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Classical and quantum simulations of ammonia clusters in the dimer through the hendecamer range
are performed using the stereographic projection path integral. Employing the most recent
polarizable potential to describe intermolecular interactions, energetic and structural data obtained
with our simulations provide support for a more fluxional or flexible nature at low temperature of
the ammonia dimer, pentamer, and hexamer than in the other investigated species. The octamer and
the hendecamer display a relatively strong melting peak in the classical heat capacity and a less
intense but significant melting peak in the quantum heat capacity. The latter are shifted to lower
temperature �roughly 15 and 40 K lower, respectively� by the quantum effects. The features present
in both classical and quantum constant volume heat capacity are interpreted as an indication of
melting even in the octamer case, where a large energy gap is present between its global minimum
and second most stable species. We develop a first order finite difference algorithm to integrate the
geodesic equations in the inertia ellipsoid generated by n rigid nonlinear bodies mapped with
stereographic projections. We use the technique to optimize configurations and to explore the
potential surface of the hendecamer. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3159398�

I. INTRODUCTION

Ammonia and ammonia clusters are a source of data
fundamental to many applied science and engineering fields,
such as geology,1 atmospheric chemistry,2 and energy storage
research,3 to name a few examples. The dominant interaction
responsible for the cohesion of ammonia molecules into
clusters is the hydrogen bond. However, ammonia is unlike
other textbook examples of hydrogen bonded species, since
each ammonia molecule has the potential to coordinate with
three other molecules. In the bulk crystal, in fact, each mol-
ecule is a triple acceptor as well as a triple donor.4 As such,
homogeneous ammonia clusters constitute an important
variation on the directional nature of the hydrogen bond.
Consequently, ammonia clusters have been the focus of in-
tense experimental5–12 and theoretical13–19 investigations for
nearly three decades. The main focus of the investigations
has been the elucidation of their structures using primarily
scattering, microwave, and infrared spectroscopy experi-
ments. The bulk of the early work focused on the dimer and
the systematic development of a hierarchy of potential en-
ergy models that reproduce spectroscopic properties of small
clusters20–22 on one hand and condensed phase data23–26 on
the other. More recent investigations have focused on the
vibrational spectra of small to midsized ammonia
clusters.17,19 Some intramolecular bands are particularly sen-
sitive to clustering and the coordination number on the am-

monia molecule. Ammonia clusters have been grown in he-
lium droplets10 at 0.38 K, and their infrared spectra confirm
that as few as 1000 molecules are sufficient to produce a
structure of the inner molecules similar to the crystal struc-
ture of the bulk. Argon clusters, on the other hand, have been
shown to begin transitioning at the core from the icosahedral
to the bulk cuboctahedral fcc arrangements only after the
14th solvation layer is completed,27 requiring well over 104

atoms.
Motivated by an analysis of the performance for litera-

ture ammonia pair potentials,28 in recent work, we have de-
veloped an analytical model for the potential energy surface
�PES� of ammonia clusters which includes many-body con-
tributions, by the addition of a noniterative charge on a
spring �COS� computation of the induction terms.29 The pa-
rameters of the model were obtained by fitting ab initio data.
The structures of the global minima of �NH3�n �n=3–20�
were found to be in agreement with those obtained by addi-
tive potentials, with the exception of the pentamer, for which
we have reported a new low energy isomer. The binding
energy is larger for all sizes when compared with that ob-
tained by additive potentials. The clusters investigated in
Refs. 28 and 29 show distinct patterns in the energy differ-
ence from the global minimum of the lowest 200 isomers.
After inspecting the energy difference from the global mini-
mum of the most important configurations of the PES and
observing how the pattern changes as a function of size, it is
only natural to speculate about how the thermodynamic be-
havior may differ from one size to the next. However, with
one exception,13 no thermodynamic investigation on ammo-
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nia clusters has been reported. Virtually nothing is known
about the classical or quantum thermodynamic behavior of
midsized ammonia clusters, let alone about the possible in-
terplay between size and quantum effects in defining the pos-
sible fluxional nature �i.e., the facile interconversion between
different isomers� for these species. Two decades ago,
Marchi et al. performed path integral simulations of �NH3�n,
n=16, 36, and 54 at 100 and 200 K, in connection with the
electron attachment problem.13 Since that time, the commu-
nity has developed a number of tools that improve substan-
tially the efficiency of classical and path integral30–56 Monte
Carlo simulations. It is now possible to accelerate the con-
vergence of the Cartesian path integral without the need to
evaluate derivatives of the PES, for example.50–56

In order to simulate aggregated molecular matter with
path integrals, other developments proved important. At the
temperatures where molecular clusters are thermodynami-
cally stable, the intramolecular degrees of freedom are pre-
dominantly in the ground state and converging path integral
simulations with flexible molecules are prohibitive even for
dimers. On the other hand, the path integral simulation of
cluster �or liquids� composed of rigid bodies is not simple.
Kuharski and Rossky simulated liquid water with angular
variables using the body fixed frame and neglecting
precessions.46 The resulting path integral is numerically con-
vergent to the exact result but only to first order and only the
discretized version of the path integral can be applied. The
precessions of the asymmetric tops contribute second order
terms in the density matrix. Therefore, using the gradient of
the potential to accelerate the convergence of path integrals
will not work in the body fixed frame. For these reasons,
there are only few path integral simulations of molecular
matter in the literature.35–41,43–49 Using stereographic projec-
tion coordinates, we have been able to develop a map for
rigid tops that allows us to perform path integral simulations
using the space fixed frame and the reweighted random se-
ries approach.35–40,45 The energy and heat capacity estimators
based on finite differences54 were shown to retain the cubic
convergence property in the curved spaces mapped stereo-
graphically in conjunction with the reweighted random series
method.39

The purpose of this article is to report the results of our
investigation on ammonia clusters in the dimer through the
hendecamer range. With our newly developed potential en-
ergy model29 and the numerical methods available at our
disposal, we formulate the following objectives. The evapo-
ration energy of the clusters in Ref. 28 suggested the possible
presence of high stability for a particular size, a so-called
magic number. The presence of magic numbers is usually
associated with the completion of a shell with a particular
symmetry, which normally optimizes the balance between
the surface tension and the details of the repulsive interac-
tions. However, molecular motion may influence the relative
stability of different cluster sizes, and in the present investi-
gation we seek to determine the importance of the effects of
temperature and the effects of quantum fluctuations on the
binding energy of the ammonia clusters �NH3�n in the n
=2–11 range, as well as the possible presence of multiple
isomers at low temperatures. This quantity allows one to

assess the possible appearance of magic number clusters, as
it has recently been shown by means of statistical
simulations.57 At the same time, we seek to determine pat-
terns in the classical and quantum heat capacity of the sys-
tems. Specifically, we seek to determine the evaporation tem-
perature range and to determine whether the clusters melt in
the classical and in the quantum limit. In this respect, it is
instructive to characterize thermodynamic behaviors ex-
tracted from simulations in terms of the structural properties
of the most favorable configurations and other popular struc-
tural indicators based on the collective fluctuations of classes
of degrees of freedom. We additionally seek to establish the
strength of the correlations between the intermolecular radial
degrees of freedom and the relative orientations of the mol-
ecules and to determine how these are affected by tempera-
ture and quantum fluctuations.

