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Abstract

In the past, the standard method of analysing temperature and polarization anisotropies imprinted into
the Cosmic Microwave Background by large-scale structure was to use approximate perturbative tech-
niques applied to a Friedmann-Robertson-Walker model. Instead, this thesis researches models based on
exact inhomogeneous solutions of the Einstein field equations, such as the Lemâıtre-Tolman (spherically
symmetric with dust source) and Szekeres models (non-symmetric), to see whether there might be effects
arising from large inhomogeneities that are missed in the standard approach.
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Chapter 1

Introduction

In this chapter we discuss a number of theoretical techniques, some of which will be relevant for later work
in this thesis. We give only a few technical details since a more complete approach is covered in many
standard reference works. We also discuss the motivation behind using exact inhomogeneous cosmologies
for modelling cosmic microwave background anisotropies and large-scale structure.

1.1 THEORETICAL OUTLINE

For the purposes of this work we assume the validity of general relativity as a description of spacetime. In
particular, we assume that the relationship between curvature and the matter content of the Universe is
described by the Einstein field equations,

Gµν = 8πGTµν + Λgµν , (1.1)

where Gµν is the Einstein curvature tensor, Tµν is the matter energy-momentum tensor, gµν is the metric
tensor with signature (+ − −−) and Λ is the cosmological constant.The Friedmann-Robertson-Walker
(FRW) universes, consisting of a foliation of maximally symmetric 3-spaces possessing six spacelike Killing
vector fields and one timelike vector field, are now well understood. For completeness we write the FRW
metric in the form

ds2 = dt2 − S2(t)dσ2, (1.2)

where dσ2 is the metric of a three-space of constant curvature and is independent of time. These spaces
can possess positive, negative or zero curvature and, by a rescaling of the function S , one can normalize
these curvatures k to be + 1, − 1 or 0 respectively. Then the metric dσ2 can be written [1],

ds2 = dt2 − f2(r)(dθ2 + sin2 θdφ2), (1.3)

where

f(r) =

 sin r if k = +1
r if k = 0

sinh r if k = −1
(1.4)

and k represents spatial curvature as being positive, flat or negative for k = +1, 0,−1 respectively. Here
we take c = 1.

The FRW metric can also be written in the form

ds2 = dt2 − a2(t)

(
1

1− kr2
dr2 + r2(dθ2 + sin2 θdφ2)

)
, (1.5)

which describes a homogeneous, isotropic and expanding universe. Substitution of (1.5) into the Einstein
field equations yields the temporal component Gtt of the Einstein curvature tensor as

Gtt =
3

a2
(k + ȧ2) = 3

(
k

a2
+H2

)
, (1.6)
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where

H =
ȧ

a
(1.7)

is the Hubble parameter measuring the expansion rate of the Universe as a function of time, and the
overdot represents ordinary differentiation with respect to time. The spatial components are equivalent
and given as

Grr = Gθθ = Gφφ = −2
ä

a
− k

a2
−H2. (1.8)

The stress-energy tensor Tµν is that of a perfect fluid, so that

Tµν = diag(ρ, P, P, P ), (1.9)

where ρ is the energy density and P is the pressure. Equations (1.6) and (1.8) can be combined with (1.9)
to yield

3

(
k

a2
+H2

)
+ Λ = 8πρ, (1.10)

2
ä

a
+

k

a2
+H2 + Λ = −8πP. (1.11)

These are known as the Friedmann equations. Construction of a cosmological model within a FRW
framework requires the solution of these. However, we also need to know how the density evolves with
time and hence we need the fluid equation

ρ̇ = −3H

(
ρ+

P

c2

)
. (1.12)

These equations therefore need to be solved simultaneously.

1.1.1 CRITERIA FOR A FRW LIMIT

Whilst the necessary conditions for a given metric to have a FRW limit are not always easy to apply, they
are [2]:

• The source must be a perfect fluid. Furthermore, any additional components of the energy-momentum
tensor must be set to zero.

• The rotation ω must be set to zero, so that

ωαβ = u[α;β] − u̇[αuβ] = 0, (1.13)

where uα is the velocity field of the fluid, the semicolon represents a covariant derivative with respect
to the subscript following it and square brackets around indices represent antisymmetrization. This
is equivalent to the existence of simultaneously comoving and synchronous coordinates.

• The acceleration must be zero. In synchronous and comoving coordinates, this condition has the
particularly simple form:

g00,i = 0 , i = 1, 2, 3, (1.14)

where the comma represents a partial derivative with respect to the subscript following it.

• The shear σ must be zero, so that

σαβ = u(αβ) − u̇(αuβ) −
1

3
θ(gαβ − uαuβ) = 0, (1.15)

where parentheses around indices represent symmetrization and θ = uα;α is the expansion scalar. In
synchronous and comoving coordinates, the condition σ = 0 is equivalent to:

u0gij,0 = 2
3θgij , i, j = 1, 2, 3. (1.16)
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• The gradients of the expansion scalar and matter-density must be collinear with velocity.

• The gradient of pressure must be collinear with the velocity field.

• The hypersurfaces orthogonal to the velocity field must have constant curvature.

• The Weyl tensor Cαβγδ must vanish, so that

Cαβγδ = Rαβγδ +
1

2
(gαδRγβ + gβγRδα − gαγRδβ − gβδRγα) +

1

6
(gαγgδβ − gαδgγβ)R = 0, (1.17)

where Rαβγδ is the Riemann tensor, Rαβ are the appropriate components of the Ricci tensor and R is
the Ricci scalar. This corresponds to a Petrov Type O classification and ensures that the spacetime
is conformally flat.

1.2 COSMOLOGICAL PERTURBATION THEORY

The goal of cosmological perturbation theory is to relate the physics of the early universe (e.g. inflation) to
CMB anisotropy and large-scale structure and to provide the initial conditions for numerical simulations of
structure formation. The physics during the period from the end of inflation to the beginning of nonlinear
gravitational collapse is complicated by relativistic effects but greatly simplified by the small amplitude of
perturbations. Thus, an essentially complete and accurate treatment of relativistic perturbation evolution
is possible, at least in the context of simple fluctuation models like inflation [3], [4].

The starting point for cosmological perturbation theory is the metric of a perturbed FRW spacetime,

ds2 =
(
g(0)
µν + g(1)

µν

)
dxµdxν = a2(τ)(−dτ2 + γij(~x)dxidxj + hµν(~x, τ)dxµdxν), (1.18)

where, in this section, we adopt the (− + ++) convention for the metric. Spatial coordinates take the
ranges 1 ≤ i, j ≤ 3, xi (or ~x for all three) is a comoving spatial coordinate, τ is conformal time, a(τ) is
the cosmic expansion scale factor, c is taken as unity and γij(~x) is the 3-metric of a maximally symmetric
constant curvature space. Conformal time is related to the proper time measured by a comoving observer,
i.e. one fixed at ~x, by dt = a(τ)dτ . For cosmological perturbation theory it is more convenient than proper

time. The metric perturbations are given by hµν = g
(1)
µν /a2.

1.2.1 SCALAR-VECTOR-TENSOR DECOMPOSITION

In linear perturbation theory, the metric perturbations hµν are regarded as a tensor field residing on the
background FRW spacetime. As a symmetric 4 × 4 matrix, hµν has 10 degrees of freedom. Because
of the ability to make continuous deformations of the coordinates, 4 of these degrees of freedom are
gauge (coordinate) dependent, leaving 6 physical degrees of freedom. A proper treatment of cosmological
perturbation theory requires clear separation between physical and gauge degrees of freedom.

The metric degrees of freedom in linear perturbation theory were presented by [5]. He presented the
scalar-vector-tensor decomposition of the metric. It is based on a 3 + 1 split of the components, which we
write as follows:

h00 ≡ −2ψ , h0i ≡ wi , hij = 2(φγij + Sij) , γijSij = 0. (1.19)

Here, γij is the inverse matrix of γij . The trace part of hij has been absorbed into φ so that Sij has only
5 independent components.

With the space-time (3 + 1) split, we use γij (or γij) to lower (or raise) indices of spatial 3-vectors and
tensors. For convenience, spatial derivatives will be written using the 3-dimensional covariant derivative
∇i defined with respect to the 3-metric γij ; it is a three-dimensional version of the full 4-dimensional
covariant derivative presented in general relativity textbooks. For example, if k = 0, we can choose
Cartesian coordinates such that γij = δij and ∇i = ∂/∂xi.
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The scalar-tensor-vector split is based on the decomposition of a vector into longitudinal and transverse
parts. For any three-vector field wi(~x), we may write

wi = w
‖
i + w⊥i , (1.20)

where
~∇× ~w‖ = ~∇ · ~w⊥ = 0. (1.21)

The curl and divergence are defined using the spatial covariant derivative, e.g. ~∇ · ~w = γij∇iwj .
The longitudinal/transverse decomposition is not unique (e.g. one may always add a constant to w

‖
i )

but it always exists. The terminology arises because in the Fourier domain w
‖
i is parallel to the wavevector

while w⊥i is transverse (perpendicular to the wavevector). Note that w
‖
i = ∇iφw for some scalar field

φw. Thus, the longitudinal/transverse decomposition allows us to write a vector field in terms of a scalar
(the longitudinal or irrotational part) and a part that cannot be obtained from a scalar (the transverse or
rotational part).

A similar decomposition holds for a two-index tensor, but now each index can be either longitudinal
or transverse. For a symmetric tensor, there are three possibilities: both indices are longitudinal, one is
transverse, or two are transverse. These are written as follows:

Sij = S
‖
ij + S⊥ij + STij , (1.22)

where
γjk∇kSij = γjk∇kS‖ij + γjk∇kS⊥ij . (1.23)

The first term in equation (1.20) is a longitudinal vector while the second term is a transverse vector.
The divergence of the doubly-transverse part, STij , is zero. For a traceless symmetric tensor, the doubly
and singly longitudinal parts can be obtained from the gradients of a scalar and a transverse vector,
respectively:

S
‖
ij =

(
∇i∇j − 1

3γij∇
2
)
φs , S⊥ij = ∇iS⊥j +∇jS⊥i . (1.24)

Now we have the mathematical background needed to perform the scalar-tensor-vector split of the
physical degrees of freedom of the metric. The ‘tensor mode’ represents the part of hij that cannot be
obtained from the gradients of a scalar or vector, namely STij . The tensor mode is gauge-invariant and
has two degrees of freedom (five for a symmetric traceless 3 × 3 matrix, less three from the condition
γjk∇kSTij = 0). Physically it represents gravitational radiation; the two degrees of freedom correspond to
the two polarizations of gravitational radiation. Gravitational radiation is transverse: a wave propagating
in the z-direction can have nonzero components hxx− hyy and hxy = hyx but no others. The tensor mode
STij behaves like a spin-2 field under spatial rotations.

The ‘vector mode’ behaves like a spin-1 field under spatial rotations. It corresponds to the transverse
vector parts of the metric, which are found in w⊥i and S⊥ij . Each part has two degrees of freedom. Although
we will not prove it here (see [3] for the details), it is possible to eliminate two of these degrees of freedom
by imposing gauge conditions (coordinate conditions). The synchronous gauge of [5] is one popular choice,

with w⊥i = w
‖
i = 0. Another choice is the ‘Poisson’ or transverse gauge [3] which sets S⊥ij = 0. In either case,

there are two physical degrees of freedom and they correspond physically to gravitomagnetism. Although
this effect is less well known than gravitational radiation or Newtonian gravity, it produces magnetic-like
effects on moving and spinning masses, such as the precession of a gyroscope in the gravitational field of
a spinning mass (Lense-Thirring precession).

The ‘scalar mode’ is spin-0 under spatial rotations and corresponds physically to Newtonian gravitation

with relativistic modifications. The scalar parts of the metric are given by φ, ψ, w
‖
i , and S

‖
ij . Any two

of these may be set to zero by means of a gauge transformation. One popular choice is w
‖
i = S

‖
ij = 0,

also known as the conformal Newtonian gauge. It corresponds to the scalar mode in the transverse gauge,
defined by the gauge conditions

γij∇iwj = 0 , γjk∇kSij = 0. (1.25)
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This gauge in linearized general relativity is the gravitational analogue of Coulomb gauge in electromag-
netism, where the magnetic vector potential is transverse, ∇iAi = 0. In the gravitational transverse gauge,
wi is transverse and Sij is doubly transverse. This gauge is convenient for developing intuition although
not necessarily the best for computation. The variables (φ, ψ, w⊥i , STij) correspond to gauge-invariant
variables introduced by [6] as linear combinations of metric variables in other gauges.

In linear perturbation theory, the scalar, vector, and tensor modes evolve independently. The vector
and tensor modes produce no density perturbations and therefore are unimportant for structure formation,
although they do perturb the microwave background. Therefore, only the scalar mode will be considered
here.

The Einstein equations give the equations of motion for the metric perturbations in terms of the energy-
momentum tensor, the source of relativistic gravity. Here we consider the case of a perfect fluid (or several
perfect fluid components combined), for which

Tµν = (ρ+ p)V µV ν + pgµν , (1.26)

where ρ and p are the proper energy density and pressure in the fluid rest frame and V µ is the fluid
4-velocity.

As with the metric, Tµν is split into time and space components. The conformal scale factor a2 cancels
using mixed components, giving

T 0
0 = −ρ(~x, τ) = −[ρ̄(τ) + δρ(~x, τ)], (1.27)

T 0
i = [ρ̄(τ) + p̄(τ)]vi(~x, τ) = −[ρ̄(τ) + p̄(τ)]∇iW, (1.28)

T ij = [p̄(τ) + δp(~x, τ)]δij , (1.29)

where ρ̄(τ) and p̄(τ) are respectively the energy (or mass) density and pressure of the FRW background
spacetime, vi = γijdx

j/dτ is the fluid 3-velocity (assumed nonrelativistic), and W is a velocity potential.
It is also assumed that the velocity field is irrotational or, if it is not, that the matter fluctuations are
linear so that the longitudinal and transverse velocity components evolve independently. This is a good
approximation prior to the epoch of galaxy formation. It is also assumed that the shear stress (the
non-diagonal part of T ij ) is negligible compared with the pressure.

When the stress tensor is isotropic, the Einstein equations in transverse gauge imply that the two scalar
potentials φ and ψ are equal [3] and the metric takes the simple form

ds2 = a2(τ)[−(1 + 2φ)dτ2 + (1− 2φ)γijdx
idxj ]. (1.30)

This is a simple cosmological generalization of the standard weak-field limit of general relativity, which is
recovered by setting a = 1 and γij = δij .

Given the stress-energy tensor, we can now obtain field equations for φ(~x, τ) using the Einstein equa-
tions. For the perturbations, we obtain

(∇2 + 3k)φ = 4πGa2[δρ+ 3H(ρ̄+ p̄)W ], (1.31)

∂τφ+Hφ = 4πGa2(ρ̄+ p̄)W, (1.32)

∂2
τφ+ 3H∂τφ− (8πGa2p̄+ 2k)φ = 4πGa2δp, (1.33)

where k is the curvature constant. There are more equations than in Newtonian gravity because the
Einstein equations have local energy-momentum conservation built into them.

1.2.2 PERFECT FLUID MODEL

Here we present a simple model for understanding CMB anisotropy and large-scale structure. The matter
and energy content of the Universe is reduced to a vacuum energy (with ρν = Λ/8πG contributing to
the mean expansion rate but not to the fluctuations) and two fluctuating components, Cold Dark Matter
(CDM) and radiation (photons and neutrinos, the former coupled to baryons by electron scattering until
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recombination). The CDM and radiation are treated as perfect fluids, ignoring the free-streaming of
neutrinos and the diffusion and streaming of photons during and after recombination.

The fluid equations follow from local energy-momentum conservation, ∇µTµν = 0. For a perfect fluid,
with the scalar mode only (no vorticity and no gravitational radiation), the fluid equations in the metric
of equation (1.30) are

∂τρ+ 3(H − ∂τφ)(ρ+ p) +∇i[(ρ+ p)vi] = 0 (1.34)

and
∂τ [(ρ+ p)vi] + 4H(ρ+ p)vi +∇ip+ (ρ+ p)∇iφ = 0. (1.35)

These are familiar from Newtonian fluid dynamics, with some extra terms. The damping H terms arise
from Hubble expansion and the use of comoving coordinates. The ∂τ (φ) term in the continuity equation
(1.34) arises from the deformation of the spatial coordinates, i.e. the φδij contribution to the metric. The
flux term in (1.34) describes transport relative to the comoving coordinate grid, which is deforming when
∂τ (φ) 6= 0. The energy flux (or momentum density, they are equal) includes pressure in relativity because
of the pdV work done by compression. Equations (1.34) and (1.35) apply separately to each perfect fluid
component.

1.2.3 ADIABATIC AND ISOCURVATURE MODES

This section discusses the evolution of perturbations from the end of inflation (taken to be at τ = 0
for all practical purposes) through recombination using a two-fluid approximation. We approximate the
matter and energy content in the Universe as being two perfect fluids: CDM (a zero-temperature gas)
and radiation (photons coupled to electrons and baryons before recombination, plus neutrinos which are
approximated as behaving like photons). The net energy density perturbation is thus

δρ(~x, τ) = ρ̄c(a)δc(~x, τ) + ρ̄r(a)δr(~x, τ), (1.36)

where ρ̄c ∝ a−3 and, if we neglect the contribution of baryons, ρ̄r ∝ a−4. We neglect baryons in the
interest of economy, since this complicates the presentation without adding any essential new behaviour.
The relative density contrasts are defined as δc ≡ δρc/ρ̄c and δr ≡ δρr/ρ̄r.

The total pressure is

p(~x, τ) =
1

3
ρ̄r(a)(1 + δr) + pν , (1.37)

where pν = −ρν is the spatially constant negative pressure of vacuum energy (cosmological constant),
should any be present.

As we noted in the previous section, density perturbations couple gravitationally only to the scalar
mode of metric perturbations, and the scalar mode cannot generate transverse vector fields. As a result,
the peculiar velocity fields of CDM and radiation are longitudinal and are fully characterized by their
potentials Wc and Wr for CDM and radiation, respectively.

As a final simplifying assumption, we will assume that we are studying effects on distance scales less
than the curvature length |k|−1/2 = |Ω0− 1|−1/2H−1

0 , which is at least 5 Gpc and possibly infinitely large.
With these assumptions, we can linearize the fluid equations (1.34) and (1.35) for δ2

c � 1 and δ2
r � 1

to obtain

∂rδr =
4

3
∇2Wr + 4∂τφ, (1.38)

∂τδc = ∇2Wr + 3∂τφ, (1.39)

∂τWr =
1

4
δr + φ, (1.40)

∂τWc +HWc = φ. (1.41)

Equations (1.38)-(1.41) are coupled by gravity, which can be determined from the Poisson equation (1.31),
which becomes

∇2φ = 4πGa2[(ρ̄rδr + ρ̄cδc) +H(4ρ̄rWr + 3ρ̄cWc)]. (1.42)
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We can solve equations (1.38)-(1.42) most easily by expanding the spatial dependence in eigenfunctions

of the Laplacian ∇2. In flat space these are plane waves exp(i~k ·~x), and this is a good approximation even
if the background is curved. This approximation is valid for almost all applications except large angular
scale CMB anisotropy. Note that ~k is a comoving wavevector; the physical wavelength is 2πa/k.

By expanding the spatial dependence in plane waves, we now have a fourth-order linear system of ordi-
nary differential equations in time. We are free to define linear combinations of the variables (δc, δr,Wc,Wr)
as our fundamental variables. In terms of the mechanisms for generating primaeval perturbations, the most
natural variables are the metric perturbation φ and the specific entropy

η ≡ δp− c2sδρ
ρ̄cc2s

=
3

4
δr − δc, (1.43)

where

c2s ≡
dp̄/dτ

dρ̄/dτ
=

[
3

(
1 +

3ρ̄c
4ρ̄r

)]−1

(1.44)

is the effective one-fluid sound speed of the matter and radiation. Acoustic signals actually do not propagate
at this speed; they propagate with speed 3−1/2 through the radiation and they do not propagate at all
through CDM.

For a two-component radiation plus CDM universe, the solution of the Friedmann equation gives

y ≡ ρ̄c
ρ̄r

=
τ

τe
+

(
τ

2τe

)2

, (1.45)

τe ≡
(
aeq
Ωc

)1/2

H−1
0 =

19Mpc

Ωch2
. (1.46)

The radiation-dominated era ends and matter-dominated era begins at redshift 1 + zeq = a−1
eq = 2.5 ×

104Ωmh
2. A cosmological constant has no significant effect on y(τ) provided that, during the times of

interest, the vacuum energy density is much less than the radiation or cold dark matter density.
The fluid and Poisson equations can now be combined to give a pair of second-order ordinary differential

equations,
1

3c2s
∂2
τφ+

(
1 +

1

c2s

)
H∂τφ+

(
k2

3
+

1

4yτ2
e

)
φ =

η

2yτ2
e

, (1.47)

1

3c2s
∂2
τη +H∂τη +

k2y

4
η =

1

6
y2k4τ2

e φ. (1.48)

It is interesting to note that φ and η evolve independently aside from the source term each provides to
the other. The coupling implies that entropy perturbations are a source for the growth of gravitational
perturbations and vice versa.

For a given wavenumber k, there are two key times in the evolution of φ and η: the sound-crossing
time τ ≈ π/(kcs) and the time of matter-radiation equality at τ ≈ τe. For τ � τe, φ and η decouple and
they both have solutions that decay rapidly with τ as well as solutions that are finite as τ −→ 0. The
latter are conventionally called ‘growing modes’ while the former are called decaying. The growing mode
solution in the radiation era τ � τe is

φ(~k, τ) =
3

(ωτ)3
(sinωτ − ωτcosωτ)A(~k) +

τ

τe

[
1

(ωτ)4
(1− cosωτ − ωτsinωτ) +

1

2(ωτ)2

]
I(~k), (1.49)

η(~k, τ) = I(~k) + 9

[
lnωτ + C − Ci(ωτ) +

1

2
(cosωτ − 1)

]
A(~k), (1.50)

where ω ≡ k/
√

3 is the phase of acoustic waves in the radiation fluid, C = 0.5772 . . . is the Euler
constant, and Ci(x) is the cosine integral defined by

Ci(x) = C + lnx+

x∫
0

cost− 1

t
dt. (1.51)
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In equation (1.49) we have neglected all terms O(τ/τe) aside from the lowest-order contribution of I(~k) to
φ.

The general growing-mode solution contains two k-dependent integration constants, A(~k) and I(~k),
which represent the initial (τ → 0) amplitude of φ and η respectively. Also note that φ(τ → 0) 6= 0 only
for A 6= 0 and η(τ → 0) 6= 0 only if I 6= 0. These solutions are called, respectively, the ‘adiabatic’ (so-called
because the entropy perturbation η = 0 at τ = 0, although ‘isentropic’ would be more appropriate) and
‘isocurvature’ (so-called because φ = 0 at τ = 0) mode amplitudes. In addition, there are decaying modes
whose amplitude at τ = τe is negligible unless the initial conditions were fine-tuned or there are external
sources such as topological defects to continually regenerate the decaying mode. The solution of equations
(1.49) and (1.50) is valid only for inflation or other mechanisms that generate fluctuations exclusively in
the early universe, but not for topological defects.

As a result of reheating, inflation produces fluctuations with spatially constant ratios of the number

densities of all particle species. For CDM and radiation, for example, ρ
3/4
r /ρc = constant hence I = 0

and thus η = 0 until radiation pressure forces begin to separate the radiation from the CDM, which
takes a sound-crossing time or τ ∼ ω−1. Thus, although inflation produces the adiabatic mode of initial
fluctuations, the differing equations of state p(ρ) for the two-fluid system lead to entropy perturbations

proportional to the initial adiabatic mode amplitude A(~k); see (1.50).
Physically, the number density of particles of all species are proportional to each other in the adiabatic

mode as long as there has been too little time for particles to travel a significant difference via their
thermal speeds. However, the differing thermal speeds of different particle species (e.g. photons and
CDM) eventually cause the particle densities to evolve differently, so that the number density ratios are
no longer constant and the entropy perturbation is no longer zero.

First-order phase transitions, on the other hand, change the equation of state without moving matter
or energy on macroscopic scales, hence δρr + δρc = θc = θr = 0 initially implying φ = 0 initially but
η 6= 0. This isocurvature mode is characterized by the initial entropy perturbation amplitude I(~k). As
(1.49) shows, the isocurvature mode generates curvature fluctuations when the universe becomes matter-
dominated.

On small scales, kτ � 1, (1.47) and (1.48) may be solved using a WKB approximation. For our
purposes it suffices to take the ωτ � 1 limit of (1.49) and (1.50):

φ ≈ −3
cosωτ

(ωτ)2
A(~k) +

1

ω3τeτ2

(ωτ
2
− sinωτ

)
I(~k). (1.52)

The radiation density fluctuation scales as

δr ∼
k2φ

Ga2ρ̄r
∼ k2τ2φ, (1.53)

which oscillates in proportion to cosωτ for the adiabatic mode and grows in proportion to y ∼ τ/τe for
the isocurvature mode.

Note from (1.52) that the isocurvature mode induces oscillations in the potential with a π/2 phase shift
relative to the adiabatic mode. This shift translates into a shift in the positions of the acoustic peaks in
the CMB angular power spectrum.

1.2.4 CMB ANISOTROPY

This section presents a simplified treatment of CMB anisotropy, with the aim of highlighting the essential
physics without getting lost in all of the details. A more complete treatment can be found in [98].

The microwave background radiation is fully described by a set of photon phase space distribution
functions. Ignoring polarization (a few percent effect), all the information is included in the intensity or
in f(~x, ~p, τ), where fd3p is the number density of photons of conjugate momentum ~p at position and time
(~x, τ). The conjugate momentum is related to the proper momentum measured by a comoving observer,
~p/a, so that ~p = constant along a photon trajectory in the absence of metric perturbations.
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Remarkably, despite metric perturbations and scattering with free electrons, the CMB photon phase
space distribution remains blackbody (Planckian) to exquisite precision:

f(~x, ~p, τ) = fPlanck

(
E

kT

)
= fPlanck

[
p

kT0(1 + ∆)

]
, (1.54)

where T0 = 2.73 K is the current CMB temperature and ∆(~x, ~n, τ) is the temperature variation at position
(~x, τ) for photons travelling in direction ~n. The phase space density is blackbody but the temperature
depends on photon direction as a result of scattering and gravitational processes occurring along the line
of sight.

The phase space density may be calculated from initial conditions in the early universe through the
Boltzmann equation

Df

Dτ
≡ ∂f

∂τ
+
∂f

∂~x
· d~x
dτ

+
∂f

∂~p
· d~p
dτ

=

(
df

dτ

)
c

, (1.55)

where the right-hand side is a collision integral coming from nonrelativistic electron-photon elastic scat-
tering. In the absence of scattering, the phase space density is conserved along the trajectories

d~x

dτ
= ~n ≡ ~p

p
, (1.56)

1

p

dp

dτ
= −~n · ~∇φ+ ∂τφ, (1.57)

and
d~n

dτ
= −2[~∇− ~n(~n · ~∇)]φ. (1.58)

The procedure for computing CMB anisotropy is to linearize the Boltzmann equation assuming ∆2 � 1
[7]. Until recently, the temperature anisotropy ∆ was expanded in spherical harmonics and the Boltzmann
equation was solved as a hierarchy of coupled equations for the various angular moments [4]. [98] developed
a much faster integration method call CMBFAST based on integrating the linearized Boltzmann equation
along the observer’s line of sight before the angular expansion is made:

∆(~n, τ0) =

τ0∫
0

dχe−τT (χ)

[
−~n · ~∇φ+ ∂τφ+ aneσT (

1

4
δγ + ~ve · ~n+ pol.terms)

]
ret

, (1.59)

where τ0 is the present conformal time, χ is the radial comoving coordinate, subscript ‘ret’ denotes evalu-
ation using retarded time τ = τ0 − χ, δγ is the relative density fluctuation in the photon gas (δγ = δr in
the two-fluid approximation), ~ve is the mean electron velocity (i.e. the baryon velocity, which equals ~vr in
our two-fluid approximation), σT is the Thomson cross section, and the Thomson optical depth is

τT (χ) ≡
χ∫

0

dχ (aneσT )ret . (1.60)

Note that small terms (‘pol. term’) due to polarization and the anisotropy of Thomson scattering in (1.59)
have been left out.

The e−τT factor in (1.59) accounts for the opacity of electron scattering, which prevents us from seeing
much beyond a redshift of 1100, where τT ≈ 1. The CMB anisotropy appears to come from a thin layer
called the photosphere, just like the radiation from the surface of a star. The two gravity terms give the
effective emissivity due to the photon energy change caused by a varying gravitational potential. For a
blackbody distribution, if all photon energies are increased by a factor 1 + ε, the distribution remains
blackbody with a temperature increased by the same factor. Thus, the line-of-sight integration of the
fractional energy change of (1.58) translates directly into a temperature variation. The terms proportional
to the Thomson opacity aneσT are the effective emissivity due to Thomson scattering. Bearing in mind
that the photon-baryon plasma is in nearly perfect thermal equilibrium (the temperature variations are
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only about 1 part in 105), the photons we see scattered into the line of sight from a given fluid element have
the blackbody distribution corresponding to the temperature of that element. Recalling that the energy
density of blackbody radiation is ργ ∝ T 4, we see that 1

4δγ is simply the fractional temperature variation
of the fluid element. In other words, if we carried a thermometer to the photosphere and measured its
reading in direction −~n, it would read a fraction 1

4δγ different from the mean. Now the energy density is
defined in the fluid rest frame, while the fluid is moving with 3-velocity 1

4δγ , so the temperature measured
by a stationary thermometer (with fixed xi) is changed by a Doppler correction ~ve · ~n.

Comparing the CMB with a star, when we look at the surface of a star we see the temperature of the
emitting gas, corresponding to the 1

4δγ term. For ordinary stars the Doppler boosting and gravitational
redshift effects are negligible, although they are appreciable for supernovae and white dwarfs, respectively.
For the CMB, on the other hand, all four emission terms in (1.59) are comparable in importance.

It is instructive to approximate the photosphere as an infinitely thin layer by adopting the instanta-
neous recombination approximation, according to which the free electron fraction and hence opacity drops
suddenly at τrec, the conformal time of recombination at z ≈ 1100:

τT (χ) =

{
∞ , χ > χrec = τ0 − τrec
0 , χ < χrec.

(1.61)

Substituting into (1.59) and integrating by parts the gravitational redshift term gives the result first
obtained in another form by [8]:

∆(~n) ≈
(

1

4
δγ + φ+ ∂χWγ

)
rec

+

χrec∫
0

(2∂τφ)retdχ, (1.62)

where the argument τ0 from ∆ has been dropped, χrec = τ0 − τrec and Wγ is the velocity potential for
the photons (Wγ = Wr in the two-fluid model discussed above).

While it is interesting that the primary anisotropy depends on the velocity potential derivative along
the line of sight, there appears to be no fundamental significance to the simple dependence in (1.62), aside
from the fact that CMB anisotropy is produced by departures from hydrostatic equilibrium (in hydrostatic
equilibrium, ~vr = 0). If the radiation gas were in hydrostatic equilibrium in a static gravitational poten-
tial, there would be no primary CMB anisotropy. Indeed, it can be shown from purely thermodynamic
arguments that T (~x) ∝ exp[−φ(~x)] (hence 1

4δγ + φ = constant) for a photon gas in equilibrium.
[8] showed that for adiabatic perturbations in the matter dominated era, on scales much larger than

the acoustic horizon (ωτ � 1 in (1.49) and (1.50)), the sum of the photospheric terms in (1.62) (the
terms evaluated at recombination) is 1

3φ. Thus, on angular scales much larger than 1◦ (roughly the size
of the acoustic horizon), the CMB anisotropy is a direct measure of the gravitational potential on the
photosphere at recombination.

1.2.5 ANGULAR POWER SPECTRUM

The angular power spectrum gives the mean squared amplitude of the CMB anisotropy per spherical
harmonic component. Thus, we expand the anisotropy in spherical harmonic functions of the photon
direction:

∆(~n) =
∑
l,m

al,mYl,m(~n). (1.63)

Observations of our universe give definite numbers for the alm (with experimental error bars, of course).
Theoretically, however, we can only predict the probability distribution of the alm. For statistically
isotropic fluctuations (i.e. having no preferred direction a priori), the alm are random variables with
covariance

〈alma∗l′m′〉 = Clδll′δmm′ , (1.64)

where the Kronecker deltas make the alms uncorrelated (δll′ = 1 if l = l′ and 0 otherwise). The variance of
each harmonic is given by the angular power spectrum Cl; rotational symmetry ensures that, theoretically,
it is independent of m.
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To calculate the angular power spectrum, we expand φ(~x, τ) (and the other variables) in plane waves
(assuming that the background is flat, k = 0),

φ(~x, τ) =

∫
e−iµkχφ(~k, τ)d3k =

∫ ∞∑
l=0

(−i)l(2l + 1)jl(kχ)Pl(µ)φ(~k, τ)d3k, (1.65)

where µ = −~k · ~n/k with a minus sign because −~n is the radial unit vector at the origin. Note that many
cosmologists insert a factor (2π)3 in the Fourier integral going from k-space to x-space.

In (1.65) we have used the spherical wave expansion of a plane wave in terms of spherical Bessel
functions jl(x) and Legendre polynomials Pl(x). This gives

∆(~n) =

∫ ∞∑
l=0

(−i)l(2l + 1)Pl(µ)∆l(~k)d3k, (1.66)

where, in the instantaneous recombination approximation,

∆l(~k) =

[
1

4
δγ(~k, τrec) + φ(~k, τrec)

]
jl(kχrec) + kWr(~k, τrec)j′l(kχrec) +

χrec∫
0

2∂τφ(~k, τ0 − χ)jl(kχ)dχ.

(1.67)
The temperature expansion coefficient takes a simple form in terms of ∆l:

alm = (−i)l4π
∫
Y ∗lm(k̂)∆l(~k)d3k, (1.68)

where k̂ is a unit vector in the direction of ~k.
To get the angular power spectrum now we must relate ∆l(~k) to the initial random field of potential

or entropy fluctuations that induced the CMB anisotropy. Let us assume we have adiabatic fluctuations,
for which φ(~k, τ −→ 0) = A(~k). We define the CMB transfer function

Dl(k) ≡ ∆l(~k)

A(~k)
, (1.69)

which depends only on the magnitude of ~k because the equations of motion have no preferred direction. To
compute ensemble averages of products, we will need the two-point function for a statistically homogeneous
and isotropic random field, whose variance defines the power spectrum:

〈A(~k)A∗(~k′)〉 = PA(k)δ3
D(~k − ~k′). (1.70)

For scale-invariant fluctuations (equal power on all scales, as predicted by the simplest inflationary
models), PA ∝ k−3.

Combining (1.64), (1.68), and (1.69) gives the formal expression for the angular power spectrum as an
integral over the three-dimensional power spectrum:

Cl = 4π

∫
PA(k)D2

l (k)d3k. (1.71)

It is difficult to get a simple approximation to Dl(k) that makes this analytically tractable, except in the
limit of large angular scales where the intrinsic and gravitational contributions to ∆(~n) dominate, with
∆ ≈ 1

3φ. Then Dl = 1
3jl(kχrec) and the integral may be evaluated analytically for PA(k) ∝ kn−4 with

fixed n. When n = 1 (the scale-invariant spectrum), the result gives l(l+ 1)Cl = constant or equal power
on all angular scales. The phenomenon of acoustic peaks in l(l+ 1)Cl is due to the acoustic oscillations in
φ and Wγ which modify the potentials at recombination from their scale-invariant primeval forms.

This presentation has been based on the traditional Fourier space representation of the potential and
other fields. The physical interpretation of the CMB two-point function is somewhat clearer in real
(position) space, although a more detailed analysis based on Green’s functions is needed before one can
reap the rewards.
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1.3 THE CMB: AN OBSERVATIONAL VIEWPOINT

The CMB is comprised of photons which were released from thermal equilibrium at the time of recombi-
nation, when the Universe’s temperature fell sufficiently so that hydrogen could not remain ionized, and
its contribution dominates the radiation content of today’s universe. Measurements show that today’s
CMB spectrum is well described by a blackbody at T = 2.73 K. This does not on its own put any further
strong constraints on the evolution of the Universe but it does provide very strong evidence for the hot
big bang model. Anisotropies in the CMB, whilst small (∆T/T ≈ 10−5), have, however, the potential
to place strong limitations on cosmological parameters. Initially, this was attempted with data from the
Cosmic Microwave Background Explorer (COBE) satellite [9] whilst, more recently, tight constraints have
been produced by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite [10], especially when
taken in conjunction with astrophysical data; mainly from SN 1a luminosity distance studies [11] and
galaxy surveys [12], although weak lensing studies [13] can also be employed. Ballon-based and terrestrial
experiments have also been successful in constraining the form of the perturbations, although they suffer
from severe contamination in the form of ground and atmospheric emissions, together with an inability to
achieve full-sky coverage.

In order to analyse robustly the signal from CMB observations one must first remove foreground
emission, even from space. The primary unwanted signal arises chiefly from within our own galaxy;
particularly from dust, free-free and synchrotron emission. Once the removal or masking of the signal is
complete, the observed CMB closely mimics the expected patterns of a homogeneous, isotropic universe
with an inflationary origin for density perturbations. With density perturbations of just one part in 105 this
demonstrates the remarkable near homogeneity and isotropy of the Universe (assuming the Copernican
principle). However, the angular distribution of the fluctuations provide clues as to the cosmological
parameters of the Universe. After primordial perturbations are generated in the very early Universe
(maybe through inflation or some other mechanism) they evolve according to the linearized description of
general relativity. One may show that gravitation amplifies the perturbations, but in a way that is scale
independent on sub-horizon scales, whilst the pressure from the coupled photon-baryon plasma can oppose
gravitational collapse.

