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Summary 

Initially, prostaglandins (PGs) were considered to only exist as free acid mediators. 

Although, formation of PG glycerol esters and PG ethanolamides by cellular 

cyclooxygenase (COX)-2 has been reported, generation of complex oxidised lipids via 

COX-1 has not been considered. In this study, formation of sixteen unique PG-containing 

phospholipids generated by agonist-activated human platelets is demonstrated using 

lipidomic approaches. Precursor scanning-tandem mass spectrometry identified a group 

of specific lipids comprising PGE2, PGD2 and two previously undescribed PG-like 

molecules (named PGb and PGc), attached to four phosphatidylethanolamine (PE) 

phospholipids (16:0p/, 18:1p/, 18:0p/ and 18:0a/). PGb and PGc were also detected as 

free eicosanoids and their structures remain to be characterised. These novel lipids 

formed within 2-5 minutes of platelet activation by thrombin, collagen or ionophore and 

required activation of several intracellular signalling intermediates, including cytosolic 

phospholipase A2 (cPLA2), p38 mitogen-activated protein kinase (MAPK), src tyrosine 

kinases, phospholipase C (PLC) and cytosolic calcium. Unlike free PGs that are secreted, 

PG-PEs remain cell associated, suggesting an autocrine mode of action. Aspirin 

supplementation in vivo (75 mg/day) or in vitro (1 mM) blocked their generation, 

indicating that COX-1 is required. Pharmacological studies using inhibitors of fatty acyl re-

esterification significantly reduced formation of PG-PEs. Furthermore, purified COX-1 was 

unable to directly oxidise PE in vitro. Collectively, these indicate that PG-PEs are initially 

formed as free PGs via COX-1, and then rapidly esterified into PEs. In summary, this is the 

first demonstration of acute generation of PG-PEs in agonist-activated human platelets 

from endogenous substrate via COX-1. These unique lipids may represent additional 

bioactive molecules from this key platelet enzyme. 
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Introduction 

1.1 Platelets 

Human platelets are small enucleate cell fragments that play important roles in the 

physiological and pathological processes of haemostasis, inflammation, tumour 

metastasis, wound healing and host defence. After erythrocytes, platelets are the most 

abundant corpuscle in the blood, normally circulating at a range between 150 – 400 x 109 

per litre (Thon & Italiano, 2012). An average healthy adult produces approximately 100 

billion platelets each day, with a single megakaryocyte capable of generating more than 

5,000 thousand (Thon & Italiano, 2012). Platelets are the smallest corpuscular component 

of circulating blood and have a diameter of 2 - 3 µm. The average physiological lifetime of 

a platelet is normally just 8 – 10 days with a daily renewal of about 20 % of the total 

platelet count (Nayak et al., 2013). Approximately two thirds of the platelets circulate in 

the bloodstream before they are cleared by macrophages in the spleen and by Kupffer 

cells in the liver. The remaining third are stored in the spleen and are released when 

needed (Schmidt et al., 1991).  

Platelets derive from cytoplasmic fragmentation of megakaryocytes in the bone marrow 

and are released into the circulation. The transition from immature cells to platelets 

initiates with the development of megakaryocyte thick pseudopods, leading to pro-

platelet formation. Towards the final stage of megakaryocyte maturation, the entire 

megakaryocyte cytoplasm is converted into a mass of pro-platelets from which the 

nucleus is eventually extruded. Individual platelets are then released from pro-platelet 

into the sinusoidal blood vessels of the bone marrow (Italiano et al., 2007; Bluteau et al., 

2009; Thon & Italiano, 2010).  

The unstimulated platelet surface is generally smooth and packed with functional 

receptors to enable platelet activation and interactions with other blood cells and 

platelets (Semple et al., 2011). The membrane is metabolically active with a surface 

canalicular connection system that permeates the cytoplasm and provides a large surface 

area. Platelets contain mitochondria, microtubules and several granules, which upon 

http://www.ncbi.nlm.nih.gov/pubmed?term=Thon%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=22918725
http://www.ncbi.nlm.nih.gov/pubmed?term=Italiano%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=22918725
http://www.ncbi.nlm.nih.gov/pubmed?term=Thon%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=22918725
http://www.ncbi.nlm.nih.gov/pubmed?term=Italiano%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=22918725
http://en.wikipedia.org/wiki/Kupffer_cell
http://en.wikipedia.org/wiki/Kupffer_cell
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activation, can fuse with the platelet membrane and release their content into the 

extracellular space (Figure 1.1). In addition, platelets contain a dense tubular system 

(DTS), a derivative of the smooth endoplasmic reticulum of the megakaryocyte, which 

regulates platelet activation by sequestering or releasing calcium (Ebbeling et al., 1992). A 

schematic representation of a platelet and its organelles is shown in Figure 1.1. 

 

1.1.1 Platelets and coagulation 

During their lifetime, most platelets flow in the circulatory system in a quiescent state 

and never undergo firm adhesion. Only when the endothelial cell layer of vessel walls is 

damaged by traumatic injury or pathological alteration, as found in atherosclerosis, do 

they undergo fast activation, granule secretion and aggregation, leading to a haemostatic 

plug. To ensure a rapid and effective response, platelets are very sensitive towards 

external stimuli. Upon activation, they experience a dramatic shape change from a 

discoid to a more stellate form with long pseudopodia. 

 

Following disruption of vascular integrity, coagulation is initiated by the exposure of cells 

expressing tissue factor (TF), such as adventitial fibroblasts and epithelial cells 

surrounding organs (Figure 1.2) (Drake et al., 1989). Then, Factor (F) VII present binds to 

TF, together forming a very high affinity complex (TF:FVIIa) in the presence of calcium on 

the phospholipid surfaces expressed by platelets (Higashi et al., 1996; Eigenbrot et al., 

2001; Adams & Bird, 2009). The generation of TF:FVIIa complex results in a proteolytic 

cleavage of Factor X (FX) to form the activated protease FXa. Also, conversion of the 

zymogen FVII to the serine protease FVIIa results in the activation of FIX by the TF:FVIIa 

complex. The activated FX, in the absence of its activated cofactor FVa, generates only 

small amounts of thrombin. Trace amounts of thrombin formed in this initiation stage of 

coagulation is not sufficient to commence significant fibrin polymerization. However, it is 

enough to back-activate FV and to convert FVIII and FXI to the proteases FVIIIa and FXIa, 

respectively. 
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Figure 1.1: Schematic representation of a platelet and its organelles. Panel A. The 

unstimulated platelet. Panel B. The activated platelet. Upon agonist activation, activated 

platelets release their α-granules content (fibrinogen, fibronectin, platelet-derived 

growth factors, platelet factor 4, transforming growth factor β, von Willebrand and 

coagulation factors) and change shape, from a lentiform shape to a spiny sphere.  
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Figure 1.2: The haemostasis network. Physiologically, blood coagulation is initiated upon 

exposure of subendothelial TF to the circulating FVII, together forming a very high affinity 

complex (TF:FVIIa). Conversion of the FVII to FVIIa results in the activation of FIX and FX 

by the TF:FVIIa complex. Initially, only small amounts of thrombin is formed, enough to 

activate FV and to convert FVIII and FXI to FVIIIa and FXIa, respectively. In the 

amplification phase, FXIa activates FIXa that forms a complex with FVIIIa. The tenase 

complex (FVIIIa:FIXa) activates sufficient FXa that, together with FVa, form the 

prothrombinase (FVa:FXa) complex. Together, the tenase and the prothrombinase 

complexes lead to the explosive generation of thrombin. 
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In the amplification phase of coagulation, FXIa activates FIXa, which forms a complex with 

FVIIIa (Figure 1.2). The tenase complex (FVIIIa:FIXa) activates sufficient FXa that, in the 

presence of calcium ions, forms a one-to-one complex with Factor Va (FVa:FXa, 

prothrombinase complex) on the surface of anionic phospholipids expressed by activated 

platelets (Ahmad et al., 2003; Mackman, 2009; Fay, 2004). 

Collectively, the tenase and the prothrombinase complexes lead to the explosive 

generation of thrombin, which is responsible for the conversion of soluble plasma protein 

fibrinogen to fibrin. Consequently, the insoluble fibrin polymer gives rise to a haemostatic 

plug, whose main function is to rapidly prevent the loss of body fluids without 

compromising blood flow. 

 

1.2 Phospholipids 

Phospholipids, also referred to as glycerophospholipids, are the major components of cell 

membranes. They play a crucial role in the biochemistry of all living cells. Due to their 

amphipathic nature, phospholipids form a bilayer that is crucial to cell survival, providing 

a semi-permeable barrier to the surrounding environment and functional roles in cellular 

processes, such as cell signalling, secretion and internalisation (Vance & Vance, 2002; 

Fahy et al., 2005; Fahy et al., 2011). 

Phospholipids consist of a glycerol backbone connected to two nonpolar fatty acids at sn1 

and sn2 and a phosphate-containing polar headgroup at the sn3 position (Figure 1.3). In 

eukaryotes, phospholipids may be subdivided into distinct classes, based on the nature of 

the polar headgroup, including phosphatidylethanolamine (PE), phosphatidylcholine (PC), 

phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylglycerol, which can 

influence membrane function. 

In phospholipids, the sn2 fatty acid is attached to the glycerol backbone via an acyl group, 

while, the sn1 can be linked either through an acyl, plasmalogen or ether bond. The acyl 

group is a carbonyl group (>C=O) attached to either an alkyl or aryl group. It has the 

formula RCO-, where R represents an alkyl group attached to the CO group with a single 
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bond and the carbon and oxygen atoms linked by a double bond (Stoke, 2013). Whereas, 

plasmalogens are a subclass of phospholipids characterised by the presence of a 

saturated group at the sn1 position on the glycerol chain bonded by a vinyl ether linkage, 

while the sn2 position is most commonly occupied by polyunsaturated fatty acids, 

particularly arachidonic acid (AA), linked by an ester bond (Nagan & Zoeller, 2001). The 

fatty acid at the sn1 can also be linked to the glycerol chain via an ether linkage (C–O–C), 

which is stable to both alkaline and acidic conditions while vinyl ether bonds open under 

acidic conditions to form aldehydes (Albert et al., 2001). 

The fatty acyl chains are highly variable at both the sn-1 and sn-2 positions, varying in 

terms of carbon chain length and degree of unsaturation (Marcus et al., 1969). 

Arachidonic acid, an important precursor of many lipid mediators, is one of the fatty acids 

commonly found at sn-2 position and is cleaved by enzymes, such as phospholipase A2 

(PLA2), generating fatty acid substrate for oxidation by cyclooxygenases (COX) and 

lipoxygenases (LOX) (Levy, 2006; Triggiani et al., 2005). 

 

1.2.1 Phospholipids of the platelet plasma membrane 

Cellular membranes are composed of bilayers with each leaflet presenting a different 

phospholipid composition. In platelet phospholipids, PC constitutes approximately 38 % 

of the membrane and PE 27 %, with PS and PI together contributing only about 15 % 

(Shick & Panetti, 2006). The phospholipids in the resting platelet plasma membrane are 

asymmetrically organized; PC and sphingomyelin (SphM) are enriched in the outer 

monolayer, while PE and PS are more dominant in the inner layer (Shick & Panetti, 2006). 

The adenosine triphosphate (ATP)-dependent aminophospholipid-specific translocase is 

responsible for quickly transporting PS and PE from the cell’s outer-to-inner leaflet, 

keeping the plasma membrane asymmetry (Zwaal & Schroit, 1997). 
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Figure 1.3: Structure and composition of a phospholipid molecule. Phospholipids consist 

of a glycerol backbone, a phosphate group and an organic head group. The presence of a 

double bond classifies the fatty acid attached as unsaturated. Modified from 

http://www.nature.com/scitable/topicpage/cell-membranes-14052567. 

http://www.nature.com/scitable/topicpage/cell-membranes-14052567
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However, upon platelet activation, this asymmetry is rapidly lost due to the exposure of 

aminophospholipids, such as PS and PE, on the outer surface of the platelet by a flip-flop 

mechanism (Bevers et al., 1983; Zwaal & Schroit, 1997). This process is attributed to 

scramblase, a protein facilitating bidirectional movement of phospholipids between the 

two leaflets (Wolfs et al., 2005). Thus, on the outer-leaflet of an activated platelet 

membrane, PS (with its negative net charge) and PE will be exposed (Falls et al., 2000). 

The exposure of PS and PE together with Ca2+ provides a binding site for the coagulation 

factor complexes and, thereby, enabling thrombin generation and clot formation (Zwaal 

et al., 1998; Sims et al., 1989). 

 

Following platelet activation, fatty acids, such as AA, are hydrolysed from membrane 

phospholipids by cellular phospholipases (Levy, 2006). These free fatty acids then can act 

as substrate for LOX and COX-dependent enzymatic oxidation, generating a diverse range 

of bioactive lipid metabolites (Mustard et al., 1980; Thomas et al., 2010; Morgan et al., 

2010). In platelets, 12-hydroxyeicosatetraenoic acid (12-HETE) results from the enzymatic 

oxidation of AA by 12-LOX, while prostaglandin H2 (PGH2) is formed via COX-dependent 

oxygenation of the arachidonate (Coffey et al., 2004b; Smith et al., 2000; Rouzer & 

Marnett, 2009). PGH2 undergoes further enzymatic metabolism to form more stable 

compounds, leading ultimately to prostanoids, such as prostaglandin E2 (PGE2), 

prostaglandin D2 (PGD2) and thromboxane A2 (TxA2) that, in platelets, have only been 

reported as free forms (Rouzer & Marnett, 2003). In contrast, 12-HETE can either be 

released by activated platelets or be esterified, generating oxidised phospholipids (OxPLs) 

(Thomas et al., 2010). 

 

1.3 Enzymatic and non-enzymatic formation of OxPLs 

Oxidation of esterified polyunsaturated fatty acids can be initiated either by enzymatic or 

non-enzymatic mechanisms (Bochkov et al., 2010). The non-enzymatic generation of 

OxPLs is mediated by free radicals, such as nitric oxide, superoxide, hydrogen peroxide 

and hydroxyl radical (•OH), often generated by activated phagocytes during chronic 

inflammation (Bochkov et al., 2010). Esterified polyunsaturated fatty acids are highly 
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susceptible to reactive oxygen species, which can initiate hydrogen abstraction, resulting 

in addition of oxygen and subsequently the formation of hydroperoxides (Bochkov et al., 

2010). An array of mechanisms can then yield secondary peroxidation products in an 

enzyme-independent manner. 

Elevated levels of non-enzymatically formed OxPLs have been measured in both rabbit 

models and human atherosclerotic lesions (Watson et al., 1997; Waddington et al., 2001; 

Podrez et al., 2002). Accumulation of OxPLs in the atherosclerotic lesion is known to both 

initiate and drive disease progression. Oxidised 1-palmitoyl-2-arachidonyl-sn-3-glycero-

phosphoryl-choline (OxPAPC) has been identified as a key regulator of atherosclerosis 

mediating chemokine synthesis and monocyte adhesion to endothelial cells, leading to 

inflammatory reactions and pro-atherogenic events (Gargalovic et al., 2006; Bochkov et 

al., 2010). 

Separate to non-enzymatic lipid oxidation described above, we have found that upon 

cellular activation, human neutrophils, monocytes and platelets can generate both free 

eicosanoids and esterified OxPLs enzymatically via the LOX pathway (Clark et al., 2011; 

Hammond et al., 2012; Thomas et al., 2010; Kozak et al., 2000; Kozak.et al., 2002). In the 

past 6 - 7 years a number of different esterified-HETE species generated via LOX have 

been identified and characterised (Maskrey et al., 2007; Morgan et al., 2009; Morgan et 

al., 2010; Thomas et al., 2010; Clark et al., 2011; Hammond et al., 2012). Esterified-HETEs 

were shown to present distinct biological and physical properties (Thomas et al., 2010; 

Clark et al., 2011; Hammond et al., 2012).  

Up to now, prostaglandins (PGs) were considered to exist only as free acid mediators. 

However, Marnett and colleagues demonstrated in 2000 that PGE2 and PGD2 were 

generated in macrophage cell lines by COX-2 oxidation of endogenous arachidonyl-

glycerol (2-AG) and arachidonyl-ethanolamide (AEA) (Kozak et al., 2000; Kozak.et al., 

2002). The oxidation products, PGE2-G/PGD2-G or PGE2-EA/PGD2-EA elicit different effects 

to free PGE2 and PGD2, for example, PGE2-G triggers rapid calcium mobilisation, inositol 

trisphosphate (IP3) synthesis, and activation of protein kinase C (PKC) in a PGE2-

independent manner (Nirodi et al., 2004). Whilst COX-2 can oxidise complex substrates 
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including AEA and 2-AG, the constitutive isoform COX-1 is only able to utilise AA as 

substrate, and it is not yet known to be a source of esterified eicosanoids. 

In the following sections, the major findings of what is currently known about enzymatic 

formation of OxPLs by acutely activated immune cells and platelets are summarised. Also, 

a brief description of their known biological actions under homeostatic and pathological 

conditions is presented.  

 

1.3.1 OxPLs generated by human monocytes and murine macrophages 

Peripheral human monocytes express high levels of 15-LOX that, upon stimulation with 

Th2 cytokines (interleukin (IL)-4 and IL-13), generate 15-HETE (Roy & Cathcart, 1998; 

Kuhn & Thiele, 1999; Morgan et al., 2009). Similarly, naïve murine peritoneal 

macrophages express the functional equivalent homolog 12/15-LOX (Morgan et al., 

2009). This enzyme is constitutively active under basal conditions (Dioszeghy et al., 2008). 

Nevertheless, ionophore can further enhance 12/15-LOX activity in both peripheral 

human monocytes and murine peritoneal macrophages (Dioszeghy et al., 2008). 

In 2007, Maskrey and colleagues identified a family of four esterified 15-HETEs, 

comprising one diacyl (18:0a/15-HETE-PE) and three plasmalogen PE species (18:0p, 

18:1p, 16:0p/15-HETE-PE) formed by murine resident macrophages and human 

peripheral monocytes (Figure 1.4) (Maskrey et al., 2007). This new family of OxPLs were 

detected both basally (0.5 - 3 ng/106 monocytes) and on activation (~7 ng/106 monocytes) 

with calcium ionophore, corresponding to nearly 30 % of the total 15-HETE produced 

(Maskrey et al., 2007; Morgan et al., 2009). In contrast to free 15-HETE that is released, 

esterified HETEs remain cell associated, implying an autocrine mode of action. The 

enzymatic generation of HETE-PEs was confirmed by MS/MS and chiral chromatography, 

which showed the predominance of the 15(S)-HETE enantiomer. Moreover, stable 

isotope labelling demonstrated that HETE-PEs were generated by direct PE oxidation via 

15-LOX (Maskrey et al., 2007; Morgan et al., 2009). This result is consistent with the 

already known ability of the 15-LOX isoform to directly oxidise phospholipids. 
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IL-4 and IL-13 are Th2 cytokines known to induce ciliated epithelial cell differentiation 

into mucus producing goblet cells, contributing to asthma severity and lung allergy. 

Studies have shown that the expression of 15-LOX in human asthmatic epithelial cells is 

considerably increased by IL-4 and IL-13 (Kondo et al., 2002; Kondo et al., 2006; Morcillo 

& Cortijo, 2006; Brown et al., 2001). Human bronchial epithelial cells were reported to 

generate two 15-HETE-PEs (16:0p/15-HETE-PE and 18:1p/15-HETE-PE) via 15-LOX in 

response to IL-13 in culture (Zhao et al., 2009). These were shown to enhance expression 

of MUC5AC, resulting in hypersecretion of mucus in asthma (Zhao et al., 2009). 

Furthermore, IL-13 induced 15-LOX causing 15-HETE-PE products to bind to PE-binding 

protein-1 (PEBP1), resulting in its dissociation from Raf-1 and activation of extracellular-

signal-regulated kinase (ERK), in human bronchial epithelial cells (Zhao et al., 2011). 

In 2012, Uderhardt and colleagues published their findings showing that OxPLs present 

on the surface of resident peritoneal macrophages function as binding sites for soluble 

receptors recognised by apoptotic cells. They also showed that 12/15-LOX expressing 

resident peritoneal macrophages were responsible for non-inflammatory clearance of 

apoptotic cells (Uderhardt et al., 2012). In addition, during inflammation, apoptotic cell 

uptake was initiated by freshly recruited inflammatory monocytes (Uderhardt et al., 

2012). Oxidised PE was found to inhibit the uptake of apoptotic cells by infiltrating cells 

through binding to milk fat globule-EGF factor 8 (MFG-E8) (Uderhardt et al., 2012). This 

suggests that 12/15-LOX enzyme is the main element coordinating the regulation of 

apoptotic cell clearance and maintenance of immunological tolerance. 

More recently, Hammond and co-workers identified two additional families of LOX-

derived lipids in human IL-4 monocytes and murine peritoneal macrophages, consisting of 

hydroperoxyeicosatetraenoic acid (HpETE) and ketoeicosatetraenoic acids (KETE) 

attached to the PE (Hammond et al., 2012). LC/MS/MS analysis identified KETE-PEs as 

18:0a, 18:0p, 18:1p and 16:0p, comprising of three plasmalogen bound and one acyl 

linked at sn1 (Figure 1.4). As for HETE-PEs, they are formed on ionophore activation but 

at lower levels. KETE-PEs are absent in macrophages from 12/15-LOX deficient mice, 

confirming the involvement of LOX in their generation. Miller and co-workers have 

previously shown that 12/15-LOX-/- macrophages are incapable of mounting a normal 
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phagocytic response in vitro (Miller et al., 2001). Consistent with these findings, 

Hammond and O’Donnell recently observed that 12/15-LOX-/- macrophages contain 

larger amounts of cytoplasmic vesicles and anomalous mitochondria, suggesting a 

defective autophagy or exosomal processing (unpublished data, 2012). 

It is proposed that HpETE-PEs are initially formed via LOX and then reduced to HETE-PEs 

by cellular glutathione peroxidases. These reduced lipids are subsequently oxidised by 15-

hydroxyprostaglandin dehydrogenase (15-PGDH), resulting in the formation of cell-

associated 15-KETE-PEs (Figure 1.5). Recent studies utilising 15-PGDH inhibitor 

demonstrated that 15-KETE-PEs are generated by direct oxidation of pre-formed HETE-

PEs by LOX and PGDH (Hammond et al., 2012). 

In macrophages, both 15-HETE-PE and 15-KETE-PE are shown to activate peroxisome 

proliferator-activated receptor-γ (PPARγ) transcriptional activity in a dose dependent 

manner. Hence, it appears that these lipids can act indirectly either being released as free 

PPARγ ligands via PLA2 hydrolysis, or via upstream regulation of the expression of PPARγ 

(Hammond et al., 2012). 15-HETE-PE may decrease inflammatory signalling by binding to 

toll-like receptor 4 (TLR4) accessory proteins, including CD14 and lipopolysaccharide 

(LPS)-binding protein (LPB) (Morgan et al., 2009). Thus, impairing activation of TLR4 may 

result in elevated PPARγ signalling and anti-inflammatory effects (Necela et al., 2008; 

Huang et al 1999). 

New families of lipid mediators generated by 12/15-LOX in immune cells, such as those 

described above, are expected to mediate anti-inflammatory function in vivo and may be 

of potential therapeutic benefit for chronic inflammatory diseases. 
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Figure 1.4: Chemical structures of 15-HETE-PEs and 15-KETE-PEs generated by activated 

human monocytes. 
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Figure 1.5: Schematic representation of mechanism of formation of 12- and 15-HETE-

PEs generated by human monocytes and murine peritoneal macrophages. IL-4–cultured 

monocytes and peritoneal macrophages already express HETE-PEs and KETE-PEs in the 

cell membranes, but upon ionophore activation their levels are increased approximately 

2-fold. Generation involves direct oxidation of membrane phospholipids. PHGPx, 

phospholipid hydroperoxide glutathione peroxidase; PGDH, prostaglandin 

dehydrogenase. 
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1.3.2 OxPLs generated by human platelets 

In human platelets, COX-1 and a platelet-specific 12-LOX isoform are known to mediate 

oxidation of free fatty acids. Agonist-mediated platelet stimulation acutely activates both 

enzymes in a calcium-dependent manner. Upon activation, 12-HETE is synthesised and 

released by platelets (Thomas et al., 2010). However, its function remains controversial 

as 12-HETE has been reported to be without direct effect on platelet activity as well as 

pro- and anti-thrombotic (Yeung & Holinstat, 2011). On the contrary, TxA2, a platelet 

COX-1 product, is well known to induce platelet aggregation through thromboxane 

receptors (Dogné et al., 2000). 

Recently, six molecular species of esterified 12-HETE have been shown to be generated in 

agonist-activated human platelets, consisting of four PEs (16:0p, 18:1p, 18:0p and 

18:0a/12-HETE-PE) and two PCs (16:0a, 18:0a/12-HETE-PC) via 12-LOX, Figure 1.6 

(Thomas et al., 2010). Following activation with thrombin, collagen or ionophore, 

esterified 12-HETEs are formed within 5 min with levels approximately 6 ng/4 x 107 

platelets (PE) and 18 ng/4 x 107 platelets (PC) generated in response to thrombin. 

Furthermore, formation of 12-HETE-PE/PCs is not detectable in 12-LOX deficient mouse 

platelets (Aldrovandi et al., unpublished data, 2012). 

Experiments using agonist peptides confirmed 12-HETE-PE and 12-HETE-PC generation 

through activation of protease activated receptor (PAR)-1 and 4. Also, formation of 

esterified 12-HETEs was shown to require several intracellular signalling mediators, 

including calcium, src tyrosine kinase, protein PKC and secretory PLA2 (sPLA2) (Figures 

1.7). Stable isotope labelling revealed that free 12-HETEs are initially formed and 

subsequently esterified into PEs (Thomas et al., 2010). Esterified 12-HETEs account for 

approximately one-third of the total 12-HETE synthesised remaining primarily cell-

associated, while free 12-HETE is secreted. Consistent with previous observations 

reporting pro-coagulant activities by non-enzymatically OxPLs, 12-HETE-PCs are also 

capable of enhancing tissue factor-dependent thrombin generation in vitro, Figures 1.8 

(Weinstein et al., 2000; Pickering et al., 2008; Thomas et al., 2010; Slatter et al., 

unpublished data, 2012). 
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Figure 1.6: Chemical structures of 12-HETE-PEs and 14-HDOHE-PEs generated by 

activated human platelets. 
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Figure 1.7: Schematic representation of mechanism of formation of 12-HETE-PE/PCs in 

human platelets. 12-HETE-PE/PCs are generated in response to thrombin activation of 

PAR-1 and PAR-4, via several signalling intermediates. Hydrolysis of arachidonate by 

cPLA2 and calcium is required. cPLA2, cytosolic phospholipase A2; sPLA2, secretory 

phospholipase A2; PIP2, phosphatidylinositol 4,5-bisphosphate; IP3, Inositol trisphosphate; 

LOX, lipoxygenase; FACL, fatty acyl CoA ligase; PLC, phospholipase C. 
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Figure 1.8: Potential mechanism of action of 12-HETE-phospholipids in human platelets. 

Following their generation, small amounts of 12-HETE-PEs translocate to the outside of 

the plasma membrane and 12-HETE-PCs can enhance tissue factor-dependent thrombin 

generation in vitro. 
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Several additional phospholipid-esterified hydroxy-fatty acids are also synthesised via 12-

lipoxygenase in activated human platelets. These comprise two plasmalogen (16:0p, 

18:0p) and two diacyl (16:0a, 18:0a) PE species, where the 12-HETE is substituted by 12-

LOX-oxidised docosahexaenoic acid (DHA). These lipids contain predominantly the 14-

hydroxydocosahexanoic acid (HDOHE) positional isomer, Figure 1.6 (Morgan et al., 2010). 

Following thrombin activation, esterified HDOHEs are acutely formed within 2 min. They 

are generated in a calcium dependent manner, at lower levels (4 – 2 ng/4 x 107 platelets) 

that esterified 12-HETEs. 

HDOHE-PEs are also formed though the same pathway as esterified 12-HETEs, by 12-LOX 

oxidation of free DHA followed by re-esterification of 14-HDOHE into phospholipids 

(Morgan et al., 2010). Although formation of several esterified LOX-products by 

thrombin-activated platelets have been reported, generation of phospholipid-esterified 

eicosanoids formed via COX-1 has not been described. 

 

1.3.3 OxPLs generated by human neutrophils 

Neutrophils are an essential part of the innate immune system and also the most 

abundant white cells in the circulation of mammals. Upon agonist activation of 

neutrophils, 5-LOX generates 5-HpETE, which undergoes further processing to the more 

stable 5-HETE and leukotriene B4. Clark and co-workers have recently reported acute 

generation of 5-LOX derived lipids in primary human neutrophils that comprise four 

esterified 5-HETEs: one diacyl PC (16:0a/5-HETE-PC) and three plasmalogen PE species 

(18:0p/, 18:1p/, 16:0p/5-HETE-PE), Figure 1.9 (Clark et al., 2011). They form immediately 

after activation with bacterial peptides, chemokines and chemical stimuli, such as 

phorbol and calcium ionophore, within 2 min, with levels of total esterified 5-HETEs 

reaching approximately 0.4 ng/106 neutrophils. Similar to 12-HETE-PE/PC in platelets, 

arachidonic acid is initially oxidised by 5-LOX, generating free 5-HETE, which is then 

rapidly esterified into lysophospholipids.  
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Figure 1.9: Chemical structures of 5-hydroxy-phospholipids generated by activated 

human neutrophils. 
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Unlike free 5-HETE, esterified 5-HETEs remain cell associated, mainly confined to nuclear 

and extranuclear membrane. Studies using inhibitors demonstrate that esterified 5-HETEs 

are generated via a highly coordinated mechanism, involving calcium, phospholipase C 

(PLC), cytosolic PLA2 (cPLA2), sPLA2, mitogen-activated protein kinase/extracellular signal-

regulated kinase kinase 1 and 5-LOX activating protein (FLAP), Figures 1.10. In vitro 

studies revealed that 5-HETE-PEs regulate several neutrophil activities, including 

superoxide generation and neutrophil extracellular trap (NET) release (Clark et al., 2011). 

 

1.4 Cyclooxygenase enzymes 

In addition to LOX, COX enzymes are also capable of generating potent lipid mediators via 

AA oxygenation in platelets and immune cells. COX also known as prostaglandin H 

synthase (PGHS) or prostaglandin endoperoxide H synthase (E.C.1.14.99.1), is a 

bifunctional membrane bound hemoprotein that catalyses the first committed steps in 

prostanoid biosynthesis, converting AA to PGH2. This enzyme is responsible for the 

generation of important biological mediators termed prostanoids, including 

prostaglandins, prostacyclin and thromboxane (Smith et al., 1996; Marnett et al., 1999; 

Smith et al., 2000). Mammals express two distinct isoforms of COX; COX-1 and COX-2, 

which are separate gene products. COX-1 and COX-2 are of similar molecular weight, 

approximately 70 and 72 kDa, respectively. These proteins are 65 % homologous in amino 

acid sequence with near identical catalytic sites (Simmons et al., 1991). 

In terms of their molecular biology, the most significant difference between COX-1 and 

COX-2 is the substitution of isoleucine at position 523 in COX-1 with valine in COX-2 (Vane 

et al., 1998). This allows the isoforms to be inhibited differentially. The smaller Val523 

residue in COX-2 allows the inhibitor access to a hydrophobic side-pocket while this is 

denied by the longer side chain of Ile in COX-1 (Vane et al., 1998). They also differ in their 

expression regulation and tissue distribution. COX-1 is constitutively expressed in most 

cell types and tissues and is considered a “housekeeping gene”. 
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Figure 1.10: Schematic representation of mechanism of formation of 5-HETE-PE and 5-

HETE-PC by human neutrophils. Formation of the lipids is promoted via receptor 

dependent stimuli, including bacterial peptides, and intracellular signalling mediators. AA 

is cleaved from phospholipids by cPLA2 and then is oxidised by 5-LOX, reduced by GPX, 

and re-esterified into the phospholipid membrane. fMLP indicates N-formyl-methionine-

leucine-phenylalanine; PLC, phospholipase C; cPLA2, cytosolic phospholipase A2; FACL, 

fatty acyl Coenzyme A ligase; and GPx, glutathione peroxidase. 
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This isoform is of particular importance for gastrointestinal function and participates in 

physiological activities such as platelet aggregation, gastric mucosa protection and renal 

electrolyte homeostasis. In contrast, COX-2 is absent from most tissues in normal 

conditions but highly induced in response to inflammatory stimuli such as IL-1β and 

tumour necrosis factor-α (TNF-α), growth factors and LPS (Vane et al., 1998; Kang et al., 

2007; Smith et al., 1996; Chell et al., 2006; Parazzoli et al., 2012; Greene et al., 2011). 

Thus the major function of COX-1 is homeostatic, while COX-2 is mostly involved in 

inflammation. Also, it has been suggested that COX-1 is responsible for the initial 

prostanoid response to inflammatory stimuli, while generation of these lipid mediators 

during the progression of inflammation occurs mainly via COX-2 (Gilroy et al., 1998; 

Langenbach et al., 1995; Noguchi et al., 1996; Tilley et al., 2001). 

The discovery that COXs are the major target for nonsteroidal anti-inflammatory drugs 

(NSAIDs) has led to increased interest in cyclooxygenase function. Inhibition of COX 

enzymes by NSAIDs acutely reduces pain, fever and inflammation. In the last few 

decades, long-term use of aspirin has been associated with reduction of the incidence of 

fatal thrombotic events (Hall & Lorenc, 2010). The central role of platelets in 

cardiovascular atherothrombosis has led to low dose aspirin becoming a well-established 

antiplatelet therapy. 

This thesis focuses on the discovery of novel free and esterified prostaglandin generated 

by thrombin-activated platelets through COX-1 and, thus, the rest of this introduction will 

focus on COX-1, unless otherwise stated. 

 

1.4.1 History and evolution of cyclooxygenase 

Goldblatt and von Euler were the pioneers of prostanoid studies in the early 1930s. 

Prostaglandins were first extracted from semen, prostate, and seminal vesicles and were 

shown to lower blood pressure and cause smooth muscle contraction, the effects of 

which could not be ascribed to the tissue hormones known at the time (Goldblatt, 1933; 

von Euler, 1935; Greene et al., 2011). These new, unknown substances were named 

“prostaglandins” by von Euler because he believed they were generated in the prostate 
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gland. In 1958, Bergstrom and Sjiovall purified and determined the structure of the first 

two prostaglandin isomers, corresponding to PGE1 and PGF1α (Bergstrom & Sjiovall, 

1960a, Bergstrom & Sjiovall, 1960b). Two research groups led by David van Dorp in 

Holland and by Sune Bergstrom and colleagues in Sweden, in 1964, independently 

showed AA as the precursor of prostaglandins (van Dorp et al., 1964; Bergstrom et al., 

1964). Later, Samuelsson and co-workers characterised the cyclooxygenase reaction, 

through which AA is enzymatically converted to endoperoxide-containing prostaglandin 

G2 (PGG2) (Hamberg & Samuelsson, 1973; Hamberg et al., 1974; Smith & Lands, 1972). 

The discovery and characterisation of prostaglandins was the basis of Nobel Prize, in 

1982, that was awarded to Bergstrom, Samuelsson, and Vane. 

COX-1 was first purified from sheep and bovine seminal vesicles (rich enzyme sources) in 

the 70s, followed by the cloning of the PGHS-1 gene in 1988 (Hemler et al., 1976; van der 

Ouderaa et al., 1977; Miyamoto et al., 1976; Ogino et al., 1978; Yokoyama & Tanabe, 

1989; Merlie et al., 1988; DeWitt & Smith, 1988). Also in the 70s, it was discovered that 

COX-1 displays two catalytic activities, a peroxidase and a cyclooxygenase activity, which 

were later found to be at separate sites (Miyamoto et al., 1974; O'Brien & Rahimtula, 

1976; Marshall & Kulmacz, 1988). It was in 1971, 74 years after aspirin was first 

marketed, that Sir John Vane first demonstrated that the popular commercial available 

aspirin and other NSAIDS act by blocking the COX-1 and, therefore, uncovering the 

mechanism of action of this class of drugs (Vane, 1971). Soon, speculations on whether 

there was more than one COX began to appear. Observations from studies on COX-1 

auto-inactivation rates, inhibition by NSAIDs and time course profiles of PGE2 and PGF2α 

generation led to the discovery of COX-2 (Lysz & Needleman, 1982; Lysz et al., 1988). In 

1985, Habenicht reported that human platelet-derived growth factor could stimulate an 

early (10 min) as well as a late (2 - 4 h) prostaglandin peak of generation in Swiss 3T3 

cells, suggesting a constitutive and an inducible COX enzyme, subsequently named COX-1 

and COX-2, respectively (Habenicht et al., 1985). Later, in the early 90s, the existence of 

the inducible COX-2 enzyme was confirmed by the identification of a separate gene, of 

which overexpression induces PGH2 generation and this activity was inhibited by NSAIDs 

(Simmons et al., 2004). 

http://www.ncbi.nlm.nih.gov/pubmed?term=O'Brien%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=820341
http://www.ncbi.nlm.nih.gov/pubmed?term=Rahimtula%20A%5BAuthor%5D&cauthor=true&cauthor_uid=820341
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COX-1 is a member of the myeloperoxidase superfamily and appears to have evolved 

from peroxidase ancestors. Based on observations from reconstruction studies of the 

evolutionary relationships of the peroxidase–cyclooxygenase superfamily, it appears that 

before organisms developed an acquired immunity, their antimicrobial defence 

depended on enzymes that were recruited upon pathogen invasion and could produce 

antimicrobial reaction products (Zamocky et al., 2008). Therefore, it is postulated that 

COX isoforms differentiated very early in the evolutionary history as part of the 

foundation of the innate immune system. Up to now, all vertebrates investigated 

including mammals, birds, bony and cartilaginous fishes express both COX-1 and COX-2 

(Chandrasekharan & Simmons, 2004).  

Since their discovery in the early twentieth century, COX-1 and COX-2 have become the 

most thoroughly studied and best understood mammalian oxygenases and are still the 

basis of numerous on-going studies worldwide. 

 

1.4.2 The structure of mammalian COX-1 

A landmark study elucidating the three dimensional structure of sheep COX-1 was first 

published by Picot and co-workers in 1994 (Picot et al., 1994). Later in 1996, human and 

mouse COX-2 were crystallised (Kurumbail et al., 1996; Luong et al., 1996). Comparison of 

COX-1 and COX-2 from the same species showed 60 – 65 % sequence identity (Smith et 

al., 2000). COX-1 is as homodimer with a molecular mass of 70 kDa and is a protein with 

600 amino acids in size, which is then processed into a mature form by removal of the 

signal peptide (Smith et al., 2011). Each COX monomer is composed of three distinct 

structural domains, an epidermal growth factor (EGF) domain at the short N-terminal, a 

neighbouring α-helical membrane-binding domain (MBD), and a large globular catalytic 

domain at the C-terminus containing the cyclooxygenase and the peroxidase active sites 

(Picot et al., 1994). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Chandrasekharan%20NV%5BAuthor%5D&cauthor=true&cauthor_uid=15345041
http://www.ncbi.nlm.nih.gov/pubmed?term=Simmons%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=15345041
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1.5 Regulation of COX-1 expression 

The human COX-1 gene (Ptgs1), located on chromosome 9 (locus 9q32_q33.3), is 

approximately 22 kilo-base pairs in length and is transcribed as a 2.8 kb mRNA (Yokoyama 

& Tanabe, 1989; Kraemer et al., 1992; Tanabe & Tohnai, 2002). COX-1 displays the 

characteristics of a "housekeeping" gene (Kraemer et al., 1992; Wang et al., 1993; Xu et 

al., 1997). Under normal physiological conditions, COX-1 is constitutively expressed in 

many mammalian tissues and cells, including seminal vesicles, platelets, monocytes, renal 

collecting tubes and vascular endothelial cells (Otto & Smith, 1995). 

The molecular mechanism underlying the regulation of COX-1 gene has not been fully 

characterised. Also, it is an oversimplification to consider that COX-1 is only constitutive 

expressed, as COX-1 levels have been shown to change during development, to be 

downregulated in epithelial cells and upregulated in several cell types under the influence 

of specific factors. 