We organize the rest of this article in the following way.
The details of the PES are reproduced in Sec. II A for the
reader’s convenience.29 In Sec. II B, we provide the details
of how the ellipsoid of inertia space for n rigid bodies can be
mapped stereographically. Section II C contains details of the
stereographic projection path integral approach. In Sec. II D,
we develop a point slope molecular dynamics algorithm that
uses finite difference for the integration of Newtonian and
Brownian dynamics in manifolds. The algorithm avoids the
need to compute directly the numerous connection coeffi-
cients that appear in the geodesic equations. The method is
developed to find the important minima and to explore fur-
ther the PES for the hendecamer, which proves to be a par-
ticularly challenging system to simulate. In Sec. II E, we
describe the methods used to characterize the classical and
quantum random walks. The results of the classical and
quantum simulations and their structural analysis are re-
ported in Secs. III A and III B, respectively. Section IV con-
tains our discussions and conclusions.

II. METHODS

A. The potential energy model

The potential energy model for the ammonia clusters has
been developed in a recent investigation by fitting ab initio
data obtained using second order Møller–Plesset perturbation
theory. The ab initio treatment includes extended basis sets
and basis set superposition error corrections with the coun-
terpoise procedure. In the same work, the ab initio data set is
fitted to an analytical function.29 The potential energy con-
tains the following terms:

V�r� = VCoul + Vrep + Vdisp + Vind + VC. �1�

The VCoul, Vrep, Vdisp, and Vind terms are the constituents of
the model optimized in Ref. 29, with the model C�pol,Qopt�
parametrization. VCoul is the Coulombic interaction resulting
between pairs of charged centers located in separate ammo-
nia molecules. A charge of +0.5264 a.u. is located on each
of the hydrogen nuclei, and a charge of �1.5792 a.u. is lo-
cated 0.295 bohr away from the nitrogen nucleus, toward the
hydrogens along the C3 axis of symmetry.22
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Vrep is the repulsion term computed as a sum of repulsive
interactions between pairs of atoms located on separate am-
monia molecules,

Vrep = �
j�i

aij exp�− bij�rij − rij
� �� . �2�

The dispersion term is computed as a function of the
nitrogen-nitrogen distance between pairs of ammonia mol-
ecules,

Vdisp = − �
i,j�i

n

f�rNiNj
�� d6

rNiNj

6 +
d8

rNiNj

8 +
d10

rNiNj

10 � , �3�

where f�rNiNj
� is a smooth switch,

f�rNiNj
� = �1, rNi,Nj

� r�,

exp	−
�rNiNj

− r��2

rNiNj

2 
 , rNiNj
� r�, � �4�

and r�=8.882 bohrs.
The Vind term is a single-step COS representation of the

induction, where a fixed charge of q=16 a.u. is placed at r0,
i.e., on the nitrogen atom, and the moving charge equal in
magnitude is displaced from the fixed charge using

rm = r0 − �MP2F/q , �5�

where �MP2=14.19 bohrs3 is the spherically averaged mo-
lecular polarizability and F the external electric field. The
induction energy is computed using the following sum over
all the ammonia molecules:

Vind = − �
i=1

n

S�r��1

2
�i

�0� · Ei
�0� +

1

2
�i

�0� · Ei
�1�� , �6�

where �i
�0� is the dipole induced in the ith molecule by the

initial external electric field felt by the ith molecule, Ei
�0�,

resulting from the fixed charges of the n−1 ammonia mol-
ecules surrounding it. Ei

�1� is the total external electric field
felt by the ith molecule after the displacement of the induc-
tion charge q according to Eq. �5� with F j =E j

�0� for all the
ammonia molecules has been computed. The noniterative
procedure is found to provide more than 95% of the self-
consistent estimate of the induction energy in ammonia
clusters.29 By using only a single step in the COS recursion
the analytical model accounts for inductions in an efficient
and convenient way, since the resulting analytical expression
is a smooth function. The function S�r� in Eq. �6� is a smooth
switch,

S�r� = 1
2 �1 + tanh�10�r − 1�� , �7�

where r is the distance between any atom in molecule j and
the nitrogen atom of molecule i. S�r� turns off the induction
interactions when a hydrogen atom is too close to the nitro-
gen of another ammonia molecule.

Lastly, in Eq. �1�, VC is the Lee–Barker–Abraham
smooth reflecting sphere, required to define the volume oc-
cupied by the cluster,

VC = �
i=1

n � rNi
− RCM

2RC
�20

, �8�

where rNi
is the location of the nitrogen atom for the ith

ammonia molecule, RCM is the center of mass of the cluster,
and RC is 9.0 bohrs. The optimized values of the parameters
aij, bij, rij

� , d, d6, d8, and d10 are reproduced in Table I in a.u.

B. The ellipsoid of inertia space for n rigid bodies
and its map

For a given configuration of n ammonia molecules, we
introduce a set of coordinates q�, �=1, . . . ,6n, where for the
ammonia molecule j, q6�j−1�+1, q6�j−1�+2, and q6�j−1�+3 are the
Cartesian coordinates of the center of mass of the molecule
and q6�j−1�+4, q6�j−1�+5 and q6j are the three stereographic pro-
jection coordinates used to map the orientation of the rigid
molecule.35–39 In Ref. 36 we develop the stereographic pro-
jection coordinates map for inertia ellipsoids I. The change
of coordinates is obtained starting with the four quaternion
parameters as functions of the three Eulerian angles,46

x1 = cos
�

2
cos�� + �

2
� , �9a�

x2 = sin
�

2
cos�� − �

2
� , �9b�

x3 = sin
�

2
sin�� − �

2
� , �9c�

x4 = cos
�

2
sin�� + �

2
� . �9d�

The quaternion parameters in Eq. �9� satisfy a spherical-like
constraint relation,

�x1�2 + �x2�2 + �x3�2 + �x4�2 = 1. �10�

Therefore, the rotation space expressed in term of quater-
nions is a 3-sphere, S3. A general map from hyperspheres of
dimension d to stereographic projections is formulated as
follows.36 The set of generalized stereographic projections is

TABLE I. Parameters for the model C�pol,Qopt� �Ref. 29�.

