, as has been found by others, but an increase in 

proteolytic activity indicative of opsonisation and cell clearance by the complement 

system.   

It is important to establish that there is cell loss and neuronal degeneration in 

this model as these as these are hallmark features of glaucoma.  In order to detect 

changes in the neuronal integrity of retinal ganglion cells in glaucoma, I will use 

antibodies for marker of post-synaptic density (PSD95).  This will be accompanied by 

retinal ganglion cell counting, facilitated by nuclear counterstaining with ToPro-3-

iodide® (Invitrogen UK, UK) labelling.  Changes in the relative amounts of activated 

complement components and dendritic synapses, as measured by PSD95, will help 

to establish if there is a relationship between complement activation and dendritic 

pruning in glaucoma.     

These experiments will help me to identify the extent of complement activation 

in glaucoma and determine if that activation is associated with a loss of neural 

connectivity and apoptosis.   
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4.2 Methods 

4.2.1 Immunofluorescent staining of wholemounted retina  

Retinas were fixed with 4% paraformaldehyde for 1 hour at room temperature, 

submerged in rising concentrations of sucrose from 10, 20 and 30% in order to add 

rigidity to the retina to ensure it survived immunofluorescence intact.  Each retina 

was placed on a slide and circled with a hydrophobic pen (Sigma-Aldrich, UK) which 

was allowed to dry before immunofluorescent staining. 

Prior to staining a drop of 1% solution of Triton X detergent (Sigma-Aldrich) in 

phosphate buffered saline was placed on the retinas for 24 hours at 4°C.  This 

solution was pipetted off and a blocking solution consisting of 10% donkey serum in 

phosphate buffered saline was added to the slide.  The blocking solution was made 

by diluting 1ml of donkey serum with 9ml of phosphate buffered saline.  This solution 

was left on for 1 hour at room temperature before being pipetted off. 

Primary antibody solution (summarised in table 2) consisted of 1 part in 50 

monoclonal mouse antibody to rat C3b/iC3b and 1 part in 100 polyclonal rabbit 

antibody to rat neuronal marker PSD95, diluted in phosphate buffered saline.  One-

hundred and twenty-five microlitres of primary antibody solution was added to each 

retina and incubated at room temperature for 24 hours in a humidity chamber.  The 

primary antibody solution was then washed off by rinsing with phosphate buffered 

saline three times. 

Secondary antibody solution (summarised in table 3) was then added 

consisting of 1 part in 100 each of donkey anti-mouse antibody ab2 fragment 

conjugated to AlexaFluor®-594 (Invitrogen UK, UK) and donkey anti-rabbit antibody 

ab2 fragment conjugated to AlexaFluor®-488 (Invitrogen, UK).  The secondary 
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antibody solution was incubated for 24 hours at room temperature and then pipetted 

off.  Wholemounts were washed three times in phosphate buffered saline for two 

minutes at room temperature and mounted with ProLong Gold ® anti-fade reagent 

(Invitrogen, UK) prior to imaging. 

For the wholemounted retinal immunofluorescence, ab2 fragments were used 

as the secondary antibodies in order to minimise non-specific binding of the 

fragment-c region of the secondary antibodies to glycose amino glycans in the retina. 

Fluorescent images were acquired and measurements of secondary antibody 

detection were acquired as described in section 2.8.2 Immunofluorescence. 

4.2.2 Cell counting 

To give an indication of cell loss in the experimental retinas labelled with wholemount 

immunofluorescence, cell counts were taken from the retinal ganglion cell layer of 

each retina.  To ensure a homogenous distribution of retinal tissue, 6 regions of 

interest (ROI) were taken from approximately 1.5mm from the optic nerve head, 

three from the superior aspect of the retina and three from the inferior aspect, 

approximately sixty degrees apart.  The colour channel representing the ToPro-3-

iodide® (Invitrogen UK, UK) nuclear counterstain was then isolated and the number 

of cell nuclei present in each region of interest were counted manually. 

4.2.3 Statistical analysis 

Intraocular pressure measurements were analysed as described in section 2.11.1.  

Retinal ganglion cell counts and grey value measurements were normally distributed.  

These values were therefore compared using a paired 2-tailed student t-test.  
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4.3 Immunofluorescence and cell counts in sections of glaucomatous 

and control retinas 

 4.3.1 Intraocular pressure elevation 

Of ten animals injected, five developed a significant increase in intraocular pressure 

following the first microsphere injection at day zero, these animals were culled at day 

16.  The remaining five animals were given a second injection at day 21.  Of the five 

animals that received two injections, three maintained an intraocular pressure 

elevation for sixteen days and were killed on day thirty-seven.  The eight animals 

with an intraocular pressure elevation were included in the study, and the elevation 

for each animal was calculated from the date of the injection preceding the elevation.   

In those eight animals, the mean intraocular pressure of the injected eyes was 

31.60mmHg (SD=4.5mmHg) compared to a mean intraocular pressure of 

21.33mmHg (SD=3.75mmHg) in the contralateral, uninjected eye.  This corresponds 

to a mean intraocular pressure elevation of 10.27mmHg. The eight animals were 

then culled and retinal sections were prepared as described in section 2.5.   
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 Figure 4.1 – The difference in intraocular pressure between the microsphere-injected and un-

injected control eyes of the eight animals used for frozen section immunofluorecence.  (A) 

Mean intraocular pressure elevation of all eight animals used in the study.    The mean intraocular 

pressure of the eight microsphere injected eyes was 31.60mmHg (SD=4.5mmHg) compared to a 

mean intraocular pressure of 21.33mmHg (SD=3.75mmHg) in the contralateral, uninjected eye over 

the thirty-seven days of the study.  (B) A representative intraocular pressure elevation profile for a 

single animal which required reinjection at day 21 (arrow).  (C) An example elevation profile for a 

single animal which developed a sustained intraocular pressure elevation from a single injection.  

Error bars = standard deviation.  
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4.3.2 Retinal ganglion cell counts were reduced and complement 

component detection was increased in glaucomatous retinal sections 

Retinal ganglion cell counts (taken as described in section 2.8.2) were reduced by 

38% in sections of glaucomatous retinas compared to sections of control retinas 

(Mean=10.88 SD=1.9 and Mean=17.58 SD=1.2 retinal ganglion cells per 100µm of 

retinal ganglion cell layer, p<0.01 n=8 animals). Immunofluorescence was detected 

in the inner plexiform layer and retinal ganglion cell layer of all sections at varying 

levels by measuring the grey values of the colour channel corresponding to the 

relevant fluorophore.  Although levels of detected C3b/iC3b (in the red channel) and 

C9 (green channel) were higher in glaucomatous retina than in control retina 

(Mean=9.96AU, SD=1.5AU and Mean=4.33AU, SD=2.2AU compared to 

Mean=6.32AU, SD=1.6AU and Mean=2.66AU, SD=1.4 respectively) these 

differences were not statistically significant (Figure 4.2).  Sections stained with 

antibodies to C1q (1 part in 100 rabbit anti-rat C1q primary antibody, labelled  with 

donkey anti-rabbit antibody conjugated to AlexaFluor®-488), alone showed that the 

molecule could only be detected in glaucomatous tissue (Figure 4.3 – Staining 

courtesy of Dr Claudia Calder). 



P a g e  | 92 

 

 

 

Figure 4.2 – Levels of C3b/iC3b and C9 in the inner plexiform and ganglion cell layers are 

elevated in glaucoma, accompanying a reduction in ganglion cell number. Counts of retinal 

ganglion cell counts, labelled using ToPro®-3-iodide, were reduced by 38% in sections of 

glaucomatous retinas (Mean=10.88 cells per 100µm SD=1.9, n=8 animals) compared to sections of 

control retinas (Mean=17.58 cells per 100µm, SD=1.2, p<0.01).  Although levels of C3b/iC3b (red, 

Mean=9.96AU SD=1.5AU and  Mean=6.32AU SD=1.6, n=8 retinas) and C9 (green, Mean=4.33AU 

SD=2.2AU and Mean=2.66AU SD=1.4, n=8 retinas) were elevated in glaucomatous retinas compared 

to controls, these results were not statistically significant.  The ganglion cell, inner plexiform and inner 

nuclear layers are labelled (GCL, IPL and INL respectively) scale bar = 50µm.   
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Figure 4.3 C1q immune reactivity is specific to glaucomatous retinas.  C1q was detected in all 

eight glaucomatous retinas whereas no reactivity was observed in retinas from contralateral, 

normotensive eyes.  Staining was detected throughout the ganglion cell layer (GCL), inner plexiform 

layer (IPL) and inner nuclear layer (INL), scale bar = 50µm. 
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4.4 Detection of activated complement components in wholemounted 

retinas is elevated in glaucoma 

4.4.1 Intraocular pressure elevation 

Of the ten animals injected, nine developed a significant increase in intraocular 

pressure, with a mean contralateral, uninjected intraocular pressure of 28.18mmHg 

(SD: 4.65mmHg).  This compares to a mean intraocular pressure in the microsphere 

injected eyes of 44.22mmHg and a mean elevation of 16.03 mmHg (SD=3.16, n=9, 

survival time 14 days, p<0.05 as measured by Mann-Whitney U test figure 4.4).  The 

nine animals which developed an elevated intraocular pressure were culled, and 

retinas were prepared as described in section 2.6 Retinal dissection.  Retinas were 

then immune-labelled for activated fragments of complement component 3 and 

PSD95 as described in section 4.2.1 Immunofluorescent staining of wholemounted 

retina. 
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Figure 4.4 Intraocular pressure was elevated in nine animals injected with paramagentic 

microspheres. (A) Mean intraocular pressure elevation profile of the nine animals used for 

immunofluorescent labelling C3b/iC3b and PSD95.  The mean elevation in the microsphere-injected 

eyes of the nine animals, across the fourteen days was 16.03mmHg (SD=3.16mmHg, p<0.05 as 

measured by Mann-Whitney U test) over a mean contralateral, uninjected pressure of 28.18mmHg 