 

1.6 Cellular localisation of COX-1 

COX-1 is an integral membrane protein equally distributed on the lumenal surfaces of the 

endoplasmic reticulum (ER) and nuclear envelope (Otto & Smith, 1994; Regier et al., 

1995; Morita et al., 1995). Within the nuclear envelope, COX-1 is present on both inner 

and outer nuclear membranes, in similar proportions (Spencer et al., 1998). It appears 

that COX-1 functions predominantly in the ER (Morita et al., 1995). In platelets, COX-1 is 

predominantly, if not almost exclusively, located in the intracellular membranes, more 

specifically in the dense tubular system (Gerrard et al., 1976; Carey et al., 1982). 
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1.7 Mechanisms of enzyme catalysis 

COX-1 catalyses two distinct reactions, a cyclooxygenase reaction in which two O2 

molecules are inserted into the carbon backbone of AA to yield PGG2 and a peroxidase 

reaction in which PGG2 undergoes a two-electron reduction to PGH2 (Figure 1.11). PGH2 is 

rapidly converted into several bioactive products such as PGD2, PGE2, PGI2 and TxA2 

through PGD, PGE, PGI and thromboxane synthase, respectively. Both reactions occur at 

physically distinct locations but at functionally interacting sites. The peroxidase reaction 

occurs at a heme-containing active site situated near the protein surface, while the 

cyclooxygenase reaction occurs in a hydrophobic channel in the core of the enzyme. 

 

1.7.1 Cyclooxygenase reaction 

The branch-chain reaction mechanism model was first proposed by Ruf and co-workers in 

1988, describing the interplay of the cyclooxygenase and peroxidase activities (Figure 

1.12) (Dietz et al., 1988). The newly synthesised COX enzyme has an absolute 

requirement for peroxides to activate and sustain the cyclooxygenase activity of COX 

enzyme (Smith & Lands, 1972). 

In this model, a substrate peroxide (ROOH) reacts with the heme group [(PPIX)Fe3+] at the 

peroxidase active site of COX, initiating a two-electron oxidation that yields Compound I, 

which contains Fe4+ and a porphyrin radical cation [(PPIX•)+Fe4+O], with concomitant 

formation of the corresponding alcohol (ROH) (Figure 1.13). The oxidised heme group in 

turn oxidises a neighbouring tyrosine residue, most likely tyrosine 385, to yield 

peroxidase Intermediate I, which has a tyrosyl radical and an oxyferryl heme (Fe4+=O), 

and the subsequent conversion of intermediate I to compound II. Alternatively, the 

porphyrin radical cation undergoes one-electron reduction generating compound II 

[(PPIX)Fe4+O] and a second one-electron reduction restores the resting enzyme (Rouzer & 

Marnett, 2003). 
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Figure 1.11: Cyclooxygenase and peroxidase reactions catalysed by COX-1. 
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Figure 1.12: Peroxidase and cyclooxygenase catalysis. (1) First, an oxoferryl 

protoporphyrin radical (Fe4+=O•) in the heme in the peroxidase active site is produced 

when endogenous oxidant(s) oxidises ferric heme (Fe3+) through a two-electron 

oxidation. (2) The Tyr 385 residue in the cyclooxygenase active site is activated, through a 

single electron oxidation reaction with the Fe4+ protoporphyrin radical, to produce a 

tyrosyl radical. In the first step of the oxygenation process (3), the 13-proS hydrogen of 

AA in the cyclooxygenase active site is abstracted by the tyrosyl radical to produce the 

arachidonyl radical. (4) This is followed by the reaction of the arachidonyl radical with 

two molecules of oxygen, to yield PGG2. (5) Then PGG2 diffuses (dotted line) to the 

peroxidase active site and is reduced to PGH2 by the peroxidase activity (1). AA, 

arachidonic acid; Fe3+, ferric heme; Fe=O 4+•, oxo-ferryl Fe4+• porphyrin radical; Tyr-OH, 

active site tyrosine; Tyr-O•, tyrosyl radical. Modified from Chandrasekharan & Simmons, 

2004.
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Figure 1.13: Mechanism for the COX peroxidase reaction. Native enzyme ([(PPIX)Fe3+]) 

reacts with substrate peroxide (ROOH), reducing it to the corresponding alcohol (ROH) 

and converting the enzyme to compound I ([(PPIX•)+Fe4+O]). Two sequential one-electron 

reductions using peroxidase reductant as the electron source convert compound I to 

compound II ([(PPIX)Fe4+O]) and then back to native enzyme. Also, compound I can 

quickly be converted to intermediate I ([(PPIX)Fe4+O]tyr•) and the subsequent reduction 

of intermediate I to compound II. Modified from Rouzer & Marnett, 2003. 
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The cyclooxygenase activity is dependent on heme oxidation, on the peroxidase active 

site, but continuous peroxidase activity is not necessary for cyclooxygenase activity, as 

the tyrosyl radical is regenerated in each catalytic cycle. In vitro, hydroperoxides 

contaminating commercial fatty acid preparations, including AA, are responsible for the 

initial oxidation of the heme groups of a small fraction of COX enzymes, and the 

remaining COX molecules are then activated auto-catalytically by newly generated PGG2. 

Finally, when an appropriate fatty acid such as AA enters the COX channel, the enzyme 

correctly positions the 13-proS hydrogen of the AA for removal (Picot et al., 1994). When 

AA is appropriately positioned, the cyclooxygenase reaction begins with the abstraction 

of the 13-proS hydrogen from AA to form an arachidonyl radical. The tyrosyl radical 

centred on the phenolic oxygen of tyrosine (Tyr) 385 is responsible for the abstraction of 

the hydrogen atom from AA (Figure 1.14). The resulting radical migrates to carbon 11. 

This is followed by sequential addition of O2 at carbon 11 to generate an 11R-

hydroperoxyl radical which in turns forms a carbon 11 to carbon 9 endoperoxide moiety 

that cyclises. A second cyclisation occurs, in which a bond is formed between carbon 8 

and carbon 12 to form the prostanoid five-membered ring and another radical is 

generated, which is delocalised over carbon 13 to carbon 15. This is followed by addition 

of O2 at carbon 15 to form a 15-hydroperoxy radical. In the final stage, the hydroperoxy 

radical abstracts a hydrogen atom from Tyr 385, yielding hydroperoxy endoperoxide 

PGG2 and completing the catalytic cycle. Activated COX would continue to turnover, in 

the presence of substrate, until radical induced inactivation occurs (Smith et al., 2000). 

COX-1 is primarily found in cells in its inactive form waiting to react with a hydroperoxide 

activator (e.g., lipid peroxide), so that it can oxidise a fatty acid. It is suggested that an 

endogenous oxidant binds to the peroxidase active site forming a ferryl-oxo-porphyrin 

radical that abstracts an electron from Tyr 385, thus, generally a tyrosyl radical required 

for cyclooxygenase activity (Simmons et al., 2004). However, it is not known which 

endogenous compound(s) initiates the heme oxidation in the peroxidase active site in 

vivo. 
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Figure 1.14: Proposed mechanism for the cyclooxygenase reaction. Arachidonic acid 13-

pro-(S) hydrogen atom removal. Formation of an arachidonyl radical. Migration of the 

resulting radical to C11. Addition of O2 to C11 to generate an 11-hydroperoxyl radical. 

Endoperoxide formation. Cyclization to form the prostanoid five-membered ring. Radical 

migration from C13 to C15. Addition of the second O2 followed by a reduction of the 

peroxyl radical, yielding hydroperoxy endoperoxide PGG2. Reduction of the 

hydroperoxide group of PGG2 to form PGH2. Modified from Rouzer & Manett, 2011.  
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It is possible that many compounds serve as a physiological heme oxidant for the 

peroxidase active site, for instance hydroperoxides and alkyl peroxides (Smith et al., 

2011). The inorganic oxidant peroxynitrite, which is derived from the condensation of 

nitric oxide and superoxide, has been reported as a possible physiological heme oxidant 

in macrophages (Marnett et al., 1999). 

 

1.8 Suicide Inactivation of COX-1 

The COX-1 feedback activation mechanism allows large amounts of potent prostaglandins 

and other biomolecules to be synthesised. Thus, rigorous regulatory mechanisms are 

required to prevent deleterious effects. Suicide inactivation is the irreversible self-

inactivation of both cyclooxygenase and peroxidase activities which represent the 

ultimate regulation of prostanoid production, limiting cells’ ability to synthesise PGs and 

thromboxane (Marshall et al., 1987). COX-1 has a short half-life of less than 2 min, even in 

the presence of sufficient substrate (Simmons et al., 2004). Indeed, Smith and Lands were 

one of the first to observe that COX-1 undergoes self-inactivation in the presence of fatty 

acid substrates (Smith & Lands, 1972).  

Inactivation of COX-1 peroxidase activity is independent of peroxide species and 

concentrations (Wu et al., 1999; Wu et al., 2001). This strongly suggests that the self-

inactivation process originates after formation of Compound I and, probably, with 

Intermediate II occurring at slower rate than cyclooxygenase inactivation (Wu et al., 

1999; Wu et al., 2001). POX activity remains, even after cyclooxygenase activity is 

completely lost (Wu et al., 2001). On the other hand, cyclooxygenase inactivation appears 

to be dependent on the structure of the peroxide, the peroxidase reducing substrate and 

the fatty acid substrate (Smith et al., 2011).  

It has been proposed that distinct damage can occur at the peroxidase and 

cyclooxygenase sites during side reactions of Intermediate II, which forms during reaction 

of COX-1 with peroxide and contains two strong oxidants, a ferryl heme in the peroxidase 

site and a tyrosyl free radical in the cyclooxygenase site. This implies that peroxidase 

inactivation involves the oxyferryl heme group whereas cyclooxygenase inactivation 

http://www.ncbi.nlm.nih.gov/pubmed?term=Smith%20WL%5BAuthor%5D&cauthor=true&cauthor_uid=5048287
http://www.ncbi.nlm.nih.gov/pubmed?term=Lands%20WE%5BAuthor%5D&cauthor=true&cauthor_uid=5048287
http://www.ncbi.nlm.nih.gov/pubmed?term=Smith%20WL%5BAuthor%5D&cauthor=true&cauthor_uid=5048287
http://www.ncbi.nlm.nih.gov/pubmed?term=Lands%20WE%5BAuthor%5D&cauthor=true&cauthor_uid=5048287
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involves the tyrosyl radical (Wu et al., 2003; Wu et al., 2007; Tsai & Kulmacz, 2010). 

Nevertheless, little is known about the chemical changes that occur in the enzyme related 

to peroxidase or cyclooxygenase auto-inactivation events (Tsai & Kulmacz, 2010). 

 

1.9 Inhibition of COX by aspirin 

The annual consumption of aspirin worldwide is estimated to be 100 billion tablets, 

showing how popular this nonsteroid anti-inflammatory drug has become since first 

marketed in 1897. The success of the most widely used drug in the world is due to its 

broad pharmacological actions, including anti-inflammatory, anti-pyretic and analgesic 

effects with relatively minor side effects.  

Acetyl salicylic acid or aspirin (Figure 1.15) has the ability to suppress the production of 

prostaglandins and thromboxane by causing irreversible inactivation of COX-1/-2 and, 

consequently, inhibiting the formation of prostaglandins (Roth et al., 1975). 

 

 

 

Figure 1.15: Aspirin structural formula. 
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The cyclooxygenase active site is created by a long, hydrophobic channel that is the site 

of binding of aspirin-like drugs (Picot et al., 1994). Like other NSAIDs, aspirin diffuses into 

the COX active site through the mouth of the channel and travels to the constriction point 

formed by arginine (Arg) 120, Tyr 355, and glutamine (Glu) 524 (Simmons et al., 2004). At 

this point in the channel, the carboxyl of aspirin forms a weak ionic bond with the side 

chain of Arg 120, which is situated near the opening of the catalytic channel (Loll et al., 

1995). It has been proposed that the binding of aspirin to Arg 120 through the 

carboxylate moiety puts the molecule in the correct orientation to subsequently acetylate 

serine (Ser) 530 (Loll et al., 1995). Ser 530 lies along the wall of the hydrophobic channel 

near Tyrosine (Tyr) 385 and is the site of aspirin acetylation (Figure 1.16). 

Aspirin acts as an acetylating agent where an acetyl group is covalently attached to the 

Ser 530, in the active site of the COX enzyme (Loll et al., 1995). The acetyl group 

protrudes into the cyclooxygenase active site preventing AA access to Tyr 385 (Figure 

1.16) (Loll et al., 1995). Thus, aspirin irreversibly inhibits prostanoid synthesis by directly 

blocking AA from binding to the enzyme. This makes aspirin different from other NSAIDs 

(such as diclofenac and ibuprofen), which are reversible inhibitors. 

Aspirin acetylates platelet COX-1 in the pre-systemic circulation before its metabolism by 

the liver. This way, inhibition of platelet function occurs at very low doses of aspirin, such 

as 75 mg. At this concentration, aspirin has no effect on PGI2 generation by endothelial 

cells or other systemic effects. Thus, low-dose (75 mg) aspirin blocks only platelet COX-1, 

consequently inhibiting thromboxane production. As platelets are unable to replace 

inactivated COX-1 because they are enucleate, these cells lose their ability to aggregate 

until new platelets are formed, which, in humans, is within 7 to 10 days (Vesterqvist & 

Gréen, 1984). Therefore, daily 75 mg dose is the usual prescription administrated to 

patients at high risk of heart attacks and strokes. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Vesterqvist%20O%5BAuthor%5D&cauthor=true&cauthor_uid=6539491
http://www.ncbi.nlm.nih.gov/pubmed?term=Gr%C3%A9en%20K%5BAuthor%5D&cauthor=true&cauthor_uid=6539491
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Figure 1.16: Aspirin irreversibly inhibits platelet COX-1 enzyme. Its substrate, 

arachidonic acid, is converted to PGH2, which is consequently converted to TxA2 by 

thromboxane synthase. The carboxylic acid groups of aspirin bind weakly to arginine 120 

at the mouth of the channel. Aspirin acetylates serine 530 in a narrow region of COX-1’s 

hydrophobic pocket and thereby sterically inhibits the passage of arachidonic acid to the 

so-called active site of the enzyme. Modified from Sweeny et al., 2009. 
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1.10 The importance of discovering novel COX-1 derived lipids 

COX-1 is a major regulator of platelet function, including aggregation, shape change, 

degranulation and P-selectin expression (Kaplan & Jackson, 2011). This is assumed to be 

via generation of pro-aggregatory TxA2, which signals through activation of thromboxane 

receptor (TP). However, clinical trials with thromboxane synthase inhibitors have been 

unsatisfactory, mainly due to an increase in PGH2, which can itself induce platelet 

aggregation (Fiddler & Lumley, 1990; Watts et al., 1991). 

The use of aspirin as an antithrombotic drug is based on the hypothesis that inhibition of 

platelet COX-1 prevents pathological thrombosis by reducing TxA2 formation. However, it 

is likely that the antithrombotic effect of aspirin is not only due to the inhibition of TxA2 

formation but also because of the blockade of all COX-1 products that function as pro-

thrombotic and pro-inflammatory agents, including previously undescribed products. 

In recent years, it has become clear that OxPLs play an important role not only during 

chronic inflammation but also in maintaining homeostasis. Although the formation of 

glyceryl prostaglandins (PGE2-G and PGD2-G) via COX-2 has been reported in macrophage 

cell lines, generation of esterified prostaglandins via COX-1 has not been described. 

Platelets express both COX and LOX isoforms. In 2010, Thomas and colleagues reported 

the formation of OxPLs by activated platelets. Since these are formed by esterification of 

HETEs, it is also possible that platelets also esterify COX-derived prostaglandins. Esterified 

prostaglandins could be involved in a diverse array of processes within the host including 

haemostasis, membrane lipid remodelling, wound healing and modulation of immune 

responses during infection and inflammation. The identification of new bioactive platelet 

lipids may provide a possible target for therapeutic intervention for a variety of platelet-

driven pathologies, including atherosclerosis and thrombosis. 
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1.11 Overall thesis aims 

Studies performed in this thesis will utilise a lipidomic approach to investigate the 

formation of novel families of esterified prostaglandins generated by agonist-activated 

human platelets. Upon identification of previously unreported lipid species the aims of 

this thesis are to: (1) perform a complete structural characterisation and quantification of 

the lipids; (2) determine whether they originate via COX-1 and whether they are formed 

by direct phospholipid oxidation or esterification of newly formed prostaglandins; (3) 

investigate the signalling pathways involved in the formation of the lipids through the use 

of pharmacological inhibitors; (4) and finally, in vitro studies using liposomes will 

investigate a potential role of esterified prostaglandins in coagulation. 
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CHAPTER 2 
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2 Materials and Methods 

2.1 Materials 

During the course of this project, experiments were conducted utilising various materials 

and methods. The first section of this chapter lists all the materials used during this 

project whether prepared in the laboratory or commercially available kits, and identifies 

the source of the materials. The second section describes the methods employed, 

including, in the case of commercial kits, methods in accordance with the manufacturers’ 

instructions.  

 

2.1.1 Chemicals 

5Z,8Z,11Z,14Z-Eicosatetraenoic acid (arachidonic acid) fatty acyl standard, PGE2, PGD2, 

11β-PGE2 and 8-iso-PGE2 lipid standards and triacsin C were purchased from Enzo Life 

Sciences Ltd (Exter, UK). 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), 1-

stearoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine (SAPE), 1-stearoyl-2-arachi-

donoyl-sn-glycero-3-phospho-L-serine (SAPS), 1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC), 1-octadecanoyl-sn-glycero-3-phosphocholine (18:0 lyso PC), 1-octadecanoyl-sn-

glycero-3-phosphoethanolamine (18:0 lyso PE) was purchased from Avanti Polar Lipids 

inc. (Alabaster, Alabama, USA). PGE2-d4, PGD2-d4, AA-d8, TxB2-d4, 12-HETE-d8, arachidonic 

acid and selective COX-1 inhibitor (Sc-560) were from Cayman Chemical Company (Ann 

Arbor, Michigan, USA). Collagen was from Pathway Diagnostics Ltd (Surrey, UK). PAR-1 

and -4 agonists were from Tocris Biosciences (Bristol, UK). Inhibitors of intracellular 

signalling pathways, PP2, p38i (mitogen-activated protein kinase (MAPK) inhibitor), 

oleyloxyethylphosphocholine (OOEPC), cytosolic phospholipase A2α inhibitor (cPA2αi) (N-

((2S,4R)-4-(Biphenyl-2-ylmethyl-isobutyl-amino)-1-[2-(2,4-difluoro-benzoyl)-benzoyl]-pyr-

rolidin-2-ylmethyl}-3-[4-(2,4-dioxothia-zolidin-5-ylidene-methyl)phenyl] acryl amide, HCl), 

bromoenol lactone (BEL), Gö 6850, U73112 and wortmannin were from Calbiochem 

(Beeston, Nottingham, UK). Ovine PGHS-1 and wild-type murine PGHS-2 were kindly 

http://www.avantilipids.com/index.php?option=com_content&view=article&id=558&Itemid=227&catnumber=850745
http://www.avantilipids.com/index.php?option=com_content&view=article&id=577&Itemid=229&catnumber=850804
http://www.avantilipids.com/index.php?option=com_content&view=article&id=577&Itemid=229&catnumber=850804
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provided by Dr Lawrence J Marnett (Vanderbilt Institute of Chemical Biology, Vanderbilt 

University, Nashville, TN, USA). Corn Trypsin Inhibitor (CTI) and recombinant tissue factor 

were purchased from Cambridge Biosciences (Cambridge, UK). Thrombin Calibrator was 

purchased from Diagnostica Stago UK Ltd (Reading, UK). Aspirin 75 mg enteric coated 

tablets were from Boots UK Ltd. All high-performance liquid chromatography grade 

solvents were from Thermo Fisher Scientific (Hemel Hempstead, Hertfordshire, UK). All 

other reagents were from Sigma-Aldrich Company Ltd (Poole, Dorset, UK) unless 

otherwise stated. 

 

2.1.2 General buffers and solutions. 

Acid-citrate-dextrose (ACD) buffer. 

85 mM trisodium citrate, 65 mM citric acid, 100 mM glucose, pH 5.0. 

Tyrode’s buffer. 

134 mM NaCl, 12 mM NaHCO3, 2.9 mM KCl, 0.34 mM Na2HPO4, 1 mM MgCl2, 10 mM 

Hepes, 5 mM glucose, pH 7.4. 

Extraction mix solvent. 

1 M acetic acid, 2-propanol, hexane (2:20:30, v/v/v). 

Hydrolysis buffer. 

150 mM NaCl, 5 mM CaCl2, 10 mM Tris (trizma base), pH 8.9. 

Phosphate buffer. 

100 mM potassium phosphate, pH 7.4. 

Liposome buffer. 

20 mM HEPES, 140 mM NaCl, pH 7.35. 

Hepes buffer. 

20 mM HEPES, 140 mM NaCl, pH 7.35, 5 mg/ml BSA. 
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Fluo-buffer. 

20 mM HEPES, 140 mM NaCl, pH 7.35, 60 mg/ml BSA, 0.02 % sodium azide. 

Sodium citrate buffer. 

136 mM trisodium citrate in PBS. 

Sucrose buffer. 

0.1 mM potassium phosphate, 0.25 M sucrose, 1 mM EDTA, pH 7.5. 

 

2.2 Methods 

2.2.1 Blood collection and platelet isolation. 

All blood donations were approved by the Cardiff University School of Medicine Ethics 

Committee and were with informed consent (SMREC 12/37, SMREC 12/10), and were 

according to the Declaration of Helsinki. Whole blood was collected from healthy 

volunteers free from non-steroidal anti-inflammatory drugs for at least 14 days. 

Approximately 40 ml of blood was taken via forearm venepuncture into ACD (ratio of 

blood:ACD, 8.1: 1.9, v/v). Blood containing ACD (50 ml total) was separated into two 50 

ml falcon tubes, followed by centrifugation at 250 X g in a centrifuge (Heraeus Labofuge 

400e, DJB Labcare Ltd, Buckinghamshire, UK), with brake mechanism off, for 10 min at 

room temperature. The resulting platelet-rich-plasma (PRP) was aspirated into a clean 50 

ml falcon tube and centrifuged at 900 X g, with brake mechanism off, for 10 min at room 

temperature. Platelet-poor-plasma (PPP) was then discarded and the remaining platelet 

pellet was resuspended in 10 ml Ca2+ free Tyrode’s buffer containing ACD (9:1 v/v). 

Resuspended platelets were then centrifuged at 800 X g, with brake mechanism off, for 

10 min at room temperature (Thomas et al., 2010). After the last centrifugation step, 

supernatant was discarded and platelet pellet was resuspended in 3 ml Tyrode’s buffer. 
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2.2.1.1 Platelet isolation from buffy coat. 

All buffy coats were obtained from the Welsh Blood service. Buffy coat containing 

approximately 50 ml of anticoagulated blood, composed predominantly of white blood 

cells and platelets, was separated into five 50 ml falcon tubes. Then, 20 ml of Tyrode’s 

buffer containing ACD (9:1 v/v) was added to each tube. The diluted blood was 

centrifuged for 10 min at 250 X g with brake mechanism off. Next, plasma was 

transferred to a clean falcon tube and centrifuged at 900 X g for 10 min (brake off). 

Plasma was carefully discarded and the platelet pellet was resuspended in 10 ml of 

Tyrode’s buffer containing ACD (9:1 v/v). Platelets were then centrifuged for 10 min at 

800 X g (brake off), the supernatant was discarded and the platelet pellet was carefully 

resuspended with 10 ml Tyrode’s buffer.  

 

2.2.1.2 Platelet density analysis. 

The platelet number was evaluated after diluting 1:100 in a Tyrode’s buffer/Trypan Blue 

solution (445 µl Tyrode’s buffer, 50 µl of electrostatically charged exclusion dye (Trypan 

Blue). Platelets were counted over a grid of 25 squares using a haemocytometer and their 

concentration was calculated using the followed equation: 

 
                                              

 [(
                           

                         
)    ]   (               )

 (   )                                 

 
Platelets were then diluted at a concentration of 2 x 108 per ml in calcium free Tyrode’s 

buffer. 
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2.2.1.3 Platelet activation. 

Washed human platelets, at a concentration of 2 x 108 per ml in Ca2+ free Tyrode’s buffer, 

were aliquoted into 1.5 ml eppendorf tubes followed by addition of 1 mM CaCl2 with 

gentle agitation and incubated at 37oC for 5 min. Platelet samples were then activated 

with several agonists including thrombin (0.2 U/ml), collagen (10 µg/ml) and calcium 

ionophore (10 µM) for 30 min at 37oC prior to lipid extraction. 

 

2.2.1.4 Time course experiments. 

Platelet samples were analysed at several time points (0, 5, 10, 30, 60, 120 and 180 min). 

Washed human platelets were collected and isolated, as described in section 2.2.1, and 

activated with several agonists as described in section 2.2.1.4. After the specific time 

points had been reached, the activated platelet samples were transferred into 10 ml glass 

extraction vial containing extraction solvent and 5 ng of each internal standard followed 

by lipid extraction as described below (section 2.2.2). 

 

2.2.2 Lipid extraction. 

Prior to extraction, 5 ng each of di-14:0-phosphatidylethanolamine (DMPE), PGE2-d4 and 

PGD2-d4 was added to samples as internal standards. Where quantified, 5 ng each of 

TxB2-d4 and 12-HETE-d8 were also added. Lipids were extracted by adding a solvent 

mixture (1 M acetic acid, isopropyl alcohol, hexane (2:20:30, v/v/v)) to the sample at a 

ratio of 2.5 ml of solvent mixture to 1 ml of sample, vortexing, and then adding 2.5 ml of 

hexane (Zhang et al., 2002). After vortexing and centrifugation for 5 min at 4 C, lipids 

were recovered in the upper hexane layer. The samples were then re-extracted by 

addition of an equal volume of hexane. The combined hexane volumes were evaporated 

to dryness using a Rapidvap N2/48 evaporation system (Labconco Corporation) and 

resuspended in methanol and analysed for free and esterified prostaglandins by liquid 

chromatography/tandem mass spectrometry (LC/MS/MS). 
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2.2.3 Mass Spectrometry Analysis. 

The identification of phospholipid-esterified eicosanoids described in this thesis utilised 

mostly mass spectrometry methods. Mass spectrometry (MS) is a powerful tool in the 

field of lipidomics, allowing for identification, characterisation and quantitation of various 

lipid classes. A MS in simple terms functions to detect the mass-to-charge ratio (m/z) and 

abundance of the various analytes generated during ionisation of a sample extract. 

 

2.2.3.1 Precursor scanning. 

Precursor scanning of platelet lipid extracts was carried out in order to identify ions that 

generate daughter ions with a m/z of 351.2 on collision-induced dissociation. Lipid 

extracts were separated by reverse-phase HPLC using a Luna 3 μm C18 (2) 150 mm × 2 

mm column (Phenomenex, Torrance, CA) with a gradient of 50 – 100 % B over 10 min 

followed by 30 min at 100 % B [A, methanol/acetonitrile/water (1 mM ammonium 

acetate) at a ratio 60:20:20; B, methanol, 1 mM ammonium acetate] with a flow rate of 

200 l.min –1. MS was carried out using a 4000 Q-Trap (Applied Biosystems, Foster City, 

California, USA). The declustering potential (DP) was set at -140 V and the collision energy 

(CE) at -45 V. Spectra were acquired scanning Q1 from 650 - 950 atomic mass units (amu) 

over 5 s with Q1 in negative mode set to the daughter ion of interest, m/z 351.2 [M-H]-. 

 

2.2.3.2 Phospholipid reverse-phase LC/MS/MS. 

LC-MS/MS analysis of lipids relies exclusively on soft ionisation techniques that create 

intact gas-phase ions from biomolecules, enabling accurate measurement of molecular 

weight. Briefly, the technique consists of introducing lipid samples in solution, within the 

mass spectrometer electrospray chamber, where the sample is introduced through a 

hypodermic needle at a high voltage charging the surface of the emerging liquid and 

dispersing it into a fine spray of charged droplets, electrospray (Mann et al., 2001; Fenn 

et al., 1989). Molecules within the electrospray evaporate and are then ionised in 

atmosphere (Mann et al., 2001). After ionisation, charged molecules travel through three 
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quadrupoles (Q1, Q2 and Q3) to a detector. The first (Q1) and the third (Q3) quadrupoles 

act as mass filters, and only let stable masses through the detector (Mann et al., 2001). 

Charged molecules can then be contained in the middle (Q2) quadrupole and undergo 

collision-induced-decomposition (CID) using inert gas such as argon, helium or nitrogen 

(Maskrey & O’Donnell, 2008). This causes fragmentation of precursor ions (intact 

molecule) into product ions, also known as parent and daughter ions, respectively. The 

fragments then pass through Q3 to the detector. 

Phospholipids were separated by reverse-phase HPLC using a Luna 3 μm C18 (2) 150 X 2 

mm column (Phenomenex, Torrance, CA) based on the hydrophobicity of the sn1 fatty 

acid, and gradient as described in detail in Section 2.2.3.1. Products were monitored by 

LC/MS/MS in negative ion mode, on a 4000 Q-Trap, using the specific parent to daughter 

transitions; collision energies and declustering potential for each analyte are specified in 

Table 2.1. 

 

2.2.3.3 Eicosanoid reverse-phase LC/MS/MS. 

Free fatty acids were separated on a C18 Spherisorb ODS2, 5 µm particle size, 150 x 4.6 

mm (Waters Ltd., Elstree, Hertfordshire, UK) with gradient elution of. 50 – 90 % B over 20 

min at 1 ml.min-1 (A, water:acetonitrile:acetic acid at 75:25:0.1; B, methanol:aceto-

nitrile:acetic acid at 60:40:0.1). Products were monitored by LC/MS/MS in negative ion 

mode, on a 4000 Q-Trap, using the specific parent to daughter transitions, collision 

energy and declustering potential for each analyte as described in Table 2.2. PGE2, PGD2, 

TxB2 and 12-HETE were quantified using PGE2-d4, PGD2-d4, TxB2-d4 and 12-HETE-d8 as 

internal standards run in parallel under the same conditions.  
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Table 2.1: Parent and daughter m/z and MS conditions for analytes. 

PE Phospholipid 

Structure 

Analysed Transition 

[M-H]- 

Declustering 

Potential (V) 

Collision 

Energy (V) 

PE(14:0/14:0) 634.5/227.2 -140 -45 

16:0p/PGE2/D2-PE 770/271 -140 -60 

18:1p/PGE2/D2-PE 796/271 -140 -60 

18:0p/PGE2/D2-PE 798/271 -140 -60 

18:0a/PGE2/D2-PE 814/271 -140 -60 

16:0p/PGb-PE 

16:0p/PGc-PE 
770/351 -140 -45 

18:1p/PGb-PE 

18:1p/PGc-PE 
796/351 -140 -45 

18:0p/PGb-PE 

18:0p/PGc-PE 
798/351 -140 -45 

18:0a/PGb-PE 

18:0a/PGc-PE 
814/351 -140 -45 

16:0p/12-HETE-PE 738/179 -140 -45 

18:1p/12-HETE-PE 764/179 -140 -45 

18:0p/12-HETE-PE 766/179 -140 -45 

18:0a/12-HETE-PE 782/179 -140 -45 
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Table 2.2: Fatty acid transitions m/z and MS conditions for analytes. 

Analyte Q1 Mass (amu) Q3 Mass (amu) 
Declustering 

Potential (V) 

Collision Energy 

(V) 

PGE2 

PGD2 
351 271 -55 -26 

PGb 351 207 -55 -26 

PGc 351 165 -55 -26 

TxB2 369 169 -50 -22 

12-HETE 319 179 -85 -20 

PGE2-d4 

PGD2-d4 
355 275 -55 -26 

TxB2-d4 373 173 -50 -22 

12-HETE-d8 327 184 -85 -20 

 

2.2.3.4 Enhanced product ion (EPI) analysis. 

In enhanced product ion analysis, Q1 acts as a filter by selecting a specific precursor ion 

by its m/z value. These ions are transferred to a collision chamber (Q2) where they are 

bombarded with a collision gas, and fragment. The daughter ions produced are then 

detected in Q3. EPI analysis uses ion trapping, where ions can accumulate in Q3 for a 

specified time and can be scanned simultaneously. The ion trap settings were as follow 

with the LIT fill time set at 200 ms and the Q3 entry barrier set at 8.00 V, declustering 

potential -50 V and the collision energy set at -30V.  

All MS data acquired using 4000 Q-Trap (Applied Biosystems, Foster City, California, USA) 

were analysed by AnalystTM software. 
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2.2.3.5 Targeted MS/MS using an LTQ Orbitrap Velos. 

The LTQ Orbitrap Velos used in this study combines the tandem mass spectrometry 

competence of the linear ion trap (LTQ) with the high resolution fast scanning and mass 

accuracy of the Orbitrap for precursor and product ions measurements, providing rapid 

and high quality accurate data for elucidation of unknown compounds. 

In the LTQ Velos, ions are generated by heated electrospray, a soft ionization process 

which transforms ions predominantly pre-formed in solution into ion in the gas phase. 

Then, ions are driven towards the ion transfer tube, passing through the S-lens which 

consists of a set of stainless apertures that act focusing ions into a tight beam as they 

travel through the device (Michalski et al., 2012). At the S-lens exit, ions are transferred 

into the square quadrupole and from there into the octopole, which main purpose is to 

transmit only selectively charged ions from the S-lens to the ion trap, allowing neutral or 

ions of opposite polarity to be lost to vacuum before to be transferred into the ion trap 

(Michalski et al., 2012). In the high pressure cell (HPC), all ions are first trapped, 

regardless of mass, in the ion trap through the voltage applied to the electrodes and 

stabilised by helium gas. Once ions are trapped, several modes of operation can be 

trigged, such as full scan in which all of the ions are collected in the HPC and transferred 

directly into the low pressure cell (LPC), from where they are ejected travelling towards to 

the Orbitrap analyser. In MS/MS, ions are trapped (step 1) and a single ion is isolated (step 

2) and fragmented (step 3) in the HPC, generating product ions which are detected on the 

LPC. In the case of any higher level of analysis, for instance MS3 or MSn, steps 2 and 3 can 

be repeated several times in order to generate the desired end product. 

Ions ejected from the LPC are transferred into a multipole, where ions are packed and 

guided to the next piece of device. The multipole is followed by an ion storage device 

based on trapping ions, termed C-trap, which can accumulate a significant ion population 

by employing an electrostatic field (Perry et al., 2008). The C-trap allows the stored ions 

to be either injected directly into the Orbitrap analyser or undergo fragmentation in the 

HCD collision cell first, HCD stands for higher collision dissociation (HCD), and then 

injected into the Orbitrap analyser (Makarov & Sciegelova, 2010). Thus, the C-trap works 
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as a “T-piece” allowing interface with additional devices. In order to acquire mass 

accuracy of product ions, the precursor ions are isolated in the LTQ Velos, transferred to 

the C-trap into the HCD collision cell, from where they are transferred back into the C-trap 

and then into the Orbitrap. 

The Orbitrap mass analyser consists of two electrodes, a central electrode termed 

spindle, around which ions are forced to move in a spiral, and an outer electrode (Perry et 

al., 2008). When ions are injected into the Orbitrap a strong electrical field inside the trap 

pushes them towards the equator of the Orbitrap analyser (a central spindle electrode) 

where they are electrostatic trapped, initiating axial oscillation along the axis and rotation 

around the central electrode, resulting in an intricate spiral (Perry et al., 2008; Makarov & 

Sciegelova, 2010; Makarov, 2000). The combination of orbital motion and harmonic axil 

oscillations allows a larger trapping capacity, consequently, leading to an increased space-

charge capacity (Perry et al., 2008). The harmonic ion oscillations along the central 

electrode produces an image current, which is then acquired as a time-domain signal by 

the two split halves of the outer electrode (Perry et al., 2008). The time-domain signal 

contains all the characteristic frequency observed over a period of time that ions are 

measured. The fast Fourier transform (FT) operation converts the recorded time-domain 

into a frequency spectrum, which is then converted into a m/z spectra through 

mathematical calculations (Scigelova et al., 2011). Therefore, as masses are represented 

by frequencies and the last can be measured very accurately because is completely 

independent of the energy and the position of the ions, high mass accuracy and high 

mass resolution can be achieved. 

Purified lipid extracts were separated by negative reverse-phase HPLC on a C18 Hypersil 

Gold, 1.9 µm, 100 x 2.1 mm column on an LTQ Orbitrap Velos mass spectrometer 

(Thermo Fisher Scientific, Hemel Hempstead, Hertfordshire, UK) using a linear mobile 

phase gradient (A, methanol/acetonitrile/water containing 1 mM ammonium acetate, at 

a ratio 60:20:20; B, methanol, 1 mM ammonium acetate) with a flow rate of 200 l.min –

1. The starting conditions consisted of 50 % B and were maintained for 10 min. The 

gradient then increased to 100 % B over 15 min and then finally returned to the initial 

conditions for 5 min to allow equilibration. The analyses on the LTQ Orbitrap instrument 



 

52 

were performed using heated electrospray ionization (h-ESI) in negative ion mode at 

sheath, auxiliary, and sweep gas flows of 30, 10, and 0, respectively. The capillary and 

source heater temperatures were set to 275 and 250 °C, respectively. Resolving power of 

30,000 in full scan mode was used. LC/MS of parent ions were monitored using accurate 

mass in FTMS mode. Negative MS/MS spectra were acquired using higher energy 

collision-induced-dissociation (HCD). Data dependent MS3 of m/z 351 was carried out in 

ITMS on the LTQ Ion Trap. 

All MS data acquired using LTQ Orbitrap Velos mass spectrometer (Thermo Fisher 

Scientific, Hemel Hempstead, Hertfordshire, UK) were analysed by XcaliburTM software. 

 

2.2.3.6 Normal-phase HPLC–UV. 

Normal-phase HPLC–UV was used to determine phospholipid headgroup. Platelet lipid 

extracts resuspended in normal phase solvents [50:50 of solvents A:B (A, hexane:propan-

2-ol, 3:2; B, solvent A:water, 94.5:5.5)] were separated on a Spherisorb S5W 4.6 x 150-

mm column (Waters Ltd., Estree, Hertfordshire, UK) at a flow rate of 1.5 ml.min-1 (Dugan 

et al., 1986). Absorbance was monitored at 205 nm and products identified by retention 

time comparison using a mixture of standard phospholipids (bovine brain PC and PE, 25 

mg/ml). Fractions were collected at 30 sec intervals and analysed by direct flow injection, 

with no column attached, in reverse phase solvents [50:50 of solvents A:B (A, 

methanol:acetonitrile:water, 1 mM ammonium acetate, 60:20: 20; B, methanol, 1 mM 

ammonium acetate)] and a flow rate of 200 μl. min_1, monitoring parent to daughter ion 

on a 4000 Q-trap. The time of elution of esterified prostaglandins were then compared 

with standard PE and PC for headgroup classification. 



 

53 

2.2.4 Purification of prostaglandin-PEs (PG-PEs). 

Washed human platelets were activated with ionophore (10 μM for 30 min at 37oC) in the 

presence of 1mM CaCl2 followed by lipid extraction as described above (section 2.2.2). 

HPLC with UV detection was carried out using a Gilson HPLC system comprising 811D 

dynamic mixer, 306 pumps, 805 manometric module, and an Agilent 1100 series UV 

detector. Prostaglandin-PEs were purified from total platelet lipid extracts using a 

Discovery C18 column (25 cm x 4.6 mm, 5 µm particle size (Sulpeco)) at 1 ml.min-1, and 

gradient of 50 % to 100 % mobile phase B (A: water, 1 mM ammonium acetate, B: 

methanol, 1 mM ammonium acetate) over 15 min, then held at 100 % B for 20 min. 

Fractions were collected with 60 sec intervals for subsequent analysis by LC/MS/MS. 

Prostaglandin-PEs were then analysed for the m/z of interest using phospholipid reverse-

phase separation on an Applied Biosystems 4000 Q-Trap, as described in section 2.2.3.2. 

Esterified prostaglandin-containing fractions were combined and evaporated to dryness 

using a Rapidvap N2/48 evaporation system (Labconco Corporation) and resuspended in 

methanol. 

 

2.2.5 Phospholipase A2 hydrolysis. 

Purified prostaglandin-PE sample was subject to enzymatic-hydrolysis. Lipids were dried 

by evaporation under N2 and resuspended in 1 ml hydrolysis buffer (described in section 

2.1.2). To this solution was added 200 g/ml of snake venom phospholipase A2 (PLA2) and 

incubated for 60 minutes at 37C. Following incubation, lipids were extracted as 

described in Section 2.2.2. Following hydrolysis, prostaglandins released from the glycerol 

backbone were analysed using prostaglandin reverse-phase LC/MS/MS as described 

below in Section 2.2.6. 

 

2.2.6 Prostaglandin reverse-phase LC/MS/MS. 

Prostaglandins were separated on a C18 Spherisorb ODS2, 5 µm particle size, 150 x 4.6 

mm (Waters Ltd., Elstree, Hertfordshire, UK). MS/MS was carried out using an Applied 
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Biosystems 4000 Q-Trap. The solvent system was composed of 0.1 % formic acid in water 

(solvent A) and 0.1 % formic acid in acetonitrile (solvent B). The flow rate was 1 ml.min-1. 

Solvent B was increased from 20 % to 42.5 % over 50 min, at 50 min was increased 

further to 90 % over 10.5 min to wash the column, and at 65.5 min, it was returned to 20 

% over 1 min for column equilibration (Brose et al., 2011). Equilibration time between 

runs was 14 min. 