Parameter symbol Value Units

aNN 14.602 1 hartree
bNN 1.394 38 bohr−1

rNN
� 0.00 bohr

aNH 6.816 05	10−4 hartree
bNH 1.905 62 bohr−1

rNH
� 4.925 68 bohr

aHH 1.115 52 hartree
bHH 1.957 96 bohr−1

rHH
� 0.00 bohr

r� 8.882 bohr
d6 98.264 5 hartree bohr6

d8 1 684.55 hartree bohr8

d10 38 962.98 hartree bohr10
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a set of d independent coordinates �
��=1
d defined by

xi

1 − xd+1 =

i

2
, i = 1,2, . . . ,d . �11�

The fundamental object of interest is the Hessian metric
tensor,58 which is obtained by the transformation law of
2-forms,

g�� =
�q��

�
�

�q��

�
� g����. �12�

If I is mapped with Euler angles, q1=�, q2=� and q3=�,
then g���� is represented by the following symmetric matrix:

g11 = Ixx cos2 � + Iyy sin2 � , �13a�

g12 = �Ixx − Iyy�sin � sin � cos � , �13b�

g13 = 0, �13c�

g22 = Ixx sin2 � sin2 � + Iyy sin2 � cos2 � + Izz cos2 � ,

�13d�

g23 = Izz cos � , �13e�

g33 = Izz, �13f�

where Ixx, Iyy, and Izz are the elements of the inertia tensor in
the body fixed frame. For n rigid bodies mapped with the set
of coordinates q�, �=1, . . . ,6n, the metric tensor takes the
following block diagonal form:

g�� = diag�g��
�1�,g��

�2�, . . . ,g��
�n� , �14�

where g��
�j� is the metric tensor block associated with the jth

rigid top and it is represented by a 6	6 symmetric matrix,

g��
�j� =�

mj 0 0 0

0 mj 0 0

0 0 mj 0

0 0 0 g��
I,�j�
� . �15�

In Eq. �15�, the symbol 0 represents 3 rows if above the main
diagonal, and 3 columns if below, with all zero entries, mj is
the total mass of the jth top, and g��

I,�j� is the metric tensor for
the ellipsoid of inertia computed using Eq. �12�. The primed
version of the metric tensor g���� in Eq. �12� is in Eq. �13�.
The partial derivatives in Eq. �12� are obtained36 from Eq.
�11�.

C. Stereographic projection path integral

Path integration30 in manifolds was first considered in
the late 1950s by DeWitt.31 DeWitt was the first to demon-
strate that the Feynman path integral can be evaluated, in
principle, in coordinate systems other than Cartesian. In
manifolds, the choice of coordinates is often crucial. The
general rule seems to dictate that a coordinate set defined to
map points from the manifold to its universal covering space
simplifies the numerical task. For example, Schulman evalu-
ated the partition function for the free particle in a ring
analytically32 using a map for S1→R1. The stereographic

projection coordinates we use in the present work are defined
by a map with the same mathematical property. The path
integral in manifolds is important in high energy physics and
in quantum field theory,33 and it is possible to formulate path
integrals over continuous groups, subgroups, and spaces with
curvature and torsion.22,34 Despite of all these successes,
only a handful of stochastic path integral computations with
holonomic constraints are found in the literature.46–49 Sto-
chastic path integration in manifolds is particularly difficult
if angles are used as coordinates. For example, it is not pos-
sible to expand paths using random series in manifolds that
are mapped with open sets. This problem is eliminated with
the use of stereographic projections, since the range of ste-
reographic projection coordinates extends from −� to +�.
The ability to expand the Brownian bridge in terms of ran-
dom series makes it possible to derive the Feynman–Kac
equivalent in manifolds.35 In turn, the Feynman–Kac equiva-
lent in manifolds allows us to formulate higher order conver-
gence using partial averaging37 and reweighted random se-
ries methods for stereographic projection path integrals.38,39

In our recent simulation of water clusters, we refine the al-
gorithm for the Fourier–Wiener reweighted random series
expansion, show that it is possible to formulate the efficient
finite difference estimators for the energy and heat capacity,
and provide some details of the proof that their convergence
is cubic as it is in Euclidean spaces.50–56

In manifolds, the expression for the density matrix is

�q,q�,�� = � 1

2�
�ND/2

��2��−D/2J�

	� d�a�r exp�− ��
0

1

duU�q̃��u��� , �16�

where J� is a constant Jacobian39 and the action is

U�q̃��u�� = −
N

2�
ln�det g���q̃��u���

+
1

2
g���q̃��u��q̇�q̇� + V�q̃��u�� . �17�

q̃� is the closed path �q̃��0�= q̃��1�� in the manifold with u
=� /��. When the random series expansion is used with km

core terms and km� −km tail terms we write

q̃��u� = qr
��0� + ��1/2�

k=1

km

ak
��k�u� + ��1/2 �

k=km+1

km�

ak
��̃k�u� ,

�18�

and we use km� =4km. To compute the integral in Eq. �16�, we
use the trapezoid rule, with N=km+1 points, and we evaluate
the metric tensor and the potential at the end point of every
interval uj = j /N. The end point choice yields a constant cur-
vature for the quantum Jacobian that we can ignore.22,34 The
estimators are computed using the following expressions:39

�E�� =
D

2�
+� �

��	��
0

1

duU�q̃��u��
� , �19�
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CV

kB
=

D

2
+

D2

4
+ D�� �

��	��
0

1

d�U�q̃��u��
�
+ �2�� �

��	��
0

1

duU�q̃��u��
�2�
− �2� �2

��2	��
0

1

duU�q̃��u��
�
− �−

D

2
− �� �

��	��
0

1

duU�q̃��u��
��2

. �20�

The derivatives with respect to � in Eqs. �19� and �20� are
evaluated numerically.

Prior to performing our simulations, we carefully study
the issue of excluding internal degrees of freedom, since
such approximation is not generally valid and must be veri-
fied case by case. Based on the normal mode frequencies of
the free ammonia molecule and on previous experience with
water clusters,39 we estimate that all the internal modes �in-
cluding the lower frequency bending and the umbrella mode�
are predominantly in the ground state in the range of tem-
peratures of interest. More precisely, we estimate that the
effects of thermal excitations of the internal modes of am-
monia become visible on the scale of the anticipated heat
capacity variation and within the statistical error in the ther-
modynamics only above 200 K. At these temperatures, we
expect the clusters to be largely in the dissociated state. The
umbrella mode has two degenerate states only in the free
limit; the degeneracy is broken when other molecules are
around. Therefore, the ground state wave function is domi-
nated by one configuration instead of having an equal mix-
ture of the two.

D. Molecular dynamics in manifolds

It is well known that the Euler–Lagrange equations,

d

dt
� �L

� q̇�� − � �L
�q�� = 0, �21�

are invariant under any continuous change of coordinates,58

and therefore are applicable in any manifold produced by
holonomic constraints or any parameter space for a Lie �sub-
�group of continuous transformations.59 In manifolds, the La-
grangian takes the following general form:

L = 1
2g��q̇�q̇� − V . �22�

V is the potential energy and g�� is the metric tensor. Gen-
erally, both g�� and V depend on the configuration q. There-
fore, Eq. �21� becomes

g��q̈� + ���g���q̇�q̇� − 1
2 ���g���q̇�q̇� + ��V = 0. �23�

The first two terms in Eq. �23� result from the time derivative
of the partial of L with respect to q̇�. A trivial rearrangement
yields the equivalent of Newton’s second law in manifolds,

g��q̈� = − ��L+, �24�

where L+ is the Lagrangian with the potential inverted,

L+ = 1
2g��q̇�q̇� + V . �25�

It is customary to rewrite the derivative of the metric
tensor using a symmetrized version, known as the Christoffel
symbols of the first kind,58 and upon multiplication on both
sides by g��, the inverse of the metric tensor, one derives the
familiar geodesic equations for accelerated systems in
manifolds.58 For our purposes, it is more convenient to work
directly with Eq. �24� since the connection coefficients58 in
ellipsoid of inertia mapped stereographically have formi-
dable expressions. The equation we use as a starting point is
obtained by multiplying by g��, the inverse of the metric
tensor, both sides of Eq. �24�. The acceleration vector be-
comes

q̈� = − g����L+. �26�

The simple form of Eq. �26� suggests the following algo-
rithm:

�1� Given the initial conditions �q� , q̇��n for step
n=0,1 , . . ., compute ��Ln

+ by finite difference for
�=1,2 , . . . ,d.