At the point of decoupling, after which photons can free stream, the form of the CMB we see to-
day is fixed: temperature differences are imprinted onto the photon distribution function at each point
by a combination of effects linked to the strength of the perturbations; gravitational redshifting, intrin-
sic temperature differences and local peculiar velocities. Hence, within the CMB, we observe a frozen
representation of the growth of structure at these extremely early times, including the scale-dependent
effects.

By extracting the angular power spectrum the content of the CMB is made most explicit:

Cl =
1

2l + 1

l∑
m=−l

|alm|2, (1.72)

where

alm =

∫
∆T (Ω)Y ∗lm(Ω)dΩ, (1.73)

with Ylm representing spherical harmonics. In the simplest (isotropic and Gaussian) theories, the Cl contain
all information available from the observed microwave background. Figure 1.1 shows the spectacular
agreement between the latest observed temperature power spectrum Cl (diamonds with error bars) and the
best fit model (curve) for the ensemble average < Cl >. The simple linear description of the opposition of
gravitational collapse by pressure completely determines the characteristic peaks in the spectrum. However,
the spacetime through which the photons have free-streamed since recombination will influence their
particular angular shape. In this way the angular power spectrum picks up information about the Hubble
history of the Universe, leading to degenerate but tighter constraints on various cosmological parameters.
Further information on these parameters comes from secondary late-time modifications to the photon
distribution function due to reionization-induced scattering and acceleration-induced decay of large-scale
gravitational potentials (seen through the integrated Sachs-Wolfe effect).
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Figure 1.1: The angular power spectrum in the cosmic microwave background temperature anisotropies
as measured by the WMAP satellite over five years. Figure taken from Nolta et al., 2009.

Although the WMAP satellite’s detailed mapping [14] of the anisotropies in the temperature of the
CMB has led us to unprecedented confidence in the applicability of the standard model of cosmology (also
known as the concordance model), there are claims that the distribution of temperatures in the CMB are
detectably non-Gaussian, thereby putting strain on simple inflationary models [15]. Additionally, there
are numerous claims that the assumed isotropy is observationally violated [16], [17].

1.4 WHY ARE INHOMOGENEOUS MODELS OF THE UNI-
VERSE WORTHY OF STUDY?

A cursory glance at the night sky would suggest that we do not live in a homogeneous Universe. In fact,
the distribution of matter in our local vicinity, i.e. within several Mpc, is very far from homogeneous;
density contrasts reach huge values not only at the centre of galaxies but also on larger scales like clusters
and superclusters, stretching over hundreds of Mpc. So how large does the scale need to be before we reach
homogeneity? Certainly, present galaxy catalogues are not there yet. Therefore, how do we interpret the
observations we have of objects whose light has travelled a significant fraction of the age of the Universe
if we do not live in a homogeneous universe? Presently we assume that, in practice, inhomogeneities
average out so that everything functions as if we have homogeneity and this inspired confidence for the
construction of the standard model of cosmology. Although this model fits the observations well there is no
theoretical understanding of the origin of the cosmological term, inherent in the model and, interestingly,
particle physicists have been looking hard to prove that it should be zero. Also, the idea of averaging out
inhomogeneities is not without its problems; in general, it is not correct to integrate out constrained degrees
of freedom as if they were independent, and the fact that we can make observations only along our past
light cone makes the observable Universe a constrained system. Therefore it would be desirable to study
how directly observable light is affected by inhomogeneities in an inexact cosmological model. However,
in the presence of generic inhomogeneities this would be practically impossible. Instead, we resort to toy
models, the simplest of which is the spherically symmetric but inhomogeneous Lemâıtre-Tolman (L-T),
discussed later in this thesis.

Fortunately, with the advent of projects such as WMAP and the Planck satellite, sufficiently good
cosmological data is becoming available now and this will enable us to pose the appropriate questions and
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hopefully get some definitive answers. The high isotropy of the CMB has often been used to dismiss the
issue of inhomogeneity. However, one does not imply the other. Take a spherically symmetric distribution,
for example. This is isotropic as seen from its centre, but only if there is isotropy around every point is
homogeneity implied. An inhomogeneous Universe would suggest that some observers will be near a large
concentration of mass whilst others will live in large voids, for example. Certainly what these two observers
will experience will differ from what an idealised observer living in a perfectly homogeneous universe would
experience. Then a question arises: could the acceleration of the Universe be just a trick of light, a
misinterpretation that arises due to an oversimplification of the real, inhomogeneous Universe inherent
in the FRW model? Whilst travelling through inhomogeneities, light does not see the average Hubble
expansion but rather feels its variations due to the inhomogeneities, and this could sum up to an important
correction. Recently, a few researchers have tried to address this point of view: what if the effect of large-
scale structure could account for the observed luminosity to redshift behaviour of type Ia supernovae (i.e.
give rise to an ‘apparent’ acceleration of the Universe), without dark energy? This question is important
because an affirmative answer might obviate the need for a dark energy component/cosmological constant,
which has presented a plethora of unresolved issues. Recent studies of exact solutions to the Einstein
equations have, in fact, been able to reproduce the observed luminosity to redshift relation that is usually
attributed to acceleration, provided that we live in a large region, or void, that has less density than the
spatial average density over the cosmological Horizon [18], [19], [20]; see [60] for a review. One might
naively conclude that this result can obviate the need for dark energy. However, in order for the void
model to be taken seriously, several key issues have to be addressed. Firstly, the observation of small,
nearly scale invariant CMB temperature fluctuations, strongly supports the principle that our universe is
homogeneous and isotropic on large scales. In our present Universe non-linear large scale structures exist,
marking a deviation from homogeneity. However, according to our current understanding of structure
formation, non-linearities are only expected typically at scales ∼ O(10 Mpc/h). In this case one can
again argue that the effect of these inhomogeneities on cosmology, which is governed by the Hubble scale
∼ 3000 Mpc/h, would be too small to be significant. However, there are reasons why one could be wary
of such a conclusion. From the theoretical point of view, the non-linear behaviour of structure formation
is not a trivial issue. For instance, due to non-linear effects it is known that smaller voids can percolate
to form much larger underdense structures which occupy most of the volume of the Universe, forming
what is known as a ‘cosmic web’ of superclusters and voids. Also, we note that non-standard features
of the primordial power spectrum, such as a spike at a particular scale, or some non-Gaussianity may
enhance the possibility of having larger structures and voids. Observationally speaking, several huge non-
linear structures; notably, the Sloan Great Wall has a length of 400/h Mpc [22] have been revealed through
surveys like SDSS and 2dF (of course, these data are only tracing the visible matter, so their interpretation
in terms of total matter is subject to a bias). It is unclear whether the presence of these large observed
objects is consistent with the present understanding of structure formation. For example, [23] claims
a discrepancy by a factor of 5 between the observed abundance of such objects (superclusters) and the
values obtained using N-body numerical simulations. Peebles has also argued that our understanding of
structure formation and observed voids are in apparent contradiction [24] and that this can be classified as
a crisis of the ΛCDM model. Further, there has been observational evidence for the presence of local, large
underdense (∼25% less dense) region (that extends to ∼200 Mpc/h) from number counts of galaxies [25].
This represents a 4 sigma fluctuation, and would be at odds with ΛCDM. More recently, there has been a
claim that the presence of a cold spot in the CMB detected in the WMAP sky [26] is also associated with
a similar Big Void in the large-scale structure [27]. Intriguingly, the presence of such Big Voids has also
been advocated by [28], in order to explain some features of the low-multipole anomalies in the CMB data.
Finally, we note that two recent papers [29], [30] claim a significant (95% C.L.) detection of an anisotropy
in the local Hubble flow in the Hubble Key Project data [30] and in the SN 1a dataset. This would be a
completely natural consequence of being inside a large local void [30], since, of course, we are not expected
to be exactly at the centre and the void is not expected to be exactly spherical.

To summarise, the large-scale structure of our Universe might be richer than we thought, which can
have far reaching consequences for cosmology. We believe that finding a viable alternative to the presence
of dark energy, for example, is a task which is important enough to consider the application of exact
inhomogeneous cosmologies, which is already a highly developed branch of relativity. It is time to begin
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taking all this knowledge seriously. Assuming that FRW models are everything that relativity has to say
about cosmology is counterproductive and contradicts the facts.

1.5 THE STRUCTURE OF THIS THESIS

In the remainder of this thesis we present those elements of exact relativistic cosmology that are directly
applicable to the interpretation of observations, with particular emphasis on the interplay between theo-
retical cosmology and the data obtained from the CMB radiation.

In Chapter 2, we describe the Lemâıtre-Tolman (L-T) model, which is an exact solution of Einstein’s
equations with spherical symmetry and a dust source; the simplest generalization of the Friedmann models.
Inhomogeneities are naturally generated in an inhomogeneous cosmological model by the form of the
arbitrary functions defining it. We investigate the constraints imposed by the measured temperature
fluctuations of the CMB and infer the amplitude of perturbation at the time of decoupling from these.
We use the L-T model to investigate the formation of a galaxy with a central black hole. Since it is
impossible to use Newtonian methods or perturbations of a FRW background even to define a black
hole in a meaningful way, this is a problem for whose solution exact methods of relativity are essential.
However, the spherical symmetry of the L-T model is a disadvantage, since galaxies are not spherically
symmetric, and they also rotate. However, this investigation provides a useful qualitative understanding
of the process. We consider two possible mechanisms: the gravitational collapse of an ordinary ball of
dust, and a condensation forming around a pre-existing wormhole. The aim is to reproduce the density
distribution and mass of M87, which is an actually observed galaxy with a central black hole. In order to do
this we use the density profile of that galaxy, believed to be known from observations, and for the density
profile within the evolving black hole, about which nothing can be known from observations, we choose a
simple model, joined onto the galaxy profile. To set realistic initial conditions it is assumed that by the time
of decoupling of radiation and matter the condensation that would later grow to become the galaxy had a
density contrast consistent with the implications of measurements of temperature anisotropies of the CMB
radiation. However, the currently best achieved angular resolution of temperature measurements is 0.1 ◦,
whilst a typical proto-galaxy would occupy a region of only 0.004 ◦ on the CMB sky. Consequently, there
are at present no adequate observational data to constrain this model, and so, lacking any better choice,
limits known for the 0.1 ◦ scale are taken to apply to a single galaxy. The results are that the galaxy-black
hole structure can be generated by both mechanisms, but the black hole appears after a much shorter
time for the condensation around a wormhole, almost immediately after the Big Bang. We emphasise in
that section that the horizon whose position can be approximately determined from observations is the
apparent horizon, not the event horizon.

We also consider in Chapter 2 the formation and evolution of galaxy clusters and cosmic voids. Here,
we infer the amplitude of perturbations at the time of decoupling from the constraints imposed by the
measured temperature fluctuations of the CMB radiation. It is shown that perturbations at decoupling that
are consistent with observational constraints can generate a galaxy cluster whose calculated parameters
corresponding to the present epoch agree with the observed parameters at random from the Abell catalogue.
However, similar problems were encountered to that mentioned above in that the observational upper limit
on the temperature anisotropy of the CMB radiation is determined at angular scales about twenty times
larger than the angular diameter that an Abell proto-cluster would occupy on the CMB sky. However,
these constraints will be re-evaluated using better resolutions that are sure to be achieved in the future.
Using the same method for voids we saw qualitative agreement with observations, but for the density within
a void we saw values several times larger than those observed. We argue that the presence of non-baryonic
matter, which does not interact with photons, would solve this discrepancy, because the amplitude of
dark matter fluctuations at the instant of last scattering could be larger than temperature fluctuations.
It could, however, be removed by more conventional methods, which do not require large fluctuations at
last scattering. These investigations demonstrate that density perturbations are considerably less efficient
in generating structures than are velocity perturbations. Consequently, since the long-standing structure
formation paradigm relies on the belief that density perturbations alone are responsible for the origin of
structures, our findings suggest a need for a revision of this assumption. For todays typical void, matter
at the edge should occupy a region of angular diameter 0.1 ◦ on the CMB sky, which is comparable to the
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current best resolution achieved in observations, at least until we have further higher resolution data from
the Planck spacecraft. Hence we are on the verge of being able to test void models against observations.

We then discuss a more precise description of the formation of voids. The Lemâıtre model describing
a mixture of inhomogeneous dust and inhomogeneous radiation is used in order to solve the problem
of insufficiently low densities within voids in the approach discussed above. Here we assume that the
comoving spatial extent of the perturbations of radiation density does not change with time, due to the
fact that, without this assumption, the number of unknown functions in the Einstein equations is larger by
one than the number of equations and is therefore indeterminate. Proceeding from this, the current density
distribution in voids is reproduced with arbitrary precision. The assumption made will probably have to
be modified in the future, but the results demonstrate that this is a workable approach to the problem of
void formation. This investigation highlights the fact that the decoupling of matter and radiation is not a
single instant, as is usually assumed for simplicity, but a process extended in time.

Further, since the available observations are made on our past light cone we discuss light propagation
in L-T models. These analyses imply the use of differential equations determining the null geodesics and
generally also the redshift. We give the sets of differential equations in the cases of both a central and an
off-centre observer. We also consider some examples of exact inhomogeneous models which can be found
in the recent literature, and which fit with cosmological observations such as H(z) measurements, baryon
acoustic oscillations and supernovae observations, and in addition recover the position of the CMB power
spectrum peaks. It was thus shown that evolving inhomogeneities can mimic, partly or totally, the effects
of the dark energy component of the standard cosmological model, with universal acceleration due to the
presence of dark energy as a specific example. We also investigate whether part of the dipole moment of
the CMB might be cosmological in nature and not just due to our motion with respect to the rest frame of
the CMB. We do this by putting the observer at the centre of a particular class of L-T models. Although
moments beyond the quadrupole are not calculated we do obtain the geodesic equations for non-radial
photons and formulae for the dipole and quadrupole are established for these L-T models.

We also investigate the possibility of solving the ‘horizon problem’ without the use of inflationary
models. It is shown that this supposed problem can be solved using the L-T model with appropriately
chosen arbitrary functions. This could be preferable to the use of inflationary models, which makes
assumptions about the physical conditions in the Universe at such early times that any kind of direct
verification is currently impossible. Moreover the solution proposed solves the problem whatever the
location of the observer in spacetime, whilst inflation solves it only temporarily. Alternatives to inflation
deserve at least to be considered, but, unfortunately, they tend to be suppressed in the noise of lobbying
that has surrounded the inflationary paradigm from the very beginning.

In Chapter 3, we relax the assumption of perfect spherical symmetry that we have in the L-T models
and describe the Szekeres solutions. In addition to being dust gravitational source solutions, they have no
symmetry, i.e. no Killing vectors, and are therefore well-suited to describe a lumpy universe. We begin
with a description of the Lemâıtre model and explain how this is connected with the Szekeres solution.
The definition and metric of the Szekeres solution is then described, together with a description of possible
geometries and types of evolution associated with each one. We explain the importance of reparametrising
the arbitrary functions in the Szekeres metric and how this leads to a transformation called a stereographic
projection. We also consider the more specific case of the quasi-spherical Szekeres model, and discuss in
some depth the properties of this model. We also discuss the usefulness of stereographic projection and how
this kind of analysis leads to the discovery that this model possesses an inherent dipole nature. Also, we
describe how the analysis of null geodesics needs to be modified as compared to the L-T models. We show
that such a model can describe the evolution of double structures (cluster-void pairs). This model helps
us to understand some actually observed facts, such as a faster evolution of larger voids at larger distances
from condensations as compared to voids in the proximity of condensations. An additional bonus in this
investigation is a physical interpretation of the arbitrary functions in the Szekeres model, since they define
the direction of the dipole component of the density distribution. For further investigation, we use the
quasi-spherical Szekeres model to describe voids or localized condensations, matched into the homogeneous
Friedmann background. This is known as the Swiss-cheese Szekeres model. Here, different arrangements
of underdense and overdense quasi-spherical Szekeres regions are matched into a Friedmann background.
This leads to the issue of matching junctions of null geodesics in this model. We also include a discussion

19



of apparent horizons in this model, and describe how this analysis needs to be modified as compared to the
L-T models, for example. The light ray under investigation in the Szekeres Swiss-cheese model proceeds
from an emitting source during the decoupling epoch. We find that the temperature anisotropies caused
by the structures are smaller than those generated by the Sachs-Wolfe effect, unless the observer is situated
inside one of the structures.
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Chapter 2

The Lemâıtre-Tolman model and its
applications in cosmology

2.1 BASIC PROPERTIES

The Lemâıtre-Tolman (L-T) model is a spherically symmetric non-static solution of the Einstein equations
with a dust source, i.e. the matter tensor is

Tαβ = ρuαuβ . (2.1)

The coordinates are assumed to be comoving, so that the 4-velocity is uα = δαt . See [2] and [31] for an
extensive list of properties and other work on this model. Its metric is, in the synchronous time gauge and
in units in which c = 1

ds2 = dt2 −
R2
,r

1 + 2E(r)
dr2 −R2(t, r)(dθ2 + sin2 θdφ2), (2.2)

where E(r) is an arbitrary function, R,r = ∂R/∂r, and R(r, t) obeys

R2
,t = 2E +

2M

R
+

Λ

3
R2, (2.3)

where R,t = ∂R/∂t and Λ is the cosmological constant. M = M(r) is another arbitrary function of
integration and equation (2.3) is a first integral of the Einstein equations. The mass density in energy
units is given by

κρ =
2M,r

R2R,r
, (2.4)

where

κ =
8πG

c4
. (2.5)

If E(r) is set to zero the metric of the space t = constant would be flat, therefore E determines the
curvature of space at each value of r. Note that we recover the FRW metric (1.5) by imposing the extra
inhomogeneity conditions

R(t, r) = a(t)r , E(r) = − 1
2kr

2 (2.6)

to (2.2). Furthermore, equation (2.3) is similar to its Newtonian counterpart for a spherical dust distribu-
tion:

1

2
R2
,t =

E
m

+
GM
R

, (2.7)

where R, E andM are respectively the radial coordinate, the energy of the particles, and the mass within
radius R (in Newtonian mechanics, the cosmological constant is not considered). Therefore, M(r) is the
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gravitational mass inside the comoving spherical shell of the radial coordinate r, and E(r) is the energy
per unit mass in that shell.

Equation (2.3) can be solved by simple integration:

R∫
0

dR̃√
2E + 2M

R̃
+ 1

3ΛR̃2
= t− tB(r), (2.8)

where tB appears as an integration constant, and is an arbitrary function of r. This means that the Big
Bang is not a single event as in the Friedmann models, but occurs at different times for different distances
from the origin.

Initially we assume Λ = 0. Then (2.3) can be solved explicitly:

• When E < 0 (elliptic evolution):

R(t, r) = −M
2E

(1− cos η), (2.9)

η − sin η =
(−2E)

3/2

M
(t− tB(r)), (2.10)

where η is a parameter. Eliminating η one can recast this as

t = tB + M
(−2E)3/2

{
arccos

(
1 + 2ER

M

)
− 2
√
−ER

M (1 + ER
M )
}
, 0 ≤ η ≤ π, (2.11)

t = tB + M
(−2E)3/2

{
π + arccos

(
−1− 2ER

M

)
− 2
√
−ER

M (1 + ER
M )
}
, π ≤ η ≤ 2π (2.12)

for the expanding and collapsing case respectively.

• When E = 0 (parabolic evolution):

R(t, r) =

[
9

2
M(t− tB(r))2

]1/3

. (2.13)

• When E > 0 (hyperbolic evolution):

R(t, r) =
M

2E
(cosh η − 1), (2.14)

sinh η − η =
(2E)

3/2

M
(t− tB(r)), (2.15)

or equivalently,

t = tB −
M

(2E)
3/2

{
arccosh

(
1 +

2ER

M

)
− 2

√
−ER

M

(
1 +

ER

M

)}
. (2.16)

Note that these formulae are invariant under coordinate transformations of the form r̃ = g(r) and so tB(r),
M(r) and E(r) can be fixed for a convenient choice of g. We can define a scale time and a scale radius for
each worldline:

T (r) = 2πM
|2E|3/2 , P (r) = 2M

|2E| . (2.17)

It is apparent from (2.14) and (2.15) that, in the elliptic case, these are the maximum lifelime and R value.
The crunch time tC in the elliptic case is then

tC(r) = T (r) + tB(r). (2.18)

Hence we can rewrite (2.10) and (2.15) respectively as

η − sin η =
2π(t− tB)

tC − tB
, (2.19)
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sinh η − η =
2π(t− tB)

T
. (2.20)

Consequently, in hyperbolic models, η increases with the number of scale times completed and in elliptic
models, larger η means that the dust worldline has completed a larger fraction of its lifetime between the
bang and the crunch.

2.2 SHELL CROSSINGS

From a consideration of equation (2.4), the mass density becomes infinite when M,r 6= 0 and R,r = 0. This
singularity is called a shell crossing and physically it corresponds to a location where the radial distance
between two adjacent shells that have different values of r becomes zero. If R,r changes sign there, then
the mass density on the other side of the shell crossing becomes negative. They are loci of R,r = 0 that
are not regular minima or maxima of R. They create unwanted singularities where the density diverges
and changes sign. The conditions on the three arbitrary functions that ensure none be present anywhere
in the L-T model, as well as those for regular minima and maxima, will be used below [32].

Since the signature adopted in this thesis is (+−−−) we observe that the condition E ≥ −1/2 must
be fulfilled in a physical L-T spacetime, as seen from (2.2). The equality E = −1/2 must occur at minima
and maxima, but these locations are either at very large cosmological distances from the origin, or inside
wormholes.

2.3 L-T MODELS OF COSMIC STRUCTURE

Using exact solutions of Einsteins equations we can follow the evolution of structures up to the present,
irrespective of whether they are linear or nonlinear regimes, since in exact models there are no regimes
at all. Obviously, the choice of such simple inhomogeneous models to represent large-scale structures in
the Universe should be questioned. Generally, assumptions of spherical symmetry and a central observer
are made for simplicity, but they are grounded on the observed quasi-isotropy of the CMB temperature.
Having relaxed one degree of symmetry relative to the assumption of homogeneity, they are less restricted
than the Friedmann models, and they provide a reasonable working approximation in which the Universe
has no radial smoothing and is averaged only over the angular coordinates surrounding the observer.

The L-T model does, however, have some disadvantages. For example, we cannot take rotation into
account because of the assumption of spherical symmetry. Hence, although the model represents a rough
approximation to galaxy clusters, it does not apply to single galaxies. The objects to which the model
can best be applied are voids because for them it has been shown by Newtonian methods that spherical
symmetry is a stable property [33]. We can, however, avoid possible misleading features of spherical
symmetry by assuming an off-centre observer, and some attempts to do this will be discussed later in this
thesis. Another disadvantage is that due to the assumption of zero pressure, the model is unable to describe
any thermo- or hydrodynamics, and so it is not applicable to the late stages of the collapse of matter or
to the early Universe. Other methods of dealing with some of the disadvantages will also be presented
later in this thesis; for example, in the Szekeres model [34], one can consider more general shapes of the
voids and galaxy clusters, and also solve numerically the Einstein equations for a spherically symmetric
distribution of dust with inhomogeneous radiation, and hence partially overcome the disadvantage of zero
pressure. The results reproduce the real density profile of voids rather well.

2.3.1 MODEL DEFINED BY INITIAL AND FINAL PROFILES WITH Λ = 0

Refomulating the evolution equations

In cosmology, the initial state at t1 (taken, for example, to be the last scattering surface) is accessible with
rather imperfect precision and only indirectly. Of all the observational data collected at some final instant
t2, only some of it can be projected back to t1. Usually, one assumes various data at t1 and to ‘shoot’ into
the observed final state at t2.
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The evolution equations can be reformulated so that information from both t1 and t2 can be fed into
the models. We present such an approach to the L-T model [35], [36]. We present numerical examples of
evolution of small initial density or velocity perturbations at t1, the epoch of last scattering to modern
structures such as voids at t2 = now.

Later in this chapter we will use the L-T model to connect an initial state of the Universe, defined
by a velocity or mass-density distribution, to a final state also defined by one of these distributions.
Numerical examples will be given in which we will incorporate actual astronomical data on the distribution
of temperature of the CMB radiation and on the mass distribution in currently existing voids. The L-T
model will also be used to interpret observational data on type Ia supernovae.

In constructing the models of voids, it will be convenient to use M(r) as the radial coordinate, i.e.
r̃ = M(r), since in most cases we will not need to pass through any bellies or necks. Consequently, in the
whole region under consideration M(r) will be a strictly growing function. Then with R = R(t,M)

κρ =
2

R2∂R/∂M
≡ 6

∂R3/∂M
(2.21)

and so R(t, r) is defined by a given ρ(t, r):

R3 =

M∫
0

3c4

4πGρ(t, x)
dx. (2.22)

The last equation results with the initial condition R = 0 at M = 0 which we will assume in nearly all
cases.

For clarity of calculations, we introduce the following quantities:

a =
R

M1/3
, (2.23)

b =
R,t
M1/3

, (2.24)

x =
|2E|
M2/3

. (2.25)

Part I: density to density perturbations

We specify the density distributions at the instants t = ti, i = 1, 2:

ρ(ti,M) = ρi(M) (2.26)

and calculate the corresponding R(ti,M) using (2.22). Throughout, we assume R,t(t1,M) > 0. This
assumption is dictated by the intended application of our results, structure formation in the Universe.
However, a similar investigation could be done for collapsing matter. For definiteness, we assume also that
t2 > t1 and that the final density ρ(t2,M) is smaller than the initial density ρ(t1,M), at the same M.
Therefore, the assumption is that matter has expanded along every world line, but the proof of this can
be adapted to the collapse situation.

Hyperbolic evolution, E > 0

We write the initial and final density distributions at t = t1 and t = t2 as

ρ(t1,M) = ρ1(M) , ρ(t2,M) = ρ2(M). (2.27)

Then from (2.21) we have, for each t1 and t2

R3(ti,M)−R3
min i =

M∫
Mmin

6
κρi(M ′)

dM ′ := R3
i (M) , i = 1, 2. (2.28)
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R2(M) > R1(M) since ρ(t2,M) < ρ(t1,M). We will assume that there is an origin where M = 0 and
R(ti, 0) = 0, so that Rmin i = 0 = Mmin is valid. Solving (2.14) and (2.15) for t(R, r) and writing it out
for each (t1, R1) and (t2, R2) leads to

tB = ti − M
(2E)3/2

[√(
1 + 2ERi

M

)2 − 1− arccosh
(
1 + 2ERi

M

)]
, i = 1, 2. (2.29)

Then eliminating tB between the two versions of (2.29) yields

(2E)3/2

M
(t2 − t1) = arccosh

(
1 +

2ER1

M

)
− arccosh

(
1 +

2ER2

M

)

+

√(
1 +

2ER2

M

)2

− 1−

√(
1 +

2ER1

M

)2

− 1. (2.30)

This equation defines E(M) and (2.29) defines tB(M), and these two functions completely specify the L-T
evolution from ρ(t1,M) to ρ(t2,M). For ease of calculations, let us use (2.23) and (2.25) to denote

ΨH(x) := arccosh(1 + a1x)− arccosh(1 + a2x)

+
√

(1 + a2x)2 − 1−
√

(1 + a1x)2 − 1− (t2 − t1)x3/2. (2.31)

Now we have to answer the question: for what values of a2 > a1 and t2 > t1, does the equation ΨH(x) = 0
have a solution x 6= 0? An elementary reasoning [35] leads to the conclusion that the equation has a
solution if and only if the following inequality is fulfilled:

t2 − t1 <
√

2

3

(
a

3/2
2 − a3/2

1

)
. (2.32)

Then the solution is unique. This inequality means that the expansion between t1 and t2 must have been
faster than in the E = 0 model. Note that for a given value of M the result above shows only the existence
of a solution. Shell crossings are not excluded by (2.32) and some initial conditions may lead to this, but
the criteria for the occurrence of shell crossings are well investigated [32].

Elliptic evolution, E < 0

In this case we must consider the evolution separately for the final state expanding (for which η ∈ [0, π] in
(2.9) and (2.10)) and for the final state recollapsing (η ∈ [π, 2π] in (2.9) and (2.10)). For the still-expanding
final state, the Ψ function is, using the definitions given in (2.23) and (2.25)

ΨX(x) := arccos(1− a2x)− arccos(1− a1x)

+
√

1− (1− a1x)2 −
√

1− (1− a2x)2 − (t2 − t1)x3/2. (2.33)

Using analogous reasoning to that given for (2.31), and taking into account that the arguments of arccos
must have absolute values ≤1, this yields

0 ≤ x ≤ 2

ai
(2.34)

for both i, and since a2 > a1, then

0 ≤ x ≤ 2

a2
. (2.35)

This means that if there is any solution of ΨX(x) = 0, then it will have the property (2.29). Using an
elementary reasoning [35], this leads to the conclusion that ΨX(x) = 0 has a solution if and only if two
inequalities are fulfilled simultaneously:

√
2

3

(
a

3/2
2 − a3/2

1

)
< t2 − t1 ≤

(a2

2

)3/2

π − arccos

(
1− 2a1

a2

)
+ 2

√
a1

a2
−
(
a1

a2

)2
 . (2.36)
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With the above fulfilled, the solution is unique. The first inequality tells us that the model must have
expanded between t1 and t2 slower than the E = 0 would have, whilst the second means that the final
state is still earlier than the instant of maximal expansion.

For the recollapsing final state, the Ψ-function is

ΨC(x) := π + arccos(1− a2x)− arccos(1− a1x)

+
√

1− (1− a1x)2 +
√

1 + (1− a2x)2 − (t2 − t1)x3/2. (2.37)

The solution ΨC(x) = 0 if and only if [35]

t2 − t1 ≥
(a2

2

)3/2

π − arccos

(
1− 2a1

a2

)
+ 2

√
a1

a2
−
(
a1

a2

)2
 (2.38)

and then the solution is unique.

Part II: velocity to density evolution

A useful measure of velocity is

bi(M) :=
R,t(t,M)

M1/3

∣∣∣∣∣
t=ti

. (2.39)

We suppose that the initial state is specified by a velocity profile b1(M), whilst the final state is specified
by a density distribution ρ(t2,M). This section will follow a similar scheme to that used in the last.

Hyperbolic evolution, E > 0

Using the variables defined in (2.23), (2.24) and (2.25), the equation to be solved is ΦH(x) = 0, where [36]

ΦH(x) := arccosh

(
b2

1 + x

b2
1 − x

)
− arccosh(1 + a2x)

+

√
1 + a2x)

2 − 1−

√(
b21 + x

b21 − x

)2

− 1− x3/2(t2 − t1). (2.40)

Here, the necessary and sufficient condition to solve ΦH(x) = 0 is

t2 − t1 <
√

2

3
a

3/2
2 − 4

3b31
, (2.41)

2

a2
< b21. (2.42)

The first of these is equivalent to (2.32), whilst the second is a necessary condition for the existence of
a t2 > t1 obeying (2.41), and is equivalent to R2 > R1. With both inequalities fulfilled, the solution of
ΦH(x) = 0 is unique [36].

Elliptic evolution, E < 0

When the final state is still expanding, the equation to be solved is ΦX(x) = 0, where

ΦX(x) := arccos(1− a2x)− arccos

(
b2

1 − x

b2
1 + x

)

+

√(
b21 − x
b21 + x

)2

− 1−
√

1− (1− a2x)
2 − x3/2(t2 − t1) (2.43)
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and the necessary and sufficient condition for the existence of an L-T solution between the two given states
is: √

2

3
a

3/2
2 − 4

3b31
< t2 − t1 ≤

(a2

2

)3/2
[
π − arccos

(
a2b

2
1

2 − 1
a2b21

2 + 1

)
+
b1
√

2a2

a2b21
2 + 1

]
. (2.44)

This set of inequalities is equivalent to (2.36), and when these inequalities are fulfilled, the solution of the
corresponding equation is unique [36].

When the final state is recollapsing, the E < 0 evolution exists if and only if

t2 − t1 ≥
(a2

2

)3/2
[
π − arccos

(
a2b

2
1

2 − 1
a2b21

2 + 1

)
+
b1
√

2a2

a2b21
2 + 1

]
(2.45)

and x is the solution of ΦH(x) = 0 where

ΦC(x) := π + arccos(a2x− 1)− arccos

(
b2

1 − x

b2
1 + x

)

+

√
1−

(
b21 − x
b21 + x

)2

+

√
1− (1− a2x)

2 − x3/2(t2 − t1). (2.46)

Part III: velocity to velocity evolution

The given quantities now are an initial and final velocity distribution given by b1(M) and b2(M) respec-
tively. We assume b1 > 0 and t1 > t2.

Hyperbolic evolution, E > 0

In this case, we must solve ΦH(x) = 0, where

ΦH(x) := arccosh

(
b2

1 + x

b2
1 − x

)
− arccosh

(
b2

2 + x

b2
2 − x

)

+

√(
b22 + x

b22 − x

)2

− 1−

√(
b21 + x

b21 − x

)2

− 1− x3/2(t2 − t1) (2.47)

and the necessary and sufficient condition for the existence of an E > 0 evolution between the states is

0 < b1 < b2 , t2 − t1 > 4
3

(
1

b32−b
3
1

)
. (2.48)

The second inequality becomes clearer when it is written in the form

b32 >
b31

1 + 3
4b

3
1(t2 − t1)

, (2.49)

which means that an E > 0 evolution between the two states will exist provided the velocity of expansion
at t2 is greater than the velocity of expansion of the E = 0 model.

Elliptic evolution, E < 0

When the final state is still expanding, x is found by χX(x) = 0 where

χX(x) := arccos

(
b2

2 − x

b2
2 + x

)
− arccos

(
b2

1 − x

b2
1 + x

)

+

√(
1− b21 − x

b21 + x

)2

−

√(
1− b22 − x

b22 + x

)2

− x3/2(t2 − t1). (2.50)
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The necessary and sufficient condition for the existence of this evolution is the set consisting of the first
inequality in (2.48) and

t2 − t1 <
4

3

(
1

b32 − b31

)
(2.51)

and now this implies that the expansion between t1 and t2 must have been slower for the E = 0 model.
When the final state is already recollapsing, we have b2 < 0. Then the evolution exists for

b2 < 0 < b1 (2.52)

and x is the root of

χC(x) := π + arccos

(
x− b2

2

x + b2
2

)
− arccos

(
b2

1 − x

b2
1 + x

)

+

√
1−

(
b21 − x
b21 + x

)2

−

√
1−

(
x− b22
x+ b22

)2

− x3/2(t2 − t1). (2.53)

2.4 LIGHT PROPAGATION IN L-T MODELS

Since available observations are made on our past light cone, then analyses of cosmological problems imply
the use of differential equations determining the null geodesics and generally also the redshift. Therefore,
we give below the sets of differential equations, both in the case of a central observer [19], [31] and an
off-centre observer, where the method described can be found in [37]. The results of this section will prove
useful later in this thesis.

2.4.1 CENTRAL OBSERVER

We describe the Universe by the t > tB(r) part of the (r, t) plane, increasing t corresponding to going from
the past to the future. Light travels on a light cone from a source to the observer in the geometric optics
approximation. Consequently, by (2.2), a light ray travelling from a source of radiation with coordinates
(t, r, θ, φ) and radially directed toward an observer located at the centre of symmetry of the model satisfies

dt

dr
= − R,r(t, r)√

1 + 2E(r)
. (2.54)

The solution of this equation will be denoted by tn(r). We can calculate the redshift along a radial ray to
be [19], [31]

ln |1 + z| =
r∫

0

R,tr′(t, r
′)√

1 + 2E
dr′. (2.55)

Now, we can choose z to be a parameter along the rays to obtain

dr

dz
=

√
1 + 2E(r)

(1 + z)R,tr[tn(r), r]
. (2.56)

Equation (2.54) becomes therefore
dt

dz
= − R,r[tn(r),r]

(1 + z)R,tr[tn(r),r]
(2.57)

Therefore, each null geodesic is a solution of (2.55) and (2.56), beginning with z at the source and finishing
at z = 0, the observer.
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2.4.2 OFF-CENTRE OBSERVER

For an observer located off-centre, a possible singularity at the centre does not alter the validity of such
a model. Although the calculations are more involved in this case, they can be done numerically and we
give below one method allowing us to deal with this issue.

This method was developed by [37] to study the dipole and quadrupole moments of the CMB in their
Delayed Big-Bang model (see Section 2.10) and were used by [38] to solve the horizon problem within a
class of models with an off-centre observer.

An observer located at a distance rp from the centre sees an axially symmetric universe with the
symmetry axis passing through the observer and the centre because of the spherical symmetry of the
model. Therefore, it is allowable to simplify the problem by integrating the geodesics in the meridional
plane. The angle α between the direction from which the light ray comes and the direction to the centre,
together with the observers position (tp, rp), uniquely define the photon path. For the metric given in
(2.2), the meridional plane is defined as θ = π/2 (=⇒ kθ = 0), kθ being the θ component of the photon
wave-vector and kµ ≡ dxµ/dλ , where λ is an affine parameter along the null geodesics. For µ = t, r, φ, we
obtain, respectively,

dt

dλ
= kt, (2.58)

dr

dλ
= kr = grrkr = − kr

R2
,r

, (2.59)

dφ

dλ
= kφ = gφφkφ = − kφ

R2
. (2.60)

Now, the geodesic equations of light are given by

d2xµ

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
= 0 (2.61)

and these allow us to obtain, after some calculations,

dkt

dλ
= −R,tr

R3
,r

(kr)
2 − R,t

R3
(kφ)

2
, (2.62)

dkr
dλ

= −R,rr
R3
,r

(kr)
2 − R,r

R3
(kφ)

2
, (2.63)

kφ = constant. (2.64)

For photons, ds2 = 0, together with (2.58)-(2.60) gives

(kt)
2

=

(
kr
R,r

)2

+

(
kφ
R

)2

. (2.65)

The equation for the redshift z of the source, in comoving coordinates is [31]

1 + z =
kt

(kt)p
, (2.66)

kt and (kt)p being the time component of the photon wave-vector at the source and at the observer,
respectively.