 

2.2.7 Synthesis of PGE2/D2-PE standards. 

Approximately 1 x 1011 platelets were isolated from two buffy coats as described in 

Section 2.2.1.2, diluted in Tyrode’s buffer to give a concentration of 2 x 108 platelets/ml, 

and activated using 10 μM of A23187, for 30 min at 37oC, in the presence of 1 mM CaCl2. 

Following activation, platelet samples were spun at 900 X g for 5 min, the supernatant 

(containing free prostaglandins) removed and the platelet pellet resuspended in fresh 

Tyrode’s buffer. Following extraction using hexane: isopropanol, as described in Section 

2.2.2, platelet lipid extracts were resuspended in 400 μl of methanol, from which 200 μl 

was taken and divided into two vials. A 100 μl aliquot was then dried and incubated with 

200 μg/ml snake venom PLA2 and the other 100 μl incubated with hydrolysis buffer only, 

as control. Both were incubated for 60 minutes at 37°C. 

Following hydrolysis, 2 ng of PGE2-d4 and PGD2-d4 were added to each sample for 

quantification of PGE2 and PGD2, respectively. To account for differences in PGE2/D2-PE 

recovery during extraction, an internal standard (1,2-dimyristoyl-sn-glycero-3-

phosphoethanolamine (DMPE)) was added to samples prior to lipid extraction. Following 

extraction, lipids were recovered as described in Section 2.2.2, resuspended in methanol 

and analysed for PGE2/D2-PEs using reverse-phase LC/MS/MS, monitoring parent [M-H]- 

 271, as described in Section 2.2.3.2. PGE2 and PGD2 was also analysed using reverse-

phase LC/MS/MS monitoring m/z 351.2  271, as described in Section 2.2.6. 

 

http://www.avantilipids.com/index.php?option=com_content&view=article&id=558&Itemid=227&catnumber=850745
http://www.avantilipids.com/index.php?option=com_content&view=article&id=558&Itemid=227&catnumber=850745
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2.2.8 Enzymology 

2.2.8.1 Protein quantification. 

Ovine COX-1 and wild-type murine COX-2 were quantified using Bicinchoninic Acid (BCA) 

Protein Assay Kit (Thermo Scientific Pierce Protein Research Products), in accordance 

with the manufacturer’s instructions. The assay was performed in triplicate on 1:20 

dilutions of the ovine COX-1 and wild-type murine COX-2 protein in PBS buffer. 20 µl of 

each protein standard and sample was added to 200 µl of a 1:50 dilution of sulphate 

pentahydrate in bicinchoninic acid in 96 well plates and incubated at 37oC for 30 minutes. 

The absorbance was recorded at 562 nm using a Multiscan plate reader (FLUOstar Omega, 

BMG Labtech). The protein sample concentration was determined by comparison to the 

standard curve. 

 

2.2.8.2 Oxidation of free and phospholipid-esterified arachidonate by purified/ 

recombinant COX-1 and COX-2.  

ApoCOX-1 or apoCOX-2 was reconstituted with 2 molar equivalents of hematin in 

phosphate buffer on ice for 20 min. The reconstituted enzyme (holoCOX-1 or holoCOX-1) 

was added to 1 ml phosphate buffer and 500 µM of phenol and incubated for 3 min at 

37°C in the presence of 150 µM arachidonate (AA or AA-d8). In some experiments, the 

same amount of AA was replaced with SAPE. The reaction was stopped by addition of ice-

cold extraction mix solvent (described in Section 2.1.2). Then, 5 ng each of DMPE, PGE2-d4 

and PGD2-d4 was added as internal standards and lipids extracted. PGE2 and PGD2 were 

quantified by LC/MS/MS analysis, as described in Section 2.2.3.3. In some experiments, 

10 μM of the metal chelator diethylenetriaminepentaacetic acid (DTPA) was added to the 

reaction just before the addition of holoCOX-1. Formation of esterified and deuterated 

esterified prostaglandin was analysed by phospholipid reverse-phase LC/MS/MS, as 

described in Section 2.2.3.2, in negative ion mode, on a 4000 Q-Trap. Formation of PGs 

and deuterated PGs was analysed by prostaglandin reverse-phase LC/MS/MS, as 

described in Section 2.2.6, in negative ion mode, on a 4000 Q-Trap. Deuterated PGs were 

monitored using the specific transitions as described in Table 2.3. Deuterated esterified 
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prostaglandins were monitored using the specific parent to daughter transitions, as 

described in Table 2.4. 

 

Table 2.3: Transitions m/z and MS conditions for deuterated prostaglandin analytes. 

Analyte 
Q1 Mass 

(amu) 
Q3 Mass 

(amu) 
Declustering 
Potential (V) 

Collision 
Energy (V) 

Deuterated 
PGE2 and PGD2 

359 278 -55 -26 

Deuterated 
PGb 

359 213 -55 -26 

Deuterated 
PGc 

359 169 -55 -26 

 

Table 2.4: Parent and daughter m/z and MS conditions for deuterated esterified 

prostaglandin analytes. 

PE Phospholipid 
Structure 

Analysed Transition 

[M-H]- 

Declustering 

Potential (V) 

Collision 

Energy (V) 

Deuterated 
16:0p/PGE2/D2-PE 

778/278 -140 -60 

Deuterated 
18:1p/PGE2/D2-PE 

804/278 -140 -60 

Deuterated 
18:0p/PGE2/D2-PE 

806/278 -140 -60 

Deuterated 
18:0a/PGE2/D2-PE 

822/278 -140 -60 

Deuterated 
16:0p/PGb-PE and  

16:0p/PGc-PE 

778/359 -140 -45 

Deuterated 
18:1p/PGb-PE and  

18:1p/PGc-PE 

804/359 -140 -45 

Deuterated 
18:0p/PGb-PE and 

18:0p/PGc-PE 

806/359 -140 -45 

Deuterated 
18:0a/PGb-PE and 

18:0a/PGc-PE 

822/359 -140 -45 
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2.2.9 Exogenous incorporation of added fatty acids by activated human platelets. 

Human platelets were incubated with either 2 μg of AA-d8, 5 ng of PGE2-d4 or 2.5 ng of 

PGD2-d4, in the presence of 0.2 U/ml of thrombin and 1 mM CaCl2 (Smith et al., 1985). 

Cells were incubated for 30 min at 37oC and lipids extracted as described in section 2.2.2. 

Formation of deuterated prostaglandins was analyzed using eicosanoid reverse-phase 

LC/MS/MS, monitoring specific transitions as described in Table 2.4. Generation of 

deuterated esterified prostaglandins was monitored using phospholipid reverse-phase 

LC/MS/MS, on a 4000 Q-trap, monitoring parent to daughter transitions as described in 

Table 2.5. In each table, the first analyte transition corresponds to deuterated-esterified 

prostaglandin formed upon incorporation of AA-d8, while the second transition relates to 

the incorporation of either PGE2-d4 or PGD2-d4. 

 

2.2.10 In vivo aspirin supplementation. 

All human studies were approved by the Cardiff University School of Medicine Ethics 

Committee (Study No. 12/10) and were with informed consent. Healthy volunteers were 

recruited by advertisement. Exclusion criteria were a known sensitivity to aspirin. All 

subjects gave written informed consent, according to the Declaration of Helsinki. 

Following a 14-day NSAID-free washout period, blood samples were obtained for baseline 

determination of PGE2/D2-PE, PGb-PE and PGc-PE as well as PGE2, PGD2, PGb and PGc 

levels. Subjects were ask to take 75 mg/day aspirin for 7 days, then provided a second 

blood sample on the day after the last aspirin dose. Platelets were isolated and activated 

ex vivo using 0.2 U/ml of thrombin, in the presence of 1 mM CaCl2, followed by lipid 

extraction.
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Table 2.5: Parent and daughter m/z and MS conditions for analytes. 

Phospholipid Structure 
Analysed Transition 

[M-H]- 

Declustering 

Potential (V) 

Collision 

Energy (V) 

Deuterated 

16:0p/PGE2/D2-PE 

774/275 

778/278 
-140 -60 

Deuterated 

18:1p/PGE2/D2-PE 

800/275 

804/278 
-140 -60 

Deuterated 

18:0p/PGE2/D2-PE 

804/275 

806/278 
-140 -60 

Deuterated 

18:0a/PGE2/D2-PE 

818/275 

822/278 
-140 -60 

Deuterated 

16:0p/PGb-PE and  

16:0p/PGc-PE 

774/355 

778/359 
-140 -45 

Deuterated 

18:1p/PGb-PE and 

18:1p/PGc-PE 

800/355 

804/359 
-140 -45 

Deuterated 

18:0p/PGb-PE and 

18:0p/PGc-PE 

804/355 

806/359 
-140 -45 

Deuterated 

18:0a/PGb-PE and 

18:0a/PGc-PE 

818/355 

822/359 
-140 -45 

 

2.2.11 Generation of liposomes. 

Lipids were dried in a glass vial by evaporation under N2 and suspended in 500 μl 

liposome buffer (described in section 2.1.2) with vortexing. Liposomes were then 

generated by ten freeze thaw cycles with liquid nitrogen, followed by passing through 

LiposofastTM mini-extruder with 100 nm pore membranes (Avestin) nineteen times. In 
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some experiments, 25 nM recombinant tissue factor was added to lipids in buffer before 

the freeze thaw cycles. Liposomes were prepared immediately before use, utilizing either 

lipid extracts from activated human platelets or commercial available lipid standards. 

 

2.2.12 Synthesis of PGE2-PE in vitro. 

2.2.12.1 Generation of Rat liver microsomes. 

Wistar strain male rats (6 weeks old) were decapitated and whole livers were 

immediately removed and kept on ice. Livers were washed with ice-cold PBS and 

perfused with 50 ml ice-cold trisodium citrate buffer to remove excess of blood. They 

were then minced and homogenized using a glass hand homogenizer in 200 ml of ice-cold 

sucrose buffer (pH 7.4), containing 1 mM ethylenediaminetetraacetic acid (EDTA). The 

homogenate was sequentially centrifuged at 5,000 X g for 10 min, 22,000 X g for 10 min 

and 43,500 X g for 10 min, at 4°C, with pellets discarded every time. Then, supernatant 

was centrifuged once again at 81,600 X g for 60 min, at 4°C, and pellet containing rat liver 

microsomes were resuspended in sucrose buffer. Microsomes were stored at - 80°C 

before use. The protein content of microsome pellets was measured by NanoDrop 1000 

spectrophotometer. 

 

2.2.12.2 Preparation of lysophospholipid/fatty acid solution. 

Lysophospholipid/fatty acid solution was prepared by adding 80 μM of AA-d8 and 80 μM 

of either 18:0 lyso PE or 18:0 lyso PC to a 0.3 ml reaction vial and solvent evaporated. In 

some experiment 80 μM of PGE2 was replaced by 80 μM of PGE2. Lipids were 

resuspended in 20 μl of ethanol and mixed vigorously by vortex. This was followed by 200 

μl ultrapure water and samples again vortexed. When required, lysophospholipid/fatty 

acid solution was added to the reaction mix, the vial rinsed with 100 μl ultrapure water, 

vortexed and also added to the microsome reaction mix. 
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2.2.12.3 Esterification reaction procedure. 

Microsome buffer mix was prepared by adding 3 ml of Tris-HCl (60 mM, pH 7.4), 1.6 mM 

of adenosine-5'-triphosphate (ATP), 1 mM of MgCl2.6H2O and 80 μM of Coenzyme A to a 

5 ml reaction vial. Then, microsomes were added at a concentration of 0.5mg/3ml. This 

was followed by addition of lysophospholipid/fatty acid solution, prepared as described 

in Section 2.2.12.1. The resulting reaction mix solution was incubated for 1 h at 37oC, 

using Rapidvap N2/48 system (Labconco Corporation) with constant shaking and vacuum 

mechanism off. Following incubation lipids in solution were extracted by Bligh and Dyer 

method, as described below. 

 

2.2.12.4 Lipid extraction by Bligh and Dyer 

For each 1 ml of sample 3.75 ml of 1:2 (v/v) CHCl3:MeOH was added and the sample 

vortexed. Then, 1.25 ml of CHCl3 was added and again vortexed. Finally 1.25 ml of dH2O 

was added, vortexed and centrifuged at 250g for 5 min at 4oC to give a two-phase system 

(aqueous top, organic bottom). The bottom phase was recovered by inserting a Pasteur 

pipette through the upper phase with gentle positive-pressure to avoid the upper phase 

to get into the pipette tip (Bligh & Dyer, 1959). The bottom layer was evaporated to 

dryness, using a Rapidvap N2/48 evaporation system (Labconco Corporation) and 

resuspended in methanol. Products were analyzed using phospholipid reverse-phase 

LC/MS/MS (as described in section 2.2.3.2) in negative and positive mode on a 4000 Q-

Trap, monitoring the specific parent to daughter transitions as described in Tables 2.6 – 

2.8. The collision energies and declustering potential for each analyte are also specified in 

Tables 2.6 – 2.8. 
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Table 2.6: Parent and daughter ion transition and MS condition in negative mode for 

Lyso PC 18:0. 

 

Table 2.7: Parent and daughter ion transitions and MS conditions in negative mode for 

analytes. 

Phospholipid Structure Analysed Transition 

 [M-H]- 

Declustering 

Potential (V) 

Collision 

Energy (V) 

Lyso PE 18:0 480/283 -140 -45 

SA-AA-d8-PC 802/311 -140 -45 

SA-AA-d8-PE 774/311 -140 -45 

SA-PGE2-PC 842/283 -140 -45 

SA-PGE2-PE 814/271 -140 -45 

SA-PGE2-d4-PC 846/355 -140 -45 

SA-PGE2-d4-PE 818/355 -140 -45 

SA stands for stearic acid attached at the sn1 of the glycerol backbone. 

 

Table 2.8: Parent and daughter ion transitions and MS conditions in positive mode for 

analytes. 

Phospholipid Structure Analysed Transition 

 [M+H]+ 

Declustering 

Potential (V) 

Collision 

Energy (V) 

Lyso PC 18:0 524/184 140 45 

SA-AA-d8-PC 818/184 140 45 

SA-PGE2-PC 858/184 140 45 

SA-PGE2-d4-PC 862/184 140 45 

 

Phospholipid Structure Analysed Transition 

 [M-16]- 

Declustering 

Potential (V) 

Collision 

Energy (V) 

Lyso PC 18:0 508/283 -140 -45 
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2.2.13 Measurement of thrombin generation by Calibrated Automated Thrombography 

(CAT). 

Plasma was obtained from whole human blood (gently drawn into 20 µg/ml corn trypsin 

inhibitor and 4 % sodium citrate) by two rounds of centrifugation (1500 and 2900 rpm for 

10 min, respectively) and filtration to reduce endogenous microparticles (0.22 µm filter). 

Trigger solution was prepared by dilution of liposomes in HEPES buffer with 0.5 % BSA 

and addition of tissue factor. As a control, a trigger solution with recombinant tissue 

factor and no liposomes was prepared. To determine thrombin generation, plasma (80 µl) 

was added in triplicate to wells of a 96-well plate followed by 20 µl trigger solution. For 

each sample set, a separate calibrator well, containing thrombin calibrator (2-

macroglobulin-thrombin instead of liposomes) was used. The 96-well plate was warmed 

and placed into a Fluoroskan Ascent Reader (Thermo Electron) and automated addition 

of fluorogenic substrate (Z-Gly-Gly-Arg) in fluo-buffer (described in section 2.1.2) for 

thrombin measurement was initiated. The final concentration of each component was 10 

pM recombinant tissue factor, 5 mM fluorogenic substrate and 20 mM CaCl2. The 

reaction was allowed to proceed for 60 min with thrombin measurements acquired every 

15 seconds. The thrombin concentration reported represents the maximum amount of 

thrombin present during the assay period (Hemker et al., 2003). 

 

2.2.14 Statistical analysis. 

Data are representative of at least three separate experiments, with samples run in 

triplicate for each experiment. Data are expressed as mean ± SEM. The statistical 

significance of the difference between 2 sets of data was assessed with the use of an 

unpaired, 2-tailed Student t test. When the difference between > 2 sets of data was 

analysed, 1-way analysis of variance was used, followed by Bonferroni multiple 

comparisons test, as indicated on legends. A p value less than 0.05 was considered 

statistically significant. 
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3 Identification of Novel Phospholipid-esterified Prostaglandins 

Generated by Activated Human Platelets 

3.1 Introduction 

As described in Chapter 1, prostaglandins have long been known as free acid mediators 

but their generation as esterified lipids has not been studied in detail (Ricciotti & 

FitzGerald, 2011; Kozak et al., 2000; Kozak.et al., 2002). Herein, a targeted lipidomic 

approach will be employed to investigate the generation of esterified prostaglandins 

formed by thrombin-activated human platelets. 

Previous studies by Thomas et al (2010) form the starting point of this thesis describing 

the characterisation of phospholipid-esterified 12S-hydroxy-eicosatetraenoic acid (12S-

HETE) generated by agonist-activated human platelets (Thomas et al., 2010). These cells 

also express COX-1 that converts AA into lipid mediators, including prostaglandins and 

thromboxane, which are known to contribute to the development of atherosclerosis 

(Schober et al., 2011; McClelland et al., 2009). Since activated platelets generate OxPLs 

via LOX, it is hypothesised that these cells also have the potential to form phospholipid-

esterified prostaglandins. 

The method of analysis employed by Thomas et al (2010) to discovery phospholipid-

esterified HETEs was precursor scanning electrospray ionisation tandem mass 

spectrometry (ESI-MS/MS), which will also be utilised for the work described herein. To 

identify prostaglandins attached to larger functional groups, lipid extracts from thrombin-

activated human platelets will be scanned for precursors of m/z 351.2, the mass of the 

prostaglandin carboxylate anion. In this, the product ion (m/z 351.2) is selected in Q3 and 

the precursor masses scanned in Q1. Following this, lipid analysis will be carried out using 

multiple reaction monitoring (MRM), which enables detection of numerous compounds 

simultaneously by monitoring specific parent to daughter transitions (Masoodi et al., 

2010). 
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3.1.1 Aims 

The studies described in this chapter aim to: 

 Use precursor scanning LC/MS/MS to identify esterified prostaglandins generated 

by thrombin-activated human platelets. 

 

3.2 Results 

3.2.1 Precursor scanning LC/MS/MS of lipid extracts from thrombin-activated platelets 

identifies novel phospholipids with a mass of 351 attached. 

Lipid extracts from thrombin-activated platelets were subject to precursor-LC/MS/MS, 

which fragments using collision-induced dissociation (CID) and scans for a functional 

group of interest in Q3. Analysis using negative precursor-LC/MS/MS for m/z 351.2 (the 

carboxylate anion of several prostaglandin species) demonstrated several ions that were 

largely absent in control platelets and elevated on thrombin activation (Figure 3.1 A, 

marked by*). Spectra acquired in this retention time window demonstrated four 

prominent ions at m/z 770.6, 796.6, 798.6 and 814.7 (Figure 3.1 B). 
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Figure 3.1: Precursor scanning LC/MS/MS of activated platelet lipid extracts identify 

several ions that generate daughter ions with a m/z of 351.2. Total lipid extracts from 

washed human platelets activated with 0.2 U/ml thrombin, for 30 min at 37°C, were 

separated using LC/MS/MS on an AB Sciex 4000 Q-Trap MS as described in Materials and 

Methods, Section 2.2.3.1, with online negative precursor scanning for m/z 351.2. Panel A. 

* marks the region where ions appear that are elevated by thrombin stimulation. Control, 

dashed line; activated platelet lipid extracts, solid line. Panel B. Identification of ions that 

generate m/z 351.2 daughter ions. Shown is a representative negative mass spectrometry 

scan of region marked * in A. Scan shows ions eluting between 16 – 24 min. 
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3.2.2 Structural identification of phospholipid-containing esterified prostaglandin-like 

molecules. 

Following precursor scanning, analysis of platelet lipid extracts using MRM mode, on an 

AB Sciex 4000 Q-Trap mass spectrometer, monitoring parent (770.6, 796.6, 798.6 and 

814.7) with a m/z 351.2 as daughter ion, demonstrated two ions for each parent mass 

(Figure 3.2). This suggested the presence of two distinct prostaglandin-like structures 

with m/z 351.2 attached at the sn2 position of the glycerol backbone. Platelet lipid 

extracts were also analysed scanning from 620 – 900 atomic mass units (amu) using 

Fourier transform mass spectrometry (FTMS) on the Orbitrap Velos, which can accurately 

discriminate masses down to 0.1 part-per-million (ppm), giving the exact mass of the 

molecule. Surprisingly, the extracted ion chromatogram analysis recovered from the base 

peak chromatogram indicated the presence of three lipids for each m/z value, labelled “a 

– c” (Figure 3.3, solid line). Since the sensitivity of FTMS on the Orbitrap is lower 

compared to the MRM mode on the 4000 Q-Trap, the ions appear weaker, especially for 

the m/z 814.7 ion (Figure 3.3, D). Retention times using FTMS on Orbitrap are earlier due 

to the use of different high-performance liquid chromatography (HPLC) conditions (Figure 

3.3). 

To investigate the reason for only detecting two instead of three lipids in MRM mode on 

the Q-Trap platform versus FTMS, lipids were analysed using FTMS but isolating the 

parent (770.6, 796.6, 798.6 and 814.7) in ion trap mass mode (ITMS) and fragmenting 

using collision-induced dissociation (CID). Following fragmentation of parent masses, the 

m/z 351.2 daughter ion was detected using ITMS. This showed two peaks corresponding 

to “b” and “c” and only a small shoulder for peak “a” (Figure 3.3, dotted line). Thus, when 

analysing using accurate mass, three esterified prostaglandin-like molecules were 

detected, but when analysing on either platform (Q-trap 4000 or Orbitrap Velos) by 

detection of the daughter ion of m/z 351.2, peak “a” disappeared. This indicated that 

lipid “a” (m/z 351.2) is considerably more fragile than “b” or “c”, and does not survive CID 

during MS/MS analysis. 
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Figure 3.2: LC/MS/MS of the four putative phospholipid species with a mass of m/z 

351.2 attached shows the presence of two species for each m/z value. Platelet lipid 

extracts were separated and analysed using reverse-phase LC/MS/MS on the Q-trap 

platform, monitoring parent [M-H]-  m/z 351.2, as described in Materials and Methods, 

Section 2.2.3.2. 
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Figure 3.3: Reverse-phase LC/MS/MS separation of parent ions with and without 

fragmentation on the Orbitrap platform. High resolution LC/MS/MS indicates three 

distinct esterified eicosanoids for each phospholipid species. Platelet lipid extracts were 

analysed using LC/MS/MS on the Orbitrap platform, as described in Materials and 

Methods, Section 2.2.3.5, monitored either using accurate mass (solid line), or by 

fragmentation of parent [M-H]- to generate the m/z 351.2 daughter ion (dashed line). 
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In summary, a total of 12 unique lipids were detected in lipid extracts from thrombin-

activated platelets, comprising four phospholipid species with three structurally distinct 

eicosanoids attached, and designated “a, b and c”. 

 

3.2.3 Characterisation of the phospholipid species of esterified prostaglandin-like 

molecules. 

Phospholipid species were initially identified using the Handbook of Molecular and 

Product Ions, which aids characterisation of phospholipid molecular species (e.g. PC, PE 

or PS) and subspecies (plasmalogen and acyl) whilst also suggesting the number of 

carbons and double bonds (Murphy, 2002). 

Prostaglandins with a m/z of 351.2 contain three oxygens, which are equivalent to a 

molecular weight of 48 amu. Each individual phospholipid species was calculated by 

subtracting the molecular mass of three oxygens (48 amu) from its total parent mass 

value (770.6, 796.6, 798.6 and 814.7) and the phospholipid mass (722, 748, 750 and 766) 

compared to phospholipids described in the handbook. The headgoup was suggested as 

PE and phospholipid species (722, 748 and 750) as plasmalogens containing 36:4p-PE, 

38:5p-PE and 38:4p-PE, while m/z 766 was proposed as a diacyl 38:4a-PE. Thus m/z 770.6, 

796.6, 798.6 were suggested as plasmalogens containing a 16:0p, 18:1p and 18:0p fatty 

acid at sn1, respectively, and the ion at m/z 814.7 as a diacyl assigned as 18:0a, where the 

first and second number indicates the number of carbons and double bonds, respectively, 

and the letter the phospholipid species.  

This was then confirmed using MS analysis as follows: accurate mass MS/MS of all four 

phospholipid-containing esterified m/z 351.2 species was undertaken using the Orbitrap 

Velos, in FTMS mode, with higher-energy collisional dissociation (HCD) fragmentation, 

during online separation of the lipids at the apex of elution for each lipid a, b and c. 

Spectra of all four parent masses demonstrate fragments at m/z 351.2 and 271.2.  

The negative MS/MS spectrum of m/z 770.6 (for peak a, b, and c) shows ions arising from 

neutral loss of the daughter ion m/z 351.2 (m/z 436.2) and from neutral loss of m/z 351.2 
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and H2O at m/z 418.2, but no sn1 daughter ions (Figures 3.4). These neutral loss values 

are consistent with m/z 351.2 attached at the sn2. The absence of sn1 ions indicates a 

more stable bond linking the fatty acid to the glycerol backbone, such as a vinyl ether 

linkage, characteristic of a plasmalogen. Similarly, the parent mass m/z 796.6 has ions at 

m/z 462.2 and 444.2 but no sn1 ions (Figure 3.5). The MS spectrum of m/z 798.6 contains 

ions at m/z 464.3 and 446.3 but no sn1 daughter ions (Figure 3.6). The parent mass m/z 

814.7 shows a neutral loss of m/z 351.2 and H2O at m/z 480.3 and a prominent ion at m/z 

283, which corresponds to stearic acid, indicating an acyl-linked 18:0 at sn1 (Figure 3.7). 

Furthermore, MS/MS of the majority of the 12 lipid species yielded a minor ion of m/z 

196 that arises from the ethanolamine headgroup fragmentation, indicating a PE 

phospholipid (Balgoma et al., 2010). 

 

3.2.4 Confirmation of phospholipid headgroups of esterified prostaglandin-like 

molecules as PE. 

To confirm PE as the headgroup for each phospholipid, lipid extracts from thrombin-

activated platelets were separated into PE and PC fractions using normal phase HPLC as 

described in Materials and Methods, Section 2.2.3.6. Fractions were then analysed by 

direct flow injection (no column attached) into the mass spectrometer for detection of 

specific negative ion parent [M-H]-
 m/z 351.2 MRM transitions. The phospholipid 

headgroup for each ion was identified based on retention time comparison with 

phospholipid standards. All four ions (770.6, 796.6, 798.6 and 814.7) co-eluted with the 

same retention time as a PE standard, in the 7-9 minutes (Figure 3.8). PC eluted after 17 

minutes. Figure 3.8 shows an overlay of the PE and PC fractions run for the four 

transitions. The data suggest that PE is the predominant phospholipid headgroup 

containing esterified prostaglandin-like molecules (m/z 351.2). 

Based on the information provided above, parent masses (m/z 770.6, 796.6, 798.6 and 

814.7) are proposed as PEs containing 16:0p, 18:1p, 18:0p and 18:0a at sn1, and a 

prostaglandin-like mass at sn2, which, for simplicity, are from now on termed 

prostaglandin-PEs (PG-PEs). 
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Figure 3.4: Structural identification of m/z 770 of peak “a”, “b” and “c” as plasmalogen 

PEs, using MS/MS. Lipid extracts from thrombin-activated platelets were separated using 

LC/MS/MS and analysed using MS/MS in FTMS mode on the Orbitrap platform as 

described in Materials and Methods, Section 2.2.3.5. Panel A. Negative MS/MS spectrum 

of peak “a” from thrombin-activated platelet lipid extracts. Panel B. Negative MS/MS 

spectrum of peak “b” from thrombin-activated platelet lipid extracts. Panel C. Negative 

MS/MS spectrum of peak “c” from thrombin-activated platelet lipid extracts. 
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Figure 3.5: Structural identification of m/z 796 of peak “a”, “b” and “c” as plasmalogen 

PEs, using MS/MS. Lipid extracts from thrombin-activated platelets were separated using 

LC/MS/MS and analysed using MS/MS in FTMS mode on the Orbitrap platform as 

described in Materials and Methods, Section 2.2.3.5. Panel A. Negative MS/MS spectrum 

of peak “a” from thrombin-activated platelet lipid extracts. Panel B. Negative MS/MS 

spectrum of peak “b” from thrombin-activated platelet lipid extracts. Panel C. Negative 

MS/MS spectrum of peak “c” from thrombin-activated platelet lipid extracts. 
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Figure 3.6: Structural identification of m/z 798 of peak “a”, “b” and “c” as plasmalogen 

PEs, using MS/MS. Lipid extracts from thrombin-activated platelets were separated using 

LC/MS/MS and analysed using MS/MS in FTMS mode on the Orbitrap platform as 

described in Materials and Methods, Section 2.2.3.5. Panel A. Negative MS/MS spectrum 

of peak “a” from thrombin-activated platelet lipid extracts. Panel B. Negative MS/MS 

spectrum of peak “b” from thrombin-activated platelet lipid extracts. Panel C. Negative 

MS/MS spectrum of peak “c” from thrombin-activated platelet lipid extracts. 
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Figure 3.7: Structural identification of m/z 814 of peak “a”, “b” and “c” as acyl-linked 

PEs, using MS/MS. Lipid extracts from thrombin-activated platelets were separated using 

LC/MS/MS and analysed using MS/MS in FTMS mode on the Orbitrap platform as 

described in Materials and Methods, Section 2.2.3.5. Panel A. Negative MS/MS spectrum 

of peak “a” from thrombin-activated platelet lipid extracts. Panel B. Negative MS/MS 

spectrum of peak “b” from thrombin-activated platelet lipid extracts. Panel C. Negative 

MS/MS spectrum of peak “c” from thrombin-activated platelet lipid extracts. 
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Figure 3.8: Characterisation of phospholipid headgroups of esterified prostaglandin-like 

molecules. Lipid extracts from thrombin-activated platelets were separated on normal 

phase HPLC as described in Materials and Methods, Section 2.2.3.6, with fractions 

collected at 30 sec interval. 20 l of each fraction was analysed by direct flow injection 

into the mass spectrometer for levels of specific negative ion parent [M-H]-
 m/z 351.2 

MRM transitions. Phospholipid class elution was determined using commercial 

phospholipid standards. All four ions 770.6  351.2, 796.6  351.2, 798.6  351.2 and 

814.7  351.2 co-eluted with PE (7 - 9 min). PC eluted after 17 min. 
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3.3 Discussion 

In the present chapter, a targeted lipidomic approach was used to identify novel families 

of lipids with a m/z 351.2 attached that are generated by thrombin-activated human 

platelets. Using precursor scanning on a 4000 Q-trap tandem MS, lipid extracts from 

activated human platelets were found to generate four ions that, upon fragmentation, 

generate a daughter ion with m/z 351.2, common to prostaglandin-like molecules. Based 

on their m/z, I suggest these are likely to be PE phospholipids. 

Initial results using LC/MS/MS on the 4000 Q-trap platform showed two ions for each 

individual parent mass, suggesting that two distinct prostaglandin-like structures with 

similar mass were attached to four PE molecular species (Figure 3.2). However, scanning 

using high resolution accurate mass on the Orbitrap mass spectrometer, in FTMS mode 

and monitoring parent masses with no fragmentation, instead demonstrated three 

molecules for each PE parent mass (Figure 3.3). Thus, a total of twelve unique lipids were 

detected in lipid extracts from thrombin-activated platelets, comprising three structurally 

distinct eicosanoids (with a m/z 351.2) attached to four PE species (16:0p/, 18:1p/, 18:0p/ 

and 18:0a/), which were named PGa-PE, PGb-PE and PGc-PE.  

The PE species characterised herein is consistent with previous reports showing that, in 

mammals, the sn1 position is typically derived from C16:0, C18:0 or C18:1 with 

ethanolamine or choline as the most common headgroups (Nagan & Zoeller, 2001; 

Braverman & Moser, 2012). Furthermore, previous studies describing the structure of 

esterified HETEs in platelets showed saturated fatty acids at the sn1, with the majority of 

phospholipid species corresponding to plasmalogen containing 16:0, 18:1 and 18:0 alkyl 

chains (Thomas et al., 2010). 

Phosphatidylcholine is the most abundant phospholipid species in eukaryotic cell 

membranes (40 – 50 %) and, as a result, the vast proportion of non-enzymatically-formed 

OxPLs detected in mammalian tissues contains the choline headgroup (Chaurio et al., 

2009). However, previous reports showed ethanolamine as the prominent phospholipid 

headgroup modified via enzymatic oxidation in activated immune cells, including human 
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neutrophils, human monocytes and platelets (Maskrey et al., 2007; Morgan et al., 2009; 

Morgan et al., 2010; Thomas et al., 2010; Clark et al., 2011; Hammond et al., 2012). The 

identification of these novel lipids as plasmalogen PEs is fully consistent with previous 

reports. 

Comparisons across ion trap and triple quadrupole platforms revealed that, during CID, 

peak “a” did not effectively generate a m/z 351.2 due to internal daughter ion 

fragmentation (Figures 3.4 – 3.7) and, therefore, identification of a more stable daughter 

ion will be required for monitoring PGa-PEs using MRM methods. This will be addressed 

in the next chapter. 

In summary, the present study represents a new family of OxPLs that form by activated 

platelets in response to a physiological agonist. Their generation embodies new families 

of lipids that may be of importance in platelet function in health and disease. In the next 

chapter, characterisation of PGa structure will be performed using a targeted lipidomic 

approach and the identity of lipid “a” determined. 
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Chapter 4 
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4 Structural Characterisation of PGa-PE Generated by Activated Human 

Platelets 

4.1 Introduction 

Studies conducted during Chapter 3 demonstrated that agonist-activated human 

platelets generate families of phospholipids that fragment to generate daughter ions with 

a m/z 351.2. In this case, m/z 351.2 represents arachidonate with three additional 

oxygens characteristic of several prostaglandins or isoprostanes. Due to their unknown 

structure, phospholipids containing m/z 351.2 were simply named PGa-PEs, PGb-PEs and 

PGc-PEs. 

The studies described herein aim to fully characterise PGa-PEs. Analysis of lipid extracts 

from activated human platelets will be performed using the LTQ Orbitrap Velos, in full 

scan mode. This will determine accurate mass, and allow isolation of PGa-PEs for 

fragmentation and structural analysis. This will be followed by data dependent MS3, 

fragmenting PGa-PEs to generate daughter ions with a m/z 351.2, which can be 

selectively isolated and fragmented for further analysis. Accurate mass fragmentation of 

PGa-PE will then be compared to prostaglandin standards to identify PGa attached to PEs. 

Based on the MS/MS spectra of PGa-PEs (detailed in Chapter 3), exhibiting fragments at 

m/z 315, 271 and 189, it was hypothesised that PGa can be either PGE2 or PGE2-like 

molecules. To test this hypothesis, PGa-PEs will be purified from platelet lipid extracts 

and saponified using PLA2 (Maskrey et al., 2007). PGa released from PEs will then be 

analysed by LC/MS/MS, on the 4000 Q-trap platform, and MS/MS spectra compared to 

eicosanoid standards. 

Quantification of lipids is crucial to enable their bioactivity to be fully investigated, 

however this is not always possible as standards may not be commercially available. As a 

result, alternative methods for lipid quantification have been developed. For example, 

Thomas et al., (2010) used 18:0a/20:4-PE to synthesise 12-HETE-PE via air oxidation. The 
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synthesised 12-HETE-PE was subsequently purified by reverse-phase HPLC, quantified by 

UV absorbance and used to analyse 12-HETE-PE in platelet samples. An alternative to this 

approach was utilised by Maskrey et al., (2007) whereby 15-HETE-PE was indirectly 

quantified by calculating the amount of 15-HETE, following its release from phospholipids 

through saponification. Similarly, PGa-PEs generated by agonist-activated human 

platelets will be quantified using this approach, if their structure is successfully 

determined. 

 

4.1.1 Aims 

Studies described in this chapter aim to: 

 Determine the identity of PGa attached at the sn2 position of PE species. 

 Investigate the generation of PGa as a free eicosanoid formed by activated human 

platelets. 

 Generate biogenic standards to enable quantification of PGa-PEs in human 

platelet samples. 

 

4.2 Results 

4.2.1 Structural characterisation of PGa-PE generated by activated human platelets. 

4.2.1.1 Accurate mass of phospholipids containing m/z 351.2. 

In this section, the accurate mass of individual parent ions (770.6, 796.6, 798.6 and 814.7) 

will be determined, using the LTQ Orbitrap Velos, in full scan mode, to enable structural 

analysis of PGa-PE. The accurate mass is a mass measurement acquired with sufficient 

accuracy (resolving power) to determine the elemental composition of an ion (Brenton & 
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Godfrey, 2010). The accurate mass is commonly expressed in ppm and 5 ppm or less is 

often sufficient to predict the elemental composition of a compound (Gross, 1994). 

Lipid extracts from thrombin-activated platelets were analysed using the Orbitrap 

platform, with resolution set at 30,000, scanning ions from m/z 620 – 900 amu, in FTMS 

mode, discriminating masses down to 0.1 ppm. Using the Orbitrap analyser, the accurate 

mass of PE-containing PGa was determined at the apex of elution of each PGa-PE species. 

The accurate mass along with the elemental composition of individual parent ions is 

shown in Figures 4.1 and 4.2. The mass accuracy was determined with a mass error ≤ 0.4 

ppm, which is the difference between the theoretical and observed mass. The elemental 

composition of PGa-PE for m/z 770.4977, 796.5132, 798.5292 and 814.5243 were 

assigned as C41H73O10NP, C43H75O10NP, C43H77O10NP and C43H77O11NP, respectively. The 

elemental composition of PGa-PE species minus m/z 351.2 (C20H32O5) is consistent with 

the proposed PE structures described in Chapter 3, comprising 16:0p-PE (C21H41O5NP), 

18:1p-PE (C23H43O5NP), 18:0p-PE (C23H45O5NP) and 18:0a-PE (C23H45O6NP). Note the 

presence of isotope peaks (containing one or more 13C), characteristic of singly-charged 

species, in all four lipids. 
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Figure 4.1: MS analysis monitoring the exact mass of m/z 770.4977 and 796.5132 

showed isotope peaks characteristic of singly-charged species. Platelet lipid extracts 

were analysed in full scan mode, from 620 – 900 amu on the Orbitrap in FTMS mode at 

high resolution. Panel A. MS analysis showing exact mass of m/z 770.4977 and its isotope 

variants. Panel B. MS analysis showing exact mass of m/z 796.5132 and its isotope 

variants. 
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Figure 4.2: MS analysis monitoring the exact mass of m/z 798.5292 and 814.5243 

showed isotope peaks characteristic of singly-charged species. Platelet lipid extracts 

were analysed in full scan mode, from 620 – 900 amu on the Orbitrap in FTMS mode at 

high resolution. Panel A. MS analysis showing exact mass of m/z 798.5292 and its isotope 

variants. Panel B. MS analysis showing exact mass of m/z 814.5243 and its isotope 

variants. 
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4.2.1.2 Targeted MS/MS analysis of PGa-PE species. 

In this section, the structural characterisation of PGa attached to PEs will be performed 

using MS/MS of parent ions to obtain spectra of individual lipid species. 

Targeted MS/MS was undertaken in FTMS mode, monitoring parent ions with accurate 

mass and fragmentation with higher collision dissociation (HCD). Spectra of parent ions 

were then compared to each other to confirm the presence of PGa attached at the sn2 

position in all four PE species. Indeed, MS/MS spectra of PGa-PEs (770.6, 796.6, 798.6 and 

814.7) yielded very similar fragmentation, with several daughter ions characteristic of 

either PGE2 or PGD2 (m/z 333, 315, 271, 233 and 189) present in all four PEs (Figures 4.3 

and 4.4). The spectrum and fragmentation pattern of PGE2 is shown for comparison in 

Figure 4.5. Note that upon HCD fragmentation, parent ions generate very small daughter 

ions of m/z 351.2, which can only be observed when the spectrum is enlarged using the 

zoom feature within the software. Although targeted MS/MS of parent ions showed 

product ions characteristic of PGE2, further analysis was undertaken to confirm that m/z 

333, 315, 271, 233 and 189 fragments did indeed originate from the fragmentation of the 

esterified m/z 351.2. 
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Figure 4.3: Targeted MS/MS analysis of PGa-PE shows daughter ions characteristic of 

PGE2 and PGD2. Platelet lipid extracts were separated using high resolution LC/MS/MS on 

the Orbitrap Velos, in FTMS mode, monitoring the exact mass, followed by targeted 

MS/MS using HCD. Panel A. LC/MS/MS spectrum acquired at the apex of elution of PGa-

PE at 5.85 min, monitoring m/z 770.4977, generated fragments (shown in bold) 

representative of PGE2 and PGD2. Panel B. Negative LC/MS/MS spectrum acquired at the 

apex of elution of PGa-PE at 6.07 min, monitoring m/z 796.5132, generated fragments 

(shown in bold) characteristic of PGE2 and PGD2. 
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Figure 4.4: Targeted MS/MS analysis of PGa-PE shows daughter ions characteristic of 

PGE2 and PGD2. Platelet lipid extracts were separated using high resolution LC/MS/MS on 

the Orbitrap Velos, in FTMS mode, monitoring the exact mass, followed by targeted 

MS/MS using HCD. Panel A. LC/MS/MS spectrum acquired at the apex of elution of PGa-

PE at 7.16 min, monitoring m/z 798.5292, generated fragments (shown in bold) 

representative of PGE2 and PGD2. Panel B. Negative LC/MS/MS spectrum acquired at the 

apex of elution of PGa-PE at 7.07 min, monitoring m/z 814.5243, generated fragments 

(shown in bold) characteristic of PGE2 and PGD2. 
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Figure 4.5: MS/MS spectrum of PGE2. An MS/MS spectrum of PGE2 standard was 

acquired using the Q-Trap 4000. Fragmentation shows the origin of daughter ions at m/z 

271.2 and 189.1 (Murphy et al., 2005). 
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4.2.1.3 Data dependent MS3 analysis. 