(SD=4.65mmHg) across the fourteen day time period.  Error bars are standard deviation. (B) 

Representative intraocular pressure elevation profile from a single animal with a mean intraocular 

pressure elevation of 25mmHg (SD=5.25mmHg) across the fourteen day time period.  Elevation is 

calculated by subtracting the mean intraocular pressure of the control, uninjected eye from that of the 

mean pressure of the microsphee injected eye at each time point.  As such, there is no measurement 

of deviation for a single animal at a single time point.  
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4.4.2 Retinal ganglion cell counts and grey scale values 

Retinal ganglion cell loss in glaucomatous retinas was 30.58% compared to controls 

with a mean of 327cells/ROI (SD=11.2) in controls compared to a mean of 

227cells/ROI (SD=19.86) in glaucomatous retinas (p<0.01, n=9 animals).  This was 

measured at 1.5mm from the optic nerve head in a 393.54µm2 field of view.  Grey 

scale values associated with detection of C3b/iC3b deposition in the inner plexiform 

layer indicated a significant increase in glaucomatous eyes (mean=185AU, 

SD=11.19AU) compared with the control eyes (mean=154AU, SD=10.72AU) 

(p<0.05).  A corresponding reduction in PSD95 detection (mean=1170 SD=76.05AU) 

in the inner plexiform layers of glaucomatous retinas compared to control retinas 

(mean=1682AU SD=97.2AU, p<0.001) was observed (figure 4.5).  To explore the 

relationship between synaptic integrity, as measured by PSD95 labelling in the inner 

plexiform layer and complement activation, a Spearman’s rank correlation coefficient 

was calculated using Microsoft (US) Excel software.  PSD95 and C3b/iC3b immuno-

reactivity showed a significant negative correlation (r2=-0.7857, p<0.05). 
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Figure 4.5  Immunoflourescent detection of C3b/iC3b is increased and detection of PSD95 is 

deceased in glaucomatous retinas.  (A-F) Virtual cross-sections from wholemounted retinas 

showing mean pixel intensity through the x-axis of the 3-dimensional confocal image, revealing retinal 

histology. Arrow heads show the retinal ganglion cell layer and arrows show the inner plexiform layer.   

(A-B) Nuclear counterstain showing approximate position of the retinal layers throughout the 

wholemount..  (C-D) Detection of PSD95 in control and galucomatous retinas.  (E-F) Detection of 

C3b/iC3b fragments.  (G-H) View of the retinal ganglion cell layer through the y axis illustrating the 

reduced density of the retinal ganglion cell population in the glaucomatous retina compared to the 

control retina. (I) Decrease in detection of PSD95 from a mean of 1682AU (SD=97.2AU, n=9 animals) 

in control retinas to 1170AU (SD=76.05) in glaucomatous retinas (p<0.001).  Increase in detection of 

C3b/iC3b from a mean of 154AU (SD=10.72) in control retinas to 185AU (SD=11.19) in glaucomatous 

retinas (J) (p<0.05).  Decrease in retinal ganglion cell counts (K) from a mean of 327 cells/ROI 

(SD=11.2) to 227 cells/ROI (SD=19.86) in glaucaomtous retinas (p<0.01).  Grey values and retinal 

ganglion cell counts were normally distributed and compared with a paired two-tailed t-test. 
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4.5 Discussion 

Up-regulation and activation of classical complement cascade components has been 

reported in glaucomatous human (Tezel et al. 2010) and animal (Kuehn et al. 2006; 

Stasi et al. 2006; Howell et al. 2011) retinas as well as neuronal cell lines under 

conditions similar to glaucoma (Khalyfa et al, 2007).  Establishing whether or not 

complement is activated in this model of glaucoma was essential if the model was to 

be useful in modelling the role of complement in retinal ganglion cell loss in 

glaucoma.   

An increase in the level of activated complement fragments deposited in the 

glaucomatous retina, as measured from Immunofluorescent staining of 7µm thick 

frozen retina sections was not statistically significant regarding.  However, the trend 

observed is in agreement with both the literature and the data from immune-labelled 

wholemounts.  The apparent reduced power of the results from thin, frozen sections 

may be a result of the high loss of retinal ganglion cells in those retinas.   The results 

here showed a 38% reduction in retinal ganglion cell counts.  This is high compared 

to other models, which have a cell loss of between 10-20% (Libby et al., 2005; 

Morrison et al,. 1997; Quigley & Anderson, 1976).  The nuclear counterstain used 

here – ToPro®-3-iodide – binds to double stranded DNA and as such will stain all 

cells with a viable nucleus.  As glaucomatous retinal ganglion cells undergo a 

prolonged period of atrophy prior to apoptosis (Weber & Zelenak 2001), it is 

reasonable to expect that a large proportion of surviving cells had degenerated to 

varying degrees.   

Apoptotic retinal ganglion cells are taken up by microglia (Tremblay et al., 

2010).  This may have the effect of masking the epitopes on the retinal ganglion 
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cell’s surface from detection by immunofluorescence. Complement activation is 

reported to be an early event in glaucomatous optic neuropathy (Howell et al. 2011), 

and components of the complement cascade readily bind microglia (Collier et al., 

2011; Stevens, 2011).  It is therefore reasonable to expect that retinal ganglion cells 

which express complement components will be cleared before those which do not.  

The removal of retinal ganglion cells by microglia and the atrophy of remaining cells 

may have the effect of reducing the complement epitopes that can be detected by 

immunofluorescence.  

As such, it was decided that in subsequent experiments the time course 

should be more closely regulated and, where possible, thicker tissue sections should 

be used.  It was with this in mind that immunofluorescence on wholemounted retinas 

was undertaken.  Direct complement-mediated lysis was not expected to be a major 

contributory factor to retinal ganglion cell loss.  In order to determine if retinal 

ganglion cell atrophy observed in other models could be replicated by this model, 

anti-C9 antibodies were replaced with antibodies to PSD95.  This is a marker of 

postsynaptic density and will illustrate the extent of retinal atrophy occurring in this 

model.  The results revealed a significant increase in C3b/iC3b fragments in 

glaucomatous retinas and a corresponding decrease in the detection of post synaptic 

density marker 95.  Glaucoma-specific C1q reactivity in the retina indicates that the 

complement activation observed is a result of classical pathway activation and that 

the low-level C3b/iC3b detection in the control retina was a result of alternative 

pathway activation.  The significance of this will be discussed later.   

Some expansion of the eye could be observed, and it is possible that this 

could contribute to the apparent loss of retinal ganglion cell density in the retina.  

Treating the eye as a sphere and assuming that the surface area of the retina is 
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correlated to the surface area of the eye, the relationship of the size of the retina and 

the size of the eye should be 
 

 
   , where r is the radius of the eye.  This would make 

the percentage increase of the surface area of the retina twice that of any increase in 

eye radius.  Given the cell loss of 38% observed here this would require an increase 

in eye size of 15.365%.  The typical length of the rat eye is 6.29mm (Hughes 1979), 

meaning a global increase of 0.966mm could account for the entire decrease in 

retinal ganglion cell density observed.  However, a uniform and global increase is 

highly unlikely, given the structure of the eye, is more to expand most at its thinnest 

point, the centre of the cornea (Levin et al. 2011).  This would minimise the effect of 

retinal expansion at the posterior aspect of the eye.  Retinal ganglion cells are 

surrounded by a substantial network of proteoglycans and structural proteins, 

referred to as the perineuronal net (reviewed in Rhodes & Fawcett (2004)), which 

would act against the dispersion of retinal ganglion cells as a result of retinal 

expansion. 

With this in mind, however, future work that uses retinal ganglion cell loss 

observed in a given area should be accompanied by an alternative measurement of 

retinal ganglion cell atrophy.  This may include diolystic or similar labelling and may 

be accompanied by accurate measurements of the eye before and after the 

induction of hypertension. 

Here I establish that complement activation occurs in this model of 

experimental glaucoma by the detection of components specific for complement 

activation.  I also present evidence that this complement activation is mediated by 

the classical complement cascade as identified by the detection of glaucoma-specific 

C1 – the initiator molecule of the classical complement cascade.  To establish the 
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role this activation has in the pathophysiology of glaucoma, I will go on to examine 

the effects of complement deficiency on glaucomatous neurodegeneration.  In order 

to confirm that this complement activation is mediated by the classical complement 

cascade, I will use C1-inhibitor to specifically block that cascade.  This will also allow 

me to examine the possibility that glaucomatous neurodegeneration may be 

mitigated by complement inhibition.  
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Chapter Five: In Vivo and In Vitro Pressure Elevation in 

Complement Deficient Animals 
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5.1 Introduction 

In vitro hydrostatic pressure elevation on retinal explants and cell lines has been 

(Garcia-feijoo et al., 2009; Tezel & Wax, 2000; Yang et al., 2004) used to study the 

changes induced during glaucomatous damage extensively.  Models of C3 deficient 

mouse and C6 deficient rats were available to me.  These were utilised to elucidate 

the role of the various stages of the complement cascade in the progression of 

glaucomatous optic neuropathy. 

The aim of this chapter was to induce glaucoma in a C6 deficient rat strain 

and use in vitro hydrostatic pressure elevation in a C3 deficient mouse strain to 

determine the effects of complement deficiency on glaucomatous damage. {This 

strain, which is bred in-house from Jackson Laboratory (stock number 003641) is on 

a C57BL/6 background and was compared to C3 sufficient C57BL/6 mice.} 

The purpose of using both C3 and C6 deficient animals was to identify which 

if any stages of the complement activation after C1 have a role in retinal ganglion cell 

degeneration in glaucoma.  As the paramagnetic microsphere model of glaucoma is 

yet to be established in the mouse, I decided to use an in vitro model of hydrostatic 

pressure elevation.  This would mimic some of the changes induced by intraocular 

pressure in a manner similar to that used by other researchers (Ishikawa et al. 2010; 

Agar et al. 2006; Hernandez et al. 2000). 

