

TRANSITIONS IN THE UK GAS NETWORKS: PAST EXPERIENCES & FUTURE CHALLENGES

Peter Pearson Director, Low Carbon Research Institute Cardiff University, UK

13th European IAEE Conference Hilton Duesseldorf, 19 August 2013

A Contested Transition from Natural Gas?

- Several transitions in UK gas networks since early 1800s
- UK gas challenged by role in ongoing low carbon transition
- UK pathways to meet 80% GHG cuts by 2050 suggest
 - Low-pressure gas mains networks might need decommissioning by 2050
 - A need to go from gas as a heating fuel, to
 - » Electric heat pumps, biomass boilers, etc; and/or
 - » Gas decarbonisation (inject biogas; inject/ convert to H2)
- None of these alternatives are simple or costless
- So how has the industry changed in the past?
- Does the natural gas network have a future?

Outline

- Transitions in the UK gas industry & networks
- Implications of the UK's low carbon transition
- Governance & 3 Key Actor Groups
 - Market, Government & Civil Society
- Past responses by the gas industry
- Branching points in the town (coal) gas regime
- Gas and the low carbon transition

- Development of the coal gas lighting industry
 - Helped by British scientific knowledge & mechanical skills & growing coal-based economy
- 1790s experiments by Lebon & Murdoch (Boulton & Watt)
 - 1805: installations in UK cotton mills (Murdoch; Clegg)
- Gas Light & Coke Company (1812)
 - Built path-breaking integrated, tightly-coupled *network* in London, before the railways
 - By 1820, 120 miles of mains, supplying 30,000 lamps
 - Drew on experience, legal forms & models of existing networks (canals & water supply)
 - Gas supplies in several cities by 1819

- Transition to widespread supply in town networks
 - 1826: supply in almost all towns with >10,000 people
- Regulation: Gasworks Clauses Acts
 - 1847: dividend control;
 - 1871: obligation to supply all consumers on demand
- 1881 professional Gas Institute founded
- By 1882, 490 private & municipally-owned firms
 - Seeking profits or revenue

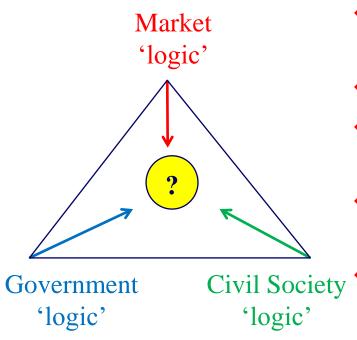
- 2nd Transition: the creation of new markets for manufactured gas, in a market-led transition
 - Pressures on regime actors: new competition from incandescent electric light, low load factors, negative customer perceptions
 - Industry broadened customer base (hire purchase & pre-pay slot meters)
 - Widened services from lighting to cooking & heating
 - Eventually adopted more efficient Welsbach incandescent mantle
- Customers tripled to 7 million by 1914; growing working class users

- 3rd Transition: growth, fragmentation & 'incoherence'
- By World War II, 800 private & municipal firms supplying 'town gas'
- By late 1930s: largest in Europe (11 million customers) but precariously competitive
- Industry fragmented: small scale firms & uncoordinated relative to electricity
- 1941: senior industry figure called it 'incoherent'; must
 - Expand or be left with 'limited & costly supply of gas'
 - Struggling to compete with electricity in the home & coal, coke & oil in commerce & industry
 - And with a costly feedstock (coal)