�2� Compute the inverse of the metric tensor g�� and the
product �g����L+�n.

�3� For sufficiently small values of �t, assume that
�g����L+�n is constant, integrate, and update the veloci-
ties,

�q̇��n+1 = �q̇��n − �g����L+�n�t . �27�

�4� Using a similar assumption for the velocities update the
configuration,

�q��n+1 = �q��n + �q̇��n+1�t . �28�

�5� Compute the energy E�tn+1�= �L+�n+1, update the simu-
lation time tn+1= tn+�t, and repeat from step �1�.

To test this algorithm, we run a 104 step trajectory for
�NH3�11 with �t=50 hartrees−1 �roughly 1.2 fs�. The initial
configuration is an unminimized cagelike hcp fragment. The
starting velocities are set to zero. The energy conservation
property of the algorithm is measured from the difference
E�t�−E0, where E0 is the initial energy. The algorithm is
surprisingly stable given that it is not symplectic and is a first
order approach. The energy fluctuation E�t�−E0 is a small
fraction of the initial energy E0 and appears to be constant
over a relatively long simulation time. Molecular dynamics
simulations in similar manifolds may require algorithms with
better convergence properties. It is simple to change the
present algorithm into a Verlet equivalent without any addi-
tional derivatives of the potential or the metric tensor. Addi-
tionally, we test symplectic algorithms using a general
Hamiltonian formalism with finite difference of the Hamil-
tonian to evaluate the local split Liouville operator. We find
that the resulting Candy–Rozmus algorithm �a fourth order
symplectic method� is as stable as the point slope approach
developed here. For the purpose of finding the closest mini-
mum the point slope method is the most efficient. The usual
dissipative term is added to Eq. �27� to produce a T=0
Brownian dynamics algorithm,
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�q̇��n+1 = �q̇��n − �g����L+�n�t − ��q̇��n�t . �29�

E. Characterization methods

We use a number of methods to examine the simulations
structurally:

�i� Lindemann indices60–69 for radii and angles.
�ii� Correlation coefficients between radial and orientation

degrees of freedom.
�iii� Distributions of structural identifiers and rotationally

invariant properties.
�iv� The genetic algorithm,70–74 modified for clusters of

rigid tops.
�v� The structural comparison algorithm �SCA�, also

modified to obtain a more favorable scaling with size.

The Lindemann index has been developed to study bond
length fluctuations in molecular dynamics and Monte Carlo
simulations.60–68 The radial Lindemann index used in the
present work is

�r =
2

n�n + 1��i�j

n ��rNiNj

2 � − �rNiNj
�2�1/2

�rNiNj
�

, �30�

where n is the number of molecules of ammonia in the clus-
ter and rNiNj

is the size of the nitrogen-nitrogen vector be-
tween a pair of ammonia molecules. Fluctuations in the
nitrogen-nitrogen “bond length” yield important information
about the nature of the physical state of the system. Small
values of �r are indicative of a solidlike state, whereas larger
values indicate a liquid or a gaseous state for the cluster.
Normally, sharp changes in the Lindemann index correlate
with features in the heat capacity of clusters.

Each molecule of ammonia has three additional degrees
of freedom, necessary to map its orientation. We find it in-
structive to investigate the fluctuations of the relative orien-
tation between pairs of molecules. For each ammonia mol-
ecule, we compute the components of the unit vector along
the C3 symmetry axis. The vector along the C3 axis is chosen
to be directed from the nitrogen to the hydrogens. Letting �ij

be the angle between the two vectors along the C3 symmetry
axes for molecules i and j, we define the angular Lindemann
index as follows:

�� =
2

n�n + 1��i�j

����ij�2� − ���ij��2�1/2

���ij��
. �31�

The absolute value is necessary to eliminate large fluctua-
tions produced by acceptor-donor and donor-acceptor hop-
pings.

A recent investigation of �HCl�n clusters has provided
evidence that radial and angular degrees of freedom in quan-
tum simulations of prototypical hydrogen bonded species
may be strongly correlated.40 The correlations in the HCl
pentamer are strong enough to produce a quantum induced
melting of the HCl pentamer. We investigate correlations be-
tween orientations and translations since they are an impor-

tant part of the general dynamic features of hydrogen bonded
aggregates. The correlation coefficient between the angular
and radial degrees of freedom is defined as

��,r� =
2

n�n + 1��i�j

���ij�rij� − ���ij���rij�
��rij

2 � − �rij�2�1/2����ij�2� − ���ij��2�1/2 .

�32�

Distributions of structural identifiers69 can be used to
identify minima that are visited in the course of a random
walk. Therefore, knowledge of the important minima of the
PES is paramount in the interpretation of simulation results.
In some cases, the distribution of structural identifiers needs
to be supplemented by periodically quenching configura-
tions, or as in the present case, a translational and rotational
invariant structure comparison. The comparison between two
configurations of a cluster of ammonia is carried out with the
SCA,75 which has been modified for the present work. The
modifications decrease the number of necessary operations
substantially. To make a comparison, we use the Cartesian
coordinates of all the atoms, so the configuration A of a
cluster with n rigid ammonia molecules is a set of 4n Carte-
sian vectors �ri

Ai=1
4n , relative to the geometric center, i.e.,

�
i=1

4n

ri
A = 0 , �33�

and oriented so that atom 1 is on the z axis and atom 2 on the
x-z plane. The atoms are all treated as identical, namely, no
distinction is made between H and N atoms. The algorithm
to compare configurations A and B is as follows. Once the
Cartesian vectors �ri

Ai=1
4n and �ri

Bi=1
4n , relative to the geometric

center, are known, configuration B is rotated so that atom i,
1� i�4n, is on the z axis and atom j, 1� j�4n, j� i, is on
the x-z plane. For each of the 4n�4n−1� rotations, a sorting
of the remaining 4n−2 atoms is performed to find the atom
of B that is the closest to atom k of A for k=2, . . . ,4n. Let
�ij

�A� represent an element of the following set of sums:

�ij
�A� = �

k=1

4n

�rk
A − PR��i,� j�rk

B� , �34�

where the set �PR��i ,� j�rk
Bk=1

4n is the configuration B ro-
tated and with the labels permuted as described. The struc-
tural distance from A, denoted with the symbol ��A�, is de-
fined as the infimum of the set,

��A� = inf��ij
�A�i,j=1,i�j

4n . �35�

The quantity ��A� is most meaningful when the configuration
A is a minimum of the PES. If A is the global minimum we
use the symbol �0.

The main departure from the original version of SCA is
the use of the geometric center as the origin. In the original
version, we had used atom 1 of A to define the origin. De-
fining atom 1 as the origin would involve 4n translations on
top of �4n−1��4n−2� rotations. With a sorting routine that
scales quadratically, the total number of operations of the
original SCA would have been 4n�4n−1��4n−2��4n−3�2. In
the current version it requires 4n�4n−1��4n−2�2 operations.
Another important difference in the application of SCA to
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molecular clusters is that we have used the original version
of SCA to manipulate only the Cartesian coordinates of the
centers, unlike those of every atom as we do here. The mea-
sure ��A� in the present version is sensitive to changes in the
orientations of the molecules.