C3 is involved in cell opsonisation and is essential for the formation of the 

membrane-bound terminal complement complex.  The opsonisation of cells by C3 is 

distinct from that by C1.  C3 functions via its degradation products C3b and iC3b to 

recruit macrophages at complement receptor 1 (Gonzalez et al. 2010), whereas C1 

binds antibodies (Roos & Daha 2002) and a putative receptor molecule, which is as 
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yet unidentified (Perry & O’Connor 2008b).  The sole effect of C6 is the formation of 

the active terminal complement complex (Peitsch & Tschopp 1991).  This means that 

any effects of the two genes on retinal ganglion cell fate in hypertensive glaucoma 

can be attributed to their respective functions in the classical complement cascade.  

In order to examine the role of complement in retinal ganglion cell degeneration in 

hypertensive glaucoma I used animal models of C3 and C6 deficiencies in the 

mouse and rat respectively.  This will give an indication as to the effects of these 

complement components in retinal ganglion cell degeneration. 
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5.2 Methods 

5.2.1 In vitro hydrostatic pressure elevation 

5.2.1.1 Pressure transducer calibration 

A glass burette was elevated using a metal clamp stand (Cole-Parmer, UK) and 

attached to 4mm diameter nylon tubing, which was connected to a pressure 

transducer (OmegaPX800-002GV,OmegaCorp, USA).  The output of the transducer 

was read by a USB analogue to digital converter (Futek, USA) with a refresh rate of 

20Hz and an accuracy of 0.001mV.  Fluid was introduced into the system using a 

50ml syringe attached to a two-way luer valve (Cole Parmer, UK).  

To produce a calibration curve, the burette was filled to the desired height, allowed to 

settle for 1 hour and adjusted if necessary.  The output voltage of the transducer was 

then measured over a period of 8 hours (Figure 5.1).   

 

5.2.1.2 Pressure elevation and culture 

Ames’ medium was prepared by dissolving a vial of dehydrated Ames’ medium 

(Invitrogen UK, UK) in 1 litre of deionised water.  The resultant medium was then 

autoclaved and allowed to cool before use. 

The pressure chambers shown in figure 5.2 were washed in 100% ethanol 

and air dried in a category 2 biosafety cabinet before being assembled by attaching 

the two segments of polymethylmethacrylate together using 80mmx5mm diameter 

screws (Maplins, UK).  The chamber was left open so that sufficient space was left in 

the centre to pipette 1.5ml of Ames’ medium (Invitrogen, UK) and place the culture 

dishes into the base of the culture dish chambers.   
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Six C3 deficient and eight C3 sufficient mice were culled by cervical 

dislocation.  Retinas were dissected from the eye cup, as described in section 2.6 

and flattened on to the culture dishes.  Culture dishes were rested on top of the 

Ames’ medium in the lower culture dish chamber (Figure 5.2A).  A 35mm diameter 

rubber O-ring (Maplin electronics, UK) was placed around the culture dish to create a 

seal around it.  The chambers were closed by tightening screws in the screw holes 

and fastening with a bolt and washer.  Luer stop cocks (Cole-Parmer, UK) were 

inserted into the fluid channels of the chamber and attached to the burette with 4mm 

diameter nylon tubing (Cole-Parmer, UK). The burette was filled with Hank’s 

balanced salt solution to a height of 136cm.  Once the output of the transducer had 

stabilized (±10mV), the stop cock was closed and the chamber incubated at 37°C for 

48 hours with the pressure reset and the culture medium changed every 12 hours. 
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5.3 Transducer output voltage consistently corresponds to burette fluid 

height 

A calibration curve was produced for the hydrostatic pressure apparatus (Figure 5.1).  

This curve shows a mean output of 5809mV (SD=0.01mV) at 1.5 metres of fluid 

height over eight hours (approximately 576,000 measurements), 5806.87mV 

(SD=0.01mV) at a fluid height of 1.36 metres (equivalent to 100mmHg) and 5801mV 

(SD=0.01mV) at 1 metre.  With no fluid in the system the voltage output of the 

transducer was 5780mV (SD=0.2mV).  The relatively small standard deviation of the 

output voltage of the transducer over 8 hours indicates that the system is suitably 

pressure-tight.  This indicates that the pressure within the system is consistent and 

that deliberate variation of the fluid height in the system can be accurately monitored.  

  

Figure 5.1 The system used for inducing an in vitro increase in hydrostatic pressure produces 

stable measurements between fluid heights of 1.5 and 1 metres.  Graph showing the mean output 

voltage of the pressure transducer at fluid heights of 1.5 down to 1 metres and in an empty system 

(zero metres).  The mean voltage of this 5809mV (SD=0.01mV – not visible on graph) at 1.5 metres, 

5806.87mV (SD=0.01mV) at (equivalent to 100mmHg), 5801mV (SD=0.01mV) at 1 metre and 

5780mV (SD=0.2mV) in an empty system. 



P a g e  | 108 

 
 

 

Figure 5.2 The chamber used for in vitro hydrostatic pressure elevation in mouse retinas.  (A) 

A diagram of the chamber used to house mouse retinas under elevated hydrostatic pressure.  The 

lower culture dish chamber housed the Ames’ medium while the upper section of the chamber housed 

the retinal culture dish.  The attachment screw holes were used to keep the two halves of the 

chamber in contact.  The fluid channels were attached to the burette containing Hank’s balanced salt 

solution, this produced the elevation in hydrostatic pressure.  Scale bar = 1cm.  (B) A photograph of 

the assembled chamber sealed with parafilm.    
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5.4 Glaucomatous C3-/- dendritic trees are significantly reduced 

compared to those of wild types 

There was no significant difference in the mean retinal ganglion cell Sholl plots from 

retinal ganglion cells from eight wild type and six C3 deficient control groups when 

compared using a two-sample Kolmogorov-Smirnov test .  As such, both groups 

were treated as a single control group consisting of 42 cells.  Compared to the mean 

Sholl plots of retinal ganglion cells from these normotensive retinas (AUC=142.59, 

n=42 cells, figure 5.3), retinal ganglion cells from eight wild type retinas cultured at 

elevated intraocular pressure had significantly reduced Sholl plots (AUC=99.384, 

n=42 cells, p<0.01).  The dendritic trees of retinal ganglion cells from six 

hypertensive C3 deficient retinas were significantly degraded compared to both 

hypertensive wild-type and normotensive C3-/- retinas and, in fact, few cells could be 

identified (AUC=35.2, n=12 cells, p<0.01).  This suggests that C3 expression may be 

protective against retinal ganglion cell degeneration associated with an elevation in 

hydrostatic pressure. 
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Figure 5.3 Retinal ganglion cell degeneration was exacerbated by C3 deficiency.  Representitive  

retinal ganglion cells from wild-type C57BL/6 (A-B) and C3 deficient (C-D) retinas cultured at 

atmospheric pressure (A, C) and elevated (to 100mmHg) pressure (B,D) showing a noticable 

degeneration in retinal ganglion cells from retinas cultured at an elevated pressure, scale bar=100µm.   

Mean Sholl plots for each group (E) show a degeneration in retinal ganglion cells from eight wild-type 

cultured at 100mmHg (AUC=99.38, n=42 cells) compared to those from eight retinas cultured at 

atmospheric pressure (AUC=142.59, n=42 cells, p<0.01) using the two-sample  Kolmogorov-Smirnov 

test.  Retinal ganglion cells from six C3 deficient mice cultured at 100mmHg had a significantly 

increased degeneration (AUC= 35.2, n=12 cells, p<0.01). 
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5.5 Intraocular pressure elevation in C6 deficient and wild-type Lewis 

rats 

Six animals from each group of C6 deficient and wild type Lewis rats received a 

unilateral injection of paramagnetic microspheres as described in section 2.5. All 

animals required a second injection of microspheres at day five to sustain an 

intraocular pressure elevation.  Following the second injection, a mean intraocular 

pressure elevation of 10.2mmHg (SD=3.25mmHg, p<0.01, Mann-Whitney U test) 

developed in the wild type animals and an elevation of 12.5mmHg (SD=4.54mmHg, 

p<0.01) developed in the C6 deficient animals (Figure 5.4).  The intraocular pressure 

elevations of the two groups was not significantly different (p=0.31, Mann-Whitney 

U).  This indicates that both groups had an equal probability of developing retinal 

ganglion cell degeneration associated with hypertensive glaucoma. 
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Figure 5.4 Wild-type and C6 deficient rats develop an equivalent elevation in intraocular 

pressure.  Neither group of six animals developed an increase in intraocular pressure following the 

first injection of paramagnetic microspheres.  At day five, following the second injection of 

microspheres, an elevation of intraocular pressure occurred in both groups.  An elevation of 

10.2mmHg (SD=3.25mmHg, p<0.01) was observed in wild type animals compared to an elevation of 

12.5mmHg (SD=4.54mmHg, p<0.01) in C6 deficient animals.  The elevation in intraocular pressure 

was significant in each group and was not significantly different between groups when compared by 

Mann-Whitney U test (p=0.31).  
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5.6 Glaucomatous C6-/- dendritic trees are significantly reduced 

compared to those of wild types 

There was no significant difference in the Sholl plots of retinal ganglion cells from the 

normotensive eyes of wild type Lewis and C6 deficient rats and both groups were 

treated as a single control group of 35 cells.  Retinal ganglion cells from six wild type 

animals with elevated intraocular pressure had significantly reduced Sholl plots 

(AUC=90.1, n=36 cells from 6 animals, p<0.01, two-sample Kolmogorov-Smirnov 

test) when compared to control cells (AUC=140.2, n=35 cells from 12 animals, figure 

5.5).  Similarly to C3 deficient retinal ganglion cells, those from C6 deficient retinas 

were significantly degraded compared to both control cells and complement 

sufficient hypertensive cells (AUC=56.5, n=12 cells from 6 animals, p<0.01).  These 

data show that C6 expression is protective against retinal ganglion cell degeneration 

associated with an elevation in intraocular pressure.   