The set of differential equations (2.58)-(2.63) can be integrated with the following initial conditions at
the observer:

t = tp, r = rp, (kt)p = 1. (2.67)

With these conditions, the redshift of the source reads

1 + z = kt. (2.68)
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We denote
Rp ≡ R(tp, rp), R′p ≡ R,r(tp, rp) (2.69)

and so forth. The observer at (tp, rp) sees the photon trajectory making an angle α with the direction
toward the centre of the Universe. Consequently, we can write

(kr)p = a cosα, (kφ)p = b sinα. (2.70)

Substituting the former values of the component of (kµ)p into (2.65), written at (tp, rp), we find

a = R′p, b = Rp (2.71)

and (2.64) becomes
kφ = Rp sinα. (2.72)

Now, inserting this expression into (2.65), we get an expression for kr which can be substituted into the
set of differential equations and, after some calculations, yields the reduced system of three differential
equations for three unknowns, t, r and kt, which represents the null geodesics defining the past light cone
of the observer:

dt

dλ
= kt, (2.73)

dr

dλ
= ± 1

R,r

[
(kt)2 −

(
Rp sinα

R

)2
]1/2

, (2.74)

dkt

dλ
= −R,tr

R,r
(kt)2 +

(
R,tr
R,r
− R,t

R

)(
Rp sinα

R

)2

, (2.75)

with plus and minus signs in (2.74) representing an observer looking inwards and outwards, respectively,
provided that the affine parameter λ is chosen to increase from λ = 0 at (tp, rp) to λ at the source (t, r).
The redshift follows from (2.68).

2.5 MODELLING A GALAXY PLUS BLACK HOLE FORMA-
TION

The aim here is to model the formation of a galaxy with a central black hole, starting from an initial
fluctuation at recombination. The model consists of two parts connected across a comoving boundary
M = MBH , with MBH the estimated present-day mass inside the black hole horizon. In the exterior part,
we take existing observational data for the present-day density profile, and the initial fluctuation is made
compatible with CMB observations. No observational constraints exist for the interior, so we propose two
possible solutions. These are both L-T models, one represents a collapsing body, and the second represents
a dense Kruskal-Szekeres wormhole in the sense of [39].

2.5.1 A GALAXY WITH A CENTRAL BLACK HOLE

This is a summary of research carried out by [40]. It has become generally accepted that most large
galaxies contain central black holes, e.g. [41]. We will show how such a galaxy formation can be described
by an L-T model. Such a model may be an acceptable first approximation since, although spiral galaxies
are not spherically symmetric, both the core and the halo (together containing more mass than the disc)
are quite close to it. Also, real galaxies rotate and so we would need to use a non-stationary solution with
rotating matter in order to investigate the dynamical process of a rotating black hole. However, as yet
there are no such solutions and so for the moment we must be satisfied with simpler solutions. M87 will
provide the data for a real galaxy-plus-black-hole.

The present state of the galaxy is defined by a mass distribution that consists of two parts:
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• The part inside the apparent horizon at t2. Based on fundamental reasons, apart from the value of
MBH , no observational data exist for this region, and so we are free to choose any geometry. Hence,
we choose two examples. The first is a simple sub-case of the L-T model in which the black hole
does not exist initially but is formed in the course of evolution, whilst the second is a pre-existing
wormhole, chosen arbitrarily for simplicity of the calculations.

• The part outside the apparent horizon at t2. Here we use an approximation to the observationally
determined density profile of the M87 galaxy. This part extends inwards to a sphere of mass MBH ,
the observationally determined mass of the black hole: we shall choose MBH to mean MBH(t2).

The boundary between the inside and outside at times other than t2 goes along a comoving mass shell, so
that at t < t2 the apparent horizon resides in the inside part.

It would be natural to use the last scattering epoch for the initial time t1, and this is attempted.
However, no usable observational data exist for amplitudes of the temperature fluctuations of the CMB
at such small scales. The expected angular scale on the CMB sky of a perturbation that will develop into
a single galaxy (0.004◦) is much smaller than the current best resolution of around 0.1◦. Consequently,
an exactly homogeneous initial density is tried in one numerical experiment, and a homogeneous initial
velocity in a second. Since the first approach led to an unacceptable configuration at t2, a homogeneous
initial velocity was used, which then implied an initial density perturbation with an amplitude of order
10−3.

2.5.2 A COLLAPSED BODY

We take an E < 0 L-T model, with a regular centre, whose Bang function tB(M) is

tB(M) = −bM2 + tB0 (2.76)

and whose Big Crunch function is
tC(M) = aM3 + T0 + tB0, (2.77)

where the parameter T0 is the lifetime of the central worldline M = 0, and a, b and tB0 are parameters.
Since t = tC at η = 2π, we find from (2.9) and (2.10) that

E(M) = −1

2

(
2πM

tC − tB

)2/3

= −
(
π2

2

)1/3
M2/3

(aM3 + bM2 + T0)
2/3

. (2.78)

As M → ∞, we have tB → −∞, tC → +∞ and E → 0. Hence, the space contains infinite mass and has
infinite volume.

We require the continuity of the L-T arbitrary functions and their derivatives at M = MBH in order
to assure a smooth match between the interior and the exterior modelling, so taking the form of tB(M)
and E(M) given by (2.76) and (2.78), we solve for the constants tB0, T0, a and b, so that E, tB , dE/dM
and dtB/dM are matched at the boundary:

tB0 =

[
tB −

M

2

dtB
dM

]
M=MBH

, (2.79)

T0 =

[
M

6

dtB
dM

+
4πM

3(−2E)
3/2

+
2πM2

(−2E)
5/2

dE

dM

]
M=MBH

, (2.80)

a =

[
1

3M2

dtB
dM

+
2π

3M2(−2E)
3/2

+
2π

M(−2E)
5/2

dE

dM

]
M=MBH

, (2.81)

b = −
[

1

2M

dtB
dM

]
M=MBH

. (2.82)

31



2.5.3 A WORMHOLE

We have no way of knowing anything about the spacetime and matter interior to MBH , and so we can
equally well fit in a dust-filled wormhole of the Kruskal-Szekeres type, constructed with the L-T metric.
The essential requirement is that, at the centre of the wormhole, M must have the minimum value Mmin,
and E(Mmin) = −1/2. The minimum lifetime (time from past to future singularity) of the wormhole is
then 2πMmin. The following two functions are chosen:

tB = tB0 − b(M −Mmin)
2
, (2.83)

E = −Mmin

2M
+ a(M −Mmin). (2.84)

From these, the conditions for matching to an exterior at some M are

tB0 =

tB +
M

2

dtB
dM

M dE

dM
±

√
1 + 2E +M2

(
dE

dM

)2


M=MBH

, (2.85)

Mmin =

M2 dE

dM
+M

1±

√
1 + 2E +M2

(
dE

dM

)2


M=MBH

, (2.86)

a =

1

2

dE

dM
− 1

2M

1±

√
1 + 2E +M2

(
dE

dM

)2


M=MBH

, (2.87)

b =

dtB
dM

/

2M

M dE

dM
+±

√
1 + 2E +M2

(
dE

dM

)2



M=MBH

. (2.88)

This model is not very flexible, it was chosen for simplicity. The lifetime of the wormhole is determined
by the matching, thereby fixing the value of Mmin. The wormhole lifetime could be a free parameter in a
different model.

2.5.4 THE EXTERIOR GALAXY MODEL

Since M87 is assumed to contain a large black hole, we choose it as the density profile of the final state.
The density profile for its outer part had been proposed some time ago [42]:

ρ(s) =
ρ0

(1 + bs2 + cs4 + ds6)
n , (2.89)

where ρ0 = 1.0× 10−3 g/cm3, b=0.9724, c = 3.810× 10−3, d = 2.753× 10−8 and n = 0.59. The distance
from the centre, s, measured in arc minutes, is related to the actual distance r by

s =
r

D

10800

π
:= rδ, (2.90)

where D is the distance from the Sun to the galaxy. In this case we require a profile that goes to infinity
at r → 0, to allow for the black hole singularity, and a density expressed as a function of mass. Now, the
mass profile corresponding to (2.89) is not an elementary function, but the following simple profile (with
the same value of ρ0) is a close approximation to (2.90), in the region considered by [42]:

ρ(r) =
ρ0

(δr)
4/3

. (2.91)

The corresponding mass distribution is

M̃(r) =
12

5
πρ0r

5/3δ−4/3 +MS , (2.92)
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where a constant MS has been added to M̃(r) to make it singular at r = 0. Hence,

r =

[
5(M −MS)δ4/3

12πρ0

]3/5

(2.93)

and

ρ(M) =
12π

5

4/5

ρ
9/5
0 δ−12/5(M −MS)−4/5. (2.94)

From (2.21), we determine the corresponding R(M) using

R3 =
3

4π

M∫
MS

dx

ρ(x)
, (2.95)

which gives

R(M) =

(
5

12πρ0

)3/5

δ4/5(M −MS)
3/5
. (2.96)

Using the requirement that R = 2M at M = MBH , we can now determine MS , i.e.

MBH =
1

2

[(
5

12πρ0

)3/5

δ4/5(M −MS)
3/5

]
. (2.97)

Hence we find

MS = MBH −
12πρ0

5δ4/3
(2MBH)5/3. (2.98)

It follows that MS < MBH , as it should.

2.5.5 NUMERICAL EVOLUTION OF THE MODELS

This two-step model construction uses an adaptation of programs written for the papers by Krasińsky and
Hellaby. First, the exterior profiles are used as input to the methods of Section 2.3.1, solving numerically
for E(M) and tB(M) for MBH ≤ M ≤ Mgalaxy. The values of E and tB and their derivatives at MBH

are extracted, and the parameters of the interior model calculated from them. Then, the functions E and
tB are numerically extended into the interior model down to M = 0 or M = Mmin. From these data,
existing programs are used to reconstruct the model evolution.

The first model uses a flat initial profile at time t1 = 105 yr, and the final density profile of Section
2.5.4 is used for the galaxy at time t2 = 14 Gyr, both of which are exterior to MBH . The interior of MBH

is a black hole formed by collapse, as described by (2.76) and (2.78), with parameters determined by the
matching (2.79)-(2.82). Geometric units are chosen so that 1011 M� is the unit mass. In these units, the
parameters are:

a = 2.5× 1014, b = 41525.5859, tB0 = 8043.214, T0 = 8.901× 1011. (2.99)

It is found that the density fluctuations at recombination are of the order of 10−5 (consistent with CMB
limits), and the black hole singularity forms at time T0 = 13.894 Gyr, so it is 106 million years old by
today.

The second model uses the identical exterior, but the interior is a full Kruskal-Szekeres type black hole
containing a temporary wormhole, as described by (2.83) and (2.84), with parameters determined by the
matching (2.85)-(2.88). The same geometric units are used, and using the minus sign in (2.85)-(2.88), the
parameters are:

a = −4.8597× 10−8, b = 41525.5859, tB0 = 8043.214, Mmin = 1.8571× 10−11. (2.100)

Using the plus sign gives Mmin = 0.06 > MBH = 0.03, which is not acceptable.
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Since the exteriors are identical, the fluctuations of density at recombination (t1) outside MBH are well
within CMB limits. The wormhole mass (minimum in M) is Mmin = 1.8571 M�, and the future singularity
first forms at T0 = 5.7476 × 10−5s after the past singularity (the future and past black hole singularities
are the extension of the crunch and bang into the middle of the wormhole). The very short lifetime of
the wormhole is a consequence of the need for E to go from −1/2 all the way up to −1.3435× 10−9 and
arrive there with a negative gradient. By (2.17), a comparison of the lifetime at the neck, where T = T0,
M = Mmin and E = −1/2, and the boundary gives

T0

T (MBH)
=
Mmin

MBH
× (2× 1.3435× 10−9)

3/2
< 8.6× 10−23, (2.101)

since Mmin < MBH , which shows that the wormhole lifetime must be an extremely small fraction of the
galaxy lifetime.

This example effectively highlights the fact that the age of the central black hole may be impossible to
determine observationally, and that the two kinds of black holes are observationally indistinguishable. By
recombination (t1), this black hole has acccreted 8150917 M� within the apparent horizon, which is only
0.161AU across. It will be a long time before any effect this might have on the CMB becomes observable.

In view of the paucity of data, this approach was the first exploratory step into an uncharted territory
rather than an actual model to be compared with observations. The main limitation of the spherically
symmetric L-T model is a lack of rotation, which slows collapse and stabilises structures. Thus the model
is good for much of the evolution into the non-linear regime, but becomes less realistic as collapse sets in.

The results show that the L-T model is a very useful tool for this kind of investigation. However,
for its parameters to be fine-tuned to results of observations, the observational data would have to be
re-interpreted against the background of the L-T geometries.

2.6 MODELLING A RICH GALAXY CLUSTER

2.6.1 THE MOST REALISTIC MODEL

Here we choose the mass unit 1 MG = 1015 M�, and we choose units in which c = 1 and G = 1. The
gravitational units of time and distance are 1 TG = 156 yr and 1 LG = 47.84 pc.

The galaxy cluster A2199, from the Abell cluster, is one of the objects that we choose to model. The
following (Newtonian!) ‘universal profile’ is in use in astronomy [43]:

ρ(R) = ρb
δ

(R/RS)(1 +R/RS)
2 , (2.102)

where ρb = 8 × 10−30 g/cm3 is the average density in the Universe, δ = 77440 is a dimensionless factor
and RS = 3457 LG = 1.65 × 105 pc = 5.11 × 1018 km is a scale distance. The profile is said to apply for
R changing by two orders of magnitude [43].

For this procedure, we need the density as a function of mass. The calculation ρ(R) → M(R) →
R(M) → ρ(M) can always be done numerically, but it is more important to have an exact explicit
formula. Therefore, the ‘universal profile’ is approximated by the following ρ(M) profile:

ρ(M) = ρb
B2

1 + e
√
M/µ2

, (2.103)

where B2 = 498500 and µ2 = 0.07144 MG.
It is assumed that the initial density perturbation contained a mass of about 0.01 of the final mass, so

for the initial profile at t1 we choose

ρ

ρb
=

{
1 +A1[1 + cos 100πM

MC
] for M < MC

100

1 for M > MC

100 .
(2.104)

Here, A1 = 1.5 × 10−5 and MC = 1.182MG is the mass within the compensation radius (a compensated
void is one where the mass within it is the same as the mass of the background that would occupy the
same space).
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It is found that E(M) is everywhere negative, which means that all matter within the model will
eventually collapse. Also, it is found that the difference in age between the outer part of the cluster and
its central part is approximately 0.1 TG ≈ 15.6 years, i.e. this Big Bang is almost simultaneous. However,
since tB(M) is an increasing function, this implies a shell crossing, but this would occur before t1, where
the model does not apply anyway.

Now, we can calculate the associated velocity distribution b1(M) = R,t(t1,M) at t1, since we are given
tB(M) and E(M). It is found that the relative amplitude at the centre of the cluster is about 5 × 10−4,
which is within observational limits.

2.6.2 RESULTS OF SOME OTHER NUMERICAL EXPERIMENTS

For the evolution from a homogeneous initial density to a galaxy cluster (another profile approximating
the ‘universal profile’ [36]) another velocity amplitude at t1 is obtained,

(∆b/b)(t1)|max = 5.2× 10−4, (2.105)

which is on the border of the observationally implied range. This means that a pure velocity perturbation
can very nearly produce a galaxy cluster.

For the evolution from a homogeneous initial velocity to a galaxy cluster, with the same final profile
as above, the following density amplitude at t1 is obtained,

(∆ρ/ρ)(t1)|max = 12× 10−3, (2.106)

which differs from the observationally allowed value by three orders of magnitude. Consequently, density
perturbations generate structures far less efficiently than velocity perturbations.

[44] demonstrate that a smooth evolution can take an initial condensation to a void. Hence, the final
structure that will emerge is not determined by the initial density distribution; the velocity distribution
can obliterate the final step. The proponents of the classical structure formation paradigm should take
this very seriously, since they assume that density fluctuations alone are responsible for the creation of
structure.

In conclusion, L-T models can be very effective at producing present day galaxy clusters provided we
take the contribution of velocity perturbations very seriously.

2.7 MODELLING A VOID

In this section, we check whether it is possible to evolve a void from small initial velocity and density
perturbations imposed on a homogeneous background [46]. We will also check what is the influence on the
structure formation of the following factors:

• The shape and the amplitude of the initial perturbations.

• The evolution time.

• The expansion rate.

• The outflow of mass from the central part of the void.

Voids are vast regions where only a few instead of thousands of galaxies are observed. From astronomical
observations, about 40% of the volume of the Universe is taken up by voids [45]. Therefore, void formation
is a very probable process and not an isolated event. It is quite easy to reproduce high-density regions
when dealing with gravity, for example, by setting the initial conditions so that collapse or shell crossings
occur. However, this cannot be done in the case of low-density regions. Consequently, the study of void
formation gives us a better understanding of the Universe in its early stages of evolution.

All models in this section are specified by the initial velocity and density distributions and the work
and results presented in [46], are used throughout this section.
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The evolution of the void will be calculated using six different background models, which have the
following parameters: 1 Ωmat = 0.27, ΩΛ = 0, 2 Ωmat = 0.39, ΩΛ = 0, 3 Ωmat = 0.27, ΩΛ = 0.73, 4
Ωmat = 1, ΩΛ = 0, 5 Ωmat = 11, ΩΛ = 0, 6 Ωmat = 0.27, ΩΛ = 1.64. Some of these models, especially
the elliptic ones without cosmological constant, are inconsistent with the observations. These are used to
check which of the four factors listed above are more important in the process of void formation, and are
not used in order to obtain a model of the observed Universe. In order to compare the various models, let
us assume that the initial conditions are independent of the background model.

In order to determine the evolution of the L-T model, one needs two functions, and in this section these
will be the initial density and velocity distributions. However, this is not the only method; the evolution
can also be determined by specifying the initial and final density profile [35], or the initial velocity and
final density distributions [36].

2.7.1 THE ALGORITHM

Numerical methods used in this section are taken from [47] and [48].

1. The initial time t1 is chosen to be the time of last scattering, and is calculated from the following
formula for a background FRW universe:

t(z) =
1

H0

∞∫
z

dz̃

(1 + z̃)
√
D(z̃)

, (2.107)

where
D(z) = ΩΛ + ΩK(1 + z)

2
+ Ωm(1 + z)

3
+ Ωγ(1 + z)

4
. (2.108)

H0 is the present Hubble constant, and:

ΩΛ =
1

3

c2Λ

H0
2 , (2.109)

ΩK = 1− Ωγ − Ωm − ΩΛ, (2.110)

Ωγ =
8πaGT 2

CMB

3H0
2 , (2.111)

where TCMB is the current temperature of the CMB (2.73 K), a = 4σ/c and σ is the Stefan-Boltzmann
constant. For the lower limit, z = 1089 [49] is used as the redshift at last scattering.

2. The initial density and velocity fluctuations, imposed on this homogeneous background, are defined
by δ(l) and ν(l) of radius l, as listed in Tables 2.1 and 2.2 respectively, and the actual density and velocity
follow from

ρi(l) = ρb(1 + δi(l)) (2.112)

ui(l) = ub(1 + νi(l)) (2.113)

The parameter l is defined as the areal radius at the moment of last scattering, measured in kiloparsecs,
and is also used for the radial coordinate, i.e.

r = l =
Ri
d

=
R(r, ti)

d
, (2.114)

where d = 1 kpc. Background values are calculated as follows:

ρb = ρ0(1 + z1)
3
, (2.115)

ub = lH0

√
D(z1), (2.116)
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where ρ0 and H0 are the current values of the average matter density in the Universe and of the Hubble
constant, respectively.

3. Then the mass inside a shell of radius Ri, measured in kiloparsecs, is calculated by integrating (2.4):

M(l)−M(0) =
κc2

2

l∫
lmin

ρi(l
′)l′

2
dl′
∣∣
t=t1

. (2.117)

Since the density distribution has no singularities or zeros over extended regions, it is assumed that lmin = 0
and M = 0 at l = 0. This integration was done using Bode’s rule, with step size 2.5 pc.

4. The function E is calculated from Ri, V = (R,t)i, M and a chosen Λ value, using (2.3).

5. Then tB is calculated from (2.8) using Simpson’s integration, with step size 10−5 l.

6. Once M , E and tB are known, the L-T model can be calculated for any instant. Solving (2.3) with
the second-order Runge-Kutta method for R(t, l) along each constant l worldline, the value of R(t, l) and
R,t(t, l) are calculated up to the present epoch. The time step is 5× 105 yr.

7. The density ρ(t, l) is then found from (2.4), using the five-point differentiating formula. The adjusted
differences between adjacent worldlines, used in estimating derivatives is 10 pc.

8. For the purpose of comparing the results with observational data, the real density is not presented
but, instead, the average one, i.e.

δ =
〈ρ〉
ρ̄
− 1, (2.118)

where ρ̄ is the present background density

ρ̄ =
3Mc2

4πGR2
. (2.119)

9. The current expansion rate inside voids is represented by the equivalent of the Hubble parameter,
which is defined as 1/3 of the expansion scalar:

H =
1

3
θ = 2

R,t
R

+
R,rt
R,r

. (2.120)

2.7.2 THE VOID MODELS

2.7.2a Initial perturbations of homogeneity

Due to a lack of precise observational data, it is not possible to calculate the exact profile of the initial
density and velocity perturbations. From measurements of CMB radiation, one can estimate only the
amplitudes of these profiles. Intuitively, it can be expected that the region which in the future would
become a void should have, at the initial instant, a minimum of density and a maximum of velocity at the
centre. The chosen initial density and velocity distributions fulfilling the above conditions are presented
in Figure 2.1. From this, some initial conclusions can be made: we can say that the amount of mass
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re-distribution determines the current depth of the void, i.e. the mass outflow. This outflow depends on
the age of the void and on the expansion rate, with the major influence on the structure formation coming
from the shell expansion.

The final density contrast in models 4 and 5 is much more negative than in models 1-3, and in models
4 and 5 the expansion rate is bigger than in models 1-3, even though the age of the Universe in these
models is much lower.

Models 1-5 cannot, unfortunately, recover the observed density contrasts of today’s voids. The proper
depth can only be obtained in model 6, where the age of the Universe is significantly larger. Physically
this makes sense in that we require a density contrast close to -1, so the void really is ∼ empty.

The expansion rate of the void, in limits estimated by the various astronomical observations, is of
greater importance, compared to its age. In models 2 and 3, the expansion rate of shells is similar, and
the final density contrast in model 3 is lower due to the available time for evolution being 2 billion years
longer.

We now check how big the influence of the initial shape of the density and velocity perturbations is.

Figure 2.1: The initial density (upper) and velocity (lower) perturbations, as discussed in Section 2.7.2a.
Figure taken from [46].

2.7.2b Homogeneous velocity profile

For this case, the initial density profile δ is as in Figure 2.1, while the initial velocity profile is ν = 0. The
explicit formulae for these profiles are presented in Tables 2.1 and 2.2. The results shown in Figure 2.4
seem to be surprising. The mass re-distribution is almost the same (with the exeption of model 6), and
the diameters are similar, but the current density profiles are different. In this case, an additional factor
responsible for the void formation is seen; a faster expansion rate. This faster expansion compared to
the homogeneous background makes the difference between the density in the central regions of the void
density in the background increase with time, even when the mass of the shell inside the region of R(t, r)
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Section Model Density Perturbation Parameters Graph Output
2.7.2a 1-6 δINIT (l) = A(btan−1c −

dl−fe−g2−e−h2−ie−j2)k

A = 1.1× 10−5, b = 4, c =
0.16l − 2.2, d = 1

7 , f =

0.5, g = l−7
6 , h = l−9

7 , i =

1.4, j = l−11
3 , k = 1

1+0.03l

Fig. 2.1 Figs. 2.2 & 2.3

2.7.2b 1-6 δ = δINIT (l) Fig. 2.1 Fig. 2.4
2.7.2c 1-6 δ = 0 Similar to Figs. 2.2 & 2.3
2.7.2d 1-6 δAMP = A(btan−1c− dl−

fe−g
2 − e−h2 − e−j2)k

A = 7.5× 10−4, b = 4, c =
0.08l − 1.1, d = 1

11 , f =

0.4, g = 0.25, h = l−2
7 , j =

l−4
3 , k = 1

1+0.03l

Fig. 2.5

2.7.2e 1,2,3 δ1,2,3(l) = 100× δINIT (l) Fig. 2.6 Figs. 2.7 & 2.8
2.7.2e 4 δ4(l) = 2× δ1,2,3(l) Fig. 2.6 Figs. 2.7 & 2.8

Table 2.1: The initial density perturbations used in the runs. All the values in the table are dimensionless,
and the distance parameter is the areal radius in kiloparsecs l = Ri/1 kpc. Note that the output figures
depend on the initial perturbation in both density and velocity. Table taken from [46].

is not changing very much. Therefore, in the models with greater expansion rate, the density contrast is
most negative.

2.7.2c Homogeneous density profile

In contrast to the above, the initial density profile is δ = 0, while the initial velocity profile, ν, is as in
Figure 2.1. The explicit formulae for these profiles are presented in Tables 2.1 and 2.2.

The final results are not very different from the ones shown in Figure 2.2. This demonstrates that
the velocity distribution in void formation is very significant, while the density distribution is of lesser
significance.

2.7.2d Amplitude

Here, the amplitude of the initial fluctuations is increased as compared to the one used in Section 2.7.2a,
and is 7.5 × 10−4. The profiles of the initial perturbations are presented in Tables 2.1 and 2.2, and the
final results in Figure 2.5.

The increased amplitude of the initial perturbations results in a void with a higher negative density
contrast. Compared to the values estimated from CMB fluctuations, in order to obtain a density contrast
near δ ∼ −0.9, the amplitude of the initial density profile needed to be increased by more than 70 times,
and the amplitude of the velocity profile 20 times. Even so, the value δ ∼ −0.94 of the density contrast
was not reached, except in the two non-realistic background models. In model 3, the minimum value is
−0.873, and in model 4 it is −0.908. Unfortunately, increasing the amplitude leads to a shell crossing in
some models.

2.7.2e Observation and a model - a cross check

There were problems in the previous sections generating voids from small initial density and velocity
fluctuations, and the only alternative was to use a background model with an extremely large age of the
Universe (inconsistent with limits estimated by the various astronomical observations).

In this section, initial profiles that lead to the best fit with observational data are chosen. Only one
background model (preferred by astronomical observations) is focused upon, which is Ωmat = 0.27 and
ΩΛ = 0.73.

The initial fluctuations are presented in Figure 2.6, and the profiles are presented in Tables 2.1 and
2.2. The results are shown in Figures 2.7 and 2.8. Model 2 has both proper density contrast and smooth
edges. The conclusion from numerical experiments with different shapes of the initial profiles is that a
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Section Model Velocity Perturbation Parameters Graph Output
2.7.2a 1-6 νINIT (l) = A(btan−1c −

dl−fe−g2−e−h2−ie−j2)k

A = −4× 10−5, b = 4, c =
0.16l − 2.2, d = 1

7 , f =

0.5, g = l−7
6 , h = l−9

7 , i =

1.4, j = l−11
3 , k = 1

1+0.03l

Fig. 2.1 Figs. 2.2 & 2.3

2.7.2b 1-6 ν = 0 Fig. 2.4
2.7.2c 1-6 ν = νINIT (l) Fig. 2.1 Similar to Figs. 2.2 & 2.3
2.7.2d 1-6 νAMP (l) = A(btan−1c −

dl−fe−g2 −e−h2 −e−j2)k

A = −7.5 × 10−4, b =
4, c = 0.08l − 1.1, d =
1
11 , f = 0.4, g = 0.25, h =
l−2
7 , j = l−4

3 , k = 1
1+0.03l

Fig. 2.5

2.7.2e 1 ν1(l) = 37.5× νINIT (l) Fig. 2.6 Figs. 2.6, 2.7 & 2.8
2.7.2e 2,4 ν2,4(l) = A(btan−1c−dl−

fe−g
2 − e−h

2 − e−j
2 −

me−n
2

)(k + p)

A = −3.5 × 10−3, b =
4, c = 0.02l − 0.02, d =
1
11 , f = 0.7, g = l, h =
l−1
7 , j = l−3

3 , k =
1

1+0.03l ,m = 1.225, n =
l−39
12 , p = 5× 10−4

Fig. 2.6 Figs. 2.7 & 2.8

2.7.2e 3 ν3(l) = A(btan−1c − dl −
fe−g

2 − e−h
2 − e−j

2 −
me−n

2

)(k + p)

A = −3.5 × 10−3, b =
4, c = 0.02l − 0.02, d =
1
11 , f = 0.7, g = l, h =
l−1
7 , j = l−3

3 , k =
1

1+0.03l ,m = 0.7, n =
l−39
12 , p = 5× 10−4

Fig. 2.6 Figs. 2.7 & 2.8

Table 2.2: The initial velocity perturbations used in the runs. All the values in the table are dimensionless,
and the distance parameter is the areal radius in kiloparsecs l = Ri/1 kpc. Note that the output figures
depend on the initial perturbation in both density and velocity. Table is taken from [46].

model of a void consistent with observational data (with the density contrast less than δ ∼ −0.94, smooth
edges and high density in the surrounding regions) is very hard to obtain within the L-T model, without
the occurrence of a shell crossing singularity. The final state of model 2 was very close to this singularity
and in model 4 a shell crossing occurred.

The main factor responsible for void formation is the velocity perturbation, with an amplitude of
∼ 0.008 near the centre, and dropping below zero in the outer regions (model 3 did not fulfil this condition).
The density fluctuation is of less importance. Models 1 and 3 had the same initial density fluctuations,
and in model 4, the the amplitude was two times greater. In spite of these differences, the final results
differ only in shape, and not in the depth of the final density contrast.

2.7.3 VOID EVOLUTION CONCLUSIONS

There are five main conclusions to be drawn from the above analysis:

• It was found that velocity perturbations are of greater significance than density perturbations in the
process of void formation.

• In the expanding void, mass moves outwards.

• In the numerical experiments that were carried out, the perturbations that were needed to form
a realistic present day void had to have a density amplitude of δρ/ρ ≈ 5 × 10−3 and a velocity
amplitude δV/V ≈ 8× 10−3 (in the model with Ωmat = 0.27 and ΩΛ = 0.73).

• There was no significant difference between the evolution of the void in the model with and without
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Figure 2.2: The current density contrast and the Hubble parameter for data discussed in Section 2.7.2a,
in six different backgrounds, with parameters given in Section 2.7. * - shell crossing. Figure taken from
[46].

Figure 2.3: The mass re-distribution for data discussed in Section 2.7.2a. R0 is the smallest R value at
which the density takes the background value. The denominator on the y-axis is the mass inside the shell
of the areal radius, given by the denominator on the x-axis. 0 - the initial condition; other labels as in
Figure 2.2. Figure taken from [46].

41



Figure 2.4: The current density contrast and the Hubble parameter for the flat initial velocity profile in
six different background models, outlined in Section 2.7. Labels as in Figure 2.2. Figure taken from [46].

Figure 2.5: The current density contrast and the Hubble parameter for the initial data with higher am-
plitude of density and velocity perturbations in six different background models, outlined in Section 2.7.
Labels as in Figure 2.2. Figure taken from [46].
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Figure 2.6: The initial density (upper) and velocity (lower) perturbations for the results presented in
Figures 2.7 and 2.8. Figure taken from [46].
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Figure 2.7: The current density contrast for the models discussed in Section 2.7.2e. Figure taken from
[46].

Figure 2.8: The Hubble parameter for the models discussed in Section 2.7.2e. Figure taken from [46].
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the cosmological constant. In this latter case, the amplitude of the initial velocity fluctuation needed
for this purpose was a little smaller.

• The existence of voids is closely related to the existence of regions of higher density surrounding the
voids. In the simulations, there were problems obtaining reasonable profiles for these high density
regions, since shell crossing singularities tended to occur. The L-T model breaks down at shell
crossings, so to trace the further evolution of the void, focus had to be placed on the central regions
of the void. In reality, as density increases, a gradient of pressure would appear, which cannot
be described in the L-T model. Since superclusters are observed on the edges of the voids, this
singularity is interpreted as an indicator of the presence of a supercluster.

2.8 THE IMPACT OF RADIATION ON VOID FORMATION

In the previous section we found that the initial amplitudes of density and velocity fluctuations needed
to generate a void in an L-T model are ∼ 10−3, whereas the amplitude of baryon density fluctuations
estimated from the CMB temperature fluctuations is ∼ 10−5. Consequently, these L-T model fluctuations
are too large to be realistic. Now we examine if this disproportion is due to matter being mostly of
non-baryonic nature or to some other physical effects, like the presence of radiation. This issue was first
studied by [50] with the Lemâıtre model discussed in Section 3.1 and the L-T class of models described
earlier in this chapter.

The observed redshift of the CMB is z ≈ 1090, and the pressure of matter at this redshift can be
estimated from the perfect gas equation of state:

p

ρc2
=

kBT

µmHc2
≈ 10−10. (2.121)

This shows that the pressure of normal matter at last scattering is negligible.
The contribution of radiation to the energy density, however, cannot be neglected, and the ratio of

radiation energy density to matter energy density at last scattering is

ρrad
ρb

=
aT 4

ρc2
=

Ωγ
Ωm

(1 + z), (2.122)

which for Ωm = 0.3 gives
ρrad
ρb
≈ 0.2. (2.123)

As can be seen, this ratio decreases for low redshifts. But, at the early stage of evolution at last scattering,
the radiation should have an influence on the evolution of structures. This will be considered further.

2.8.1 THE ALGORITHM

In order to calculate the evolution of a mixture of radiation and matter within the L-T model we first
need to specify initial conditions. They consist of velocity fields of both fluids (it is assumed that matter
is comoving with radiation, so that radiation contributes only to the energy-density and pressure, where
the contributions obey prad = ρrad/3), initial fluctuations of matter density, expansion rate and radiation.

Time instants

Since it is required that at large distances from the origin the model of a void becomes the Friedmann model,
these functions are presented in the form of given fluctuations imposed on a homogeneous background.
All background values are calculated for the instant of decoupling (t1) using (2.107).
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The initial density perturbations

The radial coordinate was defined as the areal radius at the moment of last scattering, measured in
kiloparsecs:

r = l = R(r, t1)/d, (2.124)

where d = 1 kpc. The initial density fluctuations, imposed on the homogeneous background, were defined
by functions of the radius l, as listed in Tables 2.3 and 2.4, and the actual density fluctuations followed
from:

ρ0(l) = ρb0 × δl, (2.125)

where ρb0 is the density of the homogeneous background and at the initial instant, and can be expressed
as:

ρb0 = Ωmatρcr(1 + z)3. (2.126)

The mass inside the shell of radius R(r, t1) at the initial instant, measured in kiloparsecs, is again calculated
from (2.117).

The initial velocity perturbations

The initial velocity fluctuations, imposed on the homogeneous background, were defined by functions of
the radius l, as listed in Tables 2.3 and 2.4, and the actual velocity fluctuations followed from:

U(l) = Ub0 × ν(l), (2.127)

where Ub0 is the velocity of the homogeneous background at the initial instant, and can be expressed as:

Ub0 =
R,t
c

=
ra,t
c
. (2.128)

In the FLRW models the time derivative of the scale factor is given by the formula [51]:

a,t = aH0

√
D, (2.129)

where D is given by (2.108). Consequently, the perturbed velocity is

U =
(1 + ν)RH0

√
D

c
. (2.130)

In the Lemâıtre models the proper time derivative of the areal radius R, U is just equal to R,t/c in our
case, in consequence of the metric of equation 3.1:

U =
e−A/2R,t

c
, (2.131)

from which we obtain R,t for a given ν(l).

The radiation perturbations

In general, the energy density of radiation can be written in the following form:

ρrad(r, t) = ρrad,bζ(r, t), (2.132)

where ρrad,b is the radiation energy density of a homogeneous background. Since from the last scatter-
ing instant the radiation fluctuations have always been of small amplitude, let us assume that the time
dependence can be separated from the spatial dependence:

ζ(r, t) = φ(t)[1 + γ(r)]. (2.133)
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Profile Parameters

F(l) = afdbedf + g a = (A−g)(−b)−dbedb,f = l−b,h = (R−b)dbed(b−R),g = [1−(−b)dbe−dbh]−1,d =
−0.2,b = −4.6,R1 = 40,A = 6× 10−5

G(l) = A(btan−1c−
dl− fe−g2 − e−h2 −
e−j

2 −me−n2

)k+ p

A = −1× 10−4,b = 4,c = 0.02(l − 1),d = 1
11 ,f = 0.7,g = l,h = l−1

7 ,j = l−3
3 ,m =

1.225,n = l−39
12 ,k = 1

1+0.03l ,p = −2× 10−5

Table 2.3: Detailed descriptions of the initial fluctuations of Fig. 2.9. All the values in the table are
dimensionless, and the distance parameter is the areal radius in kiloparsecs, l = R1/1 kpc. See Table 2.4
and Figs. 2.10 and 2.11.

Let us further assume that the time-dependence amplitude of the radiation is the same as in the homoge-
neous background, so

φ = 1. (2.134)

However, this assumption may have to be modified in the future if observational data on the distribution
of radiation become more detailed.

The radiation energy density of a homogeneous background is calculated in the usual way:

ρrad,b = ρrad,b,0

(a0

a

)4

= ρrad,b,0(1 + z)4, (2.135)

where ρrad,b,0 is the present value of the radiation energy density and is equal to 4(σ/c)T 4
CMB .