In our previous work we obtained the most important
minima for the systems we investigate presently.29 However,
we find it necessary to rerun a minimum search for a number
of sizes after finding difficulties with the parallel tempering
simulations as explained in Sec. III. We use one of the op-
erators of the genetic algorithm70–74 to produce starting
points �as “children”� for the quenching algorithm. Two par-
ent structures A and B selected using the traditional “fitness”
model are translated in the center of mass and rotated by a
random amount. Then, using a random number k, 1�k�n, a
child configuration is produced by using the coordinates of
the first k molecules from configuration A and the remaining
n−k from configuration B. We use the algorithm in Sec. II D
to integrate Newton’s equations with a dissipative term to
reach the nearest minimum. A generation consisting of 100
children is created; then each child is quenched. The new
minima are sorted and compared against the pool of minima
at hand so that only a single copy of each minimum is in the
list of possible parents for the next generation.

III. RESULTS

A. Classical and quantum thermodynamic properties

The classical �km=0, cf. Eq. �18�� and quantum energy
and heat capacity are obtained by averaging the outcome of
ten independent parallel tempering76–79 simulations. To per-
form a Metropolis move, first we select at random one NH3

molecule using a random number drawn from a uniform dis-
tribution. Then, for path integral simulations, we select a
particular value of k uniformly in 1�k�4km to move the
coefficients ak

� associated with each of the six degrees of
freedom of the selected molecule. The value of the step is
optimized using a simple self-adapting algorithm, the goal of
which is to produce a 50% rejection for the Metropolis
moves. The energy and heat capacity estimators are in Eqs.
�19� and �20�, respectively. In order to control the statistical
quality of the results and assure reproducibility of our find-
ings we use a 106 move walk to approach the asymptotic
distribution, and then we use another 106 move walk to
sample the energy and heat capacity. We repeat the procedure
ten times with a different seed to obtain ten independent
samples. The mean values for each block are reaveraged, and
the standard error in the mean is used to compute a 95%
confidence integral represented by error bars in our graphs.
The standard block averaging procedure just described is
used to account for correlation lengths. The correlation
lengths for two or three dimensional orientations are not sig-
nificantly different than those measured in Lennard-Jones-
type clusters.35–41,43–45

For most sizes, a linear temperature schedule with nw

=40 walkers,

Ti = Tmin + Tmax� i − 1

nw − 1
� , �36�

and with Tmin=10 K and Tmax=300 K is sufficient. We
verify that the energy at the coldest temperatures extrapolates
to values reasonably close to the energy of the global mini-
mum. Then, we check that the heat capacity approaches the
equipartition value, �6n−3� for n nonlinear rigid bodies. The
classical simulations of the octamer and hendecamer ob-
tained with the linear temperature schedule in Eq. �36� are
not satisfactory. The heat capacity of both systems does not
approach equipartition, and large fluctuations at cold tem-
peratures are observed. We repeat the classical parallel tem-
pering simulations for these two systems a number of times
as we attempt to optimize nw, Tmax and Tmin.

Eventually, for the octamer and the hendecamer a new
temperature series designed to grow geometrically with nw

=60 walkers is adopted,

Ti = Tmin�Tmax

Tmin
��i−1�/�nw−1�

, �37�

with Tmin=0.5 K and Tmax=300 K. A new classical simula-
tion with the temperature schedule in Eq. �37� yields a repro-
ducible heat capacity curve that approaches the equipartition
value and a value for the energy at 0.5 K statistically identi-
cal to the energy of the global minimum for the octamer.
However, for the hendecamer we find large fluctuations in
the heat capacity at low temperatures. We determine that,
below 2 K, the random walk is trapped into a high energy
well, since the energy fluctuates above that of the global
minimum and does not extrapolate to the global minimum
value at T→0. We repeat the classical parallel tempering
simulation of the hendecamer several times with a random
initial configuration for all the walkers and we experiment
with different values of Tmin and Tmax. Ultimately, to obtain
sensible and reproducible results for the energy and heat ca-
pacity of the hendecamer, we have to seed each walker with
the global minimum configuration. For the classical simula-
tion we use the nonlinear temperature schedule in Eq. �37�,
whereas for all the path integral simulations, we find the
linear temperature schedule with nw=40 walkers in Eq. �36�
adequate. A comparison of the seeded and unseeded quantum
simulation with kmax=32 displays small but significant dif-
ferences in the heat capacity in the lowest five temperatures.

Path integral simulations require careful tuning of the
number of series coefficients km. High temperature simula-
tions are classical or nearly classical and only require a rela-
tively small number of coefficients. As the temperature de-
creases, the quantum effects grow in magnitude and the
number of coefficients required to achieve convergence in-
creases accordingly. The heat capacity of the ammonia dimer
is shown Fig. 1 for several values of km. The data sets in Fig.
1 are produced with the purpose of studying the convergence
properties of the heat capacity estimator. The classical �km

=0� and all the quantum simulations agree, within the statis-
tical error, at 300 K. The km=24, 32, and 40 and km=40 data
points are hard to distinguish for most but the coldest tem-
peratures. From the graph in Fig. 1 we deduce that a km

=32 simulation is converged within the statistical error for
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T�40 K. We use km=32 for the simulations of all the re-
maining clusters, and we report quantum results for tempera-
tures equal to and greater than 40 K.

In Fig. 2�a�, we graph the binding energy per ammonia
molecule for �NH3�2 through �NH3�11. The white squares are
obtained by using the three lowest values of �E� from the
classical simulation. We use the energy data at the three low-
est temperatures �10.0, 17.4, and 24.9 K� to extrapolate the
T=0 K limit. For the heptamer, octamer, and hendecamer,
we use the value of the energy at 0.5 K. The black squares
are estimates of the actual binding energy obtained from the
quantum simulations at 40 K. Trends in the graphs of the
total energy obtained with km=32 for all ten systems indicate
that the energy is approaching the ground state. Both the
classical and the quantum simulations indicate a gradual in-
crease in stability with growing size. We use the quantum
energy at 40 K as a crude estimate of the zero point energy.
This is 55% of the total binding energy for the dimer, drops

from the dimer to the trimer, and flattens out to about 37% of
the binding energy for the tetramer and beyond.