Existing evidence (Miyahara 2003; Tezel et al. 2010) identifies an increase in 

the early components of the classical complement cascade (C1, C2 and C4), 

however no corresponding increase in the latter components is observed.  These 

observations, taken together, suggest that complement activation in the healthy 

retina proceeds by the alternative pathway, which turns over C3 in a way that is 

regulated by factor H.  In glaucoma, however, the classical complement cascade is 

initiated by the increase in levels of C1, C2 and C4 and the formation of the classical 

pathway C3 convertase C2aC4b.  C2aC4b is not regulated by factor H, but the 

formation of the molecule is regulated by the molecule C1 inhibitor, which has not 

been identified as being up-regulated in glaucoma.  It may be, therefore, that the 

complement mediated pathology associated with glaucoma is caused by the shifting 

of complement activation from the alternative to the classical pathway.  This may 
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explain why an increase in the total expression of C3 is not detected in 

glaucomatous retinas (Miyahara 2003).  It may that the same amount of native C3 is 

simply processed in a pathological and unregulated manner in the glaucomatous 

retina. The data presented here raises the possibility that the terminal complement 

complex may, at low levels, be responsible for the prevention of retinal ganglion cell 

apoptosis. 

 

  

Figure 5.5 Retinal ganglion cell degeneration was exacerbated by C6 deficiency.  Mean Sholl 

plots of retinal ganglion cells from six wild-type and six C6 deficient rats from eyes with elevated 

intraocular pressure and normotensive contralateral eyes from the same animals.  Retinal ganglion 

cells from eyes with elevated intraocular pressure were significantly degraded (AUC: 90.1, n: 36 cells) 

compared to control eyes (AUC: 140.2, n: 35 cells, p<0.01) using the two-sample Kolmogorov-

Smirnov test.  This degeneration was significantly worse in animals with C6 deficiency (AUC: 56.5, n= 

12 cells, p<0.01).  
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5.7 Discussion  

The lack of an available mouse model for in vivo induction of hypertensive glaucoma 

necessitated the use of an in vitro model of hydrostatic pressure elevation.  This 

model does have drawbacks as it necessitates the severing of the optic nerve head 

behind the retina, which would trigger uniform degeneration across the entire retinal 

ganglion cell layer in a manner not necessarily comparable to glaucomatous 

damage.  The use of cultured retinas is also not ideal as the retina will be under 

oxidative stress during the time it takes to excise the retina and place it in medium.  

To minimise the impact of using an in vitro system to monitor retinal degeneration, 

retinal dissections were performed as quickly as possible (2-3 minutes per retina) 

and both medium and perfusion gases were changed every 12 hours.  As both 

complement sufficient and deficient animals were treated identically, it is possible to 

draw conclusions regarding the role of complement in retinal degeneration by 

comparing data from these experiments. With the addition of retinal axonal disruption 

and hydrostatic pressure elevation, qualified conclusions can be drawn from these 

data regarding the role of complement in retinal ganglion cell loss in glaucoma. 

The C6 deficient animals used in this study were based on an albino strain of 

rat.  Albino animals have abnormal visual system development (Creel & Giolli 1976) 

and reduced protection from retinal light-induced toxicity (Wenzel et al. 2005).  Any 

impact albinism has on glaucomatous optic neuropathy has not been studied 

thoroughly.  There are case reports of individuals with both conditions, where 

glaucoma was secondary to a structural anomaly not related to albinism (Fivgas & 

Beck 1997),  and a study on albino glaucomatous quails suggests an increase in 

retinal ganglion cell loss (Takatsuji et al. 1988).  If albinism does increase 

glaucomatous optic neuropathy, then it may be via mechanisms distinct from those 
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that bring about glaucomatous optic neuropathy.  Although this is a potential 

confounder, the animals used in this study were housed in low light (90lux) for the 

duration of the experiment, which should have helped mitigate phototoxicity during 

the experiment. 

  Data presented here suggest that both C3 and C6 are neuroprotective in 

glaucomatous optic neuropathy.  This agrees with a growing body of evidence in the 

literature showing a neuroprotective role for the terminal complement complex in the 

central nervous system in response to insult (Monge et al., 1995; Rus et al. 2006; 

Soane, Cho, Niculescu, Shin, & Alerts, 2010; Tegla et al., 2009; Zwaka et al., 2002). 

The terminal complement complex activates the protein, response gene to 

complement 32 (RGC32) (Badea et al. 1998).  This has been shown to increase 

progression through the cell cycle by activation of the phosphatidylinositol 3-

kinase/akt pathway (Hila et al. 2001; Badea et al. 2002).  Melanopsin-containing 

retinal ganglion cells are resistant to glaucomatous optic neuropathy and other forms 

of injury (La Morgia et al. 2010).  This resistance is reportedly due to the activity of 

the phosphatidylinositol 3-kinase/akt pathway (Li et al. 2008).  Similarly, the 

neurotrophic activity of brain-derived neurotrophic factor in the central nervous 

system is also reported to be mediated by the phosphatidylinositol 3-kinase/akt 

pathway (Almeida et al. 2005).   Disruption in the transport of this molecule has been 

implicated as a mechanism underlying retinal ganglion cell death in glaucoma 

(Quigley et al. 2000; Ko et al. 2001).  Inhibition of this pathway has also been shown 

to be detrimental in rat models of acute ocular hypertension (Y Huang et al. 2008; 

Yao Huang et al. 2008). 
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This evidence in the literature suggests a strong link between the 

phosphatidylinositol 3-kinase/akt pathway and neuroprotection in glaucoma.  The 

present results suggest that inhibition of the later stages of the complement 

cascades worsens retinal ganglion cell loss in retinas subjected to elevated 

hydrostatic pressure.  This supports the assertion that RGC32 is a mediator of 

neuroprotection in retinal ganglion cells in glaucomatous optic neuropathy. 

The work presented in this chapter indicates that downstream components 

common to all complement cascades are involved in retinal ganglion cell 

degeneration in glaucoma.  As the classical complement cascade has been 

specifically implicated in the literature as an early event in glaucoma, it is important 

to understand the role of this cascade.  To determine the specific role of the classical 

complement cascade, I will utilise the model of glaucomatous retinal degeneration 

developed in chapter 3.  In chapter 4, I established that complement activation was 

occurring in this model and was associated with a loss of retinal ganglion cells.  To 

determine whether or not classical complement activation is a causative factor in 

retinal ganglion cell degeneration in this model, I will inhibit the classical complement 

cascade in presence of ocular hypertension in vivo. 
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Chapter Six: Inhibition of the classical complement cascade in 

experimental glaucoma. 
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6.1 Introduction 

The classical pathway of complement activation has been implicated as a potential 

causative agent in glaucomatous optic neuropathy (Howell et al. 2011; Stevens et al. 

2007; Tezel et al. 2010; Kuehn et al. 2008).  Further to this, this classical 

complement cascade has been shown to be essential for synaptic refinement in the 

central nervous system (Stevens et al., 2007, Stevens et al., 2011).  This is only of 

functional use with regards to the treatment of glaucoma if manipulation of the 

complement system can bring about neuroprotection in vivo.   

Complement inhibition has been used extensively in a therapeutic setting and 

experimental models of disease (Copland et al. 2010; Morgan & Harris 2003).  One 

of these agents, C1 inhibitor (Bork & Barnstedt 2001), regulates the classical 

complement cascade by blocking the formation of an complete and active C1 

molecule.  The aim of these experiments was to determine if the administration of 

C1-inhibitor reduces axonal and or dendritic degeneration of retinal ganglion cells in 

our animal model of hypertensive glaucoma.  It has been established in the literature 

that up-regulation of the components of C1 is an early event in glaucomatous 

damage in the human disease and in animal models (Howell et al. 2011; Tezel et al. 

2010) however there is currently no direct evidence that the classical pathway of 

complement activation is a causative factor in retinal degeneration.  

 Human C1 inhibitor has been shown to effectively inhibit the classical 

complement pathway in the rat (Ramaglia et al. 2007), as such is suitable for use as 

an inhibitor of the classical complement cascade in our rat model of glaucoma.  In 

this experiment I aimed to determine if the classical complement pathway is a 

mediator of glaucomatous optic neuropathy and if C1 inhibitor is a realistic treatment 
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option for neuroprotection in glaucoma.  To that end, animals were given intravitreal 

injections of the C1-inhibitor protein.  These animals were then culled at different 

time points and, the retinas were immunolabelled for the protein to determine if it 

could permeate the neural retina.  Following this, animals were pre-treated with 

intravitreal injections of human C1-inhibitor prior to the induction of hypertensive 

glaucoma.  These injections were repeated at regular intervals throughout the course 

of the experiment to sustain the levels of the C1-inhibitor protein in the retina.  
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6.2 Chapter methods 

6.2.1 Intravitreal injections 

In total, twenty-eight animals underwent intravitreal injection.  Sixteen animals were 

injected with human C1-inhibitor and four of these animals were culled to determine 

the permeation of C1-inhibitor into the neural retina. The remaining fourteen animals 

in this group were used to study the effect of C1-inhibitor on dendritic atrophy in 

hypertensive glaucoma. Twelve animals underwent intravitreal injection with 

phosphate buffer vehicle.  These animals served as a vehicle-only control group to 

the twelve animals injected with C1-inhibitor.  This was done to ascertain whether 

any effect observed in the C1-inhibitor-treated group was attributable to the 

C1inhibitor or the procedure itself. 