Recapitulating we have:

ρrad = 4
σ

c
T 4
CMB(1 + z)4(1 + γ). (2.136)

For an exact form of γ see Tables 2.3 and 2.4.

Computing the evolution

The algorithm for computing the evolution consists of the following steps:

• From (2.130), (2.131) and (3.6) the value of R,t and from (3.3) the value of M,t can be calculated.
Then, using the predictor-corrector method, the value of R(t+ τ, r) and M(t+ τ, r) in the time step
τ can be found. We further denote all the quantities found in this time step by the subscript τ .

• Once Rτ and Mτ are known, we can derive ρτ from (3.2).

• Then from (2.136) and the equation of state for radiation p = 1/3ρrad we derive pτ .

• From ρτ and pτ we can calculate Aτ by integrating (3.6).

• Uτ can be calculated as follows: From (3.4) and (3.9) we obtain:

U2(t, r) =
2M(t, r)

R(t, r)
+

1

3
ΛR2(t, r)− 1 + e−B(t0,r)exp

 t∫
t0

A,r(t̃, r)e
A(t̃,r)/2U(t̃, r)

R,r(t̃, r)
dt̃

 . (2.137)

By solving this equation using the bisection method, for the time t = t1 + τ , we can calculate Uτ .

• Once Uτ and Aτ are known, R,t(t, r) and then M,t(t, r) can be calculated.

• We repeat these steps until t becomes the current instant.
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Results

Measurements of the density contrast inside voids are based on observations of galaxies inside them [45].
However, because in central regions no galaxies are observed, the real density distribution is unknown.
Assuming that luminous matter is a good tracer of the total matter distribution, and extrapolating the
value of the density contrast measured on the edges of voids (where galaxies are observed) into the central
regions, we can conclude that the density inside voids is below 0.06ρb, which is called the limiting value.
It is expected that the model will predict a present-day density inside the voids below this value.

A flat Friedmann model with Ωm = 0.27 and ΩΛ = 0.73 was chosen as a background model. However,
in order to check how a choice of background model affects the evolution of voids, at the end of this section
three other background models will be also considered.

Figure 2.9 shows the shape of the initial perturbations, and their explicit forms are presented in Tables
2.3 and 2.4. The results plotted in Fig. 2.10 show that four out of seven models voids are formed. As can
be seen, models with an inhomogeneous distribution of radiation have no difficulty reproducing regions
with density below the limiting value.

To compare the results with the observational data, Fig. 2.11 presents the average density contrast
inside the voids as a function of the relative distance from the origin. The average density contrast is given
by (2.118). Curve 1 presents the results of run 1, as listed in Table 2.4. Curves NGP and SGP present
density contrasts of voids in the 2dFGRS data estimated by [45]. Although the profiles match at the centre,
they do not fit accurately at the edge of voids. In this model the density contrast tends to increase faster
than is observed, which could be due to assumptions (2.134) and (2.135) about the evolution of radiation,
and would suggest that the distribution of radiation did evolve after last scattering. There is another
possibility that could explain the difference between these two profiles. The density contrast estimated in
[45] is based on observations of galaxies. It is possible that there is non-luminous matter within the walls,
and so this procedure does not reproduce the total matter density profile sufficiently well.

Introducing radiation into the calculation we need to know the relation between matter and radiation
perturbations. In linear theory there are three concepts of these relations:

1. Adiabatic perturbations, where γ = 4δ/3,
2. Isothermal perturbations, where γ = 0,
3. Isocurvature perturbations, where γ = 4(δ − δ0)/3. Here δ0 is some initial value of δ.

It should be stressed that in realistic conditions there are no pure adiabatic, isocurvature or isother-
mal perturbations and the relations between density and radiation perturbations are more complicated.
However, it is instructive to know what kind of relation is more suitable for the process of void formation.

The results presented in Fig. 2.10 imply that voids can be formed out of adiabatic or isocurvature
perturbations and there is no significant difference between these two forms of perturbations, as long as
the gradient of the radiation is negative. With an isothermal perturbation low density regions cannot be
formed as the gradient of radiation is important in the process of void formation.

Finally, let us notice that, in the present-day profiles of Fig. 2.11, the density gradient at the edges of
voids is steeper in the models than is observed. There could be several explanations:

1. The shapes of the initial perturbations are not quite correct.
2. The assumption that the radiation distribution did not evolve from last scattering is not fulfilled.
3. Matter around voids can distinctly depart from spherical symmetry.
4. The real density contrast increases faster than the density contrast of luminous matter.
5. Describing radiation as comoving with dust, with the equation of state prad = ρrad/3 is too crude.

These points must be taken into account in future examinations. However, at this stage we can conclude
that, until several million years after last scattering, radiation cannot be neglected in models of structure
formation,and that the negative gradient of radiation causes faster expansion of the space inside the void,
hence the density contrast decreases faster there. The excess of radiation pressure simply drives matter out
of the region destined to be a void and piles it up on the edges. As a result, to evolve structures like voids
the amplitude of density fluctuations at last scattering does not have to be larger than 10−5. Therefore,
the fluctuations of any non-luminous component at last scattering can be of the same amplitude as the
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Run Profile Description
1 δ− = −F ,γ+ = + 4

3F ,ν =
1 + G

Isocurvature-like perturbations. Reconstructs present-day voids.

2 δ− = −F ,γ− = − 4
3F ,ν =

+G
Adiabatic perturbations. Collapses after 20 million years. Leads
to high density region.

3 δ− = −F ,γ0 = 0,ν = +G Isothermal perturbations. Does not lead to low-density region.
4 δ+ = +F ,γ+ = + 4

3F ,ν =
+G

Adiabatic perturbations. Reconstructs the present-day voids.

5 δ+ = +F ,γ+ =
+ 4

3F ,ν− = −G
Reconstructs present-day voids, but density fluctuations are pos-
itive, with velocity perturbations negative.

6 δ0 = 0,γ+ = + 4
3F ,ν0 = 0 Reconstructs present-day voids.

7 δ− = −F ,γ− = δ− =
−F ,ν = +G

Leads to cluster formation with central density 2.1× 103ρb

Table 2.4: Summary of run results for models of void formation with inhomogeneous radiation. See Table
2.3 and Figs. 2.9, 2.10 and 2.11.

fluctuations of baryonic matter.

Constraints on background models

Figure (2.10) presents the evolution of voids (the initial conditions like in runs 1 and 3) in four different
background models:

(a) Ωm = 1, ΩΛ = 0, Ωγ = 4.77× 10−5,
(b) Ωm = 0.4, ΩΛ = 0, Ωγ = 4.77× 10−5,
(c) Ωm = 0.27, ΩΛ = 0, Ωγ = 4.77× 10−5,
(d) Ωm = 0.27, ΩΛ = 0.73, Ωγ = 4.77× 10−5.

These results imply that in the absence of radiation, or of the gradient of radiation, the structure
formation goes on faster in the models which are filled with a greater amount of matter (curves 3a, 3b, 3c
and 3d - for more details see [46]). Voids cannot be formed within this kind of radiation perturbations.

The results in Fig. 2.12 imply that the presence of a realistic distribution of radiation is important for
void formation - see models 1(c)-(d). Further, the contribution of radiation to the evolution of the system
is more significant in models with smaller values of Ωm. Therefore, the modelling of void formation can
put some limits on the values of cosmological parameters. As can be seen, models with Ωm ≈ 0.3 describe
observed voids best. However, we cannot constrain the value of the cosmological constant in a similar
manner.

2.9 THE COSMOLOGICAL CONSTANT AND THE COINCI-
DENCE PROBLEM

Since its discovery during the late 1990s [52], [53], the dimming of distant SN Ia has been mostly ascribed
to the influence of a mysterious dark energy component. Formulated in a Friedmannian framework, based
upon the cosmological principle, this interpretation has given rise to the ‘Concordance model’. However,
a caveat of such reasoning is that the cosmological principle is derived from the philosophical Copernican
assumption and has never been proven.

Moreover, it is well known, since the work of [54], that the inhomogeneities observed in our Universe
can have an effect upon the values of the cosmological parameters derived for a smoothed-out or averaged
Friedmannian model. A tentative estimate of such an effect was calculated by [55]. He found that the error
obtained when using averaging procedures compared to the volume matching, i.e. the procedure proposed
by [54] of Friedmann models to inhomogeneous L-T solutions with realistic density profiles implies that
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Figure 2.9: The shape of the initial density and velocity fluctuations for void formation with inhomogeneous
radiation. See Tables 2.3, 2.4 and Fig. 2.10. Figure taken from [127].

Figure 2.10: The present-day density distribution inside voids when inhomogeneous radiation is included.
The curve numbers correspond to the run numbers, as described in Table 2.4. The curve for model 2 is
omitted since by t2 it diverges near the origin. The line denoted by VL (void limit) refers to the measured
density inside the voids. Figure taken from [127].
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Figure 2.11: Comparison of the present-day density contrast obtained in run 1 (curve 1) with the observed
density contrast from [45] (SGP and NGP). Figure taken from [127].

Figure 2.12: The density distribution inside the void with three different background models. The curve
numbers correspond to the run numbers (description in Table 2.4) and to the background models (listed
on page 48). The curve denoted by VL (void limit) refers to the measured density inside voids. Figure
taken from [127].
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the mean density and pressure of the averaged Friedmann models are 10-30% underestimated as regards
the volume-matched ones. Therefore, even if the cosmological constant is the only component in the
Einstein equations beyond ordinary matter, the estimate of its actual value is less straightforward than
the conventional wisdom has it.

As regards dark energy, i.e. a negative pressure fluid with an equation of state parameter ω 6= −1,
(ω = −1 being the signature of the pure geometric cosmological constant), it remains a phenomenon which
cannot be explained in terms of the framework of current physics. This is known as the ‘cosmological
constant problem’.

Another feature of the luminosity distance-redshift relation inferred from the supernova data when
they are analysed in a Friedmannian framework is that it yields a late-time acceleration of the expansion
rate, beginning close to the epoch when structure formation enters the non-linear regime. This would
imply that we live at a time when the matter-energy density and the dark energy are of the same order of
magnitude. This is known as the ‘coincidence problem’.

In order to deal with these problems some authors have proposed a modification to the general relativity
theory at large distance scales (see, for example, [56]). However, our current purpose is to describe work
dedicated to a simpler and more natural proposal, which only makes use of known physics and phenomena.
Since it appears that the onset of apparent acceleration and the beginning of structure formation are
concomitant, the idea that the SN Ia observations could be reproduced totally or partially by the effect
of large-scale inhomogeneities was put forward. This interpretation was first proposed independently by
a few authors [57],[58], [19], [59], shortly after the release of the data. Then, after a period of relative
disaffection, it experienced a renewed interest.

Three different methods have been used to deal with this proposal: two back-reaction computations, one
using an averaging procedure, the other within a perturbative scheme, and the use of exact inhomogeneous
models, in particular those involving L-T solutions (see [60] for a review). Since the purpose of this thesis
is to investigate how relativistic cosmology can be done using exact methods, we shall focus our attention
on the analyses completed within the L-T framework.

2.9.1 CONSTRAINTS ON MODEL PARAMETERS FROM SN Ia DATA

This section summarises work done by [19] proposing a test of the cosmological principle with the SN Ia
observations and studying the possibility of explaining the cosmological constant problem as an effect of
large-scale inhomogeneities.

The luminosity distance DL of a source is defined as the distance from which the radiating body, if in a
Euclidean space and motionless, would produce an energy flux equal to the one measured by the observer.
It follows therefore that

l =
L

4πDL
2 , (2.138)

L being the absolute luminosity, i.e. the emitted power in the rest frame of the source, and l, the measured
bolometric flux, i.e. integrated over all frequencies by the observer.

For a given isotropic cosmological model the distance at redshift z is a function of z and of the model
parameters. The apparent bolometric magnitude m of a standard candle of absolute bolometric magnitude
M is also a function of z and of the parameters of the model. It can be written, for DL in megaparsecs, as

m = M + 5logDL(z; cp) + 25, (2.139)

where M is measured at D10 = 10 pc,

M = 2.5log
L

4πD10
2 . (2.140)

Here, cp denotes the set of cosmological parameters pertaining to the given model, which can be either
constants, as in FRW models, or functions of z, as in L-T ones. Then, the diameter or area distance DA

is also defined by the formula one would use in Euclidean space,

DA =
D

α
, (2.141)
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where α is the measured angular diameter of a source, and D is its physical diameter. The reciprocity
theorem then relates these two distances,

DL = (1 + z)
2
DA. (2.142)

If one considers any cosmological model for which the luminosity distance DL is a function of the
cosmological parameters cp and of the redshift z, and if this function is Taylor expanded near the observer,
i.e. for z < 1, then

DL(z; cp) =

(
dDL

dz

)
z=0

z +
1

2

(
d2DL

dz2

)
z=0

z2 +
1

6

(
d3DL

dz3

)
z=0

z3 +
1

24

(
d4DL

dz4

)
z=0

z4 +O(z5), (2.143)

since DL(z = 0) = 0.
Luminosity distance measurements of sources at different redshifts z < 1 yield values for the different

coefficients in the above expansion. Going to higher redshifts amounts to measuring the coefficients of
higher powers of z, whilst for very low redshifts the leading term is first order, and second order for
intermediate ones.

Consequently, for cosmological models with a very large number of free parameters, or with parameters
which are not constants but, for example, function of the redshift, such measurements only provide con-
straints upon the values of the parameters near the observer. However, for cosmological models with few
parameters, giving independent contributions to each coefficient in the expansion, the method not only
provides a way to evaluate these parameters, but, in most cases, to test the validity of the model itself by
checking the constraints on the Taylor coefficients. These can be derived with methods such as the one
below, developed for FRW cosmologies.

2.9.2 THE ΛCDM COSMOLOGICAL MODEL

For FRW models with a cosmological constant, the luminosity distance is [62]

DL =
c(1 + z)

H0

√
|k|
S

√|k| z∫
0

[(1 + z′)
2
(1 + Ωmz

′)− z′(2 + z′)ΩΛ]
−1/2

dz′

 , (2.144)

H0 being the current Hubble constant, Ωm is the total mass density, ΩΛ is the cosmological constant
parameter, and

S = sin and k = 1− Ωm − ΩΛ for Ωm + ΩΛ > 1, (2.145)

S = sinh and k = 1− Ωm − ΩΛ for Ωm + ΩΛ < 1, (2.146)

S = I and k = 1 for Ωm + ΩΛ = 1, (2.147)

I being the identity operator.
The Taylor expansion of (2.143) applied to this expression for the FRW luminosity distance yields

D
(1)
L ≡

(
dDL

dz

)
z=0

=
c

H0
, (2.148)

D
(2)
L ≡

1

2

(
d2DL

dz2

)
z=0

=
c

4H0
(2− Ωm + 2ΩΛ), (2.149)

D
(3)
L ≡

1

6

(
d3DL

dz3

)
z=0

=
c

8H0
(−2Ωm − 4ΩΛ − 4ΩmΩΛ + Ω2

m + 4Ω2
Λ), (2.150)

D
(4)
L ≡

1

24

(
d4DL

dz4

)
z=0

=
5c

72H0
(8ΩΛ +4ΩmΩΛ +2Ω2

m−16Ω2
Λ−12ΩmΩ2

Λ +6Ω2
mΩΛ−Ω3

m+8Ω3
Λ). (2.151)

These coefficients are independent functions of the three parameters of this class of models, H0, Ωm and
ΩΛ.
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Now, a simplified way of dealing with the SN Ia data in the framework of a Friedmannian cosmology
is to use the magnitude zero-point method. The magnitude zero-point M ≡ M5logH0 + 25 can be
measured from the apparent magnitude and redshift of low-redshift examples of the standard candles,
without knowing H0, since, in this representation, the apparent magnitude is

m ≡M+ 5logDL(z; Ωm,ΩΛ). (2.152)

Since DL(z; Ωm,ΩΛ) ≡ H0DL(z; Ωm,ΩΛ, H0), it depends upon Ωm and ΩΛ alone and such is the case for its

expansion coefficients D
(i)
L . We can therefore derive conditions which must be fulfilled by these coefficients

when fitting them to the data. These conditions are mandatory for any ΛCDM model to represent the
observed Universe.

In the standard CDM model, i.e. for ΩΛ = 0,

D(2)
L =

c

4
(2− Ωm). (2.153)

If the analysis of the measurements gives D
(1)
L < D

(2)
L , it implies Ωm < 0, which is physically irrelevant,

and the model is therefore ruled out. This is what happens with the SN Ia data, and what induced the
postulate of a strictly positive cosmological constant, to counteract the −Ωm term.

To test FRW models with ΩΛ, one has to go to at least the third order to have any chance of obtaining
a result, and a ruling out of these models at the third-order level, i.e. due to a negative value for Ωm,
would occur if it were found, using (2.148)-(2.150), that:

1−
D(3)
L

D(1)
L

− 3
D(2)
L

D(1)
L

+ 2

(
D(2)
L

D(1)
L

)2

< 0. (2.154)

It should be stressed, however, that this test is only valid for data from z ≤ 1 supernovae. It could be
argued that one way of dealing with this problem would be to use best-fit confidence regions in parameter
space; if these regions were located in physically irrelevant domains of the parameter space, e.g. Ωm < 0,
this would rule out the Friedmannian models as able to reproduce the geometry of our local Universe.
However, the computation of these best-fit confidence regions proceeds from a Bayesian data analysis, for
which a prior probability distribution accounting for the physically (in Friedmannian cosmology) allowed
part of the parameter space is assumed. The results are therefore distorted by an a priori homogeneity
assumption, which would have to be discarded for the completion of any robust test of this hypothesis.

2.9.3 L-T MODELS WITH ZERO COSMOLOGICAL CONSTANT

In this section we examine the possibility of reproducing the SN Ia data in an L-T model with no cos-
mological constant. In this case the observer is assumed to be located near the symmetry centre of the
model.

Since the L-T solution appears to be a good tool for the study of the observed Universe in the matter
dominated era, it is used here as an example showing that a non-vanishing cosmological constant in a
Friedmann universe can be replaced, under some conditions upon the functions of r defining each model,
by inhomogeneity with a zero cosmological constant, and is able to fit the SN Ia data just as well.

In the following, we set tB(0) = 0 at the symmetry centre (r = 0) by an appropriate translation of
the t = constant surfaces, and describe the Universe by the t > tB(r) part of the (r, t) plane, increasing t
corresponding to going from the past to the future.

When evaluated on the past null cone of a central observer, the areal radius Rn = R(tn(r), r) is precisely
the diameter distance

DA = Rn. (2.155)

From the reciprocity theorem, (2.142) and (2.155) yield

DL = (1 + z)
2
Rn, (2.156)
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and we see that the luminosity distance DL is a function of redshift z and, through Rn, of the parameter
functions of the model: M(r), E(r), and tB(r). Successive partial derivatives of R with respect to r and t,
and derivatives of E(r) with respect to r, evaluated at the observer, contribute to the expressions for the
coefficients of the luminosity distance expansion (2.156) in powers of z. It is therefore interesting to note
the behaviour of R(t, r) and E(r) near the symmetry centre of the model, i.e. near the observer, which
takes the form [85]:

R(t, r) = R,r(t, 0)r +O(r2), (2.157)

E(r) =
1

2
E,rr(0) +O(r3), (2.158)

due to the regularity conditions at the centre which imply R(t, 0) = R,t(t, 0) = E(0) = E,r(0) = 0, as well
as the vanishing of higher-order derivatives of R with respect to t alone at r = 0.

The expressions for the coefficients of the luminosity distance expansion naturally follow. After some
calculations one obtains

D
(1)
L =

R,r
R,tr

, (2.159)

D
(2)
L =

1

2

R,r
R,tr

(
1 +

R,r
R2
,tr

+
R,rr

R,rR,tr
− R,trr

R2
,tr

)
, (2.160)

D
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1

6
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R2
,tr

+ 3
R2
,rR

2
,ttr

R4
,tr

−
R2
,rR,tttr

R3
,tr

− 6
R,rR,ttrR,trr

R4
,tr

+
R,rrR,ttr
R3
,tr
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R,rR,ttrr
R3
,tr

− 3
R,rrR,trr
R,rR3

,tr

+ 3
R2
,trr

R4
,tr

+
R,rrr
R,rR2

,tr

− R,trrr
R3
,tr

+
E,rr
R2
,tr

)
, (2.161)

with implicit evaluation of the partial derivatives at the observer.
To compare the expansions of DL in the FRW and in the L-T cases, we recall that the expressions for

the Hubble parameter H0, and of the deceleration parameter, q0, at the observer in the FRW model are
given, in units in which c = 1, by

H0 =
1

D
(1)
L

, (2.162)

q0 = 1− 2H0D
(2)
L . (2.163)

The SN Ia data show that the q0 of (2.146) is negative, and it is claimed that this supports the Concordance
model.

Substituting these formulae as well as (2.148)-(2.150) into (2.159)-(2.161), we see that the expressions
for the FRW coefficients in the expansion of DL in powers of z can mimic L-T (Λ = 0) ones, at least to third

order. This is straightforward for D
(1)
L . The case of D

(2)
L is discussed at length in [61]. For higher-order

terms, it implies constraints on the L-T parameters, which will be illustrated below with the particular
example of flat models. In fact, owing to the appearance of higher-order derivatives of the functions of the
parameter ν in each higher-order coefficient, L-T models are completely degenerate with respect to any
given magnitude-redshift relation in the sense that one of its arbitrary functions remains unspecified. In
contrast, FRW models with constant parameters, including the equation of state parameter ω, are more
rapidly constrained and therefore cannot fit any given relation when tested at sufficiently high order in
the expansion.

2.9.4 EXAMPLE: FLAT L-T (Λ = 0) MODELS

To illustrate the kinds of constraints that can be imposed on L-T parameters by observational data, the
particular case of spatially flat L-T (E = Λ = 0) models is analysed here.

In this case, the expression for R is given by (2.13) and the calculation of its successive derivatives,
contributing to the expressions of the expansion coefficients, is straightforward.
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The mass function M(r) can be used to define the radial coordinate r : M(r) ≡ M0r
3, where M0 is a

constant.
With the covariant definition of H0 mentioned in (2.162), the D

(i)
L s, as derived from (2.159)-(2.161),

can be written, in units in which c = 1, as

D
(1)
L =

1

H0
, (2.164)

D
(2)
L =

1

4H0

(
1− 6

tB,r(0)

(9GM0/2)
1/3
t
2/3
p

)
, (2.165)

D
(3)
L =
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8H0

(
−1 + 4

tB,r(0)

(9GM0/2)
1/3
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2/3
p

+ 6
t2B,r(0)

(9GM0/2)
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t
4/3
p

− 9
tB,rr(0)

(9GM0/2)
2/3
t
1/3
p

)
, (2.166)

with the previously indicated choice tB(0), and where tp is the time coordinate at the observer. It is
convenient to note that tp is not a free parameter of the model, since its value follows from the currently
measured temperature at 2.73K .

A comparison with the corresponding FRW coefficients (2.148)-(2.150) yields the following relations
[63]:

Ωm ←→ 1 + 5
tB,r(0)

(9GM0/2)
1/3
t
2/3
p

+
15

2

t2B,r(0)
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t
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4
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, (2.167)

ΩΛ ←→ −
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. (2.168)

Equation (2.168) implies that a non-vanishing cosmological constant in an FRW interpretation of the data
at z < 1 corresponds to a mere constraint on the model parameters in a flat L-T (Λ = 0) interpretation.

Therefore, any magnitude-redshift relation established up to the third-order level, can be interpreted
in either model. For example, the results published in [53] under the following form pertaining to a FRW
interpretation

0.8Ωm − 0.6ΩΛ ≈ −0.2± 0.1, (2.169)

should be written, with no model dependent a priori assumption, as

2

(
D

(2)
L

D
(1)
L

)2

− 4.2
D

(2)
L

D
(1)
L

−
D

(3)
L

D
(1)
L

≈ −1.8± 0.1, (2.170)

and it would correspond, in a flat (Λ = 0) interpretation, to

4.3
tB,r(0)

(9GM0/2)
1/3
t
2/3
p

+ 3.75
t2B,r(0)

(9GM0/2)
2/3
t
4/3
p

+ 1.125
tB,rr(0)

(9GM0/2)
2/3
t
1/3
p

≈ −1± 0.1. (2.171)

Such a result would imply a negative value for at least one of the two quantities t(B,r)(0) or t(B,rr)(0), which
would be an interesting constraint on the bang time function in the observers neighbourhood. For instance,
a function tB(r) decreasing near the observer would imply, for a source at a given z < 1, an elapsed time
from the initial singularity that is longer in an L-T model than in the corresponding Friedmann one, i.e.
an older Universe. Consequently, a decreasing tB(r) has, in an L-T universe, an effect analogous to that
of a positive cosmological constant in a Friedmann cosmology. They both make the Universe look older.

2.9.5 APPARENT ACCELERATION

When examining the magnitude-redshift relation obtained from the SN Ia with no a priori idea about which
model would best describe our Universe, a straight reading of the data does not exclude the possibility
of challenging the cosmological principle, i.e. these data can fit other models than the FRW ones with
cosmological constant or dark energy.
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As an example, it has been shown that any magnitude-redshift relation can be reproduced by L-T
models with no cosmological constant, provided the parameter functions defining these models satisfy the
constraints issuing from observations. However, such simple models have been given as an illustration and
this does not preclude the more general conclusion stated above, i.e. that many other non-Friedmannian
models might reproduce the effect of a dark energy component.

When reasoning in the framework of Friedmannian cosmology, the supernovae dimming is associated
with an acceleration of the Universe expansion. This is why a number of authors have focussed on the issue
of either demonstrating or ruling out an acceleration of the expansion rate in inhomogeneous cosmologies.

Some of them tried to derive [64], [65] or rule out [66], [67] no-go theorems, stating that a locally
defined expansion can never be accelerating in models where the cosmological fluid satisfies the strong
energy condition.

However, when spatially averaged so as to produce a Friedmann-like behaviour, a physical quantity
associated with the expansion rate behaves quite differently [68]. Now, [69] argued that the averaged
quantity representing the scale factor or the deceleration parameter may accelerate without there being
any observable consequence. Moreover, one can find realistic inhomogeneous models which fit with the
supernova observations and have positive values of volume deceleration [70], [71]. Therefore, it is very
difficult to deduce general rules from such theorems.

Another pitfall of this method was pointed out by [72]. He showed that an L-T model with a positive
averaged acceleration can require averaging on scales beyond the event horizon of a central observer. In
such cases, the averaging procedure does not preserve the causal structure of spacetime and can lead to
the definition of locally unobservable average quantities. [73] proved that the necessary condition to obtain
volume acceleration in the L-T model is E > 0. When averaging on Mpc scales with inhomogeneities of
realistic features, a large-amplitude function E which is required to obtain volume deceleration leads to a
very large amplitude of the bang time function, making the age of the Universe unrealistically small [71].

This reinforces the statement that a positive averaged acceleration of an underlying inhomogeneous
Universe is in general not equivalent to a positive acceleration inferred from observations analysed within
a Friedmannian scheme.

The idea of a deceleration parameter is not uniquely defined in an inhomogeneous scheme. [65] proposed
four different definitions of such a parameter. [66], examining the effect of a mass located at the centre
of a spherically symmetric configuration on the dynamics of a dust cosmological fluid, showed that, for
an observer located away from the centre, (i) a central overdensity leads to acceleration along the radial
direction and deceleration perpendicular to it, (ii) a central underdensity leads to deceleration along and
perpendicular to the radial direction. This demonstrates that, even locally, the effect of inhomogeneities
on the dynamics of the Universe is not trivial.

To understand intuitively how inhomogeneities can mimic an accelerated expansion, it is interesting to
follow [59], [74], [75] who considered a cosmological model composed of a low density inner homogeneous
region connected at some redshift to an outer homogeneous region of higher density. Both regions decel-
erate, but, since the void expands faster than the outer region, an apparent acceleration is experienced by
the observer located inside the void.

We therefore conclude that the computation of some local quantity such as the deceleration parameter
(possibly subsequently averaged) behaving the same way as in FRW models with dark energy can lead to
spurious results, and must therefore be avoided. Actually, what we observe is the dimming of the SN Ia
accounted for by the magnitude-redshift relation. ‘Acceleration’ is a mere consequence of the homogeneity
assumption. This is the reason why we shall only consider, in the following, works aimed at studying the
magnitude-redshift relation.

2.9.6 CONSTRAINTS ON INHOMOGENEOUS MODELS FROM CMB DATA

In the standard approach, the CMB temperature fluctuations are analysed by solving the Boltzmann
equation within linear perturbation around a homogeneous and isotropic FRW model. In an inhomoge-
neous background, one can do a similar analysis employing the L-T model instead of an FRW model.
Alternatively, if it is assumed that the early Universe (before and up to the last scattering instant) is well
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described by an FRW model, then the power spectrum can be parametrized [76] by

lm = la(m− φm), (2.172)

where l1, l2 and l3 are the position of the first, second and third peaks respectively, and

la = π
R

rs
, (2.173)

where R is the comoving distance to the last scattering surface and rs is the size of the sound horizon
at the last scattering instant. The sound horizon depends on Ωb, Ωm, Ωγ and h. The size of the sound
horizon can be calculated by the formulae given in [77]. The function Ωm depends on Ωb, Ωm, h, ns and
the energy density of dark energy (ns is the spectral index). The exact form of φm was given by [76]. The
Ωm and h are given by the ratio ρ/ρcr and H/(100km s−1Mpc−1) at the last scattering surface (evaluated
for the current instant).

Here we present a fit to the CMB data using the above formula. Let us consider four LT models [78]:

Model A1

ρ(t0, r) = ρb

[
2.45− 1.45e−( l

0.75 )
2]
, (2.174)

tB = 0 , Ωb = 0.0445 , ns = 1, (2.175)

where l = r/Gpc.

Model A1 + ring

ρ(t0, r) = ρb

[
2.45− 1.45e−( l

0.75 )
2

− 1.75e−( l−5.64
0.926 )

2]
, (2.176)

tB = 0 , Ωb = 0.08 , ns = 0.963. (2.177)

Model A2

ρ(t0, r) = ρb

[
3.33 + 1.4e−( l

0.75 )
2]
, (2.178)

tB = 0 , Ωb = 0.0445 , ns = 1. (2.179)

Model A2 + ring

ρ(t0, r) = ρb

[
3.33 + 1.4e−( l

0.75 )
2

+ 0.08e−( l−5.64
0.926 )

2]
, (2.180)

tB = 0 , Ωb = 0.08 , ns = 0.963. (2.181)

The best fit to the positions of the CMB peaks is presented in Table 2.5. As can be seen, model A1 does
not fit the observed CMB power spectrum. However, by adding an underdense ring, we can modify the
density distribution in such a way that the CMB peaks can be reproduced - this is done in model A1 +
ring. From these results we can see why the model of [79], discussed below, has a larger radius for the local
Gpc-scale void. In models where density increases up to some distance from the origin, a satisfactory fit to
the first peak of the CMB power spectrum, i.e. the distance to the last scattering instant, can be obtained
if the mass of the Universe is decreased. This decrease can be obtained either by having an additional
underdense ring between the local void and the last scattering surface, or by having a local void of larger
radius (as in [79], where R ≈ 2.5 Gpc).

On the other hand, it is not only the mass that is important. To show this let us consider model A2.
In it, the density increases up to some distance from the origin. In this configuration we can also obtain
a good fit to the position of the first peak if we increase the mass of the Universe.

The positions of the other peaks depend strongly upon Ωb. In order to obtain a good fit to their
positions in the model we need to increase the value of Ωb beyond the value that is consistent with
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Model First peak Second peak Third peak
A1 177.34 414.08 627.19
A2 216.59 503.37 754.28

A1 + ring 220.46 530.38 800.19
A2 + ring 220.43 530.51 779.76
WMAP 220.8 ± 0.7 530.9 ± 3.8 700-1000

Table 2.5: The position of the peaks (values of the multipole moment l) of the CMB power spectrum.

observation of light elements in the local Universe to Ωb = 0.08. However, due to the lower expansion rate
at large distances, the physical baryon density Ωbh

2 remains close to the observed value, i.e. 0.0198 and
0.0212 for models A1 + ring and A2 + ring respectively.

The above results suggest that almost any model can be modified in such a way that a good fit to the
CMB data can be obtained. Both models A1 and A2, although very different, can be modified to fit the
CMB data. Therefore, the CMB data do not strongly constrain the properties of the local Gpc void. Each
model of the local void considered in the previous section can be modified in such a way, by adding one
or two rings between the local void and the last scattering surface, so that the CMB power spectrum is
recovered.

2.9.7 ALNES, AMARZGUIOUI AND GRØN’S PROPOSAL

In a series of three papers [80], [81], [82], a class of Universe models was studied where the inhomogeneities
take the form of a spherically symmetric under-dense bubble, represented by a particular class of L-T
models with E(r) > 0, which matches smoothly to a flat inhomogeneous Einstein-de Sitter background.
In [80], the observer is assumed to be at the centre of the inhomogeneity and the aim is to reproduce both
the SN Ia observations and the location of the first acoustic peak in the observed CMB temperature power
spectrum. In [81], it is investigated how far away from the centre the observer can be located to explain
the magnitude and alignment of the lowest multipoles in the CMB map. This work is described in Section
2.10.5. In another paper [82], they investigate whether such an off-centre position of the observer might
yield a better fit of the model to the SN Ia data than in [80]. We present the results of this work in the
present section.

First we summarise the presentation of the model as it is given in [80]. The Einstein equations for the
L-T solutions can be put in the form

κρ = H2
⊥ + 2HrH⊥ −

β

R2
− β,r
RR,r

, (2.182)

−κρ = 2H2
⊥ − 2HrH⊥ − 2

β

R2
− 6H2

⊥q⊥ +
β,r
RR,r

, (2.183)

where H⊥ ≡ R,t/R, Hr ≡ R,tr/R,r and q⊥ ≡ −RR,tt/R2
,t.

The L-T region of the model is described by two functions renamed α(r) ≡ 2GM(r) and β(r) ≡ 2E(r).
Since the late-time behaviour of the model is of interest, t = 0 is defined as the time when the photons
decoupled from the matter, i.e. the time of last scattering. Also, R(t = 0, r) ≡ R0(r) is defined, and a
conformal time η is introduced by β1/2dt = Rdη . To represent an underdensity, i.e. a L-T model with
negative spatial curvature, the Einstein equations for β > 0 are integrated to give

R =
α

2β
(coshη − 1) +R0

[
coshη +

√
α+ βR0

βR0
sinhη

]
, (2.184)

√
βt =

α

2β
(sinhη − η) +R0

[
sinhη +

√
α+ βR0

βR0
(coshη − 1)

]
. (2.185)
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The α and β functions are chosen so that they correspond to a smooth interpolation between two ho-
mogeneous regions where the inner region has a lower matter density than the outer region, thus describing
a spherical bubble in an otherwise homogeneous universe. They are written as

α(r) = H2
0r

3

[
α0 −

1

2
∆α

(
1− tanh

r − r0

2∆r

)]
, (2.186)

β(r) = H2
0r

2

[
β0 −

1

2
∆β

(
1− tanh

r − r0

2∆r

)]
, (2.187)

where H0 is the value of the Hubble parameter in the outer homogeneous region today, while α0 and β0

are the relative densities of matter and curvature in this region. Furthermore, ∆α and ∆β represent the
differences for α and β between the central and homogeneous regions, and r0 and ∆r specify the position
and the width of the transition zone.

Since the function R0(r) can be chosen at will using the freedom of coordinate choice in L-T solutions,
R0 = a∗r, where a∗ is the scale factor of the FRW model at recombination, in order to match the L-T
solution to the homogeneous one at that epoch.

To reduce the number of degrees of freedom of the model and make the problem tractable, a very simple
toy model is chosen: an underdense spherically symmetric region surrounded by a flat, matter-dominated
universe. To implement this, α0 = 1 and β0 = 0 is chosen, with ∆α = −∆β. This leaves four parameters
∆α, r0, ∆r and the Hubble parameter at the origin, Hr(0, t0) = 100h kms−1Mpc−1, to be fitted to the
observations.

To relate the α and β functions to observable quantities, relative matter and curvature densities are
defined from the generalized Friedmann equation (2.182) to be

Ωm = κρ
H2
⊥+2HrH⊥

, Ωk = 1− Ωm. (2.188)

Central observer

In [80], the observer is located at the centre of the underdensity. We give below a short overview of this
analysis since it takes into account some interesting cosmological features seldom found in such studies
and since its results will be used in the off-centre observer case [81], [82] which will be described later.

Equations (2.56) and (2.57), which define the path of the photon, can be recast into equations (19) and
(20) of [80]. Then, to determine the luminosity distance-redshift relation to be compared with the SN Ia
observations, these equations are numerically integrated, with the initial conditions: T (0) = t0 ≡ t(r = 0)
and z(0) = 0. The location of the last scattering surface, i.e. the position of the CMB photons we observe
today at the time of last scattering, is given by T (r∗) = 0 and t0 is defined by z(r∗) = z∗ ∼= 1100. The
luminosity distance follows from (2.142) and the angular diameter distance is

DA(z) = R(t(z), r(z)). (2.189)

Now, to confront the model with CMB observations, it would, in principle, require a study of perturbations
in an inhomogeneous universe. However, since this model is homogeneous outside a limited region at the
centre, it is assumed that the evolution of the perturbations is identical to that in a homogeneous universe
until the time of recombination. The standard results for the scale of acoustic oscillations on the last
scattering surface can then be used.