To confirm that fragments characteristic of PGE2 or PGD2 originated from the 

fragmentation of the m/z 351.2, data dependent MS3 was performed on the Orbitrap 

platform. In these studies, ions with a m/z 351.2 originating from CID of individual 

precursor ions (770.6, 796.6, 798.6 and 814.7), in ion trap mode, were selectively 

isolated, fragmented and analysed, thus confirming that the characteristic PGE2 and PGD2 

daughter ions originated from m/z 351.2 (Figures 4.6 and 4.7). This observation further 

suggested the presence of PGE2 or PGD2 attached to PE species (16:0p/, 18:1p/, 18:0p/ 

and 18:0a/). However, additional studies were required to exclude the possibility of other 

eicosanoids, such as isoprostanes, contributing to the MS/MS spectra, as described 

below. 

 

4.2.1.4 Confirmation of esterified PGa as PGE2 and PGD2. 

As described in detail in Section 4.2.1.2, MS3 data suggested that esterified PGa was 

either PGE2, PGD2 or isoprostanes attached to PE, since these will all exhibit an identical 

molecular weight (m/z 351.2) and similar MS/MS fragmentation pattern. Stereoisomers 

such as PGE2 and PGD2, which differ only in the positioning of functional groups, cannot 

be discriminated simply by product ion spectra, but can be distinguished by HPLC 

separation. Thus, using the reverse-phase LC/MS/MS method described in Materials and 

Methods, Section 2.2.6, lipid samples from activated platelets were analysed for 

prostaglandins with a m/z 351.2, both before and after hydrolysis of phospholipids. 

Initially, generation of free prostaglandins and isoprostanes by thrombin-activated 

platelets was determined. Analysis using reverse-phase LC/MS/MS, monitoring m/z 351.2 

 271.2, revealed that activated platelets generated both PGE2 and PGD2, but not other 

E2 isomers, including 8-iso-PGE2 and 11β-PGE2 (Figure 4.8). 
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Figure 4.6: Confirmation that PGa-PE contains ions that belong to either PGE2 or PGD2. 

MS3 of parent PE lipids, by secondary fragmentation of daughter ion m/z 351.2, shows 

ions consistent with either PGE2 or PGD2. Platelet lipid extracts were separated using high 

resolution LC/MS/MS on the Orbitrap, with ITMS detection and targeted MS/MS of the 

parent mass, followed by data dependent fragmentation of the daughter ion m/z 351.2, 

using CID. Panel A. Targeted MS/MS of m/z 770.6 followed by data dependent 

fragmentation of m/z 351.2. Panel B. Targeted MS/MS of m/z 796.6 followed by data 

dependent fragmentation of m/z 351.2. 
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Figure 4.7: Confirmation that PGa-PE contains ions that belong to either PGE2 or PGD2. 

MS3 of parent PE lipids, by secondary fragmentation of daughter ion m/z 351.2, shows 

ions consistent with either PGE2 or PGD2. Lipid extracts were separated using high 

resolution LC/MS/MS on the Orbitrap platform, with ITMS detection and targeted MS/MS 

of the parent mass, followed by data dependent MS/MS of daughter ion m/z 351.2, using 

CID fragmentation. Panel A. Targeted MS/MS of m/z 798.6 followed by data dependent 

fragmentation of m/z 351.2. Panel B. Targeted MS/MS of m/z 814.7 followed by data 

dependent fragmentation of m/z 351.2. 
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Figure 4.8: Analysis of free prostaglandins generated by activated human platelets 

demonstrates both PGE2 and PGD2 formation. Washed human platelets were activated 

with thrombin (0.2 U/ml) for 30 min at 37oC followed by lipid extraction. Free PGE2 and 

PGD2 isomer composition was determined by comparison with prostaglandin standards. 

Black solid line, prostaglandin standards. Red dashed line, oxidised fatty acids generated 

by activated platelets. 
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To establish whether PGa was PGE2, PGD2 or another isoprostane, platelets were 

activated with 10 µM of calcium ionophore, which induces higher levels of phospholipid-

esterified eicosanoids than thrombin, for 30 min at 37oC (Thomas et al., 2010). PE-

containing esterified m/z 351.2 molecules were then purified from platelet lipid extracts 

using HPLC-UV, as described in Materials and Methods, Section 2.2.4. Purified PGa-PEs 

were hydrolysed using snake venom PLA2 and analysed using reverse-phase LC/MS/MS, 

as described in Material and Methods, Sections 2.2.5 and 2.2.6. 

For identification of prostaglandin isomers, the retention time of prostaglandins released 

from saponified PGa-PEs was compared to that of 8-iso-PGE2, 11β-PGE2, PGE2 and PGD2 

standards. As with free platelet prostaglandins, primarily PGE2 and PGD2 were detected 

(Figure 4.9). However, smaller peaks with m/z 351.2  271.2, which could originate from 

different isoprostanes, were observed to elute later in the chromatogram. This indicates 

that PGa-PE comprises a mix of PEs with predominantly PGE2 or PGD2 attached (Scheme 

4.1 and 4.2). 

As described during Chapter 3, the detection of PGa-PE (PGE2-PE and PGD2-PE) by MRM 

mode using m/z 351.2 as a product ion was not possible, as the ion m/z 351.2 did not 

survive CID fragmentation. This problem was resolved by using m/z 271.2 instead as 

product ion, which allowed monitoring of all four PEs (Figures 4.10). Furthermore, since 

PGE2-PE and PGD2-PE co-elute and could not be separated using reverse-phase HPLC, 

each PGE2 and PGD2 pair, such as 16:0p/PGE2-PE and 16:0p/PGD2-PE, is reported as a 

single species (e.g. 16:0p/PGE2/D2-PE) in later studies. 
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Figure 4.9: Analysis of hydrolysed PGa-PE generated by activated human platelets 

demonstrates both PGE2 and PGD2. Washed human platelets were activated with 

calcium ionophore (10 µM) for 30 min at 37oC followed by lipid extraction. Phospholipid-

containing esterified m/z 351.2 molecules were purified using normal-phase HPLC-UV, 

where fractions were collected every 60 sec and analysed using the Q-trap with no 

column attached for prostaglandin-PEs. Following purification, PGa-PE species were 

saponified with 200 μg of snake venom (PLA2). Hydrolysed fatty acids were then analysed 

for prostaglandins using reverse-phase LC/MS/MS. Black solid line, prostaglandin 

standards. Red dashed line, oxidised fatty acids released from platelet PE.  
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Scheme 4.1: Structures of PGE2-PEs identified in activated human platelets. 
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Scheme 4.2: Structures of PGD2-PEs identified in activated human platelets. 
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Figure 4.10: Analysis of PGE2/D2-PEs using LC/MS/MS. Platelet lipid extracts were 

separated using LC/MS/MS as described in Methods and Materials, section 2.2.3.2, and 

detected on the Q-Trap platform by parent [M-H]-  m/z 271.2. 
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4.2.2 Synthesis of biogenic standards for PGE2/D2-PE quantification in platelet samples. 

Quantification of new families of OxPLs is crucial to enable investigation of their biological 

activity. Due to the absence of commercial PGE2/D2-PE standards, routine quantification 

of PGE2/D2-PEs in platelet samples was not possible. To overcome this, I generated 

PGE2/D2-PE standards through activating platelets, isolating PGE2/D2-PEs and then 

measuring PGE2 and PGD2 attached to PEs following hydrolysis, as described in Materials 

and Methods, Section 2.2.7. 

Briefly, washed human platelets were activated with calcium ionophore and lipids 

extracted. Platelet lipid extracts containing PGE2/D2-PEs were then resuspended in 400 µl 

methanol. From this, 200 µl was used to quantify PGE2/D2-PEs in the biogenic standard 

and the remaining 200 µl aliquot later used to construct PGE2/D2-PE standard curves. To 

quantify PGE2/D2-PEs in the biogenic standard a 100 μl aliquot was hydrolysed with PLA2 

and the other 100 μl incubated with hydrolysis buffer only, as control. PGE2 was 

quantified by direct comparison of its integrated peak area, in counts per second (cps), to 

that generated by 2 ng of PGE2-d4, added prior to lipid extraction. Similarly, PGD2 was 

quantified. The amount of PGE2 detected in the hydrolysed and control (non-hydrolysed) 

samples was calculated using the following equation: 

 

     (  )  
     (   )

       (   )
 . 2 ng (PGE2-d4) 

The amount of free PGE2 and PGD2 detected in the hydrolysed sample minus the amount 

detected in the control (non-hydrolysed) sample represented the total PGE2 and PGD2 in 

nanograms (ng) released from saponified PGE2/D2-PEs. Thus, 0.519 ng of PGE2 and 0.28 

ng of PGD2 were released from PGE2/D2-PEs, giving a total of 0.799 ng. 

However, PLA2 hydrolysis was less than 100 % and some esterified prostaglandins 

remained attached to PE. To determine the hydrolysis efficiency the integrated peak 

areas of all four PGE2/D2-PE species in the control sample were summed, which was 

defined as the total amount of PGE2/D2-PE (in cps) before hydrolysis. The integrated peak 
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areas of all four PGE2/D2-PE species in the hydrolysed sample were also summed and 

defined as the total amount of PGE2/D2-PE (in cps) remaining after hydrolysis. Finally, the 

overall efficiency of the enzyme hydrolysis could then be calculated using the following 

equation: 

 

        ( )   
            (   )               (   )

            (   )
 

 

Where: 

        ( ) is the fraction of the total PGE2/D2 released from PEs by 

hydrolysis. 

            (   ) is the total amount observed for all four PGE2/D2-PE species 

before hydrolysis. 

            (   ) is the total amount remaining for all four PGE2/D2-PE species 

after hydrolysis. 

 

In this equation, it is assumed that each of the four phospholipids involved give the same 

value (in cps) for the integrated area of the mass peak when at the same concentration. 

From this, I established that 69.5 % of PGE2 and PGD2 were released from esterified 

PGE2/D2-PEs in the standard sample.  

To determine the amount (in nanograms) of each PGE2/D2-PE species in the biogenic 

standard, the relative contribution of each PGE2/D2-PE species to the total PGE2/D2-PE in 

the control sample was calculated using the following equation: 

 

         ( )    
         (   )

            (   )
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Where: 

         ( ) is the relative contribution of each PGE2/D2-PE species to the 

total PGE2/D2-PE in the control sample. 

         (   ) is the integrated area of each PGE2/D2-PE mass peak in the 

control sample. 

            (   ) is the total integrated peak area of all four PGE2/D2-PE species 

in the control sample. 

 

In summary, the contribution of each PGE2/D2-PE species in the control sample equated 

to 24 % (16:0p/PGE2/D2-PE), 24 % (18:1p/PGE2/D2-PE), 42 % (18:0p/PGE2/D2-PE) and 10 % 

(18:0a/PGE2/D2-PE). Last, the total amount of PGE2 (      (   )) attached to PEs before 

hydrolysis was calculated.  

 

        (  )    
        (  )    

            ( )
 

 

Where: 

        (  ) is the total PGE2 and PGD2 in nanograms attached to PE before 

hydrolysis. 

        (  ) is the amount of PGE2 and PGD2 (0.799 ng) released after 

hydrolysis. 

            ( ) is the overall hydrolysis efficiency (69.5 %) of total PGE2 and PGD2 

released from esterified PGE2/D2-PEs. 
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Based on the equation described above, a total of 1.15 ng of PGE2 and PGD2 were 

attached to PE before hydrolysis. Next, the amount of PGE2/D2 attached to each 

phospholipid PE species before hydrolysis was calculated using the following equation:  

 

      (  )     
        (  )           ( )

   
 

 

Where: 

       (  ) is the amount PGE2 and PGD2 in nanograms attached to each PE 

species before hydrolysis. 

        (  ) is the total PGE2 and PGD2 (1.15 ng) attached to PE before 

hydrolysis. 

            ( ) is the contribution of individual PGE2/D2-PE species to the total 

PGE2/D2-PE in the control sample. 

 

Before hydrolysis, 0.276 ng of PGE2/D2 was attached to each of 16:0p/PGE2/D2-PE and 

18:1p/PGE2/D2-PE species. Similarly, 0.488 and 0.111 ng of PGE2/D2 was esterified to 

18:0p/PGE2/D2-PE and of 18:0a/PGE2/D2-PE, respectively. The nanogram amount of each 

PGE2/D2-PE species in the original biogenic standard was then calculated using the 

following equation: 

 

           (  )    
      (  )             (  ) 

     
 

 

Where: 

           (  ) represents individual PGE2/D2-PE species in nanograms. 
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        (  ) is the amount of PGE2 and PGD2 in nanograms attached to each PE 

species before hydrolysis.  

           (  )  is the molecular weight (MW) of each PGE2/D2-PE species.  

351.2 is the molecular weight of PGE2 and PGD2. 

 

The total amount of PGE2/D2-PEs found in 400 µl of biogenic standard, generated from 

activated platelets, corresponded to 10.39 ng. Comparison of integrated areas of 

PGE2/D2-PEs indicated that this corresponded to 3.18, 2.64, 3.93 and 0.64 ng of 

16:0p/PGE2/D2-PE, 18:1p/PGE2/D2-PE, 18:0p/PGE2/D2-PE and 18:0a/PGE2/D2-PE, 

respectively. 

To quantify PGE2/D2-PE species in platelet samples, seven serial dilutions of the biogenic 

standard in methanol were initially prepared to give a final amount of 70, 140, 280, 360, 

1,130, 2,260 and 4,520 pg per 200 µl volume. Subsequently, a standard curve was 

constructed by adding a 100 µl aliquot of each serial dilution (35 – 2,260 pg of total 

PGE2/D2-PEs) to 500 pg DMPE (in 100 µl methanol), comprising a total final volume of 200 

µl, of which 20 µl was injected into the column (50 pg DMPE and 3.5 – 226 pg of total 

PGE2/D2-PEs). The specific amounts of each PGE2/D2-PE species injected into the column 

were as follows: 0 - 67.3 pg (16:0p/PGE2/D2-PE), 0 - 57.8 pg (18:1p/PGE2/D2-PE), 0 - 86.2 

pg (18:0p/PGE2/D2-PE) and 0 - 14.4 pg (18:0a/PGE2/D2-PE). 

Before quantification in platelet samples, the analytical limit of detection of each 

PGE2/D2-PE species in the biogenic standard curve was estimated using the lowest 

concentration in the standard (Table 4.1). A signal was judged to be above the limit of 

detection if the peak area was three times the signal of the noise above baseline. The 

limit of detection of each individual PGE2/D2-PE species was found to be between 2.35 - 

3.7 pg on the column, as listed in Table 4.1. 
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Analysed 

Transition [M-H]- 
Phospholipids 

Limit of 

detection (pg) 

770.6/271.2 16:0p/PGE2/D2-PE 3.7 

796.6/271.2 18:1p/PGE2/D2-PE 2.35 

798.6/271.2 18:0p/PGE2/D2-PE 3.53 

814.7/271.2 18:0a/PGE2/D2-PE 3.05 

Table 4.1: Estimated limit of detection for PGE2/D2-PEs. The limit of detection was 

estimated for each PGE2/D2-PE species using reverse-phase LC/MS/MS, monitoring parent 

[M-H]-  m/z 271.2, as described in Materials and Methods, Section 2.2.3.2. 

 

 

Quantification of PGE2/D2-PEs in platelet samples is fundamental for elucidation of their 

biological activity, as functional assays using inaccurate amounts could lead to misleading 

results. For example, underestimating quantity of PGE2/D2-PEs could result in lack of 

perceived effect, while overestimating amounts could lead to non-biological effects or 

toxicity. To determine the amounts of PGE2/D2-PEs generated by platelets, I isolated and 

activated washed platelets from five unrelated healthy volunteers, as described in 

Materials and Methods, Section 2.2.1 and 2.2.2. Platelets were activated using 0.2 U/ml 

of thrombin for 30 min at 37oC, and lipids extracted. To account for differences in 

PGE2/D2-PE recovery during extraction, DMPE was added to the samples prior to lipid 

extraction. DMPE was used as an internal standard as it represents a phospholipid PE in 

structure to PGE2/D2-PEs, which is not present in platelets. Following extraction, platelet 

lipid extracts were analysed using reverse-phase LC-MS/MS.  

For lipid quantification, the ratio of analyte to internal standard is calculated for both the 

standard curve and the analyte (e.g. PGE2/D2-PE) to account for lipid losses during lipid 

extraction. However, analysis of the DMPE in PGE2/D2-PE standard curves demonstrated 
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that the assay sensitivity was compromised by ion suppression of DMPE, caused by co-

elution of endogenous components. Note that PGE2/D2-PE standard curves were 

generated from non-purified platelet lipid extracts (to avoid lipid losses) and, therefore, 

other phospholipids were co-eluting with DMPE, resulting in unwanted ion suppression. 

This meant that the ratio of analyte to internal standard (PGE2/D2-PE:DMPE) for the 

standard curve could not be calculated and, consequently, DMPE values in platelet 

samples could not be taken into account. As the problem of ion suppression could not be 

solved, each PGE2/D2-PE species in platelet samples was quantified by directly comparing 

its integrated peak area (in cps) to that of the standard curve. Furthermore, standard 

curve samples were subjected to the same lipid extraction procedure applied to the 

platelet samples to account for similar losses during lipid extraction. Analysis of the 

standard curves showed some abnormalities (not linear at low concentrations) (Figures 

4.11 and 4.12). This was likely due to lower lipid recovery at low concentrations of 

PGE2/D2-PEs. 
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Figure 4.11: Standard curves for 16:0p/PGE2/D2-PE and 18:1p/PGE2/D2-PE biogenic 

standards. Biogenic standard curves were analysed by LC/MS/MS as described in 

Material and Methods, Section 2.2.3.2. The integrated peak area of each PGE2/D2-PEs was 

plotted against the amount injected into the column. Panel A. Standard curve for 

16:0p/PGE2/D2-PE biogenic standard. Panel B. Standard curve for 18:1p/PGE2/D2-PE 

biogenic standard. 
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Figure 4.12: Standard curves for 18:0p/PGE2/D2-PE and 18:0a/PGE2/D2-PE biogenic 

standards. Biogenic standard curves were analysed by LC/MS/MS as described in 

Material and Methods, Section 2.2.3.2. The integrated peak area of each PGE2/D2-PEs was 

plotted against the amount injected into the column. Panel A. Standard curve for 

18:0p/PGE2/D2-PE biogenic standard. Panel B. Standard curve for 18:0a/PGE2/D2-PE 

biogenic standard.  
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To quantify PGE2/D2-PEs in platelet samples, the peak area (cps) of each PGE2/D2-PEs in 

platelet samples was initially integrated and compared to the standard curve. Next, the 

slope was calculated by finding the ratio of the "vertical change (in cps)" divided by the 

"horizontal change (in pg)" between the two closest points on the standard curve to the 

PGE2/D2-PE sample. This was done because the curve was not linear across all amounts of 

standard, as follows: 

         
       
       

 

Last, the amount of each PGE2/D2-PEs in platelet samples was calculated using the 

following linear equation: 

 

        This can be rearranged to:        
 

 
 

Where: 

   is the amount of PGE2/D2-PE in pg. 

   is the integrated peak area of PGE2/D2-PEs. 

   is the slope. 

 

Following quantification of each PGE2/D2-PE species, the total amount of PGE2/D2-PEs 

generated in response to thrombin was 28.1 ± 2.3 pg/2 × 108 platelets, whereas free PGE2 

and PGD2 was 6.21 ± 0.312 ng/2 × 108 platelets (mean ± SEM, five genetically unrelated 

healthy donors), Table 4.2 and 4.3. 
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Analysed 

Transition [M-

H]- 

Phospholipids 

Mean 

pg/2x 108 

platelets 

SEM N 

770.6/271.2 16:0p/PGE2/D2-PE 7.051 ± 0.711 5 

796.6/271.2 18:1p/PGE2/D2-PE 8.178 ± 0.913 5 

798.6/271.2 18:0p/PGE2/D2-PE 9.54 ± 0.523 5 

814.7/271.2 18:0a/PGE2/D2-PE 3.302 ± 0.155 5 

Total PGE2/D2-PEs 28.1 ± 2.3 5 

Table 4.2: PGE2/D2-PE quantification by LC/MS/MS. Washed human platelets were 

activated with 0.2 U/ml thrombin for 30 min at 37oC, in the presence of 1 mM CaCl2. 

Lipids were then extracted and analysed using reverse-phase LC/MS/MS, monitoring 

parent [M-H]-  m/z 271.2, as described in Materials and Methods, Section 2.2.3.2. 

Levels of PGE2/D2-PEs are expressed as pg/2 x 108 platelets. Data is representative of five 

genetically unrelated healthy donors (n = 5, mean ± SEM). 
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Analysed 

Transition [M-

H]- 

Prostaglandin  

Mean 

ng/2x 108 

platelets 

SEM N 

351.2/271.2 PGE2 3.828 ± 0.216 5 

351.2/271.2 PGD2 2.387 ± 0.096 5 

Total PGE2/D2 6.21 ± 0.312 5 

Table 4.3: PGE2 and PGD2 quantification by LC/MS/MS. Washed human platelets were 

activated with 0.2 U/ml thrombin for 30 min at 37oC, in the presence of 1 mM CaCl2. 

Lipids were then extracted and analysed using reverse-phase LC/MS/MS, monitoring m/z 

351.2  m/z 271.2, as described in Materials and Methods, Section 2.2.3.3. Levels of free 

PGE2 and PGD2 are expressed as ng/2 x 108 platelets. Data is representative of five 

genetically unrelated healthy donors (n = 5, mean ± SEM). 
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4.3 Discussion 

In this chapter PGa-PEs were identified as a family of lipids that contain either PGE2 or 

PGD2 attached at the sn2 position of PEs. In light of the studies conducted in Chapter 3 

where fatty acids at the sn1 position were described, PGa-PE ions (m/z 770.6, 796.6, 

798.6 and 814.7) are now proposed as PEs containing 16:0p, 18:1p, 18:0p and 18:0a at 

sn1 and either PGE2 or PGD2 at sn2, and are termed PGE2-PEs and PGD2-PEs as shown in 

Scheme 4.1 and 4.2. The majority of PGE2/D2-PEs are plasmalogens with a fatty acid 

attached to the glycerol at the sn1 position via a vinyl-ether linkage, m/z 770.6, 796.6 and 

798.6 (16:0p, 18:1p and 18:0p, respectively), as shown in Scheme 4.1 A-C and Scheme 4.2 

A-C. The lipid with a m/z 814.7 represents an 18:0 fatty acid bonded to PE via a diacyl 

linkage (Scheme 4.1 D and Scheme 4.2 D). PGE2-PE and PGD2-PE are very similar in 

structure, differing only by the position of the ketone and the hydroxyl moiety on the 

prostane ring. Although free PGE2 and PGD2 could be separated by LC/MS/MS (Figure 

4.8), HPLC separation of PGE2-PEs and PGD2-PEs was not possible and, therefore, the 

same PE species will be measured as single peaks in the following chapters.  

Finally, PGE2/D2-PEs were quantified in platelet samples using biogenic standards. As 

described in this chapter, the biogenic standard was generated from total platelet lipid 

extracts, and this led to problems with ion suppression, both the internal standard DMPE 

and the PGE2/D2-PEs themselves. Ion suppression occurs due to competition for charge, 

between the analyte of interest and other contaminating lipids in a sample (Annesley, 

2003). As the problem of ion suppression could not be solved, quantification was by 

direct comparison between samples and standards. To account for losses during 

extraction, the standard curve was subject to the same lipid extraction procedure as the 

samples. Furthermore, as the standard curve was not linear (likely due to low lipid 

recovery at lower concentrations of PGE2/D2-PEs), slopes were separately calculated for 

each PGE2/D2-PE species measured in platelet samples. Thus, the calculated amounts of 

PGE2/D2-PEs generated by activated platelets, shown in Table 4.2, represent the best 

estimate possible using our method. However, values measured in platelet samples are 
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probably underestimated. It is hoped that in future, generation of pure PGE2/D2-PE 

standards will allow more precise quantification of these OxPLs to be achieved.  

Considerable variability in PGE2/D2-PE levels was noted between genetically unrelated 

donors (Table 4.2). Furthermore, it is assumed that PGE2-PEs account for two-thirds of 

the total PGE2/D2-PEs, since saponification of PGE2/D2-PEs generated PGE2 (0.519 ng) and 

PGD2 (0.28 ng) with an approximately 2:1 predominance of PGE2 over PGD2. The amount 

of esterified PGE2 and PGD2 (28.1 ± 2.3 pg/2 × 108 platelets) corresponded to less than 1 

% of the total free PGE2 and PGD2 (6.21 ± 0.312 ng/2 × 108 platelets). In contrast to this, 

activated platelets generate significantly higher levels of 12-HETE-PEs. Specifically, 

following platelet activation, 65.5 ± 17.6 ng/4 x 107 platelets of 12-HETE is generated, of 

which approximately 30 % is detected esterified to either PE (5.85 ± 1.4 ng/4 x 107 

platelets) or PC species (18.35 ± 4.61 ng/4 x 107 platelets) (Thomas et al., 2010). These 

OxPLs are initially formed as free 12-HETE via 12-LOX and enzymatically reincorporated 

into lysophospholipids, most likely via the deacylation/reacylation cycle. It is possible that 

PGE2/D2-PEs form in a similar manner and the lower amounts of PGE2/D2-PE compared to 

12-HETE-PE/PC may be due to enzyme substrate specificity during the reacylation 

process, or simply because 12-HETEs are more abundant than either PGE2 or PGD2. 

Furthermore, it is possible that PGE2 and PGD2 are esterified into additional non-

phospholipid pools that are not detectable in negative ion mode, such as diacylglycerides 

and triglycerides. Nevertheless, minor abundance does not necessarily equate with minor 

biological roles. It has been demonstrated that glyceryl prostaglandin E2 (PGE2-G) 

generated by the oxygenation of the 2-arachidonylglycerol by COX-2 triggers a rapid 

increase in intracellular calcium in a murine macrophage-like cell line (RAW264.7) at 1 pM 

(Nirodi et al., 2004). Furthermore, PGE2 induces platelet aggregation at 1 – 15 nM (Vezza 

et al., 1993). To demonstrate the bioactivity of PGE2/D2-PE, pure standards are required 

for functional assays. Without these it is difficult to determine whether the generation of 

these products is physiologically relevant or whether they are minor side products of the 

robust activity of enzymes involved in membrane remodelling during cell activation. 

The analytical limit of detection was also estimated for each PGE2/D2-PE species using the 

biogenic standard curves. This quantitative assay demonstrated that the amount of 
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18:0a/PGE2/D2-PE generated by 2 x 108 platelets (3.3 pg) was just above the limit of 

detection (3 pg) and, therefore, this isomer will not be measured in later chapters of this 

thesis. 

As PGE2 and PGD2 are generated by activated platelets via COX-1, it is possible that 

PGE2/D2-PEs are also enzymatically generated and may exert similar biological activities 

to those of free PGE2 and PGD2. These prostaglandins have been implicated in numerous 

physiological processes and pathologies, including pain, fever, bone formation, 

parturition, arthritis, atherosclerosis and coagulation (Hikiji et al., 2008; Akaogi et al., 

2006; Rajtar et al., 1985; Murakami, 2011). Although PGE2 and PGD2 are structural 

isomers, in some systems they mediate opposing effects. For example in the brain, PGD2 

promotes sleep and lowers body temperature, whereas PGE2 induces alertness and fever 

(Hayaish, 1988; Ueno et al., 1982). In contrast, in haemostasis, PGE2 and PGD2 are 

reported primarily to inhibit platelet aggregation through activation of surface G protein-

coupled receptors (Smith et al., 2010; Song et al., 2012). PGE2-PEs and PGD2-PEs may 

display similar biological activities to those of free PGE2 and PGD2 or signal in a complete 

different manner in their own right. These ideas will be tested in future studies using cell-

based assay for PGE2 receptor ligand binding. 
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Chapter 5 



 

114 
 

5 Mass Spectrometry Analysis of PGb-PE and PGc-PE Generated by 

Activated Human Platelets 

5.1 Introduction 

Studies in this chapter will describe the MS analysis of PGb and PGc attached to PEs. 

Initial studies performed in Chapter 3 demonstrated that PGb-PE and PGc-PE are 

structurally distinct as for each parent m/z they comprise two peaks with an oxidised 

fatty acid of m/z 351.2 attached to a lyso PE species (16:0p/, 18:1p/, 18:0p/ and 18:0a/). 

Characterisation of PGb-PEs and PGc-PEs will be undertaken in lipid extracts from 

thrombin-activated platelets using the LTQ Orbitrap Velos, in full scan mode. This will 

determine accurate mass, and allow isolation and fragmentation. The lipids will then be 

subjected to MS3 analysis. Accurate mass fragmentation of PGb and PGc attached at the 

sn2 position of PEs will be compared to the fragmentation patterns of known eicosanoid 

standards to facilitate structural characterisation. 

Finally, the formation of PGb and PGc as free eicosanoids by activated platelets will be 

investigated using LC/MS/MS on the 4000 Q-trap. Free acid PGb and PGc in platelet 

samples will be identified based on both the MS spectra and retention time of PGb and 

PGc released from hydrolysed PGb-PEs and PGc-PEs, respectively. 

 

5.1.1 Aims 

Studies described in this chapter aim to: 

 Determine the identity of PGb attached at sn2 position of PE species. 

 Determine the identity of PGc attached at sn2 position of PE species. 

 Investigate whether PGb and PGc are formed as free eicosanoids by activated 

human platelets. 
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5.2 Results 

5.2.1 Structural characterisation of PGb-PE and PGc-PE generated by activated human 

platelets. 

5.2.1.1 Targeted MS/MS analysis of PGb-PE and PGc-PE species. 

Structural characterisation of PGb-PEs and PGc-PEs was performed using high resolution 

MS, monitoring the exact mass of parent ions (770.4977, 796.5132, 798.5292 and 

814.5243), as described in Chapter 4, to obtain spectra of individual PE species. 

Targeted MS/MS was carried out in FTMS mode, monitoring parent ions with accurate 

mass and conducting fragmentation with HCD. MS/MS spectra of PGb-PE parent ions 

were then compared to each other to confirm the presence of PGb attached at sn2 

position in all four PE species. This analysis was then repeated for the PGc-PEs. Indeed, 

MS/MS spectra of all four PGb-PE species (770.6, 796.6, 798.6 and 814.7) yielded similar 

fragmentation patterns, with major daughter ions at m/z 351, 271, 207, 163 and 109 

(Figures 5.1 and 5.2). Similarly, MS/MS spectra of PGc-PE species generated comparable 

fragmentation pattern, with main daughter ions at m/z 351, 271, 165, 163 and 149 

(Figures 5.3 and 5.4). This confirms that all four “b” contain the same prostaglandin-like 

molecule, with the same also true for the four “c” type lipids. 

Initial analysis of MS/MS spectra of PGb-PE and PGc-PE suggested PGb and PGc as 

potentially previously undescribed eicosanoids. However, further analysis was required to 

confirm that the daughter ions generated by targeted MS/MS did in fact originate from 

fragmentation of the m/z 351.2 attached at the sn2 of PEs. 

 

5.2.1.2 Data dependent MS3 analysis. 

To confirm which fragments observed by targeted MS/MS originated from fragmentation 

of the daughter ion m/z 351.2, data dependent MS3 was performed utilising the Orbitrap. 



 

116 
 

 

Figure 5.1: Targeted MS/MS analysis of PGb-PE demonstrated identical major daughter 

ions arisen from m/z 770.6 and 796.6 fragmentation. Platelet lipid extracts were 

analysed using high resolution LC/MS/MS on Orbitrap in FTMS mode, monitoring the 

exact mass, followed by targeted MS/MS using HCD. Panel A. Negative MS/MS spectrum 

acquired at the apex of elution of PGb-PE for m/z 770.4977 at 6.19 min. Major daughter 

ions arising from m/z 770.6 fragmentation are depicted in bold. Panel B. Negative MS/MS 

spectrum acquired at the apex of elution of PGb-PE for m/z 796.5132 at 6.43 min. Major 

daughter ions arising from m/z 796.6 fragmentation are shown in bold. 
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Figure 5.2: Targeted MS/MS analysis for PGb-PE showed identical major daughter ions 

arisen from m/z 798.6 and 814.7 fragmentation. Platelet lipid extracts were analysed 

using high resolution LC/MS/MS on Orbitrap in FTMS mode, monitoring the exact mass, 

followed by targeted MS/MS using HCD. Panel A. Negative MS/MS spectrum acquired at 

the apex of elution of PGb-PE for m/z 798.5292 at 7.69 min. Major daughter ions arising 

from m/z 798.6 fragmentation are shown in bold. Panel B. Negative MS/MS spectrum 

acquired at the apex of elution of PGb-PE for m/z 814.5243 at 7.1 min. Major daughter 

ions arising from m/z 814.7 fragmentation are shown in bold. 
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Figure 5.3: Targeted MS/MS analysis of PGc-PE showed identical major daughter ions 

arisen from m/z 770.6 and 796.6 fragmentation. Platelet lipid extracts were analysed 

using high resolution LC/MS/MS on Orbitrap in FTMS mode, monitoring the exact mass, 

followed by targeted MS/MS using HCD. Panel A. Negative MS/MS spectrum acquired at 

the apex of elution of PGc-PE for m/z 770.4977 at 6.72 min. Major daughter ions arising 

from m/z 770.6 fragmentation are depicted in bold. Panel B. Negative MS/MS spectrum 

acquired at the apex of elution of PGc-PE for m/z 796.5132 at 6.95 min. Major daughter 

ions arising from m/z 796.6 fragmentation are highlighted in bold. 
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Figure 5.4: Targeted MS/MS analysis of PGc-PE identified identical major daughter ions 

arisen from m/z 798.6 and 814.7 fragmentation. Platelet lipid extracts were analysed 

using high resolution LC/MS/MS on the Orbitrap in FTMS mode, monitoring the exact 

mass, followed by targeted MS/MS using HCD. Panel A. Negative MS/MS spectrum 

acquired at the apex of elution of PGc-PE for m/z 798.5292 at 8.21 min. Major daughter 

ions arising from m/z 798.6 fragmentation are highlighted in bold. Panel B. Negative 

MS/MS spectrum acquired at the apex of elution of PGc-PE for m/z 814.5243 at 7.62 min. 

Major daughter ions arising from m/z 814.7 fragmentation are given in bold. 
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Here, ions with a m/z 351.2 arising from CID of individual parent ions (770.6, 796.6, 798.6 

and 814.7) of either PGb-PE or PGc-PE, in ion trap mode, were selectively isolated, further 

fragmented and analysed. 

Upon fragmentation, the daughter ion m/z 351.2 of PGb-PE generated fragments at m/z 

271, 207, 163 and 109, similar to those observed following targeted MS/MS spectra, 

further confirming that these ions originate from PGb fragmentation (Figures 5.5 – 5.6). 

Similarly, fragments at m/z 271, 207, 163, 165 and 149 were confirmed as ions originating 

from the fragmentation of the daughter ion m/z 351.2 of PGc-PE (Figures 5.7 – 5.8). 

To identify PGb and PGc attached to PEs, MS/MS spectra of the daughter ions for m/z 

351.2 were compared to fully characterised eicosanoid standards. However, neither PGb 

nor PGc corresponded to any known prostaglandin currently listed either on LipidMaps or 

The Human Metabolome Database. 

 

5.2.1.3 Detection of PGb and PGc as free eicosanoids. 

Studies were performed to determine whether PGb and PGc were formed as free 

eicosanoids by activated platelets. Synthesis of free PGb and PGc by platelets was studied 

by comparing the MS spectra and retention times of free eicosanoids generated by 

activated platelets to those of PGb and PGc released from saponified PGb-PEs and PGc-

PEs. PGb-PEs and PGc-PEs were purified from platelet lipid extracts using HPLC-UV, as 

described in Materials and Methods, Section 2.2.4. 

Purified PGb-PEs and PGc-PEs were then saponified with snake venom PLA2 to release 

PGb and PGc and analysed using reverse-phase LC-MS/MS, on the 4000 Q-trap, as 

described in Material and Methods, Section 2.2.6, with Q1 set at m/z 351.2 and Q3 at m/z 

271.2, with product ion spectra acquired at the apex of lipid elution. 
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Figure 5.5: MS3 spectra of PGb-PEs confirmed the origin of product ions observed on 

targeted MS/MS as PGb-derived fragments. Platelet lipid extracts were separated using 

high resolution LC/MS/MS on Orbitrap, with ITMS detection and targeted MS/MS of the 

parent mass, followed by data dependent fragmentation of the daughter ion m/z 351.2, 

using CID. Panel A. MS3 spectrum of m/z 770.6 by secondary fragmentation of daughter 

ion m/z 351.2. Panel B. MS3 spectrum of m/z 796.6 by secondary fragmentation of the 

daughter ion m/z 351.2. 
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Figure 5.6: MS3 spectra of PGb-PEs confirmed the origin of product ions observed in 

targeted MS/MS as PGb-derived fragments. Platelet lipid extracts were separated using 

high resolution LC/MS/MS on Orbitrap, with ITMS detection and targeted MS/MS of the 

parent mass, followed by data dependent fragmentation of the daughter ion m/z 351.2, 

using CID. Panel A. MS3 spectrum of m/z 798.6 by secondary fragmentation of daughter 

ion m/z 351.2. Panel B. MS3 spectrum of m/z 814.7 by secondary fragmentation of 

daughter ion m/z 351.2. 
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Figure 5.7: MS3 spectra of PGc-PEs confirmed the origin of product ions observed in 

targeted MS/MS as PGc-derived fragments. Platelet lipid extracts were separated using 

high resolution LC/MS/MS on Orbitrap, with ITMS detection and targeted MS/MS of the 

parent mass, followed by data dependent MS/MS of the daughter ion m/z 351.2, using 

CID. Panel A. MS3 spectrum of m/z 770.6 by secondary fragmentation of daughter ion m/z 

351.2. Panel B. MS3 spectrum of m/z 796.6 by secondary fragmentation of daughter ion 

m/z 351.2. 
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Figure 5.8: MS3 spectra of PGc-PEs confirmed the origin of product ions observed in 

targeted MS/MS as PGc-derived fragments. Platelet lipid extracts were separated using 

high resolution LC/MS/MS on Orbitrap, with ITMS detection and targeted MS/MS of the 

parent mass, followed by data dependent MS/MS of the daughter ion m/z 351.2, using 

CID. Panel A. MS3 spectrum of m/z 798.6 by secondary fragmentation of daughter ion m/z 

351.2. Panel B. MS3 spectrum of m/z 814.7 by secondary fragmentation of daughter ion 

m/z 351.2. 
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LC-MS/MS analysis of prostaglandins released from PGb-PE and PGc-PE demonstrated a 

major peak from a lipid eluting at 51.5 min (Figure 5.9). Further analysis revealed that the 

lipid eluting at 38.6 min generated major daughter ions on MS/MS (m/z 351, 271, 207, 

163 and 109) characteristic of esterified PGb (Figure 5.10). The MS spectrum acquired at 

51.5 min demonstrated daughter ions (m/z 351, 271, 165, 163 and 149) characteristic of 

esterified PGc (Figure 5.11). 

Although PGb-PE and PGc-PE were purified before hydrolysis, other esterified eicosanoids 

may co-elute in this system. Other peaks (with m/z 351.2) observed in the chromatogram 

may originate from isoprostanes of these lipids. This data indicates that if PGb and PGc do 

form as free eicosanoids, they would elute at 38 and 51.5 min, respectively. 