An alternative representation of the energy results is pro-
vided by Fig. 2�b�, where the monomer evaporation energy
��E�n−1− �E�n� is shown as a function of the number of mono-
mers n in the parent cluster. As expected, the inclusion of
quantum effects reduces substantially the energy needed to
dissociate a monomer from the parent species �roughly 25%�
due to the confinement of molecular librational motion.
Bearing in mind the connection highlighted in Ref. 57 be-
tween �E�n−1− �E�n and the appearance of magic number
clusters in the evaporative ensemble, the substantial reduc-
tion in the binding energy for the ammonia clusters clearly
stresses the need for a quantum treatment of light systems
such as �NH3�n to obtain an accurate prediction of fragmen-
tation lifetimes. In retrospective, a similar finding also ap-
plies to �HF�n �Ref. 41� and to H+�H2O�n.43,44 A more de-
tailed comparison of the data shown in Fig. 2�b� also
indicates that quantum and, to some extent, thermal effects
tend to smooth the roughed behavior shown by the minimum
energy results, with the evaporation energy of �NH3�8 and
�NH3�9 being, respectively, decreased and increased. Al-
though it is difficult to disentangle the quantum contribution
to this finding from the thermal one, a survey of the local
minima energy landscape provided in Ref. 29 suggests the
decrease in the evaporation energy of the octamer to be pri-
marily due to its compact and stiff distorted cubic structure,
well separated from the second low lying isomer. For the
nonamer, a similar analysis is hampered by the presence of
many low lying minima very close in energy to the global
minimum. In this case, the possibility for the system to have
a sizable population in those minima prevents us from sug-
gesting possible contributions to its improved stability to-
ward dissociation, apart from what is already discussed for
the octamer, and the possible gain in free energy due to a
higher entropy for n=9 than n=8.

The heat capacities of the hexamer through the hen-
decamer are in Figs. 3 and 4. In all six graphs, we use white
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squares for the classical results and black squares for the
converged quantum results. The dominant feature in the clas-
sical and quantum heat capacities of the ten clusters is the
“boiling” peak. The conspicuous boiling feature peaks at 140
K for the dimer and between 200 and 220 K for the rest of
the systems. The corresponding quantum peaks are relatively
less intense and slightly shifted to colder temperatures by 5
K or less. The quantum effects below the 300 K range are
substantial for all the ten systems. Noteworthy is also the fact
that the difference between the quantum and classical heat
capacities at 300 K increases monotonically as a function of
the number of molecules in the cluster n, with a slope of
�1.5 units of kB. Clearly, the trend is the result of the in-
crease in the number of confined librational degrees of free-
dom behaving quantistically at 300 K. However, the trend is
not linear, especially in the dimer through the heptamer
range. Other factors contribute to shifts in the differences.
The boiling peaks in the classical heat capacity progress ir-
regularly toward higher temperatures and gradually broaden
as a function of size in this range.

The classical heat capacities of the dimer through the
pentamer �not shown� are featureless in the 0–100 K range;
they approach smoothly and with small statistical fluctua-
tions the expected equipartition values as the temperature
decreases. The quantum heat capacities of the dimer through
the pentamer are also featureless in the 0–100 K range and
are smoothly and monotonically decreasing functions of tem-
perature, with small statistical fluctuations for all but the
coldest one or two temperature points.

The heat capacities of the hexamer through the hen-
decamer are rich with features at colder temperatures, indi-
cating the presence of melting and perhaps other kinds of
phase changes. The pattern of the peaks below the boiling
range for the hexamer through the hendecamer resembles
vaguely the peak progression observed in Lennard-Jones
clusters in the 4–60 range by Frantz.80,81 However, the pro-
gression of the melting peak takes place much more irregu-
larly and rapidly as the size increases. The most subtle melt-
ing signature is observed in the classical heat capacity of the
hexamer. The heat capacity of the hexamer is on the left

panel in Fig. 3. Close inspection of the graph of kB
−1�CV�Ti�

−CV�Ti−1�� �not shown� and its error bars reveals a statisti-
cally significant feature between 40 and 60 K. The heptamer
has a distinct melting peak at 50 K in the classical heat
capacity. The quantum heat capacities for the hexamer and
the heptamer are featureless. The km=32 heat capacity of the
heptamer increases a statistically significant amount as the
temperature drops from 60 to 40 K. However, there is no
sufficient evidence to confirm the presence of a melting fea-
ture in the quantum heat capacity of the heptamer. The clas-
sical heat capacity of the octamer has an intense melting
peak at 75 K and a shoulder at 50 K. The quantum heat
capacity shows a much less intense but nevertheless statisti-
cally significant feature at 60 K. The changes in the slope of
CV /kB computed with km=32 for the octamer occur in a
range of temperatures where we can exclude convergence
artifacts with confidence.

The evidence of melting in both the classical heat ca-
pacities of the nonamer and decamer, again, are subtle but
significant. Their respective quantum heat capacities have
less intense features. The statistical fluctuations at the lowest
five temperature points preclude us from extracting any sig-
nificance from the small undulations visible in the left and
central graph of Fig. 4. By contrast, the hendecamer shows a
relatively intense melting shoulder at 100 K in the classical
heat capacity and a less intense but statistically significant
feature shifted toward colder temperatures by more than 40
K in the quantum limit.

B. Structural analysis

The structural features of the dimer are in Figs. 5 and 6.
In Fig. 5, the top left panel contains the Lindemann index for
the fluctuations of the radial degrees of freedom; the top
right panel is the angular Lindemann index defined in Eq.
�31�. The bottom left is a graph of the correlation coefficient
between the radial and the angular degrees of freedom, and
the bottom right is a graph of the average absolute angle
between the two C3 axis of the ammonia dimer, ���12��. Clas-
sical and quantum results are compared. As with all the other
graphs, we use white squares for classical simulations and
black squares for quantum �km=32� simulations. The radial
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Lindemann index �r increases sharply from 75 to 150 K from
values around 0.05 to values one order of magnitude larger.
It then drops gradually and approaches a plateau around 0.3.
Its quantum equivalent has the same shape and values close
to the classical ones at the low and high temperature ends but
increase sharply 15 K below the sharp rise in the classical �r.
The change in �r correlates with the dissociation of the
dimer. As previously reported for Lennard-Jones systems,67

quantum delocalizations play the same role as thermally in-
duced transitions. This explains why the quantum �r rises at
lower temperatures compared to its classical counterpart. The
angular Lindemann index �� �on the top right of Fig. 5� on
the other hand shows substantial quantum effects at cold
temperatures and does not drop from a maximum at high
temperature. Instead, both the quantum and classical �� ap-
proach a plateau around 0.54. The correlation coefficient
�� ,r� is small and negative and is a weak function of tem-
perature. The differences between the classical and quantum
values �� ,r� are relatively small throughout the whole tem-
perature range. Finally, the classical and quantum average
values of ��12� increase gradually to a maximum at 90 K then

drop and flatten out around 90° at high temperature. Figure 6
contains the distribution of the angle � between the two C3

axes of the dimer at 10 K from a classical simulation. The
distribution is clearly bimodal containing equal amounts of
donor-acceptor and acceptor-donor configurations for the
dimer and presenting a low occupation probability in the
region of donor-acceptor exchange. However, the high value
of the angular Lindemann index obtained at low temperature
from the quantum simulation for this system is a clear indi-
cation of a broad distribution for the angle between the two
C3 axis, the latter suggesting the presence of the highly flux-
ional behavior previously highlighted in the literature.20