The position of the first Doppler peak of the power spectrum is also calculated, and it is shown that
agreement with observations is not hard to produce. However, there are a lot of possible choices for the
parameters of the model that give a very good fit to both the supernovae data and the position of the
first acoustic peak in the CMB temperature power spectrum. Since the problem consisting of deriving
an L-T model from the SN Ia data is degenerate, it is not very surprising that the addition of such a
slight constraint from the CMB spectrum is insufficient to remove this degeneracy. For this reason another
constraint is introduced: that the model be able to reproduce the mass density parameter at the origin,
Ωm0, measured from observations of galaxies with redshifts z < 0.12. It is proposed as the ‘standard
model’, a solution which gives an underdensity at the centre Ωm0 = 0.2, compatible with the results of the
2dF survey, Ωm0 = 0.24± 0.05.
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Parameter or feature Symbol Value
Density contrast ∆α 0.90
Transition point r0 1.35Gpc
Transition width ∆r/r0 0.40

Fit to supernova data χ2
SN 176.5

Position of the first CMB peak S 1.006
Age of the Universe t0 12.8Gyr

Relative density inside underdensity Ωm,in 0.20
Relative density outside underdensity Ωm,out 1.00
Hubble parameter inside underdensity hin 0.65

Hubble parameter outside underdensity hout 0.51
Physical distance to the last scattering DLSS 11.3Gyr

Table 2.6: Parameters and features of the best-fit model of [80] with a central observer.

Also, the scale of the baryon oscillations detected in the SDSS galaxy power spectrum [83] is used to
try to constrain the model even further. The physical length scale associated with these oscillations is fixed
by the sound horizon at recombination. Therefore, measuring how large this length scale appears at some
redshift in the galaxy power spectrum might allow one to constrain the time evolution of the Universe
from recombination to the time corresponding to this redshift. Anyway, it is unclear how to use the values
calculated by [83], since these authors derived their results in the framework of a ΛCDM model.

The results of the analysis of such a class of models with a central observer are that the underdensity
might extend about 1.35Gpc outwards. A very good fit to the supernovae data is obtained if the transverse
Hubble parameter H⊥ is allowed to decrease with distance from the observer, and this fit is even better
than for the ΛCDM model. On the other hand, a good fit to the location of the CMB power spectrum
is reached if the Universe is assumed to be flat with a value 0.51 for the Hubble parameter outside the
inhomogeneity. Therefore, interpolating between these two limiting behaviours might provide a good model
to account for both the SN Ia data and the location of the first CMB peak. The values of the parameters
for the best-fit model are given in Table 2.6.

This model yields a better fit to the Riess data set of supernovae than the ΛCDM model. However,
for the CMB fit only the location of the first peak was tested. Although the model yields a good fit to
this, it does not necessarily mean that it matches the whole CMB spectrum. Indeed, since the physics
responsible for the acoustic peaks is determined by the pre-recombination era, it would be expected that
the peaks should look more or less the same for a flat, homogeneous model with h = 0.51. This suggests
that this model might fail to explain the third peak. Furthermore, the model does not appear to explain
the observed length scale of the baryon oscillations in the SDSS matter power spectrum either.

Off-centre observer

[81] and [82] consider the best-fit model of [80], but now they put the observer away from the centre.
In their first paper they investigate the influence of such an observer location on the CMB temperature

power spectrum (we will come back to this in Section 2.11.3), and in the second paper they try to improve
the fit of their model to the SN Ia data by moving the observer off centre, and also to see how these data
constrain such a location.

By moving the observer off-centre, one adds three new degrees of freedom as regards the model with
a central observer; the distance from the centre r0, and the two angles which specify the displacement
direction. Since the explicit angular dependence of the observed supernovae is available in the data, the
most appropriate way to do the analysis is to minimise the χ2 values with respect to the two angles for
each r0.

The consequence of such an observer location is that the distance measures become anisotropic. The
explicit effect on the expression for the angular diameter distance was analysed by [84] and [85]. The
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expression, as given in the paper by [85], is

D4
Asin2γ = g̃γγ g̃ξξ − g̃2

γξ, (2.190)

where the g̃µν are the metric coefficients in the observer rest frame, and the γ and ξ correspond to the
polar and azimuthal angles in this frame.

After integrating the geodesic equations [82], which determine the trajectories of the infalling photons
toward the off-centre observer, one proceeds with the diameter distance calculation. The metric g̃µν in the
observers local coordinates is obtained by the coordinate transformation

g̃µν = gρσ
∂xρ

∂x̃µ
∂xσ

∂x̃ν
, (2.191)

which yields the following components,

g̃γγ = grr

(
∂r̂

∂γ

)2

+ gθθ

(
∂θ̂

∂γ

)2

, (2.192)

g̃ξξ = gφφ = R2sin2θ, (2.193)

g̃γξ = 0. (2.194)

Substituting these equations into (2.190) yields the expression for the angular diameter distance, which
reads

D4
A =

R4sin2θ

sin2γ

 R2
,r

R2(1 + 2E)

(
∂r̂

∂γ

)2

+

(
∂θ̂

∂γ

)2
 . (2.195)

Now, using the reciprocity theorem (2.142) it is straightforward to obtain the luminosity distance DL.
The results are compared with the data points and error bars from the [86] Gold Set. For the best-fit

model of [80], it is found that the minimised χ2 value is smallest for an observer located at a physical
distance of around 94 Mpc from the centre of the inhomogeneity in the direction (l, b) = (271, 21) in
galactic coordinates. This improvement, however, turns out to be small compared to the fit with the
central observer model (the minimal χ2 is only reduced from 176.2 to 174.9). Consequently, the current
data do not offer any substantial evidence for an off-centre observer in this model. Also, it is found that the
χ2 is lower for off-centre observers with radial distances out to around 225 Mpc, and it is concluded from
this that anisotropies in the SN Ia data do not strongly constrain the observers distance from the centre.
It is suggested that this is partly due to the fact that there are too few supernovae in the studied sample,
with the hope that the future will provide larger and better samples, thus allowing stronger conclusions
to be drawn from the anisotropy of the local Universe.

2.9.8 THE GBH MODEL

In [79] a new class of L-T models, the GBH models, is considered. These models describe a local void in
an otherwise spatially asymptotically flat universe, and are completely specified by their matter content
Ωm(r) and their rate of expansion H(r),

Ωm(r) = Ωout + (Ωin − Ωout)

(
1− tanh[(r − r0)/2∆r]

1 + tanh[r0/2∆r]

)
, (2.196)

H(r) = Hout + (Hin −Hout)

(
1− tanh[(r − r0)/2∆r]

1 + tanh[r0/2∆r]

)
. (2.197)

It is governed by six parameters:

• Ωin determined by Large-Scale Structure observations,

• Ωout determined by asymptotic spatial flatness,
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• Hin determined by Hubble Space Telescope observations,

• Hout determined by CMB observations,

• r0 characterises the size of the void,

• ∆r characterises the transition to uniformity.

One parameter is fixed, Ωout = 1, the other five are left to vary freely in the parameter scans.
The authors also consider a more constrained model, in which the Big Bang is simultaneous. This can

be obtained by a suitable choice of H(r):

H(r) = −H0

[
Ωm(r)√
Ω3
K(r)

arcsinh

√
ΩK(r)

Ωm(r)
− 1

ΩK(r)

]
, (2.198)

so that tB = cH−1
0 is universal, for all observers, irrespective of their spatial location. Note that in this

case one has less freedom than in the previous one, since now there is only one arbitrary function, Ωm(r),
and there is one free parameter less.

The goal is to confront this model with the largest series of currently available observations: supernova
data, cosmic microwave background, baryon acoustic oscillations; also requiring it to obey three additional
priors: the observed lower age limit on globular clusters in the Milky Way (11.2 Gyr), the HST key project
measure of the local value of the Hubble parameter (Hin = 72 ± 8) and the gas fraction as observed in
galaxy clusters. Here, the observer is located at the centre of the model.

It is proposed that the Hubble parameter H(z) is one of the main observables that will in future
help to decide between the different possible scenarios (modifications of gravity, extra energy component,
cosmological constant, or non-homogeneous cosmological model). Assuming that the background is a flat
FRW cosmology, the authors write it as

H2
T,L

H2
in

= (1 + z)
3
Ωin + (1− Ωin)exp

3

1+z∫
1

dlog(1 + z′)(1 + ωT,Leff (z′))

 , (2.199)

where Hin and Ωin are the expansion rate and matter density as observed at z = 0, the labels T and L
denote the transverse and longitudinal expansion rates, defined as HT = R,t/R and HL = R,tr/R,r , and

the ωT,Leff are defined in terms of the derivatives of (2.199),

ωT,Leff = −1 +
1

3

dlog
[
H2
T,L(z)

H2
in

− (1 + z)
3
Ωin

]
dlog[1 + z]

, (2.200)

where it has been assumed that
H2
T,L(z)

H2
in

− (1 + z)
3
Ωin > 0. (2.201)

It is pointed out that ωT,Leff (z) is the equation of state parameter in the dark energy interpretation, while
in the L-T or modified gravity interpretations it is an empirical observational signature that expresses the
difference between the measured expansion rate and the expansion rate we ascribe to the observed matter.

Another key outcome of this work is that the acoustic oscillation signal depends partly on HL , while
supernova observations are only related toHT through its dependence uponDL. Interestingly, the variation
and derivative of ωT,Leff (z) is quite large in the best-fit L-T models, showing that a precise low-redshift
supernova survey sensitive to HT or a fine-grained BAO survey sensitive to HL could rule out or reinforce
the model in the near future. Conversely, if a disagreement between ω as observed by supernovae and ω
as observed through the BAOs is found, this could be a hint of inhomogeneous expansion rates.

One can directly compute ωT,Leff (z) in the limiting cases z = 0 and z � 1 for asymptotically flat L-T
models:

ωT,Leff (z) =


− 1

3 + 2
3

cH,r(0)

(1−Ωin)H2
in

for z = 0, and H = HT

− 1
3 + 4

3
cH,r(0)

(1−Ωin)H2
in

for z = 0, and H = HL

0 for z � 1

(2.202)
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where the asymptotic convergence of the L-T metric to a Friedmann metric giving dz = −da/a has been
used (here a denotes the scale factor of the Friedmann background). It appears that to have ω � −1/3
at low redshifts requires either a significant negative gradient in H(r), or Ωin ∼ 1.

In a subsequent work [87], the kinematic Sunyaev-Zel’dovich (kSZ) effect observed for nine distant
galaxy clusters was studied. Assuming that we are located at the centre of a constrained GBH model, the
large CMB dipole which should be observed in the reference frame of such off-centre clusters would actually
manifest itself as a kSZ effect. The authors show that the kSZ observations give far stronger constraints
on their model than other observational probes and infer that the void permitted by the existing data
cannot be larger than ∼1.5 Gpc. They stress that kSZ surveys to be completed in the near future will
place more stringent constraints on the size of the void in their model. On the other hand, if this class of
models were to appear to be compatible with observations, future kSZ surveys give a unique possibility of
directly reconstructing the expansion rate and the underdensity profile of the void.

The general conclusion of their work is that the current observations do not exclude the possibility that
we live close to the centre of a large void with size of order of a few Gpc, with matter density well below
the average, and a local expansion rate of 71 km s−1 Mpc−1.

2.9.9 L-T SWISS-CHEESE MODELS

The first Swiss-cheese model found in the literature was designed by [88], to study the gravitational
fields around stars. The vacuoles, cut out from the Friedmanian background, were modelled by a static
Schwarzschild solution. Such models were subsequently used to study, among other effects, the influence of
inhomogeneities on the magnitude-redshift relation (see, for example, [89]). However, since Schwarzschild’s
is a static solution, any influence of the vacuole expansion remained unseen in such models, and the
magnitude of the reported effects was very low.

The recent appearance in the literature of Universe models constructed as L-T Swiss-cheese models,
where the inhomogeneities are represented by L-T spherical regions within a homogeneous background
where the matter is assumed continuously distributed with densities both below and above the average,
allows us to account for this vacuole expansion. These local L-T bubbles exactly match to the Friedmann
background. The main shortcoming of such models, as regards the issue of solving the cosmological
constant problem, is that they can produce surprising cancellations. It is well known that when the two
models, L-T and Friedmann, are properly matched together, the metric outside the patch is insensitive to
the details of what happens inside. This feature suppresses any backreaction on the homogeneous region
which still evolves exactly as a Friedmann universe. For this reason, such models exhibit only corrections
due to light propagation inside the patches, usually called the Rees-Sciama effect.

Note however that, at variance with what is claimed in [90], such a drawback is not due to spherical
symmetry but to the fact that the inhomogeneous patches are exactly matched to the background. It
can be shown that within such Swiss-cheese models in which the inserted inhomogeneous patches were
not L-T bubbles but parts of the Szekeres spacetime, with no symmetry, there was still no influence on
the outside region. Moreover, one can have a sort of backreaction with both spherical and non-spherical
inhomogeneity, provided an ordinary matching with the metric and second form being continuous is not
required, but only the continuity of the metric. Then the boundary of the inhomogeneous island does not
comove with the Friedmann background, giving rise to interesting phenomena. This was first found by
[91].

Brouzakis et al.’s model

Brouzakis et al., [92], [93], studied a model where the L-T patches consist of collapsing or expanding
regions matched to a Friedmann background. Since they intended that the observer and the sources do
not occupy special positions, they placed both within the Friedmann domain. Therefore, light is emitted
and received within homogeneous regions, while it crosses several inhomogeneous bubbles, with size of
order 10h−1 Mpc or more, along its path.

In [92], the studied L-T models were of the constant bang time type, i.e. tB(r) = 0. Central overdense
regions become denser with time, with underdense spherical shells surrounding them. Central underdense
regions turn into voids, surrounded by massive shells. The authors recalled the derivation of the optical
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beam equations, as given by [94], which determine the evolution of the beam expansion θ and shear σ as
light propagates and derived their specific form for L-T models, which reads

dθ

dλ
= −4πGρ(kt)

2 − θ2 − σ2, (2.203)

dσ

dλ
+ 2θσ = −4πGρ(kφ)

2
R2

(
ρ− 3M(r)

4πR3

)
, (2.204)

while the equation for the area A can be written as

1√
A

d2
√
A

dλ2
= −4πGρ(kt)

2 − σ2. (2.205)

They derived a simple model of spherical collapse for the cases of overdense and underdense regions, which
gave the evolution of both density profiles. Then, the influence of light propagation toward the centre
of such collapsing regions upon the luminosity distance was calculated by numerically integrating the
geodesic and optical equations. The results are that the presence of underdense central regions, consistent
with the observation of large, approximately spherical voids in the matter distribution of the Universe, is
expected to lead to an increase of the luminosity distance relative to the homogeneous case. The opposite
is expected if the central regions are overdense.

It is therefore very reasonable to suggest that the dominance of voids, as deduced from observations, can
yield increased luminosity distances. The question is whether this can induce an effect which might explain
the observed luminosity curves for supernovae. However, a description of the Universe as composed of large
voids surrounded by matter concentrated in thin shells implies, in this L-T Swiss-cheese model, a relative
increase in the luminosity distance at redshifts of order unity of only a few percent. The deviation of the
luminosity distance from its value in a homogeneous universe was estimated in the extreme case where
light travels through the centres of the encountered inhomogeneities. An absolute upper bound upon this
increase can be derived from (2.205). The focussing of a beam is minimised if the shear is negligible and
the energy density is set to zero in this equation. In this L-T Swiss-cheese model, this idealised situation
can be achieved if the central underdense regions of the inhomogeneities become totally empty after a
long evolution, while overdense thin shells develop around them. To derive the upper bound, one can
set the energy density arbitrarily to zero in the optical equation only, since it still drives the cosmological
expansion through (2.3), with Λ = 0. Neglecting the shear, the luminosity distance as a function of redshift
can be obtained analytically, assuming that the background expansion is given by the standard Friedmann
equation involving the average density. When comparing it to the luminosity distance in the corresponding
Friedmann model, one finds

DL

DL,F
=

1

5

(1 + z)
2 − (1 + z)

−3/2

1 + z − (1 + z)
1/2

. (2.206)

For redshifts near one, this expression gives a maximum increase in the luminosity distance of around 22%,
to be compared to the measured increase which is around 30%. The open question is whether an alternative
model of large-scale structures could result in a larger effect. This is discussed in the conclusions of [92].

In [93], the matter distribution, even though inhomogeneous, is more evenly distributed than in the
above case. In particular, each spherical region has a central underdensity surrounded by an overdense
shell. The densities of the voids and the background are comparable at early times and differ by a factor
of order one during the later stages of evolution. The beam shear is negligible in the calculations, and
the main effect arises from the variations of the beam expansion due to the inhomogeneities. Also, more
general beam geometries are considered, in which the light paths have random impact parameters relative
to the centres. In this work, a more detailed statistical analysis is performed and, for a given redshift, the
width of the distribution of luminosity distances is evaluated.

The form of this distribution is quantified in terms of two parameters: the width δd and the location of
the maximum δm > 0. The first one characterises the error induced to cosmological parameters derived in
the standard way, while the second one determines the bias in such determinations . However, the values
of these parameters are very small for the considered inhomogeneity scales. Furthermore, the shift in the
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average value δm is always smaller than the standard deviation δd. Both increase with the inhomogeneity
scale and the redshift. But, even for homogeneities with large length scales, comparable to the horizon
scale, and redshift z = 2, the shift and distribution width are only of the order of a few percent. They can
be compared to those generated by gravitational lensing at scales typical of galaxies or galaxy clusters in a
standard Swiss-cheese model where the mass of each inhomogeneity is concentrated in a very dense object
located at its centre and where the inhomogeneous patch is modelled by a Schwarzschild metric. Here,
the typical values of δm and δd are larger by at least an order of magnitude than in this L-T Swiss-cheese
model. The reason is that, in this last model, the density contrast is only of order one.

The conclusion is that, within this L-T Swiss-cheese model, the presence of large length scale inhomo-
geneities and density contrast of order one does not influence significantly the propagation of light if the
source and the observer possess random locations.

Biswas and Notari’s model

An analogous L-T Swiss-cheese model has been studied by Biswas and Notari [90]. It consists of blobs
of the void type, where the L-T metric satisfies E(r) > 0 and tB(r) = 0, cut out from a flat Einstein-de
Sitter universe. The photon propagation is studied in the cases when the curvature of the patches is either
small or large. In both cases the effects are very small if the observer sits outside the void, strengthening
therefore Brouzakis et al.′s results, while they are larger if the observer sits inside. This is a property of
Swiss-cheese models: effects are always larger inside the inhomogeneous patch than outside it.

Marra et al.’s model

Another Swiss-cheese model, where L-T bubbles with radius 350 Mpc (roughly 25 times smaller than
the radius of the visible Universe) are also inserted into an Einstein-de Sitter background, was studied by
Marra et al. [95]. In their main model the bubbles are adjoining and laid out on a cubic lattice, as sketched
in Figure 3 of [95].

The initial conditions for each sphere are specified for every shell at the same moment of time t̄. The
initial density, ρ(r, t̄), is chosen to be

ρ(r, t̄) = Ae[−(r−rM )2/2σ2] + ε for r < rn, (2.207)

ρ(r, t̄) = ρES(t̄) for r > rn, (2.208)

where ε = 0.0025, rn = 0.042, σ = rh/10, rM = 0.037, A = 50.59 and ρES(t̄) = 25. It exhibits a
low-density interior, surrounded by a Gaussian density peak near the boundary, that matches smoothly
to the exterior Friedmann density, and such that the matter density ε in the centre is roughly 104 times
smaller than in the Friedmann cheese. To have a realistic evolution, it is also demanded that there are
no initial peculiar velocities. This fixes the arbitrary curvature function E(r) to a positive value small
compared to unity. Evolving this model from t = t̄ = −0.8 to t = 0 (with the Big Bang time tB = 1 and
t = 0 being today), one can see that the inner almost empty region expands faster than the outer (cheese)
one. The density ratio between the cheese and the interior of the hole increases by a factor of 2. The
evolution is realistic. Matter is falling toward the peaks in density. Overdense regions start contracting
and become thin shells , mimicking structures, while underdense regions become larger, mimicking voids,
and eventually they occupy most of the volume. Because of the distribution of matter, the inner part of
each hole is expanding faster than the cheese and the interpolating overdense region is squeezed by it. A
shell crossing eventually happens when shells are so squeezed that they occupy the same physical position,
i.e. when R,r = 0.

Since the aim of this work is to calculate the luminosity-redshift relation DL(z) in order to understand
the effects of inhomogeneities on observables, the next step is to study the propagation of photons in this
model. Three cases are considered: the observer is just outside the last hole, in the Friedmannian cheese,
looking at photons passing through the holes; the observer is in a hole on a high-density shell; the observer
is in the centre of a hole.

Since the photons subtend an angle α at the observer after passing through the centres of all the holes,
the equations describing the photon paths are analogous to those established in Section 2.4.2, with the
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value of the affine parameter set to zero at the border of the last hole. Given an angle α, the equations can
be solved, matching together the solutions between one hole and the other, which generates the solution
t(λ), r(λ), φ(λ) and z(λ), from which the observables of interest can be calculated.

The difference for the photon paths between the cases ‘observer on the border’ and ‘observer in the
hole’ is that in the second case the observer has a peculiar velocity with respect to a Friedmann observer
passing by the same point, which is not the case for the observer on the border who is comoving with the
cheese. This makes the inside observer see an anisotropic CMB. However, this effect is taken into account
in the solution to be found. There remains the effect of light aberration which changes the angle α seen
by the inside observer with respect to the angle αES seen by a Friedmann observer. The relation between
α and αES is given by the relativistic aberration formula:

cosαES =
cosα+ v

c

1 + v
c cosα

, (2.209)

the angular diameter and luminosity distance follow.
The results are given for different cases and compared with respect to the EdS and the CDM one. For

the observer on the border, one model exhibits five holes and the other only one hole five times bigger in
size than each of the previous holes. For the observer in the hole, only the five hole case is considered. The
observables studied are the redshift z(λ), the angular diameter distance DA(z), the luminosity distance
DL(z) and the corresponding distance modulus ∆m(z).

The conclusions are that photon physics seems to be affected by the evolution of the inhomogeneities
more than by the inhomogeneities themselves. For an observer in the cheese, redshift effects are suppressed
when the hole is small because of a compensating effect acting on the scale of half a hole due to spherical
symmetry and to the fact that the density profile was chosen in order to have 〈δρ〉 = 0. This is not the
case when the hole is bigger since the evolution has more time to change the hole while the photon is going
through. As we shall see in Chapter 3, with Szekeres models (of which L-T models are subclasses), small
voids among overdense regions evolve more slowly than large voids do. The calculation of the angular
diameter distance shows that the evolution of the inhomogeneities bends the photon paths as compared to
the Friedmann case. Inhomogeneities should therefore be able, at least partly, to mimic the effects of the
so-called ‘dark energy’. The Friedmann model best fitting the one big-hole Swiss-cheese universe is ΛCDM
with Ωm = 0.95 and ΩΛ = 0.05, which is very near Einstein-de Sitter. The Friedmann model best fitting
the five-small hole Swiss-cheese model is also ΛCDM with Ωm = 0.6 and ΩΛ = 0.4, which still exhibits a
non-negligible ‘dark-energy’ component.

However, the effects of the inhomogeneities found for this model are bigger than those found by [92],
[93] and by [90]. This might be due to the fact that these authors used smaller holes with a different initial
density/initial velocity profile.

In a subsequent paper, [96] used the same Swiss-cheese toy model in order to better understand how a
clumpy universe can be renormalized by a fitting procedure to give an effective ΛCDM model. The basic
idea is that the observational evidences for dark energy come from the possibility that our inhomogeneous
universe can be described by means of a homogeneous solution fitting the observations on our past light
cone beyond some averaging scale. However, this does not imply that a primary source of dark energy
exists, but only that it emerges from a phenomenological fit. If it does exist, the observational evidence
encapsulated in the Concordance model would tell us nothing else than the pure-matter inhomogeneous
Universe has been merely renormalized into a ΛCDM one.

The procedure employed here to fit a phenomenological FRW model to a Swiss-cheese model is inter-
mediate between the fitting method of [54] and an averaging approach. It is implemented on the past light
cone of the observer. The physical quantities studied are the expansion and the density. The expansion
behaves as in an FRW case because of the compensation effect already found by [95]. The density behaves
quite differently thanks to its sensitivity to the fact that a photon spends more and more time in the
expanding large voids than in the collapsing thin high-density structures. Note, however, that this effect
is independent of the one found to act on the angular diameter distance [95]. The best fit to an effective
dark energy equation of state, quantitatively similar to the one of the Concordance model, is obtained for
holes with radius 250 Mpc.
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Knowing the behaviour of the density, it is possible to derive the behaviour of the Hubble parameter
characterising the FRW solution exhibiting a phenomenological source with the fitted equation of state.

Now, the sensitivity of the density to any compensation effect can yield the possibility that a Swiss-
cheese made of spherically symmetric holes and one where the holes differ slightly from spherical symmetry
would share the same light-cone average density, thus the same redshift history for the photons and
therefore the same fitted FRW model. In this way it could be possible to go beyond the main limitation
of the model studied, i.e. the assumption of spherical symmetry for the holes.

2.10 SOLVING THE HORIZON PROBLEM USING THE DE-
LAYED BIG BANG MODEL

In hot Big Bang models, the comoving regions over which the CMB is observed to be homogeneous to
better than one part in 105 at the last-scattering surface is much larger than the intersection of this
surface with the future light cone from any point pB of the Big Bang. Since this light can provide the
maximal distance over which causal processes could have propagated from pB , the observed quasi-isotropy
of the CMB remains unexplained. As shown by [38], this ‘horizon problem’ develops sooner or later in
any cosmological model exhibiting a spacelike singularity such as that occurring in the standard FRW
universes.

Even inflation, which was put forward in order to remove this drawback in the framework of standard
homogeneous cosmology, only postpones the occurrence of the horizon problem, since it does not change
the spacelike character of the singularity and is insufficient to solve it permanently.

A proposal at variance with inflation was put forward, solving the horizon problem by means of a shell-
crossing singularity in a spherically symmetric inhomogeneous model (see [63], for example). This allows a
permanent solution to the problem for all observers regardless of their spacetime location. Now, it can be
shown that a property of a large class of shell crossings, valid for general spherically symmetric models, is
that they are timelike [97]. Further, in order to solve the horizon problem, we need a cosmological model
which exhibits a non-spacelike singularity that is encountered when travelling backward on the observers
light cone. For simplicity, we employ L-T models, because they exhibit the needed symmetry and allow a
fully analytical exact reasoning [63].

To deal with the horizon problem, one has to consider light cones. As was shown by [63], a large class
of L-T models can be found for which the horizon problem is solved by means of light cones never leaving
the matter-dominated era. This validates the use of such models. Moreover, since there is evidence that
the observed Universe does not present appreciable spatial curvature on very large cosmological scales, it
will be here approximated by the flat E(r) = 0 L-T model.

The function M(r) is used to define the radial component r : M(r) ≡ M0r
3, where M0 is a constant.

With the above definition for r, the analytical expression for R(t, r) given by (2.7) becomes

R(t, r) =

(
9GM0

2

)1/3

r[t− tB(r)]
2/3
. (2.210)

In this case, the grr component of the metric tensor is

R,r(t, r) =

(
9GM0

2

)1/3

[t− tB(r)]
−1/3

[
t− tB(r)− 2

3
rtB,r(r)

]
. (2.211)

From reasoning given in [97], we see that the shell-crossing surface

t− tB(r)− 2

3
rtB,r(r) = 0 (2.212)

is timelike.
On the other hand, one can always choose tB = 0 at the centre (r = 0) of symmetry by an appropriate

choice of t.
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Equation (2.211), substituted into (2.3) gives

ρ(t, r) =
1

2
πG[3t− 3tB(r)− 2rtB,r(r)]

−1
[t− tB(r)]

−1
. (2.213)

This expression leads to two undesirable consequences:

• The energy density goes to infinity on the Big Bang surface, t = tB(r), and on the shell-crossing
surface (2.212).

• This energy density presents negative values in the region of the Universe located between the shell
crossing surface (2.212) and the Big Bang singularity, and corresponding to

3t− 3tB(r)− 2rtB,r(r) < 0 (2.214)

t− tB(r) > 0. (2.215)

Of course, a negative energy is unphysical for dust.

Since a shell crossing is usually considered to be a deficiency of L-T models one generally tries to avoid
it by setting, for our E(r) = 0 case: tB,r(r) ≤ 0 and M,r(r) ≥ 0 in the region where R,r > 0 [32].

However, in order to solve the horizon problem we need an increasing Big Bang function tB(r). It
is possible to circumvent this difficulty. One way out of the shell-crossing surface problem might be to
consider that, as the energy density increases while reaching its neighbourhood from higher values of t,
radiation becomes the dominant component of the Universe, pressure can no more be neglected and the
L-T model no longer holds. However, since the light cones of interest, which are null surfaces, never leave
the region situated above the timelike shell-crossing surface, where 3t− 3tB(r)− 2rtB,r(r) remains always
positive, and t− tB(r) > 0 by construction, therefore the energy density of (2.213) remains positive.

One of the key points of the reasoning here proposed is a shell-crossing surface situated above the
Big Bang surface, its time coordinate monotonically increasing with r to let the light cones remain in the
matter-dominated domain. This is always the case if

tB(r = 0) = 0, (2.216)

tB,r(r) > 0 , for all r 6= 0, (2.217)

tB,r(r = 0) = 0, (2.218)

5tB,r(r) + 2rtB,rr(r) > 0 , for all r 6= 0, (2.219)

rtB,r(r)|r=0 = 0. (2.220)

Now, (2.219) implies A,r 6= 0 and therefore a timelike shell crossing. Note that we have added to the
specifications of [63], and [38], the constraint that tB,r should vanish at r = 0 to allow the model to satisfy
the no-central-singularity conditions in order to get a well behaved model whatever the observer’s position.
With these specifications, the physical singularity of the model - i.e. the first surface encountered on a
backward path from the observer where the energy density and the curvature scalar go to infinity is the
shell-crossing surface. Therefore, the region between the Big Bang t = tB(r) and the shell-crossing surface,
constraining the unwanted negative energy density, is excluded from the part of the model intended to
describe the matter-dominated region of the Universe.

A class of models permanently solving the horizon problem has therefore been constructed with no
need for any inflationary phase. A tB(r) function increasing with r implies that the Big Bang occurred at
later cosmic time for larger r, hence the evocative ‘Delayed Big Bang’ chosen to qualify this singularity.

69



2.11 THE L-T MODEL AND CMB TEMPERATURE FLUC-
TUATIONS

2.11.1 LIGHT PROPAGATION EFFECTS

The last-scattering surface is the most remote region which is observable using electromagnetic radiation.
Since photons on their way pass through large-scale inhomogeneities such as voids, clusters and super-
clusters, it is important to know how the light propagation phenomena affect the CMB radiation. In the
standard approach the CMB temperature fluctuations are analysed by solving the Boltzmann equation
within linear perturbations around the homogeneous and isotropic FRW model [98], [99]. The use of the
FRW metric for the background model results in a remarkably good fit to the CMB data [14]. However,
the assumption of homogeneity, which is also consistent with other types of cosmological observations, is
not a direct consequence of them [100]. It is often said that such theorems as the Ehlers-Geren-Sachs
theorem (1968) and the ‘almost EGS theorem’ [134], justify the application of the FRW models. These
theorems state that if anisotropies in the CMB radiation are small for all fundamental observers, then
locally the Universe is almost spatially homogeneous and isotropic. The founding assumption of these
theorems, namely the local Copernican principle applied to the ‘U region’, i.e. the region within and near
our past light cone from decoupling to the present day, is not mandatory and we have already stressed it
needs still to be tested. Moreover, as shown by [102], it is possible that the CMB temperature fluctuations
are small but the Weyl curvature is large.

In such a case the geometry of the Universe is far from Robertson-Walker geometry, and the applicability
of the FRW models is not justified. Moreover, the applicability of the linear approach can be questionable,
since the density within cosmic structures is much larger than unity. Therefore, there is a need for the
application of exact inhomogeneous cosmological models to a study of light propagation and its impact
on CMB temperature fluctuations. This issue has been extensively studied within spherically symmetric
models: within the thin shell approximation [103], [28],[104] and within the L-T model [105], [106], [107],
[108], [109], [110], [111]. However, cosmic structures are not spherically symmetric.

2.11.2 TEMPERATURE FLUCTUATIONS

Assuming that the black body spectrum is conserved during the evolution of the Universe, the temperature
must be proportional to 1 + z:

Te
T0

= 1 + z. (2.221)

Then, from (2.221), the temperature fluctuations measured by a comoving observer are:(
∆T

T

)
0

=
Te

1+z −
T̄e

1+z̄

T̄e
1+z̄

, (2.222)

where quantities with overbars refer to the average quantities, i.e the quantities obtained in the homoge-
neous Friedmann model.

Let us write the temperature at emission as Te = T̄e + ∆Te. Then (2.222) becomes(
∆T

T

)
0

=
z̄ − z
1 + z

+

(
∆T

T

)
e

1 + z̄

1 + z
. (2.223)

As can be seen from (2.223), the observed temperature fluctuations on the CMB sky are caused by the
light propagation effect (first term) and by the temperature fluctuation at the decoupling instant (the
second term).

To calculate the light propagation accurately, without assumptions such as small density contrast and
linear evolution, a model of cosmic structures based on exact solutions of the Einstein field equations is
needed. Unfortunately, there are only a few exact inhomogeneous cosmological models, and in none of
them can the cosmic web-like structures be described. In Chapter 3 we discuss how this problem can be
overcome by using many inhomogeneous models of cosmic structures and joining them in an inhomogeneous
patchwork model of the Universe.
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2.11.3 CMB DIPOLE AND QUADRUPOLE IN THE DBB MODEL WITH
AN OFF-CENTRE OBSERVER

The dipole moment in the CMB anisotropy is the most prominent feature in the observational data. Its
value being of order 10−3, it exceeds the quadrupole, of order 5 × 10−6, by more than two orders of
magnitude [9], [112]; [113].

The dipole is usually considered as resulting from a Doppler effect produced by our motion with respect
to the CMB rest frame [114]. A few authors [115], [116]; [117], [118] intended however to show that its
origin could be in the large-scale features of the Universe In particular, [115], using an ad hoc toy model,
emphasised the possibility that the dipole might be generated by an entropy gradient in an L-T universe.
In the model they studied, they assumed that the Big Bang time was the same for all observers, i.e.
tB(r) =constant.

Working in the framework of the Delayed Big Bang (DBB) class of L-T models described in Section
6.3 of [37], they showed that the dipole and quadrupole anisotropy, or parts of them, could be viewed as
the outcome of a conic Big Bang surface when the observer is located off the symmetry centre. We sum
up their contribution below.

Definition of temperature

The specific entropy S is usually defined as the ratio of the number density of photons to the number
density of baryons, i.e.

S ≡ kBnγ(t, r)mb

ρ(t, r)
. (2.224)

In order to decouple the effect of an inhomogeneous entropy distribution (as already studied by [115]) from
that of an inhomogeneous singularity surface, we set S = constant.

The observed deviation of the CMB from perfect isotropy being very small, we can assume, as a
reasonable approximation, the thermodynamic equilibrium for the photons, so at the ultra-relativistic
limit for bosons,

nγ = anT
3, (2.225)

T being the radiation temperature, and

an =
2ζ(3)k3

B

π2(h̄c)
3 , (2.226)

where ζ is the Riemann zeta function.
Letting, with no loss of generality, S = constant = kBη0, and taking the present photon to baryon

ratio to be 108/(2.66Ωbh
2
0), we obtain the following expression for T:

T (t, r) =

(
108

5.32h2
0πGanmb(3t− 5tB(r))(t− tB(r))

)1/3

, (2.227)

where h0 is the Hubble constant in units 100 kms−1Mpc−1. Hereafter, for numerical applications, the
value h0 = 0.75 will be assumed.

Integration of the null geodesics and determination of the dipole and quadrupole moments

Light travels on the past light cone from an emission 2-surface (tls, rls) at last scattering, to the observer
at (t0, r0). The optical depth of the Universe to Thomson scattering is approximated by a step function.
The last-scattering surface is therefore defined, in the local thermodynamic equilibrium approximation
discussed above, by its temperature, T = 4000 K, as is the now-surface, T = 2.73 K, where the observer
is located. The equal-temperature surfaces obey (2.227).

Since the value of the entropy function S(r) is assumed to be constant, the constant T curves are
monotonically increasing with r, and they asymptotically approach the shell-crossing surface (2.212).

An observer O located at a distance r0 from the centre sees an axially symmetric universe, with the
axis passing through the observer and the centre of symmetry C. The photon path is uniquely defined by
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the observers position (t0, r0) and the angle α between the direction from which the light ray comes and
the direction of the centre.

Figure 2.13 shows the geometry of incoming light rays. If observed at an angle α ≤ π/2, a light ray
emitted from a point A on the last scattering surface approaches C to a comoving distance rmin, then
proceeds toward O. From the opposite direction, the ray follows the geodesic BO.

The system of three differential equations which specifies the null geodesics is given by (2.73)-(2.75).
Provided one chooses the affine parameter λ increasing from λ = 0 at (t0, r0) to λ = λls at (tls, rls) on the
last scattering surface, one has to consider two cases:

• the ‘out-case’: the observer looks in a direction away from the centre of symmetry (α > π/2). The
null geodesics are therefore integrated from (t0, r0) to (tls, rls) with an always increasing r. Equation
(2.74) is written with a plus sign.

• the ‘in-case’: the observer observes a light ray that first approaches the centre of symmetry then
moves away from it, before reaching the observers telescope (α < π/2). Equation (2.74) with the
minus sign first obtains until dr/dλ = 0, then changes to a plus sign.