To determine whether platelets generate free PGb and PGc, they were activated with 

thrombin, the lipids extracted and then analysed using reverse-phase LC/MS/MS, as 

described in detail in Materials and Methods, Section 2.2.6. Based on the MS/MS spectra 

of PGb-PEs and PGc-PEs, distinct transitions were selected to monitor PGb (m/z 351.2  

207.1) and PGc (m/z 351.2  165.1). LC/MS/MS combined with information-dependent-

acquisition (IDA), monitoring m/z 351.2  207.1, demonstrated a lipid eluting at 38.6 min 

that, upon fragmentation, generates several ions similar to those observed for PGb 

hydrolysed from PGb-PEs. Similarly, the MS/MS spectrum acquired at 51.5 min showed 

ions similar to those observed for PGc hydrolysed from PGc-PEs. 

The reverse-phase LC/MS/MS method used for the studies described thus far is both time 

consuming (75 minutes for a single acquisition) and also requires a considerable amount 

of solvent. To reduce both the analysis time and solvents consumed a shorter reverse-

phase LC/MS/MS method was chosen instead. Studies detecting free PGb and PGc now 

employed a shorter reverse-phase LC/MS/MS method (30 minutes for a single 

acquisition), which is described in detail in Material and Methods, Section 2.2.3.3. Using 

the shorter LC/MS/MS method PGb and PGc now eluted at 4.3 min (Figure 5.12) and 6.3 

min (Figure 5.13), respectively. 
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Figure 5.9: Analysis of prostaglandins released from saponified PGb-PEs and PGc-PEs. 

Washed human platelets were activated with calcium ionophore (10 µM) for 30 min at 

37oC followed by lipid extraction. PGb-PEs and PGc-PEs were purified as described in 

Materials and Methods, Section 2.2.4. Lipids were then saponified with 200 μg of snake 

venom (PLA2). Fatty acids released from saponified PGb-PEs and PGc-PEs were analysed 

using reverse-phase LC/MS/MS. Black line, purified PGb-PE and PGc-PE before hydrolysis. 

Red line, lipids with m/z 351.2 released from platelet phospholipids after hydrolysis. 
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Figure 5.10: MS/MS spectrum confirming the lipid eluting at 38 min as PGb. Saponified 

PGb-PEs and PGc-PEs were separated using reverse-phase LC/MS/MS on Q-trap, as 

described in Materials and Methods, Section 2.2.6, with MS/MS spectrum acquired at the 

apex of elution at 38.6 min. Major daughter ions consistent with PGb attached to PEs are 

highlighted in bold. 
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Figure 5.11: MS/MS spectrum confirming the lipid eluting at 51.5 min as PGc. Saponified 

PGb-PEs and PGc-PEs were separated using reverse-phase LC/MS/MS on Q-trap, as 

described in Materials and Methods, Section 2.2.6, with spectrum acquired at the apex of 

elution at 51.5 min. Major daughter ions consistent with PGc attached to PEs are 

highlighted in bold.  
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Figure 5.12: Analysis of free PGb using a shorter (30 min) reverse-phase LC/MS/MS. 

Lipid extracts from activated platelets were separated using a 30 min reverse-phase 

LC/MS/MS as described in Materials and Methods, Section 2.2.3.3, monitoring m/z 351.2 

 207.1. Panel A. Chromatogram showing elution of free PGb at 4.3 min. Panel B. 

MS/MS spectrum of PGb acquired at the apex of elution at 4.3 min. The major daughter 

ions arising from free PGb fragmentation are highlighted in bold. 
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Figure 5.13: Analysis of free PGc using a shorter (30min) reverse-phase LC/MS/MS. 

Platelet lipid extracts were separated using a 30 min reverse-phase LC/MS/MS as 

described in Methods and Materials, Section 2.2.3.3, monitoring m/z 351.2  165.1. 

Panel A. Chromatogram showing elution of free PGc at 6.3 min. Panel B. MS spectrum of 

PGc acquired at the apex of elution at 6.3 min. The major daughter ions arising from free 

PGc fragmentation are highlighted in bold. 
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5.3 Discussion 

LC-MS/MS analysis revealed that PGb and PGc attached to PEs are oxidised fatty acids 

that have not been previously described in either platelets or other human cells. 

Comparison of MS3 spectra of PGb-PEs and PGc-PEs indicates that both fatty acids at the 

sn2 position share a similar structure but are distinct from PGE2 and PGD2 (Figures 5.5 – 

5.8). The presence of daughter ions at m/z 333, 315, 271 and 189, characteristic also of 

PGE2 and PGD2, further suggest that PGb and PGc are prostaglandin-like molecules 

esterified to PEs. Generation of free PGb and PGc by activated platelets was confirmed 

based on analysis of esterified PGb and PGc following hydrolysis and LC/MS/MS. 

Where the MS fragmentation pattern of eicosanoids is already known, e.g. PGE2 and 

PGD2 (Murphy et al., 2005), structure characterisation is relatively straightforward. In 

contrast, with new lipids, elucidation represents a significant challenge. In order to 

determine the structures of PGb and PGc, chemical derivatization combined with either 

LC-MS or gas chromatography–mass spectrometry (GC-MS) would be required. Based on 

fragmentation, derivatization allows identification of specific functional groups. For 

example, the presence of hydroxyl groups (-OH) can be confirmed by silylation reactions 

using N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA), which reacts with active 

hydrogens on –OH, generating a trimethylsilyl (TMS) derivative that can be detected by a 

mass increase of 72 amu (Grob & Barry, 2004; Halket et al., 2005). Similarly, the presence 

of carbonyl groups can be investigated by methoximation, where methoxyamine (MOX) 

reacts with carbonyl groups, forming an oxime derivative that can be detected as a mass 

increase of 29 amu by either GC-MS or LC-MS (Halket et al., 2005). 

Previous studies demonstrated that esterified LOX products form enzymatically in 

neutrophils, monocytes and platelets in a controlled manner (Maskrey et al., 2007; 

Morgan et al., 2009; Morgan et al., 2010; Thomas et al., 2010; Clark et al., 2011; 

Aldrovandi & O'Donnell, 2013). Formation of TxA2 by COX-1 in platelets is also tightly 

regulated, involving activation of PLC, calcium and PLA2 (Putney, 1988; Hisatsune et al., 

2005; Levy, 2006, Nakahata, 2008). Platelet 12-HETE-PC and neutrophil 5-HETE-PEs were 

shown to participate in coagulation and immune responses, respectively (Thomas et al., 
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2010; Clark et al., 2011). It is possible that PGE2/D2-PE, PGb-PE and PGc-PE alongside free 

PGb and PGc also form enzymatically in a regulated manner, via activation of platelet 

receptors (such as PAR-1 and PAR-4) and signalling pathways, including calcium and PLA2, 

similar to TxA2. Should the enzymatic generation and bioactivity in coagulation or 

immune responses be confirmed, these lipids could be used as targets for drug 

development. For example, if they display pro-thrombotic activity they could be either 

synthesised in vitro, aiding treatment for bleeding disorders, or their in vivo generation 

inhibited to prevent thrombotic disease. The discovery of novel prostaglandins is 

important since known members of this lipid family play important roles in a number of 

biological processes in vivo. Prostaglandins act as autocrine and paracrine lipid mediators, 

maintaining local homeostasis, including in inflammation, mediating pro- or anti-

inflammatory responses, and haemostasis, inhibiting/promoting platelet aggregation 

(Nakahata, 2008; Legler et al., 2010; Sandig et al., 2007). PGb and PGc may also function 

in an autocrine and paracrine manner in similar processes. The mechanism of formation 

of PGE2/D2-PE, PGb-PE and PGc-PE as well as free PGb and PGc will be investigated in the 

following chapters to determine whether these lipids are enzymatically generated, and 

the signal transduction pathways involved in their formation. 

In summary, two novel prostaglandin-like molecules generated by activated platelets 

were identified. They were detected both attached to PE and as free eicosanoids. 

Following this work, studies in collaboration with Dr Robert Murphy (Hinz et al., 

unpublished data 2013) are suggesting PGc as a new lipid: 8-hydroxy-9,11-dioxolane 

eicosatrienoic acid (Yin et al., 2003; Yin et al., 2004). Future studies using derivatization 

are expected to elucidate PGb and PGc structures in full. Until further analysis, lipid “b” 

will be referred to as free or esterified PGb (16:0p/PGb-PE, 18:1p/PGb-PE, 18:0p/PGb-PE 

and 18:0a/PGb-PE), whilst lipid “c” will be referred to as free or esterified PGc 

(16:0p/PGc-PE, 18:1p/PGcPE, 18:0p/PGc-PE and 18:0a/PGc-PE). For convenience, in 

subsequent chapters of this thesis PGE2/D2-PE, PGb-PE and PGc-PE will be referred to as 

esterified prostaglandins when described as a group. Similarly, PGE2, PGD2, PGb and PGc 

will be referred to as free prostaglandins. 
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Chapter 6 
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6 Studies on the Mechanism of Free and Esterified Prostaglandin 

Formation by Activated Human Platelets 

6.1 Introduction 

In this chapter, the temporal generation of free and esterified prostaglandins will be 

described. Upon thrombin stimulation of PAR-1/-4 or collagen activation of glycoprotein 

VI and integrin α2β1, a cascade of intracellular signals is initiated leading to a regulated 

and fast generation of enzymatically formed eicosanoids, such as TxA2, PGE2 and PGD2. 

These are subsequently released to the extracellular space, signalling in a paracrine or 

autocrine manner modulating platelet aggregation (Gryglewski et al., 1978; Rodrigues et 

al., 1994; Smith et al., 2010; Petrucci et al., 2011). On activation, platelets also acutely 

generate OxPLs, such as 14-HDOHE-PEs and 12-HETE-PE/PCs. 14-HDOHE-PEs are formed 

as early as 2 minutes by thrombin-activated platelets via 12-LOX, with levels steadily 

increasing up to 3 hours post-activation (Morgan et al., 2010). Similarly, 12-HETE-PEs and 

12-HETE-PCs are rapidly synthesised (2 – 5 minutes) via 12-LOX on thrombin stimulation 

with approximately 100-fold increase by 15 minutes, remaining platelet-associated 

(Thomas et al., 2010). As for free eicosanoids, OxPLs generated by platelets are also 

proposed to play a role in coagulation, for example 12-HETE-PC enhances tissue factor-

dependent thrombin generation in vitro (Thomas et al., 2010). Therefore, formation of 

lipids that may signal in coagulation, such as TxA2, PGE2, PGD2 and 12-HETE-PLs, must be 

fast to ensure an effective response. In this chapter, free and esterified prostaglandin 

generation by activated human platelets will be determined following stimulation for 

various time points (0 – 180 minutes) with a range of agonists, including thrombin and 

collagen, using reverse-phase LC/MS/MS on 4000 Q-trap. 

Following formation, lipids that remain platelet-associated are suggested to act either on 

the plasma membrane, regulating coagulation (e.g. 12-HETE-PCs), or intracellularly as 

second messengers, such as diacylglycerol (DAG) (Thomas et al., 2010; Stefanini et al., 

2009). Furthermore, cell-associated lipids may alter the dynamics of plasma membrane 
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during platelet activation, either increasing or decreasing water permeability that could 

disrupt ion gradients, leading to alterations of platelet metabolic processes, such as 

calcium transport (Wong-Ekkabut et al., 2007; Varga-Szabo et al., 2009). In contrast, 

eicosanoids released by activated platelets, such as TxA2, PGE2 and PGD2, are expected to 

act locally on nearby cells through activation of surface G protein-coupled receptors. 

Thus, it is important to determine whether free and esterified prostaglandins remain cell-

associated or are released following their generation. Furthermore, since multiple 

agonists (e.g. thrombin and collagen) contribute to platelet activation through 

stimulation of specific surface receptors, it is crucial to investigate which agonists 

stimulate the formation of free and esterified prostaglandins.  

 

6.1.1 Aims 

The studies described in this chapter aim to: 

 Investigate the temporal generation of free and esterified prostaglandins by 

LC/MS/MS using the 4000 Q-trap mass spectrometer. 

 Compare the levels of free and esterified prostaglandins generated by human 

platelets stimulated with a range of different agonists. 

 Determine whether free and esterified prostaglandins generated by thrombin-

activated platelets are released or remain cell-associated. 
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6.2 Results 

6.2.1 Free and esterified prostaglandins are acutely generated by agonist-activated 

human platelets. 

To determine the formation of free and esterified prostaglandins, washed human 

platelets were activated with 0.2 U/ml of thrombin, 10 µg/ml of collagen, 10 µM of 

calcium ionophore (A23187) or co-stimulated with thrombin and collagen for 2 – 180 

minutes. Lipids were extracted and analysed using reverse-phase LC-MS/MS on Q-trap, in 

MRM mode, as described in Materials and Methods, Sections 2.2.3.2 and 2.2.3.3. 

 

6.2.1.1 PGE2/D2-PEs are acutely generated by human platelets activated with thrombin, 

collagen or calcium ionophore. 

As described in Chapter 4, 18:0a/PGE2/D2-PE generated by 2 x 108 platelets was just 

above the limit of detection and, therefore, this isomer will not be measured. LC/MS/MS 

analysis demonstrated that PGE2/D2-PEs formed immediately (2 – 5 minutes) on agonist 

stimulation. Levels increased up to 10 minutes and then slowly decreased (Figure 6.1 A). 

Collagen stimulation induced maximum formation at 60 minutes with a decrease 

thereafter (Figure 6.1 B). In contrast, PGE2/D2-PE synthesis by thrombin and collagen 

combined peaked at 10 minutes (Figure 6.2 A). Following calcium ionophore incubation, 

levels of PGE2/D2-PEs peaked at 30 minutes and then slowly declined (Figure 6.2 B). 
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Figure 6.1: Generation of PGE2/D2-PEs in response to thrombin or collagen stimulation 

of platelets. Washed platelets were activated for varying times, lipids extracted and 

analysed using reverse-phase LC/2MS/MS, monitoring parent [M-H]-  m/z 271.2, as 

described in Materials and Methods, Section 2.2.3.2. Levels of PGE2/D2-PEs are expressed 

as ratio analyte to internal standard. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). ***P < 0.001 versus unstimulated platelets 

(Control 0 min), using ANOVA and Bonferroni Post Hoc Test. Panel A. Platelets were 

activated using 0.2 U/ml thrombin. Panel B. Platelets were activated using 10 µg/ml 

collagen. 
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Figure 6.2: Generation of PGE2/D2-PEs in response to thrombin and collagen or A23187 

stimulation of platelets. Washed platelets were activated for varying times, lipids 

extracted and analysed using reverse-phase LC/MS/MS, monitoring parent [M-H]-  m/z 

271.2, as described in Materials and Methods, Section 2.2.3.2. Levels of PGE2/D2-PEs are 

expressed as ratio analyte to internal standard. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). ***P < 0.001 versus unstimulated platelets 

(Control 0 min), using ANOVA and Bonferroni Post Hoc Test. Panel A. Platelets were co-

stimulated with 0.2 U/ml thrombin and 10 µg/ml collagen. Panel B. Platelets were 

activated using 10 µM A23187. 
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6.2.1.2 Free PGE2 and PGD2 are acutely generated by human platelets activated with 

thrombin, collagen or calcium ionophore. 

PGE2 and PGD2 formed immediately on agonist activation (2 minutes) with levels steadily 

increasing up to 60 – 120 minutes following thrombin stimulation (Figure 6.3 A). In 

contrast, on activation with either collagen alone or combined with thrombin, generation 

of PGE2 and PGD2 peaked at 10 minutes and then levelled off (Figures 6.3 B and 6.4 A). 

Calcium ionophore induced synthesis of PGD2 that peaked at 5 minutes and then 

plateaued, while PGE2 levels steadily increased up to 120 minutes (Figure 6.4 B).  

 

6.2.1.3 PGb-PEs are acutely generated by human platelets activated with thrombin, 

collagen or calcium ionophore. 

LC/MS/MS analysis demonstrated that PGb-PEs formed immediately (2 minutes) on 

agonist stimulation, similarly to PGE2/D2-PEs. Following thrombin activation, generation 

of PGb-PEs peaked at 10 minutes, with levels slowly declining (Figure 6.5 A). Collagen 

induced PGb-PE formation but seemingly at slower rate, with levels steadily rising up to 

60 minutes (Figure 6.5 B). On co-stimulation with thrombin and collagen, levels increased 

up to 10 minutes and, after 30 minutes, gradually reduced (Figure 6.6 A). Platelets 

stimulated with calcium ionophore formed PGb-PEs that steadily increased up to 120 

minutes (Figure 6.6 B). 
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Figure 6.3: Generation of PGE2 and PGD2 in response to thrombin or collagen 

stimulation of platelets. Washed platelets were activated for varying times, lipids 

extracted and analysed using reverse-phase LC/MS/MS, monitoring m/z 351.2  m/z 

271.2 as described in Materials and Methods, Section 2.2.3.3. Levels of PGE2 and PGD2 

are expressed as ng/2 x 108 platelets. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). ***P < 0.001 versus unstimulated platelets 

(Control 0 min), using ANOVA and Bonferroni Post Hoc Test. Panel A. Platelets were 

activated using 0.2 U/ml thrombin. Panel B. Platelets were activated using 10 µg/ml 

collagen. 
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Figure 6.4: Generation of PGE2 and PGD2 in response to collagen and thrombin or 

A23187 stimulation of platelets. Washed platelets were activated for varying times, 

lipids extracted and analysed reverse-phase LC/MS/MS, monitoring m/z 351.2  271.2 as 

described in Materials and Methods, Section 2.2.3.3. Levels of PGE2 and PGD2 are 

expressed as ng/2 x 108 platelets. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). ***P < 0.001 versus unstimulated platelets 

(Control 0 min), using ANOVA and Bonferroni Post Hoc Test. Panel A. Platelets were co-

stimulated with 0.2 U/ml thrombin and 10 µg/ml collagen. Panel B. Platelets were 

activated using 10 µM A23187. 
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Figure 6.5: Generation of PGb-PEs in response to thrombin or collagen stimulation of 

platelets. Washed platelets were activated for varying times, lipids extracted and 

analysed using reverse-phase LC/MS/MS, monitoring parent [M-H]-  m/z 351.2, as 

described in Materials and Methods, Section 2.2.3.2. Levels are expressed as ratio analyte 

to internal standard. Data presented from one experiment and representative of three (n 

= 3, mean ± SEM). *P < 0.05, **P < 0.01 and ***P < 0.001 versus unstimulated platelets 

(Control 0 min), using ANOVA and Bonferroni Post Hoc Test. Panel A. Platelets were 

activated using 0.2 U/ml thrombin. Panel B. Platelets were activated using 10 µg/ml 

collagen. 
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Figure 6.6: Generation of PGb-PEs in response to collagen and thrombin or A23187 

stimulation of platelets. Washed platelets were activated for varying times, lipids 

extracted and analysed using reverse-phase LC/MS/MS, monitoring parent [M-H]-  m/z 

351.2 as described in Materials and Methods, Section 2.2.3.2. Levels are expressed as 

ratio analyte to internal standard. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). *P < 0.05, **P < 0.01 and ***P < 0.001 

versus unstimulated platelets (Control 0 min), using ANOVA and Bonferroni Post Hoc 

Test. Panel A. Platelets were co-stimulated with 0.2 U/ml thrombin and 10 µg/ml 

collagen. Panel B. Platelets were activated using 10 µM A23187. 
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6.2.1.4 Free PGb is acutely generated by human platelets activated with thrombin, 

collagen or calcium ionophore. 

PGb formed following 2 minutes by agonist-stimulated platelets. On thrombin activation, 

levels increased up to 60 minutes and then reached a plateau (Figure 6.7 A). Following 

incubation with either collagen alone or combined with thrombin, synthesis of PGb 

peaked at 10 minutes, with levels gradually decreasing over time (Figure 6.7 B and 6.8 A). 

In contrast, on calcium ionophore stimulation, levels of PGb increased up to 120 minutes 

(Figure 6.8 B). 

 

6.2.1.5 PGc-PEs are acutely generated by human platelets activated with thrombin, 

collagen or calcium ionophore. 

PGc-PEs formed acutely on agonist stimulation (2 minutes), similarly to PGE2/D2-PEs and 

PGb-PEs. On thrombin activation, levels of PGc-PEs increased up to 10 minutes and then 

levelled off (Figure 6.9 A), whereas, following collagen stimulation, PGc-PE generation 

gradually increased up to 60 minutes (Figure 6.9 B). Addition of collagen and thrombin 

together induced PGc-PE formation, which levels peaked at 10 minutes and then 

gradually decreased (Figure 6.10 A). PGc-PEs were generated on calcium ionophore 

stimulation with levels increasing gradually up to 60 minutes and then plateau (Figure 

6.10 B).  
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Figure 6.7: Generation of PGb in response to thrombin or collagen stimulation of 

platelets. Washed platelets were activated for varying times, lipids extracted and 

analysed using reverse-phase LC/MS/MS, monitoring m/z 351.2  207.1 as described in 

Materials and Methods, Section 2.2.3.3. Levels are expressed as ratio analyte to internal 

standard. Data presented from one experiment and representative of three (n = 3, mean 

± SEM). ***P < 0.001 versus unstimulated platelets (Control 0 min), using ANOVA and 

Bonferroni Post Hoc Test. Panel A. Platelets were activated using 0.2 U/ml thrombin. 

Panel B. Platelets were activated using 10 µg/ml collagen. 
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Figure 6.8: Generation of PGb in response to collagen and thrombin or A23187 

stimulation of platelets. Washed platelets were activated for varying times, lipids 

extracted and analysed using reverse-phase LC/MS/MS, monitoring m/z 351.2  207.1 as 

described in Materials and Methods, Section 2.2.3.3. Levels are expressed as ratio analyte 

to internal standard. Data presented from one experiment and representative of three (n 

= 3, mean ± SEM). ). ***P < 0.001 versus unstimulated platelets (Control 0 min), using 

ANOVA and Bonferroni Post Hoc Test. Panel A. Platelets were co-stimulated with 0.2 

U/ml thrombin and 10 µg/ml collagen. Panel B. Platelets were activated using 10 µM 

A23187. 
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Figure 6.9: Generation of PGc-PEs in response to thrombin or collagen stimulation of 

platelets. Washed platelets were activated for varying times, lipids extracted and 

analysed using reverse-phase LC/MS/MS, monitoring parent [M-H]-  m/z 351.2 as 

described in Materials and Methods, Section 2.2.3.2. Levels are expressed as ratio analyte 

to internal standard. Data presented from one experiment and representative of three (n 

= 3, mean ± SEM). **P < 0.01 and ***P < 0.001 versus unstimulated platelets (Control 0 

min), using ANOVA and Bonferroni Post Hoc Test. Panel A. Platelets were activated using 

0.2 U/ml thrombin. Panel B. Platelets were activated using 10 µg/ml collagen. 

A

B

16:0p/PGc-PE

18:0p/PGc-PE
18:0a/PGc-PE

18:1p/PGc-PE

Thrombin activated platelets

0.1

0.2

0.3

0.4

0 1802 5 10 30 60 120 180

R
a

ti
o

 A
n

a
ly

te
to

In
te

rn
a

l 
S

ta
n

d
a

rd

ControlTime (min)

PGc-PE

Collagen activated platelets

0.05

0.10

0.15

0 1802 5 10 30 60 120 180

R
a

ti
o

 A
n

a
ly

te
to

In
te

rn
a

l 
S

ta
n

d
a

rd

Time (min)
Control

16:0p/PGc-PE

18:0p/PGc-PE
18:0a/PGc-PE

18:1p/PGc-PE

PGc-PE

***

******

***

***

***

***
***

***

***

***
***

***
***

***
***

***

***

***

***

***

**
***

*** *** ***
***

***

***

***

***

***

***

***

***

***
***

***

***

***

***

***
***

******

***

***

*** ***

**

***

***

***

Control

Control



 

148 
 

 

Figure 6.10: Generation of PGc-PEs in response to collagen and thrombin or A23187 

stimulation of platelets. Washed platelets were activated for varying times, lipids 

extracted and analysed using reverse-phase LC/MS/MS, monitoring parent [M-H]-  m/z 

351.2 as described in Materials and Methods, Section 2.2.3.2. Levels are expressed as 

ratio analyte to internal standard. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). *P < 0.05, **P < 0.01 and ***P < 0.001 

versus unstimulated platelets (Control 0 min), using ANOVA and Bonferroni Post Hoc 

Test. Panel A. Platelets were co-stimulated with 0.2 U/ml thrombin and 10 µg/ml 

collagen. Panel B. Platelets were activated using 10 µM A23187. 
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6.2.1.6 PGc is acutely generated by human platelets activated with thrombin, collagen or 

calcium ionophore. 

PGc formed within 2 minutes following agonist activation. On either thrombin or collagen 

stimulation, levels of PGc steadily increased up to 60 minutes (Figure 6.11). In contrast, 

on activation with collagen and thrombin combined, generation of PGc peaked at 10 

minutes and, after 30 minutes, levelled off (Figures 6.12 A). Calcium ionophore induced 

synthesis of PGc, which levels peaked at 30 minutes and then plateau (Figure 6.12 B). 

 

6.2.2 Different platelet agonists induce distinct levels of free and esterified 

prostaglandins. 

Free and esterified prostaglandins were immediately formed (within 2 minutes) by 

agonist-activated platelets with levels increasing up to 10 – 30 minutes post stimulation, 

as described in Section 6.2.1. These observations suggest that receptors on the platelet 

plasma membrane, such as thrombin (PAR-1/-4) and collagen receptors (glycoprotein VI) 

are ultimately responsible for the initiation of free and esterified prostaglandin synthesis. 

To determine the optimum agonist and, thus, the receptor likely to be involved in free and 

esterified prostaglandin formation, washed platelets derived from one donor were 

stimulated with a range of different agonists at the same time. 

Human platelets were incubated with either 0.2 U/ml of thrombin, 10 µg/ml of collagen, 

thrombin and collagen combined or 10 µM of calcium ionophore (A23187), for 30 

minutes at 37oC, in the presence of 1 mM CaCl2. Lipids were subsequently extracted and 

analysed using LC/MS/MS on Q-trap as described in Materials and Methods, Sections 

2.2.3.2 and 2.2.3.3. Note that agonists were used at the given standard concentrations as 

described previously (Kasirer-Friede et al., 1999; Chen et al., 2002; Thomas et al., 2010). 

The length of stimulation time was chosen based on the temporal generation of free and 

esterified prostaglandins described earlier in this chapter. At 30 minutes, all agonists 

induced considerable levels of free and esterified prostaglandins. 
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Figure 6.11: Generation of PGc in response to thrombin or collagen stimulation of 

platelets. Washed platelets were activated for varying times, lipids extracted and 

analysed using reverse-phase LC/MS/MS, monitoring m/z 351.2  165.1 as described in 

Materials and Methods, Section 2.2.3.3. Levels are expressed as ratio analyte to internal 

standard. Data presented from one experiment and representative of three (n = 3, mean 

± SEM). ***P < 0.001 versus unstimulated platelets (Control 0 min), using ANOVA and 

Bonferroni Post Hoc Test. Panel A. Platelets were activated using 0.2 U/ml thrombin. 

Panel B. Platelets were activated using 10 µg/ml collagen. 
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Figure 6.12: Generation of free PGc in response to collagen and thrombin or A23187 

stimulation of platelets. Washed platelets were activated for varying times, lipids 

extracted and analysed using reverse-phase LC/MS/MS, monitoring m/z 351.2  165.1 as 

described in Materials and Methods, Section 2.2.3.3. Levels are expressed as ratio analyte 

to internal standard. Data presented from one experiment and representative of three (n 

= 3, mean ± SEM). ). ***P < 0.001 versus unstimulated platelets (Control 0 min), using 

ANOVA and Bonferroni Post Hoc Test. Panel A. Platelets were co-stimulated with 0.2 

U/ml thrombin and 10 µg/ml collagen. Panel B. Platelets were activated using 10 µM 

A23187. 
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Platelets stimulated with calcium ionophore generated highest levels of esterified 

prostaglandins (Figure 6.13 – 6.15), whereas collagen was the least effective. Thrombin 

was the optimum physiological platelet agonist to induce free PGE2 and PGD2 formation 

at the concentrations and timepoints chosen (Figure 6.13 B). Co-stimulation with collagen 

and thrombin generated highest levels of free PGb (Figure 6.14 B) and induced an additive 

effect on PGc formation (Figure 6.15 B). 

The agonist efficiency to induce formation of esterified prostaglandins was in the order: 

calcium ionophore ˃ thrombin and collagen combined ˃ thrombin ˃ collagen; PGE2 and 

PGD2: thrombin ≥ thrombin and collagen combined ˃ calcium ionophore ˃ collagen; PGb 

and PGc: thrombin and collagen combined ≥ thrombin˃ collagen ˃ calcium ionophore. 

 

6.2.3 Phospholipid-esterified prostaglandins are primarily retained by activated platelets 

while free prostaglandins are secreted. 

To determine whether the lipids were retained or released, washed platelets were 

stimulated with thrombin (0.2 U/ml for 30 min at 37oC), then pelleted by centrifugation 

(970 X g for 10 min) while the supernatant was aspirated and subjected to a higher spin 

(16,060 X g for 10 min) to pellet platelet microvesicles. Lipids were extracted and 

subsequently analysed using reverse-phase LC/MS/MS, as described in Materials and 

Methods, Section 2.2.3.2 and 2.2.3.3. 

The majority of esterified prostaglandins were predominantly retained (~ 90 %) by 

activated platelets, with small amounts appearing in either microparticles or supernatant 

(Figures 6.16 A, 6.17 A and 6.18 A). In contrast, approximately 95 % of free prostaglandins 

were released (Figures 6.16 B, 6.17 B and 6.18 B). 
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Figure 6.13: Generation of free and esterified PGE2 and PGD2 by human platelets in 

response to different agonists. Washed human platelets were activated for 30 min at 37o 

C in the presence of 1 mM CaCl2. Lipids were then extracted and analysed using reverse-

phase LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 2.2.3.3. 

Levels of PGE2/D2-PEs are expressed as ratio analyte to internal standard. Levels of PGE2 

and PGD2 are expressed as ng/2 x 108 platelets. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). ***P < 0.001 versus thrombin, using ANOVA 

and Bonferroni Post Hoc Test. Panel A. Generation of PGE2/D2-PEs in response to 

thrombin, collagen and A23187. Panel B. Generation of PGE2 and PGD2 in response to 

thrombin, collagen and A23187. 
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Figure 6.14: Generation of free and esterified PGb by human platelets in response to 

different agonists. Washed human platelets were activated for 30 min at 37o C in the 

presence of 1 mM CaCl2. Lipids were then extracted and analysed using reverse-phase 

LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of 

PGb-PEs and PGb are expressed as ratio analyte to internal standard. Data presented 

from one experiment and representative of three (n = 3, mean ± SEM). ***P < 0.001 

versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel A. Generation of PGb-

PEs in response to thrombin, collagen and A23187. Panel B. Generation of PGb in 

response to thrombin, collagen and A23187. 
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Figure 6.15: Generation of free and esterified PGc by human platelets in response to 

different agonists. Washed human platelets were activated for 30 min at 37o C in the 

presence of 1 mM CaCl2. Lipids were then extracted and analysed using reverse-phase 

LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of 

PGc-PEs and PGc are expressed as ratio analyte to internal standard. Data presented from 

one experiment and representative of three (n = 3, mean ± SEM). **P < 0.01 and ***P < 

0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel A. Generation 

of PGc-PEs in response to thrombin, collagen and A23187. Panel B. Generation of PGc in 

response to thrombin, collagen and A23187. 
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Figure 6.16: PGE2/D2-PEs are retained by platelets while PGE2 and PGD2 are released. 

Washed human platelets were activated with thrombin (0.2 U/ml for 30 min at 37oC) 

before centrifugation at 970 X g for 10 min. Supernatant was then centrifuged at 16,060 X 

g for 10 min to pellet microparticles before lipid extraction. Lipids were analysed using 

reverse-phase LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 

2.2.3.3. Levels of PGE2/D2-PEs are expressed as ratio analyte to internal standard. Levels 

of PGE2 and PGD2 are expressed as ng/2 x 10
8
 platelets. Data presented from one 

experiment and representative of three (n = 3, mean ± SEM). ***P < 0.001 versus control, 

using ANOVA and Bonferroni Post Hoc Test. Panel A. Levels of PGE2/D2-PEs measured in 

platelets, vesicles and supernatant. Panel B. Levels of PGE
2
 and PGD

2 measured in 

platelets, vesicles and supernatant. 
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Figure 6.17: PGb-PEs are retained by platelets while PGb is released. Washed human 

platelets were activated with thrombin (0.2 U/ml for 30 min at 37oC) before 

centrifugation at 970 X g for 10 min. Supernatant was then centrifuged at 16,060 X g for 

10 min to pellet microparticles before lipid extraction. Lipids were analysed using reverse-

phase LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 2.2.3.3. 

Levels of PGb-PEs and free PGb are expressed as ratio analyte to internal standard. Data 

presented from one experiment and representative of three (n = 3, mean ± SEM). ***P < 

0.001 versus control, using ANOVA and Bonferroni Post Hoc Test. Panel A. Levels of PGb-

PEs measured in platelets, vesicles and supernatant. Panel B. Levels of free PGb measured 

in platelets, vesicles and supernatant. 
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Figure 6.18: PGc-PEs are retained by platelets while PGc is released. Washed human 

platelets were activated with thrombin (0.2 U/ml for 30 min at 37oC) before 

centrifugation at 970 X g for 10 min. Supernatant was then centrifuged at 16,060 X g for 

10 min to pellet microparticles before lipid extraction. Lipids were analysed using reverse-

phase LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 2.2.3.3. 

Levels of PGc-PEs and free PGc are expressed as ratio analyte to internal standard. Data 

presented from one experiment and representative of three (n = 3, mean ± SEM). ***P < 

0.001 versus control, using ANOVA and Bonferroni Post Hoc Test. Panel A. Levels of PGc-

PEs measured in platelets, vesicles and supernatant. Panel B. Levels of free PGc measured 

in platelets, vesicles and supernatant. 
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6.3 Discussion 

This chapter demonstrates that esterified prostaglandins are formed within the first 2 

minutes of platelet activation, comparable to the timescale for the generation of free 

prostaglandins. This is in line with previous studies showing acute formation (2 – 5 

minutes) of 12-HETE-PE/PCs and 14-HDOHE-PEs by agonist-activated human platelets 

(Thomas et al., 2010; Morgan et al., 2010). These OxPLs are generated in a highly 

regulated manner via 12-LOX catalysis and require stimulation of several signalling 

pathways, including calcium and PLA2. It is possible that free and esterified prostaglandins 

are also enzymatically generated and, since platelet PGE2 and PGD2 are formed via COX-1, 

it is likely that synthesis of PGE2/D2-PEs will involve COX-1 (Mustard et al., 1980). 

Levels of esterified prostaglandins peaked around 10 to 30 minutes post stimulation 

before starting to decline, unlike free prostaglandins, which remained stable or continue 

to increase up to 3 hours following platelet activation (Figures 6.1 – 6.12). This suggests 

that esterified prostaglandins may be further metabolised into different products over 

time; for example, the PE headgroup could be converted to PC by PE methyltransferase 

or to PS by PS synthase (Berg et al., 2002). Enzymatic elongation of the sn2 fatty acid by 

addition of C2H4 may also occur (Rosenthal & Hill, 1986; Jakobsson et al., 2006). 

Hydrolysis of phospholipid esterified prostaglandins by PLA2 during platelet activation and 

membrane remodelling could also account for the decrease of esterified prostaglandin 

generation observed over time. In this case, PLA2 could cleave esterified prostaglandins, 

such as PGE2/D2-PE, at the sn2 position releasing PGE2 and PGD2 into the extracellular 

space. 

Furthermore, levels of esterified prostaglandins were considerably higher in platelets 

activated with calcium ionophore (A23187) compared to other agonists (Figure 6.13 – 

6.15). This suggests that the generation of these lipids requires calcium, similar to TxA2, 

PGE2, PGD2 and 12-HETE-PE/PCs (Pickett et al., 1976; Knapp et al., 1977; Jurk & Kehrel, 

2005; Thomas et al., 2010). 

Similar to OxPLs generated by LOXs, esterified prostaglandins remained cell-associated 

(Figures 6.16 – 6.18). This suggests that PG-PEs are likely to act locally, at the platelet 
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surface or intracellular membranes. Furthermore, OxPLs may alter the properties of 

biological plasma membranes. For example, the polarity and shape of OxPLs may differ 

significantly from the characteristic architecture of their non-OxPLs, such that their polar 

groups can protrude from the plasma membrane. Addition of polar oxygen atoms to fatty 

acids may cause the oxidised fatty acid to protrude into the aqueous environment, 

facilitating direct physical access of the lipid with the cell surface. In the case of oxidised 

PCs, this has led to the “Lipid Whisker Hypothesis”, where oxidised PCs, with protruding 

sn2-oxidised fatty acid acyl chains residing in the extracellular space, act as scavenger 

receptor ligands for macrophage scavenger receptor CD36 (Greenberg et al., 2008). 

Greenberg suggested that receptor ligand recognition was independent of the oxidised 

phospholipid headgroup, but rather the sn2-oxidised fatty acid confers CD36 recognition 

in a membrane (Greenberg et al., 2008). Due to their shape and polarity, PGE2 and PGD2 

esterified to PEs may also protrude from the intracellular membrane surface towards the 

water phase where they may interact with cytosolic proteins. Furthermore, chemical 

oxidation of membranes can decrease bilayer thickness or enhance water permeability 

(Wong-Ekkabut et al., 2007). Esterified prostaglandins may act in a similar manner, 

affecting membrane dynamics during platelet activation. These lipids may play a role in 

events that involve significant membrane disturbance, such as vesiculation or 

degranulation (Aldrovandi et al., 2013). 

Unlike esterified prostaglandins, free PGb and PGc were primarily secreted, suggesting an 

autocrine or paracrine mode of action similar to PGE2 and PGD2. PGE2 is generally 

considered to be an inducer of inflammation, promoting activation of neutrophils, and 

inhibiting platelet aggregation through activation of PGE2 receptor subtype EP2 and EP4 

(Kalinski, 2012; Heptinstall et al., 2008; Smith et al., 2010). Whereas, PGD2 signals as 

chemoattractant for immune cells, such as eosinophils, and inhibits platelet aggregation 

(Smith et al., 1974; Hirai et al., 2001). Free PGb and PGc may also participate in similar 

processes during innate immune events to restore and maintain homeostasis. Future 

studies using PGb and PGc standards will enable elucidation of their biological activity 

once their structures are known. 
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Chapter 7 
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7 Investigating the Requirement for COX-1 in the Generation of Esterified 

Prostaglandins by Activated Human Platelets 

7.1 Introduction 

Until recently, prostaglandins were considered to only exist as free acid mediators 

secreted from cells to activate G-protein coupled receptors in a paracrine manner. In 

2000, Marnett and co-workers showed that PGE2-G/PGD2-G and PGE2-EA/PGD2-EA were 

formed in macrophage cell lines from COX-2 oxidation of endogenous arachidonyl-

glycerol (2-AG) and arachidonyl-ethanolamide (AEA) (Kozak et al., 2000; Kozak.et al., 

2002). The products signal differently to free PGE2 and PGD2; for example, PGE2-G 

mobilises calcium rapidly in a PGE2-independent manner. Up to now, COX-1 has not been 

considered as a source of complex oxidised lipids. However, since both COX isoforms 

catalyse the same chemical reaction (cyclooxygenase and peroxidase reaction), it is 

possible that COX-1 can mediate esterified prostaglandin generation. 

Since the discovery of aspirin as a COX inhibitor, in 1971, this NSAID has been the most 

common antiplatelet drug prescribed to prevent TxA2 formation and platelet aggregation 

from occurring in patients at high risk of vascular disease. At low dose (75 mg/day), 

aspirin irreversibly inhibits platelet’s COX-1 in the pre-systemic circulation, preventing the 

enzymatic conversion of AA into COX-1-products, such as TxA2, PGE2 and PGD2 (Rocca & 

Petrucci, 2012). 

In this chapter, the involvement of COX-1 in the generation of esterified prostaglandins 

by thrombin-activated platelets will be investigated in vitro using selective (SC 560) and 

non-selective (indomethacin and aspirin) COX-1 inhibitors. Furthermore, formation of 

esterified prostaglandins in vivo will be assessed following 7 days intake of low dose (75 

mg/day) aspirin. The identification of new COX-1 products in platelets would suggest 

additional regulatory mechanisms underpinning platelet function that may be of 

therapeutic relevance. 
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7.1.1 Aims 

Studies described in this chapter aim to: 

 Determine whether esterified prostaglandins are enzymatically generated by 

activated platelets via COX-1. 

 Investigate the requirement of COX-1 for the generation of free PGb and PGc. 

 Examine the effect of platelet COX-1 inhibition in vivo on formation of free and 

esterified prostaglandins. 

 

7.2 Results 

7.2.1 Formation of free and esterified prostaglandins is completely blocked by COX 

inhibitors in vitro. 