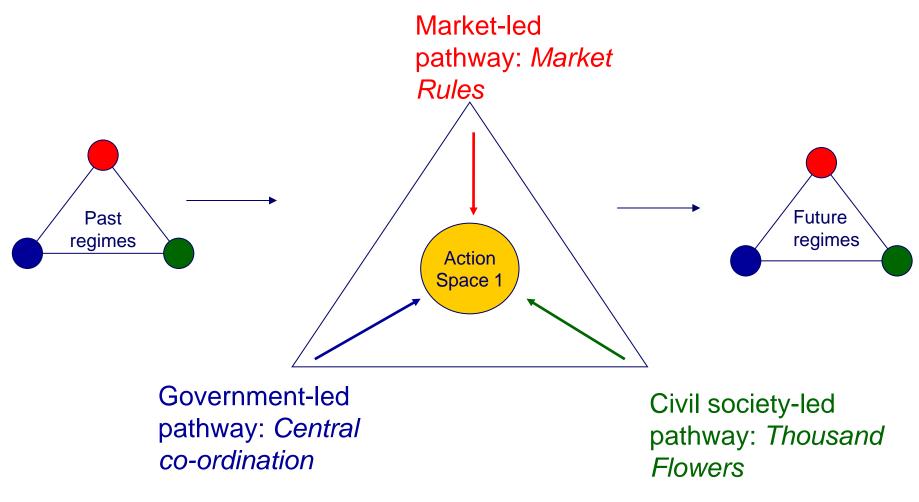
- 1948 nationalisation, reorganisation & new processes
- State-owned company, led by Gas Council, rationalised industry structure with Area Boards & vertical integration
- Experimented with niche technologies:
 - Lurgi coal gasification, reforming oil & imported LNG (new pipeline to deliver regasified LNG to Area Boards)
- 1966: bold move to new North Sea natural gas
 - Reorganised industry & actors, developed terminals & national gas grid from the LNG 'backbone'
- Challenging 10-year conversion of appliances of 6 million consumers' by 1977

- Privatisation, re-regulation & gradual liberalisation
- 1987: UK's 1st major energy privatisation
- British Gas sold as vertically integrated monopoly in transmission, distribution & supply of gas
- New regulator appointed (Ofgas)
 - Gradual unbundling & competition: British gas 'demerged' in 1997 (Centrica/ Transco)
- 1996: Network Code for control & regulation of transmission, distribution & supply
- From 1998: interconnectors to Belgium, the Netherlands & Norwegian gas fields.

- Gas challenged by role in UK's low carbon transition
- UK pathways to meet 80% GHG targets for 2050 suggest:
 - Low-pressure gas mains networks might need to be decommissioned by 2050
 - & need to go from gas as heating fuel to
 - Electric heat pumps, biomass boilers, etc.,
 - Or gas decarbonisation (e.g. biogas injection; injection or conversion to hydrogen).
- None of the alternatives to gas are simple or costless
- Does the natural gas network have a future?
- How might the industry respond?


- A bigger, more complex role for public policy & incentives than in the decades after gas privatisation in 1987
 - Without the advantages of state ownership & control
- Raises issues of who might fund the decline of the natural gas network
 - and with what incentives
- And will there be recompense for any stranded assets?
 - In the transition to natural gas, compensation didn't arise for stranded town gas production assets when industry state-owned
- So the industry's governance matters in a system whose governance is changing

Action-Space Approach to Governance – 3 Key Actor Groups: Market, Government & Civil Society


Source: Jacquie Burgess & Tom Hargreaves – Transition Pathways Project (see Foxon, T.J. 2013)

- Choices depend on actors' competing 'logics': messy, dynamic, interactive
- Action-space maps shifting relationships
- Via their interactions, each actor tries to 'enrol' the others in their logic
- The dominant actor i.e. best 'enroler' defines that period's action-space
 - Influencing the pathway & its branching points
- Recently we've seen moves from the market towards the government logic – EMR, etc.
- And questions about role of civil society, especially in the heat transition

LCRI LOW CARBON RESEARCH INSTITUTE

Network Closure

- Canals: often bought up by railways; used to help construct them; then loss of trade (now reinvented for leisure)
- Stagecoaches killed by railways
- Network adaptation, including hybridisation
- Networks have managed to do this
 - Telecomms
 - » Service: telegraph > telephone > internet & mobiles
 - » Infrastructure: copper cables > fibre optics, radio waves & phone masts
 - Railways (loss of freight)
 - Gas: post WWII response to costly feedstock (coal) and growing competition from electricity & oil => natural gas

- The 'sailing ship' effect or 'last gasp' effect of obsolescent technologies
 - Where competition from new technologies stimulates improvements in incumbent technologies/industries
- Examples (sometimes with hybridisation)
 - sailing ship improvements after competition from steam ships
 - Eventual adoption of Welsbach gas mantle in response to incandescent electric lamps (late C19)
 - Carburettor enhancements in response to fuel injection
 - Hybrid electric/ICE vehicles
 - Disk drives with SS flash memory

- As well as responding with performance enhancements, high carbon actors also lobby to resist institutional changes that favour low carbon technologies
- Example: efforts of large utilities in Germany in the 1990s to lobby for the repeal of the renewable energy FiTs
- So sailing ship and last gasp effects can act to delay or weaken low carbon transitions and network decline
- Note: the threat here is from low carbon technologies promoted by government rather than purely by the market
- As yet not all such technologies have attributes that are superior &/or cost-competitive with incumbents
- Placing incumbents in a relatively strong position to respond
 & compete