A number of ‘in’ and ‘out’ null geodesics, each characterised by a value for α between zero and π/2, are
integrated back in time from the observer at [t0, r0, (k

t)0, T0] until the temperature, as given by (2.227),
reaches Tls = (4/2.7)× 103T0, which defines approximately the last-scattering surface.

At this temperature, the redshift with respect to the observer is given by (2.68), is zin,outls (α), which
varies somewhat with α and with the ‘in’ and ‘out’ direction, about an average zavls . Now, the apparent
temperature of the CMB as measured in the α in-out direction is:

T in,outCMB (α) =
Tls

1 + zin,outls (α)
, (2.228)

where the averages for T and z are calculated over the whole sky, and in simplified notation this is

TCMB

T av
=

1 + zav

1 + zls
. (2.229)

The large-scale CMB temperature inhomogeneities are expanded in spherical harmonics as

TCMB(α, φ)

T av
= Σ∞l=1Σ+1

m=−1almYlm(α, φ), (2.230)

with

alm =

∫
TCMB(α, φ)

T av
Y ∗lm(α, φ)sin(α)dαdφ. (2.231)

The dipole and quadrupole moments are defined as

D = (|a1−1|2 + |a10|2 + |a11|2)
1/2

(2.232)

and

Q = (|a2−2|2 + |a2−1|2 + |a20|2 + |a21|2 + |a22|2)
1/2
. (2.233)

In the special case we are interested in, the large-scale inhomogeneities depend only upon the angle α, so
that all of the alm with m 6= 0 are zero. Therefore, the dipole and quadrupole moments reduce to

D = a10 , Q = a20, (2.234)

so that

D = (1 + zav)

π∫
0

Y10(α)

1 + zls(α)
sinαdα, (2.235)
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Q = (1 + zav)

π∫
0

Y20(α)

1 + zls(α)
sinαdα. (2.236)

Taking into account (2.68) and the spherical symmetry of the model, one obtains

D =

∣∣∣∣∣∣∣
1

2

√
3

π
ktav

 π/2∫
0

2sinαcosα

ktin(α)
dα−

π/2∫
0

2sinαcosα

ktout(α)
dα


∣∣∣∣∣∣∣ , (2.237)

Q =
1

4

√
5

π
ktav

 π/2∫
0

sinα(3cos2α− 1)

ktin(α)
dα−

π/2∫
0

sinα(3cos2α− 1)

ktout(α)
dα

 . (2.238)

Figure 2.13: The CMB observed from O at an angle α. Systematic illustration of the trajectory of two CMB
light beams received by the observer O and making an angle α with the direction of the symmetry centre C
of the universe. The two-dimensional projection of the last-scattering surface seen by O is approximately
a circle centred on O and passing through A and B. In general, it will intersect many comoving shells of
constant r. Points A and B are seen at antipodal points by O, and their comoving shells are solid lines.
Note that OB is not a continuation of AO, since O is the vertex of the light cone. Figure taken from [38].

Results and discussion

A class of DBB models exhibiting a Big Bang function of the form

tB(r) = brn , b > 0 , n > 0, (2.239)

was identified by [63] as solving the horizon problem. In a later paper [37], the subclass chosen to be
investigated was, for simplicity,

tB(r) = br , with , 1/RH > b > 0. (2.240)

This conic surface corresponds to perturbations with low spatial frequencies, k < 1/RH , RH being the
horizon radius.
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r0 b D Q
0.02 2× 10−7 1.61× 10−3 5.27× 10−5

0.03 9× 10−8 1.11× 10−3 3.7× 10−5

0.04 7× 10−8 1.15× 10−3 3.99× 10−5

0.05 6× 10−8 1.23× 10−3 4.57× 10−5

0.06 5× 10−8 1.23× 10−3 5.33× 10−5

0.07 4× 10−8 1.15× 10−3 5.79× 10−5

Table 2.7: Best-fit values of r0 and b for reproducing the CMB dipole and quadrupole values using a DBB
model. Table taken from [37].

After having numerically integrated back in time from the observer a number of ‘in’ and ‘out’ null
geodesics, each characterised by a value of α between zero and π/2, up to the last-scattering surface, as
explained above, the dipole and quadrupole moments D and Q were calculated, according to (2.237) and
(2.238).

The best-fit values of the doublets (r0, b) that lead to D and Q close to the observed values, D ∼ 10−3,
Q ∼ 10−5, are given in Table 2.7. The variations of the dipole and quadrupole as functions of b for various
values of r0 are given in Figures 2.14 and 2.15, respectively.

Using a toy model, chosen within the class of DBB models, it has been shown that values for the model
parameters, i.e. the location of the observer in spacetime and the increasing slope of the bang function,
can be found that closely reproduce the observed dipole and quadrupole moments in the CMB anisotropy.
This provides a possible cosmological interpretation of the dipole (or part of it, as it is obvious that there
is probably a Doppler component due to the local motion of the galaxy with respect to the CMB rest
frame).

As has long been stressed by other authors [115], [116], [117], [118], there are various observational
methods to discriminate between a local and a cosmological origin for the dipole. If, from future analyses
of observational data, part of the dipole appears to be non-Doppler, other work, connected in particular
with multipole moments of higher order, would be needed to discriminate between the various cosmological
candidate interpretations.

Provided the observations allow such a discrimination to be carried out, any unexplained part of the
dipole compatible with the above model might set correlated bounds upon the location of the observer
and the slope of the Big Bang function, adding therefore new constraints on the parameters of this type
of L-T model.

A step toward such a goal was made in [81], with the use of another class of L-T models, which we
describe in the next section.

2.11.4 CMB IN THE ALNES ET AL. MODEL WITH AN OFF-CENTRE
OBSERVER

[81] concentrated on the study of the anisotropies arising in the CMB temperature if the observer is shifted
to an off-centre location, analysing two specific realisations of the model of [80]. One of these realisations is
the model best fitting the SN Ia data, while the second one is slightly different. To disregard any intrinsic
anisotropies on the last-scattering surface, they assumed the temperature to be isotropic there.

Following the line of thought already detailed in the last section, they noted first that the CMB
temperature as measured today by the observer is

T (ξ) =
T∗

1 + z(ξ)
, (2.241)

where T∗ is the temperature at last scattering and ξ the angle denoted α in Section 2.11.3. The average
temperature T̂ , given by the Planck spectrum as seen by the observer, is therefore

T̂ ≡ 1

4π

∫
dΩT (ξ) =

T∗
2

π∫
0

sinξ

1 + z(ξ)
dξ. (2.242)
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Figure 2.14: The dipole amplitude in a DBB model, as a function of b, for various values of r0. Figure
taken from [37].

Figure 2.15: The quadrupole amplitude in a DBB model, as a function of b, for various values of r0. Figure
taken from [37].
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According to [9], this temperature is T̂ = 2.725 K. An average redshift for the last-scattering surface can
therefore be defined from (2.241) and (2.242) that reads

1 + z∗ ≡
T∗

T̂
= 2

 π∫
0

sinξ

1 + z(ξ)
dξ

−1

(2.243)

This redshift is obtained by integrating the set of differential equations for (t, r, θ, p and z) given in [81],
with the initial conditions [t0, r0, 0, p0 and z0 = z(λ = 0) = 0]. The relative temperature variation reads
thus

θ ≡ ∆T

T̂
=
T (ξ)− T̂

T̂
=
z∗ − z(ξ)
1 + z(ξ)

. (2.244)

Then as in Section 2.10.3, the contributions at different angular scales were considered by decomposing
the temperature variation into spherical harmonics. The magnitude of the observed dipole (∼ 10−3) was
used to put constraints on how far away from the centre the observer may be shifted, since, as shown by
[37], a location far off-centre usually yields a larger dipole. Recombination was assumed to occur at t = 0
and the present time was defined as the time when the redshift of the photons emitted at t = 0 reaches
z∗ ∼= 1100.

The geodesic equations were solved for two positions of the observer, 20 Mpc and 200 Mpc from the
centre in both models. Then, the coefficients al0 for the dipole (l = 1), the quadrupole (l = 2) and the
octupole (l = 3) were calculated as functions of the observer position.

As expected by [37], the induced multipoles become larger the farther away from the centre the observer
is located. The distance of the observer from the centre is severely constrained by the dipole value alone.
For the induced dipole to be ≤ 10−3, the physical distance of the observer from the centre should satisfy
dobs ≤ 15 Mpc. When compared to the size of the underdensity in the models, which is around 1500 Mpc,
the authors argued that this amounts to a rather strong violation of the Copernican principle, but weaker
than in the central observer case. However, if the observer were at a spot with exactly average density,
this too would be highly unlikely. Where must one be in a universe full of inhomogeneities in order not to
violate the Copernican principle? In the real Universe, there is nowhere that is not in an inhomogeneity.
Although finding ourselves exactly at the middle of an inhomogeneity is somewhat non-Copernican, as
long as that inhomogeneity is just one of many it is not very strongly non-Copernican. We suggest 5%
off-centre is as Copernican as 50% off-centre.

The most striking result is that the quadrupole and the octupole are too small as compared to the
dipole. If the induced dipole value is assumed to be around the observed 10−3, the induced quadrupole
becomes smaller than ∼ 10−7 and the induced octupole is less than ∼ 10−9,their behaviour being similar
in both models. This is far less than their measured values ∼ 10−5. It is thus clear that these models
cannot explain the observed alignment of the low-l multipoles in the CMB spectrum.

Even if part of the dipole might be assigned to a nonvanishing peculiar velocity of the observer with
respect to the CMB photon flow, which can be fixed to any arbitrary value, the problem would remain,
since the multipoles would be expected to keep the hierarchical scaling they exhibit in this particular
kind of model. Using a simplified Newtonian framework, it is easy to show that for these models the
dipole scales linearly, the quadrupole quadratically and the octupole cubically with the observer location.
Therefore, even if one can manage to fit the correct values of the dipole and quadrupole, the octupole
would still remain too small.

As a conclusion, the authors claimed that their models are not ruled out by these results, even if they
are unable to explain the low multipole anomaly. We want however to stress that the models studied in this
work are only special cases of L-T models from which it might be premature to draw general conclusions.
Nevertheless, the features thus exhibited are striking, and, given that there is plenty of structure in our
local Universe, these effects must play some role.
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Chapter 3

The Szekeres model and its
applications in cosmology

In this chapter we present a study of structure formation in different environments using the Szekeres
model. Additionally, since in this chapter we are considering more general solutions of the Einstein field
equations, we initially present a very brief description of the Lemâıtre model, from which the Lemâıtre-
Tolman (L-T) model is a special case. There then follows a description of the Szekeres model and some
of its main properties. After this, since we want to explore types of structure formation that possess at
least some spherical symmetry and the Szekeres model is an inhomogeneous model with no symmetries,
we therefore consider in detail a subclass of the Szekeres model, namely the quasi-spherical Szekeres
model. After exploring in detail the properties of this model and their physical consequences for structure
formation, we first present a study of the evolution of pairs of voids and superclusters. We then present
a study of the application of the so-called Szekeres Swiss-cheese model to the analysis of observations of
the cosmic microwave background (CMB) radiation. In such mode a model, light propagation can be
calculated exactly, without such approximations as small amplitude as a small amplitude of the density,
which would be required in cosmological perturbation theory.

3.1 THE LEMAÎTRE MODEL

The evolution of a spherically symmetric perfect fluid was first modelled by [119]. The metric, in comoving
coordinates, is of the form:

ds2 = eA(t,r)dt2 − eB(t,r)dr2 −R2(t, r)(dθ2 + sin2θdφ2). (3.1)

The Einstein equations reduce to
κR2R,rρ = 2M,r, (3.2)

κR2R,tp = −2M,t, (3.3)

where M is defined by

2M(t, r) = R(t, r) +R(t, r)e−A(t,r)R2
,t(t, r)−R(t, r)e−B(t,r)R2

,r(t, r)− ΛR3(t, r). (3.4)

In the Newtonian limit, GM/c2 is equal to the mass inside the shell of radial coordinate r, but it is the
active gravitational mass which generates the gravitational field, and not an integrated rest mass. From
(3.4), we see that the mass is not constant in time, and from (3.3), we see that in the expanding Universe
it decreases.

From the equations of motion, Tαβ;β = 0 we obtain:

T 0α
;α = 0 =⇒ B,t + 4

R,t
R

= − 2ρ,t
ρ+ p

, (3.5)
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T 1α
;α = 0 =⇒ A,r = − 2p,r

ρ+ p
, (3.6)

T 2α
;α = T 3α

;α = 0 =⇒ ∂p
∂θ = 0 , ∂p

∂φ = 0. (3.7)

Equation (3.7) states that the perfect fluid energy-momentum tensor inherits the symmetries of the metric
of the spacetime.

The function B can be written in the following form:

B(t, r) = B(t0, r) + lnR2
,r −

t∫
t0

A,rR,t
R,r

dt̃. (3.8)

Now using (3.6) we obtain

eB(t,r) =
R2
,r(t, r)

1 + 2E(r)
exp

 t∫
t0

2R,t(t̃, r)

[ρ(t̃, r) + p(t̃, r)]R,r(t̃, r)
p,r(t̃, r)dt̃

 , (3.9)

where E(r) is an arbitrary function.
In the special case of dust, the above equations reproduce the L-T model. As follows from (3.6) and

(3.9), if p,r = 0 then eA = 1, eB = R2
,r/(1 + 2E). Then the metric (3.1) becomes (2.2).

3.2 THE SZEKERES SOLUTION

3.2.1 DEFINITION AND METRIC

In the following, the Szekeres solution will be used to describe the formation and evolution of galaxy
clusters and voids and to study light propagation effects acting on the CMB photons in a lumpy Universe.
We begin by presenting the most basic properties of this solution those that will prove useful later in this
chapter. A more extended account can be found in [31], [120] and [121].

The metric of the Szekeres solution is

ds2 = dt2 − e2αdr2 − e2β(dx2 + dy2), (3.10)

where α and β are functions of (t, x, y, r), to be determined from the Einstein equations with a dust
source. The coordinates of (3.10) are comoving so that uµ = δµ0 . Note that x and y play the role of
angular coordinates here.

There are two families of Szekeres solutions, depending on whether β,r = 0 or β,r 6= 0. The first family
is a simultaneous generalisation of the [122] models and, since it has so far found no useful application in
astrophysical cosmology, we shall not discuss it here (see [31]). After the Einstein equations are solved,
the metric functions in the second family become

eα = h(r)Φ(t, r)β,r ≡ h(r)(Φ,r + Φν,r), (3.11)

eβ = Φ(t, r)eν(r,x,y), (3.12)

e−ν = A(r)(x2 + y2) + 2B1(r)x+ 2B2(r)y + C(r), (3.13)

where the function Φ(t, r) is a solution of the equation

Φ2
,t = −k(r) +

2M(r)

Φ
+

1

3
ΛΦ2, (3.14)

where h(r), k(r), M(r), A(r), B1(r), B2(r) and C(r) are arbitrary functions obeying

g(r) := 4(AC −B2
1 −B2

2) =
1

h2(r)
+ k(r). (3.15)
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The mass density in energy units is

κρ =
(2Me3ν),r
e2β(eβ),r

, κ = 8πG
c4 . (3.16)

In the L-T model, the bang time function follows from (3.14):

Φ∫
0

dΦ√
−k + 2M

Φ + 1
3ΛΦ2

= t− tB(r). (3.17)

In general, the Szekeres metric has no symmetry, but acquires a 3-dimensional symmetry group with
2-dimensional orbits when A, B1, B2 and C are all constant (that is, when ν,r = 0).

The sign of g(r) determines the geometry of the constant t, constant r 2-surfaces (and the symmetry
of the constant A, B1, B2 and C case). The geometry of these surfaces is spherical, planar or hyperbolic
when g > 0, g = 0 or g < 0, respectively. With A, B1, B2 and C being functions of r, the surfaces r =
constant within a single space t = constant may have different geometries, i.e. they can be spheres in one
part of the space and surfaces of constant negative curvature elsewhere, the curvature being zero at the
boundary.

The sign of k(r) determines the type of evolution: with k > 0 = Λ, the model expands away from
an initial singularity and then recollapses to a final singularity; with k < 0 = Λ the model is either
ever-expanding or ever-collapsing, depending on the initial conditions; k = 0 is the intermediate case
corresponding to the ‘flat’ Friedmann model. The sign of k(r) influences the sign of g(r). Since 1/h2 in
(3.15) must be non-negative, we have the following: with g > 0 (spherical geometry), all three types of
evolution are allowed; with g = 0 (plane geometry), k must be non-positive (only parabolic or hyperbolic
evolutions are allowed); and with g < 0 (hyperbolic geometry), k must be strictly negative, so only the
hyperbolic evolution is allowed.

The Friedmann limit follows when Φ(t, r) = rR(t), k = k0r
2 where k0 = constant and B1 = B2 = 0,

C = 4A = 1. This definition of the Friedmann limit includes the definition of the limiting radial coordinate
(the Szekeres model is covariant with the transformations r = f(r′), where f(r′) is an arbitrary function).

The Szekeres models are subdivided according to the sign of g(r) into the quasi-spherical ones (with
g > 0), quasi-plane (g = 0) and quasi-hyperbolic (g < 0). Only the quasi-spherical model has been well
investigated and found useful application in astrophysical cosmology, so in this text we limit ourselves
to this class. The quasi-spherical model may be imagined as a generalization of the L-T model in which
the spheres of constant mass are made non-concentric. The functions A(r), B1(r) and B2(r) determines
how the centre of a sphere changes its position in a space t = constant when the radius of the sphere is
increased or decreased. Still, this is a rather simple geometry because all the arbitrary functions depend
on one variable, r.

Often, it is more practical to reparametrise the arbitrary functions in the Szekeres metric as follows
(this parametrisation was invented by [123]). Even if A = 0 initially, a transformation of the (x, y)-
coordinates can restore A 6= 0, so we may assume A 6= 0 with no loss of generality. Then let g 6= 0.
Writing A =

√
|g|/(2S), B1 = −

√
|g|P/(2S), B2 = −

√
|g|Q/(2S), ε := g/|g|, k = |g|k̃ and Φ =

√
|g|Φ̃,

we can represent the metric (3.11)-(3.13) as

e−ν =
√
|g|E , E := S

2

[(
x−P
S

)2
+
(
y−Q
S

)2

+ ε

]
, (3.18)

ds2 = dt2 − (Φ,r − ΦE,r/E)
2

ε− k(r)
dr2 − Φ2

E2
(dx2 + dy2), (3.19)

where ε = +1, for the quasi-spherical model. When g = 0, the transition from (3.11)-(3.13) to (3.19) is
A = 1/(2S), B1 = −P/(2S), B2 = −Q/(2S) and Φ is unchanged. Then (3.19) applies with ε = 0, and the
resulting model is quasi-plane, which we do not discuss here.

The parametrisation introduced above makes several formulae simpler, mainly because all the functions
present in it are independent and the constraint (3.15) is identically satisfied in it. Further, within each
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single t = constant, r = constant surface, the transformation from the (θ, φ) coordinates of (2.2) to the
(x, y) coordinates is

(x− P, y −Q)

S
= cot

(
θ

2

)
(cosφ, sinφ). (3.20)

This transformation is called a stereographic projection.
We have briefly presented the Szekeres metric following the method by which it was originally derived:

the form (3.10) was postulated, and then the complete solution of the Einstein equations was found.

3.2.2 GENERAL PROPERTIES OF THE SZEKERES SOLUTIONS

The Szekeres models are solutions of the Einstein equations for an irrotational dust source. In addition
the acceleration vanishes, so that uα;βu

β = 0. The shear tensor is

σαβ =
1

3

(
Φ,tr − Φ,tΦ,r/Φ

Φ,r − ΦE,r/E

)
diag(0, 2,−1,−1). (3.21)

The scalar of expansion is

θ = uα;α =
Φ,tr + 2Φ,tΦ,r/Φ− 3Φ,tE,r/E

Φ,r − ΦE,r/E
. (3.22)

In the Friedmann limit, R −→ rRF , where RF is the Friedmann scale factor. Thus θ −→ 3H0, where H0

is the current value of the Hubble parameter and σαβ −→ 0.

The equations of motion Tαβ;β = 0 reduce to the continuity equation:

ρ,t + ρθ = 0. (3.23)

In the expanding Universe, θ > 0, so the density decreases. The structures which exist in the Universe
emerged either due to lower expansion of the space (formation of overdense regions) or due to faster
expansion (formation of underdense regions).

The Weyl curvature decomposed into its electric and magnetic parts is of the following form:

Eαβ = Cαγβδu
γuδ =

M(3Φ,r − ΦM,r/M)

3Φ3(Φ,r − ΦE,r/E)
diag(0, 2,−1,−1), (3.24)

Hαβ =
1

2

√
−gεαγµνCµνβδ = 0. (3.25)

Finally, the 4D and 3D Ricci scalars are, respectively

R4D = −4Λ− 8πGρ, (3.26)

R3D = 2
k

Φ2

(
Φk,r/k − 2ΦE,r/E

Φ,r − ΦE,r/E
+ 1

)
. (3.27)

3.2.3 PROPERTIES OF THE QUASI-SPHERICAL SZEKERES SOLUTION

When Λ 6= 0, the solutions of (3.14) involve elliptic functions. A general formal integral of (3.14) was
found by [124]. Any solution of (3.14) will contain one more arbitrary function of r, denoted tB(r), which
will enter the solution in the combination (t− tB(r)). The instant t = tB(r) defines the initial moment of
evolution; when Λ = 0 it is necessarily a singularity corresponding to Φ = 0, and it goes over into the Big
Bang singularity in the Friedmann limit. When tB,r 6= 0 (that is, in general) the instant of singularity is
position-dependent, just as it is in the L-T model.

As for the L-T model, another singularity may occur where (eβ),r = 0 (if this equation has solutions).
This is a shell crossing, but now it is qualitatively different from that in the L-T model. If this singularity
is present in the L-T model, then whole spherical shells collide there. Here, as can be seen by (3.11)-(3.13),
the equation (eβ),r = 0 may define a subset of the x, y surface at each r. When a shell crossing exists, its
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intersection with a t = constant space will be a circle, or in exceptional cases, a single point, in each of a
set of constant r 2-surfaces, and not a sphere.

Equation (3.14) is formally identical to the Friedmann equation, but with k and M depending on r, so
each surface r = constant evolves independently of the others. The solutions Φ(t, r) are the same as the
L-T solutions R(t, r) of (2.3), and are unaffected by the dependence of the Szekeres solutions on the (x, y)
coordinates.

As defined by (3.11)-(3.14), the Szekeres models contain eight functions of r, of which only seven are
arbitrary because they must obey (3.15). Further, the parametrisation of (3.18)-(3.19) turns the function
g(r) to a constant parameter ε, thus reducing the number to six. By a choice of r (still arbitrary up to
now), we can fix one more function (for example, by defining r′ = M(r)), thereby reducing the physical
degrees of freedom to five.

In the following, we will represent the quasi-spherical Szekeres solution with β,r 6= 0 in the parametri-
sation introduced in (3.18)-(3.19). The formula for density in these variables is

κρ =
2(M,r − 3ME,r/E)

Φ2(Φ,r − ΦE,r/E)
. (3.28)

Basic physical restrictions

We choose Φ ≥ 0 (Φ = 0 is an origin, the bang or the crunch; in no case is a continuation to negative Φ
possible) and M(r) ≥ 0, so that any vacuum exterior has positive Schwarzschild mass.

For a well-behaved r-coordinate we require

∞ >
(Φ,r − ΦE,r/E)

2

1− k
> 0, (3.29)

i.e. 1− k > 0, except where (Φ,r − ΦE,r/E)
2

= 0.
The density must be positive, and the Kretschmann scalar RαβγδR

αβγδ must be finite, which adds
either

M,r − 3ME,r
E ≥ 0 and Φ,r − ΦE,r

E ≥ 0, (3.30)

or

M,r − 3ME,r
E ≤ 0 and Φ,r − ΦE,r

E ≤ 0. (3.31)

If
(

Φ,r − ΦE,r
E

)
passes through zero anywhere other than at a regular extremum, we have a shell crossing.

The significance of E

As seen from (3.18), with ε = +1 and S > 0, we always have E > 0. Can E,r change sign?
We will consider the variation of E(r, x, y) around the spheres of constant t and r. Setting ε = +1 and

applying the transformation (3.20) to E in (3.18) and to its derivative we see that the locus of E,r = 0 is

S,rcosθ + P,rsinθcosφ+Q,rsinθsinφ = 0. (3.32)

Writing
Z = cosθ , Y = sinθcosφ , X = sinθsinφ, (3.33)

we see that (X,Y, Z) is on a unit sphere through (0,0,0), and (3.32) becomes S,rZ + P,rX + Q,rY = 0
which is the equation of an arbitrary plane through (0,0,0). Such planes all intersect the unit sphere along
great circles, with locus

tanθ =
−S,r

P,rcosφ+Q,rsinφ
. (3.34)

With S,r = 0, the function E,r is negative on one side of the circle, zero on the circle and positive on the
other side.

As seen from (3.34), with S,r = 0 we have θ = 0, which means that the great circle defined by E,r = 0
passes through the pole of stereographic projection. In this case, the image of the circle E,r = 0 on the
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(x, y) plane is a straight line passing through (x, y) = (P,Q). E,r has a different sign on each side of the
straight line. From the definition of E we find

E,r
E

=
−[S,rcosθ + sinθ(P,rcosφ+Q,rsinφ)]

S
. (3.35)

Thus
E,r
E

= constant =⇒ S,rZ + P,rX +Q,rY = S × constant, (3.36)

which is a plane parallel to the E,r = 0 plane, implying that all loci of E,r/E =constant are circles parallel
to the E,r = 0 great circle.

The extrema of E,r/E are located at

tanφe =
Q,r
P,r

, (3.37)

tanθe =
P,rcosφe +Q,rsinφe

S,r
= ε1

√
P 2
,r +Q2

,r

S,r
, (3.38)

cosθe = ε2
S,r√

S2
,r+P 2

,r+Q2
,r

, ε1, ε2 = ±1. (3.39)

The extreme value is then (
E,r
E

)
extreme

= −ε2

√
S2
,r + P 2

,r +Q2
,r

S
. (3.40)

Since

(sinθecosφe, sinθesinφe, cosθe) =
ε2(P,r, Q,r, S,r)√
S2
,r + P 2

,r +Q2
,r

, (3.41)

the extreme values of E,r/E are poles to the great circles of E,r = 0.
Clearly E,r/E has a dipole variation around each constant-r sphere, changing sign when we go over to

the antipodal point: (θ, φ) −→ (π − θ, φ+ π). Writing

Φ,r −
ΦE,r
E

= Φ,r +
Φ[S,rcosθ + sinθ(P,rcosφ+Q,rsinφ)]

S
, (3.42)

we see that ΦE,r/E is the correction to the radial separation Φ,r of constant-r shells, due to their not being
concentric. In particular, ΦS,r/S is the forward (θ = 0) displacement, and ΦP,r/S and ΦQ,r/S are the
two sideways displacements (θ = π/2, φ = 0) and (θ = π/2, φ = π/2). The shortest radial distance is
where E,r/E is a maximum.

It will be shown later that, where Φ,r > 0, E,r/E ≤M,r/(3M) and E,r/E ≤ Φ,r/Φ are required to avoid
shell crossings, and also Φ,r/Φ > M,r/(3M) in (3.56). These inequalities, together with M,r > 0, imply
that the density given by (3.28), as a function of x := E,r/E ,

ρ =
2M,r

Φ2Φ,r

1− 3Mx/M,r

1− Φx/Φ,r
, (3.43)

has a negative derivative by x:

ρ,x =
Φ/Φ,r − 3M/M,r

(1− Φx/Φ,r)
2

2M,r

Φ2Φ,r
< 0, (3.44)

so the density is minimum where E,r/E is maximum.
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Conditions of regularity at the origin

We list here only those conditions of regularity that must be directly taken into account in considering
the galaxy cluster and void models. The full list of conditions, with derivations, can be found in [120] and
[31].

At the origin of spherical coordinates (which we assume to be at r = 0; this can always be satisfied
by a transformation of r), we have Φ(t, 0) = 0, ∀t (the 2-spheres have no size). Similarly, Φ,t(t, 0) = 0 =
Φ,tt(t, 0), etc. ∀t. There will be a second origin, at r = r0 say, in any closed, regular, k > 0 model. The
regularity conditions say that

limr→0M = 0 , limr→0k = 0, (3.45)

0 < limr→0

(
|k|3/2M

)
<∞ , limr→0[3Mk,r/(2M,rk)] = 1. (3.46)

All of the conditions taken together imply that, near an origin

M ∼ Φ3 , k ∼ Φ2 , S ∼ Φn , P ∼ Φn , Q ∼ Φn , n ≥ 0. (3.47)

The equation E,r/E ≤ M,r/(3M) that will be obtained in the next section implies that n ≤ 1 near an
origin.

Shell crossings

A shell crossing, if it exists, is the locus of zeros of the function χ := EΦ,r/Φ − E,r. Now Φ,r > 0 and
χ < 0 cannot hold for all x and y. This would lead to E,r > EΦ,r/Φ > 0, and we know that EΦ,r cannot
be positive at all x and y (see [120]). Hence, with Φ,r > 0, there must be a region in which χ > 0. By a
similar argument, Φ,r < 0 and χ > 0 cannot hold for all x and y, so with Φ,r < 0 there must be a region
in which χ < 0.

Assuming Φ,r > 0, can χ be positive for all x and y? A calculation [120] shows that χ will have the
same sign for all x and y, i.e. there will be no shell crossings if and only if

Φ,r
2

Φ2
=
S2
,r + P 2

,r +Q2
,r

S2
:= Ψ2(r). (3.48)

If Φ2
,r/Φ

2 = Ψ2, then χ = 0 at one x-value, say xSS . In this case, the shell crossing is a single point in
the constant-(t, r) surface, i.e. a curve in a space of constant t and a 2-surface in spacetime.

If Φ2
,r/Φ

2 < Ψ2, then the locus of χ = 0 is in general a circle with the centre at

(xSC , ySC) =

(
P − P,r

S,r/S + Φ,r/Φ
, Q− Q,r

S,r/S + Φ,r/Φ

)
, (3.49)

and with the radius LSC =
√
δ/(S,r/S + Φ,r/Φ), where

δ := P 2
,r +Q2

,r + ε(S2
,r − S2Φ2

,r/Φ
2). (3.50)

This is a general a different circle from the one defined by E,r = 0. The shell-crossing set intersects with
the surface of constant t and r along the line E,r/E = Φ,r/Φ =constant. As noted after (3.36), this is a
circle that lies in a plane parallel to the E,r great circle. It follows that the E,r and SC circles cannot
intersect unless they coincide.

Now we will consider the conditions for avoiding shell crossings. They were worked out by [34], and
improved upon by [120]. The account here is based on the latter reference.

For positive density, (3.28) shows that (M,r − 3ME,r/E) and χ must have the same sign. Consider the
case when both are positive. When (M,r−3ME,r/E ≤ 0) and χ ≤ 0, the inequalities in all of the following
should be reversed.

Both (M,r − 3ME,r/E) and χ can be zero for a particular (x, y) value if M,r/3M = Φ,r/Φ, but the
latter cannot hold for all time. This case can hold for all (x, y) only if M,r = 0, E,r = 0 and Φ,r/Φ = 0,
which requires all of M,r, k,r, tB,r, S,r, P,r and Q,r to be zero at some r value.
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Consider the inequality M,r− 3ME,r/E ≥ 0. It must hold for all values of E,r/E , including the extreme
value (3.40), for which

M,r

3M ≥
E,r
E
∣∣
max =

√
S2
,r+P 2

,r+Q2
,r

S ∀r. (3.51)

We will now consider χ > 0 for all three types of evolution. We quote the results only. For details see
[120].

Hyperbolic evolution, k < 0

Here, χ > 0 implies
tB,r < 0 ∀r, (3.52)

Φ,r
Φ
− E,r
E

> 0 =⇒ k,r
2k
− E,r
E

> 0, (3.53)

k,r
2k >

√
S2
,r+P 2

,r+Q2
,r

S ∀r, (3.54)

which implies k,r < 0 ∀r. Since we already have M,r ≥ 0, this is sufficient, and implies Φ,r > 0.

Parabolic evolution, k = 0

All terms involving k,r/k cancel out and we retain conditions (3.51) and (3.52). Naturally, (3.54) ceases
to impose any limit.

Elliptic evolution, k > 0

Here, the conditions are (3.52) and

2πM
k3/2

(
M,r

M − 3k,r
2k

)
+ tB,r > 0 ∀r, (3.55)

which says that the crunch time must increase with r. Since we already have M,r ≥ 0, these conditions
are sufficient to keep Φ,r > 0 for all time. Further, it can be shown that

Φ,r
Φ

>
M,r

3M
, (3.56)

so that (3.51) guarantees that for each given r the maximum of E,r/E as (x, y) are varied is no more than
the minimum of Φ,r/Φ as η varies.

The mass-dipole

In the Szekeres solution discussed here, the distribution of mass over each single sphere {t = constant, r
= constant} has the form of a mass dipole superimposed on a monopole. This was first noted by [34], and
then explained in much more detail by [126]. The presentation here is based on the latter reference (see
also [31]).

The basic idea is to separate the expression for matter density, (3.28), into a spherically symmetric part
ρs, depending only on t and r, and a nonsymmetric part ∆ρ. Without additional requirements, this can
be done in an infinite number of ways. The way to achieve a unique result is as follows. The calculation
is simpler in the variables of (3.10)-(3.16) , so we do it first in that representation. For better readability,
we denote

N = e−ν . (3.57)

Adding and subtracting H(t, r)/Φ2 on the right-hand side of (3.16), where H(t, r) is an arbitrary function,
results in

ρ = ρs(t, r) + ∆ρ(t, r, x, y), (3.58)

where
κρs = H

Φ2 , κ∆ρ =
N (2M,r−HΦ,r)−N,r(6M−HΦ)

Φ2(NΦ,r−ΦN,r) . (3.59)
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Now additional requirements on H will make the splitting unique. We transform (x, y) to spherical polar
coordinates on a sphere of radius one that is tangent to the (x, y) plane at the point (x, y) = (0, 0). The
transformation is as in (3.20), but with S = 1 and P = Q = 0, viz.

x = cot(θ/2)cosφ , y = cot(θ/2)sinφ, (3.60)

which transforms N = e−ν , as given by (3.11)-(3.13), to

N = Acot2(θ/2) + 2B1cot(θ/2)cosφ+ 2B2cot(θ/2)sinφ+ C. (3.61)

We substitute this in (3.59) and consider the equation ∆ρ = 0. We embed the sphere in a Euclidean
3-space, and express (θ, φ) through the Cartesian coordinates in the space via (3.33). Using (3.33) and
(3.61) in ∆ρ = 0 we obtain

[A,r(1 + Z) + 2B1,rX + 2B2,rY + C,r(1− Z)](6M −HΦ)

= [A(1 + Z) + 2B1X + 2B2Y + C(1− Z)](2M,r −HΦ,r). (3.62)

Now we require that the surface of ∆ρ = 0 passes through the centre of the sphere, i.e. that (3.62) is
fulfilled at X = Y = Z = 0, thus

(A+ C)(2M,r −HΦ,r) = (A,r + C,r)(6M −HΦ). (3.63)

Since (A,C,M,Φ) depend only on t and r, this can be solved for H:

H =
2M,r(A+ C)− 6M(A+ C),r

Φ,r(A+ C)− Φ(A+ C),r
. (3.64)

This solution makes sense except when [(A+C)/Φ],r ∼= 0. But then, the Szekeres model would degenerate
into the Friedmann model. Hence, (3.64) applies whenever the Szekeres model is inhomogeneous.

With H given by (3.64), (3.59) becomes

κρs =
2M,r(A+ C)− 6M(A+ C),r
Φ2[Φ,r(A+ C)− Φ(A+ C),r]

, (3.65)

κ∆ρ =
A,r + C,r − (A+ C)N,r/N

Φ2(Φ,r −N,r/N )

6MΦ,r − 2M,rΦ

Φ2[Φ,r(A+ C)− Φ(A,r + C,r)]
. (3.66)

Now, ∆ρ = 0 has two solutions:
A,r + C,r − (A+ C)N,r/N = 0 (3.67)

and (
2M

Φ3

)
,r

= 0. (3.68)

The second one defines a hypersurface that depends on t, that is, it is not comoving except when
(2M/Φ3),r ≡ 0, but then the matter-density becomes spatially homogeneous. Therefore, we can dis-
card this solution. However, the first solution defines a hypersurface, call it H1, which is independent of
t. Also, ∆ρ changes sign when H1 is crossed, and, in the variables (X,Y, Z), ∆ρ is antisymmetric with
respect to H1. Hence ∆ρ is a dipole-like contribution to matter density. Although the separation (3.58) is
global, the orientation of the dipole axis is different on every sphere {t = constant, r = constant}.

Repeating the calculation in the variables (3.18)-(3.19) we obtain

κ∆ρ =
χ,r − χE,r/E

Φ2(Φ,r − E,r/E)

6MΦ,r − 2M,rΦ

Φ2(Φ,rχ− Φχ,r)
, (3.69)

χ :=
1 + P 2 +Q2

2S
+
S

2
. (3.70)
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The set H1 intersects every (t = constant, r = constant) sphere along a circle, unless P,r = Q,r = S,r =
0(= A,r = C,r), in which case the dipole component of density is simply zero. The intersection of H1 with
any sphere of constant r is a circle parallel to the great circle E,r = 0. It will coincide with the E,r = 0
circle at those points where χ,r = 0 (if they exist). The dipole-like component will be antisymmetric with
respect to E,r/E only at those values of r where χΦ = 0 = χ,rΦ,r, but such values may exist only at the
centre, Φ = 0, because (3.70) clearly implies χ > 0.