To determine whether COX-1 is required for the generation of free and esterified 

prostaglandins by activated platelets, cells were pre-treated with 1 mM aspirin, 10 µM 

indomethacin or 1 µM SC-560 (the selective COX-1 inhibitor), for 10 min at room 

temperature prior to thrombin activation (0.2 U/ml thrombin for 30 min at 37oC). Lipids 

were extracted and subsequently analysed on 4000 Q-Trap, using reverse-phase 

LC/MS/MS, in MRM mode, as described in Materials and Methods, Section 2.2.3.2 and 

2.2.3.3. Note that inhibitors were used at the concentrations previously described (Smith 

et al., 1998; Williams et al., 2005; Seno et al., 2001). 

 

7.2.1.1 PGE2/D2-PE generation is inhibited by COX inhibitors in vitro. 

Aspirin completely blocked PGE2/D2-PE formation by activated platelets to control levels 

(Figure 7.1 A). Similarly, generation of PGE2/D2-PEs was totally inhibited by either 1 µM 

SC-560 or 10 µM indomethacin (Figure 7.1 B). These results conclusively confirmed the 

requirement of COX-1 for the synthesis of PGE2/D2-PEs. 
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Figure 7.1: Generation of PGE2/D2-PEs is sensitive to aspirin in vitro. Platelets were 

incubated for 10 min at room temperature with 1 mM aspirin, 1 μM SC-560 or 10 μM 

indomethacin prior to thrombin activation (0.2 U/ml for 30 min at 37oC). This was 

followed by lipid extraction and analysis of PGE2/D2-PEs using reverse-phase LC/MS/MS, 

monitoring parent [M-H]-  m/z 271.2, as described in Materials and Methods, Section 

2.2.3.2. Levels of PGE2/D2-PEs are expressed as ratio analyte to internal standard. Data 

presented from one experiment and representative of three (n = 3, mean ± SEM). *** P < 

0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel A. PGE2/D2-PE 

formation by platelets treated with 1 mM aspirin. Panel B. PGE2/D2-PE formation by 

platelets treated with 1 μM SC-560 or 10 μM indomethacin. 
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7.2.1.2 Free PGE2 and PGD2 formation is inhibited by COX inhibitors in vitro. 

Generation of free PGE2 and PGD2 was completely blocked by aspirin to control levels, 

similarly to PGE
2
/D

2
-PEs (Figure 7.2 A). Following treatment with 1 µM SC-560 or 10 µM 

indomethacin, formation of PGD2 was decreased to undetectable levels (Figure 7.B). 

Furthermore, SC-560 and indomethacin reduced synthesis of PGE2 from 3.8 ng to 

approximately 60 pg/2 x 108 platelets (Figure 7.2 B). 

 

7.2.1.3 PGb-PE formation is significantly reduced by COX inhibitors in vitro. 

Aspirin inhibited PGb-PE formation by thrombin-activated human platelets to 

undetectable levels (Figure 7.3 A). Generation of 16:0p/PGb-PE, 18:1p/PGb-PE, 

18:0p/PGb-PE and 18:0a/PGb-PE by platelets treated with 1 µM SC-560 was significantly 

decreased (Figure 7.6). Similarly, levels of PGb-PEs were significantly reduced following 

treatment with 10 µM indomethacin (Figure 7.3 B). 

 

7.2.1.4 Synthesis of free PGb is completely blocked by COX inhibitors in vitro. 

Following aspirin treatment, generation of free PGb by thrombin-activated platelets was 

inhibited to control levels (Figure 7.4 A). Formation of free PGb was reduced by both 1 

µM SC-560 and 10 µM indomethacin to levels below the limit of detection (Figure 7.4 B). 

These results conclusively confirmed that free PGb is formed in a COX-1-dependent 

manner. 
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Figure 7.2: Generation of PGE2 and PGD2 is sensitive aspirin in vitro. Platelets were 

incubated for 10 min at room temperature with 1 mM aspirin, 1 μM SC-560 or 10 μM 

indomethacin prior to thrombin activation (0.2 U/ml for 30 min at 37oC). This was 

followed by lipid extraction and analysis of PGE
2 

and PGD
2
 using reverse-phase 

LC/MS/MS, monitoring m/z 351.2  271.2 as described in Materials and Methods, 

Section 2.2.3.3. Levels of PGE2 and PGD2 are expressed as ng/2 x 108 platelets. Data 

presented from one experiment and representative of three (n = 3, mean ± SEM). *** P < 

0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel A. PGE2 and 

PGD2 formation by platelets treated with 1 mM aspirin. Panel B. PGE2 and PGD2 

formation by platelets treated with 1 μM SC-560 or 10 μM indomethacin. 
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Figure 7.3: Generation of PGb-PEs is sensitive to aspirin in vitro. Platelets were 

incubated for 10 min at room temperature with 1 mM aspirin, 1 μM SC-560 or 10 μM 

indomethacin prior to thrombin activation (0.2 U/ml for 30 min at 37oC). This was 

followed by lipid extraction and analysis of PGb-PEs using reverse-phase LC/MS/MS, 

monitoring parent [M-H]-  m/z 351.2, as described in Materials and Methods, Section 

2.2.3.2. Levels of PGb-PEs are expressed as ratio analyte to internal standard. Data 

presented from one experiment and representative of three (n = 3, mean ± SEM). *** P < 

0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel A. PGb-PE 

formation by platelets treated with 1 mM aspirin. Panel B. PGb-PE formation by platelets 

treated with 1 μM SC-560 or 10 μM indomethacin. 
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Figure 7.4: Generation of PGb is sensitive to aspirin in vitro. Platelets were incubated for 

10 min at room temperature with 1 mM aspirin, 1 μM SC-560 or 10 μM indomethacin 

prior to thrombin activation (0.2 U/ml for 30 min at 37oC). This was followed by lipid 

extraction and analysis of PGb using reverse-phase LC/MS/MS, monitoring m/z 351.2  

207.1 as described in Materials and Methods, Section 2.2.3.3. Levels of PGb are 

expressed as ratio analyte to internal standard. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). *** P < 0.001 versus thrombin, using ANOVA 

and Bonferroni Post Hoc Test. Panel A. PGb formation by platelets treated with 1 mM 

aspirin. Panel B. PGb formation by platelets treated with 1 μM SC-560 or 10 μM 

indomethacin. 
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7.2.1.5 Generation of PGc-PEs is considerably reduced by COX inhibitors in vitro. 

Aspirin completely inhibited the synthesis of PGc-PEs by thrombin-activated human 

platelets (Figure 7.5 A). Whereas, levels of 16:0p/PGc-PE, 18:1p/PGc-PE, 18:0p/PGc-PE 

and 18:0a/PGc-PE were significantly reduced following treatment with 1 µM SC-560 

(Figure 7.5 B). Furthermore, SC-560 significantly decreased the formation of PGc-PEs 

(Figure 7.5 B). 

 

7.2.1.6 Formation of free PGc is inhibited by COX inhibitors in vitro. 

Synthesis of free PGc by thrombin-activated human platelets was completely blocked by 

1 mM aspirin (Figure 7.6 A). Furthermore, levels of free PGc were reduced by 96.5 %, 

following treatment with 1 µM SC-560, whereas 10 µM indomethacin inhibited the 

generation of free PGc by approximately 99 % (Figure 7.6 B). 
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Figure 7.5: Generation of PGc-PEs is sensitive to aspirin in vitro. Platelets were incubated 

for 10 min at room temperature with 1 mM aspirin, 1 μM SC-560 or 10 μM indomethacin 

prior to thrombin activation (0.2 U/ml for 30 min at 37oC). This was followed by lipid 

extraction and analysis of PGc-PEs using reverse-phase LC/MS/MS, monitoring parent [M-

H]-  m/z 351.2, as described in Materials and Methods, Section 2.2.3.2. Levels of PGc-

PEs are expressed as ratio analyte to internal standard. Data presented from one 

experiment and representative of three (n = 3, mean ± SEM). *** P < 0.001 versus 

thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel A. PGc-PE formation by 

platelets treated with 1 mM aspirin. Panel B. PGc-PE formation by platelets treated with 1 

μM SC-560 or 10 μM indomethacin. 
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Figure 7.6: Generation of PGc is sensitive to aspirin in vitro. Platelets were incubated for 

10 min at room temperature with 1 mM aspirin, 1 μM SC-560 or 10 μM indomethacin 

prior to thrombin activation (0.2 U/ml for 30 min at 37oC). This was followed by lipid 

extraction and analysis of PGc using reverse-phase LC/MS/MS, monitoring m/z 351.2  

165.1 as described in Materials and Methods, Section 2.2.3.3. Levels of PGc are expressed 

as ratio analyte to internal standard. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). *** P < 0.001 versus thrombin, using ANOVA 

and Bonferroni Post Hoc Test. Panel A. PGc formation by platelets treated with 1 mM 

aspirin. Panel B. PGc formation by platelets treated with 1 μM SC-560 or 10 μM 

indomethacin. 
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7.2.2 Free and esterified prostaglandin formation is blocked by low dose aspirin in vivo. 

Since the discovery of aspirin as a COX inhibitor, in 1971, this NSAID has been the most 

common antiplatelet drug prescribed to prevent TxA2 formation and platelet aggregation 

from occurring in patients at high risk of vascular disease. At low dose (75 mg/day), 

aspirin irreversibly inhibits platelet’s COX-1 in the pre-systemic circulation, preventing the 

enzymatic conversion of AA into COX-1-products, such as TxA2, PGE2 and PGD2 (Rocca & 

Petrucci, 2012). 

To determine whether low dose aspirin in vivo could inhibit formation of free and 

esterified prostaglandins by thrombin-activated platelets, 75 mg was given to five healthy 

volunteers and lipid generation monitored in washed platelets isolated from whole blood. 

Following a 14-day NSAID-free washout period, blood samples were collected into acid-

citrate-dextrose (ACD), platelets isolated and activated with thrombin (0.2 U/ml 30 min at 

37oC) for baseline determination of free and esterified prostaglandin levels, as described 

in Materials and Methods, Section 2.2.10. Subjects were then assigned to 75 mg oral 

aspirin daily for 7 days. Subsequently, a second blood sample was obtained on the day 

after the last dose and generation of free and esterified prostaglandins by thrombin-

activated platelets determined. 

TxA2 is unstable in aqueous solution and rapidly converted to thromboxane B2 (TxB2) 

(Hamberg et al., 1975). Thus, TxB2 formation was analysed to assess aspirin efficiency 

(Lordkipanidzé et al., 2007). Levels of 12-HETE were also monitored as a positive control 

for platelet activation, since 12-HETE is formed in a COX-1-independent manner 

(Hammond & O'Donnell, 2012). Low dose aspirin in vivo reduced formation of TxB2 by 

approximately 98 %, confirming COX-1 inhibition (Figure 7.7 A). Furthermore, synthesis of 

12-HETE by thrombin-activated platelets confirmed cell activation (Figure 7.7 B). The high 

standard error of the mean (SEM) values indicates a high degree of variation between 

genetically unrelated donors. Low dose aspirin in vivo inhibited the generation of free and 

esterified prostaglandins significantly (Figure 7.8 – 7.10). 
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Figure 7.7: An aspirin intake of 75 mg/day inhibited TxB2 formation while 12-HETE 

generation confirmed platelet activation. Blood was obtained following a 14-day NSAID-

free washout period for baseline determination of TxB2 and 12-HETE levels, following 

thrombin activation (0.2 U/ml for 30 min at 37oC). Subjects then received 75 mg/day 

aspirin for 7 days before donation of a second blood sample and repeat determination of 

TxB2 and 12-HETE levels. Lipids were analysed using reverse-phase LC/MS/MS as 

described in Materials and Methods, Section 2.2.3.3. Data is representative of five 

independent donors (n = 5, mean ± SEM). Levels of TxB2 and 12-HETE are expressed as 

ng/2 x 108 platelets. Panel A. TxB2 formation is inhibited following aspirin intake. ***P < 

0.001 versus thrombin alone, using ANOVA and Bonferroni Post Hoc Test. Panel B. 

Generation of free 12-HETE by thrombin activated platelets following aspirin intake. NS = 

not significant, using ANOVA and Bonferroni Post Hoc Test. 
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Figure 7.8: Aspirin blocks formation of PGE
2
/D

2-PEs, PGE2 and PGD2 in vivo. Blood was 

obtained following a 14-day NSAID-free washout period for determination of PGE
2
/D

2-PE, 

PGE2 and PGD2 levels, following thrombin activation (0.2 U/ml for 30 min at 37oC). 
Subjects then received 75 mg/day aspirin for 7 days before donation of a second blood 
sample and repeat determination of lipid levels. Lipids were analysed using reverse-phase 
LC/MS/MS as described in Materials and Methods, Sections 2.2.3.2 and 2.2.3.3. Levels of 
PGE

2
/D

2
-PEs are expressed as ratio analyte to internal standard. PGE2 and PGD2 levels are 

expressed as ng/2 x 108 platelets. Data is representative of five independent donors (n = 
5, mean ± SEM); ***P < 0.001 versus thrombin alone, using ANOVA and Bonferroni Post 
Hoc Test. Panel A. An aspirin intake of 75 mg/day inhibited PGE

2
/D

2
-PE formation by 

thrombin activated platelets. Panel B. An aspirin intake of 75 mg/day inhibited PGE2 and 
PGD2 formation by thrombin activated platelets. 
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Figure 7.9: Aspirin blocks formation of PGb-PEs and free PGb in vivo. Blood was obtained 

following a 14-day NSAID-free washout period for determination of PGb-PE and PGb 

levels, following thrombin activation (0.2 U/ml for 30 min at 37oC). Subjects then received 

75 mg/day aspirin for 7 days before donation of a second blood sample and repeat 

determination of lipid levels. Lipids were analysed using reverse-phase LC/MS/MS as 

described in Materials and Methods, Sections 2.2.3.2 and 2.2.3.3. Levels of PGb-PE and 

free PGb are expressed as ratio analyte to internal standard. Data is representative of five 

independent donors (n = 5, mean ± SEM). *P < 0.05, **P < 0.01 and ***P < 0.001 versus 

thrombin alone, using ANOVA and Bonferroni Post Hoc Test. Panel A. An aspirin intake of 

75 mg/day inhibited PGb-PE formation by thrombin activated platelets. Panel B. An 

aspirin intake of 75 mg/day inhibited free PGb formation by thrombin activated platelets. 
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Figure 7.10: Aspirin blocks formation of PGc-PEs and free PGc in vivo. Blood was 

obtained following a 14-day NSAID-free washout period for determination of PGc-PE and 

PGc levels, following thrombin activation (0.2 U/ml for 30 min at 37oC). Subjects then 

received 75 mg/day aspirin for 7 days before donation of a second blood sample and 

repeat determination of lipid levels. Lipids were analysed using reverse-phase LC/MS/MS 

as described in Materials and Methods, Sections 2.2.3.2 and 2.2.3.3. Levels of PGc-PE and 

free PGc are expressed as ratio analyte to internal standard. Data is representative of five 

independent donors (n = 5, mean ± SEM); ***P < 0.001 versus thrombin alone, using 

ANOVA and Bonferroni Post Hoc Test. Panel A. An aspirin intake of 75 mg/day inhibited 

PGc-PE formation by thrombin activated platelets. Panel B. An aspirin intake of 75 

mg/day inhibited free PGc formation by thrombin activated platelets. 
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7.3 Discussion 

Activated human platelets generate TxA2, PGE2 and PGD2 enzymatically via COX-1, which 

is efficiently inhibited by aspirin. In this chapter, I demonstrated that esterified 

prostaglandins as well as free PGb and PGc originate from COX-1 turnover, since their 

generation is sensitive to pharmacological inhibitors of this pathway, both in vitro and in 

vivo. Up to now, the constitutive isoform COX-1 had not been shown to be a source of 

complex oxidised lipids, whereas COX-2 has been reported to oxidise AEA and 2-AG, 

generating PGE2-G/PGD2-G and PGE2-EA/PGD2-EA (Kozak et al., 2000; Kozak.et al., 2002). 

These were initially identified in vitro using purified COX-2 and later in murine 

macrophages cell lines with endogenous substrate (Kozak et al., 2000; Kozak et al., 2002; 

Nirodi et al., 2004). In vivo formation of PGE2-EA and PGD2-EA in kidneys, lungs, liver and 

small intestine of mice, following intravenous injection of AEA, has also been reported 

(Weber et al., 2004). In 2004, Marnett and colleagues demonstrated that PGE2-G signals 

differently to classical PGE2, mediating calcium mobilisation in a PGE2-independent 

manner, indicating that PGE2-G is not only chemically but also functionally distinct from 

free PGE2 (Nirodi et al., 2004). It is possible that PGE2-PEs and PGD2-PEs also function 

differently to their free forms, interacting with unique specific receptors. For example, if 

membrane associated, the binding site of the prostaglandin part of the PGE2-PE may only 

be partially exposed and, therefore, inaccessible to EP receptors. The interaction of PGE2-

PEs and PGD2-PEs with prostaglandin receptors will be investigated in future experiments 

using HEK 293 cells expressing individual prostanoid receptors. 

In vivo low dose aspirin (75 mg/day) inhibited free and esterified prostaglandin formation 

by thrombin-activated platelets (Figures 7.8 – 7.10). These results are similar to in vitro 

studies using aspirin, SC 560 or indomethacin (Figures 7.1 – 7.6). Aspirin is unique in 

mediating an irreversible inhibition of platelet COX-1. The mechanism triggering this long-

lasting effect involves acetylation of the active site of COX, leading to irreversible 

inactivation of the enzyme and, consequently, inhibition of the generation of COX-1 

products in platelets, such as TxA2, PGE2 and PGD2 (Roth et al., 1975). It is likely that the 

antithrombotic effect of aspirin is not only due to the inhibition of TxA2 formation but 
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also because of the blockade of all COX-1 products that function as pro-thrombotic and 

pro-inflammatory agents, including previously undescribed products, such as esterified 

prostaglandins, PGb and PGc. The identification of these novel metabolites suggests 

additional regulatory mechanisms mediating platelet function. 

PGE2 and PGD2 are also generated via COX-2 by immune cells, such as macrophages and 

neutrophils (Ricciotti & FitzGerald, 2011). These prostaglandins can function either as 

anti- or pro-inflammatory mediators during inflammatory responses. It is possible that 

PGb and PGc may also form in immune cells via COX-2 during inflammation, contributing 

to acute inflammatory responses. Furthermore, PGb and PGc are less polar compared to 

PGE2 and PGD2 and, thus, esterified PGb and PGc are less likely to protrude from the 

intracellular membrane surface. 

In summary, this is the first study to demonstrate formation of esterified prostaglandins 

by agonist-activated platelets via COX-1. These could form either by direct phospholipid 

oxidation or by esterification of newly formed prostaglandins into lyso PEs. In the next 

chapter, the formation of esterified prostaglandins by activated platelets will be 

investigated to determine whether this occurs via direct oxidation of PE or fast 

esterification of newly formed prostaglandins. 
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Chapter 8 
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8 Studies on the Mechanism of COX-1 Oxidation of Free or Esterified 

Arachidonic Acid in Human Platelets 

8.1 Introduction 

In this chapter, the process of esterified prostaglandin formation will be investigated. 

Enzymatically generated OxPLs can form either via esterification of oxidised fatty acids or 

by direct oxidation of phospholipids. In platelets, 12-HETE-PE/PCs are synthesised via AA 

release by PLA2, oxidised by 12-LOX and then reincorporated into the plasma membrane 

(Thomas et al., 2010). 12-HETE-PE/PCs are rapidly formed, on a similar time scale to free 

12-HETE, suggesting that the proteins involved in their formation and re-esterification are 

tightly coupled in a complex, such that AA hydrolysis, oxidation, and esterification are 

highly regulated. This idea is supported by the inability of exogenously added 12-HETE-d8 

to become incorporated into PE or PC during platelet activation (Thomas et al., 2010). 

The re-esterification of free 12-HETE is likely to be orchestrated by enzymes of the Lands’ 

cycle, such as the long chain fatty acyl-CoA synthetase (LC-FACS) and the 

lysophospholipid acyltransferase (Shindou et al., 2013). The first enzyme catalyses the 

formation of fatty acyl-CoA while the second mediates the reacylation of acyl groups 

from acyl-CoA complexes to lysophospholipid acceptors (Scheme 8.1 and 8.2) (Hisanaga 

et al., 2004; Shindou et al., 2013). Together with PLA2, these enzymes not only contribute 

to membrane asymmetry and diversity but also to the synthesis of bioactive lipids, such 

as platelet-activating factor (Yamashita et al., 1997). 
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Scheme 8.1: Fatty acyl-CoA formation by LC-FACS. (A) Initially, adenosine-5'-

triphosphate (ATP) binds to LC-FACS, which triggers the opening and widening of the fatty 

acid-binding tunnel. (B) Fatty acid released from phospholipids by PLA2 enters the tunnel 

and binds to ATP. (C) Next, fatty acyl-adenosine monophosphate (AMP) complex is 

formed and pyrophosphate (PPi) is released. This is followed by CoA binding to the fatty 

acyl-AMP complex. (D) Finally, AMP dissociates and the fatty acyl-CoA complex is 

released. Modified from Hisanaga et al., 2004. 
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Scheme 8.2: Reacylation of fatty acids into lysophospholipids by acyltransferase. 

Following formation of fatty acyl-CoA complex, the CoA dissociates and the fatty acid is 

reincorporated into lysophospholipid by the acyltransferase. 
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While platelets generate OxPLs via fast esterification of newly formed 12-HETEs, human 

monocytes expressing 15-LOX can directly oxidise PEs, generating 15-HETE-PEs in a PLA2-

independent manner (Morgan et al., 2009; Hammond et al., 2012). In this chapter, I will 

investigate whether formation of esterified prostaglandins by platelets is via direct 

oxidation of PE or esterification of pre-formed prostaglandins. For this, PLA2 isomers will 

be inhibited using pharmacologic inhibitors and synthesis of esterified prostaglandins 

assessed using reverse-phase LC/MS/MS on 4000 Q-trap. Furthermore, the requirement 

of LC-FACS and lysophospholipid acyltransferase for esterified prostaglandin formation 

will be investigated using triacsin C and thimerosal, respectively. 

Separately, the requirement of prostaglandin synthases for PGE2 and PGD2 generation 

will be examined in vitro using purified COX isomers. Prostaglandin H2 is unstable in 

aqueous milieu, and in platelets is either rapidly transformed to TxA2 by thromboxane 

synthase, or undergoes enzymatic or non-enzymatic re-arrangement to PGE2 and PGD2 

(Salomon et al., 1984; Boutaud et al., 1999). It is possible that in platelets conversion of 

PGH2 to either PGE2 or PGD2 occurs independently of PGE synthase (PGES) or PGD 

synthase (PGDS). Furthermore, since both COX isoforms generate PGE2 and PGD2, it is 

likely that synthesis of PGb and PGc could also be catalysed by COX-2 (Ricciotti & 

FitzGerald, 2011). This will be investigated in vitro using recombinant COX-2. 

Last, the ability of purified COX-1 to directly oxidise AA esterified into PE will be 

investigated. In theory, esterified prostaglandins could form not only via esterification of 

newly formed prostaglandins into lysophospholipids but also via direct oxidation of PE by 

COX-1. If observed, this would represent a new finding for COX-1, which has not been 

shown as a source of esterified prostaglandins before. 
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8.1.1 Aims 

Studies described in this chapter aim to: 

 Investigate the involvement of PLA2 in the generation of free and esterified 

prostaglandins. 

 Determine whether PGE2/D2-PE, PGb-PE and PGc-PE formation by thrombin-

activated platelets is via esterification of newly formed prostaglandins or by direct 

oxidation of PE by COX-1. 

 Examine whether PGE2 and PGD2 generation by activated platelets occurs via non-

enzymatic re-arrangement of PGH2. 

 Investigate the ability of purified COX-1 to directly oxidise phospholipids. 

 Assess PGb and PGc formation via recombinant COX-2 in vitro. 

 

8.2 Results 

8.2.1 Generation of free and esterified prostaglandins requires cPLA2. 

Human cells, such as platelets, contain structurally diverse forms of PLA2 including 

cytosolic PLA2 (cPLA2), calcium-independent PLA2 (iPLA2) and secreted PLA2 (sPLA2) 

(Dennis, 1994; Levy, 2006). In this section, the requirement of these enzymes for the 

formation of free and esterified prostaglandins was determined. For this, washed human 

platelets were incubated with varying amounts of the cPLA2 inhibitor cPLA2αi (50 – 1000 

nM) at the same time (Morgan et al., 2010; Clark et al., 2011). The involvement of sPLA2 

and iPLA2 was investigated using 2 µM of oleyloxyethyl-phosphocholine (OOEPC) and 50 

nM of bromoenol lactone (BEL), respectively, which were dissolved in dimethyl 

sulphoxide (DMSO) (Morgan et al., 2010; Thomas et al., 2010). Platelets were incubated 

with each inhibitor or 0.5 % vehicle (DMSO) for 10 min at room temperature prior to 

thrombin activation (0.2 U/ml for 30 min at 37oC). Lipids were then extracted and 

analysed by reverse-phase LC/MS/MS on Q-trap, in MRM mode, as described in Materials 

and Methods, Sections 2.2.3.2 and 2.2.3.3. 
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8.2.1.1 PGE2/D2-PEs are formed in a cPLA2-dependent manner. 

Inclusion of 50 nM cPLA2αi significantly reduced formation of PGE2/D2-PEs (Figure 8.1 A). 

In contrast, neither OOEPC nor BEL inhibited PGE2/D2-PE generation (Figure 8.1 B). The 

higher levels of PGE2/D2-PEs formed by platelets pre-treated with DMSO may be due to 

an increase in calcium influx through non-selective pores generated by DMSO (He et al., 

2012). The requirement of intracellular calcium will be investigated later in this thesis. 

 

8.2.1.2 Formation of PGE2 and PGD2 requires cPLA2  

Levels of PGE2 and PGD2 were reduced by approximately 93 % following inhibition with 50 

nM cPLA2αi (Figure 8.2 A). Generation of PGD2 was not significantly affected by sPLA2 

(OOEPC) or iPLA2 (BEL) inhibitor (Figure 8.2 B). OOEPC did not significantly decrease 

formation of PGE2 (Figure 8.2 B), whereas, BEL partially reduced PGE2 levels (Figure 8.2 

B). 

 

8.2.1.3 PGb-PEs are formed in a cPLA2-dependent manner. 

Generation of PGb-PEs was significantly reduced following inhibition of the cPLA2 by 

cPLA2αi (Figure 8.3 A). In contrast, formation of PGb-PEs by thrombin-activated human 

platelets was not inhibited by sPLA2 (OOEPC) or iPLA2 (BEL) inhibitor (Figure 8.3 B). 
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Figure 8.1: Generation of PGE2/D2-PEs requires cPLA2. Washed human platelets were 

incubated for 10 min at room temperature with each inhibitor prior to thrombin 

activation (0.2 U/ml for 30 min at 37oC) before lipid extraction and analysis using reverse-

phase LC/MS/MS, monitoring parent [M-H]-  m/z 271.2, as described in Materials and 

Methods, Section 2.2.3.2. Levels of PGE2/D2-PEs are expressed as ratio analyte to internal 

standard. Data presented from one experiment and representative of three (n = 3, mean 

± SEM). Panel A. PGE2/D2-PE formation by platelets incubated with 50 nM cPLA2αi. *** P < 

0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel B. PGE2/D2-PE 

formation by platelets incubated with 2 µM OOEPC, 50 nM BEL or vehicle (DMSO, 0.5%). 

* P < 0.05, ** P < 0.01 and *** P < 0.001 versus thrombin, using ANOVA and Bonferroni 

Post Hoc Test. 
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Figure 8.2: Generation of free PGE2 and PGD2 requires cPLA2. Washed human platelets 

were incubated for 10 min at room temperature with each inhibitor prior to thrombin 

activation (0.2 U/ml for 30 min at 37oC) before lipid extraction and analysis using reverse-

phase LC/MS/MS, monitoring m/z 351.2  271.2 as described in Materials and Methods, 

Section 2.2.3.3. Levels of PGE2 and PGD2 are expressed as ng/2 x 10
8
 platelets. Data 

presented from one experiment and representative of three (n = 3, mean ± SEM). Panel 

A. PGE2 and PGD2 formation by platelets incubated with 50 nM cPLA2αi. ***P < 0.001 

versus thrombin, using ANOVA and Bonferroni Post Hoc Test.Panel B. PGE2 and PGD2 

formation by platelets incubated with 2 µM OOEPC, 50 nM BEL or vehicle (DMSO, 0.5%). 

***P < 0.001 versus thrombin in the presence of DMSO, using ANOVA and Bonferroni 

Post Hoc Test. 
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Figure 8.3: Generation of PGb-PEs requires cPLA2. Washed human platelets were 

incubated for 10 min at room temperature with each inhibitor prior to thrombin 

activation (0.2 U/ml for 30 min at 37oC) before lipid extraction and analysis using reverse-

phase LC/MS/MS, monitoring parent [M-H]-  m/z 351.2, as described in Materials and 

Methods, Section 2.2.3.2. Levels of PGb-PEs are expressed as ratio analyte to internal 

standard. Data presented from one experiment and representative of three (n = 3, mean 

± SEM). Panel A. PGb-PEs formation by platelets incubated with 50 nM cPLA2αi. ***P < 

0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel B. PGb-PEs 

formation by platelets incubated with 2 µM OOEPC, 50 nM BEL or vehicle (DMSO, 0.5%). 

* P < 0.05, ** P < 0.01 and *** P < 0.001 versus thrombin, using ANOVA and Bonferroni 

Post Hoc Test. 
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8.2.1.4 Formation of PGb requires cPLA2 and is partially affected by iPLA2 inhibition. 

Synthesis of PGb was totally blocked by inhibition of cPLA2 (Figure 8.4 A). Interestingly, 

PGb-PE formation was not completely abolished by cPLA2αi, suggesting that a small 

proportion of PGb-PEs may be formed via non-enzymatic oxidation of PEs. This 

hypothesis will be tested later in this chapter. 

Levels of PGb were partially reduced (~ 35 %) by the iPLA2 inhibitor BEL but not 

significantly affected by the sPLA2 inhibitor OOEPC (Figure 8.4 B). This indicates that the 

specific pool of AA converted to PGb by COX-1 is mainly released from phospholipids by 

cPLA2. 

 

8.2.1.5 Synthesis of PGc-PEs requires cPLA2. 

Formation of PGc-PEs was reduced by approximately 80 % in response to inhibition of 

cPLA2 (Figure 8.5 A). Whereas, synthesis of PGc-PEs by thrombin-activated human 

platelets was not inhibited by sPLA2 (OOEPC) or iPLA2 (BEL) inhibitor (Figure 8.5 B). 

Furthermore, levels of PGc-PEs appeared to be increased by OOEPC, BEL and DMSO 

compared to thrombin. 

 

8.2.1.6 Generation of free PGc mainly requires cPLA2. 

Formation of free PGc by activated human platelets was reduced by 99 % following 

cPLA2α inhibition (Figure 8.6 A). Levels of PGc were not affected by the sPLA2 inhibitor 

OOEPC, while, treatment with BEL resulted in 30 % reduction (Figure 8.6 B). BEL may be a 

non-specific iPLA2 inhibitor, affecting other pathways involved in free PGc formation. 
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Figure 8.4: Generation of PGb is completely blocked by cPLA2αi and partially inhibited by 

BEL. Washed human platelets were incubated for 10 min at room temperature with each 

inhibitor prior to thrombin activation (0.2 U/ml for 30 min at 37oC) before lipid extraction 

and analysis using reverse-phase LC/MS/MS, monitoring m/z 351.2  207.1 as described 

in Materials and Methods, Section 2.2.3.3. Levels of PGb are expressed as ratio analyte to 

internal standard. Data presented from one experiment and representative of three (n = 

3, mean ± SEM). Panel A. PGb formation by platelets incubated with 50 nM cPLA2αi. ***P 

< 0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel B. PGb 

formation by platelets incubated with 2 µM OOEPC, 50 nM BEL or vehicle (DMSO, 0.5%). 

***P < 0.001 versus thrombin in the presence of DMSO, using ANOVA and Bonferroni 

Post Hoc Test. 
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Figure 8.5: Generation of PGc-PEs requires cPLA2. Washed human platelets were 

incubated for 10 min at room temperature with each inhibitor prior to thrombin 

activation (0.2 U/ml for 30 min at 37oC) before lipid extraction and analysis using reverse-

phase LC/MS/MS, monitoring parent [M-H]-  m/z 351.2, as described in Materials and 

Methods, Section 2.2.3.2. Levels of PGc-PEs are expressed as ratio analyte to internal 

standard. Data presented from one experiment and representative of three (n = 3, mean 

± SEM). Panel A. PGc-PE formation by platelets incubated with 50 nM cPLA2αi. ***P < 

0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel B. PGc-PE 

formation by platelets incubated with 2 µM OOEPC, 50 nM BEL or vehicle (DMSO, 0.5%). 

*** P < 0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc Test. 
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Figure 8.6: Generation of free PGc is almost abolished by cPLA2αi and partially inhibited 

by BEL. Washed human platelets were incubated for 10 min at room temperature with 

each inhibitor prior to thrombin activation (0.2 U/ml for 30 min at 37oC) before lipid 

extraction and analysis using reverse-phase LC/MS/MS, monitoring m/z 351.2  165.1 as 

described in Materials and Methods, section 2.2.3.3. Levels of free PGc are expressed as 

ratio analyte to internal standard. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). Panel A. PGc formation by platelets 

incubated with 50 nM cPLA2αi. ***P < 0.001 versus thrombin, using ANOVA and 

Bonferroni Post Hoc Test. Panel B. PGc formation by platelets incubated with 2 µM 

OOEPC, 50 nM BEL or vehicle (DMSO, 0.5%). *P < 0.05 versus thrombin in the presence of 

DMSO, using ANOVA and Bonferroni Post Hoc Test. 
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8.2.2 Formation of free and esterified prostaglandins is inhibited by triacsin C. 

In this section, the requirement of LC-FACS for esterified prostaglandin formation was 

assessed using triacsin C (Figure 8.7). This is a polyunsaturated fatty acid analogue that 

competitively inhibits LC-FACS and, consequently, the first step of fatty acid 

reincorporation, Figure 8.8 (Kim et al., 2012). Platelets were treated with 7 μM triacsin C 

for 30 min at 37oC prior to thrombin activation (0.2 U/ml for 30 min at 37oC) (Tomoda et 

al., 1991; Igal et al., 1997). Lipids were then extracted and free and esterified 

prostaglandin formation analysed using reverse-phase LC/MS/MS, on 4000 Q-trap, as 

described in Materials and Methods, Sections 2.2.3.2 and 2.2.3.3.  

 

 

Figure 8.7: Chemical structure of triacsin C. 

 

 

Figure 8.8: Triacsin C inhibits de novo synthesis of phospholipids. Following cell 

activation, PLA2 cleaves phospholipids at the sn2 position releasing AA. Triacsin C 

competitively binds to LC-FACS, inhibiting fatty acyl-CoA formation and, consequently, 

reacylation of fatty acids into lysophospholipids. 
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Levels of PGE2/D2-PEs were reduced (~ 35 %) following inhibition of LC-FACS by triacsin C 

(Figure 8.9 A). Surprisingly, formation of PGE2 and PGD2 was also significantly inhibited 

(Figure 8.9 B). Generation of PGb-PEs decreased 40 % in response to triacsin C (Figure 

8.10 A). Formation of PGb was partially blocked (42 %) following inhibition of LC-FACS 

(Figure 8.10 B). Levels of PGc-PEs were inhibited by approximately 40 % (Figure 8.11 A), 

similar to free PGc (Figure 8.11 B). 

 

8.2.3 Formation of esterified prostaglandins is inhibited by thimerosal while levels of 

free prostaglandins are enhanced. 

In this section, the requirement of lysophospholipid acyltransferases for esterified 

prostaglandin generation was investigated using thimerosal (Figure 8.12). This is an 

organomercury compound, which inhibits acyltransferases without any effect on LC-FACS 

activity, Figure 8.13 (Hornberger & Patscheke, 1990). To determine the requirement of 

lysophospholipid acyltransferases for lipid formation, washed human platelets were 

incubated with varying amounts of thimerosal (25 – 200 μM), at the same time, for 30 

min at 37oC prior to thrombin activation (0.2 U/ml for 30 min at 37oC). Lipids were then 

extracted and analysed using reverse-phase LC/MS/MS on 4000 Q-trap, in MRM mode, as 

described in Materials and Methods, Sections 2.2.3.2 and 2.2.3.3. 

Inclusion of 75 µM thimerosal significantly reduced formation of esterified 

prostaglandins. Formation of PGE2/D2-PEs was inhibited by 50 % in response to 

thimerosal (Figure 8.14 A). Levels of PGE2 were enhanced from 3.4 to 5.7 ng/2 x 108 

platelets, an increase of approximately 70 % (Figure 8.14 B). Similarly, synthesis of PGD2 

was increased 2-fold (Figure 8.14 B). Generation of PGb-PEs was reduced by 90 % (Figure 

8.15 A), whereas levels of free PGb increased 3-fold (Figure 8.15 B). Synthesis of 

16:0p/PGc-PE, 18:1p/PGc-PE and 18:0p/PGc-PE was blocked by ~ 55 %, while formation 

of 18:0a/PGc-PE was not affected (Figure 8.16 A). This suggests that the level of 

18:0a/PGc-PE was at the limit of detection. Levels of free PGc were enhanced by ~ 60 % 

(Figure 8.16 B). 
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Figure 8.9: Formation of PGE2/D2-PEs, PGE2 and PGD2 are inhibited by triacsin C. Washed 

platelets were incubated with triacsin C for 30 min at 37°C prior to thrombin activation 

(0.2 U/ml for 30 min at 37oC). This was followed by lipid extraction and analysis using 

reverse-phase LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 

2.2.3.3. Levels of PGE2/D2-PEs are expressed as ratio analyte to internal standard while 

PGE2 and PGD2 are expressed as ng/2 x 108 platelets. Data presented from one 

experiment and representative of three (n = 3, mean ± SEM). *P < 0.05, **P < 0.01 and 

***P < 0.001 versus thrombin in the presence of vehicle control (DMSO, 0.5 %), using 

ANOVA and Bonferroni Post Hoc Test. Panel A. PGE2/D2-PE formation by platelets 

incubated with 7 µM triacsin C. Panel B. Generation of free PGE2 and PGD2 by platelets 

incubated with 7 µM triacsin C. 
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Figure 8.10: Formation of PGb-PEs and PGb are inhibited by triacsin C. Washed platelets 

were incubated with triacsin C for 30 min at 37°C prior to thrombin activation (0.2 U/ml 

for 30 min at 37oC). This was followed by lipid extraction and analysis using reverse-phase 

LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of 

PGb-PEs and PGb are expressed as ratio analyte to internal. Data presented from one 

experiment and representative of three (n = 3, mean ± SEM). *P < 0.05, **P < 0.01 and 

***P < 0.001 versus thrombin in the presence of vehicle control (DMSO, 0.5 %), using 

ANOVA and Bonferroni Post Hoc Test. Panel A. PGb-PE formation by platelets incubated 

with 7 µM triacsin C. Panel B. Generation of free PGb by platelets incubated with 7 µM 

triacsin C. 
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Figure 8.11: Formation of PGc-PEs and PGc are inhibited by triacsin C. Washed platelets 

were incubated with triacsin C for 30 min at 37°C prior to thrombin activation (0.2 U/ml 

for 30 min at 37oC). This was followed by lipid extraction and analysis using reverse-phase 

LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of 

PGc-PEs and PGc are expressed as ratio analyte to internal. Data presented from one 

experiment and representative of three (n = 3, mean ± SEM). *P < 0.05, **P < 0.01 and 

***P < 0.001 versus thrombin in the presence of vehicle control (DMSO, 0.5 %), using 

ANOVA and Bonferroni Post Hoc Test. Panel A. PGc-PE formation by platelets incubated 

with 7 µM triacsin C. Panel B. Generation of free PGc by platelets incubated with 7 µM 

triacsin C. 
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Figure 8.12: Chemical structure of thimerosal. 

 

 

 

Figure 8.13: Inhibition of fatty acid reacylation by thimerosal. Thimerosal competitively 

binds to lysophospholipid acyltransferase, inhibiting the reacylation of fatty acids into 

lysophospholipids. 
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Figure 8.14: PGE2/D2-PEs, PGE2 and PGD2 are inhibited by thimerosal. Washed platelets 

were incubated with thimerosal for 30 min at 37°C prior to thrombin activation (0.2 U/ml 

for 30 min at 37°C). This was followed by lipid extraction and analysis using reverse-phase 

LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of 

PGE2/D2-PEs are expressed as ratio analyte to internal standard while PGE2 and PGD2 are 

expressed as ng/2 x 108 platelets. Data presented from one experiment and 

representative of three (n = 3, mean ± SEM). ***P < 0.001 versus thrombin, using ANOVA 

and Bonferroni Post Hoc Test. Panel A. PGE2/D2-PE formation by platelets incubated with 

75 µM thimerosal. Panel B. Generation of free PGE2 and PGD2 by platelets incubated with 

75 µM thimerosal. 
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Figure 8.15: PGb-PEs and free PGb are inhibited by thimerosal. Washed platelets were 

incubated with thimerosal for 30 min at 37°C prior to thrombin activation (0.2 U/ml for 30 

min at 37°C). This was followed by lipid extraction and analysis using reverse-phase 

LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of 

PGb-PEs and PGb are expressed as ratio analyte to internal standard. Data presented 

from one experiment and representative of three (n = 3, mean ± SEM). ***P < 0.001 

versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel A. PGb-PE formation 

by platelets incubated with 75 µM thimerosal. Panel B. PGb generation by platelets 

incubated with 75 µM thimerosal. 