6.2.1.1 Preparation for intravitreal injection 

Twenty minutes prior to anaesthesia, animals were treated with 1% Tropicamide 

drops (Mid-Optic, UK) in the left eye to dilate the pupil and facilitate observation of 

the retina.  Anaesthesia was induced with Isoflurane (Bayern, Germany) in oxygen at 

2L/min, after ascertaining animals were anaesthetised deeply, by testing for 

response to eternal stimuli, the animal was transferred to a face mask and the level 

of Isoflurane was adjusted to the minimum level required to maintain anaesthesia for 

the remainder of the procedure.  The procedure time was typically less than five 

minutes following the establishment of deep anaesthesia. 

6.2.1.2 Intravitreal injection 

A drop each of 0.5% oxybuprocaine hydrochloride local anaesthetic and antibiotic 

chloramphenicol (Mid-Optic, UK) was administered to the surface of the cornea and 
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the pupil was inspected to ensure sufficient dilation for observation of the needle in 

the posterior chamber.  Clinitas hydrate (Mid-optic UK) viscose fluid was applied to 

the surface of the cornea to support a glass cover slip to facilitate visual observation 

of the posterior chamber through the visual axis of the animal during the procedure 

by neutralising the refractive power of the cornea.  The sclera was grasped using 

cup-toothed forceps (Duckworth and Kent, UK), and an incision was made into the 

posterior chamber using a 35 gauge, tri-bevelled needle (WPI Europe, Germany) 

attached to a 100µl Hamilton syringe (WPI Europe, Germany).  The tip of the needle 

was positioned above the optic nerve head and five microlitres of either C1 inhibitor 

in phosphate-buffered saline or phosphate-buffered saline (vehicle) only was injected 

at this position and the needle was left in place for approximately 20 seconds to 

allow diffusion of the fluid before removal of the needle.  Following injection, the 

glass coverslip was removed, any remaining Clinitas hydrate was wiped away using 

a cotton bud and a further drop of chloramphenicol was applied to the surface of the 

cornea.  

Four animals were injected with C1 inhibitor to evaluate the permeation of C1 

inhibitor through the retina.  For these animals, a single injection was administered.  

Twenty-four hours following injection, two animals were culled and the remaining two 

animals were killed ninety-six hours after injection.  Sections were prepared as 

described in section 2.9 and immune-labelled as in section 2.10 with anti-human C1-

inhibitor.  Sections were then imaged by confocal microscopy as in chapter 2.8.2. 

For the twenty-four animals in this experiment, twelve animals had a 

unilateral, intravitreal injection of phosphate buffered saline, and twelve animals were 

injected with human C1-inhibitor.  For all animals, intravitreal injections were 

repeated every 4 days following the first injection for the duration of the procedure.  
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In each animal, intraocular pressure was elevated by microsphere injection 24 hours 

following the first intravitreal injection of C1 inhibitor. 

6.2.2 Induction of intraocular pressure elevation 

In the twenty-four animals where intravitreal injections were used to study the effects 

of C1 inhibitor on glaucomatous degeneration, the intraocular pressure of the same 

eye was elevated by microsphere injection.  This procedure was carried out using 

4.5 µm (Dynal, Norway) microspheres at 2x stock concentration (8x108 beads/ml) as 

described in chapter 2.5, 24 hours after intravitreal injection.  Microsphere injections 

were repeated in animals which did not develop and/or maintain an intraocular 

pressure increase of ≥10mmHg by day 5 following the initial injection. 

6.2.3 Optic nerve analysis 

Retinal ganglion cell death in glaucoma is preceded by a prolonged period of axonal 

degeneration.  In order to establish if C1-inhibitor injections protected the axons of 

retinal ganglion cells from degeneration, axon counts of retinal ganglion cells were 

taken from the optic nerves of experimental and control animals.    

Both optic nerves were taken from each of the twenty-four animals which 

underwent intravitreal injection, yielding forty-eight optic nerves.  Twenty-four of 

these optic nerves were from un-injected eyes, twelve were from eyes injected with 

C1-inhibitor and twelve were from eyes injected with phosphate buffer.  A single 

optic nerve from the group of animals injected with C1-inhibitor was damaged during 

retrieval and was discounted from the analysis, leaving eleven optic nerves in that 

group. For optic nerve analysis, optic nerves were removed from the cranium of 

animals and fixed in 4% paraformaldehyde for a minimum of 24 hours in a bijou 

before being transferred to phosphate buffered saline.  Retinal ganglion cell axon 
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counts were kindly carried out under masked conditions by Dr Gareth Howell at 

Jackson Laboratories (USA) using methods described in Anderson et al. (2005).  

Briefly; semi-thin (1µm) sections were cut from the central portion of the optic nerve 

and para-phenylene diamine staining was used to differentially stain the axons of 

healthy or diseased retinal ganglion cells for manual counting by a masked 

investigator.   Twenty evenly-spaced images of the optic nerve were captured and 

manual counts were taken of the numbers of degenerating and healthy axons.  

Where degenerating axons made up less than or equal to 2% of the total number of 

axons, the optic nerve was classified as having ‘no or early glaucoma’.  Where 

degenerating axons were greater than 2% but less than 50%, the nerve was 

classified as ‘moderately glaucomatous’.  Where degenerating axons made up more 

than 50% of the optic nerve, it was classified as ‘severely glaucomatous’.  
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6.3 Permeation of human C1-inhibitor into the rat retina following 

intravitreal administration 

Four animals were injected with human C1-inhibitor, two animals were culled 24 

hours after injection and two were culled 96 hours after injection.  Immunofluorescent 

detection of human C1-inhibitor was performed as described in section 2.10 using 

the ‘C1 inhibitor’ antibody detailed in table 2.  Figure 6.1 shows immune detection of 

human C1-inhibitor at 24 and 96 hours post-intravitreal injection for a single rat at 

each time point .  The use of human protein allows detection to be specific for the 

human protein by using a primary antibody which is specific for that protein.  The 

human protein also has the advantage of being readily available at a high 

concentration and purity as it is used as a treatment for hereditary angioedema.  The 

exogenous protein is detected into and beyond the inner plexiform layer of the neural 

retina at both time points.  The positive staining indicates that human C1inhibitor 

persists in the rat retina for 96 hours following intravitreal administration (Figure 6.1).  

Unlike the neural retina, there is limited detection of human C1 inhibitor in the optic 

nerve head, which rapidly drops off further in to the optic nerve (Figure 6.1).  This 

indicates that the C1 inhibitor molecule diffuses throughout the retina but is not able 

to pass through the structures of the optic nerve head. 

.
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Figure 6.1 Immunfluorescent detection of human serum derived C1-inhibitor in rat retinas 24 

and 96 hours after injection of 36µg of C1 inhibitor into the vitreous chamber.  Example images 

from two animals killed 24 hours post-C1-inhibitor injection and two animals killed 96 hours post-

injection.  Nuclear counterstaining (blue) and anti- C1-inhibitor antibody staining, detected with 

Alexafluor488® (Invitrogen UK, UK) (green) in the retinas of sham (A) and C1-inhibitor-injected (B) 

eyes at 24 and 96 (C-D) hours after injection shows the detection of exogenous C1-inhibitor 

throughout the neural retina at both time points.  Sections showing nuclear counterstaining (blue) and 

anti-C1-inhibitor (green) detection in sham-injected (E) and C1inh-injected (F), eyes at the optic nerve 

head.  Detection of C1-inhibitor is observed at the surface of the optic nerve head (ONH) but is 

diminished towards the myelin transition zone (MTZ) Scale bar = 100µm 

ONH 

MTZ 
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6.4 C1-inhibitor has no effect on contralateral intraocular pressure or 

Sholl plot 

The generated datasets were analysed as described in section 2.11.2.  There was 

no significant difference in the dendritic profiles of contralateral, normotensive eyes 

from C1-inhibitor treated (AUC=136.3 n=29 cells) or sham-treated animals 

(AUC=139.6, n=42 cells) (Figure 6.2).  As observed in figure 6.1, there is no 

detectable diffusion of injected C1-inhibitor through optic nerve head.  This 

minimises the possibility of cross-contamination between C1-inhibitor treated 

glaucomatous eyes and contralateral controls.  Animals treated with phosphate 

buffered saline vehicle control injections underwent the same surgical procedures as 

the C1-inhibitor injected animals.  These facts taken together suggest that there is no 

biochemical difference between the contralateral and uninjected eyes of C1-inhibitor 

injected or phosphate buffer injected groups and that data from these eyes can be 

treated as a single, normotensive control group of 71 cells.  

Twelve of the twenty-four animals required a second injection to produce a 

sustained elevation in intraocular pressure.  The mean elevation of all animals was 

12.4mmHg (SD: 2.23mmHg) (Figure 6.3) and all animals showed an intraocular 

pressure elevation of at least 5mmHg for a period of ten days or more. 
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Figure 6.2 C1-inhibitor has no effect on the Sholl plots of retinal ganglion cells from 

contralateral, uninjected eyes.  As analysed by a two-sample Kolmogorov-Smirnov test, there is no 

statistically significant difference between the mean Sholl plots of C1- inhibitor treated (AUC: 136.3 

n=29 cells from 12 animals) or sham-treated animals (AUC: 139.6 n: 42 cells from 12 animals, 

p>0.05) This indicates that retinal ganglion cells from both sets of contralateral, uninjected eyes may 

be treated as a single population of 71 cells for comparison with glaucomatous retinal ganglion cells. 
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Figure 6.3 Injection of paramagnetic microspheres causes a sustained and significant increase 

in intraocular pressure.  (A) Example elevation profile of a single animal which maintained an 

intraocular pressure elevation after a single injection with a mean intraocular pressure elevation of 

22.45mmHg (SD: 1.25mmHg).  (B) Example intraocular pressure elevation profile of an animal which 

required a second injection at day 5 developing a mean pressure elevation of 12.36mmHg (SD: 

3.65mmHg).  (C) The mean pressure elevation of all was 12.4mmHg over all days (SD: 2.23mmHg, 

n=24 animals at days 0-13 and n=12 animals at days16-19).  
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6.4.1 Dendritic atrophy in hypertensive retinal ganglion cells 

Dendritic morphology as measured by Sholl analysis was significantly reduced in 

retinal ganglion cells from eyes of twelve phosphate buffer-injected animals with 

elevated intraocular pressure compared to contralateral, normotensive controls 

(AUC: 115.1 SEM: 8.24 n=67 cells and AUC: 138.3 SEM: 9.2 n=71 cells, 

respectively p<0.05; Figure 6.4).  This establishes that there is a relationship in this 

model between an elevation of intraocular pressure and degeneration of retinal 

ganglion cell dendritic integrity. 