We single out the hexamer, heptamer, octamer, and hen-
decamer for in depth structural analysis because they display
the most interesting thermodynamic behavior in Figs. 3 and
4. �However, vide infra for a discussion on n=3, 4, and 5.�
The radial Lindemann index �r, the angular Lindemann in-
dex ��, and the correlation coefficient between the radial and
relative orientation degrees of freedom �� ,r� for the hex-
amer, heptamer, octamer, and hendecamer are in Figs. 7–9,
respectively. Both the classical and quantum �r increase with
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FIG. 7. The radial Lindemann index �cf. Eq. �30�� as a function of tempera-
ture for the hexamer, heptamer, octamer, and hendecamer. The white squares
are classical and the black squares are quantum results.
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FIG. 8. The angular Lindemann index �cf. Eq. �31�� as a function of tem-
perature for the hexamer, heptamer, octamer, and hendecamer. The white
squares are classical and the black squares are quantum results.
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temperature and show sharp changes that correlate with melt-
ing and boiling changes. Despite these similarities, the be-
havior of �r for the hexamer and heptamer is at partial vari-
ance with the one displayed by the octamer and hendecamer,
the low temperature quantum results for �NH3�6,7 being
lower than the classical ones. To investigate qualitatively this
behavior we have characterized structurally the quantum and
classical walks at 40 K as in Sec. IV. The counterintuitive
behavior �r for the hexamer and heptamer is due to the jux-
taposition of two effects, namely, the presence of a low tem-
perature phase change in the classical simulations, evident in
Fig. 3, and the fact that the system free energy surface, when
quantum effects are included, is characterized by a small
number of wells. For the hendecamer, the melting and disso-
ciating temperatures are relatively close in the classical limit.
It is therefore difficult to resolve the melting and boiling in
the rise in �r in the classical limit for the hendecamer. In the
quantum limit, however, �r for the hendecamer has two dis-
tinct features, since the peak temperatures are well separated.
It is interesting to note that �r is larger in the quantum limit
at low temperature due to quantum fluctuations �T�40 K�
and the phase change �40 K�T�120 K�, and that the
quantum effects are large. A similar behavior, albeit less
marked, is also present in the plot of the Lindemann index
for the octamer.

The angular Lindemann index �� in Fig. 8 displays the
same sharp changes, though less pronounced than in �r, sug-
gesting that the correlations among the two sets of degrees of
freedom are significant. The quantum effects are smaller for
�� compared to those in �r, in sharp contrast with what we
see for the dimer, for which the quantum effects are larger
for the relative orientation. Apparently, the angular Linde-
mann index �� is more sensitive to melting changes than
evaporations as evidenced by the strict correlation between
the temperature where its sudden increase begins and the
melting peak present in the heat capacity plots for the oc-
tamer and hendecamer. The correlation coefficients �� ,r�
are also different for the larger systems compared to the
dimer’s. In the dimer the correlation is small and negative.
For the larger clusters the correlation is positive and it is a
nontrivial function of temperature. With some exception,
quantum effects diminish the correlations among the angular
and radial degrees of freedom. �� ,r� drops to zero in mag-
nitude at high temperature for all the sizes. It drops exponen-
tially to zero as the temperature increases beginning at values
where the heat capacity rises toward the boiling peak. The
correlation coefficients �� ,r� for the hendecamer behave
differently from all the other sizes. Both classical and quan-
tum values of �� ,r� for the hendecamer start out small and
positive, grow to relatively moderate and positive values,
and decrease to zero toward higher temperatures.

To gain a deeper understanding of the melting changes
observed for the heptamer, octamer, and hendecamer, we col-
lect two additional sets of distributions. Ten independent
classical walks with 106 “warm up” moves followed by 105

moves are performed. During the second part of the walk, all
105 configurations are written to disk and later used to obtain
histograms of the potential energy and the SCA distance
from the global minimum defined in Eq. �35�. The histo-

grams for the potential energy of the heptamer, octamer, and
hendecamer at selected temperatures are shown in Fig. 10.
The middle panel of Fig. 10 contains the normalized distri-
butions of the potential energy of the octamer. The tempera-
tures are chosen to be slightly above the shoulder in the heat
capacity and above the melting peak of the heat capacities.
The distribution of V for the octamer at 42.6 K is darkened to
make evident its bimodal nature, with an intense peak at
�0.059 hartree and a second weaker peak at �0.055 hartree.
For the heptamer and the hendecamer, we choose to display
the distributions at temperature that are below and above the
melting feature of the heat capacity. As we graph all the
distributions for the heptamer and the hendecamer, we ob-
serve the typical moderately asymmetric shapes about the
maximum, with slightly elongated tails toward higher values.
The distributions for the heptamer and the hendecamer dis-
play a gradual broadening and shifting of the peaks to higher
values of the potential. The only exception we observe is the
distribution at 126 K for the hendecamer, where a more pro-
nounced asymmetric nature could suggest two unresolved
contributions.

In Fig. 11, selected distributions for �0 for the hen-
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decamer and the octamer are plotted. In the case of the oc-
tamer, we observe a shoulder on the melting peak in the CV

plot, which could be the result of a solid-solid change taking
place. One could hypothesize the existence of a clean solid-
solid change between two or more minima of the PES. Dis-
tributions of �0 are distinctly bimodal when solid-solid tran-
sitions give rise to features in the thermodynamic variables.82

Instead, the distributions of �0 for the octamer begin with a
relatively sharp and slightly asymmetric peak near zero at
temperatures below 1 K. Therefore, we conclude that there
are no solid-solid phase changes taking place a low tempera-
ture for the octamer. The peak maximum gradually shifts
toward larger values of �0 as the distributions become
broader. At temperatures slightly below the melting peak in
the CV plot, a much broader and barely significant tail toward
larger values of �0 grows gradually, producing eventually a
highly asymmetric distribution with several peaks. From 105

configurations of the octamer obtained at 47.5 K, we find
only three structures for which �0�35 bohrs. We subjected
these to the Brownian dynamics at 0 K, presented in Sec.
II D, and we obtain isomer M8.2 displayed in Fig. 12. The
notation used here and in the captions of Fig. 12 is Mn.l,
where n is the number of ammonia molecules and l is the
energy ranking of the minimum with 1 for the global mini-
mum, etc.

The distributions of �0 for the heptamer �not shown� and
the hendecamer �top panel of Fig. 11� behave in a similar
way to the octamer ones. In Fig. 12 we display the C2v global
minimum of the heptamer �M7.1� along with two minima that
were isolated at 40 K as the cluster is melting. Both M7.5 and
M7.37 are distorted defective pentagonal bipyramids. The
melting range for the heptamer is characterized for the most
part by a number of closely related compact structures, al-

though occasional open, nearly planar structures are ob-
served as well. The results observed when the melting range
of the octamer and the hendecamer are analyzed in this man-
ner are similar to those for the heptamer. In Fig. 12 we dis-
play the global minimum of the hendecamer �M11.1�, which
dominates the thermodynamics below 90 K. In the molten
range, between 40 and 100 K, the peak associated with the
global minimum contributes increasingly less until it com-
pletely disappears.

All the distributions of �0 in Fig. 11, except for those at
0.5 K, are normalized, so that the area under the curves is 1.
The distribution at 0.5 K for the hendecamer is divided by 4,
and the same distribution for the octamer is divided by 10.
We do this to bring all the plots on the same scale, so that
sufficient details of the tail toward high values are visible. At
the same time, Fig. 11 contains a visible confirmation that
the walk settles in the global minimum if the temperature is
sufficiently cold.