A

B

0.05

0.10

0.15

Control Thimerosal

75 μM

Thrombin 0.2 U/ml

***
***

***
***

R
a

ti
o

 A
n

a
ly

te
to

In
te

rn
a

l S
ta

n
d

a
rd

16:0p/PGb-PE

18:0p/PGb-PE

18:0a/PGb-PE

18:1p/PGb-PE

PGb-PE

0.2

0.4

0.6

0.8

Control Thimerosal

75 μM

Thrombin 0.2 U/ml

PGb

***

R
a

ti
o

 A
n

a
ly

te
to

In
te

rn
a

l S
ta

n
d

a
rd



 

201 

 

 

Figure 8.16: PGc-PEs and free PGc are inhibited by thimerosal. Washed platelets were 

incubated with thimerosal for 30 min at 37°C prior to thrombin activation (0.2 U/ml for 30 

min at 37°C). This was followed by lipid extraction and analysis using reverse-phase 

LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of 

PGc-PEs and PGc are expressed as ratio analyte to internal standard. Data presented from 

one experiment and representative of three (n = 3, mean ± SEM). ***P < 0.001 versus 

thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel A. PGc-PE formation by 

platelets incubated with 75 µM thimerosal. Panel B. PGc generation by platelets 

incubated with 75 µM thimerosal. 
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8.2.4 Esterification of free prostaglandins is a controlled mechanism. 

To determine whether exogenously added prostaglandins and AA could be incorporated 

into phospholipids, platelets were spiked with exogenous AA-d8, PGE2-d4 or PGD2-d4 at 

amounts similar to that generated during platelet activation. Deuterated fatty acids (5 ng 

of PGE2-d4, 2.5 ng of PGD2-d4 and 2 μg of AA-d8) were incubated with washed human 

platelets for 30 min at 37oC in the presence of 0.2 U/ml thrombin and 1 mM CaCl2, as 

described in Materials and Methods, Section 2.2.9 (Smith et al., 1985). 

Deuterated esterified prostaglandins did not form by thrombin-activated platelets 

supplemented with AA-d8, although, very small amounts (at the limit of detection) of 

deuterated free PGs were detectable (data not shown). 

 

8.2.5 PGE2 and PGD2 are formed in vitro in a PGES and PGDS-independent manner. 

In platelets, COX-1 catalyses the first two steps in the biosynthesis of prostanoids. These 

are the oxidation of AA to the hydroperoxy endoperoxide PGG2 and its subsequent 

reduction to the hydroxyl endoperoxide PGH2. This is rapidly converted to TxA2 through 

thromboxane synthase or undergoes enzymatic or non-enzymatic re-arrangement to 

PGE2 and PGD2 (Salomon et al., 1984; Boutaud et al., 1999). 

In this section, formation of PGE2 and PGD2 via non-enzymatic re-arrangement of PGH2 

was investigated in vitro using purified/recombinant COX isoforms. In platelets, 

microsomal PGES-2 and cytosolic PGES are detectable but no PGDS (Bruno et al., 2010; 

Mahmud et al., 1997; Watanabe et al., 1982). Furthermore, as selective mPGES-2 and 

cPGEs inhibitors are not commercially available, the involvement of these enzymes could 

not be investigated. To determine whether PGE2 and PGD2 formation by activated 

platelets resulted from structural re-arrangement of PGH2, COX isoforms were incubated 

with AA and ratios of PGE2 and PGD2 formed in vitro compared to that generated by 

thrombin-activated platelets. 
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Briefly, purified ovine COX-1 (apoCOX-1) and recombinant murine COX-2 (apoCOX-2) was 

reconstituted with hematin. Next, 3.5 μg of heme-reconstituted COXs (holoCOX-1 or 

holoCOX-2) was incubated with 150 µM of AA for 3 min at 37°C in the presence of 500 

μM of phenol. Formation of PGE2 and PGD2 was then analysed using reverse-phase 

LC/MS/MS, as described in Materials and Methods, Section 2.2.6. 

Oxidation of AA by holoCOX-1 generated PGE2 and PGD2 with a 2:1 predominance of PGE2 

over PGD2, due to decomposition of enzymatically-generated PGH2, similar to that 

observed in platelets (Figure 8.17 A). This indicates that PGE2 and PGD2 formation by 

platelets does not require PGE or PGD synthase. Although levels of PGE2 and PGD2 

formed by COX-2 were lower compared to those generated by COX-1, the 2:1 ratio of 

PGE2:PGD2 was maintained (Figure 8.17 B).  

For identification of PGE2 and PGD2 formation in vitro, the retention time and MS/MS 

spectrum were compared to that generated by thrombin-activated human platelets. As 

for ex vivo formation, PGE2 and PGD2 generated in vitro eluted at 32.5 and 34.4 min with 

identical MS/MS spectra (Figure 8.18 – 8.19). Since PGE2 and PGD2 share a similar 

fragmentation pattern, only the MS spectrum of PGE2 is shown for comparison (Figure 

8.19). 
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Figure 8.17: COX isoforms generate a 2:1 ratio of PGE2:PGD2 in vitro. 3.5 μg of either 

heme-reconstituted COX isoforms (holoCOX-1 or holoCOX-2) was incubated with 150 µM 

of AA for 3 min at 37°C, before lipid extraction and analysis using reverse-phase 

LC/MS/MS, monitoring m/z 351.2  271.2 as described in Materials and Methods, 

Section 2.2.6. PGE2 and PGD2 are expressed as micrograms/3.5 μg enzyme generated over 

3 min (n = 3, mean ± SEM). Data is presented from 1 experiment and representative of  3 

separate experiments.  
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Figure 8.18: Comparison of PGE2 and PGD2 formed by activated platelets and in vitro via 

COX-1. Lipid extracts were separated using reverse-phase LC/MS/MS, monitoring m/z 

351.2  271.2 as described in Materials and Methods, Section 2.2.6. Panel A. 

Chromatogram showing PGE2 and PGD2 formed by thrombin-activated platelets. Panel B. 

Chromatogram showing PGE2 and PGD2 formed in vitro via COX-1. 
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Figure 8.19: Comparison of MS spectrum of PGE2 formed by thrombin-activated 

platelets and in vitro via COX-1. Lipid extracts were separated using reverse-phase 

LC/MS/MS, as described in Materials and Methods, Section 2.2.6, in product ion mode, 

with Q1 set at m/z 351.2, CID at Q2 and Q3 set at m/z 271.2. MS spectrum was acquired 

at the apex of elution of PGE2 at 32 min. Panel A. MS/MS spectrum of PGE2 formed by 

thrombin-activated platelets. Panel B. MS/MS spectrum of PGE2 formed in vitro by COX-1. 
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8.2.6 Free PGb is formed in vitro via COX-1 and COX-2. 

To determine whether free PGb could originate from decomposition of enzymatically-

generated PGH2, 3.5 µg of either holoCOX-1 or holoCOX-2 was incubated with 150 µM of 

AA and formation of PGb assessed, using reverse-phase LC/MS/MS, as described in 

Materials and Methods, Section 2.2.6. 

In vitro formation of free PGb via COX-1 and COX-2 was confirmed (Figure 8.20). Free PGb 

formed in vitro via both COX isoforms eluted at 38 min, similarly to free PGb generated by 

activated platelets (Figure 8.21). The MS/MS spectrum of free PGb generated in vitro was 

identical to that formed by activated platelets (Figure 8.22). 

 

8.2.7 Free PGc is formed in vitro via both COX-1 and COX-2. 

Formation of free PGc in vitro via both COX-1/-2 was confirmed (Figure 8.23). Levels of 

free PGc generated by recombinant COX-2 were approximately 3-fold lower compared to 

that generated by purified COX-1. This difference could be due to lower COX-2 activity. 

Free PGc formed in vitro eluted at 51.5 min, similar to PGc generated by agonist-activated 

platelets (Figure 8.24). The time of elution and MS/MS spectrum of free PGc formed in 

vitro was comparable to that generated by platelets (Figure 8.25). 
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Figure 8.20: COX isoforms generate PGb in vitro. 3.5 μg of either holoCOX-1 or holoCOX-

2 was incubated with 150 µM of AA for 3 min at 37°C, before lipid extraction and analysis 

using reverse-phase LC/MS/MS, monitoring m/z 351.2  207.1 as described in Materials 

and Methods, Section 2.2.6. Levels of PGb are expressed as ratio analyte to internal 

standard/3.5 μg enzyme generated over 3 min (n = 3, mean ± SEM). Data is presented 

from 1 experiment and representative of  3 separate experiments. 
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Figure 8.21: Comparison of PGb formed by activated platelets and in vitro via COX-2. 

Lipid extracts were separated using reverse-phase LC/MS/MS, monitoring m/z 351.2  

207.1 as described in Materials and Methods, Section 2.2.6. Panel A. Chromatogram 

showing PGb formed by thrombin-activated platelets. Panel B. Chromatogram showing 

PGb formed in vitro via COX-2. 
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Figure 8.22: MS/MS spectra of PGb formed by activated platelets and in vitro via COX-2. 

Lipid extracts were separated using reverse phase LC/MS/MS, as described in Materials 

and Methods, Section 2.2.6, in product ion mode, with Q1 set at m/z 351, CID at Q2 and 

Q3 set at m/z 207.1. MS spectra were acquired at the apex of elution of PGb at 38 min. 

Panel A. MS/MS spectrum of PGb formed by thrombin-activated platelets. Panel B. 

MS/MS spectrum of PGb formed in vitro by COX-2. 
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Figure 8.23: COX isoforms generate PGc in vitro. 3.5 μg of either holoCOX-1 or holoCOX-2 

was incubated with 150 µM of AA for 3 min at 37°C, before lipid extraction and analysis 

using reverse-phase LC/MS/MS, monitoring m/z 351.2  165.1 as described in Materials 

and Methods, Section 2.2.6. Levels of PGc are expressed as ratio analyte to internal 

standard/3.5 μg enzyme generated over 3 min (n = 3, mean ± SEM). Data is presented 

from 1 experiment and representative of  3 separate experiments. 
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Figure 8.24: Comparison PGc formed by activated platelets and in vitro via COX-2. Lipid 

extracts were separated using reverse-phase LC/MS/MS, monitoring m/z 351.2  165.1 

as described in Materials and Methods, Section 2.2.6. Panel A. Chromatogram showing 

PGc formed by thrombin-activated platelets. Panel B. Chromatogram showing PGc 

formed in vitro via COX-2. 
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Figure 8.25: MS/MS spectra of PGc formed by thrombin-activated platelets and in vitro 

via COX-2. Lipid extracts were separated using reverse-phase LC/MS/MS, as described in 

Materials and Methods, Section 2.2.6, in product ion mode, with Q1 set at m/z 351, CID 

at Q2 and Q3 set at m/z 165.1. MS spectra were acquired at the apex of elution of PGc at 

51 min. Panel A. MS/MS spectrum of PGc formed by thrombin-activated platelets. Panel 

B. MS/MS spectrum of PGc formed in vitro by COX-2. 
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8.2.8 PG-PEs may form via free radical attack on phospholipid membranes during COX-1 

turnover. 

In this section, formation of esterified prostaglandins via direct oxidation of PE by COX-1 

was investigated in vitro. For this, purified COX-1 was incubated with AA-containing PE, 1-

stearoly-2-arachidonyl-PE (SAPE) and esterified prostaglandin formation assessed, using 

reverse-phase LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2. 

Purified COX-1 was also incubated with SAPE in the presence of AA to test the hypothesis 

that during oxidation of AA by COX-1, radicals formed at the cyclooxygenase active site 

could escape, reaching intact phospholipids where they may initiate non-enzymatic 

oxidation of esterified AA, and lead to non-enzymatic formation of PG-PEs. 

Briefly, purified ovine COX-1 (apoCOX-1) was reconstituted with hematin (an iron-

containing porphyrin), as described in Materials and Methods, Section 2.2.8.2. Next, 3.5 

μg of heme-reconstituted COX-1 (holoCOX-1) was incubated with 150 µM of SAPE in the 

presence or absence of 150 μM of AA. In some experiments, AA was replaced with AA-d8. 

In order to mimic the conformation of membrane bilayer, lipids were incorporated into 

liposomes, as described in Materials and Methods, Section 2.2.11. 

Fenton chemistry was also initially considered as the mechanism for esterified 

prostaglandin generation. In this reaction, ferrous iron is oxidised by hydrogen peroxide 

to ferric iron. The latter is then reduced back to iron. Radicals generated by this process 

could engage in secondary reactions abstracting hydrogen, inducing non-enzymatic 

oxidation of phospholipids. Thus, free ferric iron ions in solution could potentially 

stimulate lipid peroxidation by decomposing hydroperoxides present as contaminants in 

commercial lipid standards. To investigate whether the generation of esterified 

prostaglandins was induced by Fenton chemistry reactions, lipid substrates were 

incubated with holoCOX-1 in the presence of diethylenetriaminepentaacetic acid (DTPA), 

an ion metal chelator. 
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A small amount of PGE2/D2-PE (Figures 8.26), PGb-PE (Figures 8.27) and PGc-PE (Figures 

8.28) was detected in 18:0a/20:4-PE (SAPE), even though it was a freshly opened vial, and 

this was increased by addition of hematin (the COX-1 cofactor, added alone as control) 

through non-enzymatic oxidation. However, incubation of holoCOX-1 and SAPE did not 

elevate esterified prostaglandins further, indicating that COX-1 cannot directly oxidise 

SAPE. However, when SAPE was added during COX-1 dependent oxidation of AA, 

significant higher levels of PGE2/D2-PE, PGb-PE and PGc-PE formation were observed (p < 

0.001 versus SAPE in the presence COX-1, using ANOVA and Bonferroni Post Hoc Test), 

Figure 8.26 – 8.28. 

In addition, where AA-d8 was used instead of AA, deuterated free PGs but no deuterated 

esterified prostaglandins were detectable (data not shown). Metal chelation by DTPA did 

not inhibit formation of 18:0a/PGE2/D2-PE, demonstrating that Fenton chemistry was not 

involved, Figures 8.26. Whereas, generation of 18:0a/PGb-PE was slightly decreased 

(Figures 8.27) and 18:0a/PGc-PE increased (Figures 8.27). 

For identification of esterified prostaglandin formation in vitro, the retention time and 

MS/MS spectrum were compared to that generated by thrombin-activated human 

platelets. As for ex vivo formation, 18:0a/PGE2/D2-PE, 18:0a/PGb-PE and 18:0a/PGc-PE 

generated in vitro eluted at 16.9, 18.5 and 18.9 minutes, respectively, with comparable 

MS/MS spectra (Figure 8.29 – 8.32). 
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Figure 8.26: PE is oxidised to PGE2/D2-PE during oxidation of AA by COX-1. 3.5 μg of 

holoCOX-1 was incubated with either 150 µM of AA, 150 µM of SAPE or liposomes 

containing AA and SAPE, for 3 min at 37°C, in the presence or absence of 10 μM DTPA. 

This was followed by lipid extraction and analysis using reverse-phase LC/MS/MS, 

monitoring parent [M-H]-  m/z 271.2, as described in Materials and Methods, Section 

2.2.3.2. Levels of 18:0a/PGE2/D2-PE are expressed as ratio analyte to internal standard/3.5 

μg enzyme generated over 3 min (n = 3, mean ± SEM). Data is presented from 1 

experiment and representative of  3 separate experiments. NS = not significant, *** P < 

0.001 versus SAPE, using ANOVA and Bonferroni Post Hoc Test. 
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Figure 8.27: PE is oxidised to PGb-PE during oxidation of AA by COX-1. 3.5 μg of 

holoCOX-1 was incubated with either 150 µM of AA, 150 µM of SAPE or liposomes 

containing AA and SAPE, for 3 min at 37°C, in the presence or absence of 10 μM DTPA. 

This was followed by lipid extraction and analysis using reverse-phase LC/MS/MS, 

monitoring parent [M-H]-  m/z 351.2, as described in Materials and Methods, Section 

2.2.3.2. Levels of 18:0a/PGb-PE are expressed as ratio analyte to internal standard/3.5 μg 

enzyme generated over 3 min (n = 3, mean ± SEM). Data is presented from 1 experiment 

and representative of  3 separate experiments. NS = not significant, ***P ˂ 0.001 versus 

SAPE alone, *P ˂0.05 versus SAPE in the presence of COX-1 or AA and COX-1, using 

ANOVA and Bonferroni Post Hoc Test. 
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Figure 8.28: PE is oxidised to PGc-PE during oxidation of AA by COX-1. 3.5 μg of 

holoCOX-1 was incubated with either 150 µM of AA, 150 µM of SAPE or liposomes 

containing AA and SAPE, for 3 min at 37°C, in the presence or absence of 10 μM DTPA. 

This was followed by lipid extraction and analysis using reverse-phase LC/MS/MS, 

monitoring parent [M-H]-  m/z 351.2, as described in Materials and Methods, Section 

2.2.3.2. Levels of 18:0a/PGc-PE are expressed as ratio analyte to internal standard/3.5 μg 

enzyme generated over 3 min (n = 3, mean ± SEM). Data is presented from 1 experiment 

and representative of  3 separate experiments. NS = not significant, ***P ˂ 0.001 versus 

SAPE alone. *P ˂0.05 versus SAPE in the presence of AA and COX-1, using ANOVA and 

Bonferroni Post Hoc Test. 
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Figure 8.29: Comparison of 18:0a/PGE2/D2-PE formed by activated platelets and in vitro 

via COX-1. Lipids were separated using reverse-phase LC/MS/MS, monitoring m/z 814.7 

 271.2, as described in Materials and Methods, Section 2.2.3.2. Panel A. Chromatogram 

of 18:0a/ PGE2/D2-PE formed by thrombin-activated platelets. Panel B. Chromatogram of 

18:0a/ PGE2/D2-PE formed in vitro via COX-1. 
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Figure 8.30: Comparison of MS spectra of 18:0a/PGE2/D2-PE formed by activated 

platelets and in vitro via COX-1. Lipid extracts were separated using reverse-phase 

LC/MS/MS, as described in Materials and Methods, Section 2.2.3.2, in product ion mode, 

with Q1 set at m/z 814, CID at Q2 and Q3 set at m/z 271.2. MS spectra were acquired at 

the apex of elution of 18:0a/PGE2/D2-PE. Panel A. MS/MS spectrum of 18:0a/PGE2/D2-PE 

formed by thrombin-activated platelets. Panel B. MS/MS spectrum of 18:0a/PGE2/D2-PE 

formed in vitro by COX-1. 
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Figure 8.31: Comparison of MS spectra of 18:0a/PGb-PE formed by activated platelets 

and in vitro via COX-1. Lipid extracts were separated using reverse-phase LC/MS/MS, as 

described in Materials and Methods, Section 2.2.3.2, in product ion mode, with Q1 set at 

m/z 814, CID at Q2 and Q3 set at m/z 351.2. MS spectra were acquired at the apex of 

elution of 18:0a/PGb-PE. Panel A. LC/MS/MS spectrum of 18:0a/PGb-PE formed by 

thrombin-activated platelets. Panel B. LC/MS/MS spectrum of 18:0a/PGb-PE formed in 

vitro by COX-1. 
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Figure 8.32: Comparison of MS spectra of 18:0a/PGc-PE formed by activated platelets 

and in vitro by COX-1. Lipid extracts were separated using reverse-phase LC/MS/MS, as 

described in Materials and Methods, Section 2.2.3.2, in product ion mode, with Q1 set at 

m/z 814, CID at Q2 and Q3 set at m/z 351.2. MS spectra were acquired at the apex of 

elution of 18:0a/PGc-PE. Panel A. LC/MS/MS spectrum of 18:0a/PGc-PE formed by 

thrombin-activated platelets. Panel B. LC/MS/MS spectrum of 18:0a/PGc-PE formed in 

vitro by COX-1. 
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8.3 Discussion 

In this chapter, I demonstrated that in platelets, esterified prostaglandins are synthesised 

via AA release by cPLA2, oxidation by COX-1, and reincorporation into lysophospholipids 

via LC-FACS and acyltransferase. In resting platelets, as in other immune cells, a small 

amount of free AA is continuously being generated through the deacylation/reacylation 

of membrane phospholipids (Chilton et al., 1996). Upon cell activation, this process is 

considerably amplified via activation of PLA2. This family of enzymes is the major 

contributor of prostaglandin formation, releasing high amounts of AA that act as 

substrate for COX oxidation (Smith, 1992). Inhibition of cPLA2 blocked approximately 75 % 

of free and esterified prostaglandin formation (Figures 8.1 – 8.6). This suggests that the 

AA pool that is specifically converted by COX-1 to free and esterified prostaglandins is 

mainly cleaved by cPLA2. This is in line with previous reports showing that cPLA2 is 

responsible for AA mobilisation for the biosynthesis of TxA2 in platelets and 

prostaglandins in human monocytes and rat peritoneal macrophages (Liberty et al., 2004; 

Kramer et al., 1993). In contrast, generation of esterified 12-HETEs in platelets requires 

sPLA2 (Thomas et al., 2010). This likely reflects the different signalling pathways involved 

in 12-LOX versus COX-1 activation in platelets. 

Separately, it was demonstrated that triacsin C partially inhibits both free and esterified 

prostaglandin generation (Figures 8.9 – 8.11). Although there is a body of evidence 

showing triacsin C as a mammalian LC-FACS inhibitor, there are controversial reports of 

the effects of this compound on AA reincorporation (Vessey et al., 2004). For example, 

Beltramo and Piomelli have demonstrated significant inhibition of arachidonate 

esterification, while others, such as Igal and co-workers, have found little or no effect of 

triacsin C on the incorporation of labelled AA into phospholipids (Igal et al., 1997; 

Hartman et al., 1989; Lewin et al., 2001). Thus, partial inhibition of free PGs may be due 

to: (1) ambiguous compound specificity, inhibiting other pathways required for both free 

and esterified prostaglandin formation; (2) or toxicity, leading to cell death. 

In contrast, thimerosal significantly inhibited the synthesis of esterified prostaglandins 

while enhancing the generation of free PGs (Figures 8.14 – 8.16). This is in line with 
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previous reports showing that inhibition of lysophospholipid acyltransferases by 

thimerosal in macrophages and platelets blocked reincorporation of AA into 

lysophospholipids, increasing PGE2 formation (Hunter et al., 1984; Goppelt-Struebe et al., 

1986). 

Collectively, inhibition of esterified prostaglandin formation by triacsin C and thimerosal 

indicates that at least 50 % of the generation of these lipids occurs via the 

deacylation/reacylation pathway. This suggests that, on platelet activation, cPLA2 cleaves 

phospholipids at the sn2 position, releasing AA, which is then oxidised by COX-1, forming 

PGE2, PGD2, PGb and PGc. Newly synthesised free PGs are subsequently coupled to CoA, 

by LC-FACS, resulting in a PG-CoA complex. This is followed by dissociation of CoA and 

reincorporation of free PGs into lyso PEs by lysophospholipid acyltransferases (Scheme 

8.3). 

Separately, no detectable exogenously added PGE2-d4, PGD2-d4 or AA-d8 was 

incorporated into platelet phospholipids during the time scale of esterified prostaglandin 

generation. This demonstrates that only endogenously generated prostaglandins are 

incorporated through the deacylation/re-acylation mechanism. It is likely that the 

proteins involved in the formation and reincorporation of free prostaglandins are closely 

associated such that AA hydrolysis, oxidation and esterification are tightly coordinated, in 

a manner that exogenous PGE2-d4 and PGD2-d4 cannot effectively compete (Aldrovandi et 

al., 2013). Furthermore, as COX-1 in platelets is localised to the membranes of the dense 

tubular system, formation of esterified prostaglandins may occur on intracellular 

membranes (Gerrard et al., 1976). In this case, exogenously added PGE2 and PGD2 must 

enter the platelet in order to be esterified into lysophospholipids. Therefore, the absence 

of reincorporation of PGE2-d4 and PGD2-d4 into PEs might also be due to the lack of 

prostaglandin transporters on the platelet surface and the inability of these lipids to 

diffuse passively through the plasma membrane (Aldrovandi et al., 2013). To date, 

nothing is known regarding expression of these proteins by platelets or how these cells 

utilise oxidised fatty acids as substrates (Chi et al., 2011). 
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Scheme 8.3: Schematic representation of PG-PE formation via reincorporation of newly 

formed PGs by COX-1. On platelet activation, cPLA2 cleaves phospholipids at the sn2, 

releasing AA, which is oxidised by COX-1. Free PGs are then coupled to CoA via LC-FACS 

and reincorporated into lyso PEs via acyltransferase. 
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Free PGE2 and PGD2 are formed at similar ratios by both activated human platelets and 

purified COX-1 (Figure 8.17), indicating that in platelets free PGE2 and PGD2 are likely to 

result from non-enzymatic rearrangement of PGH2. Furthermore, in vitro generation of 

free PGb (Figure 8.20) and PGc (Figure 8.23) via both COX isoforms was demonstrated, 

suggesting their generation in vivo from PGH2 prior to esterification is probably non-

enzymatic. 

Furthermore, the results showed that PE bound prostaglandin can form in vitro during 

oxidation of AA by COX-1 independently of free metal ions, generating isoprostane-PEs 

that include PGE2/D2-PEs and PGc-PEs. It is possible that during oxidation of AA by COX-1, 

radicals formed at the cyclooxygenase active site escape reaching intact phospholipids. 

These radicals could abstract a bisallylic hydrogen from phospholipids containing 

polyunsaturated fatty acids, generating a carbon-centred radical that rearranges to more 

stable cis,trans-pentadienyl radical, which then couples to molecular oxygen to form 

peroxyl radicals (Yin et al., 2003; Niki, 2009). The radical could then attack neighbouring 

carbons containing double bonds, yielding bicyclic PGG2, which is then reduced to PGH2. 

The latter could structurally rearrange forming prostaglandin-like products (Scheme 8.4). 

Formation of esterified prostaglandins in vitro and partial inhibition by thimerosal (~ 50 % 

of PGE2/D2-PEs) could mistakenly lead to the conclusion that the remaining 50 % of 

esterified prostaglandins are generated from non-enzymatic oxidation of PE. However, 

commercial inhibitors rarely result in 100 % effective inhibition in cells, mostly due to 

solubility and membrane permeability. Furthermore, in vitro reaction does not mimic in 

vivo conditions. Thus, non-enzymatic oxidation of PE may also occur in platelets but as a 

minor pathway for esterified isoprostane formation. This idea is also supported by the 

absence of 8-iso-PGE2 and 11β-PGE2 in LC-MS/MS chromatograms of prostaglandins 

hydrolysed from platelet PE described in Chapter 4. 
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Scheme 8.4: Schematic representation of PG-PE formation by AA-derived radicals 

escaping from COX-1 active site. During COX-1 turnover, radicals could escape from the 

cyclooxygenase active site attacking intact phospholipids, leading to non-enzymatic PG-PE 

formation.
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In these studies, it was found that COX-1 could not directly oxidise SAPE. This is in line 

with previous reports showing that COX-2 but not COX-1 can oxidise complex substrates 

such as arachidonyl-glycerol and arachidonyl-ethanolamide, forming esterified 

prostaglandins including PGE2-G/PGD2-G and PGE2-EA/PGD2-EA (Kozak & Marnett, 2002; 

Kozak et al., 2002). The inability of COX-1 to direct oxidise phospholipids is likely due to 

substrate specificity determined by the conformation of its hydrophobic channel, which is 

smaller than that of COX-2, so it accepts a narrower range of structures as substrates 

(Kurumbail et al., 1996). 

In summary, I demonstrated that esterified prostaglandins are rapidly formed on platelet 

activation, in a cPLA2-dependent manner, via COX-1, followed by esterification of newly 

formed free PGs into PEs. This is similar to other enzymatically-generated OxPLs, such as 

HETE-phospholipids generated by LOXs, which regulate coagulation and immune cell 

signalling (Thomas et al., 2010; Clark et al., 2011). It possible that free PGb and PGc as 

well as esterified prostaglandins may also signal during platelet activation. 
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Chapter 9 
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9 Characterisation of Receptor and Signalling Mediators Regulating Free 

and Esterified Prostaglandin Formation by Activated Human Platelets 

9.1 Introduction 

Formation of OxPLs in vivo has been generally considered an uncontrolled and 

undesirable pathological event, generating hundreds of bioactive lipid species that play 

deleterious roles in chronic inflammation and vascular diseases. However, in the past five 

years, several families of enzymatically-generated OxPLs formed by activated human 

monocytes (15-HETE-PE and 15-KETE-PE), neutrophils (5-HETE-PE) and platelets (14-

HDOHE-PE and 12-HETE-PE/PC) have been reported (Maskrey et al., 2007; Morgan et al., 

2009; Morgan et al., 2010; Thomas et al., 2010; Clark et al., 2011; Hammond et al., 2012). 

These differ from non-enzymatically-generated OxPLs because they are rapidly formed on 

cell activation, through controlled processes involving receptors and intracellular 

signalling, similar to free eicosanoids such as TxA2. 

The signal transduction pathways that lead to TxA2 formation have been extensively 

characterised in human platelets. This prostanoid is formed on platelet stimulation by 

various physiological agonists including thrombin, which signals through thrombin 

receptors, PAR-1 and PAR-4. These belong to a superfamily of seven transmembrane G-

protein-coupled receptors that are activated by proteolytic cleavage of part of their 

extracellular domain by thrombin, exposing a new amino-terminal sequence that 

functions as a tethered ligand activating the receptor (Vu et al., 1991; Kahn et al., 1998; 

Xu et al., 1998; Coughlin, 2000; Macfarlane et al., 2001). This leads to intracellular 

signalling, activating src tyrosine kinases and PLC. Src family kinases are non-receptor 

protein tyrosine kinases that transduce signals from a variety of receptors to internal 

signalling pathways (Corey & Anderson, 1999). In contrast, PLC catalyses the hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (PIP2) to form DAG and inositol 1,4,5-triphosphate 

(IP3) that in turn mediates calcium mobilisation from intracellular stores (Murugappan et 

al., 2005; Li et al., 2010; Putney, 1988; Hisatsune et al., 2005). All these and p38 mitogen-
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activated protein (MAP) kinase stimulate cPLA2 and COX-1, leading to PGH2 formation 

that is then converted to TxA2 by thromboxane-A synthase (Scheme 9.1) (Jurk & Kehrel, 

2005; Levy, 2006, Nakahata, 2008, Kramer et al., 1995). 

In this chapter, the involvement of receptor-dependent signalling pathways regulating 

the generation of free and esterified prostaglandins will be investigated. The thrombin-

receptor agonist peptides TFLLRNH2 and AY-NH2 will be used to determine the 

involvement of PAR-1 and PAR-4, respectively. Whereas, the involvement of src tyrosine 

kinases, PLC and p38 MAP kinase will be assessed using PP2, U-73122 and p38 inhibitor 

(2-(4-Chlorophenyl)-4-(4-fluorophenyl)-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one), respec-

tively. Furthermore, phosphatidylinositide 3-kinases (PI3Ks) and protein kinase C (PKC) 

stimulated during platelet activation will also be examined using wortmannin and Gö 

6850. 

The requirement of intra and extracellular calcium will be determined using the cytosolic 

calcium chelator 1,2-bis-(o-aminophenoxy) ethane-N,N,N’,N’-tetraacetic acid tetrakis-

acetoxymethyl ester (BAPTA/AM) and the extracellular calcium chelator ethylene glycol-

bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA). Lipids will then be extracted 

and analysed using reverse-phase LC/MS/MS on 4000 Q-trap. 

The requirement for specific receptors and intracellular signalling pathways will 

determine whether the generation of PGb, PGc, PGE2/D2-PEs, PGb-PEs and PGc-PEs is a 

controlled event in human platelets. Furthermore, this would suggest that these lipids are 

of physiologic relevance and probably important in haemostasis. 
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Scheme 9.1: Schematic representation of TxA2 formation by thrombin-activated 

platelets. TxA2 is synthesised via AA release by cPLA2, oxidised by COX-1 and converted to 

TxA2 by thromboxane synthase. Modified from Jurk & Kehrel, 2005.  
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9.1.1 Aims 

The studies described in this chapter aim to: 

 Investigate the requirement of PAR-1 and PAR-4 stimulation for the generation of 

free and esterified prostaglandins. 

 Uncover the intracellular signalling pathways required for the formation of free 

and esterified prostaglandins. 

 Examine the requirement of extra and intracellular calcium for the synthesis of 

these lipids. 

 

 

9.2 Results 

9.2.1 Platelet PAR-1 and PAR-4 receptors upregulate free and esterified prostaglandin 

formation. 

In this section, the requirement of PAR-1/-4 activation for the generation of free and 

esterified prostaglandins was determined using the thrombin-receptor agonist peptides 

TFLLRNH2 and AY-NH2, respectively. These synthetic peptides are unable to cleave the 

receptor; instead, they mimic the human tethered ligands by interacting with the 

receptor extracellular domains, inducing conformational changes similar to natural 

ligands (Bahou et al., 1993; Gerszten et al., 1994). 

Briefly, washed human platelets were incubated with 20 µM TFLLRNH2 and/or 150 µM 

AY-NH2, respectively, for 30 min at 37oC (Thomas et al., 2010). Lipids were then extracted 

and analysed using reverse-phase LC/MS/MS, as described in Materials and Methods, 

Sections 2.2.3.2 and 2.2.3.3. Platelets stimulated with 0.2 U/ml thrombin acted as a 

positive control for free and esterified prostaglandin synthesis. 

The thrombin-receptor agonist peptides TFLLRNH2 (PAR-1) and AY-NH2 (PAR-4) induced 

formation of free and esterified prostaglandins to a similar level, with additive effects 
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implicating both of the platelet thrombin receptors (Figure 9.1 – 9.3). Exception of 

16:0p/PGE2/D2-PE and 18:0a/PG-PEs, co-stimulation with TFLLRNH2 and AY-NH2 

generated significant lower levels of free and esterified prostaglandins compared to 

thrombin. This may be due to differences between the synthetic peptides and the natural 

built-in tethered ligand generated by thrombin. 

 

9.2.2 Free and esterified prostaglandins are formed in a phospholipase C, p38 MAP 

kinase and src-tyrosine kinase dependent manner. 

In this section, the requirement of src-tyrosine kinases, p38 MAP kinase and PLC for the 

synthesis of free and esterified prostaglandins was assessed using 50 µM PP2, 100 nM 

p38 inhibitor and 5 µM U-73122, respectively. PP2 is an inhibitor of the Src family kinases 

that binds tightly adjacent to the ATP-binding site interfering with the protein substrate 

binding (Zhu et al., 1999; Karni et al., 2003). The p38 inhibitor, also known as 2-(4-

Chlorophenyl)-4-(4-fluorophenyl)-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one, is a pyridinyl 

imidazole inhibitor that competitively binds to the ATP binding pocket inhibiting ATP 

binding (Tong et al., 1997). U-73122 is an aminosteroid that in platelets inhibits both 

PLCβ and PLCƴ isoforms (Bleasdale et al., 1990; Heemskerk et al., 1997). 

Briefly, washed human platelets were incubated with each inhibitor or 0.5 % vehicle 

(DMSO) for 10 min at room temperature prior to thrombin activation (0.2 U/ml for 30 

min at 37oC). Lipids were then extracted and analysed using reverse-phase LC/MS/MS, on 

Q-trap, in MRM mode, as described in Materials and Methods, Sections 2.2.3.2 and 

2.2.3.3. 
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Figure 9.1: PGE2/D2-PEs, PGE2 and PGD2 are generated via PAR-1 and PAR-4 receptor 

stimulation. Washed platelets were activated with each agonist for 30 min at 37o C before 

lipid extraction. Lipids were then analysed using reverse-phase LC/MS/MS, as described in 

Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of PGE2/D2-PEs are expressed 

as ratio analyte to internal standard while free PGE2 and PGD2 are expressed as ng/2 x 108 

platelets. Data is presented from one experiment and representative of three (n = 3, 

mean ± SEM). *P < 0.05, **P < 0.01 and ***P < 0.001 versus thrombin, using ANOVA and 

Bonferroni Post Hoc Test. Panel A. PGE2/D2-PE generation by platelets incubated with 20 

M TFLLR-NH2 and/or 150 M AY-NH2. Panel B. PGE2 and PGD2 generation by platelets 

incubated with 20 M TFLLR-NH2 and/or 150 M AY-NH2. 
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Figure 9.2: PGb-PEs and free PGb are generated via PAR-1 and PAR-4 receptor 

stimulation. Washed platelets were activated with each agonist for 30 min at 37o C before 

lipid extraction. Lipids were then analysed using reverse-phase LC/MS/MS, as described in 

Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of PGb-PEs and PGb are 

expressed as ratio analyte to internal standard. Data is presented from one experiment 

and representative of three (n = 3, mean ± SEM). ***P < 0.001 versus thrombin, using 

ANOVA and Bonferroni Post Hoc Test. Panel A. PGb-PE generation by platelets incubated 

with 20 M TFLLR-NH2 and/or 150 M AY-NH2. Panel B. PGb generation by platelets 

incubated with 20 M TFLLR-NH2 and/or 150 M AY-NH2. 
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Figure 9.3: PGc-PEs and free PGc are generated via PAR-1 and PAR-4 receptor 

stimulation. Washed platelets were activated with each agonist for 30 min at 37o C before 

lipid extraction. Lipids were then analysed using reverse-phase LC/MS/MS, as described in 

Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of PGc-PEs and PGc are 

expressed as ratio analyte to internal standard. Data is presented from one experiment 

and representative of three (n = 3, mean ± SEM). ***P < 0.001 versus thrombin, using 

ANOVA and Bonferroni Post Hoc Test. Panel A. PGc-PE generation by platelets incubated 

with 20 M TFLLR-NH2 and/or 150 M AY-NH2. Panel B. PGc generation by platelets 

incubated with 20 M TFLLR-NH2 and/or 150 M AY-NH2. 
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The src tyrosine kinase inhibitor PP2 completely blocked PGE2/D2-PE formation while the 

p38 inhibitor only partially reduced (Figure 9.4 A). In addition, formation of PGE2/D2-PEs 

was decreased by 80 % in response to the PLC inhibitor U-73122. Similarly, PP2 

considerably inhibited formation of PGE2, whereas inhibition of p38 MAP kinase and PLC 

reduced PGE2 formation by 40 and 68 %, respectively (Figure 9.4 B). PGD2 generation was 

significantly inhibited by PP2, not affected by p38 inhibitor and partially blocked by U-

73122 (Figure 9.4 B). PGb-PE synthesis was nearly abolished by PP2 and significantly 

inhibited by p38 inhibitor and U-73122 (Figure 9.5 A), similar to free PGb (Figure 9.5 B). 

PGc-PE generation was blocked by PP2 (~ 95 %), p38 inhibitor (~ 65 %) and U-73122 (~ 70 

%), confirming the requirement of src-tyrosine kinase, p38 MAP kinase and PLC, 

respectively (Figure 9.6 A). Levels of free PGc were reduced 85 % in response to PP2 and 

significantly inhibited by p38 inhibitor and U-73122 (Figure 9.6 B). These studies indicate 

that both free and esterified prostaglandin formation requires stimulation of src-tyrosine 

kinase, p38 MAP kinase and PLC. 

 

9.2.3 Inhibition of PKC enhances free and esterified prostaglandin formation. 

In this section, the participation of PI3Ks and PKC for the generation of free and esterified 

prostaglandins was investigated using 100 nM wortmannin and 100 nM Gö 6850, 

respectively (Thomas et al., 2010; Clark et al., 2010). Wortmannin is a fungal metabolite 

that irreversibly inhibits PI3Ks in a noncompetitive manner (Powis et al., 1994). Whereas, 

Gö 6850 is a reversible PKC inhibitor that acts as a competitive inhibitor for the ATP 

binding site mainly of PKCα and PKCβ but can also affect other isoforms (Toullec et al., 

1991). 

Washed human platelets were incubated with each inhibitor or 0.5 % vehicle (DMSO) for 

10 min at room temperature prior to thrombin activation (0.2 U/ml for 30 min at 37oC). 

Lipids were then extracted and analysed using reverse-phase LC/MS/MS on Q-trap, in 

MRM mode, as described in Materials and Methods, Sections 2.2.3.2 and 2.2.3.3. 
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Figure 9.4: Phospholipase C and src tyrosine kinase are required for PGE2/D2-PE, PGE2 

and PGD2 generation while p38 MAP kinase is only necessary for PGE2/D2-PE and PGE2. 