6.4.2 Dendritic protection by C1-inhibitor in hypertensive retinal 

ganglion cells 

The dendritic morphology of retinal ganglion cells from eyes with elevated intraocular 

pressure and treated with C1 inhibitor was not significantly different from control, 

normotensive eyes and was therefore (AUC: 148.2 n=74 cells from 12 animals 

p<0.05; Figure 6.4) preserved compared to cells from sham-treated eyes.  This 

indicates that C1 inhibitor effectively protects the dendrites of retinal ganglion cells 

from neuropathy associated with hypertonic glaucoma.  Dendritic degeneration is an 

early event in glaucomatous optic neuropathy (Weber et al. 1998a), and it is possible 

that protecting the retinal ganglion cell dendrites prevents associated axonal 

degeneration.  To determine if this is the case, I examined the level of degeneration 

in the accompanying optic nerves. 
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Figure 6.4 Preservation of dendritic morphology in retinal ganglion cells treated with C1-inhibitor.  Representative DiOlysitc images of retinal ganglion 

cells from normotensive control (A), C1-inhibitor treated (B) and phosphate buffered saline -injected (C) glaucomatous retinas, scale bar = 100µm.  (D) Mean 

Sholl plots of all measured cells, showing: (i) degeneration of ganglion cells from phosphate buffered saline-treated, glaucomatous retinas (AUC: 115.1 n=67 

cells from 12 animals) compared to those from normotensive control retinas (AUC: 138.3 n=71 cells from 24 animals) and (ii) preservation of ganglion cells of 

C1-inhibitor treated retinas (AUC: 148.2 n=74 cells from 12 animals) – error bars show standard deviation.  (E) Co-ordinates of all measured cells; dotted 

arrow corresponds roughly to the optic nerve head, scale bar = 1cm.  
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6.4.3 C1-inhibitor does not protect the optic nerves of hypertensive 

retinas 

A single optic nerve was lost during harvesting from the C1-inhibitor treated group.  

Of the optic nerves from the C1-inhibitor-treated and phosphate buffer-treated 

groups (11 and 12, respectively), nine of each group were classified as moderately 

to severely glaucomatous compared to the optic nerves from control retinas, of which 

23 out of 24 were classified as non-glaucomatous (Figure 6.5).  This indicates that 

intravitreal C1-inhibitor administration does not provide protection to the 

degenerating axons of retinal ganglion cells.  Therefore, although axonal 

degeneration follows degeneration of dendrites, it is not a direct cause, and 

alleviating dendritic degeneration is not sufficient to preserve vision in glaucomatous 

optic neuropathy. 
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Figure 6.5 C1-inhibitor does not protect the optic nerve (ON) from degeneration.  Examples of 

para-phenylene diamine stained sections of optic nerve, in which damaged axons are differentially 

stained black, showing the three grades of optic nerve damage: early to no glaucoma (A), moderate 

glaucoma (B) and severe glaucoma (C).  (D) Relative frequency of grades between groups showing 

no difference between C1-inhibitor (n=11 nerves) and phosphate buffered saline (n=12 nerves) 

injected glaucoma groups, in which each group comprised having nine severely or moderately 

affected optic nerves.  Only a single optic nerve from the control, uninjected eyes (n=24 nerve) was 

found to have moderate glaucoma. 
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6.5 Discussion 

The presence of concurrent retinal ganglion cell dendritic atrophy (as measured by 

Sholl analysis) and optic nerve degeneration (as measured by grading of para-

phenylenediamine stained nerves) in animals with elevated intraocular pressure 

further validates the paramagnetic microsphere model of glaucoma by establishing 

that dendrites and axons of retinal ganglion cells degenerate in a manner similar to 

that which has been reported previously (Weber et al. 1998b; Quigley & Addicks 

1980a). 

The classical complement cascade has been implicated in human and 

experimental glaucoma and this reveals a potential new target for glaucoma therapy 

in the manipulation of that system.  Human C1 inhibitor has been used to effectively 

inhibit complement activation in the rat (Ramaglia et al. 2007), and the relative 

immune privilege of the eye ensures that there is no immune response to the 

exogenous protein.  Administration of the drug before the induction of the disease 

state was intended to create a ‘best case’ scenario and combat the early damage at 

the optic nerve head in glaucoma.  The progression of glaucomatous damage to 

retinal ganglion cells includes the axonal and dendritic structures of the cell.  For this 

reason, dendritic arborisation and axonal integrity were assessed with masked Sholl 

analysis and optic nerve grading respectively.   

 

Clearly, C1-inhibitor, when injected in to the vitreous chamber, was able to 

penetrate all layers of the neural retina (Figure 6.2).  C1-inhibitor was not, however, 

able to penetrate to the same extent at the optic nerve, possibly due to the binding of 

the globular heads of C1 inhibitor molecules to abundant collagen molecules therein.   
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The presence of C1-inhibitor in the neural retina was associated with a 

complete protection of retinal ganglion cell dendritic structure, as measured by Sholl 

analysis, with the dendritic profiles of C1-inhibitor-treated retinal ganglion cells not 

being significantly different from those of normotensive controls (Figure 6.4).  By 

contrast, there was no diffusion of C1-inhibitor through the optic nerve head (Figure 

6.1), and retinal ganglion cell axons present in this region are not protected from 

glaucomatous degeneration (Figure 6.5). 

The results shown here indicate that although the retinal ganglion cell’s 

dendritic tree remains intact, the loss of optic nerve fibres is unchanged.   

The increased production of complement components in glaucoma is specific 

to retinal ganglion cells (Tezel et al. 2010).  This may explain why retinal ganglion 

cells are targeted specifically in glaucoma if complement functions as a mediator of 

microglial clearance of retinal ganglion cells.  Further, the chemotactic effect of the 

product of the complement cascade, C5a, is responsible for the motility of microglia 

in the rodent (Nolte et al. 1996).  As a chemo-attractant C5a will form a concentration 

gradient outwards from its source attracting microglia to the retinal ganglion cells that 

produce C5a it and inhibition of complement activation will prevent microglia from 

migrating towards retinal ganglion cells. 

 Astrocyte and microglial activation are increased and self-promoting under 

glaucomatous conditions.  The role of microglia in glaucomatous optic neuropathy is 

expected to be one that could be described as ‘housekeeping’, where retinal 

ganglion cell structures tagged with C1 or C3b are phagocytosed by microglia that 

bind to putative C1 receptors or complement receptor 1, respectively.  C1-inhibitor 

will prevent this action, however it will not prevent the activation of microglia in 
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response to hydrostatic stress or astrocytic adenosine triphosphate release.  If C1 

inhibitor can prevent the removal of retinal ganglion cell structures, then the 

activation of microglia in response to glaucomatous stress may be irrelevant.  

However, this will be contingent on the presence of the C1 inhibitor molecule.  C1 

inhibitor has a molecular mass of ~140kDa and a very strong collagen binding motif, 

which is essential for its function.  This may be responsible for the reduced 

permeation of the molecule through the optic nerve head observed by 

immunofluorescence. 

Based on the data presented here, the effect of the intravitreal administration 

of C1 inhibitor is that dendritic structures of the retinal ganglion cell are protected 

whereas the optic nerve is afforded no protection, presumably due to the reduced 

permeation of the C1 inhibitor molecule.  This protection may be the result of 

blocking the activity of C1 at the putative C1-receptor or by the reduction of 

complement mediated chemo-attraction of microglia to damaged retinal ganglion 

cells. 
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Chapter Seven: General Discussion 
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7.1 Principle findings 

I have identified that complement activation takes place in a microsphere-induced, 

hypertensive rat model of glaucoma.  Building on this I have established that 

intravitreal administration of the anti-complement agent C1 inhibitor can effectively 

inhibit retinal ganglion cell dendrite and cell body degeneration.  This supports 

evidence in literature that suggests a causal link between complement activation and 

retinal ganglion cell degeneration.  The persistence of axonal degeneration in retinas 

with otherwise healthy retinal ganglion cells suggests a compartmentalised 

progression of retinal ganglion cell degeneration in glaucoma, wherein degeneration 

of axons is not sufficient to trigger retinal ganglion cell apoptosis.  I have also 

established that mutations affecting the expression of proteins further down the 

complement cascade, C3 and C6, are not protective as may be expected based on 

the effect of inhibiting the first component of the complement cascade.  This supports 

evidence from numerous studies conducted by Rus et al,. which indicate the terminal 

complement complex is a neuroprotective agent which essential for neuronal survival 

following insult.  Together these findings support evidence presented by Stevens et 

al., (2007, 2010 and 2011) indicating that complement component C1 directly 

mediates retinal ganglion cell destruction in response to quiescence and suggest 

that this mechanism is responsible for retinal ganglion cell loss in glaucoma. 
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7.2 Model of hypertensive Glaucoma 

Each existing models of glaucoma has drawbacks which limits its implementation 

such as a high degree of required surgical dexterity, as is the case with the 

hypertonic saline injection model (also known as the Morrison model ) or a limitation 

on the amount of beads which can be injected (Calkins et al,. 2007).  The 

development of this model ultimately led to a model which could reliably increase 

intraocular pressure in rat eyes from at most two injections, whilst leaving the visual 

axis clear and facilitating both visual inspection of the eye and measurement of 

intraocular pressure.  Visual inspection of the eye was essential for the experiments 

that were carried out as repeated injections of C1 inhibitor into the posterior chamber 

required the positioning of a needle within the vitreous over the optic nerve head.  