- The town gas industry responded to 2 challenges under two governance forms
- Late C19 response to threat from incandescent light
 - Profit oriented companies broadened customer base (hire purchase, slot meters, etc.)
 - Developed range of services: cooking & heating markets
- Post WWII challenge of expensive feedstock (coal) and growing competition from electricity, oil & coal
 - State-owned company experimented with Lurgi process, reforming oil & importing LNG
 - Eventual bold move to N. Sea natural gas: major reorganisation, network development & conversion of millions of appliances

- Pathways reflect many decisions by interacting actors along them
- A branching point is a key decision point at which actors' choices, in response to internal or external pressures, determine whether& how the pathway is followed.
- Pathways & branching points are emergent properties so actors may not consciously pursue a branch or pathway but address particular challenges as they arise
- Path dependence literature argues that choices at one point may constrain later choices.
- We looked at branching points for two phases of the town gas industry

- Pressures on regime after 1880
 - competition from elec. light, low load factors, negative customer perceptions
- By 1914, regime had developed a wider range of services
- Gas customers tripled to 7 million; many more working class users
- Transition led by actors with a market logic: the private & municipal firms
- Government had limited role, setting regulatory context without promoting or discouraging the changes
- Civil society actors responded by renting appliances, using slot meters & gas mantles

Branching points in the town gas regime, 1877– 1914

Choices made at branching points	Outcome for Transition Pathway
Branching point 1: Perceived need to pro supplied by gas	mote and increase the range of energy services
To organise trade exhibitions to promote gas appliances (ca. late 1870s)	Start of increased emphasis on advertising and promotion of appliances – shift towards supplying more varied services
To organise the 1882-3 gas exhibition	Increased emphasis on advertising amongst undertakings
To introduce hiring of appliances (taken up widely in 1880s)	Continued the shift towards more varied services
Branching point 2: Perceived need to bro	aden the customer base
To introduce prepayment meters (from 1889)	Shifted regime to broaden customer base; continued shift to more varied services
Branching point 3: Perceived need to con	npete on price and quality
To introduce incandescent gas mantles (from 1898)	Strengthened competitive position of gas light, so regime continued to supply this service
Jointly mounting a legal fight against the holder of the British Welsbach mantle patent (1901)	Strengthened competitive position of gas light, so stayed in lighting market

- The government-led nature of the transition enabled
 - high level of co-ordination between actors
 - & imposition of change on unwilling actors, e.g. householders
- To achieve a transition that government & industry actors agreed would be socially beneficial
- At key earlier points, the system had allowed niche experimentation in alternative sources of gas
- Which facilitated the eventual transition to natural gas

4th Transition: branching points in the state-led transition to natural gas, 1948–1977

Choices made at BP	Outcome for the Transition Pathway	
Branching Point 1: Perceived need to reduce cost in response to pressures from higher coal costs & competition from		
electricity, coal & oil		
Promotion of central & space heating (1960s)	Reinforcement of incumbent regime, creation of new markets; increase pressures on production side, esp. for Metropolitan Boards	
Introduction of Lurgi process (1960s)	Niche technology for local problems. Internal adaptation, renewal & reconfiguration	
Introduction of oil gasification processes (1960-1970)	Re-alignment of the regime/dominant technology in the late 1960s	
Early experimental LNG transportation (1957-1960)	Experimental phase important for enrolment of key actors to wider scale use of LNG	
LNG pipeline (1961)	Niche technology for local problem & critical infrastructure. Pathway reconfiguration through hybridisation	
North Sea Exploration and search for natural gas (mid 1960s and 1970s)	Landscape pressure on the incumbent regime. Technological substitution	
Branching Point 2: Perceived opportunity to respond to the discovery of North Sea gas		
Gas Council monopsony in UK nat. gas regime (mid 1960s)	Reinforced the centralisation of the regime & the state-led transition	
Conversion designed as single operation without intermediate phase or period (1966)	Conversion to natural gas (1967-1977). Facilitated & provided a fast pace to the 'technological substitution'	
Pilot Schemes for local conversion (1967- 1977)	Facilitated 'technological substitution': developing expertise & en-rolling new actors; persuading general public to support new regime.	
'Guaranteed Warmth' campaign (1969)	Important for the enrolment to the new regime	
Commissioning of the Morton Report (1970)	Important for the enrolment of new actors (the general public)	
Gas Act 1972	Reinforced centralisation of the regime & the state-led transition	