Washed human platelets were incubated for 10 min at room temperature with each 

inhibitor prior to thrombin activation (0.2 U/ml, 30 min at 37oC). Lipids were then 

extracted and analysed using reverse-phase LC/MS/MS, as described in Materials and 

Methods, Section 2.2.3.2 and 2.2.3.3. Levels of PGE2/D2-PEs are expressed as ratio 

analyte to internal standard while free PGE2 and PGD2 are expressed as ng/2 x 108 

platelets. Data is presented from one experiment and representative of three (n = 3, 

mean ± SEM). *P < 0.05, **P < 0.01 and ***P < 0.001 versus thrombin in the presence of 

DMSO, using ANOVA and Bonferroni Post Hoc Test. Panel A. PGE2/D2-PE generation by 

platelets incubated with 50 µM PP2, 100 nM p38 MAP kinase inhibitor or 5 µM U-73112. 

Panel B. PGE2 and PGD2 formation by platelets incubated with 50 µM PP2, 100 nM p38 

MAP kinase inhibitor or 5 µM U-73112. 
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Figure 9.5: Phospholipase C, p38 MAP kinase and src tyrosine kinase are required for 

PGb-PE and PGb generation. Washed human platelets were incubated for 10 min at room 

temperature with each inhibitor prior to thrombin activation (0.2 U/ml, 30 min at 37oC). 

Lipids were then extracted and analysed using reverse-phase LC/MS/MS, as described in 

Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of PGb-PEs and PGb are 

expressed as ratio analyte to internal standard. Data is presented from one experiment 

and representative of three (n = 3, mean ± SEM). *P < 0.05, **P < 0.01 and ***P < 0.001 

versus thrombin in the presence of DMSO, using ANOVA and Bonferroni Post Hoc Test. 

Panel A. PGb-PE generation by platelets incubated with 50 µM PP2, 100 nM p38 MAP 

kinase inhibitor or 5 µM U-73112. Panel B. PGb formation by platelets incubated with 50 

µM PP2, 100 nM p38 MAP kinase inhibitor or 5 µM U-73112. 
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Figure 9.6: Phospholipase C, p38 MAP kinase and src tyrosine kinase are required for 

PGc-PE and PGc generation. Washed human platelets were incubated for 10 min at room 

temperature with each inhibitor prior to thrombin activation (0.2 U/ml, 30 min at 37oC). 

Lipids were then extracted and analysed using reverse-phase LC/MS/MS, as described in 

Materials and Methods, Section 2.2.3.2 and 2.2.3.3. Levels of PGc-PEs and PGc are 

expressed as ratio analyte to internal standard. Data is presented from one experiment 

and representative of three (n = 3, mean ± SEM). *P < 0.05, **P < 0.01 and ***P < 0.001 

versus thrombin in the presence of DMSO, using ANOVA and Bonferroni Post Hoc Test. 

Panel A. PGc-PE generation by platelets incubated with 50 µM PP2, 100 nM p38 MAP 

kinase inhibitor or 5 µM U-73112. Panel B. PGc formation by platelets incubated with 50 

µM PP2, 100 nM p38 MAP kinase inhibitor or 5 µM U-73112. 
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Formation of PGE2/D2-PE was not affected by the PI3k inhibitor wortmannin, whereas, 

inhibition of PKC by Gö 6850 induced a 2-fold increase (Figure 9.7 A). Levels of free PGE2 

and PGD2 were also enhanced by 2-fold in response to Gö 6850 (Figure 9.7 B). Generation 

of PGb-PEs was not inhibited by wortmannin but considerably increased by Gö 6850 

(Figure 9.8 A), similar to free PGb (Figure 9.8 B). Levels of PGc-PEs (Figure 9.9 A) and free 

PGc (Figure 9.9 B) were significantly enhanced by Gö 6850 but not affected by 

wortmannin. The data indicate that PKC exerts a negative feedback effect on the 

formation of free and esterified prostaglandins. 

 

9.2.4 Generation of free and esterified prostaglandins requires intracellular calcium 

mobilisation. 

An increase in intracellular calcium can originate from two major sources, the release of 

calcium from intracellular stores or the influx of extracellular calcium via the plasma 

membrane (Bergmeier & Stefanini, 2009). In this section, the requirement for intra and 

extracellular calcium was determined using the cytosolic calcium chelator BAPTA/AM and 

the extracellular calcium chelator EGTA. BAPTA/AM is a lipophilic compound capable of 

crossing cell membranes. Once inside the cell, the AM moiety is cleaved by esterases 

forming a calcium binding BAPTA complex, remaining intracellular (Tsien, 1981). 

Formation of PGE2/D2-PE was reduced by approximately 80 % in response to BAPTA/AM 

(Figure 9.10 A). In contrast, chelation of extracellular calcium by EGTA increased levels of 

PGE2/D2-PEs by 40 % (Figure 9.10 A). Similarly, PGE2 and PGD2 synthesis was inhibited (85 

%) by BAPTA/AM and significantly enhanced in response to EGTA (Figure 9.10 B). 

Formation of PGb-PEs was reduced 84 % by BAPTA/AM but not affected by EGTA (Figure 

9.11 A), similar to free PGb (Figure 9.11 B). Generation of PGc-PEs (Figure 9.12 A) and free 

PGc (Figure 9.12 B) was significantly reduced in response to BAPTA/AM. This indicates 

that free and esterified prostaglandin formation requires calcium mobilisation from 

intracellular stores. 
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Figure 9.7: Inhibition of PKC enhances generation of PGE2/D2-PEs, PGE2 and PGD2. 

Washed human platelets were incubated for 10 min at room temperature with each 

inhibitor prior to thrombin activation (0.2 U/ml, 30 min at 37oC). This was followed by 

lipid extraction and analysis using reverse-phase LC/MS/MS, as described in Materials and 

Methods, Section 2.2.3.2 and 2.2.3.3. Inhibitors used are as follows: wortmannin, 100 nM 

(PI3ks), Gö 6850, 100 nM (PKC) or vehicle (DMSO, 0.5 %). Levels of PGE2/D2-PEs are 

expressed as ratio analyte to internal standard while free PGE2 and PGD2 are expressed as 

ng/2 x 108 platelets. Data is presented from one experiment and representative of three 

(n = 3, mean ± SEM). ***P < 0.001 versus thrombin in the presence of DMSO, using 

ANOVA and Bonferroni Post Hoc Test. Panel A. PGE2/D2-PE formation by platelets 

incubated with wortmannin or Gö 6850. Panel B. PGE2 and PGD2 generation by platelets 

incubated with wortmannin or Gö 6850. 
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Figure 9.8: Inhibition of PKC enhances generation of PGb-PEs and free PGb. Washed 

human platelets were incubated for 10 min at room temperature with each inhibitor prior 

to thrombin activation (0.2 U/ml, 30 min at 37oC). This was followed by lipid extraction 

and analysis using phospholipid reverse-phase LC/MS/MS, as described in Materials and 

Methods, section 2.2.3.2 and 2.2.3.3. Levels of PGb-PEs and free PGb are expressed as 

ratio analyte to internal standard. Data is presented from one experiment and 

representative of three (n = 3, mean ± SEM). ***P < 0.001 versus thrombin in the 

presence of DMSO, using ANOVA and Bonferroni Post Hoc Test. Panel A. PGb-PE 

formation by platelets incubated with wortmannin or Gö 6850. Panel B. PGb generation 

by platelets incubated with wortmannin or Gö 6850. 
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Figure 9.9: Inhibition of PKC enhances generation of PGc-PEs and free PGc. Washed 

human platelets were incubated for 10 min at room temperature with each inhibitor prior 

to thrombin activation (0.2 U/ml, 30 min at 37oC). This was followed by lipid extraction 

and analysis using reverse-phase LC/MS/MS, as described in Materials and Methods, 

Section 2.2.3.2 and 2.2.3.3. Levels of PGc-PEs and PGc are expressed as ratio analyte to 

internal standard. Data is presented from one experiment and representative of three (n 

= 3, mean ± SEM). ***P < 0.001 versus thrombin in the presence of DMSO, using ANOVA 

and Bonferroni Post Hoc Test. Panel A. PGc-PE formation by platelets incubated with 

wortmannin or Gö 6850. Panel B. PGc generation by platelets incubated with wortmannin 

or Gö 6850. 
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Figure 9.10: Cytosolic Ca2+ is required for PGE2/D2-PE, PGE2 and PGD2 formation. 

Washed human platelets were incubated for 10 min at room temperature with each 

inhibitor prior to thrombin activation (0.2 U/ml for 30 min for 37oC). Lipids were then 

extracted and analysed using reverse-phase LC/MS/MS, as described in Materials and 

Methods, Section 2.2.3.2 and 2.2.3.3. Levels of PGE2/D2-PEs are expressed as ratio 

analyte to internal standard while PGE2 and PGD2 are expressed as ng/2 x 108 platelets. 

Data is presented from one experiment and representative of three (n = 3, mean ± SEM). 

*** P < 0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc Test. Panel A. 

PGE2/D2-PE formation by platelets incubated with 1 mM EGTA and/or 10 µM BAPTA/AM. 

Panel B. PGE2 and PGD2 generation by platelets incubated with 1 mM EGTA and/or 10 µM 

BAPTA/AM. 
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Figure 9.11: Cytosolic Ca2+ is required for PGb-PE and free PGb formation. Washed 

human platelets were incubated for 10 min at room temperature with each inhibitor 

prior to thrombin activation (0.2 U/ml for 30 min for 37oC). Lipids were then extracted 

and analysed using reverse-phase LC/MS/MS, as described in Materials and Methods, 

Section 2.2.3.2 and 2.2.3.3. Levels of PGb-PEs and PGb are expressed as ratio analyte to 

internal standard. Data is presented from one experiment and representative of three (n 

= 3, mean ± SEM). *** P < 0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc 

Test. Panel A. PGb-PE formation by platelets incubated with 1 mM EGTA and/or 10 µM 

BAPTA/AM. Panel B. PGb generation by platelets incubated with 1 mM EGTA and/or 10 

µM BAPTA/AM. 
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Figure 9.12: Cytosolic Ca2+ is required for PGc-PE and free PGc formation. Washed 

human platelets were incubated for 10 min at room temperature with each inhibitor 

prior to thrombin activation (0.2 U/ml for 30 min for 37oC). Lipids were then extracted 

and analysed using reverse-phase LC/MS/MS, as described in Materials and Methods, 

Section 2.2.3.2 and 2.2.3.3. Levels of PGc-PEs and PGc are expressed as ratio analyte to 

internal standard. Data is presented from one experiment and representative of three (n 

= 3, mean ± SEM). *** P < 0.001 versus thrombin, using ANOVA and Bonferroni Post Hoc 

Test. Panel A. PGc-PE formation by platelets incubated with 1 mM EGTA and/or 10 µM 

BAPTA/AM. Panel B. PGc generation by platelets incubated with 1 mM EGTA and/or 10 

µM BAPTA/AM. 
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9.3 Discussion 

In human platelets, thrombin initiates a wide range of responses via stimulation of 

thrombin receptors PAR-1 and PAR-4, including aggregation, degranulation and TxA2 

formation (Sinha et al., 1983; Jurk K & Kehrel, 2005). In this chapter, the involvement of 

PAR-1 and PAR-4 in the generation of free and esterified prostaglandins was confirmed 

using the thrombin-receptor agonists TFLLRNH2 and AY-NH2 (Figures 9.1 – 9.3). Platelets 

stimulated with these synthetic peptides generated lower levels of these lipids compared 

to thrombin. This is most likely due to differences between a built-in tethered ligand 

generated by thrombin and a ligand free in solution (Chung et al., 2002). TFLLRNH2 and 

AY-NH2 are unable to cleave the receptor; instead, they activate PAR-1 and PAR-4 by 

mimicking the new amino terminus created by thrombin cleavage (Bahou et al., 1993; 

Gerszten et al., 1994). It is also possible that during PAR-1 proteolysis two ligands are 

formed, a tethered ligand and a PAR-1 amino-terminal peptide cleaved by thrombin, 

which may potentiate each other inducing a higher thrombin response compared to the 

synthetic peptides TFLLRNH2 and AY-NH2 (Furman et al., 1998; Furman et al., 2000). In 

vivo, platelets are activated simultaneously by different agonists, including thrombin and 

collagen. Although only PAR-1 and PAR-4 were examined, other receptors may be 

involved, such as collagen receptors glycoprotein VI and integrin α2β1, which on 

stimulation also leads to platelet activation and TxA2 formation (Li et al., 2010). 

Separately, I demonstrated that free and esterified prostaglandin formation requires 

stimulation of several signalling pathways, including src tyrosine kinases, p38 MAPK and 

PLC (Figure 9.4 – 9.6). This is in line with previous reports showing that TxA2 is formed by 

platelets, following stimulation of PAR-1 and PAR-4, and requires activation of several 

intracellular signalling intermediates, including cPLA2, p38 MAP kinase, src tyrosine 

kinases, PLC and cytosolic calcium (Bleasdale et al., 1990; Jurk & Kehrel, 2005; Banno et 

al., 1998; Agranoff et al., 1983; Kramer et al., 1996; McNicol & Shibou, 1998). 

Furthermore, Kawao and colleagues have shown that free PGE2 is formed by human lung-

derived A549 epithelial cells via COX-1/-2 in a src tyrosine kinase, p38 MAP kinase, PLC, 

intracellular calcium and cPLA2-dependent manner (Kawao et al., 2005). In contrast, 
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generation of 12-HETE-PE/PCs by activated platelets requires stimulation of src tyrosine 

kinase but not PLC (Thomas et al., 2010). This likely reflects the different signalling 

pathways involved in 12-LOX versus COX-1 activation. 

Furthermore, I observed that inhibition of PKC by Gö 6850 significantly increases levels of 

free and esterified prostaglandins (Figures 9.7 – 9.9). This suggests that PKC exerts a 

negative feedback effect on the generation of these lipids. The increase in free and 

esterified prostaglandin formation may be due to inhibition of PKCθ, which negatively 

regulates intracellular calcium levels in platelets (Strehl et al., 2007; Cohen et al., 2011; 

Harper & Poole, 2010). Elevated calcium could enhance the catalytic activity of cPLA2, 

increasing AA release and formation of free and esterified prostaglandins. To date, there 

are no commercially available isoform specific PKC inhibitors and Gö 6850 may not be the 

optimum pharmacological inhibitor to study PKC signalling in vivo. Instead, genetically 

modified mice that lack the expression of a single PKC isoform would be a better 

approach to study the involvement of PKC in the formation of these lipids. 

I showed that generation of free and esterified prostaglandins by activated platelets 

requires calcium mobilisation from intracellular stores (Figures 9.10 – 9.12) unlike 12-

HETE-PE/PC formation, which requires both intra and extracellular calcium (Thomas et 

al., 2010; Morgan et al., 2010). The difference in calcium requirement likely reflects the 

different PLA2 isoforms involved in the formation of these two distinct families of lipids. 

Esterified 12-HETEs originate from a pool of AA mainly released by cPLA2 but also require 

sPLA2 that maybe act through generating bioactive lysophospholipids, whereas free and 

esterified prostaglandins are formed in a cPLA2-dependent manner (Coffey et al., 2004a; 

Thomas et al., 2010; Morgan et al., 2010; Aldrovandi et al., 2013). While cPLA2 is 

activated by calcium in a nanomolar level, sPLA2 requires calcium in a milimolar range, 

suggesting that calcium from intra and extracellular sites are required for sPLA2 

stimulation whereas, calcium from intracellular stores may be sufficient to stimulate 

cPLA2 (Saunders et al., 1999). 

In summary, I demonstrated that free and esterified prostaglandins are formed following 

stimulation of PAR-1/-4 and require src-tyrosine kinases, PLC, p38 MAP kinase and 
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intracellular calcium but not PI3Ks, while PKC exerts a negative feedback inhibition on 

generation (Scheme 9.2). All these act via stimulating cPLA2 and COX-1, ultimately leading 

to generation of free PGs. These are subsequently released as free eicosanoids or 

esterified into lyso PEs via LC-FACS and acyltransferase (Aldrovandi et al., 2013).  

In addition, formation of free and esterified prostaglandins is very likely to take place in 

intracellular membranes where COX-1 and esterification enzymes are localised (Gerrard 

et al., 1976; Bakken et al., 1994). 

Collectively, the data indicate that formation involves a highly coordinated receptor and 

intracellular signalling pathway that is similar for both free and esterified prostaglandins 

and further underscores their likely relevance to platelet biology. 
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Scheme 9.2: Proposed mechanism for the formation of free and esterified 

prostaglandins by human platelet COX-1. On platelet activation, AA is released by cPLA2 

and oxidised by COX-1, forming PGE2, PGD2, PGb and PGc, which are either esterified into 

PEs or released as free PGs. 
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Chapter 10 
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10 Studying PGE2 Esterification onto Lysophospholipids using Rat Liver 

Microsomes and Characterising the Ability of Esterified Prostaglandins 

to Regulate Coagulation 

10.1 Introduction 

In this chapter, two different studies will be described. 

1. Esterification of PGE2 into phospholipids using rat liver microsomes. As previously 

reported in this thesis, PG-PEs are initially formed as free PGs via COX-1 and subsequently 

esterified onto lysophospholipid PEs through LC-FACS and acyltransferase. Little is known 

regarding how oxidised fatty acids are reincorporated into lysophospholipids, and 

whether LC-FACS and acyltransferase display preferences for different fatty acids or 

eicosanoids during remodelling of membrane phospholipids in platelets. Rat liver 

microsomes contain a set of enzymes involved in fatty acid metabolism, including LC-

FACS and lysophospholipid acyltransferase (LPLAT), therefore, this is a suitable model to 

study incorporation of PGE2 into lysophospholipids (Suzuki et al., 1990; Yamashita et al., 

1997; Shindou et al., 2013). Here, rat liver microsomes will be isolated and used as a 

model system to study PGE2 esterification into lysophospholipids. 

2. Studying the ability of PG-PEs to regulate coagulation factor activity. Here, I will 

investigate a potential role for PG-PEs in regulating thrombin formation in human plasma. 

For this, PG-PE will be purified from total platelet lipid extracts, will then be incorporated 

into liposomes and added to platelet poor plasma to stimulate thrombin generation. 

Thrombin is formed following platelet activation and externalisation of the 

aminophospholipids PS and PE (Heemskerk et al., 2002). These phospholipids interact 

with clotting factors through multiple γ-carboxylated glutamic acids (Gla domains) 

forming complexes, specifically factor VIIIa/IXa (tenase complex) and factor Va/Xa 

(prothrombinase complex), that convert prothrombin to thrombin (Morrissey et al., 2011; 

Tavoosi et al., 2011; Lentz, 2003; Falls et al., 2000). Recently, Thomas and co-workers 

have shown that liposomes supplemented with 12-HETE-PC dose-dependently enhance 

tissue factor-dependent thrombin generation in human plasma (Thomas et al., 2010). 
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This oxidised phospholipid is acutely generated by agonist-activated human platelets via 

12-LOX, in a highly regulated manner, remaining cell-associated, similar to PG-PEs formed 

via COX-1. Thus, I propose that PG-PEs may act similarly to 12-HETE-PC, enhancing 

thrombin generation during platelet activation. 

 

10.1.1 Aims 

The studies described in this chapter aim to: 

 Isolate rat liver microsomes to be used as a model system to study PGE2 

esterification into phospholipids. 

 Purify PG-PEs from total platelet lipid extracts. 

 Investigate whether liposomes supplemented with PG-PEs can enhance tissue 

factor-dependent thrombin generation in human plasma. 

 

 

10.2 Results 

10.2.1 Confirmation of enzymatic activity of microsomal fractions. 

In this section, rat liver microsomes were isolated and used as a model system to study 

PGE2 esterification into lysophospholipids. Briefly, livers from Wistar male rats were 

perfused, minced and homogenised. The homogenate underwent three rounds of 

centrifugation. After final spin, supernatant was aspirated into a clean glass vial, 

centrifuged at high speed and microsome pellets resuspended in sucrose buffer, as 

described in Materials and Methods, Section 2.2.12. 

To confirm enzymatic activity, microsomal fractions (0.5 mg/3 ml of Tris – HCL buffer) 

were incubated with 80 µM of AA-d8 in the presence of either 80 μM of 18:0 lyso PE or 

18:0 lyso PC with the stearic acid (SA) at the sn1, for 60 min at 37oC. Formation of SA-AA-

d8-PE/PC was then determined using reverse-phase LC/MS/MS, in negative and positive 

mode, as described in Materials and Methods, Section 2.2.12. 
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Formation of both SA-AA-d8-PE and SA-AA-d8-PC was detected confirming the enzymatic 

activity of microsomal fractions. Negative LC/MS/MS spectrum of the parent mass m/z 

774.6 (SA-AA-d8-PE) yielded fragments with ions characteristic of both lyso PE (m/z 480 

and 283) and AA-d8 (m/z 311 and 267), confirming the esterification of AA-d8 to lyso PE 

(Figure 10.1). Similarly, negative MS/MS spectrum of the parent mass m/z 802.7 (SA-AA-

d8-PC) generated daughter ions characteristic of both lyso PC (m/z 508 and 283) and AA-

d8 (m/z 311 and 267), Figure 10.2. Furthermore, formation of either SA-AA-d8-PE or SA-

AA-d8-PC was not detected in control samples containing only microsomal fractions (data 

not shown). The spectrum of AA-d8 is shown for comparison in Figure 10.3. 

 

10.2.1.1 PGE2-PE generation in vitro was not detected using rat liver microsomes. 

The ability of rat liver microsomes to esterify PGE2 to lyso PE/PC was also examined. 

Briefly, microsomal fractions (0.5 mg/3 ml of Tris – HCL buffer) were incubated with 80 

µM of either PGE2 or PGE2-d4 in the presence of 80 μM 18:0 lyso PE/PC, for 60 min at 

37oC. Formation of SA-PGE2-PE/PC and SA-PGE2-d4-PE/PC was then determined using 

reverse-phase LC/MS/MS, in negative and positive mode, as described in Materials and 

Methods, Section 2.2.12. 

However, SA-PGE2-PE, SA-PGE2-d4-PE, SA-PGE2-PC or SA-PGE2-d4-PC were not detected. 

This indicates that platelets display a set of fatty acylation enzymes distinct from rat liver 

microsomes, which are unable to esterify PGs to lysophospholipids. 
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Figure 10.1: Formation of SA-AA-d8-PE by rat liver microsomes. Microsomal fractions 

(0.5 mg/3 ml of Tris – HCL buffer) were incubated with 18:0 lyso PE (80 μM) and AA-d8 

(80 μM), in the presence of ATP (1.6 mM), CoA (80 μM) and MgCl26H2O (1 mM), for 60 

min at 37oC. Lipids were extracted by Bligh and Dyer and analysed using reverse-phase 

LC/MS/MS, in negative mode, monitoring m/z 774.6  311.2 as described in Materials 

and Methods, Section 2.2.13.3. Panel A. Chromatogram showing SA-AA-d8-PE formation 

in vitro. Panel B. Negative LC/MS/MS spectrum acquired at the apex of elution of SA-AA-

d8-PE at 30.1 min showed fragments at m/z 311 and 267 characteristic of AA-d8. 

10 20 30 40 50
Time, min

2.5e5

5.0e5

7.5e5

9.5e5

In
te

n
s
it
y
, c

p
s

30.1

SA-AA-d8-PE 

m/z 774.6  311.2 

200 400 600 800m/z, Da

1.0e6

2.0e6

3.0e6

4.0e6

In
te

n
s
it
y
, c

p
s

311.4

283.4

774.6

480.4

267.4 462.4

MS/MS

m/z 774.6  311.2 

A

B



 

258 

 

 

Figure 10.2: Formation of SA-AA-d8-PC by rat liver microsomes. Microsomal fractions 

(0.5 mg/3 ml of Tris – HCL buffer) were incubated with 18:0 lyso PC (80 μM) or AA-d8 (80 

μM), in the presence of ATP (1.6 mM), CoA (80 μM) and MgCl26H2O (1 mM), for 60 min at 

37oC. Lipids were extracted by Bligh and Dyer and analysed using reverse-phase 

LC/MS/MS, in negative mode, monitoring m/z 802.7  311.2 as described in Materials 

and Methods, Section 2.2.13.3. Panel A. Chromatogram showing SA-AA-d8-PC formation 

in vitro. Panel B. Negative LC/MS/MS spectrum acquired at the apex of elution of SA-AA-

d8-PC at 29.8 min showed fragments at m/z 311 and 267 characteristic of AA-d8. 
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Figure 10.3: Standard AA-d8. An MS/MS spectrum of AA-d8 standard was acquired using 

the Q-Trap 4000. Fragmentation shows the origin of a major daughter ion at m/z 267.5. 
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10.2.2 Investigating the ability of PG-PEs to regulate thrombin generation in human 

plasma. 

In this section, the ability of PG-PEs to stimulate thrombin generation in human plasma 

was investigated in vitro using liposomes. For this, varying amounts of PG-PE (equivalent 

to that synthesised by 2 – 12 x 108 activated platelets) and 4 μM phospholipids (5 % SAPS, 

65 % DSPC and 30 % SAPE) were incorporated into liposomes and thrombin generation 

measured by Calibrated Automated Thrombography (CAT) (Clark et al., 2013; Hemker et 

al., 2003). Due to the absence of commercial standards and the inability of enzymes from 

rat liver microsomes to form PGE2-PE in vitro, PG-PE standard was purified from total 

platelet lipid extracts, as described in Materials and Methods, Section 2.2.4. Note that 

other lipids may co-elute with PG-PEs during HPLC separation and, therefore, the PG-PE 

standard may not be completely pure. PG-PEs were purified from a total of 1 x 1011 

activated platelets and resuspended in 1 ml methanol total. The amount (in microliters) 

of PG-PEs equivalent to that generated by 2 – 12 x 108 activated platelets was then 

calculated using the following equation:  

 

                         (  )

 
                  

                   
          (                     ) 

PG-PEs equivalent to that generated by 2 – 12 x 108 activated platelets corresponded to 2 

– 12 µl of total purified PG-PE (1 ml). 

Initially, liposomes containing varying percentages of SAPS (0 – 10 %), DSPC (60 – 100 %) 

and SAPE (0 – 30 %) were used to determine the optimum control that would allow 

changes in tissue factor-dependent thrombin generation in vitro to be observed, e.g. 

submaximal. Liposomes were added to platelet-poor pooled human plasma and 

coagulation initiated using 10 pM recombinant tissue factor. Thrombin levels were then 
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measured every 15 seconds, for 60 min by CAT, as described in Materials and Methods, 

Section 2.2.13. 

 

10.2.2.1.1 Replacement of DSPC/SAPE with PG-PEs does not enhance thrombin 

generation in vitro. 

In this section, varying amounts of both DSPC/SAPE (1 – 30 %) were replaced with PG-PE 

standard and liposomes generated. Initially, PG-PE standard was quantified by weight and 

the amounts equivalent to 1 – 30 % of 4 μM phospholipid total calculated. Following 

extrusion, liposomes were then added to pooled human plasma and tissue factor-

dependent thrombin generation measured by CAT. 

Liposomes containing 1 – 3 % PG-PEs stimulated thrombin generation to control levels 

(Figures 10.4). While, 5 – 30 % PG-PEs increased tissue factor-dependent thrombin 

generation from 64 nM to approximately 72 nM (Figure 10.5), however this was not 

statistically significant. This suggests that it is unlikely that PG-PEs act regulating thrombin 

generation in vivo. 
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Figure 10.4: Replacement of DSPC/SAPE with 1, 2 or 3 % PG-PEs does not enhance 

thrombin generation in vitro. DSPC and SAPE were replaced with either 1, 2 or 3 % PG-PE 

and tissue factor-dependent thrombin generation determined, as described in Materials 

and Methods, Section 2.2.13. The amount of DSPC, SAPS and PG-PE is varied according to 

the labels on the figure, but the percentage of PS was maintained throughout. Data from 

three independent experiments (n = 3, mean ± SEM). Not statisticaly significant, using 

ANOVA and Bonferroni Post Hoc Test. 

20

40

60

80

T
h

ro
m

b
in

 (
n

M
)

5 % SAPS

64 % DSPC

29 % SAPE

2 % PG-PE

5 % SAPS

65 % DSPC

30 % SAPE

5 % SAPS

63.5 % DSPC

28.5 % SAPE

3 % PG-PE

5 % SAPS

64.5 % DSPC

29.5 % SAPE

1 % PG-PE



 

263 

 

 

Figure 10.5: Replacement of DSPC/SAPE with 5, 10, 15 or 30 % PG-PEs does not 

significantly enhance thrombin generation in vitro. DSPC and SAPE were replaced with 

either 5, 10, 15 or 30 % PG-PE and tissue factor-dependent thrombin generation 

determined, as described in Materials and Methods, Section 2.2.13. The amount of DSPC, 

SAPS and PG-PE is varied according to the labels on the figure, but the percentage of PS 

was maintained throughout. Data from three independent experiments (n = 3, mean ± 

SEM). Not statisticaly significant, using ANOVA and Bonferroni Post Hoc Test. 
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10.3 Discussion 

In this chapter, two different studies were described. In the first, esterification of PGE2 to 

lysophospholipids was assessed using rat liver microsomes. In the second study, the role 

of PG-PEs in thrombin generation was investigated using liposomes. Whilst the data in 

these unrelated studies were largely negative, they allowed some key questions to be 

addressed (e.g. esterification of PGE2 into phospholipids and PG-PE function). 

In the first study, I demonstrated that AA was efficiently esterified into lyso PE/PC 

(Figures 10.1 and 10.2), however, PGE2-PE formation was not detected. Previous studies 

have shown that CoA independent transacylation enzymes that catalyse ether lipid 

coupling are expressed in platelets but not in rat liver microsomes (Yamashita et al., 

1997). This suggests that different tissues and cells are likely to contain very distinct set of 

enzymes involved in fatty acid acylation (Aldrovandi et al., 2013). Furthermore, specific 

acyltransferases may have restricted selectivity for lysophospholipid acceptors. This 

hypothesis is supported by studies demonstrating the absence of activity with alkenyl-

glycerophosphocholine by liver microsomal preparations that are active with acyl-

glycerophosphocholine (Waku & Lands, 1968). The structural difference between AA and 

PGE2 might influence the lysophospholipid acceptance. Future studies using platelet 

microsomes may generate PGE2-PE in vitro. 

In a separate study, I showed that when small amounts of DSPC/SAPE were replaced with 

PG-PEs, thrombin generation was not significantly elevated (Figures 10.4 – 10.5). 

Although the data presented in this chapter have not confirmed the role of PG-PEs in 

coagulation, this does not exclude their function in haemostasis. PG-PEs may act 

intracellularly as second messenger signalling lipids, similarly to DAG that triggers the 

activation of PKC and leads to powerful platelet activation responses, such as shape 

change, aggregation and secretion (Martin, 2001; Rittenhouse, 1996). Thus, PG-PEs could 

act as mediators of signal transduction during platelet activation. It is hoped that in 

future, generation of pure PG-PE standards will aid in elucidation of the function of these 

OxPLs. 
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Chapter 11 
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General Discussion 

Initially, PGs were considered to only exist as free acid mediators. However, evidence is 

now emerging that they may also be attached to other functional groups including 

phospholipids and glycerol (Kozak et al., 2000; Kozak.et al., 2002; Aldrovandi et al., 2013). 

Although formation of PGE2-G/PGD2-G and PGE2-EA/PGD2-EA via COX-2 has been 

reported, COX-1 had not been considered as a source of complex oxidised lipids and had 

only been shown to generate free acid mediators. In the present study, I demonstrated, 

with the use of a targeted lipidomic approach, that agonist-activated human platelets 

generate families of OxPLs via COX-1. These comprise a group of specific lipids, namely 

PGE2, PGD2 and two structurally distinct prostaglandin-like molecules (PGb and PGc), 

attached to four PE species (16:0p/, 18:1p/, 18:0p/ and 18:0a/). PGb and PGc were also 

detected as free eicosanoids and their structures remain to be characterised. 

Nevertheless, comparison of PGb and PGc MS/MS spectra to known eicosanoid standards 

revealed that these are oxidised fatty acids that have not previously been described in 

either platelets or other human cells. Hence, a total of sixteen novel OxPLs and two 

previously undescribed eicosanoids were identified in lipid extracts from thrombin-

activated platelets. They are rapidly formed (2 – 5 minutes) through a highly coordinated 

sequence of receptor and intracellular signalling pathways, in response to physiological 

agonists. Therefore, the studies presented herein define a new group of OxPLs and COX-1 

products. It is also the first demonstration of the involvement of COX-1 in the formation 

of OxPLs by an agonist-activated cell type. 

Esterified prostaglandins belong to a growing family of enzymatically-generated OxPLs 

that have been described in platelets and other circulating immune cells (Hammond et 

al., 2012; Bochkov et al., 2010; Clark et al., 2011; Maskrey et al., 2007; Morgan et al., 

2009; Morgan et al., 2010; Thomas et al., 2010). To date, all were believed to be 

generated enzymatically by LOXs, including families of PE and PC that contain 12-HETE or 

14-HDOHE formed by agonist-activated human platelets (Thomas et al., 2010; Morgan et 

al., 2010). In addition, esterified 5-HETEs have been characterised in human neutrophils, 

while 12/15 LOX-derived PE-esterified HETEs and KETEs have been described in human 
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monocytes and murine macrophages (Maskrey et al., 2007; Clark et al., 2011; Hammond 

et al., 2012). Thus, the work presented herein extends this research by showing that 

other oxidised fatty acids can also be esterified into lysophospholipids. 

Quantification of total PGE2/D2-PEs revealed that thrombin-activated human platelets 

generate approximately 28 pg/2 x 108 cells. This indicates that less than 1 % of the total 

PGE2 and PGD2 synthesised as free eicosanoids are incorporated into phospholipids. It is 

postulated that the amount of esterified PGs in platelets may be limited by a number of 

different mechanisms. Levels of PGE2/D2-PEs are considerably lower than 12-HETE-PEs (6 

ng/4 x 107 platelets) (Thomas et al., 2010). This may be due to the lower amount of free 

PGE2/D2 (6.2 ± 0.3 ng/2 x 108 platelets, described in Chapter 4) compared to free 12-HETE 

(65.5 ± 17.6 ng/4 x 107 platelets) being generated by activated platelets, assuming that 

LC-FACL/LPLAT enzymes have the same affinity for both free PGE2/D2 and free 12-HETE 

(Thomas et al., 2010). 

Furthermore, lyso PE acyltransferase (LPEAT)s capable of esterifying PGE2 might only be 

expressed at low levels in platelets. For example, LPEAT2 is expressed at high levels in 

mouse and human brain and poorly expressed in lung and liver (Cao et al., 2008). 

Therefore, PG-PEs may be formed at significantly higher levels in other cells or tissues, 

including the brain where both COX and LPEAT are expressed (Cao et al., 2008; Chen & 

Bazan, 2005). 

Alternatively, the amount of PG being esterified in platelets could be limited by carrier-

mediated PG transporters, such as the multidrug resistance protein 4 (MRP4). Studies 

have shown that MRP4 is highly expressed in platelets and functions as a PG efflux 

carrier, mediating PGE2 release (Reid et al., 2003; Jedlitschky et al., 2004). In platelets, the 

rate of PG efflux may potentially be faster than esterification, resulting in lower levels of 

intracellular PGE2 available for FACL/LPLATs. Future studies could include investigating 

whether inhibition of MRP4 in platelets enhances PGE2/D2-PE formation.  

Unlike free PGs that are secreted, esterified prostaglandins remain membrane-

associated, indicating that they are likely to act locally, at the platelet surface or close to 

the plasma membrane. Due to their shape and polarity, PGE2 and PGD2 attached to PEs 
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are expected to protrude from platelet membranes becoming accessible to cell surface 

receptors through which they may signal, in a similar fashion to free PGs. Li and 

colleagues demonstrated that non-enzymatically formed OxPAPC and its component 

phospholipid 1-palmitoyl-2-epoxyiso-prostane E2-snglycero-3-phosphorylcholine (PEIPC), 

which accumulates in atherosclerotic lesions, can activate PG receptors, specifically EP2 

and DP receptors (Li et al., 2006). They also observed that the level of activation of EP2 by 

OxPAPC was comparable to that of PGE2 and both OxPAPC and PEIPC compete for PGE2 

binding to the receptor (Li et al., 2006). Furthermore, in 1976, Kunze and co-workers 

synthesised PGE1-PE and PGE2-PE adducts in vitro and compared their effects to the 

corresponding free PGE1 and PGE2 (Kunze et al., 1976). However, these compounds are 

distinct from PGE2-PE formed by platelets. They were chemically synthesised by linking 

the carboxylic group of PGE1 or PGE2 with the PE amine group, whilst in platelets, PGE2 is 

esterified at the sn2 position of the glycerol backbone. Nevertheless, Kunze 

demonstrated that chemically synthesised PGE1-PE and PGE2-PE mimic the effects of PGE1 

and PGE2 on isolated smooth muscle preparations, blood pressure and uterine activity, 

suggesting that the PGE2-PE adduct was functionally indistinguishable from free PGE2 

(Kunze et al., 1976). Although PGE2-PEs generated by platelets are structurally distinct 

from chemically synthesised PGE2-PEs adducts, this may not affect the binding of platelet-

derived PGE2-PE to EP receptors. 

Alternatively, PGE2-PE and PGD2-PE may signal through a distinct set of receptors, 

separate from the PG receptors that mediate the effects of PGE2 and PGD2. A study by 

Nirodi et al demonstrated that PGE2-G, one of the COX-2 metabolites of 2-AG, triggered 

intracellular calcium mobilisation in a PGE2-independent manner in RAW264.7 murine 

macrophage-like cells (Nirodi et al., 2004). Furthermore, PGE2-G increased the frequency 

of miniature inhibitory postsynaptic currents in cultured hippocampal neurons, whereas 

either 2-AG or PGE2 caused a decrease (Sang et al., 2006). In addition, Sang and co-

workers showed that PGE2-G potentiates excitatory glutamatergic synaptic transmission 

and produces neurotoxicity independently of endocannabinoid or prostanoid receptors 

(Sang et al., 2007). Therefore, PGE2-PEs and PGD2-PEs can display an array of biological 

actions that are either distinct or very similar to their free acid analogs. Once sufficient 
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quantities of PGE2-PE and PGD2-PE can be generated, the affinity of these lipids for PG 

receptors will be investigated. Future work could also include investigating whether PG-

PEs are externalised in human platelets. This would help to elucidate whether the actions 

of PG-PEs take place at the platelet surface or close to intracellular membranes. 

Formation of PG-PEs may be increased in atherosclerotic lesions and other sites of 

chronic inflammation, where these may facilitate the recruitment of inflammatory cells. 

Growing evidence now suggests that OxPLs and PGE2 receptor signalling is involved in 

atherosclerosis. For example, OxPAPC and its component PEIPC activate endothelial cells 

to bind monocytes via the EP2 receptor (Li et al., 2006). Activation and binding of 

endothelial cells to monocytes, results in monocyte entry into the vessel wall where they 

take up lipids, forming foam cells, a common event in atherogenesis. PGE2 has also been 

reported to contribute to atherosclerosis, mediating inflammatory cytokine production, 

such as IL-1β and IL-6, via EP2 and EP4, which are expressed in atherosclerotic lesions 

(Ricciotti & FitzGerald, 2011). It is plausible that PG-PEs may also signal through EP 

receptors in atherosclerotic lesions mediating similar pro-inflammatory effects. 

Studies conducted in collaboration with Dr Robert Murphy, University of Colorado, USA, 

suggest that free PGc, a novel COX-1 product is 8-hydroxy-9,11-dioxolane eicosatrienoic 

acid (DXA3), that until now  has only ever been described as a product of air oxidation of 

AA (Yin et al., 2003). Initial studies indicate that DXA3 is formed following conversion of 

AA into 11-hydroperoxyl radical via COX-1 (Hinz et al., unpublished data 2013). The 

cyclooxygenase reaction is believed to begin with the tyrosyl radical abstracting a 

hydrogen from AA at carbon 13 to form an arachidonyl radical. The resulting radical 

migrates to carbon 11. This is followed by sequential addition of O2 at carbon 11 to 

generate an 11R-hydroperoxyl radical. This is subsequently released by COX-1 and a 

dioxolane ring is formed through cyclisation of carbon 11 to carbon 9. The radical is then 

delocalised over carbon 8 and an O2 is added forming an 8-hydroperoxyl radical, which is 

reduced forming a hydroperoxide. In the final stage, the hydroperoxide is reduced, 

possibly by a glutathione peroxidase, leading to DXA3 formation. Additional experiments 

are currently underway to confirm this hypothesis. 
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In conclusion, this is the first study demonstrating formation of OxPLs via COX-1 in 

platelets. They form through a coordinated sequence of receptor and intracellular 

signalling pathways. The identification of these new metabolites in platelets suggests 

additional mechanisms regulating platelet function and might be a distinct target for 

modulation in platelet-dependent pathologies. 
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