This would not have been possible had the large number of beads injected not been 

adequately distributed throughout the iridocorneal angle or if they had caused an 

immune response which would have clouded the cornea. 

I have validated the paramagnetic microsphere model of glaucoma by 

establishing that dendrites, axons and cell bodies of retinal ganglion cells are lost 

following the elevation of intraocular pressure. 
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7.2 Complement activation in glaucoma 

The role of complement activation in neurodegenerative disease is complex and 

multifactorial with early complement components being essential for damage in 

some cases and clearance in others.  Later components of the complement cascade 

are essential for rapid Wallerian degeneration (Ramaglia et al,. 2007) and yet, the 

terminal complement complex is actively involved in cell cycle progression and the 

maintenance of neuronal integrity via activation of complement response genes such 

as complement response gene 32, which promotes cell survival though Akt/PKB 

activation (Rus et al,2006 and 2008).   

C1 has been shown to be an active component of neuronal degradation in 

disease and development by facilitating clearance of inactive or stressed neuronal 

processes and cells.  Results shown here indicate that inhibiting the formation of 

active C1 from C1q, C1r and C1s molecules using human C1 inhibitor, significantly 

reduces the damage done to retinal ganglion cells in glaucomatous optic neuropathy.  

However this protection only affects the dendrites of the retinal ganglion cells and 

does not reduce the degradation of the optic nerve axons.   

The initial site of damage in glaucoma has been identified as the optic nerve 

head, specifically, the myeloid transition zone.  The C1 inhibitor administered to the 

posterior chamber of the eye in chapter 6 did not permeate beyond the neural retina 

as such it was ineffective at preventing the insult at the optic nerve head.  A possible 

reason for the reduced permeation of C1-inhibitor at the optic nerve head is that this 

region is rich in collagen which binds C1-inhibitor with high affinity.   This collagen 

binding ability of C1 inhibitor is required for its binding to the collagen-like domain of 

C1q and hence, its function.  This means that it may not be possible to modify C1 
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inhibitor in such a way that would allow it to pass through the optic nerve head and 

retain the function needed to prevent clearance of the retinal ganglion cell axons.   

It may be possible that axonal degeneration proceeds via a distinct 

mechanism from dendrite and cell body loss.  It has been suggested that 

compartmentalised Ca2+ release and caspase activation may be responsible for the 

death of retinal ganglion cell dendrites before axons (Whitmore et al. 2005; Crish et 

al. 2010).  If this is the case it may be that C1-inhibitor failed to prevent axonal 

degeneration as this occurs via different mechanisms from dendritic degeneration.  

This is supported by evidence from Beirowski et al., (2005 and 2008) who identified 

the gene Wld, which is responsible for Wallerian degeneration and observed that a 

mutation in this gene which mitigates axonal degeneration in glaucoma without 

affecting dendritic atrophy or apoptosis.  Data presented here cannot identify 

whether protection is not afforded to axons due to differences in the underlying 

apoptotic mechanisms or due to limitations of the administration method for the 

complement inhibitor.  It may be the case that although axonal atrophy is triggered 

by intracellular processes which are distinct from other compartments within the 

retinal ganglion cell, complement mediation is still required for clearance of the axon 

and complement inhibition may be an effective method of preventing this. 

Retinal ganglion cell axon terminals are removed during developmental 

refinement in a C1-dependent manner (Stevens et al,. 2007), an up-regulation of C1 

in glaucoma and the data presented here suggests that similar mechanisms are 

involved in glaucomatous retinal ganglion cell removal.  In this case, preventative 

treatment of glaucoma with a complement inhibitor may need to administer that 

inhibitor to the length of the axon, up-to and including the axon terminal.  This poses 

a challenge as axonal transport is disrupted in the early stages of glaucoma (Quigley 
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et al,. 2000 and Chidwell et al,. 20011) and direct administration to the axon 

terminals would require brain surgery, which is unlikely to be seen as an acceptable 

prophylactic treatment for glaucoma. 

The increased degeneration of the retinal ganglion cells of C3 and C6 

deficient animals compared to complement sufficient animals of the same strain may 

indicate that neuroprotective mechanisms of low-level formation of the terminal 

complement complex are crucial to retinal ganglion cell survival in glaucomatous 

optic neuropathy.  This is supported by evidence from other neuronal cell types (Rus 

et al,. 2008) and the expression patterns of glaucomatous retinal ganglion cells 

(Tezel et al,. 2010) which indicate a relatively minor change in the expression of 

components of the terminal complement complex in glaucomatous retinal ganglion 

cells.   

Although it may appear to be counter intuitive that blocking the complement 

cascade at C1 prevents damage whereas blocking steps further along the cascade 

exacerbates damage, this can be explained by the spontaneous activation of 

complement through the alternative pathway.  It is therefore quite possible for 

inhibition of the classical complement will block damage caused by C1 activity 

without inhibiting independent activation of the alternative pathway.    

In chapter 5.7 I raised the possibility that the pathological changes associated 

with complement activation are a result of a shift in complement activation from the 

alternative complement cascade, which is natively regulated in the retina, to the 

classical complement cascade which is less well regulated.  Howell et al. (2013) 

observed that the terminal complement complex could be detected in the retinas of 

healthy animals as well as those suffering from glaucomatous degeneration.  This 
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supports the idea that low-level and regulated complement activation is present in 

the healthy retina.  This study also identifies a protective role for C5 deficiency in the 

DBA/2J mouse model of glaucoma.  This is in direct contrast to the results shown in 

chapter 5 where a deficiency in C6 significantly worsened degeneration of retinal 

ganglion cells.  It is of note, however that the models used in these studies are 

fundamentally different.  The DBA/2J mouse model relies on an immune-mediated 

exfoliation of the iris to induce and elevation in intraocular pressure and as such the 

effect of restoring C5 may impact on the elevation in intraocular pressure elevation.  

This differential intraocular pressure elevation is something the authors of Howell et 

al. (2013) acknowledge in their study. 
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7.3 Conclusions 

This project has refined and validated the paramagnetic microsphere model of 

glaucoma in the rat.  Control experiments have established that the magnetic 

manipulation of microspheres enhances intraocular pressure elevation and alleviates 

potential side-effects of bead injection such as obstruction of the visual axis and 

beads resting on the inferior aspect of the iridocorneal angle.   

This work adds to the growing body of evidence that complement activation is a 

mediator of neuronal degeneration in glaucoma.  The reduction of damage by 

inhibiting the early stages of complement activation with C1 inhibitor and the contrary 

worsening of degeneration in animal models deficient in later stages of the cascade 

indicates that this role is as a chronic, sub-lytic facilitator of cellular clearance. 

The protection of retinal ganglion cells from glaucomatous damage in the rat by C1 

inhibitor is mediated by inhibition of microglial binding to C1q and/or the formation of 

the chemo-attractants C3a and C5a.  Similar protection is not afforded by knockout 

mutations of C3 and C6 which suggest a protective role for the terminal complement 

complex produced by the constitutively active and C1 inhibitor independent 

alternative pathway.  
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7.4 Future work 

A possible complement-mediated prophylaxis for glaucoma does suggest itself 

however, it is possible that knocking out any of the genes involved in C1 assembly 

may prove protective if it can be done reliably in those at risk of developing 

glaucomatous optic neuropathy. 

It is also possible that inhibiting the activity of microglia in the retina may 

cause beneficial protection of retinal ganglion cells in glaucoma, particularly of note 

are anti-purinergic molecules which have been shown to block microglial migration to 

and clearance of damaged central nervous system neurones  (Davalos et al., 2005; 

Reigada, Lu, Zhang, & Mitchell, 2009; Sperlágh & Illes, 2007; Wu, Vadakkan, & 

Zhuo, 2007).  These molecules have the advantage of being significantly smaller 

than the 150kDa C1-inhibitor which would allow better penetration into the optic 

nerve head and protection of the retinal ganglion cell axons.   

A potentially interesting approach to further characterise the effects of the 

complement cascade in retinal ganglion cell loss in glaucoma would be the use of 

the membrane bound inhibitor of the opsonising action of C3b/iC3b APT070 (Souza 

et al. 2005).  This inhibitor was initially identified as a potent inhibitor of the 

alternative and classical complement cascades (Mossakowska et al. 1999).  The use 

of APT070 in glaucoma should be investigated by titrating the inhibitor to achieve a 

level which can block pathogenic complement activation while allowing constitutively 

active, neuroprotective complement deposition to continue.  Inhibition of later 

proteins in the classical complement cascade may also be considered, however this 

would not mitigate the opsonising activity of C3b/iC3b.   
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Extensive evidence in the literature suggests a role for the 

phosphatidylinositol 3-kinase/akt pathway in the survival of central nervous system 

cells, and specifically retinal ganglion cells after insult.  The use of rapamycin to 

inhibit the phosphatidylinositol 3-kinase/akt pathway in experimental glaucoma would 

clarify the role of the pathway in retinal ganglion cell survival in glaucoma. 