Given the difficulties we encounter in simulating the
hendecamer, even in the classical range, we perform a num-
ber of additional computations. First, we run the genetic al-
gorithm for 30 generations. The method we use is briefly
introduced in Sec. II E. Quenching takes place with Brown-
ian dynamics at 0 K, developed in Sec. II D. The quenched
children are sorted and compared with the minima at hand by
a second program that uses the SCA. This last step ensures
that the next generation of parents, selected from the top 100
in the sorted list in ascending energy, is of distinct structures.
Using this procedure we produce more than 2000 distinct
minima. We stop searching for minima after 30 consecutive
generations fail to find a global minimum lower than what is
reported in Ref. 29. We find many optically active minima,
distinguished by SCA, as nonsuperimposable pairs of struc-
tures with identical energies. At the end of the genetic algo-
rithm run, we select the lowest nine isomers �which include
two sets of enantiomers� and we explore the potential energy
landscape further using dynamic runs. These dynamic runs,
initiated by distorting the minima, are used for two purposes.
First, we find it prudent to confirm with an independent ex-
ploration of the PES that we have indeed obtained the lowest
energy structure since we initiate the classical parallel tem-
pering of the hendecamer from its global minimum. Second,
we speculate that the PES for �NH3�11 may have unusually
high barriers surrounding the global minimum; however, af-
ter inspecting a number of trajectories, we find that with
relatively small excess energies trajectories end up in differ-
ent minima from where the dynamics are initiated.

IV. CONCLUSIONS

In the present article we report the results of a number of
simulations of ammonia clusters in the dimer through the
hendecamer range. We observe that the binding energy per
ammonia molecule is a monotonically decreasing function of
size. The quantum effects on the binding energy per ammo-
nia molecule are large. We estimate that the zero point en-
ergy is approximately 35% of the binding energy for the
largest sizes and climbs as we move toward smaller sizes to
50% for the dimer. From the smooth behavior of the binding

FIG. 12. Several representative structures for the heptamer, octamer, and
hendecamer. The label Mn.l is used to identify a minimum of a cluster of size
n and its energetic ranking l starting with l=1 for the global minimum. M8.1

is the global minimum of the octamer. The distorted cube has D2d symmetry,
and is displayed with the ring plane facing up. The Up-Down-Up-Down
orientation of the free NH bonds on the plane of the ring can be easily seen.
M8.2 is the second minimum of the octamer displayed with the ring plane
facing up and showing the Up-Up-Down-Down orientation of the free NH
bonds on the plane of the ring.
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energy per molecule in the dimer through the hendecamer
range, one would be tempted to conclude that there are no
conspicuous magic numbers both in the classical or quantum
limit of the binding energy. A slightly larger change in the
binding energy from the heptamer to the octamer is never-
theless present in the classical binding energy, albeit the
change is much smaller than what is observed for magic
number sizes in homogeneous Lennard-Jones clusters.80,81

However, the differential quantity provided by the quantum
evaporation energy presents a rougher behavior than the total
binding energy, suggesting the possibility of an enhanced
kinetic stability �i.e., a longer lifetime� for the octamer with
respect to the other clusters. It is our opinion that this issue,
which embraces also species such as �HF�n and H+�H2O�n,
deserves a more careful study currently outside the scope of
this work.

A direct comparison between our results and experimen-
tal data5,9,12 is complicated by the lack of information on the
internal temperature of the clusters and by the rigid molecu-
lar model employed in the simulations. Nevertheless, the be-
havior of CV, �r, and �� with respect to T for �NH3�2–6 �not
shown for n=3–5� seems to support the idea of a more flux-
ional, or flexible, nature for the dimer, pentamer, and hex-
amer suggested in Refs. 6–9 and 12. For the dimer this is
justified by the facile donor-acceptor exchange indicated in
Fig. 6 and by the high �� values. Such behavior for �NH3�5,6

is produced by the smaller energy gap separating their lowest
energy isomer from the one lying just above than in the case
of �NH3�3,4.29 Similarly, the results for the evaporation en-
ergy obtained from our quantum simulations and inferred
from experiments12 agree in indicating �NH3�5 and �NH3�6 as
less stable with respect to dissociation than neighbor species.
We emphasize that both the energetic and structural features
just mentioned are not in contradiction with the possibility
for n=6 of presenting a single well free energy surface. In
fact, a shallow well explains both the relatively higher clas-
sical values of �r,� for n=6 than for n=3, 4, and 7–11 and the
finding that the radial and angular Lindemann indices ob-
tained using quantum simulation are lower than the classical
counterparts �Fig. 7�.

There are no distinct solid-solid transitions for �NH3�8

despite the indications in the CV plot. The structural analysis
does not yield sufficient evidence that the M8.1-M8.2 isomer-
ization is separated from the melting phase. We do not ob-
serve the characteristic bimodal distribution in the SCA mea-
sure �0. Rather, around the melting peak for �NH3�7,8 and
�NH3�11 we find a large number of structures of all kinds
�e.g., M7.5 and M7.35 in Fig. 12�.

In homogeneous Lennard-Jones clusters,80,81 there is a
clear correlation between the thermodynamic stability com-
puted with the binding energy and the energy differences
between the global minimum and the higher energy isomers
�minima in the PES�. A relatively large difference between
the global minimum and the higher energy isomers creates
distinct melting features in the classical heat capacity. Figure
3 demonstrates that the ammonia octamer does have the most
prominent melting feature in the classical heat capacity, and
this is consistent with the pattern of energy of the minima.29

The quantum effects on the heat capacity are substantial as

Figs. 1, 3, and 4 show. Holonomic constraints for the internal
modes of each ammonia molecule and the machinery of the
stereographic projection coordinate map as the parametric
representation of the inhomogeneous Galilean group afford
us the benefits of the cubic convergence that the reweighted
random series expansion provides for path integrations.
Without holonomic constraints, path integral simulations of
molecular matter are difficult at room temperature, the upper
limit in our simulations, since even at those relatively el-
evated temperatures, the ground state dominates the thermo-
dynamic contributions from the internal degrees of freedom.

The fact that we find difficulties in simulating �NH3�11

with classical parallel tempering indicates the degree of com-
plexity of the underlying PES. Since the classical parallel
tempering simulations need a warm up walk much longer
than 106 moves, irrespective of temperature schedule, we
have less confidence in the global minimum search. Conse-
quently, we repeat it with two separate strategies. We gener-
ate and quench additional 3000 minima with the genetic al-
gorithm and we use the lowest nine structures as starting
points for 3600 trajectories with a range of excess energies.
The dynamic data help us reject the hypothesis that the glo-
bal minimum of the hendecamer is surrounded by unusually
high barriers.

The structural analysis of the ten independent parallel
tempering walks for the heptamer, octamer, and hendecamer
indicates that the global minimum has by far the largest vol-
ume of phase space and that all the other minima contribute
individually by a statistically insignificant amount regardless
of the presence or lack of funneled structures. Nevertheless,
the numerical difficulties we encounter are unsettling. We
repeat the classical parallel tempering simulations for numer-
ous sizes to compare seeded versus unseeded simulations
without finding any significant difference besides those pro-
duced by the hendecamer. These observations have com-
pelled us to initiate a thorough characterization of the PES of
the hendecamer to see what lessons, if any, can be learned.
Unfortunately, the characterization of the �NH3�11 PES in the
present work is not sufficient. A search for the transition
states and several basin hopping simulations seem justifiable
to us. We have decided not to lengthen the presentation of
the present work any further at this time.
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