Source: Arapostathis et al. 2013, Foxon et al. 2013, Transition Pathways Project

- Much depends on how quickly heat provision changes
- Can natural gas companies re-invent themselves & move into new markets?
 - Does a gas company have to stay a gas company?
 - Can it become an energy services company?
- Can pipes & other assets be used for something other than natural gas?
 - Used for low/zero carbon gas (CCS, biogas, hydrogen) & CO2 transport?
 - Who would do it? How to fund it?

Issues in the Heat Changeover

- Issues for production & delivery of new heat
 - Supply chains; retrofits?
- Issues for consumers
 - How much change in home infrastructure?
 - How disruptive? How costly?
 - Is heat delivered in the same kind of way?
 - Do they seem to be getting broadly the same thing?.
 - Will service attributes change?
 - Will they like what they are getting?
- Compare with the natural gas conversion experience

- Much depends on speed/ nature of moves to renewable heat & success of CCS
- Does network ultimately vanish, its assets sold off or transmogrify into an altered, attenuated entity?
- Differences between fate of infrastructure/ services & fate of companies?
- Spatial path dependence regional/ local impacts of network decline (major ports can die – e.g. Cardiff)?
- From its origins the gas industry has proved remarkably resilient & willing to experiment & adapt...
- Governance crucial: not just interplay between government & markets but their interactions with civil society (& there's the shale gas story...

Sources

Note: This presentation draws on research by the author & colleagues in the *Realising Transition Pathways project,* funded by EPSRC (Grant EP/K005316/1). The author is responsible for all views contained in the presentation

- Arapostathis, S, Carlsson-Hyslop, A, Pearson, P J G, Thornton, J, Gradillas, M, Laczay, S & Wallis, S, (2013), 'Governing transitions: Cases and insights from two periods in the history of the UK gas industry.' *Energy Policy*, 52, 25–44. <u>http://dx.doi.org/10.1016/j.enpol.2012.08.016</u>
- <u>Arapostathis, S, , Foxon, T.J. & P.J.G. (2013), 'UK natural gas network integration in the making, 1960-2010:</u> transitional uncertainties and uncertain transitions', under review at *Environmental Innovation and Societal Transitions*.
- Foxon, T.J., (2013) 'Transition pathways to a low carbon electricity future', Energy Policy 52, 10-24. <u>http://dx.doi.org/10.1016/j.enpol.2012.04.001</u>
- Davies, L, Dooley, B and Foxon, T J (2013), "A comparison of low carbon transition pathways and DECC 2050 scenarios", Realising Transition Pathways project working paper.
- Foxon, T.J, Pearson, P.J.G., Arapostathis, S., Carlsson-Hyslop, A. & J. Thornton (2013). 'Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future', *Energy Policy* 52, 146–158. <u>http://dx.doi.org/10.1016/j.enpol.2012.04.030</u>
- Roger Fouquet, Peter J.G. Pearson (2012), 'Past and prospective energy transitions: Insights from history,' *Energy Policy*, 50, 1–7. http://dx.doi.org/10.1016/j.enpol.2012.08.014
- P.J.G. Pearson, T.J. Foxon (2012), 'A low carbon industrial revolution? Insights and challenges from past technological and economic transformations.' Energy Policy, 50,117-127. <u>http://dx.doi.org/10.1016/j.enpol.2012.07.061</u>
- Pearson, P & J Watson (2011), UK Energy Policy, 1980-2010 A history and lessons to be learned, IET and Parliamentary Group for Energy Studies, London. <u>http://www.theiet.org/factfiles/energy/uk-energy-policy-page.cfm</u>
- Tomory, L (2012), *Progressive Enlightenment: the origins of the gaslight industry 1780-1820*, The MIT Press, Cambridge, Mass. & London
- Turnheim, B.,Geels,F.W.,2012.Regime destabilisation as the flip side of energy transitions: lessons from the history of the British coal industry (1913–1997). *Energy Policy*, 52. <u>http://dx.doi.org/10.1016/j.enpol.2012.04.060</u>.
- Williams, T. I., 1981. A History of the British Gas Industry. Oxford University Press, Oxford