The use of complement inhibitors with transgenic, glaucomatous mice or rats 

which have a fluorophore coupled to gene specific to retinal ganglion cells such as 

beta oestrogen receptor or gamma synuclein (Surgucheva et al. 2008; Munaut et al. 

2001) would allow the phagocytosis of retinal ganglion cell debris by microglia in 

glaucoma to be quantified.  This would demonstrate which specific complement 

component or components are responsible for the clearance of atrophic retinal 

ganglion cells in glaucoma. 

A useful step in modelling the progress of glaucoma would be the accurate 

mapping of microglial dynamics in response to an elevation in hydrostatic pressure in 

a model system.  Models exist for the observation of microglia in thin-skull 

preparations (Tremblay et al., 2011; Wake et al., 2009) and manometric pressure 

elevation has been used to simulate the effects of glaucoma (Fortune et al. 2011; 

Pease et al. 2006).  As visual examination of the optic nerve head is straightforward, 

it should be possible to observe microglial activity following manometric pressure 

elevation directly using confocal or two-photon microscopy, if microglia can be 

labelled with an appropriate fluorophore.  With a fluorophore coupled to appropriate 

regulators on other cell types, this modelling could be used to measure the 

interaction of microglia with retinal ganglion cells.  This technique could provide real-

time data on the interactions between microglia and retinal ganglion cells in health 
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and glaucoma and could provide useful data on the actions of any drugs which hope 

to mitigate glaucomatous damage by manipulating ganglion cell clearance. 
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Appendices 

Appendix 1 – Masking macro 

In order to reduce observer bias my images were masked so that I had no 

knowledge of the source of the image during Sholl analysis.  To that end I developed 

the following macro for the ImageJ platform.  The macro effectively masks images by 

opening each of the images in a specified folder or directory in turn within the system 

memory, so that the images are not displayed to the user.  The user is not displayed 

the images at any point and is effectively masked themselves, however as I had 

developed the macro and I was investigating the data I asked a third party to 

implement the masking macro, for this I must thank Dr Hannah Jones. 

Each file is renamed with a random number of a length specified by the user.  A key 

file is generated in the source directory containing all of the original file names and 

all of the masked file names as well as the date and time the key file was produced 

in a comma-delimited file.  This file can be read by Microsoft Excel which makes 

incorporation of the unmasked data into results obtained from the masked data 

straightforward. 

The macro does contain an option for ‘Remote unmasking’ wherein an investigator 

could automatically rename the masked files using the key file.  However I felt this 

was unnecessary and for my purposes therefore it was not implemented and is not 

functional. 

 

macro "All Files masking[n0]" { 

 

/////First dialog box - this sets the input and output folders, as well 

as the length of the random numbers generated and the output file type. 
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Dialog.create("First...") ; 

 

Dialog.addMessage("Remove files not for masking from the source 

folder."+"\n"+"Then select source folder, followed by destination 

folder") ; 

 

Dialog.addNumber("Length of random numbers", 5) ; 

 

Dialog.addString("Output file type", ".tiff"); 

 

Dialog.addCheckbox("Record user name in key file",0); 

 

Dialog.addCheckbox("Filter file types",0); 

 

Dialog.addCheckbox("Produce array files for remote unmasking 

(Experimental)",0); 

 

Dialog.show(); 

 

user = Dialog.getCheckbox(); 

 

filter = Dialog.getCheckbox(); 

 

io =  Dialog.getCheckbox(); 

 

test = 1; 

 

if (user==1) { 

 

 username = getString("User name", "Name"); 

 

} 

 

origin = getDirectory("C:\ "); 

 

dest = getDirectory("C:\ "); 

 

lista = getFileList(origin) ; 
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exponent = Dialog.getNumber(); 

 

power = pow(10,exponent); 

 

file = Dialog.getString(); 

 

key = "key"; 

 

appendkey = 0; 

 

/////Creates the log file in the source (origin) directory and adds 

approriate headers, detects if log file is already present and adds an 

option to overwrite or append if so.  Note the deliminator is a comma.  

Also checks for key files already present. 

 

panic = File.exists(origin+"key"); 

 

if (panic==1) { 

 

 overwrite = getBoolean("There is already a key file 

present.\nOverwrite?"); 

 

 if (overwrite==0) { 

 

  appendkey = getBoolean("Append new key to old file?"); 

   

   if (appendkey==0) { 

 

    key = getString("Select name for new key file", 

"Key-1"); 

 

   } 

 

  } 

} 

 

if (appendkey==1) { 

 

 File.append("Masking Number"+","+"Original Name", origin+key); 
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 } 

 

else { 

 

 File.saveString("Masking list.  ", origin+key); 

 

} 

 

File.append("\n"+"Masked Number"+","+"Original Name", origin+key); 

 

/////In batch mode, opens each file in the source folder, generates a 

random number and saves the file as that number in the destination 

(dest) folder.  Then appends the log file with the original file name 

(lista[i]) and the random number. 

 

setBatchMode(true) ; 

 

i=0; 

 

oops = "-"; 

 

showProgress(i/lista.length); 

 

for (i=0; i<lista.length; i++) { 

 

 showProgress(i/lista.length); 

 

 if (filter==1) { 

 

  keyf = startsWith(lista[i],key); 

 

  tiff = endsWith(lista[i],".tiff"); 

 

  tif = endsWith(lista[i],"tif"); 

 

  png = endsWith(lista[i],".png"); 

  

  jpeg = endsWith(lista[i],".jpeg"); 

 

  jpg = endsWith(lista[i],".jpg"); 
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  bmp = endsWith(lista[i],".bmp"); 

 

  lsm = endsWith(lista[i],".lsm"); 

 

  gif = endsWith(lista[i],".gif"); 

  

  avi = endsWith(lista[i],".avi"); 

 

  raw = endsWith(lista[i],".raw"); 

 

  txt = endsWith(lista[i],".txt"); 

 

  test = keyf+tiff+tif+png+jpeg+jpg+bmp+lsm+gif+avi+raw+txt; 

  

 } 

 

 if (test!=0) { 

  

  open(origin+lista[i]) ; 

 

  if (nImages==0) { 

 

   oops = oops +"'"+ lista[i] +"'"+  " Is not an image 

file and was skipped\n"; 

 

   selectWindow(lista[i]); 

 

   run ("Close"); 

  

  } 

 

  else { 

 

   num = lista[i] ; 

 

   ran=(random * power); 

  

   ran=round(ran); 
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   saveAs(file, dest + ran) ; 

 

   File.append(ran+","+num, origin+key); 

 

   if(io==1) { 

 

    File.append(ran, origin+"Masked Number"); 

 

    File.append(num, origin+"Original Name"); 

 

    } 

 

   close() ; 

 

  } 

   

 } else {  

 

 oops = oops + lista[i] +  " was filtered. \n"; 

 

 } 

 

}  

 

mod = File.dateLastModified(origin+key); 

 

if (user==1) { 

 

 File.append("Key file generated on," + mod + "\nUsername," + 

username, origin+key); 

 

} else { 

 

 File.append("Key file generated on," + mod, origin+key); 

 

} 

 

call("java.lang.System.gc"); 
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/////Makes a noise and then tells you it has finished, as well as if it 

had to skip any files. 

 

beep() ; 

 

Dialog.create("Status") ; 

Dialog.addMessage("Errors = " + oops); 

Dialog.addMessage("Finished") ; 

Dialog.show() ; 

 

} 
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Appendix 2 – Sholl processing macro 

The images obtained from the LSM510 confocal microscope are inherently 

incompatible with the Sholl analysis Matlab script developed by Gutierrez & Davies 

(2007), hence I developed the following macro for the ImageJ platform to 

automatically convert images to 8-bit, jpeg images with a 100µm scale bar, scale 

bars of other sizes produced aberrant results. 

macro "Process .LSM files for Gutierez Sholl plugin [n1]" { 

 

 

///Dialog.create("Source"); 

///Dialog.addMessage("Select source folder"); 

///Dialog.addNumber("Start image", 1); 

///Dialog.addCheckbox("Scale bar", true); 

///Dialog.show(); 

 

///sclbr = Dialog.getCheckbox(); 

 

///n=Dialog.getNumber(); 

 

sclbr=1; 

 

n=1; 

 

origin = getDirectory("C:\ "); 

 

dest = getDirectory("C:\ "); 

 

lista = getFileList(origin) ; 

 

i=0; 

 

for (i=0; i<lista.length; i++) { 

 

open(origin+lista[i]) ; 
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run("8-bit"); 

 

waitForUser("Check position of Cell") ; 

 

Dialog.create("ROI"); 

Dialog.addNumber("Start of Stack", 1); 

Dialog.addNumber("End of Stack", nSlices); 

Dialog.show(); 

 

start = Dialog.getNumber; 

 

stop = Dialog.getNumber; 

 

col = Dialog.getString(); 

 

title = getTitle(); 

 

  run("Input/Output...", "jpeg="+100); 

      saveAs("Jpeg", dest + title); 

 

 close(); 

 

 call("java.lang.System.gc"); 

 

} 

 

  

 

selectWindow(pre + title) ; 

 

 

run("8-bit"); 

 

known =(20/zoom); 

 

run("Z Project...", "start=start stop=stop projection=[Max 

Intensity]"); 
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run("Set Scale...", "distance=2.602 known=known pixel=1 unit=µm 

global"); 

 

 

if (sclbr==1) { 

  

 run("Scale Bar...", "width=100 height=5 font=18 color=White 

background=Black location=[Lower Right] bold hide"); 

 

} 

 

call("java.lang.System.gc"); 

 

 run("Input/Output...", "jpeg="+100); 

     saveAs("Jpeg", dest + title); 

 

 

close(); 

close(); 

close(); 

close(); 

 

call("java.lang.System.gc"); 

 

} 

} 

 

 

beep(); 

 

Dialog.create("Status"); 

Dialog.addMessage("Finished"); 

Dialog.show(); 