3.3 NULL GEODESICS IN THE QUASI-SPHERICAL SZEK-
ERES MODEL

The geodesic equations kα;βk
β = 0 (where kα = dxα/ds) in the quasi-spherical Szekeres model are [120]

α = 0:

d2t

ds2
+

Φ,tr − Φ,tE,r/E
1− k

(Φ,r − ΦE,r/E)

(
dr

ds

)2

+
ΦΦ,t
E2

[(
dx

ds

)2

+

(
dy

ds

)2
]

= 0, (3.71)

α = 1:

d2r

ds2
+ 2

Φ,tr − Φ,tE,r/E
Φ,r − ΦE,r/E

dt

ds

dr

ds
+

(
Φ,rr − Φ,rE,r/E − ΦE,rr/E + Φ(E,r/E)2

Φ,r − ΦE,r/E
+

1

2

k,r
1− k

)(
dr

ds

)2

+2
Φ

E2

E,rE,x − EE,xr
Φ,r − ΦE,r/E

dr

ds

dx

ds
+ 2

Φ

E2

E,rE,y − EE,yr
Φ,r − ΦE,r/E

dr

ds

dy

ds

− Φ

E2

1− k
Φ,r − ΦE,r/E

[(
dx

ds

)2

+

(
dy

ds

)2
]

= 0, (3.72)

α = 2:

d2x

ds2
+ 2

Φ,t
Φ

dt

ds

dx

ds
−
(

1

Φ

Φ,r − ΦE,r/E
1− k

(E,rE,x − EE,xr)
)(

dr

ds

)2

+2

(
Φ,r
Φ
− E,r
E

)
dr

ds

dx

ds
− E,x
E

(
dx

ds

)2

− 2
E,y
E
dx

ds

dy

ds
+
E,x
E

(
dy

ds

)2

= 0, (3.73)

α = 3:

d2y

ds2
+ 2

Φ,t
Φ

dt

ds

dy

ds
−
(

1

Φ

Φ,r − ΦE,r/E
1− k

(E,rE,y − EE,yr)
)(

dr

ds

)2

+2

(
Φ,r
Φ
− E,r
E

)
dr

ds

dy

ds
+
E,y
E

(
dx

ds

)2

− 2
E,x
E
dx

ds

dy

ds
− E,y
E

(
dy

ds

)2

= 0. (3.74)

When studying light propagation in the quasi-spherical Szekeres model, these equations, together with
the evolution equations and the condition kαk

α = 0, must be solved. Apart from special cases which will
be discussed in the next section, these equations do not reduce to a simpler form. Also, in the general
case there is no simple formula for redshift; to find the frequency shift z the general formula 1 + z = k0

e/k
0

(where the subscript e refers to the emission instant) must be employed.

3.3.1 CONSTANT (x, y) GEODESICS

When studying light propagated in the Friedmann or L-T models, radial null geodesics are often considered.
Along such geodesics only the time and the radial coordinate change, while the other two spatial coordinates
remain constant. However, in the Szekeres model, in general it is impossible to define a radial direction.
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As follows from (3.71)-(3.74) if initially kx = ky = 0, then the coordinates x and y will remain constant
only if, along the whole geodesic,

Φ,r = Φ
E,r
E
, (3.75)

or
EE,xr = E,xE,r , EE,yr = E,yE,r. (3.76)

The relation (3.75) holds only at a shell-crossing singularity, which must be eliminated in a physically
acceptable model. Let us then focus on condition (3.76). In the quasi-spherical model E > 0 for all r.
From the definition of E , (3.18), we have

E,x = x−P
S , E,xr = −P,rS −

S,r
S E,x, (3.77)

E,y = y−Q
S , E,yr = −Q,rS −

S,r
S E,y. (3.78)

Since (3.76) are not functional relations, we have to consider the following cases:

E,x 6= 0 6= E,y
From (3.76)

E,xr
E,x

=
E,yr
E,y
⇐⇒ P,r

x− P
=

Q,r
y −Q

. (3.79)

This should hold at constant x = x0 and y = y0 along the whole geodesic, i.e. at every r. This equation
is fulfilled for any P and Q at (x0, y0) −→ (±∞,±∞). However, (x0, y0) = (∞,∞) is a singular point of
the geodesic equations (3.71)-(3.75) and of the metric (3.19), so this case must be investigated separately,
and we will discuss it after dealing with the other cases. In looking for other solutions, we integrate (3.79)
with respect to r. One special solution of this equation is P,r = Q,r = 0 and we will come back to this
case below. The general integral is

Q = y0 + C0(P − x0), (3.80)

along the geodesic, where C0 is an arbitrary constant. However, with E,x 6= 0 6= E,y, (3.79) also implies

E,xr
E,x

=
E,r
E
, (3.81)

i.e.
P,r

x0 − P
=

2[(x0 − P )P,r + (y0 −Q)Q,r]− 2SS,r
(x0 − P )2 + (y0 −Q)2 + S2

. (3.82)

Again, this is fulfilled for any P and Q at (x0, y0) −→ (±∞,±∞), which will be discussed later. If P,r = 0
in (3.82), then Q,r = 0 from (3.80), and the above implies S,r = 0, which reduces the Szekeres model to
the L-T model. Apart from this special case, with P,r 6= 0, (3.82) is integrated with the result:

S2 = C1(x0 − P )− (C2
0 + 1)(x0 − P )2, (3.83)

where C1 is another arbitrary constant 6= 0.

E,y = 0 6= E,x
With E,y = (y − Q)/S = 0 we have y0 = Q along the whole geodesic, i.e. Q,r = 0. Then the second of
(3.78) shows that also E,yr = 0 along this geodesic, and the second of (3.76) is fulfilled. The first of (3.76)
then becomes a special case of (3.82):

P,r
x0 − P

=
2(x0 − P )P,r − 2SS,r

(x0 − P )2 + S2
. (3.84)

This again has the special solution (x0, y0) = (∞,∞), to be discussed below, and P,r = S,r = 0, which is
the L-T model. The general integral of (3.84) is the subcase C0 = 0 of (3.83).
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E,y 6= 0 = E,x
The result here follows from the previous case by interchanges of coordinates and functions. The general
solution is

P = x0 =⇒ P,r = 0 , S2 = C2(y0 −Q)− (y0 −Q)2. (3.85)

E,y = 0 = E,x
This implies, via (3.77)-(3.78) that

(x0, y0) = (P,Q) =⇒ P,r = Q,r = 0 (3.86)

and (3.76) is then fulfilled without any further conditions. With P,r = Q,r = 0 the model becomes axially
symmetric, and (x0, y0) = (P,Q) is the axis of symmetry in each 3-space of constant t.

Now it can be verified that all the four cases discussed above are equivalent to each other under coor-
dinate transformations. The general form of the Szekeres metric (3.16) is preserved by the 2-dimensional
Haantjes transformations (see pp. 92-93 in [31]). We combine the shift (x, y) −→ (x − x0, y − y0) with a
Haanjes transformation:

x = x0 +
x′ +D1(x′2 + y′2)

T
, (3.87)

y = y0 +
y′ +D2(x′2 + y′2)

T
, (3.88)

T := 1 +D1x
′ + 2D2y

′ + (D2
1 +D2

2)(x′2 + y′2), (3.89)

where D1 and D2 are arbitrary constants. A characteristic property of this transformation is

(x− x0)2 + (y − y0)2 =
x′2 + y′2

T
, (3.90)

dx2 + dy2 =
dx′2 + dy′2

T 2
. (3.91)

Applying the transformation (3.87)-(3.89) to the Szekeres metric whose P , Q and S obey (3.80) and (3.83)
we see that if

D1 = −1/C1 , D2 = −C0/C1, (3.92)

then the new E will be of the form (x′2 + y′2)/(2S̃) + S̃/2, where

S̃ = C1

√
x0 − P

C1 − (C2
0 + 1)(x0 − P )

, (3.93)

i.e. the resulting metric will be axially symmetric.
Since (3.84) follows from (3.79)-(3.83) as the subcase C0 = 0, this is obviously axially symmetric, too.

For (3.85) an explicitly axially symmetric metric is obtained by taking D1 = 0 and D2 = −1/C2 in (3.89).
The image of the position of the geodesic at (x, y) = (x0, y0) is, in each of the above cases, the set

x′ = y′ = 0, which is evidently the axis of symmetry in the (x′, y′)-plane.
Now we deal with the point (x0, y0) = (∞,∞). To check the behaviour of geodesics passing through

this point we transform (3.19) by

(x, y) =
(x′, y′)

x′2 + y′2
. (3.94)

The image of the surface (x, y) = (∞,∞) under this transformation is the surface (x′, y′) = (0, 0). Equation
(3.94) transforms (3.19) into a Szekeres metric still of the form (3.19), but with E replaced by

Ẽ =
1

2S̃

[
(x′ − P̃ )2 + (y′ − Q̃)2

]
, (3.95)
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where

(P̃ , Q̃, S̃) =
(P,Q, S)

P 2 +Q2 + S2
. (3.96)

We now verify whether a null geodesic on which initially (x′, y′) = (0, 0) preserves (x′, y′) = (0, 0) along it.
The investigation above suggests that this should be the case for every form of (P,Q, S). If this were true,
then the relations (3.76) would now be identities obeyed by Ẽ at x′ = y′ = 0, for any functions (P̃ , Q̃, S̃).

However, this cannot be true: equations (3.76) applied to Ẽ at x′ = y′ = 0 are of the same algebraic
form as (3.76) applied to E(x, y) at x = y = 0, i.e. they will impose limitations on (P̃ , Q̃, S̃). We show
just one example of this. Equations (3.76) applied to Ẽ imply

Ẽ,y′ Ẽ,x′r = Ẽ,x′ Ẽ,y′r. (3.97)

Substituting for Ẽ from (3.95) at x′ = y′ = 0 we get P̃,rQ̃ = P̃ Q̃,r. Apart from the special case P̃,r =

Q̃,r = 0 this is integrated with the result Q̃ = AP̃ , where A is a constant. From (3.96), this is equivalent
to Q = AP . This means that (3.97) is not identically obeyed at x′ = y′ = 0. Thus, apart from the special
forms of P , Q and S, a null geodesic on which initially (x, y) = (∞,∞) is not a constant (x, y) geodesic.

The final conclusion of our considerations is:

Theorem 3.1 A constant-(x,y) null geodesic with constant x and y exists only in an axially symmetric
Szekeres spacetime. Apart from the L-T limit, there is only one such geodesic: the one which stays on the
axis of symmetry within each (x,y) surface. Depending on the coordinates, the functions P, Q and S in
such a spacetime obey one of the sets of equations:

• (3.79) and (3.83)

• the subcase C0 = 0 of (3.79), (3.81) and (3.82)

• ( 3.85)

• ( 3.86)

Although it is possible that there are other geodesics which have a fixed direction, for example geodesics
along which x/y is constant, here we only considered geodesics which are axially directed. Let us call this
kind of geodesics the axial geodesics.

3.3.2 THE REDSHIFT FORMULA FOR THE AXIAL GEODESICS

In the case of the axial geodesics one can set dx = 0 = dy to obtain the following equation for a null
geodesic:

dt

dr
=

Φ,r − ΦE,r/E√
1− k

. (3.98)

We choose the − sign, so the observer is at the origin. Let us choose the following parametrization:

k1 = −1 , k0 =
Φ,r−ΦE,r/E√

1−k . (3.99)

This is not an affine parametrisation, so the parallel transport does not preserve the tangent vector.
Therefore, kα, after being parallel transported, becomes λkα (where λ is a scalar coefficient a function of
the parameter s along the geodesic). In this case the geodesic equations are of the form [31]:

kα;βk
β = − 1

λ

dλ

ds
kα. (3.100)

The above is equivalent to only one equation:

− 1

λ

dλ

ds
= 2

Φ,tr − Φ,tE,r/E√
1− k

− Φ,rr − Φ,rE,r/E − ΦE,rr/E + Φ(E,r/E)2

Φ,r − ΦE,r/E
− 1

2

k,r
1− k

. (3.101)
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All the quantities above are evaluated on the geodesic, where t and r are connected with each other via
(3.98). Thus we have

Φn,r = (Φ,t)n
dt

dr
+ (Φ,r)n , (3.102)

(Φ,r)n,r = (Φ,tr)n
dt

dr
+ (Φ,rr)n , (3.103)

where the subscript n refers to quantities measured on the geodesic.
The second term on the right-hand side of (3.101) looks like a logarithmic derivative. However, because

of (3.102)-(3.103) we have

dln [(Φ,r)n − Φn(E,r/E)n]

dr
=

(Φ,r)n,r − Φ,nr(E,r/E)n − Φn(E,rr/E)n + Φn(E,r/E)2
n

(Φ,r)n − Φn(E,r/E)n

=
(Φ,rr)n − (Φ,r)n(E,r/E)n − Φn(E,rr/E)n + Φn(E,r/E)2

n

(Φ,r)n − Φn(E,r/E)n

+
(Φ,tr)n − (Φ,t)n(E,r/E)n

(Φ,r)n − Φn(E,r/E)n

dt

dr
. (3.104)

Using the above relation we can integrate equation (3.101):

λ = C

√
1− kn

(Φ,r)n − Φn(E,r/E)n
exp

(∫
(Φ,tr)n − (Φ,t)n(E,r/E)n√

1− kn
dr

)
. (3.105)

Now we can easily find that kα in the affine parametrisation is given by k̃α = (λ/C)kα. Using the general
formula for redshift , 1 + z = k̃0

e/k̃
0
o , we can write an easy-to-use relation for redshift:

ln(1 + z) = l

ro∫
re

(Φ,tr)n − (Φ,t)n(E,r/E)n√
1− kn

dr, (3.106)

where l = 1 for re < ro and l = −1 for re > ro . This equation is valid only on the axial geodesics, thus
one of the conditions listed in Section 3.3.1 must hold. Under such conditions light propagation studies
become much simpler. One needs to study only one equation, i.e. (3.98), and the redshift can be directly
calculated from (3.106).

3.4 JUNCTIONS OF NULL GEODESICS IN THE SZEKERES
SWISS-CHEESE MODEL

The Swiss-cheese models are often used to take into account the inhomogeneous matter distribution ob-
served in our Universe. However, when employing such models to the analysis of astronomical observations,
junction conditions must be handled properly. Consequently, this subject in considered in this section.

For a curve xγ(λ) with tangent vector Xσ = dxσ/dλ crossing the junction Σ, the obvious junction
conditions are the continuity of its position and its tangent vector, but expressed in a form that makes
them invariant with respect to the transformations of the 4D coordinates, xγ . The two manifolds on either
side of Σ are labelled ‘+’ and ‘−’, and the hypersurface Σ is defined on either side by

xγ± = xγ±(ξk), (3.107)

where ξk, k = 1, 2, 3 are surface coordinates. For the curve to be of class C0 we need to ensure the curve
intersects Σ at the same intrinsic coordinate point, i.e.:

[ξk(xγ)] = ξk(xγ+(λ+
Σ))− ξk(xγ−(λ−Σ)) = 0. (3.108)
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For the curve to be of class C1, the components of the tangent vector, the components of the tangent
vector, projected normal to and tangent to Σ, must be continuous:

[Xβnβ ] =
dxβ+
dλ+

n+
β

∣∣∣∣
Σ

−
dxβ−
dλ−

n−β

∣∣∣∣
Σ

= 0, (3.109)

[Xαe
α
i ] =

dxα+
dλ+

gαβe
β
i

∣∣∣∣
Σ

−
dxα−
dλ−

gαβe
β
i

∣∣∣∣
Σ

= 0, (3.110)

where nα is the unit normal to Σ,e
α
i = ∂xα/∂ξi are three orthogonal unit tangent vectors to Σ and square

brackets indicate a jump in a quantity across the junction. In fact, the curve should still be C1 even if we
re-parametrise the curve on one side only, λ̄ = λ̄(λ). This would re-scale all components that matters:

[(Xαe
α
i /X

βnβ)] = 0. (3.111)

If the curve is null, then it suffices to set

[lαe
α
i ] =

[
dxα

dλ
gαβe

β
i

]
= 0 (3.112)

and use lαlα = 0 to fix the normal component.
For our Swiss-cheese model, let us consider Szekeres spheres matched into a Friedmann background,

and let us imagine a light ray passes out of one Szekeres inhomogeneity straight into another one, where
the boundary spheres touch. We can compress the double matching into a single junction calculation -
Szekeres to Szekeres. Let us denote the null vector in the Szekeres model by lα = (lt, lr, lx, ly). Since it is
null, one component is set, say lr:

lr =

√
(ε− k)[(lt)2 − (Φ/E)2{(lx)2 + (ly)2}]

Φ,r − ΦE,r/E
. (3.113)

A surface of constant r, with surface coordinates (t, x, y), has

nα =

(
0,

Φ,r − ΦE,r/E√
ε− k

, 0, 0

)
, (3.114)

eαi =


1 0 0
0 0 0
0 1 0
0 0 1

 , (3.115)

gij =

 1 0 0
0 −Φ2/E2 0
0 0 −Φ2/E2

 , (3.116)

Kij =

 0 0 0

0 −Φ
√
ε− k/E2 0

0 0 −Φ
√
ε− k/E2

 . (3.117)

Thus
lαe

α
i =

(
lt,−Φ2lx/E2,−Φ2ly/E2

)
. (3.118)

The components of lα in the orthonormal tetrad (nα, eαi ) are

l(α) =

(
lt,

Φ,r − ΦE,r/E√
ε− k

lr,
Φ

E
lx,

Φ

E
ly
)
. (3.119)

The matching requires that three of the following equations are obeyed:

lt
∣∣
Σ+ = lt

∣∣
Σ−
, (3.120)
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Φ,r − ΦE,r/E√
ε− k

lr
∣∣∣∣
Σ+

=
Φ,r − ΦE,r/E√

ε− k
lr
∣∣∣∣
Σ−
, (3.121)

Φ

E
lx
∣∣∣∣
Σ+

=
Φ

E
lx
∣∣∣∣
Σ−
, (3.122)

Φ

E
ly
∣∣∣∣
Σ+

=
Φ

E
ly
∣∣∣∣
Σ−
. (3.123)

while the fourth one follows from the null condition.
Now let us notice that when a Szekeres sphere is matched to a Friedmann background, its orientation

is completely undetermined. If we fix the point where the light ray exits one Szekeres sphere and where
it enters another, then one can still be rotated around the common normal direction relative to the other.
This is equivalent to rotating the tangential component of the null vector. Thus we only need to match
up the time component and the tangential component:

[lt] = 0 =

[
Φ2

E2
((lx)2 + (ly)2)

]
. (3.124)

3.5 THE APPARENT HORIZONS IN THE SZEKERES MODEL

An apparent horizon (AH) is the boundary of the region of trapped surfaces. A trapped surface is a closed
surface on which both the inward- and outward- directed null geodesics converge (i.e. have a negative
expansion scalar). Thus, for a trapped surface Σ, if kµ is any field of vectors tangent to null geodesics that
intersect Σ, then

kµ;µ < 0 , on Σ. (3.125)

Consequently, on an apparent horizon:
kµ;µ = 0. (3.126)

In the above, kµ is null and geodesic. Proceeding from this definition, [34] found that in the quasi-spherical
Szekeres model the apparent horizon is given by the same equation as in the L-T model:

Φ = 2M. (3.127)

On the other hand, [120], while investigating the possibility of traversing through a Szekeres wormhole,
defined a related notion, which they also called apparent horizon. Namely, they considered surfaces from
which a fastest-moving object could not escape outwards. Thus, they considered the analogue of (3.126),
but for non-geodesic null fields. The reasoning was that where a geodesic ray would already be forced
inward, an accelerating ray might still escape farther before being turned back, and we name this horizon
the ‘absolute apparent horizon ‘(AAH)’, in order to avoid confusion.

The reasoning of [120] was as follows. A general null direction kα = dxα/dt in the metric of (3.19)
with ε = +1 obeys

0 = kαkβgαβ = 1− (Φ,r − ΦE,r/E)2

1− k

(
dr

dt

)2

− Φ2

E2

[(
dx

dt

)2

+

(
dy

dt

)2
]
, (3.128)

which implies

(Φ,r − ΦE,r/E)2

1− k

(
dr

dt

)2

= 1− Φ2

E2

[(
dx

dt

)2

+

(
dy

dt

)2
]
. (3.129)

Thus, on a null curve with dx/dt = 0 = dy/dt (which, apart from exceptional cases, will not be a geodesic),
the rate of change of r is maximal. One would tend to interpret this to mean that along such a curve the
null signal will be able to escape farther than the location of the AH at Φ = 2M . This in fact will not
always be the case. A curve (3.129) on which dx/dt = 0 = dy/dt will have the maximal dr/dt compared
to curves with nonzero values of dx/dt and dy/dt passing through the point with the same coordinate x

92



and y. However, going to a different pair of values x and y changes the value of E,r/E . For some of the
(x, y) pairs this will decrease dr/dt compared to the former (x, y) direction, and the curve (3.129) with
dx/dt = 0 = dy/dt will not make it to the AH, being turned back at a smaller value of M .

Equation (3.129) implies, along this fastest escape route,

dt
dr

∣∣
n

= j√
1−k

(
Φ,r − ΦE,r

E

)
, j = ±1, (3.130)

where j = +1 for outgoing rays, and j = −1 for ingoing rays. The solution of the above, t = tn(r), is the
equation of the ‘fastest ray’. The value of the function Φ along this ray, Φn(r) = Φ(tn(r), r), which is an
analogue of the L-T areal radius, will in general be increasing and decreasing with growing r. The absolute
apparent horizon (AAH) is where Φn(r) has an extremum, i.e. it changes from increasing to decreasing or
vice-versa. Thus, the AAH is a locus where

0 =
dΦn
dr
≡ ∂Φ

∂t

dtn
dr

+
∂Φ

∂r
= lj

√
2M/Φ− k√

1− k

(
Φ,r −

ΦE,r/E
E

)
+ Φ,r, (3.131)

where l = +1 for an expanding model and l = −1 for a collapsing model. Explicitly, this reads

Φ,r = (
√

1− k −
√

2M/Φ− k) + Φ
√

2M/Φ− kE,r/E = 0. (3.132)

Note that the solution of (3.132) is a hypersurface in spacetime determined by the equation t = tAAH(r, x, y).
Thus, unlike in the spherically symmetric case or in the case of the ordinary apparent horizon, the function
tAAH(r, x, y) essentially depends on three variables and cannot be faithfully represented by a 3D graph.

The equation of the apparent horizon in the (t,M)-coordinates will be the same as in the corresponding
L-T model. It is independent of (x, y), and, for the future apparent horizon (in the recollapse phase of
evolution of the k > 0 model) it is [40]

t = tB +
M

k3/2

[
π + arccos(2k − 1) + 2

√
k(1− k)

]
. (3.133)

In order to find the corresponding equation for the AAH from (3.131) we use the following expression for
Φ,r [to be calculated from the evolution equation, see Sec.18.10 in [31], in particular Eq. (18.107)]:

Φ,r
Φ

=

(
M,r

M
− k,r

k

)
+

(
3

2

k,r
k
− M,r

M

)
sinη(η − sinη)

(1− cosη)2
− k3/2

M
tB,r

sinη

(1− cosη)2
. (3.134)

Before we use this in (3.132) we note that from the evolution equation it follows that with π ≤ η ≤ 2π,
where sinη < 0, we have √

2M

Φ
− k = −

√
k

sinη

1− cosη
. (3.135)

We substitute (3.134) and (3.135) into (3.132) and get:[
M,r

M
− k,r

k
+

(
3

2

k,r
k
− M,r

M

)
sinη(η − sinη)

(1− cosη)2
− k3/2

M
tB,r

sinη

(1− cosη)2

]

×

[
√

1− k +

√
ksinη

1− cosη

]
+

√
ksinη

1− cosη

E,r
E

= 0. (3.136)

We will use this as an implicit definition of η(M)AAH ,i.e. as the equation of the AAH in the (η,M)
variables (η will depend on x and y via E). Then t(M) on the AAH can be found from the evolution
equation:

t(M)AAH =

[
M

k3/2
(η − sinη) + tB

]
AAH

. (3.137)

Equation (3.136) can be solved only numerically. To verify its solvability, and to find the initial values for
the bisection method, we will transform it because in the form (3.136) its left-hand side becomes infinite
at η −→ 2π.
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We will assume that the shell crossings are absent. Among the conditions for no shell crossings, found
by [120], the following are useful here:

2π

(
3

2

k,r
k
− M,r

M

)
− k3/2

M
tB,r < 0, (3.138)

(see Eq. (126) in [120]), and
M,r

M
− k,r

k
> 0, (3.139)

which follows from the fact that Φ,r/Φ > 0 must hold for all (η, r), and from (3.134) taken at η = π (see
[120]).

We observe that

limη−→2π
sinη√

1− cosη
= −
√

2 (3.140)

and multiply (3.136) by (1− cosη)2 to obtain:

Ψ(η) :=

[(
M,r

M
− k,r

k

)
(1− cosη)3/2 sinη(η − sinη)√

1− cosη
− k3/2

M
tB,r

sinη√
1− cosη

]
[
√

1− k
√

1− cosη +

√
ksinη√

1− cosη

]
+
√
ksinη(1− cosη)

E,r
E

= 0. (3.141)

Now we verify that

limη−→πΨ(η) = 4
√

1− k
(
M,r

M
− k,r

k

)
> 0, (3.142)

being positive in consequence of (3.139); and

limη−→2πΨ(η) = 2
√
k

[
2π

(
3

2

k,r
k

+
M,r

M

)
− k3/2

M
tB,r

]
< 0, (3.143)

being negative in consequence of (3.138).
Thus Ψ(π) > 0 and Ψ(2π) < 0 , so there exists an η0 ∈ (π, 2π) at which Ψ(η0) = 0. By this we have

proved that each particle in a recollapsing quasi-spherical Szekeres model must cross the AAH before it
hits the Big Crunch at η = 2π.

We briefly recapitulate some of the properties of the AAH found in [120] and reported in [31]. The
AAH may either (1) not intersect a given surface of constant (t, r); or (2) have a single point in common
with it; or (3) intersect it along a circle or a straight line. Let

D := 1−
√

2M/Φ− k√
1− k

. (3.144)

Except for the special case when S,r/S = DΦ,r/Φ, the circle of intersection in the (x, y) plane has its
centre at

(xAH , yAH) =

(
P − P,r

S,r/S −DΦ,r/Φ
, Q− Q,r

S,r/S −DΦ,r/Φ

)
(3.145)

and the radius

LAH =

√
λ

S,r/S −DΦ,r/Φ
. (3.146)

The special case
S,r
S

= D
Φ,r
Φ
, (3.147)

when the locus of the AAH in the (x, y) plane is a straight line, is an artefact of the stereographic projection;
this straight line is an image of a circle on the sphere.
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From the definition of the AAH, and from Φ > 0, E > 0 and Φ,r > 0, we have

(D > 0) =⇒ (E,r < 0) , (D < 0) =⇒ (E,r > 0). (3.148)

But D > 0 and D < 0 define regions independent of x and y. Hence, where D > 0 (resp. D < 0), we have
E,r < 0 (resp. E,r > 0) on the whole of the AAH. This implies that the E,r = 0 circle and the AAH cannot
intersect unless they coincide. Indeed, these circles lie in parallel planes.

Along Φ = 2M ,

(Φn),r = −Φ
E,r
E
, (3.149)

so the apparent horizon, which is at Φ = 2M , does not coincide with the AAH except where E,r = 0.

3.6 EVOLUTION OF COSMIC STRUCTURES IN THE QUASI-
SPHERICAL SZEKERES MODEL

In Chapter 2 of this thesis, the spherically symmetric L-T model was used to study structure formation.
However, the structures we observe in the Universe are far from being spherical, and we want to refine our
analysis by considering a wider variety of astrophysical objects. Therefore, in this section, we investigate
the evolution of small voids among compact clusters and large voids surrounded by large walls or filaments
within the quasi-spherical Szekeres model.

This analysis is based on the studies by [127] and [128].

3.6.1 THE ALGORITHM

To specify a Szekeres model, 5 functions of the radial coordinate need to be known. The computational
algorithm used to specify the model and to calculate its evolution consists of the following steps.

• The chosen background model is the homogeneous Friedmann model with density:

ρb = Ωm × ρcr = 0.24× 3H2
0

8πG
, (3.150)

where the Hubble constant is H0 = 74 kms−1Mpc−1. The cosmological constant, Λ, corresponds to
ΩΛ = 0.76.

• The cosmic time of last scattering (t1) is calculated using (2.107).

• The radial coordinate is chosen as the value of Φ at the initial instant t1 = 0.5× 106 yr after the Big
Bang:

r̃ := Φ(t1, r). (3.151)

For clarity in further use, the new radial coordinate is denoted r.

• The function M(r), which describes the active gravitational mass inside an r = constant sphere, is
calculated in the following way:

M(r) = Mb(r) + δM(r), (3.152)

where Mb is the mass in the corresponding volume of the homogeneous universe as defined by (2.117)
with l = r and ρ = ρb, and δM is a mass correction, which can be either positive or negative. The
δM is defined similarly to the spherically symmetric case:

δM(r) = 4π
G

c2

r∫
0

Φ2(t1, u)Φ,r(t1, u)δρ̄(u)du, (3.153)

where δρ̄(r) is the function chosen to specify δM . Although δρ̄(r) is not the initial density fluctuation
(since the latter is a function of all spatial coordinates), it gives some estimate of the initial fluctuation
of the monopole density component.
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Model δρ̄ S P Q

1 −5× 10−3exp[−(r/8kpc)2] 1 0 −0.6ln(1 + r/kpc)exp(−0.003kpc−1 × r)
2 1.14× 10−3exp[−(r/9kpc)2] 1 0 −1.45ln(1 + 0.2r/kpc)exp(−0.003kpc−1 × r)
3 −5× 10−3exp[−(r/8kpc)2] −(r/kpc)0.4 0.55(r/kpc)0.4 0.33(r/kpc)0.4

4 1.14× 10−3exp[−(r/9kpc)2] −(r/kpc)0.9 0.55(r/kpc)0.8 0.33(r/kpc)0.8

5 1×10−3exp[−(r/20kpc)2]−6.5×
10−4exp[−(r − 35kpc/10kpc)2]

1 0 0.33(r/kpc)0.8

Table 3.1: The set of functions used to specify double structure models. The bang function in the following
models is assumed to be zero, tB = 0. Table information is taken from [128].

• The bang time function is assumed to be zero, i.e. tB(r) = 0. Then the function k(r) can be
calculated from (3.17).

• The last three functions needed to define the quasi-spherical Szekeres model are P (r), Q(r), S(r).
The form of these functions is presented in Table 3.1.

• The evolution of the system is calculated by solving (3.14).

• The evolution of different models is compared by their density contrast evolution. Two different
types of density contrast indicators are taken into account. The first one is the usual density contrast
defined as follows:

δ =
ρ− ρb
ρb

, (3.154)

where ρb is the background density. However, the density contrast defined as above is a local quantity.
We can introduce another indicator of a density contrast in the way proposed by [129]:

SIK =

∫ ∣∣∣∣hαβρI ∂ρ

∂xα
∂ρ

∂xβ

∣∣∣∣K dV, (3.155)

where I and K are the set of real numbers, excluding zero. This family of density contrast indicators
can be considered as local or global depending on the size of Σ. Such a quantity not only describes
the change of density but also the change of gradients and the volume of a perturbed region. So
this density indicator describes the evolution of the whole region in a more sophisticated way than
δ. Here only the case I = 2, K = 1/2 is considered.

• The integral given by (3.155) is calculated in the quasi-spherical (θ, φ) coordinates of (3.20). This is
because the (x, y) coordinates have an infinite range, while in numerical calculations (all the models
presented in this section are calculated numerically) it is more convenient to use coordinates that
have a finite range.

3.6.2 DOUBLE STRUCTURES

In this section, the evolution of double structures, namely a void with an adjoining galaxy cluster, is
investigated. Although sets of more than two structures can be described within the Szekeres model, the
investigation of less complex cases are useful because they enable us to draw some general conclusions
without going into too much detail. A more complex model is investigated in the next section, and it is
found that the conclusions drawn for the double structures are still valid in such situations.

Models with P,r = 0 = S,r, Q,r 6= 0

As mentioned above, if P,r = 0 = S,r = Q,r , then the quasi-spherical Szekeres model becomes the L-T
model. Hence, the class of models considered in this section is the simplest generalization of the spherically
symmetric models.
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The double structure consisting of a void and an adjoining supercluster can be described in the Szekeres
model in two different ways: δM < 0, and with δM > 0. Both of these possibilities are examined here.

Let us first consider two models: model 1 and 2 (see Table 3.1 for details). The density distribution
of models 1 and 2 are given in Figure 3.1. As can be seen, the model with δM < 0 (model 1) has a void
around the centre, and the cluster is described by the high-density side of the dipole component of the
matter distribution. It is the opposite in model 2: the overdense region is around the origin and the void
is half of the dipole component in the density.

Figure 3.2 shows the evolution of the density contrast of models 1 and 2 in comparison with the
corresponding model obtained in the L-T metric, which is specified by assuming the same conditions
as the ones in the Szekeres model at the initial instant, namely tB = 0 and the profile of the density
distribution. The local density contrast, δ, is compared at the point of maximal and minimal density
value. The upper-left panel of Figure 3.2 show the evolution of the density contrast inside the void, and
as can be seen, the behaviour of the density contrast in both models is similar. This is a consequence of
imposing the origin conditions, where Φ(r0, t) = 0 ∀ t and some other functions are also equal to zero.
These conditions imply that the origin behaves like the Friedmann model, and this is the reason why
the quasi-spherical Szekeres and the L-T models evolve very similarly close to the origin. The lower-left
panel of Figure 3.2 compares the evolution of the density contrast at the centre of the overdense region of
model 1 with the corresponding L-T model, and shows the growth of the density contrast in the Szekeres
model is much faster within a δM < 0 perturbation, where the mass is below the background value. This
indicates that within the perturbed region of mass below the background mass (δM < 0) the evolution
of underdensities does not change, but the evolution of the overdense regions situated at the edge of the
underdense regions is much faster than the corresponding evolution of isolated structures.

The evolution of the density contrast of model 2 (δM > 0) is shown on the right-hand side of Figure
3.2. The density contrast at the point of minimal density is depicted in the upper-right panel of Figure
3.2. As in model 1, the evolutions at the origin in the Szekeres model and the L-T model are very similar.
The evolution of the void, however, is slower within the Szekeres model than it is in the L-T model. This
implies that single, isolated voids evolve much faster than the ones which are in the neighbourhood of
large overdensities where the mass of the perturbed region is above the background mass (δM > 0).

Now let us compare the evolution of the S2,1/2 density indicator of (3.140). As above, two different
types of Σ are considered:

• In the case of overdense regions Σ is defined as a region where ρ > ρb.

• In the case of underdense regions Σ is defined as a region where ρ < ρb.

Since the value of SIK depends on units, the results shown in Figure 3.3 and Figure 3.6 are normalized so
they are now of order unity.

The upper panel of Figure 3.3 presents the evolution of S2,1/2 for an underdense region, the lower one
for an overdense region. As can be seen S2,1/2 for the two Szekeres models are comparable and the growth
of S2,1/2 for the L-T model is much slower. This is because the volumes of the considered regions are
different. In the Szekeres model the volume is larger than that in the L-T model.

Figure 3.1 presents the shape of the structures without corrections for the shell displacement. For
example, the void in Figure 3.1 (upper panel) and in Figure 3.5 seems to be almost spherical. In fact this
void is squeezed in the +Y direction and elongated in the Y direction [Q,r 6= 0, P,r = 0 = S,r this follows
from the metric (3.19) and Eqs. (3.35), (3.20)]. This also leads in some regions to density gradients larger
than in the L-T model, which causes such a large disproportion in S2,1/2 between the Szekeres and L-T
models.

The results indicate that the evolution of a Szekeres model is much more complex than that of an L-T
model. The evolution not only depends upon the amplitude of the density contrast, but also on the density
gradients and on the volume of the perturbed region. This is the reason why the S2,1/2 curve for the void
in model 2 is higher than in other models, although the density contrast in this model evolves More slowly
than in model 1. Similarly, as can be seen in Figures 3.4 and 3.5, the overdense region in the model with
δM < 0 is much larger than in other models, and as a consequence the S2,1/2 value for this model evolves
much faster than in other models. The S2,1/2 plots give us information about the evolution of the whole
perturbed region.
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Figure 3.1: The present day density distribution of double structure models. The upper panel represents
model 1 and the lower panel model 2. Figure taken from [128].
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Figure 3.2: The evolution of density contrast, equation (3.154), inside the void (upper panel) and inside the
cluster (lower panel) for model 1; SZ and LT curves representing the Szekeres and L-T models respectively.
The graphs on the left represent model 1, with model 2 on the right. Figure taken from [128].
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Figure 3.3: Comparison of S2,1/2 for models with δM > 0, δM < 0 and the corresponding LT model for a
void in the upper panel and supercluster in the lower panel. Figure taken from [128].
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Figure 3.4: The present colour-coded density distribution, ρ/ρb, for models with δM < 0. Upper panel -
P ′ = S′ = 0 (Model 1). Lower panel - P ′ 6= 0 6= S′ (Model 3). Figure taken from [128].
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Figure 3.5: The present colour-coded density distribution, ρ/ρb, for models with δM > 0. Upper panel -
P ′ = S′ = 0 (Model 2). Lower panel - P ′ 6= 0 6= S′ (Model 4). Figure taken from [128].
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The evolution of the density at a single point is described by the local density contrast δ. As can
be seen, the evolution of the maximal and minimal density contrast depends on the value of δM in the
unperturbed region. The evolution of the density contrast inside large and isolated voids is faster than
inside small voids which are surrounded by highly dense regions. On the other hand, the evolution of the
density contrast in high-density regions in close neighbourhood of large voids is faster, due to faster mass
flow from the voids.

Models with P,r 6= 0 6= S,r, Q,r 6= 0

Now let us consider two models non-constant P , Q and S models 3 and 4 (see Table 3.1 for details).
Figure 3.4 presents the comparison of the present-day density distribution in models 1 and 3 in colour-

coded diagrams. It presents the cross sections perpendicular to the XY surface of the considered structures.
The upper panel of Figure 3.4 presents the cross section through the surface φ = π/2 and the lower panel
presents the cross section through the surface φ ≈ π/6. Figure 3.5 presents the cross sections of models 2
and 4. As can be seen, each pair of structures appears to be similar but, in comparison with model 1, the
void in model 3 is moved down and right. In model 4, on the other hand, it is the cluster which is moved
down and right as compared to model 2.

The evolutions of the density contrasts inside the voids and clusters of models 3 and 1 are very similar,
which should not be surprising, as model 3 has the same r̄ as model 1. Also, the evolutions of the
corresponding density contrasts of models 4 and 2 are similar. The functions (S, P,Q) were chosen so
that they reproduce the same shapes of current structures and the same density contrasts inside them.
However, it is not clear whether the evolutions of S2,1/2 are comparable, too. When the functions (S, P,Q)
are not constant, the axis of the mass-dipole changes from one sphere to another.

Also, volumes of the unperturbed regions and the density gradients can be different. So it may be
interesting to compare the evolution of the whole perturbed underdense and overdense regions of models
1, 2 3 and 4.

Figure 3.6 presents the comparison of the S2,1/2 evolution of models 1-4. The primed letters denote
models with S,r 6= 0 6= P,r, Q,r 6= 0. As can be seen, the evolution of S2,1/2 for all these models is also
comparable. These results confirm what might have been intuitively guessed, i.e. that the evolution in the
quasi-spherical Szekeres model does not depend on the position of the dipole component. As long as the
shape and the density contrast of the models are similar, they evolve in a very similar way.

3.6.3 CONNECTION TO THE LARGE-SCALE STRUCTURE OF THE UNI-
VERSE

There remains the problem whether the conclusions presented in the previous section are not limited to the
class of models considered in this thesis. Are they general? How relevant are they for the real large-scale
structure of the Universe? These questions are dealt with in this section.

First of all, let us consider whether the choice of functions used so far does not significantly restrict
our analysis. The models presented above are defined by choosing (tB ,M, S,Q, P ). As can be seen, the
functions (S,Q, P ) describe the position of the dipole and even with S and P constant, we are still able
to construct the cosmic structures. The other functions which specify the model are tB and M . It is
also possible to choose other sets of functions, such as k and tB , or any k and M . In practice, however,
we cannot take any arbitrary k and M because such arbitrary choices may lead to shell crossings or to
fluctuations at last scattering that are too large, and in most cases to both of these. Typically, fluctuations
in the bang time tB , which generate decaying modes [130], should be less than a few thousand years to
satisfy CMB constraints, though carefully chosen combinations of large-amplitude fluctuations in these
three arbitrary functions may be possible. However, one does not expect large differences in the age of the
Universe within the region of size of several to several tens of Mpc. So if tB is set (say that in the studied
region tB ≈ 0), then we are left with one function to manipulate. Let it be M , or, more intuitively, δM .
As seen from (3.17), if δM increases, then k must decrease in order to preserve the constant age of the
Universe. On the other hand, the decrease of k leads to the decrease of the expansion rate, θ (3.22). This,
further, via the continuity equation (3.23), influences the evolution. If we look at the distribution of the
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expansion rate, which is presented in Figure 3.7, we can see the expansion rate closely follows the pattern
of the density distribution (Figures 3.4 and 3.5). Figure 3.7 presents the ratio θSZ/θb of the expansion
scalar in the Szekeres models (3.22) to the expansion factor in the homogeneous background.

Now it should be clear why the void in models 1 and 3 (δM < 0) evolves much faster than in models 2
and 4 (δM > 0). This is because if the mass of the perturbed region is below the background mass, such a
region expands much faster than the background, leading to the formation of large underdense regions. Let
us also notice that similar patterns are present in more complicated configurations. Let us now consider
model 5 which describes the evolution of a triple structure. All functions used to specify this model are
presented in Table 3.1. Figure 3.8 presents the density distribution with two overdense regions, one at the
origin, and a small void between them which extends round the centre at large radii. The evolution of
model 5 is presented in Figure 3.9 for five different time instants. For clarity, the plotted profiles are those
along the line X = 0 in Figure 3.8. As can be seen, the part which is between overdensities evolves faster in
regions where the void is wider than in regions close to the origin where it is narrower. Another significant
fact is that the overdense region, which interfaces with the void across a larger area, evolves much faster
than the cluster at the origin, which is more compact. This model exhibits the features of the models
previously considered. Thus, it might be speculated that the evolution of real structures follows similar
patterns. Namely, small voids in the Universe which are surrounded by large high-density regions evolve
more slowly than large isolated voids. From the perspective of the continuity equation the expansion of
the space in this region is very slow and this is the reason why the voids do not evolve as fast as they
otherwise could. On the other hand, the expansion is much faster inside large voids, where the mass of
the perturbed region is below the background mass (δM < 0). In such structures matter flows from voids
towards the dense regions which form at their larger sides and enhance their evolution. In this way, the
higher expansion rate inside large voids leads to the formation of large and elongated structures such as
walls and filaments which emerge at their edges.

3.7 LIGHT PROPAGATION EFFECTS IN THE SZEKERES
SWISS-CHEESE MODEL AND CMB OBSERVATIONS

This section presents the application of the Szekeres Swiss-cheese model to the analysis of observations of
the cosmic microwave background (CMB) radiation. The impact of an inhomogeneous matter distribution
on the CMB observations is in most cases studied within the linear perturbations of the Friedmann-
Robertson-Walker model. However, since the density contrast and the Weyl curvature within cosmic
structures are large, this issue is worth studying using a different approach. In the Szekeres model,
light propagation and matter evolution can be calculated exactly, without such approximations as small
amplitude of the density contrast. This allows us to examine in a more realistic manner the contribution
of the light propagation effect to the measured CMB temperature fluctuationa.

The results of such an analysis show that small-scale, non-linear inhomogeneities induce, via the Rees-
Sciama effect, temperature fluctuations of amplitude 10−7 − 10−5 on angular scales θ < 0.24◦ (l > 750).
This is still much smaller than the measured temperature fluctuations on this angular scale, i.e ∼ 10−3.
However, local and uncompensated (improperly matched into the Friedmann background and not co-
expanding with it) inhomogeneities can induce temperature fluctuations of amplitude as large as 10−3,
and therefore can be responsible for the low amplitude multipole anomalies observed in the angular CMB
power spectrum.

3.7.1 MODEL SPECIFICATION AND EVALUATION

This Swiss-cheese model consists of a variety of inhomogeneous Szekeres patches or regions in a Friedmann
background. In fact, they are arranged so that the light rays followed always pass directly from one
inhomogeneous patch to another. The six specific Szekeres regions, A to F defined below, are assembled
into different sequences along the light paths, that we call models 1 to 5. The details of this section are
taken from [131].

To completely define a Szekeres model, the freedom in the radial coordinate r must be fixed, and five
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Figure 3.6: Comparison of S2,1/2 for models with δM < 0 (upper panel) and δM > 0 (lower panel). V
corresponds to a void (underdense region), and C corresponds to a supercluster (overdense region). Primes
denote models with P ′ 6= 0 6= S′. Figure taken from [128].
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Figure 3.7: The ratio θSZ/θb. Upper panel represents the ratio for model 1, lower panel model 2. Figure
taken from [128].
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Figure 3.8: The present-day colour-coded density distribution for the triple structure of model 5, showing
a slice through the origin. White indicates a high density region. Figure taken from [128].

Figure 3.9: The evolution of the density profile of the triple structure in model 5. The profiles correspond
to the limit X = 0 in Fig. 3.9. Letters correspond to different time instants: a - 500,000 years after the
Big Bang; b - 1.5 billion years; c - 5 billion years; d - 10 billion years; e - present instant. Figure taken
from [128].
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functions of r need to be specified. In this section, all models will be defined by the functions: k,M, S, P
and Q. The algorithm used in the calculations can be defined as follows:

• The radial coordinate is chosen to be the areal radius at the last-scattering instant, t1 : r′ = Φ(r, t1).
For clarity in further use, the prime is omitted.

• The chosen background model is the ΛCDM model, i.e. a flat Friedmann model with Λ 6= 0. The
background density at the current instant is then given by

ρb = Ωm × ρcr = 0.27× 3H2
0

8πG
, (3.156)

where the Hubble constant is H0 = 72 kms−1Mpc−1 . The cosmological constant, Λ, corresponds to
ΩΛ = 0.73.

• The initial time, t1, is chosen to be the time of last scattering, and is calculated using (2.107).

• Six different Szekeres regions are considered here. Let us denote them as regions A,B,C,D,E and
F . Regions A,B,C,D and F are overdense, whilst region E is underdense. The functions M,k,Q, P
and S in these regions are defined as follows:

Regions A and B

M = Mb +


M1r

3 for r ≤ 0.5a

M2exp
[
−12

(
r−a
a

)2]
for 0.5a ≤ r ≤ 1.5a

M1(2a− r)3 for 1.5a ≤ r ≤ 2a
0 for r ≥ 2a,

(3.157)

where Mb is the mass of the corresponding volume of the homogeneous universe,

Mb = (4πG/3c2)ρLSr
3 , ρLS = (3H2

0 )/(8πG)(1 + zLS)3 , M1 = 8M2a
−3e−3/2 (3.158)

and GM2/c
2 is equal to 0.3 kpc and 0.2 kpc for region A and B respectively, and a = 12 kpc.

k = −1

2
×


k1r

2 for r ≤ 0.5b

k2exp
[
−4
(
r−b
b

)2]
for 0.5b ≤ r ≤ 1.5b

k1(2b− r)2 for 1.5b ≤ r ≤ 2b
0 for r ≥ 2b,

(3.159)

where k1 = 4k2a
−2e−1, k2 is equal to −5.15× 10−6 and 3.5× 10−6 for regions A and B respectively,

and b = 10.9 kpc.

S = 1 , P = 0 , Q = Q1ln(1 +Q2r)× exp(−Q3r), (3.160)

where, for regions A and B respectively, Q1 equals 0.72 and 1.45, Q2 equals 1 kpc−1 and 0.4 kpc−1.
With these definitions the mass distribution and the curvature are the same as in Friedmann models,
for r > 24 kpc.

Regions C1 and C2

In region C the functions M and k are the same as in region A. The only difference is in the form of
functions S, P and Q which are as follows:

S = eαr , P = 0 , Q = 0, (3.161)

where α is equal to −0.0255 kpc−1 and +0.0255 kpc−1 for regions C1 and C2 respectively. Region C1

is the mirror image of C2 , where the Z = 0 surface is the symmetry plane [Z := Φcosθ and θ is defined
by the stereographic projection (3.20)]. The reason why two mirror-similar regions are employed is
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that in the coordinates used here, the axial geodesics can only be studied for propagation along the
Z < 0 direction, in which θ = π. Along the Z > 0 direction we have θ = 0, which corresponds to a
point at infinity in the stereographic projection. This problem is overcome by matching C1 with C2

along the surface Z = 0. When calculating propagation toward the origin, model C1 is employed,
and when calculating propagation away from the origin, model C2 is employed. In both models light
propagates along the Z < 0 axis.

Regions D1 and D2

In regions D the functions M and k are the same as in region B. The only difference is in the form
of the functions S, P and Q which are of the following form:

S = rα , P = 0 , Q = 0, (3.162)

where α equals −0.97 and +0.97 for regions D1 and D2 respectively. As above, region D comes from
matching D1 and D2 along the Z = 0 surface.

Regions E and F

M = Mb +

{
M1r

3 for r ≤ 0.5a

M2exp
[
−6
(
r−a
a

)2]
for r ≥ 0.5a,

, (3.163)

k =

{
k1r

2 for r ≤ 0.5b

k2exp
[
−4
(
r−b
0.5b

)2]
for r ≥ 0.5b,

, (3.164)

S = 1 , P = 0 , Q = Q1 − 0.22ln(1 +Q2r)× exp(−Q3r), (3.165)

where
M1 = 8a−3M2e

−1 , k1 = 4a−2k2e
−1. (3.166)

For region E, M2 = −0.75 kpc, a = 15.23 kpc, k2 = 1.00173 × 10−5, b = 12.95 kpc, Q1 = 0.22,
Q2 = 1 kpc−1, Q3 = 0.1 kpc−1. For region F, M2 = 0.9 kpc, a = 23.76 kpc, k2 = 7× 10−6, b = 19.1
kpc, Q1 = −1.4, Q2 = 0.4 kpc−1, Q3 = 0.005 kpc−1.

• Light propagation was calculated by solving (3.71)-(3.74) (for models 1 and 3) and (3.98) (for models
2, 4 and 5) simultaneously with the evolution equation (3.14). At each step the null condition,
kαk

α = 0, was used to test the precision of calculations. All equations were solved with the fourth-
order Runge-Kutta method.

• The temperature fluctuations were calculated from (2.223) (for models 1 and 3) and (3.106) (for
models 2, 4 and 5). The mean redshift z̄ was calculated using the ΛCDM model.

3.7.2 ARRANGEMENT OF THE SWISS-CHEESE MODEL

The Swiss-cheese models which are employed here are constructed from a Friedmann background and many
inhomogeneous Szekeres patches, using six different building blocks: spherical regions A-F. These Szekeres
regions are placed so that their boundaries touch wherever a light ray exits one inhomogeneous patch;
thus the ray immediately enters another Szekeres inhomogeneity and spends no time in the Friedmann
background (except for model 3, where light propagates for a while in the Friedmann region). Five models
are constructed, using different sequences of regions A-F.

When constructing a Swiss-cheese model, we need to satisfy the junction conditions for matching the
particular inhomogeneous patches to the Friedmann background, and also assure the continuity of the
null geodesics. The standard junction conditions are that the 3-D metric of the surface and its extrinsic
curvature, the first and second fundamental forms, must be continuous.

For matching a Szekeres patch to a Friedmann background across a comoving spherical surface, r =
constant, the conditions are: that the mass inside the junction surface in the Szekeres patch is equal to
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the mass that would be inside that surface in the homogeneous background; that the spatial curvature
function at the junction surface is the same in both the Szekeres and Friedmann models, kSZ = kF r

2; and
the bang time must be continuous across the junction. We have assumed the same value of Λ for both to
make the matching possible.

The junction of null geodesics requires the continuity of all components of the null vector. However, let
us notice that when one Szekeres sphere is matched to another Szekeres sphere it can be rotated around the
normal direction. Thus, we only need to match up the time component k0 and the tangential component:

kT =
Φ

E
√

(kx)2 + (ky)2

∣∣∣∣
region 1

=
Φ

E
√

(kx)2 + (ky)2

∣∣∣∣
region 2

. (3.167)

The radial component is then given by the null condition, kαk
α = 0.

Five different Szekeres Swiss-cheese models are considered here:

Model 1

Model 1 is constructed by alternately matching regions A and B (A + B + A + B ....) into the Friedmann
background. When a light ray exits one Szekeres region, it immediately enters another inhomogeneous
patch. Each time, the (x, y) position of the point of entry is randomly selected. In addition kx and ky are
quasi-randomly selected , i.e.

(ky)2 = γ
(
kT EΦ

)2
, (kx)2 = (1− γ)

(
kT EΦ

)2
, (3.168)

where γ is a random value in the range 0 ≤ γ ≤ 1. The radial coordinate of the matching point is rj = 24
kpc - the point where the Szekeres region becomes Friedmann.

Model 2

This model is constructed from alternating regions C and D, but only axial null geodesics are considered,
i.e. kx = 0 and ky = 0, x = y = 0. The radial component of the matching point is again rj = 24 kpc.

Model 3

The next model consists of regions E and F placed alternately. Null vector components kx and ky are
chosen in such a way that 10−8 ≤ kx ≤ 10−4 and 10−8 ≤ ky ≤ 10−4, but are otherwise random. As
can be noted, this is not in accordance with condition (3.167). In order to maintain the continuity of
the tangential component of the null vector the next Szekeres patch must be oriented with respect to the
preceding patch. This however would lead to an overlapping of successive Szekeres regions. To eliminate
such an overlap, the Szekeres patches are separated from each other by a distance ∆r = 40 kpc (which
corresponds to a current distance of approximately 40 Mpc).

Model 4

Model 4 is constructed using only C regions, with rj = 24 kpc, and only axial geodesics are considered,
i.e. kx = ky = x = y = 0.

Model 5

The last model is also axially symmetric, kx = ky = x = y = 0, rj = 24 kpc, but uses only D regions.

In a generic cosmological model, as proved by [91], voids are not compensated, i.e. the mass within a
void is smaller than the mass of the background that would occupy the same space. Such voids expand
faster than the background, and once they begin to collide, they flatten against each other.
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Figure 3.10: The temperature fluctuations caused by light propagation effects in models 1-5. In models
1-3 light propagates alternatively through underdense and overdense regions. In model 4 light propagates
only through regions of δM < 0, δk > 0, and in model 5 only through regions of δM > 0, δk < 0. Figure
taken from [131].

Figure 3.11: A small part of the light propagation in model 3. The left panel shows the density variation
that light ‘feels’ as it propagates. The black thin dotted line shows the density in the background model.
The right panel presents the temperature fluctuations as measured by an observer situated outside the
structure in the inhomogeneous FRW region. The letters in both panels label corresponding points along
the light path. Figure taken from [131].
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3.7.3 THE REES-SCIAMA EFFECT

To estimate the temperature fluctuations induced by the light propagation effects, it is assumed that the
initial temperature distribution is uniform, (∆T/T )e = 0. Then temperature fluctuations are calculated
using (2.160) and they are plotted against time of propagation in Figure 3.10. As seen, the final values
are small, of amplitude ∆T/T ≈ 10−7 (model 3), ∆T/T ≈ 10−6 (models 1 and 2), and ∆T/T ≈ 10−5

(models 4 and 5). A detailed analysis of how inhomogeneities induce temperature fluctuations is presented
in Figure 3.11 (for clarity, only a small fraction of the time is presented). The left panel of Figure 3.11
shows the density of regions through which the light propagates in model 3. The right panel presents the
temperature fluctuations as measured by an observer situated at the junction point where the model is that
of Friedmann. Letters correspond to each inhomogeneous patch (left panel) and temperature fluctuations
caused by them (right panel). Clearly, underdense regions induce negative temperature fluctuations and
overdense regions produce positive fluctuations.

Apart from estimating the amplitude of the Rees-Sciama effect, it is also important to estimate the
angular scale which is the most affected by this effect. Without going into any complicated analysis, we can
estimate the angular scale by employing the following approximation: the correlation between two distant
points on the sky is zero: photons which were propagating along two distant paths have the temperature
fluctuations uncorrelated. Only when the light paths are near to each other are the temperature fluctuations
correlated. Thus the simplest estimation of the angular scale of the Rees-Sciama effect, as seen from the
schematic Figure 3.12, is the angular size of the Szekeres patch at the last scattering instant. For the
models studied in this section, such approximations lead to an angular scale of θ ≈ 0.21◦, or alternatively,
l ≈ 850. If the photons are propagating along neighbouring paths for only half the age of the Universe
(in such a case, as seen from Figure 3.13, the final temperature fluctuations are two times smaller), then
the angular amplitude is smaller, θ ≈ 0.24◦ (l ≈ 750). Thus the Rees-Sciama effect of amplitude ∼ 10−6

contributes to the CMB temperature fluctuations on the angular scale θ < 0.25◦ (l > 700). This angular
scale corresponds to the angular scale at which the third peak of the CMB angular power spectrum is
observed. At this scale the measured rms temperature fluctuations are of amplitude ≈ 5 × 10−5. This is
still several times higher than the results obtained within models 4 and 5. In the case of models 1-3 the
measured value is more than one order of magnitude larger than the model estimates.

3.7.4 THE ROLE OF LOCAL STRUCTURES

So far, it has been assumed that each inhomogeneous structure is compensated (i.e. each Szekeres region
was matched with the FRW background), so that measurements are carried out away from the inho-
mogeneities, i.e. where the Universe is homogeneous. However, in the real Universe there is no place
where the cosmic structures in the observers vicinity are fully compensated and therefore the Universe
should not be treated locally as homogeneous. Since all measurements are always local, let us consider
what happens if temperature fluctuations are measured in an uncompensated region. Figure 3.13 presents
presents the temperature fluctuations measured by an observer situated at different places within region
E. These results are obtained under the assumption that light from last scattering is propagating through
homogeneous regions, and currently reaches an observer in an inhomogeneous structure (region E). The
light enters and propagates along the bright line shown in the upper right inset of Figure 3.13. The above
results show that local structures can significantly contribute to the CMB temperature fluctuations. This
indicates that care must be taken when extracting information from the CMB observations. Although it
is highly unlikely that the signal caused by the local structures have a signature of acoustic oscillations we
should be aware that local structures can have some visible impact on observations. Thus, it is important
to test if local structures can cause the observed correlations of the alignment of dipole, quadrupole and
octupole axes of the angular power spectrum of the CMB temperature fluctuations or their low amplitude.
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Figure 3.12: The schematic representation of the Swiss-cheese model. When two photons are propagating
along a similar path the final temperature fluctuations are similar. If paths are different, then the final
temperature fluctuations are also different and hence not correlated. Figure taken from [131].

Figure 3.13: Temperature fluctuation amplitude, as measured by observers at different locations in region
E, along the path of a light ray. The ray path is shown as the bright line in the upper inset. Figure taken
from [131].
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Chapter 4

Conclusion

The Universe as we observe it is very inhomogeneous. Its structures include groups and clusters of galaxies,
large cosmic voids and very large elongated structures such as filaments and walls. However, homogeneous
and isotropic models of the Robertson-Walker class have been used almost exclusively in cosmology and, in
these, structure formation is described by an approximate perturbation theory. This cannot be applied once
perturbations become large and evolution becomes nonlinear, and only applies as long as the perturbations
remain small. This is where the methods of inhomogeneous cosmology are more advantageous. These
methods can be employed both to study the evolution of cosmic structure, and to investigate the formation
and evolution of black holes, as well as studying the geometry and dynamics of the Universe.

Despite the successes of the Concordance model, based on an FRW metric plus perturbation theory,
structure evolution eventually becomes non-linear and non-Newtonian, and our understanding of present
day observations will be incomplete without the methods of inhomogeneous cosmology. The phenomena
of fully relativistic inhomogeneous evolution must occur and cannot be ignored.

This thesis presents the application of inhomogeneous exact solutions of the Einstein equations in such
areas as the evolution of galactic black holes and cosmic structures, and the impact of inhomogeneities on
light propagation which allows us to solve the horizon and dark energy problems. The following is a brief
summary of its contents and results.

Evolution of galactic black holes

It is commonly assumed that galactic black holes can be described using the Kerr or Schwarzschild metric.
However, these black holes do not evolve, and so non-stationary models must be employed. In Section
2.5.1 we have described the nonlinear evolution of an initial density perturbation at recombination into a
galaxy with a central black hole at the present day, using the spherically symmetric L-T model. A density
profile based on observational data for M87 was taken for the galaxy exterior to the horizon, and a black
hole with mass 3× 109M� was smoothly joined on as the interior.

No observational data concerning the interior of the horizon exists, and so two distinct forms of this
central black hole were considered, both of which are L-T models. Firstly, a condensation that collapses
to a singularity, and secondly a full Schwarzschild-Kruskal-Szekeres type wormhole with nonzero density.
It has been demonstrated that within these two cases it is possible to obtain a realistic model of a galactic
black hole. In the collapse case, the black hole forms less than half a billion years before the present. In
the wormhole case, the wormhole is only open for a fraction of a second, having minimum mass of only
a few M�, but has already accreted a quarter of a million M� by recombination. Both models grow to
3× 109M� by today.

Due to a lack of data, this approach was the first exploratory step into as yet unchartered territory,
rather than an actual model to be compared with data.
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Evolution of cosmic structures

The linear perturbation formalism or N-body simulations are usually used to describe the evolution of
cosmic structures. However, these methods face both problems and limitations; the linear approach is
invalid once the density contrast becomes large. Further, in the linear regime one cannot study the
impact of shape on evolution since, in this approximation, the shape of a structure does not affect its
evolution [132]. The N-body simulations have the following limitations: the assumption of a uniform
Hubble expansion, the use of Newtonian mechanics, and the finite number of particles [133]. Consequently,
investigations based on exact solutions are mandatory, and we have used exact relativistic models such as
the L-T, Lemâıtre and Szekeres models to reproduce the formation of structures in the Universe.

In Section 2.3.1 methods of generating the L-T models that evolve between given initial and final pro-
files of either density or velocity were presented. These methods have been used in Section 2.6 to describe
the formation and evolution of the Abell cluster A2199. In Section 2.7 we present a model of cosmic voids.
In Section 3.6 we show the evolution of pairs consisting of a galaxy supercluster and a void, and of triple
structures consisting of a galaxy supercluster, a void and a wall. We have found that density perturba-
tions are less efficient at generating structures than velocity perturbations. The gravitational instability
paradigm, which focuses on analysing Fourier modes rather than individual structures, is probably not
telling us the whole story. This point is strengthened by the fact that an initial condensation can evolve
into a void, and vice-versa.

It has been found that the shape and environment of cosmic structures have an impact on evolution.
In particular, large isolated voids evolve faster than small voids among large overdense regions do. This
is because the expansion of the space is slower inside smaller voids than inside larger voids. Further, this
higher expansion rate inside larger voids leads to the formation of large and elongated structures such
as walls and filaments which emerge at the edges of these large voids. These elongated structures evolve
much faster than compact overdense regions: the density contrast within these structures increases faster.

The angular distribution of the CMB temperature must be known at much finer scales before any models
of structure formation can be truly tested against these observations. At the time of writing this thesis,
the best resolution of 0.1◦ is to be compared with the approximate angular size of the portions of matter
on the CMB sky that will go into a galaxy cluster, ∼ 0.1◦, and into a single galaxy, ∼ (10−3 − 10−2)

◦
.

One unsatisfactory feature of the L-T and Szekeres models used here is that once matter starts collaps-
ing, it will keep collapsing to a singularity. In real objects, rotation, pressure gradients and non-perfect
fluid behaviour can prevent collapse so that the object virializes. More general exact cosmological solutions
will be needed if we are to create highly accurate models that remain valid as collapse sets in.

The horizon problem

An important application of exact inhomogeneous models is to study the early stages of the Universe and
its large-scale homogenisation. The central problem here is whether the Universe started homogeneous
(or very close to homogeneous) or the currently observed large-scale homogeneity has developed during its
evolution. Currently, this second opinion is in favour among cosmologists, and the mechanism which leads
to homogenisation is believed to be inflation. However, inflation does not really solve this problem, but
merely explains that regions of the Universe which now enter our horizon were causally connected before
the inflation epoch. The inflationary hypothesis only postpones the occurrence of the horizon problem to
a later time, after which the observer will be more confronted with it. This raises the question, why are we
living at a time when inflation still solves the horizon problem? Moreover, inflation replaces one problem
of initial conditions with another, i.e. the specific initial conditions of the Universe (homogeneity) are
replaced by mechanisms which are specifically designed to drive inflation and whose natural production
has become a major topic in the literature. In Section 2.10 a resolution of the horizon problem was given
in the framework of a large class of L-T Delayed Big Bang models, which solves it permanently, unlike the
inflation paradigm. The geometry of these L-T models allows our past light cone to bend sufficiently to
never cross the Big Bang surface and therefore solves the causality problem at last scattering surface.
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Cosmological observations in the inhomogeneous universe

Another aspect of this thesis was to use inhomogeneous models to analyse cosmological observations such
as supernovae, the cosmic microwave background, the baryon acoustic oscillation scale, etc., which are
usually only analysed against homogeneous models.

In Section 2.9 we demonstrated that the L-T models are able in principle to reproduce the observed
dimming of the distant supernovae with no need for a cosmological constant or, in any case, that an effect
of inhomogeneities on the determination of the cosmological parameters might not be negligible. However,
the luminosity data do not fully specify an L-T model, leaving one arbitrary function undetermined, even in
the case of non-spherically symmetric models, e.g. Swiss-cheese models where the holes in a Friedmannian
background are represented by L-T solutions. It was emphasised that the correct way of dealing with this
issue is to try to reproduce not an accelerating universe but the Hubble diagram of the SN Ia. Actually,
an inhomogeneous model can mimic the magnitude-redshift relation of the Concordance model without
exhibiting an accelerating expansion.

The CMB temperature fluctuations have been studied in the framework of both L-T (Chapter 2) and
Szekeres (Chapter 3) models. The observed values of the dipole, the quadrupole and octupole have been
removed by shifting our location away from the centre of particular inhomogeneous cosmological models.
However, even if future analyses of observational data show that part of the dipole appears to be of
cosmological origin, more work connected with multipole moments of higher order would be needed to
discriminate between various cosmological candidate interpretations. The effect of light propagation in a
lumpy universe on the CMB temperature fluctuations has been studied in Sections 2.11 and 3.7. The Rees-
Sciama effect was analysed in Section 3.7 by propagating light rays through Swiss-cheese models where the
holes are Szekeres regions matched into a Friedmann background. When each underdense region is followed
by an overdense region the final fluctuations are small, of order 10−7. But when light is propagated only
through underdense or overdense regions, the final value is by one order of magnitude higher. Further,
the results of Section 3.7 indicate that the Rees-Sciama effect caused by the propagation of light through
inhomogeneous but compensated structures do not significantly affect the CMB temperature fluctuations.
Some would say that this result is obvious since a similar result is reached when using perturbative methods.
However, within real cosmic structures the density contrast and the Weyl curvature are significantly large.
Thus, the application of the perturbative methods cannot be justified. It has been shown in this section
that the Rees-Sciama effect of amplitude ∼ 10−6 contributes to the CMB temperature fluctuations on the
angular scale θ < 0.25◦ (l > 700). However, if the structures are not compensated or the measurements
are carried out inside inhomogeneous non-compensated structures, the amplitude of measured temperature
fluctuations can be slightly higher. Since in reality we cannot separate ourselves from the surroundings
and say that all local structures at our positing are ‘compensated’, thus the local cosmic structures must
be taken into account when analysing CMB observations. Especially, it is possible that the local structures
can have some impact on low multipole anomalies of the angular CMB power spectrum.

The results show that the L-T and Szekeres models are very useful tools for this kind of investigation.
However, for the parameters of the models to be properly fitted to the results of observations, the obser-
vational data would have to be re-interpreted against the background of these inhomogeneous geometries.
This calls for a thorough revision of the whole existing body of data and literature - a process that will
take a long time.

The traditional FRW cosmological models are the simplest solutions of Einstein’s equations with
nonzero expansion. They were used at the beginning of relativistic cosmology to account for the red-
shift of the galaxies observed in the 1920s by Hubble and Humason. However, they make use of relativity
in a most simplistic way, which is doomed to fail when trying to account for an accurate description of
our Universe at all cosmological scales. In the further development of astrophysical cosmology based on
these models, the main input from relativity was the assumption that the Universe was hot and dense
in the past, and then cooled as it expanded. Everything else is thermodynamics and particle physics. It
is usually claimed that the light element abundances confirming the standard picture of nucleosynthesis,
the nearly isotropic CMB black body power spectrum and the Hubble law are three observational pillars
which sustain the robustness of FRW models. However, even in a Friedmannian framework, observations
are not sufficiently precise to define the evolution uniquely, so there is certainly enough room to consider
more general models. It is often claimed that the high isotropy of the CMB radiation, combined with the
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Copernican principle, proves that our Universe is homogeneous and exhibits therefore a Robertson-Walker
geometry; see [134], for example. Such statements often ignore the caveats stated in [134], as well as the
smallness of the effect of matter inhomogeneities on the temperature of propagating radiation. Existing
estimates show that the interaction is weak, and no temperature anisotropies larger than 10−5 should ever
be expected.

By considering more general (L-T, Lemâıtre and Szekeres) cosmological models, one does not in any
way deny the confirmed successes of the FRW cosmology. The more general models should fill in many
aspects that cannot be captured in the FRW geometries, like structure formation. The FRW models still
remain valid as a rough first approximation to a more detailed description.

We do not claim that all solutions to all problems and mysteries of modern cosmology have been
found. Further, before we decide that we do indeed have an explanation of a set of observations, we should
carefully consider all possible theoretical descriptions, and choose the one that is logically simplest and does
without untestable assumptions. We offer this caveat since unverified and often untestable theories have
been advanced with certainty to explain some observed phenomena, whilst inhomogeneous alternatives are
casually dismissed. Some possible questionable theoretical descriptions are as follows:

• Cold dark matter was introduced in order to allow perturbations to begin growing before re-combination,
because otherwise structures would not form soon enough to agree with observations. Its equation of
state has been adjusted to improve the properties of the present-day matter distribution. Although
astronomers had long mooted the existence of dark matter to account for galaxy rotation curves etc.,
neither the equation of state nor the amount were at all like current proposals.

• An early example is the inflationary prediction that Ω0 = 1. In fact, inflation predicts Ω0 is very
close to unity, and it does not increase the probability that Ω0 is exactly 1, which remains vanishingly
small. Whilst calculations in a flat FRW model give good approximations for many purposes, there
are qualitative differences between flat and non-flat models. Indeed there are problems for inflation
in FRW models with positive spatial curvature, [135]. Despite this, for a long time many advocates
stated it is exactly 1.

• Extra-galactic type Ia supernova measurements indicate a decrease of apparent luminosities, relative
to expectations in zero pressure, zero Λ Friedmann models. Since these larger than expected lumi-
nosity distances dont fit our once preferred model, and since homogeneity is not to be questioned,
we force the calculated dimming to agree with our favourite simple cosmological model, by declaring
that 70% of the current energy density of the Universe is ‘dark energy’ whose properties nobody can
explain.

• In fact we boldly declare that we know how the scale factor evolved, while freely admitting that we
do not know the physical nature of more than 95% of the content of the Universe. Currently there are
several tens of different explanations for dark energy and dark matter, starting from brane worlds and
ending with aether-like scalar fields or a Chaplygin gas. Although within such a model one obtains
concordance, i.e. the right CMB power spectrum, an explanation of the dimming of supernovae and
the calculated age of Universe comparable to the age of the oldest stars, it is actually a collection of
phenomenological proposals that lack a coherent physical basis. Given these uncertainties, it is far too
soon to declare that the Concordance model is a true image of our Universe. It should be noted that
there already exist explanations of the CMB power spectrum and other cosmological observations
based on general relativity that do not invoke any entities unknown from the laboratory, but simply
take into account that inhomogeneities in the matter distribution do exist, and do influence the
collection and interpretation of observational results.

The history of science should teach us some caution. It happened before that ad-hoc fixes proposed in
order to solve an isolated problem developed into elaborate research paradigms. Well-known examples
are the aether hypothesis and the steady-state theory, the first proposed to provide a natural reference
frame for electromagnetic waves, the second to solve the ‘age problem’ of the Universe. In both cases, the
solution of the original problem was found by taking the good old theory to farther limits than before,
which led to new interesting developments. We propose to do the same with the apparent ‘acceleration of
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expansion’. We showed in this thesis that very promising attempts at explaining this phenomenon within
standard relativity, without invoking ‘dark energy’, already exist in the literature.

A curious tendency can be observed in cosmology. At the end of the 19th century most scientists
firmly believed that Newtonian mechanics can be successfully employed to describe the world. Nowadays,
most scientists have no doubts that there is still plenty to discover about the true nature of the Uni-
verse. However, many tend to look for new physics rather than to seek an explanation within the current
paradigm. The main point of this thesis is a demonstration that a solid part of relativistic cosmology can
be done using exact methods of relativity, without applying approximations, heuristic methods of dubious
mathematical foundation or by referring to new physics. Additionally, whatever new physics emerges, the
methods and results of inhomogeneous cosmology still need to be taken into account. The L-T model has
been used many times over the years for a wide variety of applications, yet it continues to generate some
interesting results. The Szekeres model on the other hand has only recently been used for modelling, and
has a much greater potential for a very broad range of interesting applications and results. The diversity
of possible models and uses is essentially unknown, and we can be sure that more useful applications will
emerge. Especially with the Szekeres models, there is enormous scope for investigating the formation and
evolution of complex structures.

This thesis shows that relativity has a lot more to offer to cosmology than just the standard homo-
geneous models of the Robertson-Walker class, and it also demonstrates that inhomogeneous metrics can
quite easily generate realistic models of cosmic structures and their nonlinear formation and evolution.

To end on an optimistic note, let us observe that in recent years appreciation of inhomogeneous mod-
els in the astrophysical community has increased in a dramatic way. In [2], a review of inhomogeneous
cosmologies was presented, and it included just all papers in which any aspect of such models had been
discussed up until then. Up to that time, papers on such topics had been published predominantly in
physical and mathematical journals. By today, there is a regular stream of new publications discussing
various astrophysical and observational applications of the L-T model, they are often published in astro-
nomical journals, and the preferred medium for their pre-publication is astro-ph, not gr-qc as before. It
would be rather impossible to capture them in a review of reasonable size, and any such review would
instantly become outdated. The Szekeres model is slowly making its way into the field. Thus, it seems
that we are witnessing the birth of a new-style theoretical astrophysics that will not be slavishly bound to
just one class of cosmological models, but will allow general model-fitting as a legitimate activity.
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[115] Paczyński B. and Piran T., 1990, Astrophys. J., 364, 341

[116] Turner M.S., 1991, Phys. Rev. D, 44, 3737

[117] Langlois D., 1996, Phys. Rev. D, 54, 2447

[118] Langlois D. and Piran T., 1996, Phys. Rev. D, 53, 2908
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